24th International Symposium
on Temporal Representation and
Reasoning

TIME 2017, October 16-18, 2017, Mons, Belgium

Edited by
Sven Schewe

Thomas Schneider
Jef Wijsen

\\v LIPICS

LIPlcs — Vol. 90 — TIME 2017 www.dagstuhl.de/lipics

Editors

Sven Schewe Thomas Schneider Jef Wijsen
University of Liverpool University of Bremen University of Mons
UK Germany Belgium

sven.schewe@liverpool.ac.uk tschneider@cs.uni-bremen.de jef.wijsenQumons.ac.be

ACM Classification 1998

C.2.4 Distributed Systems, D.2.2 Design Tools and Techniques, D.2.4 Software/Program Verification,
D.4.6 Security and Protection, F.1.1 Models of Computation, F.3.1 Specifying and Verifying and Reasoning
about Programs, F.4.1 Mathematical Logic, G.1.3 [Numerical Linear Algebra] Linear Systems, G.2.2 Graph
Theory, H.2 Database Management, 1.2.2 Automatic Programming, 1.2.4 Knowledge Representation
Formalisms and Methods, 1.2.7 Natural Language Processing, 1.2.8 Problem Solving, Control Methods,
and Search, 1.6.4 Model Validation and Analysis, J.2 [Physical Sciences and Engineering] Archaeology

ISBN 978-3-95977-052-1

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-052-1.

Publication date
October, 2017

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs. TIME.2017.0

ISBN 978-3-95977-052-1 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-052-1
http://www.dagstuhl.de/dagpub/978-3-95977-052-1
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.0
http://www.dagstuhl.de/dagpub/978-3-95977-052-1
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board
Luca Aceto (Reykjavik University)
Susanne Albers (TU Miinchen)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

TIME 2017

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface

Sven Schewe, Thomas Schneider, and Jef Wijsen i 0:vii
Organization

... 0:ix
List of Authors
... 0:xi

Invited Papers
Ontology-Mediated Query Answering over Temporal Data: A Survey

Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Viadislav Ryzhikov,

Frank Wolter, and Michael Zakharyaschev i .. 1:1-1:37
Advances in Quantitative Analysis of Free-Choice Workflow Petri Nets

JAUIET ESDATZA . oo 2:1-2:6
Plan and Program Synthesis: A New Look at Some Old Problems

Sheila A. McIlraith ... e 3:1-3:1
Regular Papers
Possible and Certain Answers for Queries over Order-Incomplete Data

Antoine Amarilli, Mouhamadou Lamine Ba, Daniel Deutch,

and Pierre Senellart 4:1-4:19
Constraint Identification Using Modified Hoare Logic on Hybrid Models of Gene
Networks

Jonathan Behaegel, Jean-Paul Comet, and Mazime Folschette 5:1-5:21
Hierarchical Cost-Parity Games

Laura Bozzelli, Aniello Murano, Giuseppe Perelli, and Loredana Sorrentino 6:1-6:17
Timed-Automata-Based Verification of MITL over Signals

Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege 7:1-7:19
Dynamic Controllability Made Simple

Massimo Cairo and Romeo Rizzioii e 8:1-8:16
Incorporating Decision Nodes into Conditional Simple Temporal Networks

Massimo Cairo, Carlo Combi, Carlo Comin, Luke Hunsberger, Roberto Posenato,

Romeo Rizzi, and Matteo Zavatteri, 9:1-9:18
A Streamlined Model of Conditional Simple Temporal Networks — Semantics and
Equivalence Results

Massimo Cairo, Luke Hunsberger, Roberto Posenato, and Romeo Rizzi 10:1-10:19
Evaluation of Temporal Datasets via Interval Temporal Logic Model Checking

Dario Della Monica, David de Frutos-Escrig, Angelo Montanari, Aniello Murano,

and GUIdo SCIAVICCO e 11:1-11:18

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi

Contents

Time Expressions Recognition with Word Vectors and Neural Networks

Mathias Etcheverry and Dina Wonsever,

Models and Algorithms for Chronology

Gilles Geeraerts, FEythan Levy, and Frédéric Pluquet

CTL with Finitely Bounded Semantics

Valentin Goranko, Antti Kuusisto, and Raine Ronnholm

A Relational Algebra for Streaming Tables Living in a Temporal Database World

Fabio Grandi, Federica Mandreoli, Riccardo Martoglia, and Wilma Penzo

The Time Ontology of Allen’s Interval Algebra

Michael Grininger and Zhuojun Li,

The Fully Hybrid p-Calculus

Daniel Kernberger and Martin Langeo,

Similarity Search for Spatial Trajectories Using Online Lower Bounding DTW
and Presorting Strategies

Marie Kiermeier and Martin Werner i

Collective Singleton-Based Consistency for Qualitative Constraint Networks

Michael Sioutis, Anastasia Paparrizou, and Jean-Francois Condotta

Dynamic Purpose Decomposition of Mobility Flows Based on Geographical Data

Etienne Thuillier, Laurent Moalic, and Alexandre Caminada

Time Dependent Policy-Based Access Control

Panagiotis Vasilikos, Flemming Nielson, and Hanne Riis Nielson

On Expressiveness of Halpern-Shoham Logic and its Horn Fragments

Przemystaw Andrzej Walega i

Conditional Simple Temporal Networks with Uncertainty and Decisions

Matteo Zavattert

12:1-12:20

13:1-13:18

14:1-14:19

15:1-15:17

16:1-16:16

17:1-17:16

18:1-18:15

19:1-19:17

20:1-20:14

21:1-21:18

22:1-22:18

23:1-23:17

Preface

The International Symposium on Temporal Representation and Reasoning (TIME) is a
well-established symposium series which brings together researchers interested in reasoning
about temporal aspects of information in all areas of computer science. The symposium has
a wide remit and is devoted to both theoretical aspects and well-founded applications. One
of the key aspects of the symposium is its interdisciplinarity, with attendees from different
areas such as artificial intelligence, database management, logic and verification, and beyond.
The 24th edition of the symposium (TIME 2017) was held from 16 to 18 October 2017 in
the city of Mons, Belgium, hosted by the University of Mons.

Following the call for papers of TIME 2017, a total of 48 abstracts were submitted.
Some abstract submissions did not lead to a subsequent full paper submission. Eventually,
a total of 36 full papers were submitted. Each submitted paper was reviewed by at least
three members of the program committee and the reviews were followed by an additional
discussion to select among those papers. The members of the program committee and the
external reviewers did an excellent job that enabled a high-quality selection process, and
we thank them for their commitment and dedication. In the end, 20 papers were selected
for publication in the proceedings and presentation at the symposium. In addition to the
contributed talks, this year’s program featured three invited speakers: Alessandro Artale
(Free University of Bozen-Bolzano, Italy), Javier Esparza (Technical University of Munich,
Germany), and Sheila Mcllraith (University of Toronto, Canada). We are delighted that
they were able to accept our invitation, and grateful for their contribution.

These are the first TIME proceedings published in the Dagstuhl/LIPIcs series. We would
like to thank Dr. Marc Herbstritt and the LIPIcs team for all the help and support. Finally,
we would like to thank the following organizations for sponsoring the event: F.R.S.-FNRS,
Université de Mons, COMPLEXYS, and INFORTECH.

Sven Schewe
Thomas Schneider
Jef Wijsen

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Organization

Program Committee Chairs

Sven Schewe (University of Liverpool, UK)
Thomas Schneider (University of Bremen, Germany)
Jef Wijsen (University of Mons, Belgium)

Program Committee

Johann Eder (Alpen Adria Universitat Klagenfurt, Austria)

Fabio Grandi (University of Bologna, Italy)

Ernst Moritz Hahn (State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, China)

Michael R. Hansen (Technical University of Denmark, Denmark)
Fredrik Heintz (Linkoping University, Sweden)

Marcin Jurdzinski (University of Warwick, UK)

Roman Kontchakov (Birkbeck, University of London, UK)

Jan Kfetinsky (Technical University of Munich, Germany)

Bart Kuijpers (Hasselt University, Belgium)

Martin Lange (University of Kassel, Germany)

Martin Leucker (University of Liibeck, Germany)

Claudia Nalon (University of Brasilia, Brazil)

Andrea Orlandini (National Research Council of Italy ISTC-CNR, Italy)
Doron Peled (Bar Ilan University, Israel)

Roberto Posenato (Universita degli Studi di Verona, Italy)
Jean-Frangois Raskin (Université Libre de Bruxelles, Belgium)

Peter Z. Revesz (University of Nebraska-Lincoln, USA)

Mark Reynolds (The Univeristy of Western Australia, Australia)

Sven Schewe (University of Liverpool, UK)

Renate A. Schmidt (University of Manchester, UK)

Thomas Schneider (University of Bremen, Germany)

Paolo Terenziani (University Piemonte Orientale, Italy)

David Toman (University of Waterloo, Canada)

Kristian Torp (Aalborg University, Denmark)

Alejandro A. Vaisman (Instituto Tecnolégico de Buenos Aires, Argentina)
Jef Wijsen (University of Mons, Belgium)

Stefan Wolfl (University of Freiburg, Germany)

Martin Zimmermann (Saarland University, Germany)

Local Organizers

Alexandre Decan (University of Mons, Belgium)
Fanny Lallemand (University of Mons, Belgium)
Jef Wijsen (University of Mons, Belgium)

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:x Organization

External Reviewers

Brandon Bennett
Benedikt Bollig
Warren Del-Pinto
Peter Faymonville
Oliver Fernindez Gil
Daniel Kernberger
Patrick Koopmann
Jorg Kreiker
Salvatore La Torre
Wilma Penzo
Alessandro Umbrico
Alexander Weinert

List of Authors

Antoine Amarilli

LTCI, Télécom ParisTech, Université
Paris-Saclay

France

antoine.amarilli@telecom-paristech.fr

Alessandro Artale

Free University of Bozen-Bolzano
Ttaly

artale@inf.unibz.it

Mouhamadou Lamine Ba

University Alioune Diop of Bambey
Senegal
mouhamadoulamine.ba@uadb.edu.sn

Jonathan Behaegel

University of Nice Sophia Antipolis
France

behaegel@i3s.unice.fr

Laura Bozzelli

University “Federico II” of Naples
Ttaly

1r.bozzelli@Ggmail.com

Thomas Brihaye

Université de Mons

Belgium
thomas.brihaye@umons.ac.be

Massimo Cairo

University of Trento

Ttaly
massimo.cairo@unitn.it

Alexandre Caminada
Université de Technologie de
Belfort-Montbéliard

France
alexandre.caminada@utbm.fr

Carlo Combi
University of Verona
Ttaly
carlo.combi@univr.it

Jean-Paul Comet

University of Nice Sophia Antipolis
France

comet@unice.fr

Carlo Comin
University of Verona
Ttaly
carlo.comin@univr.it

Jean-Francois Condotta
Artois University
France
condotta@cril.fr

David de Frutos-Escrig

Universidad Complutense de Madrid
Spain

defrutos@sip.ucm.es

Dario Della Monica

Universidad Complutense de Madrid
Spain

and

University “Federico II” of Naples
Italy

dario.dellamonica@unina.it

Daniel Deutch

Tel Aviv university

Israel
danielde@post.tau.ac.il

Javier Esparza

Technische Universitdt Miinchen
Germany

esparza@in.tum.de

Mathias Etcheverry
Universidad de la Reptublica
Uruguay
mathiase@fing.edu.uy

Maxime Folschette
University of Nantes / LS2N
France

comet@unice.fr

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).

Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xii

Authors

Gilles Geeraerts

Université libre de Bruxelles
Belgium
gigeerae@ulb.ac.be

Valentin Goranko

University of Stockholm

Sweden
valentin.goranko@philosophy.su.se

Fabio Grandi

University of Bologna
Italy
fabio.grandi@unibo.it

Michael Gruninger

University of Toronto

Canada
gruninger@mie.utoronto.ca

Hsi-Ming Ho
Université de Mons
Belgium
hsimho@gmail.com

Luke Hunsberger
Vassar College
USA

hunsberger@vassar.edu

Daniel Kernberger

University of Kassel

Germany

daniel .kernberger@uni-kassel.de

Marie Kiermeier

Ludwig-Maximilians-Universitdt Miinchen

Germany
marie.kiermeier@ifi.lmu.de

Roman Kontchakov

Birkbeck, University of London
UK

roman@dcs.bbk.ac.uk

Alisa Kovtunova

Free University of Bozen-Bolzano
Italy
alisa.kovtunova@inf.unibz.it

Antti Kuusisto

University of Bremen
Germany
kuusisto@uni-bremen.de

Martin Lange

University of Kassel

Germany
martin.lange@uni-kassel.de

Eythan Levy

Tel-Aviv University
Israel
eythan.levy@gmail.com

Zhuojun Li

University of Toronto

Canada
zhuojun.1li@mail.utoronto.ca

Federica Mandreoli

University of Modena e Reggio Emilia
Italy

federica.mandreoli@unimo.it

Riccardo Martoglia

University of Modena e Reggio Emilia
Italy

riccardo.martoglia@unimo.it

Sheila A. Mcllraith
University of Toronto
Canada
sheila@cs.toronto.edu

Laurent Moalic

Université de Technologie de
Belfort-Montbéliard

France
laurent.moalic@utbm.fr

Benjamin Monmege

Aix-Marseille Université, CNRS, LIF
France

benjamin.monmege@lif .univ-mrs.fr

Angelo Montanari

University of Udine

Italy
angelo.montanari@uniud.it

Aniello Murano

University “Federico II” of Naples
Italy

murano@na.infn.it

Authors

Flemming Nielson

Technical University of Denmark
Denmark

fnie@dtu.dk

Hanne Riis Nielson

Technical University of Denmark
Denmark

hrni@dtu.dk

Anastasia Paparrizou
Artois University
France
paparrizou@cril.fr

Wilma Penzo
University of Bologna
Ttaly
wilma.penzo@unibo.it

Giuseppe Perelli

University of Oxford

UK
giuseppe.perelli@cs.ox.ac.uk

Frédéric Pluquet

Ecole Supérieure d’Informatique
(HE2B-ESI), Brussels

Belgium

fpluquet@he2b.be

Roberto Posenato

University of Verona

Ttaly
roberto.posenatoQunivr.it

Romeo Rizzi

University of Verona
Ttaly
romeo.rizzi@univr.it

Raine Rénnholm
University of Tampere
Finland
raine.ronnholm@uta.fi

Vladislav Ryzhikov

Free University of Bozen-Bolzano
Ttaly

ryzhikov@inf.unibz.it

Sven Schewe

University of Liverpool

UK
sven.schewe@liverpool.ac.uk

Thomas Schneider

University of Bremen

Germany
tschneider@cs.uni-bremen.de

Guido Sciavicco

University of Ferrara

Italy
guido.sciavicco@unife.it

Pierre Senellart

DI ENS, ENS, CNRS, PSL Research
University; Inria Paris

France

pierre@senellart.com

Michael Sioutis

Orebro University
Sweden
michael.sioutis@oru.se

Loredana Sorrentino

University “Federico II” of Naples
Italy
loredana.sorrentino@unina.it

Etienne Thuillier

Université de Technologie de
Belfort-Montbéliard

France
etienne.thuillierQutbm.fr

Panagiotis Vasilikos

Technical University of Denmark
Denmark

panva@dtu.dk

Przemyslaw Andrzej Walega
University of Warsaw
Poland
p.a.walega@gmail.com

Martin Werner

Leibniz Universitdt Hannover

Germany
martin.werner@ikg.uni-hannover.de

0:xiii

TIME 2017

0:xiv

Authors

Jef Wijsen

University of Mons
Belgium
jef.wijsen@umons.ac.be

Frank Wolter
University of Liverpool
UK

wolter@liverpool.ac.uk

Dina Wonsever

Universidad de la Republica
Uruguay
wonsever@fing.edu.uy

Michael Zakharyaschev
Birkbeck, University of London
UK

michael@dcs.bbk.ac.uk

Matteo Zavatteri

University of Verona

Ttaly
matteo.zavatteri@Qunivr.it

Ontology-Mediated Query Answering over
Temporal Data: A Survey

Alessandro Artale!, Roman Kontchakov?, Alisa Kovtunova3,
Vladislav Ryzhikov*, Frank Wolter®, and Michael Zakharyaschev®

1 KRDB Research Centre, Free University of Bozen-Bolzano, Bolzano, Italy
artale@inf.unibz.it

2 Department of Computer Science and Information Systems, Birkbeck,
University of London, London, UK
roman@dcs.bbk.ac.uk

3 KRDB Research Centre, Free University of Bozen-Bolzano, Bolzano, Italy
alisa.kovtunova@inf.unibz.it

4 KRDB Research Centre, Free University of Bozen-Bolzano, Bolzano, Italy
ryzhikov@inf.unibz.it

5 Department of Computer Science, University of Liverpool, Liverpool, UK
wolter@liverpool.ac.uk

6 Department of Computer Science and Information Systems, Birkbeck,
University of London, London, UK
michael@dcs.bbk.ac.uk

—— Abstract

We discuss the use of various temporal knowledge representation formalisms for ontology-mediated

query answering over temporal data. In particular, we analyse ontology and query languages
based on the linear temporal logic LTL, the multi-dimensional Halpern-Shoham interval temporal
logic HS,,, as well as the metric temporal logic MTL. Our main focus is on the data complexity
of answering temporal ontology-mediated queries and their rewritability into standard first-order
and datalog queries.

1998 ACM Subject Classification 1.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Description Logic, Temporal Logic, Ontology Mediated Query Answering,
Data Complexity

Digital Object Identifier 10.4230/LIPIcs. TIME.2017.1

Category Invited Talk

1 Introduction

This paper is a survey of recent developments in applying temporal logics for ontology-
mediated query answering over temporal data.

Ontology-based data access (OBDA) [73] has recently become one of the most successful
applications of description logics (DLs). The chief aim of OBDA is to facilitate access
to possibly heterogeneous, distributed and incomplete data for non-IT-expert users. To
illustrate, suppose that such a user wants to query some data sources D. Under the OBDA
paradigm, the user does not have to know the schemas of D (that is, how the data is
organised). Instead, the user is given an ontology O describing the domain of their interest in
familiar and standard terms that can be used directly to formulate the desired queries g(x)
in, say, the query language SPARQL, possibly with the help of a graphical tool. The OBDA

© Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter, and

Michael Zakharyaschev;

licensed under Creative Commons License CC-BY
24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 1; pp. 1:1-1:37

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2

Temporal Ontology-Mediated Querying: A Survey

system relies on a (GAV) mapping M, relating the terms in O with the schemas of D (and
produced by an IT expert), to find tuples a from D such that O, M(D) = g(a), where
M(D) is the result of applying M to D. Depending on the language of the ontology-mediated
query (OMQ) Q = (O, g(x)), this can sometimes be done by rewriting @ to a first-order
(FO) or datalog query ¢'(x) that can be executed over any given data instance D directly
by conventional data management systems. For example, FO-rewritings always exist if O
is an OWL 2 QL ontology (based on the DL-Lite family of DLs) and g(x) is a conjunctive
query (CQ) [37, 6], while datalog rewritings can be constructed for OMQs with ontologies in
OWL 2EL (based on the £L family of DLs) and CQs [78]. For recent applications of OBDA,
the reader can consult [5, 22, 47, 36, 38, 77, 82].

The W3C standard ontology languages OWL 2 QL and OWL 2 EL mentioned above were
designed to represent knowledge about static domains and are not suitable when the data
and the terms the user is interested in are essentially temporal. Suppose, for example, that
the data comprises sensor readings from some industrial installations, say, gas turbines, or
from weather stations across a country, and that the user — a service engineer or, respectively,
a meteorologist — is interested in detecting events such as

active power trip, which happens when the active power of a turbine was above 1.5MW
for a period of at least 10 seconds, maximum 3 seconds after which there was a period of
at least one minute where the active power was below 0.15MW; or

blizzard, which happens when severe snowstorms with low temperatures and strong winds

last for at least three hours.

To be able to represent these concepts, an ontology language clearly requires various temporal
constructs that have been studied in the context of temporal representation and reasoning [44,
45, 41].

Combinations of DLs with temporal formalisms have been widely investigated since the
pioneering work of Schmiedel [81] and Schild [80] in the early 1990s; we refer the reader
to [45, 21, 7, 62] for surveys and [71, 10, 51, 52, 50, 14] for more recent developments.
However, the main reasoning task targeted in this line of research was concept satisfiability
rather than query answering and the general aim was to probe various combinations of
temporal and DL constructs that ensure decidability of concept satisfiability with acceptable
combined complexity.

In the context of answering OMQs, our main concern is their FO- or datalog-rewritability,
and the data complexity of query evaluation, where the given OMQ is regarded to be
fixed while the data varies. Thus, in this survey we focus on temporal data modelling
and algorithmic properties of OMQ answering and do not discuss in any detail advances
in temporal DLs not related to query answering. The plan for this paper is as follows.
We distinguish three temporal data models and the corresponding languages for ontologies
and queries: the discrete point-based approach where time is discrete and each fact comes
with a time-point in which it holds true, the more general interval-based approach where
facts are stamped with the interval in which they are true, and finally, a model based on a
dense flow of time where the focus is on modelling and querying metric temporal properties.
In Sections 2—4, we discuss the state of the art in point-based ontology-mediated query
answering. The languages considered range from the full two-sorted FOL to time-centric
languages based of LTL, domain-centric languages based on DLs, and combinations of both.
In Section 5, we consider ontology-mediated query answering over interval-based models
focussing on Halpern and Shoham’s modal logic for time intervals. In Section 6, we discuss
dense time and how a combination of datalog and metric operators can be used to model
metric knowledge and support ontology-mediated querying in this case. We close in Section 7

A. Artale et al.

with a discussion of practical issues in temporal ontology-mediated querying and a recent
implementation.

2 Point-Based Temporal Ontology-Mediated Querying

Suppose we have a database on submission, acceptance and publication of papers in the area
of computer science collected from various sources on the web and elsewhere. For instance,
the database may contain the facts

underSubmissionTo(a, JACM, Feb2016), UnderSubmission (b, Jan2016),
acceptedin(c, JACM, July2016), Published(c, Oct2016),
authorOf (Bob, ¢, May2014)

stating that paper a was under submission to JACM in February 2016; paper b was under
submission in January 2016 (to an unknown journal); paper ¢, authored by Bob in May
2014, was recorded as accepted by JACM in July 2016, and published (in some venue) in
October 2016. Observe that the predicates in the snippet above have a timestamp as their

last argument (e.g., Oct2016) and either one or two domain arguments (e.g., a, JACM).

Following the description logic (DL) tradition, we call predicates with one domain argument

concepts (e.g., Published) and predicates with two domain arguments roles (e.g., authorOf).

A finite set of timestamped facts such as the snippet above is called a temporal ABox. In
general, a temporal ABox, denoted A, consists of assertions of the form

Ak(aiyn)7 Pk(ai7aj7n)7

where Ay is a concept name, P a role name, a; and a; individual names, and n € Z a
timestamp.

Now, we introduce models for temporal ABoxes. Let T' C Z be a (possibly infinite)
interval. A T-interpretation T is a structure

I=((T,<), A%, PP, ... AT A} ... af,a3,...)

such that < is the standard linear order on Z restricted to T', AT # () is the interpretation
domain, P C AT x AT x T and AZ C A% x T, for each k, and af € AT, for each i
(we assume rigid, or time-independent, interpretation of individual names) and af # af
whenever i # j (thus, we make the unique name assumption). Note that the domain AZ is
time-independent. Time-dependent domains can be modelled using an ‘existence predicate’;
we refer the reader to [45, 44, 31] and references therein for a discussion of relevant domain
assumptions in the literature on modal and temporal logic. For a temporal ABox A, we say
that a T-interpretation Z satisfies A or that Z is a model of A if T contains all timestamps
n that occur in A and

(af,n) € A, for all Ag(a;,n) € A, and (af,a,n) € PE, for all Py(a;,a;,n) € A.

1 77g 0

Let min A and max .4 be the minimal and, respectively, maximal integers occurring in .A.

We assume without loss of generality that min. A = 0. In what follows, we shall mostly
be working with Z-interpretations satisfying A (called Z-models of A), N-interpretations
satisfying A (called N-models of A) and [min .4, max AJ-interpretations satisfying A (called
ABoz-fitting models of A).

The models Z of a temporal ABox A reflect the open-world assumption underpinning
ontology-mediated query answering: rather than assuming that the ABox contains all relevant

1:3

TIME 2017

1:4

Temporal Ontology-Mediated Querying: A Survey

S S S A A P P P P
—O O @ @ @ @ @ O O O o—
0 1 2 3 4 5 6 7 8 9 10

Figure 1 A typical timeline for a publication in Example 1: S, A and P stand for Submitted,
Accepted and Published, respectively.

domain individuals and time points, one admits additional domain individuals and time
points that might be required to satisfy domain knowledge. Thus, Z-models reflect the
common sense view of time as being infinite in the past and the future. N-models and
ABox-fitting models reflect a more pragmatic approach and assume that the time points not
used as timestamps (or are before/after any timestamped data) are irrelevant for querying
the data.

We next introduce the ontology and query languages that have been proposed for ontology-
mediated querying of point-based temporal data. Most of these languages can be regarded
as fragments of the two-sorted first-order language 2-FOL(<) [84] constructed from atoms
Ag(z,t), Py(x,y,t), t1 < to, and t; = to, where Ay is a concept name, Py a role name, x
and y are domain variables ranging over the interpretation domain A%, and ¢, t; and t, are
temporal variables ranging over the time instants in 7. For any 2-FOL(<)-formula ¢, any
T-interpretation Z, and any assignments 0 of elements of AZ to the domain variables and t
of elements of T' to the temporal variables, we define the truth-relation T ="' ¢ by induction
as follows:

T > Ag(x,t) iff (0(w),t(t)) € AF, TEMT,
T =% Py(z,y,t) iff (0(x),0(y),t(t)) € Pcha T,
A ':D’t t1 < to iff f(tl) < f(tg), T ’:D,t - iff 7 l;éavt o,
TEY =ty iff t(th) = t(ta), TE™ 1Ay iff TE™ ¢ and T E™ ¢y,

T > g iff T, for all o that differ from d only on z,

T Wt iff Y ¢, for all ¢ that differ from t only on ¢;
other first-order connectives and quantifiers such as —, <>, 3 are defined in the standard
way. By an ontology, O, we mean a set of 2-FOL(<)-sentences. We say that Z satisfies an

ontology O or T is a model of O if T |= ¢, for each ¢ € O (since the ontology contains only
sentences, the assignments are irrelevant).

» Example 1. Consider a simple temporal ontology about research papers (as above) with
role names publishedln, acceptedin and underSubmissionTo. We state that the domains of the
three roles are mutually disjoint using axioms such as

ViVaVy, Yy (publishedln(z,yl,t) A acceptedin(x, yo, t) — J_). (1)

Basic temporal dependencies can be formulated as follows:

VtVaVy (publishedin(z,y, t) — Vs ((s > t) — publishedIn(z,y, s))), (2)

VtVaVy (publishedin(z,y,t) — 3s (s < t) A acceptedin(z,y, s) A (3)
3s'((s < s') A publishedn(z,y,s") A =35 ((s < s") A (s" < §')))),

VivaVy (3s' ((s" < t) A acceptedin(z,y, s')) A (4)

3s” ((t < s") A acceptedin(z,y, s”)) — acceptedin(z, y,t)),

A. Artale et al.

an analogue of (3) for acceptedln and underSubmissionTo and the convexity axiom (4) for
underSubmissionTo. The temporal ABox does not always use these role names, but rather
integrates information from various data sources. For example, for a paper to be published
it is necessary and sufficient that it is published in some venue (even if the publication venue
is unknown). So, we use concept names Published, Accepted and UnderSubmission to refer to
all published, accepted and submitted papers, respectively: e.g.,

VtVz (Published(z, t) <+ 3y publishedIn(z, y,t)) (5)

and similarly for acceptedin and underSubmissionTo. It follows from these axioms, in par-
ticular, that Submitted, Accepted and Published form consecutive intervals as depicted in
Fig. 1.

A 2-FOL(<) ontology-mediated query (OMQ) is a pair Q(x,t) = (O, q(x,t)), where O is
an ontology and q(x, t) a 2-FOL(<)-formula with free domain variables x and free temporal
variables t. We call g(x,t) a query and @, t its answer variables. Given a temporal ABox A,
a model Z of A, a tuple a of individual names in A of the same length as &, and a tuple n
of time points in A of the same length as ¢, we write Z |= q(a,n) if Z =%* g(z, t), for the
assignments 9: & — a and t: t — n. Let T € {Z,N, [min A, max A]}. We say that the tuple
(a,mn) is a certain answer to Q = (O, q(x,t)) over A and T and write O, A =1 q(a,n) if

T = g(a,n) for all T-models Z of O and A.

» Example 2. In the context of Example 1, we now assume that the unit of time is one
month. Then we can formulate the following queries.
Find all accepted papers and their acceptance dates such that the paper was under
submission for at least a year:

q(z,t) = Accepted(x,t) A UnderSubmission(z,t — 1) A UnderSubmission(z,¢ — 13). (6)

Since the flow of time is discrete, any formula of the form P(x,t— 1) is simply an abbrevi-
ation for 3’ [P(a,t') A (' < t) A=3t" ((¢' <) A(t” < t))]; UnderSubmission(z, t — 13)
can be defined similarly.

Papers that were published within two months after acceptance but had been under
submission for three years:

q(z,t) = 3s ((s < t) A Accepted(z, s) A UnderSubmission(z, s — 1)A
Published(z, s + 2) A UnderSubmission(z, s — 37)). (7)

Authors of papers that were submitted more than two years ago but have not been
accepted yet:

q(,t) = Jy (authorOf(z, y, t) A UnderSubmission(y, t — 24) A UnderSubmission(y, t)). (8)

Recall that UnderSubmission is disjoint with Accepted and can only occur before the paper

is eventually accepted.
Note that 2-FOL(<)-formulas as we defined them do not use individual constants. This
assumption is for simplicity only; it is straightforward to extend the syntax and semantics of
temporal ontologies and queries to 2-FOL(<) with individual constants.

Given two fragments £ and Q of 2-FOL(<), we denote by (£, Q) the class of ontology-
mediated queries Q(x,t) = (O, g(x,t)) such that O is formulated in £ and g(x,t) in Q. Let T

1:5

TIME 2017

1:6

Temporal Ontology-Mediated Querying: A Survey

be any of Z, N or [min A, max A]. By (£, Q)-OMQ evaluation over T we understand the
problem of deciding, for a given (£, Q)-OMQ Q(z,t) = (O, g(x,t)), a temporal ABox A and
tuples @ and n in A of the same length as @ and ¢, whether O, A =71 q(a,n). The combined
complexity of (L, Q)-OMQ evaluation over T is defined as the computational complexity of
the above problem. As the queries and ontologies are mostly much smaller than the ABox A,
combined complexity is often misleading as a measure of the resources needed for query
evaluation [85]. An alternative and often more appropriate complexity measure is the data
complezity of (L, Q)-OMQ evaluation over T, that is the complexity of deciding, for fixred O
in £ and g(x,t) in Q, whether O, A =1 g(a,n) for any given ABox A and tuples a and n.

The data complexity of OMQ evaluation is closely related to the equivalent rewritability
of OMQs into standard query languages. With any temporal ABox 4 we associate a
[min A, max Al]-interpretation

Z4 = (([min A, max A], <), ATa pia pra o ATa AZA A A),
where AZ4 is the set of individual names in A, aiIA = a; for all 4, and
ATA = {(ai,n) | Ag(ai,n) € A} and PFA = {(a;,a;,n) | Pu(a;,a;,n) € A}, for all k.

Now, let Q' be any query language over [min A, max AJ-interpretations, for example, 2-FOL(<)
itself, a fragment of 2-FOL(<) or even its extension. We say that (£, Q)-OMQs are
Q' -rewritable over T if, for every OMQ (O, q(z,t)) in (L, Q), there exists ¢'(x,t) in Q'
such that, for every temporal ABox .4 that has a common model with O, the following
equivalence holds for all tuples a and n in A of appropriate length:

0,A ':T q(avn) iff Za ': q/(avn)'

If Q' is 2-FOL(<) over T, then Z4 = ¢q'(a,n) is the standard database query evaluation
problem for temporal ABoxes and 2-FOL(<) queries, which is known to be PSPACE-complete
for combined complexity; see, e.g., [61]; if, however, one fixes the query and thus considers
the data complexity, then this problem is in AC?, the class of languages computable by
bounded-depth polynomial-size circuits with unary NOT-gates and unbounded fan-in AND-
and OR-gates.

Of course, the OMQ evaluation problem for the full 2-FOL(<) is undecidable, and it is
one of the main problems of temporal ontology-mediated query answering to design useful
ontology and query languages for which the query evaluation problem is decidable or, even
better, feasible in practice. The latter requirement is typically interpreted as being at least
in PTIME in data complexity, but to query very large data and employ existing query
engines PTIME query evaluation often is not sufficient, and one aims at rewritability into
first-order logic (AC0 data complexity). In the following two sections, we discuss a few
known approaches to this problem.

