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Preface

The International Symposium on Temporal Representation and Reasoning (TIME) is a
well-established symposium series which brings together researchers interested in reasoning
about temporal aspects of information in all areas of computer science. The symposium has
a wide remit and is devoted to both theoretical aspects and well-founded applications. One
of the key aspects of the symposium is its interdisciplinarity, with attendees from different
areas such as artificial intelligence, database management, logic and verification, and beyond.
The 24th edition of the symposium (TIME 2017) was held from 16 to 18 October 2017 in
the city of Mons, Belgium, hosted by the University of Mons.

Following the call for papers of TIME 2017, a total of 48 abstracts were submitted.
Some abstract submissions did not lead to a subsequent full paper submission. Eventually,
a total of 36 full papers were submitted. Each submitted paper was reviewed by at least
three members of the program committee and the reviews were followed by an additional
discussion to select among those papers. The members of the program committee and the
external reviewers did an excellent job that enabled a high-quality selection process, and
we thank them for their commitment and dedication. In the end, 20 papers were selected
for publication in the proceedings and presentation at the symposium. In addition to the
contributed talks, this year’s program featured three invited speakers: Alessandro Artale
(Free University of Bozen-Bolzano, Italy), Javier Esparza (Technical University of Munich,
Germany), and Sheila McIlraith (University of Toronto, Canada). We are delighted that
they were able to accept our invitation, and grateful for their contribution.

These are the first TIME proceedings published in the Dagstuhl/LIPIcs series. We would
like to thank Dr. Marc Herbstritt and the LIPIcs team for all the help and support. Finally,
we would like to thank the following organizations for sponsoring the event: F.R.S.-FNRS,
Université de Mons, COMPLEXYS, and INFORTECH.

Sven Schewe
Thomas Schneider

Jef Wijsen
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Abstract
We discuss the use of various temporal knowledge representation formalisms for ontology-mediated
query answering over temporal data. In particular, we analyse ontology and query languages
based on the linear temporal logic LTL, the multi-dimensional Halpern-Shoham interval temporal
logic HSn, as well as the metric temporal logic MTL. Our main focus is on the data complexity
of answering temporal ontology-mediated queries and their rewritability into standard first-order
and datalog queries.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Description Logic, Temporal Logic, Ontology Mediated Query Answering,
Data Complexity

Digital Object Identifier 10.4230/LIPIcs.TIME.2017.1

Category Invited Talk

1 Introduction

This paper is a survey of recent developments in applying temporal logics for ontology-
mediated query answering over temporal data.

Ontology-based data access (OBDA) [73] has recently become one of the most successful
applications of description logics (DLs). The chief aim of OBDA is to facilitate access
to possibly heterogeneous, distributed and incomplete data for non-IT-expert users. To
illustrate, suppose that such a user wants to query some data sources D. Under the OBDA
paradigm, the user does not have to know the schemas of D (that is, how the data is
organised). Instead, the user is given an ontology O describing the domain of their interest in
familiar and standard terms that can be used directly to formulate the desired queries q(x)
in, say, the query language SPARQL, possibly with the help of a graphical tool. The OBDA

© Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter, and
Michael Zakharyaschev;
licensed under Creative Commons License CC-BY
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1:2 Temporal Ontology-Mediated Querying: A Survey

system relies on a (GAV) mappingM, relating the terms in O with the schemas of D (and
produced by an IT expert), to find tuples a from D such that O,M(D) |= q(a), where
M(D) is the result of applyingM to D. Depending on the language of the ontology-mediated
query (OMQ) Q = (O, q(x)), this can sometimes be done by rewriting Q to a first-order
(FO) or datalog query q′(x) that can be executed over any given data instance D directly
by conventional data management systems. For example, FO-rewritings always exist if O
is an OWL 2 QL ontology (based on the DL-Lite family of DLs) and q(x) is a conjunctive
query (CQ) [37, 6], while datalog rewritings can be constructed for OMQs with ontologies in
OWL 2 EL (based on the EL family of DLs) and CQs [78]. For recent applications of OBDA,
the reader can consult [5, 22, 47, 36, 38, 77, 82].

The W3C standard ontology languages OWL 2 QL and OWL 2 EL mentioned above were
designed to represent knowledge about static domains and are not suitable when the data
and the terms the user is interested in are essentially temporal. Suppose, for example, that
the data comprises sensor readings from some industrial installations, say, gas turbines, or
from weather stations across a country, and that the user – a service engineer or, respectively,
a meteorologist – is interested in detecting events such as

active power trip, which happens when the active power of a turbine was above 1.5MW
for a period of at least 10 seconds, maximum 3 seconds after which there was a period of
at least one minute where the active power was below 0.15MW; or
blizzard, which happens when severe snowstorms with low temperatures and strong winds
last for at least three hours.

To be able to represent these concepts, an ontology language clearly requires various temporal
constructs that have been studied in the context of temporal representation and reasoning [44,
45, 41].

Combinations of DLs with temporal formalisms have been widely investigated since the
pioneering work of Schmiedel [81] and Schild [80] in the early 1990s; we refer the reader
to [45, 21, 7, 62] for surveys and [71, 10, 51, 52, 50, 14] for more recent developments.
However, the main reasoning task targeted in this line of research was concept satisfiability
rather than query answering and the general aim was to probe various combinations of
temporal and DL constructs that ensure decidability of concept satisfiability with acceptable
combined complexity.

In the context of answering OMQs, our main concern is their FO- or datalog-rewritability,
and the data complexity of query evaluation, where the given OMQ is regarded to be
fixed while the data varies. Thus, in this survey we focus on temporal data modelling
and algorithmic properties of OMQ answering and do not discuss in any detail advances
in temporal DLs not related to query answering. The plan for this paper is as follows.
We distinguish three temporal data models and the corresponding languages for ontologies
and queries: the discrete point-based approach where time is discrete and each fact comes
with a time-point in which it holds true, the more general interval-based approach where
facts are stamped with the interval in which they are true, and finally, a model based on a
dense flow of time where the focus is on modelling and querying metric temporal properties.
In Sections 2–4, we discuss the state of the art in point-based ontology-mediated query
answering. The languages considered range from the full two-sorted FOL to time-centric
languages based of LTL, domain-centric languages based on DLs, and combinations of both.
In Section 5, we consider ontology-mediated query answering over interval-based models
focussing on Halpern and Shoham’s modal logic for time intervals. In Section 6, we discuss
dense time and how a combination of datalog and metric operators can be used to model
metric knowledge and support ontology-mediated querying in this case. We close in Section 7
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with a discussion of practical issues in temporal ontology-mediated querying and a recent
implementation.

2 Point-Based Temporal Ontology-Mediated Querying

Suppose we have a database on submission, acceptance and publication of papers in the area
of computer science collected from various sources on the web and elsewhere. For instance,
the database may contain the facts

underSubmissionTo(a, JACM,Feb2016), UnderSubmission(b, Jan2016),
acceptedIn(c, JACM, July2016), Published(c,Oct2016),
authorOf(Bob, c,May2014)

stating that paper a was under submission to JACM in February 2016; paper b was under
submission in January 2016 (to an unknown journal); paper c, authored by Bob in May
2014, was recorded as accepted by JACM in July 2016, and published (in some venue) in
October 2016. Observe that the predicates in the snippet above have a timestamp as their
last argument (e.g., Oct2016) and either one or two domain arguments (e.g., a, JACM).
Following the description logic (DL) tradition, we call predicates with one domain argument
concepts (e.g., Published) and predicates with two domain arguments roles (e.g., authorOf).
A finite set of timestamped facts such as the snippet above is called a temporal ABox. In
general, a temporal ABox, denoted A, consists of assertions of the form

Ak(ai, n), Pk(ai, aj , n),

where Ak is a concept name, Pk a role name, ai and aj individual names, and n ∈ Z a
timestamp.

Now, we introduce models for temporal ABoxes. Let T ⊆ Z be a (possibly infinite)
interval. A T -interpretation I is a structure

I =
(
(T,<), ∆I , P I1 , P I2 , . . . , AI1 , AI2 . . . , aI1 , aI2 , . . .

)
such that < is the standard linear order on Z restricted to T , ∆I 6= ∅ is the interpretation
domain, P Ik ⊆ ∆I × ∆I × T and AIk ⊆ ∆I × T , for each k, and aIi ∈ ∆I , for each i

(we assume rigid, or time-independent, interpretation of individual names) and aIi 6= aIj
whenever i 6= j (thus, we make the unique name assumption). Note that the domain ∆I is
time-independent. Time-dependent domains can be modelled using an ‘existence predicate’;
we refer the reader to [45, 44, 31] and references therein for a discussion of relevant domain
assumptions in the literature on modal and temporal logic. For a temporal ABox A, we say
that a T -interpretation I satisfies A or that I is a model of A if T contains all timestamps
n that occur in A and

(aIi , n) ∈ AIk , for all Ak(ai, n) ∈ A, and (aIi , aIj , n) ∈ P Ik , for all Pk(ai, aj , n) ∈ A.

Let minA and maxA be the minimal and, respectively, maximal integers occurring in A.
We assume without loss of generality that minA = 0. In what follows, we shall mostly
be working with Z-interpretations satisfying A (called Z-models of A), N-interpretations
satisfying A (called N-models of A) and [minA,maxA]-interpretations satisfying A (called
ABox-fitting models of A).

The models I of a temporal ABox A reflect the open-world assumption underpinning
ontology-mediated query answering: rather than assuming that the ABox contains all relevant
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Figure 1 A typical timeline for a publication in Example 1: S, A and P stand for Submitted,
Accepted and Published, respectively.

domain individuals and time points, one admits additional domain individuals and time
points that might be required to satisfy domain knowledge. Thus, Z-models reflect the
common sense view of time as being infinite in the past and the future. N-models and
ABox-fitting models reflect a more pragmatic approach and assume that the time points not
used as timestamps (or are before/after any timestamped data) are irrelevant for querying
the data.

We next introduce the ontology and query languages that have been proposed for ontology-
mediated querying of point-based temporal data. Most of these languages can be regarded
as fragments of the two-sorted first-order language 2-FOL(<) [84] constructed from atoms
Ak(x, t), Pk(x, y, t), t1 < t2, and t1 = t2, where Ak is a concept name, Pk a role name, x
and y are domain variables ranging over the interpretation domain ∆I , and t, t1 and t2 are
temporal variables ranging over the time instants in T . For any 2-FOL(<)-formula ϕ, any
T -interpretation I, and any assignments d of elements of ∆I to the domain variables and t

of elements of T to the temporal variables, we define the truth-relation I |=d,t ϕ by induction
as follows:

I |=d,t Ak(x, t) iff (d(x), t(t)) ∈ AIk , I |=d,t >,
I |=d,t Pk(x, y, t) iff (d(x), d(y), t(t)) ∈ P Ik , I 6|=d,t ⊥,
I |=d,t t1 < t2 iff t(t1) < t(t2), I |=d,t ¬ϕ iff I 6|=d,t ϕ,

I |=d,t t1 = t2 iff t(t1) = t(t2), I |=d,t ϕ1 ∧ ϕ2 iff I |=d,t ϕ1 and I |=d,t ϕ2,

I |=d,t ∀xϕ iff I |=d′,t ϕ, for all d′ that differ from d only on x,

I |=d,t ∀t ϕ iff I |=d,t′ ϕ, for all t′ that differ from t only on t;

other first-order connectives and quantifiers such as →, ↔, ∃ are defined in the standard
way. By an ontology, O, we mean a set of 2-FOL(<)-sentences. We say that I satisfies an
ontology O or I is a model of O if I |= ϕ, for each ϕ ∈ O (since the ontology contains only
sentences, the assignments are irrelevant).

I Example 1. Consider a simple temporal ontology about research papers (as above) with
role names publishedIn, acceptedIn and underSubmissionTo. We state that the domains of the
three roles are mutually disjoint using axioms such as

∀t∀x∀y1∀y2
(
publishedIn(x, y1, t) ∧ acceptedIn(x, y2, t)→ ⊥

)
. (1)

Basic temporal dependencies can be formulated as follows:

∀t∀x∀y
(
publishedIn(x, y, t)→ ∀s

(
(s > t)→ publishedIn(x, y, s)

))
, (2)

∀t∀x∀y
(
publishedIn(x, y, t)→ ∃s

(
(s < t) ∧ acceptedIn(x, y, s) ∧ (3)

∃s′((s < s′) ∧ publishedIn(x, y, s′) ∧ ¬∃s′′
(
(s < s′′) ∧ (s′′ < s′)

)))
,

∀t∀x∀y
(
∃s′ ((s′ < t) ∧ acceptedIn(x, y, s′)) ∧ (4)

∃s′′ ((t < s′′) ∧ acceptedIn(x, y, s′′))→ acceptedIn(x, y, t)
)
,
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an analogue of (3) for acceptedIn and underSubmissionTo and the convexity axiom (4) for
underSubmissionTo. The temporal ABox does not always use these role names, but rather
integrates information from various data sources. For example, for a paper to be published
it is necessary and sufficient that it is published in some venue (even if the publication venue
is unknown). So, we use concept names Published, Accepted and UnderSubmission to refer to
all published, accepted and submitted papers, respectively: e.g.,

∀t∀x
(
Published(x, t)↔ ∃y publishedIn(x, y, t)

)
(5)

and similarly for acceptedIn and underSubmissionTo. It follows from these axioms, in par-
ticular, that Submitted, Accepted and Published form consecutive intervals as depicted in
Fig. 1.

A 2-FOL(<) ontology-mediated query (OMQ) is a pair Q(x, t) = (O, q(x, t)), where O is
an ontology and q(x, t) a 2-FOL(<)-formula with free domain variables x and free temporal
variables t. We call q(x, t) a query and x, t its answer variables. Given a temporal ABox A,
a model I of A, a tuple a of individual names in A of the same length as x, and a tuple n
of time points in A of the same length as t, we write I |= q(a,n) if I |=d,t q(x, t), for the
assignments d : x 7→ a and t : t 7→ n. Let T ∈ {Z,N, [minA,maxA]}. We say that the tuple
(a,n) is a certain answer to Q = (O, q(x, t)) over A and T and write O,A |=T q(a,n) if

I |= q(a,n) for all T -models I of O and A.

I Example 2. In the context of Example 1, we now assume that the unit of time is one
month. Then we can formulate the following queries.

Find all accepted papers and their acceptance dates such that the paper was under
submission for at least a year:

q(x, t) = Accepted(x, t) ∧ UnderSubmission(x, t− 1) ∧ UnderSubmission(x, t− 13). (6)

Since the flow of time is discrete, any formula of the form P (x, t− 1) is simply an abbrevi-
ation for ∃t′

[
P (x, t′) ∧ (t′ < t) ∧ ¬∃t′′

(
(t′ < t′′) ∧ (t′′ < t)

)]
; UnderSubmission(x, t− 13)

can be defined similarly.
Papers that were published within two months after acceptance but had been under
submission for three years:

q(x, t) = ∃s
(
(s < t) ∧ Accepted(x, s) ∧ UnderSubmission(x, s− 1)∧

Published(x, s + 2) ∧ UnderSubmission(x, s − 37)
)
. (7)

Authors of papers that were submitted more than two years ago but have not been
accepted yet:

q(x, t) = ∃y
(
authorOf(x, y, t)∧UnderSubmission(y, t−24)∧UnderSubmission(y, t)

)
. (8)

Recall that UnderSubmission is disjoint with Accepted and can only occur before the paper
is eventually accepted.

Note that 2-FOL(<)-formulas as we defined them do not use individual constants. This
assumption is for simplicity only; it is straightforward to extend the syntax and semantics of
temporal ontologies and queries to 2-FOL(<) with individual constants.

Given two fragments L and Q of 2-FOL(<), we denote by (L,Q) the class of ontology-
mediated queries Q(x, t) = (O, q(x, t)) such that O is formulated in L and q(x, t) in Q. Let T
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be any of Z, N or [minA,maxA]. By (L,Q)-OMQ evaluation over T we understand the
problem of deciding, for a given (L,Q)-OMQ Q(x, t) = (O, q(x, t)), a temporal ABox A and
tuples a and n in A of the same length as x and t, whether O,A |=T q(a,n). The combined
complexity of (L,Q)-OMQ evaluation over T is defined as the computational complexity of
the above problem. As the queries and ontologies are mostly much smaller than the ABox A,
combined complexity is often misleading as a measure of the resources needed for query
evaluation [85]. An alternative and often more appropriate complexity measure is the data
complexity of (L,Q)-OMQ evaluation over T , that is the complexity of deciding, for fixed O
in L and q(x, t) in Q, whether O,A |=T q(a,n) for any given ABox A and tuples a and n.

The data complexity of OMQ evaluation is closely related to the equivalent rewritability
of OMQs into standard query languages. With any temporal ABox A we associate a
[minA,maxA]-interpretation

IA =
(
([minA,maxA], <),∆IA , P IA1 , P IA2 , . . . , AIA1 , AIA2 , . . . , aIA1 , aIA2 , . . .

)
,

where ∆IA is the set of individual names in A, aIAi = ai for all i, and

AIAk = {(ai, n) | Ak(ai, n) ∈ A} and P IAk = {(ai, aj , n) | Pk(ai, aj , n) ∈ A}, for all k.

Now, letQ′ be any query language over [minA,maxA]-interpretations, for example, 2-FOL(<)
itself, a fragment of 2-FOL(<) or even its extension. We say that (L,Q)-OMQs are
Q′-rewritable over T if, for every OMQ (O, q(x, t)) in (L,Q), there exists q′(x, t) in Q′
such that, for every temporal ABox A that has a common model with O, the following
equivalence holds for all tuples a and n in A of appropriate length:

O,A |=T q(a,n) iff IA |= q′(a,n).

If Q′ is 2-FOL(<) over T , then IA |= q′(a,n) is the standard database query evaluation
problem for temporal ABoxes and 2-FOL(<) queries, which is known to be PSpace-complete
for combined complexity; see, e.g., [61]; if, however, one fixes the query and thus considers
the data complexity, then this problem is in AC0, the class of languages computable by
bounded-depth polynomial-size circuits with unary not-gates and unbounded fan-in and-
and or-gates.

Of course, the OMQ evaluation problem for the full 2-FOL(<) is undecidable, and it is
one of the main problems of temporal ontology-mediated query answering to design useful
ontology and query languages for which the query evaluation problem is decidable or, even
better, feasible in practice. The latter requirement is typically interpreted as being at least
in PTime in data complexity, but to query very large data and employ existing query
engines PTime query evaluation often is not sufficient, and one aims at rewritability into
first-order logic (AC0 data complexity). In the following two sections, we discuss a few
known approaches to this problem.

3 Queries Mediated by Domain- or Time-centric Ontologies

An important way of obtaining temporal ontology languages from 2-FOL is simply omitting
(non-trivial) quantification over one of its two sorts. Thus, intuitively, if we disallow all but a
single outermost universal quantifier for a temporal variable, then we obtain a ‘domain-centric’
ontology language, in which one can define a time-independent model of the domain; and
if we disallow all but a sequence of outermost universal quantifiers for domain variables,
then we obtain a ‘time-centric’ ontology language using which one can define a propositional
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temporal model. Both approaches have been investigated, and, in the rest of the section, we
shall provide a summary of the obtained results. If a model representing both temporal and
domain knowledge is needed, we have to carefully define the interaction between the domain
and time quantifiers.

3.1 Domain-Centric Ontology Languages
It is straightforward to restrict 2-FOL(<) in such a way that it only defines non-temporal
properties: such an ontology would consist of 2-FOL(<) sentences ∀t ϕ(t), where ϕ does not
contain quantifiers over temporal variables. Of course, query evaluation is still undecidable,
and so further restrictions of its expressive power are needed. In standard, non-temporal,
ontology-mediated query answering, description logics are the most popular fragments of
first-order logic used to define ontologies. Here, we introduce three basic families of DLs that
have been important in the context of OMQ answering, and from which many others can be
derived in a straightforward way. Namely, we introduce the basic expressive DL ALC [19]
and the lightweight DLs DL-Lite [37, 6] and EL [18]. In ALC, concepts C are constructed
using the grammar

C ::= > | Ak | ¬C | C1 u C2 | ∃Pk.C.

An ALC TBox (ontology) is a finite set of concept inclusions C1 v C2, where C1 and C2 are
ALC concepts. Concepts in the fragment EL of ALC are ALC concepts without occurrences
of negation ¬. An EL TBox is a finite set of concept inclusions C1 v C2, where C1 and
C2 are EL concepts. In DL-Lite, basic concepts B and roles R are constructed using the
grammar

B ::= > | Ak | ∃R.>,
R ::= Pk | P−k .

A DL-LiteHcore TBox is a finite set of concept and role inclusions of the form

B1 v B2, B1 uB2 v ⊥,
R1 v R2, R1 uR2 v ⊥,

where B1 and B2 are basic concepts and R1 and R2 are roles. Concept and role inclusions
of the second type are also called disjointness axioms. In DL-LiteHhorn, one can also form
intersections of basic concepts:

B1 u · · · uBk v B, B1 u · · · uBk v ⊥;

in DL-LiteHkrom, one can use negation (but still any concept inclusion contains only two
concepts): that is, concept inclusions are of the form B1 v B2, B1uB2 v ⊥ and > v B1tB2;
finally, in DL-LiteHbool one can use both conjunction and negation resulting in concept
inclusions of the form D1 v D2, where the Di are defined using the rule

D ::= B | ¬D | D1 uD2.

(We will assume without loss of generality that the concept inclusions in DL-LiteHbool are
given in normal form: B1 u · · · uBk v B′1 t · · · tB′n; as usual, we assume that the empty
union is ⊥ and the empty intersection is >). All of the above languages in the DL-Lite family
contain role inclusions, and the fragment of DL-LiteHc without role inclusions is denoted by
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DL-Litec. Two concept (or role) inclusions C1 v C2 and C2 v C1 are often abbreviated as
C1 ≡ C2 and are called a concept (respectively, role) equivalence axiom.

The DLs introduced above can be regarded as fragments of first-order logic (with a single
sort). In the temporal setting, every (basic) concept C can be translated (using the so-called
standard translation) to a 2-FOL(<)-formula C](x, t) with one free domain variable x and
a single temporal variable t, and every role R to a 2-FOL(<)-formula R](x, y, t) with two
domain variables x, y and a single temporal variable t:

(Ak)](x, t) = Ak(x, t), (¬C)](x, t) = ¬C](x, t),

(Pk)](x, y, t) = Pk(x, y, t), (C1 u C2)](x, t) = C]
1(x, t) ∧ C]

2(x, t),
(P−k )](x, y, t) = Pk(y, x, t), (∃R.C)](x, t) = ∃y

(
R](x, y, t) ∧ C](y, t)

)
.

Every concept inclusion C1 v C2 is then translated as ∀t∀x
(
C]

1(x, t) → C]
2(x, t)

)
and

every role inclusion R1 v R2 as ∀t∀x∀y
(
R]

1(x, y, t) → R]
2(x, y, t)

)
. Thus, we obtain a first

important type of temporal ontologies by demanding that its (essentially atemporal) concept
and role inclusions hold true at every time point. More formally, given a T -interpretation
I and n ∈ T , we can define an n-slice I(n) of I by taking the standard Tarski-style
interpretation for the respective DL:

I(n) =
(
∆I , P I(n)

1 , P
I(n)
2 , . . . , A

I(n)
1 , A

I(n)
2 , . . . , a

I(n)
1 , a

I(n)
2 , . . .

)
,

where aI(n)
i = aIi , for all i, and

P
I(n)
k = {(u, v) | (u, v, n) ∈ P Ik } and A

I(n)
k = {u | (u, n) ∈ AIk}, for all k.

It follows that I is a T -model of an ontology O iff each of the concept and role inclusions in
the ontology is satisfied in each of the slices I(n), for n ∈ T .

I Example 3. In a domain-centric ontology language in the context of Example 1, we can
express (1) by using a concept disjointness axiom and (5) using a concept equivalence axiom:

∃publishedIn.> u ∃acceptedIn.> v ⊥, (1′)
Published ≡ ∃publishedIn.>. (5′)

It is to be noted that, in the languages just introduced, one cannot represent or reason
about any dependencies between the interpretations I(n) and I(m) for distinct time points n
and m. Examples of such dependencies are sentences (2)–(4) in Example 1. The extension of
any ontology language L with the option to say that a concept name A is time-independent
(that is, AI(n) = AI(m) for all time points n,m) is called L with rigid concepts. The extension
of L with rigid roles is defined analogously. In Example 1, authorOf could be a rigid role. Of
course, if the language has rigid roles, then rigid concepts can be ‘simulated’ by considering
domains of rigid roles: if role R is rigid, then the equivalence axiom C ≡ ∃R ensures that
concept C is also rigid.

Baader et al. [20] proposed domain-centric languages. They introduced ALC-LTL as the
language of ALC axioms (concept inclusions, or GCI as they are often called in description
logic) and ABox assertions with Boolean connectives and temporal operators applied to them.
For example, the temporalised axiom 3F2F (USCitizen v ∃insuredBy.Insurer) says that there
is a future time point, from which on every US citizen will always have a health insurance.
It turns out that without rigid symbols the two components – the domain and the time –
have very little interaction, and so in order to check whether a given formula ϕ in ALC-LTL
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Table 1 Complexity of the satisfiability problem over N.

language combined complexity

no rigid symbols rigid concepts only rigid roles & concepts

ALC-LTL [20] ExpTime NExpTime 2ExpTime
—"— global GCIs [20] ExpTime ExpTime 2ExpTime

EL-LTL [28] PSpace NExpTime NExpTime
—"— global GCIs [28] PSpace PSpace PSpace

is satisfiable, one can check whether (1) the propositional abstraction of ϕ (the result of
replacing DL axioms with propositional variables) is satisfiable and (2) the satisfying model
yields consistent sets of DL axioms. As a result, the complexity is usually the maximum
of the complexities of the two components; see Table 1. Rigid concepts and/or rigid roles
make the interaction stronger and require additional global guessing/bookkeeping but the
propositional abstraction technique is still applicable. The second set of results in Table 1
refers to the fragment of ALC-LTL in which Boolean connectives and temporal operators
can be applied only to ABox assertions but ALC axioms hold globally in all models (in
precisely the same way as we defined in the standard translation above). Such a restriction
dramatically reduces the complexity for the logic EL-LTL [28].

Note also that the Semantic Web community has developed a variety of extensions of
RDF/S and OWL with validity time [64, 74, 48]. The focus of this direction of research is
on representing and querying timestamped RDF triples or OWL axioms.

3.2 Time-Centric OMQs
One of the main differences between description logics and first-order logic is that the former
do not use individual variables. Instead, description logic constructors such as existential
restrictions express certain quantifier patterns. The situation in reasoning about time is
similar: instead of representing explicitly the temporal precedence relation < using individual
variables, one employs temporal operators encoding certain natural language patterns. A very
well studied language based on temporal operators is linear-time temporal logic (LTL) [72].
In contrast to the description logics introduced above, which are much weaker than first-order
logic, LTL with operators S (‘since’) and U (‘until’) has exactly the same expressive power
as the corresponding time-fragment of 2-FOL(<) (Kamp’s theorem); see, e.g., [44, 75]. We
now introduce the LTL extensions of the concept and role grammars defined above:

D ::= C | ©
PD | ©

FD | D1 S D2 | D1 U D2,

S ::= R | ©
PS | ©

FS | S1 S S2 | S1 U D2.

We will also use common abbreviations: for example, 3PD = > S D (‘sometime in the
past’ for concepts) and 2FS = ¬(> U ¬S) (‘always in the future’ for roles). The standard
translation of concepts can be extended to temporalised concepts as follows:

(©PD)](x, t) = D](x, t− 1),
(©FD)](x, t) = D](x, t+ 1),

(D1 S D2)](x, t) = ∃t1
(
(t1 < t) ∧ D]

2(x, t1) ∧ ∀t2
(
(t1 < t2) ∧ (t2 < t)→ D]

1(x, t2)
))
,

(D1 U D2)](x, t) = ∃t1
(
(t < t1) ∧ D]

2(x, t1) ∧ ∀t2
(
(t < t2) ∧ (t2 < t1)→ D]

1(x, t2)
))
.
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Temporalised roles are translated into 2-FOL(<) similarly (but two domain variables are
used rather than one). Recall that (t − 1) is a shortcut for t′ that satisfies the condition
(t′ < t) ∧ ¬∃t′′

(
(t′ < t′′) ∧ (t′′ < t)

)
. So, under the strict interpretation of U and S, the

temporal operators ©F (‘next time’) and ©P (‘previous time’) could be equivalently defined
as ©FD = ⊥ U D and ©PD = ⊥ S D, respectively.

I Example 4. In the context of Example 1, we can represent the ‘concept’ analogues of
sentences (1)– (4) as follows:

Published u Accepted v ⊥, (1′′)
Published v 2F Published, (2′′)
Published v 3P (Accepted u©F Published), (3′′)

3P Accepted u3F Accepted v Accepted. (4′′)

Rigid concepts and roles can be defined in the language introduced above be using
inclusions of the form C v 2F2PC or C ≡ ©FC.

If no relational knowledge is needed for the domain and the focus is on temporal aspects
(as in Example 4), then it suffices to work with ontologies that represent the behaviour of
individual domain elements without formalising any interaction between them. So, in the
remainder of Section 3.2, we concentrate on the concept-only ontology languages and, in
Section 4, we show how these results can be extended to the full setting (under certain
restrictions).

In order to present the fine-grained analysis of the complexity of OMQ evaluation, we
assume that our ontologies are given in a certain normal form. More precisely, it is known
that any LTL formula can be transformed into a polynomial-size LTL formula in separated
normal form (SNF) [42] that has the same models (if restricted to the original vocabulary –
the transformation requires introduction of auxiliary names, but the result is a conservative
extension, which preserves the models restricted to the original vocabulary). The formulas in
SNF are conjunctions of global and initial temporal clauses that only use the operators ©P ,
©

F , 2P and 2F . So, we consider the time-centric ontology language LTL2©
bool with concept

inclusions of the form

L1 u · · · u Lk v L′1 t · · · t L′n,

where the Li and L′i are concept names possibly prefixed by unary temporal operators ©P ,
©

F , 2P or 2F . We also define the core, krom and horn fragments of LTL2©
bool, where the

temporal clauses are restricted to

L1 v L2, L1 u L2 v ⊥, (core)
L1 v L2, L1 u L2 v ⊥, > v L1 t L2, (krom)

L1 u · · · u Lk v L, L1 u · · · u Lk v ⊥, (horn)

respectively, and the ©- and 2-fragments LTL©c and LTL2
c , where only ©P/©F and 2P/2F

operators can be applied. It can be seen that the sub-Boolean fragments of LTL2©
bool are in

fact the concept-only counterparts of the respective fragments of DL-Lite. Recall that the
satisfiability problem is PSpace-complete for LTL2©

bool- and LTL2©
horn-formulas, NP-complete

for LTL2©
krom- and LTL2

krom-formulas, and NLogSpace-complete for LTL©core-, LTL©krom- and
LTL2

core-formulas [9].
Let O be an ontology in a time-centric language. An atomic LTL-OMQ is a pair of the

form (O, Ak(x, t)), where Ak is a concept name. We also consider a larger class of OMQs
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Table 2 Data complexity and rewritability of LTL-OMQs over Z.

atomic positive

c LTL2
c LTL©c LTL2©

c LTL2
c LTL©c LTL2©

c

bool

2-FOL(<)

MSO(<) MSO(<)
krom 2-FOL(<,+) MSO(<)∗ MSO(<)
horn MSO(<) 2-FOL(<)
core 2-FOL(<,+) MSO(<)∗ 2-FOL(<,+) MSO(<)∗

∗It is still open whether these can be improved to 2-FOL(<,+); all other results in the table are optimal:
in particular, MSO(<) means NC1-hardness for data complexity and so, no 2-FOL(<,+)-rewritability.

based on positive temporal concepts κ, which are defined by the following grammar:

κ ::= ⊥ | > | Ak | κ1 u κ2 | κ1 t κ2 |
2Pκ | 2Fκ | κ1 S κ2 | κ1 U κ2.

Observe that operators ©P , ©F , 3P and 3F can be used in positive temporal concepts as
abbreviations. A positive LTL-OMQ is a pair of the form (O,κ(x, t)). It is to be noted that,
unlike the ontology language, where we used a normal form, one cannot eliminate the binary
temporal operators S and U (and the ‘sometime in the past/future’ operators 3P/3F ).

In the context of LTL-OMQs, two types of Q′-rewritability are of interest for the target
language Q′: 2-FOL(<) and 2-FOL(<,+). The second language extends 2-FOL(<) with the
ternary numeric predicate plus that is interpreted in the two-sorted structure IA (defined
in Section 2) as follows:

IA |= plus(n, n1, n2) iff n = n1 + n2, for n, n1, n2 ∈ [minA,maxA].

Observe that even though we can express terms such as t+n, for a fixed n ∈ Z, in 2-FOL(<),
terms of the form t+s are not expressible in 2-FOL(<). Evaluation of 2-FOL(<,+)-formulas
is known to be in LogTime-uniform AC0 for data complexity [56] (recall that AC0 is
the class of languages computable by bounded-depth polynomial-size circuits with unary
not-gates and unbounded fan-in and- and or-gates).

I Example 5. Let O be an ontology with the following two axioms:

©
PA v B, ©

PB v A. (9)

Consider the positive LTL-OMQQ(x, t) = (O,©F
©

FB(x, t)) and ABoxA = {A(a, 0), C(a, 1)}.
We have (aI , 2n+ 1) ∈ BI , for any n ≥ 0 and any N- or Z-model I of O and A. It follows
that (a, 1) is the only certain answer to Q(x, t) because only 1 of all odd numbers is within the
interval between minA and maxA (note, however, that the relevant B is true at moment 3).

I Example 6. Consider now the atomic LTL-OMQ Q(x, t) = (O, A(x, t)) with the same O
defined by (9). It is not hard to see that (a, n) ∈ AI for any Z-model I of O and a given
temporal ABox A iff t is either at an even distance t− s from some A(a, s) ∈ A or at an odd
distance t− s from some B(a, s) ∈ A. Thus, the following formula

∃s, n, k, k′ [
(
A(x, s) ∧ plus(k, n, n) ∧ plus(t, s, k)

)
∨(

B(x, s) ∧ plus(k, n, n) ∧ plus(k′, k, 1) ∧ plus(t, s, k′)
)
]

TIME 2017
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is a 2-FOL(<,+)-rewriting of Q(x, t), where, for example, plus(k, n, n) means k = 2n. Note
that s, n, k and all other quantified variables range between 0 = minA and maxA in any IA;
in particular, t ≥ s. Finally, observe that Q(x, t) is not 2-FOL(<)-rewritable since properties
such as ‘t is even’ are not definable by 2-FOL(<)-formulas [61].

I Example 7. Next, instead of just checking whether the distance is even or odd, we devise
an ontology that checks whether the number of certain symbols in a given interval is even
or odd. More precisely, consider the atomic LTL-OMQ Q(x, t) = (O, B0(x, t)), where O
consists of concept inclusions

©
FBk uA0 v Bk and ©

FBk uA1 v B1−k, for k = 0, 1.

Informally, each occurrence of A0 in the ABox keeps the same subscript k in Bk and each
occurrence of A1 flips the subscript over by replacing B0 with B1 and the other way round.
So, for any word e = (e0, . . . , en−1) ∈ {0, 1}n, let Ae = {B0(a, n) }∪{Aei(a, i) | 0 ≤ i < n }.
It is not hard to check that (a, 0) is a certain answer to Q(x, t) over Ae iff the number of 1s
in e is even (Parity). As Parity is not in AC0 [43], Q(x, t) is not 2-FOL-rewritable even
if arbitrary numeric predicates (not only plus) are allowed in rewritings.

On the other hand, Parity is a regular language, and so belongs to NC1 ) AC0, the
class of languages recognisable by logarithmic-depth circuits with unary not-gates and fan-in
two and- and or-gates. Recall also that (i) regular languages coincide with those definable
by monadic second-order (MSO) formulas built from atoms of the form A(t) and t < t′

using the Booleans, first-order quantifiers ∀t and ∃t, and second-order quantifiers ∀A and
∃A [35], and that (ii) MSO(<)-formulas can encode the semantics of propositional temporal
logic see, e.g., [46]. Thus, all LTL2©

bool OMQs are MSO(<)-rewritable, and so answering such
OMQs is in NC1 for data complexity.1 On the other hand, in many cases we can construct
2-FOL(<,+)- or even 2-FOL(<)-rewritings; for details on the results, see Table 2 [8].

3.3 Query Answering with Domain-Centric Ontologies
Even without a temporal dimension, first-order logic is too expressive for effective ontology-
mediated query answering. Instead, research has been focussed on ontologies in description
logic and on queries in small fragments of FO. Most popular are conjunctive queries (CQs),
defined by the grammar

ϕ ::= Ak(x) | Pk(x1, x2) | ϕ1 ∧ ϕ2 | ∃xϕ,

and disjunctions of CQs called unions of conjunctive queries (UCQs). Thus, CQs are
(equivalent to) conjunctions of atoms in which some variables are existentially quantified. We
briefly discuss basic results on the rewritability and data complexity of ontology-mediated
queries in the atemporal classes of OMQs (DL-LiteHhorn,CQ), (EL,CQ), and (ALC,CQ).
We assume for simplicity that ABoxes consist of facts without time stamps and interpret
the description logics in the corresponding single sorted interpretations. Then OMQs in
(DL-LiteHhorn,CQ) are always rewritable into UCQs, a fact which was the main motivation
for the introduction of the DL-Lite family [37, 6].

I Example 8. For O = { ∃publishedIn.> v Published } and the CQ q(x) = Published(x),
a rewriting of (O, q(x)) is given by q′(x) = ∃y publishedIn(x, y) ∨ Published(x). Intuitively,
q′(x) is the disjunction over all possible ‘reasons’ (according to O) for x to be published.

1 By NC1 we mean the uniform NC1, which coincides with ALogTime.
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It follows that answering OMQs from (DL-LiteHhorn,CQ) is in AC0 fot data complexity.
In contrast, not all OMQs in (EL,CQ) are rewritable into UCQs or even first-order logic.

I Example 9. For O = { ∃refersTo.Publication v Publication } and CQ q(x) = Publication(x),
one can readily see that O,A |= q(a) iff there is a path from a to some individual b such that
Publication(b) ∈ A along the refersTo-relation in A. Since reachability cannot be expressed
in first-order logic, there is no rewriting of (O, q(x)) in first-order logic.

It can be shown, however, that every OMQ in (EL,CQ) is rewritable into a datalog
program, and so CQ evaluation is in PTime for data complexity [78]. For OMQs in
(ALC,CQ), the situation is even worse: in this case, OMQ answering can be coNP-hard for
data complexity [55]. Bienvenu et al. [24] give a partial classification of OMQs in (ALC,CQ)
into those in PTime and those that are coNP-hard for data complexity.

We now return to querying temporal data under the assumption that the ontology is
domain-centric. Querying in this framework has mainly been investigated in the context
of ontology-based monitoring of dynamic systems [15, 13, 17]. Suppose that timestamped
data is collected while monitoring a system. The data collected at each time point n forms a
sequence (A(i))0≤i≤n of ABoxes A(i) such that every A(i) contains assertions of the form
Ak(a, i) and Pk(a, b, i). Thus, the temporal ABox A is given as A =

⋃
0≤i≤nA(i), where

minA = 0 and maxA = n is the current time point. Ontology-mediated queries are used to
detect whether an event of interest has occured in A up to the time point n. The following
example illustrates this scenario.

I Example 10. Suppose that a temporal ABox A maintained by a journal editor contains
data about the submission, reviewing, acceptance and publication of articles. Thus, similarly
to the temporal ABox introduced above it contains assertions stating whether an article is
under submission, has been accepted, has been published, and so on. A monitoring query of
interest might be query (8) from Example 2: find the authors of papers that were submitted
more than two years ago but have not been accepted yet.

To query temporal data under domain-centric ontologies, CQs have been extended to
temporalised CQs in which LTL operators can be applied to CQs. Thus, queries in LTL-CQ
are defined by the following grammar:

ψ ::= ϕ | ¬ψ | ψ1 ∧ ψ2 | ψ1 S ψ2 | ψ1 U ψ2,

where ϕ is a CQ. Note that disjunction and the temporal connectives ©P , ©F , 2P , 2F , 3P ,
and 3F can be used as abbreviations in LTL-CQs. Thus, LTL-CQ extends the set of queries
in LTL-OMQs from Section 3.2 by admitting negation and applying LTL connectives to
CQs rather than atomic queries; however, negation can only be applied to a formula all
of whose free variables are answer variables of the query. Observe that LTL-CQs do not
contain temporal variables. To evaluate an LTL-CQ, the user chooses a time point n for
evaluation, typically the last time point of the temporal ABox representing the dynamic
system to be monitored. Formally, LTL-CQs ψ can be translated into 2-FOL(<) formulas
with a single temporal variable t and any number of domain variables as follows (we only
give the translation for CQs, the extension to general LTL-CQs is defined in the same way
as the extension of ·] to temporalised concepts in Section 3.2):

(Ak(x))[ = Ak(x, t), (Pk(x, y))[ = Pk(x, y, t),

(ϕ1 ∧ ϕ2)[ = ϕ[
1 ∧ ϕ[

2, (∃xϕ)[ = ∃xϕ[.
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Table 3 Combined and data complexity of LTL-CQ answering with various DLs over N.

DL combined/data complexity

no rigid rigid concepts rigid concepts & roles

DL-Lite |Hcore|horn [27] PSpace/NC1

DL-Litekrom|bool [27] ExpTime/coNP coNExpTime/coNP 2ExpTime/in ExpTime
DL-LiteHkrom|bool [27] 2ExpTime/coNP 2ExpTime/in ExpTime

EL [28] PSpace/PTime PSpace/coNP coNExpTime/coNP
ALC [15] ExpTime/coNP coNExpTime/coNP 2ExpTime/in ExpTime

Now, given a DL ontology O, a temporal ABox A, a time point n ∈ [minA,maxA], an
LTL-CQ ψ(x), a tuple a in A, and T ∈ {Z,N, [minA,maxA]}, one is interested in whether
(a, n) is a certain answer to (O, ψ[(x, t)) over A and T , or O,A |=T ψ[(a, n) in symbols.

I Example 11. Query (8) cannot be expressed in LTL-CQ. Its natural formalisation using
temporal operators is the following

q(x) = ∃y
(
authorOf(x, y) ∧ UnderSubmission(y) ∧©24

P UnderSubmission(y)
)
,

but the quantifier ∃y is applied to a temporalised formula which is not allowed in LTL-CQ.
By regarding y as an answer variable and considering instead

q(x, y) = authorOf(x, y) ∧ UnderSubmission(y) ∧©24
P UnderSubmission(y),

one obtains an LTL-CQ. Query (6) from Example 2 can be formulated as an LTL-CQ as
follows:

q(x) = Accepted(x) ∧©P UnderSubmission(x) ∧©13
P UnderSubmission(x).

Table 3 summarises the known results [27, 28, 15] on the data and combined complexity
of LTL-CQ evaluation mediated by domain-centric DL ontologies for N-models (thus, for the
evaluation problem O,A |=N ψ

[(a, n)). It is not difficult to show the same upper bounds for
ABox-fitting models, and we conjecture that the same lower bounds hold for ABox-fitting
models as well. We also conjecture that the same results hold for Z-models. The proofs
generalise the propositional abstraction method employed in the analysis of the complexity
of the satisfiability problem for ALC-LTL ontologies. In fact, since LTL-CQs are closed
under negation, the upper bounds in Table 1 can be proved by a straightforward reduction
using the upper bounds for combined complexity in Table 3. It is of interest to observe
that even for basic DL-Lite dialects, and without rigid concepts and roles one does not
obtain FO-rewritability (because the problem is NC1-hard), which is caused by negation in
LTL-CQs. In contrast, query evaluation for EL without right concept and roles is still in
PTime in data complexity.

The complexity landscape presented in Table 3, has been further extended to more
expressive description logics, in particular, containing subroles and transitive roles: the
results for those cases are essentially the same as for ALC [16, 17].

The rewritability properties of OMQs using LTL-CQs are investigated by Borgwardt et
al. [25, 26], where the focus is on query evaluation for ABox-fitting models. If no negation is
present in an LTL-CQs q(x) and the ontology O is in DL-Litecore without rigid symbols,
then LTL-CQ rewriting q′(x) of (O, q(x)) can be obtained by simply replacing any non-
temporal CQ ϕ(x) in q(x) by the UCQ-rewriting of the non-temporal OMQ (O, ϕ(x)). A
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general transfer theory is developed [26] with the aim of showing that for a large class of
domain-centric ontology languages rewritability (as well as combined rewritability [57]) is
preserved under moving from non-temporal queries (such as CQs) to temporalised queries
(such as LTL-CQs without negation).

Another major concern of research on the use of LTL-CQs in monitoring applications
is the question whether it is possible to avoid storing the whole sequence A0, . . . ,An to
compute the certain answers to a given LTL-CQ at time-point n but instead keeping only a
tail An−b, . . . ,An of the data. A variety of results in this direction have been obtained [26].
One approach is based on a classical separation result stating that, for every LTL-formula,
there exists an LTL-formula without past-operators, which is equivalent to the original
formula at the time-point 0 in N-models [44].

Another approach is to add temporal connectives to the query language while keeping a
standard atemporal ontology language [68, 69]. In the streaming data scenario, the relevant
slices of the temporal data (i.e., the finite data history in the form of a sequence of ABoxes to
be considered by the query) are specified with a window operator using a sliding parameter
that determines the rate at which snapshots of the data are taken, and a width parameter
that fixes the size on the window/history. This approach is realised in the Stream-Temporal
Query Language STARQL [70]. Soylu et al. [83] have shown how the evaluation of STARQL
queries is possible using standard SQL engines and report on the performance.

4 Combinations

In many cases, neither a domain nor a time-centric ontology language suffices, but some
combination of them is needed. Designing combinations with good computational properties
is notoriously difficult as the two-dimensional structure of temporal data makes it rather
straightforward to encode the behaviour of Turing machines for even seemingly inexpressive
languages. Thus, straightforward language combinations are often undecidable. In fact,
only under rather intricate restrictions decidability is preserved [45, 54]. In this survey, our
main concern is not decidability, but much stronger conditions such as tractability of OMQ
evaluation and rewritability into 2-FOL. It should thus be clear that the interaction between
temporal and DL constructors has to be pretty much restricted to obtain algorithmically
well behaved combinations. In this section, we discuss three recent approaches to address
this problem.

4.1 A 2-FOL(<)-Rewritable Temporal Extension of DL-Lite

Artale et al. [12] begin with the observation that, for any ontology O, if one wants all OMQs
based on O to be 2-FOL(<)-rewritable, then one has to ensure that O is materialisable (in
the sense that, for any temporal ABox A consistent with O, there exists a model I of A and
O that gives exactly the certain answers to any OMQ with O). Equivalently, one requires
that no disjunction of CQs is entailed if none of it disjuncts is entailed. This excludes the
use of the temporal operators 3F and 3P on the right-hand side of concept inclusions, as
illustrated by the following example.

I Example 12. Let O = {A v 3FB}. Consider the two-sorted CQs

q1(x, t) = ∃t′
(
(t < t′) ∧ C(x, t′) ∧B(x, t′)

)
,

q2(x, t) = ∃t′
(
(t < t′) ∧ C(x, t′) ∧ ∃t′′

(
(t′ < t′′) ∧B(x, t′′)

))
.
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For A = {A(a, 0), C(a, 1), D(a, 2)}, either B occurs together with C (for example, at
moment 1), or B occurs after the moment 1, and so O,A |=Z q1(a, 0) ∨ q2(a, 0) but
O,A 6|=Z qi(a, 0) for i = 1, 2. One can use an encoding of 2+2-SAT [79] to show that there is
a two-sorted CQ q such that evaluating (O, q) over Z-models is in fact coNP-hard for data
complexity (and thus, there is no rewriting).

The following combination of DL-Lite and LTL is then suggested so that it avoids non-
materialisability by not admitting any temporal operators 3P and 3F on the right-hand
side of concept or role inclusions. Basic concepts B, temporalised concepts C, roles R and
temporalised roles S are defined by the following grammar:

B ::= Ai | ∃R.>, C ::= B | C1 u C2 | 3FC | 3PC,

R ::= Pi | P−i , S ::= R | S1 u S2 | 3FS | 3PS;

note that ∃R.> can only contain a basic role because temporalised roles can contain 3P

and 3F (which are not allowed to occur on the right-hand side of concept inclusions). The
concept and role inclusions in DL-Litelhs3horn are of the form

C v B, S v R.

A DL-Litelhs3horn ontology is a finite set of inclusions in DL-Litelhs3horn. The following ontology
illustrates expressiveness of the language.

I Example 13. In the context of Example 1, DL-Litelhs3horn can represent all 2-FOL(<)-
sentences except (3):

∃publishedIn.> u ∃acceptedIn.> v ⊥, (1′)
3P publishedIn v publishedIn, (2′)

3P acceptedIn u3F acceptedIn v acceptedIn. (4′)

Note that (2′) and (4′) are role inclusions expressing convexity (also known as existential
rigidity) of publishedIn and acceptedIn, respectively. We can also say that authorOf is a rigid
role: 3P3F authorOf v authorOf.

As the query language we take the obvious extension of single-sorted CQs to two-sorted
CQs, 2-CQ(<), defined by the following grammar:

ϕ ::= Ak(x, t) | Pk(x1, x2, t) | (t1 < t2) | (t1 = t2) |
ϕ1 ∧ ϕ2 | ∃xϕ | ∃t ϕ.

The query language 2-CQ(<) is rather expressive allowing an arbitrary nesting of domain
and temporal quantifiers as illustrated by the following example.

I Example 14. Assuming that authorOf is rigid and using the fact that UnderSubmission is
convex, query (8) can now be expressed as follows (cf. Example 11):

q(x, t) = ∃y
(
authorOf(x, y, t) ∧ ∃t1∃t2 . . . ∃t24

(
(t24 < t23) ∧ · · · ∧ (t2 < t1) ∧

(t1 < t) ∧ UnderSubmission(y, t24)
)
∧ UnderSubmission(y, t)

)
,

On the other hand, unlike LTL-CQ, 2-CQ(<) does not allow the ©P ,©F operators, and it
is not known whether the addition of these operators to 2-CQ(<) will preserve rewritibility.

Using the fact that ontologies in DL-Litelhs3horn are materialisable, one can show that OMQs
with DL-Litelhs3horn ontologies and two-sorted CQs are 2-FOL(<)-rewritable over Z-models.
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I Example 15. A 2-FOL(<)-rewriting for OMQ ({(4′)}, acceptedIn(x, y, t)) over Z is

acceptedIn(x, y, t) ∨[
∃t′
(
(t′ < t) ∧ acceptedIn(x, y, t′)

)
∧ ∃t′

(
(t′ > t) ∧ acceptedIn(x, y, t′)

)]
.

4.2 Towards a Classification for Temporal DL-Lite
A more systematic investigation into the data complexity and rewritability of OMQs based on
temporal DL-Lite was launched by Artale et al. [8]; see also [59]. The considered languages
are based on the time-centric ontology languages introduced in Section 3.2. Thus, in contrast
to DL-Litelhs3horn, the operators 3P and 3F do not occur explicitly in ontologies but, instead,
the basic temporal operators are ©P , ©F , 2P , and 2F . Now, temporal operators can occur
both on the left- and right-hand side of concept and role inclusions. Formally, basic concepts
B, temporalised concepts C, roles R and temporalised roles S are defined by the following
grammar:

B ::= Ai | ∃R.>, C ::= B | 2FC | 2PC | ©FC | ©PC

R ::= Pi | P−i , S ::= R | 2FS | 2PS | ©FS | ©PS.

Concept and role inclusions in normal form are as follows:

C1 u · · · u Ck v C ′1 t · · · t Cn and S1 u · · · u Sk v S′1 t · · · t S′n.

The next example shows how concept and role inclusions in DL-Litelhs3horn can be expressed
using the operators 2P and 2F .

I Example 16. Role inclusion (2′) from Example 13 can equivalently be expressed using 2F :

publishedIn v 2F publishedIn. (2′′)

Note that 3P on the left-hand side is replaced by 2F on the right-hand side. To express (4′),
however, fresh role names acceptedInF and acceptedInP are required, and the following three
role inclusions are, in fact, a model conservative extension of (4′):

acceptedIn v 2F acceptedInF, (4′′1)
acceptedIn v 2P acceptedInP, (4′′2)

acceptedInF u acceptedInP v acceptedIn. (4′′3)

It is not difficult to generalise this argument to arbitrary concept and role inclusions in
DL-Litelhs3horn.

We classify ontologies depending on the shape of their inclusions and the temporal operat-
ors in them similarly to the fragments of LTL2©

bool in Section 3.2. For c ∈ {bool, horn, krom, core}
and o ∈ {2,©,2©}, we denote by DL-Liteo

c the ontology language whose (concept and
role) inclusions have the shape specified by c (for example, the core fragments only contain
inclusions and disjointness axioms between temporalised concepts/roles, whereas c = horn
allows, in addition, intersection u to be applied to concepts/roles) and only use the (future
and past) operators indicated in o (for example, o = 2 means that only 2F and 2P can be
used).

The main ingredients of the query language are positive temporal concepts κ and positive
temporal roles % given by the grammars

κ ::= > | Ak | ∃R.κ | κ1 u κ2 | κ1 t κ2 | op1 κ | κ1 op2 κ2,

% ::= S | %1 u %2 | %1 t %2 | op1 % | %1 op2 %2,
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Table 4 Data complexity and rewritability of positive OMQs over Z.

DL-Lite2c DL-Lite©c DL-Lite2©c

bool and krom coNP-hard

horn NC1-hard NC1-hard
horn with monotone RIs 2-FOL(<)
core 2-FOL(<) 2-FOL(<,+) ?

where op1 ∈ {©F ,3F ,2F ,©P ,3P ,2P} and op2 ∈ {U ,S}. Note that we can only use non-
temporalised roles in ∃R.κ. A DL-Liteo

c positive OMQ is a pair of the form Q(x, t) =
(O,κ(x, t)) or Q(x, y, t) = (O, %(x, y, t)), where O is a DL-Liteo

c ontology, κ is a positive
temporal concept and % a positive temporal role (which can use all temporal operators, not
necessarily only those in o). If κ and % are concept and role names, we refer to Q as an
atomic OMQ.

Most of the data complexity and rewitability results reported in Table 4 are obtained by
extending the constructions from LTL-OMQs. A surprising result here is that answering
positive OMQ with DL-Lite2horn ontologies turns out to be NC1-hard (in contrast to LTL2

horn,
which is 2-FOL(<)-rewritable). The class of DL-Lite2horn ontologies with monotone role
inclusions (the precise definition of which is too elaborate for this survey) includes, in
particular, all DL-Lite2horn ontologies whose role inclusions contain no 2P and 2F operators
on the left-hand side. As demonstrated in Example 16, such ontologies are sufficient for
encoding the language DL-Litelhs3horn from Section 4.1. It is still an open problem whether
OMQs with DL-Lite2©core are 2-FOL(<,+)-rewritable or NC1-hard.

Query (8) from Example 1 is expressible as a positive concept query if we assume that
authorOf is a rigid role:

q(x, t) = ∃authorOf.(UnderSubmission u©24
P UnderSubmission)(x, t)

(however, it is not expressible otherwise). In general, the query language of positive temporal
concepts and roles is incomparable with 2-CQ(<): the former, for example, allows union
t and 2P/2F , but the latter contains not necessarily tree-shaped queries. It is still open
whether the results of Table 4 hold for 2-CQ(<) queries.

4.3 Temporal EL
The description logic EL is another tractable language, but since CQ answering in (atem-
poral) EL is PTime-complete, a more expressive than 2-FOL(<) target language for rewritings
in its temporal extension would be required. One candidate could be Datalog1S , a de-
cidable extension of Datalog with one unary successor function. Evaluating Datalog1S

programs is known to be in ExpTime in combined complexity and PSpace-complete for
data complexity [40].

Gutiérrez-Basulto et al. [49] considered a temporal extension TEL of EL, in which concepts
are defined by the following grammar:

C ::= Ak | ∃Pk.C | C1 u C2 | 3PC | 3FC | ©
PC | ©

FC.

(Note that EL has no role inverses, P−k .) Ontologies in TEL are finite sets of concept inclusions
of the form C1 v C2 (and contain no role inclusions). In terms of expressivity, observe that
the ‘concept’ analogues (2′) and (4′) of sentences (2) and (4) in Example 1 belong to TEL
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(note that (1) strictly speaking does not belong to TEL, but such an extension would be
straightforward). Rigid concepts are also expressible in TEL, and the language has rigid
roles.

As the query language, Gutiérrez-Basulto et al. [49] chose atomic queries of the form
A(x, t). We mention, however, that queries (6), (7) and (8) can all be defined as TEL-concepts
in the ontology: for example,

∃authorOf.
(
UnderSubmission u©24

P UnderSubmission
)
v Q, (8′)

and then Q could be used as an atomic query.
Answering atomic OMQs in the full TEL turns out to be undecidable (here and below,

all the results over Z-models), but this is essentially due to the 3P/3F operators on the
right-hand side of concept inclusions. In the fragment with only 3P/3F and only on the
left-hand side of concept inclusions (like the language in Section 4.1), which is similar to
the inflationary Datalog1S [39], query answering is PTime-complete for both data and
combined complexity.

The fragment TEL© of TEL that uses only ©P/©F operators can express (as a model
conservative extension) all axioms of the inflationary TEL. For example, the concept analogue
of (4′) (expressing convexity) can be encoded using two additional concept names and the
following concept inclusions:

Accepted v ©F AcceptedInF, AcceptedInF v ©F AcceptedInF,
Accepted v ©P AcceptedInP, AcceptedInP v ©P AcceptedInP,

AcceptedInP u AcceptedInF v AcceptedInF;

see also (4′′1)–(4′′3). It is not known whether query answering in the full TEL© is decidable.
However, it is PTime-complete for data and PSpace-complete for combined complexity
in its sublanguage without rigid roles, and PSpace-complete in data and in ExpTime for
combined complexity in the sublanguage where rigid roles can only occur on the left-hand
side of concept inclusions. These results are proved by translating the query answering
problem into Datalog1S . Moreover, acyclic TEL-OMQs can be rewrtitten into 2-FOL(<,+),
and the evaluation problem for such OMQs is in PTime in combined complexity. Making
the ontology acyclic in one of the dimensions only (either time or DL), gives the following
results: for temporally acyclic ontologies, which include all atemporal EL ontologies, it is
PTime-complete in both combined and data complexity; for DL-acyclic ontologies, OMQ
answering is non-elementary for combined complexity but NC1-complete for data complexity.

5 Interval-Based Temporal Ontology-Mediated Query Answering

In the ontology and query languages considered in Sections 2–4, time was assumed to be
point-based and discrete. It is well-known, however, that both features may cause difficulties
for modelling certain application domains.

We begin with the view of time as intervals, that is, sequences of points. The standard way
of storing temporal information in databases is by attaching a validity time interval to tuples.
For example, a relational table EmployeeSalaries with columns EmployeeID, MonthlySalary,
FromTime and ToTime contains tuples such as (e007,£3000, 01/01/2008, 05/01/2014). The
simplest and most intuitive way of representing this information in the point-based setting is
to stipulate that such a tuple is a shorthand for the sequence of tuples

(e007,£3000, 01/01/2008), (e007,£3000, 02/01/2008), . . . , (e007,£3000, 05/01/2014)
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provided that it is known a priori that a day is the minimal unit of time required in the
application. Such a conversion of intervals to points, performed explicitly or implicitly by a
query-answering engine, is known to cause an exponential blow-up to the worst-case execution
time (since timestamps are encoded in binary, see, e.g., [4]). At the same time, this conversion
is not always sound. Consider, for instance, the tuple (tb007, 1500, 11:25, 11:29) from a table
for a turbine performance monitoring system with columns TurbineID, AverageRotationSpeed,
FromTime and ToTime. Clearly, the tuple (tb007, 1500, 11:27) would not make much sense
since 1500 is the average rotation speed over the given interval. These examples suggest
replacing the point-based setting with an interval-based view of time, where the truth-values
of predicates are assigned to time intervals rather than points.

We discuss two interval-based temporal logics and related formalisms for ontology-
mediated query answering.

5.1 Halpern-Shoham Interval Temporal Logic
In the interval temporal logic HS introduced by Halpern and Shoham [53], formulas are
interpreted over the set of intervals of any given linear order. More precisely, let T = (T,≤)
be a linear order, that is, ≤ is a reflexive, transitive, antisymmetric and connected binary
relation on T . (As usual, x < y is a shortcut for ‘x ≤ y and x 6= y’.) For example, the
rationals (Q,≤) and reals (R,≤) are dense linear orders, while the integers (Z,≤) and the
natural numbers (N,≤) are discrete ones. By an interval in T we mean any ordered pair
〈i, j〉 such that i ≤ j, and denote by int(T) the set of all intervals in T. Note that int(T)
contains all the punctual intervals of the form 〈i, i〉, which is often referred to as the non-strict
semantics. Under the strict semantics adopted by Allen [2], punctual intervals are disallowed.

Temporal ABoxes in the interval-based paradigm consist of assertions such as

A(a, ι) and S(a, b, ι)

saying that, respectively, A(a) and S(a, b) hold true at the interval ι ∈ int(T). For example,
an ABox containing timetabling data of a summer school can have the assertions:

TutorialDay(‘Semantic Web’, 〈07/26/2017 08:00, 07/26/2005 16:00〉),
LunchBreak(‘Semantic Web’, 〈07/26/2017 11:30, 07/26/2005 12:30〉).

A de facto standard way of defining a language expressing statements (constraints) over
intervals is by incorporating Allen’s [2] interval relations defined as shown in Fig. 2.2

Since all of these relations are irreflexive, we refer to this definition as the irreflexive
semantics. As an alternative, the reflexive semantics is obtained by replacing each < in Fig. 2
with ≤. We write T(≤) or T(<) to indicate that the semantics is reflexive or, respectively,
irreflexive.

Equipped with Allen’s relations, we can express, for example, the query asking for the
names of the tutorials that are followed by a lunch break and the times of those lunch breaks:

q(x, χ) = ∃ρ
(
LunchBreak(x, χ) ∧ TutorialDay(x, ρ) ∧ Ā(χ, ρ)

)
,

where χ and ρ are variables ranging over time intervals. Over the ABox with the two
statements above, this query would not return any answers because the lunch break is in
the middle of the Semantic Web tutorial (D) rather than after it (Ā). In fact, such queries

2 It is to be noted that there are two slightly different versions of A and Ā in the literature.
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〈i, j〉A〈i′, j′〉 i ji′ j′
j = i′ and i′ < j′ (After)

〈i, j〉Ā〈i′, j′〉 i ji′ j′
j′ = i and i′ < j′ (inverse of After)

〈i, j〉B〈i′, j′〉 i ji′ j′
i = i′ and j′ < j (Begins)

〈i, j〉B̄〈i′, j′〉 i ji′ j′
i = i′ and j < j′ (inverse of Begins)

〈i, j〉E〈i′, j′〉 i ji′ j′
i < i′ and j = j′ (Ends)

〈i, j〉Ē〈i′, j′〉 i ji′ j′
i′ < i and j = j′ (inverse of Ends)

〈i, j〉D〈i′, j′〉 i ji′ j′
i < i′ and j′ < j (During)

〈i, j〉D̄〈i′, j′〉 i ji′ j′
i′ < i and j < j′ (inverse of During)

〈i, j〉L〈i′, j′〉 i ji′ j′
j < i′ (Later)

〈i, j〉L̄〈i′, j′〉 i ji′ j′
j′ < i (inverse of Later)

〈i, j〉O〈i′, j′〉 i ji′ j′
i < i′ < j < j′ (Overlaps)

〈i, j〉Ō〈i′, j′〉 i ji′ j′
i′ < i < j′ < j (inverse of Overlaps)

Figure 2 Allen’s interval relations under the irreflexive semantics.

are supported by the SQL:2011 standard [60], which adopts the strict semantics for some of
Allen’s relations and the non-strict for others.

The Halpern-Shoham interval temporal logic HS [53] is a propositional modal logic with
diamond operators of the form 〈R〉 for Allen’s interval relations R. The propositional variables
of HS are interpreted by sets of intervals of a given linear order T where they are assumed
to hold true, and a formula 〈R〉ϕ is true at an interval ι ∈ int(T) iff ϕ is true at some interval
ι′ such that ι R ι′. This semantics can be extended to first-order or description logic in a
natural way. For example, we can give the following definition of ‘a morning session’ in a DL
version of HS:

[U]
(
〈B̄〉TutorialDay u 〈A〉LunchBreak v MorningSession

)
, (10)

where U is the universal relation between intervals, and [U] means ‘at all intervals’. In English,
this axiom says that an object d is a MorningSession in an interval ι – MorningSession(d, ι) in
symbols – if there is an interval ι′ such that ι B̄ ι′ and TutorialDay(d, ι′), and also there is an
interval ι′′ such that ι A ι′′ and LunchBreak(d, ι′′). The query q(x, χ) = MorningSession(x, χ)
mediated by ontology {(10)} over the ABox above would return the certain answer

(‘Semantic Web’, 〈07/26/2017 08:00, 07/26/2017 11:30〉)

meaning that Semantic Web in the time slot between 8:00 and 11:30 is a morning session.
The elegance and expressive power of HS have attracted attention of many areas of

computer science and AI. However, promising applications have been hampered by the fact,
already discovered by Halpern and Shoham [53], that HS is highly undecidable (for example,
validity over Z and R is Π1

1-hard). For recent studies of the computational complexity
of reasoning with various fragments of HS, we refer the reader to [34, 33, 63, 1, 32] and
references therein.

TIME 2017



1:22 Temporal Ontology-Mediated Querying: A Survey

A tractable fragment of HS and its DL-Lite and datalog extensions that can be used
for temporal ontology-mediated query answering have recently been suggested [11, 58]. We
briefly discuss these two formalisms in the remainder of Section 5.

5.2 Description logic HS-LiteH
horn

The language of HS-LiteHhorn is an extension of DL-LiteHhorn [6]. It contains individual
names a1, a2, . . . , concept names A1, A2, . . . , and role names P1, P2, . . . . Basic roles R, basic
concepts B, temporal roles S and temporal concepts C are given by the following grammar:

B ::= > | Ak | ∃R.>, C ::= B | [R]C | 〈R〉C,
R ::= Pk, | P−k S ::= R | [R]S | 〈R〉S,

where R is one of Allen’s interval relations or the universal relation U and [R] is the dual
of 〈R〉, that is, [R]ϕ holds at an interval ι iff ϕ holds at all intervals ι′ such that ι R ι′. An
HS-LiteHhorn TBox is a finite set of concept and role inclusions and disjointness constraints
of the form

C1 u · · · u Ck v C+, C1 u · · · u Ck v ⊥,
S1 u · · · u Sk v S+, S1 u · · · u Sk v ⊥,

where C+ and S+ denote temporal concepts and roles without occurrences of diamond
operators 〈R〉; cf. Section 4.2. (The consequences of allowing 〈R〉 on the right-hand side of
inclusions will be discussed in the sequel). An HS-LiteHhorn ABox is a finite set of atoms of
the form Ak(a, ι) and Pk(a, b, ι), where ι is an interval of the linear order in question.

It was shown [11] that answering atomic OMQs in HS-LiteHhorn is PTime-complete for
both combined and data complexity provided that either concept inclusions contain no
∃R.> on the right-hand side, or role inclusions contain no temporal relations apart from U.
Originally, the result was shown for (Z,≤) only; however, in the light of later findings [32],
it can also be extended to any dense linear order (T,≤) and (T,<). A failure to prove
decidability for discrete linear orders under the irreflexive semantics, say, (Z, <), even for the
language without roles, led to a separate systematic investigation of the propositional fragment
HS2horn of HS. Formally, this fragment can be defined as pairs of the form (O, {A(a, ι)}),
where O is an HS-LiteHhorn TBox without any occurrence of role names. The satisfiability
problem for HS2horn was shown [32] to be undecidable for unbounded discrete linear orders
such as (N, <) and (Z, <) under the irreflexive semantics (in contrast to PTime-completeness
for dense orders under any semantics). We illustrate the expressiveness of HS2horn over (N, <)
by the following example.

I Example 17. Let A = {A(〈0, 0〉)} and O be an HS2horn ontology with the following axioms:

[E]A u 〈E〉> v A, [E]C u 〈E〉> v C, 〈Ē〉[B][Ē]A v C, 〈Ē〉[B][Ē]C v A,

Under the irreflexive semantics over N, we have O,A |= A(ι), for any ι = 〈n, 2m〉 with
n,m ∈ N; see Fig. 3, where intervals 〈i, j〉 are represented as the points (i, j) on the Euclidean
plane. Under the reflexive semantics, we have O,A |= A(ι) for ι = 〈0, 0〉 only.

Furthermore, by admitting 〈R〉-operators on the right-hand side of concept inclusions
of HS2horn, we make it undecidable under any semantics and any unbounded linear orders.
In fact, this extended logic remains undecidable under the irreflexive semantics even when
restricted to binary concept inclusions (that is, the core fragment).
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i

j

. . .. . .

. . .. . .

. . .. . .

〈0, 0〉
A

[Ē]A

AA

〈1, 1〉
[Ē]C

CCCC

〈2, 2〉
[Ē]A

AAAAA

Figure 3 Deriving A(ι) from O and A in Example 17.

5.3 Multidimensional datalogHS2

n

The former of the two tractable fragments of HS-LiteHhorn mentioned above can be generalised
in two directions [58]. First, we extend DL-LiteHhorn TBoxes without ∃ on the right-hand
side of concept inclusions to arbitrary datalog programs. Second, following [23], we extend
the interval logic HS to a multidimensional hyperrectangle (or block) logic HSn. Let
T = (T,�) be either (Z,≤) or (R, <). (In fact, one can take any discrete order under the
reflexive semantics and any dense order under the reflexive or irreflexive semantics.) Fix
some n ≥ 1 and a linear order T` = (T`,�`) as above, for 1 ≤ ` ≤ n. A hyperrectangle in the
n-dimensional space T =

∏n
`=1 T` is any n-tuple ι = (ι1, . . . , ιn) such that ι` ∈ int(T`), for

1 ≤ ` ≤ n. The set of hyperrectangles in T is denoted by hyp(T). Given ι,κ ∈ hyp(T) and
an interval relation R, we write ι R` κ if ι` R κ` and ιi = κi, for i 6= `.

A data instance (ABox), A, is now a finite set of facts of the form P (c, ι), where P
is an m-ary predicate symbol, c an m-tuple of individual constants, for some m ≥ 0, and
ι ∈ hyp(T). This fact says that P (c) is true in the hyperrectangle ι. We denote by num`(A)
the set of i, j ∈ T` with ι` = 〈i, j〉, for some ι mentioned in A, and by int(A) the set of
〈i, j〉 ∈ int(T`) with i, j ∈ num`(A), for 1 ≤ ` ≤ n.

An individual term, τ , is an individual variable, x, or a constant, a. A datalogHS2n
program, Π, is a finite set of rules of the form

A+ ← A1 ∧ · · · ∧Ak, ⊥ ← A1 ∧ · · · ∧Ak, (11)

where k ≥ 1, each Ai is either an inequality (τ 6= τ ′) with individual terms τ and τ ′ or
defined by the grammar

A ::= P (τ1, . . . , τm) | [R]`A | 〈R〉`A, (12)

for an m-ary predicate P and individual terms τj , and A+ does not contain any diamond
operators 〈R〉`. As usual, the atoms A1, . . . , Ak constitute the body of the rule, while A+

or ⊥ its head. We also impose other standard datalog restrictions on datalogHS2n programs.
(Clearly, we cannot allow 〈R〉` in the heads as this would make our logic undecidable, as
discussed above.)

An interpretation, M, for datalogHS2n programs is based on a domain ∆ 6= ∅ (for the
individual variables and constants) and the space T. For any m-ary predicate P , m-tuple
c from ∆ and ι ∈ hyp(T), M specifies whether P is true on c in ι, in which case we write
M, ι |= P (c). Let d be an assignment of elements of ∆ to the individual variables (we adopt
the standard name assumption: d(a) = a, for every individual constant a). We then set
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a) ι

ι′
κ

b) ι

ι′

κ

Figure 4 Configurations for Int and Cov in Example 18.

inductively:

M, ι |=d P (τ ) iff M, ι |= P (d(τ )), M, ι 6|=d ⊥,
M, ι |=d τ 6= τ ′ iff d(τ) 6= d(τ ′),
M, ι |=d [R]`A iff M,κ |=d A for all κ with ι R` κ,

M, ι |=d 〈R〉`A iff M,κ |=d A for some κ with ι R` κ.

We say that M satisfies Π under d if

M, ι |=d A whenever M, ι |=d Ai for 1 ≤ i ≤ k,

for all ι ∈ hyp(T) and all rules A ← A1 ∧ · · · ∧ Ak in Π. M is a model of Π and A if it
satisfies Π under every assignment, and M, ι |= P (c), for every fact P (c, ι) in A. Π and A
are consistent if they have a model.

I Example 18. Denote by 〈Int〉 the binary modal operator such that A〈Int〉A′ holds at a
hyperrectangle κ iff A holds at some ι, A′ at some ι′, and κ = ι ∩ ι′. One can show that
rules such as B ← A〈Int〉A′ are expressible as datalogHS2n programs. For example, for n = 2,
there are 132 = 169 different relative positions of two rectangles; see, e.g., [65, Fig. 4] for
an illustration. Those configurations where the rectangles have non-empty intersection are
encoded by datalogHS2n rules such as B ← 〈Ē〉1〈B̄〉2A ∧ 〈B̄〉1〈Ē〉2A′ for the configuration in
Fig. 4a.

Similarly, one can express the rule B ← A〈Cov〉A′ such that A〈Cov〉A′ holds at κ iff κ is
the smallest hyperrectangle containing some ι with A and ι′ with A′; see Fig. 4b.

An interval term, ϑ, is either an interval or an interval variable. A conjunctive query
(CQ) is a formula of the form q(x,χ) = ∃x′∃χ′Φ(x,x′,χ,χ′), where Φ is a conjunction
of atoms P (τ ,ϑ) for tuples τ and ϑ of individual and interval terms, respectively, and
R(ϑ, ϑ′), for an interval relation R, such that all individual and interval variables in Φ are
from x∪x′ and χ∪χ′, respectively. A datalogHS2n program Π and a CQ q(x,χ) constitute
an ontology-mediated query (OMQ) Q(x,χ) = (Π, q(x,χ)).

I Example 19. Suppose T = T1 × T2, where T1 = (Z,≤) represents time and T2 = (R, <)
temperature. Imagine that a turbine monitoring system is receiving from sensors a stream of
data of the form Blade(ID140, (ι1, ι2)), where ID140 is a blade ID and ι2 ∈ int(R, <) is the
observed temperature range during the time interval ι1 ∈ int(Z,≤). Then the rule

TemperatureRise(x)← 〈Ā〉1〈Ō〉2Blade(x) ∧ 〈A〉1〈O〉2Blade(x)

says that the temperature of blade x is rising over a rectangle (ι1, ι2) if Blade(x, (ι−1 , ι
−
2 )) and

Blade(x, (ι+
1 , ι

+
2 )) hold at some (ι−1 , ι

−
2 ) and (ι+

1 , ι
+
2 ) located as shown in Fig. 5.

The temperature drop is defined analogously:

TemperatureDrop(x)← 〈Ā〉1〈O〉2Blade(x) ∧ 〈A〉1〈Ō〉2Blade(x).
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(Z,≤)

(R, <)

ι−1

ι1

ι+
1

ι2

ι+
2

ι−2 ι−

ι+

ι

Figure 5 Rule for TemperatureRise in Example 19.

To find the blades x and the time intervals χ such that the temperature of x was rising
before χ, reaching 1500◦ in χ, and dropping after that, we can use the following CQ:

∃ρ∃χ−∃ρ−∃χ+∃ρ+
[
Blade(x, (χ, ρ)) ∧ TemperatureRise(x, (χ−, ρ−)) ∧ A(χ−, χ) ∧

TemperatureDrop(x, (χ+, ρ+)) ∧ A(χ, χ+) ∧ O(ρ, 〈1500, 1600〉)
]
.

Let Q(x,χ) = (Π, q(x,χ)) be an OMQ and A a data instance. A certain answer to
Q(x,χ) over A is any pair (a, δ) of a tuple a of individual constants in A and a tuple δ
from int(A) of the same length as x and χ, respectively, satisfying the following condition:
for every model M of Π and A, there is a map h of the individual terms in q to ∆ and
the interval terms to

⋃
` int(T`) preserving constants and dimensions such that h(x) = a,

h(χ) = δ, and

M, h(ϑ) |= P (h(τ )), for every atom P (τ ,ϑ) in q, and
R(h(ϑ), h(ϑ′)) holds in the corresponding T`, for every atom R(ϑ, ϑ′) in q.

The problem of checking whether (a, δ) is a certain answer to Q(x,χ) over A is shown to
be PTime-complete for data complexity and ExpTime-complete for combined complexity;
for propositional datalogHS2n programs, the problem is PTime-complete for combined
complexity [58]. Any datalogHS2n OMQ Q(x,χ) = (Π, q(x,χ)) can also be rewritten to a
standard polynomial-size datalog program Π† with a goal G(x,χ) such that, for any data
instance A, a tuple (a, δ) is a certain answer to Q(x,χ) over A iff Π†,A |= G(a, δ). We
refer the reader to [58] for some initial experiments on the expressive power and efficiency of
ontology-based query answering with datalogHS2n using two real-world scenarios.

6 Dense Time and Metric Temporal Logics

The problems with discreteness of time are related to the fact that a minimal unit of time in
some cases may be unknown or inconvenient to use. Suppose, for example, that the time
unit is set to be ‘a minute’ for the turbine performance monitoring system with timestamped
data of the form (tb007, 1500, 11:27). When a newer model of turbine is installed with
measurements taken at the rate of one per second, we shall have to redefine the minimal
unit accordingly. This means, in particular, that the timestamps of the old data will also
have to be multiplied by 60 together with all the operators used in the ontology and queries
(e.g.,

∧60
i=0©

i
P LowSpeed v Alert saying that an alert is to be issued if a turbine maintained

low speed for 1 hour). On the other hand, if we assume that time is dense and use rational
numbers to refer to time instants, then we can represent timestamps such as 11:27:30 of the
new turbine as i+ 1

2 (assuming that 11:27 and 11:28 correspond to integer numbers i and i+1,
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respectively), keeping the old timestamps and the ontology intact. However, for dense time,
we cannot use the inherently discrete LTL operators in the ontology and queries any longer,
and shall have to switch to a different temporal formalism with, say, metric interval operators,
in which case the axiom above will have to be rewritten as �[0,60]LowSpeed v Alert, where
�[0,60]LowSpeed is true at a moment i iff LowSpeed holds at every j such that i− j ∈ [0, 60].

6.1 datalogMTL2

In the standard metric temporal logic MTL [3], the temporal domain is the real numbers R,
while the intervals % in the constrained temporal operators such as �% (always in the past
within the interval % from now) have natural numbers or ∞ as their endpoints. For various
applications, it would be more appropriate to assume that the endpoints of % are non-negative
rational numbers or ∞, while the temporal domain is the rational numbers Q (however, in
theory, not much will change if we take R as the temporal domain). Thus, by an interval,
ι, we mean in this section any nonempty subset of Q of the form [i, j], [i, j), (i, j] or (i, j),
where i, j ∈ Q ∪ {−∞,∞} and i ≤ j. (We identify (i,∞] with (i,∞), [−∞, i] with (−∞, i],
etc.) The set of all intervals in Q is denoted by int(Q). A range, %, is an interval with
non-negative endpoints.

As in Section 5.3, we take datalog as the domain ontology language and combine it with
MTL. Thus, a data instance (ABox), A, is a finite set of facts of the form P (a)@ι, where P
is an m-ary predicate symbol, a an m-tuple of individual constants, for some m ≥ 0, and
ι ∈ int(Q). This fact says that P (a) is true at each point of time in the interval ι. To reflect
this subtle semantical difference from Section 5, we write P (a)@ι rather than P (a, ι). The
following facts are an example of a data instance:

Turbine(tb0)@(−∞,∞), ActivePowerAbove1.5(tb0)@[13:00:00, 13:00:10), (13)
ActivePowerAbove1.5(tb0)@[13:00:08, 13:00:15),
ActivePowerBelow0.15(tb0)@[13:00:17, 13:01:25).

Brandt et al. [29] consider atomic queries of the form q(x, χ) = P (τ )@χ, where P is a
predicate name, x is a tuple of all individual variables occurring in the terms τ , and χ an
interval variable. For example, the answers to the query q(χ) = ActivePowerAbove1.5(tb0)@χ
over the data instance above contain (among others) the intervals [13:00:00, 13:00:10),
(13:00:05, 13:00:10), and [13:00:00, 13:00:15) (the semantics will be defined below), as this
information is contained, explicitly or implicitly, in A. In a practical OBDA system, however,
the returned result should be limited to the last interval only, [13:00:00, 13:00:15), because it
includes all other answers.

The temporal ontology language datalogMTL2 uses the rules of the form (11), where the
atoms A are defined by the grammar

A ::= > | P (τ1, . . . , τm) | �%A | �%A | A1 S% A2 | A1 U% A2

and A+ is as above but without any ‘non-deterministic’ operators U% and S%; cf. (12). We
also use standard abbreviations −3%A = >S%A and +3%A = >U%A. A datalogMTL2 program
is a finite set of rules.

I Example 20. For instance, the rule

ActivePowerTrip(x)← Turbine(x) ∧ �[0,1m] ActivePowerBelow0.15(x) ∧
−3[60s,63s] �[0,10s]ActivePowerAbove1.5(x) (14)
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Figure 6 ActivePowerTrip.
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Figure 7 Semantics of metric temporal operators for % = [d, e].

says that an active power trip happens when the active power of a turbine was above 1.5MW
for a period of at least 10 seconds, maximum 3 seconds after which there was a period of at
least one minute where the active power was below 0.15MW, as shown in Fig. 6.

The semantics of query answering in datalogMTL2 is essentially point-based. Thus, an
interpretation, M, is based on a domain ∆ 6= ∅ for the individual variables and constants. For
any m-ary predicate P , m-tuple c from ∆, and any moment of time i ∈ Q, the interpretation
M specifies whether P is true on c at i, in which case we write M, i |= P (c). As before, d is
an assignment of elements of ∆ to the individual variables (we adopt the standard name
assumption: d(a) = a, for every individual constant a). We then set inductively:

M, i |=d >, and M, i 6|=d ⊥,
M, i |=d P (τ ) iff M, i |= P (d(τ )),
M, i |=d (τ 6= τ ′) iff d(τ) 6= d(τ ′),
M, i |=d �%A iff M, j |=d A for all j with j − i ∈ %,
M, i |=d �%A iff M, j |=d A for all j with i− j ∈ %,
M, i |=d A1 U% A2 iff M, i′ |=d A2 for some i′ with i′ − i ∈ % and

M, j |=d A1 for all j ∈ (i, i′),
M, i |=d A1 S% A2 iff M, i′ |=d A2 for some i′ with i− i′ ∈ % and

M, j |=d A1 for all j ∈ (i′, i).

Figure 7 illustrates the semantics of the future-time operators for % = [d, e]. Note that ranges
% in the temporal operators can be punctual [d, d], in which case �[d,d]A is equivalent to
+3[d,d]A, and �[d,d]A to −3[d,d]A.

We say that M satisfies a datalogMTL2 program Π under an assignment d if, for all
i ∈ Q and all the rules A← A1 ∧ · · · ∧Ak in Π, we have

M, i |=d A whenever M, i |=d An for 1 ≤ n ≤ k.

We call M a model of Π and A and write M |= (Π,A) if M satisfies Π under every assignment,
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Right&LeftSupportMiddlePlace Right&LeftSupportLowPlace
SupportBending

3s

−3[0,3s]Right&LeftSupportMiddlePlace

Figure 8 SupportBending in Example 21.

and M, i |= P (a) for any P (a)@ι in A and any i ∈ ι. Π and A are consistent if they have a
model.

A datalogMTL2 ontology-mediated query is of the form (Π, q(x, χ)), where Π is a
datalogMTL2 program and q(x, χ) is an atomic query P (τ )@χ. A certain answer to
(Π, q(x, χ)) over a data instance A is a pair (a, ι) such that a is a tuple of constants from A
of the same length as x, ι an interval and, for any i ∈ ι, any model M of Π and A, and any
assignment d mapping x to a, we have M, i |=d P (τ ). In this case, we write M, i |= q(a).
To illustrate, the datalogMTL2 query (Π,ActivePowerTrip(tb0)@χ), where Π consists of
rule (14), returns [13:01:17, 13:01:18) as a certain answer over the data instance above.

I Example 21. We illustrate the importance of the operators S% and U% using an example
inspired by the ballet moves ontology [76]. Suppose we want to say that SupportBending is a
move spanning from the beginning to the end of Right&LeftSupportLowPlace provided that
it is preceded by Right&LeftSupportMiddlePlace, which ends within 3s from the beginning of
the Right&LeftSupportLowPlace, as shown in Fig. 8.

We can define the SupportBending move using the following rule:

SupportBending← Right&LeftSupportLowPlace S[0,∞)−3[0,3s]Right&LeftSupportMiddlePlace.

Note that defining SupportBending in datalogMTL2 would be problematic if only the 2 and
3 operators were available.

Atomic OMQ evaluation with datalogMTL2 has been studied by Brandt et al. [29]. In
particular, it was shown to be decidable and ExpSpace-complete for combined complexity.
This result holds even with punctual temporal operators (with range [d, d]), in which case
the propositional MTL is known to be undecidable [4]; on the other hand, the propositional
MTL is ExpSpace-complete if the punctual operators are not allowed [3]; see also [66, 67].
In fact, the undecidability result in the presence of punctual operators holds even for the
propositional (predicates of arity 0 only) fragment of datalogMTL2 extended by −3% and +3%

operators in the head of rules [29] (cf. HS2horn in Section 5.2). Furthermore, it was shown
that, for nonrecursive datalogMTL2 programs, query answering is PSpace-complete for
combined complexity and in AC0 for data complexity.

6.2 Use Cases
The metric temporal ontology language datalogMTL2 has been used to construct ontologies
and support query answering in three practical use-cases [29, 76], which will be briefly
discussed below.

Turbine Monitoring at Siemens At Siemens, service centres store aggregated turbine sensor
data instances such as (13). A datalogMTL2 ontology has been designed [29] to define events
(representing normal or abnormal behaviour) that are of interest to engineers monitoring the
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performance of turbines. One such event is active power trip defined by (14). As another
example, we show a (partial) definition of normal restart:

NormalRestart(x)← NormalStart(x) ∧ −3(0,1h]NormalStop(x),
NormalStop(x)← CoastDown1500to200(x) ∧ −3(0,9m]

[
CoastDown6600to1500(x) ∧

−3(0,2m]
(
MainFlameOff(x) ∧ −3(0,2m] ActivePowerOff(x)

)]
,

MainFlameOff(x)← �[0s,10s]MainFlameBelow0.1(x).

(The complete definition of normal restart contains 12 rules.) The purpose of this ontology is
to enable a convenient access to temporal information for an engineer who can pose succinct
queries such as q(x, χ) = NormalRestart(x)@χ (find the turbines that had a normal restart)
without having to write explicitly (or even to know) the complex definition of this event.

Weather Monitoring The MesoWest3 project makes publicly available historical records of
the weather stations across the US showing such parameters of meteorological conditions as
temperature, wind speed and direction, amount of precipitation, etc. From this data, one
can extract facts such as

NorthWind(KBVY)@(15:14, 15:24], HurricaneForceWind(KMNI)@(15:21, 15:31],
Precipitation(KBVY)@(15:14, 15:24], TempAbove0(KBVY)@(15:14, 15:24],
TempAbove0(KMNI)@(15:21, 15:31],
LocatedInCounty(KBVY,Essex)@(−∞,∞), LocatedInState(KBVY,MA)@(−∞,∞),

where KBVY,KMNI are IDs of the stations (according to the standard definition, the hurricane
force wind is above 118 km/h). A snippet of a weather ontology giving meteorological
definitions (such as ‘a hurricane is a hurricane force wind lasting one hour or longer’) is
shown below:

�[0,1h] Hurricane(x)← �[0,1h]HurricaneForceWind(x),
ShoweryCounty(x)← LocatedInCounty(u1, x) ∧ LocatedInCounty(u2, x) ∧

Precipitation(u1) ∧ NoPrecipitation(u2) ∧ −3(0,30m] Precipitation(u2),
HurricaneAffectedState(x)← LocatedInState(u, x) ∧ Hurricane(u),
�[0,24h] ExcessiveHeat(x)← �[0,24h]TempAbove24(x) ∧ −3[0,24h] TempAbove41(x),
HeatAffectedCounty(x)← LocatedInCounty(u, x) ∧ ExcessiveHeat(u),
CyclonePatternState(x)← LocatedInState(u1, x) ∧ LocatedInState(u2, x) ∧

LocatedInState(u3, x) ∧ LocatedInState(u4, x) ∧ EastWind(u1) ∧
NorthWind(u2) ∧WestWind(u3) ∧ SouthWind(u4).

The purpose of using the temporal ontology in the weather use-case is to enable a weather
expert to find information about complex meteorological events by using succinct queries.

BalOnSe: Ontology of Dance Movements This use-case is concerned with user annota-
tions of ballet videos such as

LeftLegGestureMiddleBack(video1)@[12s, 13s]

3 http://mesowest.utah.edu/

TIME 2017

http://mesowest.utah.edu/


1:30 Temporal Ontology-Mediated Querying: A Survey

saying that the movement LeftLegGestureMiddleBack is shown in video1 from 00:12:00 to
00:13:00. The ballet ontology [76] reflects the terminology developed by ballet researchers
and contains rules such as

�[0,3s]PlieReleve(x)↔�[0,1s] RightSupportMidPlace(x) ∧�[0,1s]LeftSupportMidPlace(x) ∧
�[1,2s] RightSupportLowPlace(x) ∧�[1,2s]LeftSupportLowPlace(x) ∧
�[2,3s] RightSupportHighPlace(x) ∧�[2,3s]LeftSupportHighPlace(x)

defining the composite movement plie releve as a sequence of simpler movements occurring
simultaneously or in a sequence. The video annotations together with the ontology are
then used to enhance the search capabilities of a video search system for ballet learners and
scholars. Thus, searching the term plie releve will return the videos (and time spans in them)
showing this movement, even if the annotation for this sequence is not explicitly present in
the database, but is deducible from the ontology and other annotations.

7 Ontology-Based Data Access and Implementations

In real-world applications, the data instances (ABoxes) are not created from scratch. In fact,
they are obtained from existing relational or RDF databases by means of mappings (queries
in the language of a data source) in order to produce a high-level conceptual view of the data.
Such ABoxes can be materialised and stored as, e.g., RDF triples, or remain virtual (as a
potential result of applying the mapping to the data), in which case an ontology-mediated
query may be evaluated by rewriting it into a set of queries in the language(s) of the data
sources. In the this section, we briefly address the problem of converting raw data to an ABox
in the context of temporal data. After that we present some prototypical implementations of
temporal ontology-based data access and evaluations of their performance.

7.1 From Raw to Conceptual Temporal Data
Suppose turbine sensor measurements are stored in a relational table TB_Sensor:

turbineId dateTime activePower rotorSpeed mainFlame . . .
tb0 2015-04-04 12:20:48 2 1550 0
tb0 2015-04-04 12:20:49 1.8 1400 null
tb0 2015-04-04 12:20:52 1.7 1350 1

. . .

There are three major options for conceptualising this data if, for instance, we are interested
in the situations when the rotor speed was below 1500:

RotorSpeedBelow1500(tb0, i), RotorSpeedBelow1500(tb0, i+ 1), where i is the timestamp
in the first row of the table, and so i+ 1 is the number of the second timestamp. This is
the most simplistic approach that ignores the distance between the timestamps, but it
is suitable if the timestamps are present in the database at regular intervals (which is
not the case above), or only the sequence of events rather than the duration of the gap
between them is important.
RotorSpeedBelow1500(tb0, i), RotorSpeedBelow1500(tb0, i+ 3), where i is the timestamp
in the first row of the table. Here, we obviously make an assumption that the time unit in
our application domain is ’a second’, and so this approach takes into account the duration
of the gap between the events.
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RotorSpeedBelow1500(tb0, 〈i, i + 3〉), where 〈i, i + 3〉 is a time interval. Here, we use a
real-world assumption that a rotor speed sensor sends its measurements only when the
current value of the speed is sufficiently different from the previous measurement, and
this value is assumed to hold for all the times until the next one is produced. Note also
that some sensors may produce aggregated (e.g., average) value taken over some period.

The choice of how to conceptualise the data depends on the application domain. Below, we
follow the third approach and show a mapping (in the syntax similar to the standard R2RML
mapping language, where in the body we use standard SQL with window operators) that
extracts the data instance related to the situations when active power was above 1.5MW:

ActivePowerAbove1.5(tbid)@[ledge, redge)←
SELECT tbid, ledge, redge FROM (

SELECT turbineId AS tbid, LAG(dateTime, 1) OVER (w) AS ledge,
LAG(activePower, 1) OVER (w) AS lag_activePower, dateTime AS redge

FROM TB_Sensor
WINDOW w AS (PARTITION BY turbineId ORDER BY dateTime)) tmp

WHERE lag_activePower > 1.5

The mapping above applied to TB_Sensor will produce the following instance:

ActivePowerAbove1.5(tb0)@[12:20:48, 12:20:49),
ActivePowerAbove1.5(tb0)@[12:20:49, 12:20:52).

Note that we use the definition of interval from Section 6 and make an assumption (reflecting
our intuition on how sensors produce their measurements) that the intervals involved are all of
the form [i, j). Clearly, we can add similar mappings for the concepts RotorSpeedAbove1500
and MainFlameBelow0.1.

7.2 Implementation
We report on the implementation of temporal ontology-based data access and its evalu-
ation [29]. The ontology language supported by this implementation is datalognrMTL2

consisting of nonrecursive datalogMTL2 programs, and the system rewrites datalognrMTL2

OMQs to standard SQL queries with views. The performance the rewritings for the Siemens
use-case described in Section 6.2 was evaluated on an HP Proliant server with 24 Intel Xeon
CPUs (@3.47GHz), 106GB of RAM and five 1TB 15K RPM HD, which used PostgreSQL as
a database engine. The maximum physical memory consumption in the experiments was
12.9GB.

Siemens supplied a sample of data for one running turbine, denoted tb0, over 4 days in the
form of the table TB_Sensor. This sample was replicated to imitate the data for one turbine
over 10 different periods ranging from 32 to 320 months. Four queries ActivePowerTrip(tb0)@χ,
NormalStart(tb0)@χ, NormalStop(tb0)@χ, and NormalRestart(tb0)@χ were evaluated with a
timeout of 30 minutes. The execution times are given in Fig. 9, which shows their linear
growth in the number of months and, consequently, in the size of data.

Note that the normal restart (start) query timeouts on the data for more than 15
(respectively, 20) years, which is more than enough for the monitoring and diagnostics tasks
at Siemens, where the two most common application scenarios for sensor data analytics
are daily monitoring (that is, analytics of high-frequency data of the previous 24 hours)
and fleet-level analytics of key-performance indicators over one year. In both cases, the
computation time of the results is far less a crucial cost factor than the lead-time for data
preparation.
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Figure 9 Performance of queries in the Siemens use-case.

The evaluation was performed for the weather OMQs with MesoWest data (see Section 6.2)
as well. On the other hand, the system SPARK capable of parallel query processing, in place
of PostgreSQL, was evaluated showing large performance improvements in some cases; for
details consult [30].
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Abstract
We survey recent results on the development of efficient algorithms for the quantitative analysis
of business processes modeled as workflow Petri nets. The algorithms can be applied to any
workflow net, but have polynomial runtime in the free-choice case.
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1 Introduction

Workflow Petri nets are a successful formalism for the representation and formal analysis of
business processes. They are also much used as a formal back-end for different notations
like BPMN (Business Process Modeling Notation), EPC (Event-driven Process Chain), or
UML Activity Diagrams [1, 2, 5]. In this note we assume that the reader is familiar with
basic Petri net terms: place, transition, token, marking, and the firing rule, that is, the rule
that determines whether a transition is enabled at a marking, and how the marking changes
when the transition fires.

In a nutshell, a workflow Petri net is just a Petri net with a distinguished initial place and
a distinguished final place. These places induce distinguished initial and final markings, which
contain a token in the initial/final place and no tokens elsewhere. In a well-designed workflow,
every marking reachable from the initial marking enables some firing sequence leading to the
final marking, a property known as soundness [1]. In particular, sound workflow nets are
both deadlock-free and livelock-free.

Workflow Petri nets can be analyzed by constructing their reachability graph (which has
the reachable markings as nodes, and the steps allowed by the firing rule as edges), and
applying model-checking techniques, see e.g. [16, 23]. However, this approach suffers from
the well-known state-explosion problem: Even if reachable markings put at most one token
in every place, a workflow net with n places can still have Θ(2n) reachable markings. For
simple qualitative properties, like soundness, the state-explosion problem can be handled very
effectively by tools like LoLA [22, 16]. However, the problem becomes acute for workflows
enriched with data, time, and/or probabilities.

Since 2013 my co-authors and I have addressed this question by developing novel analysis
algorithms that can be applied to general workflow nets, but provide strong runtime guarantees
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for special classes. The rationale for this approach is that workflow Petri nets modeling real-
life business processes tend to have a simpler structure than those found in other application
areas, like the analysis of distributed algorithms, concurrent programs, or biological processes.
In particular, it has been repeatedly observed that many of these workflow nets are free-
choice [6]. For example, Workflow Graphs, a simple but effective business process formalism
[1, 17, 18, 13], can be translated into free-choice workflow Petri nets, and 1386 of the 1958
workflow nets in the most popular benchmark suite in the literature are free-choice workflow
nets [16]. So our goal is to design analysis algorithms that are applicable to arbitrary workflow
nets, and provide a better runtime guarantee in the free-choice case. Typically, our algorithms
have exponential worst-case complexity in the general case (which is unavoidable due to
NP-hardness or PSPACE-hardness results), but polynomial complexity in the free-choice
case.

A Petri net is free-choice if every pair of places has either the same set of output transitions
or disjoint sets of output transitions. The consequence is that for every reachable marking,
if some output transition of a place can fire, then all output transitions can fire, that is,
the net can freely choose which output transition to fire. While free-choice Petri nets have
a rich theory, almost all results concerning them are about the basic Petri net model, and
do not apply to Petri nets enriched with data, time, or probabilities. In a series of papers,
my co-authors and I have developed novel analysis techniques that overcome this problem.
In the rest of the note we summarize this work. We first consider our work on reduction
algorithms, and then our last paper on decomposition-based algorithms.

I Remark. Some of our results are formulated in terms of deterministic negotiation diagrams.
In a nutshell, negotiation diagrams, introduced in [11], are workflow Petri nets that can
be decomposed into communicating sequential Petri nets, a feature that makes them more
amenable to theoretical study. A classical theorem of net theory shows that the connection
between sound deterministic negotiation diagrams and sound free-choice workflow Petri nets
is very tight: There are simple, polynomially computable translations between these two
formalisms, which moreover only incur in a linear blow up. More details can be found in [7].

2 Reduction techniques

Reduction algorithms are a very efficient analysis technique for Petri nets and other business
modeling formalisms, like EPCs and AND-XOR graphs (see for instance [21, 3, 9, 24]). A
reduction algorithm consists of (a) a set of reduction rules, whose application allows one to
simplify the workflow while preserving important properties, and (b) an algorithmic policy
for selecting the next rule to be applied. The algorithm applies the rules exhaustively until
it reaches an irreducible workflow net. For certain classes of nets and certain properties, the
rules can be complete: They can reduce all workflows in the class satisfying the property,
and only them, to some unique canonical workflow. Typically, this canonical workflow is
the workflow consisting of one single transition with the initial and final places as only
input and output place. If the policy followed by the algorithm is guaranteed to reach
the canonical workflow, then the reduction algorithm becomes a decision algorithm for
the property. Moreover, the algorithm decides the property without having to explore the
reachability graph of the net at all.

A set of rules for free-choice Petri nets (not necessarily workflow nets) was presented in
[6]. The rules preserve liveness and boundedness, two important properties of Petri nets,
and are shown to be complete. In [3] these rules were applied to free-choice workflow Petri
nets, and shown to be complete for the soundness property. This leads to a polynomial-time
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decision procedure for soundness of free-choice workflow nets, in sharp contrast with the
PSPACE-hardness of deciding soundness for general workflow nets1. However, the rules of [6]
have two problems. First, as shown in [13], they do not preserve properties concerning data
or timing information. Moreover, as shown in [6], one of the rules is not correct for arbitrary
workflow nets. More precisely, applying the rule to a sound, non-free-choice workflow net can
make it unsound. In [13] we present a new set of surprisingly simple rules that overcomes
these shortcomings. The rules can be applied to Petri nets in which tokens carry data. For
example, a token in a certain place can be labeled with a natural number. Transitions collect
a tuple of data from their input places, and apply a transformer to them, yielding a tuple of
data that is sent to the output places.

The rules not only preserve soundness/unsoundness, but also the input/output relation
of the workflow. This is the relation that assigns to every initial marking the set of final
markings reachable from it (observe that initial markings differ only on the value of the
token in the initial final place, and final markings on the value of the token in the final place).
Therefore, the rules can be applied to decide any property of the input/output relation, and,
by suitable reductions, other properties like the worst-case execution time of a given workflow.
The rules also solve the second problem: contrary to the original rules, they can be applied
to arbitrary workflow nets. Finally, the rules are still complete for free-choice workflow nets,
in the sense that they reduce every sound free-choice workflow net to a workflow net with
only one transition, but the same input/output relation.

The definitive description of the reduction algorithm, whose correctness proof and com-
plexity analysis are rather complex, is given in [8], an extended and corrected version of
[11, 12], which is currently under review. The algorithm completely reduces sound free-choice
workflow nets by means of a sequence of rule applications of length at most cubic in the
number of places and transitions of the net (in experiments the actual number of rule
applications only grows linearly in the size of the net). Further, the sequence of reductions
can be found in polynomial time. In [14] we apply this reduction algorithm to the problem
of computing the expected cost of a workflow. For this, we define probabilistic workflow nets
with costs, and enhance the reduction rules of [13] so that they preserve the expected cost.
Using the results of [8] we prove that the expected cost of a free-choice workflow net can be
computed in polynomial time.

3 Decomposition-based techniques

Our most recent work is presented in [15]. This paper generalizes the results of [13, 14].
It presents the most versatile analysis algorithm for free-choice workflow nets designed so
far, among those that avoid the construction of the reachability graph. In particular, the
reduction-based algorithms of [13, 14] can be recast as special cases of this general algorithm.
The algorithm can be instantiated to solve problems about the time needed to execute a
workflow, and also about its cost2. More precisely, the generic algorithm yields polynomial
algorithms for the computation of the worst-case and the best-case execution time, and
for the worst-case, best-case, and expected cost. It also provides a good algorithm for the
computation of the expected time, although in this case the algorithm is not polynomial.

1 The exact complexity depends on the specifics of the workflow model, for instance whether the workflow
Petri net is assumed to be 1-safe or not.

2 Notice the difference between time and cost: while the cost of executing two concurrent transitions is
the sum of the costs, the time is the maximum of the times.
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This is however to be expected, since the problem of deciding if the expected time exceeds a
given bound is NP-complete, even for acyclic free-choice workflow nets [4].

The paper extends the classical lattice-based formalism for the static analysis of sequential
flow-graphs, as presented for example in [20], to workflow Petri nets. A flow-graph consists of
a set of nodes, modeling program points, and a set of edges, modeling program instructions,
like assignments or guards. In the lattice-based approach one (i) defines a lattice D of
dataflow informations corresponding to the possible results of the analysis to be conducted,
(ii) assigns semantic transformers [[a]] : D → D to each action a of the flow-graph, (iii) assigns
to a path a1 · · · an of the flow graph the functional composition [[an]] ◦ · · · ◦ [[a1]] of the
transformers, and (iv) defines the result of the analysis as the “Merge Over all Paths”, i.e.,
the join of the transformers of all execution paths, usually called the MOP-solution or just
the MOP of the dataflow problem. So performing an analysis amounts to computing the
MOP of the flow-graph for the given lattice and the given transformers.

Katoen et al. have recently shown in [19, 10] that in order to adequately deal with
quantitative analyses of concurrent systems one needs a semantics that distinguishes between
the inherent nondeterminism of each sequential process, and the nondeterminism introduced
by concurrency (the choice of the process that should perform the next step). Following
these ideas, we introduce a semantics in which the latter is resolved by an external scheduler,
and define the MOP for a given scheduler. The result of a dataflow analysis is then given
by the infimum or supremum, depending on the application, of the MOPs for all possible
schedulers.

In [15] we define the class of Mazurkiewicz-invariant frameworks. Loosely speaking, a
framework is Mazurkiewicz-invariant if two executions of the workflow net that differ only
in the order of execution of concurrent transitions have the same transformer. We prove
a theorem showing a first important property of sound free-choice workflow nets, namely
that the MOP is independent of the scheduler for Mazurkiewicz-invariant frameworks. This
allows to compute the result of the analysis by fixing a scheduler, and computing the MOP
for it. The main contribution of the paper is a method to compute the MOP of a framework
for a sound free-choice workflow net. This is achieved by proving a novel and very powerful
decomposition theorem showing that a sound free-choice workflow net is composed of smaller
workflow subnets which are also sound. The algorithm iteratively identifies these subnets,
computes their MOP, and replaces the complete subnet by one single transition with the
same MOP.

Since the algorithm is generic, its complexity depends on the choice of the lattice and
the transformers. However, we obtain a “concurrency-for-free” result: The runtime of the
algorithm for computing the MOP for a sound free-choice workflow net is within a polynomial
factor of the runtime for computing the MOP of a sequential flow-graph. Notice that this is
the case even though the reachability graph of the workflow net – which can be seen as the
sequential flow-graph equivalent to it – can be exponentially larger than the net itself.

The generic algorithm is more general than the reduction-based algorithms. More precisely,
for every reduction-based algorithm, there is an instance of the generic algorithm with at
most the same complexity. Further, using the generic algorithm we can solve in polynomial
time quantitative problems for which no reduction algorithm existed so far. An example
is the computation of the maximal number of tokens of a reachable marking of a sound
free-choice workflow net. As shown in [4], the maximal number of tokens corresponds to
the minimal number of resources that guarantee successful completion of the workflow, and
is therefore an important parameter. Our generic decomposition-based algorithm can be
instantiated to compute the maximal number of tokens in polynomial time3.

3 This research, conducted with Philipp Meyer and Hagen Völzer, is still unpublished.
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Abstract
The proliferation of programmable devices, personal assistants, and autonomous systems presents
fundamental challenges to the deployment of safe, predictable systems that can work together,
interact seamlessly with humans, and that are taskable and instructable by people who may not
know how to program. In this talk, we will revisit the classical problem of program synthesis
through the lens of AI automated planning. We will present recent advances in AI automated
planning principles and computational methods that support the synthesis of plans with goals and
preferences specified in Linear Temporal Logic and Regular Expressions. Moving from automated
planning in deterministic domains to planning in nondeterministic domains, we will explore the
pathway to synthesizing programs that are taskable and instructable by exploiting state-of-the-art
AI planning technology.

1998 ACM Subject Classification I.2.2 Automatic Programming

Keywords and phrases planning, program synthesis, linear temporal logic, regular expressions

Digital Object Identifier 10.4230/LIPIcs.TIME.2017.3

Category Invited Talk

© Sheila A. McIlraith;
licensed under Creative Commons License CC-BY

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de




Possible and Certain Answers for Queries over
Order-Incomplete Data∗†

Antoine Amarilli1, Mouhamadou Lamine Ba2, Daniel Deutch3, and
Pierre Senellart4,5

1 LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
2 University Alioune Diop of Bambey, Bambey, Senegal
3 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
4 DI ENS, ENS, CNRS, PSL Research University, Paris, France
5 Inria Paris, Paris, France

Abstract
To combine and query ordered data from multiple sources, one needs to handle uncertainty
about the possible orderings. Examples of such “order-incomplete” data include integrated event
sequences such as log entries; lists of properties (e.g., hotels and restaurants) ranked by an
unknown function reflecting relevance or customer ratings; and documents edited concurrently
with an uncertain order on edits. This paper introduces a query language for order-incomplete
data, based on the positive relational algebra with order-aware accumulation. We use partial
orders to represent order-incomplete data, and study possible and certain answers for queries in
this context. We show that these problems are respectively NP-complete and coNP-complete,
but identify many tractable cases depending on the query operators or input partial orders.

1998 ACM Subject Classification H.2.1 [Database Management] Logical Design

Keywords and phrases certain answer, possible answer, partial order, uncertain data
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1 Introduction

Many applications need to combine and transform ordered data (e.g., temporal data, rankings,
preferences) from multiple sources. Examples include sequences of readings from multiple
sensors, or log entries from different applications or machines, that must be combined to
form a complete picture of events; rankings of restaurants and hotels published by different
websites, their ranking function being often proprietary and unknown; and concurrent edits
of shared documents, where the order of contributions made by different users needs to
be merged. Even when the order of items from each individual source is known, the order
across sources is often uncertain. For instance, even when sensor readings or log entries have
timestamps, these may be ill-synchronized across sensors or machines; different websites may
follow different rules and rank different hotels, so there are multiple ways to create a unified
ranked list; concurrent document editions may be ordered in multiple ways. We say that the
resulting information is order-incomplete.

This paper studies query evaluation over order-incomplete data in a relational setting [1].
Our running example is that of restaurants and hotels from travel websites, ranked according
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to proprietary functions. An example query could compute the union of ranked lists of
restaurants from distinct websites, or ask for a ranked list of pairs of a restaurant and a hotel
in the same district. As we do not know how the proprietary order is defined, the query result
may become uncertain: there may be multiple reasonable orderings of restaurants in the
union result, or multiple orderings of restaurant–hotel pairs. We also study the application of
order-aware accumulation to the query result, where each possible order may yield a different
value: e.g., extracting only the highest ranked pairs, concatenating their names, or assessing
the attractiveness of a district based on its best restaurants and hotels.

Our approach is to handle this uncertainty through the classical notions of possible and
certain answers. First, whenever there is a certain answer to the query – i.e., there is only
one possible order on query results or one accumulation result – which is obtained no matter
the order on the input and in intermediate results, we should present it to the user, who can
then browse through the ordered query results (as is typically done in absence of uncertainty,
using constructs such as SQL’s ORDER BY). Certain answers can arise even in non-trivial
cases where the combination of input data admits many possible orders: consider user queries
that select only a small interesting subset of the data (for which the ordering happens to be
certain), or a short summary obtained through accumulation over large data. In many other
cases, the different orders on input data or the uncertainty caused by the query may lead to
several possible answers. In this case, it is still of interest (and non-trivial) to verify whether
an answer is possible, e.g., to check whether a given ranking of hotel–restaurant pairs is
consistent with a combination of other rankings (the latter done through a query). Thus, we
study the problems of deciding whether a given answer is certain, and whether it is possible.

We note that users may wish to focus on the position of some tuples of interest (e.g.,
“is it possible/certain that a particular pair of restaurant-hotel is ranked first?”, or “is it
possible/certain that restaurant A is ranked above restaurant B?). We show these questions
may be expressed in our framework through proper choices of accumulation functions.

Main contributions. We introduce a query language with accumulation for order-incomplete
data, which generalizes the positive relational algebra [1] with aggregation as the outermost
operation. We define a bag semantics for this language, without assuming that a single choice
of order can be made (unlike, e.g., rank aggregation [15]): we use partial orders to represent
all orders that are consistent with the input data. We then undertake the first general study
of the complexity of possible and certain answers for queries over such data. We show that
these problems are respectively NP-complete and coNP-complete, the main difficulties being
the existence of duplicate tuple values in the data and the use of order-aware accumulation.
Fortunately, we can show many realistic tractable cases: certainty is in PTIME without
accumulation, and both problems are tractable under reasonable restrictions on the input
and on the query. The rest of this paper is organized as follows. In Section 2, we introduce
our data model and our query language. We define and exemplify the problems of possible
and certain answers in Section 3. We then study their complexity, first in the general case
(Section 4), then in restricted settings that ensure tractability (Sections 5 and 6). We study
extensions to the language, namely duplicate elimination and group-by, in Section 7. We
compare our model and results with related work in Section 8, and conclude in Section 9.
Proof sketches of some important results are given in an appendix, for lack of space.

2 Data Model and Query Language

We fix a countable set of values D that includes N and infinitely many values not in N. A
tuple t over D of arity a(t) is an element of Da(t), denoted 〈v1, . . . , va(t)〉. The simplest notion
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restname distr

Gagnaire 8
TourArgent 5

(a) Rest table

hotelname distr

Mercure 5
Balzac 8
Mercure 12

(b) Hotel table

hotelname distr

Balzac 8
Mercure 5
Mercure 12

(c) Hotel2 table

Figure 1 Running example: Paris restaurants and hotels.

〈G, 8,M, 5〉

〈TA, 5,M, 5〉〈G, 8,B, 8〉

〈TA, 5,B, 8〉

Figure 2 Example 2.

fr
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it
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jp
e

jp
f

Figure 3 Example 11.

of ordered relations are then list relations [11, 12]: a list relation of arity n ∈ N is an ordered
list of tuples over D of arity n (where the same tuple value may appear multiple times). List
relations impose a single order over tuples, but when one combines (e.g., unions) them, there
may be multiple plausible ways to order the results.

We thus introduce partially ordered relations (po-relations). A po-relation Γ = (ID, T,<)
of arity n ∈ N consists of a finite set of identifiers ID (chosen from some infinite set closed
under product), a strict partial order < on ID, and a (generally non injective) mapping T
from ID to Dn. The actual identifiers do not matter, but we need them to refer to occurrences
of the same tuple value. Hence, we always consider po-relations up to isomorphism, where
(ID, T,<) and (ID′, T ′, <′) are isomorphic iff there is a bijection ϕ : ID → ID′ such that
T ′(ϕ(id)) = T (id) for all id ∈ ID, and ϕ(id1)<′ϕ(id2) iff id1 < id2 for all id1, id2 ∈ ID.

A special case of po-relations are unordered po-relations (or bag relations), where < is
empty: we write them (ID, T ). The underlying bag relation of Γ = (ID, T,<) is (ID, T ).

The point of po-relations is to represent sets of list relations. Formally, a linear extension
<′ of < is a total order on ID such that for each x < y we have x <′ y. The possible worlds
pw(Γ) of Γ are then defined as follows: for each linear extension <′ of <, writing ID as
id1 <

′ · · · <′ id |ID|, the list relation (T (id1), . . . , T (id |ID|)) is in pw(Γ). As T is generally
not injective, two different linear extensions may yield the same list relation. Po-relations
can thus model uncertainty over the order of tuples (but not on their value: the underlying
bag relation is always certain).

Query language. We now define a bag semantics for positive relational algebra operators,
to manipulate po-relations with queries. The positive relational algebra, written PosRA, is a
standard query language for relational data [1]. We will extend PosRA later in this section
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with accumulation, and add further extensions in Section 7. Each PosRA operator applies to
po-relations and computes a new po-relation; we present them in turn.

The selection operator restricts the relation to a subset of its tuples, and the order is
the restriction of the input order. The tuple predicates allowed in selections are Boolean
combinations of equalities and inequalities, which can use tuple attributes and values in D.

selection: For any po-relation Γ = (ID, T,<) and tuple predicate ψ, we define the selection
σψ(Γ) ··= (ID′, T|ID′ , <|ID′) where ID′ ··= {id ∈ ID | ψ(T (id)) holds}.

The projection operator changes tuple values in the usual way, but keeps the original tuple
ordering in the result, and retains all copies of duplicate tuples (following our bag semantics):

projection: For a po-relation Γ = (ID, T,<) and attributes A1, . . . , An, we define the projec-
tion ΠA1,...,An(Γ) ··= (ID, T ′, <) where T ′ maps each id ∈ ID to ΠA1,...,An(T (id)).

As for union, we impose the minimal order constraints that are compatible with those of
the inputs. We use the parallel composition [7] of two partial orders < and <′ on disjoint
sets ID and ID′, i.e., the partial order <′′··= (< ‖<′) on ID ∪ ID′ defined by: every id ∈ ID
is incomparable for <′′ with every id ′ ∈ ID′; for each id1, id2 ∈ ID, we have id1 <

′′ id2 iff
id1 < id2; for each id ′1, id ′2 ∈ ID′, we have id ′1 <′′ id ′2 iff id ′1 <′ id ′2.

union: Let Γ = (ID, T,<) and Γ′ = (ID′, T ′, <′) be two po-relations of the same arity. We
assume that the identifiers of Γ′ have been renamed if necessary to ensure that ID and ID′

are disjoint. We then define Γ ∪ Γ′ ··= (ID ∪ ID′, T ′′, < ‖<′), where T ′′ maps id ∈ ID to
T (id) and id ′ ∈ ID′ to T ′(id ′).

The union result Γ ∪ Γ′ does not depend on the exact definition of Γ′′, i.e., it is unique up to
isomorphism. Our definition also implies that Γ ∪ Γ is different from Γ, as per bag semantics.
In particular, when Γ and Γ′ have only one possible world, Γ ∪ Γ′ usually does not.

We next introduce two possible product operators. First, the direct product [40] <DIR ··=
(<×DIR <

′) of two partial orders < and <′ on sets ID and ID′ is defined by (id1, id ′1) <DIR

(id2, id ′2) for each (id1, id ′1), (id2, id ′2) ∈ ID × ID′ iff id1 < id2 and id ′1 <′ id ′2. We define
the direct product operator over po-relations accordingly: two identifiers in the product are
comparable only if both components of both identifiers compare in the same way.

direct product: For any po-relations Γ = (ID, T,<) and Γ′ = (ID′, T ′, <′), remembering that
the sets of possible identifiers is closed under product, we let Γ×DIR Γ′ ··= (ID × ID′, T ′′,
< ×DIR <

′), where T ′′ maps each (id, id ′) ∈ ID× ID′ to the concatenation 〈T (id), T ′(id ′)〉.

Again, the direct product result often has multiple possible worlds even when inputs do not.
The second product operator uses the lexicographic product (or ordinal product [40])

<LEX ··= (<×LEX <
′) of two partial orders < and <′, defined by (id1, id ′1) <LEX (id2, id ′2) for

all (id1, id ′1), (id2, id ′2) ∈ ID × ID′ iff either id1 < id2, or id1 = id2 and id ′1 <′ id ′2.

lexicographic product: For any po-relations Γ = (ID, T,<) and Γ′ = (ID′, T ′, <′), we define
Γ×LEX Γ′ as (ID × ID′, T ′′, < ×LEX <

′) with T ′′ defined like for direct product.

Last, we define the constant expressions that we allow:

const: •for any tuple t, the singleton po-relation [t] has only one tuple with value t;
•for any n ∈ N, the po-relation [6n] has arity 1 and has pw([6n]) = {(1, . . . , n)}.
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A natural question is then to determine whether any of our operators is subsumed by the
others, but we show that this is not the case:

I Theorem 1. No PosRA operator can be expressed through a combination of the others.

We have now defined a semantics on po-relations for each PosRA operator. We define a
PosRA query in the expected way, as a query built from these operators and from relation
names. Calling schema a set S of relation names and arities, with an attribute name for
each position of each relation, we define a po-database D as having a po-relation D[R] of the
correct arity for each relation name R in S. For a po-database D and a PosRA query Q we
denote by Q(D) the po-relation obtained by evaluating Q over D.

I Example 2. The po-database D in Figure 1 contains information about restaurants and
hotels in Paris: each po-relation has a total order (from top to bottom) according to customer
ratings from a given travel website, and for brevity we do not represent identifiers.

Let Q ··= Rest ×DIR (σdistr 6=“12”(Hotel)). Its result Q(D) has two possible worlds:
(〈G, 8, M, 5〉, 〈G, 8, B, 8〉, 〈TA, 5, M, 5〉, 〈TA, 5, B, 8〉), (〈G, 8, M, 5〉, 〈TA, 5, M, 5〉, 〈G, 8, B, 8〉, 〈TA, 5, B, 8〉).
In a sense, these list relations of hotel–restaurant pairs are consistent with the order in D: we
do not know how to order two pairs, except when both the hotel and restaurant compare in
the same way. The po-relation Q(D) is represented in Figure 2 as a Hasse diagram (ordered
from bottom to top), again writing tuple values instead of tuple identifiers for brevity.

Consider now Q′ ··= Π(σRest.distr=Hotel.distr(Q)), where Π projects out Hotel.distr . The
possible worlds of Q′(D) are (〈G, B, 8〉, 〈TA, M, 5〉) and (〈TA, M, 5〉, 〈G, B, 8〉), intuitively reflecting
two different opinions on the order of restaurant–hotel pairs in the same district. Defining Q′′
similarly to Q′ but replacing ×DIR by ×LEX in Q, we have pw(Q′′(D)) = (〈G,B, 8〉, 〈TA,M, 5〉).

We conclude by observing that we can efficiently evaluate PosRA queries on po-relations:

I Proposition 3. For any fixed PosRA query Q, given a po-database D, we can construct the
po-relation Q(D) in polynomial time in the size of D (the polynomial degree depends on Q).

Accumulation. We now enrich PosRA with order-aware accumulation as the outermost
operation, inspired by right accumulation and iteration in list programming, and aggregation
in relational databases. We fix a monoid (M,⊕, ε) for accumulation and define:

I Definition 4. For n ∈ N, let h : Dn×N∗ →M be a function called an arity-n accumulation
map. We call accumh,⊕ an arity-n accumulation operator ; its result accumh,⊕(L) on an
arity-n list relation L = (t1, . . . , tn) is h(t1, 1)⊕ · · · ⊕h(tn, n), and it is ε on an empty L. For
complexity purposes, we always require accumulation operators to be PTIME-evaluable, i.e.,
given any list relation L, we can compute accumh,⊕(L) in PTIME.

The accumulation operator maps the tuples with h toM, where accumulation is performed
with ⊕. The map h may use its second argument to take into account the absolute position
of tuples in L. In what follows, we omit the arity of accumulation when clear from context.

The PosRAacc language. We define the language PosRAacc that contains all queries of
the form Q = accumh,⊕(Q′), where accumh,⊕ is an accumulation operator and Q′ is a PosRA
query. The possible results of Q on a po-database D, denoted Q(D), is the set of results
obtained by applying accumulation to each possible world of Q′(D), namely:

I Definition 5. For a po-relation Γ, we define: accumh,⊕(Γ) ··= {accumh,⊕(L) | L ∈ pw(Γ)}.
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4:6 Possible and Certain Answers for Queries over Order-Incomplete Data

Of course, accumulation has exactly one result whenever the operator accumh,⊕ does
not depend on the order of input tuples: this covers, e.g., the standard sum, min, max, etc.
Hence, we focus on accumulation operators which depend on the order of tuples (e.g., defining
⊕ as concatenation), so there may be more than one accumulation result:

I Example 6. As a first example, let Ratings(user , restaurant, rating) be an unordered po-
relation describing the numerical ratings given by users to restaurants, where each user rated
each restaurant at most once. Let Relevance(user) be a po-relation giving a partially-known
ordering of users to indicate the relevance of their reviews. We wish to compute a total rating
for each restaurant which is given by the sum of its reviews weighted by a PTIME-computable
weight function w. Specifically, w(i) gives a nonnegative weight to the rating of the i-th
most relevant user. Consider Q1 ··= accumh1,+(σψ(Relevance ×LEX Ratings)) where we set
h1(t, n) ··= t.rating × w(n), and where ψ is the tuple predicate: restaurant = “Gagnaire” ∧
Ratings.user = Relevance.user . The query Q1 gives the total rating of “Gagnaire”, and each
possible world of Relevance may lead to a different accumulation result.

As a second example, consider an unordered po-relation HotelCity(hotel, city) indicating
in which city each hotel is located, and consider a po-relation City(city) which is (partially)
ranked by a criterion such as interest level, proximity, etc. Now consider the query Q2 ··=
accumh2,concat(Πhotel(Q′2)), where Q′2 ··= σCity.city=HotelCity.city(City ×LEX HotelCity), where
h2(t, n) ··= t, and where “concat” denotes standard string concatenation. Q2 concatenates
the hotel names according to the preference order on the city where they are located, allowing
any possible order between hotels of the same city and between hotels in incomparable cities.

3 Possibility and Certainty

Evaluating a PosRA or PosRAacc query Q on a po-database D yields a set of possible results:
for PosRAacc, it yields an explicit set of accumulation results, and for PosRA, it yields a
po-relation that represents a set of possible worlds (list relations). The uncertainty among
the results may be due to the order of the input relations being partial, due to uncertainty
yielded by the query, or both. In some cases, there is only one possible result, i.e., a certain
answer. In other cases, we may wish to examine multiple possible answers. We thus define:

I Definition 7 (Possibility and Certainty). Let Q be a PosRA query, D be a po-database, and
L a list relation. The possibility problem (POSS) asks if L ∈ pw(Q(D)), i.e., if L is a possible
result. The certainty problem (CERT) asks if pw(Q(D)) = {L}, i.e., if L is the only possible
result. Likewise, if Q is a PosRAacc query with accumulation monoidM, for a result v ∈M,
the POSS problem asks whether v ∈ Q(D), and CERT asks whether Q(D) = {v}.

Discussion. For PosRAacc, our definition follows the usual notion of possible and certain
answers in data integration [28] and incomplete information [30]. For PosRA, we ask
for possibility or certainty of an entire output list relation, i.e., instance possibility and
certainty [3]. We now justify that these notions are useful and discuss more “local” alternatives.

First, as we exemplify below, the output of a query may be certain even for complex
queries and uncertain input. It is important to identify such cases and present the user with
the certain answer in full, like order-by query results in current DBMSs. Our CERT problem
is useful for this task, because we can use it to decide if a certain output exists, and if yes, we
can compute it in PTIME (by choosing any linear extension). However, CERT is a challenging
problem to solve, because of duplicate values (see “Technical difficulties” below).
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I Example 8. Consider the po-database D of Figure 1 with the po-relations Rest and Hotel2.
To find recommended pairs of hotels and restaurants in the same district, the user can
write Q ··= σRest.distr=Hotel2.distr(Rest×DIR Hotel2). Evaluating Q(D) yields only one possible
world, namely, the list relation (〈G, 8, B, 8〉, 〈TA, 5,M, 5〉), which is a certain result.

This could also happen with larger input relations. Imagine for example that we join
hotels and restaurants to find pairs of a hotel and a restaurant located in that hotel. The
result can be certain if the relative ranking of the hotels and of their restaurants agree.

If there is no certain answer, deciding possibility of an instance may be considered as
“best effort”. It can be useful, e.g., to check if a list relation (obtained from another source) is
consistent with a query result. For example, we may wish to check if a website’s ranking of
hotel–restaurant pairs is consistent with the preferences expressed in its rankings for hotels
and restaurants, to detect when a pair is ranked higher than its components would warrant.

When there is no overall certain answer, or when we want to check the possibility of some
aggregate property of the relation, we can use a PosRAacc query. In particular, in addition
to the applications of Example 6, accumulation allows us to encode alternative notions of
POSS and CERT for PosRA queries, and to express them as POSS and CERT for PosRAacc. For
example, instead of possibility or certainty for a full relation, we can express possibility or
certainty of the location1 of particular tuples of interest:

I Example 9. With accumulation we can model position-based selection queries. Consider for
instance a top-k operator on list relations, which retrieves a list relation of the first k tuples.
For a po-relation, the set of results is all possible such list relations. We can implement top-k
as accumh3,concat with h3(t, n) being (t) for n 6 k and ε otherwise, and with concat being
list concatenation. We can similarly compute select-at-k, i.e., return the tuple at position k,
via accumh4,concat with h4(t, n) being (t) for n = k and ε otherwise.

Accumulation can also be used for a tuple-level comparison. To check whether the
first occurrence of a tuple t1 precedes any occurrence of t2, we define h5 for all n ∈ N by
h5(t1, n) ··= >, h5(t2, n) ··= ⊥ and h5(t, n) ··= ε for t 6= t1, t2, and a monoid operator ⊕ such
that >⊕> = >⊕⊥ = >, ⊥⊕⊥ = ⊥⊕> = ⊥: the result is ε if neither t1 not t2 is present,
> if the first occurrence of t1 precedes any occurrence of t2, ⊥ otherwise.

We study the complexity of these variants in Section 6. We now give examples of their use:

I Example 10. Consider Q = Πdistr(σRest.distr=Hotel.distr(Rest×DIR Hotel)), which computes
ordered recommendations of districts including both hotels and restaurants. Using accumula-
tion as in Example 9, the user can compute the best district to stay in with Q′ = top-1(Q).
If Q′ has a certain answer, then there is a dominating hotel–restaurant pair in this district,
which answers the user’s need. If there is no certain answer, POSS allows the user to determine
the possible top-1 districts.

We can also use POSS and CERT for PosRAacc queries to restrict attention to tuples of
interest. If the user hesitates between districts 5 and 6, they can apply tuple-level comparison
to see whether the best pair of district 5 may be better (or is always better) than that of 6.

Technical difficulties. The main challenge to solve POSS and CERT for a PosRA query Q on
an input po-database D is that the tuple values of the desired result L may occur multiple
times in the po-relation Q(D), making it hard to match L and Q(D). In other words, even

1 Remember that the existence of a tuple is not order-dependent and thus vacuous in our setting.
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4:8 Possible and Certain Answers for Queries over Order-Incomplete Data

though we may compute the po-relation Q(D) in PTIME (by Proposition 3) and present it
to the user, they still cannot easily “read” possible and certain answers out of the po-relation:

I Example 11. Consider a po-relation Γ = (ID, T,<) with ID = {ida, idb, idc, idd, ide, id f},
with T (ida) ··= 〈Gagnaire, fr〉, T (idb) ··= 〈Italia, it〉, T (idc) ··= 〈TourArgent, fr〉, T (idd) ··=
〈Verdi, it〉, T (ide) ··= 〈Tsukizi, jp〉, T (id f) ··= 〈Sola, jp〉, and with ida < idc, idb < idc,
idc < ide, idd < ide, and idd < id f . Intuitively, Γ describes a preference relation over
restaurants, with their name and the type of their cuisine. Consider the PosRA query
Q ··= Π(Γ) that projects Γ on type; we illustrate the result (with the original identifiers) in
Figure 3. Let L be the list relation (it, fr, jp, it, fr, jp), and consider POSS for Q, Γ, and L.

We have that L ∈ pw(Q(Γ)), as shown by the linear extension idd <
′ ida <

′ id f <
′ idb <

′

idc <
′ ide of <. However, this is hard to see, because each of it, fr, jp appears more than once

in the candidate list as well as in the po-relation; there are thus multiple ways to “map” the
elements of the candidate list to those of the po-relation, and only some of these mappings
lead to the existence of a corresponding linear extension. It is also challenging to check if L is
a certain answer: here, it is not, as there are other possible answers, e.g.: (it, fr, fr, it, jp, jp).

For PosRAacc queries, this technical difficulty is even accrued because of the need to figure
out the possible ways in which the desired accumulation result can be obtained.

4 General Complexity Results

We have defined the PosRA and PosRAacc query languages, and defined and motivated the
problems POSS and CERT. We now start the study of their complexity, which is the main
technical contribution of our paper. We will always study their data complexity2, where the
query Q is fixed: in particular, for PosRAacc, the accumulation map and monoid, which we
assumed to be PTIME-evaluable, is fixed as part of the query, though it is allowed to be
infinite. The input to POSS and CERT for the fixed query Q is the po-database D and the
candidate result (a list relation for PosRA, an accumulation result for PosRAacc).

Possibility. We start with POSS, which we show to be NP-complete in general.

I Theorem 12. The POSS problem is in NP for any PosRA or PosRAacc query. Further,
there exists a PosRA query and a PosRAacc query for which the POSS problem is NP-complete.

In fact, as we will later point out, hardness holds even for quite a restrictive setting, with
a more intricate proof: see Theorem 18.

Certainty. We show that CERT is coNP-complete for PosRAacc:

I Theorem 13. The CERT problem is in coNP for any PosRAacc query, and there is a
PosRAacc query for which it is coNP-complete.

For PosRA queries, however, we show that CERT is in PTIME. As we will see later, this
follows from the tractability of CERT for PosRAacc on cancellative monoids (Theorem 26).

I Theorem 14. CERT is in PTIME for any PosRA query.

We next identify further tractable cases, first for PosRA and then for PosRAacc.

2 In combined complexity, with Q part of the input, POSS and CERT are easily seen to be respectively
NP-hard and coNP-hard, by reducing from the evaluation of Boolean conjunctive queries (which is
NP-hard in data complexity [1]) even without order.
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5 Tractable Cases for POSS on PosRA Queries

We show that POSS is tractable for PosRA queries if we restrict the allowed operators and if
we bound some order-theoretic parameters of the input po-database, such as poset width.

We call PosRALEX the fragment of PosRA that disallows the ×DIR operator, but allows all
other operators (including ×LEX). We also define PosRADIR that disallows ×LEX but not ×DIR.

Totally ordered inputs. We start by the natural case where the individual po-relations are
totally ordered, i.e., their order relation is a total order (so they actually represent a list
relation). This applies to situations where we integrate data from multiple sources that are
certain (totally ordered), and where uncertainty only results from the integration query (so
that the result may still have exponentially many possible worlds, e.g., the union of two
total orders has exponentially many possible interleavings). In a sense, the ×DIR operator is
the one introducing the most uncertainty and “complexity” in the result, so we consider the
fragment PosRALEX of PosRA queries without ×DIR, and show:

I Theorem 15. POSS is in PTIME for PosRALEX queries if input po-relations are totally
ordered.

In fact, we can show tractability for relations of bounded poset width:

I Definition 16 ([36]). An antichain in a po-relation Γ = (ID, T,<) is a set A ⊆ ID of
pairwise incomparable tuple identifiers. The width of Γ is the size of its largest antichain.
The width of a po-database is the maximal width of its po-relations.

In particular, totally ordered po-relations have width 1, and unordered po-relations have
a width equal to their size (number of tuples); the width of a po-relation can be computed in
PTIME [18]. Po-relations of low width are a common practical case: they cover, for instance,
po-relations that are totally ordered except for a few tied identifiers at each level. We show:

I Theorem 17. For any fixed k ∈ N and fixed PosRALEX query Q, the POSS problem for Q
is in PTIME when all po-relations of the input po-database have width 6 k.

We last justify our choice of disallowing the ×DIR product. Indeed, if we allow ×DIR, then
POSS is hard on totally ordered po-relations, even if we disallow ×LEX:

I Theorem 18. There is a PosRADIR query for which the POSS problem is NP-complete even
when the input po-database is restricted to consist only of totally ordered po-relations.

Unordered inputs We now show the tractability of POSS for unordered input relations, i.e.,
po-relations that allow all possible orderings over their tuples. This applies, e.g., to contexts
where the order on input tuples is irrelevant or unknown; all order information must then be
imposed by the (fixed) query, using the ordered constant relations [6•]. We show:

I Theorem 19. POSS is in PTIME for any PosRA query if input po-relations are unordered.

Here again we prove a more general result, capturing the case where the input is “almost
unordered”. We introduce for this purpose a novel order-theoretic notion, ia-width, which
decomposes the relation in classes of indistinguishable sets of incomparable elements.

I Definition 20. Given a poset (V,<) , a subset S ⊆ V is an indistinguishable antichain if
it is both an antichain (there are no x, y ∈ S such that x < y) and an indistinguishable set
(or interval [17]): for all x, y ∈ S and z ∈ V \S, x < z iff y < z, and z < x iff z < y.
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An indistinguishable antichain partition (ia-partition) of a poset is a partition of its
domain into indistinguishable antichains. The cardinality of such a partition is its number of
classes. The ia-width of a poset (or po-relation) is the cardinality of its smallest ia-partition.
The ia-width of a po-database is the maximal ia-width of its relations.

Hence, any po-relation Γ has ia-width at most |Γ|, and unordered relations have an
ia-width of 1. Po-relations may have low ia-width in practice if order is completely unknown
except for a few comparability pairs given by users, or when objects of a constant number of
types are ordered based only on some order on the types. We show that ia-width, like width,
can be computed in PTIME, and that bounding it ensures tractability (for all PosRA):

I Proposition 21. The ia-width of any poset, and a corresponding ia-partition, can be
computed in PTIME.

I Theorem 22. For any fixed k ∈ N and fixed PosRA query Q, the POSS problem for Q is
in PTIME when all po-relations of the input po-database have ia-width 6 k.

Mixing both kinds of relations. We have shown the tractability of POSS assuming constant
width (only for PosRALEX queries) or assuming constant ia-width. A natural question is then
whether we can allow both totally ordered and unordered po-relations. For instance, we may
combine sources whose order is fully unknown or irrelevant, with sources that are completely
ordered (or almost totally ordered). More generally, can we allow both bounded-width
and bounded-ia-width relations? We show that this is the case if we disallow both product
operators, i.e., restrict to the language PosRAno× of PosRA queries with no product.

I Theorem 23. For any fixed k ∈ N and fixed PosRAno× query Q, the POSS problem for Q
is in PTIME when all po-relations of the input po-database have either ia-width 6 k or
width 6 k.

Disallowing product is severe, but we can still integrate sources by taking the union of
their tuples, selecting subsets, and modifying tuple values with projection. In fact, allowing
product makes POSS intractable when allowing both unordered and totally ordered input:

I Theorem 24. There is a PosRALEX query and a PosRADIR query for which the POSS
problem is NP-complete even when the input po-database is restricted to consist only of one
totally ordered and one unordered po-relation.

6 Tractable Cases for Accumulation Queries

We next study tractable cases for POSS and CERT in presence of accumulation.

Cancellative monoids. We first consider a natural restriction on the accumulation function:

I Definition 25 ([23]). For any monoid (M,⊕, ε), we call a ∈M cancellable if, for all b, c ∈
M, we have that a⊕ b = a⊕ c implies b = c, and we also have that b⊕ a = c⊕ a implies
b = c. We callM a cancellative monoid if all its elements are cancellable.

Many interesting monoids are cancellative; in particular, this is the case of both monoids
in Example 6. More generally, all groups are cancellative monoids (but some infinite
cancellative monoids are not groups, e.g., the monoid of concatenation). For this large class
of accumulation functions, we design an efficient algorithm for certainty.
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I Theorem 26. CERT is in PTIME for any PosRAacc query that performs accumulation in
a cancellative monoid.

Hence, CERT is tractable for PosRA (Theorem 14), via the concatenation monoid, and
CERT is also tractable for top-k (defined in Example 9). The hardness of POSS for PosRA
(Theorem 12) then implies that POSS, unlike CERT, is hard even on cancellative monoids.

Other restrictions on accumulation. We next revisit the results of Section 5 for PosRAacc.
However, we need to make other assumptions on accumulation (besides PTIME-evaluability).
First, in the next results in this section, we assume that the accumulation monoid is finite:

I Definition 27. A PosRAacc query is said to perform finite accumulation if the accumulation
monoid (M,⊕, ε) is finite.

For instance, if the domain of the output is assumed to be fixed (e.g., ratings in {1, . . . , 10}),
then select-at-k and top-k (the latter for fixed k), as defined in Example 9, are finite.

Second, for some of the next results, we require position-invariant accumulation, namely,
that the accumulation map does not depend on the absolute position of tuples:

I Definition 28. Recall that the accumulation map h has in general two inputs: a tuple
and its position. A PosRAacc query is said to be position-invariant if its accumulation map
ignores the second input, so that effectively its only input is the tuple itself.

Note that accumulation in the monoid is still performed in order, so we can still perform,
e.g., concatenation. These two restrictions do not suffice to make POSS and CERT tractable,
but we will use them to lift the results of Section 5.

Revisiting Section 5. We now extend our previous results to queries with accumulation, for
POSS and CERT, under the additional assumptions on accumulation that we presented. We
call PosRAacc

LEX and PosRAacc
no× the extension of PosRALEX and PosRAno× with accumulation.

We can first generalize Theorem 17 to PosRAacc
LEX queries with finite accumulation:

I Theorem 29. For any PosRAacc
LEX query performing finite accumulation, POSS and CERT

are in PTIME on po-databases of bounded width.

We then extend Theorem 22 to PosRAacc with finite and position-invariant accumulation:

I Theorem 30. For any PosRAacc query performing finite and position-invariant accumula-
tion, POSS and CERT are in PTIME on po-databases of bounded ia-width.

Last, we can adapt the tractability result for queries without product (Theorem 23):

I Theorem 31. For any PosRAacc
no× query performing finite and position-invariant accumu-

lation, POSS and CERT are in PTIME on po-databases whose relations have either bounded
width or bounded ia-width.

The finiteness assumption is important, as the previous result does not hold otherwise.
Specifically, there exists a query that performs position-invariant but not finite accumulation,
for which POSS is NP-hard even on unordered po-relations.
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Other definitions. Finally, recall that we can use accumulation as in Example 9 to capture
position-based selection (top-k, select-at-k) and tuple-level comparison (whether the first
occurrence of a tuple precedes all occurrences of another tuple) for PosRA queries. Using a
direct construction for these problems, we can show that they are tractable:

I Proposition 32. For any PosRA query Q, the following problems are in PTIME:
select-at-k: Given a po-database D, tuple value t, and position k ∈ N, whether it is

possible/certain that Q(D) has value t at position k;
top-k: For any fixed k ∈ N, given a po-database D and list relation L of length k, whether

it is possible/certain that the top-k values in Q(D) are exactly L;
tuple-level comparison: Given a po-database D and two tuple values t1 and t2, whether it

is possible/certain that the first occurrence of t1 precedes all occurrences of t2.

7 Extensions

We next briefly consider two extensions to our model: group-by and duplicate elimination.

Group-by. First, we extend accumulation with a group-by operator, inspired by SQL.

I Definition 33. Let (M,⊕, ε) be a monoid and h : Dk →M be an accumulation map (cf.
Definition 4), and let A = A1, ..., An be a sequence of attributes: we call accumGroupByh,⊕,A
an accumulation operator with group-by. Letting L be a list relation with compatible schema,
we define accumGroupByh,⊕,A(L) as an unordered relation that has, for each tuple value
t ∈ πA(L), one tuple 〈t, vt〉 where vt is accumh,⊕(σA1=t.A1,...An=t.An(L)) with π and σ on
the list relation L having the expected semantics. The result on a po-relation Γ is the set of
unordered relations {accumGroupByh,⊕,A(L) | L ∈ pw(Γ)}.

In other words, the operator “groups by” the values of A1, ..., An, and performs accumula-
tion within each group, forgetting the order across groups. As for standard accumulation, we
only allow group-by as an outermost operation, calling PosRAaccGBy the language of PosRA
queries followed by one accumulation operator with group-by. Note that the set of possible
results is generally not a po-relation, because the underlying bag relation is not certain.

We next study the complexity of POSS and CERT for PosRAaccGBy queries. Of course,
whenever POSS and CERT are hard for some PosRAacc query Q on some kind of input po-
relations, then there is a corresponding PosRAaccGBy query for which hardness also holds
(with empty A). The main point of this section is to show that the converse is not true: the
addition of group-by increases complexity. Specifically, we show that the POSS problem for
PosRAaccGBy is hard even on totally ordered po-relations and without the ×DIR operator:

I Theorem 34. There is a PosRAaccGBy query Q with finite and position-invariant accumu-
lation, not using ×DIR, such that POSS for Q is NP-hard even on totally ordered po-relations.

This result contrasts with the tractability of POSS for PosRALEX queries (Theorem 15) and
for PosRAacc

LEX queries with finite accumulation (Theorem 29) on totally ordered po-relations.
By contrast, it is not hard to see that the CERT problem for PosRAaccGBy reduces to CERT

for the same query without group-by, so it is no harder than the latter problem. Specifically:

I Theorem 35. All CERT tractability results from Section 6 extend to PosRAaccGBy when
imposing the same restrictions on query operators, accumulation, and input po-relations.
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Duplicate elimination. We last study the problem of consolidating tuples with duplicate
values. To this end, we define a new operator, dupElim, and introduce a semantics for it.
The main problem is that tuples with the same values may be ordered differently relative to
other tuples. To mitigate this, we introduce the notion of id-sets:

I Definition 36. Given a totally ordered po-relation (ID, T,<), a subset ID′ of ID is an
indistinguishable duplicate set (or id-set) if for every id1, id2 ∈ ID′, we have T (id1) = T (id2),
and for every id ∈ ID\ID′, we have id < id1 iff id < id2, and id1 < id iff id2 < id.

I Example 37. Consider the totally ordered relation Γ1 ··= Πhotelname(Hotel), with Hotel as
in Figure 1. The two “Mercure” tuples are not an id-set: they disagree on their ordering
with “Balzac”. Consider now a totally ordered relation Γ2 = (ID2, T2, <2) whose only
possible world is a list relation (A,B,B,C) for some tuples A, B, and C over D. The set
{id ∈ ID2 | T2(id) = B} is an id-set in Γ2. Note that a singleton is always an id-set.

We define a semantics for dupElim on a totally ordered po-relation Γ = (ID, T,<) via id-sets.
First, check that for every tuple value t in the image of T , the set {id ∈ ID | T (id) = t} is an
id-set in Γ. If this holds, we call Γ safe, and set dupElim(Γ) to be the singleton {L} of the
only possible world of the restriction of Γ obtained by picking one representative element per
id-set (clearly L does not depend on the chosen representatives). Otherwise, we call Γ unsafe
and say that duplicate consolidation has failed; we then set dupElim(Γ) to be an empty set
of possible worlds. Intuitively, duplicate consolidation tries to reconcile (or “synchronize”)
order constraints for tuples with the same values, and fails when it cannot be done.

I Example 38. In Example 37, we have dupElim(Γ1) = ∅ but dupElim(Γ2) = (A,B,C).

We then extend dupElim to po-relations by considering all possible results of duplicate
elimination on the possible worlds, ignoring the unsafe possible worlds. If no possible worlds
are safe, then we completely fail:

I Definition 39. For each list relation L, we let ΓL be a po-relation such that pw(ΓL) = {L}.
Letting Γ be a po-relation, we set dupElim(Γ) ··=

⋃
L∈pw(Γ) dupElim(ΓL). We say that

dupElim(Γ) completely fails if dupElim(Γ) = ∅, i.e., dupElim(ΓL) = ∅ for every L ∈ pw(Γ).

I Example 40. Consider the totally ordered po-relation Rest from Figure 1, and a to-
tally ordered po-relation Rest2 whose only possible world is (Tsukizi, Gagnaire). Consider
Q ··= dupElim(Πrestname(Rest) ∪ Rest2). Intuitively, Q combines restaurant rankings, using
duplicate consolidation to collapse two occurrences of the same name to a single tuple. The
only possible world of Q is (Tsukizi, Gagnaire, TourArgent), since duplicate elimination fails
in the other possible worlds: indeed, this is the only possible way to combine the rankings.

We next show that the result of dupElim can still be represented as a po-relation, up to
complete failure (which may be efficiently identified).

I Theorem 41. For any po-relation Γ, we can test in PTIME if dupElim(Γ) completely fails;
if it does not, we can compute in PTIME a po-relation Γ′ such that pw(Γ′) = dupElim(Γ).

We note that dupElim is not redundant with any of the other PosRA operators, general-
izing Theorem 1:

I Theorem 42. No operator among those of PosRA and dupElim can be expressed through
a combination of the others.

Last, we observe that dupElim can indeed be used to undo some of the effects of bag
semantics. For instance, we can show the following:
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I Proposition 43. For any po-relation Γ, we have dupElim(Γ ∪ Γ) = dupElim(Γ): in
particular, one completely fails iff the other does.

We can also show that most of our previous tractability results still apply when the
duplicate elimination operator is added:

I Theorem 44. All POSS and CERT tractability results of Sections 4–6, except Theorem 23
and Theorem 31, extend to PosRA and PosRAacc where we allow dupElim (but impose the
same restrictions on query operators, accumulation, and input po-relations).

Furthermore, if in a set-semantics spirit we require that the query output has no duplicates,
POSS and CERT are always tractable (as this avoids the technical difficulty of Example 11):

I Theorem 45. For any PosRA query Q, POSS and CERT for dupElim(Q) are in PTIME.

Discussion. The introduced group-by and duplicate elimination operators have some short-
comings: the result of group-by is in general not representable by po-relations, and duplicate
elimination may fail. These are both consequences of our design choices, where we capture
only uncertainty on order (but not on tuple values) and design each operator so that its
result corresponds to the result of applying it to each individual world of the input (see
further discussion in Section 8). Avoiding these shortcomings is left for future work.

8 Comparison With Other Formalisms

We next compare our formalism to previously proposed formalisms: query languages over
bags (with no order); a query language for partially ordered multisets; and other related
work. To our knowledge, however, none of these works studied the possibility or certainty
problems for partially ordered data, so that our technical results do not follow from them.

Standard bag semantics. We first compare to related work on the bag semantics for
relational algebra. Indeed, a natural desideratum for our semantics on (partially) ordered
relations is that it should be a faithful extension of bag semantics. We first consider the BALG1

language on bags [21] (the “flat fragment” of their language BALG on nested relations). We
denote by BALG1

+ the fragment of BALG1 that includes the standard extension of positive
relational algebra operations to bags: additive union, cross product, selection, projection. We
observe that, indeed, our semantics faithfully extends BALG1

+: query evaluation commutes
with “forgetting” the order. Formally, for a po-relation Γ, we denote by bag(Γ) its underlying
bag relation, and define likewise bag(D) for a po-database D as the database of underlying
bag relations. For the following comparison, we identify ×DIR and ×LEX with the × of [21]
and our union with the additive union of [21]; the following holds:

I Proposition 46. For any PosRA query Q and a po-relation D, bag(Q(D)) = Q(bag(D))
where Q(D) is defined according to our semantics and Q(bag(D)) is defined by BALG1

+.

The full BALG1 language includes additional operators, such as bag intersection and
subtraction, which are non-monotone and as such may not be expressed in our language: it is
also unclear how they could be extended to our setting (see further discussion in “Algebra on
pomsets” below). On the other hand, BALG1 does not include aggregation, and so PosRAacc

and BALG1 are incomparable in terms of expressive power.
A better yardstick to compare against for accumulation could be [33]: they show that

their basic language BQL is equivalent to BALG, and then further extend the language
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with aggregate operators, to define a language called NRLaggr on nested relations. On
flat relations, NRLaggr captures functions that cannot be captured in our language: in
particular the average function AVG is non-associative and thus cannot be captured by our
accumulation function (which anyway focuses on order-dependent functions, as POSS/CERT
are trivial otherwise). On the other hand, NRLaggr cannot test parity (Corollary 5.7 in [33])
whereas this is easily captured by our accumulation operator. We conclude that NRLaggr

and PosRAacc are incomparable in terms of captured transformations on bags, even when
restricted to flat relations.

Algebra on pomsets. We now compare our work to algebras defined on pomsets [20, 22],
which also attempt to bridge partial order theory and data management (although, again,
they do not study possibility and certainty). Pomsets are labeled posets quotiented by
isomorphism (i.e., renaming of identifiers), like po-relations. A major conceptual difference
between our formalism and that of [20, 22] is that their language focuses on processing
connected components of the partial order graph, and their operators are tailored for that
semantics. As a consequence, their semantics is not a faithful extension of bag semantics,
i.e., their language would not satisfy the counterpart of Proposition 46 (see for instance
the semantics of union in [20]). By contrast, we manipulate po-relations that stand for
sets of possible list relations, and our operators are designed accordingly, unlike those of
[20] where transformations take into account the structure (connected components) of the
entire poset graph. Because of this choice, [20] introduces non-monotone operators that we
cannot express, and can design a duplicate elimination operator that cannot fail. Indeed, the
possible failure of our duplicate elimination operator is a direct consequence of its semantics
of operating on each possible world, possibly leading to contradictions.

If we consequently disallow duplicate elimination in both languages for the sake of
comparison, we note that the resulting fragment Pom-Algεn

of the language of [20] can yield
only series-parallel output (Proposition 4.1 of [20]), unlike PosRA queries whose output order
may be arbitrary. Hence, Pom-Algεn

does not subsume PosRA.

Incompleteness in databases. Our work is inspired by the field of incomplete information
management, studied for various models [5, 30], in particular relational databases [24]. This
field inspires our design of po-relations and study of possibility and certainty [3, 34]. However,
uncertainty in these settings typically focuses on whether tuples exist or on their values
(e.g., with nulls [10], including the novel approach of [31, 32]; with c-tables [24], probabilistic
databases [42] or fuzzy numerical values as in [38]). To our knowledge, though, our work
is the first to study possible and certain answers in the context of order-incomplete data.
Combining order incompleteness with standard tuple-level uncertainty is left as a challenge
for future work. Note that some works [8, 29, 32] use partial orders on relations to compare
the informativeness of representations. This is unrelated to our partial orders on tuples.

Ordered domains. Another line of work has studied relational data management where the
domain elements are (partially) ordered [25, 35, 43]. However, the perspective is different:
we see order on tuples as part of the relations, and as being constructed by applying our
operators; these works see order as being given outside of the query, hence do not study the
propagation of uncertainty through queries. Also, queries in such works can often directly
access the order relation [43, 6]. Some works also study uncertainty on totally ordered
numerical domains [38, 39], while we look at general order relations.
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Temporal databases. Temporal databases [9, 37] consider order on facts, but it is usually
induced by timestamps, hence total. A notable exception is [16] which considers that some
facts may be more current than others, with constraints leading to a partial order. In
particular, they study the complexity of retrieving query answers that are certainly current,
for a rich query class. In contrast, we can manipulate the order via queries, and we can also
ask about aspects beyond currency, as shown throughout the paper (e.g., via accumulation).

Using preference information. Order theory has been also used to handle preference
information in database systems [26, 4, 27, 2, 41], with some operators being the same as
ours, and for rank aggregation [15, 26, 14], i.e. retrieving top-k query answers given multiple
rankings. However, such works typically try to resolve uncertainty by reconciling many
conflicting representations (e.g. via knowledge on the individual scores given by different
sources and a function to aggregate them [15], or a preference function [2]). In contrast,
we focus on maintaining a faithful model of all possible worlds without reconciling them,
studying possible and certain answers in this respect.

9 Conclusion

This paper introduced an algebra for order-incomplete data. We have studied the complexity
of possible and certain answers for this algebra, have shown the problems to be generally
intractable, and identified multiple tractable cases. In future work we plan to study the
incorporation of additional operators (in particular non-monotone ones), investigate how to
combine order-uncertainty with uncertainty on values, and study additional semantics for
dupElim. Last, it would be interesting to establish a dichotomy result for the complexity of
POSS, and a complete syntactic characterization of cases where POSS is tractable.
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A Proof Sketches for Section 4 (General Complexity Results)

I Theorem 12. The POSS problem is in NP for any PosRA or PosRAacc query. Further,
there exists a PosRA query and a PosRAacc query for which the POSS problem is NP-complete.

Proof Sketch. The membership for PosRA in NP is clear: guess a linear extension and
check that it realizes the candidate possible result. For hardness, as in previous work [44], we
reduce from the UNARY-3-PARTITION problem [19]: given a number B and 3m numbers
written in unary, decide if they can be partitioned in triples that all sum to B. We reduce
this to POSS for the identity PosRA query, on an arity-1 input po-relation where each input
number n is represented as a chain of n+2 elements. The first and last elements of each chain
are respectively called start and end markers, and elements of distinct chains are pairwise
incomparable. The candidate possible world L consists of m repetitions of the following
pattern: three start markers, B elements, three end markers. A linear extension achieves L iff
the triples matched by < to each copy of the pattern are a solution to UNARY-3-PARTITION,
hence POSS for Q is NP-hard. This implies hardness for PosRAacc, when accumulating with
the identity map and concatenation (so that any list relation is mapped to itself). J

I Theorem 13. The CERT problem is in coNP for any PosRAacc query, and there is a
PosRAacc query for which it is coNP-complete.

Proof Sketch. Again, membership is immediate. We show hardness of CERT by studying
a PosRAacc query Qa that checks if two input po-relations Γ and Γ′ have some common
possible world: Qa does so so by testing if one can alternate between elements of Γ and Γ′
with the same label, using accumulation in the transition monoid of a deterministic finite
automaton. We show hardness of POSS for Qa (as in the previous result), and further ensure
that Qa always has at most two possible accumulation results, no matter the input. Hence,
POSS for Qa reduces to the negation of CERT for Qa, so that CERT is also hard. J

B Proof Sketches for Section 5 (Tractable Cases for POSS on
PosRA Queries)

I Theorem 17. The POSS problem is in NP for any PosRA or PosRAacc query. Further,
there exists a PosRA query and a PosRAacc query for which the POSS problem is NP-complete.
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Proof Sketch. As ×DIR is disallowed, we can show that the po-relation Γ ··= Q(D) has
width k′ depending only on k and the query Q (but not on D). We can then compute in
PTIME a chain partition of Γ [13, 18], namely, a decomposition of Γ in totally ordered chains,
with additional order constraints between them. This allows us to apply a dynamic algorithm
to decide POSS: the state of the algorithm is the position on the chains. The number of states
is polynomial with degree k′, which is a constant when Q and k are fixed. J

I Theorem 22. For any fixed k ∈ N and fixed PosRA query Q, the POSS problem for Q is
in PTIME when all po-relations of the input po-database have ia-width 6 k.

Proof Sketch. As in the proof of Theorem 17, we first show that the query result Γ also
has ia-width depending only on k and the query. We then consider the order relation on
indistinguishable antichains of Γ. For each linear extension τ of this order, we apply a greedy
algorithm to decide POSS, for which we show correctness. The algorithm reads the candidate
possible world in order and maps each tuple to an identifier of Γ with the correct value that
was not mapped yet: we pick it in the first possible class according to the order τ . J

C Proof sketches for Section 6 (Tractable Cases for Accumulation
Queries)

I Theorem 26. CERT is in PTIME for any PosRAacc query that performs accumulation in
a cancellative monoid.

Proof Sketch. We show that the accumulation result in cancellative monoids is certain iff
the po-relation on which we apply accumulation respects the following safe swaps criterion:
for all tuples t1 and t2 and consecutive positions p and p + 1 where they may appear, we
have h(t1, p)⊕ h(t2, p+ 1) = h(t2, p)⊕ h(t1, p+ 1). We can check this in PTIME. J
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Abstract
We present a new hybrid Hoare logic dedicated for a class of linear hybrid automata well suited
to model gene regulatory networks. These automata rely on Thomas’ discrete framework in
which qualitative parameters have been replaced by continuous parameters called celerities. The
identification of these parameters remains one of the keypoints of the modelling process, and is
difficult especially because the modelling framework is based on a continuous time. We introduce
Hoare triples which handle biological traces and pre/post-conditions. Observed chronometrical
biological traces play the role of an imperative program for classical Hoare logic and our hybrid
Hoare logic, defined by inference rules, is proved to be sound. Furthermore, we present a weakest
precondition calculus (a la Dijkstra) which leads to constraints on dynamical parameters. Finally,
we illustrate our “constraints generator” with a simplified circadian clock model describing the
rhythmicity of cells in mammals on a 24-hour period.
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1 Introduction

Formal methods from computer science have been largely applied to model and analyse
biological systems [5, 17]. In particular, verification tools like model-checking have been used
to verify dynamical properties of discrete models [3, 7] in which the temporal aspects are
only present through the succession of events: the delay between two successive events is
not taken into account. Unfortunately, continuous time turns out to be important in most
biological systems, in particular for gene regulatory networks.

Gene regulatory networks are models representing influences between genes leading to
the modification of the synthesis of associated proteins. Because proteins can regulate their
target genes, positive or negative feedback loops emerge making possible a large variety of
behaviours. These gene regulatory networks are designed to apprehend and predict effects of
a component on the system but such models are also useful to confront hypotheses with the
up-to-date collected knowledge on the gene interactions.

Several modelling framework have been devoted to gene networks. These frameworks differ
by the aspects they highlight. Stochastic models emphasize non-determinism, differential
models represent a system with a lot of details (transcription, traduction, transports . . . ) [14]
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and give precise trajectories in terms of concentrations; qualitative models [16, 15] focus
on the major features that explain the observations (only main causalities are taken into
account); and hybrid models link qualitative aspects with continuous variables such as time.

Whatever the modelling framework, the main difficulty of building such networks is the
identification of parameters governing the dynamics of the system. The determination of
these parameters is crucial to observe a behaviour consistent with biological knowledge. We
already showed [3] that formal methods can help in this parameter identification step in the
René Thomas’ discrete modelling framework [16]. Unfortunately, this framework abstracts
temporal information, often necessary for tuning the models. This discrete approach is based
on the splitting of homogeneous concentration areas which have the same effects on other
components. In order to refine this complete discrete framework, we associated with each
such area a celerity describing the evolution speed of each component. These parameters lead
to a class of linear hybrid automata. We also showed how the known experimental traces
can be used to establish constraints on dynamical parameters (celerities) and to restrain the
set of admissible parameters [1].

Numerous works already focus on the study of hybrid automata [9]. Especially, several
tools already exist to tackle the model checking of linear hybrid automata, either with classical
exhaustive approaches [10] or using abstract interpretation [8]. Communicating sequential
processes (CSP), a process algebra for describing patterns of interaction in concurrent systems,
has also been extended to hybrid systems and hybrid Hoare logic has been proved to be
useful in such context [18]. These methods among others propose parameter synthesis in
some ways. Nevertheless, these tools are tailored for a general purpose and will not take into
account the specificities coming from biological contexts.

We divert Hoare logic (whose aim is to rigorously reason about the correctness of
imperative programs) in order to determine constraints on celerities in such models. This
approach was already developed, for the discrete framework [2, 4] and we extend it in the
present paper for hybrid automata. Hoare logic has already been extended to real time
systems [11] in which continuous evolutions are not taken into account whereas they are
important in our biological context. Hoare logic relies on triples of the form {Pre} p {Post}
where Pre and Post are conditions on states of the system and p is a path of the system.
A Hoare triple is considered true if, whenever the system is reset at a state satisfying the
Pre condition, the path p is possible and leads the system into a state which satisfies the
condition Post. Following E. Dijkstra [6], the aim of the game is then to determine, for each
path p and postcondition Post, the weakest precondition Pre, thus covering the largest set
of states, making the Hoare triple true. In our temporal approach, the time spent in each
state becomes crucial to determine the constraints on parameters.

We illustrate our formalism with a biological process named circadian clock which
synchronises all cells in mammals at a 24-hour rhythmicity. We design a hybrid automaton
modelling this biological cycle and, from the observed trace of this process, we build constraints
for each celerity of this hybrid automaton using the aforementioned hybrid Hoare logic. We
finally show that simulations, run parameters values satisfying the constraints, exhibit curves
which are similar to experimental data.

The paper is organised as follows. We first define in Section 2 the formalism of the
hybrid modelling framework. Then Section 3 focuses on the syntax and the semantics of the
modified Hoare logic, and the weakest precondition calculus, whereas Section 4 is devoted to
the soundness of our hybrid Hoare logic. We illustrate in Section 5 the use of this Hoare logic
for identifying the constraints on parameters of the simplified circadian clock model. Finally
in Section 6, we discuss the limits of this approach and we expose some possible extensions.



J. Behaegel, J.-P. Comet, and M. Folschette 5:3
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Simplified circadian cycle Day/Light Cycle

Figure 1 Simplified model of the circadian clock in mammals. L is a zeitgeber (see Section 5).

2 Hybrid Modelling Framework of Gene Network

A gene network is visualised as a labelled directed graph (interaction graph) in which vertices
are either variables (within circles) or multiplexes (within rectangles), see Fig. 1. Variables
abstract genes and their products, and multiplexes contain formulas that encode situations
in which a variable or a group of variables (inputs of multiplexes, dashed arrows) influences
the evolution of some other variables (output of multiplexes, plain arrows). A multiplex can
encode the formation of molecular complexes, phosphorylation by a protein, competition of
entities for the activation of a promoter, etc. Definition 1 gives the formal details of a gene
network.

I Definition 1 (Hybrid Gene Regulatory Network). A hybrid gene regulatory network (GRN
for short) is a tuple R = (V,M,E, C) where:

V is a finite set whose elements are called variables of the network. With each variable
v ∈ V is associated a boundary bv ∈ N∗.
M is a finite set whose elements are called multiplexes. With each multiplex m ∈M is
associated a formula ϕm in the multiplex language formed of the atoms “(v > n)”, where
n ∈ J1, bvK1, and the usual logical connectives ¬, ∧, ∨ and ⇒.
E is a set of edges of the form (m→ v) ∈M × V .
C = {Cv,ω,n} is a family of real numbers indexed by a tuple (v, ω, n) where v ∈ V , ω is a
subset of R−(v) where R−(v) = {m | (m→ v) ∈ E}, that is, ω is a set of predecessors of
v, and n ∈ J0, bvK. Cv,ω,n is called the celerity of v for ω at the level n and these celerities
have to satisfy the following constraints:

∀v ∈ V, ∀ω ⊂ R−(v), ∀n ∈ J0, bvK, Cv,ω,n = 0 ⇒
{
∀i ∈ Jn+ 1, bvK Cv,ω,i < 0
∀i ∈ J0, n− 1K Cv,ω,i > 0

∀v ∈ V, ∀ω ⊂ R−(v), ∀k ∈ J0, bv − 1K, Cv,ω,k × Cv,ω,k+1 ≥ 0.
Let us remark that the dashed arrows of Fig. 1 are not present in the previous definition.
When representing a gene network, it is convenient to visualise the variables contributing to
a particular multiplex, but from a formal point of view, this information is redundant with
the formula of the considered multiplex.

Celerities (noted Cv,ω,n) give the evolution of each variable v when it is under the active
regulation of the set ω of its predecessors and when it is in the qualitative state n. They
code for the dynamics of the system and we aim at the identification of these celerities. The
constraints on celerities given in the previous definition link the signs of celerities to the
underlying dynamics and may need some explanations. The first one deals with the case
where a celerity value is null for a given set of active predecessors ω of a variable v. This
models an equilibrium state, thus the related constraint states that celerities around this
equilibrium, for the same set of active predecessors ω, must force v to reach this equilibrium.

1 Ja, bK = {n ∈ N | a 6 n 6 b}.
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As a consequence, there is a single null celerity at most for a given couple of v and ω. If, on
the other hand, no celerity is null for these v and ω, a consequence of the second constraint
is that they are all of the same sign. This models that v either always decreases until full
degradation or always increases up to saturation.

In the remainder of this section, we focus on the dynamics of a gene network. Definition 2
introduces the hybrid states whereas Def. 3 explains the crucial notion of resources of a
variable in a particular state.

I Definition 2 (State of a GRN). Let R = (V,M,E, C) be a GRN. A hybrid state of R is a
tuple h = (η, π) where

η is a function from V to N such that for all v ∈ V , 0 6 η(v) 6 bv;
π is a function from V to the interval [0, 1] of real numbers.

η is called the discrete state or qualitative state of h whereas π is called its fractional part.
For simplicity, we note in the sequel ηv = η(v) and πv = π(v). We denote S the set of hybrid
states of R. When there is no ambiguity, we often use η and π without explicit mention of h.

Figure 2-Centre illustrates an example of hybrid state. The tuple of all fractional parts
represents coordinates inside the current qualitative state.

I Definition 3 (Resources). Let R = (V,M,E, C) be a GRN and let v ∈ V . The satisfaction
relation h � ϕ, where h = (η, π) is a hybrid state of R and ϕ is a formula of the multiplex
language, is inductively defined as follows:

If ϕ is the atom (v > n) with n ∈ J1, bvK, then h � ϕ iff ηv > n;
The usual meaning of the logical connectives is used.

The set of resources of a variable v at a state h is defined by: ρ(h, v) = {m ∈ R−(v) | h � ϕm},
that is, the multiplexes that are predecessors of v and whose formula is satisfied.

We note that the set ρ(h, v) only depends on the discrete state of h: all hybrid states
having the same discrete part thus have the same resources. Indeed, inside a discrete state η,
the dynamics of v is controlled in the same manner, thus the celerity is the same for all states
h = (η, π), that is: Cv,ρ(h,v),ηv . By abuse of language, we also use the notation ρ(η, v). From
this celerity, and given a particular hybrid state, one can compute the touch delay (Def. 4)
of each variable, which measures the time necessary for the variable to reach a border of the
discrete state.

I Definition 4 (Touch Delay). Let R = (V,M,E, C) be a GRN, v be a variable of V and
h = (η, π) be a hybrid state. We note δh(v) the touch delay of v in h for reaching the border
of the discrete state. More precisely, δh is the function from V to R+ ∪ {+∞} defined by:

If Cv,ρ(h,v),ηv = 0 then δh(v) = +∞;
If Cv,ρ(h,v),ηv > 0 (resp. < 0) then δh(v) = 1−πv

Cv,ρ(h,v),ηv
(resp. −πv

Cv,ρ(h,v),ηv
).

Nevertheless, reaching the border of a discrete state is not sufficient to go beyond the
frontier: there may be no other qualitative level beyond the border (we call such a border an
external wall) or the celerity in the neighbour state may be of the opposite sign (internal
wall), as given in Def. 5.

I Definition 5 (External and Internal Walls). Let R = (V,M,E,C) be a GRN, let v ∈ V be
a variable and h = (η, π) a hybrid state.
1. v is said to face an external wall at state h if:(

(Cv,ρ(h,v),ηv < 0) ∧ (ηv = 0)
)
∨
(
(Cv,ρ(h,v),ηv > 0) ∧ (ηv = bv)

)
.
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Figure 2 Continuous transitions. Inside each state, a continuous transition (h0 → h′
0) goes

from the initial point h0 to the unique point h′
0 from which a discrete transition takes place (h′

0 → h1).
Left: The celerity vector allows, without sliding mode, the trajectory to directly reach a border
which is crossed. Center: From h′

0 two possible discrete transitions can occur: h′
0 → h1 or h′

0 → h2.
Moreover (πg, πpc) corresponds to the fractionnal coordinates of a hybrid state h along the path.
Right: The grey zone depicts an external or internal wall. The only possible discrete transition is
h′

0 → h1.

2. Let h′ = (η′, π′) be another hybrid state s.t. η′v = ηv + sgn(Cv,ρ(h,v),ηv ) and η′u = ηu for
all u 6= v. Variable v is said to face an internal wall at state h if sgn(Cv,ρ(h,v),ηv) ×
sgn(Cv,ρ(h′,v),η′v ) = −1, where sgn is the classical sign function.

We note sv(h) the set of sliding variables, that is, variables that face an internal or external
wall in the qualitative state of h.

We note that a sliding variable v ∈ sv(h) may not be actually sliding if it has not reached
its border yet. However, if in addition δh(v) = 0, then v is located on an internal wall or
external wall. In this case, its fractional part cannot evolve anymore in the current qualitative
state (see Fig. 2-Right where variable g reaches an external wall). We introduce the notion
of first changing variables in Def. 6 which are the first variables able to change their discrete
levels.

I Definition 6 (First Changing Variables). Let R = (V,M,E,C) be a GRN and h = (η, π)
be a hybrid state. The set of first changing variables is defined by:

first(h) = {v ∈ V \ sv(h) | δh(v) 6= +∞∧ ∀u ∈ V \ sv(h), δh(u) > δh(v)} .

Moreover, δfirst
h denotes the time spent in the qualitative state of h when starting from h:

for any v ∈ first(h), δfirst
h = δh(v), or δfirst

h = +∞ if first(h) = ∅.

The set first(h) represents the set of variables whose qualitative coordinates can change
first. If a variable is on an external or internal wall, it cannot evolve as long as other variables
do not change, thus: first(h) ∩ sv(h) = ∅. Similarly, if the celerity of v in the current state is
null, its qualitative value cannot change because of an infinite touch delay.

Figure 2 illustrates several evolutions of a gene network. From a particular hybrid state
h0, the dynamics alternates continuous transitions (within the discrete state) and discrete
transitions (when changing the discrete state). When the trajectory reaches an external or
internal wall (see Fig. 2-Right), the variable slides along the wall only if the celerity of some
other variable can drive the trajectory in such a direction. This description leads to the
following definition.

I Definition 7 (Hybrid State Space). Let R = (V,M,E,C) be a GRN. We note R =
(S, cT, dT ) the hybrid state space of R where S is the set of hybrid states, and cT (resp. dT )
is the set of continuous (resp. discrete) transitions:
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1. There exists a continuous transition in cT from state h = (η, π) to state h′ = (η′, π′) iff:
a. Either first(h) 6= ∅ and there exists a variable v ∈ first(h) such that:

i. δh(v) 6= 0, where δh(v) is called the duration of the (continuous) transition,

ii. η′ = η and π′u =
{

0 if Cu,ρ(h,u),ηu < 0
1 if Cu,ρ(h,u),ηu > 0 for all u ∈ (first(h) ∪ σ)

where σ = {x ∈ sv(h) | δh(x) 6 δfirst
h },

iii. ∀z ∈ V \ (first(h) ∪ σ), then π′z = πz + δh(v)× Cz,ρ(h,z),ηz .
b. Or first(h) = ∅ (meaning that each variable v either reaches an equilibrium state:
Cv,ρ(h,v),ηv = 0; or faces a wall: v ∈ sv(h)) and:

i. ∀v ∈ sv(h), π′v =
{

0 if Cv,ρ(h,v),ηv < 0
1 if Cv,ρ(h,v),ηv > 0

ii. ∀u /∈ sv(h), π′u = πu (since in this case Cu,ρ(h,u),ηu = 0).
2. There exists a discrete transition in dT from state h′ = (η′, π′) to state h′′ = (η′′, π′′) iff

there exists a variable v ∈ first(h′) such that:
a. δh′(v) = 0, where δh′(v) is called the duration of the (discrete) transition,

b. η′′v = η′v + sgn(Cv,ρ(h′,v),η′v ) and π′′v =
{

0 if Cv,ρ(h′,v),η′v > 0
1 if Cv,ρ(h′,v),η′v < 0 ,

c. ∀u ∈ V \ {v}, η′′u = η′u and π′′u = π′u.
The states from which there do not exist any transitions (discrete or continuous) are called
steady states.

The continuous transitions lead to the last hybrid state inside the current discrete state,
at which point a qualitative change can happen. The instantaneous discrete transitions
make the system evolve, as soon as the system can (that is, when δh′(v) = 0), into the next
qualitative state by going through a border. These two different kinds of transitions can
be observed on Fig. 3 where the discrete transitions are in dotted lines and the continuous
transitions are in plain lines. Let us remark that there is a unique continuous transition
starting at a given hybrid state. Indeed, assuming that there exist two continuous transitions
h→ h1 and h→ h2 from the same hybrid state h, the item 1 of the previous definition leads
to the equality h1 = h2 regarding the ends of the continuous transitions (whatever the value
of the set first(h)).

Let us notice that the defined linear hybrid automata leads to an undeterministic behaviour:
when the celerity vector allows the trajectory to reach more than one border at the same
time, several discrete transitions can be considered (see Fig. 2-Center). Some of these discrete
transitions can be forbidden in case of internal wall.

3 Hybrid Hoare Logic

This section is dedicated to the presentation of the Hoare logic adapted to our hybrid
formalism. Hoare logic is based on Hoare triples noted {Pre} p {Post} meaning that if a
program p is executed from a state satisfying a precondition Pre, then after execution, the
postcondition Post is true. In our case, the program p is replaced by a biological trace
characterising biological knowledge on the chronometrical qualitative behaviour of the system.

For this, we define the property language used for pre- and postconditions in Subsec. 3.1
and the path language used to describe observed traces in Subsec. 3.2. Then, Hoare logic
is defined using these languages and we give in Subsec. 3.3 an adaptation of the weakest
precondition calculus, that is, the computation of the weakest (the most general) precondition
that makes the trace possible and such that the postcondition Post is satisfied afterwards.
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In the rest of this section, we denote by � any of the usual comparison symbols on
integers or real numbers: <, ≤, >, ≥, =, 6=.

3.1 Property Language
We first define the property language describing pre- and postconditions.

I Definition 8 (Property Language LC). The terms of the property language LC are induct-
ively defined as follows:

A discrete term is a variable ηu with u ∈ V , or a constant of N;
A continuous term is a variable πu or π′u with u ∈ V , or Cu,ω,n with u ∈ V , ω ⊂ R−(u)
and n ∈ J0, buK, or a constant of R;
The connectives +, −, × and / create new terms by composition, the latter being only
valid for continuous terms. We use their usual semantics.

Discrete atoms are of the form n � n′ where n and n′ are discrete terms and continuous
atoms are of the form f � f ′ where f and f ′ are continuous terms.

The discrete conditions are defined by: D :== ad | ¬D | D ∧D | D ∨D where ad is a
discrete atom.

The hybrid conditions are defined by: H :== ad | ac | ¬H | H ∧H | H ∨H where ad
and ac are respectively a discrete atom and a continuous one.

A property is a couple (D,H) formed by a discrete and a hybrid condition. All such
couples (D,H) form the property language LC .

A hybrid state h satisfies a property ϕ = (D,H) ∈ LC iff both D and H hold in h, by
using the usual meaning of the connectives; in this case, we note h � ϕ.

3.2 Path Language
The path language given in Def. 12 takes the role of an imperative program in a Hoare triple
by describing a biological behaviour. Such a path consists in explicit discrete transitions as
given in Def. 9, but also in continuous transitions described by duration and some information,
see Def. 10. The characterisation of continuous transitions is based on two kinds of atoms:
Cv � c constrains the value of the current celerity of v, and slide(v) constrains v to slide.

I Definition 9 (Discrete Path Atom). The (discrete) path atoms are defined by:
dpa :== v+ | v− where v ∈ V is a variable name.

For any states h = (η, π) and h′ = (η′, π′), the transition h
v+−→ h′ (resp. h v−−→ h′) is

satisfied iff there exists a discrete transition from h to h′ so that η′v = ηv+1 (resp. η′v = ηv−1).

In the following, if v ∈ V is a variable, v± refers indistinctly to v+ or v−.

I Definition 10 (Assertion Language LA). The assertion language LA is defined by the
following grammar:

a :== > | Cv � c | slide(v) | slide+(v) | slide−(v) | ¬a | a ∧ a | a ∨ a
where v ∈ V is a variable name and c ∈ R is a real number.

A couple (∆t, a) ∈ R+×LA of a non-negative real number and an element of the assertion
language is called an assertion couple.

The following definition gives the semantics of such assertion couples. From an informal
point of view, for any states h = (η, π) and h′ = (η, π′) in the same qualitative state η, the
continuous transition h→ h′ satisfies the assertion couple (∆t, a) if the continuous transition
exists and if it lasts ∆t units of time and it respects the assertion a: > is always true; Cv � c
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is satisfied iff Cv,ρ(h,v),ηv � c where Cv,ρ(h,v),ηv is the celerity of v in the current qualitative
state; slide+(v) (resp. slide−(v)) is satisfied iff v faces and reaches a wall at the top of the
domain (resp. at the bottom); slide(v) is a shorthand for slide+(v) ∨ slide−(v); and logical
connectives have their usual meanings. We note indifferently (h, h′) � (∆t, a) or h (∆t,a)−→ h′.

Regarding Def. 10, the special case where ∆t equals 0 characterises a situation where
the system enters a qualitative state in a “corner” and no continuous transition is required
between two successive discrete transitions.

I Definition 11 (Semantics of the Assertion Couple (∆t, a)). Let us consider a hybrid state
h = (η, π) and the unique continuous transition starting from h and ending in h′ = (η, π′).
The satisfaction relation between the continuous transition h −→ h′ and an assertion couple
(∆t, a) ∈ R+ × LA is noted (h, h′) � (∆t, a), by overloading of notation, and is defined as
follows:

If a ≡ >, (h, h′) � (∆t, a) iff δfirst
h = ∆t.

If a is of the form (Cu � c), (h, h′) � (∆t, a) iff δfirst
h = ∆t and (Cu,ρ(h,u),ηu � c).

If a is of the form slide(v), (h, h′) � (∆t, a) iff δfirst
h = ∆t and δh(v) < δfirst

h .
If a is of the form slide+(v) (resp. slide−(v)), (h, h′) � (∆t, a) iff δfirst

h = ∆t and δh(v) < δfirst
h

and Cv,ρ(h,v),ηv > 0 (resp. Cv,ρ(h,v),ηv < 0).
If a is of the form ¬a′, (h, h′) � (∆t, a) iff δfirst

h = ∆t and (h, h′) 6� (∆t, a′).
If a is of the form a′∧a′′ (resp. a′∨a′′), (h, h′) � (∆t, a) iff (h, h′) � (∆t, a′) and (resp. or)
(h, h′) � (∆t, a′′).

I Definition 12 (Path Language LP ). The (discrete) paths are defined by:

p :== ε | (∆t, a, v±) | p ; p

where (∆t, a) is an assertion couple and v± is a discrete path atom. The semantics of a path
p is given by the binary relation p−→ between states defined by:

If p = ε, then h1
p−→ h2 iff h1 = h2;

If p = (∆t, a, v±), then h1
p−→ h2 iff there exists a state h′1 s.t. h1

(∆t,a)−→ h′1 and h′1
v±−→ h2;

If p ≡ p1; p2, then h1
p−→ h2 iff there exists a state h3 s.t. h1

p1−→ h3 and h3
p2−→ h2.

A path containing only (∆t, a, v±) is called an elementary path.

The path language allows the modeller to express experimental biological traces as
sequences of elementary paths. The next section shows how such information can be formally
taken into account in order to help the identification of celerities compatible with such paths.

3.3 Hoare Triples and Weakest Precondition
We are now able to give the definition (Def. 13) of a Hoare triple in the scope of our hybrid
formalism which is a natural extension of the classical definition. Figure 3 gives an example
of a valid Hoare triple.

I Definition 13 (Hybrid Hoare Triples). A Hoare triple for a given GRN is an expression of the
form {Pre} p {Post} where Pre and Post, called precondition and postcondition respectively,
are properties of LC , and p is a path from LP . A Hoare triple {Pre} p {Post} is satisfied iff
for all state h1 � Pre, there exists another state h2 so that h1

p−→ h2 and h2 � Post.

Now that the semantics of this new Hoare logic is defined, we aim at adapting the
weakest precondition calculus as proposed by Dijkstra [6] to our hybrid framework (Def. 14).
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h1 � PreC , and considering the path in bold line, it is possible to chain a continuous transition
(h1 → h′

1) of duration ∆1
t and a discrete transition (h′

1 → h2) leading to a h2 � PostC : this Hoare
triple is therefore satisfied.

Edsger Dijkstra introduced a predicate transformer semantics: the semantics of an imper-
ative programming language is defined by assigning to each instruction in this language a
corresponding predicate transformer. For each elementary instruction EI of the imperative
programming language, the weakest precondition of EI is a function mapping any postcondi-
tion Post to a precondition Pre. Actually, this function returns the weakest precondition on
the initial state ensuring that the execution of EI terminates in a final state satisfying Post.
For each sequential imperative program "P ; EI " whose last instruction is EI , and for each
postcondition Post, the predicate transformer of EI allows us to first determine the weakest
precondition just before the last instruction and by iterating the same process, it becomes
possible to determine the weakest precondition of the whole imperative program (loops are
treated in a particular way with the help of invariants).

In our setting, the same approach leads to build the minimal constraints on the celerities
insuring that starting from a state satisfying the precondition Pre, the model exhibits
the known path p (corresponding to a biological trace) leading to a state satisfying the
postcondition Post. Each constraint depends on each elementary path which is defined by
the time ∆t spent in the current qualitative state, the assertion a and the discrete path atom
v±. Each elementary path takes the role of an elementary instruction.

I Definition 14 (Weakest Precondition). Let p be a path program and Post = (D,Hf ) be a
post-condition parameterized by a final state index f . The weakest precondition attributed to
p and Post is a property: WPif (p,Post) ≡ (D′, H ′i,f ), parameterized by a fresh initial state
index i and the same final state f , and whose value is recursively defined by:

If p = ε is the empty sequence program, then D′ ≡ D and H ′i,f ≡ Hf ;
If p = (∆t, a, v+) is an atom, with v ∈ V :
D′ ≡ D[ηv\ηv + 1],
H ′i,f ≡ Hf [ηv\ηv + 1] ∧ Φ+

v (∆t) ∧ F(∆t) ∧ ¬W+
v ∧ A(∆t, a) ∧ Jv;

If p = (∆t, a, v−) is an atom, with v ∈ V :
D′ ≡ D[ηv\ηv − 1],
H ′i,f ≡ Hf [ηv\ηv − 1] ∧ Φ−v (∆t) ∧ F(∆t) ∧ ¬W−v ∧ A(∆t, a) ∧ Jv;

If p = p1; p2 is a concatenation of programs:

WPif (p1; p2,Post) ≡WPim(p1,WPmf (p2,Post))

which is parameterized by a fresh intermediate state index m;
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where Φ+
v (∆t), Φ−v (∆t), W+

v , W−v , F(∆t), A(∆t, a) and Jv are sub-properties detailed in
Appendix A.

We note that in the cases corresponding to atoms p = (∆t, a, v±), the formula H ′i,f
contains Hf with substitutions, in conjunction with Φ±v (∆t), ¬W±v , F(∆t), A(∆t, a) and Jv,
which makes the weakest precondition of a sequence of instructions very big and difficult to
compute or analyse by hand. Nevertheless, each of the previous subformulas corresponds to
a condition which has to be met to allow the execution of an atomic instruction (∆t, a, v±):

The sign of the celerity of v in the current state is given by v±;
Traversing the qualitative state lasts ∆t units of time (Φ±v (∆t));
There is no internal or external wall preventing v to increase or decrease its qualitative
state (¬W±v );
All components other than first changing variables must either reach their border after v,
or face an internal or external wall (F(∆t)).
The assertion a is verified along the continuous transition (A(∆t, a));
The continuous transition inside a discrete state links the fractional parts of v, its celerity
and time spent in the current discrete state. Similarly the discrete transition indicates
that the fractional parts of states before and after a discrete transition are the same
except for the variable v changing its discrete level (Jv).

Finally, the computation of the weakest precondition for a given Hoare triple {Pre} p {Post}
is automated using the classical backward proof strategy:

If p is of the form (∆t, a, v±) or ε, then we compute the precondition.
If p = p1; p2 with p2 = (∆t, a, v±), we compute the precondition before p2 and we iterate
for path p1 (we never consider p2 as ε).

These two items are mutually exclusive which means that the proof strategy generates a
unique proof tree.

An implementation of this weakest precondition calculus has been realised2. Section 5
details its result on a model of the circadian clock and before that, next section gives the
theorem of its soundness.

4 Soundness of the Hybrid Hoare Logic

4.1 Inference Rules and Axioms
The considered Hoare logic for hybrid gene regulatory networks is defined by the following
inference rules:

Incrementation rule:
{
D[ηv\ηv + 1]

H ′
i,f

}∆t
a

v+

{D
Hf

}

Decrementation rule:
{
D[ηv\ηv − 1]

H ′
i,f

}∆t
a

v−

{D
Hf

}
where v is a variable, ηv its expression level, D (resp. H) the discrete (resp. hybrid) condition,
H ′i,f ≡ Hf [ηv\ηv + 1] ∧ Φ+

v (∆t) ∧ F(∆t) ∧ ¬W+
v ∧ A(∆t, a) ∧ Jv (Incrementation rule), or

H ′i,f ≡ Hf [ηv\ηv − 1] ∧ Φ−v (∆t) ∧ F(∆t) ∧ ¬W−v ∧ A(∆t, a) ∧ Jv (Decrementation rule),

2 Available at: http://www.i3s.unice.fr/~comet/DOCUMENTS/hybridisation.tar.gz.

http://www.i3s.unice.fr/~comet/DOCUMENTS/hybridisation.tar.gz
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both detailed in Appendix A, ∆t the time spent inside the current discrete state and a an
assertion. The last inference rule is the sequential composition rule:

Sequential composition rule: {Q1} p1 {Q3} {Q3} p2 {Q2}
{Q1} p1; p2 {Q2}

where Q1, Q2, Q3 are properties of the form (D,H) having the role of pre- and postconditions,
and p1 and p2 are particular paths deduced from biological experiments.

The two following axioms, based on the semantics of the hybrid model, complement the
inference rules:

ηv ≥ 0 ∧ ηv ≤ bv (the expression level has to be in its definition domain),
Cv,ω,ηv ×Cv,ω,ηv+1 ≥ 0 (for two neighbour qualitative states, if the variable v is controlled
by the same resources, then the celerities of v cannot be of opposite signs).

4.2 Soundness of the Hoare logic
The following lemmas are useful for the proof of soundness. Lemma 15 states that the time
spent in the current discrete state is equal to the time mandatory, for the variable which
changes first, to reach its border. Lemma 16 expresses the fact that the truth value of a
formula remains the same after a continuous transition.

I Lemma 15 (Time Spent in a Discrete State). Let h be a hybrid state. If h � (D1, H1) and
H1 ⇒ Φ+

v (∆t) ∧ F(∆t) (resp. H1 ⇒ Φ−v (∆t) ∧ F(∆t)), then: δfirst
h = δh(v) = ∆t.

Proof. Let us consider H1 ⇒ Φ+
v (∆t)∧F(∆t) (resp. H1 ⇒ Φ−v (∆t)∧F(∆t)). Let h = (η, π)

be a hybrid state such that h � (D1, H1).
From the definition of the sub-property Φ+

v (∆t), see Appendix A.2, variable v reaches its
upper border (πi′v = 1) and its celerity is positive (Cv,ω,n > 0). Let h′ = (η, π′) be the hybrid
state where v first touches this border. The time spent in the current qualitative state η
corresponds to the time necessary to reach the border where v changes its qualitative level.
Indeed, from Φ+

v (∆t) we deduce:

πiv = πi
′

v − Cv,ω,n ·∆t = 1− Cv,ω,n ·∆t, that is, ∆t = 1− πiv
Cv,ω,n

.

From Def. 4, we have ∆t = δh(v).
Finally, the sub-property F(∆t), see Appendix A.4, expresses the fact that if a variable

u different from v reaches its border before v, u faces an internal or external wall (see
Appendix A.3). Thus, since δh(v) = ∆t and according to Def. 6, we deduce δfirst

h = δh(v) =
∆t. J

I Lemma 16 (Preservation of Formulas Evaluation Along a Continuous Transition). Let us
consider a Hoare triple {(D′, H ′i,f )} p {(D,Hf )} obtained by the weakest precondition calculus,
a hybrid state h = (η, πi), and finally the unique continuous transition h→ h′ starting from
h. If h � (D′, H ′i,f ), then h′ � (D′, H ′i,f ).

Proof.
Since h and h′ belong to the same discrete state, the expression levels of all variables are
the same. The evaluation of D′ in h′ is then the evaluation of D′ in h.
The atoms of H ′i,f (see subformulas in Appendix A) concern either celerities or discrete
or continuous coordinates of different points of the trajectory (entrance and arrival points
in different discrete states). These points are either outside the current discrete state, or
are the points h or h′.
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Moreover, the celerities are constants, the points of the trajectory which do not belong to
the current discrete state as well as the points h and h′ do not change.

The interpretation of (D′, H ′i,f ) is therefore the same in h and h′. J

The soundness of the modified Hoare logic, adapted for the hybrid modelling framework,
means that if a Hoare triple is built in agreement with the inference rules (Def. 14) then this
Hoare triple is satisfied according to the semantics of Hoare triples (Def. 13).

I Theorem 17. The hybrid Hoare logic is sound.

The proof is detailed in Appendix B.

5 Example: Simplified Circadian Cycle

The circadian rhythm is a biological process regulating cells of an organism with a 24-hour
period and controlling the electrical and metabolic processes.

5.1 Presentation of the Circadian Cycle

In mammals, the main circadian cycle is located in the suprachiasmatic nucleus and regulates
the peripheral clocks. It is affected by light, acting like a synchronizer called Zeitgeber, which
means “giver of time”.

The circadian rhythm is mainly controlled by two protein complexes which are PER/CRY
and BMAL1/CLOCK. When light appears, the BMAL1/CLOCK complex activates the
per and cry genes by binding the E-box response element in the promoter upstream these
genes [12]. The PER and CRY proteins are synthesized and dimerised in the cytoplasm.
During night, this complex is found inside the nucleus and inhibits BMAL1/CLOCK implying
a negative feedback of PER/CRY on its genes. Finally, PER/CRY is degraded by proteasome.
The circadian cycle completes and a new one begins with the transcription of genes bmal1
and clock.

We decided to use an interaction graph which focuses on the per and cry components,
as represented in Fig. 1. The Light/Day cycle (whose duration is 12h/12h) is represented
by the node named L. (Let us notice that the node labelled X is a modelling artefact to
get an oscillating feature for light.) This node enhances the per and cry genes (modelled
with node g) when the light is activated, that is, when the qualitative value of L is at level 1.
These genes synthesize their proteins which complex and spread inside the nucleus. When
the complex is activated (which is modelled by an expression level of 1 for pc), those genes
are inhibited, blocking the synthesis during night. Because genes are disabled, the protein
complex will be degraded by proteasome and a new cycle begins with the reactivation of the
genes. All four nodes of this model have two qualitative levels of expression named 0 (not
active) and 1 (active).

5.2 Hoare Triple and Results

The steps of the circadian clock explained in Subsec. 5.1 are represented in the Hoare Triple
below. The time spent in each qualitative state comes from biological information obtained
during a light/day cycle of 12h/12h. The assertions slide+(g) and slide+(pc) (resp. slide−(L))
characterize a saturation (resp. complete degradation) of g and pc (resp. of L, corresponding
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Table 1 Constraints obtained by computation of the weakest precondition. Left: Constraints on
celerities of g and pc. Right: Constraints on celerities of L and X.

Constraints on celerities of g and pc

Cg,∅,0 < 0 0< Cg,{pc,L}0

Cg,∅,1 < 0 0<Cg,{pc,L},1 <
1

5.53
Cg,{L},0 < 0 Cpc,∅,0 < 0
Cg,{L},1 < 0 Cpc,∅,1 = − 0.12

0.9
Cg,{pc},0 > 0 0< Cpc,{g},0 < 1

6.13
Cg,{pc},1 > 0 0< Cpc,{g},1 < 1

5.4

Constraints on celerities of L and X

− 1
0.6 < CL,∅,0 < 0 CX,∅,0 < 0

CL,∅,1 < 0 − 1
6 6 CX,∅,1 < 0

0 < CL,{X},0 0 < CX,{L},0 <
1

5.1
0 < CL,{X},1 0 < CX,{L},1

to the beginning of the night). This information is summed up in the following Hoare triple:

{
D8
H8

}0.9
>
pc−

;

4.5
>
g+

;

0.6
>
X+

;

 5.53
slide+(g)
pc+

;

0.47
>
L−

;

 5.4
slide+(pc)

g−

;

 0.6
slide−(L)
X−

;

 6
>
L+

{D0
H0

}

where
{
D0 ≡ (ηg = 0) ∧ (ηpc = 1) ∧ (ηL = 1) ∧ (ηX = 0)
H0 ≡ (πg = 0.12) ∧ (πpc = 0.12) ∧ (πL = 0) ∧ (πX = 0)

Using this Hoare triple, we compute via the backward strategy the weakest precondition
iteratively by crossing the intermediate states of the path. In addition, because the behaviour
is cyclic, we know that the starting hybrid state of this path is equal to the finishing one. The
provided implementation allows us to identify and simplify the constraints of the celerities
obtained through our weakest precondition calculus. After some automatic and manual
simplifications, we finally obtain the constraints summed up in Table 1 which make the
known cyclic behaviour possible.

In order to illustrate the validity of this process, we used the constraint solver Ibex3

to extract values satisfying the previous constraints. This constraint solver takes as input
only conjunctions. Thus the obtained constraints are transformed in a disjunctive normal
form (we obtained 3 terms in disjunction) and all terms of this disjunction are successively
given to Ibex to extract possible values for variables. Amongst the values returned by Ibex,
we arbitrarily chose one set of possible values to be injected in the model for simulation.
Interestingly, the obtained constraints fully characterize one of the hybrid states along the
limit cycle, which gives us an initial state for the simulation.

The simulated traces have then to be compared to biological experimental data. Because
such data for the PER/CRY protein complex inside the nucleus are not published, the
simulation (Fig. 4) is compared to experimental data of genes per1, per2, cry1 and cry2 as
well as their respective proteins taken separately [13]. We noticed that the maximal activity
of per genes of our simulation and experimental data occurs at the end of a day, and the
curves of proteins are maximal during night at the same time slot for both curves. Thus our
simplified circadian cycle model is consistent with biological experimental data although we
arbitrarily used parameter values satisfying constraints. This simulation reinforces reliability
of our formalism for determining constraints.

3 See http://www.ibex-lib.org/.
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Figure 4 Model simulation based on arbitrarily chosen celerities satisfying the deduced constraints.
The plain (resp. dashed) line represents the PER/CRY complex (resp. gene) activity.

6 Conclusion

In this paper, we have developed a suitable approach to determine constraints on the
parameters of a linear hybrid automaton. Our hybrid Hoare logic combined with experimental
biological traces including precise chronometrical information leads to constraints on celerities
which have to be satisfied to allow the model to represent the observed behaviour (HCSP [18]
is a formalism similar to ours but does not include chronometrical information along the
path). The obtained constraints via the weakest precondition calculus are analysed using
the solver Ibex which extracts all admissible intervals of celerities. Choosing celerity values
satisfying these constraints leads to a model which exhibits simulation traces similar to the
aforementioned experimental data, this approach has been tested on the simplified circadian
clock model.

The soundness of our hybrid Hoare logic is proved which means that simulations obtained
with parameters satisfying the computed precondition leads to simulated traces which are in
concordance with the path representing the experimental data.

This work opens many outlooks. Generally, it is useful to prove the completeness of
the weakest precondition calculus. Because of the continuous terms (real numbers), our
hybrid Hoare logic cannot be complete regarding all possible formulas. Nevertheless, we
think that our hybrid Hoare logic should be complete regarding closed propositional formulas
constructed from polynomial (in)equations and logical connectors. The decidability of the
theory of real closed fields implies that the precondition constraints can be analysed; it does
not mean that for each semantically correct Hoare triple, there exists a proof tree built on
our inference rules. Completness of our framework would mean that if a Hoare triple is
semantically correct and if pre- and postconditions are expressions in the first order language
of real closed fields, then there exists a proof tree for this Hoare triple. Finally, because of
the combinatorial explosion of the size of the weakest precondition formula and despite some
on-the-fly simplifications, it could be interesting to investigate other ways to simplify the
result in some particular cases.

Acknowledgements. We are grateful to F. Delaunay for having shared his expertise on the
circadian clock and to E. Cornillon and G. Bernot for fruitful discussions about the hybrid
formalism.
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A Appendix: Sub-properties of the Weakest Precondition Calculus

In this appendix, we detail each subformula of the weakest precondition in Def. 14.

A.1 Weakest Precondition
In order to fully compute the weakest precondition, it is required to label the fractional parts
of the states mentioned in the properties. For this, we use labels called below f (final), i
(initial) and m (intermediate). Moreover, by convention, we use π′ (resp. π) to specify the
fractional part of the exit from the current discrete state (resp. entrance into the current
discrete state).

Let us notice that all the following properties depend on the indices i and f used in
Def. 14, although for readability issues we did not mention them on the names of each
sub-property. Furthermore, for a given index i, we call by convention πiu (resp. πiu

′) the
fractional part of the entering (resp. exiting) state inside the discrete state i.

Finally, for all variable u ∈ V and all ω ⊂ R−(v) subset of predecessors of u, we define:

Φωv ≡
( ∧
m∈ω

ϕm

)
∧
( ∧
m∈R−1(v)\ω

¬ϕm
)
.

In other words, Φωv is true in a state h if and only if the resources of u are exactly ω, that is,
ρ(h, v) = ω.

A.2 Discrete Transition to the Next Discrete State
For all component v ∈ V , Φ+

v (∆t) (resp. Φ−v (∆t)) describes the conditions in which v increases
(resp. decreases) its discrete expression level after ∆t units of time: its celerity in the current
state must be positive (resp. negative) and its fractional part only depends on ∆t in the way
given at the very end of Section 2.

Φ+
v (∆t) ≡ (πiv

′ = 1) ∧
∧

ω⊂R−(v)
n∈J0,bvK

(( Φωv ∧
(ηv = n)

)
⇒ (Cv,ω,n > 0) ∧ (πiv = πiv

′ − Cv,ω,n ·∆t)
)
,

Φ−v (∆t) ≡ (πiv
′ = 0) ∧

∧
ω⊂R−(v)
n∈J0,bvK

(( Φωv ∧
(ηv = n)

)
⇒ (Cv,ω,n < 0) ∧ (πiv = πiv

′ − Cv,ω,n ·∆t)
)
.

A.3 Internal and External Walls
For all component u ∈ V , W+

u (resp. W−u ) states that there is a wall preventing u to
increase (resp. decrease) its qualitative state. This wall can either be an external wall EW+

u

(resp. EW−u ) or an internal wall IW+
u (resp. IW−u ). Furthermore, Φω′u+ (resp. Φω′u−), which is

required in these subformulas, is true if and only if the set of resources of u is exactly ω′ in
the state where u is increased (resp. decreased) by 1.

W+
u ≡ IW+

u ∨ EW+
u and W−u ≡ IW−u ∨ EW−u

where:

EW+
u ≡ (ηu = bu) ∧

∧
ω⊂R−(u)

(Φωu ⇒ Cu,ω,bu > 0) ,

EW−u ≡ (ηu = 0) ∧
∧

ω⊂R−(u)

(Φωu ⇒ Cu,ω,0 < 0) ,
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IW+
u ≡ (ηu < bu) ∧

∧
ω,ω′⊂R−(u)
n∈J0,buK

(  (ηu = n) ∧
(m = n+ 1) ∧

Φωu ∧ Φω′u+

⇒ Cu,ω,n > 0 ∧ Cu,ω′,m < 0
)
,

IW−u ≡ (ηu > 0) ∧
∧

ω,ω′⊂R−(u)
n∈J0,buK

(  (ηu = n) ∧
(m = n− 1) ∧

Φωu ∧ Φω′u−

⇒ Cu,ω,n < 0 ∧ Cu,ω′,m > 0
)
,

Φω
′

u+ ≡ (ηu < bu) ∧
∧

n∈J0,buK

(
(ηu = n)⇒ Φω

′

u [ηu\ηu + 1]
)
,

Φω
′

u− ≡ (ηu > 0) ∧
∧

n∈J0,buK

(
(ηu = n)⇒ Φω

′

u [ηu\ηu − 1]
)
.

A.4 First Changing Variables
F(∆t) states that all components that are not first changing variables must either reach
their border after the first changing variables, or face an internal or external wall.

F(∆t) ≡
∧

u∈V \first(hi)



 ∧
ω⊂R−(u)
n∈J0,buK

 (ηu = n) ∧ Φωu ∧
Cu,ω,n > 0 ∧

πiu > πi
′

u − Cu,ω,n ·∆t

⇒W+
u

∧
 ∧
ω⊂R−(u)
n∈J0,buK

 (ηu = n) ∧ Φωu ∧
Cu,ω,n < 0 ∧

πiu < πi
′

u − Cu,ω,n ·∆t

⇒W−u



.

A.5 Hybrid Assertions
The sub-property A(∆t, a) allows one to translate all assertion symbols given about the
continuous transition related to the instruction (celerities and slides) into a property:

A(∆t, a) ≡
∧

k ∈ J1, nK
ωk ∈ R−(vk)
nk ∈ J0, bvk K

 ∧
l ∈ J1, nK

(
(ηvl = nl) ∧ Φωlvl

)
⇒ a


Cvl\Cvl,ωl,nl

slide(vl)\Svl,ωl,nl(∆t)
slide+(vl)\S+

vl,ωl,nl
(∆t)

slide−(vl)\S−vl,ωl,nl(∆t)




where a is the assert part of the instruction P = (∆t, a, v±), and, for all variable u ∈ V :

S+
u,ω,n(∆t) ≡ (πiu

′ = 1) ∧ (πiu > πiu
′ − Cu,ω,n ·∆t) ,

S−u,ω,n(∆t) ≡ (πiu
′ = 0) ∧ (πiu < πiu

′ − Cu,ω,n ·∆t) ,

Su,ω,n(∆t) ≡ S+
u,ω,n(∆t) ∨ S−u,ω,n(∆t) .

These sub-properties indicate that the exit position of the corresponding variable u is located
on a threshold. In addition, the constraints πiu > πiu

′−Cu,ω,n ·∆t and πiu < πiu
′−Cu,ω,n ·∆t

mean that the duration before reaching the border is lower that the one spent inside the
current state (∆t). The sign of the celerity of the sliding variable u is constrained by the
sub-property F and the constraint πiu > πiu

′ − Cu,ω,n ·∆t (resp. πiu < πiu
′ − Cu,ω,n ·∆t) of

the sub-property S+
u,ω,n(∆t) (resp. S−u,ω,n(∆t)) or Su,ω,n(∆t).
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A.6 Junctions

A.6.1 Continuous Junctions Inside Discrete States
For all component v ∈ V , and for a continuous transition between two hybrid states h = (η, π)
and h′ = (η, π′), CJ v establishes a relationship between the fractional parts and the celerity
of the variable v. If the exit fractional part of v is 0 or 1, the sign of the celerity can be
deduced and the time mandatory to v to reach the border is lower than the time spent in
the current discrete state. If v does not reach its border, the exact position of the entrance
fractional part of v can be deduced from the exit position, the time spent in the current
discrete state and the celerity.

CJ v ≡


(π′v = 0) ⇒ Cv,ρ(h,v),ηv < 0 ∧ (πv ≤ π′v − Cv,ρ(h,v),ηv × δfirst

h )
∧ (π′v = 1) ⇒ Cv,ρ(h,v),ηv > 0 ∧ (πv ≥ π′v − Cv,ρ(h,v),ηv × δfirst

h )
∧ (0 < π′v < 1) ⇒ (πv = π′v − Cv,ρ(h,v),ηv × δfirst

h ) .

A.6.2 Discrete Junctions Between Discrete States
For all component v ∈ V , and for a discrete transition happening on component v between
an initial and a final state corresponding to the indices i and f , DJ v establishes a junction
between the fractional parts of these states. This formula states that the fractional part
of v switches from 1 to 0 for an increase, or from 0 to 1 for a decrease, whereas all other
fractional parts are unchanged:

DJ v ≡ (πfv = 1− πiv
′) ∧

∧
u∈V \{v}

(πfu = πiu
′) .

Finally, we define:

Jv ≡ DJ v ∧
∧
u∈V
CJ u

These relationships can be easily observed on Fig. 3 on the discrete transition in the
centre: all fractional parts are left the same, except for the variable performing the transition.

B Soundness Proof

The soundness proof is made for each inference rule which depends on its corresponding
assertion (Def. 11). Each of them is treated according to the assertion type. We focus here
on the proof of the soundness of the incrementation rule since the proof of the soundness of
the decrementation rule is similar, and that the one for the sequential composition rule is
classical. In this subsection, we consider the Hoare triple associated with the incrementation
rule, described in Subsection 4.1, and a hybrid state h = (η, π) satisfying the precondition.

B.1 First Case: a = >
(α) Let us first prove the existence of the continuous transition. According to the sub-
property Φ+

v (∆t), π′v = 1 (arrival at the top border of v), Cv,ω,n > 0 and π′v = πv+Cv,ω,n×∆t
(the time spent in the current state is ∆t) if Φωv and ηv = n are satisfied. Let us also consider
the unique hybrid state h′ = (η, π′) such that the continuous transition h→ h′ exists. Thus,
according to Lemma 15 and Definition 11, (h, h′) � (∆t,>).
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(β) Let us now prove the existence of the discrete transition. Let us simplify the
subformula ¬W+

v ≡ ¬EW+
v ∧ ¬IW+

v satisfied at h′. We have:

¬EW+
v ≡ ¬

[
(ηv = bv︸ ︷︷ ︸

⊥

) ∧
∧

ω⊂R−(v)

(Φωv ⇒ Cv,ω,bv > 0)
]
≡ >

which is evaluated to true because v increases its level (v+ is the discrete path atom) and
thus is not already at its maximal discrete value. Thus, ¬W+

v ≡ ¬IW+
v :

¬W+
v ≡ ¬

(ηv < bv) ∧
∧

n∈J0,bvK
ω,ω′⊂R−(v)

( (ηv = n)∧
(m = n+ 1)∧

Φωv ∧ Φω′v+

⇒
 Cv,ω,n > 0

∧
Cv,ω′,m < 0

)


≡ ¬(ηv < bv)︸ ︷︷ ︸
⊥

since ηv < bv

∨
∨

n∈J0,bvK
ω,ω′⊂R−(v)

¬
( (ηv = n)∧

(m = n+ 1)∧
Φωv ∧ Φω′v+

⇒
 Cv,ω,n > 0

∧
Cv,ω′,m < 0

)

Amongst all premises of the remaining disjunctions, only one is satisfied because the current
qualitative state and the next state have a unique qualitative level (ηv = n and m = n+ 1)
and a unique set of resources (Φω

v and Φω′

v+). Replacing ω and ω′ by the right resources of
the corresponding states ρ(η, v) and ρ(η′′, v) and naming η′′ the next state, we deduce:

¬W+
v ≡ ¬

(
¬

 (ηv = n) ∧
(m = n+ 1) ∧
Φρ(η,v)
v ∧Φρ(η

′′,v)
v+


︸ ︷︷ ︸

⊥

∨

 Cv,ρ(η,v),ηv > 0
∧

Cv,ρ(η′′,v),η′′v < 0

)≡
 Cv,ρ(η,v),ηv≤0

∨
Cv,ρ(η′′,v),η′′v ≥0



However, since Φ+
v (∆t) is true at h′, we have Cv,ρ(η,v),ηv > 0. Thus ¬W+

v is equivalent to
Cv,ρ(η′′,v),η′′v ≥ 0 and the previous inequation is true since ¬W+

v is satisfied at h′. Thus the
variable v reaches its threshold in ∆t time (Φ+

v (∆t)) and crosses it (¬W+
v ) allowing a discrete

transition h′ → h′′ which increases v because the signs of the celerities of v in h′ and in h′′
are the sames.

(γ) Let us finally prove that the postcondition is satisfied after the elementary path. We
previously proved that there exists a unique continuous transition h→ h′ and a discrete one
h′ → h′′. Since h � (D[ηv\ηv+1], H ′i,f ), we deduce with Lemma 16: h′ � (D[ηv\ηv+1], H ′i,f ).
The discrete transition increases the variable v (η′′v = ηv + 1), we deduce that:

h′′ � (D[ηv\ηv+1][ηv\ηv−1], H ′i,f [ηv\ηv−1]), that is, h′′ � (D,H ′i,f [ηv\ηv−1])

The hybrid condition H ′′ ≡ H ′i,f [ηv\ηv − 1] is satisfied in h′′:

H ′′ ≡
(
Hf [ηv\ηv+1] ∧ Φ+

v (∆t) ∧ F(∆t) ∧ ¬W+
v ∧ A(∆t, a) ∧ Jv

)
[ηv\ηv−1]

≡ Hf ∧
(

Φ+
v (∆t) ∧ F(∆t) ∧ ¬W+

v ∧ A(∆t, a) ∧ Jv
)

[ηv\ηv − 1]

So, the discrete and hybrid conditions D and Hf are satisfied at h′′ and the postcondition is
verified.
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B.2 Second Case: a = slide+(u)

(α) Similarly to the first case, we consider the unique hybrid state h′ = (η, π′) such that
the continuous transition h→ h′ exists. The time spent in the current qualitative state is
also ∆t (sub-property Φ+

v (∆t)). Since a 6= >, the sub-property A plays a crucial rule:

A(∆t, a) ≡
∧

k ∈ J1, nK
ωk ∈ R−(vk)
nk ∈ J0, bvk K

 ∧
l ∈ J1, nK

(
(ηvl = nl) ∧ Φωlvl

)
⇒ a


Cvl\Cvl,ωl,nl

slide(vl)\Svl,ωl,nl(∆t)
slide+(vl)\S+

vl,ωl,nl
(∆t)

slide−(vl)\S−vl,ωl,nl(∆t)




Amongst all premises of these conjunctions, only one is satisfied because the current qualitative
state has a unique qualitative level for each variable vl (ηvl = nl) and a unique set of resources
for each vl (Φωlvl ). We can then replace slide+(u) by the sub-property S+:

S+
u,ω,n(∆t) ≡ (πiu

′ = 1) ∧ (πiu > πiu
′ − Cu,ω,n ·∆t)

where ω is the resources of u and n its current qualitative level. This formula means that the
exit position of the current qualitative state is on the top border (πiu

′ = 1). We then deduce:

Cu,ω,n ·∆t > 1− πiu

∆t > 1− πiu
Cu,ω,n

= δh′(u) because 1− πiu ≥ 0, ∆t ≥ 0 and Cu,ω,n > 0

According to Lemma 15, we have δh′(v) = δfirst
h′ = ∆t and so δh′(v) > δh′(u). In other words,

u reaches its top border before v reaches its one. Thus, the continuous transition h→ h′ is
such that (h, h′) � (∆t, a), see Definition 11.

(β and γ) The proof of the discrete transition existence from h′ is similar to the first case.
This transition leads to h′′ which satisfies the postcondition h′′ � (D,H) (see the stages β
and γ of the first case).

B.3 Third Case: a = Cu � c with c ∈ R

(α) The sub-property A(∆t, a) allows one to replace the celerity Cu in the assertion a by
the celerity indexed by the relevant set of resources of the current qualitative state. So, we
deduce Cu,ρ(η,u),ηu � c. From Definition 11, the unique continuous transition h→ h′ where
h′ = (η, π′) is such that (h, h′) � (∆t, a).

(β and γ) The proof of the discrete transition existence from h′ is similar to the first case.
This transition leads to h′′ which satisfies the postcondition h′′ � (D,H) (see the stages β
and γ of the first case).

B.4 Fourth Case: a = a1 ∧ a2

(α) From the previous cases, it is possible to construct two hybrid states h1 and h2 such
that (h, h1) � (∆t, a1) and (h, h2) � (∆t, a2). Because the continuous transition starting at
h is unique, h1 = h2. Thus, (h, h1) � (∆t, a1 ∧ a2).
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(β and γ) The proof of the discrete transition existence from h′ is similar to the first case.
This transition leads to h′′ which satisfies the postcondition h′′ � (D,H) (see the stages β
and γ of the first case).

This proof is generalisable for all logical connectives and recursively to all formulas.
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Abstract
Cost-parity games are a fundamental tool in system design for the analysis of reactive and dis-
tributed systems that recently have received a lot of attention from the formal methods research
community. They allow to reason about the time delay on the requests granted by systems, with
a bounded consumption of resources, in their executions.

In this paper, we contribute to research on Cost-parity games by combining them with hier-
archical systems, a successful method for the succinct representation of models. We show that
determining the winner of a Hierarchical Cost-parity Game is PSpace-complete, thus match-
ing the complexity of the proper special case of Hierarchical Parity Games. This shows that
reasoning about temporal delay can be addressed at a free cost in terms of complexity.
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1 Introduction

In formal system design and verification [11, 12, 20, 26], Parity Games represent a fundamental
machinery for the automatic synthesis and verification of concurrent and reactive systems [5,
6, 7, 21, 22]. The determinacy and the memorylessness of parity games is crucial in various
theoretical areas useful in formal verification, among which we mention automata theory,
temporal and modal logics, and monadic second-order logics. For instance, the emptiness
problem of alternating tree automata [14] as well as model checking and satisfiability in
modal µ-calculus [18] can be reduced to deciding the winner of a parity game. In particular,
model checking µ-calculus is equivalent via linear time reduction to this problem [13].

As pointed out in [15, 23, 24], the parity winning condition corresponds to a qualitative
request-response condition [17]: Player 0 wins a play of infinite duration if all but finitely
many odd colors (which we think of as requests) are followed by larger even colors (which we
think of as responses). In this setting, there is no bound on the wait time, i.e., the number
of steps that elapse between a request and its first response in the play. On the other hand,
in many applications, it is important to bound the wait time. In the last decade, many
papers have focused on quantitative aspects, in particular boundedness requirements, of
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6:2 Hierarchical Cost-Parity Games

formal verification [1, 19, 10], including parity games [10, 15, 23, 24]. In [19], the authors
introduce Prompt LTL, an extension of standard LTL [25] with the prompt-eventually
operator Fp: a finite system satisfies a Prompt LTL formula ϕ iff there is a bound on the wait
time for all the prompt-eventually subformulas of ϕ in all the computations of the system.
The automata-theoretic counterpart of the Fp operator has been investigated in [1]. Parity
games extended with promptness requirements, the so-called finitary parity games, have been
studied in [10]. The finitary parity condition [10] extends the parity condition by additionally
requiring the existence (along the given play) of a bound k such that almost every odd
color is answered within at most k steps. Surprisingly, finitary parity games are solvable in
polynomial time, and thus simpler than parity games (according to the state-of-the-art). A
meaningful generalization of finitary games is represented by the class of parity games with
costs [15] (in the following, referred as cost-parity games). In such games, transitions are
labeled by non-negative integers (costs). The cost of traversing a transition can be used to
model resource consumption. The goal of Player 0 consists then in ensuring the underlying
parity condition by using bounded resources: a play is winning for Player 0 if there is a bound
k such that almost every odd color is followed by a larger even color that is reached with
cost at most k. On the other hand, Player 1’s goal is to exhaust the resources by making the
cost unbounded. Note that Player 1’s objective is not an ω-regular property, and in general,
Player 1 needs infinite memory to win such games. However, cost-parity games enjoy some
nice properties: Player 0 has memoryless winning strategies and determining the winner
lies in NP ∩ coNP. This upper bound has been recently improved to UP ∩ coUP in [24],
proving thus that the increased expressiveness with respect to parity conditions comes at a
free cost in terms of complexity.

In the recent years, many other quantitative extensions of parity games have been
introduced. Among them we would like to mention Mean-Payoff Parity Games [9], whose
winning condition is a combination of a parity and a mean-payoff objective, and Energy
Parity Games [8]. These last ones are played over weighted arenas, and the winning condition
extends the parity condition by additionally requiring that the sum of the weights along a
play (interpreted as level of energy, or resource usage) remains always positive.

A well-known issue in formal verification is that the translation of a high-level description
of a system into a formal model, typically given by a finite-state machine (FSM), often
involves an exponential blow-up in the size of the FSM, thus affecting the efficiency of
the analysis procedures both in theory and practice. Several sources of this blow-up have
been identified in the literature. A well-studied one is the ability of components in the
system to work in parallel and communicating with each other, possibly using variables. The
impact of the concurrent setting on analysis problems is well-known: it costs an exponential,
leading to the so called state-explosion problem. Another source of the blow-up in the
translation of systems into FSMs is that in high-level sequential programming, one can
specify components only once and then can reuse them in different contexts, leading to
modularity and succinct system representation. A smart way to represent such modularity is
by means of hierarchical FSM, where some of the states of the FSM are boxes (superstates)
which correspond to nested FSMs (the reused components). The naive approach to model
checking such systems is to ‘flatten’ them by repeatedly substituting references to sub-
structures with copies of them. This results in a flat FSM whose size is exponential in
the nesting depth of the hierarchical system. However, differently from the concurrent
setting, a wiser approach avoiding flattening, for the case of model checking against temporal
logics like LTL, CTL and the more expressive modal µ-calculus, is beneficial in terms of
complexity [3, 4, 5, 16]. Parity games have also been investigated under the hierarchical
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setting. In [5], Aminof et al. prove that deciding the winner in a Hierarchical Parity Game
(HPG) is a Pspace-complete problem. The technique used in [5] is based on the observation
that even though a sub-arena may appear in different contexts, it is possible to extract
information about the sub-arena that is independent of the context in which it appears.

In this paper, we further investigate the power of hierarchical representation by introdu-
cing and studying Cost-parity Games over Hierarchical Systems (HCPG). As main result,
we establish that the problem of solving HCPG is Pspace-complete, which matches the
complexity of the proper special case of hierarchical parity games (HPG). The proposed
approach for solving the considered problem generalizes in a non-trivial and sophisticated
manner the one exploited in [5] for solving HPG, and is based on the notion of summary
function for a memoryless strategy σ of Player 0 in a given sub-arena. Such a function
records in a finite and efficient way the overall behavior of all the finite plays of σ leading to
exit states of the sub-arena with respect to requests and responses, by finitely abstracting the
set of associated costs and delays. The algorithm for solving HCPG then solves a sequence
of flat cost-parity games obtained by replacing sub-arenas by simple gadgets (depending only
on the set of colors and exit states of the sub-arena) that implement the summary functions.

The sequel of the paper is structured as follows. In Section 2, we first recall the framework
of cost-parity games. Then, we introduce hierarchical cost-parity games and describe our
solution approach in Section 3. Finally, we give few conclusions and future work directions
in Section 4. Due to space constraints, some proofs are omitted.

2 Preliminaries

Let N be the set of natural numbers. For all i, j ∈ N, with i ≤ j, [i, j] denotes the set of
natural numbers h such that i ≤ h ≤ j. We fix a non-empty finite set C of natural numbers
of the form [0, j] for some j ∈ N, which represents the set of colors for the given cost-parity
winning condition. We denote by Ce and Co the sets of even and odd colors in C, respectively.
We assume that the maximal color j in C, denoted by Cmax

o , is odd.
For an alphabet Σ, and a non-empty finite or infinite word w over Σ, we denote by |w|

the length of w (we set |w| =∞ if w is infinite). Moreover, for all i, j ≥ 1, with i ≤ j, w(i)
is the i-th letter of w, while w[i, j] denotes the finite subword of w given by w(i) · · ·w(j),
and wi the prefix of w from position i, i.e., the word w(i)w(i+ 1) . . ..

2.1 Cost-Parity Games
We recall the framework of Cost-parity games [15] which are two-player turn-based games
played on finite graphs equipped with a Cost-parity winning condition. In such a setting,
Player 0 wins a play of infinite duration if there is a bound ` ∈ N such that almost all odd
colors (which we think of as requests) are followed by larger even colors (which we think of
as responses) that are reached with cost at most `.

A state-transition graph or FSM is a tuple 〈S,R, in〉 consisting of a finite set S of states,
a transition relation R ⊆ S × S, and an initial state in ∈ S. For a state s ∈ S, we write
R(s) = {s′ ∈ S | (s, s′) ∈ R} for the set of successors of s. A path in the FSM is a non-empty
finite or infinite word π over S such that π(i+ 1) ∈ R(π(i)) for all i ∈ [1, |π| − 1].

An arena is a tuple A = 〈S, S0, S1,R, in〉 consisting of an FSM 〈S,R, in〉 and a partition
{S0, S1} of S into the states of Player 0 (drawn as circles) and the states of Player 1 (drawn
as rectangles). A play of a game over A proceeds by moving a token on the states of A,
starting at some state. If the token is placed on a state s ∈ S0 (resp., s ∈ S1), then the play
ends if s has no successors (we call such a state a terminal state); otherwise, Player 0 (resp.,
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Player 1) chooses a successor s′ of s and moves the token to s′. Formally, a play of A is a
maximal path of A, i.e., a path π in the underlying FSM such that either π is infinite, or π
is finite and ends at a terminal state.

Let p ∈ {0, 1} and SNp be the set of non-terminal states of Player p. A strategy for Player p
is a mapping σ : S∗ · SNp 7→ S assigning to each non-empty sequence of states w · s ∈ S∗ · SNp
leading to a non-terminal state s of Player p, a successor of s. A play π is consistent with the
strategy σ if for all k ∈ [1, |π| − 1] such that π(k) ∈ SNp , it holds that π(k + 1) = σ(π[1, k]).
The strategy σ is memoryless if its output does not depend on the whole prefix of the play,
but only on the last position, i.e, if for all w · s ∈ S∗ · SNp , σ(w · s) = σ(s). We can thus
represent a memoryless strategy as a mapping σ : SNp → S.

A (zero-sum) game is a pair 〈A,Win〉 consisting of an arena A = 〈S, S0, S1,R, in〉 and a
subset Win of infinite plays which are winning for Player 0. An infinite play π is winning for
Player 1 if it is not winning for Player 0. A finite play π is winning for Player p if π ends at a
state of the opponent Player 1− p. A strategy σ for Player p is winning from a state s if all
the plays π starting from s which are consistent with the strategy σ are winning for Player p.
In such a case, we say that state s is winning for Player p. A game is determined if for each
state s, s is winning for one of the players. Note that since for all strategies σ0 and σ1 of
Player 0 and Player 1, respectively, there is a unique play starting from s which is consistent
with both σ0 and σ1, in (zero-sum) games, a state s cannot be winning for both the players.
Solving a game consists in checking whether the initial state is winning for Player 0.

Cost-parity winning conditions

We, now, recall the class of Cost-parity winning conditions. A Cost-parity arena G =
〈A,Cost,Ω〉 over the set C of colors consists of an arena A = 〈S,S0,S1,R, in〉, a transition-
labeling Cost : R 7→ {0, 1} (cost function), and a coloring mapping Ω : S 7→ C assigning to
each state a color in C. Note that according to [15], the definition of transition-labelling only
allows cost 0 or 1 on a transition. Having arbitrary costs in N would not change our results, as
we are interested in boundedness questions only. We extend the transition-labeling to a cost
function Cost over paths π obtained by counting the number of increment transitions (i.e.,
1-labeled transitions) traversed along the path, i.e., Cost(π) =

∑i=|π|
i=2 Cost(π(i − 1), π(i)).

Note that Cost(π) ∈ N ∪ {∞}.
The pair (Cost,Ω) induces a winning condition for Player 0, where the occurrence of an

odd color along a play π is interpreted as a request, for which there has to be a response later
on the play by a higher even color. Formally, let π be a finite or infinite path of A. A request
in π is a position k along π such that π(k) has odd color. For an odd color c, a c-request in
π is a request k in π such that Ω(π(k)) = c. Moreover, we define Ans(c) = {c′ ∈ Ce | c′ ≥ c},
i.e., the set of even colors that answers a request of color c. For a request k in π, let rk be the
smallest position k′ ≥ k that answers to request k, i.e., such that Ω(π(k′)) ∈ Ans(Ω(π(k))),
if such positions k′ exist, and let rk = |π| otherwise. In the first (resp., second) case, we say
that the request k is answered (resp., unanswered) in π. The delay of the request k in π,
denoted by dl(π, k), then is defined as the cost of the infix of π from the request k to position
rk, i.e., Cost(π[k, rk]) if rk 6=∞, and Cost(πk) otherwise. The cost-parity winning condition
induced by (Cost,Ω), written CostParity(Cost,Ω), is then the set of infinite plays π such
that there is n ≥ 1 and a bound ` ∈ N so that for all requests k in π with k ≥ n, dl(π, k) ≤ `
and the request k is answered in π. Thus, an infinite play π ∈ CostParity(Cost,Ω) iff there
is bound ` such that all but finitely many requests are answered with cost less than `.
Note that CostParity(Cost,Ω) is prefix-independent, i.e., for all infinite plays π and k ≥ 1,
π ∈ CostParity(Cost,Ω) iff πk ∈ CostParity(Cost,Ω). We recall the following known result.
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I Theorem 1 ([15]). Cost-parity games are determined and Player 0 has memoryless
winning strategies from the winning Player 0 states. Moreover, solving a cost-parity game
G = 〈A,Cost,Ω〉 with k colors can be done in time |A|O(k·log k) and in polynomial space.

For technical convenience, we also consider a generalization of cost-parity arenas, called
partial cost-parity arenas, where one considers as additional input a subset Exit of the set of
terminal states, called exit states. Finite plays ending at states in Exit are assumed to be
non-winning for either player and have an undefined value. In this setting, a non-loosing
strategy for Player p from state s is a strategy σ for Player p such that each play starting
from s which is consistent with σ and does not lead to an exit state is winning for Player p.
A non-loosing strategy is a non-loosing strategy for Player 0 from the initial state in. For a
strategy σ for Player 0, an exit play of σ is a finite play starting from in and ending at an exit
state which is consistent with σ. For s ∈ Exit, an s-exit play of σ is an exit play of σ leading
to s. Two partial cost-parity arenas G = 〈A,Cost,Ω,Exit〉 and G′ = 〈A′,Cost′,Ω′,Exit′〉
have the same interface if Exit = Exit′, G and G′ have the same initial state in, and for each
s ∈ {in} ∪ Exit, the colors and the players of state s in G and G′ coincide.

2.2 Hierarchical Cost-Parity Games
A Hierarchical Cost-Parity Game is a cost-parity game played over a (flat) arena induced by
a hierarchical arena. The latter is a standard hierarchical FSM [4] in which the set of nodes
of each of the underlying FSMs is partitioned into nodes belonging to Player 0 and nodes
belonging to Player 1. We refer to the underlying FSMs as modular sub-arenas. Formally, a
hierarchical arena is a tuple V =〈V1, . . . ,Vn〉 of modular sub-arenas, where each Vi is in turn
a tuple of the form 〈Ni,N0

i ,N1
i ,Bi, ini,Exiti,Yi,Ei〉 consisting of the following components:

A finite set Ni of nodes which is partitioned into a set N0
i of nodes of Player 0 and a set N1

i

of nodes of Player 1, and a finite set Bi of boxes. We assume that N1, . . . ,Nn,B1, . . . ,Bn
are pairwise disjoint.
An initial node or entry ini ∈ Ni, 1 and a subset Exiti of Ni called exit-nodes. We assume
that Exit1 = ∅, i.e., the top-level sub-arena V1 has no exits.
An indexing function Yi : Bi → {i + 1, . . . , n} that maps each box b of Vi to an index
Yi(b) > i. The box b represents a reference to the definition of the sub-arena VYi(b).
An edge relation Ei. Each edge in Ei is a pair (u, v) such that: (i) the source u is either
a node of Vi or a pair (b, e), where b is a box of Vi and e is an exit-node of the sub-arena
that b refers to, and (ii) the target v is either a node or a box of Vi.

Define N =
⋃n
i=1 Ni (the set of V-nodes), E =

⋃n
i=1 Ei (the set of V-edges), and Exit =⋃n

i=1 Exiti (the set of V-exit-nodes). In a modular sub-arena, the edges connect nodes and
boxes with one another. Edges entering a box implicitly lead to the unique entry-node of the
sub-arena that the box refers to. On the other hand, an edge exiting a box needs to explicitly
specify the identity of the exit-node among the possible exit-nodes of the sub-arena associated
with that box. The size |Vi| of a modular sub-arena Vi is |Ni| + |Bi| + |Ei|. The size |V|
of V is

∑i=n
i=1 |Vi|. The nesting depth of V is the length of the longest chain i1, i2, . . . , ij of

indices in [1, n] such that a box of Vil is mapped to il+1 for all l ∈ [1, j − 1]. Note that the
fact that boxes of a sub-arena can only refer to sub-arenas with a greater index implies that
the nesting depth of V is finite. Such a restriction does not exist in the recursive setting [2].

1 We assume a single entry for each sub-arena. Multiple entries can be handled by duplicating sub-arenas.
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A Hierarchical Cost-Parity Arena (HCPA, for short) over C is a tuple H = 〈V,Cost,Ω〉
consisting of a hierarchical arena V =〈V1, . . . ,Vn〉 equipped with a cost function Cost : E 7→
{0, 1} for the set of V-edges, and a coloring mapping Ω : N 7→ C for the set of V-nodes. We
can associate to H an ordinary cost-parity arena (called its flat expansion) by recursively
substituting each box by a copy of the modular sub-arena it refers to. Since different boxes
can refer to the same sub-arena, nodes may appear in different contexts. In general, a state of
the flat expansion is a vector whose last component is a node, and the remaining components
are boxes that specify the context. Formally, for each modular sub-arena Vi, we inductively
define its flat expansion as the partial Cost-parity arena HFi = 〈Ai,Costi,Ωi,Exiti〉, with
Ai = 〈Si,S0

i ,S1
i ,Ri, ini〉, defined as follows:

The set of states Si is inductively defined as follows: (i) if u is a node in Vi, then u ∈ Si,
and (ii) if b is a box of Vi and s ∈ SYi(b), then (b, s) ∈ Si.
S0
i (resp., S1

i ) is the set of states in Si whose node-component belongs to Player 0 (resp.,
Player 1), and the coloring function Ωi assigns to each state s of Ai, the color Ω(u) of
the node-component u of s.
The transition relation Ri and the cost function Costi are inductively defined as follows.

If (u, v) ∈ Ei and the target v is a node, then (u, v) ∈ Ri and Costi(u, v) =
Cost(u, v). If (u, b) ∈ Ei and the target b is a box, then (u, (b, inYi(b))) ∈ Ri and
Costi(u, (b, inYi(b))) = Cost(u, b).
If b is a box of Vi and (s, s′) ∈ RYi(b), then ((b, s), (b, s′)) ∈ Ri and Costi((b, s), (b, s′)) =
CostYi(b)(s, s′).

Note that since Exit1 = ∅, HF1 is an ordinary Cost-parity arena (i.e., it is not partial), called
the flat expansion of H. Moreover, observe that each state of HF1 is a vector of length at
most the nesting depth d of V , and that the number of states in HF1 can be exponential in d.
Solving the game on the HCPA H consists in checking whether the initial state in1 of the
cost-parity arena HF1 is winning for Player 0.

3 Solving Hierarchical Cost-Parity Games

The naive approach for solving games on HCPA H consisting in applying Theorem 1 on the
flat expansion of H would lead to an exponential space procedure. In this section, we show
that solving hierarchical cost-parity games is Pspace-complete. Our approach is based on
the notion of summary function for a strategy σ of Player 0 in a partial cost-parity arena,
which records in a finite and efficient way the overall behavior of all the exit plays of σ with
respect to requests and responses. The proposed algorithm for solving the game on the given
HCPA H then solves a sequence of partial cost-parity games, obtained by replacing each box
b referring to a sub-arena Vi with simple partial-cost parity arenas (summary-gadget arenas)
having the same interface as the flat expansion HFi of Vi and depending only on the set of
colors and exit states. These gadgets represent the behavior of Player 0 as a choice among
the possible summary functions associated with the non-loosing memoryless strategies in HFi ,
and also take into account the possibility that the game will stay forever in the sub-arena Vi
for the given context b. The rest of this section is organized as follows: in Subsection 3.1,
we introduce the notions of summary and summary-gadget arena, and in Subsection 3.2 we
show how to check that a summary is associated with non-loosing memoryless strategies.
Finally, in Subsection 3.3, we illustrate the proposed algorithm for solving HCPA games.
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3.1 Summaries in partial cost-parity games
In this section, for a given partial cost-parity arena G, we show how to define a finite
abstraction of the set of non-loosing strategies (of Player 0). Such an abstraction is based on
the notion of summary for a strategy σ of Player 0, which is a mapping assigning to each
exit state s a value ranging over a finite set (depending only on the set of colors). Such a
value summarizes the overall behavior of all the s-exit plays of σ with respect to requests and
responses by finitely abstracting the set of associated costs and delays. Then, we associate
to each summary S of G a simple partial-cost parity arena Gad(G,S) – exposing the same
interface as G (the initial state and the set of exit states) – which depends only on the set
of colors and exit states, and is independent of the set of ‘internal’ states in G. The set of
summary-gadget arenas Gad(G,S) such that S is achieved by some non-loosing memoryless
strategy is ‘context-equivalent’ to G, i.e., for each memoryless strategy σ achieving some
summary S, G can be equivalently replaced with Gad(G,S) in any hierarchical context where
G is exploited as a sub-arena and Player 0 chooses strategy σ when entering G. 2

Fix a partial cost-parity arena G = 〈A,Cost,Ω,Exit〉 over the set C of colors, where
A = 〈S,S0,S1,R, in〉 and Exit is the designated set of exit states.

In order to describe the relative merit of colors, we define an ordering �0 over the given
set C of colors by letting c �0 c

′ when c is better for Player 0 than c′. Formally, c �0 c
′

if: either (i) c and c′ are even and c ≥ c′, or (ii) c and c′ are odd and c′ ≥ c, or (iii) c′
is odd and c is even. Moreover, in order to summarize in a finite way cost measures, we
exploit three special symbols, namely, bnd0, bnd1, and unb to denote bounded behavior
with zero-cost, bounded behavior with non-zero cost, and unbounded behavior (cost ∞),
respectively. Additionally, we denote by �b the ordering on {bnd0, bnd1, unb} defined as:
bnd0 �b bnd1 and bnd1 �b unb. Intuitively, bnd0 �b bnd1 and bnd1 �b unb express that
bounded zero-cost is better for Player 0 then non-zero bounded cost, the latter being in turn
better than unbounded cost. Define C̃ = C \ {Cmax

o } and C̃o = (Co \ {Cmax
o }) ∪ {0}.

In order to formalize the notion of summary for a strategy σ of Player 0, we consider
various cost measures with respect to the requests and the responses along the exit plays
of σ. For this, we extend the cost function Cost to (possibly infinite) sets Π of finite
paths. Formally, Cost(Π) is the least upper bound over the costs of the paths in Π, i.e.,
Cost(Π) = sup{Cost(ν) | ν ∈ Π} where sup ∅ = 0. Note that Cost(Π) ∈ N ∪ {∞}. For a
finite path ν of G and an even color ce ∈ Ce, a ce-response in ν is a position k of ν such
that ν(k) ha color ce. For such a response k, the cost of response k in ν is the cost of the
prefix of ν leading to position k, i.e., Cost(ν[1, k]). The ce-response cost of ν, denoted by
ResCost(ν, ce), is the cost Cost(ν[1, k]) of the prefix of ν up to the minimal c′e-response k in
ν for some even color c′e ≥ ce if such c′e-responses exist, and it is 0 otherwise. The maximal
even color of the path ν is the maximal even color visited by ν if ν visits some even color,
and it is 0 otherwise (note that a 0-response cannot answer to any request). We exploit the
following cost measures for the (possibly infinite) set of exit plays of a given strategy σ of
Player 0 leading to a designated exit state.

I Definition 2 (Cost measures of Player 0 strategies). Let s ∈ Exit, σ a strategy of Player 0,
Πs the (possibly empty) set of exit plays of σ leading to s, and ce ∈ Ce an even color.

Cost of σ w.r.t. s, denoted Cost(σ, s): it is Cost(Πs).
Even ce-cost of σ w.r.t. s, denoted Coste(σ, s, ce): it is Cost(Πce), where Πce is the
(possibly empty) set of exit plays in Πs whose maximal even color is at most ce.

2 The formal proof of such a context-equivalence is postponed to Section 3.3.
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6:8 Hierarchical Cost-Parity Games

ce-response cost of σ w.r.t. s, denoted ResCost(σ, s, ce): it is the least upper bound over
the ce-response costs of the exit plays in Πs, i.e., sup{ResCost(ν, ce) | ν ∈ Πs}.
Request-cost of σ w.r.t. s, denoted ReqCost(σ, s): it is the least upper bound over the
delays associated with the requests along the exit plays in Πs, i.e., sup{dl(ν, k) | ν ∈
Πs and k is a request in ν}.

Note that Coste(σ, s,−) is monotonic in the third argument, i.e., Coste(σ, s, c′e) ≥
Coste(σ, s, ce) for all ce, c

′
e ∈ Ce such that c′e ≥ ce. We, now, introduce the notion of

summary for a strategy σ of Player 0 which records for each exit state s, a value, called exit
value, ranging over a finite set depending only on the set of colors. This value summarizes
the overall behavior of the exit plays of σ leading to s. We distinguish three situations (recall
that Cmax

o = max(C) and Cmax
o is odd):

The best scenario for Player 0 is when there is no exit play of σ leading to s. We represent
this situation by exploiting the special symbol `.
The worst scenario is when the request-cost of σ w.r.t. s is infinite, or there is an s-exit
play of σ having a Cmax

o -request. We use the color Cmax
o to describe this scenario.

If none of the two previous conditions is fulfilled, then the exit value is a sextuple of
elements: (i) the first element summarizes the cost of σ w.r.t. s, (ii) the second element
keeps track of the minimal color w.r.t. �0 over the maximal colors along the s-exit plays of
σ, (iii) the third element represents the maximal odd color associated with an unanswered
request, and (iv) the last three elements in the tuple summarize the overall response
behavior of the s-exit plays of σ.

The formal definition of exit values for a strategy of Player 0 follows.

I Definition 3 (Exit values of Player 0 strategies). Let s ∈ Exit, σ a strategy of Player 0, and
Πs the set of exit plays of σ leading to s. The exit value value(σ, s) of strategy σ w.r.t. s is
defined as follows. If Πs = ∅, then value(σ, s) =`. If instead either ReqCost(σ, s) = ∞ or
there is ν ∈ Πs having a Cmax

o -request, then value(σ, s) = Cmax
o . Otherwise, value(σ, s) =

(valueCost(σ, s), valuepr(σ, s), valueo(σ, s), valueLe (σ, s), valueMe (σ, s), valueRe (σ, s)) ∈ {bnd0,

bnd1, unb} × C̃ × C̃o × Ce × (Ce ∪ {⊥})× Ce, and the following holds:
Cost value valueCost(σ, s): (i) valueCost(σ, s) = unb if Cost(Πs) =∞, (ii) valueCost(σ, s) =
0 if Cost(Πs) = 0, and (iii) valueCost(σ, s) = bnd1 otherwise.
Parity value valuepr(σ, s): it is min�0{c ∈ C | c is the maximal color of some ν ∈ Πs}.
Odd value valueo(σ, s): it is the greatest odd color co ∈ Co such that for some ν ∈ Πs, ν
has an unanswered co-request if such an odd color co exists; otherwise, it is 0.
Even-left value valueLe (σ, s): it is the greatest even color ce ∈ Ce such that ResCost(σ, s, ce)
6=∞ and for each ν ∈ Πs, the maximal even color in ν is at least ce, if such an even color
ce exists; otherwise, it is 0.
Even-middle value valueMe (σ, s): it is the smallest even color ce such that Coste(σ, s, ce) ∈
N \ {0} if such a color ce exists, and valueMe (σ, s) = ⊥ otherwise (⊥ is for ‘undefined’).
Even-right value valueRe (σ, s): it is the greatest even color ce ∈ Ce such that ResCost(σ, s, ce)
6= ∞ and for each c′e ∈ Ce with c′e < ce, Coste(σ, s, c′e) 6= ∞, if such an even color ce
exists; otherwise, it is 0.

Note that for parity winning conditions, the parity value valuepr(σ, s) suffices for summar-
izing the s-exit behavior of strategy σ [5]. For cost-parity winning conditions, we also need to
keep track of the maximal odd color valueo(σ, s) associated with unanswered requests. Note
that valueo(σ, s) �0 valuepr(σ, s), and valueo(σ, s) ≺0 valuepr(σ, s) whenever the maximal
unanswered request is associated with s-exit plays whose maximal color is even. As an
example, let un consider the sub-arena Gco – parametric in the color co – in the figure below:
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Note that all the states are controlled by Player 1. The instances G1 and G3 of Gco have
parity value 1, and odd value 1 and 3, respectively. While by using G1, all the plays starting
from state in are winning for Player 0, the same does not hold by using G3 since in this case,
there are plays where the request 3 is answered in an unbounded way.
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For what concerns the even values, the even-left value valueLe (σ, s) represents, intuitively,
the maximal even color that the s-exit plays of σ offer for answering – in a bounded way
– to previous requests in an arbitrary context. The even-right value valueRe (σ, s), where
valueRe (σ, s) ≥ valueLe (σ, s), instead represents the maximal even color which may answer to
a request preceding an s-exit play ν of σ in a bounded way: if the maximal even color in
ν is smaller than valueRe (σ, s), then the overall cost of all s-exit plays of σ whose maximal
even color is smaller than valueRe (σ, s) is finite. As an example, let us consider the sub-arena
G′ρ – parametric in the cost ρ of the self-loop on the state with color 2 – in the left part of
the figure above, where all the states are controlled by Player 1. The instances G′0 and G′1 of
G′ρ have even-left value 2, and even-right value 4 and 2, respectively. While for G′0, all the
plays starting from state in are winning for Player 0, the same does not hold for G′1, since
in this case, there are plays where the external request 3 is answered in an unbounded way.
Finally, in order to illustrate the importance of the even-middle value, let us consider the
sub-arena G′′ρ in the right part of the figure above, where again all the states are controlled
by Player 1. The instances G′′0 and G′′1 of G′′ρ have even-left value 2, right-even value 4, and
even-middle value ⊥ and 2, respectively. While for G′′0 , all the plays starting from in are
winning for Player 0, for G′′1 , there are plays where the external request 3 is answered in an
unbounded way. We make the following observations which easily follow from Definition 3.

I Proposition 4. Let σ be a strategy of Player 0 in G and s ∈ Exit such that value(σ, s) =
(f, cpr, co, c

L
e , c

M
e , cRe ). Then:

co �o cpr, cLe ≤ cpr, cLe ≤ cRe , and cMe ∈ [cLe , cRe ] if cMe 6= ⊥.
cMe = ⊥ if f = bnd0, and cMe 6= ⊥ if f = bnd1.
cRe = max(Ce) if f 6= unb, and cRe < max(Ce) if f = unb and cMe = cRe .
cLe = cpr if cpr ∈ Ce and either f 6= unb, or cLe < cRe , or cMe = cRe .

I Definition 5 (Summaries of Player 0 strategies). The set EC of exit values for the set C of
colors is the finite set {`, Cmax

o } ∪ E ′C , where E ′C is the set of tuples (f, cpr, co, c
L
e , c

M
e , cRe ) ∈

{bnd0, bnd1, unb}×C̃×C̃o×Ce×(Ce∪{⊥})×Ce satisfying Conditions (1)–(4) in Proposition 4.
A summary of G is a mapping S : Exit 7→ EC such that for all s ∈ Exit with S(s) =

(f, cpr, co, c
L
e , c

M
e , cRe ), it holds that cLe �0 Ω(in), co �0 Ω(s), and Ω(in) ≤ cRe . The summary
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6:10 Hierarchical Cost-Parity Games

S(σ) of a strategy σ of Player 0 in G is the summary of G associating to each s ∈ Exit, the
exit value value(σ, s).

For each summary S, we now define a partial-cost parity game Gad(G,S), exposing the
same interface as G and independent of the set of ‘internal’ states in G, such that there is a
unique strategy σS of Player 0 in Gad(G,S). Moreover, σS is non-loosing and the exit values
of σS correspond to the exit values of any strategy of Player 0 in G having S as summary.

I Definition 6 (Summary-Gadget Arena). Let S be a summary of G. Given ex ∈ Exit, we
first define the sub-gadget Gad(G,S, ex) of G for summary S and ex, which is the partial
cost-parity game with set of states Sex ∪ {S, ex} and set of edges Rex, where:

All the states in Sex ∪ {S} are controlled by Player 1, S has color 0 and is the initial
state, ex is the unique exit state, and the color and the player of state ex is as in G.

Moreover, if S(ex) =`, then Sex = ∅, and Rex = ∅. On the opposite side, if S(ex) = Cmax
o ,

then Sex consists of a unique state s having color Cmax
o , and Rex consists of two edges,

one from state S to state s with cost 0, and the other one from s to ex with cost 0 as
well. Otherwise, let S(ex) = (f, cpr, co, c

L
e , c

M
e , cRe ). Then, we distinguish six cases, where

(i) cex is the color of ex, and (ii) do = cpr and de = cLe if co ∈ {0, cpr}, and do = co and
de = max({ce, co + 1}) otherwise, where ce = cLe if cpr ∈ Co, and ce = cpr otherwise. In the
figures illustrating the construction, we assume that ex is controlled by Player 0.

Case f = bnd0

0

S

cex

ex

cL
e0 cpr

0
0

de0 do0
0

In this case, we have cMe = ⊥ and cRe = max(Ce). The sub-gadget Gad(G,S, ex) for this case
is a DAG and is illustrated on the left. Note that the cost of any path from state S to the
exit state ex is 0.

Case f = bnd1

0

S

cex

ex
cM

e
1 0
cL

e0 cpr
ρ

0

de
0 do0

0

In this case, we have that cMe ∈ Ce, cMe ∈ [cLe , cRe ], and CRe = max(Ce). The associated
sub-gadget is a DAG and it is illustrated on the right, where ρ = 0 if cLe < cMe , and ρ = 1
otherwise. Note that the overall cost of all paths from state S to the exit state ex is 1.
Moreover, according to the definition of even-middle value, cMe represents the smallest even
color ce such that the cost of all exit plays leading to ex and having maximal even color ce is
finite and non-null. Additionally, if cLe < cMe , according to the definition of even-left value,
there are exit plays leading to ex whose maximal even color is cLe , and the overall cost of
such exit plays is 0.
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Case f = unb, cM
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The sub-gadget Gad(G,S, ex) for this case is illustrated on the left. When f = unb, the overall
cost of all exit plays leading to ex is infinite. This is implemented by a self-loop with cost 1 on
the state having color cRe . Note that for a strategy σ of Player 0 with valueCost(σ, ex) = unb
and valueRe (σ, ex) = cRe , the overall cost of all ex-exit plays having maximal even color at
most cRe maybe finite. However, in this case, cRe < max(Ce) and ResCost(σ, ex, cRe + 2) =∞.
Thus, the self-loop with cost 1 in the sub-gadget above takes into account also these possible
scenarios.

Case f = unb, cM
e = ⊥, and cL
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e
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S

cex
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0
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This case is similar to the previous one. The unique difference is that now cLe < cRe . Thus,
the associated sub-gadget – illustrated on the right – summarizes strategies σ of Player 0 for
which, in particular, valueLe (σ, ex) = cLe and there are exit plays leading to ex whose maximal
even color is cLe , and the overall cost of such exit plays is 0.

Case f = unb, cM
e ∈ Ce, and cM

e < cR
e

This case is similar to the previous one, but now cMe ∈ Ce, hence, cMe ∈ [cLe , cRe ]. The
associated sub-gadget is illustrated in the left part of the figure below, where ρ = 0 if
cLe < cMe , and ρ = 1 otherwise.

Case f = unb, cM
e ∈ Ce, and cM

e = cR
e

In this case, we have that cMe ∈ [cLe , cRe ] and cRe < max(Ce). The associated sub-gadget
is illustrated on the right of the figure below, where cR+ = cRe + 2, ρ = 0 if cLe < cMe , and
ρ = 1 otherwise. In this case there is an even color, namely cR+, whose response-cost with
respect to ex is infinite. This is consistent with the fact that for all strategies σ of Player 0
such that valueCost(σ, ex) = unb, valueRe (σ, ex) = cRe , and Coste(σ, ex, cRe ) 6=∞, we have that
ResCoste(σ, ex, cRe + 2) =∞.
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We now define the gadget arena Gad(G,S) for the given summary S, which is intuitively
obtained by merging the sub-gadgets Gad(G,S, ex) for the various exit states ex ∈ Exit and
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by adding the state in. Formally, assuming that Sex ∩ Sex′ = ∅ (i.e., sub-gadgets associated
with distinct exit states share only state S), Gad(G,S) has the same interface as G and
satisfies the following: the set of states of Gad(G,S) is {in,S} ∪ Exit ∪

⋃
ex∈Exit Sex and the

set of transitions is {(in,S)} ∪
⋃

ex∈Exit Rex, where transition (in,S) has cost 0.
I Remark. Note that in a summary-gadget arena Gad(G,S), every state which is not in
{in} ∪ Exit is controlled by Player 1. In particular, there is exactly one strategy of Player 0,
and such a strategy is non-loosing.

By construction, we easily obtain the following result.

I Proposition 7. Let G = 〈A,Cost,Ω,Exit〉 be a partial-cost parity arena, σ a strategy
of Player 0, σS the unique strategy of Player 0 in Gad(G,S(σ)), and s ∈ Exit. Then,
value(σ, s) = value(σS , s). Moreover, if value(σ, s) 6= Cmax

o , the following holds:
Let ν be an s-exit play of σS with maximal even color ce. Then, either (i) Coste(σ, s, ce) ≥
Coste(σS , s, ce), and there is an s-exit play ν′ of σ whose maximal even color is at most
ce, or (ii) Coste(σS , s, ce) =∞, ce < max(Ce), and ResCost(σ, s, ce + 2) =∞.
For each ce ∈ Ce, ResCost(σS , s, ce) =∞ entails that ResCost(σ, s, ce) =∞.

Not all the summaries of G are associated with non-loosing strategies (of Player 0). On
the other hand, checking whether a summary is associated with a non-loosing strategy is not
an easy task since we have to check the fulfillment of unboundedness conditions. However,
we can get around the problem by exploiting monotonicity properties of the cost-parity
winning conditions. We define a reflexive and transitive relation w over the set of summaries.
Intuitively, S w S ′ when S is not worse than S ′ for Player 0. A summary S is then relevant
if S(σ) w S for some non-loosing memoryless strategy σ. As we will see in Section 3.2,
checking whether a summary is relevant can be done in polynomial space.

I Definition 8 (Relevant summaries). Let w be a binary relation over EC defined as follows:
`w ev for all ev ∈ EC ;
ev w Cmax

o for all ev ∈ EC ;
(f, cpr, co, c

L
e , c

M
e , cRe ) w (f̃ , ˜cpr, c̃o, c̃Le ,

˜cMe , c̃Re ) if f �b f̃ , cpr �0 ˜cpr, co �0 c̃o, cLe �0 c̃Le ,
cRe �0 c̃Re , and the following holds:

if cMe 6= ⊥, then either ˜cMe 6= ⊥ and cMe ≥ ˜cMe , or ˜cMe = ⊥ and cMe ≥ c̃Re .

Given two summaries S and S ′ of G, we say that S is not worse than S ′ for Player 0,
written S w S ′, if S(s) w S ′(s) for all s ∈ Exit. A summary S of G is relevant iff there is a
memoryless non-loosing strategy σ in G such that S(σ) w S.

I Remark. The binary relation w over the set of summaries is reflexive and transitive.
Note that if G has no exits, then the unique summary is the empty set, and such a summary

is relevant iff there is a memoryless winning strategy of Player 0 from in. By construction,
we easily obtain the following result, which represents the converse of Proposition 7.

I Proposition 9. Let G = 〈A,Cost,Ω,Exit〉 be a partial-cost parity arena, S a summary
of G, σ a strategy of Player 0 such that S(σ) w S, σS the unique strategy of Player 0 in
Gad(G,S), and s ∈ Exit. Then value(σ, s) w value(σS , s). Moreover, if S(s) 6= Cmax

o , the
following holds:

Let ν be an s-exit play of σ, ce the maximal even color of ν, and Coste(σ, s, ce) = m ∈
N ∪ {∞}. Then, either (i) Coste(σS , s, ce) = m′ where m′ > 0 if m > 0, and m′ =∞ if
m =∞, and there is a s-exit play ν′ of σS whose maximal even color is at most ce, or
(ii) Coste(σ, s, ce) =∞, ce < max(Ce), and ResCost(σS , s, ce + 2) =∞.
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For each ce ∈ Ce, if ResCost(σ, s, ce) =∞, one of the following holds:
either ResCost(σS , s, c′e) =∞ for some even color c′e ≤ ce,
or there is an even color c′e ≤ valueRe (σ, s) < ce such that Coste(σS , s, c′e) =∞.

Note that the set of relevant summaries in G is empty iff there does not exist a memoryless
non-loosing strategy in G. By Theorem 1, checking this condition can be done in polynomial
space. In this case, we associate with G a simple partial cost-parity arena (bad gadget),
where Player 0 always loses.

I Definition 10 (Bad-Gadget Arena). The bad-gadget arena BadGad(G) of G is the partial
cost-parity game having the same interface as G and defined as follows: BadGad(G) has a
unique ‘internal’ state s /∈ {in} ∪Exit, which has color 0 and is controlled by Player 0, and a
unique transition, namely (in, s), which has cost 0.

3.2 Checking relevance of summaries
We reduce the problem of checking summary relevance in partial cost-parity arenas to
verifying the existence of memoryless strategies in cost-parity arenas under a simple imperfect-
information setting. Formally, an observation-based cost-parity arena (OCPA) is a cost-parity
arena G = 〈A,Cost,Ω,Obs〉 equipped with an observability equivalence relation Obs ⊆ S× S
over the set of states. An observation-based memoryless strategy of Player 0 is a memoryless
strategy σ of Player 0 such that, for all non-terminal states s and s′ controlled by Player 0,
(s, s′) ∈ Obs ⇒ (σ(s), σ(s′)) ∈ Obs. The following easily follows.

I Theorem 11. Let G = 〈A,Cost,Ω,Obs〉 be an OCPA. Checking the existence of a winning
observation-based memoryless strategy of Player 0 from the initial state can be done in
polynomial space.

I Theorem 12 (Checking summary relevance). Let G = 〈A,Cost,Ω,Exit〉 be a partial cost-
parity arena over C with A = 〈S, S0, S1,R, in〉 and S a summary of G. Then, one can check
in polynomial space whether S is relevant.

Proof. We build in polynomial time an OCPA GS such that, there is a winning observation-
based memoryless strategy of Player 0 in GS from the initial state iff S is relevant in G. We first
construct a partial OCPA G′ obtained from G by extending every state of G with additional
information which keeps tracks of the maximal even color and the maximal unanswered odd
color visited in the current play-prefix from in and a flag indicating whether such a prefix
has cost zero. Formally, G′ = 〈A′,Cost′,Ω′,Exit′,Obs〉 where A = 〈S′,S′0,S′1,R′, in′〉 and:

S′ = S×Ce×C̃o×{0, 1}, Exit′ = Exit×Ce×C̃o×{0, 1}, in′ = (in, 0, 0, 0), Ω′((s, ce, co, d)) =
Ω(s), and ((s, ce, co, d), (s′, c′e, c′o, d′)) ∈ Obs iff s = s′. Moreover, the player of each state
(s, ce, co, d) is the player of s in G if s /∈ Exit, Player 0 if s ∈ Exit and S(s) =`, and
Player 1 otherwise.
((s, ce, co, d), (s′, c′e, c′o, d′) ∈ E′ iff (i) (s, s′) ∈ E, (ii) c′e = max�0({ce,Ω(s)}), (iii) c′o = 0
if Ω(s′) ∈ Ce and Ω(s′) ≥ co, and co = min�0({co,Ω(s)}) otherwise, and (iv) d′ = 0 if
d = 0 and Cost(s, s′) = 0, and d′ = 1 otherwise;
Cost′((s, ce, co, d), (s′, c′e, c′o, d′)) = Cost(s, s′).

Note that by construction, there is a bijection, denoted by Obs, between the memoryless
strategies σ of Player 0 in G, and the observation-based memoryless strategies of Player 0
in G′. Formally, for each non-terminal state (s, ce, co, d) of G′ controlled by Player 0,
Obs(σ)((s, ce, co, d)) is the unique successor of (s, ce, co, d) having as S-component σ(s).

TIME 2017
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For each ex ∈ Exit, let Exit′ex be the set of exit states of G′ having ex as S-component.
The game GS is obtained from G′ by adding for each exit state ex ∈ Exit such that S(ex) /∈
{`, Cmax

o }, a gadget (subgraph) consisting of states controlled by Player 1 that connects
the exit states of G′ in Exit′ex with the initial state in′ = (in, 0, 0, 0), and an additional
terminal state 2 which is controlled by Player 0. If S(ex) =`, then for every strategy σ of
Player 0 in G, S(σ)(ex) =` if S(σ) w S, and our choice (states in Exit′ex are controlled by
Player 0) allows to capture only the non-loosing strategies σ of G for which there is no exit
play leading to ex. On the other hand, if S(ex) = Cmax

o , then for each strategy σ of Player 0
in G, S(σ)(ex) w Cmax

o , and accordingly, states in Exit′ex are controlled by Player 1.
Now, we describe the construction of the gadget for ex when S(ex) /∈ {`, Cmax

o }, i.e., S(ex)
is of the form (f, cpr, co, c

L
e , c

M
e , cRe ) ∈ {bnd0, bnd1, unb} × C̃ × C̃o × Ce × (Ce ∪ {⊥}) × Ce.

Due to space limitations, here we focus only on the case where f = unb and co > cRe . Note
that for each strategy σ of Player 0, it holds that Cost(σ, ex) �b unb. The gadget for this
case is obtained by adding 2 new states controlled by Player 1, namely exe and exRo , a new
terminal state 2 controlled by Player 0, and new transitions. State 2 has color 0, state exe
has the even color co + 1, and state exRo has color 0 if cRe = 0, and the odd color cRe − 1
otherwise. The new transitions have cost 0 and are as follows:

for each s = (ex, c′e, c′o, d) ∈ Exit′ex such that one of the following bad conditions is satisfied,
we add the transition (s,2).

Bad conditions: either (i) max({c′o, c′e}) ≺o cpr, or (ii) c′e < cLe , or (iii) d = 1, cMe = ⊥,
and c′e < cRe , or (iv) d = 1, cMe 6= ⊥, and c′e < cMe .

the transitions (exe, exRo ) and (exRo , in′), and for each s ∈ Exit′ex, the transition (s, exe).

The transitions having as target state 2 are exploited to capture the strategies σ of
Player 0 in G satisfying the following: (i) valuepr(σ, ex) �o cpr, (ii) in each exit play ν of σ
leading to ex, the maximal even color of ν is at least cLe and (iii) if valueMe (σ, ex) 6= ⊥, then
either cMe = ⊥ and valueMe (σ, ex) ≥ cRe , or cMe 6= ⊥ and valueMe (σ, ex) ≥ cMe .

Moreover, given a memoryless strategy σ of Player 0 in G, the chains of transitions (s, exe),
(exe, exRo ) and (exRo , in′) entering the initial state in′, where s ∈ Exit′ex, are responsible of
cycles consistent with Obs(σ) of the form ν · exe · exRo · in′, where ν is an arbitrary exit play
of Obs(σ) leading to some exit state s ∈ Exit′ex. By concatenating these cycles, one obtains
infinite plays consistent with Obs(σ) which are winning for Player 0 iff value(σ, ex) 6= Cmax

o
(the request cost of σ w.r.t. 0 is finite), valueo(σ, ex) �0 co, and valueRe (σ, ex) ≥ cRe .

By construction, for each memoryless strategy σ of Player 0 in G, σ is non-loosing and
S(σ) w S iff Obs(σ) is winning for Player 0 from state in′. Thus, since Obs is a bijection
between the memoryless strategies of Player 0 in G and the observation-based memoryless
strategies of Player 0 in GS , by Theorem 11, Theorem 12 follows. J

3.3 Algorithm for solving games on HCPA
In this section, by exploiting the summary-gadget arena construction of Section 3.1, we
derive a polynomial space algorithm for solving hierarchical cost-parity games. In particular,
we describe an NPspace procedure which solves the considered problem (recall that by
Savitch’s theorem, Pspace =NPspace). The outline of the nondeterministic procedure,
called Algorithm 1, is given in Fig. 1.

Given an HCPA H = 〈V,Cost,Ω〉 with V =〈V1, . . . ,Vn〉, Algorithm 1 proceeds in phases
corresponding to the iterations of the repeat loop. In each phase, the modular sub-arenas of
H are processed in increasing order w.r.t. the hierarchical level, starting with the lowest level
sub-arena Vn which has no boxes, and, therefore, corresponds to its flat expansion HFn . At



L. Bozzelli, A. Murano, G. Perelli, and L. Sorrentino 6:15

Algorithm 1

Input: H = 〈〈V1, . . . ,Vn〉,Cost,Ω〉
repeat

for i = n downto 1 do
guess Gapp,i ∈ AppSimplify(Vi, gapp,i);
gapp,i(b) = Gapp,Yi(b) for all b ∈ Bi;

if Player 0 wins in Gapp,1 then accepts

Figure 1 NPspace procedure.

step n ≥ i ≥ 1 of the current phase, the algorithm nondeterministically chooses a partial
cost-parity arena Gapp,i from a finite set of partial cost-parity arenas obtained by applying
the operation AppSimplify (approximated simplification) to the modular sub-arena Vi and
the substitution mapping gapp,i. A substitution for a modular sub-arena Vi is a mapping
associating to each box b of Vi with Yi(b) = k, a partial cost-parity arena having the same
interface as the flat expansion HFk of Vk (hence, g(b) has initial state ink and set of exit states
Exitk). In our case, the substitution gapp,i considered by the algorithm at iteration n ≥ i ≥ 1
maps each box b of Vi with the the guessed approximation Gapp,Yi(b) in the previous iteration
Yi(b) of the current phase (recall that Yi(b) > i). The essence of the operation AppSimplify is
to replace each box b of Vi with a copy of the summary-gadget arena of Gapp,Yi(b) associated
with some relevant summary of Gapp,Yi(b). Note that at iteration n, gapp,n is empty and
Gapp,n coincides with HFn . If Player 0 wins in Gapp,1 (recall that the top-level arena V1 has no
exit, hence, Gapp,1 has no exit as well), then the algorithm accepts the input H. Otherwise,
a new phase is started. We now formally define the approximated simplification operation.