3 Queries Mediated by Domain- or Time-centric Ontologies

An important way of obtaining temporal ontology languages from 2-FOL is simply omitting
(non-trivial) quantification over one of its two sorts. Thus, intuitively, if we disallow all but a
single outermost universal quantifier for a temporal variable, then we obtain a ‘domain-centric’
ontology language, in which one can define a time-independent model of the domain; and
if we disallow all but a sequence of outermost universal quantifiers for domain variables,
then we obtain a ‘time-centric’ ontology language using which one can define a propositional

A. Artale et al.

temporal model. Both approaches have been investigated, and, in the rest of the section, we
shall provide a summary of the obtained results. If a model representing both temporal and
domain knowledge is needed, we have to carefully define the interaction between the domain
and time quantifiers.

3.1 Domain-Centric Ontology Languages

It is straightforward to restrict 2-FOL(<) in such a way that it only defines non-temporal
properties: such an ontology would consist of 2-FOL(<) sentences Vt ¢(t), where ¢ does not
contain quantifiers over temporal variables. Of course, query evaluation is still undecidable,
and so further restrictions of its expressive power are needed. In standard, non-temporal,
ontology-mediated query answering, description logics are the most popular fragments of
first-order logic used to define ontologies. Here, we introduce three basic families of DLs that
have been important in the context of OMQ answering, and from which many others can be
derived in a straightforward way. Namely, we introduce the basic expressive DL ALC [19]
and the lightweight DLs DL-Lite [37, 6] and L [18]. In ALC, concepts C are constructed
using the grammar

C "= T | Ak ‘ —|C ‘ Cl |_|CQ | HPkC

An ALC TBozx (ontology) is a finite set of concept inclusions Cy E Co, where C and Cy are
ALC concepts. Concepts in the fragment £L£ of ALC are ALC concepts without occurrences
of negation —. An £L TBox is a finite set of concept inclusions C; C Cy, where C; and
C5 are EL concepts. In DL-Lite, basic concepts B and roles R are constructed using the

grammar
B == T | Ay | 3RT,
R == P, | P..

A DL-Lite’t , TBox is a finite set of concept and role inclusions of the form
B: E By, BB 1,
ngRg, RlﬂRQELy

where By and By are basic concepts and R; and Ry are roles. Concept and role inclusions
of the second type are also called disjointness axioms. In DL-Lite}’ . one can also form
intersections of basic concepts:

BiN---NB,CB, Bin---NBLC L

in DL—LiteZ'fnom, one can use negation (but still any concept inclusion contains only two
concepts): that is, concept inclusions are of the form B; C By, BiMBs C L and T C By L By;
finally, in DL—LiteZ;f,ol one can use both conjunction and negation resulting in concept
inclusions of the form Dy C Dy, where the D; are defined using the rule

D == B | —-D | DinNDs.

(We will assume without loss of generality that the concept inclusions in DL-Lite}t , are
given in normal form: By M---M B, C B} U--- U BJ; as usual, we assume that the empty
union is 1 and the empty intersection is T). All of the above languages in the DL-Lite family
contain role inclusions, and the fragment of DL—the?f without role inclusions is denoted by

1:7

TIME 2017

1:8

Temporal Ontology-Mediated Querying: A Survey

DL-Lite.. Two concept (or role) inclusions C; = Cy and Cy C C are often abbreviated as
Cy = C5 and are called a concept (respectively, role) equivalence axiom.

The DLs introduced above can be regarded as fragments of first-order logic (with a single
sort). In the temporal setting, every (basic) concept C' can be translated (using the so-called
standard translation) to a 2-FOL(<)-formula C*(x,t) with one free domain variable and
a single temporal variable ¢, and every role R to a 2-FOL(<)-formula R¥(z,y,t) with two
domain variables z, y and a single temporal variable ¢:

(Ak)ﬁ(xvt) = Ak(x7t)7 (ﬁC)u(m,t) = ﬁC’u(w7t)7
(Pk)u(m>y7t) = Pk(xvyat)7 (Cl M 02)11(37,15) = C?(mﬂt) A Cg(l‘,t),
(Pk_)ﬁ(x’yvt) = Pk(yvxvt), (ERC)ﬁ(‘T,t) =dy (Rﬁ(‘T,yvt) A Cﬁ(y’t))'

Every concept inclusion C7 T Cs is then translated as ViVz (Cii (z,t) — Cg(x,t)) and
every role inclusion Ry C Ry as ViVaVy (Rﬁ (z,y,t) — Rg (z,y, t)) Thus, we obtain a first
important type of temporal ontologies by demanding that its (essentially atemporal) concept
and role inclusions hold true at every time point. More formally, given a T-interpretation
Z and n € T, we can define an n-slice Z(n) of Z by taking the standard Tarski-style
interpretation for the respective DL:

I(n) — (A7, PEOO PO ATO) 4I) T I)

9

I(n) _

where a; ") = af, for all i, and

P = {(wo) | (wv,n) € PEYand - AT = {u] (u.n) € A}, for all b

It follows that Z is a T-model of an ontology O iff each of the concept and role inclusions in
the ontology is satisfied in each of the slices Z(n), for n € T

» Example 3. In a domain-centric ontology language in the context of Example 1, we can
express (1) by using a concept disjointness axiom and (5) using a concept equivalence axiom:

JpublishedIn.T M JacceptedIn. T C L, (1)
Published = JpublishedIn.T. (5")

It is to be noted that, in the languages just introduced, one cannot represent or reason
about any dependencies between the interpretations Z(n) and Z(m) for distinct time points n
and m. Examples of such dependencies are sentences (2)—(4) in Example 1. The extension of
any ontology language £ with the option to say that a concept name A is time-independent
(that is, AZ(™) = AZ(™) for all time points n, m) is called £ with rigid concepts. The extension
of £ with rigid roles is defined analogously. In Example 1, authorOf could be a rigid role. Of
course, if the language has rigid roles, then rigid concepts can be ‘simulated’ by considering
domains of rigid roles: if role R is rigid, then the equivalence axiom C' = 3R ensures that
concept C is also rigid.

Baader et al. [20] proposed domain-centric languages. They introduced ALC-LTL as the
language of ALC axioms (concept inclusions, or GCI as they are often called in description
logic) and ABox assertions with Boolean connectives and temporal operators applied to them.
For example, the temporalised axiom <0 (USCitizen C JinsuredBy.Insurer) says that there
is a future time point, from which on every US citizen will always have a health insurance.
It turns out that without rigid symbols the two components — the domain and the time —
have very little interaction, and so in order to check whether a given formula ¢ in ALC-LTL

A. Artale et al.

Table 1 Complexity of the satisfiability problem over N.

language combined complexity

no rigid symbols rigid concepts only rigid roles & concepts

ALC-LTL [20] ExpPTIME NExPTIME 2EXPTIME
—"— global GCIs [20] EXpTIME ExpTIME 2EXPTIME
EL-LTL [28] PSPACE NEXPTIME NEXPTIME
—'"— global GCIs [28] PSPACE PSPACE PSPACE

is satisfiable, one can check whether (1) the propositional abstraction of ¢ (the result of
replacing DL axioms with propositional variables) is satisfiable and (2) the satisfying model
yields consistent sets of DL axioms. As a result, the complexity is usually the maximum
of the complexities of the two components; see Table 1. Rigid concepts and/or rigid roles
make the interaction stronger and require additional global guessing/bookkeeping but the
propositional abstraction technique is still applicable. The second set of results in Table 1
refers to the fragment of ALC-LTL in which Boolean connectives and temporal operators
can be applied only to ABox assertions but ALC axioms hold globally in all models (in
precisely the same way as we defined in the standard translation above). Such a restriction
dramatically reduces the complexity for the logic ££-LTL [28].

Note also that the Semantic Web community has developed a variety of extensions of
RDF/S and OWL with validity time [64, 74, 48]. The focus of this direction of research is
on representing and querying timestamped RDF triples or OWL axioms.

3.2 Time-Centric OMQs

One of the main differences between description logics and first-order logic is that the former
do not use individual variables. Instead, description logic constructors such as existential
restrictions express certain quantifier patterns. The situation in reasoning about time is
similar: instead of representing explicitly the temporal precedence relation < using individual
variables, one employs temporal operators encoding certain natural language patterns. A very

well studied language based on temporal operators is linear-time temporal logic (LTL) [72].

In contrast to the description logics introduced above, which are much weaker than first-order
logic, LTL with operators S (‘since’) and U (‘until’) has exactly the same expressive power
as the corresponding time-fragment of 2-FOL(<) (Kamp’s theorem); see, e.g., [44, 75]. We
now introduce the LTL extensions of the concept and role grammars defined above:

D = C I OPD | OFD | Dl S D2 ‘ D1 u DQ,
S = R | OPS ‘ OFS | 51 S SQ ‘ Sl U DQ.
We will also use common abbreviations: for example, D = T § D (‘sometime in the

past’ for concepts) and 05 = =(T U —5) (‘always in the future’ for roles). The standard
translation of concepts can be extended to temporalised concepts as follows:

(OpD)*(z,t) = D¥(z,t — 1),

(OpD)¥(x,t) = D*(x,t + 1),
(D1 8 Do)?(x,t) = It ((t1 < t) A D(w,t1) A Vta((ts < t2) A (t2 < t) — Di(,t2))),
(D1 U Do)z, t) =3t ((t < t1) A Dh(z,t1) A Via((t <t2) A (ta < t1) — Di(z,t2))).

1:9

TIME 2017

1:10

Temporal Ontology-Mediated Querying: A Survey

Temporalised roles are translated into 2-FOL(<) similarly (but two domain variables are
used rather than one). Recall that (¢ — 1) is a shortcut for ¢’ that satisfies the condition
(' <t) A=3t" ((t' <t”) A (" <t)). So, under the strict interpretation of U and S, the
temporal operators Op (‘next time’) and Op (‘previous time’) could be equivalently defined
as OpD =1 U D and OpD = 1L S D, respectively.

» Example 4. In the context of Example 1, we can represent the ‘concept’ analogues of
sentences (1)— (4) as follows:

Published M Accepted C L, ("
Published C OpPublished, (2")

Published C <5 (Accepted M OpPublished), (3"

OpAccepted M OpAccepted T Accepted. (4"

Rigid concepts and roles can be defined in the language introduced above be using
inclusions of the form C' C 0.0,C or C = O, C.

If no relational knowledge is needed for the domain and the focus is on temporal aspects
(as in Example 4), then it suffices to work with ontologies that represent the behaviour of
individual domain elements without formalising any interaction between them. So, in the
remainder of Section 3.2, we concentrate on the concept-only ontology languages and, in
Section 4, we show how these results can be extended to the full setting (under certain
restrictions).

In order to present the fine-grained analysis of the complexity of OMQ evaluation, we
assume that our ontologies are given in a certain normal form. More precisely, it is known
that any LTL formula can be transformed into a polynomial-size LTL formula in separated
normal form (SNF) [42] that has the same models (if restricted to the original vocabulary —
the transformation requires introduction of auxiliary names, but the result is a conservative
extension, which preserves the models restricted to the original vocabulary). The formulas in
SNF are conjunctions of global and initial temporal clauses that only use the operators Op,
Op, Op and Og. So, we consider the time-centric ontology language LTL%'OC;Z with concept
inclusions of the form

Lin---NnLyCLiu---uLl,

where the L; and L} are concept names possibly prefixed by unary temporal operators Op,
Or, Op or Op. We also define the core, krom and horn fragments of LTLj.);, where the
temporal clauses are restricted to

L1 C Lo, LMLy CE L, (COT@)
L1 E LQ, L1 [L2 E J_, T E L1] LQ, (k’rom)
Lin---NLyC L, Lin---NL,C 1, (horn)

respectively, and the O- and O-fragments LTLS and LTLE, where only Op/Op and Op /0
operators can be applied. It can be seen that the sub-Boolean fragments of LTLj); are in
fact the concept-only counterparts of the respective fragments of DL-Lite. Recall that the
satisfiability problem is PSPACE-complete for LTL%'D%— and LTLEgn—formulas, NP-complete
for LTLET?M— and LTLfrom—formulas, and NLOGSPACE-complete for LTL?OW—7 LTLkOmm— and
LTL,, -formulas [9].

Let O be an ontology in a time-centric language. An atomic LTL-OMQ is a pair of the
form (O, Ag(x,t)), where A, is a concept name. We also consider a larger class of OMQs

A. Artale et al.

Table 2 Data complexity and rewritability of LTL-OMQs over Z.

atomic positive
c LTLY LTLS LTLI® LTLY LTLS LTLI®
bool MSO(<) MSO(<)
krom 2-FOL(<,+) MSO(<)* MSO(<)
2-FOL(<)
horn MSO(<) 2 FOL(<)
core 2-FOL(<,+) MSO(<)* 2-FOL(<,+) MSO(<)*

*It is still open whether these can be improved to 2-FOL(<, +); all other results in the table are optimal:
in particular, MSO(<) means NC!-hardness for data complexity and so, no 2-FOL(<, +)-rewritability.

based on positive temporal concepts », which are defined by the following grammar:

w = L | T | Ax | mMse | Uiz |

Dp% | DF% | %18%2 | %11/{%2.

Observe that operators Op, Op, ¢Op and Op can be used in positive temporal concepts as
abbreviations. A positive LTL-OMQ is a pair of the form (O, s(x,t)). It is to be noted that,
unlike the ontology language, where we used a normal form, one cannot eliminate the binary
temporal operators S and U (and the ‘sometime in the past/future’ operators <p/<r).

In the context of LTL-OMQs, two types of Q’-rewritability are of interest for the target
language Q’: 2-FOL(<) and 2-FOL(<, +). The second language extends 2-FOL(<) with the
ternary numeric predicate PLUS that is interpreted in the two-sorted structure Z 4 (defined
in Section 2) as follows:

T4 EPLUS(n,n1,n2) i n=mn;+ny, forn,ng,ng € [min.A max.A.

Observe that even though we can express terms such as t 4+ n, for a fixed n € Z, in 2-FOL(<),
terms of the form ¢+ s are not expressible in 2-FOL(<). Evaluation of 2-FOL(<, +)-formulas
is known to be in LocTiME-uniform ACY for data complexity [56] (recall that AC? is
the class of languages computable by bounded-depth polynomial-size circuits with unary
NOT-gates and unbounded fan-in AND- and OR-gates).

» Example 5. Let O be an ontology with the following two axioms:

OpAL B, OpB C A. (9)

Consider the positive LTL-OMQ Q(z,t) = (O, OrOr B(z,t)) and ABox A = {A(a,0),C(a,1)}.

We have (a®,2n + 1) € BZ, for any n > 0 and any N- or Z-model Z of O and A. It follows
that (a, 1) is the only certain answer to Q(x,t) because only 1 of all odd numbers is within the

interval between min .4 and max.A (note, however, that the relevant B is true at moment 3).

» Example 6. Consider now the atomic LTL-OMQ Q(z,t) = (O, A(x,t)) with the same O
defined by (9). It is not hard to see that (a,n) € AZ for any Z-model Z of O and a given
temporal ABox A iff ¢ is either at an even distance ¢ — s from some A(a,s) € A or at an odd
distance ¢ — s from some B(a, s) € A. Thus, the following formula

3s,n, k, k' [(A(z, s) A PLUS(k, n,n) A PLUS(t, 5,k)) V
(B(z, s) APLUS(k,n,n) A PLUS(K', k, 1) A PLUS(t, s, k'))]

1:11

TIME 2017

1:12

Temporal Ontology-Mediated Querying: A Survey

is a 2-FOL(<, +)-rewriting of Q(x,t), where, for example, PLUS(k, 7, n) means k = 2n. Note
that s, n, k and all other quantified variables range between 0 = min .4 and max A in any Z 4;
in particular, ¢ > s. Finally, observe that Q(x,t) is not 2-FOL(<)-rewritable since properties
such as ‘t is even’ are not definable by 2-FOL(<)-formulas [61].

» Example 7. Next, instead of just checking whether the distance is even or odd, we devise
an ontology that checks whether the number of certain symbols in a given interval is even
or odd. More precisely, consider the atomic LTL-OMQ Q(z,t) = (O, By(z,t)), where O
consists of concept inclusions

OrBr, MAy C By and OrBr MA C By_y, for k=0,1.

Informally, each occurrence of Ag in the ABox keeps the same subscript k in B and each
occurrence of A; flips the subscript over by replacing By with By and the other way round.
So, for any word e = (eg,...,e,—1) € {0,1}", let Ae = { Bo(a,n) }U{ A, (a,i) |0<i<n}.
It is not hard to check that (a,0) is a certain answer to Q(x,t) over A, iff the number of 1s
in e is even (PARITY). As PARITY is not in AC® [43], Q(x,t) is not 2-FOL-rewritable even
if arbitrary numeric predicates (not only PLUS) are allowed in rewritings.

On the other hand, PARITY is a regular language, and so belongs to NC* 2 AC?, the
class of languages recognisable by logarithmic-depth circuits with unary NOT-gates and fan-in
two AND- and OR-gates. Recall also that (¢) regular languages coincide with those definable
by monadic second-order (MSO) formulas built from atoms of the form A(t) and ¢ < ¢/
using the Booleans, first-order quantifiers V¢ and 3¢, and second-order quantifiers YA and
JA [35], and that (i7) MSO(<)-formulas can encode the semantics of propositional temporal
logic see, e.g., [46]. Thus, all LTLo; OMQs are MSO(<)-rewritable, and so answering such
OMQs is in NC! for data complexity.! On the other hand, in many cases we can construct
2-FOL(<, +)- or even 2-FOL(<)-rewritings; for details on the results, see Table 2 [8].

3.3 Query Answering with Domain-Centric Ontologies

Even without a temporal dimension, first-order logic is too expressive for effective ontology-
mediated query answering. Instead, research has been focussed on ontologies in description
logic and on queries in small fragments of FO. Most popular are conjunctive queries (CQs),
defined by the grammar

o u= Ag(z) | Pe(w,m) | oerAge | Fze,

and disjunctions of CQs called unions of conjunctive queries (UCQs). Thus, CQs are
(equivalent to) conjunctions of atoms in which some variables are existentially quantified. We
briefly discuss basic results on the rewritability and data complexity of ontology-mediated
queries in the atemporal classes of OMQs (DL-Litelt . CQ), (E£,CQ), and (ALC,CQ).
We assume for simplicity that ABoxes consist of facts without time stamps and interpret
the description logics in the corresponding single sorted interpretations. Then OMQs in
(DL-Lite}t .., CQ) are always rewritable into UCQs, a fact which was the main motivation
for the introduction of the DL-Lite family [37, 6].

» Example 8. For O = {JpublishedIn.T C Published } and the CQ g(x) = Published(z),
a rewriting of (O, q(x)) is given by ¢’(x) = Jy publishedIn(z, y) V Published(z). Intuitively,
q'(z) is the disjunction over all possible ‘reasons’ (according to @) for x to be published.

! By NC! we mean the uniform NC!, which coincides with ALOGTIME.

A. Artale et al.

It follows that answering OMQs from (DL-Lite]t ~ CQ) is in AC? fot data complexity.
In contrast, not all OMQs in (££,CQ) are rewritable into UCQs or even first-order logic.

» Example 9. For O = { JrefersTo.Publication C Publication } and CQ g(z) = Publication(z),
one can readily see that O, A = g(a) iff there is a path from a to some individual b such that
Publication(b) € A along the refersTo-relation in A. Since reachability cannot be expressed
in first-order logic, there is no rewriting of (O, q(z)) in first-order logic.

It can be shown, however, that every OMQ in (££,CQ) is rewritable into a datalog
program, and so CQ evaluation is in PTIME for data complexity [78]. For OMQs in
(ALC,CQ), the situation is even worse: in this case, OMQ answering can be CONP-hard for
data complexity [55]. Bienvenu et al. [24] give a partial classification of OMQs in (ALC, CQ)
into those in PTIME and those that are CONP-hard for data complexity.

We now return to querying temporal data under the assumption that the ontology is
domain-centric. Querying in this framework has mainly been investigated in the context
of ontology-based monitoring of dynamic systems [15, 13, 17]. Suppose that timestamped
data is collected while monitoring a system. The data collected at each time point n forms a
sequence (A(%))o<i<n of ABoxes A(7) such that every A(i) contains assertions of the form
Ag(a,i) and Py(a,b,i). Thus, the temporal ABox A is given as A = |J,-,<,, A(i), where
min A = 0 and max A = n is the current time point. Ontology-mediated queries are used to
detect whether an event of interest has occured in A up to the time point n. The following
example illustrates this scenario.

» Example 10. Suppose that a temporal ABox A maintained by a journal editor contains
data about the submission, reviewing, acceptance and publication of articles. Thus, similarly
to the temporal ABox introduced above it contains assertions stating whether an article is
under submission, has been accepted, has been published, and so on. A monitoring query of
interest might be query (8) from Example 2: find the authors of papers that were submitted
more than two years ago but have not been accepted yet.

To query temporal data under domain-centric ontologies, CQs have been extended to
temporalised CQs in which LTL operators can be applied to CQs. Thus, queries in LTL-CQ
are defined by the following grammar:

vou= o | | i A | 1S | iU,

where ¢ is a CQ. Note that disjunction and the temporal connectives Op, O, Op, O, Op,
and <p can be used as abbreviations in LTL-CQs. Thus, LTL-CQ extends the set of queries
in LTL-OMQs from Section 3.2 by admitting negation and applying LTL connectives to
CQs rather than atomic queries; however, negation can only be applied to a formula all
of whose free variables are answer variables of the query. Observe that LTL-CQs do not
contain temporal variables. To evaluate an LTL-CQ, the user chooses a time point n for
evaluation, typically the last time point of the temporal ABox representing the dynamic
system to be monitored. Formally, LTL-CQs 1 can be translated into 2-FOL(<) formulas
with a single temporal variable ¢ and any number of domain variables as follows (we only
give the translation for CQs, the extension to general LTL-CQs is defined in the same way
as the extension of -# to temporalised concepts in Section 3.2):

(Ak('r))b :Ak(xvt)7 (Pk(xvy))b sz(x,y,t),
(01 A p2)’ = @f Ao, (Fzp) =3z ¢’

1:13

TIME 2017

1:14 Temporal Ontology-Mediated Querying: A Survey

Table 3 Combined and data complexity of LTL-CQ answering with various DLs over N.

DL combined/data complexity
no rigid rigid concepts rigid concepts & roles
DL-Lite[” [27] PSPACE/NC!
DL-Litegrom|poor [27] ExPTIME/CONP CONEXPTIME/CONP 2EXPTIME/in EXPTIME
DL—Liter.Umlbwl [27] 2ExPTIME/CONP 2ExPTIME/in EXPTIME
EL 28] PSPACE/PTIME PSPACE/CONP CONEXPTIME/CONP
ALC [15] ExpTIME/CONP cONEXPTIME/CONP 2EXPTIME/in EXPTIME

Now, given a DL ontology O, a temporal ABox A, a time point n € [min.A, max 4], an
LTL-CQ %(x), a tuple a in A, and T € {Z,N, [min A, max .A]}, one is interested in whether
(a,n) is a certain answer to (O, 1" (x,t)) over A and T, or O, A =7 9’ (a,n) in symbols.

» Example 11. Query (8) cannot be expressed in LTL-CQ. Its natural formalisation using
temporal operators is the following

q(z) = y(authorOf(z, y) A UnderSubmission(y) A OZ*UnderSubmission(y)),

but the quantifier Jy is applied to a temporalised formula which is not allowed in LTL-CQ.
By regarding y as an answer variable and considering instead

q(z,y) = authorOf(x,) A UnderSubmission(y) A O2*UnderSubmission(y),

one obtains an LTL-CQ. Query (6) from Example 2 can be formulated as an LTL-CQ as
follows:

q(z) = Accepted(x) A OpUnderSubmission(z) A OF*UnderSubmission(z).

Table 3 summarises the known results [27, 28, 15] on the data and combined complexity
of LTL-CQ evaluation mediated by domain-centric DL ontologies for N-models (thus, for the
evaluation problem O, A =y v°(a,n)). It is not difficult to show the same upper bounds for
ABox-fitting models, and we conjecture that the same lower bounds hold for ABox-fitting
models as well. We also conjecture that the same results hold for Z-models. The proofs
generalise the propositional abstraction method employed in the analysis of the complexity
of the satisfiability problem for ALC-LTL ontologies. In fact, since LTL-CQs are closed
under negation, the upper bounds in Table 1 can be proved by a straightforward reduction
using the upper bounds for combined complexity in Table 3. It is of interest to observe
that even for basic DL-Lite dialects, and without rigid concepts and roles one does not
obtain FO-rewritability (because the problem is NC!-hard), which is caused by negation in
LTL-CQs. In contrast, query evaluation for ££ without right concept and roles is still in
PTiME in data complexity.

The complexity landscape presented in Table 3, has been further extended to more
expressive description logics, in particular, containing subroles and transitive roles: the
results for those cases are essentially the same as for ALC [16, 17].

The rewritability properties of OMQs using LTL-CQs are investigated by Borgwardt et
al. [25, 26], where the focus is on query evaluation for ABox-fitting models. If no negation is
present in an LTL-CQs g(x) and the ontology O is in DL-Lite.,r. without rigid symbols,
then LTL-CQ rewriting q'(x) of (O, g(x)) can be obtained by simply replacing any non-
temporal CQ ¢(x) in q(x) by the UCQ-rewriting of the non-temporal OMQ (O, p(x)). A

A. Artale et al.

general transfer theory is developed [26] with the aim of showing that for a large class of
domain-centric ontology languages rewritability (as well as combined rewritability [57]) is
preserved under moving from non-temporal queries (such as CQs) to temporalised queries
(such as LTL-CQs without negation).

Another major concern of research on the use of LTL-CQs in monitoring applications
is the question whether it is possible to avoid storing the whole sequence Ay, ..., A, to
compute the certain answers to a given LTL-CQ at time-point n but instead keeping only a

tail Ap—p, ..., A, of the data. A variety of results in this direction have been obtained [26].

One approach is based on a classical separation result stating that, for every LTL-formula,
there exists an LTL-formula without past-operators, which is equivalent to the original
formula at the time-point 0 in N-models [44].

Another approach is to add temporal connectives to the query language while keeping a
standard atemporal ontology language [68, 69]. In the streaming data scenario, the relevant
slices of the temporal data (i.e., the finite data history in the form of a sequence of ABoxes to
be considered by the query) are specified with a window operator using a sliding parameter
that determines the rate at which snapshots of the data are taken, and a width parameter
that fixes the size on the window/history. This approach is realised in the Stream-Temporal
Query Language STARQL [70]. Soylu et al. [83] have shown how the evaluation of STARQL
queries is possible using standard SQL engines and report on the performance.

4 Combinations

In many cases, neither a domain nor a time-centric ontology language suffices, but some
combination of them is needed. Designing combinations with good computational properties
is notoriously difficult as the two-dimensional structure of temporal data makes it rather
straightforward to encode the behaviour of Turing machines for even seemingly inexpressive
languages. Thus, straightforward language combinations are often undecidable. In fact,
only under rather intricate restrictions decidability is preserved [45, 54]. In this survey, our
main concern is not decidability, but much stronger conditions such as tractability of OMQ
evaluation and rewritability into 2-FOL. It should thus be clear that the interaction between
temporal and DL constructors has to be pretty much restricted to obtain algorithmically
well behaved combinations. In this section, we discuss three recent approaches to address
this problem.

4.1 A 2-FOL(<)-Rewritable Temporal Extension of DL-Lite

Artale et al. [12] begin with the observation that, for any ontology O, if one wants all OMQs
based on O to be 2-FOL(<)-rewritable, then one has to ensure that O is materialisable (in
the sense that, for any temporal ABox A consistent with O, there exists a model Z of A and
O that gives exactly the certain answers to any OMQ with O). Equivalently, one requires
that no disjunction of CQs is entailed if none of it disjuncts is entailed. This excludes the
use of the temporal operators < and $p on the right-hand side of concept inclusions, as
illustrated by the following example.

» Example 12. Let O = {A C < B}. Consider the two-sorted CQs

qi(z,t) = 3 ((t<t')AC(z,t')AB(z,t)),
gy(z,t) = I (t<t)AC(z, ')A ((t' <t”) A B(z,t"))).

1:15

TIME 2017

1:16

Temporal Ontology-Mediated Querying: A Survey

For A = {A(a,0),C(a,1),D(a,2)}, either B occurs together with C' (for example, at
moment 1), or B occurs after the moment 1, and so O, A Ez ¢q,(a,0) V g5(a,0) but
0, A £z q;(a,0) for i = 1,2. One can use an encoding of 2+2-SAT [79] to show that there is
a two-sorted CQ g such that evaluating (O, q) over Z-models is in fact CONP-hard for data
complexity (and thus, there is no rewriting).

The following combination of DL-Lite and LTL is then suggested so that it avoids non-
materialisability by not admitting any temporal operators ¢p and < on the right-hand
side of concept or role inclusions. Basic concepts B, temporalised concepts C, roles R and
temporalised roles S are defined by the following grammar:

B := A; | 3R.T, C == B | C1NCy | OxC | OpC,
R == P | P, S u= R | S1NSy | OuS | OpS;

K2

note that 3R.T can only contain a basic role because temporalised roles can contain <,

and Op (which are not allowed to occur on the right-hand side of concept inclusions). The

lhs<

norn, are of the form

concept and role inclusions in DL-Lite
CCB, SCR.

A DL-Lite}% ontology is a finite set of inclusions in DL-Lite}s" . The following ontology

illustrates expressiveness of the language.

» Example 13. In the context of Example 1, DL-Lite}*® can represent all 2-FOL(<)-
sentences except (3):

JpublishedIn.T M JacceptedIn. T C 1, (1)

OppublishedIn T publishedIn, (2"

Opacceptedln M Opacceptedin T acceptedin. (4"

Note that (2') and (4’) are role inclusions expressing convexity (also known as existential
rigidity) of publishedln and acceptedIn, respectively. We can also say that authorOf is a rigid
role: Op<$rauthorOf C authorOf.

As the query language we take the obvious extension of single-sorted CQs to two-sorted
CQs, 2-CQ(<), defined by the following grammar:

o n= Ag(z,t) | Pe(w,aet) | (B <t2) | (ti=t2) |
L1 Aea | Fze | Fte.

The query language 2-CQ(<) is rather expressive allowing an arbitrary nesting of domain
and temporal quantifiers as illustrated by the following example.

» Example 14. Assuming that authorOf is rigid and using the fact that UnderSubmission is
convex, query (8) can now be expressed as follows (cf. Example 11):

q(z,t) = 3Jy(authorOf(z,y,t) ATty Ita... Itag ((taa < taz) A= A(te <t1) A
(t1 < t) A UnderSubmission(y, t24)) A UnderSubmission(y, t)),

On the other hand, unlike LTL-CQ, 2-CQ(<) does not allow the Op, O operators, and it
is not known whether the addition of these operators to 2-CQ(<) will preserve rewritibility.
Using the fact that ontologies in DL-Lite}’s® are materialisable, one can show that OMQs

with DL-Lite}*® ontologies and two-sorted CQs are 2-FOL(<)-rewritable over Z-models.

horn

A. Artale et al.

» Example 15. A 2-FOL(<)-rewriting for OMQ ({(4')}, acceptedin(z,y,t)) over Z is

acceptedin(z, y,t) V
[3t' ((t' < t) A acceptedin(z,y,t')) A3t ((t' > t) A acceptedin(z, y,t'))].

4.2 Towards a Classification for Temporal DL-Lite

A more systematic investigation into the data complexity and rewritability of OMQs based on
temporal DL-Lite was launched by Artale et al. [8]; see also [59]. The considered languages
are based on the time-centric ontology languages introduced in Section 3.2. Thus, in contrast
to DL—Litel}ffﬁl, the operators Op and O do not occur explicitly in ontologies but, instead,
the basic temporal operators are Op, Op, Op, and O.. Now, temporal operators can occur
both on the left- and right-hand side of concept and role inclusions. Formally, basic concepts
B, temporalised concepts C, roles R and temporalised roles S are defined by the following

grammar:

B == A; | 3RT, C == B | 0.C | 0C | OC | OC
R == P, | P, S = R | 08 | S | OS | OpS.

K2

Concept and role inclusions in normal form are as follows:

Cim---NC, C CU---UC, and Sim---nS, C STu---usS,.

lhs&

The next example shows how concept and role inclusions in DL-Lite,, .,

using the operators O, and 0.

can be expressed

» Example 16. Role inclusion (2’) from Example 13 can equivalently be expressed using Og:
publishedln C O, publishedIn. (2"

Note that <p on the left-hand side is replaced by O, on the right-hand side. To express (4'),
however, fresh role names acceptedInF and acceptedInP are required, and the following three
role inclusions are, in fact, a model conservative extension of (4'):

acceptedIn C OpacceptedInF, (47)
acceptedIn C OpacceptedInP, (49)
acceptedInF M acceptedInP C acceptedin. (44)

It is not difficult to generalise this argument to arbitrary concept and role inclusions in
DL-Liteys

horn*

We classify ontologies depending on the shape of their inclusions and the temporal operat-
ors in them similarly to the fragments of LTL}.", in Section 3.2. For ¢ € {bool, horn, krom, core}
and o € {0,0,00}, we denote by DL-Lite2 the ontology language whose (concept and
role) inclusions have the shape specified by ¢ (for example, the core fragments only contain
inclusions and disjointness axioms between temporalised concepts/roles, whereas ¢ = horn
allows, in addition, intersection MM to be applied to concepts/roles) and only use the (future
and past) operators indicated in o (for example, 0 = O means that only O, and Op can be
used).