I Definition 13 (Approximated simplification). Let H = 〈V,Cost,Ω〉 be an HCPA with
V =〈V1, . . . ,Vn〉, i ∈ [1, n], and g be a substitution for Vi. For a box b of Vi and a relevant
summary S of g(b), we denote by Gadb(g(b),S) the copy of the summary-gadget arena
Gad(g(b),S) associated with g(b) and S obtained by replacing each state s in Gad(g(b),S)
with the copy (b, s). The b-copy BadGadb(g(b)) of the bad-gadget arena BadGad(g(b)) for
g(b) is defined in a similar way. Note that the copies of the states in {ink} ∪ Exitk, where
k = Yi(b), are states in the flat expansion HFi of Vi.

The simplification Simplify(Vi, g, b) of Vi w.r.t. the substitution g and the box b (resp.,
the simplification Simplify(Vi, g, b,S) of Vi w.r.t. the substitution g, the box b, and a relevant
summary S of g(b)) is the partial cost-parity arena obtained from HFi as follows:

all the states in HFi of the form (b, s) which are not in BadGadb(g(b)) (resp, Gadb(g(b),S))
are removed together with the associated transitions, and all the states in BadGadb(g(b))
(resp, Gadb(g(b),S)) are added together with the associated transitions.

An approximated simplification of Vi w.r.t. g is a partial cost-parity arena obtained by
applying for each box b of Vi, the simplification operation w.r.t. g and b if the set of relevant
summaries of g(b) is empty, and the simplification operation w.r.t. g, b, and some relevant
summary Sb of g(b) otherwise. We denote by AppSimplify(Vi, g) the set of approximated
simplifications of Vi w.r.t. g.

Note that the arenas in AppSimplify(Vi, g) can be constructed directly from Vi without
constructing the flat expansion HFi . By Propositions 7 and 9, we deduce that the AppSimplify
operation preserves the set of relevant summaries. In particular, the following holds, where
for a partial cost-parity arena G, RS(G) is the set of relevant summaries in G (we extend the
notation RS to sets of partial cost-parity arenas).
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I Lemma 14. Let H = 〈V,Cost,Ω〉 with V = 〈V1, . . . ,Vn〉 be an HCPA, i ∈ [1, n], and
g a substitution for Vi. Assume that for each box b of Vi, RS(HFYi(b)) = RS(g(b)). Then,
RS(HFi ) = RS(AppSimplify(Vi, g)).

By Lemma 14, we deduce the main result of this paper.

I Theorem 15. Solving hierarchical cost-parity games is Pspace-complete.

4 Conclusion

Cost-parity games represent a powerful machinery for the verification of temporal requirements
that are bounded in time. As in many settings, the representation of systems by means of
cost-parity games is affected by an exponential blow-up in the size of the resulting game.
To overcome this, many techniques exploiting system regularities have been successfully
applied. Among them, hierarchical systems deserve a special mention. In this paper, we
have introduced and investigated the problem of solving cost-parity games over hierarchical
FSMs, showing that the problem is Pspace-complete, thus not harder than solving parity
games over hierarchical models. As future work, we aim to adapt the proposed approach
to all the other winning bounded conditions introduced in [24]. Moreover, it would be
interesting to investigate cost-parity conditions over concurrent game structures, the last one
being a suitable formalism for modelling strategic environments where there is simultaneous
interaction between multiple players. Other relevant research directions include the study of
cost-parity games in the imperfect information setting as well as for infinite-state systems.
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Abstract
It has been argued that the most suitable semantic model for real-time formalisms is the non-
negative real line (signals), i.e. the continuous semantics, which naturally captures the continuous
evolution of system states. Existing tools like Uppaal are, however, based on ω-sequences with
timestamps (timed words), i.e. the pointwise semantics. Furthermore, the support for logic
formalisms is very limited in these tools. In this article, we amend these issues by a compositional
translation from Metric Temporal Interval Logic (MITL) to signal automata. Combined with an
emptiness-preserving encoding of signal automata into timed automata, we obtain a practical
automata-based approach to MITL model-checking over signals. We implement the translation
in our tool MightyL and report on case studies using LTSmin as the back-end.
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1 Introduction

Many computer programs nowadays control critical applications, and need to enforce complex
requirements in order to guarantee safe, dependable and efficient operation of the whole
system. Among these requirements, real-time specifications (such as ‘every request is
eventually followed by an acknowledgement within 3 time units’) are common. In this
framework, computers interact with an environment that is intrinsically continuous, and
ensuring complex real-time constraints is known to be a very difficult task.

Different kinds of formalisms have been proposed over the past 30 years to specify those
real-time models (often by means of automata) and requirements (usually by means of some
logic language). On the automata side, the model of timed automata [2] is arguably widely
accepted today, a success which is due in part to the tool support provided by Uppaal
[35] and other verification tools such as Kronos [11], TiAMo [10]. . . As far as logics are
concerned, several proposals have been made in the literature during the past 30 years (such
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as MTL [33], TPTL [6], TCTL [1]. . . ) but the recent research seems to focus mainly on MTL,
for theoretical reasons (we think here of the works of Ouaknine and Worrell on the decidability
of MTL [38]); and on MITL [3] for more practical motivations [36, 12, 31, 13, 15, 9].

Indeed, since its introduction in 1996, MITL has been advocated as a good ‘trade-off
between realistic modelling of time and feasible verification of timing properties’ [3]. MITL
is at the same time a real-time extension of LTL, the most widely accepted logic in the
non-real-time case; and a restriction of MTL, whose expressive power makes it undecidable
in most practical cases [5, 38]. Unfortunately, tool support for MITL is still lacking today,
albeit MITL’s clear practical interest (and indeed, the need for such tool support is repeatedly
emphasised in several papers [3, 36, 9]). Uppaal, the most prominent real-time model
checker, supports only a restricted subset of TCTL; and the alternatives are either not
publicly available, or too restricted, or too experimental (see the related work hereinafter for
a more comprehensive picture). We believe this is due to the relative lack of maturity of
automata-based support for MITL, at least when compared with LTL.

Another point of debate in the community is the choice of the semantics for real-time
models. The two different options are known as the pointwise and continuous semantics. In
the pointwise semantics, executions of the system are timed words, i.e. sequences of pairs
(timestamp, system state). That is, the system’s states can only be observed at selected
timestamps (which are non-negative real values). In the continuous semantics, executions are
signals, i.e. sequences of contiguous intervals during which the state of the system does not
change and can be continuously observed. While the pointwise semantics is the most common
today (probably due to the success of timed automata which have initially been defined
in this framework), it has been argued [7, 29] that the continuous semantics models time
more faithfully, and it is indeed adopted in many works about control of hybrid systems [41],
synthetic biology [8], etc. Apart from these practical considerations, the difference between
these two semantics matters as it changes the expressive power of the logic.1 For example,
the following formula (which requires p to hold exactly in [0, a] for some a ≥ 0) is satisfiable
in the continuous semantics only: p ∧ F(¬p) ∧G

(
¬p⇒ G(¬p)

)
∧ ¬
(
pU (¬p)

)
.

Contribution. In order to remedy the lack of comprehensive tool support for MITL in
the pointwise semantics, we have recently introduced MightyL [14], an efficient tool that
turns MITL formulae into a network of timed automata (expressed in the Uppaal language)
accepting the same language. These timed automata can then be used to perform satisfiabilty
or model-checking, using off-the-shelf model checkers such as Uppaal or LTSMin. The
central point of the efficiency of our construction is its compositional feature: we output a
network of timed automata (one per subformula) instead of a single, monolithic, one. In
the present work, we extend this line of research to the realm of continuous semantics by
revisiting the compositional translation of MITL into signal automata (i.e. automata akin to
timed automata, but that accept signals instead of timed words).

More precisely, we introduce, in Section 3, a compositional translation that turns an
MITL formula ϕ into a network of signal automata Cinit ×

∏
χ Cχ, one for each subformula χ

in ϕ, plus an extra signal automaton Cinit (extending the ideas of our previous work [14] to
the continuous setting). However, as is, this translation would not allow us to rely on the
currently available tools for timed systems since most of them (and in particular, Uppaal)
rely on the pointwise semantics. So, in Section 4, we present an emptiness-preserving and
compositional transformation from signal automata to timed automata (see Theorem 11).

1 As for MTL, for instance, which becomes decidable on finite words in the pointwise semantics [38].



T. Brihaye, G. Geeraerts, H.-M. Ho, and B. Monmege 7:3

Concretely, given a signal automaton A modelling a system, and a property ϕ to be checked
on A, we can perform model-checking by: (i)± building the network of signal automata
Cinit×

∏
χ Cχ from ¬ϕ using the procedure of Section 3; (ii) translating, using the techniques

of Section 4, A, Cinit and all Cχ into corresponding timed automata BA, Binit and Bχ (for all
subformulae χ) respectively; and (iii) checking (using a model-checker for timed automata)
whether the language BA × Binit ×

∏
χ Bχ is empty. If this is the case, then our translation

ensures that the language of A× Cinit ×
∏
χ Cχ is empty, which in turn holds if and only if

A |= ϕ, by construction. We have implemented this approach as an extension of MightyL
and report on experiments in Section 5. The preliminary results are very encouraging, as
our approach compares well or outperforms previous approaches from the literature.

Related work. The most similar work to ours is [32] where the authors propose a composi-
tional translation from MITL with past operators [4] to signal automata. The translation
works by rewriting the input formula into one with only past operators using projections [21].
Each past subformula can then be handled by a simple component, and the resulting auto-
maton is obtained by synchronising the components via newly introduced propositions.
An advantage of this approach is that it directly supports past operators. Unfortunately,
the rewriting step does not work for unbounded future operators; this severely limits the
applicability of the translation (for example, the liveness property GFp cannot be expressed
in the bounded-future fragment). Also, as far as we know, it has never been implemented.
By contrast, while our translation deals only with future MITL, one may use projections to
remove past operators from the input formula.

Compositional translations that support unbounded future operators also exist in the
literature [36, 37, 20]. One difference of these with our translation is that they are formulated
in terms of non-standard models such as timed signal transducers or hierarchical timed
automata. This deviation from the more common models, we believe, has contributed to the
lack of implementation of these translations.2 Another difference is that the components
constructed by these approaches are testers whereas those constructed by ours are positive
testers [40, 16, 23]; that is, suppose we introduce a new proposition pχ for the subformula
χ = ϕ1 U ϕ2, a tester enforces pχ ⇔ ϕ1 U ϕ2 to hold at all times while a positive tester
only enforces the weaker formula pχ ⇒ ϕ1 U ϕ2 to hold at all times. This may affect the
performance of verification algorithms [43]. Moreover, the weaker condition allows us to
impose some minimality criteria on transitions for further performance gains (see Section 5).

The original translation from MITL to signal automata in [3] is a monolithic tableau-
based procedure which follows roughly the same lines as the tableau-based translation from
LTL to Büchi automata [27]: the locations of the resulting automaton are labelled by sets
of subformulae, and the transitions between them are obtained by ‘expanding’ the labels.
Like our translation, it also enforces minimality when generating transitions. However, the
procedure is much more involved than the LTL counterpart and seems difficult to realise in
practice. A simplified tableau-based translation is given in [26, 25] where an implementation
– the only implementation of an MITL to signal automata translation we are aware of – is also
reported. Nevertheless, the translation only works for the upper-bound fragment of MITL,
and the tool is not publicly available.

Besides automata-based approaches, there are also proposals to apply SMT (Satisfiability
Modulo Theories) solvers [18] to satisfiability/model-checking for MITL over signals [31, 9].
The SMT approach is straightforward to implement and there are publicly available tools.

2 These models are, however, not more expressive than signal automata.
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However, it is essentially a ‘bounded model-checking’ approach and therefore is inherently
incomplete, unless very large (impractical) bounds are used.

2 Model-checking signal automata against MITL

This section introduces the main objects we study – the logic MITL over signals and signal
automata – as well as the model-checking problem we tackle.

Signals. An interval I is a non-empty convex subset of R≥0. If I is bounded (sup(I) exists),
we write |I| for sup(I)− inf(I). Let AP be a finite set of atomic propositions. A state σ over
AP is a subset of AP, i.e. σ ∈ 2AP. A signal γ over 2AP is a function that maps each t ∈ R≥0
to a state over AP. Throughout this work, we restrict ourselves to signals that are finitely
variable, i.e. the number of discontinuities is finite in each bounded interval. We rely on
timed state sequences to represent signals. Intuitively, a timed state sequence partitions the
reals into a sequence of contiguous time intervals during which the state remains constant.
A state sequence σ = σ0σ1σ2 · · · over 2AP is an infinite sequence of states σi ∈ 2AP. An
interval sequence I = I0I1I2 · · · is an infinite sequence of intervals such that: (1) for all i ≥ 0,
Ii and Ii+1 are adjacent, i.e. sup(Ii) = inf(Ii+1) and Ii ∩ Ii+1 = ∅; (2) for each t ∈ R≥0,
we have t ∈ Ii for some i ≥ 0. An interval sequence is said to be bipartite if it alternates
between singular and open intervals, i.e. Ii is singular for all even i ≥ 0. Then, a timed
state sequence over 2AP is a pair κ = (σ, I) where σ is a state sequence over 2AP and I is an
interval sequence. We let κ(t) = σi if t ∈ Ii for some i ≥ 0. We write JγK (respectively, JγKbp)
for the set of all timed state sequences (respectively, timed state sequences with bipartite
interval sequences) κ such that κ(t) = γ(t) for all t ∈ R≥0.

Metric Interval Temporal Logic (MITL). We consider the satisfiability and model-checking
problems for Metric Interval Temporal Logic (MITL), a real-time extension of Linear Temporal
Logic (LTL), allowing temporal operators to be labelled with non-singular intervals. Formally,
MITL formulae over AP are generated by the grammar:

ϕ := > | p | ϕ ∧ ϕ | ¬ϕ | ϕUI ϕ,

where p ∈ AP and I is a non-singular interval with endpoints in N≥0 ∪ {∞} (I is assumed to
be (0,∞) when omitted).

In this work, we focus on the continuous semantics for MITL, in which formulae are
interpreted over signals. Given a signal γ over 2AP, t ∈ R≥0, and an MITL formula ϕ, the
satisfaction relation γ, t |= ϕ is defined as follows (following [3], we adopt the strict-future
semantics for the temporal operators):

γ, t |= >; γ, t |= p if p ∈ γ(t);
γ, t |= ϕ1 ∧ ϕ2 if γ, t |= ϕ1 and γ, t |= ϕ2; γ, t |= ¬ϕ if γ, t 6|= ϕ;
γ, t |= ϕ1 UI ϕ2 if there exists t′ > t such that t′ − t ∈ I, γ, t′ |= ϕ2 and γ, t′′ |= ϕ1 for all
t′′ ∈ (t, t′).

We write S(ϕ) for the set of all signals γ such that γ |= ϕ.
We will use standard syntactic sugar, e.g. ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), ⊥ ≡ ¬>, ϕ1 ⇒ ϕ2 ≡

¬ϕ1 ∨ ϕ2, the ‘eventually’ operator FIϕ ≡ >UI ϕ, the ‘globally’ operator GIϕ ≡ ¬FI¬ϕ,
and the ‘release’ operator ϕ1 RI ϕ2 ≡ ¬((¬ϕ1) UI (¬ϕ2)). Hence, the semantics of the
release operator can be defined as follows:

γ, t |= ϕ1 RI ϕ2 if for all t′ > t such that t′ − t ∈ I, γ, t′ |= ϕ2 or there exists t′′ ∈ (t, t′)
such that γ, t′′ |= ϕ1.
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In particular, we can make use of these operators to transform every formula ϕ into its
negative normal form where the negations are pushed inwards so that they range on atomic
propositions only.

Signal automata. Our tool support for MITL will be based on automata. We first give
a formal definition of signal automata, and we will also present classical timed automata
afterwards. Like [3], we equip these automata with generalised Büchi acceptance conditions.
From now on, a propositional constraint φ over AP is a set of states over AP; that we
denote by means of a Boolean formula over AP. For example, assuming AP = {p, q, r}, the
propositional constraint p∧¬q denotes {{p, r}, {p}}. Let X be a finite set of clocks. The set
G(X) of clock constraints g over X is generated by the grammar g := > | ⊥ | g ∧ g | x ./ c
where ./ ∈ {≤, <,≥, >}, x ∈ X and c ∈ N. A valuation v of X is a mapping v : X → R≥0.
We denote by 0 the valuation that maps every clock to 0. The satisfaction of a constraint g
by a valuation v is defined in the usual way and denoted v |= g. For t ∈ R≥0, let v + t be
the valuation defined by (v + t)(x) = v(x) + t for all x ∈ X. For λ ⊆ X, let v[λ← 0] be the
valuation defined by (v[λ← 0])(x) = 0 if x ∈ λ, and (v[λ← 0])(x) = v(x) otherwise.

I Definition 1. A signal automaton (SA) over 2AP is a tuple A = (L,L0, α,X, β,∆,F) where
L is a finite set of locations;
L0 ⊆ L is the set of initial locations;
α is the location labelling function that assigns to each location ` ∈ L a propositional
constraint α(`) ⊆ 2AP;
X is a finite set of clocks;
β is the location labelling function that assigns to each location ` ∈ L a clock constraint
β(`) ∈ G(X);
∆ ⊆ L × 2X × L is the set of transitions where each transition consists of the source
location, the clocks to be reset with this transition, and the target location;
F ⊆ 2L is the family of sets of accepting locations.

A run π of A on a signal γ over 2AP is an infinite sequence of the following form:

−→
v0

(`0, I0) λ1−→
v1

(`1, I1) λ2−→
v2

(`2, I2) λ3−→
v3

. . .

where: (1) for all i ≥ 0, `i is a location of A; (2) the sequence I0I1I2 · · · is an interval
sequence; (3) for all i ≥ 0: λi ⊆ X; (4) for all i ≥ 0: vi is a valuation of X; and that satisfies
the following:

Initialisation: `0 ∈ L0 and v0 = 0; and
Consecution: For all i ≥ 0: (`i, λi+1, `i+1) ∈ ∆ and vi+1 = (vi + |Ii|)[λi+1 ← 0]; and
Timing: vπ(t) |= β(`π(t)) for all t ≥ 0, assuming vπ(t) = vi + (t− inf(Ii)) and `π(t) = `i
if t ∈ Ii for some i ≥ 0; and
Adequation: γ(t) ∈ α(`π(t)) for all t ≥ 0.

We say that π is bipartite if I0I1I2 · · · is bipartite. We say that π is accepting if for all F ∈ F :
{i | `i ∈ F} is infinite. A signal γ is accepted by A if there is an accepting run of A on γ.
We write S(A) for the set of signals accepted by A. For two SAs A1 and A2, we denote by
A1 × A2 their (asynchronous) product, defined in a manner similar to [3]: intuitively, in
each location of this product, we can either fire only a transition of A1 (provided that the
guard in the current location of A2 holds after the transition), or only a transition of A2, or
one in A1 and one in A2, provided that the guards on their (respective) target locations are
satisfied afterwards. In particular, we have S(A1 ×A2) = S(A1) ∩ S(A2).
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We focus on the class of bipartite SA whose runs are bipartite by construction. An SA
A = (L,L0, α,X, β,∆,F) is bipartite if there exists a partition of L into Ls, Lo respecting
the conditions given hereinafter. Intuitively, on reading a signal γ, A is in a location of Ls

(Lo) when it sees a singular (respectively open) interval of κ ∈ JγKbp:
L0 ⊆ Ls;
if (`1, λ, `2) ∈ ∆ then `1 ∈ Ls if and only if `2 ∈ Lo;
for each ` ∈ L0, β(`) has x = 0 as a conjunct for some clock x ∈ X;
if (`1, λ, `2) ∈ ∆ with `1 ∈ Lo (and thus `2 ∈ Ls), then there is a clock x ∈ X such that
x ∈ λ and β(`2) has x = 0 as a conjunct.

In the rest of the paper, we will assume that all SAs are bipartite.3 There is no loss of
generality, thanks to the following proposition from [3] (see Appendix A for a proof):

I Proposition 2. Any SA A can be turned into a bipartite SA Abp such that S(A) = S(Abp).

From now on, when depicting bipartite SA, we use rectangle and rounded rectangles for the
locations from Ls and Lo respectively. Figure 1 shows an example of bipartite SA.

Satisfiability and model-checking problems. In this work, we consider two classical prob-
lems: satisfiability and model-checking of MITL. The satisfiability problem asks, given an
MITL formula ϕ, whether S(ϕ) 6= ∅ (if it is the case, we say that ϕ is satisfiable). The
model-checking problem asks, given an SA A and an MITL formula ϕ whether S(A) ⊆ S(ϕ).
If it is the case, we write A |= ϕ.

3 From MITL to signal automata

Our approach to MITL model-checking over signals is based upon a compositional translation
from MITL to signal automata. The core idea is similar to the translation for the pointwise
semantics reported in our previous work [14]: we keep track of the satisfiability of each
temporal subformula (i.e. a subformula whose outermost operator is temporal) χ with an
SA Cχ. From now on, we fix a set AP of atomic propositions and a negative normal form
MITL formula ϕ over AP. To simplify the exposition, we restrict ourselves to a fragment
of MITL in which only untimed and upper-bound operators are allowed, i.e. each bounding
interval I is either (0,∞) or (0, a), or (0, a] for some positive integer a. This fragment,
however, is already expressively complete for the full MITL [28, 37]. Moreover, we regard all
temporal subformulae of ϕ as distinct formulae.

Triggers. Let Φ be the set of temporal subformulae of ϕ. We introduce a new atomic
proposition pχ for each χ ∈ Φ and we let APΦ = {pχ | χ ∈ Φ}. Each pχ is called a trigger
(for χ). Intuitively, pulling the trigger pχ (i.e. setting pχ to true) at some point means that χ
is required to hold at that point. On the other hand, pχ being false at some point does not
mean that χ must not hold at that point – its satisfaction is simply not required there. The
point of the triggers is to enable communication between the different component automata:
when χ is a subformula of ψ, the component SA Cψ will pull the trigger pχ whenever the
satisfaction of χ is needed to check the value of ψ. A key point of our construction is to avoid
unnecessary pulling of triggers, in order to reduce the number of behaviours of the product
automaton and mitigate the state explosion problem during the model checking phase. This

3 Note that a product of bipartite SAs is a bipartite SA.
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is the point of the formulae ψ, ∗ψ, ∼ψ and ψ̂ that we introduce hereinafter. Concretely,
the outcome of our construction for an MITL formula ϕ is a network of SA that accepts an
APΦ-decorated version of S(ϕ). In other words, the signals accepted by our construction are
over AP ∪ APΦ and their projections on AP yields S(ϕ), as stated in Theorem 8 at the end
of the section.

For each (not necessarily temporal) subformula ψ of ϕ, we denote by Pψ the set of atomic
propositions pχ ∈ APΦ such that χ is a top-level temporal subformula of ψ, i.e. the outermost
operator of χ is UI or RI , yet χ does not occur under the scope of another UI or RI in
ψ. For instance, PpUIq∨rUI(sRt) = {ppUIq, prUI(sRt)}. For a signal γ′ over 2P′ (where P′ is
a set of atomic propositions) and P ⊆ P′, we denote by projP (γ′) the projection of γ′ onto
P, i.e. the signal obtained from γ′ by hiding all the atomic propositions p /∈ P. For a set of
signals S over 2P′ and P ⊆ P′, we write projP (S) = {projP (γ′) | γ′ ∈ S}. Conversely, we say
a signal γ′ over 2P′ extends a signal γ over 2P (P ⊆ P′) if projP (γ′) = γ.

Formulae over AP ∪ APΦ. We define some syntactic operations on Boolean combinations
over AP ∪ APΦ that will be used in the components described later. Specifically, for a
subformula ψ of ϕ, we define formulae ψ (introducing the trigger variables), ∗ψ (ensuring
that we do not pull any trigger of ψ), ∼ψ (checking that ψ does not hold, while none of its
triggers are pulled), and ψ̂ (checking ψ while triggering a minimal set of triggers).

The formula ψ is obtained from ψ by replacing all top-level temporal subformulae with
their corresponding triggers. Formally, ψ is defined inductively as follows (where p ∈ AP):

ψ1 ∧ ψ2 = ψ1 ∧ ψ2 ψ = ψ when ψ is > or ⊥ or p or ¬p
ψ1 ∨ ψ2 = ψ1 ∨ ψ2 ψ = pψ when ψ is ψ1 UI ψ2 or ψ1 RI ψ2 .

The formula ∗ψ, read as “do not pull the triggers of ψ”, is used to ensure that our components
only follow the ‘minimal models’ of ψ. It is defined as the conjunction of the negations of all
pχ ∈ Pψ (if Pψ = ∅ then ∗ψ = >). As a concrete example,

∗((¬p ∨ ψ1 U ψ2) ∧ (q ∨ ψ3 R (ψ4 U ψ5))) = ¬pψ1Uψ2 ∧ ¬pψ3R(ψ4Uψ5).

The formula ∼ψ asserts that ψ is false and none of its triggers are pulled: ∼ψ = ¬ψ ∧ ∗ψ.
Finally, the formula ψ̂ is defined as mm(ψ) where mm(φ) is defined inductively as follows:4

mm(>) = > mm(⊥) = ⊥ mm(p) = p mm(¬p) = ¬p
mm(φ1 ∨ φ2) =

(
mm(φ1) ∧ ∼φ2

)
∨
(
mm(φ2) ∧ ∼φ1

)
∨
(
(φ1 ∧ φ2) ∧ ∗φ1 ∧ ∗φ2

)
mm(φ1 ∧ φ2) = mm(φ1) ∧mm(φ2) .

First of all, we notice that formulae ψ and ψ̂ are equivalent, once we have projected away
the propositions that are not in AP, in the following sense:

I Proposition 3. For a subformula ψ of ϕ, if σ |= ψ for some state σ over AP ∪ Pψ, there
is a state σ′ over AP ∪ Pψ such that σ′ |= ψ̂ and projAP (σ) = projAP (σ′) (and vice versa).

Proof. By induction on the structure of ψ. For the direct implication, if ψ = ψ1 ∨ ψ2 then
one of the following must hold:

σ |= ψ1 and σ 6|= ψ2: apply the induction hypothesis on σ \ Pψ2 and ψ1 (note that
Pψ1 ∩ Pψ2 = ∅, and ψ2 is in negative normal form).

4 Note that the size of ψ̂ is at most quadratic in the size of ψ.
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σ 6|= ψ1 and σ |= ψ2: apply the induction hypothesis on σ \ Pψ1 and ψ2.
σ |= ψ1 and σ |= ψ2: If σ \ Pψ2 6|= ψ2, apply the induction hypothesis on σ \ Pψ2 and ψ1.
Otherwise if σ \ Pψ1 6|= ψ1, apply the induction hypothesis on σ \ Pψ1 and ψ2. Otherwise
let σ′ = σ \ (Pψ1 ∪ Pψ2).

The other cases of ψ are immediate. The other implication of the proof is simpler. J

Minimality of triggers. The real impact of ψ̂ with respect to ψ is to ensure the minimality
of triggers pulled during an execution. Indeed, we now show that if ϕ is satisfied by a signal γ
(over 2AP), then there must be a way to extend γ into a signal γ′ over 2AP∪APΦ such that the
triggers APΦ are only pulled when necessary in γ′, and vice versa. This will be crucial to
make our approach efficient in practice, as it reduces the behaviours of the product SA that
accepts the whole formula ϕ. This observation is formalised in the following two propositions.

I Proposition 4. For a signal γ over 2AP, we have γ, 0 |= ϕ if and only if there exists a
signal γ′ over 2AP∪Pϕ extending γ such that γ′, 0 |= ϕ̂, and for all pχ ∈ Pϕ and t ∈ R≥0,
γ′, t |= (pχ ⇒ χ).

Proof. For the direct implication, let ζ be a signal over 2AP∪Pϕ extending γ such that
pχ ∈ ζ(t) if and only if γ, t |= χ for each pχ ∈ Pϕ and t ∈ R≥0 (note that ζ is necessarily
finitely-variable as γ is finitely-variable [3]). If ζ, 0 |= ϕ̂, simply let γ′ = ζ and we are done.
If ζ, 0 6|= ϕ̂, apply Proposition 3 to ζ(0) and ϕ to obtain a state σ such that σ |= ϕ̂. Finally,
let γ′(0) = σ and γ′(t) = ζ(t) \ Pϕ for all t ∈ R>0. The other implication is immediate. J

I Proposition 5. For a signal γ over 2AP∪{pχ} where χ ∈ Φ and either χ = ψ1 UI ψ2 or
χ = ψ1 RI ψ2, we have γ, t |= (pχ ⇒ χ) for all t ∈ R≥0 if and only if there exists a signal γ′
over 2AP∪{pχ}∪Pψ1∪Pψ2 extending γ such that

if χ = ψ1 UI ψ2 then, for each t ∈ R≥0, γ′, t |= pχ ⇒ Expandχ with

Expandχ =
[
(ψ̂1 ∧ ∼ψ2) UI (∗ψ1 ∧ ψ̂2)

]
∨
[
(ψ̂1 ∧ ψ̂2) U>

]
∨
[
FI ψ̂2 ∧

(
ψ̂1 ∧ ∼ψ2

)
U
(
ψ̂1 ∧ ∼ψ2 ∧ (ψ̂1 ∧ ψ̂2) U>

)]
if χ = ψ1 RI ψ2 then, for each t ∈ R≥0, γ′, t |= pχ ⇒ Expandχ with

Expandχ =
[
(∼ψ1 ∧ ψ̂2) UI (ψ̂1 ∧ ψ̂2)

]
∨
[
(ψ̂1 ∧ ∗ψ2) U>

]
∨
[
GI(∼ψ1 ∧ ψ̂2)

]
∨
[
FI ψ̂1 ∧

(
∼ψ1 ∧ ψ̂2

)
U
(
∼ψ1 ∧ ψ̂2 ∧ (ψ̂1 ∧ ∗ψ2) U>

)]
for each pθ ∈ Pψ1 ∪ Pψ2 , we have projAP∪{pθ} (γ′) , t |= (pθ ⇒ θ) for all t ∈ R≥0.

Proof. Assume that χ = ψ1 UI ψ2 and let ζ be a signal over 2AP∪{pχ}∪Pψ1∪Pψ2 extending γ
such that pθ ∈ ζ(t) if and only if γ, t |= θ for each pθ ∈ Pψ1 ∪ Pψ2 and t ∈ R≥0. For each
t ∈ R≥0 such that γ, t |= pχ, since γ, t |= χ also holds, exactly one of the following must be
true (note that inf(I) = 0):

there is t′ > t, t′ − t ∈ I such that γ, t′ |= ψ2 and γ, t′′ |= ψ1 ∧ ¬ψ2 for all t′′ ∈ (t, t′);
there is t′ > t such that γ, t′′ |= ψ1 ∧ ψ2 for all t′′ ∈ (t, t′);
there are t′ > t and t′′ > t′ such that in γ, ψ1 ∧ ¬ψ2 always holds in (0, t′] and ψ1 ∧ ψ2
always holds in (t′, t′′).

It follows that we can obtain a ‘minimal labelling’ from ζ via Proposition 3. More precisely,
we apply Proposition 3 to constant segments of ζ and ψ1, ψ2, or both ψ1 and ψ2, as required
by the interpretation of pχ in γ. For example, in the first case above, γ′(t′′) for each t′′ ∈ (t, t′)
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`s0,¬pχ ∧
∗ψ1 ∧ ∗ψ2

`s3,¬pχ ∧
∗ψ1 ∧ ψ̂2

`s1, pχ ∧
∗ψ1 ∧ ∗ψ2

`s2, ψ̂1 ∧ ∼ψ2
`s4, pχ ∧
∗ψ1 ∧ ψ̂2

`o0,¬pχ ∧
∗ψ1 ∧ ∗ψ2

`o3, ψ̂1 ∧ ψ̂2
`o1, pχ ∧
ψ̂1 ∧ ∼ψ2

`o2,¬pχ ∧
ψ̂1 ∧ ∼ψ2

no pending obligations some pending obligations

sing. interval

open interval

Figure 1 The component SA Cχ for χ = ψ1 U ψ2.

is obtained by applying Proposition 3 to ζ(t′′) \ Pψ2 and ψ1; γ′(t′) is obtained by applying
Proposition 3 to ζ(t′) \ Pψ1 and ψ2. Similar arguments can be made for χ = ψ1 R ψ2. The
other implication is simpler. J

I Corollary 6. For a signal γ over 2AP, we have γ, 0 |= ϕ if and only if there exists a
signal γ′ over 2AP∪APΦ extending γ such that γ′, 0 |= ϕ̂, and for all χ ∈ Φ and t ∈ R≥0,
γ′, t |= pχ ⇒ Expandχ (where Expandχ is one of the formulae in Proposition 5).

The components. We are now ready to present the components Cχ for χ ∈ Φ.
The component Cχ for χ = ψ1 Uψ2 is given in Figure 1. We now explain how it has been

produced. Thanks to Proposition 2, we provide a bipartite SA (in particular, we will read
timed sequences with bipartite interval sequences only), where ‘singular’ locations are on
top, and ‘open’ locations at the bottom. First, we focus on locations `s0 and `o0, that are
used as long as trigger pχ is not pulled: then, there is no need to pull any trigger of ψ1 nor
ψ2, which is ensured via the use of formula ∗ψ1 ∧ ∗ψ2. Consider then the first time when
trigger pχ is pulled (by another component automaton): it is either in a singular interval in
which case we jump into location `s1 (this creates a pending obligation, since such an ‘until’
with our strict semantics cannot be fulfilled right away in a singular interval: this means, in
particular, that we do not need to pull any trigger for ψ1 or ψ2, thus checking ∗ψ1 ∧∗ψ2), or
in an open interval in which case we jump either into location `o1 if ψ2 does not hold (i.e. if
∼ψ2 holds), or into location `o3 if ψ2 holds (i.e. if ψ̂2 is in the guard) which fulfils right away
the new obligation (notice that, in the figure, we did not put pχ in the guard of this location,
for simplification: we will discuss this point more in detail afterwards).

When pχ is first pulled in an open interval (which means we jump into location `o1 or `o3),
by the semantics of the ‘until’ operator, ψ1 must also hold in that interval. When in `o3, the
successors are the same as in `o0. When in `o1 with a pending obligation, there are two cases
for the next jump:

either ψ2 holds in the next singular interval, and then no trigger of ψ1 needs to be pulled
(i.e. guard ∗ψ1 ∧ ψ̂2): if there are no new pulled trigger pχ, we jump into location `s3;
otherwise, we jump into location `s4 where we still have a new pending obligation, but
the location is still made accepting to record the fact that the previous obligation has
been fulfilled.
or ψ2 does not hold, in which case ψ1 should hold (i.e. guard ψ̂1 ∧ ∼ψ2): we then jump
into location `s2 whether or not a new trigger pχ is pulled.

When pχ is first pulled in a singular interval (which means we jump into location `s1),
there is no need to pull any trigger of ψ1 nor ψ2. Then, while in one of the ‘singular’ locations
`s1, `s2 or `s4, with a pending obligation, in the next jump, there are two cases:
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`s0,¬pχ ∧
∗ψ1 ∧ ∗ψ2

`s3, g,¬pχ ∧
∗ψ1 ∧ ψ̂2

`s1, pχ ∧
∗ψ1 ∧ ∗ψ2

`s2, g, ψ̂1 ∧ ∼ψ2
`s4, g, pχ ∧
∗ψ1 ∧ ψ̂2

`o0,¬pχ ∧
∗ψ1 ∧ ∗ψ2

`o3, pχ ∧
ψ̂1 ∧ ψ̂2

`o3′ ,¬pχ ∧
ψ̂1 ∧ ψ̂2

`o1, x < a, pχ ∧
ψ̂1 ∧ ∼ψ2

`o4, x < a,¬pχ ∧
ψ̂1 ∧ ∼ψ2

no pending obligations some pending obligations

sing. interval

open interval

Figure 2 The component SA Cχ for ψ1 U(0,a) ψ2. We use a Boolean variable si to signify whether
the oldest pending obligation has been pulled in a singular interval or not. The transitions with I
or B reset x; the ones with I (resp. B) set si to true (resp. false). The clock constraint g is defined
as (si ∧ x < a) ∨ (¬si ∧ x ≤ a).

either ψ2 holds in the next open interval, in which case ψ1 should still hold (because
of the semantics of the ‘until’ operator): we can jump into the previously introduced
location `o3.
or ψ2 does not hold (then, ψ1 should hold anyway) and we jump either in location `o1 if
a new trigger pχ is pulled, or in `o2 is no new trigger pχ is pulled. Location `o2 has the
same successors as `o1 but we still need to distinguish them since `o1 must check that a
new pending obligation is pulled.

Initially, we do not want to pull any trigger of ψ1 or ψ2, therefore, `s0 and `s1 are the
two initial locations, depending on whether trigger pχ is initially pulled or not. Accepting
locations are the one where either there are no more pending obligations, or a pending
obligation has been fulfilled while a new trigger is being pulled (location `s4).

Notice that, thanks to the use of ∗ψi and ψ̂i formulae, only the necessary triggers in
Pψ1 ∪ Pψ2 are pulled during an execution of this component. Indeed, this is not true for
location `o3: when going from locations `s0 or `s3, to pull only minimal sets of triggers, we
must make sure to go in `o3 only when a new trigger pχ is pulled. This requires to split this
location into two (one where pχ holds, the other where it does not). For simplicity, we did
not do it in the figure, but we apply this splitting in the next component we present.

This next component Cχ is the one for χ = ψ1 U(0,a) ψ2 (Figure 2), that is obtained by
adding a clock x and suitable clock constraints. Intuitively, it suffices to use only one clock
because for I = (0, a), all new obligations are implied by the oldest pending obligation. This
means that the clock should be reset when entering in a location where a trigger is pulled
while all the previous obligations have been fulfilled: this is a priori the case when entering
in locations `s1, `o1, and `s4 from locations {`s0, `s3, `o0, `o3, `o3′}. Now, the valuation of x would
fix a deadline for the satisfaction of ψ2. Indeed, as long as ψ2 does not hold, we must check
that x < a. When ψ2 is next fulfilled, we also check that x < a. However, this is not correct
for two reasons.

First, when checking the requirements x < a, this is not correct if the oldest pending
obligations appeared in an open interval: indeed, it is still correct to fulfil ψ2 in a singular
interval where x = a. This requires that we register, when resetting clock x, if the trigger
is pulled in a singular interval or not. To ease the presentation, we use a Boolean variable



T. Brihaye, G. Geeraerts, H.-M. Ho, and B. Monmege 7:11

si to record that the trigger has been pulled in a singular interval. Pictorially, we use
transitions with I heads to reset the clock x and setting si to true, while transitions with
B heads reset clock x and set si to false. Then, the clock constraint that must be checked
in singular interval (whether or not ψ2 is currently fulfilled) is not x < a but g defined
by (si ∧ x < a) ∨ (¬si ∧ x ≤ a): in particular, the guard g in location `s2 models the fact
that if the oldest obligation has been triggered in an open interval (si is false), it is not a
contradiction to not yet fulfil ψ2 at time x = a, but then, the only fireable transitions are
the one towards `o3 and `o3′ where ψ2 then holds. This also explains why guard g does not
need to be checked when entering in `o3 and `o3′ .

Second, this cannot be done as such when entering location `s4 since the guard g must
be checked before resetting clock x that records the deadline of the next pending obligation.
Indeed, we simply delay the reset and modification of variable si to the next transition
towards `o1 or `o4.

The component for ψ1 U(0,a]ψ2 is similar and hence omitted. The components for ‘release’
operators follow the same pattern as the ones for ‘until’. Due to lack of space, we present
them in Appendix B. Then:

I Proposition 7. For each χ ∈ Φ, the component Cχ accepts exactly all signals γ over
2AP∪APΦ such that γ, t |= pχ ⇒ Expandχ for all t ∈ R≥0 (where Expandχ is one of the
formulae in Proposition 5).

Finally, we need a simple initial component Cinit which enforces ϕ̂ at t = 0 and ∗ϕ at all
t > 0, as suggested by Proposition 5. We can now state the main theorem of this section.

I Theorem 8. projAP

(
S(Cinit ×

∏
χ∈Φ Cχ)

)
= S(ϕ).

4 From signal automata to timed automata

In this section, we provide a new approach to check the emptiness of signal automata that
can be implemented by relying on existing tools for timed automata. To this end, we explain
how to encode an SA A into a timed automaton BA that accepts exactly the ‘timed words’
counterparts of the signals accepted by A. Moreover, the construction can be used in a
compositional manner: if A is the product of a number of component SAs, BA can be obtained
as the product of the TAs that result from applying the construction to the components of A.
As the construction is emptiness-preserving, it can serve as a bridge between the MITL-to-SA
translation in the previous section and existing TA-based tools. We start by recalling the
formal definition of timed automata.

Timed words and timed automata. A time sequence is an infinite sequence τ = τ0τ1τ2 . . .

of non-negative reals (called timestamps) such that (1) τ0 = 0; (2) for all i ≥ 0, τi ≤ τi+1;
(3) for all t ∈ R≥0, there is some i ≥ 0 such that τi > t. A timed word ρ = (σ, τ) over 2AP is a
pair of a state sequence σ over 2AP and a time sequence τ . Alternatively, we may see ρ as an
infinite sequence (σ0, τ0)(σ1, τ1)(σ2, τ2) · · · of events (σi, τi). We now define timed automata,
with generalised acceptance conditions as before (used by [27] in the untimed setting).

I Definition 9. A timed automaton (TA) over 2AP is a tuple A = (L,L0, X,∆,F) where
L is a finite set of locations;
L0 ⊆ L is the set of initial locations;
X is a finite set of clocks;
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∆ ⊆ L× 22AP × G(X)× 2X × L is the set of transitions;
F ⊆ 2L is the family of sets of accepting locations.

A run π of A on a timed word ρ = (σ0, τ0)(σ1, τ1)(σ2, τ2) · · · over 2AP is an infinite sequence

(`0, v0) λ1−−−→
σ0,d0

(`1, v1) λ2−−−→
σ1,d1

(`2, v2) λ3−−−→
σ2,d2

· · ·

where, for all i ≥ 0: (1) `i is a location of A; (2) vi is a valuation of X; (3) di = τi − τi−1
(assuming τ−1 = 0) (4) λi ⊆ X; and that satisfies the following:

Initiality: `0 ∈ L0; and
Consecution: for all i ≥ 0: (`i, φ, g, λi+1, `i+1) ∈ ∆ with σi ∈ φ and vi + di |= g; and
Timing: for all i ≥ 0, vi+1 = (vi + di)[λi+1 ← 0].

We say that π is accepting if for all accepting sets F ∈ F , the set {i | `i ∈ F} is infinite. A
timed word ρ is accepted by A if there is an accepting run of A on ρ. We write L(A) for
the set of timed words accepted by A. For two TAs A1 and A2, we denote by A1 ×A2 their
(synchronous) product [2]. In particular, we have L(A1 ×A2) = L(A1) ∩ L(A2).

Translation from SA to TA. We first explain how we map signals to timed words. To
do so, we select a bipartite state sequence κ corresponding to γ, and we express the state
changes along κ in a timed word. Formally, for a signal γ and a timed state sequence
κ = (σ0, I0)(σ1, I1) · · · s.t. κ ∈ JγKbp (i.e., Ii is singular for all even i ≥ 0), we define:

[κ]tw = (σ0, sup(I0))(σ1, inf(I1))(σ2, sup(I2))(σ3, inf(I3)) · · · .

Note that we represent a state change at time t by two events with timestamp t (note that
sup(Ii) = inf(Ii+1) for each even i ≥ 0). Abusing notations, we write [γ]tw = {[κ]tw | κ ∈
JγKbp} and [S]tw =

⋃
γ∈S [γ]tw for a set S of signals.

I Proposition 10. Given a (bipartite) SA A, we can construct a TA BA such that L(BA) =
[S(A)]tw. In particular, if A = A1 × · · · × An then L(BA1 × · · · × BAn) = [S(A)]tw.

Proof (Sketch). For a clock constraint g ∈ G(X), let g← be the clock constraint obtained
from g by replacing all clauses of the form ‘x ≤ c’ with ‘x < c’ and all ‘x > c’ with ‘x ≥ c’.
Likewise, let g→ be the clock constraint obtained from g by replacing all ‘x < c’ with ‘x ≤ c’
and all ‘x ≥ c’ with ‘x > c’. The following statements hold (for a valuation v of X):

v |= g← if and only if for some δ ∈ R>0, we have v + t |= g for all t ∈ (0, δ].
v |= g→ if and only if for some δ ∈ R>0, we have v′ |= g for all valuations v′ of X such
that v′ + t = v for some t ∈ (0, δ].

In what follows, we write g[λ← 0] for the clock constraint obtained from g by replacing all
occurrences of clocks x ∈ λ with 0. For A = (L,L0, α,X, β,∆,F) (which by assumption is
bipartite and L = Ls ] Lo), define B = (LA, LA0 , XA,∆A,FA) where

LA = {`s | ` ∈ Ls} ∪ { ˙̀s, `o, ˙̀o | ` ∈ Lo} ∪ {`init};
LA0 = {`init};
XA = X ∪ {y} where y is a fresh clock;
∆A = {(`init, α(`), β(`) ∧ y = 0, ∅, `s) | ` ∈ L0}

∪ {(`s
1, α(`2), β(`2)←[λ← 0] ∧ y = 0, λ, `o

2) | (`1, λ, `2) ∈ ∆}
∪ {(`o

1, α(`2), β(`1)→ ∧ β(`2)[λ← 0] ∧ y > 0, λ ∪ {y}, `s
2) | (`1, λ, `2) ∈ ∆}

∪ {(`o, α(`), β(`)→ ∧ β(`)[λ← 0] ∧ y > 0, λ ∪ {y}, ˙̀s) | ` ∈ Lo}
∪ {( ˙̀s, α(`), β(`)←[λ← 0] ∧ y = 0, λ, ˙̀o) | ` ∈ Lo}
∪ {( ˙̀o, α(`), β(`)→ ∧ β(`)[λ← 0] ∧ y > 0, λ ∪ {y}, ˙̀s) | ` ∈ Lo}
∪ {( ˙̀o

1, α(`2), β(`1)→ ∧ β(`2)[λ← 0] ∧ y > 0, λ ∪ {y}, `s
2) | (`1, λ, `2) ∈ ∆}

FA = {{`s | ` ∈ Ls ∩ F} ∪ {`o | ` ∈ Lo ∩ F} | F ∈ F}.
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0

1

1′

¬pχ ∧ ∗ψ1 ∧ ∗ψ2
¬psing ∧ pχ ∧ ψ̂1 ∧ ψ̂2

psing ∧ ψ̂1 ∧ ∼ψ2 ∧ g
¬psing ∧ ψ̂1 ∧ ∼ψ2

psing ∧ pχ ∧ ∗ψ1 ∧ ∗ψ2, x := 0,I
¬psing ∧ pχ ∧ ψ̂1 ∧ ∼ψ2, x := 0,B

psing ∧ ¬pχ ∧ ∗ψ1 ∧ ψ̂2 ∧ g
¬psing ∧ ψ̂1 ∧ ψ̂2

psing ∧ pχ ∧ ∗ψ1 ∧ ψ̂2 ∧ g, x := 0,I

ψ̂1 ∧ ∼ψ2

ψ̂1 ∧ ψ̂2

Figure 3 The component TA Bχ for χ = ϕ1 U(0,a) ϕ2. We use a Boolean variable si to signify
whether the current pχ-interval is left-closed. The transitions with I (respectively, B) set si to true
(respectively, false). The clock constraint g is defined as (si ∧ x < a) ∨ (¬si ∧ x ≤ a).

Intuitively, the ‘dotted’ locations ˙̀s, ˙̀o are used to allow interleaving and stuttering as
A stays in ` ∈ Lo: this is crucial to make the asynchronous product A1 × · · · × An and
the synchronous product BA1 × · · · × BAn match. Finally, for pragmatic reasons, we make
suitable modifications to B to obtain a strongly non-Zeno TA BA (i.e. a TA in which time
progresses), as in [22]. J

The proposition above works for any (bipartite) SA. For Cinit or each component Cχ
(χ ∈ Φ) in the previous section, however, we can suppress all the ‘dotted’ locations ˙̀s, ˙̀o and
build a much simpler TA (which we denote by Binit or Bχ, respectively).5 Our main result
can then be stated as the following theorem, where the projection operator proj is defined in
a similar way as in the setting of signals.

I Theorem 11. projAP

(
L(BA × Binit ×

∏
χ∈Φ Bχ)

)
= projAP

([
S(A× Cinit ×

∏
χ∈Φ Cχ)

]
tw

)
for any given SA A over 2AP∪APΦ whose propositional constraints can be written as Boolean
combinations over AP (i.e. do not involve atomic propositions in APΦ).

As an example, the component TA Bχ for χ = ψ1 U(0,a) ψ2 (in which we use a new atomic
proposition psing that holds on ‘singular’ transitions) is depicted in Figure 3.

5 Implementation and experiments

We have implemented the translation as an extension of our tool MightyL [14]. Given a
formula ϕ over AP in MITL,6 the tool generates the model TA BA where A is a universal
SA over 2AP∪APΦ , the initial component TA Binit, and the corresponding component TAs Bχ
for each temporal subformula χ of ϕ in the Uppaal xml format. The user can, of course,
replace BA with the model TA M of their choice and perform model-checking with existing
TA-based tools.7 Our implementation is publicly available and can be executed directly on
the webpage: http://www.ulb.ac.be/di/verif/mightyl. In the following experiments,

5 Alternatively, one may translate ¬ϕ into a ‘pointwise’ formula and invoke the approach in [14] directly;
the number of temporal subformulae (and hence the number of clocks) would be doubled, however.

6 More precisely, our tool accepts all temporal operators that are labelled with intervals of the form
(0,∞), [0,∞), (0, a), [0, a), (0, a] or [0, a]. If 0 is included in the interval, the temporal operator is given
a weak-future interpretation [39], e.g., ψ1 Uw

[0,a) ψ2 ⇐⇒ ψ2 ∨ (ψ1 ∧ ψ1 U(0,a) ψ2). Remember that
general MITL formulae can be rewritten into formulae of this fragment, e.g., F(a,∞)ψ ⇐⇒ G(0,a]Fψ.

7 We require M to be strongly non-Zeno and L(M) = [S(A)]tw where A is an SA over 2AP∪APΦ that
satisfies the conditions in Theorem 11.

TIME 2017

http://www.ulb.ac.be/di/verif/mightyl


7:14 Timed-Automata-Based Verification of MITL over Signals

Table 1 Execution times for the ‘parametric formulae’ benchmark set. The columns ‘Pointwise’
correspond to the approach of [14] and the columns ‘Continuous’ correspond to the approach of this
article (where OOM stands for out-of-memory). The three numbers of each entry correspond to the
time taken by opaal to translate Uppaal xml into C++, the time taken by the g++ compiler, and
the actual model-checking time taken by LTSmin, respectively.

Formula Continuous Pointwise
F (5, [0,∞)) 0.41s/1.03s/0.16s 0.36s/1.07s/0.16s
F (10, [0,∞)) 0.74s/1.31s/0.35s 0.62s/1.23s/0.32s
F (5, [0, 5]) 0.61s/1.16s/0.18s 0.40s/1.04s/0.13s
F (10, [0, 5]) 1.18s/1.53s/0.43s 0.72s/1.29s/8.26s
F (2, (5,∞)) 0.66s/1.17s/0.18s 0.22s/0.89s/0.04s
F (5, (5,∞)) 1.48s/1.73s/3.02s 0.36s/1.01s/0.15s
F (10, (5,∞)) OOM 0.63s/1.21s/0.31s
U(5, [0,∞)) 0.36s/0.98s/0.19s 0.32s/1.01s/0.06s
U(10, [0,∞)) 0.67s/1.23s/0.25s 0.57s/1.19s/0.26s
U(5, [0, 5]) 0.54s/1.08s/0.08s 0.35s/0.99s/0.08s
U(10, [0, 5]) 1.08s/1.46s/0.40s 0.65s/1.24s/2.96s
U(2, (5,∞)) 0.41s/1.02s/0.13s 0.18s/0.85s/0.03s
U(5, (5,∞)) 1.40s/1.63s/12.17s 0.33s/0.97s/0.10s
U(10, (5,∞)) OOM 0.59s/1.17s/0.29s

Formula Continuous Pointwise
G(5, [0,∞)) 0.45s/1.04s/0.32s 0.35s/1.02s/0.28s
G(10, [0,∞)) 0.77s/1.29s/43.46s 0.63s/1.20s/39.31s
G(5, [0, 5]) 1.11s/1.43s/0.45s 0.52s/1.10s/0.29s
G(10, [0, 5]) 2.16s/2.06s/98.76s 0.91s/1.44s/17.71s
G(2, (5,∞)) 0.44s/1.07s/0.12s 0.20s/0.88s/0.07s
G(5, (5,∞)) 0.93s/1.41s/2.77s 0.34s/1.03s/0.27s
G(10, (5,∞)) OOM 0.60s/1.20s/13.30s
R(5, [0,∞)) 0.38s/1.00s/0.26s 0.30s/0.97s/0.23s
R(10, [0,∞)) 0.70s/1.26s/8.12s 0.56s/1.18s/9.74s
R(5, [0, 5]) 0.93s/1.32s/0.30s 0.41s/1.01s/0.24s
R(10, [0, 5]) 1.96s/1.93s/3.59s 0.81s/1.32s/19.21s
R(2, (5,∞)) 0.31s/0.92s/0.05s 0.17s/0.86s/0.03s
R(5, (5,∞)) 0.93s/1.36s/0.37s 0.32s/0.97s/0.23s
R(10, (5,∞)) OOM 0.53s/1.17s/18.99s

we use LTSmin [30] (with opaal [34], which enables support for Uppaal xml files) as
the back-end model checker and report its execution times (using only a single core) on
a Pentium B970 (2.3GHz) machine with 6GB RAM running Ubuntu 17.04. We omit the
execution times for MightyL as it is less than 0.1s on all our benchmarks.

Satisfiability of parametric formulae. We consider the satisfiability of a set of parametric
MITL formulae modified from [24, 13]. The goal of this benchmark set is to give a rough
comparison between the performance of our approach in the pointwise semantics (the original
aim of MightyL; we refer the reader to [39, 14] for more details) with that in the continuous
semantics (this article). For k ≥ 2 and an interval I, let:

F (k, I) =
∧k
i=1FwI pi,

G(k, I) =
∧k
i=1Gw

I pi,

U(k, I) = (. . . (p1 Uw
I p2) Uw

I . . . ) Uw
I pk,

R(k, I) = (. . . (p1 Rw
I p2) Rw

I . . . ) Rw
I pk,

where FwI , Gw
I , etc., are weak-future temporal operators [39]. The formulae in the benchmark

set are given in Table 1. For the pointwise case, these are the actual formulae that we
pass to MightyL; for the continuous case, standard rewriting rules are applied to handle
the lower-bound temporal operators (e.g. F(5,∞)p ⇐⇒ G(0,5]Fp).8 From the execution
times in Table 1, it is evident that opaal and g++ are not performance bottlenecks. For
smaller formulae, the times taken by LTSmin are very short. For larger formulae, however,
as LTSmin uses depth-first search for opaal-generated models, it sometimes goes very deep
into the state space and results in out-of-memory.

8 Of course, the resulting formulae are interpreted over signals, in contrast to their pointwise counterparts;
but we expect the computational efforts needed to check their satisfiability to be similar.
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Table 2 Execution times for the satisfiability, validity and redundancy checks in [19].

Formula Our approach Our approach w/o minimality [19]
φ1 = F[0,30]p1 ∧ F[0,20]p1 6.06s 7.50s 14s

φ2 = F[0,30](p1 ⇒ G[0,20]p1) 3.08s 4.36s 7s
φ4 = G[0,40]p1 ∧G[0,40]F[0,10]p1 7.10s 38.15s 29s

φ5 = F[0,40](p1 ∨ p3) ∧ F[0,40]p2 ∧ F[0,40]G[0,30]p1 12.04s >1200s 126s

¬` ∧ ¬on ∧ ¬off

¬` ∧ ¬on ∧ ¬off

¬` ∧ ¬on ∧ ¬off ∧
x = 5

¬` ∧ ¬on ∧ off ` ∧ on ∧ ¬off ` ∧ ¬on ∧ ¬off ∧
x < 5

`∧¬on∧¬off∧
x < 5

Figure 4 The SA Alamp. The transitions with solid tips reset clock x.

Validity and redundancy of specifications. We say that an MITL formula ϕ is valid if ¬ϕ
is not satisfiable. If ϕ is of the form

∧
1≤i≤k ϕi, we say that the conjunct ϕi is redundant in ϕ

if the formula (
∧

1≤j≤k
j 6=i

ϕj)⇒ ϕi is valid. In [19], MITL specifications created by non-expert

users are checked for satisfiability, validity and redundancy. We report the execution times of
our approach on some of their checks in Table 2. To see the effect of forcing minimal triggers,
we also give the execution times when this is not imposed. We also reproduce the execution
times reported in [19] in the table; since we do not impose a priori bounds on state changes
(as opposed to [19]) and we use a much less powerful CPU, these numbers are not meant for
direct comparison but rather for reference.

Model-checking a timed lamp. We consider a case study of a timed lamp from [9]. The
lamp is controlled by two buttons ‘on’ and ‘off’, which can only be pressed instantaneously
but not simultaneously. The buttons turn the lamp on and off as expected, and the lamp
turns off automatically 5 time units after the last time ’on’ was pressed. In [9], the system is
given as an MITL formula (with past temporal operators) over atomic propositions {`, on, off}.
While we can make use of projections to remove the past temporal operators [44, 28], it
turned out that the resulting formula is too large. For this reason, we model the system
directly as an SA Alamp (Figure 4). Then, via Proposition 10 and Theorem 11, we perform the
same verification tasks as [9]: (1) checking the emptiness of Alamp; (2) model-checking Alamp
against ϕ1 = G[0,∞)

(
F[0,5](¬`)

)
, i.e. the lamp never stays lit for more than 5 time units;

(3) model-checking Alamp against ϕ2 = F[0,∞)
(
G[0,5]`

)
⇒ F[0,∞)

(
on ∧ F(0,5]on

)
, i.e. if at

some point the light stays on for more than 5 time units, then there is an instant when ‘on’
is pressed, and then it is pressed again before 5 time units. The execution times (with and
without minimality criteria) are given in Table 3, where we also reproduce the execution
times reported in [9]. Again, these numbers are not meant to be compared directly.

6 Conclusion and future work

We proposed a translation from MITL to signal automata based on the same principles as our
previous work in the pointwise setting [14]. The main advantages of this translation over the
existing ones are that it is compositional and integrates easily with existing tools. To the best
of our knowledge, this is the first practical automata-based approach to MITL model-checking
over signals. We plan to add to MightyL support for general MITL operators (via rewriting
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Table 3 Execution times for the verification tasks in [9].

Task Our approach Our approach w/o minimality [9]
S(Alamp) = ∅? 1.17s – 4.24s

S(Alamp ×A¬ϕ1) = ∅? 1.73s 1.77s 17.2s
S(Alamp ×A¬ϕ2) = ∅? 2.36s 13.18s 257.1s

or by components) and other temporal operators (such as those from ECL [28]). A possible
future theoretical direction is to investigate whether the translation can be generalised
(possibly with the techniques in [17] or [42]) to deal with signals that are not finitely-variable.

Acknowledgements. We thank the reviewers of this article for their helpful comments.
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A Making signal automata bipartite

Proof of Proposition 2. For A = (L,L0, α,X, β,∆,F), we define a corresponding SA Abp =
(Lbp, Lbp

0 , α
bp, Xbp, βbp,∆bp,Fbp) where

Lbp = {`s, ˙̀s, `o | ` ∈ L};
Lbp

0 = {`s | ` ∈ L0};
αbp(`s) = αbp( ˙̀s) = αbp(`o) = α(`) for every ` ∈ L;
Xbp = X ∪ {y} where y is a fresh clock;
βbp(`s) = βbp( ˙̀s) = β(`) ∧ y = 0, βbp(`o) = β(`) for every ` ∈ L;
∆bp = {(`s1, λ, `o2), ( ˙̀s

1, λ, `
o
2), (`o1, λ ∪ {y}, `s2) | (`1, λ, `2) ∈ ∆}

∪ {(`o, {y}, ˙̀s), (`s, ∅, `o) | ` ∈ L};
Fbp = {{`s, `o | ` ∈ F} | F ∈ F}.

Intuitively, we create three copies `s, ˙̀s, `o of each location ` of A and use the clock y to
enforce the desired behaviour. In particular, the ‘dotted’ locations ˙̀s are used to deal with
the situation where the ‘source’ interval is right-closed. One can verify that Abp is bipartite
(let Ls = {`s, ˙̀s | ` ∈ L}) and S(A) = S(Abp). J
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Figure 5 The component SA Cχ for χ = ψ1 R ψ2.
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Figure 6 The component SA Cχ for χ = ψ1 R(0,a) ψ2. The transitions with I reset x.

B The components for ‘release’ operators

The component Cχ for χ = ψ1 R ψ2 (Figure 5) is based on similar ideas as the component for
ψ1 U ψ2. In this case, an obligation can be satisfied by either ψ̂1 ∧ ψ̂2 holding in a singular
interval or ψ̂1 ∧ ∗ψ2 holding in an open interval.

The component Cχ for χ = ψ1 R(0,a)ψ2 is given in Figure 6. In this case, all old obligations
are implied by the newest one. We therefore reset the clock x when pχ becomes false. The
component for ψ1 R(0,a] ψ2 is similar and hence omitted.
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Abstract
Simple Temporal Networks with Uncertainty (STNUs) are a well-studied model for representing
temporal constraints, where some intervals (contingent links) have an unknown but bounded
duration, discovered only during execution. An STNU is dynamically controllable (DC) if there
exists a strategy to execute its time-points satisfying all the constraints, regardless of the actual
duration of contingent links revealed during execution.

In this work we present a new system of constraint propagation rules for STNUs, which is
sound-and-complete for DC checking. Our system comprises just three rules which, differently
from the ones proposed in all previous works, only generate unconditioned constraints. In par-
ticular, after applying our sound rules, the network remains an STNU in all respects. Moreover,
our completeness proof is short and non-algorithmic, based on the explicit construction of a
valid execution strategy. This is a substantial simplification of the theory which underlies all the
polynomial-time algorithms for DC-checking.

Our analysis also shows: (1) the existence of late execution strategies for STNUs, (2) the
equivalence of several variants of the notion of DC, (3) the existence of a fast algorithm for real-
time execution of STNUs, which runs in O(KN) total time in a network with K ≥ 1 contingent
links and N ≥ K time points, considerably improving the previous O(N3)-time bound.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods,
I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases Simple Temporal Network with Uncertainty, Dynamic controllability

Digital Object Identifier 10.4230/LIPIcs.TIME.2017.8

1 Introduction

A Simple Temporal Network (STN) is a model for representing temporal constraints: it
comprises a set of time-points {P,Q,R, . . . } and a collection of binary difference constraints
of the form Q ≤ P + w with w ∈ R. A planning agent wants to schedule the execution of
time-points, i.e., assign a real value to each variable P,Q,R, . . . representing its execution
time, so that all the constraints in the network are satisfied.

Simple Temporal Networks with Uncertainty (STNUs) extend STNs to incorporate
uncertainty in the duration of some time intervals. In an STNU some of the time-points,
called contingent time-points, are not under the control of the planning agent but are executed
by the environment. The execution time of a contingent time-point C is regulated by a
contingent link (A, l, u, C), whose meaning is that C will be executed some time ∆ ∈ [l, u]
after the time-point A. The value ∆ is called the duration of the contingent link, and is
unknown to the planner until C is actually executed. An STNU is said to be dynamically
controllable (DC) if the agent holds a strategy to execute all the time-points in the network,
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such that all constraints are satisfied regardless of the duration of the contingent links. This
strategy has to be dynamic, in the sense that the execution time of a time-point X can
only depend on the duration of contingent links (A, l, u, C) whose contingent time-point C is
executed before X.

Two main problems are considered: checking whether a given network is DC and, if this
is the case, executing its time-points in real-time, reacting dynamically to the durations
revealed by the environment.

Previous work. Remarkably, it is possible to check in polynomial time whether a given
network is DC. The best upper bound on the running time, for a network with N time-points,
has been improved from pseudo-polynomial [10] (an “incremental” algorithm proposed in [15],
as fixed in [11], also runs in pseudo-polynomial time), to O(N5) [9], O(N4) [7] (an incremental
algorithm in [12] also runs in O(N4) time) and finally to O(N3) [8] (an incremental algorithm
in [13] also runs in O(N3) time). The key tool to achieve a polynomial-time algorithm is
propagation of binary constraints, i.e., generation of new constraints from existing ones
according to some sound rules.

A system of constraint propagation rules has been proposed first by Morris, Muscettola
and Vidal [10], and proven to be sound and complete. Soundness means that the system
only generates constraints which must be satisfied by any dynamic execution strategy, as
a logical consequence of existing constraints. Completeness means that, if, at some point,
no tighter constraints can be generated by the rules, then the resulting network is DC. The
system, in the revised and simplified version given in [9], consists of four propagation rules
which generates both ordinary, unconditioned constraints (i.e., having the same form as input
constraints) and conditional constraints marked with labels. A fifth rule transforms labeled
constraints into ordinary constraints, when some conditions apply. We refer to this system of
rules as MMV, and provide an illustration it in Table 1. The proof of completeness of MMV
relies on the description of an algorithm, sketched in [10], improved and fully described in [5],
which executes the time-points in the network in real-time.

Being such a simple and flexible model, STNUs have been extended in several ways in the
literature (see, e.g., [14, 6, 2, 3, 1]). All these extension rely on the theory of DC-checking
and executions developed for STNUs, and this theory, both for DC-checking and real-time
execution, hinges on the system of constraint propagation rules. Indeed, to the best of our
knowledge, all the existing DC-checking and real-time execution algorithms for STNUs work
by applying propagation rules, implicitly or explicitly, and their correctness proof is based
on the soundness and completeness of this rule system.

Issues with MMV system. The MMV system, as introduced in [10] and improved in [9],
has still many points of weakness. First of all, the system itself is rather complex. The main
reason is that it generates, besides ordinary constraints, also labeled constraints: these labeled
constraints are not part of the STNU model, hence their interpretation is not immediately
clear and requires further definitions and explanations. Moreover, the system comprises an
arguably large number of rules: four constraint-propagation rules and one label-removal
rule, which combine labeled and unlabeled constraints in several possible ways. Besides the
intrinsic complexity of the system, the related theory is also somewhat intricate. Specifically,
the proof of completeness is based on the description of an execution algorithm which,
even after the improvement given in [5], is still quite involved, manipulating the network in
non-trivial ways during its execution. Instead, as a completeness proof, it would be desirable
to a have a simple, static description of an execution strategy which witnesses the dynamic
controllability of a network, when no more application of the rules is possible.
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Table 1 The MMV system of constraint-propagation rules [10, 9], in a graphical representation.
In each of the rules, the original edges are drawn solid and the generated edge is drawn dotted.

Rule Graph representation Applicability conditions

No Case
P Q R

v w

v + w
(none)

Upper Case
P Q AC

v C : w

C : v + w

P 6= C

Lower Case
AC C R

wc : l

l + w

w ≤ 0, R 6= C

Cross Case
AC C AD

D : wc : l

D : l + w

w ≤ 0, C 6= D

Label Removal
P AC

C : z

z
z ≥ −lC

Our contributions. In this paper, we present a new, sound-and-complete system of con-
straint-propagation rules, called RUL, which solves all the above problems. Our system
contains only three rules (called Relax, Upper and Lower), with simple applicability
conditions, which only generate new ordinary (i.e., unlabeled) constraints. This means that,
with any application of the rules, the network remains an STNU in all respects, so no further
explanation is necessary about the interpretation of generated constraints. We also provide a
short, non-algorithmic proof of the completeness of our system, exhibiting a valid execution
strategy explicitly. An illustration of the RUL system is given in Table 2 for comparison:
the notation is explained in the next sections.

We perform a thorough analysis of our system of rules, proving both soundness and
completeness in a simple but rigorous way. The proof of soundness is given with a minimal
set of assumptions, which strictly extends its realm of applicability beyond the usual notion of
DC in STNUs. In particular, our rules are sound even if the environment reveals the duration
of a contingent link (A, l, u, C) right away at time A+ l, i.e., at the lowest possible execution
time of C, instead of its actual (contingent) execution time. This makes the soundness
result strictly stronger, since any constraint deduced in this setting must apply also in the
traditional setting, where the planner is only provided with less information. Moreover, for

TIME 2017



8:4 Dynamic Controllability Made Simple

Table 2 The RUL system of constraint propagation rules, in a graphical representation. In each
of the rules, the original edges are drawn solid and the generated edge is drawn dotted.

Rule Graph representation Applicability conditions

Relax
P Q R

v w

v + w
(none)

Upper
P C AC

v

l

−u

max{v − u,−l}
(none)

Lower
AC C R

wl

−u

l + w

w ≤ 0 for R ∈ TX

w ≤ uR for R ∈ TC \ {C}

soundness, we only assume that each duration ∆ can take its extremal values l and u; we do
not need to take into account intermediate values l < ∆ < u. Again, this allows to apply our
rules in a strictly more general setting, where the durations ∆ are restricted to assume only
specific values (if any) beyond the extremal ones. By considering relaxed assumptions, we
address in one shot several variants of the notion of DC, and the traditional notion among
them as a special case.

As for completeness, we consider the notion of late execution strategy, where each time-
point is executed at the latest possible time among all valid dynamic execution strategies
which finish within a fixed time horizon. The existence of a valid late execution strategy is
non-trivial and, to the best of our knowledge, has not been observed in previous work. The
proof of completeness of our rules is obtained by constructing explicitly the late execution
strategy of the given STNU, which is used without modifications as a witness of dynamic
controllability in all the settings considered for soundness. This not only proves the existence
of the late execution strategy, but also proves the equivalence of several variants of the notion
of DC for STNUs. Thus, the late executions strategy serves as a unifying theoretical tool
for studying STNUs, besides its potential practical usage, being both easier to define and
more generally applicable than the early execution strategy. Indeed, despite being possibly
more useful in practice, the early strategy requires a more involved construction, and might
vary among different but equivalent variants. Actually, there are several notions of “early
execution strategies”, varying according to the specific variant of controllability, while the
late strategy has a unique, simple construction which applies to all the variants and thus
proves their equivalence.

Finally, we propose an algorithm for executing the late strategy in real time. Thanks
to the simple and explicit definition of late execution strategy, our algorithm is intuitive
and amounts to instantiating the definition in a computationally efficient way. With our
algorithm, we achieve a running time of O(KN) for executing a network of N time-points
and 1 ≤ K < N contingent links. This is a considerable improvement over the previous best
upper bound of O(N3) time for executing a network, achieved using the early strategy.
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Paper outline. We introduce concepts and notations for STNUs in Section 2. Then, in
Section 3, we describe our system of rules RUL. We prove soundness in Section 4 and
completeness in Section 5. Finally, we show our real-time execution algorithm in Section 6.

2 Preliminaries and notation

An STNU is a tuple Γ = (T , C,L) where: T is a finite set of real-valued temporal variables
called time-points (here denoted with capital letters P,Q,R, . . . ), C is a finite set of constraints
of the form Q ≤ P + w, for P,Q ∈ T and w ∈ R, and L is a finite set of contingent links,
i.e., tuples of the form (A, l, u, C), for A,C ∈ T and l, u ∈ R with 0 < l ≤ u < ∞. In a
contingent link (A, l, u, C), A is the activation time-point, l is the duration lower bound, u is
the duration upper bound, and C is the contingent time-point. Distinct contingent links
have distinct contingent time-points. Given the contingent time-point C of a contingent
link (A, l, u, C) ∈ L we define AC = A, uC = u, lC = l. The set of contingent time-points is
TC := {C | (A, l, u, C) ∈ L}, while the set of executable time-points is TX = T \ TC. In the
following we assume that an STNU Γ = (T , C,L) is given.

A situation is a function s : TC → R, which assigns a duration ∆C
s := s(C) ∈ [lC , uC ]

to each contingent link (AC , lC , uC , C) ∈ L. The set of all possible situations is Ωall :=∏
C∈TC

[lC , uC ]. For increased generality, the following definitions are given with respect
to a fixed, non-empty subset of the situations Ω ⊆ Ωall. (The usual notions are obtained
simply by choosing Ω = Ωall.) An execution strategy is a function σ : (Ω, TX) → R that
assigns an execution time Xσ

s := σ(s,X) to each executable time-point X, in each possible
situation s ∈ Ω. Moreover, we define the execution time of a contingent time-point C ∈ TC
to be Cσs := ACs

σ + ∆C
s . In general, Pσs ∈ R denotes the execution time of the (executable or

contingent) time-point P ∈ T in the situation s with the strategy σ. The superscript σ is
omitted when clear from the context. Also, in some equations we replace the subscript s
with ∗, meaning that the specific equation holds for every situation s ∈ Ω.

An execution strategy σ is viable if Q∗ ≤ P∗ + w for every constraint Q ≤ P + w in C.
It is dynamic if, for any two situations s, r ∈ Ω and executable time-point X ∈ TX, if
{〈C,∆C

s 〉 | Cs < Xs} = {〈C,∆C
r 〉 | Cr < Xs} then Xr = Xs. This definition correctly

captures the intuitive notion that the execution time of X can only depend on the duration
of contingent links whose contingent time-point is executed before X [4]. An STNU is said
to be dynamically controllable (DC) if it admits an execution strategy which is both dynamic
and viable.

We assume without loss of generality to have at most one constraint Q ≤ P + wPQ in C
for any two time-points P,Q ∈ T : to this end, it is sufficient to take wPQ := min{w | (Q ≤
P + w) ∈ C}. By convention wPQ =∞ if there are no constraints (Q ≤ P + w) ∈ C.

An STNU is represented as a graph on node set T with three classes of weighted edges:
ordinary edges E0 = {(P,Q,wPQ) | wPQ < ∞}, lower bound edges E− = {(AC , C, lC) |
C ∈ TC} and upper bound edges E+ = {(C,AC ,−uC) | C ∈ TC}. When convenient, this
graph-based notation is used to describe the constraints and contingent links in an STNU.

We borrow an example of STNU from [5] to use as a running example for our rule system.
The example is shown in Figure 1 with two different graphical notations. In the notation on
the left, used by previous work, contingent links are represented with a pair of edges labeled
with upper-case and lower-case labels. Since in this work we do not need to generate other
labeled edges in any given network, we prefer to use a different notation, as shown on the
right. Contingent links are still represented as a pair of parallel edges, one lower bound edge
and one upper bound edge: this is convenient in describing the rules, ensuring that rules
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A1 A2
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c 2
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X C1 C2
−1 2

2 −9 3 −7

Figure 1 An STNU used as running example (borrowed from [5]). On the left, contingent links
are represented as labeled constraints. On the right, they are represented using our notation.

always combine consecutive edges pointing in the right direction. However, the three types
of edges, ordinary, lower and upper, are distinguished using a different graphical notation,
and not by the addition of labels.

3 The RUL system

We introduce a system of three constraint-propagation rules: Relax, Upper and Lower.
Each of these rules takes two consecutive edges (P,Q, v) and (Q,R,w) of the network and, if
some conditions are satisfied, generates a new ordinary edge from P to R.

The Relax rule takes two ordinary edges (P,Q, v) and (Q,R,w) and generates the
ordinary edge (P,R, v + w).

The Upper rule takes an ordinary edge (P,C, v) and an upper bound edge (C,AC ,−uC)
and generates the ordinary edge (P,AC ,max{v − uC ,−lC}).

The Lower rule takes a lower bound edge (AC , C, lC) and an ordinary edge (C,R,w)
and generates the ordinary edge (AC , R, lC + w), if the following preconditions are satisfied:
either R ∈ TX and w ≤ 0, or R ∈ TC \ {C} and w ≤ uR.

This system of constraint-propagation rules is called RUL and is illustrated in Table 2.

Comparison with MMV. The reader can compare the RUL system and the MMV system
with the help of Table 1 and Table 2.

The Relax rule in RUL is identical to the No Case rule in MMV, and was renamed only
for uniformity.

The Upper rule in RUL can be thought of as a combination of the Upper Case and
Label Removal rules in MMV. Indeed, any edge (P,AC ,max{v − uC ,−lC}) obtained by
Upper can be obtained with Upper Case and Label Removal in three steps.
1. If v < uC − lC , then take the unlabeled edge (P,C, v) and transform it into the weaker

edge (P,C, uC − lC). This is legal since the constraint C ≤ P + v subsumes the constraint
C ≤ P + (uC − lC). In general, we end up with the edge (P,C,max{v, uC − lC}).

2. Apply the Upper Case rule, obtaining the labeled edge (P,AC , C : max{v, uC−lC}−uC) =
(P,AC , C : max{v − uC ,−lC}).

3. Apply the Label Removal rule, valid since max{v−uC ,−lC} ≥ −lC , to obtain the desired
edge (P,AC ,max{v − uC ,−lC}).

As for the Lower rule, we have two cases. For R ∈ TX, it is identical to the Lower Case rule.
However, for R ∈ TC, it extends strictly the domain of applicability of Lower Case. This is a
crucial addition given by the RUL system with respect to MMV, since the edges generated by
Lower cannot in general be obtained using MMV only. It is thanks to this addition that we
can avoid generating labeled edges with the Upper Case rule, and still achieve completeness.
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Figure 2 Examples of application of MMV (left) and RUL (right) on the example STNU.

Application examples. In Figure 2, we compare the application of the MMV and RUL
systems on the example network.
MMV:

1. The No Case rule is applied to (C2, C1, 2) and (C1, X,−1) to obtain (C2, X, 1).
2. The Lower Case rule is applied to (A1, C1, c1 : 2) and (C1, X,−1) to obtain (A1, X, 1).
3. The Upper Case rule is applied to (C2, C1, 2) and (C1, A1, C1 : − 9) to obtain the

labeled edge (C2, A1, C1 : − 7).
4. The Cross Case rule is applied to (A2, C2, c1 : 3) and (C2, A1, C1 : − 7) to obtain

(A2, A1, C1 : − 4).
RUL:

1. The Relax rule is applied to (C2, C1, 2) and (C1, X,−1) to obtain (C2, X, 1).
2. The Lower rule (in the case R ∈ TX) is applied to (A1, C1, 2) and (C1, X,−1) to

obtain (A1, X, 1).
3. The Lower rule (in the case R ∈ TC) is applied to (A2, C2, 3) and (C2, C1, 2) to obtain

(A2, C1, 5).
4. The Upper rule is applied to (A2, C1, 5) and (C1, A1,−9) to obtain (A2, A1,max{5−

9,−2}) = (A2, A1,−2).
The edges (C2, X, 1) and (A1, X, 1) are generated by both systems, respectively using the
No Case and Relax rules, and the Lower Case and Lower rules with R ∈ TX.

As for the other edges, on one hand, the MMV system generates the labeled edges
(C2, A1, C1 : − 7) and (A2, A1, C1 : − 4) which are not generated using RUL. On the other
hand, the RUL system generates the edge (A2, C1, 5), with the Lower rule in the case
R ∈ TC, which cannot be generated with MMV, and only gets a value −2 on the edge from
A2 to A1, the strongest bound that can be given unconditionally, instead of the labeled edge
(A2, A1, C1 : − 4). Observe, however, that the edge (A2, A1, C1 : − 4) could be obtained,
in a single step, from the edges (A2, C1, 5) and (C1, A1, C1 : − 9), with an application of
the Upper Case rule, so it is somewhat implicit in the edge (A2, C1, 5). In general, when
replacing the MMV system the RUL system, the labeled edges, with head in an activation
time-point, are replaced with unlabeled edges with head in the corresponding contingent
time-point.

4 Soundness

We commit to prove soundness of all three rules comprising RUL, in the most general sense.
Specifically, we partially relax the following assumptions: (1) that Ω = Ωall, i.e., that every
possible situation s ∈ Ωall can be realized by the environment, and (2) that the duration ∆C

s

TIME 2017



8:8 Dynamic Controllability Made Simple

is revealed only at time Cs. Proving soundness under our weaker assumptions is a stronger
result, which not only implies soundness in the usual sense, but also helps applying the model
of STNUs to a wider range of scenarios.

To express our assumptions precisely, the following notion is needed.

I Definition 1. Given a situation s, a contingent time-point C0 ∈ TC and a value d ∈
[lC0 , uC0 ], define the situation s[d/∆C0 ] = r where ∆C0

r = d and ∆C
r = ∆C

s for every
C ∈ TC \ {C0}.

We first state a condition on the set Ω.

I Definition 2. The set Ω ⊆ Ωall is extremal-closed if, for every s ∈ Ω, also s[uC/∆C ] ∈ Ω
and s[lC/∆C ] ∈ Ω.

For soundness, we need to assume that Ω is extremal-closed. This means that, even if
not all situations may be realized by the environment, each duration ∆C can at least assume
the extremal values lC and uC , and do so independently of the other durations. Observe
that this is the case for Ω = Ωall, where all the situations are possible. However, there are
other, interesting examples of sets Ω that are extremal-closed: e.g., Ω =

∏
C∈TC

{lC , uC},
where each duration ∆C can only assume the extremal values lC and uC . Hence, with this
assumption, we strictly increase the generality with respect to the case Ω = Ωall addressed
by previous work.

A relaxed notion of dynamic execution strategy is also introduced, where the duration of
a contingent link (A, l, u, C) ∈ L in the situation s is revealed at time As + l instead of Cs.

I Definition 3. An execution strategy σ is upfront-dynamic if, for any two situations s, r ∈ Ω
and executable time-point X ∈ TX, we have that Xr = Xs if {〈C,∆C

s 〉 | ACs + lC < Xs} =
{〈C,∆C

r 〉 | ACr + lC < Xs}.

By Lemma 4, working with upfront-dynamic strategies yields no loss in generality with
respect to dynamic execution strategies.

I Lemma 4. Any dynamic execution strategy is upfront-dynamic.

Proof. The statement is clear if we consider that C∗ ≥ AC∗ +lC , so upfront-dynamic strategies
can only have more information at any time, whence more freedom, with respect to dynamic
strategy.

A formal proof is provided for reference. The proof is by contradiction: assume σ is
dynamic but not upfront-dynamic. Fix any two scenarios s, r ∈ Ω and suppose Xs 6= Xr for
some X ∈ TX. Assume without loss of generality that Xs = t < Xr and that t is minimal,
i.e., Ys = Yr for any Y ∈ TX such that either Ys < t or Yr < t.

Since σ is dynamic, we have {〈C,∆C
s 〉 | Cs < t} 6= {〈C,∆C

r 〉 | Cr < t}. Consider any C in
the difference. Either ACs < t or ACr < t, then actually1 ACs = ACr , by minimality of t. Thus,
∆C
s 6= ∆C

r , so {〈C,∆C
s 〉 | ACs + lC < Xs} 6= {〈C,∆C

r 〉 | ACr + lC < Xs}, closing the proof. J

Lemma 5 is the last ingredient needed for our soundness proof.

I Lemma 5. Consider an upfront-dynamic execution strategy σ and situations s, r ∈ Ω,
where r = s[d/∆C0 ] for some contingent time-point C0 ∈ TC and duration d ∈ [lC0

, uC
0 ].

Then, Pr = Ps for any P ∈ T \ {C0} such that Ps ≤ AC0
s + lC0 . In particular, AC0

s = AC0
r .

1 For simplicity, here we are assuming AC ∈ TX, as common in the context of STNUs. The proof can be
easily adapted if this assumption does not hold.
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Proof. By contradiction. Fixed s and r, choose P so that Ps ≤ AC0
s + lC0 , Ps 6= Pr, and Ps

is smallest possible. Then ACs = ACr for every C ∈ TC such that ACs < Ps. Also, ∆C
r = ∆C

s

for every C ∈ TC \{C0}. If P ∈ TC \{C0}, then Ps = APs + ∆P
s = APr + ∆P

r = Pr. Otherwise,
if P ∈ TX, then Ps = Pr by Definition 3, since AC0

s + lC0 ≥ Ps. J

Soundness is proven in Lemma 6, where each of the three rules comprising RUL is
proven to be sound, even for upfront-dynamic execution strategies, and for any extremal-
closed Ω ⊆ Ωall.

I Lemma 6. Assume Ω is extremal-closed. Let σ be a viable upfront-dynamic execution
strategy. Consider an edge (P,R, x) generated using RUL. Then, Rσ∗ ≤ Pσ∗ + x.

Proof. Relax. Clearly, Q∗ ≤ P∗ + v and R∗ ≤ Q∗ + w imply R∗ ≤ P∗ + (v + w).
Upper. Assume C∗ ≤ P∗ + v. Fix any situation s ∈ Ω: we need to prove ACs ≤

PCs + max{v − uC ,−lC}. If ACs < Ps − lC we are done, hence assume ACs ≥ Ps − lC . Take
r = s[uC/∆C ] and observe that ACr = ACs by Lemma 5. Moreover, Ps ≤ ACs + lC , so also
Pr = Ps by Lemma 5. Then,

ACs = ACr by Lemma 5
= Cr − uC as Cr = ACr + ∆C

r = ACr + uC

≤ Pr + v − uC by assumption C∗ ≤ P∗ + v

= Ps + v − uC as Ps = Pr by Lemma 5.

Lower. Assume R∗ ≤ C∗ + w. Fix any situation s ∈ Ω: we need to prove that
Rs ≤ ACs + (lC + w). Take r = s[lC/∆C ] and observe that ACr = ACs by Lemma 5. We now
prove that Rr = Rs, in two cases.
Case 1: R ∈ TX and w ≤ 0.

Consider that Rr ≤ Cr + w = ACr + lC + w ≤ ACr + lC since w ≤ 0. Hence, Rs = Rr by
Lemma 5.

Case 2: R ∈ TC \ {C} and w ≤ uR.
Take q = r[uR/∆R] and observe that ARq = Rq − uR ≤ Cq + w − uR ≤ Cq = ACq + lC ,
whence2 ARs = ARr = ARq by Lemma 5 and Rs = ARs + ∆R

s = ARr + ∆R
r = Rr.

Then,

Rs = Rr proven separately in the two cases
≤ Cr + w by assumption R∗ ≤ C∗ + w

= ACr + lC + w as Cr = ACr + ∆C
r = ACr + lC

= ACs + lC + w as As = Ar by Lemma 5. J

5 Completeness via late execution strategy

For completeness, we need to assume, as usual in temporal networks, to have a special time-
point Z which is due to be executed at time 0 and before any other time-point. Moreover, it
will be useful to consider Z as a contingent node for uniformity.

2 Let us spend some extra words to explain, in a more intuitive way, this step of the proof, which is
crucial for our system of rules and arguably is the most involved. In the situation q, where ∆C

q = lC and
∆R

q = uR, the activation node AR for R must be executed before or at time AC
q + lC

q : this is a direct
consequence of the existing constraint R ≤ C + w with w ≤ uR. Hence, at the time AR

q , neither the
duration ∆R (trivially) nor ∆C are known to the planner. Thus, the time AR cannot change depending
on those durations, i.e., AR

s = AR
r = AR

q as claimed.
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Table 3 Extra restrictions for the rules Relax+ and Upper+.

Rule Extra restrictions
Relax+ P ∈ TC Q ∈ TX v > 0
Upper+ P ∈ TC v > uC

Table 4 RUL+ sub-system of RUL.

Rule Graph representation Applicability conditions

Relax+
P Q R

v w

v + w
P ∈ TC Q ∈ TX v > 0

Upper+
P C AC

v

l

−u

v − u
P ∈ TC v > uC

Lower
AC C R

wl

−u

l + w

w ≤ 0 for R ∈ TX

w ≤ uR for R ∈ TC \ {C}

I Definition 7. An STNU is pointed if it contains distinguished time-points AZ ∈ TX,
Z ∈ TC, and a contingent link (AZ , 1, 1, Z) ∈ L, with wPZ < 0 and wZP > 0 for any
P ∈ TX \ {AZ}. If also wZP <∞ for every P ∈ TX \ {AZ}, then it is upper-bounded.

Any network can be made pointed, without loss of generality, by adding the contingent
link (AZ , 1, 1, Z) ∈ L between dummy nodes AZ and Z, and setting wPZ = −1 and wZP =∞
for every P ∈ TX \ {AZ}. To make it upper-bounded, it is sufficient to pick a sufficiently
large horizon time h > 0, and set wZP = h for every P ∈ TX \ {AZ}.

The completeness of the RUL system is proven by exhibiting an explicit execution strategy
for any upper-bounded network Γ which is closed under them. Actually, Γ only needs to
be closed under a subset of the RUL system, called RUL+. In the sub-system RUL+, we
only apply the Relax and Upper rules when P ∈ TC is contingent. Moreover, we require
v > 0 and Q ∈ TX for the Relax rule, and v > uC for the Upper rule. The restricted rules,
called Relax+ and Upper+, are illustrated in Table 3. Together with the unrestricted rule
Lower, they constitute the RUL+ system (Table 4).

The strategy we exhibit is a late execution strategy, as opposed to the commonly used
early execution strategy.

I Definition 8. In an upper-bounded network Γ, a viable dynamic execution strategy σ is
the late execution strategy if, for any other viable dynamic execution strategy τ , Pσs ≥ P τs
for each s ∈ Ω and P ∈ T . (It is implicitly assumed AZ∗ = −1 for both σ and τ .) I.e., in the
late execution strategy each time-point is executed at the latest possible time over all viable
dynamic execution strategies.
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It follows from the definition that the late execution strategy, if it exists, is unique.
However, it is not at all implied by the definition that a given dynamically controllable
network, even if upper-bounded, admits a late execution strategy. Indeed, in principle it
could be that the strategy defined as

Xσ
s := max{Xτ

s | dynamic and viable τ with AZ∗ = −1},

i.e., the only candidate to be the late execution strategy, is not itself dynamic and viable.3
It is obtained, as a consequence of the analysis of our system of rules, that indeed, for the
case of STNUs, the late execution strategy always exists, provided the network is DC and
upper-bounded. Working with late execution strategies – it turns out – is very convenient,
since we do not have to deal with “wait” (or labeled) edges; this will allow for a short and
self-contained non-algorithmic proof of the completeness of RUL.

Notice that a strategy satisfying the following equation would trivially be the late execution
strategy, if only it were dynamic and viable:

Y∗ = min
C∈TC
wCY >0

C∗ + wCY (1)

for every Y ∈ TX \ {AZ}, and AZ∗ = −1.

I Lemma 9. Assume Γ is upper-bounded. Then, there exists a unique execution strategy σ
satisfying Equation 1. Moreover, σ is dynamic.

Proof. The reason why the lemma holds is simple: Equation 1 defines the execution time
of each executable time-point in terms of time-points with a strictly lower execution time,
hence σ is well-defined and unique. Remarkably, the very same observation also shows that
σ is dynamic. Notice that boundedness (i.e., 0 < wZP < ∞ for every P ∈ TX \ {AZ}) is
necessary to ensure that the right-hand side of Equation 1 is finite. Also, the assumption
AZ∗ = −1 is necessary for σ to be unique.

To insist on a formal proof, we can rewrite Equation 1 as follows:

Ys = t ⇐⇒ min
C∈TC
wCY >0
Cs<t

Cs + wCY = t ∀Y ∈ TX, s ∈ Ω.

In this writing, the dependency on the time t ∈ [0,∞) is made explicit and allows for an
inductive construction of the solution σ for increasing t, which is thus proven to be unique.
To prove that σ is also dynamic, suppose Xs < Xr for some X ∈ TX and s, r ∈ Ω. Also,
choose a minimal Xs, i.e., assume Ys = t ⇐⇒ Yr = t for every t < Xs and Y ∈ TX. Take
C ∈ TC such that Xs = Cs + wCX and wCX > 0 (i.e., the arg min of Equation 1). By
definition of σ, we have Xr ≤ Cr + wCX , so Cs + wCX = Xs < Xr ≤ Cr + wCX , whence
Cs < Cr. By minimality of Xs we have4 ACs = ACr , so it must be ∆C

s < ∆C
r . This proves

that {〈C,∆C
s 〉 | Cs < t} 6= {〈C,∆C

r 〉 | Cr < t} for every t ≥ Xs, concluding the proof. J

I Lemma 10. Assume Γ is upper-bounded and closed under RUL+. Then, the strategy σ
defined by Equation 1 is viable.

3 In some other temporal network models, such as CSTNs, it is possible to construct examples of
upper-bounded networks which admit an early execution strategy but no late execution strategy.

4 For simplicity, here we are assuming AC ∈ TX, as common in the context of STNUs. The proof can be
easily adapted if this assumption does not hold.
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Table 5 Cases in the proof of Lemma 10.

Constraint R ≤ P + wP R Case
P ∈ TX Relax+

P ∈ TC

R ∈ TX
wP R > 0 By-Construction
wP R ≤ 0 Lower

R ∈ TC
wP R > uR Upper+

wP R ≤ uR Lower

Proof. Fix a situation s. We prove that Rs ≤ Ps + wPR by induction on the times Ps
and Rs.

The following four cases (By-Construction, Relax+, Lower, Upper+) cover all the
possibilities, as illustrated in Table 5.

Case By-Construction: Y ≤ C + wCY with C ∈ TC, wCY > 0 and Y ∈ TX.
We have Ys ≤ Cs + wCY by Equation 1.

Case Relax+: R ≤ X + wXR with X ∈ TX.
Take C ∈ TC such that Xs = Cs + wCX with wCX > 0. Then,

Rs ≤ Cs + wCR by induction, since Cs < Xs = Cs + wCX

≤ Cs + wCX + wXR by Relax+ applied to C,X,R
= Xs + wXR by assumption Xs = Cs + wCX .

Case Lower: R ≤ C+wCR with C ∈ TC, and either R ∈ TX and wCR ≤ 0, or R ∈ TC \{C}
and wCR ≤ uR.
Then,

Rs ≤ ACs + wACR by induction, as ACs < Cs = ACs + ∆C
s

≤ ACs + (wCR + lC) by Lower applied to C,AC , R
≤ Cs + wCR since Cs = ACs + ∆C

s ≥ AC + lC .

Case Upper+: C ≤ P + wPC , with C ∈ TC and wPC ≥ uC .
Then,

Cs ≤ ACs + uC as Cs = ACs + ∆C
s and ∆C

s ≤ uC

≤ Ps + wPAC + uC by induction, as ACs < Cs = ACs + ∆C
s

≤ Ps + (wPC − uC) + uC by Upper+ applied to P,AC , C
= Ps + wPC . J

To complete our analysis, we need to show that a DC network admits a closure under
RUL+. More precisely:

I Lemma 11. If a network admits a viable upfront-dynamic execution strategy, then it
admits a closure under RUL.

This fact is quite intuitive: just continue to apply the rules, as long as possible, until
closure is reached. Since the rules are sound, and the network admits a viable and dynamic
execution strategy σ, then at some point it should become impossible to deduce stricter and
stricter constraints, as they must be satisfied at least by σ. However, to prove that closure is
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reached in a finite number of steps requires (explicitly or implicitly) the description of an
actual algorithm to perform the propagations, which is beyond the scope of this work. The
authors verified that the existing DC checking algorithms can be adapted to use the RUL
system, and indeed produce the closure under RUL of a given input network, provided it is
DC.

We explore here the consequences of Lemma 11.
I Theorem 12. Let Γ be an upper-bounded STNU. The following are equivalent:
1. Γ is dynamically controllable (admits a viable dynamic execution strategy),
2. Γ admits a viable upfront-dynamic execution strategy,
3. Γ admits a closure under the RUL system (without negative self-loops),
4. Γ admits a closure under the RUL+ system (with only positive edges from Z).
Proof. Consider the following implications:

1 =⇒ 2, by Lemma 5,
2 =⇒ 3, by Lemma 11,
3 =⇒ 4, trivial,
4 =⇒ 1, by the construction of the late execution strategy (Lemma 9 and Lemma 10).

J

I Corollary 13. Every dynamically controllable upper-bounded STNU admits a late execution
strategy.
I Corollary 14. The property of being dynamically controllable does not change if the
duration ∆C

s of contingent links is revealed at any time between ACs + lC and Cs, nor if the
duration ∆C

s is restricted to assume only the extremal values lC and uC .
Proof. Consider that the property of admitting a closure under the RUL system is unvaried,
and the RUL system is sound-and-complete for all these variants. J

I Corollary 15. DC-checking for an STNU with N time-points, M constraints, and K con-
tingent links admits a certificate of YES of size O(KN), verifiable in O(K2N +KM) time
and logarithmic space.
Proof. The closure of the network under RUL+ is a certificate of YES. Only O(KN) new
edges may be generated, since they all have tail in either a contingent time-point or an
activation time-point, and this suffices for the size bound. To verify the closure under the
Relax rule, one can guess a constraint R ≤ Q+w (either original or in the closure) and the
time-point P ∈ TC, and verify that the rule does not generate any stronger constraint. This
takes O(K2N +KM) time (a factor KN +M to guess the original or generated constraint,
times a factor K to guess the time-point P ). Similarly, to verify the closure under the Lower
rule, one can guess C ∈ TC and R ∈ T , in O(KN) total time, while verifying the Upper
rule only require O(K2) ≤ O(KN) time to guess P,C ∈ TC. Finally, the space required for
verification is clearly logarithmic. J

I Corollary 16. If the network is integer, i.e., wPQ ∈ Z ∪ {∞} for every P,Q ∈ T , there
there exists a strategy where each execution time Xs satisfies either:

Xs ∈ Z is integer, or
Xs = Cs + k for some C ∈ TC with integer k ∈ Z.

I Corollary 17. If the network is integer, i.e., wPQ ∈ Z ∪ {∞} for every P,Q ∈ T , and the
durations are constrained to be integers, i.e., lC , uC ∈ Z and Ω =

∏
C∈TC

{lC , lC + 1, . . . , uC},
then the network admits an integer execution strategy, i.e., where P∗ ∈ Z for every P ∈ T .
Proof. Consider the late execution strategy. J
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6 Real-time execution

We have shown that a network closed under RUL+ admits a late execution strategy, defined
by Equation 1. We next show that the late execution strategy can be also executed in
real-time, with a total running time O(KN). We only need to assume that, for every C ∈ TC,
we have stored the values wCX , for every X ∈ TX such that wCX > 0, in a list LC , sorted
by increasing numerical value of wCX . These lists LC , for C ∈ TC, can be compiled in a
preprocessing step (by sorting and filtering all the values wCX , X ∈ TX), in O(KN logN)
total time. This cost should not be accounted for in the real-time execution running time: it
is better regarded as a light postprocessing of the DC-checking step, having lower asymptotic
time and space complexity.

The algorithm works by maintaining the value

X◦ := min
C∈XC
wCX>0

C• + wCX

for every X ∈ TX , where XC is the set of already executed contingent time-points (initially
containing only Z), C• is the execution time of the time-point C, and X◦ represents the
current scheduled time for the time-point X. During the real-time execution of the network,
the values X◦ can only decrease monotonically, and have to be updated whenever a contingent
time-point gets executed. The values X◦ are maintained in a list S sorted by increasing
numerical value of X◦, which can be regarded as an event queue representing the current
candidate schedule of executable time-points.

At the beginning XC = {Z}, and the list S is built simply by copying LZ , setting
X◦ = wXZ for every X ∈ TX. The algorithm works by repeatedly executing the time-point
X̄ which appears first in the list S, at time X̄◦, unless a contingent time-point is executed
before that time. When a contingent time-point C̄ is executed, the values X◦ and the list
S need to be updated before resuming the execution. This can be done in O(N) time by
merging the new candidate values C̄• +wC̄X with the list S. More precisely, a new list SC̄ is
built from LC̄ , containing the values

XC̄
◦ := C̄• + wC̄X

for every X ∈ TX such that wC̄X > 0. The list SC̄ is constructed preserving the increasing
order given by LC̄ . Observe that the new value of X◦ is obtained as

Xnew
◦ := min{Xold

◦ , XC̄
◦ }.

To obtain a sorted list with the new values, first merge the lists S and SC̄ as in the Merge
Sort algorithm. Then, scan the merged list to remove duplicates. For each duplicated
time-point X, keep only the first occurrence in the list, i.e., the one with smaller numerical
value min{Xold

◦ , XC̄
◦ }, and set that value as the new value of X◦. With this pass we obtain

the updated list Snew, already sorted, containing the updated values Xnew
◦ which take into

account the execution of C. Since we pay O(N) time for each of the K contingent time-points
and only O(1) for each executable time-point, the total time is O(KN).

7 Conclusions

We have presented a new, sound-and-complete system of constraint propagation rules, called
RUL, for checking the dynamic controllability of STNUs. Soundness has been proven, for
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each of the rules, in its most general version, and holds even if we take into account upfront-
dynamic execution strategies besides dynamic execution strategies. As for completeness, we
have proven that closure under a subset of the rules, called RUL+, is sufficient to guarantee
the existence of a viable dynamic execution strategy. Specifically, we considered the strategy
which executes each time-point at the latest time allowed by positive edges from contingent
nodes. We defined this strategy explicitly, with a single equation; then, we provided a short
proof that it is viable, i.e., it satisfies every other constraint in the network, assuming closure
under RUL+. This strategy is the late execution strategy, since moving the execution time
of any time-point further in the future would violate at least one constraint. Finally, we
showed how to execute the late execution strategy in real-time, paying only O(KN) time in
total for a network with N time-points and K contingent links. With the introduction of the
RUL system, this paper helps making STNUs not only simpler, and better understood, but
also more generally applicable.

In this work, we did not provide any new DC-checking algorithm. However, existing
algorithms can be adapted to use the RUL system, and produce the closure under RUL
of a given input network, if it is DC, without incurring in any additional complexity cost.
Furthermore, the added simplicity of the new rules allows for a cleaner approach to DC-
checking, which yields improved algorithms as for both simplicity and efficiency, beyond the
scope in this work. We opted for a short and clean description of the RUL system, which
is proposed as a new foundation for the theory of DC-checking and real-time execution of
STNUs, and their numerous extensions.
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Abstract
A Conditional Simple Temporal Network (CSTN) augments a Simple Temporal Network (STN)
to include special time-points, called observation time-points. In a CSTN, the agent executing
the network controls the execution of every time-point. However, each observation time-point
has a unique propositional letter associated with it and, when the agent executes that time-point,
the environment assigns a truth value to the corresponding letter. Thus, the agent observes, but
does not control the assignment of truth values. A CSTN is dynamically consistent (DC) if there
exists a strategy for executing its time-points such that all relevant constraints will be satisfied
no matter which truth values the environment assigns to the propositional letters.

Alternatively, in a Labeled Simple Temporal Network (Labeled STN) – also called a Temporal
Plan with Choice – the agent executing the network controls the assignment of values to the so-
called choice variables. Furthermore, the agent can make those assignments at any time. For
this reason, a Labeled STN is equivalent to a Disjunctive Temporal Network.

This paper incorporates both of the above extensions by augmenting a CSTN to include
not only observation time-points but also decision time-points. A decision time-point is like an
observation time-point in that it has an associated propositional letter whose value is determined
when the decision time-point is executed. It differs in that the agent – not the environment –
selects that value. The resulting network is called a CSTN with Decisions (CSTND). This paper
shows that a CSTND generalizes both CSTNs and Labeled STNs, and proves that the problem
of determining whether any given CSTND is dynamically consistent is PSPACE-complete. It
also presents algorithms that address two sub-classes of CSTNDs: (1) those that contain only
decision time-points; and (2) those in which all decisions are made before execution begins.
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1 Introduction

Temporal networks have long been employed for the representation, validation, and execution
of plans affected by temporal constraints [1, 5, 8, 10, 11, 17, 23]. A temporal network con-
stains time-points and temporal constraints. Time-points are real-valued variables; temporal
constraints are binary difference constraints that specify lower or upper bounds on the
temporal distance between pairs of time-points [16]. The execution of a time-point (i.e., the
assignment of a real value to it) models the (instantaneous) occurrence of an event. An agent
executing a temporal network aims to execute its time-points so that all relevant temporal
constraints are satisfied.

A Simple Temporal Network (STN) is the most studied and used kind of temporal network
due to its simplicity, efficiency, and general applicability [16]. An STN is typically used in
planning applications where all time-points must be executed (i.e., must play their role in
the plan) and where the agent controls their execution. An STN is consistent if the network
can be executed in such a way that all of its constraints are satisfied.

Since STNs were proposed, several authors have introduced extensions to STNs to
augment their expressiveness. Among them, we mention here: (i) Simple Temporal Networks
with Uncertainty (STNUs) [24], (ii) Conditional Simple Temporal Networks (CSTNs) [22, 25],
and (iii) Conditional Simple Temporal Networks with Uncertainty (CSTNUs) [21].

A Simple Temporal Network with Uncertainty extends an STN by incorporating contingent
links to model uncontrollable, but bounded temporal durations. A contingent link has the
form (A, x, y, C), where A is the activation time-point, x and y are real numbers such that
0 < x < y < ∞, and C is the contingent time-point. Typically, the agent controls the
execution of A, but once A has been executed, the execution of C is beyond the agent’s
control because the time of its execution is decided by the environment. Indeed, C may
be executed at any time such that x ≤ C − A ≤ y. Thus, the agent merely observes the
execution of C when it occurs. The agent aims to execute the time-points under its control
such that all constraints will be satisfied no matter how the contingent durations turn out.
Crucially, the agent may react to the contingent durations it observes, adapting its execution
of the remaining unexecuted time-points (i.e., it may use a dynamic execution strategy [24]).

A Conditional Simple Temporal Network extends an STN in a different direction by
specifying the time-points/constraints must be executed/satisfied in various scenarios. Each
scenario is represented by a conjunction of (positive or negative) propositional literals, where
each proposition represents some condition. The agent executing a CSTN aims to execute the
time-points relevant to the unfolding scenario, while satisfying all of the relevant constraints.
Each propositional letter p has a corresponding observation time-point P? When the agent
executes P?, the environment sets the value of p. Since these values are only observed in
real time, the agent aims to satisfy all relevant constraints no matter how the conditions
turn out during execution [21, 25]. Hence, for a CSTN, the agent typically uses a dynamic
execution strategy with respect to the uncontrollable condition values [22].

A Conditional Simple Temporal Network with Uncertainty generalizes both STNUs and
CSTNs in order to deal with both kinds of uncertainties simultaneously [21].

For temporal networks with uncontrollable features (e.g., STNUs, CSTNs and CSTNUs),
dynamic properties, named dynamic controllability or dynamic consistency, have been studied
and some related algorithms have been proposed. These properties specify whether it is
possible to execute all time-points under the agent’s control while satisfying all relevant
constraints, by dynamically reacting to the uncertainties (whether the duration of a contingent
link or the setting of a boolean value) as they are revealed in real time.
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Figure 1 A CSTN with Decisions modeling the example discussed in the text. The propositions
b, e and h correspond to the time-points B!, E? and H!, respectively.

Conrad and Williams [14] present Drake, a dynamic executive for temporal plans that
include discrete choices. In Drake, the executive sets the values for the propositional letters –
hence the name choice – and the goal of the system is to both schedule events and make
discrete choices as the execution unfolds. The ability to make discrete choices enriches an
executive by offering it the ability to order activities, and choose between alternate methods
(sub-plans) for achieving goals. Consistency analysis aims to determine a set of choices that
will enable the executive to satisfy the relevant constraints.

Thus, STNUs, CSTNs and CSTNUs address uncontrollable parts, whereas Drake addresses
controllable parts only. No temporal network discussed so far has addressed the arising
interplay that occurs when controllable and uncontrollable conditions may mutually influence
one another. This paper focuses on this issue and makes the following contributions.
1. A new model, Conditional Simple Temporal Network with Decision (CSTND), that ac-

commodates contingent propositional variables (conditions) and controllable propositional
variables (decisions). During execution, the decisions made by the agent, together with
the conditions specified by the environment, determine the unfolding scenario.

2. A proof that the decision problem of establishing whether or not any CSTND is dynami-
cally consistent is PSPACE-complete.

3. Algorithms addressing two sub-classes of CSTNDs: (i) those containing decisions only,
and (ii) those in which all decisions must be set before starting to execute the network.

2 Motivating Example

Fig. 1 depicts a simplification of an example from the healthcare domain. The nodes in the
graph represent time-points; the edges represent constraints. Time-points and constraints
are relevant whenever their propositional labels are consistent with the unfolding scenario.
Temporal ranges are in minutes. For instance, the annotation [0, 2], b on the edge from B!
to L1 represents that in scenarios where b is true, the difference L1 − B! must be in the
interval [0, 2] (i.e., L1 must be executed between zero and two minutes after B!).

The plan applies to patients suffering from hematological diseases. It starts by having
a patient’s blood tested. There are two labs in the hospital, Lab1 and Lab2, but only one
of them will analyze the blood sample, to be determined by the value the executing agent
assigns to b, when B! is executed. If b is > (resp., ⊥), then Lab1 (resp., Lab2) will analyze
the sample. The execution of either L1 or L2 models this task. Depending on the result
of the blood test, a physician (who represents the environment in this example) evaluates
whether the patient needs urgent care. This evaluation is represented by the time-point E?.
The environment setting e = ⊥ represents that the physician determined that the patient
does not need urgent care. In that case, the plan concludes with a standard treatment,
represented by the execution of S. However, if e = >, then a hospitalization process is
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engaged, represented by the time-points H!, I1 and I2. There are two Intensive Care Units
in the hospital, ICU1 and ICU2, but only one of them will be used, depending on the value
for h, which is determined when H! is executed. If h = > (resp., h = ⊥), then the patient
is hospitalized in ICU1 (resp., ICU2). Note that if b = e = >, and h = ⊥, then I2 must be
executed no more than 6 minutes after B!, the time-point modeling the start of the plan.

Our goal is to determine whether such networks are dynamically consistent. Note that
if the values of b and h were set by the environment, then the network in Fig. 1 would
be inconsistent. For example, in the scenario be¬h, the lower bound of I2 is 7, which is
inconsistent with the constraint B! [0, 6], be¬h

I2. However, if b and h are set by the agent,
then the plan is dynamically consistent. Indeed, there are two significant possibilities: if
b = ⊥ and e = >, then h can be > or ⊥ without any problem; but if b = e = >, then h must
be >, because the scenario be¬h would introduce the same inconsistency discussed above.

3 Conditional Simple Temporal Network with Decisions

This section introduces the formal definitions of a Conditional Simple Temporal Network
with Decisions (CSTND) and the corresponding dynamic consistency property. We begin by
recalling Simple Temporal Networks (STNs) [16], a well-known model for representing and
reasoning about temporal constraints. An STN is a pair (T , C), where T is a set of real-valued
variables, called time-points, and C is a set of binary constraints on those variables, each
having the form, (Y −X ≤ δ), where X,Y ∈ T and δ ∈ R. A constraint (Y −X = δ) can
be represented by the constraints, (Y −X ≤ δ) and (X − Y ≤ −δ). The Simple Temporal
Problem (STP) is that of determining whether an STN is consistent (i.e., has a solution).

Tsamardinos et al. [25] extended STNs to include time-points and temporal constraints
that apply only in certain scenarios, where each scenario is represented by a conjunction
of propositional literals. In their work, each time-point has a label that concisely specifies
the scenarios in which that time-point must be executed. During execution, the execution
of so-called observation time-points non-deterministically generates truth values for the
corresponding propositional variables. Thus, the scenario is incrementally revealed. Later,
Hunsberger et al. [21, 22] augmented their model to also allow constraints to have labels
that specify the scenarios in which they must be satisfied. The result was a Conditional
STN (CSTN). A CSTN is called dynamically consistent if there is a strategy for executing
its time-points such that all relevant constraints will be satisfied no matter which scenario is
incrementally revealed. They also formalized several well-definedness properties that had
been only informally expressed in the earlier work.

This paper generalizes a CSTN by allowing some of the propositional variables to be
assigned values not by the environment, but by the agent executing the network.

I Definition 1 (Label). Let P be a set of propositional letters. A label ` over P is a (possibly
empty) conjunction, ` = l1∧· · ·∧ lk, of (positive or negative) literals li ∈ {pi,¬pi} on distinct
variables pi ∈ P. The empty label is denoted by �. P∗ denotes the set of all labels over P.

I Definition 2 (CSTND). A Conditional Simple Temporal Network with Decisions (CSTND)
is a tuple Γ = 〈T ,P, CP,DP, C,OT ,O〉 where:
T is a finite set of temporal variables or time-points;
P is a finite set of propositional letters/variables;
(CP,DP) is a partition of P into contingent propositional variables (conditions) CP and
controllable propositional variables (decisions) DP;
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C is a finite set of labeled constraints, each of the form, (Y −X ≤ δ, `), where X,Y ∈ T ,
δ ∈ R, and ` ∈ P∗;
OT ⊆ T is the set of disclosing time-points; and
O : P → OT is a bijection that associates each propositional variable p ∈ P to a disclosing
time-point O(p) ∈ OT . If p ∈ CP, then its disclosing time-point is called an observation
time-point; but if p ∈ DP, its disclosing time-point is called a decision time-point.

When an observation time-point is executed, the corresponding propositional variable (condi-
tion) is assigned a truth value by the environment; however, when a decision time-point is
executed, the corresponding variable (decision) is assigned a truth value by the agent. To
highlight the correspondence between propositional variables and their disclosing time-points,
a decision time-point for any variable p is notated as P !, while an observation time-point for
any variable q is notated as Q?, as illustrated in Fig. 1.

It is worth pointing out that in the definition of CSTND only constraints are labeled,
not time-points. This restriction does not limit the expressivity of CSTNDs, as it has been
recently shown that labeling constraints is sufficient to represent any possible CSTN [3].
Moreover, since time-points in CSTNDs do not have labels, the well-definedness properties
formalized by Hunsberger et al. [22] become vacuous, which simplifies subsequent definitions.

To facilitate defining the dynamic consistency property for CSTNDs, we refine the
supporting definitions of scenarios, projections and schedules to distinguish condition variables
from decision variables.

I Definition 3 (Scenario). A (combined) scenario over P is a total assignment s : P → {⊥,>}
of truth values to propositional variables. Each scenario s also determines a truth value for
each label ` ∈ P∗. If s(`) = >, we may write s � `. The set of all scenarios over P is denoted
by ΣP . When a scenario is restricted to the subset CP ⊆ P of conditions, then it may be
called a condition scenario; similarly, when a scenario is restricted to the subset DP ⊆ P
of decisions, it may be called a decision scenario. The sets of all condition and decision
scenarios are denoted by ΣCP and ΣDP , respectively.

A CSTND projection is an STN that contains the constraints applicable in a given scenario.

I Definition 4 (Projection). Let Γ = 〈T ,P, CP,DP, C,OT ,O〉 be any CSTND, and let s
be any (combined) scenario. The projection of Γ over s is the STN Γs = (T , Cs) where
Cs = {Y −X ≤ δ | (Y −X ≤ δ, `) ∈ C and s � `}.

I Definition 5 (Schedule). A schedule over a set T of time-points is a total assignment
ψ : T → R of real values to those time-points. Hereinafter, the value ψ(X) will be notated
as [ψ]X . A schedule ψ over T is said to be feasible for an STN (T , C) if ψ satisfies all of the
constraints in C. The set of schedules over T is denoted by ΨT .

The agent executing the network must (1) schedule time-points, and (2) assign values to
decision variables. In addition, the agent is able to react in real time to conditions set by the
environment. Therefore, we define a two-part execution strategy, as follows.

I Definition 6 (Execution Strategy). A temporal strategy for a CSTND Γ is a function
σt : ΣCP → ΨT that maps each condition scenario cs ∈ ΣCP to a (complete) schedule σt(cs)
over T . A decision strategy for Γ is a function σd : ΣCP → ΣDP that maps each condition
scenario cs ∈ ΣCP to a decision scenario ds = σd(cs) ∈ ΣDP . An execution strategy is a pair
σ = (σt, σd) where σt is a temporal strategy and σd is a decision strategy. An execution
strategy σ = (σt, σd) is viable if, for every condition scenario cs ∈ ΣP , letting ds = σd(cs)
and s = cs ∪ ds, the schedule σt(cs) is feasible for the projection Γs.

TIME 2017



9:6 Incorporating Decision Nodes into CSTNs

To ensure that the schedules and decisions generated by an execution strategy only
depend on past observations, a dynamic execution strategy is subject to restrictions expressed
in terms of condition scenario histories, as follows.

I Definition 7 (Condition Scenario History). Given a temporal strategy σt, a condition
scenario cs ∈ ΣCP , and a time value t ∈ R, the condition scenario history at t in the
condition scenario cs for the temporal strategy σt – notated as scHst(t, cs, σt) – is the set
of contingent variable assignments made by the environment before time t according to the
schedule σt(cs): scHst(t, cs, σt) = {(p, cs(p)) | p ∈ CP and [σt(cs)]O(p) < t}.

I Definition 8 (Dynamic Execution Strategy). A temporal strategy σt is dynamic if for any
pair of condition scenarios cs ∈ ΣCP and cs′ ∈ ΣCP , and any time-point X ∈ T :

let: t = [σt(cs)]X ,
if: scHst(t, cs, σt) = scHst(t, cs′, σt),
then: [σt(cs′)]X = t.

Similarly, a decision strategy σd is dynamic if for any condition scenarios cs ∈ ΣCP and
cs′ ∈ ΣCP , and any decision variable p ∈ DP:

let: t = [σt(cs)]O(p),
if: scHst(t, cs, σt) = scHst(t, cs′, σt),
then: σd(cs)(p) = σd(cs′)(p).

An execution strategy is dynamic if its temporal and decision strategies are both dynamic.

Now, it is possible to formally introduce the concept of dynamic consistency for CSTNDs.

I Definition 9 (Dynamic Consistency). A CSTND is dynamically consistent (DC) if it admits
a dynamic and viable execution strategy. The CSTND-DC problem is that of checking
whether any given CSTND is dynamically consistent.

4 Computational Complexity of the CSTND-DC Problem

This section shows that the CSTND-DC problem is PSPACE-complete.

4.1 PSPACE-hardness
Cairo and Rizzi [4] showed that the DC-checking problem for CSTNs is PSPACE-hard. This
section presents a simpler proof of that result by providing a direct reduction from the
Quantified Boolean Formula (QBF) problem to the CSTND-DC problem.

Consider any quantified boolean formula of the form, Φ = ∃x1∀y1 · · · ∃xn∀yn ϕ, where
ϕ is a formula in conjunctive normal form, each clause of which is limited to at most three
literals over a finite set of propositional variables x1, y1, . . . , xn, yn (i.e., ϕ is a 3SAT formula).
More specifically, ϕ is a conjunction of the form

∧m
j=1(lj,1 ∨ lj,2 ∨ lj,3), where each literal lj,k

is either a positive or negative instance of one of the quantified variables.
The reduction involves the construction of a corresponding CSTND instance Γ such that Γ

is DC if and only if Φ is true. To begin, define the sets of decision and condition variables to
be DP = {x1, . . . , xn} and CP = {y1, . . . , yn}, respectively. Thus, the disclosing time-points
of the network are given by OT = {X1!, . . . , Xn!, Y1?, . . . , Yn?}. The only other time-point,
W , is discussed below. Thus, T = OT ∪ {W}. Finally, the set of constraints is given by:

C = (
⋃

i=1,...,n
{(Xi!− Yi? = −1,�), (Yi?−Xi+1! = −1,�)}) ∪

(
⋃

i=1,...,n
{(W −W ≤ −1,¬li,1 ∧ ¬li,2 ∧ ¬li,3)}) ∪ {X0! = 1,W = 2n+ 1}
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Z X1! Y1? X2! Y2?

W

〈1,�〉

〈−1,�〉

〈5,�〉

〈−5,�〉

〈1,�〉

〈−1,�〉

〈1,�〉

〈−1,�〉

〈1,�〉

〈−1,�〉
〈−1, x1¬y1¬y2〉

〈−1,¬x2y1¬y2〉

Figure 2 The CSTND obtained from the quantified boolean 3SAT formula

Φ ≡ ∃x1∀y1∃x2∀y2(¬x1 ∨ y1 ∨ y2) ∧ (x2 ∨ ¬y1 ∨ y2) .

The constraints, (Xi!− Yi? = −1,�) and (Yi?−Xi+1! = −1,�) for i ∈ {1, . . . , n}, impose
the order X1! < Y1? < . . . < Xn! < Yn? on the disclosing time-points, which mirrors the
order of the alternating quantifiers x1, y1, . . . , xn, yn in Φ. Furthermore, together with the
constraint, X0! = 1, they ensure that any viable temporal strategy must make the fixed
assignments, X0! = 1, Y0? = 2, . . . , Xn! = 2n− 1, Yn? = 2n, across all (combined) scenarios.
Note that any such temporal strategy is trivially dynamic.

The constraints of the form, (W −W ≤ −1,¬li,1 ∧ ¬li,2 ∧ ¬li,3) are negative self-loops
on the extra time-point W , each of which has a label that is the logical negation of one of
the clauses in the boolean formula ϕ.

Fig.2 depicts a simple example of the reduction from a QBF to the corresponding CSTND,
where Φ ≡ ∃x1∀y1∃x2∀y2(¬x1 ∨ y1 ∨ y2) ∧ (x2 ∨ ¬y1 ∨ y2).

In any (combined) scenario cs, the labeled negative self-loops at W are satisfied if and
only if cs assigns the value ⊥ to each of their labels. That happens if and only if the formula
ϕ evaluates to > in the scenario cs. Therefore, Γ admits a viable execution strategy if and
only if Φ is true.

Given the fixed ordering of the disclosing time-points, a decision strategy is dynamic
if and only if the assignment of each decision variable xi depends only on the preceding
condition variables, y1, . . . , yi−1. This mirrors the semantics of the nested quantifiers, where
each xi is existentially quantified, and each preceding yj is universally quantified. Thus, Γ
has a dynamic execution strategy if and only if Φ is true.

4.2 A Polynomial-Space Algorithm for the CSTND-DC Problem
This section presents a polynomial-space algorithm for the CSTND-DC problem, which
extends the algorithm for CSTNs from prior work [4], assuming that time is discretized.
As already discussed in [4], such assumption does not limit the generality of the algorithm.
Together with the PSPACE-hard result from the preceding section, this proves that the
CSTND-DC problem is PSPACE-complete.

We begin by showing that, under certain conditions, a DC CSTND admits a discrete
execution strategy (i.e., one that only schedules time-points at rational multiples of some
fixed real number ε, where the granularity of the rational factors is bounded). This result,
whose proof is in the Appendix, adapts a similar result for CSTNs from prior work [4].

I Lemma 10. Suppose that Γ is a CSTND such that, for some ε ∈ R+ and W ∈ Z+,
each constraint (Y −X ≤ w) in Γ satisfies w = kε for some k ∈ Z, where −W < k < W .
If Γ is dynamically consistent, then Γ admits a viable and dynamic execution strategy
σ = (σt, σd) such that for each scenario cs and each X ∈ T , [σt(cs)]X = k′ε/K, for some
k′ ∈ {0, 1, . . . , 2K2W}, where K = |T | · 2|P|.

TIME 2017
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Algorithm 1: CSTND Dynamic Consistency checking in polynomial space
1 Function DC(Γ)

Input : Γ is a CSTND satisfying the conditions of Theorem 10 for some values ε > 0 and
W ∈ Z+

Returns : true if Γ is dynamic consistent, false otherwise
2 c0 ← (0, ∅, ∅) . Initial configuration
3 return DC-From(Γ, c0)

4 Recursive Function DC-From(Γ, c)
Input : Γ is a CSTND satisfying the conditions of Theorem 10 for some values ε > 0 and

W ∈ Z+, c = (kε/K,ψ, h) is a configuration with k ∈ {0, 1, . . . , 2K2W} and
K = 2|P| · |T |.

Returns : true if Γ is dynamically consistent from c, false otherwise
5 if Dom(ψ) = T then return (true if ψ is feasible for Γ+

h else false) . Base case
6 foreach Tnext ⊆ T \Dom(ψ) not empty do . Recursive case. Enumerate all next actions (∃)
7 CPnext ← {p ∈ CP | O(p) ∈ Tnext}
8 DPnext ← {p ∈ DP | O(p) ∈ Tnext}
9 foreach knext ∈ {k + 1, . . . , 2K2W} do . Enumerate all discrete times (∃)

10 tnext ← knext ε

11 ψ′ ← ψ[tnext/Tnext ]
12 foreach d : DPnext → {>,⊥} do . Enumerate all decisions (∃)
13 AllObsDC← true
14 foreach o : CPnext → {>,⊥} do . Enumerate all observations (∀)
15 h′ ← h ∪ o ∪ d
16 c′ ← (tnext , ψ

′, h′)
17 if not DC-From(Γ, c′) then AllObsDC← false . Recursion
18 if AllObsDC then return true

19 return false

The execution of a CSTND can be viewed as a two-player game between the agent and the
environment. The agent aims to make decisions and schedule time-points to satisfy all relevant
constraints; the environment aims to assign values to conditions that will thwart the agent.
Our DC-checking algorithm, whose pseudo-code is given in Algorithm1, recursively explores
all possible configurations of the game. Each configuration is a tuple c = (t, ψ, h), where t is
the current time, ψ : T ′ → [0, t) (with T ′ ⊆ T ) is a partial schedule, and h : P ′ → {>,⊥}
(with P ′ = {p ∈ P | O(p) ∈ Dom(ψ)}) is the partial (combined) scenario known at time t.

By Lemma 10, we may assume that each t satisfies t = k·ε/K for some k ∈ {0, 1, . . . , 2K2W}
and [ψ]X = kX · ε/K, where kX ∈ {0, . . . , k − 1} for every X ∈ T .

The base case of our recursive procedure corresponds to a final configuration of the game,
which occurs when all the time-points have been executed (i.e., T ′ = T ) and, hence, all
propositional variables have been assigned. The agent wins if and only if the total schedule
ψ is feasible for the projected network Γ+

h over the total combined scenario h.
In the recursive step, the algorithm enumerates all possible moves of the agent and all

possible counter-moves of the environment. A move of the agent consists of:
1. the set Tnext ⊆ T \Dom(ψ) of time-points to execute next,
2. the time t′ > t at which these time-points are executed, and
3. the decisions to take at time t′ (i.e., an assignment d : DPnext → {>,⊥} of the variables

in DPnext = {p ∈ DP | O(p) ∈ Tnext}, which must be decided at time t′.
Thanks to Lemma 10, we can assume t′ = k′ · ε/K for k′ ∈ {k+ 1, . . . , 2K2W}. This ensures
that there are a finite number of possible moves, and that each move can be described with
a polynomial number of bits.
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The counter-move of the environment sets the values for the conditions to be revealed to
the agent at time t′ (i.e., an assignment o : CPnext → {>,⊥} of the propositional variables
in CPnext = {p ∈ CP | O(p) ∈ Tnext} observed at time t′.

Checking the dynamic consistency of a network amounts to determining the winner of
the game from the initial configuration c0 = (0, ∅, ∅), where the current time is 0 and no
time-points have yet been executed.

5 An Algorithm for CSTNDs having no Condition

In this section we propose an algorithm for solving the DC problem for CSTNDs having
no contingent propositional variable, i.e., when CP is empty. Hereinafter we refer to this
subclass of CSTND as the class of Simple Temporal Network with Decisions (STND).

I Definition 11 (STND). A Simple Temporal Network with Decisions (STND) is a CSTND
Γ = 〈T ,P, ∅,DP, C,OT ,O〉 having CP = ∅. An STND Γ is consistent if and only if there
exists a decision scenario ds ∈ ΣDP for which the projection STN Γds is consistent.

Since contingent propositional variables are not present, it is possible to check the
consistency of the network in a static way. The approach we are about to discuss synthesizes
such an assignment offline, i.e., before the execution of the STND starts.

Basically, the proposed algorithm (Algorithm2) checks whether an STND Γ is consistent
by looking for one ds ∈ ΣDP for which the projection STN Γds is consistent. This search
is performed by maintaining a support CNF φ, which, roughly speaking, represents the
complementary of the space of all decision scenarios for which Γ is already known to be
inconsistent; to satisfy φ means to find a decision scenario outside that space.

Therefore, Algorithm2 (STND-CC) takes as input an STND Γ and it employs an approach
working in rounds. Throughout the rounds, STND-CC maintains a formula φ in CNF rep-
resenting all decision scenarios for which Γ is already known to be inconsistent. STND-CC
keeps trying to guess a decision scenario ds ∈ ΣDP until either ds 6|= φ, or ds |= φ and Γds
is consistent – in such case it returns YES. If Γds is inconsistent for all possible decision
scenario, STND-CC returns NO.

Initially, φ contains no clauses and ds is a random decision scenario; thus, ds |= φ holds
trivially. If Γds is consistent, then STND-CC outputs YES and halts. Otherwise, ds contains
at least a “bad decision” making Γds inconsistent, i.e., Γds contains a negative cycle. Let ρ
be such a negative cycle and let ψ be the conjunction of the labels associated to the values
making the negative cycle (see Algorithm 3). Then, STND-CC (i) augments φ adding ¬(ψ)
(which is a disjunction of literals) as a new clause (line 9), (ii) determines a new ds that
satisfies φ using an external SAT solver, and (iii) proceeds to the next round if a suitable ds
has been found, outputs NO and halts otherwise.

STND-CC uses a SAT solver as MiniSat [18] to find a decision scenario ds that satisfies (the
augmented) φ. We underline that a decision scenario cannot be found when φ is unsatisfiable,
i.e., when Γ is inconsistent. In this case, the algorithm can stop saying NO.

It is not difficult to see that STND-CC is sound and complete. As regards time complexity,
the following facts hold. Checking the consistency of Γds (line 5 of STN-CC) requires time
O(|T | · |C|) using Bellman-Ford algorithm [16]. The time for determining a negative cycle ρ
of Γds (CYCLE-CUT) amounts to that of applying De Morgan’s law to ¬(ψ), which is a linear
time in |DP|. Finally, the number of invocations to the SAT Solver (line 11 of Algorithm2)
is at most that of all possible considered decision scenarios s, i.e., 2|DP|; each of such
invocations costs O(2|DP|) time. Therefore, the worst-case time complexity of STND-CC is
O(22|DP| · (|T | · |C|+ |DP|)).

TIME 2017
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Algorithm 2: Consistency Checking Algorithm with Decisions
Procedure STND-CC(Γ)

input :An STND Γ = 〈T ,P, ∅,DP, C,OT ,O〉.
output :A feasible schedule of Γ or NO.

1 φ← an empty set of clauses on DP;
2 ds ← any assignment on DP; . Initialize the assignment ds arbitrarily
3 while true do
4 Γds ← the projection of Γ over ds;
5 ρ← STN-CC(Γds); . Check the consistency of Γds
6 if ρ is a feasible schedule of Γds then
7 return (yes, ρ);
8 if ρ is a negative cycle of Γds then
9 ψ ← CYCLE-CUT(Γ, ρ); . Derive a clause ψ expressing cut of ρ in Γ

10 φ← φ ∪ {ψ}; . Add the clause ψ to the CNF φ
11 ds ← SAT-SOLVE(φ); . Invoke a SAT-Solver on input φ
12 if ds 6|= φ then
13 return no;

Algorithm 3: Cutting a Cycle with Decisions
Procedure CYCLE-CUT(Γ, ρ)

input :An STND Γ = 〈T ,P, ∅,DP, C,OT ,O〉 and one of its cycles ρ.
output :A clause ψ on DP expressing the cut of ρ in Γ.

1 ψ ← >;
2 foreach constraint C of ρ do
3 `C ← the label of C in Γ; . `C is a conjunction of literals
4 ψ ← ψ ∧ `C ; . ψ is also a conjunction of literals
5 ψ ← DeMorgan(¬ψ); . apply De Morgan’s law to ¬ψ
6 return ψ;

I Theorem 12. The problem of checking whether a given STND Γ = 〈T ,P, ∅,DP, C,OT ,O〉
is consistent can be solved in singly exponential (w.r.t. |DP|) deterministic time. Moreover,
when Γ is consistent, a positive certificate (ds, ρ) (where ds is a decision scenario over DP
and ρ is a feasible schedule of Γds) is computable within the same time bound.

To complete the result of Theorem 12, we prove that STND consistency checking problem
is NP-complete. For lack of space, we sketch the proof of a polynomial reduction from 3-SAT
to the checking problem. Let ψ(x1, . . . , xn) =

∧m
j=1 Cj be a 3-CNF formula with n boolean

variables {xi}ni=1 and with m clauses {Cj}mj=1. An STND instance can be represented by a
triplet 〈T , C,DP〉, i.e., dropping out OT ,O and P (= DP); this compact form already allows
a correct consistency checking. Consider STND Γψ = (T = {Z}, C = {Cj}mj=1,DP = {xi}ni=1)
having only one time-point Z and m negative self-loop constraints, i.e., Cj =

(
Z − Z ≤

−1,¬(Cj)
)
where ¬(Cj) can be turned into a label by De Morgan’s law. It is not difficult to

verify that ψ is SAT if and only if Γ is consistent.

5.1 Hyper Temporal Networks with Decisions
In this subsection we consider the Hyper Temporal Network with Decisions (HyTND) model
and we prove that Algorithm2 and 3 can be easily extend to it. Hyper Temporal Networks
(HyTNs) are a strict generalization of STNs, introduced to partially overcome the limitation
of allowing only conjunctions of constraints [12]. Compared to STN distance graphs, HyTNs
allow for a greater flexibility in the definition of the temporal constraints meanwhile offering a
pseudo-polynomial tractability in the consistency checking of the instances. In turn, HyTNDs
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extend the HyTN model by labeling each hyper-constraint with a conjunction of literals
drawn from the set DP of controllable propositional variables; then, the consistency problem
of HyTNDs asks for the existence of a decision scenario for which the corresponding projection
network is consistent.

In order to formally define the model, let us firstly recall (multi-head) hypergraphs.

I Definition 13. (Hypergraphs) A (multi-head, weighted) hypergraph H is a pair (T ,HC),
where T is a set of nodes and HC is a set of hyper-edges. Each hyper-edge A = (tA, HA, wA) ∈
HC has a distinguished node tA, called the tail of A, and a non-empty set HA ⊆ T \ {tA}
comprising the heads of A; to each head v ∈ HA, it is associated a weight wA(v) ∈ Z.
Let W be the maximum absolute weight in H and |A| = |HA ∪ {tA}|. The size of H is
mH =

∑
A∈HC |A|, and it is a measure for the encoding length of H. If |A| = 2, then

A = (u, v, w) is a standard edge; in this way hypergraphs generalize graphs.

We are now in the position to define HyTNDs and related concepts.

I Definition 14. (HyTND) A Hyper Temporal Network with Decisions (HyTND) is a triplet
Γ = (T ,HC,DP) where H = (T ,HC) is a hypergraph and DP is a set of controllable
propositional variables. Nodes T ∈ T represent temporal variables (time-points), and each
hyper-edge A = (tA, HA, wA, `A) ∈ HC, where wA : HA → Z and `A ∈ DP∗, represents a
temporal distance constraint between the tail and the heads (labeled hyper-constraint (LHC))

In general, given any ds ∈ ΣDP and ψ : T → R, we say that A is satisfied by (ds, ψ) if
and only if the following implication holds: ds |= `A ⇒ ψ(tA) ≥ minv∈HA

{
ψ(v)− wA(v)

}
.

Note that, when DP = ∅, (T ,HC) becomes an Hyper Temporal Network (HyTN), and
each hyper-edge A ∈ HC represents an (unlabeled) temporal distance which is satisfied by
any given ψ : T → R if and only if ψ(tA) ≥ minv∈HA

{ψ(v) − wA(v)}. We recall that the
HyTN-Consistency problem asks, given any HyTN H = (T ,HC), to decide whether there
exists a schedule ψ : T → R that satisfies every hyper-constraint A ∈ HC; if so, H is said
consistent. HyTND-Consistency is also a static notion of consistency, i.e., all decisions can
be taken offline; so, for ease of notation, it is fine to omit decision time-points in Definition 14.

I Definition 15. (HyTND Projection, HyTND-Consistency) The projection of a HyTND
Γ = (T ,HC,DP) over a decision scenario ds ∈ ΣDP is the HyTN Γds = (T ,HCds), where:

HCds =
{

(tA, HA, wA) | ∃`A ∈ DP∗ s.t. (tA, HA, wA, `A) ∈ HC and ds |= `A

}
.

The HyTND-Consistency problem asks, given any HyTND Γ = (T ,HC,DP), to decide
whether there exists a decision scenario ds ∈ ΣDP such that the projection Γds is consistent;
if so, Γ is said consistent as well.

As a negative cycle is a negative certificate for consistency check in STN, the generalized
negative cycle is a negative certificate for HyTN and HyTND [12].

I Definition 16 (Generalized (negative) cycle). Given a HyTN H = (T ,HC), a cycle is a pair
(S, C) with S ⊆ T and C ⊆ HC such that:
1. S =

⋃
A∈C

(
HA ∪ {tA}

)
and S 6= ∅;

2. ∀v ∈ S there exists an unique A ∈ C such that tA = v.
Moreover, we let a(v) denote the unique edge A ∈ C with tA = v , as required in above
item 2. Every infinite path in a cycle (S, C) contains, at least, one finite cyclic sequence
vi, vi+1, . . . , vi+p, where vi+p = vi is the only repeated node in the sequence. A cycle (S, C)
is negative if and only if

∑p−1
t=1 wa(vt)(vt+1) < 0, for any finite cyclic sequence v1, v2, . . . , vp.

TIME 2017
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Figure 3 A (generalized) cycle (S, C), where S = {v0, . . . , v6} and C = {A0, . . . , A6}.

I Example 17. An example of a cycle (S, C) is shown in Fig. 3; where S = {v0, . . . , v6} and
C = {A0, . . . , A6}, provided tAi = vi for every i ∈ {0, . . . , 6}; and HA0 = {v1, v2, v3}, HA1 =
{v4, v5}, HA2 = {v5, v6}, HA3 = {v0, v6}, HA4 = {v0, v5}, HA5 = {v2, v6}, HA6 = {v3, v5}.
Moreover, a finite cyclic sequence, (v0, v2, v5, v6, v3, v0), is highlighted with thickened edges.

As shown in [12], checking HyTN-Consistency can be done in pseudo-polynomial time.

I Theorem 18 ([12]). Let H = (T ,HC) be a HyTN. The following propositions hold:
1. There exists an O((|T |+ |HC|)mHW ) pseudo-polynomial time algorithm deciding HyTN-

Consistency for H;
2. There exists an O((|T |+ |HC|)mHW ) pseudo-polynomial time algorithm such that, given

as input any consistent HyTN H, it returns a feasible schedule s : TH → Z of H;
3. There exists an O((|T |+ |HC|)mHW ) pseudo-polynomial time algorithm such that, given

as input any inconsistent HyTN H, it returns a negative cycle (S, C) of H.

To solve HyTND-Consistency, one may as well apply Algorithm2 and Algorithm3,
subject to the following simple modifications:
1. at line 5 of Algorithm2, replace STN-CC by the HyTN-Consistency checking algorithm

mentioned in Theorem 18 (see [12]);
2. at line 8 of Algorithm2, replace “cycle” with “generalized cycle” and observe that checking

whether a generalized cycle (S, C) is negative can be done in polynomial time (see e.g.,
Lemma 3 in [12] for an algorithm);

3. at line 2 of Algorithm 3, replace “constraint” with “hyper-constraint” and notice that,
since by Definition 14 each A ∈ HC has a unique label `A ∈ DP∗, it is still possible to
apply De Morgan’s law at line 5 of Algorithm3 for obtaining a clause.

Considering such modification, it is not difficult to verify that the checking algorithm remains
correct. Concerning time complexity, the only noticeable overhead is now due to Theorem 18
results. Considering such complexity results, the new worst-case time complexity for the
checking algorithm is O(22|DP| · ((|T |+ |HC|)mHW + |DP|)).

I Theorem 19. The problem of checking whether or not a given HyTND Γ = (T ,HC,DP)
is consistent can be solved in (pseudo) singly exponential (w.r.t. |DP|) deterministic time.
Moreover, when Γ is consistent, a positive certificate (ds, ρ) (where ds is a decision scenario
over DP and ρ is a feasible schedule of Γds) is computable within the same time bound.

As STNDs are special cases of HyTNDs, checking HyTND-Consistency is NP-complete.
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6 An Algorithm for CSTNDs having Offline Decisions

In this section we consider a special case of CSTNDs where decisions are made before the
execution of the network starts (offline decisions). This allows us to apply the techniques
developed in the previous Section 5. In this special case, dynamic consistency of CSTNDs is
equivalent to the existence of a decision scenario such that the (partial) projection of the
network over this scenario (now, a traditional CSTN) is in turn dynamically consistent.

I Definition 20. [Offline Decision DC] A CSTND Γ = 〈T ,P, CP,DP, C,OT ,O〉 has the
property of Offline Decision Dynamic Consistency (CSTND-od-DC) when there exists some
decision scenario ds ∈ ΣDP such that the projection CSTN Γds is dynamically consistent.

We will also also say that a CSTND is CSTND-od-DC if it has CSTND-od-DC property.
To check if a CSTND instance is CSTND-od-DC, it is possible to re-use and adapt the

techniques presented in Section 5. There, the problem is reduced to check the consistency of
a STN instance (projected network), here the projected network is an CSTN. Therefore, it
is necessary to consider a CSTN dynamic consistency checking algorithm as the constraint
propagation algorithm for CSTNs proposed in [22] for testing the CSTND-od-DC property.
An alternative way to check the CSTN dynamic consistency is to reduce an CSTN instance
to an appropriate HyTN one and check the dynamic consistency of the last one [13].

An improvement of such approach, is to reduce the problem of CSTND-od-DC checking
to the problem of HyTND-Consistency consistency check. We now present such reduction.

Firstly, we argue that in this prospect any CSTND can be viewed as a succinct represen-
tation which can be expanded into an exponentially sized HyTND. The following definition
introduce the concept of expansion of a CSTND.

I Definition 21 (Expansion 〈T Ex
Γ ,ΛEx

Γ 〉). For any ` ∈ P∗, let us denote by `DP ∈ DP∗

(`CP ∈ CP∗) the label comprising all and only those literals of ` whose propositional variable
lies in DP (CP, respectively): ` = `DP ∧ `CP where `DP ∈ DP∗ and `CP ∈ CP∗.

For any s ∈ ΣCP , let us consider the (partial) projection C+
s of C over s defined as

C+
s =

{(
X,Y, δ, `DP

)
| (Y −X ≤ δ, `) ∈ C and s |= `CP

}
.

Next, let us consider the family of distinct and disjoint STNDs (Ts, Cs,DP), where
Ts = {vs | v ∈ T , s ∈ ΣCP}, Cs =

{(
Xs, Ys, δ, `DP

) ∣∣∣ (X,Y, δ, `DP) ∈ C+
s

}
, and vs = (v, s) for

every v ∈ T , s ∈ ΣCP . For each condition scenario s ∈ ΣCP there is one such STND.
Now, the expansion STND of the CSTND Γ is defined as

(T Ex
Γ ,ΛEx

Γ ,DP), where T Ex
Γ =

⋃
s∈ΣCP

Ts and ΛEx
Γ =

⋃
s∈ΣCP

Cs.

Note that Ts1 ∩ Ts2 = ∅ whenever s1 6= s2 and that (T Ex
Γ ,ΛEx

Γ ,DP) is an STND with
|T Ex

Γ | ≤ |ΣCP | · |T | time-points and size at most |ΛEx
Γ | ≤ |ΣCP | · |C|.

We show next that the expansion of a CSTND can be enriched with some (extra) multi-
head hyper-edges in order to model dynamic consistency, by means of a particular HyTND
HΓ
ε for some small ε ∈ R>0. As it was in [13], the actual value of ε will turn out to be singly

exponentially small in the number of contingent propositional variables (i.e., ε = 1
|ΣCP |·|T | ).

I Definition 22 (HyTND HΓ
ε ). For any two condition scenarios s1, s2 ∈ ΣCP , let us denote

by ∆(s1; s2) =
{

(Op?)s1 ∈ Ts1 | Op? ∈ OT , p ∈ CP, s1(p) 6= s2(p)
}
the set of all nodes

(Op?)s1 ∈ Ts1 such that Op? ∈ OT is an observation time-point of Γ that is executed in s1
and, considered in pair with respect to s2, the value of the variable p differs, i.e., s1(p) 6= s2(p).

Given any ε ∈ R>0, HyTND HΓ
ε is defined as follows:

TIME 2017
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For every two condition scenarios s1, s2 ∈ ΣCP and for every time-point u ∈ T , define a
hyper-edge αε(s1; s2;u) =

(
tα, Hα, wα,�

)
, ∀ s1, s2 ∈ ΣCP and u ∈ T , where:

tα = us1 is the tail of the (multi-head) hyper-edge αε(s1; s2;u);
Hα = {us2} ∪∆(s1; s2) is the set of the heads of αε(s1; s2;u);
wα(us2) = 0, and wα(v) = −ε for each v ∈ ∆(s1; s2).

Consider the expansion STND (T Ex
Γ ,ΛEx

Γ ,DP) of Γ, the HyTND HΓ
ε is the tuple(

T Ex
Γ ,HCε,DP

)
, where HCε = ΛEx

Γ ∪
⋃
s1,s2∈ΣCP

u∈T
αε(s1; s2;u).

Notice that each αε(s1; s2;u) has size |αε(s1; s2;u)| = 1 + |∆(s1; s2)| ≤ 1 + |CP|.
Now, based on the results given in [13], the following result can be shown.

I Theorem 23. Let Γ = 〈T ,P, CP,DP, C,OT ,O〉 be a CSTND and let ε̂ = 1
|ΣCP |·|T | . It

holds that Γ is CSTND-od-DC if and only if the HyTND HΓ
ε̂ is consistent.

We give the proof of Theorem 23 in the appendix. Given a CSTND Γ, CSTND-od-DC
can be checked by firstly constructing the HyTND HΓ

ε̂ and then by relying on Theorem 19
for checking its consistency. Notice that, even though the size of HΓ

ε̂ is singly exponential
in |CP| and also a possible negative generalized cycle can be of an exponential size, the
corresponding clause ψ that is eventually returned by Algorithm 3 has size at most |DP|.
The obtained results of this section are summarized in the following theorem.

I Theorem 24. Deciding CSTND-od-DC on a given CSTND can be done in (pseudo) singly
exponential (w.r.t. |P|) deterministic time. When the input CSTND is CSTND-od-DC, a
viable and dynamic execution strategy is computable within the same time bound.

7 Related Work

There are many proposals in the literature for ways of extending the expressiveness of the
STN model. Below, we summarize the main results about CSTNs and related models.

Tsamardinos et al. [25] defined the Conditional Simple Temporal Problem (CTP) as that
of determining whether a given CSTN admits a viable and dynamic execution strategy. (The
CSTN acronym was introduced later.) In their work, propositional labels are associated
only with time-points, not constraints. They also informally specified some reasonableness
properties that any CSTN ought to satisfy. Although they showed how to solve the CTP
by encoding it as a meta-level Disjunctive Temporal Problem (DTP) and feeding it to an
off-the-shelf solver, that approach is not practical because the CTP-to-DTP encoding has
exponential size and, on top of that, the DTP solver runs in exponential time. To our
knowledge, this approach has never been implemented or empirically evaluated.

Later, Hunsberger et al. [21, 22] defined CSTNs (separate from the CTP) and formalized
the well-definedness properties for CSTNs. In their work, both time-points (nodes) and
constraints (edges) of a CSTN can have propositional labels that specify the scenarios in which
they are applicable. (Allowing constraints to be labeled was inspired by the work of Conrad
et al. [14], discussed below.) They showed that the labels must satisfy the well-definedness
properties in order to guarantee the existence of a dynamic execution strategy. They also
presented a sound-and-complete DC-checking algorithm for solving the CTP, and empirically
demonstrated its practical performance.

Conrad et al. [14] considered a variant of CSTNs, proposing Drake, a dynamic executive
for temporal plans with choice. In their work, the constraints of a temporal plan are labeled
as in CSTNs, but the values of propositions (choices) are decided by the executive during
run-time, not by the environment.
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Cimatti et al. [6, 7] presented a different approach to solving a variety of temporal
problems (CSTNs included) in which a temporal network is first translated into an equivalent
Timed Game Automaton (TGA) and, then, solved by an off-the-shelf TGA solver. Although
this approach is interesting because it shows the relationships between TGAs and a variety
of temporal networks – including CSTNs – it has not yet been shown to be practical for
solving the CTP.

Comin and Rizzi [13] solved the CTP by converting it into a Mean Payoff Game (MPG).
They also introduced a variant of dynamic consistency, called ε-DC, where ε > 0 represents
the minimum reaction time of the executive in response to observations. They presented
(1) a sharp lower-bounding analysis on the critical value of the reaction time where the CSTN
changes from being DC to non-DC, (2) a proof that the CTP is coNP-hard, and (3) the first
singly-exponential-time algorithm for solving the CTP.

Hunsberger and Posenato [19] showed how their DC-checking algorithm from earlier
work [22] can be extended to check the ε-DC property without incurring any performance
degradation. They also introduced four benchmarks for testing DC-checking algorithms.

Hunsberger and Posenato [20] presented another optimization of the approach presented
by Cimatti et al. in which the CTP is viewed as a two-player game. Its solution is determined
by exploring an abstract game tree to find a “winning” strategy, using Monte Carlo Tree
Search and Limited Discrepancy Search to guide its search. An empirical evaluation shows
that the new algorithm is competitive with the propagation-based algorithm.

Cairo et al. [2] improved the analysis of the ε-DC property. They showed that if ε = 0
(i.e., if the system can react instantaneously), it is necessary to impose a further condition to
avoid a form of instantaneous circularity.

Cui and Haslum [15] extend STNU by conditioning temporal constraints on the assignment
of controllable discrete variables (decisions) that can be done at any time. In CSTNDs we
connect decisions to time-points and thus provide greater expressiveness because we allow a
designer to constraint when decisions have to been taken.

Zavatteri [26] defined CSTNUDs (i.e., CSTNUs [9] augmented with decision nodes),
using an approach based on Timed Game Automata (TGAs) for both checking the dynamic
controllability of CSTNUDs and the synthesizing memoryless execution strategies. Although
CSTNUDs are more general than CSTNDs, this paper focused on analyzing the complexity
of the CSTND-DC problem and presenting DC-checking algorithms for two special cases of
CSTNDs.

8 Conclusions and Future Work

This paper introduced a new kind of temporal network, called a Conditional Simple Temporal
Network with Decisions, that accommodates both conditions that are not under the control
of the executing agent, and decisions that are under the agent’s control. The agent aims
to make decisions and schedule time-points so that all relevant constraints are satisfied no
matter how the environment assigns values to the conditions in real time. After defining a
notion of dynamic consistency for CSTNDs, the paper proved that the CSTND-DC problem
is PSPACE-complete. Finally, it introduced some algorithms to deal with two special cases:
(1) CSTNDs that contain decisions, but not conditions; and (2) CSTNDs for which all
decisions are made prior to executing the network.

As for future work, among the many possible research directions, we mention here the
application of our approach to the design of business process models, where not all of the
decisions (represented as gateway variables in business process models) are under the control
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of the process engine. Another potential topic concerns the identification of other special
cases of CSTNDs that might yield corresponding DC-checking algorithms.
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time-points into standard time-points, we can apply the result given in [4] for transforming
σt to a strategy that satisfies the statement of the lemma. In the transformation showed
in the proof [4], only the numerical values determined by the strategy for time-points are
modified while the relative execution order of them is preserved. Hence, the conditions for
σd to be dynamic are not changed by such transformation. Therefore, the resulting strategy
is indeed dynamic and viable. J

Theorem 23. By Definition 20, the CSTND Γ is CSTND-od-DC if and only if there exists
some ds ∈ ΣDP such that the CSTN Γds is dynamically consistent. By Theorem 4 and 6 in [13],
for any ds ∈ ΣDP , the CSTN Γds is dynamically consistent if and only if the HyTN HΓds

ε̂ is
consistent provided that ε̂ = 1

|ΣCP |·|T | . Then, considering the definition of (i) CSTND projec-
tion (Definition 4), (ii) HyTN projection (Definition 15), and (iii) that of HΓ

ε (Definition 22),
it holds that HΓds

ε̂ is HyTN (HΓ
ε̂ )ds.

Finally, by Definition 15, there exists some ds ∈ ΣDP such that the projection HyTN
(HΓ

ε̂ )ds is consistent if and only if the HyTND HΓ
ε̂ is consistent. At this point, by composing

all of these logical equivalences, the thesis follows. J
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Abstract
A Conditional Simple Temporal Network (CSTN) augments a Simple Temporal Network to in-
clude a new kind of time-point, called an observation time-point. The execution of an observation
time-point generates information in real time, specifically, the truth value of a propositional letter.
In addition, time-points and temporal constraints may be labeled by conjunctions of (positive
or negative) propositional letters. A CSTN is called dynamically consistent (DC) if there exists
a dynamic strategy for executing its time-points such that no matter how the observations turn
out during execution, the time-points whose labels are consistent with those observations have all
been executed, and the constraints whose labels are consistent with those observations have all
been satisfied. The strategy is dynamic in that its execution decisions may react to observations.

The original formulation of CSTNs included propositional labels only on time-points, but the
DC-checking algorithm was impractical because it was based on a conversion of the semantic
constraints into an exponentially-sized Disjunctive Temporal Network. Later work added pro-
positional labels to temporal constraints, and yielded a sound-and-complete propagation-based
DC-checking algorithm, empirically demonstrated to be practical across a variety of CSTNs.

This paper introduces a streamlined version of a CSTN in which propositional labels may
appear on constraints, but not on time-points. This change simplifies the definition of the DC
property, as well as the propagation rules for the DC-checking algorithm. It also simplifies the
proofs of the soundness and completeness of those rules.

This paper provides two translations from traditional CSTNs to streamlined CSTNs. Each
translation preserves the DC property and, for any DC network, ensures that any dynamic
execution strategy for that network can be extended to a strategy for its streamlined counterpart.

Finally, this paper presents an empirical comparison of two versions of the DC-checking
algorithm: the original version and a simplified version for streamlined CSTNs. The comparison
is based on CSTN benchmarks from earlier work. For small-sized CSTNs, the original version
shows the best performance, but the performance difference between the two versions decreases
as the number of time-points in the CSTN increases. We conclude that the simplified algorithm
is a practical alternative for checking the dynamic consistency of CSTNs.
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1 Introduction

Dechter et al. [9] defined a Simple Temporal Network (STN) as a pair (T , C), where T is set
of real-valued variables, called time-points; and C is a set of binary difference constraints
(a.k.a. temporal constraints) on those time-points. The Simple Temporal Problem (STP) is
that of determining whether any given STN is consistent (i.e., whether there exists a complete
assignment to the time-points in T that satisfies all of the constraints in C). Typically,
an STN includes a special time-point, Z, whose value is fixed at zero. Binary constraints
involving Z correspond to unary constraints since X ≤ δ is equivalent to X − Z ≤ δ; and
X ≥ δ is equivalent to Z −X ≤ −δ. If an STN does not have a Z time-point, one can be
inserted without affecting the consistency of the network [11].

Tsamardinos et al. [18] introduced Conditional Simple Temporal Networks (CSTNs),
augmenting STNs to include propositional letters, observation time-points, and propositional
labels on time-points. Each observation time-point P? has a corresponding propositional
letter p, where the execution of P? non-deterministically generates a truth value for p. In
addition, any time-point – whether observational or not – may be labeled by a conjunction
of (positive or negative) propositional literals, the idea being that only the time-points
whose labels are consistent with the incrementally revealed observations need to be executed;
and only the constraints among those time-points need to be satisfied. A CSTN is called
dynamically consistent (DC) if there exists a dynamic strategy for executing its time-points
such that no matter how the observations turn out during execution, the time-points whose
labels are consistent with those observations have all been executed, and the constraints
among those time-points have all been satisfied. The strategy is dynamic in that its execution
decisions may react to observations in real time. They presented an algorithm for checking
the DC property – called a DC-checking algorithm – but it was not practical due to its
conversion of the semantic constraints into an exponentially-sized Disjunctive Temporal
Network.

Hunsberger et al. [15] generalized CSTNs, allowing propositional labels on both time-
points and constraints. They then introduced rules for propagating labeled constraints, which
they used as the basis for a sound-and-complete DC-checking algorithm that was empirically
demonstrated to be practical across a variety of CSTNs. To facilitate proving that their
propagation rules were sound and complete, they also defined several properties associated
with propositional labels (e.g., label honesty and label coherence); and they formalized a set
of well-definedness properties that were implicit in the original formulation of CSTNs.

The motivation for this paper began with the observation that proving the soundness and
completeness properties for the propagation-based DC-checking algorithm was unnecessarily
complicated by the presence of propositional labels on time-points. As this paper shows,
no loss of generality results from streamlining CSTNs by allowing propositional labels on
constraints, but not on time-points. The streamlined definition of a CSTN simplifies: (1) the
definition of the DC property, (2) the definition of the propagation rules, and (3) the
soundness and completeness proofs for those rules. The paper proves the equivalence of
the streamlined CSTN and the prior formulation. It also empirically demonstrates that
the performance of the correspondingly simpler DC-checking algorithm is similar to that of
the original DC-checking algorithm, and that the performance difference between the two
algorithms decreases as the number of time-points increases.

2 Background

This section reviews the definitions needed for the more general version of CSTN and dynamic
consistency presented by Hunsberger et al. [15].
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Epq Do Treatment (only if p = q = >)
Y End

Figure 1 The graph of a sample CSTN, discussed in the text.

I Definition 1 (Labels). Given a set P of propositional letters:
a label is a (possibly empty) conjunction of (positive or negative) literals from P . The
empty label is notated as �.
for any label `, and any p ∈ P , if ` |= p or ` |= ¬p, then we say that p appears in `.
for any labels, `1 and `2, if `1 |= `2 (i.e., if `1 contains all of the literals in `2) then `1 is
said to entail `2. If `1 ∧ `2 is satisfiable, then `1 and `2 are called consistent.
the label universe of P , denoted by P ∗, is the set of all consistent labels whose literals
are drawn from P .

I Definition 2 (CSTN). A Conditional Simple Temporal Network (CSTN) is a tuple,
〈T , C, L,OT ,O, P 〉, where:

P is a finite set of propositional letters (or propositions);
T is a finite set of real-valued variables, called time-points;
C is a set of labeled constraints, each having the form, (Y −X ≤ δ, `), where X,Y ∈ T ,
δ ∈ R, and ` ∈ P ∗;
L : T → P ∗ is a function assigning labels to time-points;
OT ⊆ T is a (finite) set of observation time-points; and
O : P → OT is a bijection between propositional letters and observation time-points.

For convenience, the observation time-point associated with p may be denoted by P ? instead
of the more cumbersome O(p). In a CSTN graph, the time-points serve as the nodes, and
each labeled constraint, (Y −X ≤ δ, `), is represented by an arrow from X to Y annotated
by the labeled value 〈δ, `〉, as follows: X 〈δ, `〉 Y . (If ` = �, then the label and angle brackets
may be omitted, as follows: X δ Y .) For convenience, an interval constraint such as
(Y −X ∈ [a, b], `) may be represented by a single edge from X to Y labeled by 〈[a, b], `〉,
although it corresponds to two constraints in the CSTN definition. Finally, since any time-
points, X and Y , may participate in multiple constraints of the form, (Y −X ≤ δi, `i), each
edge in the graph may have multiple labeled values of the form, 〈δi, `i〉.

Fig. 1 shows the graph of a CSTN for a simple health-care example, originally presented
by Hunsberger et al. [15]. It will be used as a running example. The nodes, Z and Y ,
represent starting and ending time-points, respectively. P? represents the time at which a
particular blood test is performed. If this test generates a positive result, represented by
p = >, then the test must be repeated at time-point Q?, which generates a truth value for q.
Since Q? applies only in scenarios where p = >, it is labeled by p. If both tests generate
positive results, then an emergency treatment is applied at time-point E, whose label is pq.

The edges in this graph use the compact interval notation. For example, the edge from P ?
to Q? labeled by 〈[15, 20], p〉 represents that the difference, Q?− P?, must lie within [15, 20]
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in scenarios where p is true (i.e., the repeated test must be performed between 15 and 20
minutes after the first test). Similarly, the edges from Q? to E, and from E to Y are labeled
by pq, indicating that those constraints apply only in scenarios where both p and q are >.

2.1 Well-definedness properties for CSTNs
The following definitions specify properties that any well defined CSTN must hold. For
example, without the label coherence property (Defn. 4), it might happen X is labeled by p,
Y is labeled by q, and C contains the constraint, (Y − X ≤ −2, p): Xp

〈−2, p〉
Yq. Then,

in the scenario p¬q, X must be executed and Y must not be executed, but the constraint
(Y −X ≤ −2, p) must hold, which is absurd. Similar examples can be generated for the
other well-definedness properties. In short, CSTNs that are not well defined are of no use.

I Definition 3 (Honest Label). A label ` in a CSTN, whether on a time-point or constraint,
is called honest if for each q that appears in `, ` |= L(Q?) (i.e., ` contains all of the literals
from the label of the observation time-point for q).

I Definition 4 (WD1: Label coherence). A CSTN holds property WD1 (i.e., has coherent
labels) if for each labeled constraint, (Y − X ≤ δ, `), the label ` is satisfiable and entails
L(X) ∧ L(Y ) (i.e., contains all of the literals from L(X) and L(Y )).

I Definition 5 (WD2). A CSTN holds property WD2 if:
(a) for each time-point T ∈ T , its label L(T ) is honest, and
(b) for each p ∈ P that appears in L(T ), C contains a constraint, (P?− T ≤ −ε, L(T )), for

some ε > 0 (i.e., T is constrained to occur after P?).

I Definition 6 (WD3: Constraint Label Honesty). A CSTN holds property WD3 if the label
on each of its constraints is honest.

I Definition 7 (Well defined CSTN). A CSTN is called well defined if it holds properties
WD1, WD2 and WD3.

2.2 Dynamic Consistency for CSTNs
I Definition 8 (Scenario). A scenario over a set P of propositional letters is a function,
s : P → {>,⊥}, that assigns a truth value to each letter in P . Any such function also
provides the truth value for any label ` ∈ P ∗, which is denoted by s(`). The set of all
scenarios over P is denoted by I.

I Definition 9 (Schedule). A schedule for a set of time-points T is a mapping, ψ : T → R,
that assigns a real number to each time-point in T . The set of all schedules for any subset of
T is denoted by Ψ.

I Definition 10 (Projection). Let S = 〈T , C, L,OT ,O, P 〉 be any CSTN, and s any scenario
over P . The projection of S onto s – notated Prj(S, s) – is the STN, (T +

s , C
+
s ), where:

T +
s = {T ∈ T | s |= L(T )}; and
C+
s = {(Y −X ≤ δ) | for some `, (Y −X ≤ δ, `) ∈ C and s |= `}.

For convenience, we also define OT +
s = OT ∩ T +

s (i.e., the set of observation time-points
whose labels are entailed by s).

I Definition 11 (Execution Strategy). Let S = 〈T , C, L,OT ,O, P 〉 be any CSTN. An ex-
ecution strategy for S is a mapping, σ : I → Ψ, such that for each scenario s ∈ I, the
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domain of the schedule σ(s) is T +
s . If, in addition, for each scenario s, the schedule σ(s) is a

solution to the projection Prj(S, s), then σ is called viable. In any case, the execution time
for the time-point X in the schedule σ(s) is denoted by [σ(s)]X . In addition, |σ| denotes the
maximum value assigned by σ to any time-point in T in any scenario s ∈ I.

I Definition 12 (History). Let S = 〈T , C, L,OT ,O, P 〉 be any CSTN, s any scenario, σ any
execution strategy for S, and t any real number. The history of t in the scenario s, for the
strategy σ – notated Hist(t, s, σ) – is the set of observations made before time t according to
the schedule σ(s): Hist(t, s, σ) = {(p, s(p)) | P? ∈ OT +

s and [σ(s)]P? < t}.

I Definition 13 (Dynamic Execution Strategy). An execution strategy σ for a CSTN is called
dynamic if for any scenarios s1 and s2, and any time-point X ∈ T +

s1
:

If Hist(t, s1, σ) = Hist(t, s2, σ), where t = [σ(s1)]X , then X ∈ T +
s2

and [σ(s2)]X = t.

I Definition 14 (Dynamic Consistency). A CSTN is dynamically consistent (DC) if there
exists an execution strategy for it that is both dynamic and viable.

2.3 Motivations for a new definition
The prior definitions of CSTN are convenient for the designer working in some domain. The
designer typically knows the scenarios in which each time-point must be executed and can
directly represent that information in the time-point labels. Furthermore, if the designer
constructs a CSTN that is not well defined, it can be easily remedied by augmenting the
labels on time-points and constraints to make them honest and coherent, and by inserting
any missing constraints needed for property WD2.b. However, the presence of labels on
time-points needlessly complicates the constraint-propagation rules needed for practical
DC checking. For example, Hunsberger et al. [15] introduced a child-of relation among
propositional letters that derives from cases where observation time-points have non-empty
labels. The applicability conditions of their propagation rules are littered with special cases to
handle the children of propositional letters. As a consequence, proving that the propagation
rules are sound requires dealing with these special cases. However, if a CSTN has no labels
on its time-points, then these complexities disappear. Indeed, it is trivial to check that all of
the well-definedness properties become vacuous if there are no labels on any time-points.

These considerations motivated the search for an equivalent formulation of CSTNs that
does not include labels on time-points. This paper presents such a formulation, called
streamlined CSTN, and proves that it is equivalent to the ordinary CSTN presented above.
The paper presents two alternative translations from ordinary to streamlined CSTNs, each
of which preserves the most important properties of a CSTN, including dynamic consistency.

A designer working in some domain may continue to reap the benefits of working with
CSTNs having labels on time-points, leaving it to the DC-checking algorithm to convert the
CSTN into a streamlined version before carrying out any constraint propagation. Thus, the
streamlined CSTN simplifies the theoretical foundations of CSTNs while still allowing users
to work with the earlier version should they find it useful to do so.

3 Streamlined Model of CSTNs

This section presents the definition for a streamlined CSTN, which simply removes the
assignment of labels to time-points. It also specifies the slight modifications to the sequence
of definitions needed for defining the dynamic consistency of CSTNs – namely, that for any
scenario s, T +

s = T and OT +
s = OT , since there are no labels on any time-points.
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10:6 A Streamlined Model of Conditional Simple Temporal Networks

I Definition 15 (CSTN�). A Streamlined Conditional Simple Temporal Network (CSTN�)
is a tuple, 〈T , C,OT ,O, P 〉, where:

P is a finite set of propositional letters (or propositions);
T is a finite set of real-valued variables, called time-points;
C is a set of labeled constraints of the form, (Y −X ≤ δ, `), where X,Y ∈ T , δ ∈ R, ` ∈ P ∗;
OT ⊆ T is a (finite) set of observation time-points; and
O : P → OT is a bijection between propositional letters and observation time-points.

As previously noted, there is no need for any of the well-definedness properties (Defns. 3-6)
for streamlined CSTNs since they become vacuous if there are no labels on time-points. The
existing definitions of scenarios and schedules (Defns. 8 and 9) apply to CSTN� without any
changes, but Defns. 10-13 must be slightly modified for CSTN�, as follows.

Projection (Defn. 10). The same, except that for each scenario s, T +
s = T , since there

are no labels on any time-points (equivalently, since s |= �). Similarly, OT + = OT .
Execution Strategy (Defn. 11). The same, except that for each scenario s, the domain
of σ(s) is T +

s = T .
History (Defn. 12). The same, but replace P? ∈ OT +

s by P? ∈ OT , since OT +
s = OT .

Dynamic Execution Strategy (Defn. 13). The same, but replace X ∈ T +
s1

by X ∈ T ,
since T +

s1
= T , and delete the (now redundant) requirement that X ∈ T +

s2
.

4 Equivalence of the CSTN and CSTN� Models

This section presents two translations from CSTNs to streamlined CSTNs and proves that
each translation preserves the property of dynamic consistency. Furthermore, using either
translation, any dynamic execution strategy for a DC CSTN can be extended to a dynamic
execution strategy for its streamlined counterpart such that for any scenario, the time-points
executed by the strategy for the CSTN are executed at the same times by the corresponding
strategy for the streamlined CSTN. The first translation inserts constraints that, for each
scenario s, require all time-points whose labels are entailed by s to be executed at or before a
fixed horizon h, while all time-points whose labels are inconsistent with s are constrained to
occur after h. The second translation does not add any such constraints and, thus, is much
simpler; however, it is less explicit about the time-points that are executed in the original
CSTN in any given scenario. Both translations are presented here since they illuminate
different aspects of the relationships between the CSTN and CSTN� models.

4.1 The First Translation from CSTN to CSTN�
We begin with some preliminary results.

I Lemma 16 (Upper bound for DC CSTNs). Let S = 〈T , C, L,OT ,O, P 〉 be any CSTN.
Let k = |OT | be the number of observation time-points in S;
let n = |T | the number of time-points;
let M = max{|δ| such that some (Y −X ≤ δ, `) ∈ C} be the maximum absolute value of
any bound on any constraint in C; and
let h = Mn(2k) be the horizon.

If S is DC, then there exists a viable and dynamic execution strategy σ for S such that for
every scenario s, and every time-point X, [σ(s)]X ≤ h (i.e., |σ| ≤ h).
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Z

P? Q E

Y

[1
,2]

〈[15, 20], p〉 〈[1, 5], pq〉

〈[5
, 30], p

¬q
〉

〈[5, 3
0], pq

〉

〈[1
,5],¬

p〉

[2
,30]

〈75, p〉〈−76,¬p〉

〈75, pq〉〈−76,¬p〉〈−76,¬q〉

The horizon value (cf. Lemma 17) is:
h = Mn = 15 · 5 = 75.

C′1 = {(Q? ≤ 75, p), (E ≤ 75, pq),
(P? ≤ 75,�), (Y ≤ 75,�)}.

C′2 = {(Q? ≥ 76,¬p), (E ≥ 76,¬p),
(E ≥ 76,¬q)}.

The third and fourth constraints in C′1 are
not shown in the graph since they would
be redundant.

Figure 2 The CSTN� derived from the sample CSTN using the first method of translation.

Proof. Comin and Rizzi [7] (their Theorem 6) proved a correspondence between CSTNs
and Hyper Temporal Networks (HyTNs) such that: (1) the corresponding HyTN has at
most (2k)n time-points; and (2) the CSTN is DC if and only if the corresponding HyTN is
consistent. Furthermore, Comin [6] (his Theorem 2.3) showed that an HyTN is consistent
if and only if it has no negative cycles (his Defn. 2.5). Now, a negative cycle in an HyTN
consists of hyperarcs. A finite cyclic path is obtained from a negative cycle by selecting at
most one ordinary arc from each hyperarc such that the selected arcs form a cycle in which
each node appears at most once. A negative cycle in an HyTN is characterized by each finite
cyclic path having negative length. Therefore, if S is a DC CSTN, there can be no negative
cycle in its corresponding HyTN. Furthermore, inserting constraints of the form X ≤ h into
the CSTN for each X could not introduce a negative cycle into the HyTN because: (i) all
such edges emanate from Z, thus only one can appear in any finite cyclic path; (ii) there can
be no more than (2k)n pre-existing edges in each finite cyclic path; and (iii) the absolute
value of each weight on the pre-existing edges can be no more than M . As a result, each finite
cyclic path that includes an edge of length h = Mn(2k) cannot have negative length. J

I Lemma 17 (Tighter upper bound; rational weights). Let S be a DC CSTN with n time-points
and rational weights. If M is the maximum absolute value of any negative edge in S, then
the network obtained by constraining every time-point in S to occur before time Mn is DC.

The proof of Lemma 17 is in the Appendix.

I Definition 18 (Reducing a CSTN to a CSTN�). Let S = 〈T , C, L,OT ,O, P 〉 be a well
defined CSTN. The reduction of S is the CSTN�, S� = 〈T , C ∪ C′1 ∪ C′2,OT ,O, P 〉, where:

some h ≥Mn(2k) serves as the horizon (cf. Lemma 16);∗

C′1 =
⋃
X∈T {(X − Z ≤ h, L(X))} =

⋃
X∈T {(X ≤ h, L(X))};† and

C′2 =
⋃
X∈T ,ρ∈L(X) {(Z −X ≤ −h− 1,¬ρ)} =

⋃
X∈T ,ρ∈L(X) {(X ≥ h+ 1 > h,¬ρ)}.

The constraints in C′1 force each X to be executed at or before h in scenarios that entail X’s
label. And the constraints in C′2 force each X to be executed after h in scenarios that do not
entail X’s label.

Fig. 2 shows the streamlined version of the running example from Fig. 1.
The first method of translation generates an equivalent streamlined CSTN, as follows.

∗ If the weights in S are rational, then any h ≥Mn can serve as the horizon.
† In C′2, ρ represents a positive or negative literal, and ¬ρ the literal with the opposite polarity of ρ.
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10:8 A Streamlined Model of Conditional Simple Temporal Networks

I Theorem 19 (Equivalence of CSTN and CSTN� Models). Let S be any well defined CSTN.
Then S� (i.e., the reduction of S to a CSTN�) is equivalent to S in the sense that S is DC
if and only if S� is DC. Furthermore, in the case where S and S� are both DC, if σ is any
viable and dynamic (V & D) strategy for S for which |σ| ≤ h, then there is an equivalent
V & D strategy σ� for S� in the sense that for each scenario s and any X ∈ T :

If X ∈ T +
s , then [σ�(s)]X = [σ(s)]X ≤ h; otherwise, [σ�(s)]X ≥ h+ 1 > h.

Proof. Let S be any well defined CSTN; and let S� be the corresponding CSTN�.

Part 1: S is DC ⇒ S� is DC

By Lemma 16 there exists a V & D execution strategy σ for S such that |σ| ≤ h. For any
such σ, define σ� : I → Ψ as follows. For any scenario s ∈ I, let σ(s) : T → R be the
schedule that is the same as σ(s) on time-points in T +

s , but that maps time-points not in
T +
s to h+ 1 (i.e., just over the horizon). In other words:
For each X ∈ T +

s , let [σ�(s)]X = [σ(s)]X ≤ h. (1)
For each X ∈ T \T +

s , let [σ�(s)]X = h+ 1. (2)

Note that |σ�| ≤ h+ 1. Next, we show that:
for any t ≤ h+ 1, and any scenario s, Hist(t, s, σ) = Hist�(t, s, σ�). (?)

To see this, let p be any propositional letter. If (p, s(p)) is in Hist�(t, s, σ�), it follows that
[σ�(s)]P? < t ≤ h+1 and, hence, by (1) and (2), that [σ�(s)]P? ≤ h, in which case, P ? ∈ T +

s

and [σ(s)]P? = [σ�(s)]P? < t. Therefore, (p, s(p)) is also in Hist(t, s, σ). On the other hand,
if (p, s(p)) is in Hist(t, s, σ), it follows that P? ∈ T +

s and thus [σ�(s)]P? = [σ(s)]P? < t, in
which case (p, s(p)) also appears in Hist�(t, s, σ�).

Next we aim to show that σ� is a dynamic strategy. Toward that end, let s1 and
s2 be any scenarios, let X be any time-point in T , let t = [σ�(s1)]X , and suppose that
Hist�(t, s1, σ�) = Hist�(t, s2, σ�). We must show that [σ�(s2)]X = t. First, note that since
t ≤ h+ 1 and Hist�(t, s1, σ�) = Hist�(t, s2, σ�), it follows from (?) that:

Hist(t, s1, σ) = Hist�(t, s1, σ�) = Hist�(t, s2, σ�) = Hist(t, s2, σ). (†)

There are two cases to consider.
1. X ∈ T +

s1
.

By (1), t = [σ�(s1)]X = [σ(s1)]X ≤ h. Therefore, (†) together with the dynamicity of σ
implies that X ∈ T +

s2
and [σ(s2)]X = t ≤ h, whence [σ�(s2)]X = [σ(s2)]X = t.

2. X 6∈ T +
s1

.
In this case, it follows from (2) that t = [σ�(s1)]X = h+1. Next, let p be any propositional
letter for which (p, s(p)) is in the histories, Hist�(t, s1, σ�) = Hist�(t, s2, σ�). Then
[σ�(s1)]P? < t = h + 1 which, by (1) and (2) above, implies that [σ�(s1)]P? ≤ h

and P? ∈ T +
s1
. Similarly, [σ�(s2)]P? ≤ h and P? ∈ Ts2 . Furthermore, by (2), any

observation time-point Q? that does not appear in those histories must be executed at
time h + 1, which implies that Q? 6∈ T +

s1
and Q? 6∈ T +

s2
. Thus, those histories contain

exactly the observation time-points in T +
s1
∩ T +

s2
. Since X is not in T +

s1
, it follows that

s1 6|= L(X). Now, if X ∈ T +
s2

(i.e., s2 |= L(X)), then (without loss of generality) there
must be some p ∈ L(X) such that s1 6|= p, but s2 |= p. Since L(X) is honest (by WD2),
L(X) |= L(P ?). Therefore, s2 |= L(X) |= L(P ?) and, hence, P ? ∈ T +

s2
, which implies that

[σ�(s2)]P? = [σ(s2)]P? ≤ h. But then p must appear in Hist�(h+ 1, s2, σ�). However,
since p yields different outcomes in s1 and s2, that contradicts that the histories for s1 and
s2 are the same. Therefore, it must be that X 6∈ T +

s2
, in which case, [σ�(s2)] = h+ 1 = t.
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By cases 1 and 2, it follows that σ� is dynamic. It remains to show that σ� is viable. Toward
that end, let s be any scenario, and let (Y −X ≤ δ, `) be any constraint in S� whose label
` is entailed by s. Now, if this constraint is in S, then by WD1, ` |= L(X) ∧ L(Y ). Hence,
s |= ` |= L(X) ∧ L(Y ), which implies that X,Y ∈ T +

s . Thus, σ and σ� execute X and Y
at the same times in s. And, since s |= `, this constraint is in C+

s ; thus, the viability of σ
ensures that it is satisfied by σ�(s). On the other hand, if this constraint is not in S, then
it must be one of the constraints, (X − Z ≤ h, L(X)) from C′1, or (Z − X ≤ −h − 1,¬ρ)
from C′2, for some ρ ∈ L(X). Now if s |= L(X), then (1) requires that [σ�(s)]X ≤ h, which
implies that the first constraint is satisfied, and s |= L(X) |= ρ implies that the second
constraint is trivially satisfied. On the other hand, if s 6|= L(X), then the first constraint is
trivially satisfied and, by (2), [σ�(s)]X = h+ 1, which implies that the second constraint is
satisfied. Therefore, since the choice of constraint was arbitrary, it follows that σ�(s) must
be a solution to the projection Prj�(S�, s). And since s was arbitrary, σ� must be viable.

Part 2: S� is DC ⇒ S is DC

Let σ� be any V & D strategy for S�. We will construct a similar V & D strategy σ for S.
First, consider any scenario s, and any time-point X. The viability of σ� ensures that

it satisfies the constraints in C′1 and C′2. Therefore, if X ∈ T +
s (i.e., if s |= L(X)), then

[σ�(s)]X ≤ h; otherwise [σ�(s)]X ≥ h+ 1 > h. In short, [σ�(s)]X ≤ h⇔ s |= L(X).
Next, define the strategy σ for S, as follows. For each scenario s, and each X ∈ T +

s , let
[σ(s)]X = [σ�(s)]X (i.e., σ(s) = σ�(s)|T +

s
). Note that, by the preceding remarks, |σ| ≤ h.

Viability of σ. Let s be any scenario, and Prj(S, s) = (T +
s , C+

s ) the corresponding projection.
By WD1, the constraints in C+

s only involve time-points in T +
s . Thus, the endpoints of each

constraint in C+
s are executed at the same times by σ and σ� in s. Since σ� is viable, it

satisfies each constraint in that projection; hence, so does σ. Thus, σ is viable.

Dynamicity of σ. Let s1 and s2 be any scenarios, let X be any time-point in T +
s1
,

let t = [σ(s1)]X ≤ h, and suppose that Hist(t, s1, σ) = Hist(t, s2, σ). Since X ∈ T +
s1
,

[σ(s1)]X = [σ�(s1)]X . Next, let p be any letter appearing in L(X); and let P? be the
corresponding observation time-point. By WD1, L(X) is honest; hence, L(X) |= L(P?);
whence, s |= L(X) |= L(P?). Therefore, [σ(s1)]P? = [σ�(s1)]P?. Next, by WD2.b, C in-
cludes a constraint of the form (P?−X ≤ −ε, L(X)) and, since σ� is viable, it follows that
[σ�(s1)]P? < [σ�(s1)]P? + ε ≤ [σ�(s1)]X = t. Then, since [σ(s1)]P? = [σ�(s1)]P? < t, it
follows that (p, s1(p)) appears in Hist(t, s1, σ). Since this holds for each p in L(X), it follows
that Hist(t, s1, σ) |= L(X). Since Hist(t, s2, σ) = Hist(t, s1, σ), it follows that Hist(t, s2, σ) |=
L(X) and, hence, that s2 |= L(X) (i.e., X ∈ T +

s2
). Therefore, [σ(s2)]X = [σ�(s2)]X . Now, if

Hist�(t, s1, σ�) 6= Hist(t, s1, σ), there must be some observation time-point P? 6∈ T +
s1

that
σ� executes in scenario s1 at some time before t ≤ h. But the lower-bound constraints in
C′2 ensure that this can only happen if s1 |= L(P?), which contradicts that P? 6∈ T +

s1
. Thus,

Hist�(t, s1, σ�) = Hist(t, s1, σ). Similarly, Hist�(t, s2, σ�) = Hist(t, s2, σ). But then the
dynamicity of σ� ensures that [σ�(s2)]X = t and, hence, that [σ(s2)]X = t. J

4.2 The Second Translation from CSTN to CSTN�
Unlike the first translation from CSTN to CSTN�, the second translation, defined below,
does not insert any extra edges. For convenience, we use the same notation as in the preceding
section (i.e., in this section, CSTN� refers to the following definition).
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I Definition 20 (Reducing a CSTN to a CSTN�). Let S = 〈T , C, L,OT ,O, P 〉 be a well
defined CSTN. The reduction of S is the CSTN�, S� = 〈T , C,OT ,O, P 〉.

For a well defined CSTN, we can define a partial order among propositional letters, as
follows. For any p, q ∈ P , we write p ≺L q if p (or ¬p) appears in L(Q?), where L is the
function that assigns labels to time-points. In addition, if, for each observation time-point
P?, the label L(P?) is honest, then we say that L is honest. Using this notation, it follows
that if L is honest and p ≺L q, then L(Q?) |= L(P ?). In what follows, it is necessary to show
that the ≺L relation is acyclic for well defined CSTNs for which S� is DC.

I Lemma 21. If S is well defined and S� is DC, then ≺L is acyclic.

Proof. Suppose that p1 ≺L · · · ≺L pk = p1 is a cycle in ≺L. By WD2.a, L is honest and,
therefore, L(Pk?) |= L(Pk−1?) |= . . . |= L(P2?) |= L(P1?). Since pk = p1, it follows that
L(P1?) = . . . = L(Pk?). For convenience, let ` = L(P1?) = . . . = L(Pk?). By WD2.b, S (and
hence S�) contains constraints of the form, (Pi+1?− Pi? ≤ −εi, `), for every i = 1, . . . , k− 1,
forming a negative cycle with the consistent label `. Since such a cycle cannot be satisfied in
any scenario s for which s |= `, S� must not be DC, which is a contradiction. J

For a CSTN S, it may be that in some scenarios some propositional variables are not
observed because their corresponding observation time-points are not executed. For example,
in the CSTN from Fig. 1, Q? is not executed in either of the scenarios ¬pq or ¬p¬q because
L(Q?) = p. In general, in such cases, there may be a family of scenarios that are equivalent
in that they differ only in the values they assign to propositional letters that are not observed.
Below, we define a canonical scenario to be a unique representative for such a family of
scenarios. The canonical scenario is the unique scenario from the family that assigns a
value of ⊥ (i.e., false) to each propositional letter that is not observed when executing S in
scenarios from that family. For example, the canonical scenario for {¬pq,¬p¬q} is ¬p¬q.

I Definition 22 (Canonical Scenario). For any scenario s, define the canonical scenario ŝ as
follows. For any p ∈ P , if s |= L(P?), let ŝ(p) = s(p); otherwise, let ŝ(p) = ⊥.

Note that if s and ŝ disagree on some p, then s 6|= L(P?) (i.e., s and ŝ differ only on
variables that cannot be observed in the scenario s). However, the converse need not hold
(i.e., it may happen that s 6|= L(P?), yet s and ŝ happen to agree on p).

I Lemma 23. If ≺L is acyclic and L is honest, then s |= L(P?) if and only if ŝ |= L(P?).

Proof. There are two cases to consider.
1. ŝ 6|= L(P?)⇒ s 6|= L(P?).

Suppose that ŝ 6|= L(P?), but s |= L(P?). Then s and ŝ disagree on some q ∈ L(P?). By
the honesty of L(P?), it follows that L(P?) |= L(Q?) and, therefore, that s |= L(P?) |=
L(Q?). However, since s and ŝ disagree on q, the definition of ŝ implies that s 6|= L(Q?),
which is a contradiction.

2. ŝ |= L(P?)⇒ s |= L(P?).
Suppose that ŝ |= L(P?), but s 6|= L(P ?), where P ? (and hence p) is chosen minimally with
this property with respect to the ordering ≺L. Let q ∈ L(P ?) be arbitrary. Thus, q ≺L p.
By the honesty of L(P ?), it follows that L(P ?) |= L(Q?). Therefore, ŝ |= L(P ?) |= L(Q?)
and, hence, ŝ |= L(Q?). But, then, by the minimality of p, it follows that s |= L(Q?).
Since q ∈ L(P ?) was chosen arbitrarily, we have that s |= L(P ?), which is a contradiction.

J
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The following lemma states that, if a CSTN S is well defined, then any scenario s and its
corresponding canonical scenario ŝ determine the same projection.

I Lemma 24. If S is a CSTN for which ≺L is acyclic and all labels on time-points and
constraints are honest, then for any scenario s and any label `, s and ŝ must assign the same
truth value to `. As a result, Prj(S, s) = Prj(S, ŝ) (i.e., T +

s = T +
ŝ and C+

s = C+
ŝ ).

Proof. Let ` be any label on a time-point or constraint such that s(`) 6= ŝ(`). Then there
exists some p that appears in ` such that s(p) 6= ŝ(p). Then, by the definition of ŝ, s 6|= L(P?).
Therefore, by Lemma 23, ŝ 6|= L(P ?). But the honesty of ` implies that ` |= L(P ?). Therefore,
it follows that s 6|= ` and ŝ 6|= `. But then s(`) = ⊥ = ŝ(`), which is a contradiction. J

It is now possible to apply the obtained results to show the relationship between the
dynamic consistency of a CSTN and that of its corresponding streamlined CSTN�.

I Lemma 25. If S is a well defined CSTN, and S� is DC, then S is DC.

Proof. Let σ� be any viable and dynamic strategy for S�. Let the strategy σ for S be defined
as follows. For any scenario s ∈ I and any time-point X ∈ T +

s , let [σ(s)]X = [σ�(ŝ)]X . We
need only show that σ is viable and dynamic for S.

Viability. First, note that the conditions of Lemma 21 hold; therefore, ≺L must be acyclic.
Next, since S is well defined, the labels on all time-points and constraints in S must be
honest; hence, the conditions of Lemma 24 are satisfied. Thus, s and ŝ must agree on the
truth value of each label on any time-point or constraint in S (and hence in S�).

Suppose that σ violates some constraint, (Y −X ≤ δ, `). Then there is some scenario
s such that [σ(s)]Y − [σ(s)]X > δ and s |= `. But then the definition of σ implies that
[σ�(ŝ)]Y − [σ�(ŝ)]X > δ; and Lemma 24 gives that ŝ |= `. Together, these contradict that
σ� is viable.

Dynamicity. Suppose that X ∈ T +
s1

(i.e., s1 |= L(X)), t = [σ(s1)]X , and Hist(s1, t, σ) =
Hist(s2, t, σ). We must show that X ∈ T +

s2
(i.e., s2 |= L(X)) and [σ(s2)]X = t.

Toward that end, let p be any letter that appears in L(X). Since L is honest, it follows that
L(X) |= L(P ?). Thus, s1 |= L(P ?) (i.e., P ? ∈ T +

s1
); hence, by Lemma 24, ŝ1 |= L(P ?). Next,

by WD2.b, S (and hence S�) must contain a constraint of the form, (P?−X ≤ −ε, L(X)).
And, since σ� is viable, it follows that [σ(s1)]P? = [σ�(ŝ1)]P? < [σ�(ŝ1)]X = [σ(s1)]X = t.
Since s1 |= L(P?), it must be that p appears in Hist(s1, t, σ) = Hist(s2, t, σ). And, since p was
chosen arbitrarily in L(X), it follows that Hist(s1, t, σ) = Hist(s2, t, σ) |= L(X). Therefore,
s2 |= L(X) (i.e., X ∈ T +

s2
).

Finally, suppose that Hist(ŝ1, t, σ�) 6= Hist(ŝ2, t, σ�). But then there must be some
time t′ < t at which one of the following holds: (1) one of the schedules, σ�(ŝ1) or σ�(ŝ2),
executes some observation time-point Q? at t′, while the other does not; or (2) both schedules
execute some observation time-point Q? at t′, but yield different values for q. Without
loss of generality, choose t′ to be the earliest time at which one of the above conditions
hold. Then (1) is impossible, because Hist(ŝ1, t

′, σ�) = Hist(ŝ2, t
′, σ�) and σ� is dynamic.

To show that property (2) is impossible, first consider the case where q appears in L(X).
Then s1(q) = s2(q), which implies that ŝ1(q) = ŝ2(q), contradicting the choice of Q?. But
if q does not appear in L(X), then ŝ1(q) = ⊥ = ŝ2(q) by definition of ŝ1 and ŝ2, another
contradiction. Therefore, Hist(ŝ1, t, σ�) = Hist(ŝ2, t, σ�) which, by the dynamicity of σ�
implies that [σ�(ŝ2)]X = t, which in turn implies that [σ(s2)]X = t. J
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Now, it is possible to show the main result of the section.

I Theorem 26. Let S be any well defined CSTN. Then S� (i.e., the reduction of S to a
CSTN�) is equivalent to S, in the sense that S is DC if and only if S� is DC.

Proof. The =⇒ direction is already proven in Theorem 19. Indeed, using the first translation
requires more constraints to be satisfied in S�. The ⇐= direction is given by Lemma 25. J

5 Empirical Evaluation

When applied to Streamlined Conditional Simple Temporal Networks, the constraint-
propagation rules used by the DC-checking algorithm of Hunsberger et al. [15, 12] become
simpler. That algorithm checks whether an input network is DC by exhaustively propagat-
ing labeled constraints and then verifying that the propagated network does not contain a
negative cycle with a consistent label. However, the applicability conditions for the constraint-
propagation rules, and the labels generated by those rules, depend on time-point labels and
the ≺L relation. Therefore, if the input CSTN has no labels on its time-points (i.e., if it is a
CSTN�), then the algorithm can avoid dealing with such complications.

In this section, the original DC-checking algorithm that applies to any CSTN S shall be
called DC_Checker, and the “simplified” algorithm that applies only to a CSTN� shall
be called DC_CheckerWONodeLabels.

This section presents an empirical comparison of the performance of DC_Checker and
DC_CheckerWONodeLabels on instances of the benchmarks proposed in prior work [12]. For
each CSTN S, DC_Checker is run on S, while DC_CheckerWONodeLabels is run on the
streamlined CSTN S�, using the simplified propagation rules. Recall that two translations
from S to S� were introduced in Section 4, one of which involves the auxiliary constraints in
the sets, C′1 and C′2. This section reports results from running DC_CheckerWONodeLabels on
both versions of S�.

First, we briefly recall that the benchmarks contain CSTN instances obtained from random
workflow schemata generated by the ATAPIS toolset [16]. For each N ∈ {10, 20, 30, 40}, a
class of at least 120 workflow graphs were randomly generated by setting the number of
activities to N , the probability for parallel branches to 0.2, the probability for conditional
branches to 0.2, and the maximum duration of activities or delays between activities to 50.
As a result, all edge-weights were at most 104. Then, each workflow graph was translated
into an equivalent CSTN as proposed by Combi et al. [5]. It is worth noting that different
workflow graphs with the same number of activities may translate into CSTNs of different
sizes due to different numbers of connector nodes in the workflows. However, it is not hard
to verify that a workflow with N activities translates into a CSTN having n nodes, where
(2N + 2) ≤ n ≤ (5N + 2). There are 4 benchmarks, each containing at least 60 dynamically
consistent CSTNs and 60 non-dynamically consistent CSTNs, relating to workflow graphs
of the same class. In order to simplify the comparison, for each benchmark, the number
of observation time-points in the network, |P|, has been fixed with respect to the class of
workflows, as follows.

N : 10 20 30 40
|P|: 3 5 7 9

Since non-DC networks were regularly solved one to two orders of magnitude faster than
similarly sized DC networks, the rest of this section focuses on the results for the DC
networks.
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(a) Benchmark N = 10, |P| = 3.
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(b) Benchmark N = 20, |P| = 5.
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(c) Benchmark N = 30, |P| = 7.
For DC_Checker w/o node labels values, the
standard deviation has been omitted to have a
better scale of the diagram.
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(d) Benchmark N = 40, |P| = 9.
For DC_Checker w/o node labels values, the
standard deviation has been omitted to have a
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Figure 3 Execution time vs. number of time-points n.

Algorithms and procedures necessary for this evaluation were implemented in Java and
executed on a JVM 8 in a Linux machine with two AMD Opteron 4334 CPUs and 64GB of
RAM. The code is freely available [17].

The results shown in Figure 3 demonstrate that, in general, the original CSTN DC-
checking algorithm DC_Checker has the best performance in almost all instances. Indeed,
taking node labels into account allows the algorithm to avoid the propagation of some
auxiliary values (in the case of streamlined CSTNs with auxiliary constraints from the sets
C′1 and C′2) or non-coherent or non-honest ones (in the case of streamlined CSTNs without
auxiliary constraints).

We have verified that these kinds of values can be quite numerous and that, for some
instances, when they contain the auxiliary constraints from C′1 and C′2, the execution time
of DC_CheckerWONodeLabels can be two or three orders of magnitude greater than the
execution time of DC_Checker on the corresponding CSTNs.

On the other hand, the performance difference between DC_CheckerWONodeLabels and
DC_Checker decreases as the number of nodes increases. We verified that the original
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10:14 A Streamlined Model of Conditional Simple Temporal Networks

algorithm continues to propagate fewer labeled values than the streamlined version, but
such differences become smaller. Therefore, the time required by the original algorithm to
stop non-coherent or non-honest labeled values must become more or less equal to the time
required to propagate them as done by the simpler algorithm.

We have also evaluated a different implementation of the streamlined version for checking if
it was possible to avoid the propagation of useless labeled values. In this new implementation,
part ot the information given by node labels is rebuilt dynamically and exploited to “clean”
some labels. We verified that while the number of useless labeled values can be reduced, the
computation time still remains the same due to the extra time required by the added code.
In other words, the overall performance of that implementation is no better than that of
DC_CheckerWONodeLabels.

6 Related Work

There are many proposals in the literature for ways of extending the expressiveness of the
STN model. Below, we summarize the main results about CSTNs and related models.

Tsamardinos et al. [18] defined the Conditional Simple Temporal Problem (CTP) as that
of determining whether a given CSTN admits a viable and dynamic execution strategy. (The
CSTN acronym was introduced later.) In their work, propositional labels are associated
only with time-points, not constraints. They also informally specified some reasonableness
properties that any CSTN ought to satisfy. Although they showed how to solve the CTP
by encoding it as a meta-level Disjunctive Temporal Problem (DTP) and feeding it to an
off-the-shelf solver, that approach is not practical because the CTP-to-DTP encoding has
exponential size and, on top of that, the DTP solver runs in exponential time. To our
knowledge, this approach has never been implemented or empirically evaluated.

Later, Hunsberger et al. [14, 15] defined CSTNs (separate from the CTP) and formalized
the well-definedness properties for CSTNs. In their work, both time-points (nodes) and
constraints (edges) of a CSTN can have propositional labels that specify the scenarios in which
they are applicable. (Allowing constraints to be labeled was inspired by the work of Conrad
et al. [8], discussed below.) They showed that the labels must satisfy the well-definedness
properties in order to guarantee the existence of a dynamic execution strategy. They also
presented a sound-and-complete DC-checking algorithm for solving the CTP, and empirically
demonstrated its practical performance.

Conrad et al. [8] considered a variant of CSTNs, proposing Drake, a dynamic executive
for temporal plans with choice. In their work, the constraints of a temporal plan are labeled
as in CSTNs, but the values of propositions (choices) are decided by the executive during
run-time, not by the environment.

Cimatti et al. [3, 4] presented a different approach to solving a variety of temporal
problems (CSTNs included) in which a temporal network is first translated into an equivalent
Timed Game Automaton (TGA) and, then, solved by an off-the-shelf TGA solver. Although
this approach is interesting because it shows the relationships between TGAs and a variety
of temporal networks – including CSTNs – it has not yet been shown to be practical for
solving the CTP.

Comin and Rizzi [7] solved the CTP by converting it into a Mean Payoff Game (MPG).
They also introduced a variant of dynamic consistency, called ε-DC, where ε > 0 represents
the minimum reaction time of the executive in response to observations. They presented
(1) a sharp lower-bounding analysis on the critical value of the reaction time where the CSTN
changes from being DC to non-DC, (2) a proof that the CTP is coNP-hard, and (3) the first
singly-exponential-time algorithm for solving the CTP.



M. Cairo, L. Hunsberger, R. Posenato, and R. Rizzi 10:15

Hunsberger and Posenato [12] showed how their DC-checking algorithm from earlier
work [15] can be extended to check the ε-DC property without incurring any performance
degradation. They also introduced four benchmarks for testing DC-checking algorithms.

Hunsberger and Posenato [13] presented another optimization of the approach presented
by Cimatti et al. in which the CTP is viewed as a two-player game. Its solution is determined
by exploring an abstract game tree to find a “winning” strategy, using Monte Carlo Tree
Search and Limited Discrepancy Search to guide its search. An empirical evaluation shows
that the new algorithm is competitive with the propagation-based algorithm.

Cairo et al. [1] improved the analysis of the ε-DC property. They showed that if ε = 0
(i.e., if the system can react instantaneously), it is necessary to impose a further condition to
avoid a form of instantaneous circularity. In particular, they (1) proposed a new extension
of dynamic consistency, called π-DC, suitable for systems that can react instantaneously,
(2) showed by a counter-example that π-DC is not equivalent to 0-DC, and (3) proposed
a sound-and-complete algorithm for checking the π-DC property having a (pseudo) singly-
exponential time complexity in the number of propositional letters.

Cario and Rizzi [2] showed that the CTP is PSPACE-complete.

7 Conclusions and Future Work

This paper presented a new version of CSTNs, named streamlined Conditional Simple
Temporal Networks, in which propositional labels may appear on constraints, but not on
time-points. This change simplifies the definition of the DC property and the specification of
propagation rules for the DC-checking algorithm. It also makes proving the soundness and
completeness of those rules simpler.

The paper proves that traditional CSTNs can be translated into streamlined CSTNs while
preserving the dynamic consistency property. Two translations from CSTNs to streamlined
CSTNs were presented. The first generates an equivalent streamlined CSTN in which the
information contained in time-point labels is preserved in the form of auxiliary constraints
that force time-points in certain scenarios to be executed either before or after a fixed
horizon, depending on whether they would be executed or not in the original CSTN. The
second translation does not preserve the information in the time-point labels, but provides
a simpler, equivalent streamlined CSTN. The drawback of the second translation is that
some time-points can be executed in the streamlined CSTN even if they would not be in the
original CSTN.

Finally, the paper provided an experimental comparison of two versions of the DC-checking
algorithm due to Hunsberger et al. [15]: the original version and a simplified version for
streamlined CSTNs. For small CSTNs, the original algorithm shows the best performance;
however, the difference in performance between the two versions decreases as the number of
time-points increases. During the tests, we verified that the static information given by the
time-point labels can limit the propagation of non-coherent/non-honest labels in a significant
way making the the DC checking faster. However, that advantage decreases as the number
of nodes increases.

It appears that simple heuristics such as one that tries to rebuild dynamically the
information given by time-point labels would not be successful for improving the performance
of the simplified version of the DC-checking algorithm. Our future work will investigate
other methods for improving the performance of the algorithm for streamlined CSTNs in
order to make it competitive with the original algorithm on small CSTNs, too.
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A Appendix: Proof of Lemma 17

I Lemma 17 (Tighter upper bound; rational weights). Let S be a DC CSTN with n time-points
and rational weights. If M is the maximum absolute value of any negative edge in S, then
the network obtained by constraining every time-point in S to occur before time Mn is DC.

Proof. First, since there are at most (n2)(2k) edge weights, each edge weight can be expressed
as a fraction involving the least common denominator among the edge weights. As a result,
without loss of generality, we may henceforth assume that all edge weights are integers.

Let C∗ be the set of labeled edges obtained by exhaustively applying the sound-and-
complete constraint-propagation rules presented by Hunsberger et al. [15]. Given the
assumptions that (1) all edge weights are integers, and (2) the network is DC, the constraint
propagation must terminate. Hence, C∗ is well defined and contains only finitely many
edges. Furthermore, each edge in C∗ can be derived by a finite number of applications of the
constraint-propagation rules. For convenience, we shall refer to C as the set of original edges,
and C∗ as the set of derived edges.

Fix Z = 0 and let U = T \{Z} be the set of as-yet-unexecuted time-points. Prior
to executing the time-points in U , there have been no observations and, thus, the initial
partial scenario is the empty scenario, represented by �. For each Y ∈ U , its effective
lower bound (ELB) with respect to the empty scenario, defined by Hunsberger et al., is
given by: ELB(Y,�) = max{δ | (Y ≥ δ, `) ∈ C∗}. Let λ = min{ELB(Y,�) | Y ∈ U} be the
minimum ELB of any as-yet-unexecuted time-point. Let X ∈ U be any time-point such that
ELB(X,�) = λ. (It does not matter if there happen to be multiple such time-points.) We
aim to show that λ ≤M . Therefore, we assume that λ > M and seek a contradiction.

By construction, λ ≤ ELB(Y,�) for each Y ∈ U . In addition, the Spreading Lemma
(from Hunsberger et al.) ensures that for each Y ∈ U , there is an edge from Y to Z labeled
by 〈−δY ,�〉, for some δY ≥ λ.

Given the definition of M , the value, ELB(X,�) = λ > M , cannot be due to an original
edge from X to Z of length −λ < −M . Instead, it must be due to an edge that has been
derived by one or more applications of the various constraint-propagation rules. Among all
of the derivations used to generate the edges in C∗, generated in some arbitrary order, let D
be the first derivation that results in an edge from X to Z whose weight equals −λ.

The following argument focuses on the rule applications in the derivation D that involve
the zero time-point Z. (There may be rule applications in D that do not involve Z, but
they will not be relevant to the argument that follows.) In this narrow setting, the six
constraint-propagation rules presented by Hunsberger et al. (LP,R0 ,R∗3 , qLP, qR0 and qR∗3 )
can be represented by the three rules shown in Table 1.‡

‡ The labels shown in Table 1 do not play a big role in the proof. However, for completeness, they are
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Table 1 Constraint-propgation rules used in the proof of Lemma 17.

(LP/qLP) A B Z
〈u, α〉 〈v, β〉

〈u+ v, γ〉

αβ consistent or (u < 0 and v < 0);
γ = (α ? βp)′.

(R0/qR0 ) P? Z
〈w,α〉

〈w, (αp)′〉
w < 0.

(R∗3/qR∗3 ) P? Z C
〈w,α〉 〈v, β〉

〈m, γ〉
w < 0, m = max{w, v}, and γ = (α ? βp)′.

Claim: No finite sequence of rule applications involving any of the six constraint-propagation
rules from Hunsberger et al. can generate a shortest edge from any time-point Y ∈ U to Z
whose weight is less than or equal to −λ.

Proof of Claim. For the base case, we note that the definition of M ensures that no original
edge in C can have weight less than or equal to −λ < −M . For the inductive case, consider
an arbitrary edge from Y to Z whose label is 〈u, α〉. Suppose that this edge is a shortest edge
among all edges from Y to Z whose label is α (or more general than α). Finally, suppose
that all prior edges encountered during the derivation of this edge satisfy the claim. Note
that the final rule application that generates the edge from Y to Z must be one of the three
rules shown in Table 1. We address each in turn.

(LP/qLP). In this case, A in the top row of Table 1 plays the role of Y , and y = u+ v ≤
−λ < −M is the weight of a shortest edge from A to Z among those edges labeled
by γ (or some more general label). First consider the possibility that u ≥ 0. In that
case, the weight v of the edge from B to Z satisfies: v ≤ u + v = −λ < −M . By the
inductive hypothesis, this cannot be a shortest edge from B to Z labeled by β (or some
more general label). But then the same rule application, using a shorter edge from B to
Z, would generate a shorter edge from Y to Z whose label is α (or more general than
α), contradicting that the first edge from Y to Z was shortest. On the other hand, if
u < 0, then −λ = u+ v < v. In that case, the Spreading Lemma ensures that there is
an edge from B to Z labeled by some 〈−δ,�〉, where −δ ≤ −λ. But then the same rule
application, using this stronger edge from B to Z would generate an edge from Y to Z
whose weight is −δ + u ≤ −λ+ u < −λ, another contradiction.
(R0/qR0 ). In this case, P? in the middle row of Table 1 plays the role of Y and
y = w ≤ −λ < −M is the weight of a shortest edge from P? to Z among those labeled
by (αp)′ (or some more general label). By the inductive hypothesis, the edge from P? to
Z labeled by 〈w,α〉, which also has the weight y = w ≤ −λ < −M , cannot be a shortest
edge from P? to Z labeled by α (or some more general label). But then replacing this

shown in full detail. The notation in the table is a slight simplification of that used by Hunsberger
et al. First, for any label `, the label `′ is that obtained by removing from ` any children of any
q-literals that appear in `. Second, for any propositional letter p, and any label `, the label `p is that
obtained by removing any occurrence of p or any of its children from `. Finally, the ? operator is a
commutative operator that extends the conjunction of literals as follows. For any propositional letter p,
p?¬p = p??p = p??¬p = p??p? = p?. The ? operator is then extended to labels by applying it in pairwise
fashion to like literals from each operand. For example, (abcd) ? (a(¬b)(c?)(¬e)) = a(b?)(c?)d(¬e).
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edge with a shorter one would generate a shorter edge from P? to Z labeled by (αp)′, a
contradiction.
(R∗3/qR∗3 ). In this case, C in the bottom row of Table 1 plays the role of Y and
y = m = max{w, v} ≤ −λ < −M is the weight of a shortest edge from C to Z among
those labeled by γ or some more general label. There are three cases to consider:
1. w < v. Here, m = max{w, v} = v ≤ −λ < −M . By the inductive hypothesis, the

edge from C to Z labeled by 〈v, β〉 cannot be a shortest such edge. But then replacing
it with a shorter edge, say one labeled by 〈v − ε, β〉, where ε > 0, would cause the
corresponding application of R∗3/qR∗3 to generate a shorter edge from C to Z labeled
by γ (or some more general label), a contradiction. (The weight of the resulting edge
would be v − ε′, where ε′ = min{ε, v − w} > 0.)

2. v < w. Here, m = max{w, v} = w ≤ −λ < −M . By the inductive hypothesis, the
edge from P? to Z labeled by 〈w,α〉 cannot be a shortest such edge. But then replacing
it with a shorter edge, say one labeled by 〈w − ε, α〉, where ε > 0, would cause the
corresponding application of R∗3/qR∗3 to generate a shorter edge from C to Z labeled
by γ (or some more general label), a contradiction. (The weight of the resulting edge
would be w − ε′, where ε′ = min{ε, w − v} > 0.)

3. w = v. Here, m = max{w, v} = w = v ≤ −λ < −M . By the inductive hypothesis,
neither the edge from P? to Z labeled by 〈w,α〉, nor the edge from C to Z labeled
by 〈w, β〉, can be shortest such edges. Thus, each can be replaced by a corresponding
edge with a shorter weight, say, by using the labeled values 〈w− ε1, α〉 and 〈v − ε2, β〉,
respectively. But then the corresponding application of R∗3/qR∗3 would generate an
edge from C to Z whose weight was v − ε < v, where ε = min{ε1, ε2}. That is a
contradiction.

Thus, the claim is proven. J

From the claim, it follows that no finite sequence of rule applications can generate an edge
from X to Z of length −λ < −M , which contradicts the choice of X. Therefore, it must be
that λ ≤M . Thus, the earliest-first strategy executes X at time λ. Equivalently, we may
introduce the constraints, X − Z ≤ λ and Z −X ≤ −λ (i.e., X = λ).

At this point, the time-points X and Z form a rigid component [10]. As a result, by
re-orienting all edges involving Z to instead involve X (adjusting the weights accordingly),
Z can be effectively removed from the network. Afterward, rename X as Z and observe that
the resulting network is DC with the same (or smaller) value of M , and one fewer time-point.
By induction we get a network where each successive time-point is executed no more than
M after the previous one, which gives the desired result. J

Note: We conjecture that Lemma 17 also holds for real-valued weights.
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11:2 Evaluation of Temporal Datasets via Interval Temporal Logic Model Checking

1 Introduction

Temporal databases keep track of the temporal evolution of information by associating one
or more temporal dimensions with stored data [12, 21, 40, 41]. One of the fundamental
temporal dimensions is valid time that associates with each stored fact the time interval
at which it is true in the modeled reality. In this paper, we focus on temporal databases
featuring such a dimension (valid-time temporal databases). A valid-time temporal database
consists of a set of temporal instances, or histories. Borrowing the terminology from the field
of machine learning, a set of histories is often referred to as a temporal dataset [44].

The temporal dataset evaluation problem can be (roughly) defined as the problem of
establishing how many histories comply with a given temporal formula or constraint. The
evaluation of temporal datasets plays a key role in at least three different application domains:
(i) temporal query processing [40], where the set of histories that satisfy a given condition
must be returned, (ii) temporal constraint checking [41], where the set of histories that violate
a given constraint must be identified, and (iii) rule evaluation [44], where one must determine
how many histories, and to which extent, comply with a certain temporal rule. In this
paper, we formulate (and solve) the temporal dataset evaluation problem as a model checking
problem.

Interval temporal logic model checking. In its standard formulation, model checking is
the problem of verifying whether or not a given formula of some logical language is satisfied
by a certain model [11]. One of its most successful applications is the verification of a
point-based temporal logic specification (expressed, for instance, by a formula of Linear
Temporal Logic [34]) against some reactive system description [35]. It is well known that
query evaluation and constraint checking in relational databases can be naturally expressed
as model checking problems (see, for instance, [43]). The applicability of model checking
techniques for the retrieval and the verification of temporal data has also been explored in
the literature, e.g., [5, 38].

Time intervals are commonly used to represent temporal information in (valid-time)
temporal databases. On the one hand, they allow one to compactly represent the time
periods over which data are valid in the modeled domain [42]; on the other hand, they make
it possible to suitably represent inherently interval-based temporal information such as telic
facts and temporal aggregations [4, 20]. Accordingly, temporal queries, constraints, and
rules can be naturally formulated as formulas of an interval temporal logic to be evaluated
over temporal datasets represented as finite interval models. The problem of evaluating a
temporal dataset can thus be reduced to the model checking problem for interval temporal
logic formulas, making it possible to exploit techniques and tools from logic and formal
methods to address and solve problems in temporal databases and data mining (see, for
instance, the three aforementioned application domains).

As a matter of fact, there is a little mismatch between the expected outcomes of the two
problems: while model checking is a decision problem, which returns “yes” when the model
meets the specification and “no” otherwise, the problem of temporal dataset evaluation
directly or indirectly returns a set of histories—in rule evaluation, it determines to what
extent each single history (resp., the whole set of histories) complies with a certain temporal
rule. An actual solution to the problem of temporal dataset evaluation can be obtained by
representing a temporal dataset as a set of finite interval models and by suitably combining
the outcomes of model checking each single model against the formula. In the case of rule
evaluation, some domain-dependent measures for rating the compliance degree of the interval
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model with respect to the formula, like, for instance, sensitivity, specificity, and accuracy [44],
are also needed.

Our contribution. The contribution of the present paper is twofold. From a methodological
perspective, it proposes interval temporal logic model checking as a viable logical tool
for temporal dataset evaluation (in particular, for rule evaluation in valid-time temporal
databases), thus establishing a formal connection between the two problems. From a technical
point of view, it provides an efficient solution to the problem of model checking an interval
temporal logic formula against a finite model (also referred to as path or history). More
precisley, we solve the problem of model checking a finite path/history for the well-known
Halpern and Shoham’s interval temporal logic (HS for short) [17], which features one modality
for each Allen relation [2], by devising a deterministic model checking algorithm that runs in
polynomial time, thus proving that the problem is in PTIME.

Related work. In the last years, the model checking problem for interval temporal logic has
received an increasing attention as an alternative to the traditional (point-based) temporal
logic model checking, which can be recovered as a special case. Model checking for full HS,
interpreted over finite Kripke structures according to the state-based semantics (we refer
here to the terminology introduced in [7]), has been studied in [29, 33]. The authors showed
that, under the homegeneity assumption, which constrains a proposition letter to hold over
an interval if and only if it holds over each component state, the problem is non-elementarily
decidable (EXPSPACE-hardness has been later shown in [6]). Since then, the attention was
brought to HS fragments, which are often computationally much better [6, 8, 30, 31, 32].
The model checking problem for some HS fragments extended with epistemic operators has
been investigated in [24, 25]. The semantic assumptions for these epistemic HS fragments
differ from those of [29, 33] in two important respects, making it difficult to compare the
two families of logics: formulas are interpreted over the unwinding of the Kripke structure
(computation-tree-based semantics, borrowing the terminology from [7]) and interval labeling
takes into account only the endpoints of intervals. The latter assumption has been later
relaxed by making it possible to use regular expressions to define the labeling of proposition
letters over intervals in terms of the component states [26].

A common feature of the application of (interval) model checking to the verification
of temporal properties of a reactive system is the encoding of all its possible executions
by a finite-state transition system, that is, by a finite Kripke structure, which provides
an abstract representation of possibly infinitely many interval models. On the contrary,
(valid-time) temporal databases commonly assume a given structure of time. Hence, when
used for the evaluation of temporal datasets, interval model checking is applied to finite,
concrete interval models and makes no restrictive assumptions on interval labeling such as,
for instance, the homogeneity assumption. In fact, representing temporal datasets as suitable
Kripke structures over which to evaluate formulas is in principle possible. However, it would
be both artificial and computationally inconvenient. As we will show, interval model checking
for temporal dataset evaluation behaves computationally much better than interval model
checking for system verification: we devise a polynomial model checking algorithm for full
HS, while the complexity of model checking HS fragments against Kripke structures goes
from coNP-complete to non-elementary, depending on the particular fragment of HS under
consideration [6, 8, 24, 25, 26, 29, 30, 31, 32, 33]. As a matter of fact, the closest analogue
of our model checking problem is the problem of model checking a path in Linear Temporal
Logic (LTL) worked out by Markey and Schnoebelen in [27].

TIME 2017
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HS

〈A〉

〈L〉

〈B〉

〈E〉

〈D〉

〈O〉

Allen’s relations

[x, y]RA[x′, y′] ⇔ y = x′

[x, y]RL[x′, y′] ⇔ y < x′

[x, y]RB [x′, y′] ⇔ x = x′, y′ < y

[x, y]RE [x′, y′] ⇔ y = y′, x < x′

[x, y]RD[x′, y′] ⇔ x < x′, y′ < y

[x, y]RO[x′, y′] ⇔ x < x′ < y < y′

Graphical representation
x y

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

Figure 1 Allen’s interval relations and HS modalities.

Organization of the paper. In Section 2, we introduce the logic HS and define the interval
model checking problem on a single path/history. Then, in Section 3, we illustrate a range of
possible applications of temporal dataset evaluation. Finally, in Section 4, we prove that the
interval model checking problem on a single path/history is in PTIME. Conclusions provide
an assessment of the work done and outline future research directions.

2 Preliminaries

Let D = 〈D,<〉 be a linear order. A strict (resp., non-strict) interval over D is an ordered
pair [x, y], where x, y ∈ D and x < y (resp., x ≤ y). As it is usually the case with the recent
literature, we adopt the strict semantics, which admits strict intervals only. Such a choice
conforms to the definition of interval given by Allen in [2], but it differs from the one by
Halpern and Shoham [17]. Even though most results can be easily rephrased in non-strict
semantics, which also admits intervals of the form [x, x] (point intervals), the strict one
is definitely cleaner for at least two reasons: first, a number of representation paradoxes
arise when the non-strict semantics is adopted, due to the presence of point intervals, as
pointed out in [2]; second, when point intervals are included there seems to be no intuitive
semantics for interval relations that makes them both pairwise disjoint and jointly exhaustive.
Moreover, adopting strict semantics is coherent with recent developments in temporal logic
that consider points and intervals on a par as different semantic entities (see, e.g., [3]).

We denote by I(D) the set of (strict) intervals over a linear order D. If we exclude the
identity relation, there are 12 different relations between two intervals in a linear order, often
called Allen’s relations [2]: the six relations RA (adjacent to), RL (later than), RB (begins),
RE (ends), RD (during), and RO (overlaps), depicted in Figure 1, and their inverses, that
is, RX = (RX)−1, for each X ∈ A, where A = {A,L,B,E,D,O}. We associate a universal
modality [X] and an existential one 〈X〉 with each Allen relation RX . For each X ∈ A,
the transposes of the modalities [X] and 〈X〉 are respectively the modalities [X] and 〈X〉,
corresponding to the inverse relation RX of RX , and vice versa.

The logic HS ([17]). Halpern and Shoham’s HS can be viewed as a multi-modal logic
whose formulas are built from a finite, non-empty set AP of atomic propositions (also referred
to as proposition letters), the classical Boolean connectives, and a modality for each Allen
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relation:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X〉ϕ | 〈X〉ϕ,

where p ∈ AP and X ∈ A. The other Boolean connectives and the logical constants, e.g., →
and >, as well as the universal modalities [X], can be defined in the standard way.

As shown in [17], the modalities 〈A〉, 〈B〉, and 〈E〉, along with their transposes, are suffi-
cient to express all the other modalities through a formula of polynomial size. Thus, w.l.o.g.,
hereafter we restrict ourselves to HS formulas over the set of modalities {〈A〉, 〈A〉, 〈B〉, 〈B〉, 〈E〉,
〈E〉}.

The semantics of HS formulas is given in terms of interval models M = 〈D, V 〉, where D
is a linear order and V : AP → 2I(D) is a valuation function which assigns to each atomic
proposition p ∈ AP the set of intervals V (p) on which p holds. (With an abuse of notation, we
indistinctly treat valuation functions as functions from atomic propositions to sets of intervals,
that is, V : AP → 2I(D), and as functions from intervals to sets of atomic propositions, that
is, V : I(D)→ 2AP .) In this work, we are interested in finite structures and thus we restrict
our attention to linear orders over finite domains. Any finite linear order D of size n can be
compactly represented by [n] = {x ∈ N | x ≤ n}. In the following, we will make use of such
a representation.

The truth of a formula ϕ on a given interval [x, y] in an interval model M is defined by
structural induction on formulas as follows:

M, [x, y] 
 p iff [x, y] ∈ V (p), for p ∈ AP;
M, [x, y] 
 ¬ψ iff M, [x, y] 6
 ψ;
M, [x, y] 
 ψ ∨ ξ iff M, [x, y] 
 ψ or M, [x, y] 
 ξ;
M, [x, y] 
 〈X〉ψ iff there exists [w, z] such that [x, y]RX [w, z] and M, [w, z] 
 ψ.

We denote the modal depth of an HS formula ϕ by md(ϕ). In [1], it has been shown
that, over finite temporal domains, an HS formula ϕ can be translated into an equivalent
one, say it ϕ′, that involves neither 〈A〉 nor 〈A〉. On the one hand, since the size of ϕ′ may
be exponential in the size of ϕ, we cannot give up modalities 〈A〉 and 〈A〉 when addressing
complexity issues; on the other hand, since md(ϕ′) is only linearly larger than md(ϕ), such a
translation will come in handy when proving Lemma 1 (bisimulation lemma) in Section 4,
allowing us to ignore modalities 〈A〉 and 〈A〉 in that context.

In the following, we will make use of the global modality [U ], that allows one to assert a
property ϕ on the entire model. HS is powerful enough to express such a modality as follows:

[U ]ϕ
def
≡ ϕ ∧

∧
X∈A

([X]ϕ ∧ [X]ϕ).

The HS model checking problem against a finite path/history. Given a pair I = (M,ϕ),
where M is a finite interval model and ϕ is an HS formula, the problem of model checking the
HS formula ϕ against a finite path/history M (MC for short) consists in deciding whether
M, [0, 1] 
 ϕ. The pair I = (M,ϕ) is called an instance of MC. With a little abuse of
the notation, for a given instance (M,ϕ) of MC, we write (M,ϕ) ∈ MC to indicate that
M, [0, 1] 
 ϕ. In such a case, we say that MC applied to (M,ϕ), denoted by MC(M,ϕ),
returns true. We say that two instances I, I ′ of MC are equivalent, denoted by I ≡MC I ′
whenever MC(I) returns true if and only if MC(I ′) does. Finally, we say that two HS
formulas ϕ1 and ϕ2 are equivalent, denoted by ϕ1 ≡ ϕ2, if (M,ϕ1) ≡MC (M,ϕ2) for every
interval model M .
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M1 c1

M2 c1

M3 c2

M4 c2

M

High Headache

High Headache

Low Headache

Low Headache

Figure 2 A classification model with four patients partitioned into two classes (c1 and c2).

3 Temporal Dataset Evaluation

The problem of temporal dataset evaluation can be defined as the problem of evaluating how
many histories comply with a given temporal formula. A history can be seen as the entire
(finite) flow of information relative to a given entity over a bounded time span. As an example,
in the medical context, a history is the medical history of a patient, that is, the collection
of all relevant pieces of information about tests, results, symptoms, and hospitalizations of
the patient that occurred during the entire observation period. In Figure 2, we graphically
depict (a simplified version of) the history of four patients.

As far as qualitative reasoning is concerned, it turns out to be convenient to assume that
all the meaningful events have been suitably discretized. As a concrete example, having a
fever can be represented by the propositional letter Low—meaning lower than 40 degrees—or
High—meaning higher than or equal to 40 degrees. Similarly, the proposition letter Headache
can be used to indicate the presence of a headache.

The case of fever is an illuminating example of the fact that information about histories
is naturally interval-based and quite often non-homogeneous. Suppose, indeed, that a certain
patient is experiencing low fever in an interval [x, y], say, a day, and that during just one
hour of that day, that is, over the interval [w, z] strictly contained in [x, y], he/she has an
episode of high fever. A natural choice is to represent such a situation by labeling the interval
[x, y] with Low and its sub-interval [w, z] with High. Notice that such a representation is
compatible with a general consistency requirement such as [U ](Low → ¬High). On the
other hand, representing the same pieces of information as three intervals [x,w], [w, z], [z, y]
respectively labeled with Low, High, and Low, which would be the case with a point-based
representation (or with an interval-based representation under the homogeneity assumption),
would be unnatural, and it would entail hiding a potentially important information like: “the
patient presented low fever during the entire day, except for a (brief) episode of high fever”.

Let us denote a temporal dataset by D = {M1, . . . ,Mr}, where each history Mi, with
1 ≤ i ≤ r, is, in fact, an interval model as defined in Section 2. Temporal dataset evaluation
can be naturally formulated as a model checking problem for an interval temporal logic
like HS. In the following, we briefly elaborate on its concrete application to temporal query
processing, temporal constraint checking, and machine learning (rule evaluation).

Evaluating a query over a temporal database corresponds to extracting the set of histories
that satisfy the conditions of the query. Temporal queries are typically expressed in a
temporal query language such as TSQL (Temporal SQL) [40], which features operators for
Allen’s relations that make it possible to check all possible temporal (interval) relationships
between pairs of events. (Another approach to query evaluation based on temporal formalisms
with an interval flavor can be found in [10], where the language ATSQL is used; however, the
underlying semantics is not truly interval based, as homogeneity is assumed.) The interval
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temporal logic HS is powerful enough to capture all TSQL operators, which can actually
be expressed as suitable disjunctions of HS modalities. To answer a temporal query, an
evaluation of the whole dataset of histories is, in general, needed, that returns precisely those
histories on which the model checking problem is positively solved. Therefore, it can be
naturally viewed as a dataset evaluation problem. As an example, determining the patients
that have experienced a headache immediately after an episode of high fever amounts to
looking for those histories Mi such that:

Mi, [0, 1] 
 〈L〉(High ∧ 〈A〉Headache).

In the example of Figure 2, only M3 makes the formula true.
As far as temporal constraint checking is concerned, in a (temporal) database one may

impose various different types of (temporal) constraint at design time [23]. They range
from very simple domain constraints like “each value of a given attribute must belong to a
specific domain”, to key constraints, that is, existence and uniqueness of the values of the
key attributes, and, more generally, functional dependencies, which require some attributes
to functionally depend on other ones (in the context of temporal databases, interval-based
temporal functional dependencies have been studied in [13]). More advanced temporal
constraints, that involve more complex relationships among the values of each history, can
be expressed as logical formulas, and checking such constraints corresponds to solving the
temporal dataset evaluation problem and identifying precisely those histories for which the
model checking problem returns false. Let us consider again the simple example reported in
Figure 2. In order to check that data about the values of the fever parameter over time, for
any given patient, are consistent, that is, to exclude that there exists a patient such that
both High and Low hold in the same time interval, it suffices to check that the number of
histories Mi such that:

Mi, [0, 1] 
 [U ](High ∧ Low)

is equal to 0 (this is actually the case with the temporal dataset in Figure 2).
Finally, one of the most interesting and extensively studied problems in machine learning

is supervised classification. In such a problem, each history is assigned to a class c from a
finite set C with the aim of devising a module, usually called classifier, that, given a new
(unclassified) history, sets its class with an acceptable degree of correctness. In our running
example (see Figure 2), each patient is either class c1 or class c2, which can be possibly
interpreted as “the patient is cured (at the end of the treatment) or not”.

There are several well-known (not always comparable) classifier learning methods. They
can be broadly categorized into learners based on trees, on functions, and on rule sets. Decision
tree learners, such as C4.5 [37], fall into the first category, while a logistic regressor [22] is
an example of function-based classifier learner. Methods based on rule sets, that is, rule
extraction, are further partitioned into indirect and direct methods. When an indirect method
is adopted, rules are synthesized from an already existing classifier [9, 18, 28], while when a
direct method is followed, rules are directly learned [19, 44].

Let us focus on the latter methods (direct rule extraction). A classification rule has the
form ϕ⇒ c, where ϕ is a logical formula and c ∈ C. Rules are not implicative formulas (we
use the symbol ⇒, instead of →, to stress this fact). Direct methods include methods that
pair inductive reasoning and programming languages, such as inductive logic programming,
and randomized methods, like evolutionary algorithms. Direct rule extraction via evolutionary
algorithms is a simple, and yet very promising, methodology. Intuitively, a set of random
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rules is initially produced. Then, at each iteration, the current set is evaluated and, as a
result, a new (better) set of rules is built from the old one that takes into account the result
of the evaluation. Evolutionary algorithms produce a new solution from the current one
by means of evolutionary operators, that may be generic and/or specific to the problem at
hand. Multi-objective evolutionary algorithms take into account more than one evaluation
measure of the current solution. As an example, the current set of rules can be evaluated by
the accuracy of the rules and by their succinctness—see, for instance, [14]. While different
approaches based on this idea may differ in the way in which they represent rules, in the set
of evolutionary operators, and in the selection strategy, the key element, common to all of
them, is the evaluation of a solution, which, in the context of evolutionary algorithms, is
called fitting function. Such a problem of evaluating the current solution can naturally be
viewed as a dataset evaluation problem.

Although there is not a unique, commonly accepted definition, a fairly natural way of
computing the fitting degree of a set of rules R1, . . . , Rp, where Ri is a generic rule of the
form ϕi ⇒ ci, for 1 ≤ i ≤ p, is by suitably combining the quantities Σp

i=1
Rec(i)
C(i) (known as

accuracy) and Σp
i=1

Rec(i)
Φ(i) (recall), where C(i) is the number of histories in the class ci, Φ(i)

is the number of histories that comply with ϕi, and Rec(i) is the number of histories in the
class ci that comply with ϕi [36]. Both accuracy and recall clearly depend on the number of
histories Mj such that Mj , [0, 1] 
 ϕi. In our running example (Figure 2), two rules can be
naturally devised:

〈L〉(Low ∧ 〈L〉Headache)⇒ c1;
〈L〉(High ∧ (〈A〉Headache ∨ 〈O〉Headache))⇒ c2.

To summarize, we have shown that the temporal dataset evaluation is a relevant problem
that comes into play in a variety of application domains including temporal query processing,
temporal constraint checking, and rule evaluation. An efficient solution to the model checking
problem for interval temporal logic over finite structures turns out to be a fundamental step
towards its effective treatment. In the next section we provide such a solution.

4 Model Checking

The input of classic (point-based) model checking consists of a formula and a Kripke structure
generally represented by (a suitable encoding of) the set of its states, along with their labels,
and the set of its transitions—for the model checking of very huge structures, other kinds
of solution are used, e.g., on-the-fly or bounded model checking. Classic model checking
is infinite in nature: infinitely many, possibly infinite paths, which are finitely encoded in
the input structure. On the contrary, in order to model check a finite path/history, that is,
a finite labeled interval, one can represent the model simply by specifying the size of the
interval (number of points in the model) and then listing, for each proposition letter, the set
of sub-intervals over which it is true (see Figure 3).

The fundamental difference between the two frameworks is that, in the classic model
checking problem, frame information, i.e., states and transitions, must be explicitly represen-
ted in the input, while, in finite interval models, frame information, i.e., intervals and their
relations, is implicit in the size of the temporal domain (this is because relations among
intervals are induced by the underlying linear order). As a consequence, while the size of
the representation of a Kripke structure is typically polynomial in the number of states and
labels, the size of the representation of a finite interval model may be logarithmic in the
number of intervals. As an example, consider an interval model M = 〈[n], V 〉 over AP = {p},
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n

p : [0, 1], [0, 2], [0, 3], [1, 3], [2, 3], . . .

q : [0, 1], [0, 3], . . .

. . .

Figure 3 A succinct representation of a finite interval model for HS: the first line specifies the
size of the history (number of points in the model); the next lines encode the valuation function V .

where V (p) = {[n− 1, n]}. Its representation consists of the number n (which takes space
O(log(n))) and the mapping p 7→ {[n− 1, n]} (which takes space O(log(n)) as well).

We will capture situations like the above one by means of the concept of sparse MC
instance. Intuitively, an instance (M,ϕ) of MC is sparse if it can be represented by logarithmic
space (the notion will be formalized later). Now, given an MC instance (M,ϕ), a model
checking procedure can be obtained by a straightforward adaptation of the CTL model
checking algorithm by Emerson and Clarke [15] to the interval setting; such a procedure
labels each world, i.e., interval, of M with the set of sub-formulas of ϕ which are true
on it. The application of such an algorithm to sparse instances immediately shows its
exponential complexity. As an example, checking the formula 〈A〉〈A〉p against the model
M = 〈[n], V 〉, where V (p) = {[n − 1, n]}, would require labeling with 〈A〉p all intervals
[x, n− 1], with 1 ≤ x ≤ n− 2, whose number is linear in n, and thus exponential in the size
of the representation of M .

In the following, we describe a model checking algorithm that runs in polynomial time on
every instance, thus avoiding the above problem.

The model checking algorithm. To keep the complexity under control, the algorithm we
are going to describe first executes a preprocessing of a sparse instance, which may be
represented in logarithmic space, and generates a non-sparse one; then, it basically applies
Emerson and Clarke’s solution of the model checking problem.

Hereafter, we fix an HS formula ϕ over the set of modalities {〈A〉, 〈A〉, 〈B〉, 〈B〉, 〈E〉, 〈E〉}
and we let k = 4 ·md(ϕ). In addition, let M = 〈[n], V 〉 be a model and let c ∈ [n] be an
element of the domain. We define a transformation τc(M) = 〈[n′], V ′〉, where n′ = n− 1 and
V ′ : I([n′])→ 2AP is defined as follows:

V ′([w, z]) =


V ([w, z]) if z < c,

V ([w, z + 1]) if w < c ≤ z,
V ([w + 1, z + 1]) if w ≥ c.

Given an interval model M = 〈[n], V 〉 and a point a ∈ [n], we say that a is a useless point if
V ([a, y]) = V ([x, a]) = ∅ for all x, y ∈ [n], with x < a < y. Moreover, we say that an interval
[a, b] ∈ I(D), with b − a > 2 · (k + 1)2 + 1, is a gap in M = 〈[n], V 〉 if each x ∈ [n], with
a ≤ x ≤ b, is a useless point in M , while a− 1 and b+ 1 are not. Finally, given a gap [a, b],
we call the point c = a+ (k + 1)2 + 1 the center of the gap.

Given an interval model M , we denote by nM the cardinality of its domain and by uM

the number of useless points in it. We now show that every instance with a gap can be
transformed into an equivalent one, of smaller size, that has no gaps. The proof is based on
the notion of bisimulation and the invariance of modal logics under bisimulations.

For every m ∈ N and each set S of HS modalities, an m-bisimulation for S between two
interval models M1 = 〈[n1], V1〉 and M2 = 〈[n2], V2〉 is a sequence 〈Zm, Zm−1, . . . , Z1, Z0〉
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of binary relations between the intervals in I([n1]) and those in I([n2]), that is, Zi ⊆
I([n1])× I([n2]) for i ∈ {0, 1, . . . ,m}, such that:

V1([x, y]) = V2([w, z]), for all i ∈ {0, 1, . . . ,m} and ([x, y], [w, z]) ∈ Zi (local condition);
for all i ∈ {1, . . . ,m}, ([x, y], [w, z]) ∈ Zi, and X ∈ S:

if [x, y]RX [x′, y′], then there is [w′, z′] such that ([x′, y′], [w′, z′]) ∈ Zi−1 and [w, z]RX

[w′, z′] (forward condition), and
if [w, z]RX [w′, z′], then there is [x′, y′] such that ([x′, y′], [w′, z′]) ∈ Zi−1 and [x, y]RX

[x′, y′] (backward condition).

Two intervals [x, y] and [w, z] arem-bisimilar under S if there is anm-bisimulation 〈Zm, Zm−1,

. . . , Z1, Z0〉 for S such that ([x, y], [w, z]) ∈ Zm.
The next lemma is based on the well-known invariance of modal logics under bisimula-

tions [16], which can be stated as follows: if L is a modal logic over a set of modalities S and
there exists an m-bisimulation for S between two models M1 and M2 of L, then, for every
pair of m-bisimilar worlds w1 and w2, it holds that M1, w1 
 ψ if and only if M2, w2 
 ψ,
for every formula ψ of L with md(ψ) ≤ m.

I Lemma 1. If (M,ϕ) is an instance of MC featuring a gap [a, b] in M , then (M,ϕ) ≡MC
(τc(M), ϕ), where c is the center of [a, b].

Proof. Let M = 〈[n], V 〉 and M ′ = τc(M) = 〈[n′], V ′〉, and recall that n′ = n − 1. Even
though ϕ is built over the set of modalities {〈A〉, 〈A〉, 〈B〉, 〈B〉, 〈E〉, 〈E〉}, it is known
from [1] that it can be translated into an equivalent formula ϕ′ over the set of modal-
ities {〈B〉, 〈B〉, 〈E〉, 〈E〉}, with md(ϕ′) linear in md(ϕ) (in fact, md(ϕ′) ≤ k = 4 ·md(ϕ)).

We provide a k-bisimulation for {〈B〉, 〈B〉, 〈E〉, 〈E〉} between M and M ′ such that
([0, 1], [0, 1]) ∈ Zk. The claim immediately follows from the aforesaid invariance property.

Let f : {0, 1, . . . , k} → N be the mapping defined as follows: f(i) = (1 + k − i) · (k + 1).
For each i ∈ {0, 1, . . . , k} and ([x, y], [w, z]) ∈ I([n])× I([n′]), we state that ([x, y], [w, z]) ∈ Zi

if and only if one of the following conditions hold:
(1) w = x ∧ z = y ∧ y ≤ c+ f(i), or
(2) w = x ∧ z = y − 1 ∧ x ≤ c+ f(i) ∧ y ≥ c− f(i) ∧ z − w > i, or
(3) w = x− 1 ∧ z = y − 1 ∧ x ≥ c− f(i).

We first observe that f is monotonically decreasing as f(i − 1) − f(i) = k + 1 > i for all
i ∈ {1, . . . , k}. Moreover, it holds that f(0) = (k + 1)2 and thus, by the definitions of gap
and center of a gap, we have that:

c− a = (k + 1)2 + 1 > (k + 1)2 = f(0)

and

b− c = b− a− (k + 1)2 − 1 > 2 · (k + 1)2 + 1− (k + 1)2 − 1 = (k + 1)2 = f(0).

Therefore, it holds that a ≤ c−f(0)−1 and c+f(0)+1 ≤ b, and thus, for each i ∈ {0, 1, . . . , k}
and each d in between c− f(i)− 1 and c+ f(i) + 1, that is, c− f(i)− 1 ≤ d ≤ c+ f(i) + 1,
d is a useless point.

We now show that 〈Zk, Zk−1, . . . , Z1, Z0〉 satisfies local, forward, and backward conditions.
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Local condition. Let ([x, y], [w, z]) ∈ Zi for some i ∈ {1, . . . , k}. We have to show that
V ([x, y]) = V ′([w, z]). We must deal with the three possible cases.

Case (1). If w = x, z = y, and y ≤ c+ f(i), then x < c+ f(i) and:
if c ≤ w < c + f(i), then w (= x) is useless and so is w + 1, and thus V ′([w, z]) =
V ([w + 1, z + 1]) = ∅ = V ([x, y]);
if z < c, then V ′([w, z]) = V ([w, z]) = V ([x, y]);
if w < c and c ≤ z ≤ c + f(i), then z (= y) is useless and so is z + 1, and thus
V ′([w, z]) = V ([w, z + 1]) = ∅ = V ([x, y]).

Case (2). If w = x, z = y − 1, x ≤ c+ f(i), y ≥ c− f(i), and z − w > i, then:
if c ≤ w ≤ c + f(i), then w (= x) is useless and so is w + 1, and thus V ′([w, z]) =
V ([w + 1, z + 1]) = ∅ = V ([x, y]);
if c− f(i)− 1 ≤ z < c, then z is useless and so is y (= z + 1), and thus V ′([w, z]) =
V ([w, z]) = ∅ = V ([x, y]);
if w < c and z ≥ c, then V ′([w, z]) = V ([w, z + 1]) = V ([x, y]).

Case (3). If w = x− 1, z = y − 1, and x ≥ c− f(i), then y > c− f(i) and:
if c − f(i) ≤ z < c, then z is useless and so is y (= z + 1), and thus V ′([w, z]) =
V ([w, z]) = ∅ = V ([x, y]);
if w ≥ c, then V ′([w, z]) = V ([w + 1, z + 1]) = V ([x, y]);
if z ≥ c and c− f(i)− 1 ≤ w < c, then w is useless and so is x (= w + 1), and thus
V ′([w, z]) = V ([w, z + 1]) = ∅ = V ([x, y]).

Forward condition. Let ([x, y], [w, z]) ∈ Zi, for some i ∈ {1, 2, . . . , k}, and [x, y]RX [x′, y′],
for some X. We show that there exists [w′, z′] such that ([x′, y′], [w′, z′]) ∈ Zi−1 and
[w, z]RX [w′, z′]. We proceed case by case, taking into account the value of X and the
relationship that holds between [x, y] and [w, z]:

Case (1). If w = x, z = y, and y ≤ c+ f(i), then x < c+ f(i) and:
if X = B, X = E, or X = E, then we set w′ = x′ and z′ = y′; the new points x′, y′, w′,
and z′ satisfy (1) with respect to i− 1, that is, w′ = x′, z′ = y′, and y′ ≤ c+ f(i− 1),
meaning that [x′, y′]Zi−1[w′, z′];
if X = B, then x′ = x and y′ > y; we set w′ = x′ and, in order to set the value for z′,
we distinguish two cases:
∗ if y′ ≤ c+ f(i− 1), then we set z′ = y′ and thus x′, y′, w′, and z′ satisfy (1) with

respect to i− 1;
∗ if y′ > c + f(i − 1), then we set z′ = y′ − 1 and thus x′, y′, w′, and z′ satisfy

(2) with respect to i − 1; in particular, to see that z′ − w′ > i − 1, observe that
z′−w′ = y′− 1− x > c+ f(i− 1)− c− f(i)− 1 = k > i− 1, and to see that z′ > z,
and thus [w, z]RB[w′, z′], observe that y′ − 1 > c + f(i − 1) − 1 > c − f(i) ≥ y,
which implies z′ = y′ − 1 > y = z.

Case (2). If w = x, z = y − 1, x ≤ c+ f(i), y ≥ c− f(i), and z − w > i, then:
if X = B or X = E, then we set w′ = x′ and z′ = y′ − 1, and thus x′, y′, w′, and z′
satisfy (2) with respect to i− 1;
if X = B, then x′ = x and y′ < y; we set w′ = x′ and, in order to set the value for z′,
we distinguish the following cases:
∗ if y′ ≥ c− f(i− 1) and y′ − x′ > i, then we set z′ = y′ − 1, and thus x′, y′, w′, and
z′ satisfy (2) with respect to i− 1; in particular, it holds that z′−w′ = y′− 1−x′ ≥
c− f(i− 1)− 1− c− f(i) = k > i− 1;
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∗ if y′ < c− f(i− 1), then we set z′ = y′, and thus x′, y′, w′, and z′ satisfy (1) with
respect to i− 1; in particular, to see that z′ < z, and thus [w, z]RB [w′, z′], observe
that z′ = y′ < c− f(i− 1) < c− f(i)− 1 ≤ y − 1 = z;

∗ if y′− x′ ≤ i, then we set z′ = y′, and thus x′, y′, w′, and z′ satisfy (1) with respect
to i− 1; in particular, it holds that y′ ≤ x′ + i ≤ c+ f(i) < c+ f(i− 1).

Case (3). If w = x− 1, z = y − 1, and x ≥ c− f(i), then y > c− f(i) and:
if X = B, X = B, or X = E, then we set w′ = x′ − 1 and z′ = y′ − 1; the new points
x′, y′, w′, and z′ satisfy (3) with respect to i− 1;
if X = E, then x′ < x and y′ = y; we set z′ = z = y′ − 1 and, in order to set the value
for w′, we distinguish two cases:
∗ if x′ ≥ c− f(i− 1), then we set w′ = x′ − 1, and thus x′, y′, w′, and z′ satisfy (3)

with respect to i− 1;
∗ if x′ < c − f(i − 1), then we set w′ = x′, and thus x′, y′, w′, and z′ satisfy

(2) with respect to i − 1; in particular, to see that z′ − w′ > i − 1, observe that
z′−w′ = y−1−x′ > c−f(i)−1−c+f(i−1) = k > i−1, and to see that w′ < w, and
thus [w, z]RE [w′, z′], observe that w′ = x′ < c− f(i− 1) < c− f(i)− 1 ≤ x− 1 = w.

The backward condition can be proved in a very similar way.

Therefore, the sequence 〈Zk, Zk−1, . . . , Z1, Z0〉 is a k-bisimulation for {〈B〉, 〈B〉, 〈E〉, 〈E〉}
between M and M ′. In addition, we have that ([0, 1], [0, 1]) ∈ Zk, and since ϕ is equivalent
to ϕ′ and md(ϕ′) ≤ k, we have that:

M, [0, 1] 
 ϕ⇔M, [0, 1] 
 ϕ′ ⇔M ′, [0, 1] 
 ϕ′ ⇔M ′, [0, 1] 
 ϕ,

and thus the thesis. J

We are now ready to formalize the notion of sparse MC instance. We say that an instance
I = (M,ϕ) of MC is sparse if

uM >
2 · (k + 1)2 + 2
2 · (k + 1)2 + 3 · nM + 1.

By making use of Lemma 1, it is possible to transform a sparse instance of MC into an
equivalent non-sparse one, as formally stated by the following lemma.

I Lemma 2. For every sparse instance of MC, there exists an equivalent non-sparse one
that is computable in deterministic polynomial time.

Proof. As a preliminary step, we show that if I = (M,ϕ) is a sparse instance of MC, then
it features a gap [a, b] in M . Assume, towards a contradiction, that I features no gap and
consider the partition of [nM ] into intervals [(i−1) ·

(
2 · (k + 1)2 + 3

)
+1, i ·

(
2 · (k + 1)2 + 3

)
],

with 1 ≤ i ≤ b nM

2·(k+1)2+3c, plus the interval [
(
b nM

2·(k+1)2+3c
)
·
(
2 · (k + 1)2 + 3

)
+ 1, nM ].

Since the length of each interval [(i − 1) ·
(
2 · (k + 1)2 + 3

)
+ 1, i ·

(
2 · (k + 1)2 + 3

)
], with

1 ≤ i ≤ b nM

2·(k+1)2+3c, is equal to 2 · (k+ 1)2 + 2, any such interval must contain a non-useless
point, otherwise there would be a gap in M . It immediately follows that there are at least
b nM

2·(k+1)2+3c non-useless points in M , and thus it holds that:

uM ≤ nM −
⌊

nM

2 · (k + 1)2 + 3

⌋
≤ nM −

nM

2 · (k + 1)2 + 3 + 1 = 2 · (k + 1)2 + 2
2 · (k + 1)2 + 3 · nM + 1,

which is in contradiction with I being sparse.
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Algorithm 1 Transforming a sparse instance into an equivalent non-sparse one.
1: function De-Sparsify(M,ϕ)
2: while (M = 〈[n], V 〉, ϕ) is sparse do
3: let [a, b] be a gap in M and let b′ = a+ 2 · (k + 1)2 + 1
4: for each p ∈ AP do V ′(p)← ∅
5: for each p ∈ AP and [w, z] ∈ V (p) do
6: if z < a then
7: V ′(p)← V ′(p) ∪ {[w, z]}
8: else if w < a and z > b then
9: V ′(p)← V ′(p) ∪ {[w, z − (b− b′)]}
10: else if w > b then
11: V ′(p)← V ′(p) ∪ {[w − (b− b′), z − (b− b′)]}
12: M ← 〈[n− (b− b′)], V ′〉
13: return (M,ϕ)

Algorithm 1 computes a non-sparse MC instance that is equivalent to the one given in
input. To this end, it iteratively applies a suitable transformation τ[a,b] (defined below) to
each gap [a, b], until a non-sparse MC instance is obtained. Such transformation produces
the same result as multiple application of transformation τc. However, it is important to
notice that executing (b− a− 2 · (k + 1)2 − 1) times the transformation τc for each gap [a, b],
instead of executing τ[a,b] only once, would result in an algorithm whose execution time is
exponential when the instance features exponentially large gaps.

Given an interval model M and a gap [a, b] in it, the transformation τ[a,b](M) returns
the pair 〈[n′], V ′〉, where n′ = n− (b− a− 2 · (k + 1)2 − 1) and V ′ : I([n′]) → 2AP is such
that V ′([w, z]) is equal to:

V ([w, z]) if z < a

V ([w, z + (b− a− 2 · (k + 1)2 − 1)]) if w < a ≤ z
V ([w + (b− a− 2 · (k + 1)2 − 1), z + (b− a− 2 · (k + 1)2 − 1)]) if w ≥ a.

It can be easily checked that the model τ[a,b](M) returned by one application of τ[a,b] is
equivalent to the one returned by (b− a− 2 · (k+ 1)2 − 1) applications of the transformation
τc, where c is the center of the gap [a, b]. Any such application of τc produces a model
where (the current configuration of the interval) [a, b] is shrunk into the interval [a, b′], where
b′ = b− 1 (and thus b′− a = b− a− 1). Hence, after (b− a− 2 · (k+ 1)2− 1)− 1 applications
of τc, [a, b] is reduced to the interval [a, b′], with b′ = b − (b − a − 2 · (k + 1)2 − 2) and
b′− a = b− b+ a+ 2 · (k+ 1)2 + 2− a = 2 · (k+ 1)2 + 2 > 2 · (k+ 1)2 + 1, meaning that [a, b′]
is still a gap in the resulting model. By Lemma 1, the model returned by an application of
τc is equivalent to the input model, and thus we have that (M,ϕ) ≡MC (τ[a,b](M), ϕ).

Termination of the algorithm is guaranteed by the fact that τ[a,b], applied to M , produces
a model M ′ with a reduced number of gaps: a gap [a, b] in M is shrunk into an interval
[a, b′], which is not a gap in M ′, as b′ − a = 2 · (k + 1)2 + 1.

As for the computational complexity, it is not difficult to check that the algorithm runs
in polynomial time. Let N be the size of the input. The number of gaps is bounded by
nM − uM + 1 (nM − uM is the number of non-useless points—observe that there is at least
one non-useless point between any two gaps), thus implying that the body of the outermost
loop (line 2) is executed at most N times. Both innermost loops (lines 4 and 5) are clearly
executed at most N times as well, giving an overall time complexity of O(N2). J
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A non-sparse instance (M,ϕ) can be represented in space polynomial in nM . To see
that, it suffices to show that nM ≤ p(N), for a polynomial p, where N is the size of the
representation of (M,ϕ). First, we observe that

nM = uM + eM

where eM is the number of non-useless points, that is, those points that occur explicitly
in the model. Since non-useless points are explicitly represented in the model, it clearly
holds that eM ≤ N . By definition of (non-)sparse instance, we have that (recall that
k ≤ 4 ·md(ϕ) ≤ 4 ·N):

uM ≤ 2·(k+1)2+2
2·(k+1)2+3 · (uM + eM ) + 1⇔

⇔ uM − 2·(k+1)2+2
2·(k+1)2+3 · uM ≤ 2·(k+1)2+2

2·(k+1)2+3 · eM + 1⇔

⇔ 1
2·(k+1)2+3 · uM ≤ 2·(k+1)2+2

2·(k+1)2+3 · eM + 1⇔

⇔ uM ≤ (2 · (k + 1)2 + 2) · eM + (2 · (k + 1)2 + 3) ≤

≤ (2 · (4 ·N + 1)2 + 2) ·N + (2 · (4 ·N + 1)2 + 3) =

= 32 ·N3 + 48 ·N2 + 20 ·N + 5,

which means that

nM = uM + eM ≤ 32 ·N3 + 48 ·N2 + 21 ·N + 5.

Therefore the number |I([nM ])| of intervals in M is also bounded by a polynomial in N

(O(N6)), thus making it possible to adapt Emerson and Clarke’s algorithm to obtain a
polynomial model checking algorithm for non-sparse instances.

Algorithm 2 implements such an adaptation. Let us assume ϕ to be represented as a
binary tree and M to be represented as in Figure 3. Moreover, for each sub-formula ψ of ϕ,
let L(ψ) be the set of all intervals ofM where ψ holds. For every node of the tree representing
ϕ (corresponding to a sub-formula ψ of ϕ), the algorithm computes the corresponding set
of intervals L(ψ). Initially, we set L(ψ) = ∅, for each sub-formula ψ of ϕ which is not a
proposition letter, and we set L(p) = V (p) for each proposition letter p. Modalities 〈A〉, 〈B〉,
and 〈E〉 are not dealt with by the algorithm as they are specular to the other ones.

I Lemma 3. If I = (M,ϕ) is a non-sparse instance of MC, then Algorithm 2 returns true
if and only if M, [0, 1] 
 ϕ. Moreover, it runs in polynomial time.

Proof. It is immediate to see that Algorithm 2 is sound and complete. In order to show that
it runs in polynomial time, we proceed as follows. Let N be the size of the representation of
the input I. Since I is non-sparse, the number of intervals in M is polynomial in N , thus
providing a polynomial upper bound to the cardinality of L(ψ), for each sub-formula ψ of ϕ.

The body of the loop at line 7 is executed at most N times (as |ϕ| ≤ N). Whenever ψ is
a Boolean formula, computing L(ψ) takes a linear time in the number |I([nM ])| of intervals
in M . The remaining cases can be efficiently implemented (in O(N6)) by using a symbolic
representation. As an example, in order to store the set of intervals on which 〈A〉τ holds,
knowing that τ holds on an interval [x, y], it suffices to store the number x, with the intended
meaning that it represents all intervals ending at x. By suitably adapting the representation
of L(ψ), one is able to guarantee the complexity of these cases to be at most linear in the
number of intervals as well. This allows us to conclude that Algorithm 2 runs in O(N7) time,
and thus it is deterministic polynomial. J
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Algorithm 2 Checking a non-sparse model.
1: function Check(M,ϕ)
2: for each ψ sub-formula of ϕ do
3: if ψ = p then
4: L(ψ) = V (p)
5: else
6: L(ψ) = ∅
7: for each ψ sub-formula of ϕ (ordered by increasing size) do
8: if ψ = ¬τ then
9: L(ψ) = I([n]) \ L(τ)
10: else if ψ = τ ∨ ξ then
11: L(ψ) = L(τ) ∪ L(ξ)
12: else if ψ = 〈A〉τ then
13: for [x, y] ∈ L(τ) and for z < x do
14: L(ψ) = L(ψ) ∪ {[z, x]}
15: else if ψ = 〈B〉τ then
16: for [x, y] ∈ L(τ) and for z > y do
17: L(ψ) = L(ψ) ∪ {[x, z]}
18: else if ψ = 〈E〉τ then
19: for [x, y] ∈ L(τ) and for z < x do
20: L(ψ) = L(ψ) ∪ {[z, y]}
21: if [0, 1] ∈ L(ϕ) then
22: return True
23: else
24: return False

I Theorem 4. The HS model checking problem against a finite history can be solved by a
deterministic algorithm that runs in polynomial time in the size of the input.

We conclude the section with a short comparison with other classic model checking
problems [39]. CTL model checking is quadratic (therefore, more efficient than ours),
while LTL and CTL∗ model checking are PSPACE-complete (therefore, much less efficient
than ours). The complexity of interval model checking over Kripke structures ranges
from coNP-complete to non-elementary, depending on the particular fragment of HS under
consideration [29]. However, as already pointed out, the most appropriate comparison is that
with LTL model checking of a single (finite or ultimately periodic) path, which has been
proved to be in PTIME [27].

5 Conclusions

In this paper, we formally defined the problem of temporal dataset evaluation, and we
highlighted the role that model checking of finite interval structures plays in it. We also
showed that the problem of temporal dataset evaluation has several applications, that range
from temporal query answering to temporal constraint checking and rule evaluation, the last
one being a key element in various machine learning processes.

We identified the model checking problem for the interval temporal logic HS over finite
paths/histories as the main problem to be solved in this perspective, and we devised an
efficient (deterministic polynomial) algorithm for it.

TIME 2017
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We are currently working on an implementation of the developed model checking procedure,
which uses symbolic techniques to obtain better performances, and we plan to integrate
such a procedure in an existing module for (temporal) rule extraction [19], based on an
evolutionary algorithm, to compute a suitable fitting function of a set of temporal rules.
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Abstract
This work re-examines the widely addressed problem of the recognition and interpretation of
time expressions, and suggests an approach based on distributed representations and artificial
neural networks. Artificial neural networks allow us to build highly generic models, but the large
variety of hyperparameters makes it difficult to determine the best configuration. In this work we
study the behavior of different models by varying the number of layers, sizes and normalization
techniques. We also analyze the behavior of distributed representations in the temporal domain,
where we find interesting properties regarding order and granularity. The experiments were
conducted mainly for Spanish, although this does not affect the approach, given its generic
nature. This work aims to be a starting point towards processing temporality in texts via word
vectors and neural networks, without the need of any kind of feature engineering.
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1 Introduction

Detecting and interpreting the linguistic expressions that we use to refer to the physical time
we live in (e.g. “21 September”, “2001” or “yesterday”) poses an interesting problem of natural
language processing. Time expressions or timexes are a sub-language made up of specific
lexicon and with an interpretation linked to the calendar system that we use, numbers,
conditions and relations with entities that are external to the expression. Additionally,
as many other NLP tasks, the analysis of timexes presents ambiguous situations where
contextual information is needed.

Several approaches have been proposed to detect and interpret time expressions. Rule-
based systems like HeidelTime [35] and SUTime [9] yield very good results. Also systems
based on machine learning techniques like Support Vector Machines [3] or Conditional
Random Fields [1] produce good results without the cost of defining the rules, though it is
necessary to define specific characteristics and to use external resources.

Furthermore, vector representations of words, obtained from large text collections, have
produced interesting results regarding association and analogies between words [25]. Word
vectors can be seen as a set of artificial micro features that may be part of the input of a
machine-learning algorithm.
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Artificial neural networks organized in layers can be interpreted as successive sequent
transformations of a representation to obtain an expected result. Using word vectors as input
enables us to resolve problems without having to specify rules or machine-learning features
with information about the problem. The information about the problem used to define the
models considered in this work is limited to the output layer and the way the model is used.

In this work we study the behavior of neural models that use as input distributed
representations of words to detect and classify the time expressions occurring in a text.
Word representations make associations between similar words or semantically related words,
which gives the model the capacity to consider cases with lexical entries that do not exist
in the training data. We consider feedforward and LSTM models, and analyze the effect of
considering different dimensions for word representations, for hidden layers and normalization
techniques such as noise in representations, dropout, L1 and L2. We conducted experiments
using a small corpus for Spanish obtaining interesting results. We present results relative to
word vectors that suggest the possibility of interpreting time expressions without defining
rules or adding knowledge about the temporal domain. Finally, we include experiments in
English with encouraging results, and in the different, yet related, task of events detection
for Spanish and English.

2 Related Work

2.1 In Time Expressions
Extensive work has been done in the detection and interpretation of time expressions.
Furthermore, neural networks and vector representations of words have made great progress
recently. However, to our knowledge, no studies using neural models to resolve problems
with time expressions have been presented.

Regarding existing rule-based systems, [24] presents a system that resolves recognition
and interpretation through manually developed and machine-learned rules. [28] tackles the
problem by processing the input text, where information about expressions is cumulatively
added in each stage through heuristics and rules. [16] resolves recognition and interpretation
with a formal set of rules on the morphosyntactic information of the input. [13] builds a
system based on the TRIOS system [38], adding pre and post processing stages to improve
their results.

The HeidelTime system [34] uses regular expressions and resources from a temporal
lexicon to recognize and interpret the expressions, reaching the best results at TempEval-2.
These results were later improved by the SUTime system [9]. At TempEval-3, the system
that obtained the best results was a new version of HeidelTime [35]. [8] outperforms this
result with a system based on a manually developed context-free grammar.

Furthermore, traditional machine learning methods are essentially classifiers based on
conveniently defined features. It is from annotated examples that mechanisms are set to
determine the desired information in arbitrary entries. This type of method is suitable to
identify and classify time expressions, but its application to interpretation is not direct.

These systems are usually based on features such as: words part-of-speech tags in a
context window, belonging to word classes that are manually specified, and restrictions on a
dependency or constituents analysis, among many others. The variety of possible features is
unlimited, and the results depend mainly on features engineering. It is also important to
note that some features may require considerable computing time, thus making their use
questionable.

We could mention many existing machine learning based systems. [1] detects time
expressions with Conditional Random Fields (CRF), as does [2]. Later on, [3] uses Support
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Vector Machines (SVM) as classifiers and simplifies the rules for interpretation through a
classifiers cascade.

Semi-supervised approaches may include bootstrapping techniques to improve recognition
[27]. [21] expands positive cases using WordNet. The ManTIME system [14] runs CRF
for detection, considering attributes derived from WordNet, but does not reach significant
improvements.

TheClearTK-TimeML system [7] trains multiple supervised classifiers to identify and
classify time expressions, events and relations. Different methods are made to compete in
the system (CRF, SVM and logistic regression), with a specific tune of hyperparameters.

Hybrids that include machine learning techniques and a formal set of rules have produced
good recognition results. As for interpretation, rules are used relatively naturally given their
compositional properties. Some approaches combine the advantages of formal sets of rules
and annotated examples to interpret expressions. [4] inferred a probabilistic context-free
grammar on the expressions. This system can be easily applied to different languages [5].

[22] uses combinatory categorial grammar system to detect and interpret time expressions.
The work considers 287 manually designed entries, as well as automatically generated entries
(such as numbers and formats of dates), obtaining 83.1% F-score for detection, 85.4% for
classification and 82.4% for interpretation in the evaluation data of TempEval-3 ; this is the
current state-of-the-art.

2.2 In Neural Networks

Artificial neural networks currently play a major role in the artificial intelligence community
and natural language processing isn’t an exception[10, 11]. This has increased with the
progress made in the construction of vector representations of words from the contexts where
they occur [25, 26].

As for the use of word representations with neural network models to solve NLP tasks,
many studies with significants results can be mentioned. Among them, paraphrase detection
[32], parsing [31] and sentiment analysis [33]. [18] uses recurrent models and word embeddings
to resolve the issue of opinion mining. This work shares ideas with [17] that uses a feedforward
network and word2vec embeddings for time expression recognition in English for clinical
domain.

3 Time Related Words and Distributed Representations

To study the quality of information provided by words vector representations in the temporal
domain we reduced the dimension of the representations to be able to represent their relative
positions graphically. In turn, the ordering of the cosine distances respect to a specific word
were considered. We used word representations inferred from Wikipedia in Spanish through
GloVe [26], presented by [12].

3.1 Clustering

It is relevant to study the structure of the space of vector representations for the words that
refer to temporal information. Figure 1 shows the representations of a selection of time
related words after reduction to 2 dimensions with t-sne [40] for its graphical representation.
The presented 2-d representation shows how semantically related words tend to form clusters.
The following clusters are formed: days of the week, months, years, adverbs and low numbers

TIME 2017
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Figure 1 (a) Representation in 2 dimensions using t-sne of 200 dimension representations of
a time related words selection. (b) Representation in 2 dimensions using t-sne of 200 dimension
representations of numbers.

Table 1 Table with the closest terms (to the heading) ordered by distance to the time expressions
representations.1

Amanecer Neolítico Comienzo Antes Repentinamente Apresuradamente
atardecer paleolítico inicio después súbitamente marchar
mañana mesolítico dio tras muere replegarse
noche calcolítico antes ya falleció precipitadamente
día neolítico final días murió desecaba

medianoche datan dando luego prematuramente mudarse
anochece pleistoceno llegada ese trágicamente periódicamente
mediodía precerámico finales meses tempranamente dirigiera
ocaso epipaleolítico principio tiempo . . . . . .

madrugada bronce momento comenzar
. . . . . . . . . . . .

used in days of the month. In tasks related to time expressions, this enables the generalization
to cases that are not included in the training corpus.

Besides the days of the week and the months of the year, it is interesting to observe, for
example, the behavior of the words denoting times of day (e.g. sunrise), prehistoric times
(e.g. Neolithic) or time adverbs. Table 1 shows the closest words to a given term ordered by
distance.

3.2 Ordering and Granularity

In the examples presented, besides the formation of clusters we notice that the words that
follow a sequential order (common in time domain), such as the days of the week, months,
etc., tend to hold the order in terms of the representations. For instance, the representation
of the word miércoles (Wednesday) occurs closer to that of martes (Tuesday) and of jueves
(Thursday) than to other week day names. This shows that representations tend to preserve
the chronological order of the terms.

1 There is an English translated version in the Appendix B, Table 22.
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Table 2 Table with the closest terms (to the heading) ordered by distance to the representations
of ordinal and numerical terms.2

Primero Segundo Vigésimo 1853 1850 1700 1999
luego tercer trigésimo 1855 1840 1600 1998

segundo primer décimo 1854 1849 1800 1995
mismo cuarto cuadragésimo 1856 1870 1500 1997
último último noveno 1852 1860 1400 1996
primer quinto quincuagésimo 1851 1880 1200 2002

posteriormente primero octavo 1865 1851 1100 2003
después tercero quinto 1849 1830 1300 1994

. . . . . . . . . . . . . . . . . . . . .

Besides this tendency to preserve the order, ordinal terms and numbers present a granu-
larity issue. When considering terms such as primero (first), segundo (second) and tercero
(third), the term primero is close to terms like segundo and also to último (last). Then, when
considering the terms close to segundo, terms like tercero (third), cuarto (fourth) and quinto
(fifth) prevail. Additionally, next to the term vigésimo (twentieth) we find terms like désimo
(tenth) and trigésimo (thirtieth) (see Table 2).