The main ingredients of the query language are positive temporal concepts s and positive
temporal roles p given by the grammars

w =T | Ax | 3FRsx | Nz | Uz | opyx | s 0py o,

o= S | oMo | olUo | opo | 010py092,

1:17

TIME 2017

1:18 Temporal Ontology-Mediated Querying: A Survey

Table 4 Data complexity and rewritability of positive OMQs over Z.

DL-LiteZ DL-LiteS DL-LiteZ®
bool and krom CONP-hard
1
horn NC-"-hard NCLhard
horn with monotone Rls 2-FOL(<)
core 2-FOL(<) 2-FOL(<,+) ?

where op; € {Op, Op, Op, Op, Op, 0x} and op, € {U,S}. Note that we can only use non-
temporalised roles in 3R.»c. A DL-Lite2 positive OMQ is a pair of the form Q(z,t) =
(O, #(x,t)) or Q(z,y,t) = (O, 0(x,y,t)), where O is a DL-Lite2 ontology, s is a positive
temporal concept and g a positive temporal role (which can use all temporal operators, not
necessarily only those in 0). If sr and p are concept and role names, we refer to Q as an
atomic OMQ.

Most of the data complexity and rewitability results reported in Table 4 are obtained by
extending the constructions from LTL-OMQs. A surprising result here is that answering
positive OMQ with DL-Lite} = ontologies turns out to be NC'-hard (in contrast to LTL}, |
which is 2-FOL(<)-rewritable). The class of DL-Lite},,,, ontologies with monotone role
inclusions (the precise definition of which is too elaborate for this survey) includes, in
particular, all DL-Lite},,,,, ontologies whose role inclusions contain no 0, and O, operators
on the left-hand side. As demonstrated in Example 16, such ontologies are sufficient for
encoding the language DL-Lite}s> from Section 4.1. Tt is still an open problem whether
OMQs with DL-Litel5, are 2-FOL(<, +)-rewritable or NC'-hard.

Query (8) from Example 1 is expressible as a positive concept query if we assume that
authorOf is a rigid role:

q(z,t) = 3authorOf.(UnderSubmission M O2*UnderSubmission)(z, t)

(however, it is not expressible otherwise). In general, the query language of positive temporal
concepts and roles is incomparable with 2-CQ(<): the former, for example, allows union
U and O, /0O, but the latter contains not necessarily tree-shaped queries. It is still open
whether the results of Table 4 hold for 2-CQ(<) queries.

4.3 Temporal EL

The description logic £L is another tractable language, but since CQ answering in (atem-
poral) L is PTIME-complete, a more expressive than 2-FOL(<) target language for rewritings
in its temporal extension would be required. One candidate could be DATALOG;g, a de-
cidable extension of DATALOG with one unary successor function. Evaluating DATALOG g
programs is known to be in EXPTIME in combined complexity and PSPACE-complete for
data complexity [40].

Gutiérrez-Basulto et al. [49] considered a temporal extension TEL of EL, in which concepts
are defined by the following grammar:

cC o= A ‘ iP,.C ‘ Ci1 M0y | OpC | OrC | OpC | OrC.

(Note that £L has no role inverses, P, .) Ontologies in TEL are finite sets of concept inclusions
of the form C} C C5 (and contain no role inclusions). In terms of expressivity, observe that
the ‘concept’ analogues (2') and (4') of sentences (2) and (4) in Example 1 belong to TEL

A. Artale et al.

(note that (1) strictly speaking does not belong to TEL, but such an extension would be
straightforward). Rigid concepts are also expressible in TEL, and the language has rigid
roles.

As the query language, Gutiérrez-Basulto et al. [49] chose atomic queries of the form
A(x,t). We mention, however, that queries (6), (7) and (8) can all be defined as TEL-concepts
in the ontology: for example,

JauthorOf. (UnderSubmission I OE4UnderSubmission) CQ, (8"

and then @) could be used as an atomic query.

Answering atomic OMQs in the full TEL turns out to be undecidable (here and below,
all the results over Z-models), but this is essentially due to the Op /<O operators on the
right-hand side of concept inclusions. In the fragment with only ¢p/<Cr and only on the
left-hand side of concept inclusions (like the language in Section 4.1), which is similar to
the inflationary DATALOGg [39], query answering is P TIME-complete for both data and
combined complexity.

The fragment TELC of TEL that uses only Op/Or operators can express (as a model
conservative extension) all axioms of the inflationary TEL. For example, the concept analogue
of (4’) (expressing convexity) can be encoded using two additional concept names and the
following concept inclusions:

Accepted C OpAcceptedInF, AcceptedInF C OrAcceptedInF,
Accepted T OpAcceptedInP, AcceptedInP C OpAcceptedInP,
AcceptedInP M AcceptedInF C AcceptedInF;

see also (47)—(4%). Tt is not known whether query answering in the full TEL® is decidable.

However, it is PTIME-complete for data and PSPACE-complete for combined complexity
in its sublanguage without rigid roles, and PSPACE-complete in data and in EXPTIME for
combined complexity in the sublanguage where rigid roles can only occur on the left-hand
side of concept inclusions. These results are proved by translating the query answering
problem into DATALOG;s. Moreover, acyclic TEL-OMQs can be rewrtitten into 2-FOL(<, +),
and the evaluation problem for such OMQs is in PTIME in combined complexity. Making
the ontology acyclic in one of the dimensions only (either time or DL), gives the following
results: for temporally acyclic ontologies, which include all atemporal £ ontologies, it is
PTiME-complete in both combined and data complexity; for DL-acyclic ontologies, OMQ

answering is non-elementary for combined complexity but NC'-complete for data complexity.

5 Interval-Based Temporal Ontology-Mediated Query Answering

In the ontology and query languages considered in Sections 24, time was assumed to be
point-based and discrete. It is well-known, however, that both features may cause difficulties
for modelling certain application domains.

We begin with the view of time as intervals, that is, sequences of points. The standard way

of storing temporal information in databases is by attaching a validity time interval to tuples.

For example, a relational table EmployeeSalaries with columns EmployeelD, MonthlySalary,
FromTime and ToTime contains tuples such as (e007,£3000,01,/01/2008,05/01/2014). The
simplest and most intuitive way of representing this information in the point-based setting is
to stipulate that such a tuple is a shorthand for the sequence of tuples

(007, £3000,01/01,/2008), (€007, £3000,02/01/2008), ..., (007, £3000,05/01,/2014)

1:19

TIME 2017

1:20

Temporal Ontology-Mediated Querying: A Survey

provided that it is known a priori that a day is the minimal unit of time required in the
application. Such a conversion of intervals to points, performed explicitly or implicitly by a
query-answering engine, is known to cause an exponential blow-up to the worst-case execution
time (since timestamps are encoded in binary, see, e.g., [4]). At the same time, this conversion
is not always sound. Consider, for instance, the tuple (tb007, 1500, 11:25,11:29) from a table
for a turbine performance monitoring system with columns TurbinelD, AverageRotationSpeed,
FromTime and ToTime. Clearly, the tuple (tb007, 1500, 11:27) would not make much sense
since 1500 is the average rotation speed over the given interval. These examples suggest
replacing the point-based setting with an interval-based view of time, where the truth-values
of predicates are assigned to time intervals rather than points.

We discuss two interval-based temporal logics and related formalisms for ontology-
mediated query answering.

5.1 Halpern-Shoham Interval Temporal Logic

In the interval temporal logic HS introduced by Halpern and Shoham [53], formulas are
interpreted over the set of intervals of any given linear order. More precisely, let T = (T, <)
be a linear order, that is, < is a reflexive, transitive, antisymmetric and connected binary
relation on 7. (As usual, z < y is a shortcut for ‘z < y and = # y’.) For example, the
rationals (Q, <) and reals (R, <) are dense linear orders, while the integers (Z, <) and the
natural numbers (N, <) are discrete ones. By an interval in T we mean any ordered pair
(i,7) such that i < j, and denote by int(%) the set of all intervals in ¥. Note that int(%)
contains all the punctual intervals of the form (i,), which is often referred to as the non-strict
semantics. Under the strict semantics adopted by Allen [2], punctual intervals are disallowed.

Temporal ABoxes in the interval-based paradigm consist of assertions such as
A(a,t) and S(a,b,e)

saying that, respectively, A(a) and S(a,b) hold true at the interval ¢ € int(¥). For example,
an ABox containing timetabling data of a summer school can have the assertions:

TutorialDay(‘Semantic Web’, (07/26/2017 08:00,07,/26/2005 16:00)),
LunchBreak(‘Semantic Web’, (07/26/2017 11:30, 07/26,/2005 12:30)).

A de facto standard way of defining a language expressing statements (constraints) over
intervals is by incorporating Allen’s [2] interval relations defined as shown in Fig. 22

Since all of these relations are irreflexive, we refer to this definition as the irreflexive
semantics. As an alternative, the reflexive semantics is obtained by replacing each < in Fig. 2
with <. We write T(<) or (<) to indicate that the semantics is reflexive or, respectively,
irreflexive.

Equipped with Allen’s relations, we can express, for example, the query asking for the
names of the tutorials that are followed by a lunch break and the times of those lunch breaks:

q(z,x) = 3p(LunchBreak(z,x) A TutorialDay(z, p) A A(x, p)),

where x and p are variables ranging over time intervals. Over the ABox with the two
statements above, this query would not return any answers because the lunch break is in

the middle of the Semantic Web tutorial (D) rather than after it (A). In fact, such queries

2 It is to be noted that there are two slightly different versions of A and A in the literature.

A. Artale et al.

(i, HAG, 5") io— By j=1d and i’ <j (After)
(i,j)/?\(i',j’) d .—zﬂj/—tﬁ J j'=1iand i <j (inverse of After)

(i, 7)B(,5") i b I 0 i=1i and j/ <j (Begins)

(i,5)B(', 5") % ‘E—l'% i 7 i=1"and j < j' (inverse of Begins)

(i, 5)E(, 5") i DZ—'—H ¥ i<i and j=j (Ends)

(i,)E(i', §) V. i ﬁ‘]—ﬁ gl i’ <iand j = j (inverse of Ends)

(,5)D(', ") ol By, i<i andj’ <j (During)

(i,)D(, j") v |%-|—|#| i 7 i’ <iand j < j (inverse of During)
| |

(i, LG ') i o j<i (Later)

(i, LG, 5" v gé!—l‘i! J J' < (inverse of Later)

(i,5)0(, j') ip— By i<i <j<j (Overlaps)
(i, 7Y0(’, ") g i ﬁJ]—Eﬂ J i <i<j <j (inverse of Overlaps)

Figure 2 Allen’s interval relations under the irreflexive semantics.

are supported by the SQL:2011 standard [60], which adopts the strict semantics for some of
Allen’s relations and the non-strict for others.

The Halpern-Shoham interval temporal logic HS [53] is a propositional modal logic with
diamond operators of the form (R) for Allen’s interval relations R. The propositional variables
of HS are interpreted by sets of intervals of a given linear order ¥ where they are assumed
to hold true, and a formula (R)¢p is true at an interval ¢ € int(T) iff ¢ is true at some interval
¢/ such that ¢ R /. This semantics can be extended to first-order or description logic in a
natural way. For example, we can give the following definition of ‘a morning session’ in a DL
version of HS:

[U]((B) TutorialDay 1 (A)LunchBreak = MorningSession), (10)

where U is the universal relation between intervals, and [U] means ‘at all intervals’ In English,
this axiom says that an object d is a MorningSession in an interval ¢ — MorningSession(d, ¢) in
symbols — if there is an interval + such that ¢ B ¢/ and TutorialDay(d, ('), and also there is an
interval «” such that ¢ A ¢ and LunchBreak(d,). The query g(z,x) = MorningSession(z, x)
mediated by ontology {(10)} over the ABox above would return the certain answer

(‘Semantic Web’, (07/26,/2017 08:00,07/26/2017 11:30))

meaning that Semantic Web in the time slot between 8:00 and 11:30 is a morning session.

The elegance and expressive power of ‘HS have attracted attention of many areas of
computer science and Al. However, promising applications have been hampered by the fact,
already discovered by Halpern and Shoham [53], that HS is highly undecidable (for example,
validity over Z and R is IT}-hard). For recent studies of the computational complexity
of reasoning with various fragments of HS, we refer the reader to [34, 33, 63, 1, 32] and
references therein.

1:21

TIME 2017

1:22

Temporal Ontology-Mediated Querying: A Survey

A tractable fragment of HS and its DL-Lite and datalog extensions that can be used
for temporal ontology-mediated query answering have recently been suggested [11, 58]. We
briefly discuss these two formalisms in the remainder of Section 5.

5.2 Description logic HS-Litelt

The language of HS-Lite]t is an extension of DL-Litel. . [6]. It contains individual
names ai,as, ..., concept names A1, As, ..., and role names Py, Ps,.... Basic roles R, basic
concepts B, temporal roles S and temporal concepts C are given by the following grammar:

B == T | At | 3R.T, C == B | [RIC | (R)C,
R == Py, | P/ S == R | [RIS | (R)S,

where R is one of Allen’s interval relations or the universal relation U and [R] is the dual
of (R), that is, [R]p holds at an interval ¢ iff ¢ holds at all intervals ¢ such that ¢ R¢. An
”HS—Lite#om TBox is a finite set of concept and role inclusions and disjointness constraints
of the form

Cin---NC,CCT, cin---NcC, C L,
SiM---nNS,C ST, SiMn---NS,C 1,

where C* and ST denote temporal concepts and roles without occurrences of diamond
operators (R); cf. Section 4.2. (The consequences of allowing (R) on the right-hand side of
inclusions will be discussed in the sequel). An HS-Lite]! . ABox is a finite set of atoms of
the form Ag(a,:) and Pg(a,b,t), where ¢ is an interval of the linear order in question.

It was shown [11] that answering atomic OMQs in HS-Lite]!,,. is PTIME-complete for
both combined and data complexity provided that either concept inclusions contain no
JR.T on the right-hand side, or role inclusions contain no temporal relations apart from U.
Originally, the result was shown for (Z, <) only; however, in the light of later findings [32],
it can also be extended to any dense linear order (T,<) and (T, <). A failure to prove
decidability for discrete linear orders under the irreflexive semantics, say, (Z, <), even for the
language without roles, led to a separate systematic investigation of the propositional fragment
HS!)m of HS. Formally, this fragment can be defined as pairs of the form (O, {A(a,:)}),
where O is an HS-Lite}t,,, TBox without any occurrence of role names. The satisfiability
problem for #S},,,., was shown [32] to be undecidable for unbounded discrete linear orders
such as (N, <) and (Z, <) under the irreflezive semantics (in contrast to P TIME-completeness
for dense orders under any semantics). We illustrate the expressiveness of HS,,,,, over (N, <)
by the following example.

» Example 17. Let A = {A((0,0))} and O be an HS},,,, ontology with the following axioms:
[EJAN(EYTC A, [Elcn(EYTCC, (E)BIEJACC, (E)B]ECC A,

Under the irreflexive semantics over N, we have O, A = A(v), for any ¢ = (n,2m) with
n,m € N; see Fig. 3, where intervals (i, j) are represented as the points (¢, j) on the Euclidean
plane. Under the reflexive semantics, we have O, A = A(¢) for ¢ = (0,0) only.

Furthermore, by admitting (R)-operators on the right-hand side of concept inclusions
of HS},,,, we make it undecidable under any semantics and any unbounded linear orders.
In fact, this extended logic remains undecidable under the irreflexive semantics even when
restricted to binary concept inclusions (that is, the core fragment).

A. Artale et al.

Ja /\[E]A_y
...47047...470470470470.<2,2>
A A A A A
[ElC
“~—— 0 «— - <—o<70<70<1,1>
C C C C
S ®
- 4— O «— -+ «— O «——— O <070>
A A A i

Figure 3 Deriving A(:) from O and A in Example 17.

5.3 Multidimensional datalogHS,,

The former of the two tractable fragments of HS-Lite}t mentioned above can be generalised
in two directions [58]. First, we extend DL-Lite}., . TBoxes without 3 on the right-hand
side of concept inclusions to arbitrary datalog programs. Second, following [23], we extend
the interval logic HS to a multidimensional hyperrectangle (or block) logic HS,. Let
T = (T, Q) be either (Z,<) or (R, <). (In fact, one can take any discrete order under the
reflexive semantics and any dense order under the reflexive or irreflexive semantics.) Fix
some n > 1 and a linear order T, = (7T}, <) as above, for 1 < ¢ <n. A hyperrectangle in the
n-dimensional space T = [],_, T, is any n-tuple ¢ = (t1,...,t,) such that ¢, € int(%,), for
1 < ¢ <n. The set of hyperrectangles in ¥ is denoted by hyp(¥). Given ¢,k € hyp(T) and
an interval relation R, we write ¢ Ry k if 1y R k¢ and ¢; = Ky, for i # £.

A data instance (ABox), A, is now a finite set of facts of the form P(c,t), where P
is an m-ary predicate symbol, ¢ an m-tuple of individual constants, for some m > 0, and
¢t € hyp(%). This fact says that P(c) is true in the hyperrectangle ¢. We denote by num,(.A)
the set of 4,j € Ty with ¢, = (i,), for some ¢ mentioned in A, and by int(A) the set of
(i,7) € int(%Ty) with ¢, 5 € numy(A), for 1 < £ <n.

An individual term, T, is an individual variable, z, or a constant, a. A datalogHS.
program, I, is a finite set of rules of the form

AT — A A A Ay, L= AN N A, (11)

where k > 1, each A; is either an inequality (7 # 7’) with individual terms 7 and 7’ or
defined by the grammar

A == Plr,...,7m) | [RleA | (R)/A, (12)

for an m-ary predicate P and individual terms 7;, and AT does not contain any diamond
operators (R),. As usual, the atoms Aj,..., Ay constitute the body of the rule, while A"

or L its head. We also impose other standard datalog restrictions on datalogHiS,, programs.

(Clearly, we cannot allow (R); in the heads as this would make our logic undecidable, as
discussed above.)

An interpretation, 9, for datalogHS, programs is based on a domain A # § (for the
individual variables and constants) and the space T. For any m-ary predicate P, m-tuple
c from A and ¢ € hyp(%), 9 specifies whether P is true on ¢ in ¢, in which case we write
M, ¢ = P(c). Let @ be an assignment of elements of A to the individual variables (we adopt
the standard name assumption: 9(a) = a, for every individual constant a). We then set

1:23

TIME 2017

1:24 Temporal Ontology-Mediated Querying: A Survey

a) b) L K

V .

Figure 4 Configurations for Int and Cov in Example 18.

inductively:

M, =° P(r) iff 9,0 | P(o(T)), M, e =° L,
M= r#7 iff (1) #o(r),

M, . =° [RlpA iff 9,k =% A for all k with ¢ Ry k,

M, =2 (RyA iff M,k =° A for some k with ¢ Ry k.

We say that 9 satisfies I under 0 if
Mt =° A whenever 9,0 =° A, for 1 <i <k,

for all ¢ € hyp(¥) and all rules A <— Ay A--- A A in II. DM is a model of II and A if it
satisfies IT under every assignment, and 9, ¢ |= P(c), for every fact P(c,¢) in A. IT and A
are consistent if they have a model.

» Example 18. Denote by (Int) the binary modal operator such that A(Int)A’ holds at a
hyperrectangle k iff A holds at some ¢, A’ at some ¢/, and k = ¢ N ¢'. One can show that
rules such as B « A(Int) A’ are expressible as datalogHS", programs. For example, for n = 2,
there are 132 = 169 different relative positions of two rectangles; see, e.g., [65, Fig. 4] for
an illustration. Those configurations where the rectangles have non-empty intersection are
encoded by datalogHS,, rules such as B < (E)1(B)2A A (B)1(E)oA’ for the configuration in
Fig. 4a.

Similarly, one can express the rule B <— A(Cov)A’ such that A(Cov)A’ holds at k iff & is
the smallest hyperrectangle containing some ¢ with A and +/ with A’; see Fig. 4b.

An interval term, 19, is either an interval or an interval variable. A conjunctive query
(CQ) is a formula of the form g(x,x) = J='Ix’ ®(x, ', x,X’), where ® is a conjunction
of atoms P(7,9) for tuples 7 and ¥ of individual and interval terms, respectively, and
R(¢,9), for an interval relation R, such that all individual and interval variables in ® are
from @ Uz’ and x U/, respectively. A datalogHS., program I and a CQ q(x, x) constitute
an ontology-mediated query (OMQ) Q(x,x) = (II, g(x, x)).

» Example 19. Suppose T = T; x Ty, where ¥ = (Z, <) represents time and To = (R, <)
temperature. Imagine that a turbine monitoring system is receiving from sensors a stream of
data of the form Blade(ID140, (¢1,t2)), where ID140 is a blade ID and 5 € int(R, <) is the
observed temperature range during the time interval ¢ € int(Z, <). Then the rule

TemperatureRise(x) « (A);(0)sBlade(z) A (A)1(O),Blade(z)

says that the temperature of blade x is rising over a rectangle (¢1,¢2) if Blade(x, (:7,¢5)) and
Blade(x, (¢, ¢4)) hold at some (¢7,¢5) and (.7, ¢3) located as shown in Fig. 5.
The temperature drop is defined analogously:

TemperatureDrop(z) < (A)1(O)9Blade(z) A (A)1(O)2Blade(x).

A. Artale et al.

(R, <)

L2+ { Lt

“ (Z, <)

Figure 5 Rule for TemperatureRise in Example 19.

To find the blades = and the time intervals x such that the temperature of x was rising
before x, reaching 1500° in x, and dropping after that, we can use the following CQ:

JpIx~Ip IxIp* [Blade(z, (x, p)) A TemperatureRise(z, (x ,p7)) AA(x ", x) A
TemperatureDrop(z, (x™, p™)) A A(x, x™) A O(p, (1500, 1600))].

Let Q(x,x) = (I, q(x,x)) be an OMQ and A a data instance. A certain answer to
Q(x,x) over A is any pair (a,d) of a tuple a of individual constants in A and a tuple §
from int(A) of the same length as x and x, respectively, satisfying the following condition:
for every model 9 of II and A, there is a map A of the individual terms in g to A and
the interval terms to (J,int(%T;) preserving constants and dimensions such that h(z) = a,
h(x) =9, and

M, h(9) = P(h(T)), for every atom P(7,9) inq, and
R(h(19), h(¥")) holds in the corresponding ¥, for every atom R(¥,4’) in q.

The problem of checking whether (a, d) is a certain answer to Q(x,x) over A is shown to
be PTiME-complete for data complexity and ExpPTIME-complete for combined complexity;
for propositional datalogHS,, programs, the problem is PTIME-complete for combined
complexity [58]. Any datalogHS, OMQ Q(x,x) = (II, g(x, x)) can also be rewritten to a
standard polynomial-size datalog program IIT with a goal G(x,x) such that, for any data
instance A, a tuple (a,d) is a certain answer to Q(x,x) over A iff II", A = G(a,). We
refer the reader to [58] for some initial experiments on the expressive power and efficiency of
ontology-based query answering with datalogHS., using two real-world scenarios.

6 Dense Time and Metric Temporal Logics

The problems with discreteness of time are related to the fact that a minimal unit of time in
some cases may be unknown or inconvenient to use. Suppose, for example, that the time
unit is set to be ‘a minute’ for the turbine performance monitoring system with timestamped
data of the form (tb007,1500,11:27). When a newer model of turbine is installed with
measurements taken at the rate of one per second, we shall have to redefine the minimal
unit accordingly. This means, in particular, that the timestamps of the old data will also
have to be multiplied by 60 together with all the operators used in the ontology and queries
(e.g., /\?20 O! LowSpeed C Alert saying that an alert is to be issued if a turbine maintained
low speed for 1 hour). On the other hand, if we assume that time is dense and use rational
numbers to refer to time instants, then we can represent timestamps such as 11:27:30 of the
new turbine as i+% (assuming that 11:27 and 11:28 correspond to integer numbers ¢ and i+ 1,

1:25

TIME 2017

1:26

Temporal Ontology-Mediated Querying: A Survey

respectively), keeping the old timestamps and the ontology intact. However, for dense time,
we cannot use the inherently discrete LTL operators in the ontology and queries any longer,
and shall have to switch to a different temporal formalism with, say, metric interval operators,
in which case the axiom above will have to be rewritten as Hjg gojLowSpeed C Alert, where
Hio,60LowSpeed is true at a moment i iff LowSpeed holds at every j such that i — j € [0, 60].

6.1 datalogMTL"

In the standard metric temporal logic MTL [3], the temporal domain is the real numbers R,
while the intervals p in the constrained temporal operators such as H, (always in the past
within the interval g from now) have natural numbers or oo as their endpoints. For various
applications, it would be more appropriate to assume that the endpoints of g are non-negative
rational numbers or oo, while the temporal domain is the rational numbers Q (however, in
theory, not much will change if we take R as the temporal domain). Thus, by an interval,
t, we mean in this section any nonempty subset of Q of the form [i, j], [i,), (4, 4] or (4,7),
where i,7 € QU {—o0, 00} and @ < j. (We identify (4, o] with (¢, 00), [—00,] with (—o0, 1],
etc.) The set of all intervals in Q is denoted by int(Q). A range, o, is an interval with
non-negative endpoints.

As in Section 5.3, we take datalog as the domain ontology language and combine it with
MTL. Thus, a data instance (ABox), A, is a finite set of facts of the form P(a)@¢, where P
is an m-ary predicate symbol, @ an m-tuple of individual constants, for some m > 0, and
¢ € int(Q). This fact says that P(a) is true at each point of time in the interval (. To reflect
this subtle semantical difference from Section 5, we write P(a)@Q: rather than P(a,t). The
following facts are an example of a data instance:

Turbine(tb0)@(—o0, 00), ActivePowerAbovel.5(tb0)@[13:00:00, 13:00:10), (13)
ActivePowerAbovel.5(tb0)@[13:00:08, 13:00:15),
ActivePowerBelow0.15(tb0)@[13:00:17, 13:01:25).

Brandt et al. [29] consider atomic queries of the form g(x,x) = P(7)@Qy, where P is a
predicate name, x is a tuple of all individual variables occurring in the terms 7, and x an
interval variable. For example, the answers to the query g(x) = ActivePowerAbovel.5(tb0)@y
over the data instance above contain (among others) the intervals [13:00:00,13:00:10),
(13:00:05,13:00:10), and [13:00:00, 13:00:15) (the semantics will be defined below), as this
information is contained, explicitly or implicitly, in A. In a practical OBDA system, however,
the returned result should be limited to the last interval only, [13:00:00, 13:00:15), because it
includes all other answers.

The temporal ontology language datalogMTL" uses the rules of the form (11), where the
atoms A are defined by the grammar

A = T | P(Tl,...,Tm) | EEIQA | EQA ‘ A1 SQ A2 ‘ A1 Z/{Q A2

and A" is as above but without any ‘non-deterministic’ operators U, and S,; cf. (12). We
also use standard abbreviations ©,4 =TS, A and $,A = TU, A. A datalogM TL" program
is a finite set of rules.

» Example 20. For instance, the rule

ActivePowerTrip(x) <= Turbine(x) A Bjg 1,,,] ActivePowerBelow0.15(x) A
©160s,63s] Bj0,10s]ActivePowerAbovel 5(x) (14)

A. Artale et al.

63s
ActivePowerAbovel.5 ActivePowerBelow0.15 °
\\// ActivePowerTrip
10s Im
Figure 6 ActivePowerTrip.
d d
EHQA /_/H A Q}QA /_/H A
-O ¥ - { > -0 ferarananaas L
? J v J
e e
d
U, A Al
- [0 — . ess .’_»
? J

Figure 7 Semantics of metric temporal operators for ¢ = [d, €].

says that an active power trip happens when the active power of a turbine was above 1.5MW
for a period of at least 10 seconds, maximum 3 seconds after which there was a period of at
least one minute where the active power was below 0.15MW, as shown in Fig. 6.

The semantics of query answering in datalogMTL" is essentially point-based. Thus, an
interpretation, M, is based on a domain A # () for the individual variables and constants. For
any m-ary predicate P, m-tuple ¢ from A, and any moment of time i € Q, the interpretation
M specifies whether P is true on ¢ at 4, in which case we write 9,7 = P(c). As before, 0 is
an assignment of elements of A to the individual variables (we adopt the standard name
assumption: 0(a) = a, for every individual constant a). We then set inductively:

M,i =T, and 9,0 pE° L,
Mm,i =2 P(r) iff M,i = P((r)),
M0 (A7) I d(r) £ (),
Mm,i =2 B,A i 9, E° A for all j with j —i € o,
Mm,i =°H,A iff M, jE° Aforall j withi—j € p,
M,i =Y AU, Ay iff M, i’ B Ay for some i’ with i’ —i € g and
M, j E° Ay for all j € (i,7),
M,i E° A1 S, Ay iff - M, i E° As for some i’ with i — 4’ € p and
M, j E=° Ay forall j € (7,4).
Figure 7 illustrates the semantics of the future-time operators for o = [d, e]. Note that ranges
¢ in the temporal operators can be punctual [d, d], in which case B[44 is equivalent to
@a,qA, and Big g A to g9 A.
We say that 9 satisfies a datalogMTL" program II under an assignment 0 if, for all
i € Q and all the rules A < Ay A--- A Ay in II, we have

M,i =° A whenever IM,i =° A, for 1 <n <k

We call M a model of IT and A and write 9t = (I1, A) if 91 satisfies IT under every assignment,

1:27

TIME 2017

1:28

Temporal Ontology-Mediated Querying: A Survey

3s

Right&LeftSupportMiddlePlace ——">——

©10,3s)Right&LeftSupportMiddlePlace

SupportBending

Figure 8 SupportBending in Example 21.

and 9,7 = P(a) for any P(a)@: in A and any i € ¢. IT and A are consistent if they have a
model.

A datalogMTL® ontology-mediated query is of the form (II,q(x,)), where II is a
datalogMTL" program and q(x,x) is an atomic query P(7)Qy. A certain answer to
(IL, g(z, x)) over a data instance A is a pair (a,) such that a is a tuple of constants from A
of the same length as «, ¢ an interval and, for any i € ¢, any model 9 of IT and A, and any
assignment ? mapping « to a, we have 9,4 =° P(7). In this case, we write 9,7 = q(a).
To illustrate, the datalogMTL" query (II, ActivePowerTrip(tb0)@y), where TI consists of
rule (14), returns [13:01:17,13:01:18) as a certain answer over the data instance above.

» Example 21. We illustrate the importance of the operators S, and U, using an example
inspired by the ballet moves ontology [76]. Suppose we want to say that SupportBending is a
move spanning from the beginning to the end of Right&LeftSupportLowPlace provided that
it is preceded by Right&LeftSupportMiddlePlace, which ends within 3s from the beginning of
the Right&LeftSupportLowPlace, as shown in Fig. 8.

We can define the SupportBending move using the following rule:

SupportBending < Right&LeftSupportLowPlace Sjy o) ©0,35) Right&LeftSupportMiddlePlace.

Note that defining SupportBending in datalogMTL" would be problematic if only the O and
<& operators were available.

Atomic OMQ evaluation with datalogMTL" has been studied by Brandt et al. [29]. In
particular, it was shown to be decidable and EXPSPACE-complete for combined complexity.
This result holds even with punctual temporal operators (with range [d, d]), in which case
the propositional MTL is known to be undecidable [4]; on the other hand, the propositional
MTL is EXPSPACE-complete if the punctual operators are not allowed [3]; see also [66, 67].
In fact, the undecidability result in the presence of punctual operators holds even for the
propositional (predicates of arity 0 only) fragment of datalogMTL" extended by €, and ¢,
operators in the head of rules [29] (cf. HS},,,, in Section 5.2). Furthermore, it was shown
that, for nonrecursive datalogMTL" programs, query answering is PSPACE-complete for
combined complexity and in AC® for data complexity.

6.2 Use Cases

The metric temporal ontology language datalogMTL" has been used to construct ontologies
and support query answering in three practical use-cases [29, 76], which will be briefly
discussed below.

Turbine Monitoring at Siemens At Siemens, service centres store aggregated turbine sensor
data instances such as (13). A datalogMTL" ontology has been designed [29] to define events
(representing normal or abnormal behaviour) that are of interest to engineers monitoring the

A. Artale et al.

performance of turbines. One such event is active power trip defined by (14). As another
example, we show a (partial) definition of normal restart:

NormalRestart(z) <= NormalStart(z) A © g 1,/ NormalStop(z),
NormalStop(z) < CoastDown1500t0200(x) A € (g,9m] [CoastDown6600to1500(z) A

© (0,2m] (MainFlameOff(z) A € (g 2,,,) ActivePowerOff(z))],
MainFlameOff(z) < Bjos,105)MainFlameBelow0.1(x).