Similarly, granularity is considered in the vector representation of numerical terms. For
instance, if the number is in hundreds granularity, for example 1700, other numbers from the
hundreds like 1600 or 1800 are found close. Note as well that these terms are sequentially
the previous and next ones to 1700 in the hundreds granularity. Something similar happens
with numbers from the tens such as 1850, with close numbers like 1840, 1860 and 1870; and
if 1853 is considered, its representation is close to that of 1855 and 1854.

Figure 1(b) shows the representations of a selection of numerical terms after reduction to
2 dimensions with t-sne. We can see clusters that reflect the granularity and order properties.
It is also interesting to note how the sequence 1920, 1930, . . . , 1970, 1980, 1990 connects
the cluster close to 1900 (1888, 1889, . . . ) with the one close to 1990 (1991, 1992, . . . ).
These order and granularity phenomena of the terms are potentially useful to interpret time
expressions. Note that these properties are inferred only from the local contexts where words
occur.

3.3 Regression on Years vectors

Experiments were conducted on neural network models trained to infer their respective
numerical value from the vector representation of a numerical term. A sampling of 300
random numbers was considered in the range from 1000 to 2000 with their respective vector
representations. The set was used to train a regression feedforward network with one 100-size
hidden layer, and the lowest absolute error was used as target function for training. Though
deeper studies are needed, the results obtained are encouraging. The experiments include
results such as 1985.21; 1986.84; 1986.72; 1988.58 and 1989.02 for the 1985− 1989 sequence,
where only 1989 was in the training data. However, not all the results were as accurated,
although, they were close to the expected value.

2 There is an English translated version in the Appendix B, Table 23.
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Table 3 Labeling scheme used to classify time expressions.

Type Label
date (da) Lda, Uda

time (t) Lt, Ut

duration (du) Ldu, Udu

set (s) Ls, Us

other B, I, O

4 Timex Detection and Classification

Detecting time expressions involves identifying the expression and indicating its extension.
The classification of time expressions means to determine the type of the expressions identified
using a predefined set of types.

With a focus on the TimeML annotation system of time expressions and events [29],
the date type was considered for dates (e.g. “three years before”), time for the times of day
(e.g. “at 3 pm”), duration for durations (e.g. “5 minutes”) and set for the expressions that
represent frequencies and sets (e.g. “every Monday”).

Detection and classification are resolved simultaneously by formulating the problem as
the labeling of the words in the text. Each word is assigned a label indicating if a time
expression applies and which type of expression it is. The labels from the BILOU scheme
were used, as it has shown better results than the BIO scheme for the extraction of named
entities [30]. The original scheme determines for each word if it is the beginning (B), the
inside (I) or the last (L) token of an expression; if it is a single word expression (U) or a
word that does not belong to any expression (O).

To consider classification we distinguish the last word in the expression adding an Li and
Ui label for each type, the other labels remain unchanged (see Table 3).

4.1 Model

To resolve the detection and classification of time expressions we consider models organized
in layers to label words according to the BILOU variant presented. The model is applied
sequentially to each word giving the word label on each activation.

The input layer receives word vectors, the information is transformed along the hidden
layers to the output layer, where the softmax function is used. We consider feedforward
and recurrent models with different numbers and size of hidden layers and regularization
techniques.

We include local contextual information concatenating vector representation of fixed size
window to both sides from the word to label (window context).

For example, if a size 2 left window context and 3 size right context is considered, the input
received by the neural network would be x = [wi−2wi−1wiwi+1wi+2wi+3]; the concatenation
vector of the word representations in the input text, where wi is the representation of the word
to classify. The disadvantage of this type of context is that it has a rigid size regardless of the
case presented to the model. This might be inappropriate for selective context considerations
or to capture long-range dependencies.
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Table 4 Information about time expressions in the used corpus.

Expresiones Temporales
Name Words Date Duration Time Set Total
TEval13_es_train 46.687 585 215 49 29 878
TEval13_es_test 12.197 164 36 8 8 216

4.2 Corpus and Training
Training and evaluations were conducted with the data for Spanish included in the TempEval-
3 task [39]. As the evaluation data is not available, the training data was divided into a
training set and an evaluation set. The training set has 878 time expressions, and the
evaluation set has 216 of them. Table 4 shows information from the corpora used.

The limited size of the corpus is a setback for supervised learning approaches in contrast to
those that include rule-based knowledge. However, it is a good scene to test the unsupervised
word vector representations as a generalization tool when there is limited data. A further
disadvantage is that the reduced size of the evaluation set affects the quality of the evaluation
and reduces the impact of small variations on the experiment results.

As for training, all the models considered were trained with RMSprop [37], a variant of
backpropagation. In all cases we used a learning rate of 1× 10−4 and a moment value of 0.9.
The stopping criterion is that the improvement of the target function does not exceed 1×10−5

per 30 epochs. The experiments were conducted with Theanets package [19] implemented
over Theano [36].

The evaluation is made through precision and recall at the expression level of the output
of each model against the evaluation data. The global evaluation measure is taken through
the F-score with the same balance for both.

4.3 Experiments
There follow the experiments conducted and the results obtained. The experiments focus
on the dimensions of words and internal representations, number of layers, regularization
techniques and variations on local context.

4.3.1 Dimension
[25] and [26] show that by increasing the dimension, vector quality improves. This tendency
seems not to be unlimited, although there are no known results. Furthermore, compact
vectors have desirable characteristics and benefits regarding computational cost.

To observe the impact of dimension empirically on the detection task we considered
several dimensions representations under similar conditions. Models were trained avoiding to
alter the rest of the environment.

The models used were three-layer feedforward models with three words of symmetric
context. To preserve the proportion between layers, we adjusted the size of the hidden layer
to three times the word dimension. We observed a steady increase in the recall, but the
precision began to decrease. The results are shown in Table 5.

We observed the behavior that takes place when halving the size of the models considered
for dimensions 150 and 200. In both cases we observed a slight improvement in the results,
mainly contributed by the increase in precision, thus preserving global results. The results
are shown in Table 6.
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Table 5 Comparison of detection results in similar environments varying the dimension or the
word representations using feedforward models with one hidden layer and three words (to each side)
of symmetric context were used.

Dim Train Acc Prec Rec F
25 1x10-6 72.97 50.00 59.34
50 1x10-6 76.14 62.04 68.37
100 396x10-4 82.35 64.81 72.54
150 396x10-4 80.79 66.20 72.77
200 396x10-4 78.61 68.06 72.95

Table 6 Detection and classification results when halving the hidden layer dimensions in the
most significant models in Table 5. We present between brackets the classification results.

Dim Hid Prec Rec F
150 450 80.79 (77.46) 66.20 (62.04) 72.77 (68.89)

225 82.28 (75.00) 66.67 (62.50) 73.66 (68.18)
200 600 78.61 (77.97) 68.06 (63.89) 72.95 (70.22)

300 79.14 (78.61) 68.52 (62.96) 73.45 (69.92)

4.3.2 Detection with/without Classification

As the models that resolve the classification of expressions also conduct detection tasks,
it would be interesting to know how classification affects detection. Table 7 shows the
comparison of the detection results between models with output layers for detection and the
same model but changing the output layer for classification. In general, detection precision
was improved in the models that also classify the expression. This might be due to the fact
that the classification information is used in detection.

As for lexical generalization to cases that are not included in the training data, we
observed at least one positive case with the word semestre (semester). This word does not
occur in the training data, but it does appear twice in the test data. A few of the models
can detect at least one of the two occurrences. This might be the case because the model
was able to generalize from words like trimestre (trimester) and cuatrimestre (four-month
period) that do occur in the training data.

4.3.3 Hidden Layer Size

Hidden layers are a fundamental part of the model that build intermediate representations
to resolve the task. The sizes of hidden layers correspond to the dimensions of the spaces
of intermediate representations. Hidden layers that are too small might hinder the right
resolution of the task, while a very large size is more inefficient and might lead the model to
overfit the training data.

We previously observed that the size of hidden layers (although up to now only models
with one hidden layer have been considered) has an impact on results. To observe the effect
of considering different sizes in the hidden layer, we trained a sequence of one-layer models
to classify expressions varying its size (Table 8).

As for the number of hidden layers, we conducted a initial experiment where an additional
100-size layer before output was considered for a 300-size layered model. The results mainly
improved the recall, with 79.67 precision and 67.13 recall, which entails an F-score of 72.86.
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Table 7 Comparison of results in detection in models trained for classification with the same
model but with detection output layer (between brackets).

Dim Hid Prec Rec F
150 450 82.66 (80.79) 66.20 (66.20) 73.52 (72.77) +0.75

225 80.00 (82.28) 66.67 (66.67) 72.73 (73.66) -0.93
200 600 83.05 (78.61) 68.06 (68.06) 74.81 (72.95) +1.86

300 83.81 (79.14) 67.13 (68.52) 74.55 (73.45) +1.10

Table 8 Results in the classification of expressions with feedforward models on 200-dimension
words, with three words of symmetric context, varying the size of the unique hidden layer.

Hid P R F
100 74.58 61.11 67.18
200 75.28 62.04 68.02
300 78.61 62.96 69.92
400 77.27 62.96 69.39
500 76.95 63.42 69.54
600 79.21 65.27 71.57
700 79.31 63.89 70.77
1000 76.40 62.96 69.04
2000 79.19 63.43 70.44

This looks promising in the deeper consideration of models. We will come back to this point
below.

4.3.4 Window Context Size
The local context is extremely important for time expressions. We tested various context
window configurations. Models with isolated left and right contexts were considered, and also
models with symmetric contexts. The model that served as base had a hidden layer whose
size is defined according to context length. The inclusion of any context produced better
results in all cases than the context-less version, however, large contexts can negatively affect
the results. Table 9 shows the results.

As expected, considering the symmetric context yielded far better results than considering
only the left or right context. Although the best global result was achieved with two context
words (two left and two right), the best recall result was reached with three words whose
F-score is also next to the maximum result. The results also show that the right context
seems to provide more information than the left one for this task.

4.3.5 Regularizations
Regularization techniques often can improve the way the neural network model is trained
giving as result a best generalizatión of unseen cases. We consider input and hidden noise,
dropout, l1 and l2 regularizations. We try different values for each regularization technique
considered and here we present the conclusions obtained. The details of the results obtained
are in Appendix A.

We try input and hidden noise with positive results mainly in the first. Input noise
improves substantially the recall (in comparison with the same model without any noise)
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Table 9 Comparison of classification results when increasing the left context without considering
the right (left value), left (center) and symmtric context (right value). The base model is feedforward
of 200 word dimension, and according calculated hidden size.

Context Hid Prec Rec F
0 100 60.64 26.39 36.77
1 100 67.31 / 64.97 / 72.78 32.41 / 47.22 / 56.94 43.75 / 54.69 / 63.90
2 200 69.83 / 63.64 / 80.84 37.50 / 48.61 / 62.50 48.79 / 55.12 / 70.50
3 300 67.00 / 62.42 / 76.92 31.02 / 45.37 / 64.81 42.40 / 52.55 / 70.35
4 400 69.81 / 62.42 / 76.86 34.26 / 43.06 / 43.06 45.96 / 50.96 / 55.19

Table 10 Results of the classification of expressions using BLSTM models based on 200-dimension
words with no window context an one single hidden layer.

Hid Steps P R F
150 100 54.20 32.87 40.92
200 100 60.75 30.09 40.25
600 100 63.16 33.33 43.64
300 15 64.36 30.09 41.25
600 15 64.44 27.31 38.43
1000 15 71.44 30.56 42.85
2000 15 71.25 26.39 38.51
600 3 64.00 14.09 24.06

and minor improvement in precision. The grade of input noise that gives the best results
was 0.2. Respect to hidden noise, a much lesser improvement was detected with its best
configuration in 0.05.

Dropout also improved precision and recall if a very low value was considered, the value
that gives the best results was 0.01. Respect l1 (sparsity) and l2 (weight decay) a minor
improvement was noticed in both cases. In the case of l2, the results fluctuate and for that
reason is hard to determine which configuration is better. For l1, the best results were
obtained with 0.01 affecting positively to the recall of the model.

4.3.6 Recurrent Networks
A non-exclusive alternative to the window context is the context considered by recurrent
models. Previously established activations are considered through feedback in the hidden layer,
allowing the sequential application of the network to consider the context that corresponds
to the inputs previously applied.

Context considerations of the recurrent models are more flexible than the explicit inform-
ation provided by the window context. However, its interpretation is more complex, and the
experiments conducted did not produce good results without the additional consideration of
the window context.

As the results improve significantly when considering both left and right contexts, bidirec-
tional models are considered, especially Bidirectional Long-Short Term Memory (BLSTM)
[15].

In the experiments conducted with BLSTMs, the results obtained were lower than those
of the feedforward models with a window context. Table 10 shows the results. Different sizes
for the recurrent layer and depths of recurrence were considered.
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Table 11 Results of the classification of expressions using feedforward models on 200-dimension
words with 3 words of symmetric window context varying hidden layers number and sizes.

h1 h2 h3 h4 P R F
300 – – – 78.61 62.96 69.92
300 100 – – 79.67 67.13 72.86
300 200 100 – 74.07 64.81 69.13
600 400 200 100 64.25 57.41 60.64

Table 12 Results of the classification of expressions using BLSTM models on 200-dimension
words with no window context, varying hidden (recurrent) layers number and sizes.

Hid1 Hid2 Hid3 Prec Rec F
200 – – 60.75 30.09 40.25
300 150 – 68.42 54.17 60.46
300 200 100 61.15 45.83 52.52

4.3.7 Network Depth
The number of hidden layers is a key aspect when defining layered neural models. It is known
that the training of networks with several hidden layers presents difficulties. We experiment
with models up to four hidden layers empirically.

Different depths were considered in homogeneous models, that is, with all layers of the
same type. The first experiment consisted in adding an extra hidden layer between the
existing hidden layer and the output layer to the model previously used as a base. The
inclusion of the additional layer substantially improved the results, especially regarding recall
(see Table 11).

Upon observing the favorable effect of considering a model with two hidden layers (versus
the single hidden layer model), we trained and assessed models with three and four hidden
layers. In this case, results show that considering more than two hidden layers the model
was not adequately trained.

Regarding recurrent models, even though their results were far lower than those of
the feedforward models with a context window, we studied the effect of considering more
hidden layers, also formed by BLSTMs. As in the previous case, considering one additional
layer resulted in a considerable improvement and the F measure decreased when more than
two hidden layers were considered (Table 12). These models were trained considering 100
recurrence steps.

4.3.8 Combining Variations
The results yielded by different variations of neural models, including feedforward and
recurrent BLSTM models, were shown above. We tested different structural configurations
and regularization techniques.

A general observation regarding the experiments conducted is that the random initializa-
tion of the weights of the model can cause different instances to produce different results. To
reduce the impact of this situation, we repeated some of the experiments in questionable
situations and others randomly, and we found no high differences between the different
instances of the same experiment in most cases.

Regarding the structural considerations of the model, considering two hidden layers,
instead of one, had a positive effect. This behavior was not sustained for greater depths.
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Table 13 Results of the classification of best models presented before (top), combinations of
which show positive effects independently (middle) and good combinations with an improved word
vectors set.

h1 h2 noiseI dropout L1 L2 P R F
300 – – – – – 78.61 62.96 69.92
600 – – – – – 79.21 65.27 71.57
300 100 – – – – 79.67 67.13 72.86
300 – 0.20 – – – 80.66 67.59 73.55
300 – – 0.01 – – 80.57 65.28 72.12
300 – – – 0.01 – 78.89 65.74 71.72
300 – – – – 0.001 80.11 65.28 71.94

300 – 0.20 – – – 80.66 67.59 73.55
700 – 0.2 – – – 81.03 65.28 72.31
700 400 0.2 – – – 81.36 66.67 73.28
400 150 0.2 0.1 – – 80.35 64.35 71.46
350 120 0.1 0.1 – – 80.32 68.06 73.68

600 – 0.1 – – – 81.21 68.06 74.05
450 200 0.1 – – – 81.92 67.13 73.79

The size of the hidden layers fluctuated for sizes over 300, gradually decreasing for lower
values. Input and hidden layer noise, dropout, L1 and L2 were considered as regularization
techniques. The most significant improvement was observed with the consideration of noise
in the input. Table 13 shows the best results obtained for each family of experiments.

In order to see how different techniques which yielded good results perform when combined,
we considered experiments with two hidden layers, input noise and dropout simultaneously.
Middle of Table 13 shows the results and bottom of the table includes results of models
trained using 300-dimension vectors provided by [6].

4.4 Comparison with SVM
We compare the obtained results with Support Vector Machines (SVM) in order to empirically
validate the advantage of considering neural models versus other alternatives. We consider
SVM classifier with a word dimension of 200 and 3 words with a local context in both
directions yelding 60.8 of F measure in time expressions recognition and classification. This
result indicates, at least initially, that neural models make a better use of word embeddings
and local context to resolve this task.

4.5 Comparison with Other Works
It is not possible to compare this to other works because we have not been able to access the
same evaluation data. Nevertheless, we think it is useful to at least include some comparative
values. As we explained before, the training set was split to have an evaluation set. In essence,
the model was trained with a part of the training set and evaluated with an evaluation set of
similar characteristics, but which was different.

The comparison is made based on the model that produced the best results in detecting
time expressions. The model considered has a single 300-size hidden layer, with 3 words with
symmetric contexts, a 200-dimension word and a variance value of 0.2 for the input noise.
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Table 14 Results of the classification for Spanish in the tempeval-3 task. ANNTime refers to
the best results obtained in this work. ANNTime* refers to the same model applying heuristics to
rectify inconsistent labels. ANNTime-nabu and ANNTime-nabu* correspond to the best models
using the vectors of [6].

P(r) R(r) F1(r) F1(s)
HeidelTime 96.0 84.9 90.1 85.3
TIPSemB-F 93.7 81.9 87.4 82.6
FSS-TimEx 86.6 52.3 65.2 49.5
ANNTime 92.8 77.8 84.6 78.6
ANNTime* 91.2 81.5 86.1 79.2
ANNTime-nabu 91.7 76.8 83.6 79.6
ANNTime-nabu* 91.4 83.3 87.2 79.9

Table 15 Information of the TempEval 2013 corpus for English.

Name Words Date Duration Time Set Total
TEval13_en_silver 718.746 11.133 1.346 192 68 12.739
TEval13_en_platinum 7.003 96 34 4 4 138

Table 14 shows the comparison of the results. We also included the results obtained with the
model that produced the best results using the vectors of [6].

For each model we include the result of applying the model and, subsequently, a basic
heuristics to correct inconsistent labels (this is marked with an asterisk in Table 14). Heuristics
consists of correcting an incorrect label in three situations. First, if an O is followed by an I,
the I is replaced by B or Uda accordingly3. Second, if an O is preceded by a B or I and
followed by an I or L, said label is replaced by I. Third and last, if an I is followed by an O,
said I is replaced by Lda o Uda accordingly. The application of heuristics improved results by
almost 4% regarding the recall of the model, and reduced precision by 1.6%, thus resulting
in a global improvement (F) of 1.5%, in the case of overlapping for basic vectors and a 3.6%
improvement for 300-dimension vectors.

4.6 Time expressions in English
The results using same neural models, but applied to resolve the task in English, are shown,
taking into account the lessons learned throughout the experiments conducted for Spanish.
We use the data conveyed for English in TempEval 2013 (see Table 15). The representations
presented by [26] of 200 dimensions, built with a six billion word corpus, are used.

The approach used is applied directly because it does not include specific knowledge of
the language or domain. We trained a feedforward model with three words with symmetric
contexts, based on the 200-dimension representations, with a single, 300-size hidden layer
and a noise level of 0.2 in the input, which was the model that produced the best results in
detection for Spanish. We also consider two hidden layers models detecting faster convergence.
Table 16 shows the results obtained.

Regarding the classification of expressions, in all cases models showed an F-score for
classification lower than the one in the work of [22], which is to be expected because this

3 The date type was used because it is the most frequent.
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Table 16 Results of the detection and classification of expressions for English.

h1 h2 noiseI Pdet Rdet Fdet Accclass Fclass

300 – 0.20 93.88 66.67 77.97 93.47 72.88
300 100 – 95.83 66.67 78.63 95.65 75.21
900 200 – 96.80 65.94 78.45 95.60 75.00
600 100 0.20 95.88 67.39 79.15 93.54 74.04

[22] 86.1 80.4 83.1 93.4 85.4

Table 17 Top: Results of events detection model in Spanish with and without time expressions
detection. Middle: Results of events detection model in English with time expressions detection.
Bottom: Time expressions detection in English including events detection.

P R F

Events (without timexes) (600x200-0.2) (SP) 81.16 79.40 80.27
Events (with timexes) (600x200-0.2) (SP) 84.31 79.08 81.61
CRF+Morph+SRL+WNet [23] 83.43 79.54 81.40

Events (with timexes) (600x200-0.2) (EN) 79.31 79.62 79.46
ATT1(MaxEnt+Syn+Sem) [20] 81.44 80.67 81.05

Timexes (with Events) (600x200-0.2) (EN) 98.99 71.01 82.70
Semantic Parsing [22] 86.1 80.4 83.1

value is influenced by detection. Regarding accuracy, we obtained better results in all cases4,
but it should be noted that this value is positively affected by the lower result in detection.

5 Events Detection

The model presented only uses supervised training data and word representations built
through self-supervised methods. This means that the approach is rapidly adaptable to other
languages, as it was observed for English. Similarly, it can be considered to deal with tasks
that have a compatible formulation, for instance, events detection. The main difference is
that, as opposed to events, time expressions often include words such as the prepositions “in”
and “during”, days of the week, names of months, etc., which can act as indicators that aid
their detection.

It is interesting to notice that in events detection part-of-speech information becomes
extremely useful because of the abundance of events denoted as verbs. In this approach any
part-of-speech is included, just word embeddings. This could be interpreted as analogous to
the human common understanding of a language, where the knowledge of what is a verb or
a noun it is not particularly needed to understand. Another interesting observation is that
the jointly detection of time expressions and events performs better that each isolated task
(Table 17 ).

4 This measure was calculated with AttrAccuracy = AttrF 1/EntityExtractionF 1 [39].
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6 Conclusion

This work tackles the problem of detecting and classifying time expressions with approaches
based purely on distributed representations of words and artificial neural networks, and it
presents interesting results for Spanish with a relatively small dataset.

Initial results that support the possibility of interpreting time expressions purely from
data were presented. We found that word representations tend to contain information that
refers to the sequential nature of units such as the names of months, days and numbers, among
others. This trait is potentially useful for interpreting expressions. Regarding numerical and
ordinal entities, we found that they take into account granularity information in the vector
representations.

We showed the behavior of neural network models in detecting and classifying expressions,
as well as the effect of varying the definition of the model. Results show the relevance of the
local linguistic context. Recurrent models did not produce significant improvements in the
experiments conducted, when compared to simple feedforward models, and the latter have
the advantage that their training is much less costly. We also showed the effect of applying
regularization techniques, especially emphasizing the benefit of considering noise in the input
data and dropout.

Based on the previous results, we trained models for the problem in English and we
also added the events detection problem. The results for English are encouraging, and
they provide an example of the approach behavior when more data is available, both for
supervised data to train models and for unsupervised data used to build the word embeddings.
Regarding events detection, it is of special interest because it is not strongly based on specific
lexicon, as is the case of time expressions. The results obtained were encouraging and the
inclusion of said task, together with the detection and classification of time expressions brings
an improvement in the results as compared to the isolated treatment presented before.
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A Result Tables

A.1 Noise
We tested the effects of applying noise to the input. We slightly modified the input, according
to Gaussian distribution centered at zero and using several variance values, in the input data
and intermediate representations. The variance regulates the noise level injected.

Including noise substantially improved the recall, and it slightly improved the precision
for noise values from 0.1 (Table 18). The results for noise values under 0.1 were slightly
lower. The best results were obtained when considering 0.2 injected noise variance, with
significant degradation when considering a 0.3 variance. The hidden layer noise has a less
substantial impact and is more sensitive to the amount of noise injected.

We trained a model with the best noise levels in the input and in the hidden layer to
observe the interaction of both cases. It seems that the effects add up degrading the precision.

As for expression detection, as well as in classification, we obtained the best result when
considering a 0.2 noise value at the input and with no noise in the hidden layer. This was
the same case that produced the best results in classification. The best results achieved

Table 18 Results in the classification of expressions in feedforward models on 200-dimension
words, with three words of symmetric context and a 300-size hidden layer, with varying noise levels
at the input and hidden layer. The results between brackets correspond to cases with noise in the
hidden layer.

Noise Prec Rec F
0.00 78.61 62.96 69.92
0.01 77.20 (79.41) 61.11 (62.50) 68.22 (69.95)
0.05 77.40 (77.60) 63.43 (65.74) 69.72 (71.18)
0.10 79.33 (77.40) 65.74 (63.43) 71.90 (69.72)
0.20 80.66 (77.01) 67.59 (62.04) 73.55 (68.72)
0.30 78.65 (–) 64.81 (–) 71.06 (–)
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Table 19 Results in the classification of expressions from feedforward models on 200-dimension
words, with three words of symmetric context and a 300-size hidden layer, with varying levels of
dropout in the hidden layer.

Dropout Prec Rec F
0.00 78.61 62.96 69.92
0.01 80.57 65.28 72.12
0.05 78.29 63.43 70.08
0.10 75.82 63.89 69.35
0.20 77.14 62.50 69.05

Table 20 Results in the classification of expressions from feedforward models on 200-dimension
words, with three words of symmetric context and a 300-size hidden layer, with varying levels of L2
regularization.

L2 P R F
0.00 78.61 62.96 69.92
0.0001 78.21 64.81 70.89
0.001 80.11 65.28 71.94
0.01 77.58 62.50 69.23
0.05 79.21 65.43 71.57
0.10 81.21 62.04 70.34
0.20 78.82 62.04 69.43

for detection were 78.59 F-score for the strict case and 81.42 for the relaxed case, where
displacements of a word were allowed in the extension of the expression detected.

A.2 Dropout
This section shows the behavior of dropout (or multiplicative mask) in the hidden layer. This
technique randomly turns to zero some entries in intermediate layers. It can be seen as a
partial network where some components are completely eliminated. The dropout value is the
portion of units set to zero.

We conducted an experiment with varying dropout levels for the hidden layer of a
feedforward (Table 19). Regarding detection, a dropout value of 0.01 also yielded the best
result in the hidden layer, with a 75.70 F-score in the strict case and of 81.84 for the relaxed
case.

A.3 L1 and L2 regularizations
Overfitting can be reflected on high values in the weights learned, so training the model
avoiding high values in the learned weights may help to prevent it. This technique is called
weight decay (or L2 regularization). The technique consist on adding the term λL2‖θ‖2 to
the target function, where ‖.‖2 is the L2 norm, and θ is the weights vector to fit. This aims
to a reduction in the weights magnitude besides the function to optimize.

Many instances of a base model was trained with different values for L2 regularization
each (Table 20). Results improve when considering λL2 = 0.001. Anyways, the results
fluctuate and for that reason is hard to determine which was the best configuration.

Furthermore, besides the tendency towards low values in learned parameters, there might
be a positive effect on sparse representations. A way to tend to sparse parameters is to
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Table 21 Results in the classification of expressions from feedforward models on 200-dimension
words, with 3 words of symmetric context and a 300-size hidden layer, with varying levels of L1.

L1 P R F
0.00 78.61 62.96 69.92
0.001 80.00 62.96 70.47
0.01 78.89 65.74 71.72
0.05 74.85 59.26 66.15
0.10 74.30 61.57 67.34
0.20 77.21 56.50 65.24

include the term λL1‖θ‖1, where ‖.‖1 is the L1 norm. Including this term reduces some
components if the result is not affected.

Table 21 shows the results obtained in the detection and classification of expressions. We
can see that values higher than 0.05 for L1 regularization significantly degrade the results.
The best result was obtained with 0.01, which showed an improvement of 2 points in the
F-score.

B English Translated Tables

Table 22 Table with the closest terms (to the heading) ordered by distance to the time expressions
representations.

Dawn Neolithic Start Before Impromptu Hurriedly
sunset paleolithic initiation after suddenly march
morning mesolithic gave behind die retract
night chalcolitic before already perish hastily
day neolthic final days died dried out

midnight date giving then prematurely move
nightfall pleistocene arrival that tragically periodically
midday preceramic endings months early direct
twilight epipaleolytic beginning time . . . . . .

early morning bronze moment begin
. . . . . . . . . . . .

Table 23 Table with the closest terms (to the heading) ordered by distance to the representations
of ordinal and numerical terms.

First Second Twentieth 1853 1850 1700 1999
then third thirtieth 1855 1840 1600 1998
second first tenth 1854 1849 1800 1995
same fourth fortieth 1856 1870 1500 1997
last last nineth 1852 1860 1400 1996
first fifth fiftieth 1851 1880 1200 2002
later first eighth 1865 1851 1100 2003
after third fifth 1849 1830 1300 1994
. . . . . . . . . . . . . . . . . . . . .
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Abstract
The last decades have seen the rise of many fundamental chronological debates in Old World ar-
chaeology, with far-reaching historical implications. Yet, outside of radiocarbon dating – where
Bayesian formal tools and models are applied – these chronological debates are still relying on
non-formal models, and dates are mostly derived by hand, without the use of mathematical or
computational tools, albeit the large number of complex constraints to be taken into account.
This article presents formal models and algorithms for encoding archaeologically-relevant chro-
nological constraints, computing optimal chronologies in an automated way, and automatically
checking for chronological properties of a given model.
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1 Introduction

1.1 Motivation
Reconstructing ancient chronologies based on archaeological data is a complex task, which
has haunted researchers since the start of the discipline. Current chronologies of given
regions result from an integration of diverse data such as historical records (providing regnal
dynasties for example), pottery sequences (providing relative chronologies for a given region),
stratigraphic sequences (providing synchronisms through stratified pottery and artefacts,
both local and imported), ancient inscriptions (providing synchronisms between different
kings for example) and laboratory methods (providing date-ranges for a given event, through
radiocarbon dating for example). In most cases, these data constitute a complex web of
intricate information, connecting archaeological data of neighbouring sites and regions in a
subtle way. Hence, any change in chronological hypotheses at one end of the network (say,
changing the historical dates of a given king for example) can have far-reaching chronological
repercussions throughout the network (say for example that inscriptions of this king have
been found in a specific archaeological layer, bearing specific pottery types). How can we
model such constraints formally, and how can we use our formal model to automatically derive
a global chronology for a region of interest, through the integration of several scattered local
chronological constraints? We have observed that, outside of carbon dating, where Bayesian
statistical tools are used to formally derive date estimates [15], traditional chronological
research still uses no formal model or algorithm to integrate sets of local chronological
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Figure 1 Our running example: Chronoland. Each period is represented by a rectangle containing
the period’s name. The bounds on each period’s duration, start date and end date are displayed in
the centre, bottom left corner and bottom right corner respectively.
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Figure 2 Optimal date and duration estimates for the Chronoland example.

constraints into a global chronology. In most cases (outside of radiocarbon dating), the date
estimates proposed by researchers are derived by hand, thus certainly obtaining non-optimal
results, since manual treatment of any set of chronological constraints of non-trivial size is
almost impossible. The purpose of this paper is to present a model that allows one to formally
model archaeologically-relevant chronological constraints, to compute optimal chronologies
through specific algorithms, and to automatically check chronological properties of a given
model. Applications of such models are numerous, since the past decades have seen the rise of
many important – and still unsettled – chronological debates in Old World archaeology, with
far-reaching historical implications. Important recent examples of such debates include the
Thera Eruption debate, where two opposing chronologies differ by more than a century, with
important implications regarding the chronology of the Aegean Bronze Age [8]. A second
well-known example is the Iron Age Low Chronology debate for the southern Levant, where
two chronologies differ as to whether the first full-fledged territorial states in the region are
to be dated to the 10th or the 9th century BCE [13].

1.2 Running example
As a didactic example of the kind of data and constraints that typically appear in chronological
debates, we will start with a small test case, in order to show that even small examples, with
far less constraints than any real archaeological case study, are impractical to treat manually
and require a formal and algorithmic approach. The test case is called Chronoland, and is
presented hereinafter.

The story of Chronoland. In the kingdom of Chronoland, Kings K1 and K2 reigned in
succession. We do not know their precise reign dates, but both reigns are known to have
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occurred between 1200 and 1300 CE. Furthermore, K1’s reign did not exceed 15 years, since
we know he died at a rather young age, and King K2 reigned for at least 30 complete years,
since we have a monument dated to his 31st year1. We can also safely assume that K2’s reign
did not exceed 100 years. Now Chronocity, the capital city of Chronoland, was excavated
and only two strata were found, namely strata S1 and S2. We know that stratum S1 was
built by King K1 since he thus claims in a stela found there in-situ, and we also know that
Stratum S2 ended during the reign of King K2, since ancient annals tell us that the city was
destroyed during his reign and never reoccupied. Finally, we assume that each one of our
strata has a duration of at least 20 years and at most 100 years. The data of the example
are given in schematic form in Figure 1, and several natural questions can be asked about it,
such as:

1. What are the most precise estimates (ranges) we can gather for the start date, end
date and duration of each king and stratum of Chronoland?

2. Has King K1 built stratum S2? (Recall that the data only asserts he has built S1.)

Observe that the second question could admit three different answers because of the uncer-
tainties on the dates: (i) ‘yes’, K1 has surely built S2, in all possible scenarios that fit with
the constraints on the dates and durations; or (ii) ‘no’, K1 has surely not built S2 (again in
all possible scenarios); or (iii) ‘maybe’, i.e. some dates that respect the constraints, imply
that K1 has built S2, and some don’t.

Chronology computation. We start by discussing the first question (optimal ranges). These
optimal estimates are shown in Figure 2. One can easily see that they are not straightforward
and require a close look at the model. Here are the steps that one could follow to obtain
these results:
1. Initialisation. The date ranges ofK1 andK2 can be improved using the duration estimates.

The 30 years minimum duration of K2 imply that K2 starts in [1200,1270] and that it
ends in [1230,1300].

2. K1–K2 sequence. The end of K1 equals the start of K2, hence it is in [1200,1270]. The
start of K1 is thus also in [1200,1270], since a start date cannot exceed its corresponding
end date.

3. S1–K1 synchronism. The ‘S1 starts during K1’ synchronism implies that the start of
S1 is in [1200,1270]. The [20,100] duration range now implies that the end of S1 is in
[1220,1370].

4. S1–S2 sequence. The start of S2 equals the end of S1, hence it is in [1220,1370]. The
[20,100] duration range now implies that the end of S2 is in [1240,1470].

5. S2–K2 synchronism. The ‘S2 ends during K2’ synchronism implies that the end of S2
is in [1240,1300]. The [20,100] duration range now implies that the start of S2 is in
[1220,1280]. The duration range can now be reduced to [20,80] since the earliest start of
S2 is 1220 and its latest end is 1300.

6. S1–S2 sequence. The end of S1 equals the start of S2, hence it is in [1220,1280]. The
[20,100] duration range now implies that the start of S1 is in [1200,1260]. The duration
range can now be reduced to [20,80] since the earliest start of S1 is 1200 and its latest
end is 1280.

1 We use a cautious bound of 30 years instead of 31 years because we do not know if the king completed
his 31st year of reign (i.e. he might have died in the course of his 31st year).
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7. S1–K1 synchronism. We need to come back to the ‘S1 starts during K1’ synchronism.
Our new upper bound of 1260 on S1’s start needs to be propagated back to K1, implying
a new improved range of [1200,1260] on K1’s start, instead of the former [1200,1270].

8. S2–K2 synchronism. Finally, we need to consider anew the ‘S2 ends during K2’ syn-
chronism. Our new lower bound of 1240 on S2’s end needs to be propagated back to
K2, implying a new improved range of [1240,1300] on K2’s end, instead of the former
[1230,1300].

Note the difficulty of manually solving this simple problem, especially the final ‘retro-
action’ step, where K1’s start date and K2’s end date get further refined by 10 years thanks
to their synchronisms with S1 and S2 respectively. This final step is somewhat unexpected
since S1 and S2 had no a priori absolute chronology of their own (they had only duration
estimates), and thus derived their absolute dates from K1 and K2. Now, let us come back
to the question whether king K1 has built stratum S2. It turns out that this is impossible,
because K1’s reign lasts at most 15 years, but at least 20 years separate the respective
start dates of S1 and S2, since S1 lasts at least 20 years. However, again, deriving this
information from Figure 1 or Figure 2 is not straightforward. Also note that this example is
of small dimensions compared to real archaeological data for which manual treatment of the
information is practically impossible.

1.3 Contribution
As can be seen from the Chronoland example, rigorous and automatic techniques for reasoning
about chronological problems are needed. To the best of our knowledge, no such techniques
are available today, and the kind of reasoning we exhibit in the Chronoland example are
performed ‘by hand’ by archaeologist, using restricted data sets. In this paper, our first
contribution is a formal constraint language (Section 2) that can express most
relationships between periods which are needed for practical cases of archaeology.
More precisely, our language can express: (i) lower and upper bounds on the start dates, end
dates and durations of periods; (ii) sequences (such as period S2 follows directly S1); and
(iii) different kinds of synchronisms between periods (such as ‘S1 starts during K1’, etc). Then,
our second contribution consists of several algorithmic techniques (Section 3)
to manipulate such constraints and extract information that is meaningful to
archaeologists, namely: (i) what are the tightest bounds on the start dates, end dates and
durations of all periods that one can infer from a given set of constraints? (ii) is the set of
constraints satisfiable. That is, is it possible to assign dates to the starts and ends of all
periods that satisfy all the constraints? (iii) do the constraints imply that two given periods
have a non-empty intersection? That is, is the intersection guaranteed to exist, for all choices
of start and end dates of the periods that satisfy the constraints? We call this problem
the sure-contemporaneity problem; and, finally (iv) do the constraints allow a non-empty
intersection between two periods? That is, does there exist a choice of dates for the starts
and ends of all periods that satisfy the constraints and where the two given periods intersect?
We call this problem the possible-contemporaneity problem. Observe that both the sure- and
possible-contemporaneity problems can be invoked to answer our question: ‘Has K1 built
S2?’

Following [17], we translate our constraints in directed weighted graphs, and reduce
the computation of the tightest bounds to an all-pair shortest paths computation in this
graph (and, as particular case, we obtain an algorithm for the satisfiability problem which
amounts to detecting negative cycles in the graph). Such computation can be carried out
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in polynomial time (in the number of periods) using classical algorithms [12], which is a
clear strong point of approach, enabling scaling to examples of big dimensions. Since all-
pairs shortest paths algorithms also detect negative cycle, we can also test satisfiability in
polynomial time2. Finally, we show that, after computation of the shortest paths, the sure-
and possible-contemporaneity problems can be solved in constant time.

1.4 Related works

The best known use of computer-assisted techniques in Archaeology is in a setting which is
different from ours, namely the calibration of radiocarbon dates [15] thanks to the OxCal
software. The aim of Oxcal is to refine estimates of dates computed from radiocarbon
samples, by taking into account extra information such as the order of strata. Due to the
stochastic nature of radiocarbon decay, these methods are probabilistic (they rely on Bayes’s
theorem) while our methods are not.

Concerning relative chronology, other formal approaches exist, based on the Harris matrix
[7] or the generalised schemes of Sharon [16] and Holst [9]. These works differ from ours in
several way. First, they aim at at obtaining a feasible sorting of the archaeological features,
but do not estimate their absolute time-frame, while our method provides both absolute and
relative information on the periods. Second, the underlying computational problem they
address is NP-complete (hence, they rely on heuristics), while we have identified problems
that can be solved in polynomial time. In fact, an early paper by Kromholz [11] already
combined some relative and absolute dating elements, though in a limited way, through the
application of business-oriented tools (such as Pert charts) to chronological problems. We
are not aware however of any later paper that took on this novel approach.

On the other hand, the constraints we rely on are actually a special case of the zone data
structure developed in the framework of timed automata [1, 6, 4] that form the cornerstone
of efficient tools for the analysis of timed automata such as Uppaal [2] and TiAMo [5].
In our case, however, variables take natural values, instead of real values in the case of
timed automata.q Our constraints are also a particular case of general classes of constraints
developed in the artificial intelligence community for temporal reasoning, see for instance
[14]. Those constraints are more expressive than ours and basic problems about them are
already NP-hard [14] while we propose polynomial-time algorithms.

2 Modelling chronology problems

In this section, we introduce our model for the chronology problems we have sketched in
the introduction. Throughout the paper, we denote the set of natural and integers numbers
by N and Z respectively. We consider closed interval on N (i.e., convex subsets of N), with
natural endpoints. We use the usual notation [a, b] to denote intervals, and for I = [a, b], we
let `(I) = a and u(I) = b.

2.1 Periods and chronologies

Periods. We fix a finite set P of periods. We use the general term ‘period’ to speak about
continuous periods of time characterised by a start date, an end date and a duration (defined

2 Similar techniques are used in the setting of timed automata, see related works.
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as the difference between the end and start dates)3. Examples of periods include historical
eras (‘The Middle Ages’), archaeological strata, king’s reigns and ceramic periods, among
others.

Chronologies. A chronology C on a set of periods P is function that associates, to each
period p ∈ P, an interval C(p) = [ap, bp] ⊂ N with natural endpoints ap and bp. For all
periods p, the interval C(p) represents the whole duration of the period, in the sense that
its endpoints represent the start and the end dates of the period. Throughout the paper,
we assume that all dates are given simply as years, but a finer granularity can be used if
need be (for example, dates can represent days). Observe that, for historical events, start
and end dates could be negative, but we assume that there is a lower bound on all dates4
(i.e., an ‘origin of time’), which we identify with 0 (hence we have ae, be ≥ 0 for all e ∈ P). A
chronology C for our running example could be s.t. C(K1) = [1210, 1222], which is compatible
with the constraints in Figure 1.

2.2 Constraints

Common chronological constraints. Our goal is to formalise a large set of chronological
constraints relevant to archaeology and history. In these fields, the most common constraints
can be grouped in three families:
Bounds. The first family consists of lower and upper bounds on the start date, end date

and duration of a period. For example, in Figure 1, the [20, 100] years constraint on S1’s
duration, or the [1200, 1300] constraint on K1’s start date belong to this family.

Sequences. The second family expresses that a certain period starts where the preceding
period ends, as in the K1,K2 sequence, and the S1, S2 sequence.

Synchronisms. Finally, the third family expresses diverse sorts of synchronisms, such as
contemporaneity (two periods having a non-empty intersection, as in two contemporary
kings), ‘starts during’ (as in ‘S1 starts during K1) and ‘ends during’ (as in ‘S2 ends during
K2’).

Let us now discuss a formal constraint language that allows us to describe all these constraints.

A formal model of constraints. To all finite sets of periods P = {p1, . . . , pn}, we associate
a set of variables V(P) = {z0, beg(p1), end(p1), . . . beg(pn), end(pn)}, interpreted over the
integers. For each period pi, variables beg(pi) and end(pi) represent respectively the beginning
and end of pi. Variable z0 is a special variable that is assumed to be always equal to 0 and
its purpose will become clear later. Then, an atomic constraint on P is an expression of
one of the following forms: either x− y ∼ c or x ∼ c, where x, y are variables from V(P),
c ∈ Z ∪ {+∞}, and ∼ is either ≤ or ≥ or =. Finally, a constraint is a finite conjunction of
atomic constraints5. For an atomic constraint ψ and a constraint ϕ, we write ψ ∈ ϕ iff ψ is
a conjunct of ϕ.

3 Punctual events could be seen as special cases of periods have equal start and end dates, and null
duration.

4 In practice, this is not restrictive since events can always be associated to an epoch, even if this is very
broad.

5 Observe that neither disjunction nor negation are allowed.
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Semantics. Let us now define the semantics of constraints in terms of chronologies. In-
tuitively, a constraint is meant to define a set of possible chronologies, which are all those
that are compatible with the constraint. Formally, a chronology C (on set of periods P)
satisfies an atomic constraint x− y ∼ c (respectively, x ∼ c) iff ν(x)− ν(y) ∼ c (respectively,
ν(x) ∼ c), where ν : V(P) → N is the function associating to each variable x a valuation
according to C, i.e., for all x ∈ V(P): (i) ν(x) = 0 if x = z0; (ii) ν(x) = `(C(e)) if x = beg(e);
and (iii) ν(x) = u(C(e)) if x = end(e). When a chronology C satisfies an atomic constraint ψ,
we write C |= ψ. We extend this notion of satisfaction to constraints: C satisfies a constraint
ϕ = ψ1 ∧ ψ2 ∧ · · · ∧ ψn (noted C |= ϕ) iff C satisfies all conjuncts of ϕ, i.e., C |= ψi for all
1 ≤ i ≤ n. We denote by JϕK the set of all chronologies C s.t. C |= ϕ. Remark that this set
could be empty, for instance if we have specified constraints that are not satisfiable. Note
also that two different constraints can encode the same chronologies, e.g. when there are
redundant atomic constraints. For example, ϕ = x ≥ 0 ∧ x ≤ 1 ∧ y ≥ 0 ∧ y ≤ 1 encodes the
same chronologies as ϕ′ = ϕ ∧ x− y ≤ 5, (i.e., JϕK = Jϕ′K) because ϕ implies x− y ≤ 5.

Expressiveness of the model. While the language of constraints we have just defined might
seem very restrictive, we claim that it allows one to define most of the relevant constraints
in archaeology, as defined at the beginning of this section:
Terminus post quem. A Terminus post quem is defined as a lower bound B on a given

start or end date. Such constraints can be expressed by beg(p) ≥ B and end(p) ≥ B,
respectively.

Terminus ante quem. Symmetrically, a Terminus ante quem is defined as an upper bound B
on a given start or end date. Such constraints correspond to beg(p) ≤ B and end(p) ≤ B,
respectively.

Date range. Ranges on dates are the conjunction of a terminus post and ante quem. In
the example of Figure 1, the constraint on the start of K1 is expressed as: beg(K1) ≥
1200 ∧ beg(K1) ≤ 1300.

Duration constraints. Since the duration of a period p can be computed as end(p)− beg(p),
constraints (lower bounds, upper bound or ranges) on the duration of a period also fit
our model. In the example of Figure 1, the range on the duration of K1 is expressed as:
end(K1)− beg(K1) ≥ 0 ∧ end(K1)− beg(K1) ≤ 15.

Sequence. A sequence of periods p and q means that q follows immediately after p. Thus,
the end date of p is the start date of q, which is formalised as: end(p)− beg(q) = 0.

‘Contemporaneity’ synchronism. Periods p and q are contemporary, i.e. there is a non-
empty intersection between the intervals Ip = [beg(p), end(p)] and Iq = [beg(q), end(q)].
To understand how to model this, we consider the opposite statement: the intersection
between Ip and Iq is empty iff either Ip follows strictly Iq or Iq follows strictly Ip. That
is, Ip ∩ Iq = ∅ iff end(p) < beg(q) ∨ end(q) < beg(p). This can be expressed by our
constraints by taking the negation: Ip ∩ Iq 6= ∅ iff end(p) ≥ beg(q) ∧ end(q) ≥ beg(p).

‘Starts during’ synchronism. Period p starts during period q, i.e. the start of p is included
in the interval [beg(q), end(q)]. This is formalised as: beg(p) ≥ beg(q) ∧ beg(p) ≤ end(q).

‘Ends during’ synchronism. Period p ends during period q, i.e. the end of p is included in
the interval [beg(q), end(q)]. This is formalised as: end(p) ≥ beg(q) ∧ end(p) ≤ end(q).

‘Inclusion’. Period p is included in period q, which can be formalised in our model as:
beg(p)− beg(q) ≥ 0 ∧ end(p)− end(q) ≤ 0.

In addition to these constraints that come from the archaeological data, we assume from
now on that all our constraints imply that all periods must start before they end. This can
be achieved by taking the conjunction of any constraint with:

∧
p∈P beg(p) ≤ end(p).
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Observe that one type of requirement that our constraints cannot express is non-
contemporaneity, i.e. that the intersection between two periods p and q is empty. Indeed,
non-contemporaneity means that either the end of p occurs strictly before the beginning of q
or end of q occurs strictly before the beginning of p. However, our constraint language does
not allow one to express disjunction.

2.3 Normalisation of constraints

In order to make our subsequent discussions easier, we will, from now on, consider a normal
form for constraints, where constraints contain atomic constraints of the form x− y ≤ c only.
Let ϕ be a constraint. We obtain Norm (ϕ), the normal form of ϕ by applying the following
steps:

1. First, we make sure that there exists at least one atomic constraint for each pair of
variables x and y, by taking the conjunction of ϕ with:

∧
x∈V(P)

(
x− x ≤ 0 ∧ x− z0 ≤ +∞∧ z0 − x ≤ 0

)
∧

∧
x,y∈V(P)\{z0}

x− y ≤ +∞ .

It is easy to check that the resulting constraint accepts the same set of chronologies than
ϕ. Indeed, since we assume that z0 is always null: x − x ≤ 0 is equivalent to x ≤ x;
x− z0 ≤ +∞∧ z0 − x ≤ 0 is equivalent to 0 ≤ x ≤ +∞; and x− y ≤ +∞ should hold
for all x, y since they take finite values.

2. We turn all atomic constraints into constraints of the form x− y ≤ c. That is, we replace
all atomic constraints x ∼ c by x− z0 ∼ c; and all constraints x− y ≥ c by y − x ≤ −c.

3. Finally, whenever there are two different atomic constraints of the form x− y ≤ c and
x− y ≤ c′ in the resulting constraint, we keep the strongest one, i.e. x− y ≤ c if c < c′

and x− y ≤ c′ otherwise.

The resulting is a normalised constraint Norm (ϕ). Observe that a normalised constraint
always contain exactly (2n+ 1)2 atomic constraints of the form x− y ≤ c, where n is the
number of periods; one for each pair of variables x and y in V(P) – this is actually the
point of normalising constraints, even if the normalisation step might introduce some trivial
atomic constraints. From now on, we assume that all constraints are normalised. We abuse
notations and denote normalised constraint by non-normalised ones, writing, for instance,
x− y ≤ 1 instead of Norm (x− y ≤ 1) which has 9 conjuncts.

Observe that this particular class of linear constraints has been studied before by Shostak
[17]. They also form a special case of zones [1], and the normalised version of the constraint
correspond to the Difference Bound Matrix [6] encoding the corresponding zone.

I Example 1. Consider again the example in Figure 1. In order to keep our example legible,
we will consider only stratum S1, king K1 and the ‘starts during’ relationship between them.
The following normalised constraint expresses exactly all the information from Figure 1 about
S1 and K1, assuming X = {z0, beg(S1), beg(K1), end(S1), end(K1)}. Observe that the five
last lines (marked ‘Norm.’) are here for normalisation purpose only.
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end(S1)− beg(S1) ≤ 100 ∧ beg(S1)− end(S1) ≤ −20 (Length S1)
∧ end(S1)− beg(S1) ≤ 15 ∧ beg(S1)− end(S1) ≤ 0 (Length K1)
∧ beg(K1)− z0 ≤ 1300 ∧ z0 − beg(K1) ≤ −1200 (Start K1)
∧ end(K1)− z0 ≤ 1300 ∧ z0 − end(K1) ≤ −1200 (End K1)

∧ beg(S1)− z0 ≤ +∞∧ beg(S1)− beg(K1) ≤ +∞∧ beg(S1)− end(K1) ≤ +∞ (Norm.)
∧ beg(K1)− beg(S1) ≤ +∞∧ beg(K1)− end(S1) ≤ +∞ (Norm.)
∧ end(S1)− z0 ≤ +∞∧ end(S1)− beg(K1) ≤ +∞∧ end(S1)− end(K1) ≤ +∞ (Norm.)
∧ end(K1)− beg(S1) ≤ +∞∧ end(K1)− end(S1) ≤ +∞ (Norm.)

∧
∧

x∈X

x− x ≤ 0 ∧ z0 − beg(S1) ≤ 0 ∧ z0 − end(S1) ≤ 0 (Norm.)

3 Algorithmic manipulation of constraints

In this section, we show how the constraints from Section 2 can be manipulated algorithmically
to answer the questions we have highlighted in introduction. We start by defining four
meaningful problems on constraints, then show how the constraints can be expressed by
means of weighted directed graphs, and finally give polynomial-time algorithms to solve
those problems on the graphs. The main ideas of these techniques have been presented by
Shostak [17], but our techniques for solving the sure- and possible- contemporaneity problems
(that are motivated by the archaeological setting) are, as far as we know, original (and hence
require dedicated proofs).

3.1 Four basic problems
Based on the motivations from the introduction, we focus on the four following problems.

Satisfiability. First, the satisfiability problem asks whether there is some chronology that
satisfies a given constraint. If not, then the constraint contains a contradiction, for example:
the constraint entails that some punctual period A should occur strictly before B, and, at the
same time, that B should occur before A. Thus, the definition of this problem is as follows:

I Problem 1. Given a constraint ϕ, the satisfiability problem asks whether JϕK 6= ∅?

If yes, we say that the constraint ϕ is satisfiable.

Tightening. Second, the tightening problem asks, given a constraint ϕ, to compute the
tightest constraint ϕ′ that represents the same set of chronologies. Intuitively, ϕ′ represents
the most precise information one can deduce from ϕ. Let us first define formally these
notions.

Given two atomic constraints ψ1 = x − y ≤ c1 and ψ2 = x − y ≤ c2 (on the same
variables x and y), we say that ψ1 is tighter than ψ2 (denoted ψ1 � ψ2) iff c1 ≤ c2. Intuitively,
a constraint is tighter than another if it imposes a more stringent limitation on the possible
values of the variables than the other (hence, the upper bound c1 is smaller than or equal
to c2). Then, given two (normalised) constraints ϕ1 and ϕ2 on P, we say that ϕ1 is tighter
than ϕ2 (denoted ϕ1 � ϕ2) iff each atomic constraint of ϕ1 is tighter than the corresponding
constraint in ϕ2. Formally, ϕ1 � ϕ2 iff for all x, y in V(P): ψ1 = x − y ≤ c1 ∈ ϕ1 and
ψ2 = x− y ≤ c2 ∈ ϕ2 implies that ψ1 � ψ2.
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Observe that � is a partial order on constraints, which is not total. For instance,
x1 − y1 ≤ 1 ∧ x2 − y2 ≤ 2 and x1 − y1 ≤ 2 ∧ x2 − y2 ≤ 1 are not comparable. Our
definition of the order on constraints implies the intuition on the sets of chronologies they
represent, i.e., for all constraints ϕ1 and ϕ2: ϕ1 � ϕ2 implies Jϕ1K ⊆ Jϕ2K. However,
the converse is not true. For instance, consider: ϕ1 = Norm (x− y ≤ 1 ∧ y − z ≤ 1), and
ϕ2 = Norm (x− y ≤ 1 ∧ y − z ≤ 1 ∧ x− z ≤ 2). It is easy to check that Jϕ1K = Jϕ2K since
the x− z ≤ 2 atomic constraint of ϕ2 is implied by its two other atomic constraints. Hence,
in particular Jϕ1K ⊆ Jϕ2K, but, clearly ϕ1 6� ϕ2, because ϕ1 constraints x− z to be ≤ +∞,
which is strictly weaker than x− z ≤ 2. We can now define precisely the tightening problem:

I Problem 2. Given a constraint ϕ, the tightening problem asks to compute the tightest
(i.e., minimal wrt �) constraint ϕ′ s.t. Jϕ′K = JϕK. Such a constraint ϕ′ is called tight.

Remark that this constraint ϕ′ is necessarily unique. Indeed, assume it is not the case,
and there are two constraints ϕ′1 and ϕ′2 s.t. Jϕ′1K = Jϕ′2K = JϕK; ϕ′1 � ϕ; ϕ′2 � ϕ, but ϕ′1
and ϕ′2 are not comparable by � (that is, neither is tighter than the other). Then, we can
consider instead the constraint ξ computed as follows: for each pair of variables x and y,
we have in ξ the atomic constraint x− y ≤ min(c1, c2), where c1 and c2 are the constants
occurring in the atomic constraints on x− y in ϕ′1 and ϕ′2 respectively (i.e., x− y ≤ c1 ∈ ϕ′1
and x − y ≤ c2 ∈ ϕ′2). By definition ξ � ϕ′1 and ξ � ϕ′2. Hence, ξ � ϕ. Moreover, since
Jϕ′1K = Jϕ′2K, we also have JξK = Jϕ′1K = Jϕ′2K, hence JξK = JϕK. Thus, ξ is an even tighter
constraint that can be used instead of ϕ′1 and ϕ′2.

Sure-contemporaneity. Third, the sure-contemporaneity problem asks whether two given
periods p1 and p2 do certainly have a non-empty intersection given a constraint ϕ:

I Problem 3. The Sure-Contemporaneity Problem asks, given a constraint ϕ (on set of
periods P) and two periods p1 and p2 in P, whether ϕ guarantees that p1 and p2 intersect,
i.e., whether C(p1) ∩ C(p2) 6= ∅ for all C ∈ JϕK

Possible-contemporaneity. Fourth, the Possible-Contemporaneity problem asks whether
two given periods p1 and p2 can possibly have a non-empty intersection given a constraint ϕ:

I Problem 4. The possible-contemporaneity problem asks whether a given constraint ϕ
does not exclude a contemporaneity between two given periods p1 and p2, i.e. whether there
is C ∈ JϕK s.t. C(p1) ∩ C(p2) 6= ∅.

3.2 Graph-based algorithms
Let us now present polynomial time algorithms for solving the four problems highlighted in
the previous section. The core of our approach consists, following Shostak [17], in translating
each constraint ϕ into a directed weighted graph Gϕ. Roughly speaking, the set of nodes
in Gϕ is the set of variables of ϕ, and each constraint x− y ≤ c is translated by a directed
edge6 from x to y, labelled by c.

More precisely, in our setting, a graph G = 〈V,E,w〉 is made up of a finite set of vertices
V , a finite set of (directed) edges E ⊆ V × V and a weight function w : E → Z. Given a
constraint ϕ on a set of periods P, we build the graph Gϕ = 〈V,E,w〉 as follows:

6 Observe that this definition is consistent with the classical definitions in the literature on timed automata
[6], but that the edges are reversed wrt the definitions generally used in the literature on constraint
graphs [14].
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beg(S1)

end(S1)
= beg(S2)

end(S2)

z0
end(K1)
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Figure 3 The graph Chrono for the constraint in Figure 1. To simplify presentation, nodes
end(K1) and beg(K2) (respectively end(S1) and beg(S2)) have been merged and 0-labelled self-loops
on the all nodes are not displayed. The bold part of the graph corresponds to the constraints on S1

and K1 only (see Example 1).

V = V(P), i.e. there is a vertex for each variable in the constraint;
E = {(x, y) | x− y ≤ c ∈ ϕ and c 6= +∞}; and
for all (x, y) ∈ E: w(x, y) = c iff x − y ≤ c ∈ ϕ. That is, there is an edge from x to
y, labelled by c every time ϕ contains a non-trivial atomic constraint x − y ≤ c (by
‘non-trivial’, we mean that c is not +∞). Thus, the edges encode exactly the set of ϕ’s
atomic constraints.

I Example 2. The graph corresponding to the full constraint modelling Chronoland (Figure 1)
is given in Figure 3. The bold part of the graph corresponds to the constraint given in
Example 1 (ranging on S1 and K1 only).

Now, we introduce our algorithms for our four problems given above.

Satisfiability checking and tightening. We address these two problems together as satis-
fiability can clearly be checked from the tightening of the constraint: clearly, ϕ is satisfiable
iff the tightening of ϕ yields a constraint ξ s.t. JξK 6= ∅. As said before, we rely on previous
works for satisfiability and tightening. We start by recalling classical notions on graphs.
Given a directed weighted graph G = 〈V,E,w〉, a path (from v1 to vk) is a finite sequence
π = v1, v2, . . . , vk of vertices (vi ∈ V for all i) s.t. (vi, vi+1) ∈ E for all 1 ≤ i ≤ k − 1. A
cycle is a path v1, v2, . . . , vk s.t. v1 = vk. The weight w(π) of a path π = v1, v2, . . . , vk is
the sum of its edge weights, i.e.

∑k−1
i=1 w (vi, vi+1). A path π (and, in particular, a cycle) is

negative iff w(π) < 0. A path π = v1, v2, . . . , vk is called a shortest path from v1 to vk iff
there is no other path π′ from v1 to vk s.t. w(π′) < w(π) (observe that there could be several
shortest paths from v1 to vk, but all of them have necessarily the same weight). In a graph
that contains no negative cycle, it is well-known that there exists always a shortest path
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between two pairs of nodes, provided that there exists a path between those nodes. In such
graphs G, we note spG(x, y) the weight w(π) of any shortest path π from x to y (and we
let spG(x, y) = +∞ if there is no path from x to y in G). The problem asking to compute
spG(x, y) for all pairs of nodes (x, y) (or to declare the value spG(x, y) as undefined when
the graph contains a negative cycle) is known in the literature as the all-pairs shortest path
problem [12]. This problem allows us to solve the satisfiability and tightening problems. In
[17], the author shows that:

I Theorem 3 ([17]). A constraint ϕ is satisfiable iff its graph Gϕ contains no negative cycle.

Moreover, the tightening of constraints has been considered in the setting of timed
systems, and has been shown equivalent to the computation of all-pairs shortest paths:

I Theorem 4 ([6]). Given a satisfiable constraint ϕ (on set of variables V and with corres-
ponding graph Gϕ), the tightest constraint ϕ′ s.t. JϕK = Jϕ′K is the constraint:∧

x,y∈V
x− y ≤ spGϕ(x, y).

The reduction to shortest paths applies only when the constraint is satisfiable. Otherwise,
the graph contains a negative cycle (by Theorem 3) and the notion of shortest path makes
no sense.

Thus, in order to solve both satisfiability and tightening in practice, one can rely on
one of the algorithms for the all-pairs shortest path problem from the literature (see [12]
for a survey). All of these algorithms run in polynomial time. For example, one could use
Johnson’s algorithm [10], which runs in time O(|V |2 log(|V |) + |V ||E|) and detects negative
cycles before computing all-pairs shortest paths, if the graph contains no negative cycle.

I Example 5. Let us come back to the Chronoland example. The graph in Figure 3
contains no negative cycle, hence the overall constraint ϕ of Chronoland is satisfiable. We
now come to tightening. The result of the all-pairs shortest path computation is given
in appendix (Figure 4) for reference. The most relevant results of computing all-pairs
shortest paths in the graph of Figure 3 are summarised in Figure 2. For instance, the
upper bound of 1260 on beg(S1) is obtained by considering the atomic constraint of the
form beg(S1)− z0 ≤ spG(beg(s1), z0) in the tightened constraint. The value spG(beg(s1), z0)
is obtained by considering the path beg(S1), end(S1), beg(S2), end(S2), end(K2), z0 of total
weight −20 +−20 + 1300 = 1260. Other values are obtained similarly.

Checking sure-contemporaneity. Let us now explain how sure-contemporaneity (Problem 3)
can be checked against the graph Gϕ (corresponding to constraint ϕ) in constant time,
provided that ϕ is tight. We start by defining the Inclusion Checking problem, which will be
useful to this end. This problem checks whether the set of chronologies Jϕ1K represented by a
constraint ϕ1 is included into the set of chronologies Jϕ2K represented by another constraint
ϕ2:

I Problem 5. The Inclusion problem asks, given two constraints ϕ1 and ϕ2, whether
Jϕ1K ⊆ Jϕ2K.

We have already seen in an example above that ϕ1 � ϕ2 implies Jϕ1K ⊆ Jϕ2K, but that, in
general, the reverse implication is not true. It becomes, however, true, when the constraints
have been tightened. As a matter of fact, having ϕ1 tight is sufficient (see [3] for a reference):
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I Proposition 6. For all pairs of constraints ϕ1 and ϕ2, the two following statements hold:

ϕ1 � ϕ2 implies Jϕ1K ⊆ Jϕ2K ,(
Jϕ1K ⊆ Jϕ2K and ϕ1 is tight

)
implies ϕ1 � ϕ2.

We now come back to the sure-contemporaneity problem, and show that it can be
reduced to the inclusion problem. The definition of the sure-contemporaneity problem means
that, for all chronologies C ∈ JϕK: p1 and p2 intersect in C, i.e., `(C(p1)) ≤ u(C(p2)) and
`(C(p2)) ≤ u(C(p1)). Clearly, this holds iff JϕK ⊆

q
ϕsyncp1,p2

y
, where:

ϕsyncp1,p2
= beg(p1) ≤ end(p2) ∧ beg(p2) ≤ end(p1). (1)

However, ϕsyncp1,p2
is equivalent to beg(p1)− end(p2) ≤ 0 ∧ beg(p2)− end(p1) ≤ 0. Thus, using

Proposition 6, and assuming ϕ is tight, we deduce that JϕK ⊆
q
ϕsyncp1,p2

y
iff ϕ constraints

beg(p1)− end(p2) and beg(p2)− end(p1) to be non-positive. Thus, we obtain a constant time
procedure to check the sure-contemporaneity of two periods p1 and p2 on the graph Gϕ of a
tight constraint ϕ:

I Proposition 7. For all tight constraint ϕ on P (with corresponding graph Gϕ = (V,E,w)),
for all pairs of periods p1 and p2, there is a sure-contemporaneity between p1 and p2 in
ϕ iff w(beg(p1), end(p2)) ≤ 0 and w(beg(p2), end(p1)) ≤ 0 (assuming w(x, y) = +∞ when
(x, y) 6∈ E).

I Example 8. To answer our question ‘has K1 built S2?’ from the introduction, we can check
whether there is a sure-contemporaneity between K1 and S2. By proposition 7, there is no
sure-contemporaneity iff either spChrono(beg(K1), end(S2)) > 0 or spChrono(beg(S2), end(K1)) >
0 (see Figure 3 for Chrono). While the path beg(K1), beg(S1),
end(S1), beg(S2), end(S2) is indeed negative, one can check that there all paths from beg(S2)
to end(K1) are positive (actually, spChrono(beg(S2), end(K1)) = 80, see Appendix A). Hence,
there is no sure-contemporaneity between K1 and S2, so the available archaeological data
does not allow to say for sure that K1 built S2.

Checking Possible-Contemporaneity. As with the sure-contemporaneity problem, we first
rephrase the definition of the possible-contemporaneity problem using the ϕsyncp1,p2

constraint
from equation (1). Since there must be only one chronology compatible with the constraint
ϕ in which p1 and p2 intersect, and since the set of such chronologies is characterised by
ϕsyncp1,p2

from equation (1), we have:

I Lemma 9. For all constraints ϕ on set of periods P, and all pairs of periods p1, p2 ∈ P:
there is a possible-contemporaneity between p1 and p2 iff ϕ ∧ ϕsync

p1,p2
is satisfiable.

From this characterisation, we obtain a simple algorithm to check possible-contemporaneity
on tight constraints (in the spirit of Proposition 7 for sure-contemporaneity):

I Proposition 10. For all tight constraints ϕ on P (with corresponding graph Gϕ = (V,E,w)),
for all pairs of periods p1 and p2, there is a possible-contemporaneity between p1 and p2 in
ϕ iff w(end(p2), beg(p1)) ≥ 0 and w(end(p1), beg(p2)) ≥ 0 (assuming w(x, y) = +∞ when
(x, y) 6∈ E).

I Example 11. We come back again to the Chronoland example and our question asking
whether K1 has built S2. We check whether there is a possible-contemporaneity between K1
and S2 (remember from Example 8 that there is no sure-contemporaneity between them).
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By Proposition 10, there is no possible-contemporaneity iff spChrono(end(S2), beg(K1)) < 0 or
spChrono(end(K1), beg(S2)) < 0. The latter holds since the path end(K1), beg(K1), beg(S1),
end(S1), beg(S2) has weight 15 +−20 = −5 (see Appendix A). Hence, there is no possible-
contemporaneity between K1 and S2. This result is stronger than the one from Example 8
and allows one to rule out for sure that K1 built stratum S2.

The result of Proposition 10 is not straightforward and requires a proof. We start by
giving some intuitions. First observe that we consider a constraint ϕ, which we assume to
be satisfiable (otherwise there is trivially no possible-contemporaneity), and tight. Then,
the proof is based on the following observation: taking the conjunction of ϕ and ϕsyncp1,p2

(Lemma 9) amounts to computing the graph G′ = (V,E′, w′) from Gϕ = (V,E,w) as follows
(assuming w(x, y) = +∞ if (x, y) 6∈ E):

E′ = E ∪
{(

beg(p2), end(p1)
)
,
(
beg(p1), end(p2)

)}
;

w′(beg(p2), end(p1)) = min{w(beg(p2), end(p1)), 0);
w′(beg(p1), end(p2)) = min{w(beg(p1), end(p2)), 0);
w′(e) = w(e) for all e ∈ E

{(
beg(p2), end(p1)

)
,
(
beg(p1), end(p2)

)}
.

Thus, G′ is obtained fromGϕ by setting the weights of (beg(p2), end(p1)) and (beg(p1), end(p2))
to 0 if they had non-negative weights in Gϕ. One can check that the constraint corresponding
to G′ is equivalent to ϕ∧ϕsyncp1,p2

, so there is a possible-contemporaneity between p1 and p2 iff
there is no negative cycle in G′, by Lemma 9.

Now assume that ϕ ∧ ϕsyncp1,p2
is not satisfiable and thus G′ contains a negative cycle.

Since ϕ is tight and satisfiable, Gϕ contains no negative cycle, hence the negative cycle
in G′ comes necessarily from the modification we have performed on (beg(p1), end(p2))
and (beg(p2), end(p1)). Thus, there is, in G′, at least one negative cycle that contains
(beg(p1), end(p2)) or (beg(p2), end(p1)). For the sake of the discussion, let us assume the
negative cycle contains (beg(p2), end(p1)) and not (beg(p1), end(p2)), hence, the only reason
for this negative cycle to exist in G′ is because we have set w(beg(p2), end(p1)) to 0, and thus,
there is a negative path from end(p1) to beg(p2) inG′ andGϕ. Since ϕ is tight, this implies that
(end(p1), beg(p2)) exists and has negative weight in Gϕ. Conversely, if w(end(p1), beg(p2)) <
0, then, there is necessarily a negative cycle containing (beg(p2), end(p1)) in G′, since
w′(beg(p2), end(p1)) ≤ 0, by construction. This explains intuitively why checking that both
w(end(p2), beg(p1)) and w(end(p1), beg(p2)) are non-negative is necessary and sufficient to
check possible-contemporaneity. This can be performed in O(1) on tight (and satisfiable)
constraints. A formal proof of the proposition is given in Appendix B.

4 Conclusion and future works

This paper presents a theoretical framework for the modelling of chronological constraints
relevant to archaeological research. Within this framework, algorithms have been presented
to solve four basic chronological problems (satisfiability, tightening, sure- and possible-
contemporaneity) that are usually addressed in a non-formal way by the archaeological
community. As shown here for a toy example featuring only two kings and two archaeological
strata (Figure 1), solving these problems manually is tedious and error-prone, especially
when it comes to obtaining optimal bounds on dates and duration (tightening). On real-life
archaeological cases, featuring dozens of periods and synchronisms, obtaining reliable and
optimal results is virtually impossible without the help of a formal computational approach
as the one advocated for here.

We further contend that the application of our algorithms to real-life archaeological
test-cases might provide significant advances to current chronological debates, through the
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detection of (yet unnoticed) unsatisfiable sets of chronological constraints, and through
the computation of improved chronological estimates through our tightening procedure.
An automated technique also allows archaeologist to test quickly the implications of new
hypotheses on chronological models.

The next steps of this research are therefore both practical and theoretical. On the
practical side, we wish to develop a comprehensive methodology for chronological research
in archaeology, including a user-friendly tool that will allow archaeologists to specify and
manipulate their own chronological models, through a dedicated high-level constraint language.
We also want to apply this methodology to concrete case studies from the archaeological
literature. On the theoretical side, it is clear that the development of concrete case studies
will raise new theoretical questions. One such questions we can already mention is ‘how
to provide the archaeological user with a meaningful witness of non-satisfiability?’ when a
constraint is found to be unsatisfiable. In such as case, the user would wish to understand
why the system is unsatisfiable, and also be provided with hints as to how the system could
be rendered satisfiable through the removal (or relaxing) of a limited number of constraints.

Acknowledgements. Eythan Levy was supported by the Center for Absorption in Science,
the Ministry of Absorption, the State of Israel.
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A Shortest paths in the Chronoland example

The all-pairs shortest path matrix of the Chronoland example (graph in Figure 3) is given in
Figure 4. The entry in row i column j gives the weight of the shortest path from i to j.

B Proof of Proposition 10

Statement of Proposition 10: For all tight constraints ϕ on P (with corresponding graph
Gϕ = (V,E,w)), for all pairs of periods p1 and p2, there is a possible-contemporaneity
between p1 and p2 in ϕ iff w(end(p2), beg(p1)) ≥ 0 and w(end(p1), beg(p2)) ≥ 0 (assuming
w(x, y) = +∞ when (x, y) 6∈ E).

Proof. We prove both directions of the iff. First let us show that a possible-contemporaneity
between p1 and p2 implies w(end(p2), beg(p1)) ≥ 0 and w(end(p1), beg(p2)) ≥ 0. We prove
the contraposition, i.e., if either w(end(p2), beg(p1)) < 0 or w(end(p1), beg(p2)) < 0, then
there is no possible-contemporaneity between p1 and p2.

Assume that w(end(p2), beg(p1)) < 0 (the case w(end(p1), beg(p2)) < 0 is symmetrical),
and consider the graph G′ = 〈V,E′, w′〉 obtained, as described above. By definition of G′,

z0 beg(S1) end(S1) beg(S2) end(S2) beg(K1) end(K1) beg(K2) end(K2)



z0 0 −1, 200 −1, 220 −1, 220 −1, 240 −1, 200 −1, 200 −1, 200 −1, 240
beg(S1) 1, 260 0 −20 −20 −40 15 0 0 −40
end(S1) 1, 280 80 0 0 −20 80 80 80 −20
beg(S2) 1, 280 80 0 0 −20 80 808080 80 −20
end(S2) 1, 300 100 80 80 0 100 100 100 0
beg(K1) 1, 260 0 −20 −20 −40−40−40 0 0 0 −40
end(K1) 1, 270 15 −5 -5 −25 15 0 0 −30
beg(K2) 1, 270 15 −5 −5 −25 15 0 0 −30
end(K2) 1, 300 100 80 80 60 100 100 100 0

Figure 4 The all-pairs shortest paths for the Chronoland example. Bold numbers highlight
the values referred to in Example 8 where sure-contemporaneity between K1 and S2 is checked
(and found not to hold). Boxed numbers highlight the values referred to in Example 11, where
possible-contemporaneity between K1 and S2 is checked (and found not to hold either).
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http://dx.doi.org/10.1016/0004-3702(95)00109-3
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and since w(end(p2), beg(p1)) < 0: w′(end(p2), beg(p1)) = w(end(p2), beg(p1)) < 0. Let us
show that the cycle

end(p2), beg(p1), end(p1), beg(p2), end(p2)

is negative in G′. Indeed, we have:

w′(beg(p1), end(p1)) ≤ 0 True in all constraints: the beginning occurs before the end
w′(beg(p2), end(p2)) ≤ 0 Same argument
w′(end(p1), beg(p2)) ≤ 0 By construction of G′

w′(end(p2), beg(p1)) < 0 By the above arguments.

Hence, the weight of the end(p2), beg(p1), end(p1), beg(p2), end(p2) cycle is indeed negative.
However, by construction G′ is the graph that corresponds to ϕ∧ϕsyncp1,p2

, hence this constraint
is not satisfiable. By Lemma 9, there is no possible-contemporaneity between p1 and p2 in ϕ.

For the other direction, let us show that:

w(end(p2), beg(p1)) ≥ 0 and w(end(p1), beg(p2)) ≥ 0 (2)

implies that there is a possible-contemporaneity between p1 and p2 in ϕ. Following Lemma 9,
we show that (2) implies that ϕ ∧ ϕsyncp1,p2

is satisfiable. To show this, we rely again on the
graph G′ described above: we proceed by contradiction and assume that (2) holds but that
G′ contains a negative cycle. We consider several cases:
1. The negative cycle contains neither the (beg(p2), end(p1)), nor the (beg(p1), end(p2)) edge.

Since these two edges are the only ones that have been modified when building G′ from
Gϕ, we conclude that the negative cycle is already present in Gϕ. This is a contradiction
since we have assumed that ϕ is satisfiable.

2. The negative cycle contains only edge among (beg(p2), end(p1)) and (beg(p1), end(p2)).
Wlog, we assume that the negative cycle of G′ contains (beg(p2), end(p1)), i.e. it is of the
form:

beg(p2) w′(beg(p2),end(p1))−−−−−−−−−−−−→ end(p1) w1−−→ v1
w2−−→ · · · wn−−→ vn

wn+1−−−→ beg(p2)︸ ︷︷ ︸
π

where w1 = w′(end(p1), v1), wi = w′(vi−1, vi) for all 2 ≤ i ≤ n, wn+1 = w′(vn, beg(p2)),
and neither (beg(p2), end(p1)), nor (beg(p1), end(p2)) occur in π. Since this cycle is
negative in G′:

w′(beg(p2), end(p1)) +
n+1∑
i=1

wi < 0.

Recall that, by construction of G′: w′(beg(p2), end(p1)) ≤ 0. We consider two further
sub-cases:
a. If w′(beg(p2), end(p1)) = 0, then

∑n
i=1 wi < 0, i.e., the total weight of π is non-positive.

However, since all edges occurring in π occur with the same weight in Gϕ, and since
π starts in end(p1) and ends in beg(p2), we conclude that the shortest path between
end(p1) and beg(p2) is < 0 in Gϕ. Since ϕ is assumed to be tight, this implies that
w(end(p1), beg(p2)) < 0, which is a contradiction with our hypothesis (2).

b. If w′(beg(p2), end(p1)) < 0, then by construction of G′, this edge had the same weight
in Gϕ, i.e., w′(beg(p2), end(p1)) = w(beg(p2), end(p1)) < 0. Since all the edges in π
were also present in Gϕ with the same weight, we conclude that the negative cycle
we have identified in G′ is also present in Gϕ. This is a contradiction since we have
assumed that ϕ is satisfiable.

TIME 2017
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3. The negative cycle contains both (beg(p2), end(p1)) and (beg(p1), end(p2)), i.e. it is of the
form:

beg(p1) w′(beg(p1),end(p2))−−−−−−−−−−−−→ end(p2) w1−−→ v1
w2−−→ · · · wn−−→ vn

wn+1−−−→ beg(p2)︸ ︷︷ ︸
π1

w′(beg(p2),end(p1))−−−−−−−−−−−−→ end(p1) w′
1−−→ v′1

w′
2−−→ · · ·

w′
`−−→ v′`

w′
`+1−−−→ beg(p1)︸ ︷︷ ︸

π2

where w1 = w′(end(p2), v1); for all 2 ≤ i ≤ n: wi = w′(vi−1, vi); wn+1 = w′(vn, beg(p2));
w′1 = w′(end(p1), v′1); for all 1 ≤ i ≤ `: w′i = w′(v′i−1, v

′
i); w′`+1 = w′(v′`, beg(p1)); and

(beg(p2), end(p1)), (beg(p1), end(p2)) occur neither in π1 nor in π2. Since this cycle is
negative in G′, we have:

w′(beg(p1), end(p2)) +
n+1∑
i=1

wi + w′(beg(p2), end(p1)) +
`+1∑
i=1

w′i < 0 (3)

Since, by construction of G′: w′(beg(p2), end(p1)) ≤ 0 and w′(beg(p1), end(p2)) ≤ 0, we
consider four further sub-cases:
a. First, w′(beg(p2), end(p1)) = w′(beg(p1), end(p2)) = 0. Then, (3) yields:

n+1∑
i=1

wi +
`+1∑
i=1

w′i < 0.

Hence, one of these two sums must be < 0. Wlog, let us assume
∑n+1
i=1 wi < 0, i.e.,

the weight of π1 is non-positive (the arguments carry on when the overall weight of π2
is non-positive instead). Since all the edges of π1 were already present in G with the
same weights, we conclude that the shortest path from end(p2) to beg(p2) is < 0 in
G. Since we have assumed that ϕ is tight, this implies that w(end(p2), beg(p2)) < 0,
hence, ϕ contains an atomic constraint of the form end(p2)− beg(p2) ≤ c from some
c < 0. However, this renders ϕ unsatisfiable, because all constraints imply that
beg(p)− end(p) ≤ 0 for all periods p. Contradiction.

b. Second w′(beg(p2), end(p1)) < 0 and w′(beg(p1), end(p2)) = 0. Then, (3) yields:
n+1∑
i=1

wi + w′(beg(p2), end(p1)) +
`+1∑
i=1

w′i < 0. (4)

However, by construction of G′, w′(beg(p2), end(p1)) < 0 implies that the edge
(beg(p2), end(p1)) was already in G with the same weight, i.e. w(beg(p2), end(p1)) < 0.
Moreover, all edges in π1 and π2 are also present in G with the same weight as in G′.
Thus, we conclude from (4) that the

end(p2), v1, . . . , vn, beg(p2), end(p1), v′1, . . . , v′`, beg(p1)

path exists in G with non-positive weight. Hence, the shortest path from end(p2) to
beg(p1) in G has weight < 0. Since we have assumed that ϕ is tight, we conclude that
w(end(p2), beg(p1)) < 0, which contradict our hypothesis (2). Contradiction.

c. Third, w′(beg(p2), end(p1)) = 0 and w′(beg(p1), end(p2)) < 0 is treated as the previous
case.

d. Finally, when w′(beg(p2), end(p1)) < 0 and w′(beg(p1), end(p2)) < 0, we conclude that
all the edges in the negative cycle we have identified are already present in G with the
same weight, i.e., the beg(p1), end(p2), v1, . . . , vn, beg(p2), end(p1), v′1, . . . , v′`, beg(p1)
cycle has negative weight in G, hence ϕ is not satisfiable. Contradiction. J
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Abstract
We consider a variation of the branching time logic CTL with non-standard, “finitely bounded”
semantics (FBS). FBS is naturally defined as game-theoretic semantics where the proponent of
truth of an eventuality must commit to a time limit (number of transition steps) within which the
formula should become true on all (resp. some) paths starting from the state where the formula
is evaluated. The resulting version CTLFB of CTL differs essentially from the standard one as
it no longer has the finite model property.

We develop two tableaux systems for CTLFB. The first one deals with infinite sets of formulae,
whereas the second one deals with finite sets of formulae in a slightly extended language allowing
explicit indication of time limits in formulae. We prove soundness and completeness of both
systems and also show that the latter tableaux system provides an EXPTIME decision procedure
for it and thus prove EXPTIME-completeness of the satisfiability problem.
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1 Introduction
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Intuitively, the main distinctive feature of the FBS is that a player who claims an
eventuality formula to be true must commit to a time bound (number of transition steps)
within which she can defend that claim by fulfilling that eventuality. Technically, the FBS
for CTL can be obtained by changing the definition of temporal operators so that a uniform
bound on the number of transition steps needed to fulfill a given eventuality is imposed.

In this paper we study the alternative version CTLFB of CTL, defined by the FBS.
CTLFB differs essentially from CTL with standard semantics. In particular, it falsifies the
fundamental fixed-point characterizations of the operators EG and AU . Based on this we
show that CTLFB lacks the finite model property and that the set of validities of CTLFB is
a proper subset of the validities of CTL.

We develop two equivalent versions of tableaux for CTLFB. The first tableaux deals with
infinite sets of CTL formulae, while the second one involves only finite sets of formulae, but in
a suitably extended language which allows explicit indication of time limits by corresponding
indexing parameters. Essentially, the parameters enable encoding infinitary formulae by
finite ones. We prove soundness and completeness of both tableau systems and also show
that the latter system provides a decision procedure for CTLFB. We thereby establish that
satisfiability in that logic is decidable and EXPTIME-complete.

We note that even though not being the actual motivation for the present study, a major
independent justification for considering bounded semantics for CTL is (the conceptual idea
behind) bounded model checking [2], which provides the main link with related previous work.
Other versions of bounded semantics for CTL, based on evaluation of formulae on finite
paths, have been considered in the context of bounded model checking in e.g. [8], [9], [10].

2 Preliminaries: CTL with finitely bounded semantics

Here we only provide brief preliminaries on CTL. For further details see e.g. [5, Ch.7].

2.1 The standard semantics of CTL
I Definition 1. A transition system is a tuple T = (S,R), where S is a nonempty set of
states and R ⊆ S×S a transition relation. We also assume that R is serial, i.e. for every
s ∈ S there is s′ ∈ S such that (s, s′) ∈ R. A path in T is a sequence λ : N → S of states
such that (λ(n), λ(n+1)) ∈ R for every n ∈ N.

An interpreted transition system (ITS) over T is a tupleM = (S,R,Φ, `), where Φ
a set of proposition symbols and ` : S→ P(Φ) is a state description function defining
for every state s the set of atomic propositions true at that state.

The syntax CTL is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUϕ) | A(ϕUϕ) .

We also use the following abbreviations AXϕ := ¬EX¬ϕ, EFϕ := E(>Uϕ), AFϕ := A(>Uϕ),
EGϕ := ¬AF¬ϕ and AGϕ := ¬EF¬ϕ.

I Definition 2. Let M = (S,R,Φ, `) be an interpreted transition system, s ∈ S and ϕ a
CTL-formula. Truth of ϕ at s in M, denoted byM, s |= ϕ, is defined as follows:
M, s |= p iff p ∈ `(s).
M, s |= ¬ϕ iffM, s 6|= ϕ.
M, s |= ϕ ∨ ψ iffM, s |= ϕ orM, s |= ψ.
M, s |= EXϕ iff there is a state s′ such that (s, s′) ∈ R andM, s′ |= ϕ.
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M, s |= E(ϕUψ) iff there is a path λ starting from s and i ≥ 0 such thatM, λ(i) |= ψ

andM, λ(j) |= ϕ for every j < i.
M, s |= A(ϕUψ) iff for every path λ starting from s, there is i ≥ 0 such thatM, λ(i) |= ψ

andM, λ(j) |= ϕ for every j < i.
We define the following operators on formulae, where Q ∈ {E,A}:

GQ;θ(ϕ) := θ ∧ QXϕ; UQ;ψ,θ(ϕ) := θ ∨ (ψ ∧ QXϕ) .

It is well-known that, for each Q ∈ {E,A}, in terms of their semantics:
QG θ is the greatest fixpoint of the operator GQ;θ, i.e. QG θ ≡ νZ.GQ;θ(Z),
Q(ψU θ) the least fixpoint of the operator UQ;ψ,θ, i.e. Q(ψU θ) ≡ µZ.UQ;ψ,θ(Z).

Now, we define recursively on n ∈ N the respective iterations of these operators:
G0

Q(θ) := θ; Gn+1
Q (θ) := GQ;θ(Gn

Q(θ))
U0

Q(ψ, θ) := θ; Un+1
Q (ψ, θ) := UQ;ψ,θ(Un

Q(ψ, θ)).

2.2 Game-Theoretic semantics for CTL
In [7] we have defined game-theoretic semantics (GTS) for the alternating time temporal
logic ATL ([1], [5, Ch.9]) by using evaluation games between two players, Abelard and Eloise.
Since CTL can be regarded as a (1-agent) fragment of ATL, a simple GTS for CTL can be
obtained from the mentioned GTS for ATL in a straightforward (but not immediate) way.

I Definition 3. Let M = (S,R,Φ, `) be an ITS, sin ∈ S and ϕ a CTL-formula. The
(unbounded) evaluation game G(M, sin, ϕ) is defined as follows. A position of the
game is a tuple (P, s, ψ) where P ∈ {Abelard,Eloise}, s ∈ S and ψ is a subformula of ϕ. The
initial position of the game is (Eloise, sin, ϕ). The evaluation game proceeds according to
the following rules.
1. A position of the form (P, s, p), where p ∈ Φ, is called an ending position. If p ∈ `(s),

then P wins the evaluation game. Else the opposing player of P, denoted by P, wins.
2. In (P, s,¬ψ) the game moves to the next position (P, s, ψ).
3. In (P, s, ψ ∨ θ) the player P decides whether the next position is (P, s, ψ) or (P, s, θ).
4. In (P, s,EXψ) the player P may choose any state s′ such that (s, s′) ∈ R and the next

position is (P, s′, ψ).
For the rules for the formulae E(ψU θ) and A(ψU θ), we define the embedded game
G := g(V,L, s0, ψV, ψV), where V,L ∈ {Abelard,Eloise}, s0 is a state, and ψV and ψV
are formulae. The player V is called the verifier (of the embedded game) and L the leader.
These players may, but need not be, the same. We let V and L denote the opponents of V
and L, respectively. The embedded game G starts from the initial state s0 and proceeds
from any state s according to the following rules until an exit position is reached.
(i) V may end the game at the exit position (V, s, ψV).
(ii) V may end the game at the exit position (V, s, ψV).
(iii) L may select any state s′ such that (s, s′) ∈ R and then G is continued from s′.

If the embedded game G continues an infinite number of rounds, the verifier V loses the
entire evaluation game. The rest of the rules for the evaluation game are defined as follows:
5. In (P, s,E(ψU θ)) the game is continued from the exit position of g(P,P, s, θ, ψ).
6. In (P, s,A(ψU θ)) the game is continued from the exit position of g(P,P, s, θ, ψ).

In GTS, truth of a formula is defined as existence of a winning strategy for Eloise in the
corresponding evaluation game. By [7] we obtain the following equivalence:

M, s |= ϕ iff Eloise has a winning strategy in G(M, s, ϕ) .
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2.3 Finitely bounded semantics for CTL
Note that unbounded evaluation games may continue infinitely long before a winner is
determined. In order to avoid this, we have also defined bounded evaluation games for
ATL in [7]. Such a game is obtained by modifying the unbounded game simply by attaching
ordinal values, called time limits, to the embedded games. A time limit is announced by
the verifier in the beginning of the embedded game and the verifier has to decrease it after
every transition. Since ordinals are well-founded, it is guaranteed that the whole bounded
evaluation game ends in a finite number of moves – even in infinite models.

If players are allowed to announce arbitrarily large time limits in the game, then unbounded
and bounded evaluation games become equivalent1. A particularly interesting and natural
variant of a bounded evaluation game is when only finite ordinals may be used by the players.
We call the corresponding game-theoretic semantics finitely bounded (FBS) and denote
its truth condition by |=fb. As shown in [7], the FBS for ATL differs from the standard
compositional semantics but corresponds to a natural variant of it, to be discussed further. In
the special case of CTL, this semantics modifies only the truth conditions of AU and EU so
that a uniform bound on the number of transition steps needed to fulfill a given eventuality
is imposed.
(AU fb) M, s |=fb A(ϕUψ) iff there is n ∈ N such that for every path λ starting from s,

there is i ≤ n such thatM, λ(i) |=fb ψ andM, λ(j) |=fb ϕ for every j < i.
(EU fb) M, s |=fb E(ϕUψ) iff there is n ∈ N, a path λ starting from s and i ≤ n such

thatM, λ(i) |=fb ψ andM, λ(j) |=fb ϕ for every j < i. (We note that since existential
quantifiers commute, (EU fb) is in fact equivalent to the standard truth definition of EU .)

Thus, the FBS of formulae of the type E(ϕUψ), is standard, even though they will not
be treated here as (existential) eventualities usually are, see Section 3.1.1. Furthermore, it
is easy to see that the FBS given to A(ϕUψ) by (AU fb) is not equivalent to the standard
one, and in fact, such formulae do not behave like universal eventualities, as they would
in standard CTL. Respectively, the derived FBS for AG is equivalent to the standard one,
while for EG we obtain the following non-equivalent version.
(EG fb) M, s |=fb EGϕ iff for every n ∈ N, there is a path λn starting from s such that
M, λn(i) |=fb ϕ for every i ≤ n. (Note that the path λn depends on n.)

By replacing the truth condition for AU (and EG ) with the ones above, we obtain CTL
with finitely bounded semantics, denoted by CTLFB.

For a set of formulae Γ, byM, s |=fb Γ we denote the claim thatM, s |=fb ϕ for all ϕ ∈ Γ.
Satisfiability and validity of CTLFB formulae are defined and denoted as usual.

2.4 Some properties of CTLFB
All observations made for the finitely bounded semantics of ATL in [7] apply directly to
CTLFB. Here are the most important and interesting ones.
1. On all image finite models (where every state has finitely many immediate successors)

CTLFB = CTL, i.e., truth of CTL-formulae is independent of which semantics is used.
2. CTL 6= CTLFB in models that have infinite branchings. In particular, the fixed point

properties of the operators F and G fail since the implications EG p→ (p ∧ EX EG p) and
(dually) (p∨AX AF p)→ AF p are valid in CTL but not in CTLFB. For an explicit model
where the former implication fails, see the ITS in Figure 4 in Section 3.4.

1 It suffices to use ordinals that have the same cardinality as the model. For more details, see [7].
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3. Since CTL has the finite model property, the two facts above imply that CTLFB does not
have the finite model property, as these implications cannot fail in (image-)finite models.
It is thus not immediately obvious that satisfiability for CTLFB should be decidable.

4. Consequently, the set of validities of CTLFB is properly included in the set of validities of
CTL. Indeed, every non-validity of CTL is falsified in a finite model and thus, by fact 1,
it is a non-validity of CTLFB, too.

On the one hand, the lack of finite model property of CTLFB can be regarded as an
increase of the semantic complexity and richness in comparison with standard CTL. But
on the other hand, the semantics of CTLFB can be seen as simpler than that of CTL, in
the sense that it only requires one to consider finite paths and does not involve dealing with
universal eventualities.

Note the conceptual parallels between FBS and for-loops on the one side, and between
the standard semantics and while-loops on the other. For more on this, see Section 5.2 of [7].

Finally, we list in the lemma below some validities in CTLFB used further. These can be
verified easily by using the respective fixpoint characterizations.

I Lemma 4. For every ITSM and s ∈M the following hold, for Q ∈ {E,A}:
1. M, s |=fb QGϕ iff M, s |=fb Gn

Q(ϕ) for every n ∈ N.
2. M, s |=fb Q(ϕUψ) iff M, s |=fb Un

Q(ϕ,ψ) for some n ∈ N.
3. |=fb AGϕ→ Gn

A(ϕ) and |=fb Un
E(ϕ,ψ)→ E(ϕUψ) for every n ∈ N.

4. |=fb Gn
A(θ)→ Gm

A (θ) and |=fb Um
A (ψ, θ)→ Un

A(ψ, θ) for all m,n ∈ N such that m < n.

3 Infinitary tableaux for CTLFB

We only provide a detailed sketch of the (infinitary) tableaux-building procedure for CTLFB
here. For further details that are essentially the same as in the tableaux method for the
standard CTL, see [5, Chapter 13], the style of which we closely follow here.

3.1 Preliminaries

3.1.1 Types and components of formulae
In this section we will regard each of >,⊥,¬,∧,EX ,AX ,EG ,AG ,EU ,AU as primitive con-
nectives in the language, while ∨,→,↔,EF ,AF will be regarded as abbreviations. We
will distinguish five types of formulae: literals, conjunctive, disjunctive, existential
successor and universal successor formulae. Literals are atomic propositions and nega-
tions of these, and >, ⊥. Successor formulae are those beginning with EX (existential) and
AX (universal). For each of the latter three types of formulae listed above we define their
respective components as in Figure 1. Literals have no components. We write scomp(χ) to
denote the successor component of the formula χ. Note that formulae of the type EU and
¬AG , even though having standard semantics, are not treated here as existential eventualities
are treated in standard tableaux for CTL. This is mainly for the sake of uniformity with the
finitary tableaux for CTLFB presented further.

I Lemma 5. For every ITSM, s ∈M and a formula ϕ of CTLFB the following hold:
1. If ϕ is any conjunctive formula, then M, s |=fb ϕ iff M, s |=fb ψ for every conjunctive

component ψ of ϕ.
2. If ϕ is any disjunctive formula, then M, s |=fb ϕ iff M, s |=fb ψ for some disjunctive

component ψ of ϕ.
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successor successor conjunctive conjunctive disjunctive disjunctive
formula component formula components formula components

EXϕ (exist.) ϕ ¬¬ϕ ϕ

AXϕ (univ.) ϕ ϕ ∧ ψ ϕ, ψ ¬(ϕ ∧ ψ) ¬ϕ, ¬ψ
¬AXϕ (exist.) ¬ϕ AGϕ {ϕ,AX AGϕ} ¬AGϕ {¬Gn

A(ϕ)}n∈N

¬EXϕ (univ.) ¬ϕ EGϕ {Gn
E (ϕ)}n∈N ¬EGϕ {¬Gn

E (ϕ)}n∈N

¬E(ϕUψ) {¬ψ,¬ϕ ∨ ¬EX E(ϕUψ)} E(ϕUψ) {Un
E (ϕ,ψ)}n∈N

¬A(ϕUψ) {¬Un
A(ϕ,ψ)}n∈N A(ϕUψ) {Un

A(ϕ,ψ)}n∈N

Figure 1 Types and components of formulae in CTLFB.

3.1.2 Extended closure of a formula
In order to determine the truth of a CTLFB formula η one has to consider a set of ‘simpler’
formulae which appear in the process of the truth evaluation of η and are needed in the
tableaux construction for it. As in the case of CTL, some of these auxiliary formulae are
not really simpler, as they come from the unfoldings of the temporal operators and are
generally not subformulae of η. Still, they can be identified quite simply and collected in
the extended closure of the formula η, denoted ecl(η), obtained by closing under taking
respective components of already added formulae, which is defined generically as follows.

I Definition 6. The extended closure ecl(ϕ) of formula ϕ is the least set of formulae
such that ϕ ∈ ecl(ϕ) and ecl(ϕ) is closed under taking all conjunctive, disjunctive, successor
components of formulae in ecl(ϕ). For any set of formulae Γ we define ecl(Γ) :=

⋃
{ ecl(ϕ) |

ϕ ∈ Γ }. A set of formulae Γ is closed if Γ = ecl(Γ).

I Example 7. Let η := EG p ∧ ¬(p ∧ EX EG p). This formula will be used in the running
examples later on. Here is the extended closure of η: ecl(η) = {η,EG p,¬(p ∧ EX EG p)} ∪
{Gn

E(p)}n∈N∪{¬p,¬EX EG p}∪{EX Gn
E(p)}n∈N∪{¬EG p}∪{¬EX Gn

E(p)}n∈N∪{¬Gn
E(p)}n∈N.

3.1.3 Full expansions
I Definition 8. A set of formulae is patently inconsistent if it contains ⊥, or ¬>, or a
contradictory pair of formulae ϕ and ¬ϕ.

I Definition 9. A set of formulae Γ is fully expanded iff:
1. it is not patently inconsistent,
2. for every conjunctive formula in Γ, all of its conjunctive components are in Γ,
3. for every disjunctive formula in Γ, at least one of its disjunctive components is in Γ.

I Definition 10. A fully expanded set of formulae Ψ is a full expansion of a set of formulae
Γ if Ψ can be obtained from Γ by the following procedure FullExpansion, consisting in
repeated application of the following rules, where initially no formula is marked as ‘used’:
(C-comp) for every conjunctive formula ϕ in the current set Γ′, not yet marked as ‘used’,

add all of its conjunctive components to Γ′ and mark ϕ as ‘used’.
(D-comp) for every disjunctive formula ϕ in the current set Γ′, not yet marked as ‘used’,

add to Γ′ one of its disjunctive components that is not already in Γ′ and mark ϕ as ‘used’.

Since the procedure FullExpansion is non-deterministic, it can produce (possibly
infinitely) many full expansions of Γ (or none). This procedure can be readily replaced with
a deterministic process that constructs all fully expanded sets allowed by FullExpansion.
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Moreover, in the finitary tableau (see Section 4), this process runs in EXPTIME. We denote
the set of all full expansions of Γ (obtained by the procedure FullExpansion) by FE(Γ).
Intuitively, a full expansion of Γ consists of all formulae appearing on some open branch in
the saturated local (propositional) tableau for input set Γ.

I Proposition 11. For any set of CTLFB-formulae Γ, ITSM and state s ∈M:

M, s |=fb Γ iffM, s |=fb ∆ for some ∆ ∈ FE(Γ) .

The proof for this proposition is routine, using Lemma 5.
The purpose of the tableaux method outlined further is to determine whether at least

one full expansion of the input formula set is satisfiable.

I Example 12. Let Γ1 := {η}, where η := EG p ∧ ¬(p ∧ EX EG p) (recall Example 7) and let
Γ2 := {Gk

E(p),¬EG p}, where k ∈ N. These sets of formulae will be used later in Example 17.
Γ1 has the following full expansion: {η,EG p,¬(p∧EX EG p)}∪{Gn

E(p)}n∈N∪{¬EX EG p}∪
{EX Gn

E(p)}n∈N. This is the only full expansion of Γ1, because choosing the disjunctive
component ¬p of ¬(p ∧ EX EG p) creates a patently inconsistent set (since G0

E(p) = p).
On the other hand, the set FE(Γ2) is infinite, because for eachm ∈ N such thatm /∈ {0, k}

the set Ψm = {Gk
E(p),¬EG p, p, EX Gk−1

E (p),¬Gm
E (p),¬EX Gm−1

E (p)} is a full expansion of
Γ2. The disjunctive components ¬Gk

E(p) and ¬G0
E(p) = ¬p of ¬EG p are the only ones that

create patently inconsistent sets.

3.2 Hintikka structures
Intuitively, a Hintikka structure represents a partly defined rooted ITS satisfying the input
formula. It is a graph, every node of which is labeled by a set of formulae. These labels are
fully expanded subsets of the extended closure of a designated input formula, the satisfiability
of which is tested by the tableau. All desired properties of the transition relations in a
Hintikka structure are encoded by means of the labels of the states. Membership to the
label of the state of a Hintikka structure simulates the notion of truth of a formula at a
state of an interpreted transition system and the labelling of states must ensure that the
Hintikka structure can generate a model of the input formula. The purpose of the tableau
construction is to check for existence of a Hintikka structure ‘satisfying’ the input formula, in
the sense described above. Here is the formal definition of a Hintikka structure for CTLFB.

I Definition 13. Given a closed set of CTLFB-formulae Γ, a Hintikka structure (HS)
for Γ is a tuple H = (S,R,H) s.t. (S,R) is a transition system and H : S → P(Γ) is a
labelling function satisfying the following conditions for every s ∈ S:
(H1) H(s) is fully expanded (in the sense of Def. 9).
(H2) If ϕ ∈ H(s) is an existential successor formula, then scomp(ϕ) ∈ H(s′) for some s′ such

that sR s′. (Recall that scomp(ϕ) denotes the successor component of the formula ϕ.)
(H3) If ϕ ∈ H(s) is a universal successor formula, then scomp(ϕ) ∈ H(s′) for every s′ such

that sR s′.

I Definition 14. A formula ϕ ∈ CTLFB is satisfiable in a Hintikka structure H =
(S,R,H) for a set Γ if ϕ ∈ H(s) for some s ∈ S. A set of formulae Ψ ⊆ Γ is satisfiable in H
if Ψ ⊆ H(s) for some state s in H.

Note that every rooted ITS uniformly generates a rooted Hintikka structure for any closed
set of formulae Γ by labelling each state of the ITS with the set of all formulae from Γ that
are true at that state. Formally:
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I Lemma 15. For any closed set of CTLFB-formulae Γ (in the sense of Def. 6) over as
set of atomic propositions Φ and for every interpreted transition system M = (S,R,Φ, `)
the structure H(M) = (S,R,H), where H(s) = {ϕ ∈ Γ | M, s |= ϕ} for every s ∈ S, is a
Hintikka structure for Γ.

An essential difference between interpreted transition systems and Hintikka structures is
that, while an ITS determines the truth value of every formula at every state, a Hintikka
structure only contains just enough information to determine the truth values of those
formulae that are directly involved in the evaluation of the input formula η at the root state.

Given a formula ϕ for which we look for a model, we will be interested in Hintikka
structures for the set ecl(ϕ). For that class of Hintikka structures to be suitable for our
purpose, every formula satisfiable in a Hintikka structure must also be satisfiable in an ITS,
so the two notions of satisfiability are equivalent. Thus, the following result is needed. (See
the Appendix for a sketch of proof).

I Theorem 16. A CTLFB-formula η is satisfiable iff it is satisfiable in some Hintikka
structure for ecl(η).

3.3 Construction of the tableaux
The tableau procedure presented here attempts to construct for a given input formula η a
non-empty graph T η, called a tableau, representing (in a way) sufficiently many possible
Hintikka structures for η. The procedure consists of three major phases:
1. Construction phase. In that phase a finite directed graph Pη with labeled vertices, called

the pretableau for η, is produced, following prescribed construction rules. The set of
nodes of the pretableau properly contains the set of nodes of the tableau T η that is to be
ultimately built. The pretableau has two types of nodes: states and prestates. The
states are labeled with fully expanded subsets of ecl(η) and represent states of a Hintikka
structure, while the prestates can be labeled with any subsets of ecl(η) and they play
only an auxiliary and temporary role. In this tableau construction states and prestates
with an already existing label are not created again, but reused. So, when there is no
danger of confusion, we will identify prestates or states with their labels.

2. Prestate elimination phase. Here the prestates are removed using the prestate elim-
ination rule. The result is a smaller graph T η0 , called the initial tableau for η.

3. State elimination phase. In this phase we remove, using state elimination rules, all
(if any) states from T η0 that cannot be satisfied in any Hintikka structure. In the case
of CTLFB, where there are no explicit eventualities to be satisfied, an elimination of a
state can happen for only one reason: some of the successor states that the state needs
for the satisfaction of its successor formulae, have already turned out unsatisfiable and
have been removed in the elimination process so far. The state elimination phase results
in a (possibly empty) subgraph T η of T η0 , called the final tableau for η.

If there is a state in the final tableau T η containing η in its label, the tableau is declared
open and the input formula η is pronounced satisfiable; otherwise, the tableau is declared
closed and η is pronounced unsatisfiable.

3.3.1 The pretableau construction phase
The pretableau construction phase consists of two rules: PrExpCTLFB producing all off-
spring states of a given prestate; and NextCTLFB producing the successor prestates of
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a given state. The rule PrExpCTLFB involves the procedure FullExpansion, described in
Section 3.1.3, for computing the family FE(Γ) of full expansions of a given set Γ ⊆ ecl(η).

PrExpCTLFB : Given a prestate Γ to which the rule has not yet been applied, do the following:
1. Compute the family FE(Γ) of full expansions of Γ and add these as (labels of) new states

in the pretableau, called the offspring states of Γ.
2. For each newly introduced state ∆, create an edge Γ 99K ∆.
3. If, however, the pretableau already contains a state with label ∆ then do not create a

new state with that label, but create an edge to ∆ instead.
We denote the set {∆ | Γ 99K ∆ } of offspring states of Γ by states(Γ). Hereafter we write
X (∆) := {ψ | AXψ ∈ ∆ } ∪ {¬ψ | ¬EXψ ∈ ∆ } for any set of CTLFB-formulae ∆.

NextCTLFB : Given a state ∆ to which the rule has not yet been applied, do the following:
1. For each existential successor formula ϕ ∈ ∆ (i.e., ϕ = EXχ or ϕ = ¬AXχ) add a

successor prestate Γ of ∆ with label X (∆) ∪ {scomp(ϕ)} and create an edge ∆ ϕ−→Γ.
2. Consider the case where ∆ has no existential successor formulae. If X (∆) 6= ∅, add one

prestate Γ with label X (∆) and an edge ∆−→Γ. If X (∆) = ∅, simply create a loop ∆−→∆.
3. If the pretableau already contains a prestate with the label of Γ, then do not create a

new prestate with that label, but create an edge to Γ instead.
The construction phase of building a pretableau for η begins with creating a single prestate {η},
followed by alternating applications of the rules PrExpCTLFB and NextCTLFB , respectively
to the prestates and the states created at the previous stages of the construction. The
construction phase is completed if/when none of these rules can add any new states or
prestates to the current graph. The resulting graph is the pretableau Pη.

Note that there are two types of branching in the pretableau: search branching, from a
prestate to its offspring states, indicated by 99K, and structural branching, from a state to
its successor prestates, indicated by χ−→ for an EX -formula χ. Search branching is branching
of the search tree, and thus it is disjunctive, or existential: only one offspring state of
every prestate is eventually needed to build a satisfying structure. Structural branching is
conjunctive, or universal. Since it represents branching in the structure to be built, all
successor prestates of every state are potentially needed in the construction.

In the subsequent figures illustrating tableau examples, prestates are indicated with shaded
square boxes and labeled by P with indices, while states are indicated with transparent
boxes with rounded corners and labeled by S with indices.

I Example 17 (Pretableau). (Recall Example 12.) The sentence η = EG p ∧ ¬(p ∧ EX EG p)
has the countably infinite pretableau given in Figure 2. From state S0 there is an infinite
structural branching to prestates {P0n | n ∈ N}. Since the pretableau construction is
analogous for all of these prestates, we only present a single one of them here, namely P0k.
From P0k there is an infinite search branching to states {S0km | m ∈ N \ {0, k}}. But all
cases where 0 < m < k are analogous to each other. Similarly, all cases where m > k are
analogous to each other. Note that when m < k, the prestates P0km0m−1 do not have any
offspring states since then FE({Gk−m

E (p),¬G0
E(p)}) = ∅.

3.3.2 Prestate elimination phase and initial tableaux

In this phase, all prestates are removed from Pη, together with their incoming and outgoing
arrows, by applying the following generic prestate elimination rule:
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{η}P0

{η,EG p,¬(p ∧ EX EG p)} ∪ {Gn
E (p)}n∈N ∪ {¬EX EG p} ∪ {EX Gn

E (p)}n∈NS0

{Gk
E(p),¬EG p}P0k· · · · · ·

n=kn=0

{Gk
E(p),¬EG p, p, EX Gk−1

E (p),¬Gm
E (p),¬EX Gm−1

E (p)}

S0km

0<m<k

{Gk−1
E (p),¬Gm−1

E (p)}P0km

...

{Gk−m
E (p),¬G0

E(p)}P0km0m−1

{Gk
E(p),¬EG p, p, EX Gk−1

E (p),¬Gm
E (p),¬EX Gm−1

E (p)}

S0km
m>k

{Gk−1
E (p),¬Gm−1

E (p)} P0km

...

{G0
E(p),¬Gm−k

E (p)} P0km0k−1

{p,¬Gm−k
E (p),¬EX Gm−k−1

E (p)}S0km0k−1

{¬Gm−k−1
E (p)}P0km0k

{¬p}S0km0k1 {¬EX Gm−k−2
E (p)}

S0km0k2

{¬Gm−k−2
E (p)}P0km0k2

{¬p}S0km0k21
...

{¬p}S0km0k2m−k

Figure 2 Infinitary pretableau for η = EG p ∧ ¬(p ∧ EX EG p).

PrestateElimCTLFB . For every prestate Γ in Pη, do the following:
1. If there is a ∆ ∈ Pη with ∆−→Γ, then for every ∆′ ∈ states(Γ), create an edge ∆−→∆′;
2. Remove Γ from Pη together with its outgoing arrows.
The resulting graph is called the initial tableau for η, denoted T η0 . The offspring states of
the input prestate {η} are called input states of T η0 .

3.3.3 State elimination phase and the final tableau
This phase is carried out in a sequence of stages, starting with the initial tableau T η0 , and
eliminating at each stage n at least one state for the current tableau T ηn , by applying the state
elimination rule stated below, to produce the new current tableau T ηn+1, until stabilisation.
StateElimCTLFB : If a state ∆, containing an existential successor formula EXψ (respectively,
¬AXψ), has no successor states containing ψ (respectively, ¬ψ) in the current tableau, then
remove ∆ from the tableau. Remove ∆ from the tableau also if ∆ has no successor states.

The rule StateElimCTLFB is applied repeatedly until reaching a stage when no further
elimination of states is possible. Such a stage may not be reached at any finite stage, so
the elimination phase may have to go on for transfinitely many steps, in which case every
limit-stage tableau is the limit of the decreasing chain (by inclusion) of current tableaux.
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{η,EG p,¬(p ∧ EX EG p)} ∪ {Gn
E (p)}n∈N ∪ {¬EX EG p} ∪ {EX Gn

E (p)}n∈NS0

· · · · · ·{Gk
E(p),¬EG p, p, EX Gk−1

E (p),¬Gm
E (p),¬EX Gm−1

E (p)}S0km

m>k>0

{p,¬Gm−k
E (p),¬EX Gm−k−1

E (p)}S0km0k−1

...

{¬p}S0km0k1 {¬EX Gm−k−2
E (p)} S0km0k2

{¬p}S0km0k21
...

{¬p} S0km0k2m−k

Figure 3 Final tableau for η = EG p ∧ ¬(p ∧ EX EG p).

When the state elimination phase reaches a (finite or limit) stabilization stage, the
resulting tableau then is the final tableau for η, denoted by T η, with a set of states
denoted by Sη.

I Definition 18. The final tableau T η is open if η ∈ ∆ for some ∆ ∈ Sη; else, T η is closed.

The tableau procedure returns “not satisfiable” if the final tableau is closed; otherwise, it
returns “satisfiable” and, moreover, provides sufficient information for producing a countable
Hintikka structure satisfying η, as described in the completeness proof below.

I Example 19 (Final tableau). Recall the pretableau from Example 17. The initial tableau is
obtained removing the prestates by applying PrestateElimCTLFB . The branches starting
from states S0km where 0 < m < k end at a prestate that has no offspring state. Therefore
all of states on these branches are eliminated when the final tableau is formed. All the other
states remain in the final tableau and therefore it is open. See Figure 3 for the final tableau.

3.4 Soundness and completeness of the infinitary tableau for CTLFB
Note that in general none of the three phases of the construction terminates at any finite
stage if performed consecutively, because the set of full expansions of a prestate may be
infinite, or because infinitely many successor prestates may have to be introduced. However,
each of these stages does reach saturation at some transfinite stage.

Soundness of the tableau procedure means that if the input formula η is satisfiable,
then the final tableau T η is open, so the tableau procedure is guaranteed to establish the
satisfiability. A generic proof of soundness consists of showing that at least one tableau
state containing η will survive forever, i.e. will never be eliminated. Note first that if η is
satisfiable, and hence propositionally consistent, there will be at least one offspring state of
the initial prestate containing η, due to Proposition 11. Moreover, for every rooted ITS (M, s)
satisfying η, the set {ψ ∈ ecl(η) | M, s |= ψ} contains at least one such state. Thereafter, it
suffices to show that only unsatisfiable states get eliminated in the state elimination phase.
Thus, we will establish the soundness of the tableau for CTLFB by proving that the state
elimination rule is ‘sound’ in a sense that it never eliminates a state with a satisfiable label.
The soundness of the overall procedure is then an immediate consequence. The proof of that
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p
S0

¬pS0001 pS012 pS023 pS034

· · ·

¬pS01201 pS0230 pS0340

¬pS023001 pS03400

¬pS0340001 . . .

Figure 4 A model satisfying EG p ∧ ¬(p ∧ EX EG p).

claim follows a fairly routine argument (see [5, Chapter 13]) by induction on the applications
of the state elimination rule. However, since the elimination phase for CTLFB may take a
transfinite sequence of steps, the soundless argument now uses transfinite induction. For a
proof sketch, see the Appendix.

I Lemma 20. Let Γ be a prestate of Pη such that M, s |= Γ for some rooted interpreted
transition system (M, s). ThenM, s |= Ψ for at least one Ψ ∈ states(Γ).

I Lemma 21. No satisfiable state ∆ ∈ T η0 is removed by any application of StateElimCTLFB

during the state elimination phase.

I Theorem 22 (Soundness). If η ∈ CTLFB is satisfiable then T η is open.

Completeness of the tableau procedure means that if the input formula η is not
satisfiable, then the final tableau T η is closed, so the tableau procedure is guaranteed to
establish the unsatisfiability. By contraposition, completeness means that if the final tableau
is open, the input formula η is satisfiable. The proof of the completeness is sketched in the
Appendix.

I Theorem 23 (Completeness). For any formula η ∈ CTLFB, if the final tableau T η is open,
then η is satisfiable.

I Example 24. Since the final tableau of η = EG p ∧ ¬(p ∧ EX EG p) is open, η is satisfiable
by Theorem 23. Thus EG p→ (p ∧ EX EG p) is not a valid CTLFB sentence. Consider the
final tableau in Example 19 as a transition system T . By using any state description function
` that satisfies the labels of the states in T , we obtain an ITS which satisfies η.

However, by analysing the pretableau of η (Example 17) we can construct a simpler ITS
that satisfies η. It suffices that, for every prestate Γ, a single state in states(Γ) survives the
state elimination process. Thus, for a prestate P0k (k ∈ N), we can choose any offspring state
S0km for which m > k; e.g. we can choose m := k + 1. Furthermore, it suffices that, for a
prestate P0km0k , we choose only the state S0km0k1 (and remove the state S0km0k2).

By removing states from T η as described above, we obtain the ITS in Figure 4 which can
be seen as the simplest model satisfying η. Note that since S0001, S01201, S023001, S0340001, ...

have the same label {¬p}, they are actually merged into a single state by the tableau rules.

I Example 25. Consider η′ := (p ∧ EX EG p) ∧ ¬EG p. Since ¬G0
E(p) = ¬p is a conjunctive

component of ¬EG p and p is a conjunctive component of p∧ EX EG p, we have FE({η′}) = ∅.
Therefore the pretableau of η′ will only have a single prestate, namely {η′}, and not any
states. Thus the final tableau for η′ is empty and thus it is trivially closed. Hence by
Theorem 22 η′ is not satisfiable, i.e. (p ∧ EX EG p)→ EG p is a valid CTLFB formula.
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It is easy to show that the structural branchings in the tableau are always countable.
Thus we can prove the following claim for CTLFB. For more details, see the the Appendix.

I Proposition 26. CTLFB has the countable model property, i.e. if η ∈ CTLFB is
satisfiable, then η is satisfiable in a countable model.

4 Finitary tableaux for CTLFB

4.1 Construction of finitary tableaux
Hereafter we will use a set of new symbols {ni | i ∈ N+}, called iteration parameters,
which will be used instead of natural numbers ni in formulae of type Gni

Q (ϕ) and Uni

Q (ϕ,ψ).
We denote the resulting extended language CTLparFB. Here Gni

Q (ϕ),Uni

Q (ϕ,ψ) ∈ CTLparFB
(i ∈ N+) are not abbreviations; they are treated as actual formulae of CTLparFB. We will
not give any semantics for Gni

Q (ϕ) or Uni

Q (ϕ,ψ) as they will only be used “symbolically” in
the construction of the finite tableau. In particular, the iteration parameter ni is just a
symbol which does not have any actual value. However, intuitively, each parameter ni takes
an “arbitrarily large” but finite and fixed value which represents the number of iterations
of the given recursive operator. The index i (recall i ∈ N+) of the iteration parameter
ni indicates when the “value” of ni has been fixed (with respect to the other iteration
parameters). The “value” of ni may depend on the “values” of all iteration parameters with
smaller subindices, as they have been set earlier. Thus, we may assume that each iteration
parameter is “arbitrarily larger” than all the parameters with smaller indices.

We now re-define the conjunctive and disjunctive components of formulae in CTLparFB as in
the table below (with no changes for the formulae that are not listed there). Note here that,
since we give no semantics for the formulae Gni

Q (ϕ) and Uni

Q (ϕ,ψ), their components are
“symbolical” and are only defined in order to be used with the procedure FullExpansion.

formulae conjunctive component formulae disjunctive component

AGϕ {ϕ,AX AGϕ} ¬AGϕ, ¬Gni
A (ϕ) {¬ϕ,¬AX Gni

A (ϕ)}
EGϕ, Gni

E (ϕ) {ϕ,EX Gni
E (ϕ)} ¬EGϕ, ¬Gni

E (ϕ) {¬ϕ,¬EX Gni
E (ϕ)}

¬E(ϕUψ) {¬ψ,¬ϕ ∨ ¬EX E(ϕUψ)} E(ϕUψ), Uni
E (ϕ,ψ) {ψ,ϕ ∧ EX Uni

E (ϕ,ψ)}
¬A(ϕUψ),¬Uni

A (ϕ,ψ) {¬ψ,¬ϕ ∨ ¬AX Uni
A (ϕ,ψ)} A(ϕUψ), Uni

A (ϕ,ψ) {ψ,ϕ ∧ AX Uni
A (ϕ,ψ)}

The cases with two formulae (e.g. EGϕ and Gni

E (ϕ)), in the table above, have the same
component for both formulae. However, the index i chosen for the iteration parameter ni
with the second component (e.g. EX Gni

E (ϕ)) is chosen differently for the formula on the left
(e.g. EGϕ) and the formula on the right (e.g. Gni

E (ϕ)); see below.
(Left) Here we need to introduce a new parameter ni for the component. The value of
the index i ∈ N+ depends on the context; see the construction of the set FE(∆) below.
(Right) Here the same iteration parameter ni (with the same index i) that occurs in the
original formula is used for the second component as well.

The notions of extended closure and full expansions for any set of formulae ∆ in CTLparFB
are defined as for CTLFB. When creating the set FE(∆) we may need to introduce new
iteration parameters ni for the components of formulae in ∆ (e.g. in the case of EGϕ in the
table above). When this happens, the index i ∈ N+ of ni is chosen to be the smallest integer
i that is greater than all other indexes of iteration parameters that currently occur in ∆.
Note that the same index i can be used for all formulae for which we need to introduce a
new parameter ni (at the same time). Therefore in FE(∆) there is at most one parameter
ni that does not occur in ∆. Also note that for a finite set ∆, the set FE(∆) is also finite.
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{η}P0

{η,EG p,¬(p ∧ EX EG p), p, EX Gn1
E (p),¬EX EG p}S0

{Gn1
E (p),¬EG p}P00

{Gn1
E (p),¬EG p, p ,EX Gn1

E (p),¬EX Gn2
E (p)}S00

{Gn1
E (p),¬Gn2

E (p)}P000

{p, EX Gn1
E (p),¬EX Gn2

E (p)}S000

{p,¬Gn2
E (p)}P0000

{p,¬EX Gn2
E (p)}S0000

{¬Gn2
E (p)}P00000

{¬p}S00001 {¬EX Gn2
E (p)} S00002

{¬p} P000020

Figure 5 Finitary pretableau for η = EG p ∧ ¬(p ∧ EX EG p).

Finally we consider the case when a successor prestate Γ would be created for a state ∆
but there already exists a prestate Γ′ with the same label as Γ. If no iteration parameter ni
occurs in Γ, then we proceed as normally by adding an arrow ∆−→Γ′. Else, we apply the
following “parameter elimination” procedure:

ParElim: Let i be the smallest integer for which ni occurs (possibly many times) in Γ. Now
we first create a set Γ/i by replacing all formulae in Γ that contain ni with the formulae
in the table below. Then we add a successor prestate of ∆ with the label Γ/i and then
continue the finitary pretableau construction as normally.

formula replacement formula replacement

Gni
E (ϕ) ϕ ¬Gni

A (ϕ), ¬Gni
E (ϕ) ¬ϕ

Uni
E (ϕ,ψ), Uni

A (ϕ,ψ) ψ ¬Uni
A (ϕ,ψ) ¬ψ

Note that here ni is intuitively “lowered to zero”, as e.g. ¬G0
A(ϕ) = ¬G0

E(ϕ) = ¬ϕ.
Apart from the changes described above, the finitary pretableau for CTLparFB is constructed

in the same way as the infinitary pretableau for CTLFB.

I Example 27. The formula η = EG p ∧ ¬(p ∧ EX EG p) has the finitary pretableau given in
Figure 5. Here the procedure ParElim is applied when the prestates P0000 and P000020 are
created. Note that this pretableau is finite and rather simple, but it still (in some sense)
encodes all the relevant information of the corresponding infinitary pretableau in Example 17.

The prestate and state eliminations are done exactly as in the infinitary tableau for
CTLFB; they always terminate in finite number of steps and produce a finite final tableau.
We will show that the final finitary tableau for a formula ϕ is open if and only if ϕ is
satisfiable.
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4.2 Equivalence of the two tableaux and their complexity
I Theorem 28. The infinitary tableau for a formula η ∈ CTLFB is open if and only if the
finitary tableau for η is open.

A detailed proof sketch for this equivalence is given in the appendix, but we explain
here the main ideas. The infinite branchings in the infinitary tableau are replaced with
only a single branch in the finitary tableau. For example, for ¬EGϕ, (typically) in the
infinitary tableau there is an infinite branching such that for each n ∈ N, there is an offspring
state in which ¬EX Gn

E(ϕ) occurs, while in the finitary tableau, the single CTLparFB-formula
¬EX Gni

E (ϕ), for some i ∈ N+, is used in the place of all these formulae. We can show that
for sufficiently large values of n, all the corresponding branches in the infinitary tableau have
essentially the same structure. Furthermore, it suffices to only consider these high values of
n when checking whether a state gets eliminated from the infinitary tableau.

Note that in the rules of the finitary tableau, the iteration parameter ni is treated as
an (actual) iteration counter n except that its value is not lowered normally in transitions.
But if the same state is to be repeated in the finitary tableau, then one of the iteration
parameters is replaced with the value zero (by the procedure ParElim). In the corresponding
situation in the infinitary tableau, the similar states could be repeated until some of the
iteration counters goes to zero. When considering only sufficiently large values of n, we may
suppose that n is larger than all the iteration counters that have been set before the value
of n has been fixed. Therefore n goes to zero only after all iteration counters set earlier
have gone to zero. The same thing happens with the finitary tableau rules, as the iteration
parameters ni are lowered to zero in the order in which they have been introduced.

As seen above, the iteration parameter ni is treated as if it had “as large a value as
possible.” Therefore we can show that the branches in the finitary tableau where ni is used
in the place of n, have essentially the same structure as the branches in the infinitary tableau
where sufficiently large values of n are used. As only these branches are relevant for checking
whether the infinitary tableau closes, it follows that the two tableaux are equivalent.

I Corollary 29. The finitary tableau for CTLFB is sound and complete.

I Theorem 30. The complexity of the finitary tableau for CTLFB is EXPTIME-complete.

The upper bound is easy to see by first noticing that the set of different labels of states
in the finitary tableau is exponential with respect to the size of the input formula. The
lower bound is obtained by a simple translation from the bi-modal logic with an additional
reflexive-transitive closure operator. See more details in the Appendix.

I Corollary 31. The satisfiability problem of CTLFB is decidable and EXPTIME-complete.

5 Concluding remarks

The motivation for the logic CTLFB introduced here was two-fold: natural game-theoretic
semantics and uniform boundedness of the time limit for satisfaction of eventualities across
all branches. Both apply well beyond CTL, e.g. also to produce respective versions of the
logics CTL∗ and ATL, to be studied further. While CTLFB is a simple semantic variation
of CTL, it turns out to display some essentially different semantic features, the most striking
being the lack of finite model property. That, in particular, makes capturing its validities
more difficult and requiring an infinitary Hilbert-style axiomatization which will be presented
in a subsequent work. An implementation of the finitary tableau method developed here will
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also be considered in future. Lastly, symbolic model checking of CTLFB on some classes of
finitely presented infinite models is another natural direction for future work.

Acknowledgements We thank the reviewers for useful remarks.
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A Appendix

Proof sketch of Theorem 16

One direction is immediate by Lemma 15, for Γ = ecl(η). For the converse, suppose η ∈ H(s0)
for some state s0 in some Hintikka structure H = (S,R,H). We define the interpreted
transition system M = (S,R,Φ, `) where ` is a state description in S defined as follows:
`(s) := PROP ∩H(s).

We show by induction on the main components of ϕ ∈ ecl(η) that for every s ∈ S:

if ϕ ∈ H(s) thenM, s |= ϕ .

The details are fairly routine. The cases of the temporal operators follow directly from
Lemma 4.

Now, since η ∈ H(s0) we have thatM, s0 |= η.

Proof sketch of Lemma 21

Suppose the elimination phase terminates at some ordinal β, i.e. no states are eliminated
from T ηβ . It suffices to show, by transfinite induction on the ordinal number of elimination
steps α ≤ β taken in the elimination phase, that no satisfiable state ∆ ∈ T ηα is removed
by an application of StateElimCTLFB to T ηα . For that purpose we will prove a somewhat
stronger inductive claim, viz., that for every ordinal α ≤ β:
1. If ∆ ∈ T ηα is satisfiable, then for any EXϕ ∈ ∆ there is a satisfiable state Ψϕ ∈ T ηα such

that ∆ EXϕ−−−→Ψϕ in T ηα .



V. Goranko, A. Kuusisto, and R. Rönnholm 14:17

2. If ∆ ∈ T ηα is satisfiable, then for any ¬AXϕ ∈ ∆ there is a satisfiable state Ψ¬ϕ ∈ T ηα
such that ∆ ¬AXϕ−−−−→Ψ¬ϕ in T ηα .

3. All satisfiable states in T η0 are still present in T ηα .

Note that the inductive hypothesis refers simultaneously to all satisfiable ∆ ∈ T ηα and all
successor formulae EXϕ ∈ ∆ and ¬AXϕ ∈ ∆. We will only give the proof of claim 1; claim
2 is completely analogous, and then claim 3 follows immediately from these.

Assume the claim holds for all γ < α and consider 3 cases for α.
1. Let α = 0. Take a satisfiable ∆ ∈ T ηα and EXϕ ∈ ∆, Then,M, s |= ∆ for some rooted

ITS (M, s). Recall, that all states ∆′ ∈ T η0 such that ∆ EXϕ−−−→∆′ in T η0 are obtained as
full expansions of the prestate Γ = {ϕ} ∪ {ψ | AXψ ∈ ∆ } ∪ {¬ψ | ¬EXψ ∈ ∆ }. Since
EXϕ ∈ ∆, we have thatM, s |= EXϕ, hence there is an R-successor r of s inM such
thatM, r |= ϕ. By the truth definition for successor formulae, it follows thatM, r |= Γ
because {ψ | AXψ ∈ ∆ } ∪ {¬ψ | ¬EXψ ∈ ∆ } is satisfied at every R-successor of s in
M. Then, by Lemma 20, at least one full expansion Ψϕ of Γ is satisfied by (M, r), and,
by construction of the initial tableau, there is a state (with label) Ψϕ in T η0 such that
∆ EXϕ−−−→Ψϕ. Therefore, the state ∆ cannot be removed from T η0 by an application of the
rule StateElimCTLFB .

2. Let α be a successor ordinal. Assuming the claim holds for all γ < α, take a satisfiable
∆ ∈ T ηα . For any EXϕ ∈ ∆, by the argument for α = 0 there is a satisfiable state Ψϕ

in T η0 such that ∆ EXϕ−−−→Ψϕ in T η0 , and hence, by the inductive hypothesis, Ψϕ has
remained intact in T ηα . Therefore, ∆ cannot be removed from T ηα by an application of
the rule StateElimCTLFB .

3. In the case when α is a limit ordinal, T ηα is the intersection of all T ηγ for γ < α and the
argument is essentially the same as in the previous case, but now applied to each T ηγ for
γ < α.

Proof of Lemma 20. Follows easily from Proposition 11.

Proof of Theorem 22. Follows immediately from Lemmas 20 and 21.

Proof sketch of Theorem 23

It suffices to show how from the open final tableau T η one can construct a Hintikka structure
satisfying η. That construction for CTLFB is similar to the construction for CTL described
in [5, Chapter 13], to which the reader is referred for further details. It consists in extracting
a subgraph of the final tableau T η which contains an initial state with the input formula
and represents any ‘logical branch’ of the search procedure encoded by T η. Such a ‘logical
branch’ can be extracted by selecting just one alternative state from every set of states in
T η generated in the pretableau construction phase as full expansions of the same prestate.
The resulting subgraph itself can be taken as a Hintikka structure, with a labelling function
assigning to each state its own label. The proof that it is a Hintikka structure for ecl(η) is
straightforward by the construction of the tableau.

Proof sketch of Proposition 26

Since there are only countably many formulae, each state in a tableau is a finite or countably
infinite set of formulae. Thus each state has at most countably many EX -formulae that
require a successor prestate, one prestate for each EX -formula. In the process of selecting
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‘logical branches’ (cf. the proof of Theorem 23), we eliminate all except for one of the states
generated from a single prestate by the full expansion procedure. Thus, we observe that the
out-degree of each state in the ultimate model is at most countably infinite and each such
state is constructed after finitely many steps from the initial state. Therefore, the whole
model is a countable union of countable sets of states.

Proof sketch of Theorem 28

For simplicity we suppose here that η does not have subformulae of the form E(ϕUψ) or
A(ϕUψ), since these can be treated in a very similar way to the formulae EGϕ and AGϕ.
As the rules of the infinitary and the finitary tableau differ now only in those rules related to
EGϕ, ¬AGϕ and ¬EGϕ, we compare how these formulae are treated in the two tableaux. In
the infinitary tableau, the rules for these formulae typically create infinite branchings, with a
branch for every iteration counter n ∈ N, while in the finitary tableau an iteration parameter
ni is used in the place of every n. We aim to show that it suffices to consider only certain
‘sufficiently large’ values of n in order to determine whether the infinitary tableau closes or
not. Furthermore, we will argue that a branch with such a large value of n has (essentially)
the same structure as a branch in the finitary tableau with the iteration parameter ni. The
equivalence of the two tableaux will then be easy to see from these observations.

We will first define explicitly what we mean above by ‘sufficiently large’ value of n. For
this, consider a prestate Γ whose label contains some formulae of the form EGϕ, ¬AGϕ or
¬EGϕ. Let m ∈ N be the smallest integer that is greater than all iteration counters which
currently occur in the label of Γ (in the infinitary tableau). We now define n := m+ k, where
k is the size of the formula η (i.e. the number of symbols in η). We will show that this (or
any greater) value of n is the only one that needs to be considered as iteration counter when
we create offspring states of Γ.

We first consider the case of the formula ¬EGϕ. If ¬EGϕ occurs in some prestate Γ of
the infinitary tableau, then for each value of n ∈ N the formula ¬EX Gn−1

E (ϕ) occurs in some
offspring state of Γ; excluding those values of n that create patently inconsistent sets. The
only difference between the different values of n here is that n is lowered to zero at a different
stage in the tableau construction process. We first observe that if a state with certain value
of n survives the state elimination process, then all the larger values will survive as well.
Therefore if a state with some lower than m+ k value is not eliminated, then m+ k is not
eliminated either. But on the other hand, if a state with some larger than m+ k value of n
is not eliminated, then the state with n = m+ k cannot be eliminated either. In order to see
this, we first observe the following facts:
1. n = m+ k cannot go down to zero before all iteration counters that have been set before

n have gone down to zero.
2. After all other other iteration counters set before n = m+ k have gone to zero, all the

nested temporal operators EX or AX will be removed before n goes to zero.

So after n = m+ k has gone to zero, the elimination of the reached state depends only on
the values set after n. If this state will be eliminated, then it is easy to see that it would be
eliminated even if some larger than m+ k value of n was selected, since all the values, set
after fixing n, can always be arbitrarily larger than n.

The iteration parameter ni in the finitary tableau is treated essentially the same way as
the value n = m+k in the infinitary tableau. This is simply because ni cannot be ‘lowered to
zero’ unless a state with the same label is to be repeated in the tableau, and all the iteration
parameters set before ni are first eliminated (recall the procedure ParElim). Hence, it is easy
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to see that a state with n = m+ k in the infinitary tableau is eliminated if and only if the
state with ni in the finitary tableau is eliminated.

We then consider the case of ¬AGϕ. If ¬AGϕ occurs in some prestate Γ of the infinitary
tableau, then for each value of n ∈ N the formula ¬AX Gn

A(ϕ) occurs in some offspring state
of Γ (except those values of n that create patently inconsistent sets). Hereafter the reasoning
can be done similarly as for the formula ¬EGϕ.

Finally we consider the case of EGϕ. If EGϕ occurs in some prestate Γ of the infinitary
tableau, then all the formulae EX Gn−1

E (ϕ) (n ∈ N) occur in every offspring state of Γ.
Consider some offspring state ∆ of Γ. When creating successor prestates for ∆, we must
create a successor prestate Γn for each value n ∈ N and include Gn−1

E (ϕ) in the label Γn. In
order for ∆ to survive the state elimination process, the following must hold for every n ∈ N:

Γn has an offspring state ∆n which survives the state elimination process. (Cn)

We first observe that if the condition (Cn) does not hold for some n < m+ k, then it cannot
hold for n = m+ k, either. But, with similar observations as in the case for ¬EGϕ, we can
also see that if (Cn) does not hold for some n > m+ k, then it cannot hold for n = m+ k

either. Hence it suffices that we only consider the case n = m+ k to see whether (Cn) holds
for every n ∈ N. With similar reasoning as above we see that this case is essentially the same
as the use of iteration parameter ni in the finitary tableau.

Proof sketch of Theorem 30

(A) Upper bound. The number of formulae (possibly containing iteration parameters) that
are used in a tableau for an input formula η, is linear in |η|. Thus, the number of different
labels of states (prestates) is exponential in |η|. Therefore, the number of nodes appearing in
the tableau construction is, likewise, exponential in |η|. The different construction maneuvers
are computationally straightforward and can easily be done deterministically. Therefore,
only exponentially many (in |η|) steps are required for carrying out the tableau procedure.

(B) Lower bound. Consider standard modal logic with the reflexive and transitive closure
operator, i.e., the logic generated by the grammar

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) |♦ϕ |♦∗ϕ

where p is a proposition symbol. The semantics is the standard one, with ♦∗ denoting the
diamond interpreted by the reflexive-transitive closure of the binary relation interpreting ♦. It
is well known that the satisfiability problem of this logic is EXPTIME-complete; see, e.g., [3].
Consider the simple translation T from this logic into CTLFB, preserving atomic propositions
and Boolean connectives, and mapping T (♦ϕ) to EX T (ϕ) and T (♦∗ϕ) to EFT (ϕ). It easy
to see that this translation preserves equivalence, i.e., precisely the same points of any model
satisfy ϕ and T (ϕ).
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Abstract
The recently introduced streaming table concept, a fully native representation of streaming data
inside a DBMS, enabled modern data-intensive applications with one-time queries (OTQs) and
continuous queries (CQs) capabilities on both streaming and standard relational tables. In this
paper, we fully acknowledge the temporal nature of streaming tables and we propose to go one
step further and integrate them in a temporal DBMS context, where time management is native.
Our aim is to break the traditional barrier between the streaming and the temporal worlds,
offering complete interoperability between streams and temporal data. To this end, we present a
continuous temporal algebra supporting both OTQs and CQs seamlessly on streaming, standard
and temporal relational tables. We further show how the transition from continuous to one-time
semantics can be managed by defining suitable translation rules, which can also be used as a
basis for the implementation of the proposed continuous algebra in a temporal DBMS.
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1 Introduction

Modern data-intensive applications, including for instance advanced surveillance (e.g., finan-
cial market enforcement), monitoring applications (e.g., air quality monitoring, Intelligent
Transportation Systems - ITSs), military applications (e.g., platoon tracking), network applic-
ations (e.g., intrusion detection), more and more often require an increasingly wider range of
data management capabilities in order to be fully supported. First of all, they need to manage
very large quantities of continuously streaming data over which complex continuous queries
(CQs) have to be efficiently executed. Unlike typical applications relying on Data Stream
Management Systems (DSMSs) [23], such as sensor-data analysis and geospatial services, not
only needs the most recent data to be retained and managed, but the whole incoming streams
have to be stored as historical data in order to make them fully persistent and available
to future analysis. Moreover, there is the need to be able to easily perform everything we
are accustomed to do in a traditional Data Base Management Systems (DBMSs) context,
including one-time queries (OTQs) also involving standard relational data, and possibly in a
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15:2 A Relational Algebra for Streaming Tables

temporal DBMS context, allowing for complex temporal analytics and management of data
versioning.

Being able to query recent, historical and non-temporal relational data by means of
both CQs and OTQs in a uniform and powerful way, and with the expressive power of
standard RDBMS’s languages and algebras, is certainly a very strong requirement. The
very diversified and lively panorama of data management systems, including streaming
extensions to traditional DBMSs (e.g., [9, 10, 21]), big data processing engines, big data
stores and stream processing frameworks (e.g., [7, 22]), is still trying to fully address it.
One first step towards this objective has been performed in [6], where we proposed a fully
native representation of streaming data into a DBMS. The introduction of a new kind of
table, called the streaming table, allowed us to offer a persistent structure managing both
historical and streaming data in a way completely transparent to users. Streaming tables
can also be straightforwardly involved in OTQs and CQs, possibly together with standard
relational tables, thus successfully merging the two worlds of RDBMSs and streaming data
management.

Heading further in this direction, in this paper we aim at breaking another barrier: the
one currently present between streaming and temporal data management. Even if streaming
data is inherently temporal in nature, current systems and research proposals seem unable to
build on this: on the one hand, temporal RDBMSs are not able to deal with streams, on the
other hand current DSMSs and stream processing frameworks only provide limited temporal
querying possibilities or do not deal with versioned data at all [7, 22]. By fully acknowledging
the temporal nature of streaming data, we propose to integrate streaming tables in a temporal
context where time management is native. Our final aim is to offer temporal RDBMSs’
querying capabilities and data versioning even on streaming data, without overturning the
common understanding of streaming data and CQs. In this way, data can be easily managed
and queried by benefitting from the best of the relational, streaming and temporal worlds.

In this paper, we lay the semantic foundation for our objective by introducing a continuous
temporal algebra for streaming, temporal, and standard tables. The proposed algebra,
denoted as CT A , extends with windowing operators a temporal algebra T A with well-
defined semantics. Window operators take streaming tables as input and produce data
snapshots at subsequent validity time points. Continuous and one-time queries are specified
as algebraic expressions over the three different kinds of tables. In particular, OTQs can be
formulated as T A expressions and their semantics relies on the traditional T A definition. CQs
can be formulated as CT A expressions over standard and temporal tables and windowing
expressions on streaming tables, and their semantics relies on a sampling operator that
evaluates continuous temporal expressions at the required time points. In this way, we
introduce a sort of on-demand semantics, where the CQs are executed when query results are
needed and required data are available. This approach is highly flexible in that it allows to
combine in a unified framework several continuous query features proposed in the literature
(e.g., real time and historical analytics, backward and forward sliding windows, tumbling and
hopping windows) but for which a well-founded semantics and full implementation agenda is
still lacking, and to interoperate streaming data with non-temporal data and archival data
stored in temporal tables in a consistent way.

As an application example in the context of financial market surveillance, we consider
tracking of insider trading activities, that is the buying or selling of a security (e.g., stock
options) while in possession of nonpublic material information (e.g., up/downgrade by a rating
agency, unexpected revisions to earning results or projections, mergers and acquisitions news)
about the security [17]. Since insider trading undermines investor confidence in the fairness
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and integrity of the financial markets, control bodies like the SEC have the detection and
prosecution of insider trading violations as one of their market surveillance and enforcement
priorities. Whereas early (i.e., when the material information is not yet publicly available)
detection of insider trading patterns could allow to prevent frauds [13], their a posteriori
(i.e., when the material information is of public domain) verification is most important for
triggering and pursuing prosecution of illegal activities. Assume that option trading data are
available through the streaming table OPTION_TRADES, with schema

OPTION_TRADES(OPTION,STOCK,CLASS,STRIKE,EXPIR,CONTRACTS|T)

automatically fed by the stock market information system, containing data concerning the
negotiated option, the underlying stock, the trade timestamp (i.e., the implicit attribute
T defined with a granularity of one second), the option class (call or put), strike price and
expiration, and the number of contracts traded. Further, assume that relevant news are
selected by several sources (e.g., press releases and financial news stories) and stored in a
temporal table NEWS, with schema

NEWS(STOCK,TYPE,SOURCE|T)

containing information about the publication date (i.e., the implicit attribute T defined with
a granularity of one day), the mentioned stock, the news type and source. In order to trigger
an investigation procedure, an anomalous trading volume of an option, preceding by at most
one week the public release of some relevant news concerning the underlying stock, needs to
be identified. As anomalous volume, we consider a daily trading volume ten times higher than
the average daily volume over the past month. Following our proposal, the suspect stock-day
pairs deserving further investigations could be easily retrieved via a continuous query running
at the beginning of each trading day and performing the temporal join between the relevant
time windows of the streaming table OPTION_TRADES and the standard table NEWS. Notice
that such a detection query could not be executed in a “classical” stream management system,
because, when the windows used for computing volumes are evaluated, the relevant news
have not been published yet. Hence, stream data must be stored in a streaming table for
our purpose, and time windows evaluated in a delayed mode (i.e., when all relevant news
will be available) as actually supported by the CQ on-demand semantics. The temporal join
involved in the query will produce temporally consistent solutions over the past time window
outputs of the streaming table OPTION_TRADES and the temporal table NEWS.

After revising the notion of streaming table (Sec. 2), this paper provides the following
contributions:

it introduces the continuous temporal algebra CT A supporting both OTQs and CQs
seamlessly on streaming, standard and temporal relational tables (Sec. 3 and Sec. 4);
it proposes a correct translation of the continuous temporal model presented so far into
the temporal model where continuous queries are transformed into standard temporal
queries, making it possible to instantiate the framework in the context of a standard
temporal RDBMS (Sec. 6).

The paper is complemented by Sec. 5, expressing the reference example in the CT A algebra
and Sec. 7, comparing our contribution with the state of the art and drawing conclusions.

2 Preliminaries

The continuous temporal data model we propose relies on a multi-temporal relational model
[16], where temporal and non-temporal standard tables coexist, extended with streaming
tables. In this Section we provide some preliminaries for its specification by reviewing the
notion of streaming table, first introduced in [6].
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15:4 A Relational Algebra for Streaming Tables

First of all, we assume a discrete, ordered and unbounded time domain T = {0, 1, 2, . . . ,∞}
composed of chronons [18], where 0 stands for the earliest time. A chronon is a non-
decomposable time interval of fixed unit duration used to represent time instants in the
discrete model. We further assume that T has the semantics of valid time [18]. In order to
represent a duration of time, we assume time spans [18] belong to a domain I composed of
all possible multiples of a chronon duration (including the unbounded value ∞).

As far as the temporal model is concerned, a temporal relation R with explicit schema
R(A1, . . . , An), with Ai ∈ A (1 ≤ i ≤ n) where A is the set of attribute names, is represented
as R(A1, . . . , An|T ) where T is the implicit timestamp attribute with domain T . If r is a
tuple from R then r.Ai denotes the value of Ai in r and T (r) denotes the tuple timestamp.
Moreover, given any time instant t ∈ T , we denote with Rt the content of R at time t. Notice
that we assume here an abstract temporal database, according to the terminology introduced
in [11], to be used as a representation-independent data model. As far as non-temporal tables
are concerned, we assume they are virtually converted to temporal tables to be interoperated
with temporal tables and streaming tables by using a suitable temporal conversion map [8].
In particular, we assume each non-temporal table R to be virtually converted to a temporal
table R′ = {(r, τ) | r ∈ R, τ ∈ T }.

As far as streams are concerned, we adopt the definition of continuous data stream (or
simply stream) provided in [3], that is a potentially infinite stream of timestamped relational
tuples having a fixed schema. A streaming table [6] is a relational table where streaming data
enter and turn historical by remaining stored for a user-defined long period, ideally forever.
Any streaming table inherits the temporal nature of the data it stores. Specifically, it is an
event table [26, Ch. 16], that is a special kind of temporal table that stores event data and
their occurrence time, for a limited time span named historical period. As time goes by, we
assume the oldest data exiting the historical period are subject to vacuuming [26, Ch. 23].

I Definition 1 (Streaming table). A streaming table S with explicit schema S(A1, . . . , An)
and historical period hp ∈ I is an event table, denoted as Shp, with schema S(A1, . . . , An|T ),
where T is the implicit timestamp attribute. The content of Shp at the time instant t ≤ now
(where now represents current time), i.e. Sthp, is the set of tuples such that the timestamp
of each tuple s satisfies T (s) ≥ max(t − hp, 0). If positive, t − hp represents the chronon
preceding t by a time span of hp chronons. A streaming table is subject to continuous writes
in timestamp order, that is for any s1 and s2 in Sthp, T (s1) < T (s2) iff s1 arrived before s2.

For ease of notation, in the following, whenever possible, we will use S in place of Shp. In
practice, in order to implement this insertion semantics, systems cope with out-of-order and
skewed inputs. Interested readers can refer to [27] for an in-depth discussion of this aspect.
In this paper we assume an input manager that guarantees in-order tuple arrival.

In the following, let R be the set of all temporal tables and S be the set of all streaming
tables. Notice that S ⊆ R, as streaming tables are a special kind of temporal tables (one
effect of the insertion semantics is that timestamps in a streaming table are always bounded
by the current time now, whereas temporal tables may also contain timestamps greater than
now to represent proactively inserted future data).

3 Querying streaming tables with OTQs: the temporal algebra T A

In OTQs a streaming table is dealt with as a standard (event) table and it undergoes queries
expressed in a relational algebra T A with the following temporal operators: selection σT ,
projection πT , Cartesian product ×T , union ∪T , difference −T , and grouping ϑT . Each of
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Table 1 T A operator semantics.

Operator Signature Operator semantics

Selection σT : R×P → R σT
p (R) := {(r, τ) | (r, τ) ∈ R ∧ p(r)}

Projection πT : R× 2A →R πT
B(R) := {(r.B, τ) | (r, τ) ∈ R}

Cart. prod. ×T : R×R → R R1 ×T R2 := {(r1 ◦ r2, τ) | (r1, τ) ∈ R1 ∧ (r2, τ) ∈ R2}
Union ∪T : R×R → R R1 ∪T R2 := {(r, τ) | (r, τ) ∈ R1 ∨ (r, τ) ∈ R2}

Difference −T : R×R → R R1 −T R2 := {(r, τ) | (r, τ) ∈ R1 ∧ (r, τ) /∈ R2}
Grouping ϑT : R× 2A × 2F →R Bϑ

T
F (R) := {(r.B ◦ Z, τ) | (r, τ) ∈ R∧

rg = {(r′, τ) ∈ R | r′.B = r.B} ∧ Z = (f1(rg), . . . , fh(rg))}
Extend ε : R×A → R εU (R) := {(r ◦ U, τ) | (r, τ) ∈ R ∧ U = τ}
Timeslice τ : R× T → R τt(R) := {(r, τ) | (r, τ) ∈ R ∧ τ = t}

these temporal operators is a generalization of a standard relational operator where the
T -superscript does not appear (derived operators, like the join ./T , can also be considered as
usual). The definition of these operators is borrowed from [12] and, thus, T A supports a
sequenced semantics in terms of extended snapshot reducibility. To this purpose, in order to
support operators with predicates and functions that reference the timestamp, the additional
extend operator εU copies the timestamp T to the additional attribute U . Notice that τt is
an “extended” timeslice operator that maintains the timestamps, such that its result is still
a temporal relation representing the snapshot valid at time t. Non temporal operators may
be needed to express non-sequenced parts of queries (e.g., to join data belonging to different
snapshots).

The semantics of the temporal algebra operators is shown in Table 1, where if (r, τ) is a
tuple of a temporal relation with explicit schema R(X) we consider r (with schema X) its
explicit part and τ the tuple timestamp, P is the set of all well-defined predicates p over
the explicit attributes X of R, B ⊂ X is a subset of schema attributes, F = {f1, . . . , fk}
is a set of aggregation functions, and ◦ is a tuple concatenation operator. Notice that the
Cartesian product applied to at least one streaming table returns a streaming table, the
union operator returns a streaming table when both operands are streaming tables and the
difference operator returns a streaming table when the first operand is a streaming table.

We assume readers are familiar with the syntax and semantics of relational queries1 and
we only provide a concise yet informal semantics of OTQs.

I Definition 2 (Semantics of one-time queries over streaming and temporal tables). Given a
T A expression Q = ET A (S1, . . . , Sn, R1, . . . , Rm), over n streaming tables S1, . . . , Sn, with
n ≥ 1, and m temporal tables R1, . . . , Rm, with m ≥ 0, its semantics is the result of the
semantics of the involved temporal operators for which snapshot reducibility holds, that is
for each t ∈ T : τt(Q) = ET A (τt(S1), . . . , τt(Sn), τt(R1), . . . , τt(Rm)).

4 Querying streaming tables with CQs: the continuous temporal
algebra CT A

As we have mentioned, streaming tables can also be involved in CQs. A continuous query
Qc is a query that is issued once, and then logically runs continuously until terminated by
the user. Any streaming table S referenced in a continuous query must be accessed through

1 Interested readers can refer to [2] for an in-depth study.
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a sliding window w that specifies the boundaries of the range of tuples in S to be used for
query evaluation. The continuous temporal algebra CT A we propose extends the set of
windowing operators usually adopted in the streaming context [24], by generalizing their
semantics to generate and operate on, possibly through aggregation, sequences of windows
instead of single windows. Thus, CT A extends the temporal algebra T A (T A ⊆ CT A ) with
the introduction of such generalized windowing operators.

For ease of notation, we start introducing some utility operators. The definitions of
CT A operators follow.

4.1 Utility operators
The following operators provide useful transformations of streaming tables.

I Definition 3 (Substreaming). The substreaming operator Sub : S × T 2 → S restricts a
streaming table S ∈ S to only tuples such that their timestamp belongs to an interval [t1, t2]:

Sub[t1,t2](S) := {(s, τ) | (s, τ) ∈ S ∧ t1 ≤ τ ≤ t2}.

For instance, the expression Sub[2016-01-01 00:00:00, 2016-12-31 23:59:59](OPTION_TRADES) builds
from OPTION_TRADES a streaming table containing the trades executed in 2016 only.

I Definition 4 (Streaming Table Partition). The partitioning operator ζ : S × 2A → 2S
partitions the streaming table S ∈ S into a set of streaming tables containing the tuples of S
grouped by their attributes in B (as for the SQL group by mechanism, a partition is created
for each combination of the values of the attributes B1, . . . , Bk in B):

ζB(S) := {S′ | (s, τ) ∈ S ∧ S′ = {(s′, τ ′) | (s′, τ ′) ∈ S ∧ s′.B = s.B} }.

For instance, the expression ζCLASS(OPTION_TRADES), partitioning OPTION_TRADES with
respect to the values of CLASS, evaluates to a set containing two streaming tables, one
containing all the trades on call-type options and the other containing all the trades on
put-type options present in OPTION_TRADES.

4.2 CT A operators
In order to support continuous queries over streaming tables, CT A introduces two classes of
operators: the former includes sliding window operators, the latter includes window flattening
and aggregation operators. For the sake of clarity, we give an intuition of these two classes
of operators that work in a complementary fashion: sliding window operators generate a
sequence of portions of a given streaming table S according to a sliding window specification,
thus resulting into a sequence of windows over S; window flattening operators and window
aggregation operators reduce the result of a sliding window operator to a streaming table.
Both classes of operators include one standard and one partitioned version of each operator.

4.3 Sliding window operators
In accordance with commonly adopted definitions of sliding windows [24], sliding window
operators in CT A are time-based and count-based. Standard sliding window operators apply
to a streaming table S and generate a temporal relation of streaming tables, each made of
portions of S. More precisely, such a temporal relation is a streaming table, thus resulting in
a streaming table of streaming tables (we denote by S∗ the set of all possible streaming tables
of streaming tables). Definitions of (backward and/or forward) standard sliding window
operators are provided below.
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I Definition 5 (Time-based Sliding Window). The time-based sliding window operator
wtime : S × I2 → S∗ over a streaming table S ∈ S creates a streaming table of streaming
tables with a window size of duration ω1 ≥ 0 before and ω2 ≥ 0 after the timestamps around
which it is computed:

wtime
[ω1,ω2](S) := {(S′, τ) |S′ = Sub[τ−ω1,τ+ω2](S)}.

For instance, the expression wtime
[1week,0](OPTION_TRADES) defines a streaming table whose

tuples, for each timestamp τ , are in turn streaming tables extracted from OPTION_TRADES
by restricting it to the 1-week wide time window preceding τ .

I Definition 6 (Count-based Sliding Window). The count-based sliding window operator
wcount : S × N2 → S∗ over a streaming table S ∈ S creates a streaming table of streaming
tables with a window containing the closest n1 ≥ 0 tuples valid before and the closest n2 ≥ 0
tuples valid after the timestamps around which it is computed:

wcount
[n1,n2](S) := {(S′, τ) |S′ = Sub[t1,t2](S), |Sub[t1,τ−1](S′)| = n1, |Sub[τ+1,t2](S′)| = n2}.

In the definition of (S′, τ) above, in case |Sub[t1+1,τ−1](S′)| < n1 but |Sub[t1,τ−1](S′)| =
n′1 > n1, we assume n′1 − n1 tuples all valid at t1 are, as customary in the streaming context,
non-deterministically chosen and removed from S′. Similarly, in case |Sub[τ+1,t2−1](S′)| <
n2 but |Sub[τ+1,t2](S′)| = n′2 > n2, we assume n′2 − n2 tuples all valid at t2 are non-
deterministically chosen and removed from S′. For instance, the expression wcount

[1,1] (OPTION_
TRADES) defines a streaming table whose tuples, for each timestamp τ , are in turn streaming
tables extracted from OPTION_TRADES and containing one tuple immediately preceding τ ,
the tuples valid at τ (if they exist), and one tuple immediately following τ .

The partitioned version of each sliding window operator applies to a streaming table S
and generates a set of streaming tables of streaming tables, resulting from the application of
the corresponding standard sliding window operator to each streaming table obtained by the
partition of S according to a given set of attributes B. The operators’ definitions follow.

I Definition 7 (Time-based Partitioned Window). The time-based partitioned sliding window
operator W time : S × 2A×I2 → 2S∗ over a streaming table S ∈ S creates a set (of streaming
tables of streaming tables) composed of the time-based sliding windows (with a window size
of duration ω1 ≥ 0 before and ω2 ≥ 0 after the timestamps around which it is computed)
computed over the streaming tables into which S is partitioned according to the attributes
in B:

W time,B
[ω1,ω2] (S) := {wtime

[ω1,ω2](S′) |S′ ∈ ζB(S)}.

For instance, the expression W time,OPTION
[0,1hour] (OPTION_TRADES), involving a time-based parti-

tioned window, defines a set of streaming tables, each one corresponding to a different option,
composed of the streaming tables whose tuples timestamped with τ are the streaming tables
containing the trades involving that option negotiated in the hour that follows τ .

IDefinition 8 (Count-based Partitioned Window). The count-based partitioned sliding window
operatorW count : S×2A×N2 → 2S∗ over a streaming table S ∈ S creates a set (of streaming
tables of streaming tables) composed of the count-based sliding window (with a window
containing the closest n1 ≥ 0 tuples valid before and the closest n2 ≥ 0 tuples valid after the
timestamps around which it is computed) computed over the streaming tables into which S
is partitioned according to the attributes in B:

W count,B
[n1,n2] (S) := {wcount

[n1,n2](S′) |S′ ∈ ζB(S)}.
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15:8 A Relational Algebra for Streaming Tables

For instance, the expression W count,STOCK
[10,0] (OPTION_TRADES), involving a count-based par-

titioned window definition, denotes a set of streaming tables, each for a different stock,
composed of the streaming tables whose tuples timestamped with τ are the streaming tables
containing the 10 most recent option trades preceding τ concerning that stock.

4.4 Window flattening operators
Window flattening operators allow for normalizing a streaming table (or a set of streaming
tables) of streaming tables resulting from a time-based or a count-based sliding window
operator to a flat streaming table. As for sliding window operators, the window flattening
operator is introduced both in its standard and in its partitioned version.

I Definition 9 (Window Flattening). The window flattening operator ϕ : S∗ → S over a
streaming table of streaming tables w creates a streaming table composed of the tuples
belonging to the streaming tables in w valid at the time at which the flattening is computed:

ϕ(w) := {(εU (s), τ) | (S, τ) ∈ w ∧ s ∈ S}.

For instance, the expression ϕ(wtime
[1hour,0](OPTION_TRADES)), involving a window flattening

operator, builds a streaming table whose tuples with timestamp τ are all the tuples belonging
to the streaming table wtime

[1hour,0](OPTION_TRADES) valid at τ , that is belonging to the 1-hour
wide time window of OPTION_TRADES preceding τ . Such tuples come out all timestamped with
τ in the result but preserve the value of the original timestamp they had in OPTION_TRADES
converted into an explicit attribute U .

I Definition 10 (Partitioned Window Flattening). The partitioned window flattening operator
Φ : 2S∗ → S over a set of streaming tables of streaming tables W creates a streaming table
composed of the tuples belonging to the streaming tables in w ∈ W valid at the time at
which the flattening is computed:

Φ(w) := {(εU (s), τ) |w ∈W ∧ (S, τ) ∈ w ∧ s ∈ S}.

For instance, the expression Φ(W count,OPTION,CLASS
[4,0] (OPTION_TRADES)), involving a parti-

tioned flattening operator, retrieves the data necessary to display, for each time point and
for each stock option, a book with the five latest put trades and the five latest call trades.

4.5 Window aggregation operators
Window aggregation operators are defined to compute aggregate data over time-based or
count-based sliding windows, according to a set of aggregation functions F . As for operators
above, both standard and partitioned versions of the window aggregation operator are
provided.

I Definition 11 (Window Aggregation). The sliding window aggregation operator ϑ : S∗ ×
2F → S over a streaming table of streaming tables w creates a streaming table having as
attributes the values of the aggregates in F = {f1, . . . , fh} calculated over the streaming
table in w valid at the time at which the aggregation is computed:

ϑF (w) := {(Z, τ) | (S, τ) ∈ w ∧ Z = (f1(S), . . . , fh(S))}.

The window aggregation operator ϑ can be used in queries for computing aggregate data
over time-based or count-based sliding windows. For each time point τ , aggregates can



F. Grandi, F. Mandreoli, R. Martoglia, and W. Penzo 15:9

Table 2 CT A operators combinations.

α ω legal CT A expressions involving windows

ϕ | ϑ wtime | wcount ϕ(wtime
[ω1,ω2](S)), ϕ(wcount

[n1,n2](S)), ϑF (wtime
[ω1,ω2](S)), ϑF (wcount

[n1,n2](S))
Φ | Θ W time |W count Φ(W time,B

[ω1,ω2](S)), Φ(W count,B
[n1,n2] (S)), BΘF (W time,B

[ω1,ω2](S)), BΘF (W count,B
[n1,n2] (S))

be computed over the timestamped tuples belonging to the streaming table S in w valid
at time τ ; aggregate functions MIN, MAX, COUNT (and SUM, AVG if numeric), FIRST-VALUE,
LAST-VALUE, NTH-VALUE(n), can be used on the explicit attributes of S, whereas aggregate
functions FIRST, LAST, DURATION can be used on the timestamps of S. For instance, the
expression ϑDURATION(wcount

[9,0] (OPTION_TRADES)) returns, for each time point, the width of
the time window containing the 10 most recent option trades.

I Definition 12 (Partitioned Window Aggregation). The partitioned sliding window aggrega-
tion operator Θ : 2S∗ × 2A × 2F → S over a set of streaming tables of streaming tables W
creates a streaming table having as attributes the grouping attributes in B and the values of
the aggregates in F = {f1, . . . , fh} calculated over the streaming tables w belonging to W
valid at the time at which the aggregation is computed:

BΘF (W ) := {(S.B ◦ Z, τ) |w ∈W ∧ (S, τ) ∈ w ∧ Z = (f1(S), . . . , fh(S))} .

The partitioned window aggregation operator Θ can be used in queries for computing
aggregate data over partitioned time-based or count based sliding windows. Also in this
case, aggregate functions acting on explicit attributes or timestamps can be used. For
instance, the expression EXPIRΘCOUNT(OPTION)(EXPIRW

time
[0.5hour,0.5hour](OPTION_TRADES)),

at each timepoint and for each expiration date, returns the number of options with that
expiration date traded in a 1-hour wide time window centered around the timepoint.

Notice that the four types of sliding window operators (wtime, wcount, W time, W count) can
be freely declared in querying streaming tables but they can be used in an algebraic expression
only in combination with either a window flattening operator (ϕ, Φ) or a window aggregation
operator (ϑ, Θ), which always produce a streaming table. Formally, a windowing expression
applied to a streaming table S is of the form α(ω(S)) where the possible combinations
are shown in Table 2. Notice that, standard (resp., partitioned) sliding window operators
can only be combined with their stardard (resp., partitioned) window flattening or window
aggregation counterparts. These constraints ensure that the value of continuous expressions
augmenting T A is always a streaming table, so that the resulting continuous algebra CT A is
closed with respect to (streaming and) temporal tables.

4.6 Supporting continuous queries
In order to support continuous queries, a sampling operator is formally introduced to evaluate
an algebraic expression expressed in the continuous temporal algebra CT A at the required
time points. In line with many CQ specification syntaxes (e.g. [3]), we assume a continuous
query is always equipped with a slide parameter sl representing the query evaluation period,
and with a further optional alignment parameter a specifying the position of the evaluation
point within the evaluation period. Moreover, we also consider a delay parameter δ specifying
that the evaluation of the query at time t has actually to be executed at time t+ δ. The slide
parameter can be either a user-supplied time span or the special parameter REALTIME, that
means that the query is re-evaluated as new tuples arrive. The alignment value is expressed
as a period of time to be counted from the beginning of the time granules representing the

TIME 2017



15:10 A Relational Algebra for Streaming Tables

evaluation periods (and is ignored in case sl=REALTIME). Parameters sl, a and δ used for
sampling CT A expressions allow to generalize the usage of the so-called tumbling windows
(and hopping windows) for producing continuous query results.

I Definition 13 (Sampling Operator). At execution time t, the sampling operator ξ : CT A ×
T × I4 → S, with an historical period parameter hp, a sliding parameter sl, an alignment
parameter a, causes the evaluation of the continuous algebra expression E ∈ CT A at time
points t0, t1, . . . , tk ≤ t only, where ti = (d t−hp−asl e + i) · sl + a. If a delay parameter δ is
specified, it forces the evaluation of the expression E to be actually executed at time t+ δ:

ξt,δhp,sl,a(E) :=
k:tk≤t⋃
i=0

τti(Et+δ) .

For example, if sl=“1 day”, the continuous execution must produce one result per day: if
the alignment parameter is a=“30 minutes”, the results are produced each day at “00:30” in
the morning, whereas if the alignment parameter is a=“16 hours”, the results are produced
each day at 4 p.m.. Notice that different results are produced with respect to the desired
alignment, since time windows are defined with reference to the execution times, which
depend on the alignment. For instance, assuming daily trading hours range from 9 a.m. to 4
p.m., the sliding window wtime

[1day,0](OPTION_TRADES) executed via a sampling with sl=“1 day”
and a=“6 hours” includes all the trades executed the day before (from 9 a.m. to 4 p.m.) to
contribute to a result produced daily at 6 a.m., but if it were executed with a=“12 hours”
it would include all the trades executed in the afternoon of the day before (from noon to 4
p.m.) and in the morning of the current day (from 9 a.m. to noon) to contribute to a result
produced daily at noon.

The delay parameter, when specified, ensures that the evaluation of the expression E
valid at time t is actually computed at time t + δ: in general, the results (both valid at
time t) computed at time t and at time t+ δ may differ as some required contents of the
temporal relations may not be available at time t yet, or even because their contents may
have been retroactively changed after t (and also tuples in the streaming tables might be
inserted with a little delay with respect to their validity, e.g., to enforce the right timestamp
order). Consider, for instance, our example of insider trading detection that, in order to
produce one result per trading day, needs to compare the trading volumes evaluated using
the streaming data valid on a 1-month window preceding the execution time and on a 1-day
window following the execution time (to this purpose, it would be sufficient to delay the
execution at the end of the day). However, it also needs to join such volumes with the news
concerning the same stocks published within one week. Since we can assume relevant news
are selected and inserted by human analysts, we should also consider that they are likely
inserted into the NEWS table retroactively, with the delay of some days with respect to their
publication date. Hence, we should reasonably allow for a delay of, say, 10-15 days in the
execution of the CQ in order to have all the relevant news available, otherwise the result of
the join would always be empty and the insider trading cases could not be detected.

Notice that, when the streaming tables involved are defined at a finer time granularity
than sl (e.g., sl=“1 hour” but new tuples can be inserted into the streaming tables at every
second), the values of E are usually defined for many more time points than required by
the query. Hence, the sampling operator can be used to exactly specify the query execution
timepoints of interest. This is also the reason for which we said in Sec. 2 that non-temporal
tables (appearing in the expression E) are considered virtually converted into temporal tables
that contain an infinite number of tuples: only the tuples timestamped with one of the
timepoints of interest have actually to be generated.



F. Grandi, F. Mandreoli, R. Martoglia, and W. Penzo 15:11

According to the generally accepted definition of continuous query semantics [15], we
define the semantics of a continuous query Qc,δhp,sl,a denoted by an algebraic expression E in
the continuous temporal algebra CT A to be equal to the sampling of E at the time points
specified by the slide parameter sl and the alignment parameter a.

I Definition 14 (Semantics of continuous queries over streaming and standard tables). Let
ECT A = ET A(α1(ω1(S1)), . . . , αn(ωn(Sn)), R1, . . . , Rm) be an algebraic expression in CT A
over n streaming tables S1, . . . , Sn, with n ≥ 1 , and m temporal tables R1, . . . , Rm, with
m ≥ 0, where ET A is an expression in T A, and αi and ωi, i = 1, . . . , n, are window
aggregation/flattening and sliding window operators, respectively.

The result at time t of the continuous query Qc,δhp,sl,a with historical period parameter hp,
slide parameter sl, alignment parameter a and delay parameter δ, expressed by ECT A is the
streaming table with historical period hp given by the sampling ξt,δhp,sl,a(ECT A ) of ECT A at
the time points specified by sl with alignment a, and evaluation delayed by δ, until t.

It is worth noting that, as the CQ semantics is founded on the sampling operator, we actually
implement a CQ on-demand semantics that produce at the execution query time successive
query evaluations at past query points, thus in a delayed mode (also when δ=0). Moreover,
the semantics of joining streaming tables and temporal and standard tables as specified in
the algebraic expression ET A refers to the standard temporal semantics. In this way, we
implement different kinds of joining semantics according to the involved tables. For instance,
when temporal tables are involved, the joining results will be temporally consistent according
to the required time points in the past. When, instead, standard tables are involved, the
joining semantics allow users to “interoperate” current data with past streamed data.

5 Example reprise

In order to express the query solving our insider trading detection example problem presented
in Sec. 1, the following partitioned sliding windows need to be defined:

WD = W time,STOCK
[0,1day] (OPTION_TRADES), WM = W time,STOCK

[1month,0] (OPTION_TRADES) .

The former is a 1-day wide sliding windows following the evaluation time, partitioned
according to the STOCK values. The latter is a 1-month wide sliding windows preceding the
evaluation time, partitioned according to the STOCK values. Then, for our convenience, we can
define the following streaming table expressions involving partitioned window aggregation:

SD = STOCKΘSUM(CONTRACTS)(WD), SM = STOCKΘSUM(CONTRACTS)(WM )

(implying the computation of the total number of contracts executed, for each timepoint, in
the time windows WD and WM , respectively) to be used in the definition of the algebraic
expression that follows:

E = [εU (SD) ./SD.STOCK=NEWS.STOCK∧(NEWS.U−SD.U)<1week πSTOCK,U (εU (NEWS))]
./TSD.STOCK=SM .STOCK∧SD.SUM(CONTRACTS)>10·SM .SUM(CONTRACTS)/30 SM .

The square brackets enclose a non-temporal join that embodies the non-sequenced part of
the query, which is necessary to interoperate the tuples valid at time t of the streaming table
SD with the tuples of the NEWS relation valid at a time no later than 1 week with respect to
t. To this purpose, the timestamping attributes of SD and NEWS have to be made explicit
via the extension operator ε to be referenced in the join predicate. Such join predicate also
contains a conjunct imposing the equality of the STOCK value. The result is a streaming table
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whose timestamps are derived from SD (the timestamp of NEWS has been projected out before
executing the non-temporal join) and correspond to the execution time of the sliding window
WD. Once the expression in square brackets has been computed, a temporal join (on the
streaming table timestamps) can be executed between the non-temporal join outcome and
the streaming table SM . The join predicate involves the equality of the STOCK value and the
relationship between the results of the SUM(CONTRACTS) partitioned aggregates computed
with Θ over SM and SD. In particular, the former (representing a daily volume) has to be
greater than 10 times the value of the latter (representing the total volume computed over
the preceding month) divided by 30 (yielding the average daily volume computed over the
preceding month), in order to trigger an insider trading investigation. The continuous query
result is finally given by the expression

ξ
now,15day
1day,0 (πTSTOCK(E)),

where the required sampling operator has been added, which causes the expression E to be
evaluated (with a delay of 15 days to allow the NEWS table to be populated with relevant
data) to produce a result each day at midnight containing the stocks suspect of illegal insider
trading activity occurred on that day. The result is a temporal table with schema (STOCK|T ).

6 Translating CQs into OTQs (with Implementation on the Horizon)

In this section we propose a translation of the continuous temporal model presented so
far into a new temporal model where continuous queries are transformed into temporal
one-time queries. Furthermore, whereas the continuous model has been defined as an abstract
temporal model (point-based), the new model is intended to be a concrete temporal model
(interval-based) [11] amenable to implementation. In particular, the new temporal model can
be implemented on a traditional relational DBMS following similar directions as presented in
[12]. In fact, our final aim is to build comprehensive support for the continuous temporal
model through a mixed stratum/built-in approach that relies on the full potentialities of an
industrial-strength relational engine, extended with novel functionalities.

For the intended translation, the source algebra is therefore CT A and the target algebra
is the standard temporal algebra T A that includes the operators shown in Tab. 1 but made
to work on relations employing interval-timestamping, according to an extended sequenced
semantics [12], in order to enforce snapshot equivalence. Although working on an interval-
based concrete temporal model, the target algebra represents indeed a point-based query
language (in the sense of [28]) and, thus, its implementation on a traditional DBMS does
not require enforcement of change preservation (e.g., via adjustment, alignment and scaling
techniques as proposed in [12]). For ease of presentation, hereinafter, with a little abuse of
notation, when we need to distinguish the same concept at the two different levels, we will
use the superscript CT A to denote tables and algebraic operators in the continuous temporal
model and the superscript T A to denote the corresponding concepts in the target model.

The main issue for our goal is to mimic in a static context the behavior of CT A windowing
operators, which are evaluated on user-specified time intervals and operate on the contents
of the involved streaming tables at the evaluation instants. To this end, we first translate
each streaming table SCT A with schema S(X|T ) at the continuous level into an interval-
based streaming table ST A with schema S(X,T |T ′), where the event occurrence time T
associated to tuples is made explicit and T ′ is an implicit interval attribute that records tuple
validity, that is [st,∞], where st is the time when the tuple s enters the system (without
transaction-time support, it is worth noting that st can be approximated with s(T )). Each
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Table 3 Semantics of the windowing operators at the target level, T A .

Substreaming operator
Sub[t1,t2](S)T A := σT

t1≤S.T≤t2 (S)
Sliding window operators
tsetwtime

[ω1,ω2](S)T A :=
⋃

t∈tset
τt(Sub[t−ω1,t+ω2](S)T A )

tsetwcount
[n1,n2](S)T A :=

⋃
t∈tset

τt({s | s ∈ S′ = Sub[t1,t2](S),
|Sub[t1,t](S′)T A | = n1, |Sub[t,t2](S′)T A | = n2})

Window flattening operators
ϕ(S)T A := S

Φ(tsetW time,B
[ω1,ω2] (S))T A := tsetwtime

[ω1,ω2](S)T A

Φ(tsetW count,B
[n1,n2] (S))T A := tsetwcount

[n1,n2](S)T A

Window aggregation operators
ϑF (S)T A := (∅ϑT

F (S))T A

BΘF (tsetW time,B
[ω1,ω2] (S))T A := (Bϑ

T
F (tsetwtime

[ω1,ω2](S)))T A

BΘF (tsetW count,B
[n1,n2] (S))T A := (Bϑ

T
F (tsetwcount

[n1,n2](S)))T A

temporal relation R(X|T ) in CT A is translated into a relation R(X|T ′) in T A , by coalescing
the timestamps of value-equivalent tuples in RCT A into maximal intervals to be used as
timestamps in RT A . Non temporal relations are converted into temporal relations whose
tuples are timestamped with a [0,∞] validity interval in T A .

Then, in Tab. 3 we define the semantics of the continuous operators introduced in
Subsection 4.2 defined through T A operators2. Notice that, unlike their counterpart at the
CT A level, sliding window operators at the T A level require a set of time instants tset to be
evaluated and the flattening operator ΦT A simply undoes the effects of partitioning. It is
worth stressing that, thanks to the translation rules of Tab. 3, any legal CT A expression can
be evaluated via T A operators working on streaming tables only. In particular, there is no
need for implementing (sets of) streaming tables of streaming tables as formally introduced
in the definitions of CT A operators in Sec. 4.

Finally, we define the sampling operator at the T A level and show that the results of the
two sampling operators, the one defined at the CT A level and the other one defined at the
T A level, are equivalent (i.e., they provide the same results for the same continuous query).

I Definition 15 (Sampling OperatorT A ). At execution time t, the evaluation delayed by δ
of a continuous query E = ET A(α1(ω1(S1)), . . . , αn(ωn(Sn)), R1, . . . , Rm) ∈ CT A , with an
historical parameter hp, slide parameter sl and alignment parameter a, at the T A level is
defined by the sampling operator ξT A : T A × T × I4 → ST A as follows:

ξt,δhp,sl,a(E)T A := ET A((α1(tsetω1(St+δ1 )))T A , . . . , (αn(tsetωn(St+δn )))T A , Rt+δ1 , . . . , Rt+δm )

where tset is the evaluation time instant set: tset = {t′ | t′ ≤ t ∧ t′ = (d t−hp−asl e+ i) · sl +
a for some i ∈ N}.

I Theorem 16. Given the continuous query E = ET A(α1(ω1(S1)), . . . , αn(ωn(Sn)), R1, . . . ,

Rm) ∈ CT A , with slide parameter sl and alignment parameter a, then, for each execution

2 To be rigorous, the definition of wcount
[n1,n2], involving constraints on the cardinality of the results of

Sub, is not expressible with T A operators only. However, we can augment T A with an operator
directly evaluating wcount

[n1,n2], which can be easily and efficiently implemented by exploiting the ordering
of timestamps in a streaming table.
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time t with delay δ:

ξt,δsl,a(E)CT A = ξt,δsl,a(E)T A

Proof. For the sake of simplicity, we assume δ = 0 and replace each Rt and St in the operator
semantics with R and S, respectively (the proof can be straightforwardly adapted to the
case when δ > 0). First, notice that:

ξt,δsl,a(E)CT A = (
k:tk≤t⋃
i=0

τti(ET A(α1(ω1(S1)), . . . , αn(ωn(Sn)), R1, . . . , Rm)))CT A

= (ET A(
k:tk≤t⋃
i=0

τti(α1(ω1(S1))), . . . ,
k:tk≤t⋃
i=0

τti(αn(ωn(Sn))), R1, . . . , Rm))CT A

Therefore, if we show that
⋃k:tk≤t
i=0 τti(αj(ωj(Sj))CT A )) = (αj(tsetωj(Sj)))T A , then

ET A(
k:tk≤t⋃
i=0

τti(α1(ω1(S1))), . . . ,
k:tk≤t⋃
i=0

τti(αn(ωn(Sn))), R1, . . . , Rm))CT A

= ET A((α1(tsetω1(S1)))T A , . . . , (αn(tsetωn(Sn)))T A , R1, . . . , Rm)

and ξt,δsl,a(E)CT A = ξt,δsl,a(E)T A .
To this end, as far as αj(ωj(Sj)) is concerned, all possible operator combinations should be

considered. For the sake of brevity, in the following we will consider only the case when αj =
ϑF and ωj = wtime

[ω1,ω2], but all the other combinations can be managed in a similar way. Given
ϑF (wtime

[ω1,ω2](Sj)), in the following we will show that s ∈
⋃k:tk≤t
i=0 τti(ϑF (wtime

[ω1,ω2](Sj))CT A ) iff
s ∈ ξt,δsl,a(E)T A . Let s ∈

⋃k:tk≤t
i=0 τti(ϑF (wtime

[ω1,ω2](Sj))CT A ), then s = (X, ti) ∈ τti(ϑF (wtime
[ω1,ω2]

(Sj))CT A ) for some i. Being s ∈ τti(ϑF (w)CT A ), where w = wtime
[ω1,ω2](Sj)), then s ∈

τti(ϑF (w)CT A ) iff t = (X, ti), where X = (f1(S), . . . , fh(S)) and (S, τ) ∈ w. This means
that S = Sub[ti−ω1,ti+ω2](Sj)CT A = {(s, τ) | (s, τ) ∈ Sj , (ti − ω1) ≤ τ ≤ (ti + ω2)}. Hence,
(s, τ) ∈ Sub[ti−ω1,ti+ω2](Sj)CT A iff (s, τ, ti) ∈ τti(Sub[ti−ω1,ti+ω2](Sj)T A ). As ti ∈ tset, it
follows that:

(s, τ, ti) ∈
⋃

t∈tset
τt(Sub[t−ω1,t+ω2](Sj)T A ) =tset wtime

[ω1,ω2](Sj)T A

From S = τti(Sub[ti−ω1,ti+ω2](Sj)T A ) and X = (f1(S), . . . , fh(S)), it follows that (X, ti) ∈
∅ϑ
T
F (Sj)T A , which is equivalent to say that (X, ti) ∈ (ϑF (wtime

[ω1,ω2](Sj))T A . J

Therefore, thanks to the above theorem, we can safely translate each continuous query in
CT A into an equivalent expression in T A and execute it on a static relational engine. In
fact, the above theorem ensures that the semantics of execution is preserved.

7 Related works and concluding remarks

DSMSs [1, 3] natively support CQs over continuous unbounded streams of data according to
windows where only the most recent data is retained. In CQL [3] and SyncSQL [14] streams
are transformed into instantaneous/syncronized relations that are manipulated through
relational operators, and then transformed back to streams. In this paper we proved that it
is possible to exploit the full potential of a native representation of temporal data to query
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streaming data seamlessly, thus overcoming the transformation overhead of stream-relation-
stream approaches like [3, 14]. In line with this approach, recent research proposals extend
traditional DBMSs’ query model and language towards streaming query capabilities [10, 20].
However, these works present extensions to SQL through query examples and do not offer a
formal algebraic framework for a clear specification of query operators.

With regard to algebras for querying streaming data, in [19] snapshot-reducible algebraic
operators are implemented on ad-hoc data structures for state maintenance under a time-
interval approach. This approach does not integrate with the theoretical and practical
solutions proposed for the development of a robust temporal database technology, including
[12] which presents a proposal for the implementation of a standard temporal algebra in an
off-the-shelf DBMS, supporting a sequenced semantics that guarantees extended snapshot
reducibility. As to CT A operators, we proved this fundamental requirement by showing how
CT A expressions can be translated into equivalent expressions in the temporal algebra T A .

An additional note concerns the semantics of ad-hoc proposals of temporal operators
that often proves to be ambiguous as to timestamp management. A consensus is not shared
among existing approaches. For instance, the timestamps of tuples resulting from a windowed
join can be either the minimum of the two original timestamp values [1, 24], or the most
recent one [4], or the time instant at which the join is executed [5]. Operators in T A undergo
a precise and commonly adopted temporal semantics [12]. Further, in [3, 19] windowing
operators overwrite the original timestamp of tuples with a new timestamp corresponding to
the window evaluation time instant. CT A operators maintain instead both this information
and the original tuple timestamp, thus not losing relevant information.

A further property featured by CT A is the capability of defining “forward” windows,
thus opening to the possibility of evaluating queries (possibly in an approximated way) by
referring tuples that will be observed after a given time instance, as proposed for SQL:2011
[29] (e.g., SQLStream Blaze3 considers them in its query syntax specifications but does
not provide an implementation). Moreover, both in SQL:2011 and proposed stream query
languages, sliding windows can only be used, via aggregation operators, to produce results in
the target list of a query, whereas CT A allows us to use them everywhere (e.g., in a selection
predicate as in our running example). To the authors’ knowledge, these features are not
covered by any existing approach dealing with streaming data.

From a system perspective, existing stream processing frameworks (e.g., Apache Flink [7]
and Samza [22]) provide SQL extensions to deal with streaming data but they do not expose
a clear and unambiguous semantics of query operators through an algebra definition. In
general, DSMSs and stream processing frameworks [7, 22] do not support queries involving
both streaming and relational data changing over time, since their data and query models do
not include temporal semantics and versioning. On the other hand, much work has been
devoted to extending DBMSs towards a flexible and efficient management of temporal data
[25]. However, quite surprisingly considering the temporal nature of streaming data, no
built-in streaming functionalities are provided in these systems.

Following the first step provided by the streaming table concept introduced in [6], in this
paper we presented a temporal algebra extended with windowing and aggregation operators
supporting both OTQs and CQs on streaming, standard and temporal relational data. In
our future work, we plan to explore algebraic optimization issues and indexing techniques to
efficiently support the implementation of CT A operators in a temporal DBMS.

3 http://sqlstream.com
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Abstract
Allen’s interval algebra is a set of thirteen jointly exhaustive and pairwise disjoint binary relations
representing temporal relationships between pairs of time intervals. Despite widespread use, there
is still the question of which time ontology actually underlies Allen’s algebra. Early work specified
a first-order ontology that can interpret Allen’s interval algebra; in this paper, we identify the
first-order ontology that is logically synonymous with Allen’s interval algebra, so that there is a
one-to-one correspondence between models of the ontology and solutions to temporal constraints
that are specified using the temporal relations. We further prove a representation theorem for
the ontology, thus characterizing its models up to isomorphism.
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1 Introduction

Temporal reasoning has long been studied in artificial intelligence, particularly since the
seminal work of Allen, in which time is represented using binary relations over intervals. The
composition of these relations leads to an algebra, which have been widely used for constraint
satisfaction problems. Today, virtually every presentation of a time ontology includes at
least the diagram of the temporal relations in Allen’s algebra and the composition table for
the relations. This work was later extended by Hayes and Allen, who proposed a first-order
ontology corresponding to Allen’s algebra; additional extensions were proposed by Ladkin
and Maddox.

Given this long story, it might be surprising that there is anything left to say; yet a closer
inspection of the ontologies involved leads to some interesting observations. First, nobody
has shown which ontology of time intervals is equivalent to Allen’s Interval Algebra; previous
work has only shown that a first-order axiomatization of the algebra is interpreted by a
particular axiomatization of an ontology of time intervals.

Second, there has been no characterization up to isomorphism of the models of the
first-order axiomatization of Allen’s Interval Algebra. The closest work along these lines
has been a discussion of the models of time interval ontologies, but this is far short of a full
characterization. The models are often informally specified; the more formal specifications of
the models refer to intervals of integers or rational numbers, rather than an explicit formal
specification in the signature of the ontologies. Furthermore, there have been no proofs of
representation theorems for these classes of models that do not refer to an underlying set of
points. Finally, the relationship between different ontologies of time intervals has not been
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fully explicated. The relationship between these other interval ontologies and Allen’s Interval
Algebra is thus also not clear.

In this paper we investigate Allen’s Interval Algebra based on the metalogical relationship
between the first-order theory of the composition table and the different axiomatizations of
time ontologies of intervals. After reviewing the basic axiomatizations of the time ontologies
in Section 2, we discuss the relationship between the theory of the interval algebra Tallen and
Hayes’ axiomatization (Tinterval_meeting) in Section 3. After showing that Tinterval_meeting
cannot be interpreted by Tallen , we propose a new ontology Tbounded_meeting, which is weaker
than Tinterval_meeting. Our key result is that a nonconservative extension of the interval
algebra, which we call T ∗allen, is logically synonymous with the Tbounded_meeting, meaning
Tbounded_meeting and T ∗allen axiomatize the same class of structures. In other words,the
two theories are semantically equivalent, and only differ in signature (i.e., the non-logical
symbols). Finally, in Section 4, we present a characterization of models of Tbounded_meeting
up to isomorphism, and explain how such a characterization can be used in characterizing
algebraic properties of models of Tallen.

2 Preliminaries

2.1 Allen’s Interval Algebra
Allen’s introduction of thirteen relations over temporal intervals [2] laid the foundations
for qualitative temporal reasoning and representation. The interval relations are meets,
before, starts, ends, overlaps, during, their inverses met_by,after , started_by, ended_by,
overlapped_by, contains, and equality. These relations are pairwise disjoint and exhaustive
(that is, any two time intervals must be related by one of these relations). The notion of an
algebra over these relations arises from considering the intersection, union, and composition
of a pair of temporal relations. This leads to the composition table CT , which is a 13 ×
13 matrix such that for each ordered pair of interval relations Ri,Rj , the cell CT (Ri, Rj)
indicates the possible temporal relations between two intervals a and c assuming that Ri(a, b)
and Rj(b, c) holds. For example, CT (starts, overlaps) = {before, overlaps, meets}, meaning
that if starts(a, b) and overlaps(b, c), then the interval a is before, overlaps, or meets the
interval c.

2.2 Ontologies for Time Intervals
Although the application of Allen’s interval algebra was widespread in the specification and
solution of temporal constraint satisfaction problems, it was several years before people
considered its relationship to the time ontologies being developed within the knowledge
representation community. In this section, we review the primary time ontologies that are
relevant to the axiomatization of the interval algebra in first-order logic.

Some of the earliest time ontologies [4] treated timepoints as the primitive entities in the
domain. However, the entities for the interval algebra are time intervals – points do not
exist. The first proposal for the axiomatization of an ontology1 of time intervals as related to
Allen’s interval algebra was the work of Hayes [8], [1], in which there is one primitive binary
relation meets over intervals. This axiomatization, which we will refer to as Tinterval_meeting
is shown in Figure 1.

1 A theory is set of first-order sentences closed under logical entailment. In this paper, we use the terms
ontology and theory interchangably.
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(∀i, j, k, m) meets(i, k) ∧meets(j, k) ∧meets(i, m) ⊃ meets(j, m) (1)
(∀i)(∃j, k) meets(j, i) ∧meets(i, k) (2)
(∀i, j, k, l) (meets(i, j) ∧meets(k, l)) ⊃
(meets(i, l) ∨ ((∃n) ((meets(i, n) ∧meets(n, l)) ∨ (meets(k, n) ∧meets(n, j))))) (3)
(∀i, j) meets(i, j) ⊃ ¬meets(j, i) (4)
(∀i, j, k, m) meets(i, j) ∧meets(j, k) ∧meets(k, m) ⊃ (∃n) meets(i, n) ∧meets(n, m) (5)

Figure 1 The axioms of Tinterval_meeting.

(∀i, j) before(i, j) ≡ (∃k) meets(i, k) ∧meets(k, j) (6)
(∀i, j) starts(i, j) ≡ (∃k, m, n) meets(k, i) ∧meets(i, m)
∧meets(m, n) ∧meets(k, j) ∧meets(j, n) (7)
(∀i, j) ends(i, j) ≡ (∃k, m, n) meets(k, m) ∧meets(m, i)
∧meets(i, n) ∧meets(k, j) ∧meets(j, n) (8)
(∀i, j) overlaps(i, j) ≡ (∃k, m, n, o, p) meets(k, m) ∧meets(m, n)
∧meets(n, o) ∧meets(o, p) ∧meets(m, j) ∧meets(j, p) ∧meets(k, i) ∧meets(i, o) (9)
(∀i, j) during(i, j) ≡ (∃k, m, n.o) meets(k, m) ∧meets(m, i)
∧meets(i, n) ∧meets(n, o) ∧meets(k, j) ∧meets(j, o) (10)

Figure 2 Tinterval_rel : the definitions for Allen’s Interval Algebra relations.

By Axiom (1) if two intervals meet a common interval, then the sets of intervals that
each meet is equivalent to each other. For each time interval, Axiom (2) guarantees the
existence of an interval that it meets, and an interval that is met by it. Since this leads to
infinite models, we will refer to this as the Infinity Axiom. Axiom (3) captures the intuition
that the meets relation leads to an ordering over time intervals. By Axiom (4), the meets
relation is asymmetric. Axiom (5) is often referred to as the Sum Axiom, since it entails the
existence of an interval that is formed by the union of two intervals that meet.

The axiomatization of Tinterval_meeting is sufficient to enable the definition of the relations
in Allen’s interval algebra (see Figure 2). Tinterval_meeting ∪ Tinterval_rel is therefore a
definitional extension of Tinterval_meeting. This extension will play a key role in determining
the relationship between Tinterval_meeting and the interval algebra.

Hayes describes the models of Tinterval_meeting and its extensions in terms of the set of
intervals on Q (rational numbers) and Z (integers). For example, he describes one model
which interprets intervals as open connected subsets of Q, such that (a, b) meets (c, d) when
a = c and the intersection of two meeting intervals is empty. Alternative models exist, which
interpret intervals as closed connected subsets. Analogous models are also described as sets
of closed intervals on Z.

This treatment is inadequate for several reasons. Strictly speaking, a structure on the
sets of intervals on Q is not a model of Tinterval_meeting because it does not have the same
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signature; at best, this is saying that models of Tinterval_meeting can be interpreted in such a
structure. Yet even this falls short because it does not determine whether all models can
be interpreted in this way, or whether there exist other models which must be constructed
in a different fashion (i.e. do there exist models of the ontology that are not isomorphic to
intervals over Q or Z?). Furthermore, the description is informal, without a formal proof of
equivalence; there is no explicit definition or characterization of the models of Tinterval_meeting
in and of themselves.

Several extensions to Tinterval_meeting have been proposed. The work of Ladkin ([10],
in particular explored an extension which is categorical. Ladkin provides a more formal
characterization for the models of his axiomatization which also specifies intervals as pairs of
points in an underlying linear ordering. As with Hayes, this is essentially a representation
theorem for models of the ontology, rather than a direct characterization of the models
themselves.

3 Relationship between Allen’s Interval Algebra and Time Ontologies

Although [8] stated that Allen’s Interval Algebra can be derived from the ontology
Tinterval_meeting, the two approaches display different properties. In particular, all models
of Tinterval_meeting are infinite, whereas Allen’s Interval Algebra allows finite models. These
differences raise the question of which ontology actually underlies the interval algebra.

We begin this section by describing the logical theory that captures the composition table
for Allen’s Interval Algebra, and then search for the time ontology that is equivalent to it.

3.1 First-Order Theory of Allen’s Interval Algebra
To specify the first-order theory Tallen of Allen’s Interval Algebra, we follow [3] and we
assume that for each cell in the composition table, we have a first-order sentence of the form

Ri(x, y) ∧Rj(y, z) ⊃ T1(x, z) ∨ . . . ∨ Tn(x, z)

where CT (Ri, Rj) = {T1, . . . , Tn}. For example, the following sentence is the axiom in which
corresponds with CT (meets, ends):

meets(x, y) ∧ ends(y, z) ⊃ (overlaps(x, z) ∨ during(x, z) ∨ starts(x, z)).

Since the composition table consists of 13× 13 cells, Tallen must contain 169 axioms corres-
ponding with the table. We will denote this set of axioms as Tallen_compose.

In addition to these axioms, we assume that for each interval algebra relation R1, Tallen
contains a sentence of the following form stating that the relations are pairwise disjoint (PD):

R1(x, y) ⊃ ¬(R2(x, y) ∨ . . . ∨R13(x, y))

where R2, . . . , R13 are interval algebra relations other than R1. The following sentence, for
example, is the PD axiom corresponding with meets:

meets(x, y) ⊃ ¬[before(x, y) ∨ starts(x, y) ∨ ends(x, y) ∨ overlaps(x, y) ∨ during(x, y)
∨met_by(x, y) ∨ after(x, y) ∨ started_by(x, y) ∨ ended_by(x, y)
∨ overlapped_by(x, y) ∨ contains(x, y) ∨ (x = y)].

As there are 13 interval algebra relations, Tallen contains 13 PD axioms; we will denote the
disjointness axioms by Tallen_disjoint .
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Finally, Tallen contains an axiom that specifies that the interval algebra relations are
jointly exhaustive:

meets(x, y) ∨ before(x, y) ∨ starts(x, y) ∨ ends(x, y) ∨ ends(x, y) ∨ overlaps(x, y)
∨ during(x, y) ∨ ∨met_by(x, y) ∨ after(x, y) ∧ started_by(x, y)
∨ ended_by(x, y) ∧ overlapped_by(x, y) ∨ contains(x, y) ∨ (x = y).

We will refer to this axiom as Texhaustive.
All other sentences in Tallen are those which are entailed by the 169 + 13 + 1 above-

mentioned axioms. Thus,

Tallen = Tallen_compose ∪ Tallen_disjoint ∪ Texhaustive .

Models of Tallen are equivalent to solutions of temporal constraints that are expressed using
the interval relations, but the question of a characterization of models of Tallen remains
unresolved. In the following subsections, we identify the time ontology that is equivalent to
Tallen, and in the latter part of the paper, we characterize the models of this time ontology
up to isomorphism.

3.2 Tallen and Tinterval_meeting

Hayes and Allen ([1]) state that the interval algebra composition table can be derived from
the ontology of time intervals. More precisely, the first-order theory of the interval algebra
composition table can be entailed from a definitional extension of Tinterval_meeting:

I Definition 1 (adopted from [9]). Let T be a first-order theory and Π be a set containing
sentences of the following form 2

R(x1, . . . , xn) ≡ Φ(x1, . . . , xn)

where R is a predicate which is not in Σ(T ) and Φ is a formula in L(T ) in which at most
variables x1, . . . , xn occur free. T ∪Π is called a definitional extension of T .

I Theorem 2. Tallen is entailed by Tinterval_meeting ∪ Tinterval_rel.

Proof. Using the automated theorem prover Prover9 [11], we have shown3 that
Tinterval_meeting ∪ Tinterval_rel entails for each axiom Φ of Tallen,

Tinterval_meeting ∪ Tinterval_rel |= Tallen . J

This Theorem is equivalent to saying that Tallen has an interpretation in Tinterval_meeting.
A theory T1 has a relative interpretation [6] in another theory T2 if every sentence in T1 can
be translated into a sentence in T2. In other words, for all sentences Φ ∈ L(T1), if T1 entails
Φ, then T2 entails a translation of Φ into the language of T2. The work of [7] shows that if
a definitional extension of T2 entails T1, translations for sentences of T1 is obtained based
on the formulas which define predicates of T1 in the definitional extension. For instance,

2 For a theory T , Σ(T ) denotes the signature of T , i.e., the set of non-logical symbols used in sentences of
T ; L(T ) denotes the language of T , i.e., the set of all first-order formulae generated by symbols in Σ(T );
Mod(T ) denotes the class of all models of T .

3 The input files and proofs can be found at
http://colore.oor.net/allen_interval_algebra/mappings/theorems/intervalmeeting2allen/.
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a translation of Axiom (5) of Tinterval_meeting into the language of Tallen can be obtained
by replacing formulas with before literals (whose definition can be found in Figure 2). The
result is the following sentence, which provably is a sentence in Tallen:

(∀i, j, m)before(i, j) ∧meets(j, m) ⊃ before(i, m)

Theories T1 and T2 are mutually interpretable iff they are relatively interpretable in
each other. In our case, Tinterval_meeting is not relatively interpretable in Tallen, since Tallen
cannot entail all axioms of Tinterval_meeting:

I Proposition 3. Tallen 6|= (∀i)(∃j) meets(i, j).

Proof. The model generated by Mace4 can be found at
http://colore.oor.net/allen_interval_algebra/mappings/theorems/
allen2boundedmeeting/finite.model/. J

By Proposition 3, Tallen does not interpret Tinterval_meeting because it allows finite models,
whereas all models of Tinterval_meeting are infinite. To achieve mutual interpretability, we need
to weaken Tinterval_meeting, However, simply removing the infinity axiom from Tinterval_meeting
doesn’t work:

I Proposition 4. Let Tfinite be the set of all axioms in Tinterval_meeting except Axiom (2).

Tfinite ∪ Tinterval_rel |= Tallen_compose ∪ Tallen_disjoint ,

Tfinite ∪ Tinterval_rel 6|= Texhaustive .

Proof. In the proofs of Theorem 2, Axiom (2) is not used to entail any sentence in
Tallen_compose or Tallen_disjoint. A model of Tfinite ∪ Tinterval_rel that falsifies Texhaustive
can be found at
http://colore.oor.net/allen_interval_algebra/mappings/theorems/
allen2boundedmeeting/exhaustive.model. J

We therefore need a theory that is stronger than Tfinite but weaker than Tinterval_meeting.
The natural question is therefore: what is the theory in the Hinterval_meeting Hierarchy that
is entailed by Tallen?

3.3 Bounded Meeting
In this section, we search for a theory that is weaker than Tinterval_meeting, yet which is still
able to interpret Tallen . We begin by taking a closer look at the role that the Infinity Axiom
plays in the proofs for Theorem 2. This axiom guarantees that each interval is bounded by
an earlier and later interval. If we also look at the definitions of the interval relations starts,
ends, overlaps, and during, we see that each definition entails the existence of two intervals –
one that is earlier than the others and one that is later than the others.

Inspired by this observation, we propose the definition of a new relation, prec, which
specifies an ordering over intervals. The new axioms guarantee the existence of lower and
upper bounds for each pair of intervals with respect to this ordering.

I Proposition 5.

Tinterval_meeting |= (∀x, y)(∃z) prec(x, z) ∧ prec(y, z) ,

Tinterval_meeting |= (∀x, y)(∃z) prec(z, x) ∧ prec(z, y) .

http://colore.oor.net/allen_interval_algebra/mappings/theorems/allen2boundedmeeting/finite.model/
http://colore.oor.net/allen_interval_algebra/mappings/theorems/allen2boundedmeeting/finite.model/
http://colore.oor.net/allen_interval_algebra/mappings/theorems/allen2boundedmeeting/exhaustive.model
http://colore.oor.net/allen_interval_algebra/mappings/theorems/allen2boundedmeeting/exhaustive.model
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(∀i, j) meets(i, j) ⊃ timeinterval(i) ∧ timeinterval(j) (11)
(∀i, j, k, m) meets(i, k) ∧meets(j, k) ∧meets(i, m) ⊃ meets(j, m) (12)
(∀i, j, k, l) (meets(i, j) ∧meets(k, l)) ⊃
(meets(i, l) ∨ ((∃n) ((meets(i, n) ∧meets(n, l)) ∨ (meets(k, n) ∧meets(n, j))))) (13)
(∀i, j) meets(i, j) ⊃ ¬meets(j, i) (14)
(∀i, j, k, m) meets(i, j) ∧meets(j, k) ∧meets(k, m) ⊃
(∃n) meets(i, n) ∧meets(n, m) (15)
(∀x, y)(∃z) prec(x, z) ∧ prec(y, z) (16)
(∀x, y)(∃z) prec(z, x) ∧ prec(z, y) (17)
(∀x, y) prec(x, y) ≡ (meets(x, y) ∨ ((∃z) meets(x, z) ∧meets(z, y)) ∨ (x = y)) (18)

Figure 3 The axioms of Tbounded_meeting.

Proof. The proof generated by Prover9 can be found at
http://colore.oor.net/allen_interval_algebra/theorems/interval-bounded/. J

Thus, Tbounded_meeting is entailed by Tinterval_meeting, and it entails Tfinite.

3.4 Tallen and Tbounded_meeting

Although Tbounded_meeting is weaker than Tinterval_meeting, it is strong enough to relatively
interpret Tallen:

I Theorem 6. Tallen is entailed by Tbounded_meeting ∪ Tinterval_rel.

Proof. Using Prover9, we have shown4 that

Tbounded_meeting ∪ Tinterval_rel |= Φ

for each axiom Φ of Tallen. J

Unlike Tinterval_meeting, the theory Tbounded_meeting allows finite models, but is it weak
enough to be interpreted by Tallen?

I Proposition 7.

Tallen 6|= (∀i, j)(∃k)(meets(i, k)∨before(i, k)∨(i = k))∧(meets(j, k)∨before(j, k)∨(k = j)) .

Proof. The model generated by Mace4 that falsifies the sentence can be found at
http://colore.oor.net/allen_interval_algebra/mappings/theorems/
allen2boundedmeeting/bounded.model/. J

4 The input files and proofs can be found at
http://colore.oor.net/allen_interval_algebra/mappings/theorems/boundedmeeting2allen/.
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(∀x, y) before(x, y) ⊃ (∃z) meets(x, z) ∧meets(z, y) (19)
(∀x, y) overlaps(x, y) ⊃ (∃z) ends(z, x) ∧ starts(z, y) (20)
(∀x, y) during(x, y) ⊃ (∃z) ends(x, z) ∧ starts(z, y) (21)
(∀x, y) starts(x, y) ⊃ (∃z) meets(z, x) ∧meets(z, y) (22)
(∀x, y) ends(x, y) ⊃ (∃z) meets(x, z) ∧meets(y, z) (23)
(∀x, z) starts(x, z) ⊃ (∃y) before(x, y) ∧meets(z, y) (24)
(∀x, z) ends(x, z) ⊃ (∃y) before(y, x) ∧meets(y, z) (25)

Figure 4 Tallen_exist: Additional axioms to extend Tallen .

Thus, Tallen cannot interpret Tbounded_meeting either, yet a cursory glance at the definitions
of the temporal relations in Tinterval_rel seems to indicate that it should. In the preceding
section, we used the consistency-based definition [3] to axiomatize Allen’s Interval Algebra.
An alternative approach to the axiomatization of the composition table is known as the
extensional definition approach [3] – the composition of R1 with R2 is the set of ordered
pairs 〈x, y〉 such that for some z, we have 〈x, z〉 ∈ R1 and 〈z, y〉 ∈ R2. For example, the
extensional definition axiom for the cell CT (meets, meets) is

(∀x, y) before(x, y) ≡ (∃z) meets(x, z) ∧meets(z, y) .

If we look closely, we notice that there are sentences from the extensional definition of
the composition table that are entailed by the definitions of the relations in Figure 2. In
particular, each sentence in Figure 4 is entailed by Tinterval_meeting ∪Tinterval_rel , and each of
these sentences corresponds to the converse of an axiom from the consistency-based definition
of the composition table. Since we are ultimately interested in understanding the relationship
between Tinterval_meeting and the composition table, we will extend the theory Tallen with
the sentences of Figure 4, and refer to the resulting theory as T ∗allen.

I Lemma 8. Tbounded_meeting ∪ Tinterval_rel entails T ∗allen.

Proof. Using Prover9, we have shown5 that

Tbounded_meeting ∪ Tinterval_rel |= Φ

for each axiom Φ of Tallen_exist (and hence T ∗allen). J

I Lemma 9. T ∗allen entails Tbounded_meeting.

Proof. Using Prover9, we have shown6 that T ∗allen |= Φ for each axiom Φ of Tbounded_meeting.
J

These two Lemmas, it can be shown that Tallen and Tbounded_meeting are mutually
interpretable [6] in each other. Relative interpretation alone does not guarantee a one-to-one

5 The input files and proofs can be found at
colore.oor.net/allen_interval_algebra/mappings/theorems/boundedmeeting2allen/.

6 The input files and proofs can be found at
colore.oor.net/allen_interval_algebra/mappings/theorems/allen2boundedmeeting/.

colore.oor.net/allen_interval_algebra/mappings/theorems/boundedmeeting2allen/
colore.oor.net/allen_interval_algebra/mappings/theorems/allen2boundedmeeting/
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correspondence between models of the theories. When T1 is interpretable in T2, we can only
show every model of T2 defines a model of T1 using the translation definitions between T1
and T2. Thus, establishing mutual relative interpretation between Tbounded_meeting and Tallen
does not help with characterizing all models of Tallen.

To study models of Tallen based on models of Tbounded_meeting, we need a notion stronger
than relative interpretation:

I Definition 10 ([9]). Two theories T1 and T2 are logically synonymous iff they have a
common definitional extension.

Considering Definition 10, it is easy to see that T1 and T2 are synonymous iff there exist two
sets of translation definitions, ∆ and Π, such that T1 ∪Π is a definitional extension of T1,
T2 ∪∆ is a definitional extension of T2, and T1 ∪Π and T2 ∪∆ are logically equivalent.

When two theories are synonymous, there is a one-to-one correspondence between their
models such that the corresponding models can be defined based on each other [12].

I Theorem 11. Tbounded_meeting is logically synonymous with T ∗allen.

Proof. By Lemma 8 and Lemma 9, Tbounded_meeting and T ∗allen are mutually interpretable.
Using Prover9, we have shown7 that T ∗allen |= Φ for each axiom Φ of Tinterval_rel . Thus,
Tbounded_meeting ∪ Tinterval_rel and T ∗allen are logically equivalent. J

According to [12], synonymous theories axiomatize the same class of structures. Thus,
Tbounded_meeting and T ∗allen are semantically equivalent and only differ in signature.

In what sense has this achieved our objective, since we have we have shown that the
time ontology Tbounded_meeting is synonymous with an extension of first-order axiomatization
of Allen’s interval algebra, rather than the original axiomatization? First, the additional
axioms in Tallen_exist that we need to prove Theorem 11 are all entailed from the definitions
of the interval relations; any attempt to use a weaker axiomatization of the composition table
would require us to change these defintions. However, these definitions capture the intended
semantics of the interval relations, so any weaker definition would lead to unintended models.
The underlying ontology of time intervals therefore plays no role in entailment of the axioms
in Tallen_exist.

All relations in the composition table can be deduced from T ∗allen as it is an extension of
Tallen. In addition, for every entry CT (Ri, Rj) of the composition table and every interval
algebra relation S 6∈ CT (Ri, Rj) we proved a sentence of the form: Ri(x, y) ∧ Rj(y, z) ⊃
¬S(x, z)

Thus, the additional axioms of T ∗allen does not change the composition table, but only
eliminate those models of Tallen that do not satisfy the axiomatic definitions of the interval
relations.

4 Model-Theoretic Characterization of Tbounded_meeting

It is tempting to see the equivalence between Tallen and Tbounded_meeting as an intellectual
curiosity that does not give us any new insights into the interval algebra. Nevertheless, if
we recall that Allen’s Interval Algebra is primarily used in constraint satisfaction problems,
in which one constructs a satisfying interpretation of a set of expressions in the signature

7 The input files and proofs can be found at
colore.oor.net/allen_interval_algebra/mappings/theorems/allen2boundedmeeting/.
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of Tallen, then the set of all possible solutions of interval algebra problems, excluding those
eliminated by Tallen , is equivalent to the set of all possible models of Tbounded_meeting. In this
section, we provide a characterization of the models8 of Tbounded_meeting up to isomorphism,
by first specifying a class of mathematical structures, and then showing that Tbounded_meeting
axiomatizes this class of structures.

4.1 Representation Theorem for Models of Tbounded_meeting

Verification is concerned with the relationship between the models of the axiomatization of
the ontology and a class of mathematical structures. In particular, we want to characterize
the models of an ontology up to isomorphism and determine whether or not these models
are equivalent to the intended models of the ontology. In this section, we characterize the
models of Tbounded_meeting.

Since meets is a asymmetric binary relation, we turn to directed graphs for the underlying
structures:

I Definition 12. A directed graph is a pair 〈V, A〉 such that A ⊆ V × V .

Before stating the representation theorem, we need some notation.

I Definition 13. LetM = (V, A) be a directed graph. For each x ∈ V ,

N(x) = {y : (x, y) ∈ A} N−1(x) = {y : (y, x) ∈ A} ,

Nk(x) = N(Nk−1(x)) N−k(x) = N−1(N−(k−1)(x)) ,

Dk(x) =
i=k⋃
i=1

N i(x) D−k(x) =
i=k⋃
i=1

N−i(x) .

I Definition 14. Mbounded_meeting is the following class of structures:
M∈Mbounded_meeting iffM = (V, A) is a directed graph such that

1. N(x) ∩N2(x) = ∅ for any x ∈ V ;
2. N3(x) ⊆ N2(x) for any x ∈ V ;
3. for any x, y ∈ V ,

D2(x) ∩D2(y) 6= ∅ ,

D−2(x) ∩D−2(y) 6= ∅ ;

4. N(x) ⊆ N2(y) or N(y) ⊆ D2(x), for any x, y ∈ V ,

I Theorem 15. There exists a bijection ϕ : Mod(Tbounded_meeting)→Mbounded_meeting such
that
1. 〈x〉 ∈ timeinterval iff x ∈ V ϕ(M);
2. 〈x, y〉 ∈meetsM iff (x, y) ∈ Aϕ(M).

Proof (Sketch). Condition 1 in Definition 14 is equivalent to the sentence

(∀x, y, z) meets(x, y) ∧meets(y, z) ⊃ ¬meets(x, z)

8 We denote structures by calligraphic uppercase letters, e.g.M,N ; elements of a structure by boldface
font, e.g., a, b; and the extension of predicate R in a structureM by RM.
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and using Prover99, we can show that this sentence is logically equivalent to Axiom (12).
Condition 2 in Definition 14 is equivalent to Axiom (15). Condition 3 in Definition 14 is
equivalent to Axioms (16) and (16). Condition 4 in Definition 14 is equivalent to Axiom (13).
Axiom (14) is equivalent to the property thatM is a directed graph. J

We can therefore refer interchangably to the models of Tbounded_meeting and structures in
Mbounded_meeting.

4.2 Representation Theorem for Mbounded_meeting

Although Theorem 15 characterizes the models of Tbounded_meeting, it leaves unresolved the
explicit characterization of Mbounded_meeting, and a deeper understanding of how to construct
models of Tbounded_meeting. In this section, we characterize the class of directed graphs that
satisfy the conditions in Definition 14.

Although structures in Mbounded_meeting are directed graphs, it will be easier to construct
them from undirected graphs, allowing us to exploit a wider range of existing work in graph
theory.

I Definition 16. An undirected graph is a pair G = 〈V, E〉 of sets such that E ⊆ {V }2.

Directed and undirected graphs are related to each other through the notion of orientation.

I Definition 17. G1 = 〈V, A〉 is an orientation of an undirected graph G2 = 〈V, E〉 iff for
each (x, y) ∈ E, either (x, y) ∈ A or (y, x) ∈ A.

If G1 is a directed graph, then G2 is the undirected graph for G1 iff G1 is an orientation
of G2.

We therefore need to identify the class of graphs that correspond to structures in
Mbounded_meeting.

4.2.1 Twin-free Graphs
We first notice that

Tbounded_meeting 6|= (∀x, y, z, u)meets(x, y)∧meets(x, z)∧meets(y, u)∧meets(z, u) ⊃ (y = z) .

Thus there exist models in which there exist multiple intervals that meet and are met by the
same intervals.

I Definition 18. Let G = (V, E) be a graph. Two vertices x, y ∈ V are twins iff for all other
vertices w, we have (x, w) ∈ E iff (y, w) ∈ E.

G is twin-free iff it contains no twins.

I Definition 19. Suppose G1 = (V1, E1) and G2 = (V2, E2) are graphs such that V1 ⊂ V2
and E1 ⊂ E2. G2 is a twinned extension of G1 iff each x ∈ V2 \ V1 is a twin of some y ∈ V1.

I Lemma 20. If M ∈ Mbounded_meeting, and N is a twinned extension of M, then N ∈
Mbounded_meeting.

9 http://color.oor.net/allen_interval_algebra/theorems/triangle_free/
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Figure 5 Short models.

Proof. If x, y ∈ V are twins, then

Nk(x) = Nk(y) N−k(x) = N−k(y)

so that N satisfies all conditions in Definition 14 and hence N ∈Mbounded_meeting. J

I Lemma 21. EachM∈Mbounded_meeting contains a unique twin-free subgraph.

Proof. If x, y ∈ V are twins, then removing y does not change Nk(x) or N−k(x), so that
the conditions in Definition 14 will be satisfied by the subgraph of M that is induced by
V \ {y}. J

Thus, we can characterize Mbounded_meeting by characterizing the twin-free graphs in
Mbounded_meeting.

4.2.2 Building Blocks
We now consider some special graphs that serve as the basic structures from which models
of Tbounded_neeting are constructed.

I Definition 22. A short model is an undirected graph that is isomorphic to either P2 (path
graph with two vertices), P3 (path graph with three vertices), or C5 (cyclic graph with five
vertices).

The three short models are depicted in Figure 5, and they each correspond to a different
set of temporal relations. The orientation of P2 is the smallest model of Tbounded_meeting with
a nontrivial extension of the meets relation. The orientation of P3 is the smallest model of
Tbounded_meeting with a nontrivial extension of the before relation. The orientation of C5 is
the smallest model of Tbounded_meeting with a nontrivial extension of the starts and ends
relations.

Note that the orientation of a cyclic undirected graph can be a directed acyclic graph.

I Lemma 23. IfM is an orientation of a short model G, thenM∈Mbounded_meeting.

I Definition 24. The H graph is the connected graph on six vertices such that exactly two
vertices have degree 3 and the remaining vertices have degree 1.

Figure 6(ii) shows two examples of H. Now H by itself is not the undirected graph for
any structure in Mbounded_meeting; however, we can use H to construct a graph that will play
a critical role in the characterization of Mbounded_meeting.

We first need to specify a way in which new graphs can be constructed from existing
ones.
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Figure 6 The model H ∪· H, and its edge-decomposition into two H graphs.
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Figure 7 A depiction of the interval relations corresponding to an H ∪· H graph.

I Definition 25. A graph G = 〈V, E〉 is edge-decomposable into a set of graphs H iff
1. Hi ⊂ G, for each Hi ∈ H;
2. Ei ∩ Ej = ∅, for each Hi = 〈Vi, Ei〉 and Hj = 〈Vj , Ej〉;
3. E =

⋃
i Ei.

Thus, a graph G is edge-decomposable into a set of subgraphs iff the set of edges in G
can be partitioned. Figure 6(i) depicts the graph H ∪· H; it is edge-decomposable into the
two graphs in Figure 6(ii). We will use the notation G = H1 ∪· . . . ∪· Hn to indicate that G is
edge-decomposable into H1, . . . ,Hn.

Elsewhere in graph theory, H ∪· H is the unique extremal graph of order 8, that is, it
contains the maximal number of edges for a graph of girth10 5 on 8 vertices.

I Lemma 26. IfM is an orientation of H ∪· H, thenM∈Mbounded_meeting.

Figure 7 illustrates how H ∪· H is related to the interval relations.

4.3 Characterization of Mbounded_meeting

In the preceding section, we explicitly identified some graphs that are structures in
Mbounded_meeting, but we are ultimately interested in characterizing all such graphs.

I Definition 27. A graph G is triangle-free iff it does not contain any induced cycles of
length 3 (i.e. G contains no induced K3 subgraphs).

I Definition 28. A graph G is 2-connected iff there exist two vertex-disjoint paths between
any two vertices in G.

10The girth of a graph G is the length of the shortest cycle in G.
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A well-known result in graph theory [5] shows that a graph is 2-connected iff each pair of
vertices are elements of the same cycle.

I Definition 29. The distance between two vertices in a graph G is the number of edges in
a shortest path that connects the two vertices.

The diameter of a graph G (denoted by diam(G)) is the greatest distance between any
two vertices of G.

I Lemma 30. SupposeM∈Mbounded_meeting and let G be the undirected graph forM such
that G is not a short model. G is a 2-connected triangle-free graph such that diam(G) = 3.

Proof. G is triangle-free iff for any x ∈ V , N(x) ∩ N2(x) = ∅, which is equivalent to
condition (1) in Definition 14. By condition (3) in Definition 14, there are at most two
vertices between any x, y, so that diam(G) = 3 (and hence G is connected). Suppose G is
not 2-connected; since G is not a short model, there must exist x, y ∈ V such that there is
a unique P4 subgraph with x and y as endpoints. However, this violates condition (2) in
Definition 14. J

Note that the converse of this Lemma does not hold; we need to determine which
2-connected triangle-free graphs are structures in Mbounded_meeting.

I Theorem 31. SupposeM is the orientation of a twin-free graph. M∈Mbounded_meeting

iffM is the orientation of a short model or of a graph in which any two elements x, y are
elements of a subgraph G ⊆M such that

G ∼= H ∪· H .

Proof (Sketch). By Lemma 30, any two elements x, y are elements of an induced P2, P3,
C5, or C6 subgraph. By condition (2) in Definition 14, there exist additional elements
v1, v2, v3 ∈ V that create new C5 subgraphs, so that the C6 subgraph generates an H ∪· H
subgraph that contains x, y. J

Finally, we can give a constructive characterization for finite structures inMbounded_meeting.

I Definition 32. Let G1,G2 be two graphs that each contain an induced Pk subgraph. A
graph obtained from G1 and G2 by identifying the two subgraphs is a Pk-gluing of G1 and
G2.

I Definition 33. A full graph is a graph in which each P4 subgraph is an edge cover of an
induced C5 subgraph.

I Theorem 34. Suppose M ∈ Mbounded_meeting such that M is twin-free and finite, and
that G is the undirected graph forM.

G is not 2-connected iff G ∼= P2 or G ∼= P3.
G is 2-connected iff there exists a sequence G1, . . . , G such that
1. G1 ∼= Pn;
2. G is a full graph;
3. Gi+1 is the result of P4-gluing Gi and C5.

Proof (Sketch). By Lemma 23 and Lemma 30, G is connected but not cyclic iff G ∼= P2 or
G ∼= P3. Suppose G is 2-connected. By Theorem 31, each pair of vertices are elements of an
H∪· H subgraph, so that G is a full graph. Let Pk be the longest path in G. By condition (2)
in Definition 14, every P4 subgraph is an edge cover of an induced C5 subgraph, which is
equivalent to the P4-gluing of a subgraph to C5. J
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Recall the original motivation for this work – since all applications of Allen’s Interval
Algebra consists in the specification of temporal constraints and the use of constraint
satisfaction techniques to find solutions. Such solutions correspond to models of T ∗allen . Given
the synonymy of T ∗allen and Tbounded_meeting (Theorem 11), these last two results not only give
us a complete characterization of the finite models of Tbounded_meeting up to isomorphism, but
they also give us a complete characterization of the solutions of a set of temporal constraints.

5 Summary

Constraint satisfaction with relational calculi such as Allen’s Interval Algebra has been
the predominant application of temporal concepts within commonsense reasoning. Yet in
some way, this has diminished the role played by the different time ontologies that provide
their foundations. It has long been known that the first-order theory of Allen’s Interval
Algebra is interpretable by certain ontologies of time intervals, in particular, the ontology
Tinterval_meeting. This perspective has been considered sufficient for showing that Allen’s
Interval Algebra was in some sense sound with respect to its ontological foundations. In this
paper, we have specified an ontology Tbounded_meeting that is weaker than Tinterval_meeting
and which is logically synonymous with Allen’s Interval Algebra. Finally, we have provided
a characterization of the models of Tbounded_meeting up to isomorphism, by first specifying a
class of mathematical structures, and then showing that Tbounded_meeting axiomatizes this
class of structures. This characterization gives us insights into the set of all possible solutions
for a set of temporal constraints that can be specified by Allen’s Interval Algebra.

The next step in this direction is a full characterization of the infinite models of
Tbounded_meeting, which would provide an alternative characterization of the models of
Tinterval_meeting. It would also enable us to explore extensions of Tbounded_meeting that ax-
iomatize dense orderings. This is equivalent to revisiting Hayes’ and Ladkins description
of models with respect to intervals on Q and Z. Formalize these results as representation
theorems.

Another major question is the relationship of Tbounded_meeting to other ontologies of time
intervals, such as periods [4], in which the primitive relations are precedence and inclusion
rather than meets. In particular, this would require a characterization of the mereology of
intervals that is definable within models of Tinterval_meeting.
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Abstract
We consider the hybridisation of the µ-calculus through the addition of nominals, binder and
jump. Especially the use of the binder differentiates our approach from earlier hybridisations
of the µ-calculus and also results in a more involved formal semantics. We then investigate
the model checking problem and obtain ExpTime-completeness for the full logic and the same
complexity as the modal µ-calculus for a fixed number of variables. We also show that this logic is
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1 Introduction

Hybrid Extensions of Modal Logic

Hybrid logic [19, 4] has emerged from modal logic as an attempt to extend a well-behaved but
relatively weak (in terms of expressive power) fragment of first-order logic with additional
features whilst retaining good properties like decidability etc. This is achieved by extending
the syntax of modal logic with first-order variables and some very restricted form of first-order
quantification over these variables.

The availability of first-order variables in the language gives the logic the power to express
properties that are inherently non-modal. For instance, it is possible to express that a state
of a Kripke structure has an edge to itself; it is – even without the definition of a formal
semantics – not hard to guess that the formula x ∧ ♦x should be true at exactly the states
of that kind. The two other typical operators are the binder and the jump. Intuitively,
↓x.ϕ binds x to the current state for the evaluation of ϕ. It is sometimes also known as
the freeze modality [1]. The jump operator – also called the satisfaction operator [4] – is
written @x ϕ and, intuitively, continues the evaluation of ϕ at the state that is bound to x.
For both operators it is important to remember that modal formulas, as opposed to (e.g.
closed) first-order formulas are interpreted at states of a Kripke structure, not the structure
as a whole.

Sometimes, when defining hybrid logics, one distinguishes two kinds of variables, depending
on whether they can be bound or not, and calls those that do not get bound nominals.

The additional power induced by these hybrid features and operators comes at a cost
when compared to modal logic. Clearly, hybrid logics do not possess the tree model property
anymore, as the little example x ∧ ♦x above shows. Strongly related to that is the loss of
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bisimulation-invariance, an inherent feature of modal logic [5]. The notion of bisimulation
has been refined accordingly to hybrid bisimulation which relates two states when they can
mimick each others transitions locally in the presence of a fixed number of named states. It
has been shown that the hybrd extension of modal logic with binder and jump is invariant
under this equivalence relation [3].

The term hybrid logic suggests speaking about one particular logic but in fact denotes
a family of logics; its members are obtained by extending some modal logic with some of
the features mentioned above. This is of course not restricted to modal logics alone, any
logic that is not subsumed by first-order logic is a natural candidate for the basis of a hybrid
logic. For instance, temporal and dynamic logics have been extended in this way, namely the
EF-fragment of CTL with past operators [9], CTL and CTL+ [11], as well as CTL∗ [12]. In
[11] the hybrid extensions of CTL and CTL+ are only interpreted over computation trees to
retain decidability of the satisfiability problem. However, the semantics naturally extends to
Kripke structures. Hybrid CTL and CTL+ are then – as in the non-hybrid case – subsumed
by the hybrid extensions of CTL∗ in [12].

Hybrid Extensions of the µ-Calculus

In this paper we consider the extension of the well-known modal µ-calculus Lµ [13] with
hybrid operators. This is not the first attempt at doing so; Sattler and Vardi [16] have
considered a hybrid µ-calculus which extends Lµ with nominals only, i.e. with additional
first-order variables but no mechanism to change them during the course of the evaluation
of a formula. This is in some sense a smallest hybrid extension of Lµ, even though they
use the term hybrid full µ-calculus for this logic. “Full” in that context seems to refer to
the addition of converse modalities. They are, however, thrown away then in favour of a
universal modality with which one can jump to any state in an underlying Kripke structure.
It is easy to see that this subsumes the specialised jumps @x conventionally used in hybrid
logics.

Here we consider a different logic, namely the extension of the modal µ-calculus with all
hybrid features, in particular including binders. To subtly distinguish these logics, we refer
to the one used here as the fully hybrid µ-calculus. This then clearly subsumes full hybrid
modal logic for which satisfiability is undecidable [4]. The context of Sattler and Vardi’s
hybrid µ-calculus of course forbids this, as their primary interest is description logics for
which decidability of satisfiability is a must. The motivation for the extension of Lµ with all
hybrid features here is not driven by concrete applications; we study this logic in order to
understand the effect that extending temporal logics in various ways has on their logical and
computational properties.

Contribution and Organisation

The paper is organised as follows. Section 2 defines the fully hybrid µ-calculus formally. We
discuss that the semantics of hybrid temporal logics is inadequate for a logic with fixpoint
quantifiers as under this semantics the implicit recursion mechanism does not obey the
meaning one would intuitively expect the binder to have. This is fixed by letting second-order
variables stand for sets of pairs of states and first-order variable bindings, rather than sets of
states only.

Section 3 examines the complexity of model checking the fully hybrid µ-calculus. Using a
reduction to Lµ model checking we obtain (1) an EXPTIME upper bound in general, (2) that
for formulas with a fixed number of variables the complexity is only polynomially worse than
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that for Lµ model checking, and (3) a game-theoretic characterisation similar to the one
for Lµ [17] which can be used to understand the properties expressed by formulas of the
fully hybrid µ-calculus. We also show that the EXPTIME upper bound is tight by giving a
matching lower bound.

In Section 4 we investigate questions of the logic’s expressiveness. We prove that, not
surprisingly, invariance under hybrid bisimulations carries over from hybrid modal logic
to the fully hybrid µ-calculus. To ease argumentation in this context, we also develop a
game-theoretic characterisation of hybrid bisimilarity similar to the well-known bisimulation
games [18]. We then use these games to show indistinguishability between two different
Kripke structures and deduce that, perhaps surprisingly, the fully hybrid µ-calculus does not
subsume the hybrid extensions of CTL∗, namely that it cannot express the property “there
is a path on which no state occurs twice”, even though this is easily possible in hybrid CTL∗.

We conclude the paper with a discussion on further work in this area.

2 Preliminaries

2.1 Syntax
Let k ∈ N, V = {x1, x2, . . . , xk} be a finite set of first-order variables, Prop = {p, q, . . .} be
a countable set of atomic propositions, V2 = {X,Y, . . .} be a countable set of second-order
variables and Nom = {m,n, . . .} be a countable set of first-order constants referred to as
nominals. All sets are assumed to be pairwise disjoint. Formulas of the k-variable fragment
of the fully hybrid µ-calculus Hk

µ are given by the grammar

ϕ := p | x | X | ¬ϕ | ϕ ∨ ϕ | �ϕ | @x ϕ | ↓x.ϕ | µX.ϕ(X)

where p ∈ Prop, x ∈ V ∪ Nom and X ∈ V2. The fully hybrid µ-calculus Hµ is the union
of all Hk

µ for k ≥ 1. The modal µ-calculus Lµ is obtained as Hµ in the special case when
V = Nom = ∅.

We are making use of tt, ff, ∧, ♦, νX.ϕ as abbreviations in the usual way. By Sub(ϕ) we
denote the set of all subformulas of ϕ. Further, we say that a formula ϕ ∈ Hµ is in negation
normal form if and only if negation only occurs directly in front of atomic formulas.

We assume the following standard sanity condition on formulas: every X ∈ V2 is bound
at most once by a fixpoint quantifier µ or ν and can only occur under an even number of
negations. The function mapping each X ∈ V2 to its unique binding formula is called fpϕ.
We say that a second-order variable X is of type µ or ν if its defining fixpoint formula fpϕ(X)
is a least, resp. greatest fixpoint formula. Formulas with no free first-order variables will be
referred to as sentences.

All results easily extend to a multi-modal version of Hµ; for the sake of simplicity we
only work with a uni-modal version here.

2.2 Considerations on the Semantics in the Presence of Fixpoints
A Kripke structure is a tuple K = 〈S,→, L〉 where S is a set of states, → ⊆ S × S is a
transition relation and L : Prop → 2S labels the states with the sets of propositions that
hold true in them.

Formulas of Lµ are usually interpreted over Kripke structures via a mapping J·KKρ , which
maps a formula together with a Kripke structure K as above and an assignment ρ : V2 → 2S
to the states that satisfy this formula. A formula ϕ(X) with a free second-order variable X
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thus induces a monotonic operator V 7→ Jϕ(X)KKρ[X 7→V ], mapping a set V of states to the set
of states that satisfy ϕ(X) under the assumption that X holds on the states in V .

The hybrid µ-calculus considered by Sattler and Vardi [16] can be given a semantics
in the same way, in particular with an interpretation of type V2 → 2S of the second-
order variables. First-order variables are nominals in the absence of a binder; hence, their
interpretation can be fixed in the Kripke structure by extending the labelling function to
the type L : Prop ∪ Nom → 2S with the requirement that L(m) is a singleton set for all
m ∈ Nom.

This, however, is not enough in the presence of the binder modality as it should change
the mapping of first-order variables to states dynamically during the evaluation of a formula.
The naïve approach is to extend the assignment ρ of all second-order variables to a function
V ∪V2 → 2S such that ρ(x) is a singleton set for each x ∈ V . This is essentially incorporating
their treatment in hybrid temporal logics, c.f. [12]. We could then just extend the usual
semantics for Lµ to Hµ via

JxKKρ = ρ(x)

J@x ϕKKρ =
{
S if ρ(x) ∈ JϕKKρ ,
∅ otherwise

as it was done in [16] and

J↓x.ϕKKρ = {s ∈ S | s ∈ JϕKKρ[x→s]}.

for the binder modality. However, this does not capture the intuition one would have about
the interaction between binders and fixpoint recursion; namely that bindings made in one
iteration have an effect on the following iterations.

I Example 1. Consider the formula (p∧¬x)∨↓x.♦X. Obviously the value of x is supposed
to change throughout the evaluation of this formula: the second disjunct is satisfied by a tuple
(K, s, ρ) if (K, s, ρ[x→ s]) satisfies ♦X. However, the update on ρ does not have any impact
on the valuation of ♦X because under the standard µ-calculus semantics extended as stated
above, ♦X is evaluated without involving x at all and thus (p∧¬x)∨↓x.♦X ≡ (p∧¬x)∨♦X.

Now consider the least fixpoint of the transformation defined by this formula, ψ :=
µX.(p ∧ ¬x) ∨ ↓x.♦X. This change in ρ(x) should have some impact on the fixpoint in
the sense that ♦X should be calculated relative to the new valuation of x. Moreover, the
unfolding principle for fixpoints postulates that X should just be a placeholder for ψ, but
the evaluation of ψ surely depends on the value of x. Nonetheless, we have

µX.(p ∧ ¬x) ∨ ↓x.♦X ≡ µX.(p ∧ ¬x) ∨ ♦X
6≡ (p ∧ ¬x) ∨ ↓x.♦(µX.(p ∧ ¬x) ∨ ↓x.♦X) .

(1)

The equivalence is a simple consequence of the fact that – under the semantics proposed
above – we have ↓x.ϕ ≡ ϕ whenever x is not free in ϕ. The inequivalence is also easy to
grasp: the left-hand side is evaluated independently of the update of x. The right-hand side,
however, updates x once before the evaluation of the fixpoint formula is started, then with
the new value of x.

To illustrate this, we evaluate both formulas on the following simple Kripke structure:

s0

p

s1
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It is quite obvious that s1, {x 7→ s0} 6|= µX.(p ∧ ¬x) ∨ ♦X because under this assignment for
the variable x no state satisfies p ∧ ¬x and thus the fixpoint is just the empty set.

However, s1, {x 7→ s0} |= ↓x.♦(µX.(p ∧ ¬x) ∨ ↓x.♦X) because changing the assignment
of x to s1 and then calculating the fixpoint results in {s1, s0} and thus s1, {x 7→ s0} |=
(p ∧ ¬x) ∨ ↓x.♦(µX.(p ∧ ¬x) ∨ ↓x.♦X). This is because after unfolding the fixpoint once, it
is calculated relative to the updated valuation of x rather than the old.

On the other hand, the last formula in (1) should be equivalent to the first one in there
because of the desirable equivalence µX.ϕ(X) ≡ ϕ(µX.ϕ) – the aforementioned unfolding
principle.

This example shows that the proposed semantics is inadequate for the fully hybrid
µ-calculus including the binder modality. Interestingly, the fixpoint principle still holds
semantically but not syntactically, i.e. in general we have

JµX.ϕ(X)KKρ = Jϕ(X)KKρ[X 7→JµX.ϕ(X)KKρ ]

for any K,X,ϕ and ρ, but

JµX.ϕ(X)KKρ 6= Jϕ(µX.ϕ(X))KKρ

as the evaluation of the outer ϕ may change the variable assignment ρ that is used for the
evaluation of the inner fixpoint formula. In other words, this semantics is not compositional,
i.e. in general we have

Jϕ[ψ/X]KKρ 6= JϕKKρ[X 7→JψKKρ ] .

2.3 A Compositional Semantics
To account for such phenomena we propose a new semantics for the fully hybrid µ-calculus.
Formulas are still interpreted over Kripke structures K = 〈S,→, L〉. However, the meaning
of a formula is now a set pairs consisting of a state and an assignment for the first-order
variables. Consequently the variable assignment has to map second-order variables to the
same type; it becomes an assignment ρ : V2 → 2S×(V→S).

Formally the semantics for Hk
µ for all k with respect to a Kripke structure K = 〈S,→, L〉

over Prop and Nom and an assignment ρ : V2 → 2S×(V→S) is the following:

JpKKρ = {(s, σ) ∈ S × (V → S) | s ∈ L(p)},
JxKKρ = {(s, σ) ∈ S × (V → S) | s = σ(x)},

JXKKρ = ρ(X),
J¬ϕKKρ = {(s, σ) ∈ S × (V → S) | (s, σ) 6∈ JϕKKρ },

Jϕ1 ∨ ϕ2KKρ = Jϕ1KKρ ∪ Jϕ2KKρ ,

J�ϕKKρ = {(s, σ) ∈ S × (V → S) | ∀t ∈ S : if s→ t, then (t, σ) ∈ JϕKKρ },
J@x ϕKKρ = {(s, σ) ∈ S × (V → S) | (σ(x), σ) ∈ JϕKKρ },
J↓x.ϕKKρ = {(s, σ) ∈ S × (V → S) | (s, σ[x 7→ s]) ∈ JϕKKρ },

JµX.ϕ(X)KKρ =
⋂
{T ⊆ S × (V → S) | JϕKKρ[X→T ] ⊆ T}

with p ∈ Prop ∪Nom, x ∈ V and X ∈ V2.
We will write K, s, σ, ρ |= ϕ if (s, σ) ∈ JϕKKρ . If there are no free second-order variables

we also may drop ρ. Furthermore, we will also sometimes write (s1, . . . , sk) to indicate the
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17:6 The Fully Hybrid µ-Calculus

function σ : V → S with σ(xi) = si when an order on V is implictly given, for instance when
V = {x1, . . . , xk}. To shorten notation even further we sometimes write K, s |= ϕ to express
that K, s, (s, . . . , s) |= ϕ.

I Example 2. Reconsider the formula given in Example 1, now with the new semantics
proposed above. We claim

µX.(p ∧ ¬x) ∨ ↓x.♦X ≡ (p ∧ ¬x) ∨ ↓x.♦(µX.(p ∧ ¬x) ∨ ↓x.♦X)

holds. We do not prove this formally here; see Proposition 3 below for a general statement.
Instead we just give a hint that now this equivalence holds by re-evaluating both formulas
on the Kripke structure given in Example 1.

Having two states and one variable, the domain for the semantics is the set of subsets of

{(s0, x 7→ s0), (s0, x 7→ s1), (s1, x 7→ s0), (s1, x 7→ s1)} .

Clearly, p∧¬x holds only at (s0, x 7→ s1). Moreover, the least fixpoint µX.(p∧¬x)∨↓x.♦X
evaluates to the set M := {(s0, x 7→ s1), (s1, x 7→ s0), (s1, x 7→ s1)}. The first element is
included because it satisfies (p ∧ ¬x) so every prefixpoint must contain it. The other two
elements then also have to be elements of all prefixpoints because for every prefixpoint T
with T ⊇ {(s0, x 7→ s1)} we have J↓x.♦XKKρ[X→T ] ⊇ {(s1, x 7→ s0), (s1, x 7→ s1)}. Finally one
can easily check that M a fixpoint.

On the other hand,M ⊆ J(p∧¬x)∨↓x.♦(µX.(p∧¬x)∨↓x.♦X) because the first element of
M satisfies p∧¬x and the other two elements satisfy this formula because clearly when placing
x at s1 we get to (s1, x 7→ s1) and then we can make a transition to (s0, x 7→ s1) which is
already part of the least fixpoint. Lastly, (s0, x 7→ s0) 6|= (p∧¬x)∨↓x.♦(µX.(p∧¬x)∨↓x.♦X)
because it does not satisfy the first disjunct p∧¬x as seen and placing the x at s0 still leaves
us with (s0, x 7→ s0) from where we can only get back to itself with any transition available,
and (s0, x 7→ s0) is not an element of the least fixpoint M as seen. So it does not satisfy the
second disjunct either.

The semantics proposed here is indeed compositional, as one can routinely check by
induction over the formula structure.

I Proposition 3. Let ϕ(X), ψ ∈ Hµ, K be any Kripke structure and ρ assign values of
the variables in ϕ,ψ w.r.t. K. Let ϕ[ψ/X] denote the formula that is obtained from ϕ by
replacing every free occurrence of X with ψ. We have Jϕ[ψ/X]KKρ = Jϕ(X)KKρ[X 7→V ] where
V = JψKKρ .

This means in particular, that we can use the fixpoint unfolding principle syntactically in
Hµ.

Our analysis will mostly focus on formulas in negation normal form. This is not a
restriction as the following Lemma shows.

I Lemma 4. For every formula ϕ ∈ Hk
µ there is an equivalent formula ϕ′ ∈ Hk

µ in negation
normal form and ϕ′ is only polynomially larger.

Proof. The proof is fairly standard. We simply push negation inwards with de Morgan’s
laws, the usual equivalences for fixpoints, like µX.ϕ ≡ ¬νX.¬ϕ[¬X/X] and the following
equivalences for hybrid operators: ¬↓x.ϕ ≡ ↓x.¬ϕ, ¬@x ϕ ≡ @x ¬ϕ. J

Hµ clearly subsumes hybrid modal logic which is known to be undecidable [4]. Thus, we
immediately get the following result concerning Hµ’s satisfiability problem.

I Theorem 5. Satisfiability for Hµ is undecidable.
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3 Model Checking

In this section we investigate the model checking problem for Hµ. We provide a reduction
to Lµ model checking and derive upper complexity bounds for this, prove a matching
lower bound for the general case, and finally define model checking games for Hµ based on
this reduction and the well-known games for Lµ [17]. They can then be used to aid the
understanding of properties expressed by formula of Hµ.

3.1 A Reduction to Lµ Model Checking
Let ϕ ∈ Hk

µ for some k ∈ N and K = 〈S,→, L〉 be a Kripke structure over Prop. From these,
we construct a Kripke structure K̂ and a formula ϕ̂ of the (multi-modal) µ-calculus over
the set of actions A = {•} ∪ {@x | x ∈ V} ∪ {↓x | x ∈ V} and atomic propositions from
Prop ∪Nom ∪ V as follows.

Let ϕ 7→ ϕ̂ be the homomorphism such that ♦̂ψ = 〈•〉ψ̂, @̂x ψ = 〈@x〉ψ̂ and ↓̂x.ψ = 〈↓x〉ψ̂.
Moreover, K̂ = 〈S×(V → S),∆, L̂〉 where the labeling is defined as L̂(p) = {(s, σ) | s ∈ L(p)}
for every p ∈ Prop ∪Nom and L̂(x) = {(s, σ) | s = σ(x)} for every x ∈ V.

The transition relation ∆ is defined as follows.

(s, σ) a−→ (t, σ) iff s→ t in K,
(s, σ) @x−−→ (σ(x), σ) for every x ∈ V, and
(s, σ) ↓x−→ (s, σ[x 7→ s]) for every x ∈ V.

The following can be proved by a straightforward induction over ϕ.

I Lemma 6. For all Kripke structures K = 〈S,→, L〉, s ∈ S and σ : V → S we have
K, s, σ |= ϕ iff K̂, (s, σ) |= ϕ̂.

This realises a reduction from Hµ model checking to Lµ model checking which is polyno-
mial for every fixed k. From this we can derive the following upper complexity bound on the
former in the general case.

I Theorem 7. The model checking problem for Hµ is in ExpTime.

Proof. It is known that Lµ model checking on a Kripke structure K ′ and a formula ψ can be
done in time O((|K ′| · |ψ|)ad(ψ)) [8] where ad(ψ) denotes the depth of fixpoint alternation in
ϕ. Moreover, |ψ| denotes the size of ψ as measured by the number of its distinct subformulas,
and |K ′| is the sum of the number of states and edges in K ′.

Now take an Hk
µ formula ϕ and a Kripke structure K and consider K̂ and ϕ̂ as defined

above. It is not hard to see that |ϕ̂| = O(|ϕ|) and |K̂| = O(|K|k+1). Hence, Lemma 6
facilitates an exponential reduction to Lµ model checking. Since this is not known to be
solvable in polynomial time, the ExpTime upper bound does not follow directly but requires
a slightly more detailed analysis: the reduction produces a Kripke structure K̂ and a formula
ϕ̂ such that ad(ϕ̂) = ad(ϕ) and, hence, model checking on these can be performed in time
O((|K|k+1 · |ϕ|)ad(ϕ)), i.e. in exponential time. J

Clearly, the number of first-order variables is the only source of exponentiation in this
reduction. Hence, if this number is fixed, we obtain a better bound.

I Corollary 8. For any fixed k ∈ N we have that the model checking problem for Hk
µ is at

most polynomially worse than that of Lµ.

This implies membership in NP∩coNP [8], UP∩coUP [10], PLS [20], etc. for model
checking each Hk

µ .
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s, σ ` ψ1 ∧ ψ2
s, σ ` ψ1 s, σ ` ψ2

(1)

s, σ ` �ψ
t, σ ` ψ (1 : s→ t)

s, σ ` νX.ψ(X)
s, σ ` ψ(X) (1)

s, σ ` @x ϕ

σ(x), σ ` ϕ
s, σ ` ↓x.ϕ

s, σ[x 7→ s] ` ϕ
s, σ ` X

s, σ ` fpϕ(X)

(0) s, σ ` ψ1 ∨ ψ2
s, σ ` ψ1 s, σ ` ψ2

(0 : s→ t) s, σ ` ♦ψ
t, σ ` ψ

(0) s, σ ` µX.ψ(X)
s, σ ` ψ(X)

Figure 1 The game rules for Hµ model checking.

3.2 Model Checking Games
Next we give a game-theoretic characterisation of Hµ’s model checking problem. Such games
are particularly useful for reasoning about the (un-)satisfaction of a formula and therefore to
understand the properties expressed by Hµ formulas, for instance in the proof of the lower
bound in the next section.

I Definition 9. Let ϕ ∈ Hµ be in negation normal form, and K = 〈S,→, L〉 be a Kripke
structure. The model checking game G(K,ϕ) is played by 2 players – called 0 and 1. It is
Player 0’s task to show that the formula holds while Player 1 tries to refute this. The game’s
positions are S × (V → S)× Sub(ϕ). We usually write such a position as s, σ ` ψ.

The game can evolve using the rules in Figure 1. Those that are annotated with player i
induce a choice for this player. For example in a configuration (s, σ) ` ♦ψ it is player 0’s
task to choose a successor t of s in K and then the play continues in the position t, σ ` ψ.

A player wins a play if their opponent is stuck, i.e. cannot perform a prescribed choice
anymore. Furthermore, player 0 wins if she can reach a position s, σ ` p with s ∈ L(p) for
some p ∈ Prop ∪ Nom or s, σ ` x with σ(x) = s for some x ∈ V. On the other hand, if
s 6∈ L(p) resp. σ(x) 6= s player 1 wins. Likewise, player 0 wins in a position s, σ ` ¬p if
s 6∈ L(p), and a position s, σ ` ¬x if σ(x) 6= s.

Finally, let >ϕ be the smallest relation such that X >ϕ Y if X has a free occurrence in
fpϕ(Y ) that is closed under transitivity. The winner of an infinite play is determined by the
type of the unique largest (with respect to >ϕ) fixpoint variable that occurs infinitely often.
Player 0 wins if its type is ν and player 1 wins if its type is µ.

Next we need to show that these games characterise the model checking problem for Hµ.
This is particularly easy with Lemma 6 at hand, which lets us lift the correctness property
of the Lµ model checking games – player 0 wins iff the formula holds – to the Hµ games.

Let K = 〈S,→, L〉 and ϕ ∈ Hk
µ for some k be given, and let Ĝ(K̂, ϕ̂) be the model

checking game in the multi-modal Lµ for K̂ and ϕ̂. Remember that Lµ = H0
µ and note that

model checking games for H0
µ can ignore the variable assignment in their positions.

I Lemma 10. Player 0 wins a position s, σ ` ϕ in G(K,ϕ) if and only if Player 0 wins a
position (s, σ) ` ϕ̂ in Ĝ(K̂, ϕ̂).

Proof. “⇐” Suppose player 0 has a winning strategy χ for Ĝ(K̂, ϕ̂). Because of positional
determinacy for Lµ model checking games [17] we can assume χ to prescribe a choice to
player 0 in each configuration that contains a disjunction or a diamond formula (regardless
of the play’s history). This strategy can easily be transferred into a positional strategy χ′
for player 0 in G(K,ϕ) via χ′((s, σ) ` ψ) = χ(s, σ ` ψ̂). Note that states in K are of the
form (s, σ) and, as said above, positions in the Lµ, resp. H0

µ model checking games are pairs
of states and subformulas only. Nominally, player 0 has more choices with χ than with χ′
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because binder und jump modalities in ϕ have become diamond modalities in ϕ̂. However,
the underlying edge relations in K̂ are deterministic which means that player 0’s only choice
in such positions is to do what the semantics of binders and jumps require.

It is not hard to see that χ′ is winning if χ is because ϕ̂ has essentially the same structure
as ϕ. Hence, if player 0 can use χ to enforce a play in which the outermost fixpoint variable
occurring infinitely often is of type ν then so can she using χ′.

“⇒” This can be proved in the same way by transforming a winning strategy in G(K,ϕ)
into one in Ĝ(K̂, ϕ̂) now adding the deterministic choices for player 0 at additional diamond
subformulas. J

Putting Lemmas 6 and 10 together we obtain correctness of the Hµ model checking
games.

I Theorem 11. Player 0 has a winning strategy in a position s, σ ` ϕ in the model checking
game G(K,ϕ) if and only if K, s, σ |= ϕ.

3.3 A Lower Bound
It remains to be seen that the exponential time upper bound for Hµ is tight. For this we
reduce the n-corridor tiling game problem [6] to the model checking problem of Hµ.

A tiling system is a tuple T = 〈T,H, V, t1〉 consisting of a set of tiles T = {t1, . . . , tm}, a
horizontal matching relation H ⊆ T × T , a vertical matching relation V ⊆ T × T and an
initial tile t1.

Let n ≥ 1. The n-corridor tiling game is played between two players Adam and Eve on
such a T and the (N×{0, . . . , n− 1})-corridor as follows. At the beginning, the initial tile t1
is being placed at position (0, 0). Whenever the first tile of a row has been placed, Eve needs
to complete this row with tiles respecting the vertical and horizontal matching relations.
Whenever a row is finished, Adam’s places a tile onto the first position of the next row such
that this tile matches the one below w.r.t. V .

A play is won by a player if their opponent is unable to place a tile without violating the
matching relations. Additionally, Eve wins any play that goes on forever.

The n-corridor tiling game problem is the following: given a tiling system T and an
n ∈ N in unary encoding, decide whether Eve has a winning strategy for the n-corridor tiling
game on T . This problem is known to be ExpTime-hard [6].

I Theorem 12. The model checking problem for Hµ is ExpTime-hard.

Proof. Let T = 〈T,H, V, t1〉 with T = {t1, . . . , tm} and n ∈ N be given. To help with
notation define Hti := {t | (ti, t) ∈ H} as the possible horizontal successors of ti and
Vti := {t | (ti, t) ∈ V } as the possible vertical successors of ti for each i ∈ {1, . . . ,m}.

We build a Kripke structure Kn
T over Prop = T with a designated state s0 and an Hn

µ

formula ϕnT such that Kn
T , s0, σ |= ϕT for any σ if and only if Eve wins the n-corridor tiling

game on T .
Intuitively, a path through Kn

T corresponds to a particular play in the n-corridor tiling
game on T . Each state is labeled with exactly one atomic proposition from T representing
the tile placed at a particular position in the n-corridor. It is encoded row-wise as an
infinite path, i.e. the i-th state on this path represents the position (bi ÷ nc, i mod n) in
the n-corridor. It is possible to let Kn

T consist of the full clique of m states only – one for
each tile. However, it is more convenient to encode the horizontal matching relation into the
structure such that an edge from (a state labeled) t in some column to t′ in the next column
only exists if (t, t′) ∈ H and both represent positions in a common row in the n-corridor.
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t1

...

tm

t1

...

tm

t1

...

tm

. . .

columns 0, . . . , n − 1

Figure 2 The Kripke structure Kn
T used in the reduction from the n-corridor tiling game problem.

Kn
T is depicted in Figure 2. The initial state is the one labeled with the initial tile t1 in

column 0. There is an edge from a state (identified by its unique label) t in column i to state
t′ in column i+ 1 iff (t, t′) ∈ H and i < n− 1. Additionally, there are edges from every state
in column n− 1 to every state in column 0.

The formula ϕnT then needs to describe the evolution of the n-corridor tiling game. The
fact that it potentially goes on forever is modeled by a greatest fixpoint recursion. Each
iteration corresponds to the construction of a row. For technical convenience, since the initial
tile in the n-corridor tiling game is fixed, it actually corresponds to the construction of the
n − 1 last tiles of a row plus the first tile of the next row. In order to check whether the
players only choose tiles that match vertically, we use n first-order variables x0, . . . , xn−1
which are placed during the construction of a row, and then can be used to remember those
tiles for the construction of the next row.

As a shorthand we use the formula

vmi(Z) := (
∨

(t,t′)∈V

t′ ∧@xit) ∧ ↓xi.Z

for i = 0, . . . , n − 1 which compares the tile at the current position with the tile at the
position stored in xi, and additionally binds the variable xi to the state that it is currently
evaluated in. Then let

ϕnT := ↓x0.♦ ↓x1.♦ ↓x2. . . .♦ ↓xn−1.�
(
νY.¬vm0(¬♦vm1(♦vm2(. . .♦vmn−1(�Y ) . . .)))

)
.

Using the previously introduced model checking games for Hµ one can check that a winning
strategy for Eve in the n-corridor tiling game induces a winning strategy for player 0 in
the model checking game on Kn

T and ϕnT : her choices of tiles in the tiling game correspond
directly to choices she can do at ♦-formulas. With Theorem 11 we then get correctness of
this reduction. Moreover, it is easy to see that both Kn

T and ϕnT can be constructed in time
polynomial in |T | and the value of n. J

4 Expressiveness

This section studies the expressive power of Hµ with a particular focus on principle bounds
imposed in the sense of bisimulation invariance. It is well known that Lµ is bisimulation-
invariant, i.e. formulas of Lµ cannot distinguish bisimilar models, but that hybrid operators
break this invariance. For example with just one variable one can distinguish a single self-loop
from its tree-unraveling using the formula x ∧ ♦x.
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4.1 A Game-Theoretic Characterisation of k-Bisimulation
In [3] it is shown that hybrid modal logic is invariant under a refined form of bisimulation,
called k-bisimulation; its formal definition is recalled below. To better suit our framework of
games we present the definition in terms of k-bisimulation games extending the well known
(ordinary) bisimulation games [18].

I Definition 13 (k-Bisimulation Game). Given two Kripke structures K0 = 〈S0,→0, L0〉 and
K1 = 〈S1,→1, L1〉 over a set of atomic propositions Prop and a set of nominals Nom, the
k-bisimulation game Gk(K0,K1) is played between two players – Spoiler and Duplicator –
on the configuration space Sk+1

1 × Sk+1
2 .

We can imagine that on each structure we have one active pebble that gets moved across
the structure and k inactive pebbles that just mark certain states as well as some fixed
pebbles that mark the positions of the nominals.

The game is strictly turn-based. First, in a configuration (s, s1, . . . , sk, t, t1, . . . , tk) Spoiler
starts by choosing one of the structures Ki for some i ∈ {0, 1} and then chooses to either

take a transition s→0 s
′, resulting in a configuration (s′, s1, . . . , sk, t, t1, . . . , tk), or

move pebble i from si to the current state s, resulting in a configuration (s, s1, . . . , si−1, s,

si+1, . . . , sk, t, t1, . . . , tk), or
jump from the current state s to some pebble si, resulting in a configuration (si, s1, . . . , sk,

t, t1, . . . , tk) or to some nominal n resulting in a configuration (n, s1, . . . , sk, t, t1, . . . , tk).

After that Duplicator makes the same kind of move on the other structure K1−i.
Spoiler wins the game if after Duplicator’s move the game is in a configuration (s, s1, . . . ,

sk, t, t1, . . . , tk) such that the atomic propositions or nominals on s and t do not match or
for some i = 1, . . . , k, s = si but not t = ti or vice versa. On the other hand Duplicator wins
the game if he can always successfully mimic Spoiler’s move which means that on s and t the
atomic propositions and nominals match and s = si if and only if t = ti for all i = 1, . . . , k
and thus the game goes on forever.

We say that (s, s1, . . . , sk) ∼k (t, t1, . . . , tk) if Duplicator wins Gk(K0,K1) from the
configuration (s, s1, . . . , sk, t, t1, . . . , tk). We say that s ∼k t if Duplicator wins Gk(K0,K1)
from configuration (s, s, . . . , s, t, t, . . . , t).

It is easy to see that for k = 0 and no nominals we get the well-known bisimulation games.
Furthermore, as also remarked in [3], these games can be restricted to the hybrid operators in
use. For example, the restricted games with k = 0 variables and only nominals characterise
the expressiveness of the hybrid µ-calculus with only nominals and jumps investigated in
[16].

The following lemma states some easy observations that will be of use later on.

I Lemma 14. Let K0,K1 be as in Definition 13. If (s, s1, . . . , sk) ∼k (t, t1, . . . , tk), then
(a) for every s→0 s

′ there is a transition t→1 t
′ such that (s′, s1, . . . , sk) ∼k (t′, t1, . . . , tk),

(b) (s, s1, . . . , si−1, s, si+1, . . . , sk) ∼k (t, t1, . . . , ti−1, t, ti+1, . . . , tk) for every i = 1, . . . , k,
and

(c) (si, s1, . . . , sk) ∼k (ti, t1, . . . , tk) for every i = 1, . . . , k.

4.2 The Hybrid µ-Calculus and k-Bisimulation
We will now show that the expressive power of Hk

µ is limited by k-bisimulations.
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I Theorem 15. Let ϕ ∈ Hk
µ be closed and K0 = 〈S0,→0, L0〉,K1 = 〈S1,→1, L1〉 be two

Kripke structures. If (s, s1, . . . , sk) ∈ Sk+1
0 and (t, t1, . . . , tk) ∈ Sk+1

1 such that (s, s1, . . . , sk)
∼k (t, t1, . . . , tk), then K0, s, (s1, . . . , sk) |= ϕ if and only if K1, t, (t1, . . . , tk) |= ϕ.

Proof. To prove this by induction we have to strengthen the hypothesis in order to ac-
count for formulas ϕ(X1, . . . , Xm) with free second-order variables X1, . . . , Xm. Let ρ
and ρ′ be interpretations for these that respect k-bisimilarity in the sense that for all
(s, s1, . . . , sk) ∈ Sk+1

0 and (t, t1, . . . , tk) ∈ Sk+1
1 it holds that if (s, s1, . . . , sk) ∼k (t, t1, . . . , tk)

then (s, s1, . . . , sk) ∈ ρ(Xi) if and only if (t, t1, . . . , tk) ∈ ρ′(Xi) for any i.
We will prove the following by induction on the structure of ϕ: (s, s1, . . . , sk) ∼k

(t, t1, . . . , tk) implies that K0, s, (s1, . . . , sk), ρ |= ϕ if and only if K1, t, (t1, . . . , tk), ρ′ |= ϕ.
For technical convenience, the variable assignments have been split into the parts interpreting
the first- resp. second-order variables.

So, assume that (s, s1, . . . , sk) ∼k (t, t1, . . . , tk) and ρ, ρ′ are as stated above. For the base
case let ϕ = p for some p ∈ Prop. Then from (s, s1, . . . , sk) ∼k (t, t1, . . . , tk) we immediately
get that s ∈ L0(p)⇔ t ∈ L1(p). The case ϕ = x is similar. For the case ϕ = Xi we can use
the assumption for free second-order variables as stated above.

The cases for Boolean operators follow immediately from the hypothesis and the case
ϕ = ♦ψ follows immediately with Lemma 14 a).

For the hybrid operators suppose that ϕ = ↓xi.ψ for some i ∈ {1, . . . , k}. We get that

K0, s, (s1, . . . , sk), ρ |= ϕ ⇔ K0, s, (s1, . . . , si−1, s, si+1, . . . , sk), ρ |= ψ

⇔ K1, t, (t1, . . . , ti−1, t, ti+1, . . . , tk), ρ′ |= ψ

⇔ K1, t, (t1, . . . , tk), ρ′ |= ϕ

where the first and last equivalence are simply the semantics of Hk
µ and the second equivalence

is Lemma 14 b) and the induction hypothesis. The case for ϕ = @xi ψ then follows with
Lemma 14 c).

For the last case suppose that ϕ = µX.ψ(X,X1, . . . , Xm) with free variables in ψ as
depicted.

Let ψ0 := ψ[ff/X] and ψα+1 := ψ[ψα/X]. With Proposition 3 and the characterisation
of least fixpoints via approximations we have that JµX.ψ(X)KK% =

⋃
α<ωJψαKK% for some

Kripke structure K and assignment %.
We show by a separate induction over α that K0, s, (s1, . . . , sk), ρ |= ψα if and only if

K1, t, (t1, . . . , tk), ρ′ |= ψα. The case for least fixpoints then follows immediately.
For the base case α = 0 observe that Jψ[ff/X]KK% = Jψ(X)KK%[X 7→∅]. Thus,

K0, s, (s1, . . . , sk), ρ |= ψ0 ⇔ K0, s, (s1, . . . , sk), ρ[X 7→ ∅] |= ψ(X)
⇔ K1, t, (t1, . . . , tk), ρ′[X 7→ ∅] |= ψ(X)
⇔ K1, t, (t1, . . . , tk), ρ′ |= ψ0

where the second equivalence is by the fact that for all (s, s1, . . . , sk) ∼k (t, t1, . . . , tk) it
holds that (s, s1, . . . , sk) ∈ ∅ ⇔ (t, t1, . . . , tk) ∈ ∅ so we can use the induction hypothesis of
the outer induction for ψ. For the induction step we then get

K0, s, (s1, . . . , sk), ρ |= ψα+1 ⇔ K0, s, (s1, . . . , sk), ρ[X 7→ JψαKK0
ρ ] |= ψ(X)

⇔ K1, t, (t1, . . . , tk), ρ′[X 7→ JψαKK1
ρ′ ] |= ψ(X)

⇔ K1, t, (t1, . . . , tk), ρ′ |= ψα+1.
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Here, the induction hypothesis for ψα makes sure that the conditions for the induction
hypothesis for ψ are met which is why the second equivalence holds. This finishes both
inductions. J

I Corollary 16. Let ϕ ∈ Hk
µ be a sentence and K0 = 〈S0,→0, L0〉,K1 = 〈S1,→1, L1〉 be two

Kripke structures. If s ∈ S0 and t ∈ S1 such that s ∼k t, then K0, s |= ϕ if and only if
K1, t |= ϕ.

There is another interesting connection between Hµ and bisimulations: H2
µ can express

bisimilarity in the sense that there is a fixed formula ϕ∼ (relative to a fixed Prop) which is
true in a Kripke structure with a valuation of two variables if and only if these two variables
point at bisimilar states. For technical convenience we assume Nom = ∅ here, since the usual
and simple reduction from bisimilarity between two Kripke structures to bisimilarity within a
single structure does not work in the presence of nominals. Instead, one has to rename them
uniquely in one of them to allow the disjoint union of two Kripke structures with nominals
to be seen as one Kripke structure with nominals again.

I Example 17. The formula

ϕ∼ := νX.
(( ∧

p∈Prop
@x p↔ @y p

)
∧ (@x� ↓x.@y ♦ ↓ y.X) ∧ (@y � ↓ y.@x ♦ ↓x.X)

)
states that x and y are bisimilar. This can be seen using the model checking games of
Section 3.2 for instance.

It is even possible to express k-bisimilarity; however this requires 2k + 2 variables.

I Example 18. The formula

ϕk∼ := νX.
( ∧
p∈Prop

(@x p↔ @y p) ∧ (@x� ↓x.@y ♦ ↓ y.X) ∧ (@y � ↓ y.@x ♦ ↓x.X)

k∧
i=1

(
(@x xi ↔ @y yi) ∧ (@x ↓xi.@y ↓ yi.X) ∧ (@xi ↓x.@yi ↓ y.X)

))
over the variables {x, x1, . . . , xk, y, y1, . . . , yk} ordered in this way is true on (s, s1, . . . , sk, t, t1,

. . . , tk) in K if and only if (s, s1, . . . , sk) ∼k (t, t1, . . . , tk).