(The complete definition of normal restart contains 12 rules.) The purpose of this ontology is
to enable a convenient access to temporal information for an engineer who can pose succinct
queries such as g(z, x) = NormalRestart(2)@yx (find the turbines that had a normal restart)
without having to write explicitly (or even to know) the complex definition of this event.

Weather Monitoring The MesoWest? project makes publicly available historical records of
the weather stations across the US showing such parameters of meteorological conditions as
temperature, wind speed and direction, amount of precipitation, etc. From this data, one
can extract facts such as

NorthWind(KBVY)@(15:14, 15:24], HurricaneForceWind(KMNI)@(15:21, 15:31],
Precipitation(KBVY)@Q(15:14, 15:24], TempAbove0(KBVY)@(15:14,15:24],
TempAboveO(KMNI)@(15:21, 15:31],

LocatedInCounty(KBVY, Essex)@(—o0,), LocatedInState(KBVY, MA)Q(—o0, c0),

where KBVY, KMNI are IDs of the stations (according to the standard definition, the hurricane
force wind is above 118 km/h). A snippet of a weather ontology giving meteorological
definitions (such as ‘a hurricane is a hurricane force wind lasting one hour or longer’) is
shown below:

Blo,1n) Hurricane(x) < B 14)HurricaneForceWind(x),
ShoweryCounty(z) < LocatedInCounty(uy,x) A LocatedInCounty(us, z) A
Precipitation(u;) A NoPrecipitation(uz) A © (g 30m) Precipitation(uz),
HurricaneAffectedState(x) < LocatedInState(u,) A Hurricane(u),
Bio,24n) ExcessiveHeat(z) < Bjg 245 TempAbove24(x) A €[241) TempAbovedl(z),
HeatAffectedCounty(x) < LocatedInCounty(u, x) A ExcessiveHeat(u),
CyclonePatternState(z) < LocatedInState(u1,x) A LocatedInState(us, x) A
LocatedInState(us, z) A LocatedInState(us, z) A EastWind(uq) A
NorthWind(us) A WestWind(usz) A SouthWind (uy).

The purpose of using the temporal ontology in the weather use-case is to enable a weather
expert to find information about complex meteorological events by using succinct queries.

BalOnSe: Ontology of Dance Movements This use-case is concerned with user annota-
tions of ballet videos such as

LeftLegGestureMiddleBack(videol)@[12s, 13s]

3 http://mesowest.utah.edu/

1:29

TIME 2017

http://mesowest.utah.edu/

1:30

Temporal Ontology-Mediated Querying: A Survey

saying that the movement LeftLegGestureMiddleBack is shown in videol from 00:12:00 to
00:13:00. The ballet ontology [76] reflects the terminology developed by ballet researchers
and contains rules such as

0,35 PlieReleve(x) <+ Bg,15 RightSupportMidPlace(z) A By 14 LeftSupportMidPlace(x) A
1 ,25) RightSupportLowPlace(x) A By 25 LeftSupportLowPlace(z) A
H[2,35 RightSupportHighPlace(z) A B2 3, LeftSupportHighPlace(z)

defining the composite movement plie releve as a sequence of simpler movements occurring
simultaneously or in a sequence. The video annotations together with the ontology are
then used to enhance the search capabilities of a video search system for ballet learners and
scholars. Thus, searching the term plie releve will return the videos (and time spans in them)
showing this movement, even if the annotation for this sequence is not explicitly present in
the database, but is deducible from the ontology and other annotations.

7 Ontology-Based Data Access and Implementations

In real-world applications, the data instances (ABoxes) are not created from scratch. In fact,
they are obtained from existing relational or RDF databases by means of mappings (queries
in the language of a data source) in order to produce a high-level conceptual view of the data.
Such ABoxes can be materialised and stored as, e.g., RDF triples, or remain virtual (as a
potential result of applying the mapping to the data), in which case an ontology-mediated
query may be evaluated by rewriting it into a set of queries in the language(s) of the data
sources. In the this section, we briefly address the problem of converting raw data to an ABox
in the context of temporal data. After that we present some prototypical implementations of
temporal ontology-based data access and evaluations of their performance.

7.1 From Raw to Conceptual Temporal Data

Suppose turbine sensor measurements are stored in a relational table TB_ Sensor:

turbineld dateTime activePower | rotorSpeed | mainFlame
tb0 2015-04-04 12:20:48 2 1550 0
tb0 2015-04-04 12:20:49 1.8 1400 null
tb0 2015-04-04 12:20:52 1.7 1350 1

There are three major options for conceptualising this data if, for instance, we are interested
in the situations when the rotor speed was below 1500:
RotorSpeedBelow1500(th0, %), RotorSpeedBelow1500(th0, 7 + 1), where ¢ is the timestamp
in the first row of the table, and so ¢ 4+ 1 is the number of the second timestamp. This is
the most simplistic approach that ignores the distance between the timestamps, but it
is suitable if the timestamps are present in the database at regular intervals (which is
not the case above), or only the sequence of events rather than the duration of the gap
between them is important.
RotorSpeedBelow1500(th0, 7), RotorSpeedBelow1500(th0, 7 + 3), where ¢ is the timestamp
in the first row of the table. Here, we obviously make an assumption that the time unit in
our application domain is ’a second’, and so this approach takes into account the duration
of the gap between the events.

A. Artale et al.

RotorSpeedBelow1500(tb0, (i, + 3)), where (i,i + 3) is a time interval. Here, we use a
real-world assumption that a rotor speed sensor sends its measurements only when the
current value of the speed is sufficiently different from the previous measurement, and
this value is assumed to hold for all the times until the next one is produced. Note also
that some sensors may produce aggregated (e.g., average) value taken over some period.
The choice of how to conceptualise the data depends on the application domain. Below, we
follow the third approach and show a mapping (in the syntax similar to the standard R2RML
mapping language, where in the body we use standard SQL with window operators) that
extracts the data instance related to the situations when active power was above 1.5MW:

ActivePowerAbovel.5(tbid)@[ledge, redge) +
SELECT tbid, ledge, redge FROM (
SELECT turbineId AS tbid, LAG(dateTime, 1) OVER (w) AS ledge,
LAG(activePower, 1) OVER (w) AS lag_activePower, dateTime AS redge
FROM TB_Sensor
WINDOW w AS (PARTITION BY turbineId ORDER BY dateTime)) tmp
WHERE lag_activePower > 1.5

The mapping above applied to TB_ Sensor will produce the following instance:

ActivePowerAbovel.5(tb0)@[12:20:48, 12:20:49),
ActivePowerAbovel.5(tb0)@[12:20:49, 12:20:52).

Note that we use the definition of interval from Section 6 and make an assumption (reflecting
our intuition on how sensors produce their measurements) that the intervals involved are all of
the form [i, 7). Clearly, we can add similar mappings for the concepts RotorSpeedAbovel500
and MainFlameBelowO0.1.

7.2 Implementation

We report on the implementation of temporal ontology-based data access and its evalu-
ation [29]. The ontology language supported by this implementation is datalog,, MTL"
consisting of nonrecursive datalogMTL" programs, and the system rewrites datalog,, MTL"
OMQs to standard SQL queries with views. The performance the rewritings for the Siemens
use-case described in Section 6.2 was evaluated on an HP Proliant server with 24 Intel Xeon
CPUs (@3.47GHz), 106GB of RAM and five 1'TB 15K RPM HD, which used PostgreSQL as
a database engine. The maximum physical memory consumption in the experiments was
12.9GB.

Siemens supplied a sample of data for one running turbine, denoted tb0, over 4 days in the
form of the table TB_ Sensor. This sample was replicated to imitate the data for one turbine
over 10 different periods ranging from 32 to 320 months. Four queries ActivePowerTrip(tb0)@y,
NormalStart(tb0)@y, NormalStop(tb0)@y, and NormalRestart(tb0)@Qy were evaluated with a
timeout of 30 minutes. The execution times are given in Fig. 9, which shows their linear
growth in the number of months and, consequently, in the size of data.

Note that the normal restart (start) query timeouts on the data for more than 15
(respectively, 20) years, which is more than enough for the monitoring and diagnostics tasks
at Siemens, where the two most common application scenarios for sensor data analytics
are daily monitoring (that is, analytics of high-frequency data of the previous 24 hours)
and fleet-level analytics of key-performance indicators over one year. In both cases, the
computation time of the results is far less a crucial cost factor than the lead-time for data
preparation.

1:31

TIME 2017

1:32

Temporal Ontology-Mediated Querying: A Survey

running time (seconds)

J active-power-trip
1500 A normal-restart
B normal-start
normal-stop
1000 -
500 -
O - 1 1 1 1 1 1 1 1 1 1
32 64 96 128 159 191 223 255 287 319
0.7 1.4 2.2 29 3.7 4.4 5.2 5.9 6.7 7.4

number of months and database size (GB)

Figure 9 Performance of queries in the Siemens use-case.

The evaluation was performed for the weather OMQs with MesoWest data (see Section 6.2)

as well. On the other hand, the system SPARK capable of parallel query processing, in place
of PostgreSQL, was evaluated showing large performance improvements in some cases; for
details consult [30].

—— References

1

Luca Aceto, Dario Della Monica, Valentin Goranko, Anna Ingélfsdéttir, Angelo Montanari,
and Guido Sciavicco. A complete classification of the expressiveness of interval logics of
Allen’s relations: the general and the dense cases. Acta Inf., 53(3):207-246, 2016. doi:
10.1007/s00236-015-0231-4.

James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832-843, 1983. doi:10.1145/182.358434.

Rajeev Alur, Tomas Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality.
J. ACM, 43(1):116-146, 1996. doi:10.1145/227595.227602.

Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness.
Inf. Comput., 104(1):35-77, 1993. doi:10.1006/inco.1993.1025.

Natalia Antonioli, Francesco Castano, Spartaco Coletta, Stefano Grossi, Domenico Lembo,
Maurizio Lenzerini, Antonella Poggi, Emanuela Virardi, and Patrizia Castracane. Ontology-
based data management for the Italian public debt. In Proc. of the 8th Int. Conf. on
Formal Ontology in Information Systems, FOIS 201/, pages 372-385. 10S Press, 2014.
doi:10.3233/978-1-61499-438-1-372.

Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. The
DL-Lite family and relations. J. Artif. Intell. Res. (JAIR), 36:1-69, 2009. doi:10.1613/
jair.2820.

Alessandro Artale and Enrico Franconi. Temporal description logics. In Handbook of Tem-
poral Reasoning in Artificial Intelligence, volume 1 of Foundations of Artificial Intelligence,
pages 375-388. Elsevier, 2005. doi:10.1016/S1574-6526(05)80014-8.

Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank
Wolter, and Michael Zakharyaschev. First-order rewritability of temporal ontology-

http://dx.doi.org/10.1007/s00236-015-0231-4
http://dx.doi.org/10.1007/s00236-015-0231-4
http://dx.doi.org/10.1145/182.358434
http://dx.doi.org/10.1145/227595.227602
http://dx.doi.org/10.1006/inco.1993.1025
http://dx.doi.org/10.3233/978-1-61499-438-1-372
http://dx.doi.org/10.1613/jair.2820
http://dx.doi.org/10.1613/jair.2820
http://dx.doi.org/10.1016/S1574-6526(05)80014-8

A. Artale et al.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

mediated queries. In Proc. of the 24th Int. Joint Conf. on Artificial Intelligence, IJCAI’15,
pages 2706-2712. IJCAI/AAAI, 2015.

Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev.
The complexity of clausal fragments of LTL. In Proc. of the 19th Int. Conf. on Logic
for Programming, Artificial Intelligence, and Reasoning, LPAR’13, volume 8312 of LNCS,
pages 35-52. Springer, 2013. doi:10.1007/978-3-642-45221-5_3.

Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev.
A cookbook for temporal conceptual data modelling with description logics. ACM Trans.
Comput. Log., 15(3):25:1-25:50, 2014. doi:10.1145/2629565.

Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev.
Tractable interval temporal propositional and description logics. In Proc. of the 29th Con.
on Artificial Intelligence, AAAI’15, pages 1417-1423. AAAI Press, 2015.

Alessandro Artale, Roman Kontchakov, Frank Wolter, and Michael Zakharyaschev. Tem-
poral description logic for ontology-based data access. In Proc. of the 23rd Int. Joint Conf.
on Artificial Intelligence, IJCAI’18, pages 711-717. IJCAI/AAAI, 2013.

Franz Baader. Ontology-based monitoring of dynamic systems. In Proc. of the 1jth Int.
Conf. on Principles of Knowledge Representation and Reasoning, KR’14, pages 678—681.
AAAT Press, 2014.

Franz Baader, Stefan Borgwardt, Patrick Koopmann, Ana Ozaki, and Veronika Thost.
Metric temporal description logics with interval-rigid names (extended abstract). In Proc.
of the 30th Int. Workshop on Description Logics, DL’17. CEUR-WS, 2017.

Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporalizing ontology-based
data access. In Proc. of the 24th Int. Conf. on Automated Deduction, CADE-2/, volume
7898 of LNCS, pages 330-344. Springer, 2013. doi:10.1007/978-3-642-38574-2_23.

Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporal conjunctive queries in
expressive description logics with transitive roles. In Proc. of the 28th Australasian Joint
Conf. on Advances in Artificial Intelligence, AI’15, volume 9457 of LNCS, pages 21-33.
Springer, 2015. doi:10.1007/978-3-319-26350-2_3.

Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporal query entailment in the
description logic SHQ. J. Web Semantics, 33:71-93, 2015. doi:10.1016/j.websem.2014.
11.008.

Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the ££ envelope. In Proc. of
the 19th Int. Joint Conf. on Artificial Intelligence, IJCAI-05, pages 364-369. IJCAI/AAAI,
2005.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

Franz Baader, Silvio Ghilardi, and Carsten Lutz. LTL over description logic axioms. In
Proc. of the 11th Int. Conf. on Principles of Knowledge Representation and Reasoning, KR
2008, pages 684-694. AAAT Press, 2008.

Franz Baader, Ralf Kiisters, and Frank Wolter. Extensions to description logics. In The
Description Logic Handbook, pages 219-261. Cambridge University Press, 2003.

Samantha Bail, Sandra Alkiviadous, Bijan Parsia, David Workman, Mark Van Harmelen,
Rafael S. Goncalves, and Cristina Garilao. Fishmark: A linked data application benchmark.
In Proc. of SSWS+HPCSW 2012, pages 1-15. CEUR-WS, 2012.

Philippe Balbiani, Jean-Frangois Condotta, and Luis Farinas del Cerro. Tractability results
in the block algebra. J. Log. Comput., 12(5):885-909, 2002. doi:10.1093/logcom/12.5.
885.

1:33

TIME 2017

http://dx.doi.org/10.1007/978-3-642-45221-5_3
http://dx.doi.org/10.1145/2629565
http://dx.doi.org/10.1007/978-3-642-38574-2_23
http://dx.doi.org/10.1007/978-3-319-26350-2_3
http://dx.doi.org/10.1016/j.websem.2014.11.008
http://dx.doi.org/10.1016/j.websem.2014.11.008
http://dx.doi.org/10.1093/logcom/12.5.885
http://dx.doi.org/10.1093/logcom/12.5.885

1:34

Temporal Ontology-Mediated Querying: A Survey

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based data
access: A study through disjunctive datalog, CSP, and MMSNP. ACM Trans. on Database
Systems, 39(4):33:1-33:44, 2014. doi:10.1145/2661643.

Stefan Borgwardt, Marcel Lippmann, and Veronika Thost. Temporal query answering in
the description logic DL-Lite. In Proc. of the 9th Int. Symposium on Frontiers of Combining
Systems, FroCoS’13, volume 8152 of LNCS, pages 165-180. Springer, 2013. doi:10.1007/
978-3-642-40885-4_11.

Stefan Borgwardt, Marcel Lippmann, and Veronika Thost. Temporalizing rewritable query
languages over knowledge bases. J. Web Semantics, 33:50-70, 2015. doi:10.1016/j.
websem.2014.11.007.

Stefan Borgwardt and Veronika Thost. Temporal query answering in DL-Lite with negation.
In Proc. of the Global Conf. on Artificial Intelligence, GCAI15, volume 36 of EPiC Series
in Computing, pages 51-65, 2015.

Stefan Borgwardt and Veronika Thost. Temporal query answering in the description logic
EL. In Proc. of the 24h Int. Joint Conf. on Artificial Intelligence, IJCAI’15, pages 2819—
2825. AAAT Press, 2015.

Sebastian Brandt, Elem Giizel Kalayci, Roman Kontchakov, Vladislav Ryzhikov, Guohui
Xiao, and Michael Zakharyaschev. Ontology-based data access with a horn fragment of
metric temporal logic. In Proc. of the 31st AAAI Conf. on Artificial Intelligence, AAAI’17,
pages 1070-1076. AAAT Press, 2017.

Sebastian Brandt, Elem Giizel Kalayci, Vladislav Ryzhikov, Guohui Xiao, and Michael
Zakharyaschev. Querying log data with metric temporal logic. CoRR, abs/1703.08982,
2017.

Torben Braiiner and Silvio Ghilardi. First-order modal logic. In Handbook of Modal Logic,
volume 3 of Studies in Logic and Practical Reasoning, pages 549-620. Elsevier, 2007.
Davide Bresolin, Agi Kurucz, Emilio Munoz-Velasco, Vladislav Ryzhikov, Guido Sciavicco,
and Michael Zakharyaschev. Horn fragments of the Halpern-Shoham interval temporal
logic. ACM Trans. Comput. Log., 18(3), 2017.

Davide Bresolin, Dario Della Monica, Valentin Goranko, Angelo Montanari, and Guido
Sciavicco. The dark side of interval temporal logic: marking the undecidability border. Ann.
Math. Artif. Intell. (AMAI), 71(1-3):41-83, 2014. doi:10.1007/s10472-013-9376-4.
Davide Bresolin, Dario Della Monica, Angelo Montanari, and Guido Sciavicco. The light
side of interval temporal logic: the Bernays-Schonfinkel fragment of CDT. Ann. Math.
Artif. Intell. (AMAI), 71(1-3):11-39, 2014. doi:10.1007/s10472-013-9337-y.

Richard J. Biichi. Weak second-order arithmetic and finite automata. Zeitschrift fir Math-
ematische Logik und Grundlagen der Mathematik, 6(1-6):66-92, 1960. doi:10.1002/malq.
19600060105.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo.
The MASTRO system for ontology-based data access. Semantic Web, 2(1):43-53, 2011.
doi:10.3233/SW-2011-0029.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati. Tractable reasoning and efficient query answering in description lo-
gics: The DL-Lite family. J. Autom. Reasoning, 39(3):385-429, 2007. doi:10.1007/
s10817-007-9078-x.

Diego Calvanese, Pietro Liuzzo, Alessandro Mosca, José Remesal, Martin Rezk, and
Guillem Rull. Ontology-based data integration in EPNet: Production and distribu-
tion of food during the Roman Empire. FEng. Appl. of AL 51:212-229, 2016. doi:
10.1016/j.engappai.2016.01.005.

http://dx.doi.org/10.1145/2661643
http://dx.doi.org/10.1007/978-3-642-40885-4_11
http://dx.doi.org/10.1007/978-3-642-40885-4_11
http://dx.doi.org/10.1016/j.websem.2014.11.007
http://dx.doi.org/10.1016/j.websem.2014.11.007
http://dx.doi.org/10.1007/s10472-013-9376-4
http://dx.doi.org/10.1007/s10472-013-9337-y
http://dx.doi.org/10.1002/malq.19600060105
http://dx.doi.org/10.1002/malq.19600060105
http://dx.doi.org/10.3233/SW-2011-0029
http://dx.doi.org/10.1007/s10817-007-9078-x
http://dx.doi.org/10.1007/s10817-007-9078-x
http://dx.doi.org/10.1016/j.engappai.2016.01.005
http://dx.doi.org/10.1016/j.engappai.2016.01.005

A. Artale et al.

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Jan Chomicki. Polynomial time query processing in temporal deductive databases. In Proc.
of the 9th ACM Symposium on Principles of Database Systems, PODS’90, pages 379-391.
ACM Press, 1990. doi:10.1145/298514.298589.

Jan Chomicki and Tomasz Imielinski. Temporal deductive databases and infinite objects.
In Proc. of the Tth ACM Symposium on Principles of Database Systems, PODS’88, pages
61-73. ACM, 1988. doi:10.1145/308386.308416.

Stéphane Demri, Valentin Goranko, and Martin Lange. Temporal Logics in Computer
Science. Cambridge University Press, 2016.

Michael Fisher, Clare Dixon, and Martin Peim. Clausal temporal resolution. ACM Trans.
Comput. Log., 2(1):12-56, 2001. doi:10.1145/371282.371311.

Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the

polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13-27, 1984. doi:10.

1007/BF01744431.

Dov M. Gabbay, Ian Hodkinson, and Mark Reynolds. Temporal Logic: Mathematical
Foundations and Computational Aspects, volume 1. Oxford University Press, 1994.

Dov M. Gabbay, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. Many-
Dimensional Modal Logics: Theory and Applications. Elsevier North Holland, 2003.

Dov M. Gabbay, Mark A. Reynolds, and Marcelo Finger. Temporal Logic: Mathematical
Foundations and Computational Aspects, volume 2. Oxford University Press, 2000.
Martin Giese, Ahmet Soylu, Guillermo Vega-Gorgojo, Arild Waaler, Peter Haase, Ernesto
Jiménez-Ruiz, Davide Lanti, Martin Rezk, Guohui Xiao, Ozgiir L. Ozcep, and Riccardo
Rosati. Optique: Zooming in on big data. IEEE Computer, 48(3):60-67, 2015. doi:
10.1109/MC.2015.82.

Claudio Gutierrez, Carlos A. Hurtado, and Alejandro A. Vaisman. Introducing time into
RDF. IEEE Trans. Knowl. Data Eng., 19(2):207-218, 2007. doi:10.1109/TKDE. 2007 . 34.
Victor Gutiérrez-Basulto, Jean Christoph Jung, and Roman Kontchakov. Temporalized
EL ontologies for accessing temporal data: Complexity of atomic queries. In Proc. of the
25th Int. Joint Conf. on Artificial Intelligence, IJCAI’16, pages 1102-1108. IJCAI/AAAI,
2016.

Victor Gutiérrez-Basulto, Jean Christoph Jung, and Ana Ozaki. On metric temporal
description logics. In Proc. of the 22nd European Conf. on Artificial Intelligence,
ECAI 2016, volume 285 of FAIA, pages 837-845. I0S Press, 2016. doi:10.3233/
978-1-61499-672-9-837.

Victor Gutiérrez-Basulto, Jean Christoph Jung, and Thomas Schneider. Lightweight de-
scription logics and branching time: A troublesome marriage. In Proc. of the 14th Int.
Conf. on Principles of Knowledge Representation and Reasoning, KR’14, pages 278-287.
AAAT Press, 2014.

Victor Gutiérrez-Basulto, Jean Christoph Jung, and Thomas Schneider. Lightweight tem-
poral description logics with rigid roles and restricted TBoxes. In Proc. of the 24th Int.
Joint Conf. on Artificial Intelligence, IJCAI 2015, pages 3015-3021. IJCAI/AAAI, 2015.
Joseph Y. Halpern and Yoav Shoham. A propositional modal logic of time intervals. J.
ACM, 38(4):935-962, 1991. doi:10.1145/115234.115351.

Ian M. Hodkinson, Roman Kontchakov, Agi Kurucz, Frank Wolter, and Michael Za-
kharyaschev. On the computational complexity of decidable fragments of first-order lin-
ear temporal logics. In Proc. of the 10th Int. Symposium on Temporal Representation and
Reasoning and the 4th Int. Conf. on Temporal Logic, TIME-ICTL 2003, pages 91-98. IEEE
Computer Society, 2003. doi:10.1109/TIME.2003.1214884.

Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Data complexity of reasoning in very
expressive description logics. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence,
IJCAI-05, pages 466-471. IJCAI/AAAI 2005.

1:35

TIME 2017

http://dx.doi.org/10.1145/298514.298589
http://dx.doi.org/10.1145/308386.308416
http://dx.doi.org/10.1145/371282.371311
http://dx.doi.org/10.1007/BF01744431
http://dx.doi.org/10.1007/BF01744431
http://dx.doi.org/10.1109/MC.2015.82
http://dx.doi.org/10.1109/MC.2015.82
http://dx.doi.org/10.1109/TKDE.2007.34
http://dx.doi.org/10.3233/978-1-61499-672-9-837
http://dx.doi.org/10.3233/978-1-61499-672-9-837
http://dx.doi.org/10.1145/115234.115351
http://dx.doi.org/10.1109/TIME.2003.1214884

1:36

Temporal Ontology-Mediated Querying: A Survey

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

Neil Immerman. Descriptive complexity. Springer, 1999. doi:10.1007/
978-1-4612-0539-5.

Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Za-
kharyaschev. The combined approach to query answering in DL-Lite. In Proc. of the
12th Int. Conf. on Principles of Knowledge Representation and Reasoning, KR 2010, pages
247-257. AAAIT Press, 2010.

Roman Kontchakov, Laura Pandolfo, Luca Pulina, Vladislav Ryzhikov, and Michael Za-
kharyaschev. Temporal and spatial OBDA with many-dimensional Halpern-Shoham logic.
In Proc. of the 25th Int. Joint Conf. on Artificial Intelligence, IJCAI’16, pages 1160-1166.
IJCAI/AAATI, 2016.

Alisa Kovtunova. Ontology-Mediated Query Answering with Lightweight Temporal Descrip-
tion Logics. PhD thesis, KRDB research centre, Faculty of Computer Science, Free Univer-
sity of Bozen-Bolzano, 2017.

Krishna G. Kulkarni and Jan-Eike Michels. Temporal features in SQL:2011. SIGMOD
Record, 41(3):34-43, 2012.

Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004. doi:10.1007/978-3-662-07003-1.

Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal description logics: A
survey. In Proc. of the 15th Int. Symposium on Temporal Representation and Reasoning,
TIME’08, pages 3—14. IEEE Computer Society, 2008. doi:10.1109/TIME.2008. 14.

Jerzy Marcinkowski and Jakub Michaliszyn. The undecidability of the logic of subintervals.
Fundam. Inform., 131(2):217-240, 2014. doi:10.3233/FI-2014-1011.

Boris Motik. Representing and querying validity time in RDF and OWL: A logic-based
approach. J. Web Semantics, 12:3—21, 2012. doi:10.1016/j.websem.2011.11.004.
Isabel Navarrete, Antonio Morales, Guido Sciavicco, and M. Antonia Céardenas Viedma.
Spatial reasoning with rectangular cardinal relations — the convex tractable subalgebra.
Ann. Math. Artif. Intell. (AMAI), 67(1):31-70, 2013. doi:10.1007/s10472-012-9327-5.
Joél Ouaknine and James Worrell. On the decidability of metric temporal logic. In Proc. of
the 20th Annual IEEE Symposium on Logic in Computer Science, LICS’05, pages 1838-197.
IEEE Computer Society, 2005. doi:10.1109/LICS.2005.33.

Joél Ouaknine and James Worrell. Some recent results in metric temporal logic. In Proc.
of the 6th Int. Conf. on Formal Modeling and Analysis of Timed Systems, FORMATS’ 08,
pages 1-13, 2008. doi:10.1007/978-3-540-85778-5_1.

Ozgiir L. Ozcep, Ian Horrocks, Ralf Méller, Thomas Hubauer, Christian Neuenstadt,
Mikhail Roshchin, Dmitriy Zheleznyakov, and Evgeny Kharlamov. Deliverable D5.1: A
semantics for temporal and stream-based query answering in an OBDA context. Technical
report, Deliverable FP7-318338, EU, October 2013.

Ozgiir L. Ozcep and Ralf Méller. Ontology based data access on temporal and streaming
data. In Proc. of the 10th Int. Summer School on Reasoning on the Web in the Big Data
Era (Reasoning Web’14), volume 8714 of LNCS, pages 279-312. Springer, 2014. doi:10.
1007/978-3-319-10587-1_7.

Ozgiir L. Ozcep, Ralf Méller, and Christian Neuenstadt. A stream-temporal query language
for ontology based data access. In Proc. of the 37th Annual German Conf. on Al, KI’'1/,
pages 183-194. Springer, 2014. doi:10.1007/978-3-319-11206-0_18.

Francesco Pagliarecci, Luca Spalazzi, and Gilberto Taccari. Reasoning with temporal
aboxes: Combining DL-Lite.,.. with CTL. In Proc. of the 26th Int. Workshop on De-
seription Logics, DL’13, pages 885—-897. CEUR-WS, 2013.

Amir Pnueli. The temporal logic of programs. In Proc. of the 18th Annual Symposium on
Foundations of Computer Science, FOCS 77, pages 46-57. IEEE Computer Society, 1977.
doi:10.1109/SFCS.1977.32.

http://dx.doi.org/10.1007/978-1-4612-0539-5
http://dx.doi.org/10.1007/978-1-4612-0539-5
http://dx.doi.org/10.1007/978-3-662-07003-1
http://dx.doi.org/10.1109/TIME.2008.14
http://dx.doi.org/10.3233/FI-2014-1011
http://dx.doi.org/10.1016/j.websem.2011.11.004
http://dx.doi.org/10.1007/s10472-012-9327-5
http://dx.doi.org/10.1109/LICS.2005.33
http://dx.doi.org/10.1007/978-3-540-85778-5_1
http://dx.doi.org/10.1007/978-3-319-10587-1_7
http://dx.doi.org/10.1007/978-3-319-10587-1_7
http://dx.doi.org/10.1007/978-3-319-11206-0_18
http://dx.doi.org/10.1109/SFCS.1977.32

A. Artale et al.

73

74

75

76

7

78

79

80

81

82

83

84

85

Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, and Riccardo Rosati. Linking data to ontologies. J. Data Semantics, 10:133—
173, 2008. doi:10.1007/978-3-540-77688-8_5.

Andrea Pugliese, Octavian Udrea, and V. S. Subrahmanian. Scaling RDF with time. In
Proc. of the 17th Int. Conf. on World Wide Web, WWW’08, pages 605-614. ACM, 2008.
doi:10.1145/1367497.1367579.

Alexander Rabinovich. A proof of Kamp’s theorem. Logical Methods in Computer Science,
10(1), 2014. doi:10.2168/LMCS-10(1:14)2014.

Katerina El Raheb, Theofilos Mailis, Vladislav Ryzhikov, Nicolas Papapetrou, and Yan-
nis E. Toannidis. Balonse: Temporal aspects of dance movement and its ontological rep-
resentation. In Proc. of the 14th Int. Conf., ESWC 2017, Part II, pages 49-64, 2017.
doi:10.1007/978-3-319-58451-5_4.

Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev. Ontology-
based data access: Ontop of databases. In Proc. of the 12th Int. Semantic Web Conf.,
ISWC’13, Part I, volume 8218 of LNCS, pages 558-573. Springer, 2013. doi:10.1007/
978-3-642-41335-3_35.

Riccardo Rosati. On conjunctive query answering in ££. In Proc. of the Int. Workshop on
Description Logics, DL’07, volume 250. CEUR-WS, 2007.

Andrea Schaerf. On the complexity of the instance checking problem in concept languages
with existential quantification. J. Intelligent Information Systems, 2(3):265-278, 1993. doi:
doi:10.1007/BF00962071.

Klaus Schild. Combining terminological logics with tense logic. In Proc. of the 6th Por-
tuguese Conf. on Progress in Artificial Intelligence, EPIA’93, volume 727 of Lecture Notes
in Computer Science, pages 105-120. Springer, 1993. doi:10.1007/3-540-57287-2_41.
Albrecht Schmiedel. Temporal terminological logic. In Proc. of the 8th National Conf. on
Artificial Intelligence, AAAI’90, pages 640-645. AAATI Press / The MIT Press, 1990.
Juan F. Sequeda and Daniel P. Miranker. A pay-as-you-go methodology for ontology-based
data access. IEEE Internet Computing, 21(2):92-96, 2017. doi:10.1109/MIC.2017.46.
Ahmet Soylu, Martin Giese, Rudolf Schlatte, Ernesto Jiménez-Ruiz, Evgeny Kharlamov,
Ozgiir L. Ozcep, Christian Neuenstadt, and Sebastian Brandt. Querying industrial stream-
temporal data: An ontology-based visual approach. J. Ambient Intelligence € Smart En-
vironments, 9(1):77-95, 2017. doi:10.3233/AIS-160415.

David Toman. On incompleteness of multi-dimensional first-order temporal logics. In Proc.
of the 10th Int. Symposium on Temporal Representation and Reasoning and the 4th Int.
Conf. on Temporal Logic, TIME-ICTL 2003, pages 99-106. IEEE Computer Society, 2003.
doi:10.1109/TIME.2003.1214885.

Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In Proc.
of the 14th Annual ACM Symposium on Theory of Computing, STOC’82, pages 137-146.
ACM, 1982. doi:10.1145/800070.802186.

1:37

TIME 2017

http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.1145/1367497.1367579
http://dx.doi.org/10.2168/LMCS-10(1:14)2014
http://dx.doi.org/10.1007/978-3-319-58451-5_4
http://dx.doi.org/10.1007/978-3-642-41335-3_35
http://dx.doi.org/10.1007/978-3-642-41335-3_35
http://dx.doi.org/doi:10.1007/BF00962071
http://dx.doi.org/doi:10.1007/BF00962071
http://dx.doi.org/10.1007/3-540-57287-2_41
http://dx.doi.org/10.1109/MIC.2017.46
http://dx.doi.org/10.3233/AIS-160415
http://dx.doi.org/10.1109/TIME.2003.1214885
http://dx.doi.org/10.1145/800070.802186

Advances in Quantitative Analysis of Free-Choice
Workflow Petri Nets*
Javier Esparza

Technische Universitat Miinchen, Munich, Germany
esparza@in.tum.de

—— Abstract

We survey recent results on the development of efficient algorithms for the quantitative analysis
of business processes modeled as workflow Petri nets. The algorithms can be applied to any
workflow net, but have polynomial runtime in the free-choice case.

1998 ACM Subject Classification D.2.4 Software/Program Verification, D.2.2 Design Tools and
Techniques, F.1.1 Models of Computation

Keywords and phrases Free-choice Petri Nets, concurrency theory, quantitative verification
Digital Object Identifier 10.4230/LIPIcs. TIME.2017.2

Category Invited Talk

1 Introduction

Workflow Petri nets are a successful formalism for the representation and formal analysis of
business processes. They are also much used as a formal back-end for different notations
like BPMN (Business Process Modeling Notation), EPC (Event-driven Process Chain), or
UML Activity Diagrams [1, 2, 5]. In this note we assume that the reader is familiar with
basic Petri net terms: place, transition, token, marking, and the firing rule, that is, the rule
that determines whether a transition is enabled at a marking, and how the marking changes
when the transition fires.

In a nutshell, a workflow Petri net is just a Petri net with a distinguished initial place and
a distinguished final place. These places induce distinguished initial and final markings, which
contain a token in the initial/final place and no tokens elsewhere. In a well-designed workflow,
every marking reachable from the initial marking enables some firing sequence leading to the
final marking, a property known as soundness [1]. In particular, sound workflow nets are
both deadlock-free and livelock-free.

Workflow Petri nets can be analyzed by constructing their reachability graph (which has
the reachable markings as nodes, and the steps allowed by the firing rule as edges), and
applying model-checking techniques, see e.g. [16, 23]. However, this approach suffers from
the well-known state-explosion problem: Even if reachable markings put at most one token
in every place, a workflow net with n places can still have ©(2") reachable markings. For
simple qualitative properties, like soundness, the state-explosion problem can be handled very
effectively by tools like LoLA [22, 16]. However, the problem becomes acute for workflows
enriched with data, time, and/or probabilities.

Since 2013 my co-authors and I have addressed this question by developing novel analysis
algorithms that can be applied to general workflow nets, but provide strong runtime guarantees

* Supported by the DFG project “Negotiations: A Model for Tractable Concurrency”.

© Javier Esparza;
37 licensed under Creative Commons License CC-BY

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 2; pp. 2:1-2:6

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2

Advances in Quantitative Analysis of Free-Choice Workflow Petri Nets

for special classes. The rationale for this approach is that workflow Petri nets modeling real-
life business processes tend to have a simpler structure than those found in other application
areas, like the analysis of distributed algorithms, concurrent programs, or biological processes.
In particular, it has been repeatedly observed that many of these workflow nets are free-
choice [6]. For example, Workflow Graphs, a simple but effective business process formalism
[1, 17, 18, 13], can be translated into free-choice workflow Petri nets, and 1386 of the 1958
workflow nets in the most popular benchmark suite in the literature are free-choice workflow
nets [16]. So our goal is to design analysis algorithms that are applicable to arbitrary workflow
nets, and provide a better runtime guarantee in the free-choice case. Typically, our algorithms
have exponential worst-case complexity in the general case (which is unavoidable due to
NP-hardness or PSPACE-hardness results), but polynomial complexity in the free-choice
case.

A Petri net is free-choice if every pair of places has either the same set of output transitions
or disjoint sets of output transitions. The consequence is that for every reachable marking,
if some output transition of a place can fire, then all output transitions can fire, that is,
the net can freely choose which output transition to fire. While free-choice Petri nets have
a rich theory, almost all results concerning them are about the basic Petri net model, and
do not apply to Petri nets enriched with data, time, or probabilities. In a series of papers,
my co-authors and I have developed novel analysis techniques that overcome this problem.
In the rest of the note we summarize this work. We first consider our work on reduction
algorithms, and then our last paper on decomposition-based algorithms.

» Remark. Some of our results are formulated in terms of deterministic negotiation diagrams.
In a nutshell, negotiation diagrams, introduced in [11], are workflow Petri nets that can
be decomposed into communicating sequential Petri nets, a feature that makes them more
amenable to theoretical study. A classical theorem of net theory shows that the connection
between sound deterministic negotiation diagrams and sound free-choice workflow Petri nets
is very tight: There are simple, polynomially computable translations between these two
formalisms, which moreover only incur in a linear blow up. More details can be found in [7].

2 Reduction techniques

Reduction algorithms are a very efficient analysis technique for Petri nets and other business
modeling formalisms, like EPCs and AND-XOR graphs (see for instance [21, 3, 9, 24]). A
reduction algorithm consists of (a) a set of reduction rules, whose application allows one to
simplify the workflow while preserving important properties, and (b) an algorithmic policy
for selecting the next rule to be applied. The algorithm applies the rules exhaustively until
it reaches an irreducible workflow net. For certain classes of nets and certain properties, the
rules can be complete: They can reduce all workflows in the class satisfying the property,
and only them, to some unique canonical workflow. Typically, this canonical workflow is
the workflow consisting of one single transition with the initial and final places as only
input and output place. If the policy followed by the algorithm is guaranteed to reach
the canonical workflow, then the reduction algorithm becomes a decision algorithm for
the property. Moreover, the algorithm decides the property without having to explore the
reachability graph of the net at all.

A set of rules for free-choice Petri nets (not necessarily workflow nets) was presented in
[6]. The rules preserve liveness and boundedness, two important properties of Petri nets,
and are shown to be complete. In [3] these rules were applied to free-choice workflow Petri
nets, and shown to be complete for the soundness property. This leads to a polynomial-time

J. Esparza

decision procedure for soundness of free-choice workflow nets, in sharp contrast with the
PSPACE-hardness of deciding soundness for general workflow nets!. However, the rules of [6]
have two problems. First, as shown in [13], they do not preserve properties concerning data
or timing information. Moreover, as shown in [6], one of the rules is not correct for arbitrary
workflow nets. More precisely, applying the rule to a sound, non-free-choice workflow net can
make it unsound. In [13] we present a new set of surprisingly simple rules that overcomes
these shortcomings. The rules can be applied to Petri nets in which tokens carry data. For
example, a token in a certain place can be labeled with a natural number. Transitions collect
a tuple of data from their input places, and apply a transformer to them, yielding a tuple of
data that is sent to the output places.

The rules not only preserve soundness/unsoundness, but also the input/output relation
of the workflow. This is the relation that assigns to every initial marking the set of final
markings reachable from it (observe that initial markings differ only on the value of the
token in the initial final place, and final markings on the value of the token in the final place).
Therefore, the rules can be applied to decide any property of the input/output relation, and,
by suitable reductions, other properties like the worst-case execution time of a given workflow.
The rules also solve the second problem: contrary to the original rules, they can be applied
to arbitrary workflow nets. Finally, the rules are still complete for free-choice workflow nets,
in the sense that they reduce every sound free-choice workflow net to a workflow net with
only one transition, but the same input/output relation.

The definitive description of the reduction algorithm, whose correctness proof and com-
plexity analysis are rather complex, is given in [8], an extended and corrected version of
[11, 12], which is currently under review. The algorithm completely reduces sound free-choice
workflow nets by means of a sequence of rule applications of length at most cubic in the
number of places and transitions of the net (in experiments the actual number of rule
applications only grows linearly in the size of the net). Further, the sequence of reductions
can be found in polynomial time. In [14] we apply this reduction algorithm to the problem
of computing the expected cost of a workflow. For this, we define probabilistic workflow nets
with costs, and enhance the reduction rules of [13] so that they preserve the expected cost.
Using the results of [8] we prove that the expected cost of a free-choice workflow net can be
computed in polynomial time.

3 Decomposition-based techniques

Our most recent work is presented in [15]. This paper generalizes the results of [13, 14].
It presents the most versatile analysis algorithm for free-choice workflow nets designed so
far, among those that avoid the construction of the reachability graph. In particular, the
reduction-based algorithms of [13, 14] can be recast as special cases of this general algorithm.
The algorithm can be instantiated to solve problems about the time needed to execute a
workflow, and also about its cost?. More precisely, the generic algorithm yields polynomial
algorithms for the computation of the worst-case and the best-case execution time, and
for the worst-case, best-case, and expected cost. It also provides a good algorithm for the
computation of the expected time, although in this case the algorithm is not polynomial.

L The exact complexity depends on the specifics of the workflow model, for instance whether the workflow
Petri net is assumed to be 1-safe or not.

2 Notice the difference between time and cost: while the cost of executing two concurrent transitions is
the sum of the costs, the time is the maximum of the times.

2:3

TIME 2017

2:4

Advances in Quantitative Analysis of Free-Choice Workflow Petri Nets

This is however to be expected, since the problem of deciding if the expected time exceeds a
given bound is NP-complete, even for acyclic free-choice workflow nets [4].

The paper extends the classical lattice-based formalism for the static analysis of sequential
flow-graphs, as presented for example in [20], to workflow Petri nets. A flow-graph consists of
a set of nodes, modeling program points, and a set of edges, modeling program instructions,
like assignments or guards. In the lattice-based approach one (i) defines a lattice D of
dataflow informations corresponding to the possible results of the analysis to be conducted,
(ii) assigns semantic transformers [a]: D — D to each action a of the flow-graph, (iii) assigns
to a path a; --- a, of the flow graph the functional composition [a,] o --- o [ai] of the
transformers, and (iv) defines the result of the analysis as the “Merge Over all Paths”, i.e.,
the join of the transformers of all execution paths, usually called the MOP-solution or just
the MOP of the dataflow problem. So performing an analysis amounts to computing the
MOP of the flow-graph for the given lattice and the given transformers.

Katoen et al. have recently shown in [19, 10] that in order to adequately deal with
quantitative analyses of concurrent systems one needs a semantics that distinguishes between
the inherent nondeterminism of each sequential process, and the nondeterminism introduced
by concurrency (the choice of the process that should perform the next step). Following
these ideas, we introduce a semantics in which the latter is resolved by an external scheduler,
and define the MOP for a given scheduler. The result of a dataflow analysis is then given
by the infimum or supremum, depending on the application, of the MOPs for all possible
schedulers.

In [15] we define the class of Mazurkiewicz-invariant frameworks. Loosely speaking, a
framework is Mazurkiewicz-invariant if two executions of the workflow net that differ only
in the order of execution of concurrent transitions have the same transformer. We prove
a theorem showing a first important property of sound free-choice workflow nets, namely
that the MOP is independent of the scheduler for Mazurkiewicz-invariant frameworks. This
allows to compute the result of the analysis by fixing a scheduler, and computing the MOP
for it. The main contribution of the paper is a method to compute the MOP of a framework
for a sound free-choice workflow net. This is achieved by proving a novel and very powerful
decomposition theorem showing that a sound free-choice workflow net is composed of smaller
workflow subnets which are also sound. The algorithm iteratively identifies these subnets,
computes their MOP, and replaces the complete subnet by one single transition with the
same MOP.

Since the algorithm is generic, its complexity depends on the choice of the lattice and
the transformers. However, we obtain a “concurrency-for-free” result: The runtime of the
algorithm for computing the MOP for a sound free-choice workflow net is within a polynomial
factor of the runtime for computing the MOP of a sequential flow-graph. Notice that this is
the case even though the reachability graph of the workflow net — which can be seen as the
sequential flow-graph equivalent to it — can be exponentially larger than the net itself.

The generic algorithm is more general than the reduction-based algorithms. More precisely,
for every reduction-based algorithm, there is an instance of the generic algorithm with at
most the same complexity. Further, using the generic algorithm we can solve in polynomial
time quantitative problems for which no reduction algorithm existed so far. An example
is the computation of the maximal number of tokens of a reachable marking of a sound
free-choice workflow net. As shown in [4], the maximal number of tokens corresponds to
the minimal number of resources that guarantee successful completion of the workflow, and
is therefore an important parameter. Our generic decomposition-based algorithm can be
instantiated to compute the maximal number of tokens in polynomial time?.

3 This research, conducted with Philipp Meyer and Hagen Volzer, is still unpublished.

J. Esparza

—— References

1

10

11

12

13

14

15

16

17

18

19

20

Wil van der Aalst. The application of Petri nets to workflow management. Journal of
Circuits, Systems, and Computers, 8(1):21-66, 1998.

Wil van der Aalst and Kees Max van Hee. Workflow management: models, methods, and
systems. MIT press, 2004.

Wil van der Aalst, Alexander Hirnschall, and Eric Verbeek. An alternative way to analyze
workflow graphs. In Advanced Information Systems Engineering, volume 2348 of Lecture
Notes in Computer Science, pages 535-552. Springer, 2002.

Mirela Botezatu, Hagen Volzer, and Lothar Thiele. The complexity of deadline analysis
for workflow graphs with multiple resources. In BPM, volume 9850 of Lecture Notes in
Computer Science, pages 252—268. Springer, 2016.

Jorg Desel and Thomas Erwin. Modeling, simulation and analysis of business processes. In
Business Process Management, volume 1806 of Lecture Notes in Computer Science, pages
129-141. Springer, 2000.

Jorg Desel and Javier Esparza. Free choice Petri nets. Cambridge University Press, 2005.
Jorg Desel and Javier Esparza. Negotiations and Petri nets. Transactions in Petri Nets
and Other Models of Concurrency, 11:203-225, 2016.

Jorg Desel, Javier Esparza, and Philipp Hoffmann. Negotiation as concurrency primitive.
CoRR, abs/1612.07912, 2016.

Boudewijn van Dongen, Wil van der Aalst, and Eric Verbeek. Verification of EPCs: Using
reduction rules and Petri nets. In Advanced Information Systems Engineering, pages 372—
386. Springer, 2005.

Christian Eisentraut, Holger Hermanns, Joost-Pieter Katoen, and Lijun Zhang. A se-
mantics for every GSPN. In PETRI NETS, volume 7927 of Lecture Notes in Computer
Science, pages 90-109. Springer, 2013.

Javier Esparza and Jorg Desel. On negotiation as concurrency primitive. In CONCUR,
volume 8052 of Lecture Notes in Computer Science, pages 440-454. Springer, 2013.

Javier Esparza and Jorg Desel. On negotiation as concurrency primitive II: Deterministic
cyclic negotiations. In FoSSaCS, volume 8412 of Lecture Notes in Computer Science, pages
258-273. Springer, 2014.

Javier Esparza and Philipp Hoffmann. Reduction rules for colored workflow nets. In FASE,
volume 9633 of Lecture Notes in Computer Science, pages 342-358, 2016.

Javier Esparza, Philipp Hoffmann, and Ratul Saha. Polynomial analysis algorithms for free
choice probabilistic workflow nets. In QEST, volume 9826 of Lecture Notes in Computer
Science, pages 89—104. Springer, 2016.

Javier Esparza, Anca Muscholl, and Igor Walukiewicz. Static analysis of deterministic
negotiations. CoRR, abs/1704.04190, 2017. To appear in the Proceedings of LICS’17.
Dirk Fahland, Cédric Favre, Barbara Jobstmann, Jana Koehler, Niels Lohmann, Hagen
Volzer, and Karsten Wolf. Instantaneous soundness checking of industrial business process
models. In BPM, volume 5701 of Lecture Notes in Computer Science, pages 278-293.
Springer, 2009.

Cédric Favre, Dirk Fahland, and Hagen Volzer. The relationship between workflow graphs
and free-choice workflow nets. Information Systems, 47:197-219, 2015.

Cédric Favre, Hagen Volzer, and Peter Miiller. Diagnostic information for control-flow
analysis of Workflow Graphs (a.k.a. Free-Choice Workflow nets). In TACAS, volume 9636
of Lecture Notes in Computer Science, pages 463-479, 2016.

Joost-Pieter Katoen. GSPNs revisited: Simple semantics and new analysis algorithms. In
ACSD, pages 6-11. IEEE Computer Society, 2012.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program analysis.
Springer, 1999.

2:5

TIME 2017

2:6

Advances in Quantitative Analysis of Free-Choice Workflow Petri Nets

21

22

23

24

Wasim Sadiq and Maria E. Orlowska. Analyzing process models using graph reduction
techniques. Information systems, 25(2):117-134, 2000.

Karsten Schmidt. LoLA: A low level analyser. In ICATPN, volume 1825 of Lecture
Notes in Computer Science, pages 465-474, 2000. Current version available at http:
//www.service-technology.org.

Nikola Trcka, Wil M.P. van der Aalst, and Natalia Sidorova. Data-flow anti-patterns:
Discovering data-flow errors in workflows. In CAiSE 2009, volume 5565 of Lecture Notes
in Computer Science, pages 425-439, 2009.

Eric Verbeek, Moe Thandar Wynn, Wil van der Aalst, and Arthur ter Hofstede. Reduction
rules for reset/inhibitor nets. Journal of Computer and System Sciences, 76(2):125-143,
2010.

http://www.service-technology.org
http://www.service-technology.org

Plan and Program Synthesis: A New Look at
Some Old Problems

Sheila A. Mcllraith

Department of Computer Science, University of Toronto, Toronto, Canada
sheila@cs.toronto.edu

—— Abstract

The proliferation of programmable devices, personal assistants, and autonomous systems presents
fundamental challenges to the deployment of safe, predictable systems that can work together,
interact seamlessly with humans, and that are taskable and instructable by people who may not
know how to program. In this talk, we will revisit the classical problem of program synthesis
through the lens of Al automated planning. We will present recent advances in Al automated
planning principles and computational methods that support the synthesis of plans with goals and
preferences specified in Linear Temporal Logic and Regular Expressions. Moving from automated
planning in deterministic domains to planning in nondeterministic domains, we will explore the
pathway to synthesizing programs that are taskable and instructable by exploiting state-of-the-art
AT planning technology.

1998 ACM Subject Classification 1.2.2 Automatic Programming
Keywords and phrases planning, program synthesis, linear temporal logic, regular expressions
Digital Object Identifier 10.4230/LIPIcs. TIME.2017.3

Category Invited Talk

© Sheila A. Mcllraith;
37 licensed under Creative Commons License CC-BY

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 3; pp. 3:1-3:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Possible and Certain Answers for Queries over
Order-Incomplete Data*!

Antoine Amarilli', Mouhamadou Lamine Ba2, Daniel Deutch?, and
Pierre Senellart*5

LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France

University Alioune Diop of Bambey, Bambey, Senegal

Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
DI ENS, ENS, CNRS, PSL Research University, Paris, France

Inria Paris, Paris, France

CUk W N

—— Abstract

To combine and query ordered data from multiple sources, one needs to handle uncertainty

about the possible orderings. Examples of such “order-incomplete” data include integrated event
sequences such as log entries; lists of properties (e.g., hotels and restaurants) ranked by an
unknown function reflecting relevance or customer ratings; and documents edited concurrently
with an uncertain order on edits. This paper introduces a query language for order-incomplete
data, based on the positive relational algebra with order-aware accumulation. We use partial
orders to represent order-incomplete data, and study possible and certain answers for queries in
this context. We show that these problems are respectively NP-complete and coNP-complete,
but identify many tractable cases depending on the query operators or input partial orders.

1998 ACM Subject Classification H.2.1 [Database Management] Logical Design
Keywords and phrases certain answer, possible answer, partial order, uncertain data

Digital Object Identifier 10.4230/LIPIcs. TIME.2017.4

1 Introduction

Many applications need to combine and transform ordered data (e.g., temporal data, rankings,
preferences) from multiple sources. Examples include sequences of readings from multiple
sensors, or log entries from different applications or machines, that must be combined to
form a complete picture of events; rankings of restaurants and hotels published by different
websites, their ranking function being often proprietary and unknown; and concurrent edits
of shared documents, where the order of contributions made by different users needs to
be merged. Even when the order of items from each individual source is known, the order
across sources is often uncertain. For instance, even when sensor readings or log entries have
timestamps, these may be ill-synchronized across sensors or machines; different websites may
follow different rules and rank different hotels, so there are multiple ways to create a unified
ranked list; concurrent document editions may be ordered in multiple ways. We say that the
resulting information is order-incomplete.

This paper studies query evaluation over order-incomplete data in a relational setting [1].
Our running example is that of restaurants and hotels from travel websites, ranked according

* An extended version of this article can be found at https://arxiv.org/abs/1707.07222.
t This research was partially supported by the Israeli Science Foundation (grant 1636/13) and the
Blavatnik ICRC.

© Antoine Amarilli, Mouhamadou Lamine Ba, Daniel Deutch, and Pierre Senellart;
37 licensed under Creative Commons License CC-BY

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).

Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 4; pp.4:1-4:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.4
https://arxiv.org/abs/1707.07222
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2

Possible and Certain Answers for Queries over Order-Incomplete Data

to proprietary functions. An example query could compute the union of ranked lists of
restaurants from distinct websites, or ask for a ranked list of pairs of a restaurant and a hotel
in the same district. As we do not know how the proprietary order is defined, the query result
may become uncertain: there may be multiple reasonable orderings of restaurants in the
union result, or multiple orderings of restaurant—hotel pairs. We also study the application of
order-aware accumulation to the query result, where each possible order may yield a different
value: e.g., extracting only the highest ranked pairs, concatenating their names, or assessing
the attractiveness of a district based on its best restaurants and hotels.

Our approach is to handle this uncertainty through the classical notions of possible and
certain answers. First, whenever there is a certain answer to the query — i.e., there is only
one possible order on query results or one accumulation result — which is obtained no matter
the order on the input and in intermediate results, we should present it to the user, who can
then browse through the ordered query results (as is typically done in absence of uncertainty,
using constructs such as SQL’s ORDER BY). Certain answers can arise even in non-trivial
cases where the combination of input data admits many possible orders: consider user queries
that select only a small interesting subset of the data (for which the ordering happens to be
certain), or a short summary obtained through accumulation over large data. In many other
cases, the different orders on input data or the uncertainty caused by the query may lead to
several possible answers. In this case, it is still of interest (and non-trivial) to verify whether
an answer is possible, e.g., to check whether a given ranking of hotel-restaurant pairs is
consistent with a combination of other rankings (the latter done through a query). Thus, we
study the problems of deciding whether a given answer is certain, and whether it is possible.

We note that users may wish to focus on the position of some tuples of interest (e.g.,
“is it possible/certain that a particular pair of restaurant-hotel is ranked first?”, or “is it
possible/certain that restaurant A is ranked above restaurant B?). We show these questions
may be expressed in our framework through proper choices of accumulation functions.

Main contributions. We introduce a query language with accumulation for order-incomplete
data, which generalizes the positive relational algebra [1] with aggregation as the outermost
operation. We define a bag semantics for this language, without assuming that a single choice
of order can be made (unlike, e.g., rank aggregation [15]): we use partial orders to represent
all orders that are consistent with the input data. We then undertake the first general study
of the complezity of possible and certain answers for queries over such data. We show that
these problems are respectively NP-complete and coNP-complete, the main difficulties being
the existence of duplicate tuple values in the data and the use of order-aware accumulation.
Fortunately, we can show many realistic tractable cases: certainty is in PTIME without
accumulation, and both problems are tractable under reasonable restrictions on the input
and on the query. The rest of this paper is organized as follows. In Section 2, we introduce
our data model and our query language. We define and exemplify the problems of possible
and certain answers in Section 3. We then study their complexity, first in the general case
(Section 4), then in restricted settings that ensure tractability (Sections 5 and 6). We study
extensions to the language, namely duplicate elimination and group-by, in Section 7. We
compare our model and results with related work in Section 8, and conclude in Section 9.
Proof sketches of some important results are given in an appendix, for lack of space.

2 Data Model and Query Language

We fix a countable set of values D that includes N and infinitely many values not in N. A
tuple t over D of arity a(t) is an element of D*®) denoted (v1, ..., vas)). The simplest notion

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

hotelname distr hotelname distr

restname distr

Mercure 5 Balzac 8
Gagnaire 8 Balzac 8 J Mercure 5 J
TourArgent 5 Mercure 12 Mercure 12

(a) Rest table (b) Hotel table (c¢) Hotels table

Figure 1 Running example: Paris restaurants and hotels.

(TA,5,B,8)

/N

(G,8,B,8) (TA,5,M,5)

N/

(G,8,M,5)
Figure 2 Example 2.

jpJjp

e f

T T

fr it

c d

b

fr it

a b

Figure 3 Example 11.

of ordered relations are then list relations [11, 12]: a list relation of arity n € N is an ordered
list of tuples over D of arity n (where the same tuple value may appear multiple times). List
relations impose a single order over tuples, but when one combines (e.g., unions) them, there
may be multiple plausible ways to order the results.

We thus introduce partially ordered relations (po-relations). A po-relation I' = (ID, T, <)
of arity n € N consists of a finite set of identifiers ID (chosen from some infinite set closed
under product), a strict partial order < on ID, and a (generally non injective) mapping T
from ID to D™. The actual identifiers do not matter, but we need them to refer to occurrences
of the same tuple value. Hence, we always consider po-relations up to isomorphism, where
(ID,T,<) and (ID',T',<') are isomorphic iff there is a bijection ¢ : ID — ID" such that
T'(e(id)) = T(id) for all id € ID, and ¢(id1)<'p(id2) iff id; < idy for all idy, idy € ID.

A special case of po-relations are unordered po-relations (or bag relations), where < is
empty: we write them (ID,T). The underlying bag relation of I' = (ID, T, <) is (ID,T).

The point of po-relations is to represent sets of list relations. Formally, a linear extension
<’ of < is a total order on ID such that for each & < y we have x <’ y. The possible worlds
pw(I") of T are then defined as follows: for each linear extension <’ of <, writing ID as
idy <" -+ <’ id|rp|, the list relation (T'(idy),...,T(id|;p|)) is in pw(I'). As T is generally
not injective, two different linear extensions may yield the same list relation. Po-relations
can thus model uncertainty over the order of tuples (but not on their value: the underlying
bag relation is always certain).

Query language. We now define a bag semantics for positive relational algebra operators,
to manipulate po-relations with queries. The positive relational algebra, written PosRA, is a
standard query language for relational data [1]. We will extend PosRA later in this section

4:3

TIME 2017

4:4

Possible and Certain Answers for Queries over Order-Incomplete Data

with accumulation, and add further extensions in Section 7. Each PosRA operator applies to
po-relations and computes a new po-relation; we present them in turn.

The selection operator restricts the relation to a subset of its tuples, and the order is
the restriction of the input order. The tuple predicates allowed in selections are Boolean
combinations of equalities and inequalities, which can use tuple attributes and values in D.

selection: For any po-relation I' = (ID, T, <) and tuple predicate ¢, we define the selection
oy(T) := (ID', T\1p, <|1p’) where ID" := {id € ID | ¢(T'(id)) holds}.

The projection operator changes tuple values in the usual way, but keeps the original tuple
ordering in the result, and retains all copies of duplicate tuples (following our bag semantics):

projection: For a po-relation I' = (ID, T, <) and attributes Aq,..., A,, we define the projec-
tion I4,, . a,(T) := (ID,T’, <) where T" maps each id € ID to Il4,, . a,(T(id)).

n yAn

As for union, we impose the minimal order constraints that are compatible with those of
the inputs. We use the parallel composition [7] of two partial orders < and <’ on disjoint
sets ID and ID', i.e., the partial order <”:= (< || <’) on ID U ID defined by: every id € ID
is incomparable for <” with every id’ € ID'; for each idy, ids € ID, we have id; <" idy iff
idy < idy; for each id},idy € ID’', we have id} <" id, iff id| <’ id,.

union: Let I' = (ID, T, <) and I'" = (ID", T', <') be two po-relations of the same arity. We
assume that the identifiers of I have been renamed if necessary to ensure that ID and ID’
are disjoint. We then define T UT’ := (IDU ID', T", < || <’), where T" maps id € ID to
T(id) and id" € ID" to T'(id").

The union result I' UI” does not depend on the exact definition of I'”, i.e., it is unique up to
isomorphism. Our definition also implies that I' U T is different from I', as per bag semantics.
In particular, when I" and I” have only one possible world, I' U T" usually does not.

We next introduce two possible product operators. First, the direct product [40] <prg :=
(< xpmr <) of two partial orders < and <’ on sets ID and ID' is defined by (idy, id}) <pm
(ida, idy) for each (idy,id}), (ide,idy) € ID x ID' iff id; < idy and id] <’ idy. We define
the direct product operator over po-relations accordingly: two identifiers in the product are
comparable only if both components of both identifiers compare in the same way.

direct product: For any po-relations I' = (ID, T, <) and I'" = (ID', T, <'), remembering that
the sets of possible identifiers is closed under product, we let I' xprg IV := (ID x ID", T",
< Xpmg <'), where T” maps each (id, id") € ID x ID' to the concatenation (T(id),T’(id')).

Again, the direct product result often has multiple possible worlds even when inputs do not.

The second product operator uses the lexicographic product (or ordinal product [40])
<1ex = (< xpex <') of two partial orders < and <, defined by (idy, id}) <pex (idz,ids) for
all (idq, id}), (idz,idy) € ID x ID" iff either idy < ida, or idy = idy and id} <’ id5.

lexicographic product: For any po-relations I' = (ID, T, <) and I'' = (ID', T’, <’), we define
[xpex IV as (ID x ID', T", < xpgx <') with T"” defined like for direct product.

Last, we define the constant expressions that we allow:

const: e for any tuple ¢, the singleton po-relation [¢] has only one tuple with value t;
o for any n € N, the po-relation [<n] has arity 1 and has pw([<n]) = {(1,...,n)}.

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

A natural question is then to determine whether any of our operators is subsumed by the
others, but we show that this is not the case:

» Theorem 1. No PosRA operator can be expressed through a combination of the others.

We have now defined a semantics on po-relations for each PosRA operator. We define a
PosRA query in the expected way, as a query built from these operators and from relation
names. Calling schema a set S of relation names and arities, with an attribute name for
each position of each relation, we define a po-database D as having a po-relation D[R] of the
correct arity for each relation name R in S. For a po-database D and a PosRA query @ we
denote by Q(D) the po-relation obtained by evaluating Q over D.

» Example 2. The po-database D in Figure 1 contains information about restaurants and
hotels in Paris: each po-relation has a total order (from top to bottom) according to customer
ratings from a given travel website, and for brevity we do not represent identifiers.

Let @ := Rest Xptr (T aistr2<127(Hotel)). Its result Q(D) has two possible worlds:
((G,8,M,5), (G, 8,B,8), (TA, 5,M,5), (TA,5,B,8)), ((G,8,M,5), (TA,5,M,5), (G,8,B,8), (TA, 5, B, 8)).
In a sense, these list relations of hotel-restaurant pairs are consistent with the order in D: we
do not know how to order two pairs, except when both the hotel and restaurant compare in
the same way. The po-relation Q(D) is represented in Figure 2 as a Hasse diagram (ordered
from bottom to top), again writing tuple values instead of tuple identifiers for brevity.

Consider now Q' := (0 Rest. distr—Hotel. distr (@)), where II projects out Hotel.distr. The
possible worlds of Q' (D) are ((G, B, 8), (TA, M, 5)) and ((TA, M, 5), (G, B, 8)), intuitively reflecting
two different opinions on the order of restaurant—hotel pairs in the same district. Defining Q"

similarly to @’ but replacing Xprr by Xpex in @, we have pw(Q” (D)) = ((G, B, 8), (TA, M, 5)).

We conclude by observing that we can efficiently evaluate PosRA queries on po-relations:

» Proposition 3. For any fized PosRA query Q, given a po-database D, we can construct the
po-relation Q(D) in polynomial time in the size of D (the polynomial degree depends on Q).

Accumulation. We now enrich PosRA with order-aware accumulation as the outermost
operation, inspired by right accumulation and iteration in list programming, and aggregation
in relational databases. We fix a monoid (M, ®,¢) for accumulation and define:

» Definition 4. For n € N, let h : D" xN* — M be a function called an arity-n accumulation
map. We call accumyp, g an arity-n accumulation operator; its result accumy g (L) on an
arity-n list relation L = (t1,...,t,) is h(t1,1) B - - - @ h(t,, n), and it is € on an empty L. For
complexity purposes, we always require accumulation operators to be PTIME-evaluable, i.e.,
given any list relation L, we can compute accumy, ¢,(L) in PTIME.