I Theorem 19. H2k+2
µ can express k-bisimilarity for any k ≥ 0.

4.3 Comparing Hµ with Hybrid Branching Time Logics
A natural question that arises when studying the expressiveness of Hµ is its relationship to
other hybrid logics. It is easy to see that Hµ is more expressive than hybrid modal logic using
the same example which shows that Lµ is more expressive than modal logic. Candidates
for an interesting comparison are hybrid extensions of branching time logics. There are
three hybrid extensions of CTL∗ [12] defined by constraints on how hybrid operators can be
used on path formulas which are not state formulas, giving rise to the syntactical hierarchy
HCTL∗ss ≤ HCTL∗ps ≤ HCTL∗pp. The smallest already subsumes the previously studied hybrid
extensions of CTL and CTL+ [11]. We will show that HCTL∗ps already is not subsumed by
Hµ. This is somewhat surprising given that Lµ is known to subsume CTL∗ [7].

Let Ck = 〈Sk,→, L〉 be the complete clique over k states and C∞ = 〈S∞,→, L〉 be
the complete clique over N, as depicted for k = 8 in Figure 3, as Kripke structures over
Prop = Nom = ∅.
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· · ·
· · ·

· · ·

Figure 3 C8 and C∞.

I Lemma 20. Let (s, s1, . . . , sk, t, t1, . . . , tk) be a configuration in the k-bisimulation game
Gk(Ck+1, C∞) such that s = si if and only if t = ti for all i = 1, . . . , k. Then Duplicator has
a winning strategy for this game starting in this configuration.

Proof. We call a configuration (s, s1, . . . , sk, t, t1, . . . , tk) consistent if for all i we have s = si
if and only if t = ti. By assumption, the game starts in a consistent configuration. There are
two observations to be made:

1. Regardless of Spoiler’s choices in a consistent configuration, Duplicator can always answer
such that the next configuration is also consistent. This is particularly easy for moves in
C∞, and in Ck+1 it is possible because every state is reachable from every other in one
step, and there is always at least one state which is not inhabited by an inactive pebble.

2. Spoiler wins the k-bisimulation game only when an inconsistent configuration has been
reached.

Hence, the simple strategy of preserving consistency is a winning strategy for Duplicator in
Gk(Ck+1, C∞). J

Duplicator especially wins the game starting in configurations of the form (s, s, . . . , s, t, t,
. . . , t), since they are obviously consistent, which means that s ∼k t for any s ∈ Ck+1 and
t ∈ C∞.

I Theorem 21. There is a formula ϕ ∈ HCTL∗ps that cannot be expressed by any formula in
Hµ.

Proof. The formula ϕ := EG(↓x.XG¬x) ∈ HCTL∗ps states that there is an infinite path
such that no state on this path is seen twice. Clearly, we have C∞, t |= ϕ for any state t
and Ck, s 6|= ϕ for any state s and any k ∈ N. Now suppose there was a formula ψ ∈ Hµ

expressing this property. Then we would have ψ ∈ Hk
µ for some k. By equivalence we

would get C∞, t |= ψ and Ck+1, s 6|= ψ for any states s, t. On the other hand, according to
Lemma 20 we have Ck+1, s ∼k C∞, t, and by Theorem 15, no Hµ formula – in particular not
ψ – can distinguish these two structures. Hence, no such ψ can exist. J

5 Conclusion and Further Work

We have introduced a hybrid extension of the µ-calculus with nominals, binders and jumps
and have shown that the model checking problem for this logic is ExpTime-complete for
the general case and only polynomially worse than model checking the modal µ-calculus
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for a fixed number of variables. We have investigated the expressiveness of the fully hybrid
µ-calculus and have shown that it is invariant under hybrid k-bisimulations introduced in [3]
when restricted to k variables. We used this result to show that – contrary to the pure modal
case – the hybrid extension of the full branching time logic CTL∗ is not a fragment of Hµ.

Future work will investigate the relationship between hybrid branching time logics and
the µ-calculus in more detail. We have shown here that the second level of the syntactic
hierarchy of hybrid branching time logics introduced in [12] cannot be translated to the fully
hybrid µ-calculus. We believe that the variant which allows binders and jumps over state
formulas only could be a fragment of Hµ and will investigate this further.

Another interesting connection that needs to be explored is that between Hµ and the
polyadic µ-calculus [2, 15], another extension of Lµ which can express bisimilarity in the
sense of Example 17. Its formulas are interpreted in tuples of states of fixed arity, rather than
single states as in the case of Lµ. This is reminiscent of the mechanisms in Hµ, especially
under the semantics developed here, where a formula with k first-order variables is essentially
interpreted by a (k + 1)-tuple of states. We believe that the polyadic µ-calculus can be
embedded into Hµ. The opposite direction cannot hold because the polyadic µ-calculus is
known to be bisimulation-invariant. However, this obviously breaks when it is equipped with
an equality predicate [14], and we believe that then it becomes strong enough to embed Hµ.
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Abstract
Similarity search with respect to time series has received much attention from research and
industry in the last decade. Dynamic time warping is one of the most widely used distance
measures in this context. This is due to the simplicity of its definition and the surprising quality
of dynamic time warping for time series classification. However, dynamic time warping is not
well-behaving with respect to many dimensionality reduction techniques as it does not fulfill the
triangle inequality. Additionally, most research on dynamic time warping has been performed
with one-dimensional time series or in multivariate cases of varying dimensions. With this paper,
we propose three extensions to LBRotation for two-dimensional time series (trajectories). We
simplify LBRotation and adapt it to the online and data streaming case and show how to tune
the pruning ratio in similarity search by using presorting strategies based on simple summaries
of trajectories. Finally, we provide a thorough evaluation of these aspects on a large variety of
datasets of spatial trajectories.
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1 Introduction

Dynamic time warping (DTW) is a family of algorithms designed to compare time series
with each other. Though dynamic time warping lacks several important properties such
as the triangle inequality, it has seen a wide adoption in many fields. This might be due
to the very intuitive definition, relatively efficient calculations, and, of course, successful
applications. In the domain of time series classification, each sequence in a set of time series
has an associated class label and the task is to predict class labels on unknown instances
given a labeled training dataset. In this setting, one nearest neighbor using dynamic time
warping with warping constraints calibrated from cross-validation (DTWCV) on the training
set is surprisingly hard to beat [7]. A recent paper of Bagnall et al. confirms this observation
[2]. They evaluate on a large set of datasets and are able to beat DTWCV with one nearest
neighbor, but only with a large ensemble of data transformations. This paper impressively
confirms the importance, effectiveness, and efficiency of dynamic time warping similarity
search in time series classification.
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Nowadays, large datasets of time series are available to evaluate and discuss results on.
However, one-dimensional time series predominate these datasets. With this paper, however,
we want to concentrate on the special area of spatial time series, often called trajectories.
In this area, trajectories are considered as time series in a two-dimensional space. The
two-dimensional space has important characteristics allowing for a novel type of lower bound,
LBRotation, and are very important for practical applications such as tracking, navigation,
and location-based services. With this paper, we evaluate and improve the lower bound
LBRotation proposed by Gong et. al [10] and extend it with efficient presorting strategies for
scalable nearest neighbor search.

More concretely, the main contributions of this paper are as follows:
We show that LBRotation can be calculated more efficiently without least square fitting
and without loss of tightness.
We show that LBRotation can be calculated in a data stream setting.
We define three presorting strategies leading to considerable increase in pruning power.
We provide a thorough evaluation of LBRotation variants and presorting strategies on
datasets of very different characteristics.

The remainder of the paper is structured as follows: Section 2 reviews related work on
dynamic time warping including speedup techniques. In Section 3, we explain how to adapt
the lower bound LBRotation for an online algorithm. Additionally, we introduce presorting
strategies in Section 3.3.

In Section 4, we provide a detailed analysis of four variants of LBRotation on several
datasets and discuss the impact and caveats with presorting strategies for similarity search.
Finally, Section 5 concludes the paper with some hints on possible future work.

2 Related Work

Dynamic time warping is a distance definition which has found wide adoption in various
domains. Historically, dynamic time warping originates in the area of speech recognition [23],
but has soon been used in many other domains including geometric recognition tasks such
as handwriting recognition and signature verification [6], in computer vision [1], in shape
retrieval [18], in biology and medicine [14], pattern recognition [4], and recently similarity
search for spatial trajectories [24].

The simplest way of calculating dynamic time warping by an algorithm is given by
dynamic programming [29]:

δDT W (a1..n, b1..m) =



0, if a and b are both empty,
∞, if only one of a and b is empty,

δ(an, bm) + min


δDT W (a1..n−1, b1..m−1)
δDT W (a1..n−1, b1..m)
δDT W (a1..n, b1..m−1)

(1)

This distance δDT W can be computed in O(mn) time [4] where m and n are the lengths of
the trajectories.

One way to achieve this is by first evaluating a complete distance matrix

Di,j(a1..n, b1..m) = (δ(ai, bj))i=1..n,j=1..m

between all points of the trajectories. Then, the problem of calculating dynamic time warping
is reduced to finding the shortest path through this matrix from the lower left corner to the
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upper right corner using only movements to the right, up or diagonally up and summing up
all the entries in the distance matrix. The sequence of coordinates in this distance matrix
gives the warping path.

Due to its quadratic complexity in time and space for equal-length trajectories this
measure is only applicable to short time series. There are two different approaches to
speeding up dynamic time warping calculation [22]: either one creates additional constraints
on the warping path that allow to only reduce the number of evaluated cells in the distance
matrix [21, 11] or one carefully reduces the size of the input trajectories beforehand. However,
neither of these approaches will be strictly correct as some warping paths cannot be found in
both approaches.

2.1 Lower Bounds
For speeding up similarity search performance under DTW, lower bounds can be used for
pruning candidate trajectories. A lower bound in this context is a function taking two
sequences and calculating a lower bound to their true DTW distance, that is LB(Q,R) ≤
δDT W (Q,R).

The most popular lower bounding measures for dynamic time warping are LBKim [13],
LBYi [29], LBKeogh [12], and LBImproved [15].

Even if there exist multidimensional versions of them like LBMV [20], they have actually
been designed for one dimensional time series. In contrast, Gong et al. propose LBRotation
as a first approach which also takes into account special characteristics of trajectories,
i.e. 2-dimensional time series [10].

The idea of LBRotation is to first divide the query trajectory Q = q1, q2, ..., qn in consecutive
and non-overlapping segments si which are as straight as possible. Then, each segment
is rotated such that it is parallel to the X-axis. By doing so, the area of the bounding
envelopes which are defined as Ui = max(qi−c . . . qi+c) and Li = min(qi−c . . . qi+c), where
c is the global warping constraint, is reduced. With these small envelopes, we get a more
accurate, i.e. greater, lower bound, since the second trajectory R = r1, r2, ..., rn pokes out of
the envelopes more often. Note that the rotation of the points in this trajectory is defined
from the rotation of the matching point candidates in the query. If the candidates hit several
segments, we are free to use the minimum of the resulting numbers.

Then, similar to the construction of LBKeogh, the lower bound LBRotation is defined to be
the sum of the distances d to the segments’ envelopes:

LBRotation(Q,R) =

√√√√ n∑
i=1

min
sj∈Si

d(ri,Env(sj)), (2)

with Si is the set of segments of Q which are hit by the candidates and Env(sj) =
(U1, U2, ..., Um, L1, L2, ..., Lm) the corresponding envelopes.

Figure 1 illustrates this situation: a sinus wave is considered as a two-dimensional spatial
trajectory (i.e., time is moving forward along the trajectory and not along the X-axis). First,
this trajectory is split into linear segments (lower left of Figure 1), then these linear segments
are rotated to become parallel to the X-axis resulting in quite small envelopes (upper right
in Figure 1). Finally, this trajectory is compared to the graph of a cosinus wave. Note that
the points of this graph have to be rotated with the rotations prescribed from the query
rotations. Down right in Figure 1, one sees that the intersection of the query and the rotated
example is quite small leading to efficient pruning. For reference, Figure 2 depicts the same
situation for the multivariate version of LBKeogh.

TIME 2017
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Segmentation

Rotation and 
Envelopes

Rotated Matching

Figure 1 Principles of LBRotation illustrated with a sinus graph.

LBKeogh

Envelope

Figure 2 Envelope of LBKeogh for a sinus graph.

Note, however, that the version of LBRotation as proposed by Gong et al. is an offline
algorithm and cannot be applied in streaming settings. It is based on using the Douglas-
Peucker algorithm [8] for segmenting the query trajectory.

3 Online Similarity Search

In this section, we first present our efficient online solution for LBRotation and show, how
it can be used for k-nearest neighbor search. Then, four presorting strategies based on
extremely simple trajectory summaries for increasing the pruning power when searching
trajectory databases are explained in detail.

3.1 Improvements for Lower Bounds Based on Segment Rotation
Facing the challenge of online similarity search, the current version of LBRotation can not be
used as a lower bound for DTW, since it is not applicable to data streams. Therefore, in
the following, we propose an online version of LBRotation which can be applied for speeding
up online similarity search. Since we do not have access to the complete trajectory when
working with data streams, the segmentation step of LBRotation has to work online, too.
Therefore, we replace Douglas Peucker with the Opening Window Algorithm [9, 33], which
segments the incoming data stream online in subsequences as straight as possible. By doing
this, every time the segmentation algorithm provides a segment, the corresponding rotation
angle and envelope can be computed and recorded. Thanks to the sum in Eq. 2, the lower
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bound can then easily be updated online by computing for the incoming data points the
matching points in the query and summing the minimal distances.

In addition, not only the method for the segmentation step is interchangeable, but also the
rotation angles can be determined in different ways. For our implementation, we decided not
to use least square fitting as suggested by Gong et al., but the arcus tangens of the segment’s
start and end point. This simplification is possible, since the segmentation algorithms are
already supposed to find straight line segments and so the subsequence can be approximated
by the line from the start to the end point. With this simplification, the rotation angle θ is:

θ = − arctan
(

∆y
∆x

)
,

where ∆x = xlast − xstart and ∆y = ylast − ystart with xstart (ystart) are the first x-(y)-
coordinates of the segment and xend (yend) the last x-(y)-coordinates, respectively.

3.2 k-Nearest Neighbor Search
For similarity search applications, especially for k-nearest neighbors, lower bounds can be
used to speed up the process of searching. Therefore, a search by example strategy is
employed: one proceeds with a linear search over the complete dataset remembering the best
result (e.g., nearest neighbor) found so far. For each new element in the linear search, the
lower bound is calculated. If the lower bound is higher than the current nearest neighbor
distance, we can avoid calculating the true distance and prune the element. If, however, the
lower bound is smaller than the current nearest neighbor distance, the true distance must be
computed in order to decide, whether the current element is better than the nearest neighbor
found so far.

In the context of this algorithm, the two metrics pruning ratio and tightness are widely
used to assess the quality of lower bounds.

Tightness is a measure comparing the lower bound with the true distance and we define
it, according to [12], as follows:

T = Value of the Lower Bound
True Value of DTW .

This creates a value between zero and one, the larger, the better. It summarizes how much
the lower bound resembles the true distance. For a tightness of one, the lower bound coincides
with the distance, for a tightness of zero, the lower bound is the trivial lower bound given by
a the constant zero function.

Though tightness is a good measure for comparing different lower bounds, it is not directly
related to search speed. Therefore, a more practicable metric called pruning ratio has been
defined. This measure is based on counting how often the lower bound has successfully
avoided the calculation of the true distance.

Formally, the pruning ratio can be defined as follows:

P = Number of Omitted Elements
Total Number of Elements in the Dataset .

This measure creates a value between zero and one with one representing the best case.
Note that tightness is a quite general measure and only influenced by the dataset and

the lower bound algorithm. The pruning ratio also depends on the best known candidate in
a linear search at a given iteration, hence, on the ordering of the dataset. As an extreme
example, consider the nearest neighbor being the first element to be inspected. Then, the
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lower bound has a higher chance of pruning elements as if the best example is very far away
from the beginning of the linear scan.

We will exploit this fact by proposing some presorting strategies for trajectories in order
to increase the pruning ratio while the tightness keeps constant.

3.3 Presorting Strategies

A central idea of this paper is to increase the pruning ratio by presorting strategies for
two-dimensional time series. Even though very simple summaries of trajectories such as the
centroid of the set of points do not carry much information about trajectory similarity with
respect to DTW distance, they can be used to reorder the dataset or to prepone the analysis
of promising candidates in order to be able to more often use the lower bound for pruning.
Note that we do not want to sort the complete database in order to have the majority of
the linear scan access data in its ordering in memory or on disk. We just prepone a set of
examples, before we enter the classical linear scan.

The main idea is to summarize a complete trajectory (e.g., the sequence of spatial points)
into a single indexable object. For example, we can summarize the point set of a trajectory
by the centroid of the point set. As the centroid maps a trajectory database into a database
of points of the same size, existing efficient point indexing strategies such as R∗-trees can be
used to efficiently retrieve k-nearest neighbors.

The following sections introduce three presorting strategies for trajectory data in the
same framework: first, a single object summary is calculated and then similarity of these
summaries can be used to prepone some examples to increase pruning power. Of course,
many other variants can be easily defined and it depends on the application and datasets
how to choose such a summary.

3.3.1 Presorting Using Centroids

For all datasets, we used the centroid of the points of the given trajectory (i.e., the mean
of the coordinates) as a summary. For increasing pruning ratio, we first looked at a given
number of nearest neighbors in the set of centroids (which is a simple point set to be indexed
for example by an R∗ tree). The idea is that similarity of centroids is a necessary condition
for similarity with respect to DTW: if the centroids are far from each other, the average
distance between points of two trajectories will be large, hence, DTW distance will be large.

3.3.2 Presorting Using the Last Point

Another point-based presorting strategy is given by bringing forward some trajectories whose
end points are near each other. This is especially useful in online scenarios in which similarity
is in any way searched with respect to the immediate past.

3.3.3 Presorting Using the Jaccard distance of Geohash sets

The third presorting strategy is given by encoding every point of every time series using the
Geohash mechanism [30, 19] and considering the Jaccard distance of the involved sets as an
indicator of nearness. This strategy is especially interesting as the Jaccard distance can be
indexed by using Bloom filters in an extremely memory- and time-efficient way [26].
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4 Evaluation

We implemented the lower bounds LBKeogh and four different variants of LBRotation as a
library for the statistical computing environment R using C++1. We appreciate that the
authors of the initial paper on LBRotation provided us with their implementation, which we
used as a reference for reconstructing some details of their approach.

In a preparation step, we preprocess all trajectories of a dataset to contain the same
number of points (see Equation 2). Therefore, we use piecewise linear interpolation (PLI) for
trajectories with fewer points than desired as well as picewise aggregate approximation (PAA)
for trajectories which are too long. Optionally, we independently normalize trajectories by
subtracting the mean and dividing by the standard deviation.

For the segmentation of trajectories, we implement three approaches: the first approach
is, of course, Douglas Peucker simplification with a given threshold. Note that the original
paper prescribed the number of segments to generate. Due to the variations in our datasets,
the approach using a threshold in terms of the distance in the dataset is better. However, we
do not know the number of segments for a given trajectory beforehand. For being able to
process LBRotation in an online manner, we used the Opening Window Algorithm. Though
the Opening Window Algorithm has quadratic complexity, it is often used as a replacement
for Douglas Peucker for the case of data streams [33].

For assessing the orientation of segments, we used the linear models provided by the
R environment with the lm function. As this function rejects to fit lines to sequences of
equal points, we completed the linear model fitting by setting an angle of zero in any case,
where lm rejects the creation of a linear model for a segment. This amounts to not rotating
these segments. This is a minor difference to the original version, which tries to derive an
angle also in numerically unstable situations. Additionally, we argue that the segmentation
algorithm should have already taken care of creating linear segments and just assess the
orientation based on the angle formed by the first and last point of the segments.

Presorting has been implemented by an appropriate index for the given presorting strategy:
An R∗ tree as provided by the boost::geometry::index library for the case of points and
Bloom Aggregated Cell Representations for the case of Jaccard distance of Geohash sets [26].

4.1 Data Sets
We evaluate our approach against the original LBRotation and LBKeogh and use several variants
of segmentation and line fitting algorithms on datasets of varying type.

4.1.1 Geolife GPS Trajectories
The Geolife dataset is a large GPS dataset containing 18,670 GPS trajectories with 24,876,978
points. It contains the trajectories of 178 users in a period of over four years from April 2007
to October 2011. The data is given in WGS84 using latitude and longitude [31, 32].

4.1.2 Character Trajectories
The Character dataset, available from the UCI Machine Learning Repository, contains 2858
trajectories of writing 20 different letters on a digital tablet [16]. Note that the samples
in this dataset are given as the smoothed derivative of location. This makes the letters

1 We plan to publish all the source code via CRAN and on our web pages.
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Figure 3 Tightness of LBKeogh and variants of LBRotation.

independet from the actual pen location on the tablet. For our experiments, we calculate
the cumulative sums of these discrete derivatives and perform the matching of characters on
their actual shape. Note that by this procedure, all characters start at the zero point.

4.1.3 Prague Ego-Shooter Dataset
The Prague Ego-Shooter Dataset is a dataset containing 50 minutes of five players playing
Urban Terror in Capture and Hold Mode on the map Prague (ut4_prague) [25]. In this
game mode, players of two teams start in two different areas and the goal of the game is to
“hold” the flag. The flag is positioned at a third fixed location on the map and the team who
was the last walking over the flag is “holding” the flag. The team scores, who is holding the
flag at specific time points. This map data has a lot of internal structure including the three
locations and other tactically important spots around the map.

The dataset contains 275 trajectories for a total of 244,675 samples of player locations
taken every 50ms. The coordinate system is similar to an orthogonal coordinate system with
a unit of meters.

4.1.4 Roma Taxi Dataset
The Roma Taxi Dataset contains trajectories of 315 taxi drivers working in the center of
Rome [5]. The traces contain the position of the taxis roughly every 7 seconds. The dataset
was acquired with various Android tablets and is given in WGS84 coordinates. Note that
the getAccuracy method of the Android location API has been used to reject positions for
which this API method estimates a precision worse than 20m. In other words, only good
signal situations have been kept. The dataset contains 21,743,005 points.
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Figure 4 A reordering of the San Francisco dataset.

4.1.5 Fastest Paths in San Francisco Dataset

The Fastest Paths in San Francisco dataset is a synthetic dataset we created from a street
network of greater San Francisco area [28]. The street network was extracted from Open-
StreetMap data and used in the ACM SIGSPATIAL GIS Cup 2015 [27]. The dataset
provides the coordinates of nodes in the street network as modelled in the OpenStreetMap
and calculates the fastest way between two random nodes using a weighting based on speed
annotations in OpenStreetMap. It contains 539 trajectories with 136,978 points. Trajectory
length ranges from 4 to 681 with a mean length of 254.1 points per trajectory.

4.2 Experiments

In this section, we present several experiments, we performed on the datasets. First, we
evaluate tightness as a function of the warping constraint. Then, we look into pruning ratio
and presorting.

4.2.1 Tightness

First, we calculate average tightness of five lower bounds: LBKeogh and four version of
LBRotation, namely for Douglas Peucker and Opening Window together with least square
fitting and simple segment fitting. Figure 3 depicts the results for the five datasets Prague,
Roma, San Francisco, Character and Geolife. We conclude that all variants of LBRotation
perform similar, however, we also note that the gain of LBRotation is quite small for Roma
as you can see in Figure 3c. This is to be expected as the trajectories of the Roma dataset
are quite long (2,994 km on average; each trajectory is the complete trace of a Taxi driver
during a month) and similar with each other. Interestingly, the GeoLife dataset shows nearly
identical tightness for both Douglas Peucker variants and significantly better tightness for
the Opening Window algorithm. This is particularly interesting as the Douglas Peucker
algorithm is often used as a reference for segmentation algorithms due to its mathematical
and perceptive quality and this can be seen as a warning that these two properties are not
always deciding.

In summary, we conclude that LBRotation can be calculated more efficiently without loss
of tightness by using the segment start and end points instead of fitting a linear model.
Additionally, we conclude that an online segmentation such as Opening Window is applicable.
We remark, however, that the quality of the segmentation has a severe impact on LBRotation
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Table 1 Pruning Ratio and Speedup.

Dataset Strategy
Average Pruning Ratio

with Strategy
Average Pruning Ratio
with Random Ordering Speedup

San Fransisco A Centroid 0.9925651 0.9849442 2.03
San Fransisco A Geohash-Jaccard 0.8461538 0.8038462 1.27
San Fransisco A Last Point 0.9925373 0.9826493 2.32
San Fransisco B Centroid 0.9944238 0.9830855 3.03
San Fransisco B Geohash-Jaccard 0.9868421 0.9236842 5.8
San Fransisco B Last Point 0.9962687 0.9809701 5.1

Roma Taxi Dataset Centroid 0.4493631 0.4407643 1.02
Roma Taxi Dataset Geohash-Jaccard 0.5306122 0.4938776 1.08
Roma Taxi Dataset Last Point 0.4423567 0.4417197 1.0011
Prague Dataset Centroid 0.9817518 0.970073 1.64
Prague Dataset Last Point 0.9817518 0.9689781 1.7

Character Trajectories Centroid 0.8989899 0.8484848 1.5
Character Trajectories Last Point 0.9292929 0.8565657 2.0

Geolife Dataset Centroid 0.9985719 0.9985438 1.02
Geolife Dataset Geohash-Jaccard 0.998602 0.9984555 1.11
Geolife Dataset Last Point 0.9836735 0.98322 1.03

and that very long trajectories such as those of the Roma dataset degrade the usefulness of
all variants of LBRotation altogether.

4.2.2 Pruning Ratio and Presorting

For evaluating the presorting strategies, we select a query object in each dataset and calculate
ten reorderings of the dataset in which each time the ten nearest-neighbors have been brought
forward.

Figure 4 illustrates this approach for the San Francisco dataset. In this Figure, the
trajectory centroid was used as a presorting strategy and we select the ten nearest neighbors
with respect to the centroids in order to bootstrap similarity search from them (see Figure 4a).
After that, as you can see in Figure 4b, trajectories arrive in the ordering they are stored on
disk in order to reduce the amount of random access to the dataset. In Figure 4c, one can
see the full dataset.

Additionally, we calculate ten fully random orderings of the same dataset. In any case,
the query was removed from the dataset for a more realistic setting.

In general, any of the presorting strategies showed a good increase in pruning power.
Table 1 gives results on the datasets.

For the San Francisco dataset, two queries have been used. One on the continent (San
Francisco A) and one on the island (San Francisco B). The probability of finding a good
example by chance is larger for the island as the dataset contains only a small part of the
continent (see Figure 4). This can be seen in the pruning ratio of random orderings. On
average, it is easier to find a good candidate for the island case. This is to be expected, as
the dataset has a bias towards more trajectories on the island due to the fact that more
graph nodes have been modelled on the island. With respect to the pruning strategies, San
Francisco shows very good centroid and last point performance, but only moderate Geohash
set similarity performance. This is to be expected as the trajectories are shortest paths
and the centroid as well as the last point of a shortest path is a good summary of the path.
Furthermore, the trajectories are relatively short and, hence, the centroid is a good summary
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Figure 5 Centroid Distribution of (a) Prague Ego-Shooter Dataset and (b) Character Trajectories
Dataset.

of the trajectory. Anyways, the tightness of all variants is quite good (only few percents of
the dataset are actually analyzed with full DTW calculations). The speedup illustrates the
number of DTW calculations, that have to be used without presorting. It is calculated as
follows:

Speedup = 1− Pruning Ratio with Presorting
1− Pruning Ratio without Presorting .

With an average speedup of 3.25, the classical approach needs 3.25 times as many DTW
calculations as the presorting algorithms.

The Roma dataset contains long trajectories of taxis driving around the center area of
Rome. Due to the taxi nature of the trajectories, the centroids are not very informative, as
they are inside the center of Rome for all trajectories.

Therefore, the speedup of the point-based strategies is quite poor. The Jaccard distance
of Geohash sets strategy, however, performs better. This is due to the fact that the center
of Rome, which is part of all trajectories, does not contribute to the dissimilarity of two
trajectories and they are indexed by their set of extreme locations (i.e., those Geohash
cells that are not in other trajectories). This results in a considerable speedup. Remember
that this dataset is a hard dataset for lower bounds (see Figure 3c) due to the very long
trajectories traveling around the city. This is expressed by the low general pruning ratio. In
this situation, the speedup of 8% is to be understood relative to the large fraction of roughly
half of the dataset, which has not been pruned. In this way, our pruning strategy prunes a
large absolute number of DTW calculations in comparison to random orderings.

For the Prague Ego-Shooter dataset, the centroid information was quite useful and
well-distributed. We expected this behavior as the game rules let players of both teams start
in two isolated regions and they aim to quickly reach and defend the flag. But as teams can
only score on specific points in time, players tend to look for a safe place on the map and
wait for the right moment for a team attack. Figure 5a depicts the distribution of centroids
on the Prague Ego-Shooter Dataset.
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(a) Centroids (b) Last Point

Figure 6 Geolife Point Summary Distributions.

The Character Trajectories dataset is another example of presorting as a powerful tool if
the summary is carefully selected. Recall that we integrate the Character dataset such that
the shapes of the characters are used (the dataset contains the first derivative of the location
and is often used in this modality). By the integration process, all our character strokes
start at coordinate (0, 0). Hence, the centroid partly covers the shape of the letters. This
leads to a considerable speedup of 1.5 for the centroid strategy. This means, that without
presorting, we would have to calculate 1.5 times as many true DTW as with the simple
presorting strategy. Figure 5b illustrates examples of the centroid behaviour on the character
dataset for all samples of the letters “a”,“p”, and “z”. You can clearly see that the centroids
of those characters form separated clusters.

The Geolife dataset behaves similar to the Roma dataset, however, the pruning power
is much higher. This is due to the fact that the Geolife dataset is split into many smaller
trajectories. Again, and similar to Roma, the centroid does not cover enough information
while the Geohash Jaccard distance is able to ignore the common parts of trajectories and
concentrate on significantly different locations. Figure 6a depicts the distribution of centroids
for this dataset, which is clearly centered on Beijing. Similarly, the distribution of last points
of trajectories is also not very informative as depicted in Figure 6b.

In order to illustrate the power of using Geohash Jaccard distance, we provide an
embedding based on multidimensional scaling (MDS) for a subset of 400 trajectories of
Geolife with respect to the Jaccard distance. In multidimensional scaling, a distance matrix
is given and MDS tries to find a set of points such that the relative distance between points
is preserved [17].

Figure 7 depicts the pairwise Geohash distances embedded into two-dimensional space as
good as possible. Therefore, we employed the SMACOF algorithm minimizing the metric
stress

σ(X) =
∑

i<j≤n

wij(dij(X)− δij)2

between the Geohash distances δij and the Euclidean distances dij(X) in the two-dimensional
embedding X. The weights for the individual terms wij have all been set to one as there is
no uncertainty in the distances in our case. We added some jitter to the plot just to make
the number of identical points visible. You can clearly see that the points are distributed
around the model space without much clustering structure. So this summaries created
from Jaccard distance of Geohash cells actually contain useful information for preponing
candidates explaining the very good presorting power in San Francisco B, Roma, and Geolife.
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Figure 7 Metric Embedding of 400 Geolife trajectories with respect to Jaccard distance of
Geohash sets.

5 Conclusion

With this paper, we have thoroughly evaluated the novel lower bound for dynamic time
warping called LBRotation on several datasets. Additionally, we show that it can be extended
to an online algorithm without severe degradation in performance. Third, we showed that a
presorting strategy with simple summaries of trajectories such as the last point, the centroid,
or the set of visited spatial cells creates better pruning power, sometimes considerably,
sometimes marginally.

The most important distinction in this context is the question, how a trajectory can
be aggregated in a useful way as a single object. One way to do that is calculating some
aggregate. The last point strategy and the centroid strategy are examples for that. The
centroid is clearly an “average” as it can be calculated as the mean of the coordinates. The
last point also describes the average movement, especially, for datasets where all trajectories
start at the same point or are normalized to do so. Another way of presorting is describing
the extreme behavior of a single trajectory compared to others.

We have done so – to some extent – by measuring the dissimilarity of the sets of Geohash
cells each trajectory hits. Future work could include other ways of extracting the most
extreme behavior from trajectories, such as extracting features from the convex hull or
performing archetypal analysis [3]. Additionally, ensembles of summaries can be constructed
and evaluated. However, the most interesting problem in this area would be, how to select
and configure summaries in order to gain the highest pruning power from presorting for
similarity search.
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Abstract
Partial singleton closure under weak composition, or partial ◆-consistency for short, is essential for
approximating satisfiability of qualitative constraints networks. Briefly put, partial ◆-consistency
ensures that each base relation of each of the constraints of a qualitative constraint network can
define a singleton relation in the corresponding partial closure of that network under weak com-
position, or in its corresponding partially �-consistent subnetwork for short. In particular, partial
◆-consistency has been shown to play a crucial role in tackling the minimal labeling problem of a
qualitative constraint network, which is the problem of finding the strongest implied constraints of
that network. In this paper, we propose a stronger local consistency that couples ◆-consistency
with the idea of collectively deleting certain unfeasible base relations by exploiting singleton
checks. We then propose an efficient algorithm for enforcing this new consistency that, given a
qualitative constraint network, performs fewer constraint checks than the respective algorithm for
enforcing partial ◆-consistency in that network. We formally prove certain properties of our new
local consistency, and motivate its usefulness through demonstrative examples and a preliminary
experimental evaluation with qualitative constraint networks of Interval Algebra.
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1 Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a major field of study in Artificial
Intelligence, and in particular in Knowledge Representation & Reasoning. This field has
received a lot of attention over the past decades, as it extends to a plethora of areas and do-
mains that include ambient intelligence, dynamic GIS, cognitive robotics, and spatiotemporal
design [6]. QSTR abstracts from numerical quantities of space and time by using qualitative
descriptions instead (e.g., precedes, contains, is left of ), thus providing a concise framework
that allows for rather inexpensive reasoning about entities located in space and time.
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The problem of representing and reasoning about qualitative information can be modeled
as a qualitative constraint network (QCN) using a qualitative constraint language. Specifically,
a QCN is a network of constraints corresponding to qualitative spatial or temporal relations
between spatial or temporal variables respectively, and a qualitative constraint language is
used to define those constraints over a finite set of binary relations, called base relations (or
atoms) [19]. An example of such a qualitative constraint language is Interval Algebra (IA),
introduced by Allen [1]. IA considers time intervals (as its temporal entities) and each of its
base relations represents an ordering of the four endpoints of two intervals in the timeline.

The fundamental reasoning problems associated with a given QCN N are the problems
of satisfiability checking, minimal labeling (or deductive closure), and redundancy (or entail-
ment) [28]. In particular, the satisfiability checking problem is the problem of deciding if
there exists a spatial or temporal valuation of the variables of N that satisfies its constraints,
such a valuation being called a solution of N , the minimal labeling problem is the problem of
finding the strongest implied constraints of N , and the redundancy problem is the problem
of determining if a given constraint is entailed by the rest of N (that constraint being called
redundant, as its removal does not change the solution set of the QCN). In general, for most
qualitative constraint languages the satisfiability checking problem is NP-complete. Further,
the redundancy problem, the minimal labeling problem, and the satisfiability checking
problem are equivalent under polynomial Turing reductions [13].

The vast amount, if not all, of the published works that study the aforementioned
reasoning problems, use partial �-consistency as a means to define practical algorithms for
efficiently tackling them [2, 30, 29, 17, 27, 23, 15]. Given a QCN N and a graph G, partial
�-consistency with respect to G, denoted by �G-consistency, entails (weak) consistency for all
triples of variables in N that correspond to three-vertex cycles (triangles) in G. We note that
if G is complete, �G-consistency becomes identical to �-consistency [26]. Hence, �-consistency
is a special case of �G-consistency. In fact, earlier works have relied solely on �-consistency;
it was not until the introduction of chordal (or triangulated) graphs in QSTR, due to some
generalized theoretical results of [14], that researchers started restricting �-consistency to a
triangulation (or chordal completion) of the constraint graph of an input QCN and benefiting
from better complexity properties in more recent works.

Adding to the previous paragraph, and with respect to the satisfiability checking problem
in particular, the literature suggests that �G-consistency alone is sufficient in most cases
to guarantee that a solution for a given QCN, should it exist, is efficiently obtained (see
also [8]). However, for the more challenging problems of minimal labeling and redundancy,
a stronger local consistency is typically employed that builds upon �G-consistency, called
singleton �G-consistency and denoted by ◆G-consistency [2, 30]. Given a QCN N and a graph
G, ◆G-consistency holds on N if and only if each base relation of each of the constraints of
N is closed under �G-consistency, i.e., after instatiating any constraint of that network with
one of its base relations b and closing the network under �G-consistency, the corresponding
constraint in the �G-consistent subnetwork will continue being defined by b.

It is then natural to ask whether we can have an even stronger local consistency than
◆

G-consistency (and �G-consistency) for QCNs that can also be enforced more efficiently than
◆

G-consistency, as a positive answer to that question would suggest an immediate improvement
for any algorithm that currently employs ◆G-consistency. In this paper, we contribute towards
obtaining such a positive answer. In particular, we enrich the family of consistencies for
QCNs by proposing a new singleton style consistency inspired by k-partitioning consistency
for constraint satisfaction problems (CSPs) [4]. This filtering technique is based on domain
partitioning combined with a local consistency, typically arc consistency [5], and allows for
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Figure 1 The base relations of IA.

improved pruning capability over singleton arc consistency [9]. Similarly to k-partitioning
consistency, our new consistency, denoted by ◆∪

G -consistency, combines singleton checks and
�
G-consistency to present itself as a better alternative to ◆G-consistency. With respect to our
new consistency, we also propose an algorithm for applying it on a given QCN, which turns
out being more efficient than the respective algorirthm for applying ◆G-consistency on that
same QCN. As a brief intuitive explanation of this, ◆∪

G -consistency allows for proactively
eliminating base relations anywhere in a given QCN and not only in the set of base relations of
the constraint at hand that is singleton checked. Further, we obtain several theoretical results
and show, among other things, that ◆∪

G -consistency is strictly stronger than ◆G-consistency
and, hence, than �G-consistency. Finally, we present a preliminary experimental evaluation
of ◆∪

G -consistency and ◆G-consistency using QCNs of IA, in support of our argument that
◆

∪

G -consistency can be enforced more efficiently than ◆G-consistency for a given QCN.
The rest of the paper is organized as follows. In Section 2 we give some preliminaries

on qualitative spatial and temporal reasoning, and in Section 3 we focus on �G-consistency
and ◆G-consistency and, in particular, recall some related result from the literature, but also
provide some new results of our own. Then, in Section 4 we introduce, formally define, and
thoroughly study our new local consistency, namely, ◆∪

G -consistency. In Section 5 we present
an algorithm for efficiently applying ◆∪

G -consistency on a given QCN N , and in Section 6 we
evaluate this algorithm against the state-of-the-art algorithm for achieving ◆G-consistency.
Finally, in Section 7 we conclude the paper and give some directions for future work.

2 Preliminaries

A (binary) qualitative spatial or temporal constraint language, is based on a finite set
B of jointly exhaustive and pairwise disjoint relations defined over an infinite domain D,
which is called the set of base relations [19]. The base relations of a particular qualitative
constraint language can be used to represent the definite knowledge between any two of
its entities with respect to the level of granularity provided by the domain D. The set B
contains the identity relation Id, and is closed under the converse operation (−1). Indefinite
knowledge can be specified by a union of possible base relations, and is represented by the
set containing them. Hence, 2B represents the total set of relations. The set 2B is equipped
with the usual set-theoretic operations of union and intersection, the converse operation,
and the weak composition operation denoted by the symbol � [19]. For all r ∈ 2B, we have
that r−1 =

⋃
{b−1 | b ∈ r}. The weak composition (�) of two base relations b, b′ ∈ B is

defined as the smallest (i.e., strongest) relation r ∈ 2B that includes b ◦ b′, or, formally,
b � b′={b′′ ∈ B | b′′∩(b ◦ b′) 6= ∅}, where b ◦ b′={(x, y) ∈ D × D | ∃z ∈ D such that (x, z) ∈
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Figure 2 Figurative examples of QCN terminology using IA.

b ∧ (z, y) ∈ b′} is the (true) composition of b and b′. For all r, r′ ∈ 2B, we have that r � r′ =⋃
{b � b′ | b ∈ r, b′ ∈ r′}.
As an illustration, consider the well known qualitative temporal constraint language of

Interval Algebra (IA) introduced by Allen [1]. IA considers time intervals (as its temporal
entities) and the set of base relations B = {eq, p, pi,m,mi, o, oi, s, si, d, di, f, fi}; each base
relation of IA represents a particular ordering of the four endpoints of two intervals in the
timeline, as demonstrated in Figure 1. The base relation eq is the identity relation Id of IA.
As another illustration, the Region Connection Calculus (RCC) is a first-order theory for
representing and reasoning about mereotopological information [24]. The domain D of RCC
comprises all possible non-empty regular subsets of some topological space. These subsets
do not have to be internally connected and do not have a particular dimension, but are
commonly required to be regular closed [25]. Other notable and well known qualitative
spatial and temporal constraint languages include Point Algebra [35], Cardinal Direction
Calculus [18, 11], and Block Algebra [3].

The weak composition operation �, the converse operation −1, the union operation ∪,
the complement operation {, and the total set of relations 2B along with the identity relation
Id of a qualitative constraint language, form an algebraic structure (2B, Id, �,−1 ,{ ,∪) that
can correspond to a relation algebra in the sense of Tarski [33].

I Proposition 1 ([10]). The languages of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, Block Algebra, and RCC-8 are each a relation algebra with the algebraic structure
(2B, Id, �, −1, {, ∪).

In what follows, for a qualitative constraint language that is a relation algebra with the
algebraic structure (2B, Id, �, −1, {, ∪), we will simply use the term relation algebra, as the
algebraic structure will always be of the same format.

The problem of representing and reasoning about qualitative information can be modeled
as a qualitative constraint network (QCN), defined in the following manner:

I Definition 2. A qualitative constraint network (QCN) is a tuple (V,C) where:
V = {v1, . . . , vn} is a non-empty finite set of variables, each representing an entity;
and C is a mapping C : V × V → 2B such that C(v, v) = {Id} for all v ∈ V and
C(v, v′) = (C(v′, v))−1 for all v, v′ ∈ V .

An example of a QCN of IA is shown in Figure 2a; for simplicity, converse relations as
well as Id loops are not mentioned or shown in the figure.
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I Definition 3. Let N = (V,C) be a QCN, then:
a solution of N is a mapping σ : V → D such that ∀(u, v) ∈ V × V , ∃b ∈ C(u, v) such
that (σ(u), σ(v)) ∈ b (see Figure 2b);
N is satisfiable iff it admits a solution;
a QCN is equivalent to N iff it admits the same set of solutions as N ;
a sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a QCN (V,C ′) such that C ′(u, v) ⊆ C(u, v)
∀u, v ∈ V ; if in addition ∃u, v ∈ V such that C ′(u, v) ⊂ C(u, v), then N ′ ⊂ N ;
N is atomic iff ∀v, v′ ∈ V , C(v, v′) is a singleton relation, i.e., a relation {b} with b ∈ B;
a scenario S of N is an atomic satisfiable sub-QCN of N (see Figure 2c);
a base relation b ∈ C(v, v′) with v, v′ ∈ V is feasible (resp. unfeasible) iff there exists
(resp. there does not exist) a scenario S = (V,C ′) of N such that C ′(v, v′) = {b};
N is minimal iff ∀v, v′ ∈ V and ∀b ∈ C(v, v′), b is a feasible base relation of N ;
the constraint graph of N , denoted by G(N ), is the graph (V,E) where {u, v} ∈ E iff
C(u, v) 6= B and u 6= v;
N is trivially inconsistent iff ∃u, v ∈ V such that C(u, v) = ∅;
N is the empty QCN on V , denoted by ⊥V , iff C(u, v) = ∅ for all u, v ∈ V .

Let us further introduce the following operations with respect to QCNs:
given a QCN N = (V,C) and v, v′ ∈ V , we have that N[v,v′]/r with r ∈ 2B yields the QCN
N ′ = (V,C ′) defined by C ′(v, v′) = r, C ′(v′, v) = r−1 and C ′(y, w) = C(y, w) ∀(y, w) ∈
(V × V ) \ {(v, v′), (v′, v)};
given two QCNs N = (V,C) and N ′ = (V,C ′) on the same set of variables V , we have
that N ∪N ′ yields the QCN N ′′ = (V,C ′′), where C ′′(v, v′) = C(v, v′) ∪ C ′(v, v′) for all
v, v′ ∈ V .

We recall the following definition of �G-consistency, which, as noted in the introduction, is
the basic local consistency used in the literature for solving fundamental reasoning problems
of QCNs, such as the satisfiability checking problem.

I Definition 4. Given a QCN N = (V,C) and a graph G = (V,E), N is said to be
�
G-consistent iff ∀{vi, vj}, {vi, vk}, {vk, vj} ∈ E we have that C(vi, vj) ⊆ C(vi, vk) �C(vk, vj).

We note again that if G is complete, �G-consistency becomes identical to �-consistency [26],
and, hence, �-consistency is a special case of �G-consistency.

Given a graph G = (V,E), a QCN N = (V,C) is ◆G-consistent iff for every pair of variables
{v, v′} ∈ E and every base relation b ∈ C(v, v′), after instantiating C(v, v′) with {b} and
computing the closure of N under �G-consistency, the revised constraint C(v, v′) is always
defined by {b}. Formally, ◆G-consistency of a QCN is defined as follows:

IDefinition 5. Given a QCNN = (V,C) and a graphG= (V,E),N is said to be ◆G-consistent
iff ∀{v, v′} ∈ E and ∀b ∈ C(v, v′) we have that {b} = C ′(v, v′), where (V,C ′) = �G(N[v,v′]/{b}).

If G is a complete graph, i.e., G = KV , we can easily verify that ◆G-consistency corresponds
to �B-consistency of the family of �f -consistencies studied in [8]. Interestingly, ◆G-consistency
can also be seen as a counterpart of singleton arc consistency (SAC) [9] for QCNs. Given a
QCN N = (V,C) and a graph G = (V,E), for every b ∈ B and every {v, v′} ∈ E, we will say
that b is ◆G-consistent for C(v, v′) iff {b} = C ′(v, v′), where (V,C ′) = �G(N[v,v′]/{b}).

I Definition 6. A subclass of relations is a subset A ⊆ 2B that contains the singleton
relations of 2B and is closed under converse, intersection, and weak composition.
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Given three relations r, r′, r′′ ∈ 2B, we say that weak composition distributes over
intersection if we have that r � (r′∩ r′′) = (r � r′)∩ (r � r′′) and (r′∩ r′′)� r = (r′ � r)∩ (r′′ � r).

I Definition 7. A subclass A is distributive iff weak composition distributes over non-empty
intersection ∀r, r′, r′′ ∈ A.

Distributive subclasses of relations are defined for all of the qualitative constraint languages
mentioned in Proposition 1 [20].

Finally, for the sake of simplicity in phrasing some results, in what follows we assume
that all considered graphs are biconnected.

3 A closer look at �
G-consistency and ◆G-consistency

Let us come back to �G-consistency and ◆G-consistency and recall in this section some results
from the literature that will be relevant in the rest of the paper, but also provide some new
results of our own.

In order to compare the pruning (or inference) capability of different consistencies, we
introduce a preorder. Let φG and ψ

G be two consistencies defined by some operations φ and ψ
respectively and a graph G. Then, φG is stronger than ψ

G, denoted by φ
G DψG, iff whenever φG

holds on a QCN N with respect to a graph G, ψG also holds on N with respect to G, and φ
G is

strictly stronger than ψ
G, denoted by φ

G.
ψ
G, iff

φ
G D ψ

G and there exists at least one QCN N and
a graph G such that ψG holds on N with respect to G but φG does not hold on N with respect
to G. Finally, φG and ψ

G are equivalent, denoted by φ
G ≡

ψ
G, iff we have both φ

G DψG and ψ
G DφG.

We now recall the definition of a well-behaved consistency [8].

I Definition 8. A consistency φ
G is well-behaved iff for any QCN N = (V,E) and any graph

G = (V,E) the following properties hold:
φ
G(N ) ⊆ N (viz., the φ

G-closure of N w.r.t. G) is the largest (w.r.t. ⊆) φ
G-consistent

sub-QCN of N (Dominance);
φ
G(N ) is equivalent to N (Equivalence);
φ
G(φG(N )) = φ

G(N ) (Idempotence);
if N ′ ⊆ N then φ

G(N ′) ⊆ φ
G(N ) (Monotonicity).

It is routine to formally prove the following result for �G-consistency:

I Corollary 9 (cf. [8]). We have that �G-consistency is well-behaved.

It is routine to formally prove the following result for ◆G-consistency as well:

I Corollary 10 (cf. [8]). We have that ◆G-consistency is well-behaved.

The aforementioned two results are derived from respective results of [8] where complete
graphs are used in all cases. The generalization to an arbitrary graph G is trivial.

We recall the following general result regarding the pruning capability of �G-consistency
in comparison with that of ◆G-consistency:

I Proposition 11 ([8]). We have that ◆G-consistency . �G-consistency.

Before we proceed, we introduce the following lemma to be used in the next proposition:

I Lemma 12 (cf. [20]). Let A be a distributive subclass of relations of a relation algebra.
Then, for any QCN N = (V,C) over A and any graph G = (V,E), if �G(N ) = (V,C ′) is
not trivially inconsistent, we have that ∀u, v ∈ V and ∀b ∈ C ′(u, v) there exists an atomic
�
G-consistent sub-QCN (V,C ′′) of N such that {b} = C ′′(u, v).
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Proof (Sketch). The proof can be obtained by concatenating the proofs of Theorems 2
and 5 in [20] and applying that merged proof on each maximal chordal subgraph of G. The
only major difference is that in those proofs the property that any atomic QCN of a relation
algebra that is �-consistent is satisfiable is used in addition to guarantee a stronger result,
which is of no use to us for proving this particular lemma. J

Next, we introduce a result that identifies the case where �G-consistency and ◆G-consistency
are equivalent.

I Proposition 13. Let A be a distributive subclass of relations of a relation algebra. Then,
for any QCN N = (V,C) over A and any graph G = (V,E), we have that �G-consistency ≡
◆

G-consistency.

Proof. If �G(N ) = (V,C) is not trivially inconsistent, then by Lemma 12 we have that
∀u, v ∈ V and ∀b ∈ C(u, v) there exists an atomic �G-consistent sub-QCN (V,C ′) of �G(N )
such that {b} = C ′(u, v). This suggests that �G(N ) is also ◆G-consistent and, hence, that
�
G-consistency D ◆

G-consistency in this case. If �G(N ) is trivially inconsistent, then due to the
closure under �G-consistency there is no triangle in G containing both an edge {v, v′} such
that C(v, v′) = ∅ and an edge {u, u′} such that C(u, u′) 6= ∅; we can prove that �G-consistency
D ◆

G-consistency in this case as well, by isolating the trivial inconsistencies and using the first
part of the proof. Finally, by Proposition 11 we have that ◆G-consistency D �G-consistency in
all cases. J

It is interesting to note that Proposition 13 is a more general result that the respective
one of [30], namely, Proposition 7 in that work. In particular, Proposition 7 in [30] requires
a chordal supergraph of the constraint graph of a QCN over a distributive subclass of
relations of a relation algebra to be used, along with the property that any such QCN that
is �-consistent and not trivially inconsistent is minimal, in order to prove the equivalence
between �G-consistency and ◆G-consistency for distributive subclasses of relations.

The following result shows the connection between �G-consistency and minimal QCNs:

I Proposition 14 ([21]). Let A be a distributive subclass of relations of a relation algebra
with the property that any atomic QCN over A that is �-consistent is satisfiable. Then, for
any QCN N = (V,C) over A and any chordal graph G = (V,E) such that G(N ) ⊆ G, we
have that ∀{u, v} ∈ E and ∀b ∈ C ′(u, v), where (V,C ′) = �

G(N ), the base relation b is feasible.

The property described in Proposition 14 is satisfied by all of the qualitative constraint
languages mentioned in Proposition 1 [10].

Finally, the following result shows the connection between ◆G-consistency and minimal
QCNs:

I Proposition 15 ([2]). Let A be a subclass of relations of a relation algebra with the property
that for any QCN N = (V,C) over A there exists a graph G = (V,E) such that, if �G(N ) is
not trivially inconsistent, then N is satisfiable. Then, for any such N and G, we have that
∀{u, v} ∈ E and ∀b ∈ C ′(u, v), where (V,C ′) = ◆

G(N ), the base relation b is feasible.

As a note, an interesting case where the property described in Proposition 15 can be
satisfied, is the case where the considered subclass of relations is obtained from a relation
algebra that has patchwork [22] for �G-consistent and not trivially inconsistent QCNs over
that subclass, where G = (V,E) is any chordal graph such that G(N ) ⊆ G for a given QCN
N = (V,C). In that case, we will indeed have that N is satisfiable if �G(N ) is not trivially
inconsistent [2]. As a matter of fact, patchwork holds for all the qualitative constraint

TIME 2017



19:8 Collective Singleton-Based Consistency for Qualitative Constraint Networks

languages mentioned in Proposition 1 [14]. Of course, in general, the property may be
satisfied in other cases as well; for instance, patchwork may not hold, but the overall property
may hold for complete graphs (and, hence, when �-consistency is used) or when constraints
in the structure of the constraint graphs of the QCNs are imposed (a trivial case being
restricting the constraint graphs of QCNs to being trees).

4 ◆
∪

G -Consistency: a new local consistency for QCNs

We define a new local consistency for QCNs inspired by k-partitioning consistency for
constraint satisfaction problems (CSPs), where arc consistency is used as the underlying
local consistency of choice, or k-Partition-AC for short [4]. This technique divides a variable
domain into disjoint domains, where each of them contains at most k elements. In the case
of QCNs, these elements correspond to base relations. With respect to k-Partition-AC, the
most common and preferred approach is dividing a domain into singleton sub-domains, which
is the case where k = 1, otherwise many questions arise, such as what should the size of
each sub-domain be, how should this size be fixed, and which elements should be considered
for a given use case. Although having many questions to deal with is not necessarily bad
in general, the most important aspect regarding 1-Partition-AC is that it offers the nice
property that it is strictly stronger than singleton arc consistency (SAC) [9].

In this work, we adapt the aforementioned technique to QCNs using �G-consistency as our
underlying local consistency of choice.1 Given a QCN N , enforcing this consistency for k = 1
will eliminate every base relation that is not ◆G-consistent for some constraint in N , but also
every base relation that is not supported by some base relation in N through �G-consistency.
We call this new local consistency ◆∪

G -consistency, and better explain it with a demonstrative
example as follows. Consider the ◆G-consistent QCN N = (V,C) of IA in Figure 3. We can
see that the base relation d is ◆G-consistent for C(x1, x2), but it is not supported by any of
the base relations that define constraint C(x1, x3), namely, p and pi, through �G-consistency.
In particular, by instatiating C(x1, x3) with either p or pi and closing the respective QCN
under �G-consistency, the base relation d is eliminated in C(x1, x2). After eliminating the
base relation d in C(x1, x2), the revised QCN N becomes ◆∪

G -consistent.
Now we can formally define this consistency.

I Definition 16. Given a QCN N = (V,C) and a graph G = (V,E), N is said to be
◆

∪

G -consistent iff N is ◆G-consistent and ∀{v, v′} ∈ E, ∀b ∈ C(v, v′), and ∀{u, u′} ∈ E we have
that ∃b′ ∈ C(u, u′) such that b ∈ C ′(v, v′), where (V,C ′) = �G(N[u,u′]/{b′}).

We prove the following result to be used in the sequel, which suggets that ◆∪

G -consistency
can only eliminate unfeasible base relations:

I Proposition 17. Let N = (V,C) be a QCN, G = (V,E) a graph, and b ∈ C(u, u′)
with u, u′ ∈ V a base relation. Then, if ∃{v, v′} ∈ E such that b 6∈ C ′(u, u′), where
(V,C ′) =

⋃
{�G(N[v,v′]/{b′}) | b′ ∈ C(v, v′)}, we have that b is an unfeasible base relation.

Proof. Let us assume that b is a feasible base relation. Then, by definition of feasible base
relations there exists a scenario S = (V,C ′) of N such that C ′(u, u′) = {b}. Further, by the
equivalence property of �G-consistency it holds that �G(S) = S (as S, being a scenario, is an

1 The partitioning scheme can be combined with any local consistency or propagation technique. Here,
the definition is restricted to �G-consistency as it is the most essential of local consistencies used for
dealing with QCNs.
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(a) A ◆

G-consistent QCN N .

x1 x2

x3x4

{p}

{p}
{s} {fi}

{oi}

{mi}

(b) N1 = �G(N[x1,x3]/{p})

x1x1 x2

x3x4

{mi}

{pi}
{f} {oi}

{o}

{m}

(c) N2 = �G(N[x1,x3]/{pi})

x1 x2

x3x4

{p,mi}

{p, pi}
{s, f} {oi, fi}

{o, oi}

{m,mi}

(d) N1 ∪N2

Figure 3 A ◆

G-consistent QCN N of IA along with a demonstration of how enforcing ◆
∪

G -consistency
can further eliminate base relations; here G is the complete graph on the set of variables of N .

atomic and satisfiable QCN and, hence, none of its base relations can be removed by application
of �G-consistency). Thus, it follows that ∀{v, v′} ∈ E we have that b ∈ C ′′(u, u′), where
(V,C ′′) = �

G(N[v,v′]/C′(v,v′)), as S ⊆ N[v,v′]/C′(v,v′) and, hence, �G(S) ⊆ �G(N[v,v′]/C′(v,v′))
by the monotonicity property of �G-consistency. As S ⊆ N , it follows that ∀{v, v′} ∈ E

we have that C ′(v, v′) ⊆ C(v, v′) and, hence, that ∃b′ ∈ C(v, v′) such that b ∈ C ′′′(u, u′),
where (V,C ′′′) = �

G(N[v,v′]/{b′}), by simply considering the base relation b′ ∈ C(v, v′) to
be the one of the singleton relation C ′(v, v′) of S. Therefore, by definition of operation ∪
with respect to QCNs we can derive that ∀{v, v′} ∈ E it holds that b ∈ C∗(u, u′), where
(V,C∗) =

⋃
{�G(N[v,v′]/{b′}) | b′ ∈ C(v, v′)}, which concludes our proof by contraposition. J

We recall the following result to be used in one of our proofs later on:

I Proposition 18 ([2]). For any QCNs N1 and N2 on a set of variables V and any graph
G = (V,E), if N1 and N2 are ◆G-consistent, then (N1 ∪N2) is ◆G-consistent as well.

We note that the aforementioned result describes a sufficient property for proving domin-
ance for a new consistency, but that property might not be necessary in general and, hence,
does not solely follow from the well-behaveness of the consistency at hand. We prove the
same property for ◆∪

G -consistency, to be used in what follows.

I Proposition 19. For any QCNs N1 and N2 on a set of variables V and any graph
G = (V,E), if N1 and N2 are ◆∪

G -consistent, then (N1 ∪N2) is ◆∪

G -consistent as well.

Proof. Let N1 = (V,C1), N2 = (V,C2), (N1 ∪ N2) = (V,C), v, v′ ∈ V be two variables,
and b ∈ C(v, v′) a base relation. We only need to consider the case where b ∈ C1(v, v′),
as the case where b ∈ C2(v, v′) is symmetric. Since N1 is ◆∪

G -consistent, we have that
N1 is ◆G-consistent and ∀{u, u′} ∈ E there exists b′ ∈ C1(u, u′) such that b ∈ C ′1(v, v′),
where (V,C ′1) = �

G(N1[u,u′]/{b′}), by definition of ◆∪

G -consistency. In addition, we have that
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(N1 ∪N2) is ◆G-consistent by Proposition 18. As N1 ⊆ (N1 ∪N2), we have that N1[u,u′]/{b′}
⊆ (N1 ∪N2)[u,u′]/{b′} ∀{u, u′} ∈ E and ∀b′ ∈ C1(u, u′). Thus, we have that �G(N1[u,u′]/{b′})
⊆ �G((N1 ∪N2)[u,u′]/{b′}) ∀{u, u′} ∈ E and ∀b′ ∈ C1(u, u′) by the monotonicity property of
�
G-consistency. From that we can deduce that ∀{u, u′} ∈ E there exists b′ ∈ C(u, u′) such
that b ∈ C ′(v, v′), where (V,C ′) = �

G((N1 ∪N2)[u,u′]/{b′}). Hence, by the assumption that
N1 and N2 are ◆∪

G -consistent, we have proved that (N1 ∪N2) is ◆∪

G -consistent as well. J

Next, we arrive to one of our main results in this work.

I Theorem 20. We have that ◆∪

G -consistency is well-behaved.

Proof. (Dominance) From Proposition 19 we can assert that, for any QCN N = (V,C) and
any graph G = (V,E), there exists a unique ◆∪

G -consistent QCN
⋃
{N ′ | N ′ ⊆ N and N ′ is

◆
∪

G -consistent}, which by its definition is the largest (w.r.t. ⊆) ◆∪

G -consistent sub-QCN of
N and, hence, the closure of N under ◆∪

G -consistency. (Equivalence) Let N = (V,C) be
a QCN, G = (V,E) a graph, and N ′ = (V,C ′) the QCN where ∀v, v′ ∈ V and ∀b ∈ B
we have that b ∈ C ′(v, v′) iff there exists a solution σ of N such that (σ(v), σ(v′)) ∈ b.
Clearly, N ′ is a sub-QCN of N and it is necessarily ◆∪

KV
-consistent (where KV denotes the

complete graph on the set of variables V of N ), as by Proposition 17 we have that the
application of ◆∪

G -consistency on any QCN (V,C) w.r.t. any graph G = (V,E) can only
remove unfeasible base relations, and not feasible ones. It follows that N ′ ⊆ ◆

∪

G (N ) ⊆ N
and, as such, ◆∪

G (N ) and N share the same set of solutions. (Idempotence) Let N = (V,C)
be a QCN, and G = (V,E) a graph. Then, ◆∪

G (N ) is ◆∪

G -consistent. Now, by dominance of
◆

∪

G -consistency the largest ◆∪

G -consistent sub-QCN of ◆∪

G (N ) is itself and, hence, ◆∪

G (◆∪

G (N ))
= ◆

∪

G (N ). (Monotonicity) Let N = (V,C) and N ′ = (V,C ′) be two QCNs such that N ′ ⊆
N , and G = (V,E) a graph. As N ′ ⊆ N , we have that ◆∪

G (N ′) is a ◆∪

G -consistent sub-QCN
of N . In addition, by dominance of ◆∪

G -consistency we can assert that ◆∪

G (N ) is the largest
◆

∪

G -consistent sub-QCN of N . Therefore, we have that ◆∪

G (N ′) ⊆ ◆∪

G (N ). J

We prove the following general result regarding the pruning capability of ◆G-consistency
in comparison with that of ◆∪

G -consistency:

I Proposition 21. We have that ◆∪

G -consistency . ◆G-consistency.

Proof. By definition of ◆∪

G -consistency, we have that ◆∪

G -consistency D ◆

G-consistency, since,
for any graph G = (V,E), any QCN (V,C) that is ◆∪

G -consistent is already ◆G-consistent.
To prove strictness we use an example as follows. Consider the QCN N = (V,C) of
Figure 3. The reader can verify that N is ◆G-consistent, as we have that b is ◆G-consistent
for C(v, v′) ∀{v, v′} ∈ E and ∀b ∈ C(v, v′). However, we have that d 6∈ C ′(x1, x2), where
(V,C ′) =

⋃
{�G(N[x1,x3]/{b′}) | b′ ∈ C(x1, x3)}, as demonstrated in the figure. In detail,

�
G(N[x1,x3]/{p}) ∪ �G(N[x1,x3]/{pi}) is a QCN such that d is not among the base relations that
define the constraint on variables x1 and x2. Thus, ◆

∪

G -consistency does not hold in N . J

The next result follows trivially:

I Proposition 22. We have that ◆∪

G -consistency . �G-consistency.

Proof. A direct consequence of Propositions 11 and 21 and the transitivity of .. J

Finally, we introduce the following result that identifies the case where ◆G-consistency and
◆

∪

G -consistency are equivalent:
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Algorithm 1: PSWC∪(N , G)
in :A QCN N = (V,C), and a graph G = (V,E).
out :A sub-QCN of N .

1 begin
2 N ← PWC(N , G);
3 Q ← E;
4 while Q 6= ∅ do
5 {v, v′} ← Q.pop();
6 (V,C′) ← ⊥V ;
7 foreach b ∈ C(v, v′) do
8 (V,C′) ← (V,C′) ∪ PWC(N[v,v′]/{b}, G, {{v, v′}});
9 if (V,C′) ⊂ N then

10 foreach {u, u′} ∈ E | C′(u, u′) ⊂ C(u, u′) do
11 C(u, u′)← C′(u, u′);
12 C(u′, u)← C′(u′, u);
13 Q ← E;

14 return N ;

I Proposition 23. Let A be a subclass of relations of a relation algebra with the property
that for any QCN N = (V,C) over A there exists a graph G = (V,E) such that, if �G(N ) is
not trivially inconsistent, then N is satisfiable. Then, for any such N and G, we have that
◆

G-consistency ≡ ◆
∪

G -consistency.

Proof. We first prove that, if N is ◆G-consistent, then N is also ◆∪

G -consistent. By Proposi-
tion 15 we have that ∀{u, v} ∈ E and ∀b ∈ C(u, v) the base relation b is feasible. In addition,
by the equivalence property of ◆∪

G -consistency we have that the application of ◆∪

G -consistency
on N can only remove unfeasible base relations and, hence, that ◆∪

G (N ) = N , as every base
relation b ∈ C(u, v) ∀{u, v} ∈ E is feasible. The proof that, if N is ◆∪

G -consistent, then N is
also ◆G-consistent, follows directly from the definition of ◆∪

G -consistency. J

A hasty reading of Proposition 23 might give the impression that one should always opt
to apply ◆G-consistency for the cases where the considered QCN and the graph G satisfy the
prerequisites detailed in that proposition, as ◆G-consistency, being a weaker consistency than
◆

∪

G -consistency in general, should be “easier” to apply. However, as we will demonstrate in
our experimental section, ◆∪

G -consistency is faster to apply. To give an intuition, any well-
structured algorithm that will try to enforce ◆∪

G -consistency in a given QCN for some graph
G, will inescapably make better use of the singleton checks than the respective algorithm
for enforcing ◆G-consistency. This is because the former algorithm will exploit the singleton
checks (by the very definition of ◆∪

G -consistency) to proactively eliminate certain base relations
that are unfeasible and, hence, possibly not ◆G-consistent for the corresponding constraints.

5 An algorithm for achieving ◆∪G -consistency

In this section, we propose an algorithm for efficiently applying ◆∪

G -consistency on a given
QCN N , called PSWC∪ (∪-collective partial singleton closure under weak composition) and
presented in Algorithm 1. This algorithm builds on the algorithm for efficiently achieving
◆

G-consistency, called PSWC (partial singleton closure under weak composition) and presented
in Algorithm 2, which in itself is an advancement of the respective algorithm for enforcing
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Algorithm 2: PSWC(N , G)
in :A QCN N = (V,C), and a graph G = (V,E).
out :A sub-QCN of N .

1 begin
2 N ← PWC(N , G);
3 Q ← E;
4 while Q 6= ∅ do
5 {v, v′} ← Q.pop();
6 (V,C′) ← ⊥V ;
7 foreach b ∈ C(v, v′) do
8 (V,C′) ← (V,C′) ∪ PWC(N[v,v′]/{b}, G, {{v, v′}});
9 if C′(v, v′) ⊂ C(v, v′) then

10 C(v, v′) ← C′(v, v′);
11 C(v′, v) ← C′(v′, v);
12 Q ← E;

13 return N ;

Algorithm 3: PWC(N , G, e← ∅)
in :A QCN N = (V,C), a graph G = (V,E), and optionally a set e such that e ⊆ E.
out :A sub-QCN of N .

1 begin
2 Q ← (e if e 6= ∅ else E);
3 while Q 6= ∅ do
4 {v, v′} ← Q.pop();
5 foreach v′′ ∈ V | {v, v′′}, {v′, v′′} ∈ E do
6 r ← C(v, v′′) ∩ (C(v, v′) � C(v′, v′′));
7 if r ⊂ C(v, v′′) then
8 C(v, v′′) ← r;
9 C(v′′, v) ← r−1;

10 Q ← Q ∪ {{v, v′′}};
11 r ← C(v′′, v′) ∩ (C(v′′, v) � C(v, v′));
12 if r ⊂ C(v′′, v′) then
13 C(v′′, v′) ← r;
14 C(v′, v′′) ← r−1;
15 Q ← Q ∪ {{v′′, v′}};

16 return N ;

◆

G-consistency that is presented in [2]; we explain as follows. We use a queue in both of our
algorithms that is initialized with all of the edges of a given graph G that correspond to
constraints of a given QCN N . In addition, this queue is filled with all of the aforementioned
edges whenever any of the constraints of N is revised, i.e., whenever a base relation is
removed. This operation is equivalent to introducing a break statement in the algorithm of [2]
whenever a singleton check fails and, hence, a constraint is revised, forcing the inner loop in
that algorithm to stop and using the outer loop to initiate singleton checks in a fresh QCN.
We have found this tactic to perform much better in practice, cutting down on the number of
constraint checks by around 20%. Further, the use of a queue allows for prioritizing certain
edges, a strategy which is in line with similar techniques used in the algorithm for enforcing
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�
G-consistency [34, 27, 16], but this is something that we have not yet explored and retain for
future work. As we will also remind the reader in the experimental evaluation to follow, we
use a simple FIFO (first-in, first-out) queue for our algorithms. For the sake of completeness,
we also present the state-of-the-art algorithm for applying �G-consistency on a given QCN,
called PWC (partial closure under weak composition), which is utilized as a subroutine by
both PSWC∪ and PSWC (see Algorithm 3).

The difference between algorithms PSWC∪ and PSWC lies solely in the way that they
exploit singleton checks. In particular, note the difference between the conditions in line 9 of
both algorithms; PSWC∪ will bring up all edges in the queue for revising the entire QCN
even when the constraint at hand was not revised, but another constraint somewhere in the
QCN was, whereas PSWC will keep its focus solely on the constraint at hand. This is due to
the fact that algorithm PSWC∪ will use a single singleton check to eliminate base relations
anywhere in the network, and not just in the constraint at hand as algorithm PSWC does.
Before proving the correctness of algorithm PSWC∪, we recall the following result regarding
the correctness of algorithm PSWC:

I Proposition 24 (cf. [2, 8]). Given a QCN N = (V,C) of a relation algebra and a graph
G = (V,E), we have that algorithm PSWC terminates and returns ◆G(N ).

Now, we prove that algorithm PSWC∪ is complete for applying ◆∪

G -consistency on a given
N = (V,C) for a given graph G = (V,E). Due to space limitations, an intuitive proof is
provided, which however manages to explain the overall functionallity of algorithm PSWC∪

in sufficient detail.

I Theorem 25. Given a QCN N = (V,C) of a relation algebra and a graph G = (V,E), we
have that algorithm PSWC∪ terminates and returns ◆∪

G (N ).

Proof (Intuition). It is easy to see that lines 9–12 in Algorithm 1 perform a superset of
the operations performed in lines 9–11 in Algorithm 2. Thus, by Proposition 24 we know
that given a QCN N = (V,C) and a graph G = (V,E), algorithm PSWC∪ applies the
set of operations required to make N ◆

G-consistent. We need to show that the rest of the
operations maintain ◆

G-consistency and further achieve ◆∪

G -consistency. With respect to
that, it is again easy to see that algorithm PSWC∪ enforces exactly the conditions specified
in Proposition 17 and, hence, removes the (unfeasible) base relations required to make
N ◆

∪

G -consistent. Further, since the algorithm will only terminate when b is guaranteed
to have become ◆G-consistent for C(u, v) ∀{u, v} ∈ E and ∀b ∈ C(u, v) and no constraint
is further revised to additionally achieve ◆∪

G -consistency, we can conclude that algorithm
PSWC∪ correctly applies ◆∪

G -consistency on N . J

Time complexity analysis

Given a QCN N = (V,C) and a graph G = (V,E), we have that algorithm PSWC∪ applies
◆

∪

G -consistency on N in O(∆ · |E|3 · B3) time, where ∆ is the maximum vertex degree of
graph G. In particular, algorithm PWC is executed O(|E| · |B|) times every time a constraint
is revised, and such a constraint revision can occur O(|E| · |B|) times. Further, we note that
the unification operations that take place in line 8 of the algorithm are handled in O(|E| · |B|)
time in total, as we keep track of the constraints that are revised by algorithm PWC and
we can have a total of O(|E| · |B|) constraint revisions. The same argument holds for the
operations that take place in lines 9–12 of the alorithm. (These details are not included in
the algorithm to allow for a more compact representation.) Now, by taking into account
the worst-case time complexity of algorithm PWC, which is O(∆ · |E| · B) [7], a worst-case

TIME 2017



19:14 Collective Singleton-Based Consistency for Qualitative Constraint Networks

Table 1 Evaluation with random IA networks of model S(n = 70, l = 6.5, d).

min µ max σ

d PSWC PSWC∪ PSWC PSWC∪ PSWC PSWC∪ PSWC PSWC∪

10 3.19s
9k

3.11s
9k

4.25s
14k

4.02s
13k

5.63s
22k

5.43s
21k

0.50s
2k

0.52s
2k

12 5.79s
9k

5.65s
9k

7.82s
14k

7.51s
14k

11.85s
22k

10.88s
22k

1.38s
2k

1.18s
2k

14 9.92s
12k

9.63s
12k

13.81s
19k

13.08s
18k

21.26s
38k

19.24s
28k

2.68s
5k

2.40s
4k

16 14.14s
18k

13.91s
18k

30.19s
31k

27.74s
29k

96.24s
61k

99.56s
62k

14.20s
8k

14.95s
8k

18 21.39s
26k

20.94s
26k

56.16s
45k

53.17s
44k

154.14s
88k

149.98s
88k

22.92s
13k

21.22s
12k

20 54.42s
39k

52.82s
36k

100.22s
58k

89.32s
55k

192.68s
108k

188.54s
100k

30.68s
14k

26.08s
12k

22 19.66s
48k

17.09s
46k

42.51s
67k

39.83s
63k

86.09s
108k

75.55s
108k

16.67s
14k

15.19s
14k

time complexity of O(∆ · |E|3 · B3) can be obtained for algorithm PSWC∪; this is also the
worst-case time complexity of algorithm PSWC [2]. It is important to note that we cannot
utilize the incremental functionality of algorithm PWC (see Theorem 1 in [12, Section 3] and
the surrounding text) to obtain a better bound for our algorithm, as the singleton checks are
perfomed independently2 of one another.

6 Experimental evaluation

We evaluated the performance of an implementation of algorithm PSWC∪, against an
implementation of the algorithm for enforcing partial ◆G-consistency that was presented here,
namely, PSWC, with a varied dataset of arbitrary QCNs of IA.

Technical specifications. The evaluation was carried out on a computer with an Intel Core
i5-6200U processor (which has a max frequency of 2.7 GHz per CPU core under turbo mode3),
8 GB of RAM, and the Xenial Xerus x86_64 OS (Ubuntu Linux). All algorithms were
coded in Python and run using the PyPy intepreter under version 5.1.2, which implements
Python 2.7.10; the code is available upon request. Only one CPU core was used.

Datasets and measures. We considered random IA networks generated by the S(n, l, d)
model [34]. This model can randomly generate satisfiable QCNs of n variables with an
average number l of base relations per non-universal constraint and an average degree
d for the corresponding constraint graphs. Further, this model is typically used in the
evaluation of algorithms dealing with problems associated with QCNs, with an emphasis on
the minimal labelling problem [34, 2, 23]. We generated 30 QCNs of IA of n = 70 variables

2 To be more precise, the unification operations that take place in line 8 of the algorithm do not provide
the level of interdependency required to tap into the incrementality of PWC.

3 Turbo mode was maintained throughout the experimental evaluation by staying well within thermal
design power (TDP) limit.
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with l = |B|/2 = 6.5 base relations per non-universal constraint on average for all values of d
ranging from 10 to 22 with a step of 2 (a typical range for evaluating related algorithms [2]);
hence, we considered a total of 210 QCNs of IA. Finally, the maximum cardinality search
algorithm [32] was used to obtain a triangulation of the constraint graph of a given QCN.
Notice that, with respect to our evaluation, any kind of graphs would have been adequate
(even complete ones), as they would have affected all involved algorithms proportionally and
would not have qualitatively distorted the obtained results; however, the choice of chordal
graphs was more reasonable given their extensive use in the recent literature [31].

Our evaluation involved two measures, which we describe as follows. The first measure
considers the number of constraint checks per base relation removals performed by an
algorithm for enforcing the respective local consistency. Given a QCN N = (V,C) and
three variables vi, vk, vj ∈ V , a constraint check occurs when we compute the relation r =
C(vi, vj) ∩ (C(vi, vk) � C(vk, vj)) and check if r ⊂ C(vi, vj), so that we can propagate its
constrainedness if that condition is satisfied. Weak compositions that yield relation B are
disregarded. The second measure concerns the CPU time and is strongly correlated with the
first one, as the run-time of any proper implementation of an algorithm for enforcing a local
consistency should, in principle, rely mainly on the number of constraint checks performed.

Results. The results of our experimental evalualation are detailed in Table 1, where a
fraction x

y denotes that an approach required x seconds of CPU time and performed y

constraint checks per base relation removals on average per dataset of networks during its
operation. In short, the advantage of PSWC∪ over PSWC is clear across all parameters
and for all settings and corresponds to around 10%. This is a promising result in terms
of achieving a new stronger local consistency faster than what was possible to date even
when considering a weaker local consistency. Further, we recall to the reader that we used a
simple FIFO queue for our implementation; it would be interesting to explore prioritizing
edges corresponding to constraints that are revised at any given step of the execution. We
retain a more thorough experimental evaluation, which will also include the effect of our
new stronger local consistency on backtracking-based algorithms, for future work. Here, we
opted to maintain a simple configuration for our algorithms in order to obtain a first pure
comparison that will serve as a basis for further evaluation.

7 Conclusion and future work

Partial singleton closure under weak composition, or partial ◆-consistency for short, is a local
consistency that ensures that each base relation of each of the constraints of a qualitative
constraint network can define a singleton relation in the corresponding partial closure of that
network under weak composition, or in its corresponding partial �-consistent subnetwork
for short. This local consistency is essential for approximating satisfiability of qualitative
constraints networks, and has been shown to play a crucial role in tackling the minimal
labeling problem of a qualitative constraint network in particular, which is the problem
of finding the strongest implied constraints of that network. In this paper, we proposed a
stronger local consistency that couples ◆-consistency with the idea of collectively deleting
certain unfeasible base relations by exploiting singleton checks. Further, we proposed an
efficient algorithm for enforcing this new consistency that, given a qualitative constraint
network, performs fewer constraint checks than the respective algorithm for enforcing partial
◆-consistency in that network. We formally proved certain properties of our new local
consistency, and motivated its usefulness through demonstrative examples and a preliminary
experimental evaluation with qualitative constraint networks of Interval Algebra.
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There are several directions for future work. Regarding the algorithm that enforces our
new consistency, we would like to explore queuing strategies such that the singleton checks
are applied in a more fruitful manner. In particular, it would make sense to prioritize certain
singleton checks that are more likely to eliminate base relations anywhere in the network at
hand, because this could unveil certain inconsistencies faster, but also lead to fewer constraint
checks overall. Such strategies have been used in the case of partial �-consistency [34, 27, 16].
Further, regarding the new local consistency itself, we would like to define a weaker variant of
it that considers singleton checks in the neighborhood of the constraint in question, instead
of the entire network. Early experiments in this direction have shown really promising results
with respect to constraint satisfaction problems, which is due to the fact that constraint
revisions tend to propagate themselves to just neighboring constraints [36].

Acknowledgements. We would like to thank the reviewers for their helpful comments.
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Abstract
Spatial and temporal decomposition of aggregated mobility flows is nowadays a commonly ad-
dressed issue, but a trip-purpose decomposition of mobility flows is a more challenging topic,
which requires more sensitive analysis such as heterogeneous data fusion. In this paper, we study
the relation between land use and mobility purposes. We propose a model that dynamically de-
composes mobility flows into six mobility purposes. To this end, we use a national transportation
database that surveyed more than 35,000 individuals and a national ground description database
that identifies six distinct ground types. Based on these two types of data, we dynamically solve
several overdetermined systems of linear equations from a training set and we infer the travel
purposes. Our experimental results demonstrate that our model effectively predicts the purposes
of mobility from the land use. Furthermore, our model shows great results compared with a
reference supervised learning decomposition.
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Keywords and phrases Human mobility, Purpose decomposition, Information extraction, Linear
model
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1 Introduction

Human mobility is a field of research that has significantly been studied during the last
decades. We now understand that individuals’ displacements are motivated by several factors
such as jobs, occupations, social life, etc., but also by the nature of ground infrastructures.
Hence, ground infrastructures are revealing items of human occupations over a territory.
Moreover, humans develop tendencies to adopt regular mobility patterns, often linked to
land use [9, 3]. With the apparition of pervasive devices over the last years, human mobility
modeling has been significantly improved and allows us now a better understanding of such
patterns. Call Detail Records (CDR) have rapidly been used as presence indicators in the
literature [15, 2], but by nature CDR data represent dis-aggregated mobility flows, and often
at a relatively small geographic scale (cells of the cellular network). Nowadays, many works
propose interesting ways for mobility prediction, by using new technologies such as social
networks [13, 1], or through heterogeneous data fusion and big data [14, 4].

From these studies emerges the idea of a link between land use and human mobility
[3, 11, 17], and we understand that if the analysis of human mobility patterns leads to
the characterization of land use, then, land infrastructures must be a catalyst for human
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displacements. However, for privacy reasons, mobility flows are often aggregated by data
providers, it is the case when dealing with mobile network data, counting loops, or any large
scale mobility data. Such data can be spatially or temporarily aggregated, which represents a
consequent loss of information. However, spatial and temporal decomposition of aggregated
flows is a common issue, and has been largely studied in the recent years [12, 5, 7].

Purpose decomposition of aggregated mobility flows is a difficult and delicate problem.
Knowing the end-purpose of any mobility flow helps local actors to better understand the
dynamics of individuals traveling over their territories. Many related fields benefit from this
knowledge; urbanization, transportation planning, commercial activities, etc. Many works
have tried to tackle trip-purpose reconstitution in the last five years. However, the proposed
methods are always dependent on the provided data nature. Floating Car Data (FCD) are
GPS traces for vehicles, and by definition are not aggregated, as for CDR data. We can cite
[18, 10, 6] whom infer trip activities from CDR, and in [8] the authors use FCD to determine
travel purposes.

Assigning purposes to aggregated mobility flows is a heterogeneous data fusion problem,
and we propose to inject knowledge into raw data to tackle this issue. In this paper, we
propose to study the relation between land use (or ground) and mobility flow purposes. The
main objective is to propose a method that allows us to decompose mobility flows into several
sub-flows, each carrying a distinct mobility purpose. In section 2 we describe the data sets
used and we explain the methodology developed to collect land use indicators. Then we
propose in section 3 a reference model inferring mobility purposes from land use indicators.
We provide two major improvements to this reference model and we analyze the prediction
rates of the three algorithms. Finally, we propose in section 4 an analysis of these results,
and section 5 concludes our work.

2 Data sets

In this paper, we propose to study the relationship between mobility flows and land use. We
focus our study on the Ile-de-France province, a 12 million inhabitants region around Paris,
France. We base our study on two freely available data sets. Mobility flows are gathered
from a national transportation survey while land use indicators are obtained through several
national databases.

2.1 Mobility flows data set
In this proposed model, we use a national transportation survey (Enquete Globale Transport,
EGT). This national survey contains the declarations about displacements and commuting
habits of more than 35,000 individuals. It also contains the main purpose, time, duration,
origin and destination zones of each displacement. Moreover, each surveyed displacement
is given a weight corresponding to the number of individuals it actually represents, based
on its social and professional category, commuting habits, etc. From the EGT, we build an
Origin-Destination matrix (OD matrix) that we call Mglobal and which corresponds to the
daily displacements occurring within the whole Ile-de-France province.

2.1.1 Territorial division
The EGT is based on a territorial division whose base unit is a 100x100 meter mesh. By using
such meshing, all of the 1,300 Ile-de-France cities are divided into regular squares. According
to the EGT, these cities (and thus meshes) are themselves grouped into 118 sectors, which
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Figure 1 Number of individuals traveling with a specific purpose from the EGT.

means that a sector is composed of 11 cities on average. Origin and destination of each
displacement are represented by two 100x100m meshes. This allows us to build OD matrices
with any desired territorial division, from meshes to sectors. In this study we decide to use
an OD matrix based on the sector division. Indeed, although the 100x100 meter meshing is
interesting, it does not provide a statistically realistic information. We call the set of 118
sectors (also known as zones) Zglobal. The origins and destinations of the Mglobal matrix
belong to Zglobal, which gives 13,924 possible OD pairs at any time.

2.1.2 Temporal division
In this study, we use temporal time slots of 30 minutes. It is a frequently used time gap which
allows us to better display the mobility dynamics of the individuals. We note that in the
EGT, the start and end times of each displacement are given to within a minute. To build
Mglobal, we round down every time to the nearest 30 minute gap. To be more statistically
correct, we also could use a Gaussian distribution model that would provide a more uniform
time distribution. We refer to a timestamp of Mglobal by t.

2.1.3 Purpose division
Many works in the literature aim at inferring purposes (also called activities) of displacements
from mobility data. The numbers of purposes vary greatly according to the studies. For
example, in [11] the authors use nine purposes of mobility, in [18] they use five classes, and
in [6] they use eight purposes. In the EGT, we have access to 38 purposes of mobility that
are classified into eight main groups.

In this paper, we propose to study the six most significant distinct purposes of mobility:
Home, Work, School, Shopping, Leisure and Lunch. We consider that these purposes hold
the principal reasons of dynamics and movements of individuals on a territory. We notice
that the proposed model can easily deal with another number of purposes. We propose to
study the evolution of the EGT mobility flows, according to their purposes. Figure 1 shows
the number of displacements at any time, grouped by activity.

TIME 2017



20:4 Dynamic Purpose Decomposition of Mobility Flows Based on Geographical Data

2.2 Land use
Simultaneously, we collect land usage information from the 118 sectors of Zglobal. In this
paper, we consider that the land use of a sector is an indicator of a specific human activity
done in this zone. We do not focus on the distribution of infrastructures on the ground, but
we rather collect activity indicators that reflect an understanding of the usage of ground
infrastructures. For example, contrarily to [17] that focuses on five land uses obtained
through aerial analysis of ground infrastructures (massGIS), we propose to collect land use
information from national databases. We focus on six land use indicators that are grouped
into two main fields:

1. Presence indicators
Number of residents
Number of employees
Number of students (from elementary to postgraduate education)

2. Economical activity indicators
Number of megastores (> 2500m2)
Number of supermarkets (> 400m2)
Number of stores (< 400m2)

These indicators are collected from several INSEE free-access databases. INSEE is the
official French national institute for statistics and economic studies, in charge of statistics
and censuses (national census, surveys, economic indicators, etc.). We collect the number of
residents from the national census, which contains information about the 1,300 cities of the
Ile-de-France province. The number of employees is obtained from a dedicated database1
that nationally identifies every company, its number of employees and its location. We
do not make assumptions between the different types of workers (commuting, teleworking,
transporters, etc.). A version considering these special features will be checked further. We
obtain the number of students from another commonly used database2. Finally, the number
of megastores, supermarkets and stores is collected from a third database3 that censuses
every community facilities with their location.

These three economic activity indicators appear as particularly relevant since they are
strong catalysts of mobility, in the sense that they do attract individuals, for identified reasons,
and in different quantities. Megastores (> 2500m2) mainly attract individuals for leisure,
shopping or errands, in great quantities. They are strategically located over territories and
are great mobility hubs. Supermarkets generate lower displacements. Individuals generally go
to supermarkets to buy groceries, and more rarely for leisure. Finally, city stores (< 400m2)
are representative of the attractiveness and dynamics of a city center. The more city stores
there are, the more individuals are present for leisure, lunch, shopping, etc. at specific times
of the day. A version considering the sales volumes of these infrastructures will be checked
further. As a matter of fact, some stores may be more attractive than others (services, leisure
facilities, etc.) and thus may present different attraction behaviors.

We present in Table 1 some statistics about the number of indicators for the 118 zones of
Zglobal.

1 http://www.sirene.fr/sirene/public/accueil?sirene_locale=en
2 https://www.insee.fr/fr/statistiques/1913211
3 https://www.insee.fr/fr/metadonnees/source/s1161

http://www.sirene.fr/sirene/public/accueil?sirene_locale=en
https://www.insee.fr/fr/statistiques/1913211
https://www.insee.fr/fr/metadonnees/source/s1161
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Table 1 Ground indicators details over the zones.

Indicator min median max
Residents 1,177 58,732 626,676
Employees 825 23,499 365,446
Students 168 13,864 179,063

Megastores 0 1 7
Supermarkets 0 9 110

Stores 1 109 2,802

3 Model

To study the relation between land use and mobility purposes we propose to use a supervised
learning model. We split our data into two parts, one part will be used for training and
learning process while the second part will be used for testing and validation.

3.1 Creation of a training set

In supervised learning we have to split our database in two. The number of zones in the study
being relatively small, we propose to use a 50% ratio for separating training and validation
zones. With this 50% ratio we limit the risks of having too much outliers in the validation
set. A version with different ratios and statistical inference models will be checked further.
We propose then separate 59 EGT of the 118 EGT sectors that we put in a Ztr set (tr is
for training). We put the 59 other zones in a set called Zval (val is for validation). All the
OD flows from Mglobal with a destination zone d within Ztr are added to a Mtr matrix, and
all flows with a destination zone within Zval are added to a Mval matrix. Additionally we
create two other OD matrices called M∗tr and M∗val. These matrices correspond to the Mtr

and Mval matrices respectively, but aggregated by destination and time slot. This means
that there are no purposes information in these last two matrices. The choice of sectors is
random.

3.2 Purpose Flow Decomposition algorithm (PFD)

In this paper we study the relationship between land use and displacements purposes. From
one side we collect purposes decomposed flows in Mtrain, and from the other side we collect
information about six land use indicators from all the zones of Mglobal. From now, we refer
to a zone as a destination zone d with d in Zglobal, and to a land use indicator at d by
groundi(d). Hence, ground1(d) is the number of Residents and ground6(d) the number of
Stores at zone d.

3.2.1 Normalization

In the next parts, we use the notation n_ < variable >. This notation corresponds to the
normalized value of a variable instance relatively to the maximum known value of this variable.
For example, we use the notation n_groundi(d) which corresponds to the normalized value
of the land use indicator groundi at destination zone d relatively to the maximum known
value of this ground indicator in all zones. This allows us to compare indicators between
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them, without scaling effect problems. We compute this normalized value as follows:

n_groundi(d) = groundi(d)
max(gro
d∈Zglobal

undi(d)) . (1)

3.2.2 Main equation
We want to mathematically write the relationship between the land uses and a purpose of
mobility. For such a linear relation between the ground and mobility flows, we write for any
time t, and any destination d a linear equation linking the land usage groundi and a specific
purpose p:

∀d, ∀t, ∀p,
n∑

i=1
(αi(t, p) . n_groundi(d)) = Mtr(d, t, p) . (2)

where for every timestamp t, every purpose p, and every destination d,
n is the number of ground indicators, fixed to 6
αi(t, p) is a coefficient to determine
n_groundi(d) is the normalized value of the ground indicator groundi(d)
Mtr(d, t, p) is the sum of flows with purpose p from any origin zone of Ztr to the destination
zone d at timestamp t

3.2.3 Overdetermined system
The training matrix Mtr uses 59 zones, thus we can write for any couple of timestamp t of
30 minutes and purpose p, 59 equations with n unknown. As an example, we represent the
specific system used for purpose Home and timestamp 13:30. For readability reasons we use
for n_Residents the abbreviation Res, for n_Employees, Emp, etc. With same concerns, the
couple (t, p) = (13:30,Home) is removed but implicitly considered. Therefore, the values of
Mtr(d) correspond actually to Mtr(d,13:30,Home), and αi to αi(13:30,Home) coefficients.
We call that system S.

α1.Res1 + α2.Emp1 + α3.Stu1 + α4.Meg1 + α5.Sup1 + α6.Sto1 = Mtr(1)
α1.Res2 + α2.Emp2 + α3.Stu2 + α4.Meg2 + α5.Sup2 + α6.Sto2 = Mtr(2)

...
α1.Res59 + α2.Emp59 + α3.Stu59 + α4.Meg59 + α5.Sup59 + α6.Sto59 = Mtr(59)

As the number of ground indicators (Res, Emp, etc.) is equal to six, we are faced to an
overdetermined linear equations system (6 unknown and 59 equations). We propose to solve
these overdetermined linear systems based on a least squares approach for every timestamp t
and purpose p. Since the number of equations is not large, we use a SVD decomposition as
a first step for this study despite the computational cost. A version with other supervised
learning models will be checked further. In the end we obtain 288 systems, where we compute
n coefficients (α1 to α6) for any (t, p) pair.

3.2.4 Application
Now, to predict the displacements purposes, we apply to any aggregated OD flow M∗val(d, t),
the dedicated αi(t, p) coefficients. For example, to predict the Home sub-flow of M∗val(d, t),
we apply the coefficients inferred from the S system trained with Home values at time t. For
the Leisure sub-flow we apply the coefficients obtained with the Leisure values system S at
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Figure 2 Error rate of the PFD algorithm.

time t, etc. It is important to note that these coefficients are not directly applied to the
flow itself, but to the ground indicators groundi(d) at destination zone d. We thus obtain
a theoretical displacement value Mtheo(d, t, p) for each purpose. We can then compare this
theoretical value to the real displacement value Mval(d, t, p) and estimate the error of our
model. We call that model the Purpose Flow Decomposition algorithm (PFD).

Then, we write the computation of the theoretical value for purpose Home and timestamp
13:30 with:

Mtheo(d) = α1.Resd + α2.Empd + α3.Stud + α4.Megd + α5.Supd + α6.Stod . (3)

For readability reasons the value Mtheo(d) corresponds in our example to the value
Mtheo(d,13:30,Home), and αi to αi(13:30,Home) coefficients.

3.2.5 Results
We operate Equation (3) on all aggregated flows of M∗val and for all purposes Home, Work,
School, Leisure, Shopping and Lunch. As a reminder, the flows of Mval have not been used to
determine the α coefficients. We then estimate for every timestamp the number of wrongly
predicted flows. For that, we compute the sum of the absolute values between theoretical
Mtheo(d, t, p) and real value Mval(d, t, p), divided by the total flow size at this timestamp.
This gives us an error rate between [0, 1]. In Figure 2 we represent in dotted line the evolution
of the error rate for the PFD algorithm. The solid line represents the total flow size along
the day. We observe that the error rate is relatively stable over the day, except during
nighttime (from 03:00 to 04:00) where the error rate jumps at 95%. During this period the
number of traveling individuals is really small (around 15,000), thus the sampling is not
large and individuals behavior is thus less predictable. The predicting rate of the algorithm
is robust even when the number of individuals traveling increases greatly. It even reaches its
optimum from 16:00 to 20:00 with almost 85% of accurate prediction whereas the number
of individuals’ displacements is the highest. The total daily error rate for all zones and all
timestamps taken together is around 21.21%. Finally, we can state that the more individuals
are traveling, the best we can predict mobility purposes.
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3.3 γ-PFD, a first optimized approach
The reference PFD algorithm aims at setting down the relationship between distinct ground
characteristics and different purposes of mobility. It means that for any destination d whom
the land use is known, the PFD model can predict purposes of mobility with almost 78% of
accuracy. We propose now to introduce in the main Equation (2) a new indicator. This new
indicator considers the flow size as a determining variable. Actually, Equation (2) predicts
a flow size, but do not take into account the scaling effect and flow amplitude at time t.
And we see in Figure 2 that flow sizes adopt different behaviors at different times of the
day. We propose then to add the total flow size M∗tr(d, t) as a seventh indicator in our main
equation. This variable is associated to a new coefficient that we call γ. Now, by adding this
new variable, one equation of the overdetermined system S becomes:

∀d, ∀p, ∀t,
n∑

i=1
(αi(t, p) . n_groundi(d)) + (γ(t, p) . n_M∗tr(d, t)) = Mtr(d, t, p) (4)

where
γ(t, p) is a coefficient to find for every timestamp t and purpose p,
n_M∗tr(d, t) is the normalized value of M∗tr(d, t) relatively to

max(M∗tr(d, t)) for all d in Ztr .

and the other components are identical to the ones in equation (2).

3.3.1 Results
As for the reference PFD algorithm, we solve the overdetermined linear equations system
and we compute the αi(t, p) and γ(t, p) coefficients with a least squares approach. This
means that now, the equation from our example in (3) with the couple (t, p) =(13:30,Home)
becomes:

Mtheo(d) = α1.Resd+α2.Empd+α3.Stud+α4.Megd+α5.Supd+α6.Stod+γ.n_M∗tr(d). (5)

We operate Equation (5) on all aggregated flows of the matrix M∗val and for all purposes
Home, Work, School, Leisure, Shopping and Lunch. In Figure 3 we represent in dashed
line the evolution of the error rate for the γ-PFD algorithm. The dotted line represents
the evolution of the error rate for the reference algorithm. The total error rate over time
and zones for this γ-PFD algorithm is around 17.86%. As a reminder, the total daily error
rate for PFD algorithm was 21.21%. This means that the introduction of a flow amplitude
coefficient increases the mean prediction accuracy of our algorithm by 3.3 points. We observe
that the error rate is relatively stable over the day, except again during nighttime (from 03:00
to 04:00) where the error rate jumps at 70%. However, by introducing the flow amplitude
coefficient we reduce the error during that period by almost 25 points. The γ-PFD algorithm
reaches a maximum prediction rate during the period [18:00, 20:00] with nearly 90% of good
prediction.

3.4 γ-PFD*, a second optimized approach
The underlying effect of solving an overdetermined system of linear equations is that the
generated coefficients are adapted to give the best average solution from a training set.
This means that the solver tries to give the best solutions taking into account the all
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Figure 3 Error rate of the γ-PFD algorithm.

Table 2 Summary of the overdetermined systems S1 and S2.

System S1 S2

Ground indicators Residents, Employees, Students Megastores, Supermarkets, Stores
Purposes Home, Work, School Shopping, Leisure, Lunch

different input variables. Here these variables (ground characteristics and flow size) cannot
be compared directly, that is why we use normalized values. However, the solver here tries to
link numbers of individuals (Residents, Employees, Students) and infrastructures (Megastores,
Supermarkets, Stores) with purposes of mobility that allegedly are more attracted by specific
land characteristics. As a matter of fact, individuals traveling with purpose Work will
statistically be more attracted to a zone with more Employees. The same applies to the
rest of the purposes. We propose here to split the system S into two twin systems S1 and
S2, to differ primary mobility purposes and secondary mobility purposes. The primary set
will address the purposes Home, Work, School, while the secondary set will be in charge of
purposes Shopping, Leisure, Lunch. By doing so, the α coefficients will be more adapted to
the mobility purposes inside their respective subset of learning data. We propose a summary
of these two systems in table 2.

We proceed to the S1, S2 separation, and Equation (4) becomes:

∀d,∀p,∀t,
q∑

i=1
(αi(t, p) . n_groundi(d)) + (γ(t, p) . n_M∗tr(d, t)) = Mtr(d, t, p) (6)

where

q is the number of ground indicators (3 for S1 and 3 for S2),

with p ∈ {Home,Work, School} for S1,

and p ∈ {Shopping, Leisure, Lunch} for S2.

TIME 2017



20:10 Dynamic Purpose Decomposition of Mobility Flows Based on Geographical Data

Figure 4 Error rate of the γ-PFD* algorithm.

3.4.1 Results
Now that we split our global system in two sub-systems, the equation from our example
in (5) with the couple (t, p) = (13:30,Home) is given by the equation of the system S1 for
primary mobility purposes:

Mtheo(d) = α1.Resd + α2.Empd + α3.Stud + γ.n_M∗tr(d) . (7)

And by the system S2 for secondary mobility purposes:

Mtheo(d) = α1.Megd + α2.Supd + α3.Stod + γ.n_M∗tr(d) . (8)

As for the reference algorithm PFD, we compute the αi(d, t) and γ(t, p) coefficients by
solving these overdetermined systems, and we apply these coefficients on all aggregated flows
of the matrix M∗val and for all purposes. In other word, we apply either Equation (7) or (8)
to the destination zone of M∗val flows. In Figure 4 we represent in solid line the evolution of
the error rate for the γ-PFD* algorithm and in dotted line the evolution of the error rate for
the PFD algorithm. The total daily error rate for the γ-PFD* algorithm is around 16.84%.
With this system separation we increase the prediction accuracy of our algorithm by 4.3
points.

4 Analysis

4.1 Application on the training set
The γ-PFD* algorithm gives a correct average prediction rate of 83% for the validation set
M∗val. We now wonder how the algorithms behave when used on their own training set M∗tr.
Figure 5 shows the error rates of the three algorithms when used with M∗tr. We observe
that all three algorithms adopt the same behavior, with an average good prediction rate of
86%. This means that the linear combinations of the ground indicators generated by the
supervised learning are well adapted to the training set. However, when confronted with
another set of data, introducing the flow amplitude indicator is beneficial.
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Figure 5 Error rates of the 3 algorithms when used on M∗
tr.

4.2 Geographical analysis
As explained before, our model gives predictions based on ground characteristics. So when
the model wrongly assigns purposes to individuals flows, it means that the model has been
tricked by the ground characteristics of the destination zone. We propose here to study the
prevalence of some zones to give wrong results. For that we study the correlation between
the daily error rate of each zone and the ground characteristics for all zones in Zval. Figure 6
shows these correlations. On the abscissa we represent the ground indicator values, and on
the ordinate we display the daily error rates. Each point corresponds to one of the 59 zones
of Zval. We observe that for all land uses, the correlation curve adopts a 1

log(x) like pattern.
Next to each graph we display the Spearman’s rank correlation coefficient which is adapted
to describe the correlation between two variables without linear relation [16]. All curves
have a good Spearman correlation (value close to -1) and show the same trend. The more a
destination zone has important land indicator value, the more the prediction rate is good. In
other words, the more residents, students or supermarkets in a zone, the more the γ-PFD*
model accurately predicts the purposes of mobility. We note that similar results are obtained
from the training set Ztr.

To validate this point, we apply the γ-PFD* algorithm on the zones having more than
40,000 inhabitants. In the Residents figure a vertical line shows this 40,000 limit. As a
reminder, the median number of inhabitants per zone is 58,000 in our data set. With
this parameter the daily error rate with the γ-PFD* algorithm is 16.01%. The gain is
not important (0.8%), but it opens an interesting way for future improvements. This zone
selection has been done on the other ground indicators with similar results.

5 Conclusions

Purpose decomposition of aggregated mobility flows is a delicate problem that has recently
been treated from mobile network databases analysis. In this paper, we propose three
different algorithms predicting purpose distributions of aggregated mobility flows, with
different prediction results. The reference algorithm that we propose uses supervised learning
to infer purposes of mobility from raw ground indicators. We then propose two improvements
to this reference algorithm using freely available databases. We notably add a variable
linked to the mobility flow size, and we propose to split the system into two sets managing
distinct purposes. Home, Work and School purposes are inferred from Residents, Employees
and Students indicators, while Leisure, Shopping and Lunch purposes are inferred from
Megastores, Supermarkets and Stores information.
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Figure 6 Correlations between ground characteristics and daily error rate.

The last improvement of the initial algorithm accurately predicts purposes of mobility
in 83% of cases. And even when the number of individuals in displacement increases
significantly, the prediction rate stays stable. It even reaches an optimum during the period
[16:00, 18:00] with nearly 90% of success. These are promising results, as they allow a purpose
decomposition of aggregated mobility flows without anything more than freely accessible
sociological and geographical databases.

Furthermore, we see an interesting geographical correlation between the daily error
estimation rate of the studied zones and their land use. The more infrastructures are present
in a zone, the better are the prediction results. The same applies to the number of individuals
moving. The more individuals are traveling, the better are the prediction results. This means
that we can estimate the confidence rate of our results according to the input variables. This
opens a new way for the analysis of aggregated mobility flows, especially from mobile network
data.
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Abstract
Access control policies are essential to determine who is allowed to access data in a system without
compromising the data’s security. However, applications inside a distributed environment may
require those policies to be dependent on the actual content of the data, the flow of information,
while also on other attributes of the environment such as the time.

In this paper, we use systems of Timed Automata to model distributed systems and we
present a logic in which one can express time-dependent policies for access control. We show
how a fragment of our logic can be reduced to a logic that current model checkers for Timed
Automata such as UPPAAL can handle and we present a translator that performs this reduction.
We then use our translator and UPPAAL to enforce time-dependent policy-based access control
on an example application from the aerospace industry.
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1 Introduction

Motivation. Cyberphysical systems play an increasingly important role in the technology
development in many industries such as the aerospace, the automotive and the medical.
Embedded systems are key components to cyberphysical systems and while verifying their
safety goals has received a significant focus until now, security has been left for later. As more
and more cyberphysical systems are integrated with real-time hardware, complex software,
and internet connected devices through wireless connections, ensuring security goals of those
systems is becoming essential. Particularly, assuring the confidentiality or the integrity of the
information manipulated by the different components of a cyberphysical system is a crucial
security goal.

Information security is usually achieved by access control policies, which formally specify
desired flows of information inside a system. Access requests to the resources/data (objects)
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Figure 1 The processes and channels of the gateway example.

of the system by users (subjects) are then either denied or allowed by a monitor that enforces
the access control policies. The literature offers a vast number of access control models,
where among all, the most used in practice are the discretionary access control (DAC) [29],
mandatory access control (MAC) [28] and role-based access control (RBAC) [12], while lately
a great attention has been given to the attribute-based access control (ABAC) model [17],
wherein access control may depend on the attributes of the accessed data or the attributes
of the environment such as the time.

Although access control policies is a well-established approach for information security
at the subject-object level, distributed systems require precise policies that express also the
desired information flows that occur at the application level, such as explicit flows. As an
example, consider the explicit flow from the variable y to the variable x that arises from
the assignment x := y and the access control policy "x can only be modified by p", where
p is a trusted process in the system. Although the assignment x := y executed by p does
not violate the access control policy of the system, the fact that p resides in a distributed
environment together with potential bugs inside its source code gives no guarantees that the
value of y was written by p. For instance, the value of y could have been influenced by an
untrusted process p′ after a communication between p and p′ and consequently p′ would have
also influenced the value of x. To see more challenges that arise inside distributed systems
consider the work of [25] where it illustrates that security policies may need to depend on the
actual content of the data, while ABAC [17] models also address the need for time-dependent
security policies.

Contribution. It is natural then to extend the enforcement of safety properties of embedded
systems with enforcement of access control policies. The idea is that having an abstract model
of an embedded system, one could eliminate possible security violations in the trusted part
of the system before the actual run of the system happens. We use Timed Automata [3, 1] to
model distributed systems and we specify an information flow instrumented semantics that
allows us to record information about the accesses being performed; we call this information
a behaviour of the system. To deal with formal definitions of security policies we present
a behaviour logic (based on the behaviours of the system) that supports the specification
of content, time and information dependent access control policies. Verification of Timed
Automata has been successfully achieved by model checkers based on the timed computation
tree logic (TCTL) [2], and consequently, we propose a reduction of a substantial fragment
of our logic to a logic that can be handled by the well-established model checker UPPAAL
[30]. Finally, we present a translator that performs this reduction and we illustrate our
development using an example from the aerospace industry. Figure 1 sketches the example: A
gateway with two processes, each of them produces data for different targets, uses a multiplexer
and a demultiplexer to successfully deliver the data to the intended target. The multiplexer
merges the data from the producers and sends it to the demultiplexer who is responsible for
delivering it to the right target. The target of the data depends both on the time of the system
while also on the content of it and thus it is challenging to express the appropriate security
policy. The example is based on the secure gateway presented in [22], where a seperation
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kernel is used to allow the accesses to the resources of the system by the system’s processes
to be temporal (based on time) and based on an information flow policy. The seperation of
the resources is used to ensure that untrusted processes such as passenger’s devices can have
access to onboard communication systems, without alerting the safe operation of the aircraft.

Related work. There are many other papers dealing with access control [27, 19, 15, 14, 34,
32], however without considering time-dependent security policies; a survey of access control
models is available at [11].

A rich logic that allows reasoning about time-dependent policies, together with a proof
checker for the logic is considered in [10], however there are no information flow considerations
at the application level such as explicit flows. SecPAL [5] is another logic that supports
time-dependent policies, as well as the encoding of many well-known policy idioms such as
DAC, MAC, RBAC, and ABAC, however the enforcement of time constraints is external
to the language. A somewhat different approach has been taken in [4], where a monitor is
used to enforce time-dependent access control, by checking a system’s logs that records the
different actions of the users in a database system. Our contribution focuses on the challenges
of time-dependent access control for embedded systems modeled as Timed Automata.

The work of [20] presents a formal specification and verification of the temporal role-
based access control (TRBAC) model [6], a flexible model in which the roles of the users
of the system are enabled or disabled depending on the time of the system. They then
use UPPAAL [30] to model a TRBAC system and verify the desired security policies. The
same authors of this paper, present in [21], an extension of this model which is based on
the generalized-TRBAC (GTRBAC) model [18]. The work of [13] considers spatial-TRBAC
(STRBAC) models [7] in which the rights of the user may depend on the time as well as
on the location of the user; again the different roles of the system are modeled as timed
automata and verified in UPPAAL. Carlo Combi et.al in [9] merges temporal role-based
access control with workflows, while in [8] he defines access-controlled temporal networks, an
extension of the conditional simple temporal networks with uncertainty which allows you to
model users and temporal authorization constraints. Although all of those models deal with
an important number of access control policies at the subject-object level considering time
dependencies, they are not able to express time-dependent policies with information flow
considerations that occur at the application level of the system (e.g does a process running
on behalf of a user respects the access control policy?).

The work of [26] formalizes the timed decentralised label model (TDLM) an extension of
the traditional and well-established decentralised label model (DLM) [23], which deals with
both information flow and time-dependent security policies; however, their work does not
consider an enforcement mechanism for the policies. Our key contribution is to develop a
logic that allows the specification of time, data’s content and information flow dependent
policies for access control, and to make use of current model checkers such as UPPALL [30]
for the enforcement of the policies.

Organisation. The remainder of this paper is organized as follows. In Section 2, we give the
definition of a Timed System (a system of Timed Automata) and in Section 3 we define an
information flow instrumented operational semantics for Timed Systems. Section 4 presents
the syntax and the semantics of our behaviour logic called BTCTL (behaviour TCTL) and
we illustrate how we can successfully express security policies for our gateway example. In
Section 5 we present the reduction of the BTCTL logic to a variation of the TCTL [2],
called TCTL+ and in Section 6 we present our translator. Finally, in Section 7, we give our
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conclusions and we outline our future work, while in appendix A we give the proof of our
main theorem.

2 Systems of Timed Automata

2.1 Timed Systems
A Timed System TS

p1 : TA1 || ... || pn : TAn (n ≥ 1)

which sometimes we will call system, is the parallel composition of n timed automata called
processes, written as TS=(TAi)i≤n.

The processes are able to exchange information via synchronous message passing, using
polyadic channels from the finite set Chan. Each of the processes in the timed system,
is labelled with a unique identifier p ∈ P={p1, ..., pn} and we write Varp and Clockp for
the data variables and clocks appearing in the process p. We also require that the sets of
data variables and clocks for the processes are mutually disjoint (∀i 6= j : Varpi ∩Varpj =
∅ ∧Clockpi

∩Clockpj
= ∅) and we write Var=

⋃
iVarpi

and Clock=
⋃
iClockpi

for the
overall data variables and clocks apperaring in the timed system.

2.2 Timed Automata
Formally, we model a Timed Automaton [3, 1] TA as a 4-tuple (q◦,E, I,Q) where q◦ is the
initial location of the automaton, E is a finite set of edges, I is mapping from the automaton’s
locations to conditions that impose invariants, and Q is the set of the automaton’s locations.

The edges are labelled with actions g → act: ~r and take the form (qs, g → act: ~r, qt)
where the syntax of the act is given by

act ::= ~x :=~e | ch!~e | ch?~x

and qs ∈ Q is the source location and qt ∈ Q is the target location.
Every action g → act: ~r consists of a guard g which has to be true in order for the action

to be performed and it ends with a reset on the clocks ~r. The assignment action g → ~x :=~e: ~r
performs multiple assignments ~x :=~e, while the action g → ch!~e: ~r is used to communicate
the data of the expressions in ~e using the channel ch and the action g → ch?~x: ~r is used to
receive data and store it in the variables of the vector ~x. We shall assume that the sequences
~x and ~e of data variables and expressions, respectively, have the same length and that ~x does
not contain any repetitions. Finally, we write ~x(i) (and also ~e(i)) for the i-th element of the
vector ~x (and ~e respectively). To cater for special cases of the assignment action, we shall
allow to write g → skip: ~r when ~x (and hence ~e) is empty; also for any kind of action we
shall allow to omit the guard g when it equals to tt and to omit the clock resets when ~r is
empty. If it is the case that all of the above take place together we omit the whole action.

I Example 1. The timed system of our gateway example is given in Figure 2. The timed
system consists of six processes P = {p1, p2,m, d, c1, c2}. Two producers p1 and p2 send their
data via the channels in1 and in2 respectively. The multiplexer m collects the data from
the producers using the channel ch and then forwards it to the demultiplexer d, who then
distributes it to the consumers c1 and c2 via the channels out1 and out2 respectively. The
access policy that we want to impose here is that the consumers c1 and c2 read data only
from the producers p1 and p2, respectively.
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in1!x1

in2!x2
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0 ≤ t ∧ t ≤ 7→ in1?x: v

t=10 → skip: t

ch!(1, x)

5 ≤ t ∧ t ≤ 10→ in2?x: v

ch!(2, x)

(b) The multiplexer m

8 9
ch?(y, z): r

y = 1→ out1!z

y = 2→ out2!z

(c) The demultiplexer d
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(d) The two consumers c1 (top) and c2 (bottom)

Figure 2 The timed system for the gateway example.

We use clocks to model the temporal accesses to the resources of the system as required
in [22]. In particular we use two clocks v (in the multiplexer) and r (in the demultiplexer) to
model instantaneous transitions (time does not pass) and we use a clock t (in the multiplexer)
to split the overall execution time of the timed system into periods of 10-time units. In each
period the multiplexer m reads data from the channel in1 only whenever t ∈ [0, 7], while it
reads data from the channel in2 only whenever t ∈ [5, 10]. Whenever t ∈ [5, 7] the multiplexer
chooses non-deterministically to read either from in1 or in2. The multiplexer then transports
the data together with a constant, using the dyadic channel ch to the demultiplexer d; the
constant is used as a mark to indicate the source of the data. Finally, the demultiplexer
delivers the data to the right consumer according to the constant.

The expressions e, guards g and conditions c that label the locations are defined as follows
using boolean tests b:

e ::= e1 opa e2 | x | n

b ::= tt | ff | e1 opr e2 | ¬b | b1 ∧ b2

g ::= b | r opc n | (r1 − r2) opc n | g1 ∧ g2

c ::= b | r opd n | (r1 − r2) opd n | c1 ∧ c2

The arithmetic operators opa and the relational operators opr are as usual. For comparisons
of clocks we use the operators opc ∈ {<,≤,=,≥, >} in guards and the less permissive set of
operators opd ∈ {<,≤,=} in conditions.

3 Information Flow Instrumented Semantics

3.1 Behaviours
The transitions of the timed systems are labeled with behaviours. A behaviour records
information relevant to the action that has occurred and also information about the processes
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that were involved in the action. Formally a behavior takes the form

b ∈ Blocal ∪ Bcom

where

Blocal = P×
−−→
Var×

−−→
Exp

are the behaviours that occur due to assignments and

Bcom = P×Chan×
−−→
Var×

−−→
Exp×P

are the behaviours that occur due to the communication between two processes. We write−−→
Var and

−−→
Exp for the sets of vectors with elements over the data variables and arithmetic

expressions respectively.
For instance, the local behaviour p : (~x,~e) records that the process p has performed an

assignment in which the vector ~e is used to modify the variables of the vector ~x, while the
behaviour p : ch(~x,~e) : p′ records that a communication between the processes p (the sender)
and p′ (the receiver) has happened, using the channel ch, and the vector ~e is the vector of
expressions whose values have been communicated and have been bound to the variables of
the vector ~x.

In all of the behaviours, the vectors that are being used must have the same length while
for the delay action we will write the empty behaviour ε.

3.2 Operational Semantics
To specify the semantics of timed systems, let σ be a state mapping data variables to values
(which we take to be integers), let δ be a clock assignment mapping clocks to non-negative
reals and let κ be a mapping from data variables to sets of processes which we will call
writers. The mapping κ is used to monitor the explicit flows that occur from the assignments
and the communication between two processes in the system; we explain the use of κ in more
detail in a while. We then have total semantic functions [[.]] for evaluating the expressions,
boolean tests, guards, and conditions; we evaluate expressions either with a state σ or the
mapping κ, where for the first case the evaluation returns a value and in the second it returns
the writers of the expression. The evaluation of boolean expressions only depends on the
states, whereas that of guards and conditions also depend on the clock assignments.

The configurations of a timed system TS = (TAi)i≤n are of the form 〈~q, σ, δ, κ〉, where ~q
is a vector of nodes and we write ~q(i) for the i-th element of the vector ~q, ~q [q′/q] to substitute
the node q with the node q′ in ~q, we have that ∀i : ~q(i) ∈ Qi and finally we shall assume that
the sets of nodes of the processes are mutually disjoint (∀i 6= j : Qi ∩ Qj = ∅).

The transitions of a timed system take the form

〈~qs, σ, δ, κ〉
b=⇒ 〈~qt, σ′, δ′, κ′〉

and the initial configurations are of the form 〈~q◦, σ, λr.0, κ0〉 where ~q◦ is the vector whose
elements are the initial locations of the timed automata of the system and κ0 maps each
variable to the process that it belongs to (κ0(x) = {p} iff x ∈ Varp). The transition relation
is given in Table 1.

The rule for the assignment, ensures that the guard is satisfied in the starting configuration
and updates the mappings σ, δ, κ and the location of the process pj and finally ensures that
the invariant is satisfied in the resulting configuration. The behaviour pj : (~x,~e) records
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Table 1 Semantics for Timed Systems.

〈~qs, σ, δ, κ〉
pj :(~x,~e)

=⇒ 〈~qt, σ′, δ′, κ′〉 if



(q, g → ~x :=~e: ~r, q′) is in Ej
[[g]](σ, δ) = tt
σ′ = σ[~x 7→ [[~e]]σ]
δ′ = δ[~r 7→ ~0]
κ′ = κ[~x 7→ [[~e]]κ]
~qt = ~qs[q′/q]∧n

i=1[[Ii(~qt(i))]](σ′, δ′) = tt

〈~qs, σ, δ, κ〉
ph:ch(~x,~e):pl=⇒ 〈~qt, σ′, δ′, κ′〉 if



h 6= l

(q1, g1 → ch!~e: ~r1, q
′
1) is in Eh

(q2, g2 → ch?~x: ~r2, q
′
2) is in El

σ′ = σ[~x 7→ [[~e]]σ]
δ′ = (δ[~r1 7→ ~0])[~r2 7→ ~0]
κ′ = κ[~x 7→ [[~e]]κ]
~qt = ~qs[q′

1/q1][q′
2/q2]∧n

i=1[[Ii(~qt(i))]](σ′, δ′) = tt

〈~q, σ, δ, κ〉 ε=⇒ 〈~q, σ, δ′, κ〉 if
{
∃ d > 0 : δ′ = λr. δ(r) + d,∧n

i=1[[Ii(~q(i))]](σ, δ′) = tt

that the process pj is performing an assignment to the vector ~x using the vector ~e, and κ′
records the information flow that occurs due to this behaviour, by updating the writers of
each variable ~x(i) with the writers of the expression ~e(i), where for a single expression e′,
[[e′]]κ =

⋃
y∈fv(e′) κ(y) and fv(e′) is the set of free variables occuring in e′.

To understand the rule for the communication one could see it as an assignment of the
form ~x :=~e where ~e are the expressions which are used at the channel output action and ~x
the variables that are used in the channel input action.

Finally, the delay rule only modifies the clock assignment with a delay d ensuring that
the invariant is satisfied in the resulting configuration. The mapping κ remains the same
since the delay action produces the empty behaviour ε.

I Example 2. To see how the semantics for the κ mapping works, return to Example 1 and
consider the transition

〈~q, σ, δ, κ〉 p1:in1(x,x1):m=⇒ 〈~q[6/5], σ[x 7→ σ(x1)], δ[v 7→ 0], κ[x 7→ {p1}]〉

which corresponds to the communication between the the producer p1 and the multiplexer
m. We have that ~q = (1, 2, 5, 8, 3, 4), and let

κ = [x1 7→ {p1} , x2 7→ {p2} , x 7→ {m} , y 7→ {m} , z 7→ {d} , z1 7→ {c1} , z2 7→ {c2}]

and the resulting mapping κ[x 7→ {p1}] records that p1 has written its value into the variable
x, since there is an explicit flow from the variable x1 to the variable x and x1 has previously
been written by p1.

4 Time Dependent Policies in BTCTL

In this section, we present our behaviour based logic BTCTL which serves to specify time-
dependent security policies for access control, based on the behaviours of the system. The
access control policies can then be enforced statically before the execution of the system.

TIME 2017



21:8 Time Dependent Policy-Based Access Control

4.1 The Logic
The syntax of the BTCTL formulas φ is given by

φ ::= g | set1 rel set2 | ∀�b(φ1, φ2) | φ1 ∧ φ2 | ¬φ

where

set ::= e |W .

We have basic formulas which can be either a guard g, or relations between two sets of writers,
set1 rel set2, where rel = {⊆,⊇} . The underlined set expression e denotes the set of writers
of the expression e and W ∈ P(P) is a set of writers. We use the box operator ∀�b(φ1, φ2)
to speak about pre- and post-conditions whenever the non-empty behaviour b 6= ε happens.
Informally speaking, a configuration γ will satisfy the ∀�b(φ1, φ2) formula whenever for all
of the system runs starting at γ, if a transition labelled with the behaviour b occurs, then φ1
should hold at the configuration before the transition and φ2 at the configuration after it.
As we will see shortly, the box operator will be the key formula to express access control
policies. The ¬φ and φ1 ∧ φ2 cases are the usual ones. Finally, we sometimes write φ1 ⇒ φ2
for ¬(φ1 ∧ ¬φ2).

I Example 3. Going back to Example 1, each of the variables has a time-dependent policy
which specifies the maximum set of permitted writers of the variable. We are interested in
the policies of the variables of the multiplexer, the demultiplexer and the two consumers:

Px = (0 ≤ t ∧ t < 5⇒ x ⊆ {p1})∧
(5 ≤ t ∧ t ≤ 7⇒ x ⊆ {p1, p2})∧
(7 < t ∧ t ≤ 10⇒ x ⊆ {p2}) ,

Py = y ⊆ {m} ,
Pz = (0 ≤ t ∧ t ≤ 7 ∧ y = 1⇒ z ⊆ {p1})∧

(5 ≤ t ∧ t ≤ 10 ∧ y = 2⇒ z ⊆ {p2}) ,
Pz1 = z1 ⊆ {p1} ,
Pz2 = z2 ⊆ {p2} .

The first line of the policy for the variable x, expresses that whenever t ∈ [0, 5), only the
process p1 is allowed to write data to x, while both p1 and p2 may write to x if t ∈ [5, 7]
and similarly to the first line, if t ∈ (7, 10] then only p2 can write to x. On the other hand,
looking at the policy for the variable y, a write action to y is allowed only by the multiplexer.
The rest of the policies can be explained accordingly.

We then perform the enforcement of the access control policies by checking the following
formulas:

Φx = ∀�p1:in1(x,x1):m(tt, Px) ∧ ∀�p2:in2(x,x2):m(tt, Px) ,
Φy,z = ∀�m:ch((y,z),(1,x)):d(tt, Py ∧ Pz) ∧ ∀�m:ch((y,z),(2,x)):d(tt, Py ∧ Pz) ,
Φz1 = ∀�d:out1(z1,z):c1(tt, Pz1) ,
Φz2 = ∀�d:out2(z2,z):c2(tt, Pz2) .

Each of the formulas express that whenever someone is writing to the variable (or variables)
appearing as a subscript, then the policy of the variable (or variables) is imposed as a post
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condition. The variable x is accessed (someone is writing data to x) whenever p1 and p2
communicates with the multiplexer and thus we have to impose the policy of the variable
x for both of those actions, while the variables y and z are being accessed whenever the
multiplexer communicates with the demultiplexer and that happens with two communication
actions. Similarly, we define the formula for the variables z1 and z2.

4.2 Semantics of BTCTL
The formal rules that define whenever a configuration γ satisfies a BTCTL formula φ are
given below:

γ |= g iff γ = 〈~q, σ, δ, κ〉 ⇒ [[g]](σ, δ)
γ |= set1 rel set2 iff γ = 〈~q, σ, δ, κ〉 ⇒ [[set1]]κ rel [[set2]]κ

γ |= ∀�b(φ1, φ2) iff ∀γ0
b1⇒ γ1

b2⇒ .. ∈ Traceγ :
∀i ≥ 1 : bi = b⇒ γi−1 |= φ1 and γi |= φ2

γ |= φ1 ∧ φ2 iff γ |= φ1 and γ |= φ2

γ |= ¬φ iff γ 6|= φ

A guard g is then satisfied by a configuration γ whenever g holds in γ. For the case of
the set relation rel, γ satisfies it whenever set1 rel set2 evaluates to true and we do that
check by lifting the definition of [[.]]κ to set expressions, by [[e]]κ = [[e]]κ and [[W ]]κ = W . A
configuration γ satisfies the box formula ∀�b(φ1, φ2) whenever for all the execution paths
that start from γ, if a behaviour b′ occurs and b′ is syntactically equal to b, then the
pre-condition φ1 has to hold at the configuration before the behaviour and the post-condition
φ2 at the configuration after it. The rest of the cases are the usual ones.
I Example 4. Consider now the prefix of an execution trace of the timed system from
Example 1

pr = γ0
p1:in1(x,x1):m=⇒ γ1

m:ch((y,z),(1,x)):d=⇒ γ2
d:out1(z1,z):c1=⇒ γ3

where for the initial configuration γ0 = 〈~q0, σ0, δ0, κ0〉, we have that ~q0 = (1, 2, 5, 8, 3, 4), σ0
is arbitrary, δ0 = λc.0 and

κ0 = [x1 7→ {p1} , x2 7→ {p2} , x 7→{m }, y 7→ {d} , z 7→ {d} , z1 7→{ c1 }, z2 7→ {c2}]

and for the rest of the configurations

γ1 = 〈~q1, σ1, δ1, κ1〉, ~q1 = ~q0[6/5], σ1 = σ0[x 7→ σ0(x1)], δ1 = δ0[v 7→ 0], κ1 = κ0[x 7→ {p1}]
γ2 = 〈~q2, σ2, δ2, κ2〉, ~q2 = ~q1[5/6][9/8], σ2 = σ1[y 7→ 1, z 7→ σ1(x)], δ2 = δ1[r 7→ 0],

κ2 = κ1[y 7→ ∅, z 7→ {p1}]
γ3 = 〈~q3, σ3, δ3, κ3〉, ~q3 = ~q1[8/9], σ3 = σ2[z1 7→ σ2(z)], δ3 = δ2, κ3 = κ2[z1 7→ {p1}].

Now consider the formulas Φx, Φy,z, Φz1 from Example 3 and to illustrate how the semantics
work for the box operator, we will do the appropriate checks for those formulas on pr.

The formula Φx is the conjuction of two box operators, where for the first one because of
the behaviour p1 : in1(x, x1) : m of the transition γ0

p1:in1(x,x1):m=⇒ γ1, we have to check that
γ1 |= Px where

Px = (0 ≤ t ∧ t < 5⇒ x ⊆ {p1})∧
(5 ≤ t ∧ t ≤ 7⇒ x ⊆ {p1, p2})∧
(7 < t ∧ t ≤ 10⇒ x ⊆ {p2}) .
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This check evaluates to true, since γ satisfies only the guard of the first line of the policy
and κ1(x) = {p1}. For the transition γ1

m:ch((y,z),(1,x)):d=⇒ γ2, because of the formula Φy,z we
have to check that γ2 |= Py ∧ Pz where

Py = y ⊆ {m} ,
Pz = (0 ≤ t ∧ t ≤ 7 ∧ y = 1⇒ z ⊆ {p1})∧

(5 ≤ t ∧ t ≤ 10 ∧ y = 2⇒ z ⊆ {p2}) .

This check evaluates to true, since κ2(y) = ∅ and γ2 satisfies only the condition at the first
line of the policy Pz and also κ2(z) = {p1}. Finally for the last transition γ2

d:out1(z1,z):c1=⇒ γ3,
because of the Φz1 formula, we have to check that γ3 |= Pz, and this check evaluates to true,
since κ3(z1) = {p1} and Pz = z1 ⊆ {p1}.

5 Reduction of BTCTL to TCTL+

In this section, we perform a transformation of the original time system, and of the BTCTL
formulas. The transformation is based on the work done in [16], where the action-based logic
ATCTL (action-TCTL) is being reduced to TCTL [2]. A transformed formula produces a
formula in TCTL+, a logic based on TCTL and in the next section we show how a fragment
of TCTL+ can be handled by the model checker UPPAAL [30].

5.1 Behaviour Automata
A timed system TS = (TAi)i≤n yields a behaviour automaton BA = (v◦,E, I,Q, L), which is
a kind of timed automaton in that it is the product automaton of the system, extended to
contain auxiliary vertices that represent the actions of the system and a labelling function
L that assigns to each vertex a property. A property is either a behaviour or a location
vector of the system TS; auxiliary vertices of the system will be labeled with the behaviour
that corresponds to the particular action of the vertex, while genuine vertices that represent
locations of the system TS are labeled with a location vector. The initial vertex v◦ will be
labeled with the initial location vector of the system ~q◦. The behaviour automaton BA has
the same set of variables as the timed system TS, while for the clock variables it has an extra
clock t. Similarly to the timed automata, E is a finite set of edges, the mapping I imposes an
invariant on each vertex and Q is the finite set of vertices.

The algorithm for constructing the edges E, the labelling functions I and L and the set of
vertices Q = Qgen ∪Qaux (Qgen ∩Qaux = ∅) where Qgen and Qaux contain the genuine and
auxiliary vertices respectively, is given in Figure 3.

In the first step, we create the genuine vertices and we label them with the invariant of
the location vector that they represent; each of those vertices is inserted in Qgen, which will
be used in the next steps to create the auxiliary vertices.

In step 2 we create the auxiliary vertices and the edges that correspond to the assignment
actions of the system. For each process pi, we start looking at all of its assigment edges
(qi, g → ~x :=~e: ~r, q′i) ∈ Ei. For each one of those edges and for all the vertices vs ∈ Qgen and
vt ∈ Qgen, where the label of vs, L(vs) corresponds to a vector location where this assignment
could have been performed and would have moved the system to the location L(vt), we
create the edges (vs, g → skip: t, v) and (v, ~x :=~e: ~r, vt), where v is a fresh auxiliary vertex;
whereas in the construction of the product automaton one would have constructed only the
edge (vs, g → ~x :=~e: r, vt). The auxiliary vertex v is labelled with the assignment behaviour
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(1) let Qgen = ∅; let Qaux = ∅;
for all ~q: create fresh v; let L(v) = ~q; let I(v) =

∧n

i=1 Ii(~q(i)); insert v in Qgen

(2) for all (qi, g → ~x :=~e: ~r, q′
i) ∈ Ei:

for all vs ∈ Qgen, vt ∈ Qgen such that


L(vs)(i) = qi

L(vt)(i) = q′
i

∀j : j 6= i : L(vs)(j) = L(vt)(j)
:

create fresh v;
insert (vs, g → skip: t, v) in E; insert (v, ~x :=~e: ~r, vt) in E ;
let L(v) = pi : (~x,~e); let I(v) = (t = 0) ∧ I(vt)[~e/~x][~0/~r]; insert v in Qaux

(3) for all (qi, g1 → ch!~e: ~r1, q
′
i) ∈ Ei and (qj , g2 → ch?~x: ~r2, q

′
j) ∈ Ej such that i 6= j:

for all vs ∈ Qgen, vt ∈ Qgen such that


L(vs)(i) = qi ∧ L(vs)(j) = qj

L(vt)(i) = q′
i ∧ L(vt)(j) = q′

j

∀l : l 6= i ∧ l 6= j : L(vs)(l) = L(vt)(l)
:

create fresh v; let g = g1 ∧ g2; let ~r = ~r1~r2;
insert (vs, g → skip: t, v) in E; insert (v, ~x :=~e: ~r, vt) in E;
let L(v) = pi : ch(~x,~e) : pj ; let I(v) = (t = 0) ∧ I(vt)[~e/~x][~0/~r]; insert v in Qaux

(4) let Q = Qgen ∪Qaux

Figure 3 The algorithm for constructing E, I, Q and L.

vs v vt
g → skip: t ~x :=~e: ~r

Figure 4 Edge construction of BA.

pi : (~x,~e) and its invariant is being set to (t = 0) ∧ I(vt)[~e/~x][~0/~r], to first ensure that the
action of the edge leaving v will be performed instantenous and secondly that we can not
get stuck at an auxiliary vertex. Figure 4 illustrates the construction and note that each
auxiliary vertex v has exactly one predecessor and exactly one successor.

Similarly to step 2, in step 3 we construct the auxiliary vertices for the communication
actions of the system and finally in step 4 we define the set Q.

5.2 Trace Equivalence
From the construction of the behaviour automaton BA, it is essential that every execution
trace in the original system TS can be interpreted as an execution trace in the behaviour
automaton BA and vice versa. Particularly, each transition in the system TS is equivalent
to a single step transition (in the case of a delay) or a two-step transition (in the case of an
action) in its behaviour automaton BA. To overcome the vagueness of this explanation we
will later define an equivalence relation between execution traces of the system TS and the
behaviour automaton BA.

First, we give the operational semantics of the behaviour automata in Table 2. The
semantics is similar to the semantics of the timed automata, however now, the transitions
are not labelled with behaviours.
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Table 2 Semantics for Behaviour Automata.

〈vs, σ, δ, κ〉 −→ 〈vt, σ′, δ′, κ′〉 if



(vs, g → ~x :=~e: ~r, vt) is in E
[[g]](σ, δ) = tt
σ′ = σ[~x 7→ [[~e]]σ]
δ′ = δ[~r 7→ ~0]
κ′ = κ[~x 7→ [[~e]]κ]
[[I(vt)]](σ′, δ′) = tt

〈v, σ, δ, κ〉 −→ 〈v, σ, δ′, κ〉 if
{
∃ d > 0 : δ′ = λr. δ(r) + d,

[[I(v)]](σ, δ′) = tt

Now let γ and γ′ to be two configurations of a timed system TS and its behaviour
automaton BA respectively. We define the relation ∼=: ConfigTS ×ConfigBA → {tt,ff} to
be

〈~q, σ, δ, κ〉 ∼= 〈v, σ′, δ′, κ′〉 iff

~q = L(v) ,
σ = σ′ ,

∀r ∈ Clock : δ(r) = δ′(r) ,
κ = κ′ ,

where we recall that Clock is the set of the clocks appearing in the system TS and thus the
clock t of the behaviour automaton BA is not included in Clock. It is straightforward by the
definition of ∼= that configurations of the system TS can only be related with configurations
that correspond to genuine vertices in the behaviour automaton BA.

For the behaviour automata BA, we define a macro transition t to be a single step delay
transition γ′s −→ γ′t or a two-step transition γ′s −→ γaux −→ γ′t, where γaux is an auxiliary
configuration (a configuration that corresponds to an auxiliary vertex) and γs and γt are
genuine configurations (configurations that correspond to genuine vertices). We then lift
the definition of ∼= to single step transitions of the system TS and macro transitions of the
behaviour automaton BA as

γs
ε=⇒ γt ∼= γ′s −→ γ′t iff

{
γs ∼= γ′s

γt ∼= γ′t

γs
b=⇒ γt ∼= γ′s −→ γaux −→ γ′t iff


γs ∼= γ′s

γt ∼= γ′t

γaux = 〈v, σ, δ, κ〉 ⇒ b = L(v)

Now for each genuine configuration γ′ of the BA, we have that every execution trace
tr′ = γ′0 −→ γ′1.... ∈ Traceγ′ of γ′, with length greater than 0, can be parsed as a macro
transition trace Ttr′ = t′1t

′
2t
′
3..... where each t′j is a macro transition. For example the finite

execution trace γ′0 −→ γ′1 −→ γaux1 −→ γ′2 −→ γaux2 −→ γ′3 −→ γ′4, which is a sequence of
a delay, action(two-step), action(two-step), delay, will produce the macro transition trace
t′1t
′
2t
′
3t
′
4 where t′1 = γ′0 −→ γ′1, t′2 = γ′1 −→ γaux1 −→ γ′2, t′3 = γ′2 −→ γaux2 −→ γ′3 and

t′4 = γ′3 −→ γ′4.
Similarly to the macro transition traces, for each configuration γ of the system TS, we

can write each nonzero-length execution trace, tr = γ0
b1=⇒ γ1

b2=⇒ γ2... ∈ Traceγ of γ, as a
transition trace Ttr = t1t2... where ti = γi−1

bi=⇒ γi (for all i ≥ 1).
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Finally we lift the definition of ∼= to execution traces of length n > 0, that start in genuine
configurations inside the timed system TS and its behaviour automaton BA as

tr ∼= tr′ iff
{
Ttr and Ttr′ have the same length
∀i ≥ 1 : Ttr(i) ∼= Ttr′(i)

tr ∼= tr′, then results to true if and only if the transition trace Ttr of tr and the macro
transition trace Ttr′ of tr′ have the same length and they are equivalent stepwise.

The following fact follows from the method of constructing a behaviour automaton and
states that equivalent configurations in the timed system TS and its behaviour automaton
BA, produce equivalent execution traces.

I Fact 5. For every timed system TA, its behaviour automaton BA and two configurations
γ and γ′ such that γ ∼= γ′ we have that:
∀tr ∈ Traceγ : ∃tr′ ∈ Traceγ′ : tr ∼= tr′ ,
∀tr′ ∈ Traceγ′ : ∃tr ∈ Traceγ : tr ∼= tr′ .

5.3 TCTL+

For the behaviour automata, we define a new logic called TCTL+ patterned after TCTL [2],
and the syntax of a TCTL+ formula ψ is given by

ψ ::= prop | g | set1 rel set2 | ∀�ψ | ∃(ψ1Uψ2) | ¬ψ | ψ1 ∧ ψ2 .

The basic formula prop is a proposion which is either a behaviour or a location vector and it
holds in a configuration if its vertex is labelled with prop; the rest of the basic formulas are
the same as in BTCTL . The ∀�ψ formula holds in a configuration if for all of its execution
traces, ψ holds in all the configurations of the trace, while for the ∃(ψ1Uψ2) to hold, it is
sufficient that there exists an execution trace where ψ1 holds for a prefix of the trace and
eventually ψ2 also holds. The rest of the operators are the same as in BTCTL . The formal
semantics of the TCTL+ is given by:

γ′ |= prop iff γ′ = 〈v, σ, δ, κ〉 ⇒ L(v) = prop

γ′ |= g iff γ′ = 〈v, σ, δ, κ〉 ⇒ [[g]](σ, δ)
γ′ |= set1 rel set2 iff γ′ = 〈v, σ, δ, κ〉 ⇒ [[set1]]κ rel [[set2]]κ
γ′ |= ∀�ψ iff ∀γ′0 −→ γ′1 −→ γ′2.... ∈ Traceγ′ : ∀i ≥ 0 : γ′i |= ψ

γ′ |= ∃(ψ1Uψ2) iff ∃γ′0 −→ γ′1 −→ γ′2.... ∈ Traceγ′ :
∃i : γ′i |= ψ2 and ∀j < i : γ′j |= ψ1

γ′ |= ψ1 ∧ ψ2 iff γ′ |= ψ1 and γ′ |= ψ2

γ′ |= ¬ψ iff γ′ 6|= ψ

Our goal is to transform a BTCTL formula φ into a TCTL+ formula ψ and then show that
for two equivalent configurations γ and γ′ of a timed system TS and its behaviour automaton
BA respectively, checking the formula φ in γ it is sufficient to check the transformed formula
ψ in γ′ and vice versa. We perform the transformation of the formulas using a function T [[.]]
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1

2

3

x:=1

x:=2

(a) The timed automaton of the process p

1

b1

b2 3

2skip: t

skip: t x:=2

x:=1

(b) The behaviour automaton of p

as follows

T [[g]] = g ,

T [[set1 rel set2]] = set1 rel set2 ,
T [[∀�b(φ1, φ2)]] = ∀�(b⇒ (T [[φ1]] ∧ ∃(b U(¬b ∧ T [[φ2]])))) ,
T [[φ1 ∧ φ2]] = T [[φ1]] ∧ T [[φ2]] ,
T [[¬φ]] = ¬T [[φ]] .

For the special cases ∀�b(tt, φ2) (φ2 is not tt) and ∀�b(φ1, tt) (φ1 is not tt) we shall omit the
transformed formula that corresponds to the trivial formula tt, by writting T [[∀�b(tt, φ2)]] =
∀�(b ⇒ b U(¬b ∧ T [[φ2]])) for the first case and T [[∀�b(φ1, tt)]] = ∀�(b ⇒ T [[φ1]]) for the
second case. Finally, we shall assume that formulas in the pre-condition of the ∀�b(φ1, φ2)
are not nested. To justify this assumption consider the following example

I Example 6. Consider the timed automaton of a process p (Figure 5a) with a variable
x and a clock r, and its behaviour automaton BA (Figure 5b), where b1 = p : (x, 1) and
b2 = p : (x, 2) are the behaviours of the actions x:=1 and x:=2 respectively, and all the
location invariants in the timed automaton of p are tt.

Now let φ = ∀�b1(∀�b2(tt, x = 1), tt) and observe that every initial configuation of the
process p does not satisfy φ, whereas every initial configuration of the behaviour automaton
does satisfy the transformed formula T [[φ]] = ∀�(b1 ⇒ (∀�(b2 ⇒ ∃(b2 U(¬b2 ∧ x = 1))))).

Since the proposed formula transformation is sufficient to express and enforce access
control policies of our interest we leave the development of transformations that support the
entire BTCTL as future work.

Finally, we state the correctness of the function T [[.]] with the following theorem

I Theorem 7. For a timed system TS, its behaviour automaton BA, a BTCTL formula φ
and for every configuration γ and γ′ of TS and BA respectively, we have that if γ ∼= γ′ then

γ |= φ iff γ′ |= T [[φ]]

The proof of Theorem 7 can be found in Appendix A.

5.4 Reduction Complexity
We give a computation bound for the algorithm of Figure 3, that given a timed system
TS = (TAi)i≤n constructs the behaviour automaton BA = (v◦,E, I,Q, L). Assuming that the
computation time of all the simple operations (creation of fresh vertices, setting of invariants
e.t.c) is constant, we have that : let K = |Q1|+ ...+ |Qn| and E = |E1|+ ...+ |En| then the
first part of the algorithm is bounded by Kn. The second part iterates over the assignement
edges and all the pairs of the auxiliary vertices and that is bounded by E ×K2n × n, where
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UPPAAL ts.xml
phi.text

ba.xml
T_phi.q

translator UPPAAL
ts.xml

phi.textphi.text

Figure 6 Architecture of the Translator.

n corresponds to the computation bound of checking the third condition of the branch of
the for-loop. Similarly to the second part of the algorithm the third part is bounded by
E2 ×K2n × n and therefore for the total sum of those bounds we obtain a complexity of
O(E2 ×K2n × n) . Finally, for a BTCTL formula φ the complexity of the transformation
T [[φ]] is linear to the size of φ.

6 The Translator

We have implemented a translator in Java that works together with the model checker
UPPAAL version 4.0 [30]. Figure 6 depicts the architecture of the translator.

UPPAAL is using a graphical interface in which one can model (draw) a system of timed
automata. We first do that and next UPPAAL saves it as a file in the eXtensible Markup
Language (XML) [33]; the xml file together with a text file that contains the desired property
φ that we want to check, are being passed to the translator. The translator parses the two
files and produces an xml file which contains the behaviour automaton of the system together
with a UPPAAL query file that includes the property T [[φ]]. The two files are imported to
UPPAAL and then one can check if the desired property holds.

Since UPPALL does not allow nested formulas nor supports the operator ∃φ1Uφ2,
we had to find a workaround for some of the transformed formulas. The guards g are
translated directly; for the set1 rel set2, we model a set as a bit array since UPPALL supports
multidimensional integer arrays and then we check the bit version of the relation rel . In case
of the T [[∀�b(φ1, φ2)]] = ∀�(b⇒ (T [[φ1]] ∧ ∃(b U(¬b ∧ T [[φ2]])))), UPPAAL allows labelling
a vertex with a string (the name of the vertex) and thus auxiliary vertices with label b have
as a name a string that corresponds to the behaviour b. For the part b U(¬b ∧ T [[φ2]]) we
annotate the outgoing edges of the auxiliary vertices with an assignment to a fresh variable
a that works as a switch. We switch on by a := 1, only when we leave the auxiliary vertex,
and we switch off by a := 0, whenever we leave the successor of the auxiliary vertex. Thus
the formula b U(¬b ∧ T [[φ2]]) is transformed into the formula a = 1⇒ T [[φ2]].

Finally, since the mapping κ is not part of the timed automata of UPPAAL, we first
enumerate each variable and each process of the system and we then model κ as a two-
dimensional array, whose first index corresponds to a variable and whose second to a process.
For instance, if a variable x is enumerated with 1 and κ(x) = {p}, where p is a process of
the system and p is enumerated with 2, then κ[1][2] = 1, while for any other index j 6= 2,
κ[1][j] = 0, modelling in that way that only p has written data in x. The edges of the
automaton are also annotated with assignments to κ to capture the updates to it whenever
the system performs an action.

7 Conclusions

We have successfully shown how to enforce access control policies on Systems of Timed
Automata using a behaviour-based logic. The logic allows specification of time, data’s content
and information flow dependent security policies, an essential need in the modern world of
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cyberphysical systems. We have developed a sound reduction of a substantial fragment of
our logic to a logic based on TCTL [2], so that the model checking of the formulas can be
performed by existing model checkers such as UPPAAL [30]. We implemented a translator
which performs the reduction and together with UPPAAL it enforces access control policies.
Finally, we illustrated our development using an example from the aerospace industry, where
ensuring data’s integrity is a life critical goal.

There are several ways in which we can extend our work. We are currently exploring how
our development can be extended to capture more complex information flows such as implicit
flows [31]. We have shown in [24] that the time aspect, as well as the non-deterministic
semantics of Timed Automata, poses a challenge for that.

We are considering extensions to our logic that allow expressing richer access control
policies and also how to develop a reduction which supports the entire syntax of the BTCTL
logic. Another possibility is to explore new algorithms for determining if a formula of our
logic holds in a timed system rather than reducing the formula to current TCTL-based logics.
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A Proof of Theorem 7

Proof. The proof proceeds by structural induction on φ. The base cases are trivial since
T [[φ]] = φ, the formula φ does not include any constraint about the clock t, and γ ∼= γ′.

The case ∀�b(φ1, φ2).
Assume that γ |= ∀�b(φ1, φ2) and thus by definition:

∀γ0
b1⇒ γ1

b2⇒ .. ∈ Traceγ : ∀i ≥ 1 : bi = b⇒ γi−1 |= φ1 and γi |= φ2 . (1)
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Now take arbritary trace tr′ = γ′0 −→ γ′1 −→ ... ∈ Traceγ′ , where γ′ = γ′0 and prove that

∀j ≥ 0 : γ′j |= b⇒ (T [[φ1]] ∧ ∃(b U(¬b ∧ T [[φ2]]))) .

Now if tr′ has length 0 then tr′ = γ′ and the proof is trivial since γ′ is a genuine
configuration and thus γ′ 6|= b. Similarly, if tr′ has length greater than 0 and γ′j is
a genuine configuration then the proof holds. Now if γ′j is an auxiliary configuration,
consider the macro tranistion trace Ttr′ = t′1t

′
2... of the trace tr′ and let t′i be the macro

tranistion which corresponds to the transition in which γ′j is being involved and thus we
have that Ttr′(i) = γ′j−1 −→ γ′j −→ γ′j+1. Next, let γ′j = 〈v, σ, δ, κ〉 and using Fact 5 we
have that ∃tr ∈ Traceγ : tr ∼= tr′ and thus

∀h ≥ 1 : Ttr(h) ∼= Ttr′(h)
⇒ Ttr(i) ∼= Ttr′(i)

⇔ γi−1
bi=⇒ γi ∼= γ′j−1 −→ γ′j −→ γ′j+1

⇔ γi−1 ∼= γ′j−1 and γi ∼= γ′j+1 and L(v) = bi (2)

Now if γ′j 6|= b then the proof is trivial. Otherwise, because of (2) (L(v) = bi) we have
that also bi = b and using (1) we have that γi−1 |= φ1 and γi |= φ2. Next, using (2)
(γi−1 ∼= γ′j−1) and our induction hypothesis we have also that γ′j−1 |= T [[φ1]] and since φ1
does not contain any nested formulas we also have that γ′j |= T [[φ1]] as required. Finally,
using (2) ( γi ∼= γ′j+1) and our induction hypothesis we have also that γ′j+1 |= T [[φ2]] and
thus γ′j |= ∃(b U (¬b ∧ T [[φ2]])) as required.
For the other direction now assume that γ′ |= ∀�b⇒ (T [[φ1]] ∧ ∃(b U(¬b∧ T [[φ2]]))) and
thus

∀γ′0 −→ γ′1 −→ γ′2.... ∈ Traceγ′ : ∀i ≥ 0 : γ′i |= b⇒ (T [[φ1]] ∧ ∃(b U(¬b ∧ T [[φ2]])))
(3)

and take arbitrary trace tr = γ0
b1=⇒ γ1

b2=⇒ ... ∈ Traceγ , where γ0 = γ and prove that

∀j ≥ 1 : bj = b⇒ γj−1 |= φ1 and γj |= φ2 .

For the cases where the length of tr is 0 or bj 6= b then the proof is trivial. Therefore
take j such that bj = b and consider the transition trace Ttr = t1t2.... of the trace tr and
thus, using Fact 5 we have that ∃tr′ ∈ Traceγ′ : tr ∼= tr′ and consequently

∀h ≥ 1 : Ttr(h) ∼= Ttr′(h)
⇒ Ttr(j) ∼= Ttr′(j)

⇔ γj−1
bj=⇒ γj ∼= γ′s −→ γaux −→ γ′t

⇔ γj−1 ∼= γ′s and γj ∼= γ′t and if γaux = 〈v, σ, δ, κ〉 then L(v) = bj . (4)

Therefore because of (4) (L(v) = bj) and (3) we have that γaux |= T [[φ1]] ∧ ∃(b U (¬b ∧
T [[φ2]])) and thus since φ1 does not contain any nested formulas, γ′s |= T [[φ1]] and
γ′t |= T [[φ2]]; but then using (4) (γj−1 ∼= γ′s and γj ∼= γ′t) and our induction hypothesis we
get the required result.
The cases φ1 ∧ φ2 and ¬φ can be proved straightforwardly using structural induction on
φ1, φ2 and φ. J



On Expressiveness of Halpern-Shoham Logic and
its Horn Fragments∗

Przemysław Andrzej Wałęga

University of Warsaw, Warsaw, Poland
p.a.walega@gmail.com

Abstract
Halpern and Shoham’s modal logic of time intervals (HS in short) is an elegant and highly
influential propositional interval-based logic. Its Horn fragments and their hybrid extensions
have been recently intensively studied and successfully applied in real-world use cases. Detailed
investigation of their decidability and computational complexity has been conducted, however,
there has been significantly less research on their expressive power. In this paper we make a step
towards filling this gap. We (1) show what time structures are definable in the language of HS,
and (2) determine which HS fragments are capable of expressing: hybrid machinery, i.e., nominals
and satisfaction operators, and somewhere, difference, and everywhere modal operators. These
results enable us to classify HS Horn fragments according to their expressive power and to gain
insight in the interplay between their decidability/computational complexity and expressiveness.
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1 Introduction

The aim of this paper is to investigate the expressive power of the temporal logic of Halpern
and Shoham (HS in short) [13] and its Horn fragments [9, 8]. The latter are especially
interesting due to their relatively low computational complexity [9, 17, 3] and the range
of potential applications, e.g, real-world use cases in temporal ontology-based data access
(OBDA) [14]. Although decidability and computational complexity of these fragments
have been intensively studied [9, 17, 3], their expressive power is yet to be studied in any
significant depth. Our research aims at filling this gap and enabling a better understanding
of the interplay between decidability/computational complexity and expressive power of HS
fragments.

Halpern-Shoham logic is a propositional multimodal logic which enables reasoning about
relations between time-intervals in a one dimensional timeline. The HS language contains
12 modal operators, each corresponding to one of the Allen’s binary relations between
intervals [1], namely adjacent to, begins, during, ends, later than, overlaps, and their inverses
(Allen’s algebra contains also identity as the 13th relation). A model of HS is a linear ordering
of time-points (a temporal frame), where propositional variables are interpreted by sets of
intervals over this temporal frame. The HS language is very expressive and the satisfiability
problem of its formulas is undecidable over a range of interesting linear orders including
N, Z, Q, and R [13]. As a result, restrictions on HS have been intensively investigated in
order to establish fragments of relatively low computational complexity, whose expressive
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Table 1 Semantics definable in HS under irreflexive and reflexive semantics, respectively.

Under irreflexive semantics: Under reflexive semantics:
Definable semantics: (Dis), (Den), (S), (Non-S) (Non-S)

power is high enough for a variety of applications. A number of methods to specify HS
fragments have been proposed, e.g., restricting the set of modal operators occurring in
the language [11, 12, 6], softening semantics of modal operators [15], and restricting the
nesting-depth of modal operators [7]. Recently, a twofold method has been proposed to
obtain HS fragments [9]: firstly, by imposing restrictions on the use of classical propositional
connectives in the language, giving rise to fragments called Horn, Krom, and core, and
secondly, by additionally disallowing diamond (or box) modal operators. This new approach
has led to the identification of tractable fragments (precisely P-complete) [3], which were
already applied in real-world use cases within temporal OBDA [14]. The success of this
approach motivated applying the same technique in other logics in order to establish their
low complexity fragments. Namely, it was applied in modal logics K, T, K4, S4 [10], and in
Metric Temporal Logic [5].

In this paper we investigate the expressiveness of HS and its Horn fragments, and show
how it depends on the structure of a temporal frame. Namely, we will follow an idea from [8]
and distinguish between HS-models (i) with irreflexive (<) (originally introduced by Halpern
and Shoham in [13]) and reflexive (≤) (obtained by softening semantics as described in [8, 7])
semantics of relations between intervals, (ii) over discrete (Dis) and dense (Den) frames,
and (iii) under strict (S) (i.e., without punctual-intervals) and non-strict (Non-S) (i.e., with
punctual-intervals) semantics. Combinations of the above 3 lines of distinction give us 8
distinct semantics. A precise description of HS, its Horn fragments, as well as all 8 semantics,
is presented in Section 2. Our contributions are as follows.

First, in Section 3 we study which semantics are definable in the language of HS, where
a semantics is definable by a formula, if the formula is true exactly in frames satisfying
conditions imposed on this semantics. We show that if the irreflexive semantics of relations
is assumed, then not only (Dis) and (Den) semantics are definable (as proved in [13]) but
also (S), and (Non-S). Moreover, we show that under reflexive semantics (Non-S) is definable
but it is an open question if (Dis), (Den), and (S) are definable or not – see Table 1.

Second, in Section 4 we study the expressive power of HS, Horn fragment HShorn, and
its further restrictions, namely HS♦

horn obtained by deleting box modal operators from the
language and HS�

horn in which diamond operators are deleted. We show which of the following
expressions are expressible in these languages: somewhere p (Ep), in a different interval p
(Dp), and everywhere p (Ap), where p is a propositional variable. Moreover, we show in
which fragments nominals (i), and satisfaction operators (@i) are expressible – see Table 2.
Nominals and satisfaction operators constitute a standard hybrid machinery exploited in
order to overcome the local nature of a modal language [2, 4].

Furthermore, we show that the expressive power of HS�,i
horn (which stands for HS�

horn

whose language is extended with nominals) and HS�,i,@
horn (i.e., HS�,i

horn extended by satisfaction
operators) is the same in any semantics. A Hasse diagram of HS fragments is depicted
in Figure 1a where an arrow indicates a syntactical extension. Our research resulted in
a classification of these fragments according to their expressive power. A map of expressiveness
under all semantics except (≤,Dis,Non-S) and (≤,Den,Non-S) is presented in Figure 1b, where
≈ stands for the same expressive power and < for greater-or-equal expressive power.
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Table 2 Summarized expressiveness results.

Ep Dp Ap i i and @i

HS 3 3∗ 3 3∗ 3∗

HShorn 3 ? 3 3∗ 3∗

HS♦
horn 3 − 3 3∗ 3∗

HS�
horn −∗ −∗ 3 −∗ −∗

3 : definable in all semantics;
3∗ : definable in all semantics except

(≤,Dis,Non-S) and (≤,Den,Non-S);
− : undefinable in any semantics;
−∗ : undefinable in (<,Den,S), (<,Den,Non-S),

(≤,Dis,Non-S), (≤,Den,S), (≤,Den,Non-S);
? : unknown.

HSi,@

HSi

HS HSi,@horn

HSihorn

HShorn

HS♦,i,@
horn

HS♦,i
horn

HS♦
horn

HS�,i,@
horn

HS�,i
horn

HS�
horn

(a)

HS ≈ HSi ≈ HSi,@

HShorn ≈ HSihorn ≈ HSi,@horn

HS♦,i,@
horn

HS♦,i
horn

HS♦
horn

HS�,i,@
horn

HS�,i
horn

HS�
horn

<

<

≈
≈

<

≈

<

(b)

Figure 1 Syntactical dependencies of HS fragments (a) and expressive power dependencies in HS
fragments under all semantics except (≤,Dis,Non-S) and (≤,Den,Non-S) (b).

2 Halpern-Shoham Logic and its Horn Fragments

The language of Halpern-Shoham logic consists of a set of propositional variables PROP,
propositional constants > (true) and ⊥ (false), classical propositional connectives ¬,∧,∨,→,
12 modal operators of the form 〈R〉, called diamonds, and their duals of the form [R], called
boxes, where R ∈ {B,B,D,D,E,E,O,O,A,A, L, L} (in what follows, we denote this set by
HSrel). Well-formed HS-formulas are defined by the following abstract grammar:

ϕ := > | ⊥ | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | 〈R〉ϕ | [R]ϕ,

where p ∈ PROP and R ∈ HSrel. We follow [8] and define an HS-model as a pair (D, V )
such that D = (D,≤), called a temporal frame (or simply a frame), is a non-strict linear
order (reflexive, antisymmetric, transitive, and total relation) of time-points, I

(
D) is a set of

intervals over D (defined in what follows), and V : PROP→ P (I(D)) assigns a set of intervals
to each propositional variable (notice that the original definition from [13] of an HS-model is
more general). In what follows, we also use “x < y” as an abbreviation for “x ≤ y and x 6= y”.
In the paper we restrict attention to orderings D which contain an infinitely ascending and
descending chains. As proposed in [8], semantics of HS may be specified according to the
following lines of division. The first distinction deals with a definition of binary relations
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between intervals, namely begins (relB), during (relD), ends (relE), overlaps (relO), adjacent
to (relA), later than (relL), and opposite relations: relB, relD, relE, relO, relA, relL (“dashed”
relations are not always inverses of their “not dashed” counterparts, e.g., relA is not an inverse
of relA in non-strict semantics):

(<) Irreflexive semantics: a relation between intervals [x, y] and [x′, y′] is defined as:
x y

[x, y]relL[x′, y′] iff y′ < x x′ y′

[x, y]relA[x′, y′] iff x′ < y′, y′ = x x′ y′

[x, y]relO[x′, y′] iff x′ < x < y′ < y x′ y′

[x, y]relB[x′, y′] iff x = x′, y′ < y x′ y′

[x, y]relD[x′, y′] iff x < x′, y′ < y x′ y′

[x, y]relE[x′, y′] iff x < x′, y = y′ x′ y′

[x, y]relO[x′, y′] iff x < x′ < y < y′ x′ y′

[x, y]relA[x′, y′] iff y = x′, x′ < y′ x′ y′

[x, y]relL[x′, y′] iff y < x′ x′ y′

[x, y]relE[x′, y′] iff x′ < x, y = y′ x′ y′

[x, y]relD[x′, y′] iff x′ < x, y < y′ x′ y′

[x, y]relB[x′, y′] iff x = x′, y < y′ x′ y′

(≤) Reflexive semantics: each occurrence of “<” is replaced by “≤” with respect to the
definition of relations under irreflexive semantics.

The second distinction is between:

(Dis) Discrete frames: any x ∈ D has an immediate <-successor, and an immediate <-
predecessor;

(Den) Dense frames: for any x, y ∈ D such that x < y there is z ∈ D such that x < z < y.

The third distinction differentiates between:

(S) Strict semantics: punctual intervals are disallowed, i.e., a set of all intervals over D is
defined as I

(
D) = {[x, y] | x, y ∈ D and x < y};

(Non-S) Non-Strict semantics: punctual intervals are allowed, i.e., a set of all intervals over
D is defined as I

(
D) = {[x, y] | x, y ∈ D and x ≤ y};

where [x, y] = {z | z ∈ D and x ≤ z ≤ y}. Independently of the semantics, the relations
between non-identical intervals are exhaustive in the sense that between any two non-identical
intervals necessarily holds some relation. In irreflexive semantics the relations are also disjoint,
and consequently exactly one relation holds between any two non-identical intervals.
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Figure 2 One-dimensional (a) and two-dimensional (b) representations of the same HS-model, in
which [x, y]L[a, b] ([a, b] is earlier than [x, y]) and [x, y]B[x, c] ([x, c] is begun by [x, y]).

The satisfaction relation for an HS-modelM and an interval [x, y] is defined as follows:

M, [x, y] |= > for all [x, y] ∈ I(D);
M, [x, y] 6|= ⊥ for all [x, y] ∈ I(D);
M, [x, y] |= p iff [x, y] ∈ V (p), for any p ∈ PROP;
M, [x, y] |= ¬ϕ iff M, [x, y] 6|= ϕ;
M, [x, y] |= ϕ ∧ ψ iff M, [x, y] |= ϕ andM, [x, y] |= ψ;
M, [x, y] |= ϕ ∨ ψ iff M, [x, y] |= ϕ orM, [x, y] |= ψ;
M, [x, y] |= ϕ→ ψ iff ifM, [x, y] |= ϕ, thenM, [x, y] |= ψ;
M, [x, y] |= 〈R〉ϕ iff there exists [x′, y′] ∈ I(D) such that [x, y]relR[x′, y′]

andM, [x′, y′] |= ϕ;
M, [x, y] |= [R]ϕ iff for every [x′, y′] ∈ I(D) such that [x, y]relR[x′, y′]

it holds thatM, [x′, y′] |= ϕ;

for any R ∈ HSrel, and any HS-formulas ϕ, ψ. An HS-formula ϕ is true in an HS-modelM
(in symbols: M |= ϕ) iff for all [x, y] ∈ I(D) it holds thatM, [x, y] |= ϕ. An HS-formula ϕ
is true in a frame D (in symbols: D |= ϕ) iff for any HS-modelM based on D it holds that
M |= ϕ. An HS-formula ϕ is valid (in symbols: |= ϕ) iff for any HS-frame D we have D |= ϕ.

A convenient representation of a temporal frame (e.g., for decidability and computational
complexity proofs [8]) is obtained by treating an interval [x, y] as a point in a two-dimensional
Cartesian space D ×D, where the abscissa has a value x and the ordinate has a value y [16].
In the two-dimensional representation, intervals correspond to the points in the north-western
half-plane of D ×D, and points on the diagonal correspond to punctual-intervals. In such
a representation relations between intervals obtain a spatial interpretation. Let [x, y] be a
fixed interval, then a relation between [x, y] and any other interval [x′, y′] may be determined
on the basis of a relative position of points (x, y) and (x′, y′) as presented in Figure 2.

Decidability of the HS-formulas satisfiability problem (HS-satisfiability) depends on the
semantics. However, for most interesting frames it is undecidable, e.g., it was already shown
in [13] that the problem is undecidable under irreflexive and non-strict semantics for any
class of temporal frames that contains an infinite ascending chain (e.g., N, Z, and Q). These
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negative results motivated searching for decidable and tractable fragments of HS which would
be still interesting from the expressiveness point of view.

As observed in [8], any HS-formula can be transformed into an equisatisfiable formula
defined by the following grammar, and vice versa:

ϕ := λ | ¬λ | [U](λ ∧ . . . ∧ λ→ λ ∨ . . . ∨ λ) | ϕ ∧ ϕ, (1)

where [U] is the universal modality, i.e., [U]ψ is satisfied iff ψ is satisfied in every [x, y] ∈ I(D)
whereas λ, the so-called positive temporal literal, is a formula defined by the grammar:

λ := > | ⊥ | p | 〈R〉λ | [R]λ, (2)

where p ∈ PROP and R ∈ HSrel. Horn fragments of HS (proposed in [9, 8]) are obtained by
imposing limitations on the grammars (1) and (2) as follows:

First, the limitation of the grammar (1) gives rise to an HS fragment denoted by HShorn,
in which (1) is restricted to the grammar:

ϕ := λ | [U](λ ∧ . . . ∧ λ→ λ) | ϕ ∧ ϕ.

Second, additional limitations on the grammar of positive temporal literals (2) in HShorn
give rise to fragments denoted by HS♦

horn and HS�
horn. In the case of HS♦

horn the grammar
of positive temporal literals is restricted to:

λ := > | ⊥ | p | 〈R〉λ,

whereas in the case HS�
horn grammar (2) is restricted to:

λ := > | ⊥ | p | [R]λ.

HS�
horn is particularly interesting, as it is both decidable and tractable (P-complete) under

(<,Den,S), (<,Den,Non-S), (≤,Dis,Non-S), (≤,Den,S), and (≤,Den,Non-S) semantics [9, 8].

3 Defining Semantics

A formula ϕ defines a semantics Sem if the following are equivalent:
ϕ is true in a frame D;
D satisfies the conditions imposed by Sem.

We will show that under the standard, i.e., irreflexive semantics (<), the semantics (Dis),
(Den), (S), and (Non-S) are definable but under the softened semantics, i.e., reflexive (≤) we
only know how to define (Non-S). We treat existence and non-existence of punctual-intervals
as a property of a frame. At first assume that the semantics is irreflexive. As showed in [13],
(Dis) is definable in the language of HS by the formula:

[B]⊥ ∨
(
〈B〉> ∧ [B][B]⊥

)
∨
(
〈B〉
(
〈B〉> ∧ [B][B]⊥

)
∧ 〈E〉

(
〈B〉> ∧ [B][B]⊥

))
;

and (Den) by the formula:

¬
(
〈B〉> ∧ [B][B]⊥

)
.

We show that (S) and (Non-S) are also definable in the language of HS.

I Theorem 1. (S) is definable in the language of HS under irreflexive semantics by:

ϕ<,S := 〈A〉[B]⊥ ∨ [A]¬〈B〉[B]⊥.
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Proof. Fix any HS-frame D. First, assume that D |= ϕ<,S. We will show that the semantics
is strict. Fix any time-point y. To show that [y, y] is not an interval. Fix any x < y and any
HS-modelM based on D. It follows thatM, [x, y] |= ϕ<,S.
(Case 1) M, [x, y] |= 〈A〉[B]⊥. Hence, there is z > y such that M, [y, z] |= [B]⊥. If [y, y]

was an interval, we would haveM, [y, z] 6|= [B]⊥. Hence, [y, y] cannot be an interval.
(Case 2) M, [x, y] |= [A]¬〈B〉[B]⊥. Suppose that [y, y] is an interval, so M, [y, y] |= [B]⊥.

Hence, for any z > y we have [y, z]relB[y, y]. Then M, [x, y] |= [A]〈B〉[B]⊥. Since D
contains an infinite ascending chain, we have reached a contradiction, so [y, y] is not an
interval.

As a result, for any time-point y, [y, y] is not an interval, hence the semantics is strict.
Second, assume that the semantics is non-strict. We will show that D 6|= ϕ<,S. Fix any

punctual-interval [y, y] and any HS-modelM based on D. To show thatM, [y, y] 6|= ϕ<,S,
i.e.,M, [y, y] 6|= 〈A〉[B]⊥ ∨ [A]¬〈B〉[B]⊥.
M, [y, y] 6|= 〈A〉[B]⊥, because an interval [u,w] is in relation relA with [y, y] whenever

u = y and w > y. It follows that w > u, so M, [u,w] 6|= [B]⊥. M, [y, y] 6|= [A]¬〈B〉[B]⊥,
because if z > y then [y, y]relA[y, z], [y, z]relB[y, y], andM, [y, y] |= [B]⊥. J

I Theorem 2. (Non-S) is definable in the language of HS under irreflexive semantics by:

ϕ<,Non-S := [A]¬[B]⊥ ∧ [A]〈B〉[B]⊥.

Proof. Fix any HS-frame D. First, assume that D |= ϕ<,Non-S. To show that the semantics
is non-strict. Fix any time-point y. We will show that [y, y] is an interval. Fix any HS-model
M based on D and x < y. It follows thatM, [x, y] |= ϕ<,Non-S.

From the one hand,M, [x, y] |= [A]¬[B]⊥, hence for any z > y we haveM, [y, z] 6|= [B]⊥.
On the other hand, M, [x, y] |= [A]〈B〉[B]⊥. Fix any w > y. Then M, [y, w] |= 〈B〉[B]⊥.
Hence, for all u such that y < u < w we have M, [y, u] |= 〈B〉[B]⊥, which leads to a
contradiction

Second, assume that the semantics is strict. To show that D 6|= ϕ<,Non-S. Fix any interval
[x, y] and any HS-modelM based on D. To show thatM, [x, y] 6|= ϕ<,Non-S.
(Case 1) y has an immediate >-successor. Let z be the immediate >-successor of y. Then
M, [y, z] |= [B]⊥, soM, [x, y] 6|= [A]¬[B]⊥. HenceM, [x, y] 6|= ϕ<,Non-S.

(Case 2) y does not have an immediate >-successor. Hence, there is no z > y such that
M, [y, z] |= [B]⊥. As a resultM, [x, y] 6|= [A]〈B〉[B]⊥, soM, [x, y] 6|= ϕ<,Non-S. J

Finally, we show that under reflexive semantics HS is expressive enough to define non-strict
semantics.

I Theorem 3. (Non-S) is definable in the language of HS under reflexive semantics by:

ϕ≤,Non-S := [E]p→ 〈A〉p.

Proof. Fix any HS-frame D. First, assume that the semantics is non-strict. To show that
D |= ϕ≤,Non-S. Fix any interval [x, y] and any HS-model M based on D. Assume that
M, [x, y] |= [E]p. It follows thatM, [y, y] |= p. Since [x, y]relA[y, y], we haveM, [x, y] |= 〈A〉p.
It follows that D |= ϕ≤,Non-S.

Second, assume that the semantics is strict. We will show that D 6|= ϕS. Fix any interval
[x, y] and any HS-model M = (D, V ) such that V (p) = {[z, y] | z ≥ x}. To show that
M, [x, y] 6|= ϕ≥,Non-S. By the definition of V it follows that M, [x, y] |= [E]p. However,
M, [x, y] 6|= 〈A〉p, soM, [x, y] 6|= ϕ≥,Non-S. J
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4 Hybrid Machinery and Additional Operators

In this section we will study whether HS and its Horn fragments are expressive enough
to define hybrid machinery (nominals and satisfaction operators) and the somewhere (E),
difference (D), and universal (A) operators (notice that, following the standard notation,
we use symbols E, D, and A in two meanings, namely as elements of HSrel and as above
mentioned modal operators). The satisfaction relation in an HS-modelM and an interval
[x, y] is defined for E, D, and A as follows:

M, [x, y] |= Eϕ iff there is [x′, y′] ∈ I(D) such thatM, [x′, y′] |= ϕ;
M, [x, y] |= Dϕ iff there is [x′, y′] ∈ I(D) such that

[x′, y′] 6= [x, y] andM, [x′, y′] |= ϕ;
M, [x, y] |= Aϕ iff for all [x′, y′] ∈ I(D) it holds thatM, [x′, y′] |= ϕ;

where ϕ is any HS-formula. Notice that A has the same meaning as [U] occurring in (1).
Hybrid machinery is obtained by enriching the language with the second sort of atoms,

called nominals (we denote the set of all nominals by NOM) and satisfaction operators @i

indexed by nominals. Intuitively, a nominal is a special kind of atom which is satisfied in
exactly one interval, whereas an expression of the form @iϕ is satisfied if ϕ is satisfied in the
interval in which i is satisfied.

Formally, a hybrid HS-modelM is a pair (D, V ), such that V : ATOM→ P (I(D)) assigns
a set of intervals to each atom (ATOM = PROP ∪ NOM) with an additional restriction that
V (i) is a singleton for any i ∈ NOM. The satisfaction relation conditions for nominals and @
operators are as follows:

M, [x, y] |= i iff V (i) = {[x, y]}, for any i ∈ NOM;
M, [x, y] |= @iϕ iff M, [x′, y′] |= ϕ, where V (i) = {[x′, y′]} and i ∈ NOM.

Hybrid extensions of HS fragments were introduced in [17] and their Hasse diagram is depicted
in Figure 1a, where “i” in the superscript of a fragment’s symbol means that an expression
of the form i (for i ∈ NOM) is added to the grammar of positive temporal literals, whereas
“i,@” in the superscript denotes a further extension obtained by adding an expression of the
form @iλ (for i ∈ NOM) to the grammar of positive temporal literals.

Interestingly, it has been shown in [17] that the satisfiability problems in HS�,i,@
horn and in

HS�,i
horn are NP-complete under (<,Den,S), (<,Den,Non-S), (≤,Dis,Non-S), (≤,Den,S), and

(≤,Den,Non-S) semantics, whereas the satisfiability problem in HS�
horn is known to be P-

complete under these semantics [9, 8]. However, differences in expressive power of HS�
horn,

HS�,i
horn, and HS�,i,@

horn have, thus far, not been investigated.

4.1 The Case of Full Halpern-Shoham Logic
Our aim is to determine if the hybrid machinery is definable in the full HS language, and
whether the choice of semantics affects the answer to this problem. We start by recalling a
general result established in [2], stating that we can eliminate all occurrences of nominals
and @ operators in a hybrid modal logic formula by simulating them using the D operator .

I Theorem 4 (Areces, Blackburn, Marx [2]). There is a polynomial reduction which preserves
satisfaction from any hybrid language enabling unrestricted use of classical propositional
connectives, containing nominals and @ operators, to the fragment without nominals and @
operators but enabling to polynomially define D.
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Theorem 4 holds if there are no restrictions on the use of classical connectives. As noticed in
[2] in the case of HS under irreflexive semantics, i.e., (<,Dis,S), (<,Den,S), (<,Dis,Non-S),
and (<,Den,Non-S), operator the D is definable as follows:

Dϕ :=
∨

R∈HSrel

〈R〉ϕ. (3)

Hence, by Theorem 4 nominals and @ operators are definable in the language of HS under
any irreflexive semantics. However, in the reflexive semantics the definition (3) would not
be correct because it is not the case that relR is irreflexive for any R ∈ HSrel. Nevertheless,
under (≤,Dis,S) and (≤,Den,S) we can define D as follows:

Dϕ := 〈B〉〈B〉〈A〉ϕ ∨ 〈A〉〈B〉〈B〉ϕ ∨ 〈A〉〈E〉〈E〉ϕ ∨ 〈E〉〈E〉〈A〉ϕ. (4)

The key is to observe that under (≤,Dis,S) and (≤,Den,S) if [x, y]relA[x′, y′] then y′ > y.
Moreover, if [x, y]relA[x′, y′] then x′ < x. To describe what formula (4) means let the current
interval be [x, y]. Then (4) states that ϕ holds in some [x′, y′] such that (i) x′ > x, or (ii)
x′ < x, or (iii) y′ > y, or (iv) y′ < y. As a result, (4) states that ϕ holds in some [x′, y′] such
that [x′, y′] 6= [x, y].

Next, we will show that in the remaining semantics, i.e., (≤,Dis,Non-S) and (≤,Den,Non-S)
neither D nor nominals are definable. For this purpose, we will construct a bisimulation (see,
e.g., [4, Chapter 2]), which is a relation between models, which makes them indistinguishable
by any modal formula. We say that HS-modelsM = (D, V ) andM′ = (D′, V ′) are bisimilar
(in symbolsM -M′) if there is a relation (a bisimulation) Z ⊆ I(D)× I(D′), which satisfies
the following conditions:
(atom) For any intervals [x, y], [x′, y′] such that [x, y]Z[x′, y′] it holds thatM, [x, y] |= p iff
M′, [x′, y′] |= p, for any p ∈ PROP;

(zig) If [x, y]Z[x′, y′] and [x, y]relR[u,w], then there exists [u′, w′] (in M′) such that
[x′, y′]relR′[u′, w′] and [u,w]Z[u′, w′], for any R ∈ HSrel;

(zag) If [x, y]Z[x′, y′] and [x′, y′]relR′[u′, w′], then there exists [u,w] (in M) such that
[x, y]relR[u,w] and [u,w]Z[u′, w′], for any R ∈ HSrel.

It is easy to show by induction on an HS-formula construction that HS is invariant for
bisimulation in the following sense.

I Lemma 5. Let M, M′ be any HS-models, and Z a bisimulation between them. For
any intervals [x, y], [x′, y′] if [x, y]Z[x′, y′], then for any HS-formula ϕ the following are
equivalent:
1. M, [x, y] |= ϕ;
2. M′, [x′, y′] |= ϕ.

I Lemma 6. Nominals are not definable in HS under (≤,Dis,Non-S) and (≤,Den,Non-S).

Proof. Fix an HS-modelM = (D, V ) under (≤,Dis,Non-S) or (≤,Den,Non-S) such that in
the case of the former semantics D is Z (i.e., the standard ordering of integers), whereas in
the latter case D is Q (i.e., the standard ordering of rational numbers). Fix a nominal and
towards a contradiction suppose that there is an HS-formula ϕ which under (≤,Dis,Non-S) or
(≤,Den,Non-S) enables us to simulate this nominal. It follows that ϕ is satisfied in exactly
one interval inM, say [a, b].

In what follows, we will construct an HS-model M′ = (D′, V ′) and a bisimulation Z

between M and M′ such that [a, b] is bisimilar with more than one interval. Then, by
Lemma 5, ϕ is satisfied in more than one interval inM′ hence we will obtain a contradiction
with the statement that ϕ simulates a nominal.

TIME 2017
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Figure 3 Bisimulation Z between modelsM andM′.

First, we divide D into areas A1–A6 as follows:

[x, y] ∈ A1 iff (x < a and y < a); [x, y] ∈ A4 iff (x = a and y = a);
[x, y] ∈ A2 iff (x < a and y = a); [x, y] ∈ A5 iff (x = a and y > a);
[x, y] ∈ A3 iff (x < a and y > a); [x, y] ∈ A6 iff (x > a and y > a).

LetM′ = (D′, V ′) be such that D′ = D. Then, we exploit areas A1–A6 to define the intended
bisimulation Z ⊆ I(D)× I(D′) between intervals inM andM′ (see Figure 3) as follows (we
use a standard functional notation below, i.e., Z([x, y]) = {[x′, y′] | [x, y]Z[x′, y′]}):

∀[x, y] ∈ A1 Z([x, y]) = {[x− 1, y − 1]};
∀[x, y] ∈ A2 Z([x, y]) = {[x, y′] | a− 1 ≤ y′ ≤ a};
∀[x, y] ∈ A3 Z([x, y]) = {[x− 1, y]};
∀[x, y] ∈ A4 Z([x, y]) = {[x′, y′] | a− 1 ≤ x′ ≤ a, and a− 1 ≤ y′ ≤ a};
∀[x, y] ∈ A5 Z([x, y]) = {[x′, y] | a− 1 ≤ x′ ≤ a};
∀[x, y] ∈ A6 Z([x, y]) = {[x, y]}.

To finish definingM′ let V ′ be such that for any [x, y] ∈ I(D) and any p ∈ PROP:

[x, y] ∈ V ′(p) iff Z−1[x, y] ∈ V (p).

Let’s check if Z is a bisimulation betweenM andM′. Condition (atom) follows directly from
the definition of V ′. To show that (zig) and (zag) hold for Z, observe that we may restrict the
set of modal operators in the language of HS to 〈R〉 and [R] such that R ∈ {B,B,E,E,A,A}.
Other operators are definable as follows:

〈D〉ϕ := 〈E〉〈B〉ϕ; 〈O〉ϕ := 〈E〉〈B〉ϕ; 〈L〉ϕ := 〈A〉〈E〉ϕ;
〈D〉ϕ := 〈E〉〈B〉ϕ; 〈O〉ϕ := 〈B〉〈E〉ϕ; 〈L〉ϕ := 〈A〉〈B〉ϕ;

where ϕ is any HS-formula and the translation for box modalities is obtained by replacing
〈R〉 with [R] for any R ∈ HSrel in the above definitions. Hence it remains to perform a routine
inspection of all relR such that R ∈ {B,B,E,E,A,A} against (zig) and (zag) conditions. We
leave this inspection to the reader.

Hence, ϕ does not simulate a nominal. It follows that a nominal cannot be defined in HS
under (≤,Dis,Non-S) and (≤,Den,Non-S). J
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Let us summarize the results obtained so far in this subsection.

I Theorem 7. Nominals and @ operators are definable in HS under all semantics except
(≤,Dis,Non-S) and (≤,Den,Non-S) in which even nominals are not definable.

Notice that discreteness/density of a time frame has no influence on definability of the hybrid
machinery in HS. Next, we examine whether expressions of the form Ep, Dp, and Ap, where
p is a propositional variable are definable in HS and if the choice of semantics affects the
answer to this problem.

I Theorem 8. For any p ∈ PROP expressions of the form Ep and Ap are definable in HS
under all semantics. Dp is definable in HS under all semantics except (≤,Dis,Non-S) and
(≤,Den,Non-S).

Proof. Expressions of the form Ep and Ap are definable in HS as follows:

Ep :=〈L〉〈L〉p; (5)
Ap :=[L][L]p. (6)

An expression of the form Dp is definable in HS under (<,Dis,S), (<,Den,S), (<,Dis,Non-S),
and (<,Den,Non-S) by (3), whereas under (≤,Dis,S) and (≤,Den,S) by (4).

To show that Dp is not definable in HS under (≤,Dis,Non-S) and (≤,Den,Non-S) suppose
that Dp is definable in these semantics. Then by Theorem 4 we obtain that nominals are
definable in HS under (≤,Dis,Non-S) and (≤,Den,Non-S). However, by Lemma 6 we know
that it is not the case, so we obtain a contradiction. J

4.2 The Case of Horn Fragments of Halpern-Shoham Logic
In what follows, we show that hybrid machinery is definable in HS♦

horn under all semantics
except (≤,Dis,Non-S) and (≤,Den,Non-S). However, we can no longer use Theorem 4, which
holds if there are no restrictions on the use of classical propositional connectives (¬, ∧, ∨,
→). As a result, we need to conduct the proof exploiting other techniques.

I Lemma 9. Nominals and satisfaction operators are definable in the language of HS♦
horn

under (<,Dis,S), (<,Den,S), (<,Dis,Non-S), (<,Den,Non-S), (≤,Dis,S), and (≤,Den,S).

Proof. Let ϕ be a formula in the language of HS♦,i,@
horn . We show how to construct under

(<,Dis,S), (<,Den,S), (<,Dis,Non-S), (<,Den,Non-S), (≤,Dis,S), and (≤,Den,S) an equisatis-
fiable formula ϕ′ in the language of HS♦

horn of size linear with respect to |ϕ| (where |ϕ| is the
length of ϕ).

We will simulate any nominal i occurring in ϕ with a propositional variable pi. We
introduce a formula ψi expressing that pi is satisfied in exactly one interval. In the case of
any irreflexive semantics define:

ψi :=〈L〉〈L〉pi ∧ (7)
[U](pi ∧ 〈B〉〈E〉〈E〉pi → ⊥) ∧ (8)
[U](pi ∧ 〈E〉〈B〉〈B〉pi → ⊥). (9)

In the case of (Dis,≤,S) and (Den,≤,S) define ψi as:

ψi :=〈L〉〈L〉pi ∧ (10)
[U](pi ∧ 〈A〉〈E〉〈E〉pi → ⊥) ∧ (11)
[U](pi ∧ 〈A〉〈B〉〈B〉pi → ⊥). (12)

TIME 2017
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Under any irreflexive semantics (7) states that pi is satisfied somewhere, (8) expresses that pi
cannot be satisfied in any two intervals [x, y], [x′, y′] such that y′ > y, whereas (9) disallows
pi being satisfied in any two intervals [x, y], [x′, y′] such that x′ < x. Formulas (10)–(12)
have the analogous meaning under (≤,Dis,S) and (≤,Den,S). As a result, (7)–(9) as well as
(10)–(12) enable us to simulate a nominal i with a propositional variable pi.

Importantly, in (≤,Dis,Non-S) and (≤,Den,Non-S) none of the above encodings enable us
to state that pi holds in exactly one interval. (7)–(9) would not work because in reflexive
semantics relE, relE, relB, and relB are reflexive. On the other hand, (10)–(12) would also
fail because under (≤,Dis,Non-S) and (≤,Den,Non-S) relations relA and relA are reflexive
in punctual-intervals, i.e., for any interval of the form [x, x] we have [x, x]relA[x, x], and
[x, x]relA[x, x].

Let ϕ1 be obtained from ϕ by replacing each occurrence of a nominal i (except symbols
of nominals occurring in the index of a satisfaction operator) by a propositional variable
pi and by adding to the obtained formula a conjunction of the form

∧
i∈NOM(ϕ) ψi, where

NOM(ϕ) is a set of nominals occurring in ϕ.
Next, we show how to replace occurrences of satisfaction operators @i in ϕ1 in order to

obtain an equisatisfiable formula in the language of HS♦
horn. The construction is by induction

on the number of @i operators occurring in ϕ1. In each step of the construction choose any
positive temporal literal λ in the so far constructed formula, such that some satisfaction
operator occurs in λ. Find the left-most satisfaction operator occurring in λ, i.e., an operator
@i such that λ = 〈R1〉 . . . 〈Rn〉@iη with 〈R1〉 . . . 〈Rn〉 being a (possibly empty) sequence
of diamond modal operators and η a subformula of λ. Replace this occurrence of @iη by
〈L〉〈L〉p@iη, where p@iη is a fresh propositional variable which did not occur in the so far
constructed formula. Moreover, add to the constructed formula the following conjunction:

[U](pi ∧ η → p@iη) ∧ [U](p@iη → pi) ∧ [U](p@iη → η). (13)

Formula (13) states that p@iη is satisfied exactly in an interval in which pi ∧ η is satisfied.
Hence, 〈L〉〈L〉p@iη – stating that p@iη is satisfied somewhere – is equisatisfiable with @iη.

The construction terminates when all occurrences of satisfaction operators are eliminated
and we denote the finally obtained formula by ϕ′. It is easy to see that ϕ′ is equisatisfiable
with ϕ and, since we have eliminated all occurrences of nominals and satisfaction operators,
ϕ′ is in the language of HS♦

horn. Moreover, the size of ϕ′ is linear in the size of ϕ because
within the construction of ϕ′ for each occurrence of a nominal and a satisfaction operator we
have added only a constant number of symbols to the formula. J

As a corollary to Lemma 6 we obtain that nominals are not definable in HS♦
horn under

(≤,Dis,Non-S) and (≤,Den,Non-S). Hence, we get the following result.

I Theorem 10. Nominals and satisfaction operators are definable in HS♦
horn under all

semantics except (≤,Dis,Non-S) and (≤,Den,Non-S) in which nominals are not definable.

Interestingly, although nominals and satisfaction operators are definable in HS♦
horn (except

(≤,Dis,Non-S) and (≤,Den,Non-S)), we will show now that D is not.

I Theorem 11. For any p ∈ PROP expressions of the form Ep and Ap are definable in
HS♦

horn but Dp is not. This result holds for all semantics.

Proof Sketch. An expression of the form Ep is definable by (5), whereas Ap is definable
as follows: Ap := [U](> → p). To show that an expression of the form Dp is not definable
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Figure 4 Isomorphic HS-modelsM,M′, andM′′.

in HS♦
horn consider HS-models M = (D, V ), M′ = (D′, V ′), and M′′ = (D′′, V ′′) (in any

semantics), where D = (D,≤), D′ = (D′,≤), D′′ = (D′′,≤), and:

V (p) = {[x, y]}; V ′(p) = {[x1, y1]}; V ′′(p) = {[x2, y2]};

where V (q) = V ′(q) = V ′′(q) = ∅ for any propositional variable q 6= p. D′ is an isomorphic
translation by an integer c < 0 (to the left) of D ([x1, y1] is an image of [x, y] with respect to
this translation). Analogously, D′′ is an isomorphic translation by an integer c > 0 (to the
right) of D ([x2, y2] is an image of [x, y] with respect to this translation) – see Figure 4.
Towards a contradiction suppose that there is an HS♦

horn-formula ϕDp expressing Dp. Hence,
M, [x, y] 6|= ϕDp, M′, [x, y] |= ϕDp, and M′′, [x, y] |= ϕDp. We will show that (?) for any
HS♦

horn-formula ϕ ifM′, [x, y] |= ϕ andM′′, [x, y] |= ϕ, thenM, [x, y] |= ϕ which will give
rise to a contradiction and finish the proof.

Let ψ be any conjunct of ϕ. Then ψ is of a form [U](λ1 ∧ . . . ∧ λn → λn+1) or λ, where
λi and λ are generated by the grammar λ := > | ⊥ | r | 〈R〉λ. (Case 1): ψ is of a form
[U](λ1 ∧ . . . ∧ λn → λn+1). Since the formula is preceded by [U] and modelsM,M′, and
M′′ are isomorphic, then ψ is true in all three models or false in all of them, hence (?) holds.
(Case 2): ψ is of the form >, ⊥, 〈R1〉 . . . 〈Rn〉>, 〈R1〉 . . . 〈Rn〉⊥, p, q, or 〈R1〉 . . . 〈Rn〉q, where
q 6= p and Ri ∈ HSrel. Then it is easy to see that (?) holds. (Case 3) ψ = 〈R1〉 . . . 〈Rn〉p for
any R1, . . . ,Rn ∈ HSrel. As showed previously we may consider only Ri ∈ {B,B,E,E,A,A}.
Assume thatM′, [x, y] |= ψ andM′′, [x, y] |= ψ. To show thatM, [x, y] |= ψ it suffices to
prove the following statement:
(??) For any sequence R1, . . . ,Rn of relations from {B,B,E,E,A,A} the following holds:

if for some intervals [x, y], [x′, y′], [x′′, y′′] we have [x, y]relR1 ◦ . . . ◦ relRn [x′, y′] and
[x, y]relR1 ◦ . . . ◦ relRn [x′′, y′′], then for any interval [s, t] such that min(x′, x′′) ≤ s ≤
max(x′, x′′), and min(y′, y′′) ≤ t ≤ max(y′, y′′), and t− s ≥ min(y′−x′, y′′−x′′) it holds
that [x, y]relR1 ◦ . . . ◦ relRn [s, t],

where ◦ is the composition operator and for any interval [x, y] we use “x− y” to denote the
number of time-points between x and y (notice that in the case of a dense frame x− y equals
0 or infinity). Because of space limits we leave the proof of (??) to the reader. The proof may
be conducted by an induction on the number n. Showing that (??) finishes the proof. J

In the remaining part of this subsection we consider expressiveness of HS�
horn. We will

show that under (<,Den,S), (<,Den,Non-S), (≤,Dis,Non-S), (≤,Den,S), and (≤,Den,Non-S),
HS�

horn is not expressive enough to define the somewhere and difference modalities, as well
as nominals. However, the universal modality is still definable in HS�

horn.

I Theorem 12. Nominals and expressions of the form Ep and Dp for p ∈ PROP are
not definable in HS�

horn under (<,Den,S), (<,Den,Non-S), (≤,Dis,Non-S), (≤,Den,S), and
(≤,Den,Non-S). Whereas, Ap is definable in HS�

horn under all semantics.
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Proof. An expression of the form Ap is definable as Ap := [U](> → p). To show that
nominals, Ep, and Dp are not definable under (<,Den,S), (<,Den,Non-S), (≤,Dis,Non-S),
(≤,Den,S), and (≤,Den,Non-S) we will use a result from [8], where under these semantics a
construction of a canonical HS�

horn-model K[a,b]
ϕ of an HS-formula ϕ in an interval [a, b] is

presented. The model is canonical in the following sense [8, Theorem 3.2]:
(a) If in some HS-modelM it holds thatM, [a, b] |= ϕ, then K[a,b]

ϕ , [a, b] |= ϕ, and
(b) For any interval [x, y] and any p ∈ PROP if K[a,b]

ϕ , [x, y] |= p, then in any HS-modelM
such thatM, [a, b] |= ϕ we haveM, [x, y] |= p.

Towards a contradiction let us suppose that nominals, Ep, and Dp are definable in HS�
horn

under (<,Den,S), (<,Den,Non-S), (≤,Dis,Non-S), (≤,Den,S), and (≤,Den,Non-S). Let ϕ be an
HS�

horn-formula expressing that (i) p ∈ PROP simulates a nominal i, or (ii) Ep, or (iii) Dp.
We will reach a contradiction no matter in which of these forms ϕ is.

Let M = (D, V ) and M′ = (D, V ′) be HS-models such that V (p) = {[x, y]}, V ′(p) =
{[x′, y′]}, and [x, y] 6= [x′, y′]. Let [a, b] be an interval distinct from [x, y] and [x′, y′]. Hence,
M, [a, b] |= ϕ and M′, [a, b] |= ϕ. By (a) K[a,b]

ϕ , [a, b] |= ϕ. From the definition of ϕ –
see (i), (ii), and (iii) – it follows that there is [u,w] such that K[a,b]

ϕ , [u,w] |= p. Then
by (b) we obtain that M, [u,w] |= p and M′, [u,w] |= p. (Case 1): [u,w] 6= [x, y]. Then
M, [u,w] 6|= p. (Case 2): [u,w] 6= [x′, y′]. Then M′, [u,w] 6|= p. We have obtained a
contradiction in both cases, hence nominals, Ep, and Dp are not definable in HS�

horn under
(<,Den,S), (<,Den,Non-S), (≤,Dis,Non-S), (≤,Den,S), and (≤,Den,Non-S). J

As a corollary to the above theorem we obtain that adding nominals to the language of HS�
horn

(which results in obtaining HS�,i
horn) strictly increases expressive power of the language (in the

listed semantics). In what follows, we will show that the further extension of HS�,i
horn obtained

by adding satisfaction operators (i.e., reaching HS�,i,@
horn ) does not increase its expressiveness

in any semantics.

I Theorem 13. @ operators are definable in the language of HS�,i
horn under all semantics.

Proof. Let ϕ be an HS�,i,@
horn -formula. Construction of an equisatisfiable HS�,i

horn-formula
ϕ′ is by induction on the number of @i operators occurring in ϕ. In each step of the
construction choose any positive temporal literal λ in which occurs a satisfaction operator
and find the left-most satisfaction operator occurring in λ, i.e., an operator @i such that
λ = [R1] . . . [Rn]@iη with [R1] . . . [Rn] being a (possibly empty) sequence of box modal
operators and η a subformula of λ. We replace this occurrence of @iη by [L][L]p@iη, where
p@iη is a fresh propositional variable that did not occur in the so far constructed formula.
Moreover, add to the constructed formula the following conjunction:

[U](i ∧ η → [L][L]p@iη) ∧ [U]([L][L]p@iη ∧ i→ η), (14)

where (14) allows us to simulate @iη with [L][L]p@iη. The construction terminates when all
occurrences of satisfaction operators are eliminated. The resulting formula is in the language
of HS�,i

horn and is equisatisfiable with ϕ. J

5 Conclusions

Recently, decidability and computational complexity of Horn fragments of HS have been
intensively investigated. However, significantly less research has focused on their expressive
power. In this paper we address this gap by showing which semantics are definable in full HS
and which operators (nominals, satisfaction operators, somewhere, difference, and everywhere
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operators) are definable in various Horn fragments of HS. Our results on the relative
expressive power of HS Horn fragments are summarised diagrammatically in Figure 1b.

There are still numerous open problems concerning the expressive power of HS fragments.
For instance, not much is known about the expressive power of core fragments of HS [8, 9],
which are obtained by imposing further restrictions on Horn fragments. In particular, an
interesting open question is whether the expressive power diagram for such fragments is
analogous to the one for Horn fragments presented in Figure 1b.

Acknowledgements. The author is grateful to Michał Zawidzki and Carl Schultz for valuable
substantive an presentational comments, respectively, as well as to anonymous reviewers.
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A Appendix (proofs)

Proof of Lemma 5. Fix HS-modelsM,M′, a bisimulation Z between them and bisimilar
intervals [x, y], [x′, y′], i.e., intervals such that [x, y]Z[x′, y′]. We show by induction on
a construction of an HS-formula that for any HS-formula ϕ the following conditions are
equivalent:
1. M, [x, y] |= ϕ;
2. M′, [x′, y′] |= ϕ.

(Case 1) ϕ ∈ PROP. By (atom) it follows thatM, [x, y] |= ϕ iffM′, [x′, y′] |= ϕ.
(Case 2) ϕ = ¬ψ for any HS-formula ψ. By the inductive assumption M, [x, y] |= ψ iff
M′, [x′, y′] |= ψ. As a result,M, [x, y] |= ϕ iffM′, [x′, y′] |= ϕ.

(Case 3) ϕ = ψ ∧ ξ for any HS-formulas ψ, ξ. By the inductive assumptionM, [x, y] |= ψ

iff M′, [x′, y′] |= ψ, and M, [x, y] |= ξ iff M′, [x′, y′] |= ξ. Hence, M, [x, y] |= ϕ iff
M′, [x′, y′] |= ϕ.

(Case 4) ϕ = 〈R〉ψ for any R ∈ HSrel and any HS-formula ψ.
(1 ⇒ 2) Assume M, [x, y] |= ϕ. Then, there is [u,w] such that [x, y]relR[u,w] and
M, [u,w] |= ψ. [x, y]Z[x′, y′] so by (zig) there is [u′, w′] such that [x′, y′]relR′[u′, w′] and
[u,w]Z[u′, w′]. Therefore, by the inductive assumptionM′, [u′, w′] |= ψ, soM′, [x′, y′] |=
ϕ.
(1⇐ 2) Is proved analogously as (1⇒ 2) but using (zag) instead of (zig).

(Case 5) ϕ = [R]ψ for any R ∈ HSrel and any HS-formula ψ.
(1 ⇒ 2) Assume M, [x, y] |= ϕ. To show M′, [x′, y′] |= ϕ. Fix any [u′, w′] such that
[x′, y′]relR′[u′, w′]. To show thatM′, [u′, w′] |= ψ. [x, y]Z[x′, y′] so by (zag) there is [u,w]
such that [x, y]relR[u,w] and [u,w]Z[u′, w′]. M, [x, y] |= [R]ψ, soM, [u,w] |= ψ. By the
inductive assumptionM′, [u′, w′] |= ψ, hence we obtainM′, [x′, y′] |= ϕ.
(1⇐ 2) Is proved analogously as (1⇒ 2) but using (zig) instead of (zag). J

Theorem 4 was stated in [2] without a proof. In what follows, we present a proof of this
theorem.

Proof of Theorem 4. Let L be a modal language in which the difference operator D is
polynomially definable. Then, let Lext be an extension of L with nominals and @ operators.
Fix any ϕext ∈ Lext. To prove the theorem we show a polynomial (with respect to the size
of ϕext) translation of ϕext into ϕ ∈ L such that ϕext is satisfiable iff ϕ is.

First, we show that E and A are polynomially definable in L. Indeed, they are defined as:

Eψ := ψ ∨ Dψ;
Aψ := ¬E¬ψ.
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Now, we show a step by step construction of ϕ. For any i occurring in ϕext as an nominal or
an index of some @ operator occurring in ϕext, we introduce a fresh propositional variable
pi (i.e., not occurring in ϕext) such that all pi’s are pairwise different. Then we proceed as
follows.

First, inductively apply the following procedure to ϕext. Let @iψ be any subformula of
ϕext such that ψ does not contain any occurrence of @ operators. Construct ϕ′ by replacing
@iψ with a new variable qk and let:

θk = (Aqk ∨ A¬qk)∧
(Aqk → E(pi ∧ ψ))∧
(A¬qk → A¬ψ) ;

χi = Epi ∧ A(pi → ¬Dpi).

It is easy to see that ϕext is satisfiable iff ϕ′ ∧ θk ∧ χi is. The procedure finishes when no
more @ operators are in the constructed formula. Let ϕ′′ be a conjunction of the finally
constructed formula with all θk’s and all χi’s constructed so far. Obviously, ϕ′′ does not
contain @ operators and ϕext is satisfiable iff ϕ′′ is.

Second, for any nominal j occurring in ϕ′′ replace all its occurrences in ϕ′′ by pj and let

γj = Epj ∧ A(pj → ¬Dpj).

A conjunction of the obtained formula with all γj ’s is the final formula ϕ.
Formula ϕ does not contain @ operators nor nominals, and ϕext is satisfiable iff ϕ is.

Furthermore, the translation of ϕext to ϕ is polynomial. More precisely, it is at most quadratic
in the size of ϕext. J

Completion of the proof of Theorem 11. To finish the proof it remains to prove the fol-
lowing statement:
(??) For any sequence R1, . . . ,Rn of relations from {B,B,E,E,A,A} the following holds:

if for some intervals [x, y], [x′, y′], [x′′, y′′] we have [x, y]relR1 ◦ . . . ◦ relRn [x′, y′] and
[x, y]relR1 ◦ . . . ◦ relRn [x′′, y′′], then for any interval [s, t] such that min(x′, x′′) ≤ s ≤
max(x′, x′′), and min(y′, y′′) ≤ t ≤ max(y′, y′′), and t− s ≥ min(y′−x′, y′′−x′′) it holds
that [x, y]relR1 ◦ . . . ◦ relRn [s, t],

where ◦ is the composition operator and for any interval [x, y] we use “x− y” to denote a
number of time-points between x and y (in the case of dense time frame x− y equals 0 or
infinity).

We will prove (??) by induction on the number n of relations. Let us fix an interval [x, y]
and assume that the statement holds for k relations, i.e., for any R1, . . . ,Rk ∈ {B,B,E,E,A,A}.
Let

X = {[x′, y′] | [x, y]relR1 ◦ . . . ◦ relRk [x′, y′]}.

We will shows that the statement holds for any k + 1 relations, i.e., for any R1, . . . ,Rk+1 ∈
{B,B,E,E,A,A}. Let us fix any Rk+1 ∈ {B,B,E,E,A,A} and define

X ′ = {[x′, y′] | [x, y]relR1 ◦ . . . ◦ relRk+1 [x′, y′]}.

Fix any intervals [x′, y′], [x′′, y′′] ∈ X ′ and any interval [s, t] such that min(x′, x′′) ≤ s ≤
max(x′, x′′) and min(y′, y′′) ≤ t ≤ max(y′, y′′). We need to show that [s, t] ∈ X ′. In what
follows we will assume that the semantics is irreflexive but for any reflexive semantics the
proof is analogous (namely by replacing “<” with “≤” in the remaining part of the proof).

TIME 2017
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(Case 1) Rk+1 = B. Then there are intervals [u′, w′], [u′′, w′′] ∈ X such that [u′, w′]relB[x′, y′]
and [u′′, w′′]relB[x′′, y′′]. By the definition of relB it follows that u′ = x′, w′ > y′, u′′ = x′′,
and w′′ > y′′. Let z = max(w′, w′′), then by the inductive assumption we obtain [s, z] ∈ X.
It follows that z > y′ and z > y′′, so z > t. Then [s, z]relB[s, t], so [s, t] ∈ X ′.

(Case 2) Rk+1 = B. Then there are intervals [u′, w′], [u′′, w′′] ∈ X such that [u′, w′]relB[x′, y′]
and [u′′, w′′]relB[x′′, y′′]. By the definition of relB it follows that u′ = x′, w′ < y′, u′′ = x′′,
and w′′ < y′′. Let [s, z] be such an interval that z−s = min(w′−u′, w′′−u′′), then by the
inductive assumption [s, z] ∈ X. Since w′ < y′ and w′′ < y′′, z−s < min(y′−x′, y′′−x′′).
Hence z − s < t− s, so z < t. It follows that [s, z]relB[s, t] and so [s, t] ∈ X ′.

(Case 3) Rk+1 = E. Then there are intervals [u′, w′], [u′′, w′′] ∈ X such that [u′, w′]relE[x′, y′]
and [u′′, w′′]relE[x′′, y′′]. By the definition of relE it follows that u′ < x′, w′ = y′, u′′ < x′′,
and w′′ = y′′. Let z = min(u′, u′′), then by the inductive assumption we obtain [z, t] ∈ X.
It follows that z < x′ and z < x′′, so z < s. Then [z, t]relE[s, t], so [s, t] ∈ X ′.

(Case 4) Rk+1 = E. Then there are intervals [u′, w′], [u′′, w′′] ∈ X such that [u′, w′]relE[x′, y′]
and [u′′, w′′]relE[x′′, y′′]. By the definition of relE it follows that u′ > x′, w′ = y′, u′′ > x′′,
and w′′ = y′′. Let [z, t] be such an interval that t−z = min(w′−u′, w′′−u′′), then by the
inductive assumption [z, t] ∈ X. Since u′ > x′ and u′′ > x′′, t− z < min(y′− x′, y′′− x′′).
Hence t− z < t− s, so s < z. It follows that [z, t]relE[s, t] and so [s, t] ∈ X ′.

(Case 5) Rk+1 = A. Then there are intervals [u′, w′], [u′′, w′′] ∈ X such that [u′, w′]relA[x′, y′]
and [u′′, w′′]relA[x′′, y′′]. By the definition of relA it follows that w′ = x′ and w′′ = x′′.
Let z = min(u′, u′′), then by the inductive assumption we obtain [z, s] ∈ X. Then
[z, s]relA[s, t], so [s, t] ∈ X ′.

(Case 6) Rk+1 = A. Then there are intervals [u′, w′], [u′′, w′′] ∈ X such that [u′, w′]relA[x′, y′]
and [u′′, w′′]relA[x′′, y′′]. By the definition of relA it follows that u′ = y′ and u′′ = y′′.
Let z = max(w′, w′′), then by the inductive assumption we obtain [t, z] ∈ X. Then
[t, z]relA[s, t], so [s, t] ∈ X ′. J
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Abstract
A conditional simple temporal network with uncertainty (CSTNU) is a framework able to model
temporal plans subject to both conditional constraints and uncertain durations. The combination
of these two characteristics represents the uncontrollable part of the network. That is, before the
network starts executing, we do not know completely which time points and constraints will be
taken into consideration nor how long the uncertain durations will last. Dynamic controllability
(DC) implies the existence of a strategy scheduling the time points of the network in real time
depending on how the uncontrollable part behaves. Despite all this, CSTNUs fail to model tem-
poral plans in which a few conditional constraints are under control and may therefore influence
(or be influenced by) the uncontrollable part. To bridge this gap, this paper proposes conditional
simple temporal networks with uncertainty and decisions (CSTNUDs) which introduce decision
time points into the specification in order to operate on this conditional part under control. We
model the dynamic controllability checking (DC-checking) of a CSTNUD as a two-player game in
which each player makes his moves in his turn at a specific time instant. We give an encoding into
timed game automata for a sound and complete DC-checking. We also synthesize memoryless
execution strategies for CSTNUDs proved to be DC. The proposed approach is fully automated.
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1 Introduction

Temporal networks are a framework to model temporal plans and check the coherence of their
temporal constraints which impose a minimal and maximal temporal distance between the
occurrence of the events specified in the plan. Temporal plans mainly divide in plans having
everything under control and plans having something out of control. The main components
of a temporal network are time points and constraints. Time points are variables having
continuous domain and model the occurrence of events as soon as these variables are assigned
real values (i.e., executed). Constraints regulate the minimal and maximal temporal distance
between the occurrence of pairs of events and are formalized as linear inequalities.

Whenever both these two components are under control we simply deal with a consistency
problem asking us to find an assignment of real values to all time points satisfying all
constraints. Simple temporal networks (STNs) model exactly this case [10], whereas Drake [9]
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addresses temporal plans with choices that are, however, under control; therefore, we keep
dealing with a consistency problem asking us to further find suitable values for such choices.

Instead, when some component is out of control, satisfiability is, in general, not enough.
In such a case, we deal with a controllability problem.

Conditional simple temporal networks (CSTNs) [14, 20] address conditional constraints
to enable or disable some parts of the network (i.e., a subset of time points and constraints)
during execution. Conditionals are expressed as labels consisting of conjunctions of literals
whose atoms are Boolean propositions. The truth value assignments to such propositions are
out of control and depend on the behavior of unpredictable external events which are only
observed to occur while executing the network.

Simple temporal networks with uncertainty (STNUs) [17, 18] address uncertain (but
bounded) durations. Such durations are modeled by contingent links, i.e. pairs of distinct time
points specifying a range of allowed values between their distance. One of these time points
is called activation and it is under control, whereas the other one is called contingent and it
is not. The real value assignment to the contingent one depends again on the behavior of
unpredictable external events which are only observed to occur while executing the network.

Conditional simple temporal networks with uncertainty (CSTNUs) [7, 13] merge the
semantics of CSTNs and STNUs addressing conditional constraints and uncertain durations.

Controllability of a temporal network implies the existence of a strategy operating on the
controllable part such that all constraints will eventually be satisfied. Controllability mainly
divides in weak, strong and dynamic. Weak controllability ensures the existence of a (possible
different) strategy to operate on the controllable part whenever we are able to predict how
the entire uncontrollable part will behave before the execution starts. Strong controllability
is the opposite case ensuring the existence of a strategy operating always the same way on
the controllable part no matter how the uncontrollable part will behave. However, strong
controllability is “too strong”. If a temporal network is not strongly controllable, it could
still be executable by operating on the controllable part reacting to the uncontrollable one
as soon as it becomes known. Dynamic controllability addresses exactly this case.

However, none of the formalisms mentioned so far tackles temporal plans in which some
conditional constraints under control may influence (or be influenced by) some uncontrollable
part. An initial discussion is given in [3] where CSTNs are extended with decision nodes
regulating the truth value assignments to some propositions under control.

We give here the first attempt to address temporal plans in which decisions may influence
(or be influenced by) both conditional and temporal uncertainty.

Toward this aim our contributions are three-fold. First, we define conditional simple
temporal networks with uncertainty and decisions (CSTNUDs) as a unified formalism for
temporal networks expressing uncontrollable parts and model dynamic controllability as a
two-player game in which players make moves in their turns. Second, we provide an encoding
into timed game automata for a sound and complete DC-checking and synthesize execution
strategies by means of the UPPAAL-TIGA software [2]. Third, we automate our approach
by discussing a proof of concept tool we came up with.

The rest of the paper is organized as follows. Section 2 provides essential background
on CSTNUs, timed game automata (TGAs) and the DC-checking of CSTNUs via TGAs.
Section 3 introduces our main contribution: CSTNUs with Decisions along with a new
semantics given in move-based strategies. Section 4 extends the encoding given in Section 2
to address the DC-checking of CSTNUDs. Section 5 discusses our tool and a preliminary
experimental evaluation. Section 6 discusses the correctness and complexity of the encoding.
Section 7 discusses related work. Section 8 draws conclusions and discusses future work.
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2 Background: CSTNUs, TGAs and Dynamic Controllability

2.1 Conditional Simple Temporal Networks with Uncertainty

Given a set P of Boolean propositions, a label ` = λ1 . . . λn is any finite conjunction of
literals λi, where a literal is either a proposition p (positive literal) or its negation ¬p
(negative literal). The empty label is denoted by �. The label universe of P, denoted by
P∗, is the set of all possible (consistent) labels drawn from P; e.g., if P = {p, q}, then
P∗ = {�, p, q,¬p,¬q, p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q}. Two labels `1, `2 ∈ P∗ are consistent
if and only if their conjunction `1 ∧ `2 is satisfiable. A label `1 entails a label `2 (written
`1 ⇒ `2) if and only if all literals in `2 appear in `1 too (i.e., if `1 is more specific than `2). A
label `1 falsifies a label `2 iff `1 ∧ `2 is inconsistent. For instance, if `1 = p ∧ ¬q and `2 = p,
then `1 and `2 are consistent since p∧¬q ∧ p is satisfiable, and `1 entails `2 since p∧¬q ⇒ p.

IDefinition 1 (CSTNU). A Conditional Simple Temporal Network with Uncertainty (CSTNU )
is a tuple 〈T ,OT ,P, O, L,L, C〉, where:
T = {X,Y, . . . } is a finite set of time points (i.e., variables with continuous domain).
OT ⊆ T = {P?, Q?, . . . } is a set of observation time points.
P = {p, q, . . . } is a finite set of Boolean propositions.
O : P → OT is a bijection associating a unique P ? ∈ OT to each p ∈ P (i.e., O(p) = P ?).
L : T → P∗ is a function assigning a label to each time point X ∈ T .
L is a finite set of contingent links (A, x, y, C), where A,C ∈ T , 0 < x < y <∞ (x, y ∈ R).
C is a finite set of labeled constraints (Y −X ≤ k, `), where X,Y ∈ T , k ∈ R ∪ {±∞}
and ` ∈ P∗. If (Y −X ≤ k, `) 6∈ C for some ` ∈ P∗, then k =∞ (for that label).

A CSTNU is well-defined if and only if all the following properties hold.
For each X ∈ T , if λ ∈ L(X), where λ ∈ {p,¬p}, then L(X)⇒ L(O(p)) and (O(p)−X ≤
−ε, L(X)) ∈ C for some ε > 0 (time point label honesty [14]).
For any (A, x, y, C) ∈ L, A 6= C and L(A) = L(C)
For any pair (A1, x1, y1, C1), (A2, x2, y2, C2) ∈ L if A1 6= A2, then C1 6= C2.
For each constraint (Y −X ≤ k, `) ∈ C, `⇒ L(Y )∧L(X) (constraint label coherence [14]),
and for each literal λ ∈ `, where λ ∈ {p,¬p}, `⇒ L(O(p)) (constraint label honesty [14]).

We execute a time point by assigning it a real value (modeling the occurrence of some
temporal event). We execute a CSTNU by executing all relevant non-contingent time points
(see below). For any contingent link (A, x, y, C), A is the activation time point, whereas C is
the contingent time point. A is under control, C is not. Once we execute A, we can merely
observe the execution of C (by the environment). However, C is guaranteed to occur such
that C −A ∈ [x, y]. A contingent link has a unique implicit label given by ` = L(A) = L(C).

Likewise, an observation time point P? ∈ OT is under control, whereas the truth value
assignment to its associated Boolean proposition p is not. Once we execute P? we can
merely observe such an assignment. Before executing P ? the value of p is unknown, and after
executing P? is either > (true) or ⊥ (false). As we execute observation time points, their
truth value assignments to the associated propositions generate the current partial scenario.
That is, a label `cps ∈ P∗ consisting of the conjunction of these literals. Initially, `cps = �,
and whenever a proposition is assigned a truth value, the resulting literal λ is appended to
`cps. Time points and constraints are relevant if their labels are not falsified by `cps. Before
executing the network all time points and constraints are relevant. If a time point turns
irrelevant, we will not execute it. If a constraint does, we will not be obliged to satisfy it.
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Figure 1 Example of uncontrollable CSTNU.

A CSTNU is said dynamically controllable (DC) if there exists a strategy executing all
relevant non-contingent time points such that all (relevant) constraints are satisfied no matter
which uncertain durations and truth value assignments turn out to be during execution.

We graphically represent a CSTNU as a labeled (multi)graph, where the set of nodes
coincides with the set of time points (labels are shown below the nodes), whereas the set of
edges divides in contingent links and requirement links. A contingent link (shown as a double
arrow A⇒ C labeled by [x, y]) models (A, x, y, C) ∈ L. A requirement link (shown as a single
arrow X → Y labeled by [k1, k2], `) models the pair (Y −X ≤ k2, `), (X − Y ≤ −k1, `) ∈ C.

Figure 1 shows an example of CSTNU having two observation time points P?, D? and
four contingent links (A1, 1, 6, C1), (A2, 8, 12, C2), (A3, 3, 5, C3) and (A4, 6, 10, C4). P ? is the
first time point to execute, whereas E is the last. If P ? assigns > to p, then A2 and C2 along
with the constraints labeled by ¬p turn irrelevant as `cps = p falsifies ¬p. If P? assigns ⊥ to
p, we will ignore A1, C1 and all constraints labeled by p. Likewise, if D? assigns > (resp., ⊥)
to d, we will ignore A4 and C4 (resp., A3 and C3) and all constraints labeled by ¬d (resp., d).
The CSTNU in Figure 1 is uncontrollable. For example, assume that each contingent time
point (if relevant) takes its maximal duration. If `cps = p ∧ ¬d, then the execution sequence
is P? = 0, A1 = 1, C1 = 7, D? = 8, A4 = 9, C4 = 19 and E = 20 (violating [21,∞],¬d
between P? and E requiring that E is executed from 21 on.). If `cps = ¬p ∧ d, then the
execution sequence is P? = 0, A2 = 1, C2 = 13, D? = 14, A3 = 15, C3 = 20 and E = 21
(violating [−∞, 20], d between P? and E requiring that E is executed within 20).

2.2 Timed Game Automata
A timed automaton (TA) [1] refines a finite automaton [12] by adding real-valued clocks and
clock constraints. All clocks increase at the uniform rate and may by reset many times.

I Definition 2 (TGA). A Timed Automaton (TA) is a tuple 〈Loc,Act,X ,→, Inv〉, where
Loc is a finite set of locations (one is initial). A location is urgent if time freezes in it.
Act is a finite set of actions and X is a finite set of real-valued clocks.
→⊆ Loc ×H(X ) × Act × 2X × Loc is the transition relation. An edge (Li, G,A,R,Lj)
represents a transition from Li to Lj realizing action A. G ∈ H(X ) is a guard consisting of
a conjunction of clock constraints having the form c1 ∼ k or c1− c2 ∼ k where c1, c2 ∈ X ,
k ∈ N and ∼∈ {<, ≤, =, >, ≥}. R ⊆ 2X is the set of clocks to reset (i.e., set to 0).
Inv : Loc → H(X ) is a function assigning an invariant (modeled as a conjunction of clock
constraints) to each location. Inv(L) says when the TA is allowed to remain in L.

A Timed Game Automaton (TGA) [15] extends a TA by dividing transitions into controllable
and uncontrollable. Uncontrollable transitions have priority over controllable ones.
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L�LpL¬pLdgoal

(L¬d)

L0L1
〈>, pass, {cδ}〉

〈cδ > 0, gain, ∅〉

〈cP = ĉ, exP, {cP}〉

〈cA1 = ĉ, exA1, {cA1}〉
〈cA2 = ĉ, exA2, {cA2}〉

〈cD = ĉ, exD, {cD}〉〈cA3 = ĉ, exA3, {cA3}〉
〈cA4 = ĉ, exA4, {cA4}〉
〈cE = ĉ, exE, {cE}〉

〈Σ1, exC1, {cC1, cδ}〉
〈Σ2, exC2, {cC2, cδ}〉
〈Σ3, exC3, {cC3, cδ}〉

〈Σ4, exC4, {cC4, cδ}〉
〈cP < ĉ ∧ cP = 0∧
bP = ĉ; pFalse; {bP, cδ}〉
〈cD < ĉ ∧ cD = 0∧
bD = ĉ; dFalse; {bD, cδ}〉

〈Φ1, failC1, ∅〉
〈Φ2, failC2, ∅〉
〈Φ3, failC3, ∅〉
〈Φ4, failC4, ∅〉

〈cP < ĉ ∧ cD < ĉ ∧ cE < ĉ ∧ cδ > 0, sat�, ∅〉

〈cA1 < ĉ ∧ cC1 < ĉ∧
cP− cA1 = 1∧

cC1 − cD = 1, satp, ∅〉

〈cP = ĉ, skip1
p , ∅〉

〈bP < ĉ, skip2
p , ∅〉

〈cA2 < ĉ ∧ cC2 < ĉ∧
cP− cA2 = 1∧

cC2 − cD = 1, sat¬p, ∅〉

〈cP = ĉ, skip1
¬p, ∅〉

〈bP = ĉ, skip2
¬p, ∅〉

〈cA3 < ĉ ∧ cC3 < ĉ∧
cD− cA3 = 1∧
cC3 − cE = 1∧

cP− cE ≤ 20, satd, ∅〉

〈cD = ĉ, skip1
d , ∅〉

〈bD < ĉ, skip2
d , ∅〉

〈cA4 < ĉ ∧ cC4 < ĉ∧
cD− cA4 = 1∧
cC4 − cE = 1∧

cP− cE ≥ 21, sat¬d, ∅〉

〈cD = ĉ, skip1
¬d, ∅〉

〈bD = ĉ, skip2
¬d, ∅〉

Figure 2 TGA encoding the CSTNU in Fig. 1: L0 is the initial location, L1, L�, Lp, L¬p, Ld,
goal are urgent. Solid (resp., dashed) edges model controllable (resp., uncontrollable) transitions.
Σ1 : cA1 < ĉ∧cC1 = ĉ∧cA1 ≥ 1∧cA1 ≤ 6 and Φ1 : cA1 < ĉ∧cC1 = ĉ∧cA1 > 6. Σ2 : cA2 < ĉ∧cC2 =
ĉ∧cA2 ≥ 8∧cA2 ≤ 12 and Φ2 : cA2 < ĉ∧cC2 = ĉ∧cA2 > 12. Σ3 : cA3 < ĉ∧cC3 = ĉ∧cA3 ≥ 3∧cA3 ≤ 5
and Φ3 : cA3 < ĉ ∧ cC3 = ĉ ∧ cA3 > 5. Σ4 : cA4 < ĉ ∧ cC4 = ĉ ∧ cA4 ≥ 6 ∧ cA4 ≤ 10 and
Φ4 : cA4 < ĉ ∧ cC4 = ĉ ∧ cA4 ∧ cA4 > 10.

We graphically represent a TGA as a (multi)graph where the set of nodes coincides with
that of locations whereas the set of edges models controllable transitions (solid edges) and
uncontrollable ones (dashed edges). Figure 2 depicts a TGA encoding the CSTNU in Figure 1.
In what follows we sum up how this encoding is achieved and dynamic controllability checked.

2.3 Dynamic Controllability
The DC-checking problem is the problem of deciding if a CSTNU is DC. We can answer the
DC-checking problem by using sound and complete TGA reachability algorithms [4, 5]. We
model the DC-checking as a two-player game between a controller (ctrl) and the environment
(env). The aim of ctrl is to reach a specific location as soon as all relevant time points
have been executed and all constraints are satisfied, whereas env’s goal is to prevent ctrl
from doing that. If ctrl wins, the network is DC, otherwise it is not. An important aspect
of this encoding is that ctrl is assigned uncontrollable transitions, whereas env is assigned
controllable ones. This is necessary to allow env’s instantaneous reactions as in the TGA
semantics, uncontrollable transitions go first [4, 5, 6]. The encoding is as follows.

Clocks. X contains a clock cX for each time point X ∈ T and a clock bP for each proposition
p ∈ P . X also contains two special clocks ĉ (modeling the global time) and cδ (regulating
the interplay of the game). cX = ĉ, means that X has not been executed, whereas
cX < ĉ means that X was executed at time ĉ − cX (when this difference is > 0).
Likewise, bP = ĉ means that p = >, whereas bP < ĉ means that p = ⊥ (both when
cP < ĉ). Each cX and bP may be reset at most once. For our example we have
X = {ĉ, cδ, cP, cA1, cC1, cA2, cC2, cD, cA3, cC3, cA4, cC4, cE, bP, bD}.

Locations. Loc contains three core locations L0 (initial), L1 (urgent) and goal (urgent),
and n− 1 urgent locations L`1 , . . . , L`n−1 where n is the number of distinct labels in the
CSTNU. That is, n = |{L(X) | X ∈ T } ∪ {` | (Y −X ≤ k, `) ∈ C}|. For our example,
Loc = {L0, L1, L�, Lp, L¬p, Ld, goal(= L¬d} as the distinct labels are {�, p,¬p, d,¬d}.
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Transitions. → contains controllable and uncontrollable transitions to model the following:
Game interplay. pass and gain are uncontrollable transitions regulating the game
interplay. In particular gain can be taken only when cδ > 0 modeling the reaction
time needed to observe how the uncontrollable part behaves.
Non-contingent time point executions. For each non-contingent time point X there is an
uncontrollable self-loop transition 〈L1, cX = ĉ, exX, {cX}, L1〉 modeling the execution
of X. The guard says that X has not been executed yet, while the reset fixes the
execution time of X to ĉ− cX by resetting cX.
Contingent time point executions. For each contingent link (A, x, y, C) ∈ L there is a
controllable self-loop transition 〈L0, cA < ĉ∧cC = ĉ∧cA ≥ x∧cA ≤ y, exC, {cC, cδ}, L0〉
to allow env to execute the contingent time point C such that C −A ∈ [x, y], and a
fail transition 〈L0, cA < ĉ ∧ cC = ĉ ∧ cA > y, failC, {cC, cδ}, goal〉 to allow ctrl to
move to goal if env fails or refuses to take the transition.
Truth value assignments. For each proposition p ∈ P there is a controllable self-loop
transition 〈L0, cP < ĉ ∧ cP = 0 ∧ bP = ĉ, pFalse, {bP, cδ}, L0〉 to allow env to assign
⊥ to p, if it decides so. If it does not, the truth value of p will remain forever >.
Winning conditions. To check that all relevant time points have been executed and all
constraints are satisfied we connect each pair of locations (L`i−1 , L`i) in the winning
path L0 → L� → · · · → L`n−1 → goal by means of a set of uncontrollable transitions.
Each set of transitions going from L`i−1 to L`i verifies that if `cps does not falsify `i, then
all time points labeled by `i must have been executed and all constraints labeled by `i are
satisfied. If `cps falsifies `i, a skip transition allows us to ignore this check. In this way,
the problem is decomposed with respect to the specific labels avoiding the combinatorial
explosion of all arising cases. For example, the set of transitions going from L� to Lp is
generated as follows. In the scenario where P ? has been executed and p assigned > (i.e.,
`cps = p), then A1 and C1 must have been executed, and A1 − P ? ≤ 1, P ?−A1 ≤ −1,
D? − C1 ≤ 1, C1 − D? ≤ −1 are satisfied. In other words, the meta conditional
constraint (cP < ĉ ∧ bP = ĉ) =⇒ (cA1 < ĉ ∧ cC1 < ĉ ∧ cP− cA1 = 1 ∧ cC1 − cD = 1)
refines to ¬(cP < ĉ ∧ bP = ĉ) ∨ (cA1 < ĉ ∧ cC1 < ĉ ∧ cP− cA1 = 1 ∧ cC1 − cD ≥ 1 = 1)
simplifying to (cP = ĉ)∨ (bP < ĉ)∨ (cA1 < ĉ∧ cC1 < ĉ∧ cP− cA1 = 1∧ cC1 − cD = 1)
since TGAs do not allow negations or disjunctions of clock constraints in the guards.
Finally, we generate a transition1 for each disjunct (satp,skip1

p,skip2
p).

DC-checking is done by looking for a control strategy for env to always prevent ctrl
from getting to goal. If such a strategy exists, the initial CSTNU is not DC, otherwise it is
(as ctrl has a counter-strategy to react to any combination of env’s moves).

3 CSTNUs with Decisions

In this section we extend CSTNUs by injecting a new kind of time point: the decision time
point. A decision time point D! dualizes an observation one P ? as the truth value assignment
to the associated proposition is under control. As a result, the controllable and uncontrollable
part may now mutually influence one another. That is, deciding some truth value may restrict
(or even exclude) some uncontrollable part and vice versa. Several interesting cases may arise
depending on if a few truth values are decided before or after having full information on how

1 We model Y −X ≤ k as (ĉ− cY)− (ĉ− cX) ≤ k simplifying to cX− cY ≤ k. We might write cX− cY ≥ k
as a short for X − Y ≤ −k and cX− cY = k as a short for the pair Y −X ≤ k and X − Y ≤ −k.
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P !
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A1
[p]

C1
[p]

A2
[¬p]

C2
[¬p]

D?
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C3
[d]

A4
[¬d]

C4
[¬d]

E
[�]

[1, 6]

[8, 12]
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[6, 10]

[21,∞],¬d
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(a) A decision before any uncon-
trollable part.
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[p]
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[p]
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C2
[¬p]
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A3
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C3
[d]
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[¬d]
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(b) A decision after all observa-
tion and some contingent.

P !
[�]

A1
[p]

C1
[p]

A2
[¬p]

C2
[¬p]

D!
[�]

A3
[d]

C3
[d]

A4
[¬d]

C4
[¬d]

E
[�]

[1, 6]

[8, 12]

[3, 5]

[6, 10]

[21,∞],¬d
[−∞, 20], d

(c) A decision after another de-
cision and a contingent.

Figure 3 Possible cases of the CSTNU in Figure 1 when substituting decision time points for
observation ones. Missing labels on requirement links X → Y are all [1, 1], L(X) ∧ L(Y ) (Figure 1).

the uncontrollable part will or have behaved. We go ahead with this discussion by taking
Figure 3 as an example. There, we took the initial CSTNU in Figure 1 and substituted
decision time points for observation ones in all possible combinations. We discuss these
examples focusing on the combinations of minimal and maximal durations of contingent links
only. If it works for them, then it must work for any other combination of durations.

In Figure 3a P ! is a decision time point. The resulting CSTNUD is uncontrollable. If we
decide p (i.e., assign > to p), then observe ¬d (i.e., D? assigns ⊥ to d) and C1, C4 take their
maximal durations, then we will have to execute E at 20 violating (P?− E ≤ −21,¬d)
as P? is executed at 0. Conversely, if we decide ¬p, then observe d and C2 and C3 take
their maximal durations, then we will have to execute E at 21 (violating E −P? ≤ 20, d).
In Figure 3b D! is a decision time point. The resulting CSTNUD is DC. Assume that we
observe p. Regardless on what duration C1 takes, we can only decide d. Indeed, if we
decided ¬d, regardless of the duration of C4 we would have to execute E before time 21
violating (P?−E ≤ −21,¬d). Assume now that we observe ¬p. If C2 takes its minimal
duration, d is the only good decision. If we decided ¬d and then C4 took its minimal
duration, we would execute E at 18 violating (P?−E ≤ −21,¬d). On the contrary, if
C2 takes its maximal duration then we can only decide ¬d. If we decided d and C3 took
its maximal duration, we would have to execute E at 21 violating (E − P? ≤ 20, d).
In Figure 3c P ! and D! are both decision time points. The resulting CSTNUD is of
course2 dynamically controllable. If we decide p, then deciding d is always going to be
fine. If we decide ¬p, then we will decide either d or ¬d depending on how long C2 lasts.
If C2 takes its minimal duration, then we will decide d (but not ¬d since C4 could then
take its minimal duration). If C2 takes its maximal duration, then we will decide ¬d (but
not d since if C3 could then take its maximal duration).

Hence, decisions are dynamic.

I Definition 3 (CSTNUD). A Conditional Simple Temporal Network with Uncertainty and
Decisions (CSTNUD) is a tuple 〈T ,OT ,DT ,P, O, L,L, C〉, where:
T ,OT ,P, L,L, C are exactly the same of those given for CSTNUs. Furthermore, we
denote the set of contingent time points as Contingent = {C | (A, x, y, C) ∈ L}.
DT ⊆ T = {D!, E!, . . . } is a set of decision time points such that OT ∩ DT = ∅.
O : P → DT ∪ OT is a bijection associating a unique observation or decision time point
to each proposition. If O(p) ∈ OT , then p is called observable, whereas if O(d) ∈ DT ,

2 If a network is DC (e.g., Figure 3b), then turning controllable some uncontrollable part (e.g., Figure 3c)
cannot worsen the situation turning the network uncontrollable. The vice versa does not hold.
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then d is called decidable. OP ⊆ P = {p | O(p) ∈ OT } and DP ⊆ P = {d | O(d) ∈ DT }
shorten the sets of all observable and decidable propositions, where OP ∩ DP = ∅.

A CSTNUD is well-defined if and only if the underlying CSTNU is well-defined and time
point label honesty extends to decidable propositions as follows: For each X ∈ T , if λ ∈ L(X),
where λ = {d,¬d} and d ∈ DP, then L(X) ⇒ L(O(d)) and (O(d) − X ≤ 0, L(X)) ∈ C).
That is, X can be executed at the same time of D! (but instantaneously after D! since time
points executed at the same instant must in general follow an order of execution).

We model the execution semantics of a CSTNUD as a two-player game in which Player1
models the controller and Player2 models the environment. We employ execution sequences
[16] to model the state of the game and define players’ strategies as mappings from execution
sequences considered at specific time instants to moves.

A sequence {x1, x2, . . . , xn} is a totally ordered collection of elements such that for any
pair of elements xi, xj , if i < j (resp., i > j), then it means that xi is before (resp., after)
xj . We abuse notation and write {x1, x2, . . . , xn} ∪ {xp} to mean the appending operation
resulting in {x1, x2, . . . , xn, xp} where n < p. We write xi ∈ {x1, x2, . . . , xn} iff there exists
j ∈ N, 1 ≤ j ≤ n such that xi = xj (membership), and |{x1, x2, . . . , xn}| = n (cardinality).
A partial schedule for a subset of time points T ′ ⊆ T is a mapping ST ′ : T ′ → R assigning a
real value to each X ∈ T ′. A partial schedule for a subset of Boolean propositions P ′ ⊆ P
is a mapping SP′ : P ′ → {>,⊥} assigning either > or ⊥ to each p ∈ P ′. We write b for a
generic Boolean value (i.e., b ∈ {>,⊥}). We write ST ′ ∪ {ST ′(Y ) = k} to shorten that the
domain of ST ′ extends by adding time point Y such that ST ′(Y ) = k. Similarly, we write
SP′ ∪ {SP′(p) = b} for Boolean propositions.

IDefinition 4 (Instantiation sequence). An instantiation sequence is a quadruple 〈E,K, SE , SK〉,
where E is a finite sequence of distinct time points in T , K is a finite sequence of distinct
propositions in P , and SE , SK are partial schedules whose domains are E and K, respectively.

I Definition 5 (Execution sequence). An execution sequence Z = 〈E,K, SE , SK〉 is an
instantiation sequence satisfying the following properties:
SE Monotonicity For any pair Xi, Xj ∈ E if i < j, then SE(Xi) ≤ SE(Xj).
(Time Point Label) Honesty For each X ∈ E and each literal λ ∈ L(X) where λ ∈ {p,¬p},

then O(p) ∈ E and O(p) is before X, p ∈ K, SK(p) = > (if λ = p) and SK(p) = ⊥ (if
λ = ¬p). Also, SE(O(p)) < SE(X) (if p ∈ OP) and SE(O(p)) ≤ SE(X) (if p ∈ DP).

Z∗ represents the set of all execution sequences. tlast(Z) = max {SE(X) | X ∈ E} represents
the last time instant in which a time point was executed in Z. last(Z) = {X | X ∈
E ∧ SE(X) = tlast} represents the set of the last executed time points.

Therefore, an execution sequence models the ordered sequence of executed time points
and assigned propositions according to the well-definedness of a CSTNUD. As an example,
consider again Figure 3b. Assume that we execute P ? at 0 and observe ¬p. Assume then that
we execute A2 at 1 and observe C2 to occur at 13 (i.e., at its maximal duration). The execution
sequence is Z = 〈{P?, A2, C2}, {p}, {SE(P?) = 0, SE(A2) = 1, SE(C2) = 13}, {SK(p) = ⊥}〉.
We can now compute the current partial scenario as the conjunction of all positive and negative
literals arising from all propositions in K according to SK and define local consistency.

I Definition 6 (Current partial scenario). Given any Z = 〈E,K, SE , SK〉, the current partial
scenario is given by `cps = λ1 ∧ · · · ∧ λk, where for each pi ∈ K, λi = pi (if SK(pi) = >) and
λi = ¬pi (if SK(pi) = ⊥).

For Z we have that `cps = ¬p since p ∈ K and SK(p) = ⊥.



M.Zavatteri 23:9

I Definition 7 (Local consistency). An execution sequence E = 〈E,K, SE , SK〉, is locally
consistent if and only if for each (Y − X ≤ k, `) ∈ C where X,Y ∈ E and `cps ⇒ `,
SE(Y )− SE(X) ≤ k holds.

Z is locally consistent since the schedule SE satisfies (A2 − P? ≤ 1,¬p) and (P?−A2 ≤
−1,¬p). An execution sequence evolves over time according to the evolution of the game
that Player1 (the controller) plays against Player2 (the environment). Each player follows
a strategy saying what moves to make and when. Moreover, many moves can be made at the
same time instant (provided that they respect an order) and sometimes moves are mandatory.

I Definition 8 (Move). A move m is either X meaning “execute time point X” or (p, b)
meaning “assign b ∈ {>,⊥} to proposition p”. A move for Player1 requires that X is a
non-contingent time point and p is a decidable proposition. A move for Player2 requires
that X is a contingent time point and p is an observable proposition. M∗1 and M∗2 represent
the sets of all moves for Player1 and Player2, respectively.

A move-based strategy is a mapping from execution sequences considered at particular
time instants to moves augmented with a wait condition modeling the absence of move.
A strategy tells a player to make a move at a particular time instant only if the move is
applicable at that particular time. Therefore, a strategy specifies applicability conditions
saying when a move can be made, obligations saying when a move has to be made and
postconditions saying how the execution sequence evolves accordingly.

I Definition 9 (Move-based strategy). A move-based strategy for Player1 is a mapping
σ1 : Z∗ × R→M∗1 ∪ {wait} such that its applicability conditions are:
1. For any execution sequence Z and any time instant t, σ1(Z, t) is applicable iff t ∼ tlast(Z),

where ∼ is > if last(Z) contains a contingent time point C or an observation time point P ?
such that K contains its related proposition p (reaction time enforcement), ≥ otherwise.

2. For any execution sequence Z and any time instant t, σ1(Z, t) = X is applicable if (1)
holds and X is an unexecuted non-contingent time point such that the current partial
scenario entails L(X) (i.e., X 6∈ E ∧X 6∈ Contingent ∧ `cps ⇒ L(X)).

3. For any execution sequence Z and any time instant t, σ1(Z, t) = wait is applicable if (1)
holds and there is no obligation at time t.

The unique obligation involves decidable propositions requiring that whenever a decision
time point D! has been executed and its related proposition d has not been assigned yet,
then the strategy must issue a move to assign d a truth value instantaneously. In symbols:
D! ∈ E ∧ d 6∈ K =⇒ σ1(Z, SE(D!)) = (d, b).

A move-based strategy for Player2 is a mapping σ2 : Z∗ × R→M∗2 ∪ {wait} such that
its applicability conditions are:
1. For any execution sequence Z and any time instant t, σ2(Z, t) is applicable iff t ≥ tlast(Z).
2. For any execution sequence Z, any time instant t and any contingent link (A, x, y, C) ∈ L,

σ2(Z, t) = C is applicable if (1) holds, A has already been executed, C has not, and
executing C at this time satisfies C − A ∈ [x, y] (i.e., A ∈ E ∧ C ∈ Contingent ∧ C 6∈
E ∧ t− SE(A) ∈ [x, y]).

3. For any execution sequence Z and any time instant t, σ2(Z, t) = wait is applicable if (1)
holds and there is no obligation at time t.

Obligations are of two kinds. The first obligation involves observable propositions requiring
that whenever an observation time point P? has been executed and its related proposition p
has not been assigned yet, then the strategy must issue a move to assign p a truth value
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instantaneously. In symbols: (P? ∈ E ∧ p 6∈ K) =⇒ σ2(Z, SE(P?)) = (p, b). The second
obligation involves contingent links (A, x, y, C) requiring that if A has already been executed,
C has not and the current time t is the last instant in which C can be executed, then the
strategy must issue a move to execute C at t. In symbols: ∀(A, x, y, C) ∈ L,∀t ∈ R, (A ∈
E ∧ C 6∈ E ∧ t− SE(A) = y) =⇒ σ2(Z, t) = C.

Postconditions for both σ1 and σ2 are the same. If the strategy tells the player to execute
a time point X at time t then Z updates by appending X to E and extending SE such that
SE(X) = t. If the strategy tells the player to assign the truth value b to the proposition p,
then Z updates by appending p to K and extending SK such that SK(p) = b. In symbols:

If σi(Z, t) = X, then Post(Z, σi, t) = 〈E ∪ {X},K, SE ∪ {SE(X) = t}, SK〉.
If σi(Z, t) = (p, b), then Post(Z, σi, t) = 〈E,K ∪ {p}, SE , SK ∪ {SK(p) = b}〉.

Getting back to our example we have that tlast(Z) = 13 and last(Z) = {C2}. Suppose
that current time is t = 14. σ1(Z, 14) = D! is applicable since t > tlast and D! has not been
executed yet, whereas σ1(Z, 14) = (d,>) is not since D! 6∈ E. If σ1(Z, 14) = D! is taken into
consideration (i.e., Z ′ = Post(Z, σ1, t)), then σ1(Z ′, 14) = (d,>) instantaneously after.

We now model Player2 as the most powerful player possible. If Player1 can beat this
(worst-case of) environment, then Player1 must be able to beat any other less powerful
environment playing the same game. To achieve this purpose we model the game in turns.
That is, at any time instant t, there exist two turns: T1(t) (occurring first) and T2(t)
(occurring last). Player1 makes his moves in T1(t), whereas Player2 makes his in T2(t). If
player i does not make any move in Ti(t), then he loses forever the possibility to play at
time t. As a result, Player2, making his moves in T2(t), is guaranteed to always have full
information on what Player1 has done in T1(t) (worst-case scenario). In what remains of
this section we define the concept of snapshot modeling an execution sequence a particular
time instant t (after the players are done in T1(t) and T2(t)), continuous game evolution
modeling how the execution sequence evolves and winning conditions for each player.

I Definition 10 (Snapshot). Let Z = 〈E,K, SE , SK〉 be any execution sequence. Z(t) =
〈E′,K ′, S′E , S′K〉 models the snapshot of Z at time t, where E′ = {X | X ∈ E ∧ SE(X) ≤ t},
K ′ = {p | p ∈ K ∧O(p) ∈ E′}, ∀X ∈ E′, S′E(X) = SE(X), and ∀p ∈ K ′, S′K(p) = SK(p).

To give an example, let us get back to the execution sequence we have discussed before.
At t = 11, we have Z(11) = 〈{P?, A2}, {p}, {SE(P?) = 0, SE(A2) = 1}, {SK(p) = ⊥}〉.

I Definition 11 (Continuous game evolution). Let t ∈ R≥0 be the global time. The continuous
game evolution is modeled by an infinite sequence of snapshots Z(t) defined as:

Z(t) =
{
T2(T1(〈∅, ∅, ∅, ∅〉, t), t) if t = 0
T2(T1(Z(t− ε), t), t) if t > 0

Ti(Z, t) =
{
Z if σi(Z, t) = wait

Ti(Post(Z, σi, t), t) otherwise

where Ti(t) models the evolution of Z during turn i at time t according to σi, whereas ε > 0.

IDefinition 12 (Winning conditions). Player1 wins the game if and only if the game evolution
leads to a snapshot Z(t) such that for each unexecuted time point X, `cps falsifies L(X) and
for each constraints (Y −X ≤ k, `) where X,Y ∈ E and `cps ⇒ `, SE(Y )−SE(X) ≤ k holds.
Player2 wins otherwise. σi is a winning strategy if player i wins the game by following σi.

I Definition 13 (Dynamic controllability). A CSTNUD is dynamically controllable if Player1
has a winning strategy such that for any t > 0 and any pair of execution sequences Z1, Z2, if
σ2(Z1, t

′) = σ2(Z2, t
′) for 0 ≤ t′ < t, then σ1(Z1, t) = σ1(Z2, t).

In other words, whenever Player2 has made the same (infinite) sequence of moves up to
time t− ε, then Player1 will make the same move(s) at time t.
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4 Dynamic Controllability of CSTNUDs via TGAs

In this section we extend the encoding given for CSTNUs in Section 2. As an example, we
consider Figure 4 depicting the encoding of the CSTNUD in Figure 3b.

Once again, we have three core locations but this time we borrow a few names from
Section 3 and rename them to T1 (ex L1), T2 (ex L0) and win (ex goal). T1 and T2 model
the two turns T1(t) and T2(t) when global time is > 0. T2 is the initial location. The winning
path is computed the same way only renaming each L`i to w`i . gain and pass regulate the
turns at any time instant t. We still have a clock cX for each X ∈ T (considering decision
time points too) and a clock bP for each p ∈ P (considering decidable propositions too).

We optimize the guard of each uncontrollable self-loop at T1 by exploiting what we know
of the CSTNUD. That is, we extend the guards so that they enforce time point label honesty
as well as the partial order among the time points when not ambiguous. This optimization
was first discussed in [8] but there it dealt with disjunctive constraints and exploited internal
data structures provided by the UPPAAL-TIGA software. Here, we propose a more formal
definition avoiding such data structures. Moreover, [8] does not address decisions.

To give an example of this optimization, consider time points A1 and A4 of the CSTNUD
in Figure 3b. L(A1) = p and L(A4) = ¬d. Recall that the encoding models p and d as
two dedicated clocks bP and bD such that if each of these clocks is equal to (resp., less
than) ĉ, once its related observation or decision time point has been executed, then the
related proposition is > (resp., ⊥). Moreover, time point label honesty also requires that
P?−A1 ≤ −ε (observation) and D!−A4 ≤ 0 (decision).

Therefore, considering the time point label honesty property for CSTNUDs, it is possible
to extend the guards of exA1 and exA4 by appending bP = ĉ ∧ cP < ĉ ∧ cP > 0 and
bD < ĉ∧cD < ĉ∧cD ≥ 0, respectively. The former models the fact that A1 must be executed
if only if p = > (i.e., bP = ĉ), which also implies that A1 must be executed after P? (i.e.,
P? have been executed (cP < ĉ)) and a positive amount of time ε has elapsed (cP > 0).
The latter models the fact that A4 must be executed if only if d = ⊥ (i.e., bD < ĉ), which
also implies that A4 must be executed after D! (i.e., D! have been executed (cD < ĉ)) and
possibly immediately or after a positive amount of time has elapsed (cD ≥ 0).

I Definition 14 (Encoding time point label honesty). A label encoder is a mapping Lenc : T →
H(X ) translating the label of a time point into the equivalent clock constraint Lenc(X) =
LOPenc(X) ∧ LDPenc(X), where LOPenc(X) and LDPenc(X) encode all literals containing observable
and decidable propositions, respectively.

LOPenc(X) :
∧
p∈L(X)(bP = ĉ ∧ cP < ĉ ∧ cP > 0)

∧
¬q∈L(X)(bQ < ĉ ∧ cQ < ĉ ∧ cQ > 0)

LDPenc(X) :
∧
d∈L(X)(bD = ĉ ∧ cD < ĉ ∧ cD ≥ 0)

∧
¬f∈L(X)(bF < ĉ ∧ cF < ĉ ∧ cF ≥ 0)

We now focus on constraints. Consider the requirement link P?→ A1 labeled by [1, 1], p
in the CSTNUD that we are discussing. Such a constraint says that A1 must be executed
after 1 and within 1 since P? (thus, exactly after 1 since P?). This requirement link has
also an important characteristic: L(A1) coincides with the label of the link. Therefore,
whenever A1 is executed, the constraint must hold. Thus, we extend the original guard of
exA1 (formerly cA1 = ĉ) to cA1 = ĉ ∧ cP < ĉ ∧ cP = 1, where the new conjuncts say that P?
has already been executed (cP < ĉ) and A1 − P? ∈ [1, 1] (cP = 1). More formally:

I Definition 15 (Encoding predecessors). Given a CSTNUD, a predecessor of a time point
Y ∈ T is a time point X ∈ T such that there exists a constraint (X − Y ≤ −x, L(Y )) ∈ C
where x > 0. Π : T → 2T returns the predecessors of a given time point and it is formalized
as Π(Y ) = {X | (X − Y ≤ −x, `) ∈ C ∧ x > 0 ∧ ` = L(Y )}. A predecessor encoder is a
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w�wpw¬pwdwin

(w¬d)

T2T1
〈>, pass, {cδ}〉

〈cδ > 0, gain, ∅〉

〈cP = ĉ, exP, {cP}〉

〈ΩA1 , exA1, {cA1}〉
〈ΩA2 , exA2, {cA2}〉

〈cD = ĉ, exD, {cD}〉〈ΩA3 , exA3, {cA3}〉
〈ΩA4 , exA4, {cA4}〉

〈cE = ĉ, exE, {cE}〉

〈cD < ĉ ∧ cD = 0∧
bD = ĉ; dFalse; {bD}〉

〈Σ1, exC1, {cC1, cδ}〉
〈Σ2, exC2, {cC2, cδ}〉

〈Σ3, exC3, {cC3, cδ}〉

〈Σ4, exC4, {cC4, cδ}〉

〈cP < ĉ ∧ cP = 0∧
bP = ĉ; pFalse; {bP, cδ}〉

〈Φ1, failC1, ∅〉
〈Φ2, failC2, ∅〉
〈Φ3, failC3, ∅〉
〈Φ4, failC4, ∅〉

〈cP < ĉ ∧ cD < ĉ ∧ cE < ĉ ∧ cδ > 0, sat�, ∅〉

〈cA1 < ĉ ∧ cC1 < ĉ∧
cP− cA1 = 1∧

cC1 − cD = 1, satp, ∅〉

〈cP = ĉ, skip1
p , ∅〉

〈bP < ĉ, skip2
p , ∅〉

〈cA2 < ĉ ∧ cC2 < ĉ∧
cP− cA2 = 1∧

cC2 − cD = 1, sat¬p, ∅〉

〈cP = ĉ, skip1
¬p, ∅〉

〈bP = ĉ, skip2
¬p, ∅〉

〈cA3 < ĉ ∧ cC3 < ĉ∧
cD− cA3 = 1∧
cC3 − cE = 1∧

cP− cE ≤ 20, satd, ∅〉

〈cD = ĉ, skip1
d , ∅〉

〈bD < ĉ, skip2
d , ∅〉

〈cA4 < ĉ ∧ cC4 < ĉ∧
cD− cA4 = 1∧
cC4 − cE = 1∧

cP− cE ≥ 21, sat¬d, ∅〉

〈cD = ĉ, skip1
¬d, ∅〉

〈bD = ĉ, skip2
¬d, ∅〉

Figure 4 TGA encoding the CSTNUD in Figure 3b. T2 (ex L0) is the initial location (modeling
T2(t) for t > 0). T1 (ex L1) models T1(t) for t > 0). w�, wp, w¬p, wd, win model the winning path.
ΩA1 : cA1 = ĉ∧ cP < ĉ∧ bP = ĉ∧ cP > 0∧ cP = 1. ΩA2 : cA2 = ĉ∧ cP < ĉ∧ bP < ĉ∧ cP > 0∧ cP = 1.
ΩA3 : cA3 = ĉ∧cD < ĉ∧bD = ĉ∧cD ≥ 0∧cD = 1. ΩA4 : cA4 = ĉ∧cD < ĉ∧bD < ĉ∧cD ≥ 0∧cD = 1.

mapping Πenc : T → H(X ) translating each X ∈ Π(Y ) (along with its temporal bounds) into
an equivalent clock constraint as follows. Πenc(Y ) =

∧
X∈Π(Y ) cX < ĉ ∧ cX ≥ x ∧ cX ≤ y,

where cX ≥ x models (X − Y ≤ −x, L(Y )) and cX ≤ y models (Y −X ≤ y, L(Y )) (if any).

Therefore, for each non-contingent time point X, the guard of exX becomes ΩX : cX =
ĉ ∧ Lenc(X) ∧Πenc(X). In Figure 4 we shortened the guards of exA1, exA2, exA3 and exA4
as ΩA1 , ΩA2 , ΩA3 and ΩA4 and detailed them in the caption.

After optimizing the guard of each exX transition we now discuss how to model the
truth value assignment to the decidable propositions. Dually to observable propositions,
for each decidable proposition d ∈ DP we generate an uncontrollable self-loop transition
〈T1, cD < ĉ ∧ cD = 0 ∧ bD = ĉ, dFalse, {bD}, T1〉 at T1. If we take this transition, it means
that we decide ¬d. If we do not, it means that we decide (actually confirm) d. In the former
case, such a transition has to be taken at the same instant in which D! was executed but after
exD was taken. In this way we model “how” to decide the truth values of the propositions in
DP. All other transitions remain the same of those given for CSTNUs.

5 Automated Planning: A Tool for the Experimental Evaluation

We made a tool3 for CSTNUDs which takes as input a CSTNUD specification and al-
lows for the automated encoding into the corresponding UPPAAL-TIGA specification as
well as execution simulation. To get the UPPAAL-TIGA specification we run ./Cstnud
Network.cstnud --encode TGA.xml, where Network.cstnud is the CSTNUD specification
and TGA.xml the encoding into a TGA the tool returns in output. To synthesize a strat-
egy we use UPPAAL-TIGA by querying the TGA with verifytga -s -q -w0 TGA.xml
dc.q > strategy, where dc.q contains the TCTL query control: A[] not tga.win and

3 Available at http://regis.di.univr.it/TIME2017.tar.gz along with the case studies of this paper
and further 1000 randomly generated CSTNUDs as an initial set of benchmarks.

http://regis.di.univr.it/TIME2017.tar.gz
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$ ./ Cstnud ...
P = 0.1
p = true
A1 = 1.1
C1 = 6.0
D = 7.0
d = true
A3 = 8.0
C3 = 11.7
E = 12.7
Verifying ... SAT!

(a) Player1 observes p and C1 =
6, therefore decides d.

$ ./ Cstnud ...
P = 0.1
p = false
A2 = 1.1
C2 = 9.2
D = 10.2
d = true
A3 = 11.2
C3 = 14.7
E = 15.7
Verifying ... SAT!

(b) Player1 observes ¬p and
C2 = 9.2, therefore decides d.

$ ./ Cstnud ...
P = 0.1
p = false
A2 = 1.1
C2 = 12.7
D = 13.7
d = false
A4 = 14.7
C4 = 21.5
E = 22.5
Verifying ... SAT!

(c) Player1 observes ¬p and
C2 = 12.7, therefore decides ¬d.

Figure 5 Execution simulations for Figure 3b (./Cstnud Fig3b.cstnud --execute Fig3b.s).

strategy is the memoryless execution strategy that UPPAAL-TIGA spits out. To execute
a controllable CSTNUD we run ./Cstnud Network.cstnud --execute strategy.

We encoded the CSTNUDs in Figure 3a, Figure 3b and Figure 3c to get the UPPAAL-
TIGA specifications. We ran UPPAAL-TIGA on such specifications. We used a Linux
virtual machine run on top of a VMWare ESXi hypervisor using a physical machine equipped
with an Intel i7 2.80GHz and 20GB of RAM for the experimental evaluation. The VM was
assigned 5GB of RAM and full CPU power. For Figure 3a the analysis took 2 minutes
and 4 seconds answering Property is satisfied and spitting out an execution strategy
of 68K for Player2. For both Figure 3b and Figure 3c the analysis took 1 minute and
53 second spitting out a strategy of 44K for Player1. Finally, we executed the latter two
controllable cases. The simulator correctly scheduled all non contingent time points satisfying
all constraints. We show the output of a few simulations for Figure 3b in Figure 5.

Furthermore, we randomly generated 1000 CSTNUDs as an initial set of benchmarks and
ran the analysis on those networks imposing a time out of 900 seconds each. The analysis
proved that 169 networks were DC and 14 non-DC. The remaining networks reached the
timeout limit. Each CSTNUD proved DC was correctly executed.

6 Correctness of the Encoding

We prove the correctness and discuss the complexity of the encoding provided in Section 4.

I Theorem 16. The encoding in Section 4 is correct.

Proof. To prove that we start by showing that the encoding in Section 4 correctly models
the move-based semantics of Section 3. A state of the TGA is given by a pair (L,~c), where
L is a locations and ~c represents the values of all clocks. The state of a CSTNUD during
execution is given by its execution sequence Z. We show that the game interplay correctly
models the continuous game evolution given in Definition 11 for all t > 0. We exclude the
case for t = 0, so Player1 does not play in T1(0) and Player2 does not play in T2(0).

(Invariant) At any instant t > 0 the snapshot Z(t) = 〈E,K, SE , SK〉 corresponds to a state
of the TGA (L,~c) in which L = T2 and ~c is as follows: ĉ = t, cδ = 0, for each X ∈ T , cX < ĉ
and ĉ− cX = k (if X ∈ E ∧ SE(X) = k), cX = ĉ otherwise. For each p ∈ P , cP < ĉ ∧ bP = ĉ
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(if p ∈ K and SK(p) = >) and cP < ĉ ∧ bP < ĉ (if p ∈ K and SK(p) = >), cP = bP = ĉ
otherwise. Finally, Player2 has finished taking controllable transitions at t.

When t = 0 (i.e., ĉ = 0) Player2 cannot play in T2 as no controllable transition is enabled.
Player1 cannot play either because the current location is not T1 and he can only got there
after a positive amount of time has elapsed. Therefore, at t = 0, Z(0) = 〈∅, ∅, ∅, ∅〉.

When t > 0 (i.e., ĉ > 0) both Player1 and Player2 can play in their respective turns
T1(t) and T2(t). Player1 can take gain to enter T1 at time t. Player2 cannot prevent him
from doing so because gain, being urgent, has priority over any other controllable transition
that Player2 could take at that time. So, Player1 plays first. Once got in T1, Player1
can take (in general) a non-empty sequence of transitions to execute a few non contingent
time points and decide the truth values of some decidable propositions if he has executed
some decision time points. Such a sequence is finite since there is a finite number of time
points to execute and a finite number of propositions to assign. Furthermore, each time
point (resp., proposition) can be executed (resp., assigned a value) only once. When this
sequence of transitions is over, Player1 ends his turn by taking pass to lead the run back
to T2. Since T1 is urgent, time has not elapsed. Therefore, the sequence of transitions taken
at T1 corresponds to the sequence of moves made by Player1 in T1(t). Instead, if Player1
wants to wait at time t, he can either take gain and pass immediately after or just avoid
taking gain. Now, at T2, Player2 does the same for contingent time points and observable
propositions if some observation time points have been executed by Player1 in T1(t). When
Player2 is done, the sequence of transitions taken, models the sequence of moves made in
T2(t). Since Player2 does not make any other move in T2(t), Z(t) can no longer be modified.

Player1 and Player2 are driven by their strategies σ1 and σ2 which say what moves to
make (i.e., transitions to take) in T1(t) and T2(t) at any time t depending on the current Z.
The purpose of σ1 is to keep Z(t) locally consistent, whereas that of σ2 is the opposite.

The strategies also satisfy their applicability conditions as Player1 can make his moves
in T1(t) according to σ1 iff Player2 has not played yet in T2(t), whereas Player2 can make
his moves in T2(t) according to σ2 iff either Player1 has not played in T1(t) or Player2 is
not done in T2(t). We have already proved that for any t > 0, Player1 plays first.

The strategies satisfy their obligations as each time Player1 executes a decision time
point D!, he also assigns the associated decidable proposition d a truth value as well. This
occurs at the same time but sequentially after the execution of D!. Player1 assigns > to d
by not taking dFalse and assigns ⊥ to d by taking pFalse. If Player1 takes the transition
then he cannot take it again in the same turn (as the guard of pFalse invalidates). If he
does not, then he will never be able to take dFalse in any T1(t′) where t′ > t. Likewise, σ2
satisfies its similar obligation for observable propositions. Furthermore, σ2 also satisfies the
obligation regarding contingent time points as the encoding generates a failC transition for
each contingent time point C (belonging to a (A, x, y, C) ∈ L) allowing Player1 to move to
win if Player2 does not take exC within its maximum upper bound y. Since Player2 wants
to prevent Player1 from getting to win, σ2 is obliged to schedule C such that C −A ∈ [x, y].

Both σ1 and σ2 satisfy their postconditions: the reset of cX clocks says when the time
points were executed, whereas the values of bP clocks say what truth values the propositions
have been assigned. Finally, winning conditions are modeled differently with respect to
the player. For Player1 they are abstracted as a winning path checking that all time
points and constraints whose labels are not falsified by `cps have been executed and satisfied,
respectively. For Player2 winning conditions correspond to schedule a contingent time point
at a particular time or decide a truth value for an observable propositions (or any combination
of these moves) such that Player1 is unable to satisfy at least one constraint and ends up
blocked somewhere while going through the winning path before entering win. J
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I Theorem 17. Any CSTNUD can be encoded into a TGA in polynomial time.

Proof Sketch. Our encoding subsumes that for CSTNUs which runs in polynomial time
[4, 5]. We “worsen” that encoding by adding a dFalse transition for each d ∈ DP. For each
X ∈ T , Lenc(X) and Πenc(X) are computed in polynomial time by analyzing L(X) and
C. J

7 Related Work

STNs [10] and Drake [9] differ from CSTNUDs since they do not specify any uncontrollable
part. Therefore, they are incomparable with CSTNUDs.

STNUs [18] specify contingent durations as the unique uncontrollable part. The execution
of non-contingent time points cannot influence any contingent duration. Instead, contingent
durations do influence the real-value assignment to the non-contingent time points. However,
such durations never prevent any non-contingent time point from being executed. This work
also addresses the influence of the controllable part over the uncontrollable one.

CSTNs [14, 20] specify conditional constraints as the unique uncontrollable part. Again,
the execution of non-contingent time points cannot prevent any truth value assignment from
happening. Instead, depending on what truth value a propositional variable is assigned
some time point might be excluded, runtime, from the execution of the network. Similar
explanations hold for CSTNUs [7, 13] which merge CSTNs and STNUs. CSTNUDs are also
able to prevent uncontrollable truth value assignments and durations from happening.

In [3] CSTNs are extended with decision nodes regulating the truth value assignments
to some propositions under control. That work focuses on the complexity analysis of the
DC-checking problem and provides constraint-propagation algorithms for special cases in
which either the network specifies only decisions and no observations or all decisions are
made before any observation. Moreover, contingent durations are not addressed. This work
follows a complete different direction starting from CSTNUs and it is based on TGAs.

In temporal workflow management, the difference between controllable and uncontrollable
XOR splits is introduced in [11] and a technique based on PERT-nets computes internal
activity deadlines in order to meet the global ones. Some missed deadlines require human
interaction for recovery. We rely on DC, which guarantees that we never miss any deadline.

In [19] UPPAAL-TIGA is used to synthesize a controller for timeline-based plans which
consider multivalued state variables and networks of TGAs. Apart from time points, our
variables are Boolean and our encoding involves one TGA only.

8 Conclusions and Future Work

We defined conditional simple temporal networks with uncertainty and decisions (CSTNUDs)
as a unified formalism. CSTNUDs implicitly embed all minor temporal network formalisms
such as STNs (if L = OT = DT = ∅), CSTNs (if L = DT = ∅), STNUs (if OT = DT = ∅),
CSTNUs (if DT = ∅), STNDs (if L = OT = ∅), CSTNDs (if L = ∅), and STNUDs (if
OT = ∅). We modeled the DC-checking of a CSTNU as a two-player game where Player1
models the controller and Player2 models the environment and gave the execution semantics
in move-based strategies. We provided an encoding from CSTNUDs into TGAs as an
optimized extension of that given for CSTNUs and discussed the correctness and complexity
of such an encoding. We automated the approach by making a tool we used to analyze
and simulate the execution of the examples discussed in this paper. We also provided a
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preliminary experimental evaluation of the approach against a set of 1000 randomly generated
CSTNUDs. As future work, we plan to address weak and strong controllability of CSTNUDs.
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