The accumulation operator maps the tuples with h to M, where accumulation is performed
with @. The map h may use its second argument to take into account the absolute position

of tuples in L. In what follows, we omit the arity of accumulation when clear from context.

The PosRA?°C language. We define the language PosRA?“¢ that contains all queries of
the form @ = accumy, g(Q'), where accumy, g is an accumulation operator and @’ is a PosRA
query. The possible results of @) on a po-database D, denoted Q(D), is the set of results
obtained by applying accumulation to each possible world of Q’(D), namely:

» Definition 5. For a po-relation I', we define: accumy, (I') := {accumy, (L) | L € pw(T')}.

4:5

TIME 2017

4:6

Possible and Certain Answers for Queries over Order-Incomplete Data

Of course, accumulation has exactly one result whenever the operator accumy, ¢ does
not depend on the order of input tuples: this covers, e.g., the standard sum, min, max, etc.
Hence, we focus on accumulation operators which depend on the order of tuples (e.g., defining
@ as concatenation), so there may be more than one accumulation result:

» Example 6. As a first example, let Ratings(user, restaurant, rating) be an unordered po-
relation describing the numerical ratings given by users to restaurants, where each user rated
each restaurant at most once. Let Relevance(user) be a po-relation giving a partially-known
ordering of users to indicate the relevance of their reviews. We wish to compute a total rating
for each restaurant which is given by the sum of its reviews weighted by a PTIME-computable
weight function w. Specifically, w(i) gives a nonnegative weight to the rating of the i-th
most relevant user. Consider Qq := accumy, 1 (oy(Relevance xigx Ratings)) where we set
hi(t,n) := t.rating x w(n), and where ¢ is the tuple predicate: restaurant = “Gagnaire” A
Ratings.user = Relevance.user. The query)1 gives the total rating of “Gagnaire”, and each
possible world of Relevance may lead to a different accumulation result.

As a second example, consider an unordered po-relation HotelCity(hotel, city) indicating
in which city each hotel is located, and consider a po-relation City(city) which is (partially)
ranked by a criterion such as interest level, proximity, etc. Now consider the query Qs :=
aCcurnhg,concat (Hhotel(Qé))v where QIQ = UC’ity.city:HotelCity.city(City X LEX HOtelCity)a where
ha(t,n) :=t, and where “concat” denotes standard string concatenation. Q3 concatenates
the hotel names according to the preference order on the city where they are located, allowing
any possible order between hotels of the same city and between hotels in incomparable cities.

3 Possibility and Certainty

Evaluating a PosRA or PosRA?° query) on a po-database D yields a set of possible results:
for PosRA?°¢, it yields an explicit set of accumulation results, and for PosRA, it yields a
po-relation that represents a set of possible worlds (list relations). The uncertainty among
the results may be due to the order of the input relations being partial, due to uncertainty
yielded by the query, or both. In some cases, there is only one possible result, i.e., a certain
answer. In other cases, we may wish to examine multiple possible answers. We thus define:

» Definition 7 (Possibility and Certainty). Let @ be a PosRA query, D be a po-database, and
L a list relation. The possibility problem (POSS) asks if L € pw(Q(D)), i.e., if L is a possible
result. The certainty problem (CERT) asks if pw(Q(D)) = {L}, i.e., if L is the only possible
result. Likewise, if @ is a PosRA?°¢ query with accumulation monoid M, for a result v € M,
the POSS problem asks whether v € Q(D), and CERT asks whether Q(D) = {v}.

Discussion. For PosRA2°, our definition follows the usual notion of possible and certain
answers in data integration [28] and incomplete information [30]. For PosRA, we ask
for possibility or certainty of an entire output list relation, i.e., instance possibility and
certainty [3]. We now justify that these notions are useful and discuss more “local” alternatives.

First, as we exemplify below, the output of a query may be certain even for complex
queries and uncertain input. It is important to identify such cases and present the user with
the certain answer in full, like order-by query results in current DBMSs. Our CERT problem
is useful for this task, because we can use it to decide if a certain output exists, and if yes, we
can compute it in PTIME (by choosing any linear extension). However, CERT is a challenging
problem to solve, because of duplicate values (see “Technical difficulties” below).

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

» Example 8. Consider the po-database D of Figure 1 with the po-relations Rest and Hotels.
To find recommended pairs of hotels and restaurants in the same district, the user can
write Q := O Rest.distr—Hotely. distr (Rest Xp1r Hotels). Evaluating Q(D) yields only one possible
world, namely, the list relation ({G, 8, B,8), (TA, 5, M,5)), which is a certain result.

This could also happen with larger input relations. Imagine for example that we join
hotels and restaurants to find pairs of a hotel and a restaurant located in that hotel. The
result can be certain if the relative ranking of the hotels and of their restaurants agree.

If there is no certain answer, deciding possibility of an instance may be considered as
“best effort”. It can be useful, e.g., to check if a list relation (obtained from another source) is
consistent with a query result. For example, we may wish to check if a website’s ranking of
hotel-restaurant pairs is consistent with the preferences expressed in its rankings for hotels
and restaurants, to detect when a pair is ranked higher than its components would warrant.

When there is no overall certain answer, or when we want to check the possibility of some
aggregate property of the relation, we can use a PosRA?°° query. In particular, in addition
to the applications of Example 6, accumulation allows us to encode alternative notions of
P0OSS and CERT for PosRA queries, and to express them as POSS and CERT for PosRA?°. For
example, instead of possibility or certainty for a full relation, we can express possibility or
certainty of the location! of particular tuples of interest:

» Example 9. With accumulation we can model position-based selection queries. Consider for
instance a top-k operator on list relations, which retrieves a list relation of the first & tuples.
For a po-relation, the set of results is all possible such list relations. We can implement top-k
as acCUlp, concat With hg(t,n) being (¢) for n < k and e otherwise, and with concat being
list concatenation. We can similarly compute select-at-k, i.e., return the tuple at position k,
via accump, concat With hy(t,n) being (¢) for n = k and e otherwise.

Accumulation can also be used for a tuple-level comparison. To check whether the
first occurrence of a tuple t; precedes any occurrence of to, we define hy for all n € N by
hs(t1,n) := T, hs(te,n) := L and hs(t,n) := ¢ for t # 1, t2, and a monoid operator @ such
that T@T=TaL=T, L& 1L=1&T= L: the result is ¢ if neither ¢; not ¢ is present,
T if the first occurrence of ¢, precedes any occurrence of to, 1 otherwise.

We study the complexity of these variants in Section 6. We now give examples of their use:

» Example 10. Consider Q = ;s (0 Rest. distr=Hotel. distr (Rest Xprg Hotel)), which computes
ordered recommendations of districts including both hotels and restaurants. Using accumula-
tion as in Example 9, the user can compute the best district to stay in with @' = top-1(Q).
If ' has a certain answer, then there is a dominating hotel-restaurant pair in this district,
which answers the user’s need. If there is no certain answer, POSS allows the user to determine
the possible top-1 districts.

We can also use POSS and CERT for PosRA?°“ queries to restrict attention to tuples of
interest. If the user hesitates between districts 5 and 6, they can apply tuple-level comparison
to see whether the best pair of district 5 may be better (or is always better) than that of 6.

Technical difficulties. The main challenge to solve POSS and CERT for a PosRA query @ on
an input po-database D is that the tuple values of the desired result L may occur multiple
times in the po-relation Q(D), making it hard to match L and Q(D). In other words, even

! Remember that the existence of a tuple is not order-dependent and thus vacuous in our setting.

4:7

TIME 2017

4:8

Possible and Certain Answers for Queries over Order-Incomplete Data

though we may compute the po-relation Q(D) in PTIME (by Proposition 3) and present it
to the user, they still cannot easily “read” possible and certain answers out of the po-relation:

» Example 11. Consider a po-relation I' = (ID, T, <) with ID = {id,, idy, id., idq, ide, ids},
with T'(id,) := (Gagnaire, fr), T(idy,) := (Italia,it), T(id.) := (TourArgent, fr), T(idq) :=
(Verdi, it), T'(ide) := (Tsukizi,jp), T(id¢) := (Sola,jp), and with id, < id., idy, < ide,
ide < ide, idg < ide, and idq < ids. Intuitively, I' describes a preference relation over
restaurants, with their name and the type of their cuisine. Consider the PosRA query
Q@ :=TI(T") that projects I on type; we illustrate the result (with the original identifiers) in
Figure 3. Let L be the list relation (it, fr, jp, it, fr, jp), and consider POSS for @, T', and L.
We have that L € pw(Q(T)), as shown by the linear extension idg <’ id, <’ ids <’ idy <’
id. <' id. of <. However, this is hard to see, because each of it, fr, jp appears more than once
in the candidate list as well as in the po-relation; there are thus multiple ways to “map” the
elements of the candidate list to those of the po-relation, and only some of these mappings
lead to the existence of a corresponding linear extension. It is also challenging to check if L is
a certain answer: here, it is not, as there are other possible answers, e.g.: (it, fr, fr, it, jp, jp).

For PosRA?°¢ queries, this technical difficulty is even accrued because of the need to figure
out the possible ways in which the desired accumulation result can be obtained.

4 General Complexity Results

We have defined the PosRA and PosRA2°¢ query languages, and defined and motivated the
problems P0OSS and CERT. We now start the study of their complexity, which is the main
technical contribution of our paper. We will always study their data complezity?, where the
query @ is fixed: in particular, for PosRA?¢, the accumulation map and monoid, which we
assumed to be PTIME-evaluable, is fixed as part of the query, though it is allowed to be
infinite. The input to POSS and CERT for the fixed query @ is the po-database D and the
candidate result (a list relation for PosRA, an accumulation result for PosRA°¢).

Possibility. We start with POSS, which we show to be NP-complete in general.

» Theorem 12. The POSS problem is in NP for any PosRA or PosRA® query. Further,
there exists a PosRA query and a PosRA®¢ query for which the POSS problem is NP-complete.

In fact, as we will later point out, hardness holds even for quite a restrictive setting, with
a more intricate proof: see Theorem 18.

Certainty. We show that CERT is coNP-complete for PosRA2¢:

» Theorem 13. The CERT problem is in coNP for any PosRA** query, and there is a
PosRA?¢ query for which it is coNP-complete.

For PosRA queries, however, we show that CERT is in PTIME. As we will see later, this
follows from the tractability of CERT for PosRA®°° on cancellative monoids (Theorem 26).

» Theorem 14. CERT is in PTIME for any PosRA query.
We next identify further tractable cases, first for PosRA and then for PosRA?°.

2 In combined complezity, with Q part of the input, POSS and CERT are easily seen to be respectively
NP-hard and coNP-hard, by reducing from the evaluation of Boolean conjunctive queries (which is
NP-hard in data complexity [1]) even without order.

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

5 Tractable Cases for POSS on PosRA Queries

We show that POSS is tractable for PosRA queries if we restrict the allowed operators and if

we bound some order-theoretic parameters of the input po-database, such as poset width.
We call PosRAgx the fragment of PosRA that disallows the xprg operator, but allows all

other operators (including xigx). We also define PosRApg that disallows Xipgx but not Xprg.

Totally ordered inputs. We start by the natural case where the individual po-relations are
totally ordered, i.e., their order relation is a total order (so they actually represent a list
relation). This applies to situations where we integrate data from multiple sources that are
certain (totally ordered), and where uncertainty only results from the integration query (so
that the result may still have exponentially many possible worlds, e.g., the union of two
total orders has exponentially many possible interleavings). In a sense, the Xpg operator is
the one introducing the most uncertainty and “complexity” in the result, so we consider the
fragment PosRApgx of PosRA queries without Xprr, and show:

» Theorem 15. PSS is in PTIME for PosRArgy queries if input po-relations are totally
ordered.

In fact, we can show tractability for relations of bounded poset width:

» Definition 16 ([36]). An antichain in a po-relation I' = (ID,T,<) is a set A C ID of

pairwise incomparable tuple identifiers. The width of T" is the size of its largest antichain.

The width of a po-database is the maximal width of its po-relations.

In particular, totally ordered po-relations have width 1, and unordered po-relations have
a width equal to their size (number of tuples); the width of a po-relation can be computed in
PTIME [18]. Po-relations of low width are a common practical case: they cover, for instance,
po-relations that are totally ordered except for a few tied identifiers at each level. We show:

» Theorem 17. For any fixred k € N and fized PosRAgx query @, the POSS problem for Q
is in PTIME when all po-relations of the input po-database have width < k.

We last justify our choice of disallowing the Xprp product. Indeed, if we allow Xpg, then
POSS is hard on totally ordered po-relations, even if we disallow Xpgx:

» Theorem 18. There is a PosRAprr query for which the POSS problem is NP-complete even
when the input po-database is restricted to consist only of totally ordered po-relations.

Unordered inputs We now show the tractability of POSS for unordered input relations, i.e.,
po-relations that allow all possible orderings over their tuples. This applies, e.g., to contexts
where the order on input tuples is irrelevant or unknown; all order information must then be
imposed by the (fixed) query, using the ordered constant relations [<e]. We show:

» Theorem 19. P0SS is in PTIME for any PosRA query if input po-relations are unordered.

Here again we prove a more general result, capturing the case where the input is “almost
unordered”. We introduce for this purpose a novel order-theoretic notion, ‘a-width, which
decomposes the relation in classes of indistinguishable sets of incomparable elements.

» Definition 20. Given a poset (V,<) , a subset S C V is an indistinguishable antichain if
it is both an antichain (there are no x,y € S such that x < y) and an indistinguishable set
(or interval [17]): for all z,y € Sand z € V\S, z < ziff y < z, and z < z iff z < y.

4:9

TIME 2017

4:10

Possible and Certain Answers for Queries over Order-Incomplete Data

An indistinguishable antichain partition (ia-partition) of a poset is a partition of its
domain into indistinguishable antichains. The cardinality of such a partition is its number of
classes. The ia-width of a poset (or po-relation) is the cardinality of its smallest ia-partition.
The ia-width of a po-database is the maximal ia-width of its relations.

Hence, any po-relation T' has ia-width at most |T'|, and unordered relations have an
ia-width of 1. Po-relations may have low ia-width in practice if order is completely unknown
except for a few comparability pairs given by users, or when objects of a constant number of
types are ordered based only on some order on the types. We show that ia-width, like width,
can be computed in PTIME, and that bounding it ensures tractability (for all PosRA):

» Proposition 21. The ia-width of any poset, and a corresponding ia-partition, can be
computed in PTIME.

» Theorem 22. For any fized k € N and fized PosRA query Q, the POSS problem for Q is
in PTIME when all po-relations of the input po-database have ia-width < k.

Mixing both kinds of relations. We have shown the tractability of POSS assuming constant
width (only for PosRAgx queries) or assuming constant ia-width. A natural question is then
whether we can allow both totally ordered and unordered po-relations. For instance, we may
combine sources whose order is fully unknown or irrelevant, with sources that are completely
ordered (or almost totally ordered). More generally, can we allow both bounded-width
and bounded-ia-width relations? We show that this is the case if we disallow both product
operators, i.e., restrict to the language PosRA,,x of PosRA queries with no product.

» Theorem 23. For any fized k € N and fized PosRAno«x query Q, the POSS problem for Q
1s in PTIME when all po-relations of the input po-database have either ia-width < k or
width < k.

Disallowing product is severe, but we can still integrate sources by taking the union of
their tuples, selecting subsets, and modifying tuple values with projection. In fact, allowing
product makes POSS intractable when allowing both unordered and totally ordered input:

» Theorem 24. There is a PosRAgx query and a PosRApmp query for which the POSS
problem is NP-complete even when the input po-database is restricted to consist only of one
totally ordered and one unordered po-relation.

6 Tractable Cases for Accumulation Queries

We next study tractable cases for POSS and CERT in presence of accumulation.

Cancellative monoids. We first consider a natural restriction on the accumulation function:

» Definition 25 ([23]). For any monoid (M, ®,¢), we call a € M cancellable if, for all b, c €
M, we have that a ® b = a ® ¢ implies b = ¢, and we also have that b ® a = ¢ @ a implies
b= c. We call M a cancellative monoid if all its elements are cancellable.

Many interesting monoids are cancellative; in particular, this is the case of both monoids
in Example 6. More generally, all groups are cancellative monoids (but some infinite
cancellative monoids are not groups, e.g., the monoid of concatenation). For this large class
of accumulation functions, we design an efficient algorithm for certainty.

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

» Theorem 26. CERT is in PTIME for any PosRA*° query that performs accumulation in
a cancellative monoid.

Hence, CERT is tractable for PosRA (Theorem 14), via the concatenation monoid, and
CERT is also tractable for top-k (defined in Example 9). The hardness of POSS for PosRA
(Theorem 12) then implies that POSS, unlike CERT, is hard even on cancellative monoids.

Other restrictions on accumulation. We next revisit the results of Section 5 for PosRA2.
However, we need to make other assumptions on accumulation (besides PTIME-evaluability).
First, in the next results in this section, we assume that the accumulation monoid is finite:

» Definition 27. A PosRA?“¢ query is said to perform finite accumulation if the accumulation
monoid (M, @,) is finite.

For instance, if the domain of the output is assumed to be fixed (e.g., ratings in {1, ...,10}),
then select-at-k and top-k (the latter for fixed k), as defined in Example 9, are finite.

Second, for some of the next results, we require position-invariant accumulation, namely,
that the accumulation map does not depend on the absolute position of tuples:

» Definition 28. Recall that the accumulation map h has in general two inputs: a tuple
and its position. A PosRA?° query is said to be position-invariant if its accumulation map
ignores the second input, so that effectively its only input is the tuple itself.

Note that accumulation in the monoid is still performed in order, so we can still perform,
e.g., concatenation. These two restrictions do not suffice to make POSS and CERT tractable,
but we will use them to lift the results of Section 5.

Revisiting Section 5. We now extend our previous results to queries with accumulation, for
P0OSS and CERT, under the additional assumptions on accumulation that we presented. We

call PosRA#g; and PosRA2SS, the extension of PosRAgx and PosRA,,x with accumulation.

We can first generalize Theorem 17 to PosRA?gE queries with finite accumulation:

» Theorem 29. For any PosRA%sy query performing finite accumulation, POSS and CERT
are in PTIME on po-databases of bounded width.

We then extend Theorem 22 to PosRA?°¢ with finite and position-invariant accumulation:

» Theorem 30. For any PosRA*C query performing finite and position-invariant accumula-
tion, POSS and CERT are in PTIME on po-databases of bounded ia-width.

Last, we can adapt the tractability result for queries without product (Theorem 23):

» Theorem 31. For any PosRA query performing finite and position-invariant accumu-
lation, POSS and CERT are in PTIME on po-databases whose relations have either bounded
width or bounded ia-width.

The finiteness assumption is important, as the previous result does not hold otherwise.
Specifically, there exists a query that performs position-invariant but not finite accumulation,
for which P0OSS is NP-hard even on unordered po-relations.

4:11

TIME 2017

4:12

Possible and Certain Answers for Queries over Order-Incomplete Data

Other definitions. Finally, recall that we can use accumulation as in Example 9 to capture
position-based selection (top-k, select-at-k) and tuple-level comparison (whether the first
occurrence of a tuple precedes all occurrences of another tuple) for PosRA queries. Using a
direct construction for these problems, we can show that they are tractable:

» Proposition 32. For any PosRA query Q, the following problems are in PTIME:

select-at-k: Given a po-database D, tuple value t, and position k € N, whether it is
possible/certain that Q(D) has value t at position k;

top-k: For any fixed k € N, given a po-database D and list relation L of length k, whether
it is possible/certain that the top-k values in Q(D) are exactly L;

tuple-level comparison: Given a po-database D and two tuple values t1 and to, whether it
is possible/certain that the first occurrence of t1 precedes all occurrences of to.

7 Extensions

We next briefly consider two extensions to our model: group-by and duplicate elimination.

Group-by. First, we extend accumulation with a group-by operator, inspired by SQL.

» Definition 33. Let (M, ®,¢) be a monoid and h : D¥ — M be an accumulation map (cf.
Definition 4), and let A = Ay, ..., A, be a sequence of attributes: we call accumGroupBy,, 4 a
an accumulation operator with group-by. Letting L be a list relation with compatible schema,
we define accumGroupBy), o (L) as an unordered relation that has, for each tuple value
t € ma(L), one tuple (t,v;) where v, is accump, g (0a,=¢.4;,...A,=t.4, (L)) with 7 and o on
the list relation L having the expected semantics. The result on a po-relation I' is the set of
unordered relations {accumGroupByy, 4 A (L) | L € pw(T')}.

In other words, the operator “groups by” the values of Ay, ..., A,, and performs accumula-
tion within each group, forgetting the order across groups. As for standard accumulation, we
only allow group-by as an outermost operation, calling PosRA?*“SBY the language of PosRA
queries followed by one accumulation operator with group-by. Note that the set of possible
results is generally not a po-relation, because the underlying bag relation is not certain.

We next study the complexity of POSS and CERT for PosRA2°GBY queries. Of course,
whenever POSS and CERT are hard for some PosRA*° query @) on some kind of input po-
relations, then there is a corresponding PosRA*““BY query for which hardness also holds
(with empty A). The main point of this section is to show that the converse is not true: the
addition of group-by increases complexity. Specifically, we show that the POSS problem for
PosRA?°GBY ig hard even on totally ordered po-relations and without the xpmp operator:

» Theorem 34. There is a PosRA**SBY query Q with finite and position-invariant accumu-
lation, not using Xpe, such that POSS for Q) is NP-hard even on totally ordered po-relations.

This result contrasts with the tractability of POSS for PosRArgx queries (Theorem 15) and
for PosRA2SS queries with finite accumulation (Theorem 29) on totally ordered po-relations.
By contrast, it is not hard to see that the CERT problem for PosRA#“GBY reduces to CERT
for the same query without group-by, so it is no harder than the latter problem. Specifically:

» Theorem 35. All CERT tractability results from Section 6 extend to PosRA**“SBY when
imposing the same restrictions on query operators, accumulation, and input po-relations.

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

Duplicate elimination. We last study the problem of consolidating tuples with duplicate
values. To this end, we define a new operator, dupElim, and introduce a semantics for it.
The main problem is that tuples with the same values may be ordered differently relative to
other tuples. To mitigate this, we introduce the notion of id-sets:

» Definition 36. Given a totally ordered po-relation (ID,T, <), a subset ID’ of ID is an
indistinguishable duplicate set (or id-set) if for every idy,idy € ID', we have T'(idy) = T (idz),
and for every id € ID\ID', we have id < idy iff id < ids, and idy < id iff idy < id.

» Example 37. Consider the totally ordered relation I'y := Iljoteimame (Hotel), with Hotel as
in Figure 1. The two “Mercure” tuples are not an id-set: they disagree on their ordering
with “Balzac”. Consider now a totally ordered relation 'y = (ID3, T3, <2) whose only
possible world is a list relation (A4, B, B, C) for some tuples A, B, and C over D. The set
{id € ID5 | T5(id) = B} is an id-set in I's. Note that a singleton is always an id-set.

We define a semantics for dupElim on a totally ordered po-relation I' = (ID, T, <) via id-sets.
First, check that for every tuple value ¢ in the image of T', the set {id € ID | T'(id) = t} is an
id-set in . If this holds, we call I safe, and set dupElim(T") to be the singleton {L} of the
only possible world of the restriction of I" obtained by picking one representative element per
id-set (clearly L does not depend on the chosen representatives). Otherwise, we call T unsafe
and say that duplicate consolidation has failed; we then set dupElim(T") to be an empty set
of possible worlds. Intuitively, duplicate consolidation tries to reconcile (or “synchronize”)
order constraints for tuples with the same values, and fails when it cannot be done.

» Example 38. In Example 37, we have dupElim(I';) = 0 but dupElim(I's) = (A, B, C).

We then extend dupElim to po-relations by considering all possible results of duplicate
elimination on the possible worlds, ignoring the unsafe possible worlds. If no possible worlds
are safe, then we completely fail:

» Definition 39. For each list relation L, we let I';, be a po-relation such that pw(I'r) = {L}.
Letting I' be a po-relation, we set dupElim(I") := U} ¢, dupElim(I'z). We say that
dupElim(T") completely fails if dupElim(T) = 0, i.e., dupElim(T'z,) = @ for every L € pw(T).

» Example 40. Consider the totally ordered po-relation Rest from Figure 1, and a to-
tally ordered po-relation Rests whose only possible world is (Tsukizi, Gagnaire). Consider
Q = dupElim(I1,¢stname (Rest) U Rests). Intuitively, @) combines restaurant rankings, using
duplicate consolidation to collapse two occurrences of the same name to a single tuple. The
only possible world of @ is (Tsukizi, Gagnaire, TourArgent), since duplicate elimination fails
in the other possible worlds: indeed, this is the only possible way to combine the rankings.

We next show that the result of dupElim can still be represented as a po-relation, up to
complete failure (which may be efficiently identified).

» Theorem 41. For any po-relation T', we can test in PTIME if dupElim(T") completely fails;
if it does not, we can compute in PTIME a po-relation T’ such that pw(I”) = dupElim(T).

We note that dupElim is not redundant with any of the other PosRA operators, general-
izing Theorem 1:

» Theorem 42. No operator among those of PosRA and dupElim can be expressed through
a combination of the others.

Last, we observe that dupElim can indeed be used to undo some of the effects of bag
semantics. For instance, we can show the following:

4:13

TIME 2017

4:14

Possible and Certain Answers for Queries over Order-Incomplete Data

» Proposition 43. For any po-relation T', we have dupElim(T' UT) = dupElm(T): in
particular, one completely fails iff the other does.

We can also show that most of our previous tractability results still apply when the
duplicate elimination operator is added:

» Theorem 44. All POSS and CERT tractability results of Sections 4—6, except Theorem 23
and Theorem 31, extend to PosRA and PosRA* where we allow dupElim (but impose the
same restrictions on query operators, accumulation, and input po-relations).

Furthermore, if in a set-semantics spirit we require that the query output has no duplicates,
POSS and CERT are always tractable (as this avoids the technical difficulty of Example 11):

» Theorem 45. For any PosRA query Q, POSS and CERT for dupElim(Q) are in PTIME.

Discussion. The introduced group-by and duplicate elimination operators have some short-
comings: the result of group-by is in general not representable by po-relations, and duplicate
elimination may fail. These are both consequences of our design choices, where we capture
only uncertainty on order (but not on tuple values) and design each operator so that its
result corresponds to the result of applying it to each individual world of the input (see
further discussion in Section 8). Avoiding these shortcomings is left for future work.

8 Comparison With Other Formalisms

We next compare our formalism to previously proposed formalisms: query languages over
bags (with no order); a query language for partially ordered multisets; and other related
work. To our knowledge, however, none of these works studied the possibility or certainty
problems for partially ordered data, so that our technical results do not follow from them.

Standard bag semantics. We first compare to related work on the bag semantics for
relational algebra. Indeed, a natural desideratum for our semantics on (partially) ordered
relations is that it should be a faithful extension of bag semantics. We first consider the BALG!
language on bags [21] (the “flat fragment” of their language BALG on nested relations). We
denote by BALG}F the fragment of BALG' that includes the standard extension of positive
relational algebra operations to bags: additive union, cross product, selection, projection. We
observe that, indeed, our semantics faithfully extends BALG1+: query evaluation commutes
with “forgetting” the order. Formally, for a po-relation I', we denote by bag(I') its underlying
bag relation, and define likewise bag(D) for a po-database D as the database of underlying
bag relations. For the following comparison, we identify Xpp and xipgx with the x of [21]
and our union with the additive union of [21]; the following holds:

» Proposition 46. For any PosRA query Q and a po-relation D, bag(Q(D)) = Q(bag(D))
where Q(D) is defined according to our semantics and Q(bag(D)) is defined by BALG", .

The full BALG' language includes additional operators, such as bag intersection and
subtraction, which are non-monotone and as such may not be expressed in our language: it is
also unclear how they could be extended to our setting (see further discussion in “Algebra on
pomsets” below). On the other hand, BALG' does not include aggregation, and so PosRA?
and BALG! are incomparable in terms of expressive power.

A better yardstick to compare against for accumulation could be [33]: they show that
their basic language BQL is equivalent to BALG, and then further extend the language

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

with aggregate operators, to define a language called N'RL*®" on nested relations. On
flat relations, N"RL*8" captures functions that cannot be captured in our language: in
particular the average function AVG is non-associative and thus cannot be captured by our
accumulation function (which anyway focuses on order-dependent functions, as POSS/CERT
are trivial otherwise). On the other hand, N"RL*#" cannot test parity (Corollary 5.7 in [33])
whereas this is easily captured by our accumulation operator. We conclude that N RL*&8"
and PosRA? are incomparable in terms of captured transformations on bags, even when
restricted to flat relations.

Algebra on pomsets. We now compare our work to algebras defined on pomsets [20, 22],
which also attempt to bridge partial order theory and data management (although, again,
they do not study possibility and certainty). Pomsets are labeled posets quotiented by
isomorphism (i.e., renaming of identifiers), like po-relations. A major conceptual difference
between our formalism and that of [20, 22] is that their language focuses on processing
connected components of the partial order graph, and their operators are tailored for that
semantics. As a consequence, their semantics is not a faithful extension of bag semantics,
i.e., their language would not satisfy the counterpart of Proposition 46 (see for instance
the semantics of union in [20]). By contrast, we manipulate po-relations that stand for
sets of possible list relations, and our operators are designed accordingly, unlike those of
[20] where transformations take into account the structure (connected components) of the
entire poset graph. Because of this choice, [20] introduces non-monotone operators that we
cannot express, and can design a duplicate elimination operator that cannot fail. Indeed, the
possible failure of our duplicate elimination operator is a direct consequence of its semantics
of operating on each possible world, possibly leading to contradictions.

If we consequently disallow duplicate elimination in both languages for the sake of
comparison, we note that the resulting fragment Pom-Alg, of the language of [20] can yield
only series-parallel output (Proposition 4.1 of [20]), unlike PosRA queries whose output order
may be arbitrary. Hence, Pom-Alg. does not subsume PosRA.

Incompleteness in databases. Our work is inspired by the field of incomplete information
management, studied for various models [5, 30], in particular relational databases [24]. This
field inspires our design of po-relations and study of possibility and certainty [3, 34]. However,
uncertainty in these settings typically focuses on whether tuples exist or on their values
(e.g., with nulls [10], including the novel approach of [31, 32]; with c-tables [24], probabilistic
databases [42] or fuzzy numerical values as in [38]). To our knowledge, though, our work

is the first to study possible and certain answers in the context of order-incomplete data.

Combining order incompleteness with standard tuple-level uncertainty is left as a challenge
for future work. Note that some works [8, 29, 32] use partial orders on relations to compare
the informativeness of representations. This is unrelated to our partial orders on tuples.

Ordered domains. Another line of work has studied relational data management where the
domain elements are (partially) ordered [25, 35, 43]. However, the perspective is different:
we see order on tuples as part of the relations, and as being constructed by applying our
operators; these works see order as being given outside of the query, hence do not study the
propagation of uncertainty through queries. Also, queries in such works can often directly
access the order relation [43, 6]. Some works also study uncertainty on totally ordered
numerical domains [38, 39], while we look at general order relations.

4:15

TIME 2017

4:16

Possible and Certain Answers for Queries over Order-Incomplete Data

Temporal databases. Temporal databases [9, 37] consider order on facts, but it is usually
induced by timestamps, hence total. A notable exception is [16] which considers that some
facts may be more current than others, with constraints leading to a partial order. In
particular, they study the complexity of retrieving query answers that are certainly current,
for a rich query class. In contrast, we can manipulate the order via queries, and we can also
ask about aspects beyond currency, as shown throughout the paper (e.g., via accumulation).

Using preference information. Order theory has been also used to handle preference
information in database systems [26, 4, 27, 2, 41], with some operators being the same as
ours, and for rank aggregation [15, 26, 14], i.e. retrieving top-k query answers given multiple
rankings. However, such works typically try to resolve uncertainty by reconciling many
conflicting representations (e.g. via knowledge on the individual scores given by different
sources and a function to aggregate them [15], or a preference function [2]). In contrast,
we focus on maintaining a faithful model of all possible worlds without reconciling them,
studying possible and certain answers in this respect.

9 Conclusion

This paper introduced an algebra for order-incomplete data. We have studied the complexity
of possible and certain answers for this algebra, have shown the problems to be generally
intractable, and identified multiple tractable cases. In future work we plan to study the
incorporation of additional operators (in particular non-monotone ones), investigate how to
combine order-uncertainty with uncertainty on values, and study additional semantics for
dupElim. Last, it would be interesting to establish a dichotomy result for the complexity of
P0OSS, and a complete syntactic characterization of cases where POSS is tractable.

Acknowledgements We are grateful to Marzio De Biasi, Palvolgyi Domotor, and Mikhail
Rudoy, from http://cstheory.stackexchange.com, for helpful suggestions.

—— References

1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases. Addison-
Wesley, 1995.

2 Bogdan Alexe, Mary Roth, and Wang-Chiew Tan. Preference-aware integration of temporal
data. PVLDB, 8(4), 2014. doi:10.14778/2735496.2735500.

3 Lyublena Antova, Christoph Koch, and Dan Olteanu. World-set decompositions: Expres-
siveness and efficient algorithms. In ICDT, volume 4353 of Lecture Notes in Computer
Science, pages 194-208. Springer, 2007. URL: https://arxiv.org/abs/0705.4442.

4 Anastasios Arvanitis and Georgia Koutrika. PrefDB: Supporting preferences as first-class
citizens in relational databases. IEEE TKDE, 26(6), 2014.

5 Pablo Barceld, Leonid Libkin, Antonella Poggi, and Cristina Sirangelo. XML with incom-
plete information. J. ACM, 58(1), 2010. doi:10.1145/1870103.1870107.

6 Michael Benedikt and Luc Segoufin. Towards a characterization of order-invariant queries

over tame graphs. Journal of Symbolic Logic, 74, 2009.

7 Andeas Brandstddt, Van Bang Le, and Jeremy P. Spinrad. Posets. In Graph Classes. A
Survey, chapter 6. STAM, 1987.

8 Peter Buneman, Achim Jung, and Atsushi Ohori. Using powerdomains to generalize rela-
tional databases. T'CS, 91(1), 1991.

http://cstheory.stackexchange.com
http://webdam.inria.fr/Alice/pdfs/all.pdf
http://www.vldb.org/pvldb/vol8/p365-roth.pdf
http://www.vldb.org/pvldb/vol8/p365-roth.pdf
http://dx.doi.org/10.14778/2735496.2735500
https://arxiv.org/abs/0705.4442
http://www.dblab.ntua.gr/~tasosarvanitis/pubs/TKDE13.pdf
http://www.dblab.ntua.gr/~tasosarvanitis/pubs/TKDE13.pdf
http://homepages.inf.ed.ac.uk/libkin/papers/jacm-pods09.pdf
http://homepages.inf.ed.ac.uk/libkin/papers/jacm-pods09.pdf
http://dx.doi.org/10.1145/1870103.1870107
http://www.lsv.ens-cachan.fr/~segoufin/Papers/Mypapers/invfo.pdf
http://www.lsv.ens-cachan.fr/~segoufin/Papers/Mypapers/invfo.pdf
http://www.sciencedirect.com/science/article/pii/0304397591902665
http://www.sciencedirect.com/science/article/pii/0304397591902665

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

10

11

12

13

14

15

16

17

18

19

20
21

22

23
24

25

26

27
28

29

30

31
32

33

34

35

Jan Chomicki and David Toman. Time in database systems. In Handbook of Temporal
Reasoning in Artificial Intelligence. Elsevier, 2005.

Edgar F. Codd. Extending the database relational model to capture more meaning. TODS,
4(4), 1979.

Latha S. Colby, Edward L. Robertson, Lawrence V. Saxton, and Dirk Van Gucht. A query
language for list-based complex objects. In PODS, 1994.

Latha S. Colby, Lawrence V. Saxton, and Dirk Van Gucht. Concepts for modeling and
querying list-structured data. Information Processing & Management, 30(5), 1994.
Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Math-
ematics, 1950.

Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. Rank aggregation
methods for the Web. In WWW, 2001.

Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middle-
ware. In PODS, 2001.

Wentfei Fan, Floris Geerts, and Jef Wijsen. Determining the currency of data. TODS, 37(4),
2012.

Roland Fraissé. L’intervalle en théorie des relations; ses genéralisations, filtre intervallaire
et cloture d’une relation. North-Holland Math. Stud., 99, 1984.

D. R. Fulkerson. Note on Dilworth’s decomposition theorem for partially ordered sets. In
Proc. Amer. Math. Soc, 1955.

Michael R. Garey and David S. Johnson. Computers And Intractability. A Guide to the
Theory of NP-completeness. W. H. Freeman, 1979.

Stéphane Grumbach and Tova Milo. An algebra for pomsets. In ICDT, 1995.

Stéphane Grumbach and Tova Milo. Towards tractable algebras for bags. JCSS, 52(3),
1996. doi:10.1006/jcss.1996.0042.

Stéphane Grumbach and Tova Milo. An algebra for pomsets. Inf. Comput., 150(2), 1999.
doi:10.1006/inco.1998.2777

John M. Howie. Fundamentals of semigroup theory. Oxford: Clarendon Press, 1995.
Tomasz Imielinski and Witold Lipski. Incomplete information in relational databases. .J.
ACM, 31(4), 1984.

Neil Immerman. Relational queries computable in polynomial time. Inf. Control, 68(1-3),
1986.

Marie Jacob, Benny Kimelfeld, and Julia Stoyanovich. A system for management and
analysis of preference data. VLDB Endow., 7(12), 2014.

Werner Kiessling. Foundations of preferences in database systems. In VLDB, 2002.
Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS, 2002. doi:
10.1145/543613.543644.

Leonid Libkin. A semantics-based approach to design of query languages for partial infor-
mation. In Semantics in Databases, 1998.

Leonid Libkin. Data exchange and incomplete information. In PODS, 2006. doi:10.1145/
1142351.1142360

Leonid Libkin. Incomplete data: What went wrong, and how to fix it. In PODS, 2014.

Leonid Libkin. SQL’s three-valued logic and certain answers. In ICDT, 2015. doi:10.

4230/LIPIcs.ICDT.2015.94.

Leonid Libkin and Limsoon Wong. Query languages for bags and aggregate functions. J.
Comput. Syst. Sci., 55(2), 1997. doi:10.1006/jcss.1997.1523.

Witold Lipski, Jr. On semantic issues connected with incomplete information databases.
TODS, 4(3), 1979.

Wilfred Ng. An extension of the relational data model to incorporate ordered domains.
TODS, 26(3), 2001.

4:17

TIME 2017

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.84.9469
https://www.cs.indiana.edu/~vgucht/p179-colby.pdf
https://www.cs.indiana.edu/~vgucht/p179-colby.pdf
http://www.sciencedirect.com/science/article/pii/0306457394900787
http://www.sciencedirect.com/science/article/pii/0306457394900787
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.8702
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.8702
http://researcher.watson.ibm.com/researcher/files/us-fagin/jcss03.pdf
http://researcher.watson.ibm.com/researcher/files/us-fagin/jcss03.pdf
http://homepages.inf.ed.ac.uk/fgeerts/pdf/currency.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.226.652
http://www.cs.tau.ac.il/~milo/projects/query_languages/papers/icdt95.ps
http://www.sciencedirect.com/science/article/pii/S0022000096900422
http://dx.doi.org/10.1006/jcss.1996.0042
http://www.sciencedirect.com/science/article/pii/S0890540198927778
http://dx.doi.org/10.1006/inco.1998.2777
http://www.sciencedirect.com/science/article/pii/S0019995886800298
http://www.vldb.org/pvldb/vol7/p1255-jacob.pdf
http://www.vldb.org/pvldb/vol7/p1255-jacob.pdf
http://www.vldb.org/conf/2002/S09P04.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.9907
http://dx.doi.org/10.1145/543613.543644
http://dx.doi.org/10.1145/543613.543644
http://homepages.inf.ed.ac.uk/libkin/papers/th-wsh.pdf
http://homepages.inf.ed.ac.uk/libkin/papers/th-wsh.pdf
http://homepages.inf.ed.ac.uk/libkin/papers/pods06a.pdf
http://dx.doi.org/10.1145/1142351.1142360
http://dx.doi.org/10.1145/1142351.1142360
http://homepages.inf.ed.ac.uk/libkin/papers/pods14.pdf
http://drops.dagstuhl.de/opus/volltexte/2015/4979/
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.94
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.94
http://www.sciencedirect.com/science/article/pii/S0022000097915233
http://dx.doi.org/10.1006/jcss.1997.1523
https://www.cse.ust.hk/faculty/wilfred/paper/tods01.pdf

4:18

Possible and Certain Answers for Queries over Order-Incomplete Data

36 Bernd Schroder. Ordered Sets: An Introduction. Birkhduser, 2003.

37 Richard T. Snodgrass, Jim Gray, and Jim Melton. Developing time-oriented database
applications in SQL. Morgan Kaufmann, 2000.

38 Mohamed A. Soliman and Thab F. Ilyas. Ranking with uncertain scores. In ICDE, 2009.
doi:10.1109/ICDE.2009.102.

39 Mohamed A. Soliman, Thab F. Ilyas, and Shalev Ben-David. Supporting ranking queries
on uncertain and incomplete data. VLDBJ, 19(4), 2010.

40 Richard P. Stanley. Enumerative Combinatorics. Cambridge University Press, 1986.

41 Kostas Stefanidis, Georgia Koutrika, and Evaggelia Pitoura. A survey on representation,
composition and application of preferences in database systems. TODS, 36(3), 2011.

42 Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.

43 Ron van der Meyden. The complexity of querying indefinite data about linearly ordered
domains. JCSS, 54(1), 1997.

44 Manfred K Warmuth and David Haussler. On the complexity of iterated shuffle. JCSS,
28(3), 1984.

A Proof Sketches for Section 4 (General Complexity Results)

» Theorem 12. The P0OSS problem is in NP for any PosRA or PosRA*° query. Further,
there exists a PosRA query and a PosRA*° query for which the POSS problem is NP-complete.

Proof Sketch. The membership for PosRA in NP is clear: guess a linear extension and
check that it realizes the candidate possible result. For hardness, as in previous work [44], we
reduce from the UNARY-3-PARTITION problem [19]: given a number B and 3m numbers
written in unary, decide if they can be partitioned in triples that all sum to B. We reduce
this to POSS for the identity PosRA query, on an arity-1 input po-relation where each input
number n is represented as a chain of n+ 2 elements. The first and last elements of each chain
are respectively called start and end markers, and elements of distinct chains are pairwise
incomparable. The candidate possible world L consists of m repetitions of the following
pattern: three start markers, B elements, three end markers. A linear extension achieves L iff
the triples matched by < to each copy of the pattern are a solution to UNARY-3-PARTITION,
hence P0OSS for) is NP-hard. This implies hardness for PosRA?°¢] when accumulating with
the identity map and concatenation (so that any list relation is mapped to itself). |

» Theorem 13. The CERT problem is in coNP for any PosRA* query, and there is a
PosRA?¢ query for which it is coNP-complete.

Proof Sketch. Again, membership is immediate. We show hardness of CERT by studying
a PosRA?° query @, that checks if two input po-relations I' and I have some common
possible world: @, does so so by testing if one can alternate between elements of I' and I
with the same label, using accumulation in the transition monoid of a deterministic finite
automaton. We show hardness of POSS for (), (as in the previous result), and further ensure
that @, always has at most two possible accumulation results, no matter the input. Hence,
POSS for @), reduces to the negation of CERT for),, so that CERT is also hard. <

B Proof Sketches for Section 5 (Tractable Cases for POSS on
PosRA Queries)

» Theorem 17. The POSS problem is in NP for any PosRA or PosRA* query. Further,
there exists a PosRA query and a PosRA*C query for which the POSS problem is NP-complete.

https://cs.uwaterloo.ca/~ilyas/papers/SolimanICDE09.pdf
http://dx.doi.org/10.1109/ICDE.2009.102
https://cs.uwaterloo.ca/~ilyas/papers/SolimanVLDBJ2010.pdf
https://cs.uwaterloo.ca/~ilyas/papers/SolimanVLDBJ2010.pdf
http://people.uta.fi/~kostas.stefanidis/docs/tods11.pdf
http://people.uta.fi/~kostas.stefanidis/docs/tods11.pdf
http://www.sciencedirect.com/science/article/pii/S0022000097914550
http://www.sciencedirect.com/science/article/pii/S0022000097914550
http://www.sciencedirect.com/science/article/pii/0022000084900187

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

Proof Sketch. As xpp is disallowed, we can show that the po-relation I' := Q(D) has
width &’ depending only on k& and the query @ (but not on D). We can then compute in
PTIME a chain partition of T' [13, 18], namely, a decomposition of T" in totally ordered chains,
with additional order constraints between them. This allows us to apply a dynamic algorithm
to decide POSS: the state of the algorithm is the position on the chains. The number of states
is polynomial with degree k', which is a constant when @ and k are fixed. <

» Theorem 22. For any fized k € N and fixred PosRA query @Q, the POSS problem for @ is
in PTIME when all po-relations of the input po-database have ia-width < k.

Proof Sketch. As in the proof of Theorem 17, we first show that the query result I" also
has ia-width depending only on k£ and the query. We then consider the order relation on
indistinguishable antichains of I". For each linear extension 7 of this order, we apply a greedy
algorithm to decide P0OSS, for which we show correctness. The algorithm reads the candidate
possible world in order and maps each tuple to an identifier of I' with the correct value that
was not mapped yet: we pick it in the first possible class according to the order 7. |

C Proof sketches for Section 6 (Tractable Cases for Accumulation
Queries)

» Theorem 26. CERT is in PTIME for any PosRA*° query that performs accumulation in
a cancellative monoid.

Proof Sketch. We show that the accumulation result in cancellative monoids is certain iff
the po-relation on which we apply accumulation respects the following safe swaps criterion:
for all tuples t; and ¢ and consecutive positions p and p + 1 where they may appear, we
have h(t1,p) ® h(t2,p+ 1) = h(ta,p) ® h(t1,p + 1). We can check this in PTIME. <

4:19

TIME 2017

Constraint Ildentification Using Modified Hoare
Logic on Hybrid Models of Gene Networks*

Jonathan Behaegel', Jean-Paul Comet?, and Maxime Folschette3

1 Université Cote d’Azur, CNRS, I3S, Sophia Antipolis, France
2 Université Cote d’Azur, CNRS, 13S, Sophia Antipolis, France
3 Université de Nantes, LS2N, Nantes, France

—— Abstract

We present a new hybrid Hoare logic dedicated for a class of linear hybrid automata well suited
to model gene regulatory networks. These automata rely on Thomas’ discrete framework in
which qualitative parameters have been replaced by continuous parameters called celerities. The
identification of these parameters remains one of the keypoints of the modelling process, and is
difficult especially because the modelling framework is based on a continuous time. We introduce
Hoare triples which handle biological traces and pre/post-conditions. Observed chronometrical
biological traces play the role of an imperative program for classical Hoare logic and our hybrid
Hoare logic, defined by inference rules, is proved to be sound. Furthermore, we present a weakest
precondition calculus (a la Dijkstra) which leads to constraints on dynamical parameters. Finally,
we illustrate our “constraints generator” with a simplified circadian clock model describing the
rhythmicity of cells in mammals on a 24-hour period.

1998 ACM Subject Classification 1.6.4 Model Validation and Analysis

Keywords and phrases Hoare logic, weakest precondition, linear hybrid automata, constraint
synthesis, gene networks

Digital Object ldentifier 10.4230/LIPIcs. TIME.2017.5

1 Introduction

Formal methods from computer science have been largely applied to model and analyse
biological systems [5, 17]. In particular, verification tools like model-checking have been used
to verify dynamical properties of discrete models [3, 7] in which the temporal aspects are
only present through the succession of events: the delay between two successive events is
not taken into account. Unfortunately, continuous time turns out to be important in most
biological systems, in particular for gene regulatory networks.

Gene regulatory networks are models representing influences between genes leading to
the modification of the synthesis of associated proteins. Because proteins can regulate their
target genes, positive or negative feedback loops emerge making possible a large variety of
behaviours. These gene regulatory networks are designed to apprehend and predict effects of
a component on the system but such models are also useful to confront hypotheses with the
up-to-date collected knowledge on the gene interactions.

Several modelling framework have been devoted to gene networks. These frameworks differ
by the aspects they highlight. Stochastic models emphasize non-determinism, differential
models represent a system with a lot of details (transcription, traduction, transports ...) [14]

* This work is partially supported by the French National Agency for Research (ANR-14-CE09-0011).

© Jonathan Behaegel, Jean-Paul Comet, and Maxime Folschette;
37 licensed under Creative Commons License CC-BY

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).

Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 5; pp. 5:1-5:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2

Constraint ldentification Using Modified Hoare Logic

and give precise trajectories in terms of concentrations; qualitative models [16, 15] focus
on the major features that explain the observations (only main causalities are taken into
account); and hybrid models link qualitative aspects with continuous variables such as time.

Whatever the modelling framework, the main difficulty of building such networks is the
identification of parameters governing the dynamics of the system. The determination of
these parameters is crucial to observe a behaviour consistent with biological knowledge. We
already showed [3] that formal methods can help in this parameter identification step in the
René Thomas’ discrete modelling framework [16]. Unfortunately, this framework abstracts
temporal information, often necessary for tuning the models. This discrete approach is based
on the splitting of homogeneous concentration areas which have the same effects on other
components. In order to refine this complete discrete framework, we associated with each
such area a celerity describing the evolution speed of each component. These parameters lead
to a class of linear hybrid automata. We also showed how the known experimental traces
can be used to establish constraints on dynamical parameters (celerities) and to restrain the
set of admissible parameters [1].

Numerous works already focus on the study of hybrid automata [9]. Especially, several
tools already exist to tackle the model checking of linear hybrid automata, either with classical
exhaustive approaches [10] or using abstract interpretation [8]. Communicating sequential
processes (CSP), a process algebra for describing patterns of interaction in concurrent systems,
has also been extended to hybrid systems and hybrid Hoare logic has been proved to be
useful in such context [18]. These methods among others propose parameter synthesis in
some ways. Nevertheless, these tools are tailored for a general purpose and will not take into
account the specificities coming from biological contexts.

We divert Hoare logic (whose aim is to rigorously reason about the correctness of
imperative programs) in order to determine constraints on celerities in such models. This
approach was already developed, for the discrete framework [2, 4] and we extend it in the
present paper for hybrid automata. Hoare logic has already been extended to real time
systems [11] in which continuous evolutions are not taken into account whereas they are
important in our biological context. Hoare logic relies on triples of the form {Pre} p {Post}
where Pre and Post are conditions on states of the system and p is a path of the system.
A Hoare triple is considered true if, whenever the system is reset at a state satisfying the
Pre condition, the path p is possible and leads the system into a state which satisfies the
condition Post. Following E. Dijkstra [6], the aim of the game is then to determine, for each
path p and postcondition Post, the weakest precondition Pre, thus covering the largest set
of states, making the Hoare triple true. In our temporal approach, the time spent in each
state becomes crucial to determine the constraints on parameters.

We illustrate our formalism with a biological process named circadian clock which
synchronises all cells in mammals at a 24-hour rhythmicity. We design a hybrid automaton
modelling this biological cycle and, from the observed trace of this process, we build constraints
for each celerity of this hybrid automaton using the aforementioned hybrid Hoare logic. We
finally show that simulations, run parameters values satisfying the constraints, exhibit curves
which are similar to experimental data.

The paper is organised as follows. We first define in Section 2 the formalism of the
hybrid modelling framework. Then Section 3 focuses on the syntax and the semantics of the
modified Hoare logic, and the weakest precondition calculus, whereas Section 4 is devoted to
the soundness of our hybrid Hoare logic. We illustrate in Section 5 the use of this Hoare logic
for identifying the constraints on parameters of the simplified circadian clock model. Finally
in Section 6, we discuss the limits of this approach and we expose some possible extensions.

J. Behaegel, J.-P. Comet, and M. Folschette

Simplified circadian cycle

Figure 1 Simplified model of the circadian clock in mammals. L is a zeitgeber (see Section 5).

2 Hybrid Modelling Framework of Gene Network

A gene network is visualised as a labelled directed graph (interaction graph) in which vertices
are either variables (within circles) or multiplexes (within rectangles), see Fig. 1. Variables
abstract genes and their products, and multiplexes contain formulas that encode situations
in which a variable or a group of variables (inputs of multiplexes, dashed arrows) influences
the evolution of some other variables (output of multiplexes, plain arrows). A multiplex can
encode the formation of molecular complexes, phosphorylation by a protein, competition of
entities for the activation of a promoter, etc. Definition 1 gives the formal details of a gene
network.

» Definition 1 (Hybrid Gene Regulatory Network). A hybrid gene regulatory network (GRN
for short) is a tuple R = (V, M, E,C) where:
V is a finite set whose elements are called variables of the network. With each variable
v € V is associated a boundary b, € N*,
M is a finite set whose elements are called multiplezes. With each multiplex m € M is
associated a formula ¢, in the multiplex language formed of the atoms “(v > n)”, where
n € [1,b,]*, and the usual logical connectives =, A, V and =.
E is a set of edges of the form (m — v) € M x V.
C ={Cyun} is a family of real numbers indexed by a tuple (v,w,n) where v € V, w is a
subset of R~ (v) where R~ (v) = {m | (m — v) € E}, that is, w is a set of predecessors of
v, and n € [0,b,]. Cyw.n is called the celerity of v for w at the level n and these celerities
have to satisfy the following constraints:
Vie[n+1,b,] Cyuwi<O0

YoeV, YwC R (v), Yn€[0,b,], Cpwn=0 = { Vie[0n—1] Cpoi>0
YveV, VwCR™ (’U), Vk € [[O,bv — 1H7 Cv,w,k X Cv,w,k+1 > 0.

Let us remark that the dashed arrows of Fig. 1 are not present in the previous definition.

When representing a gene network, it is convenient to visualise the variables contributing to
a particular multiplex, but from a formal point of view, this information is redundant with
the formula of the considered multiplex.

Celerities (noted C,) give the evolution of each variable v when it is under the active
regulation of the set w of its predecessors and when it is in the qualitative state n. They
code for the dynamics of the system and we aim at the identification of these celerities. The
constraints on celerities given in the previous definition link the signs of celerities to the
underlying dynamics and may need some explanations. The first one deals with the case
where a celerity value is null for a given set of active predecessors w of a variable v. This
models an equilibrium state, thus the related constraint states that celerities around this

equilibrium, for the same set of active predecessors w, must force v to reach this equilibrium.

' [a,b] ={n €N|a<n<b}

5:3

TIME 2017

5:4

Constraint ldentification Using Modified Hoare Logic

As a consequence, there is a single null celerity at most for a given couple of v and w. If, on
the other hand, no celerity is null for these v and w, a consequence of the second constraint
is that they are all of the same sign. This models that v either always decreases until full
degradation or always increases up to saturation.

In the remainder of this section, we focus on the dynamics of a gene network. Definition 2
introduces the hybrid states whereas Def. 3 explains the crucial notion of resources of a
variable in a particular state.

» Definition 2 (State of a GRN). Let R = (V, M, E,C) be a GRN. A hybrid state of R is a
tuple h = (n, 7) where

7 is a function from V to N such that for all v € V', 0 < n(v) < by;

7 is a function from V to the interval [0, 1] of real numbers.
7 is called the discrete state or qualitative state of h whereas m is called its fractional part.
For simplicity, we note in the sequel 7, = n(v) and 7, = 7(v). We denote S the set of hybrid
states of R. When there is no ambiguity, we often use 1 and 7 without explicit mention of h.

Figure 2-Centre illustrates an example of hybrid state. The tuple of all fractional parts
represents coordinates inside the current qualitative state.

» Definition 3 (Resources). Let R = (V, M, E,C) be a GRN and let v € V. The satisfaction
relation h E ¢, where h = (n,m) is a hybrid state of R and ¢ is a formula of the multiplex
language, is inductively defined as follows:

If ¢ is the atom (v > n) with n € [1,b,], then h F ¢ iff n, > n;

The usual meaning of the logical connectives is used.
The set of resources of a variable v at a state h is defined by: p(h,v) = {m € R~ (v) | hE vm},
that is, the multiplexes that are predecessors of v and whose formula is satisfied.

We note that the set p(h,v) only depends on the discrete state of h: all hybrid states
having the same discrete part thus have the same resources. Indeed, inside a discrete state 7,
the dynamics of v is controlled in the same manner, thus the celerity is the same for all states
h = (n,m), that is: C, ,(n,v),n,- By abuse of language, we also use the notation p(n,v). From
this celerity, and given a particular hybrid state, one can compute the touch delay (Def. 4)
of each variable, which measures the time necessary for the variable to reach a border of the
discrete state.

» Definition 4 (Touch Delay). Let R = (V, M, E,C) be a GRN, v be a variable of V and
h = (n,7) be a hybrid state. We note dj,(v) the touch delay of v in h for reaching the border
of the discrete state. More precisely, 8y, is the function from V to Rt U {+oco} defined by:
If Cy p(h,v),n, = 0 then 6, (v) = 4-o00;
If Cy phw)my > 0 (resp. < 0) then 6,(v) = 7——— (resp. H——>—

v,p(h,v),ny v,p(h,v),ny
Nevertheless, reaching the border of a discrete state is not sufficient to go beyond the
frontier: there may be no other qualitative level beyond the border (we call such a border an
external wall) or the celerity in the neighbour state may be of the opposite sign (internal
wall), as given in Def. 5.

» Definition 5 (External and Internal Walls). Let R = (V, M, E,C) be a GRN, let v € V be
a variable and h = (n,7) a hybrid state.
1. v is said to face an external wall at state h if:

((Cv,p(h,v),m < O) A (nv = O)) \ ((Omp(h,v)mu > 0) A (77v = bv)) .

J. Behaegel, J.-P. Comet, and M. Folschette

pc

ho
1 h 1 g

Figure 2 Continuous transitions. Inside each state, a continuous transition (ho — h{) goes

from the initial point ho to the unique point hj from which a discrete transition takes place (h{ — h1).

Left: The celerity vector allows, without sliding mode, the trajectory to directly reach a border

which is crossed. Center: From h{ two possible discrete transitions can occur: hy — hi or hy — ha.
Moreover (g, mpe) corresponds to the fractionnal coordinates of a hybrid state h along the path.

Right: The grey zone depicts an external or internal wall. The only possible discrete transition is
h,O — hi.

2. Let b’ = (1, ') be another hybrid state s.t. 0, = 1, +sgn(Cy ,(h,v),5,) and 1, = n, for
all u # v. Variable v is said to face an internal wall at state h if — sgn(Cy p(h,v),n,) X
sgn(Cy p(h' v),n,) = —1, where sgn is the classical sign function.

We note sv(h) the set of sliding variables, that is, variables that face an internal or external

wall in the qualitative state of h.

We note that a sliding variable v € sv(h) may not be actually sliding if it has not reached
its border yet. However, if in addition d(v) = 0, then v is located on an internal wall or
external wall. In this case, its fractional part cannot evolve anymore in the current qualitative
state (see Fig. 2-Right where variable g reaches an external wall). We introduce the notion
of first changing variables in Def. 6 which are the first variables able to change their discrete
levels.

» Definition 6 (First Changing Variables). Let R = (V, M, E,C) be a GRN and h = (1, 7)
be a hybrid state. The set of first changing variables is defined by:

first(h) = {v € V' \'sv(h) | 0n(v) # +00 AVu € V \'sv(h),dp(u) = dn(v)} .

Moreover, 52"“ denotes the time spent in the qualitative state of h when starting from h:
for any v € first(h), it = §,,(v), or 6"t = +o0 if first(h) = (.

The set first(h) represents the set of variables whose qualitative coordinates can change
first. If a variable is on an external or internal wall, it cannot evolve as long as other variables
do not change, thus: first(h) Nsv(h) = @. Similarly, if the celerity of v in the current state is
null, its qualitative value cannot change because of an infinite touch delay.

Figure 2 illustrates several evolutions of a gene network. From a particular hybrid state
ho, the dynamics alternates continuous transitions (within the discrete state) and discrete
transitions (when changing the discrete state). When the trajectory reaches an external or
internal wall (see Fig. 2-Right), the variable slides along the wall only if the celerity of some
other variable can drive the trajectory in such a direction. This description leads to the
following definition.

» Definition 7 (Hybrid State Space). Let R = (V,M,E,C) be a GRN. We note R =
(S, cT,dT) the hybrid state space of R where S is the set of hybrid states, and ¢T (resp. dT)
is the set of continuous (resp. discrete) transitions:

5:5

TIME 2017

5:6

Constraint ldentification Using Modified Hoare Logic

1. There exists a continuous transition in ¢T" from state h = (n,) to state ' = (', ') iff:
a. Either first(h) # () and there exists a variable v € first(h) such that:
i. 0p(v) # 0, where dp,(v) is called the duration of the (continuous) transition,
ii.y=n and = { (1) i gZZE:g:: i 8 for all u € (first(h) U o)
where o = {z € sv(h) | 6p(z) < Sfirst}
iii. Vz € V'\ (first(h) Uo), then 7 = m. + 05 (v) X C. p(h,2) 1. -
b. Or first(h) = 0 (meaning that each variable v either reaches an equilibrium state:
Co.p(hv)m, = 0; or faces a wall: v € sv(h)) and:
0 if C’U,p(h,v)mv <0
Lif Cy ph,v)me >0
ii. Yu ¢ sv(h), T, = m, (since in this case Cy ,(n,u)m, = 0)-

i. Yo esv(h), m, = {

2. There exists a discrete transition in dT" from state h' = (n/, ') to state b’ = (0, x") iff
there exists a variable v € first(h') such that:
a. 0p/(v) = 0, where dy/(v) is called the duration of the (discrete) transition,
0if CU,p(h',U)JI; >0
1if Cwﬂ(h’,v)m; <0

" "

b. Ny = 77:; + Sgn(Cv,p(h’,v),n;) and Ty = {

9

c.Yue V\{v}, il =n., and 7l ==
The states from which there do not exist any transitions (discrete or continuous) are called
steady states.

The continuous transitions lead to the last hybrid state inside the current discrete state,
at which point a qualitative change can happen. The instantaneous discrete transitions
make the system evolve, as soon as the system can (that is, when d5/(v) = 0), into the next
qualitative state by going through a border. These two different kinds of transitions can
be observed on Fig. 3 where the discrete transitions are in dotted lines and the continuous
transitions are in plain lines. Let us remark that there is a unique continuous transition
starting at a given hybrid state. Indeed, assuming that there exist two continuous transitions
h — hy and h — ho from the same hybrid state h, the item 1 of the previous definition leads
to the equality hy = ho regarding the ends of the continuous transitions (whatever the value
of the set first(h)).

Let us notice that the defined linear hybrid automata leads to an undeterministic behaviour:
when the celerity vector allows the trajectory to reach more than one border at the same
time, several discrete transitions can be considered (see Fig. 2-Center). Some of these discrete
transitions can be forbidden in case of internal wall.

3 Hybrid Hoare Logic

This section is dedicated to the presentation of the Hoare logic adapted to our hybrid
formalism. Hoare logic is based on Hoare triples noted {Pre} p {Post} meaning that if a
program p is executed from a state satisfying a precondition Pre, then after execution, the
postcondition Post is true. In our case, the program p is replaced by a biological trace
characterising biological knowledge on the chronometrical qualitative behaviour of the system.
For this, we define the property language used for pre- and postconditions in Subsec. 3.1
and the path language used to describe observed traces in Subsec. 3.2. Then, Hoare logic
is defined using these languages and we give in Subsec. 3.3 an adaptation of the weakest
precondition calculus, that is, the computation of the weakest (the most general) precondition
that makes the trace possible and such that the postcondition Post is satisfied afterwards.

J. Behaegel, J.-P. Comet, and M. Folschette

In the rest of this section, we denote by [0 any of the usual comparison symbols on
integers or real numbers: <, <, >, >, =, #.

3.1 Property Language
We first define the property language describing pre- and postconditions.

» Definition 8 (Property Language L£¢). The terms of the property language L are induct-
ively defined as follows:
A discrete term is a variable 1, with u € V', or a constant of N;
A continuous term is a variable m, or 7, with u € V, or Cypn with u € V, w C R~ (u)
and n € [0,b,], or a constant of R;
The connectives +, —, X and / create new terms by composition, the latter being only
valid for continuous terms. We use their usual semantics.

Discrete atoms are of the form n O n’ where n and n’ are discrete terms and continuous
atoms are of the form f [0 f’ where f and f’ are continuous terms.

The discrete conditions are defined by: D :== a4 | -D | DAD | DV D where a4 is a
discrete atom.
The hybrid conditions are defined by: H :== aq|a.|—~H | HANH | HV H where aq

and a, are respectively a discrete atom and a continuous one.

A property is a couple (D, H) formed by a discrete and a hybrid condition. All such
couples (D, H) form the property language L¢.

A hybrid state h satisfies a property ¢ = (D, H) € L¢ iff both D and H hold in h, by
using the usual meaning of the connectives; in this case, we note h F ¢.

3.2 Path Language

The path language given in Def. 12 takes the role of an imperative program in a Hoare triple
by describing a biological behaviour. Such a path consists in explicit discrete transitions as
given in Def. 9, but also in continuous transitions described by duration and some information,
see Def. 10. The characterisation of continuous transitions is based on two kinds of atoms:
C, O ¢ constrains the value of the current celerity of v, and slide(v) constrains v to slide.

» Definition 9 (Discrete Path Atom). The (discrete) path atoms are defined by:
dpa == v+ | v— where v € V is a variable name.

For any states h = (n,7) and &’ = (1, 7'), the transition h -5 B’ (vesp. h 2= 1) is
satisfied iff there exists a discrete transition from h to A’ so that 0}, = 0, +1 (resp. ., = n, —1).

In the following, if v € V is a variable, v+ refers indistinctly to v+ or v—.

» Definition 10 (Assertion Language L£4). The assertion language L4 is defined by the
following grammar:
a == T|C,Oc]|slide(v) | slidet(v) | slide™(v) | ma|aAa|aVa
where v € V is a variable name and ¢ € R is a real number.
A couple (At,a) € RT x £ 4 of a non-negative real number and an element of the assertion
language is called an assertion couple.

The following definition gives the semantics of such assertion couples. From an informal
point of view, for any states h = (n,7) and b’ = (n,7’) in the same qualitative state 7, the
continuous transition h — h’ satisfies the assertion couple (At, a) if the continuous transition
exists and if it lasts At units of time and it respects the assertion a: T is always true; C, O ¢

5:7

TIME 2017

5:8

Constraint ldentification Using Modified Hoare Logic

is satisfied iff C, (), O ¢ where Cy, y(5,0),5, 18 the celerity of v in the current qualitative
state; slide™ (v) (resp. slide™ (v)) is satisfied iff v faces and reaches a wall at the top of the
domain (resp. at the bottom); slide(v) is a shorthand for slide™ (v) V slide™ (v); and logical

connectives have their usual meanings. We note indifferently (h,h') F (At,a) or h @) .

Regarding Def. 10, the special case where At equals 0 characterises a situation where
the system enters a qualitative state in a “corner” and no continuous transition is required
between two successive discrete transitions.

» Definition 11 (Semantics of the Assertion Couple (At,a)). Let us consider a hybrid state
h = (n,) and the unique continuous transition starting from h and ending in b’ = (n, 7).
The satisfaction relation between the continuous transition A — h’ and an assertion couple
(At,a) € RT x L4 is noted (h,h') E (At,a), by overloading of notation, and is defined as
follows:

Ifa=T, (hW)E (At a) iff 6t = At.

If a is of the form (C, O ¢), (h,h') E (At,a) iff 6i™t = At and (Cy p(h,u),p, O ©).

If a is of the form slide(v), (b, h') E (At,a) iff 5§t = At and §,(v) < dfrt.

If a is of the form slide™ (v) (resp. slide™ (v)), (h, h') E (At, a) iff 5§t = At and 6;,(v) < ofirst

and Cv,p(h,v),nv >0 (resp. Ovm(h,v),m < 0).

If a is of the form —a’, (h, k') E (At,a) iff 6"t = At and (h, 1) ¥ (At,d’).

If a is of the form o’ Aa” (resp. a’ Va"), (h,h') E (At,a) iff (h,h') E (At,a’) and (resp. or)

(h,h') E (At,ad").

» Definition 12 (Path Language Lp). The (discrete) paths are defined by:
pi== ¢ | (At,a,v%) |p; p

where (At, a) is an assertion couple and v+ is a discrete path atom. The semantics of a path
p is given by the binary relation — between states defined by:
If p =, then hy -2 ho iff hy = ho;
If p = (At,a,vt), then hy 2 hy iff there exists a state b/ s.t. hy iy h} and h} 25 hy;
If p = p1;p2, then hy SN ho iff there exists a state hs s.t. hy RN hs and hs RN ha.
A path containing only (At,a,v+) is called an elementary path.

The path language allows the modeller to express experimental biological traces as
sequences of elementary paths. The next section shows how such information can be formally
taken into account in order to help the identification of celerities compatible with such paths.

3.3 Hoare Triples and Weakest Precondition

We are now able to give the definition (Def. 13) of a Hoare triple in the scope of our hybrid
formalism which is a natural extension of the classical definition. Figure 3 gives an example
of a valid Hoare triple.

» Definition 13 (Hybrid Hoare Triples). A Hoare triple for a given GRN is an expression of the
form {Pre} p {Post} where Pre and Post, called precondition and postcondition respectively,
are properties of L, and p is a path from Lp. A Hoare triple { Pre} p {Post} is satisfied iff
for all state hy E Pre, there exists another state hy so that hq SN ho and ho F Post.

Now that the semantics of this new Hoare logic is defined, we aim at adapting the
weakest precondition calculus as proposed by Dijkstra [6] to our hybrid framework (Def. 14).

J. Behaegel, J.-P. Comet, and M. Folschette

pc Z h1 F PreC
\," hy E PostC
\1\ hll
A
1 : \Az
t
hy
0 il g

Figure 3 Hoare triple example: {PreC} (A, T,g+) {PostC}. Starting from the hybrid state
h1 E PreC, and considering the path in bold line, it is possible to chain a continuous transition
(h1 — hY) of duration A} and a discrete transition (h} — h2) leading to a h2 F PostC: this Hoare
triple is therefore satisfied.

Edsger Dijkstra introduced a predicate transformer semantics: the semantics of an imper-
ative programming language is defined by assigning to each instruction in this language a
corresponding predicate transformer. For each elementary instruction EI of the imperative
programming language, the weakest precondition of FI is a function mapping any postcondi-
tion Post to a precondition Pre. Actually, this function returns the weakest precondition on
the initial state ensuring that the execution of EI terminates in a final state satisfying Post.
For each sequential imperative program "P; EI" whose last instruction is EI, and for each
postcondition Post, the predicate transformer of EI allows us to first determine the weakest
precondition just before the last instruction and by iterating the same process, it becomes
possible to determine the weakest precondition of the whole imperative program (loops are
treated in a particular way with the help of invariants).

In our setting, the same approach leads to build the minimal constraints on the celerities
insuring that starting from a state satisfying the precondition Pre, the model exhibits
the known path p (corresponding to a biological trace) leading to a state satisfying the
postcondition Post. Each constraint depends on each elementary path which is defined by
the time At spent in the current qualitative state, the assertion a and the discrete path atom
vt. Each elementary path takes the role of an elementary instruction.

» Definition 14 (Weakest Precondition). Let p be a path program and Post = (D, Hy) be a
post-condition parameterized by a final state index f. The weakest precondition attributed to
p and Post is a property: WP;} (p, Post) = (D', H; ;), parameterized by a fresh initial state
index ¢ and the same final state f, and whose value is recursively defined by:
If p = € is the empty sequence program, then D’ = D and Hi”f = Hy;
If p = (At,a,v+) is an atom, with v € V:
D" = Dn,\ny + 1],
H{f = Hy[no\nw + 1) A @F (AL) A F(AL) A=W A A(AE a) A Ty
If p = (At,a,v—) is an atom, with v € V:
D'= D[nv\nv - 1},
Hj = Hgno\nw — 1 A @5 (AL) A F(AL) A=W AN A(AL a) A T
If p = p1;ps2 is a concatenation of programs:

WP (p1; pa, Post) = WP, (p1, WP (pz, Post))

which is parameterized by a fresh intermediate state index m;

5:9

TIME 2017

5:10

Constraint ldentification Using Modified Hoare Logic

where @ (At), @, (At), WS, W, , F(At), A(At,a) and J, are sub-properties detailed in
Appendix A.

We note that in the cases corresponding to atoms p = (At,a,v+), the formula H;f
contains H; with substitutions, in conjunction with ®F(At), -WiE, F(At), A(At,a) and J,,
which makes the weakest precondition of a sequence of instructions very big and difficult to
compute or analyse by hand. Nevertheless, each of the previous subformulas corresponds to
a condition which has to be met to allow the execution of an atomic instruction (At, a,v+t):

The sign of the celerity of v in the current state is given by v+;

Traversing the qualitative state lasts At units of time (®F(At));

There is no internal or external wall preventing v to increase or decrease its qualitative

state (=W.F);

All components other than first changing variables must either reach their border after v,

or face an internal or external wall (F(At)).

The assertion a is verified along the continuous transition (A(At,a));

The continuous transition inside a discrete state links the fractional parts of v, its celerity

and time spent in the current discrete state. Similarly the discrete transition indicates

that the fractional parts of states before and after a discrete transition are the same

except for the variable v changing its discrete level (7,).

Finally, the computation of the weakest precondition for a given Hoare triple { Pre} p { Post}
is automated using the classical backward proof strategy:

If p is of the form (At,a,vE) or €, then we compute the precondition.

If p = p1;po with po = (At, a,vt), we compute the precondition before ps and we iterate

for path p; (we never consider ps as €).
These two items are mutually exclusive which means that the proof strategy generates a
unique proof tree.

An implementation of this weakest precondition calculus has been realised?. Section 5
details its result on a model of the circadian clock and before that, next section gives the
theorem of its soundness.

4 Soundness of the Hybrid Hoare Logic

4.1 Inference Rules and Axioms

The considered Hoare logic for hybrid gene regulatory networks is defined by the following
inference rules:

At
Incrementation rule: {D[m\m + 1]} a {D }
i f v Hy
At
Decrementation rule: {D[m\?v - 1}} a {D }
i f v— H f

where v is a variable, 7, its expression level, D (resp. H) the discrete (resp. hybrid) condition,
Hj = Hgnp\nw + 1] A <I>+(At) N F(AL) A=W AN A(AL a) A T, (Incrementation rule), or
H; ;= Hyno\nw — 1] A @ (AL) A F(AL) A=W, A A(AL a) A T, (Decrementation rule),

2 Available at: http://www.i3s.unice.fr/~comet/DOCUMENTS/hybridisation.tar.gz.

http://www.i3s.unice.fr/~comet/DOCUMENTS/hybridisation.tar.gz

J. Behaegel, J.-P. Comet, and M. Folschette

both detailed in Appendix A, At the time spent inside the current discrete state and a an
assertion. The last inference rule is the sequential composition rule:

{Q1} p1 {Q3} {Qs} p2 {Q2}
{Q1} p1ip2 {Q2}

where Q1, Q2, Q3 are properties of the form (D, H) having the role of pre- and postconditions,
and p; and p, are particular paths deduced from biological experiments.

The two following axioms, based on the semantics of the hybrid model, complement the
inference rules:

My > 0An, <b, (the expression level has to be in its definition domain),

Co .y X Cywomu+1 > 0 (for two neighbour qualitative states, if the variable v is controlled

by the same resources, then the celerities of v cannot be of opposite signs).

Sequential composition rule:

4.2 Soundness of the Hoare logic

The following lemmas are useful for the proof of soundness. Lemma 15 states that the time
spent in the current discrete state is equal to the time mandatory, for the variable which
changes first, to reach its border. Lemma 16 expresses the fact that the truth value of a
formula remains the same after a continuous transition.

» Lemma 15 (Time Spent in a Discrete State). Let h be a hybrid state. If h = (D1, Hy) and
Hy = ®F(At) A F(At) (resp. Hy = @, (At) A F(At)), then: &t = §,(v) = At.

Proof. Let us consider H; = @ (At) AF(At) (resp. Hy = @, (At) AF(At)). Let h = (n,7)
be a hybrid state such that h F (D, Hy).

From the definition of the sub-property ®; (At), see Appendix A.2, variable v reaches its
upper border (7% = 1) and its celerity is positive (Cywn >0). Let ' = (n,7’) be the hybrid
state where v first touches this border. The time spent in the current qualitative state n
corresponds to the time necessary to reach the border where v changes its qualitative level.
Indeed, from @ (At) we deduce:

) . 1— 7t
Ty =Ty —Cpwn - At =1—Cy o - At, that is, At = C v,
v,w,n

v

From Def. 4, we have At = 6 (v).

Finally, the sub-property F(At), see Appendix A.4, expresses the fact that if a variable
u different from v reaches its border before v, u faces an internal or external wall (see
Appendix A.3). Thus, since 6, (v) = At and according to Def. 6, we deduce §f™t = §,(v) =
At. <

» Lemma 16 (Preservation of Formulas Evaluation Along a Continuous Transition). Let us
consider a Hoare triple {(D', H] ;)} p {(D, Hy)} obtained by the weakest precondition calculus,
a hybrid state h = (n,7"), and finally the unique continuous transition h — h' starting from
h. If hE (D', Hj;), then ' = (D', H] ;).

Proof.
Since h and h' belong to the same discrete state, the expression levels of all variables are
the same. The evaluation of D’ in h’ is then the evaluation of D’ in h.
The atoms of H Z’ ¥ (see subformulas in Appendix A) concern either celerities or discrete
or continuous coordinates of different points of the trajectory (entrance and arrival points
in different discrete states). These points are either outside the current discrete state, or
are the points h or h'.

5:11

TIME 2017

5:12

Constraint ldentification Using Modified Hoare Logic

Moreover, the celerities are constants, the points of the trajectory which do not belong to
the current discrete state as well as the points A and h’ do not change.
The interpretation of (D', H] ;) is therefore the same in h and A'. <

The soundness of the modified Hoare logic, adapted for the hybrid modelling framework,
means that if a Hoare triple is built in agreement with the inference rules (Def. 14) then this
Hoare triple is satisfied according to the semantics of Hoare triples (Def. 13).

» Theorem 17. The hybrid Hoare logic is sound.

The proof is detailed in Appendix B.

5 Example: Simplified Circadian Cycle

The circadian rhythm is a biological process regulating cells of an organism with a 24-hour
period and controlling the electrical and metabolic processes.

5.1 Presentation of the Circadian Cycle

In mammals, the main circadian cycle is located in the suprachiasmatic nucleus and regulates
the peripheral clocks. It is affected by light, acting like a synchronizer called Zeitgeber, which
means “giver of time”.

The circadian rhythm is mainly controlled by two protein complexes which are PER/CRY
and BMAL1/CLOCK. When light appears, the BMAL1/CLOCK complex activates the
per and cry genes by binding the E-box response element in the promoter upstream these
genes [12]. The PER and CRY proteins are synthesized and dimerised in the cytoplasm.
During night, this complex is found inside the nucleus and inhibits BMAL1/CLOCK implying
a negative feedback of PER/CRY on its genes. Finally, PER/CRY is degraded by proteasome.
The circadian cycle completes and a new one begins with the transcription of genes bmall
and clock.

We decided to use an interaction graph which focuses on the per and cry components,
as represented in Fig. 1. The Light/Day cycle (whose duration is 12h/12h) is represented
by the node named L. (Let us notice that the node labelled X is a modelling artefact to
get an oscillating feature for light.) This node enhances the per and cry genes (modelled
with node g) when the light is activated, that is, when the qualitative value of L is at level 1.
These genes synthesize their proteins which complex and spread inside the nucleus. When
the complex is activated (which is modelled by an expression level of 1 for pc), those genes
are inhibited, blocking the synthesis during night. Because genes are disabled, the protein
complex will be degraded by proteasome and a new cycle begins with the reactivation of the
genes. All four nodes of this model have two qualitative levels of expression named 0 (not
active) and 1 (active).

5.2 Hoare Triple and Results

The steps of the circadian clock explained in Subsec. 5.1 are represented in the Hoare Triple
below. The time spent in each qualitative state comes from biological information obtained
during a light /day cycle of 12h/12h. The assertions slide™ (g) and slide™ (pc) (resp. slide™ (L))
characterize a saturation (resp. complete degradation) of g and pc (resp. of L, corresponding

J. Behaegel, J.-P. Comet, and M. Folschette

Table 1 Constraints obtained by computation of the weakest precondition. Left: Constraints on
celerities of g and pc. Right: Constraints on celerities of L and X.

Constraints on celerities of g and pc Constraints on celerities of L and X
Cyo0 <0 | 0<CyipeLto —55 < CrLpo <0 Cxp0 < 0
Cop1 <O 0<Cy tpe,ryn < 57153 Crpar <O —% < Cxpn <0

Cg 30 <0 Cpepo < O 0 <Crixyo 0 <Cxqr30< 5711

Cg,{L},l <0 Cpc,q)J = —% 0 < CL,{X},l 0 < CX,{L},I

Co.{pey.0 > 0 0< Cpegyo < ﬁ

Co.{pey1 > 0 0< Cpeggya < ﬁ

to the beginning of the night). This information is summed up in the following Hoare triple:

D 0.9 4.5 0.6 5.53 0.47 5.4 0.6 6 D
{Hs} T ETET inde+(g) A T | slide+(pc) slslide™ (L) |51 T {HO}
8 Cc— + X+ pc+ L— g— X L+ 0
where Do = (ng=0)A(pe =1 A (e =1) A(nx =0)
HO = (ﬂ'g :012)/\(7Tp0:012)/\(7rL :0)/\(7rX :O)

Using this Hoare triple, we compute via the backward strategy the weakest precondition
iteratively by crossing the intermediate states of the path. In addition, because the behaviour
is cyclic, we know that the starting hybrid state of this path is equal to the finishing one. The
provided implementation allows us to identify and simplify the constraints of the celerities
obtained through our weakest precondition calculus. After some automatic and manual
simplifications, we finally obtain the constraints summed up in Table 1 which make the
known cyclic behaviour possible.

In order to illustrate the validity of this process, we used the constraint solver IBEX®
to extract values satisfying the previous constraints. This constraint solver takes as input
only conjunctions. Thus the obtained constraints are transformed in a disjunctive normal
form (we obtained 3 terms in disjunction) and all terms of this disjunction are successively
given to IBEX to extract possible values for variables. Amongst the values returned by IBEX,

we arbitrarily chose one set of possible values to be injected in the model for simulation.

Interestingly, the obtained constraints fully characterize one of the hybrid states along the
limit cycle, which gives us an initial state for the simulation.

The simulated traces have then to be compared to biological experimental data. Because
such data for the PER/CRY protein complex inside the nucleus are not published, the
simulation (Fig. 4) is compared to experimental data of genes perl, per2, cryl and cry2 as
well as their respective proteins taken separately [13]. We noticed that the maximal activity
of per genes of our simulation and experimental data occurs at the end of a day, and the
curves of proteins are maximal during night at the same time slot for both curves. Thus our
simplified circadian cycle model is consistent with biological experimental data although we
arbitrarily used parameter values satisfying constraints. This simulation reinforces reliability
of our formalism for determining constraints.

3 See http://www.ibex-1ib.org/.

5:13

TIME 2017

http://www.ibex-lib.org/

5:14

Constraint ldentification Using Modified Hoare Logic

.| Zeitgeber
(hour)

12 48

Figure 4 Model simulation based on arbitrarily chosen celerities satisfying the deduced constraints.
The plain (resp. dashed) line represents the PER/CRY complex (resp. gene) activity.

6 Conclusion

In this paper, we have developed a suitable approach to determine constraints on the
parameters of a linear hybrid automaton. Our hybrid Hoare logic combined with experimental
biological traces including precise chronometrical information leads to constraints on celerities
which have to be satisfied to allow the model to represent the observed behaviour (HCSP [18]
is a formalism similar to ours but does not include chronometrical information along the
path). The obtained constraints via the weakest precondition calculus are analysed using
the solver IBEX which extracts all admissible intervals of celerities. Choosing celerity values
satisfying these constraints leads to a model which exhibits simulation traces similar to the
aforementioned experimental data, this approach has been tested on the simplified circadian
clock model.

The soundness of our hybrid Hoare logic is proved which means that simulations obtained
with parameters satisfying the computed precondition leads to simulated traces which are in
concordance with the path representing the experimental data.

This work opens many outlooks. Generally, it is useful to prove the completeness of
the weakest precondition calculus. Because of the continuous terms (real numbers), our
hybrid Hoare logic cannot be complete regarding all possible formulas. Nevertheless, we
think that our hybrid Hoare logic should be complete regarding closed propositional formulas
constructed from polynomial (in)equations and logical connectors. The decidability of the
theory of real closed fields implies that the precondition constraints can be analysed; it does
not mean that for each semantically correct Hoare triple, there exists a proof tree built on
our inference rules. Completness of our framework would mean that if a Hoare triple is
semantically correct and if pre- and postconditions are expressions in the first order language
of real closed fields, then there exists a proof tree for this Hoare triple. Finally, because of
the combinatorial explosion of the size of the weakest precondition formula and despite some
on-the-fly simplifications, it could be interesting to investigate other ways to simplify the
result in some particular cases.

Acknowledgements. We are grateful to F. Delaunay for having shared his expertise on the
circadian clock and to E. Cornillon and G. Bernot for fruitful discussions about the hybrid
formalism.

J. Behaegel, J.-P. Comet, and M. Folschette

—— References

1

10

11

12

13

14

15

16

17

18

J. Behaegel, J.-P. Comet, G. Bernot, E. Cornillon, and F. Delaunay. A hybrid model of
cell cycle in mammals. JBCB, 14(1):1640001 [17 pp.], 2016.

G. Bernot, J.-P. Comet, Z. Khalis, A. Richard, and O. Roux. A genetically modified Hoare
logic. ArXiv: 1506.05887, June 2015.

G. Bernot, J.-P. Comet, A. Richard, and J. Guespin. Application of formal methods
to biological regulatory networks: extending thomas’ asynchronous logical approach with
temporal logic. Journal of theoretical biology, 229(3):339-347, 2004.

G. Bernot, J.-P. Comet, and O. Roux. A genetically modified Hoare logic that identifies
the parameters of a gene networks. In O. Roux and J. Bourdon, editors, CMSB’15, volume
9308 of LNBI, pages 8-12, 2015.

F. Corblin, E. Fanchon, and L. Trilling. Applications of a formal approach to de-
cipher discrete genetic networks. BMC Bioinformatics, 11:385, 2010. doi:10.1186/
1471-2105-11-385.

E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Com-
mun. ACM, 18:453-457, August 1975. doi:10.1145/360933.360975.

F. Fages. Temporal logic constraints in the biochemical abstract machine BIOCHAM. In
Logic Based Program Synthesis and Transformation, 15th International Symposium, LOP-
STR 2005, London, UK, September 7-9, 2005, Revised Selected Papers, pages 1-5, 2005.
doi:10.1007/11680093_1.

N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems by
means of convex approximations. In Baudouin Le Charlier, editor, Proceedings of the
First International Static Analysis Symposium (SAS’94), pages 223-237. Springer Berlin
Heidelberg, 1994.

T. Henzinger. The theory of hybrid automata. In M. Kemal Inan and Robert P. Kur-
shan, editors, Verification of Digital and Hybrid Systems, pages 265—292. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000. doi:10.1007/978-3-642-59615-5_13.

T. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid systems.
In Orna Grumberg, editor, Proceedings of the 9th International Conference on Computer
Aided Verification (CAV’97), pages 460-463. Springer Berlin Heidelberg, 1997.

J. Hooman. Extending Hoare logic to real-time. Formal Aspects of Computing, 6:801-825,
1994.

T. Hunt and P. Sassone-Corsi. Riding tandem: circadian clocks and the cell cycle. Cell,
129(3):461-464, 2007.

C. Lee, J.-P. Etchegaray, F. Cagampang, A. Loudon, and S. Reppert. Posttranslational
mechanisms regulate the mammalian circadian clock. Cell, 107(7):855-867, 2001.

T. Liu, X. Zhang, and X. Gao. Stability analysis for continuous-time and discrete-time
genetic regulatory networks with delays. Applied mathematics and computation, 274:628—
643, 2016.

R. Thomas. Boolean formalization of genetic control circuits. Journal of theoretical biology,
42(3):563-585, 1973.

R. Thomas and M. Kaufman. Multistationarity, the basis of cell differentiation and memory.
II. logical analysis of regulatory networks in terms of feedback circuits. Chaos, 11:180-195,
2001.

P. Traynard, A. Fauré, F. Fages, and D. Thieffry. Logical model specification aided by
model-checking techniques: application to the mammalian cell cycle regulation. Bioin-
formatics, 32(17):772-780, 2016. doi:10.1093/bioinformatics/btw457.

N. Zhan, S. Wang, and H. Zhao. Formal modelling, analysis and verification of hybrid
systems. In Unifying Theories of Programming and Formal Engineering Methods, pages
207-281. Springer, 2013.

5:15

TIME 2017

http://dx.doi.org/10.1186/1471-2105-11-385
http://dx.doi.org/10.1186/1471-2105-11-385
http://dx.doi.org/10.1145/360933.360975
http://dx.doi.org/10.1007/11680093_1
http://dx.doi.org/10.1007/978-3-642-59615-5_13
http://dx.doi.org/10.1093/bioinformatics/btw457

5:16

Constraint ldentification Using Modified Hoare Logic

A Appendix: Sub-properties of the Weakest Precondition Calculus

In this appendix, we detail each subformula of the weakest precondition in Def. 14.

A.1 Weakest Precondition

In order to fully compute the weakest precondition, it is required to label the fractional parts
of the states mentioned in the properties. For this, we use labels called below f (final), i
(initial) and m (intermediate). Moreover, by convention, we use 7’ (resp.) to specify the
fractional part of the exit from the current discrete state (resp. entrance into the current
discrete state).

Let us notice that all the following properties depend on the indices ¢ and f used in
Def. 14, although for readability issues we did not mention them on the names of each
sub-property. Furthermore, for a given index i, we call by convention 7! (resp. wil) the
fractional part of the entering (resp. exiting) state inside the discrete state i.

Finally, for all variable u € V and all w C R~ (v) subset of predecessors of u, we define:

sz (Aom)r(A)
w meR1 (v)\w

In other words, ®% is true in a state h if and only if the resources of u are exactly w, that is,
p(h,v) = w.

A.2 Discrete Transition to the Next Discrete State

For all component v € V, & (At) (resp. @, (At)) describes the conditions in which v increases
(resp. decreases) its discrete expression level after At units of time: its celerity in the current
state must be positive (resp. negative) and its fractional part only depends on At in the way
given at the very end of Section 2.

e (AL = (xi =1)A N\ (< (f”z 2)) = (Cpom > A (=72 = Cpom - At)),
WwCR™ (v) v
n€e0,by]
- — (i oy A T
o, (A0 = (' =0 A A(o =y)= Cown <OA (T, = = Con Ab)).
wCR™ (v) v
n€[0,b,]

A.3 Internal and External Walls

For all component v € V, W, (resp. W,) states that there is a wall preventing u to
increase (resp. decrease) its qualitative state. This wall can either be an external wall EW.
(resp. EW,) or an internal wall IW," (resp. IW,). Furthermore, @“J; (resp. @ﬁl_), which is
required in these subformulas, is true if and only if the set of resources of u is exactly w’ in
the state where w is increased (resp. decreased) by 1.

WH =W/ vEW! and W, =IW, vVEW,
where:

EW, = (1 = bu) A /\ (@ = Cuwp, >0)

wCR™ (u)
EW, = (u =0) A \ (2% = Cuwo <0) .
wCR™ (u)

J. Behaegel, J.-P. Comet, and M. Folschette

(Nu =mn) A
Wi =0 <b) AN (| m=n+ D) A | = Cuwn > 0ACuurm <0)
w,w' CR™ (u) (I)ZJ AN (I)‘::;_
nef0,b,]
(Nu =mn) A
IW;E(nu>O)A/\< (m=n—1) A :>Cu7w7n<0/\0u7w/7m>0) ;
w,w' CR™ (u) (I)‘{: A (I)ZJ/_
n€ef0,b,]

= (1 < b)) A\ ((0u = 1) = 2 [n\nu +1])
n€f0,b,]
2" = (> 0) A N ((na =n) = % [\ — 1]) -
n€f0,b,]

A.4 First Changing Variables

F(At) states that all components that are not first changing variables must either reach
their border after the first changing variables, or face an internal or external wall.

(nu = n) A DY A
A Cuwn >0A =WrF | A
wCR™ (u) Wi > ’ﬂ}il - Cu,w,n At
f(At) = /\ n€f0,b,]
weV\first(h;) (1w =n) AP A
A Cuwn <0 A =W,
wCR™ (u) ﬂ'i < 7T5 — Cu,w,n - At
L nef0,by] J

A.5 Hybrid Assertions

The sub-property A(At, a) allows one to translate all assertion symbols given about the
continuous transition related to the instruction (celerities and slides) into a property:

CUZ \Cvl YW,y
- w inde(vl)\Sv o (At)
A(At,a) = /\ /\ ((771;1 = nl) A (I)UL’) = s|ide (Ul)\ 1,W1 Ll()
kel,n] \ l€[l,n]) VLW
wi € R™ (vg) slide™ (Ul)\Svl AT (At)
ng € IIO,b,uk]]

where a is the assert part of the instruction P = (At,a,v+), and, for all variable u € V:

Ston(At)= () =1) A (7l > 7L = Cuon - AL)
Suwm(A) = (r = 0) A (7l < 7l = Cuom - A1)
Su7w7n(At) = Sjw n(At) v S;w,n(At)

)

These sub-properties indicate that the exit position of the corresponding variable u is located
on a threshold. In addition, the constraints 7¢, > 71';/ — Clywn At and 7l < 7rf/ —Cuwn - At
mean that the duration before reaching the border is lower that the one spent inside the
current state (At). The sign of the celerity of the sliding variable w is constrained by the
sub-property F and the constraint 7, > 72" — Cyyiyn - At (vesp. @l < 7w’ — Cyy o - At) of
the sub-property S, ,,(At) (resp. S, ,(At)) or Sy n(At).

5:17

TIME 2017

5:18

Constraint ldentification Using Modified Hoare Logic

A.6 Junctions
A.6.1 Continuous Junctions Inside Discrete States

For all component v € V| and for a continuous transition between two hybrid states h = (n, 7)
and b/ = (n,7"), CJ, establishes a relationship between the fractional parts and the celerity
of the variable v. If the exit fractional part of v is 0 or 1, the sign of the celerity can be
deduced and the time mandatory to v to reach the border is lower than the time spent in
the current discrete state. If v does not reach its border, the exact position of the entrance
fractional part of v can be deduced from the exit position, the time spent in the current
discrete state and the celerity.

(ﬂ—’i) = O) = vap(hvv)vnw < O A (Trv é 7'(-,:) - C%P(hﬂ))ﬂ?u X 6;ir5t)
CTo=y A (m=1) = Coptrayn, >0 (T 2T, — Copra)a, X O5™)
A\ (0 < W{} < 1) = (71'U = L — Cv,ﬂ(h,v)mu X 52r5t) .

A.6.2 Discrete Junctions Between Discrete States

For all component v € V, and for a discrete transition happening on component v between
an initial and a final state corresponding to the indices i and f, DJ, establishes a junction
between the fractional parts of these states. This formula states that the fractional part
of v switches from 1 to 0 for an increase, or from 0 to 1 for a decrease, whereas all other
fractional parts are unchanged:

DI, = (rl =1- Wi/) A /\(775 = 775/) .
weV\{v}

Finally, we define:

Jo =DJTu A \CTu

ueV

These relationships can be easily observed on Fig. 3 on the discrete transition in the
centre: all fractional parts are left the same, except for the variable performing the transition.

B Soundness Proof

The soundness proof is made for each inference rule which depends on its corresponding
assertion (Def. 11). Each of them is treated according to the assertion type. We focus here
on the proof of the soundness of the incrementation rule since the proof of the soundness of
the decrementation rule is similar, and that the one for the sequential composition rule is
classical. In this subsection, we consider the Hoare triple associated with the incrementation
rule, described in Subsection 4.1, and a hybrid state h = (1, 7) satisfying the precondition.

B.1 First Case: a =T

() Let us first prove the existence of the continuous transition. According to the sub-
property @ (At), ,, = 1 (arrival at the top border of v), Cy ., > 0 and 7, = 7, +Cl o n X At
(the time spent in the current state is At) if % and 7, = n are satisfied. Let us also consider
the unique hybrid state A’ = (1, 7’) such that the continuous transition h — h’ exists. Thus,
according to Lemma 15 and Definition 11, (h,h') E (At, T).

J. Behaegel, J.-P. Comet, and M. Folschette

(B) Let us now prove the existence of the discrete transition. Let us simplify the
subformula -W;t = =EW." A =W} satisfied at h/. We have:

—\EWj = _‘|:(77v = bv) A\ /\ ((I):) = Cv,w,bv > O):| =T
1 wCR™ (v)

which is evaluated to true because v increases its level (v+ is the discrete path atom) and
thus is not already at its maximal discrete value. Thus, W, = —IW," :

(7’]1; = n)/\ Cv,w,n >0
Wi == (nv<b,,)/\/\((m=n+1)A | = A
nef0,b,] @;’j A\ q);'jjr Cu,w/,m <0
w,w' CR™ (v)
(771; = n)/\ Cv,w,n >0
= Smp<b) VvV V(| m=n+Dr | = A
n€f0,b,] (I)‘{j A (I)(;)}-li- Cv,w/,m <0
1 w,w' CR™ (v)

since 1, < by

Amongst all premises of the remaining disjunctions, only one is satisfied because the current
qualitative state and the next state have a unique qualitative level (n, =n and m =n + 1)
and a unique set of resources (% and <I>‘;j/+) Replacing w and w’ by the right resources of
the corresponding states p(n,v) and p(n”,v) and naming 1’ the next state, we deduce:

(771) = TL) A Cv,p(n,v),m, >0 Cv,p(mv),m <0
@ﬁ("’v) /\<I>i(+" V) Cv,p(n”,v),n{,/ <0 Cv,p(n”yv)mif > 0
€

However, since ®; (At) is true at h’, we have C,, ,(y.v),5, > 0. Thus =W, is equivalent to
Cu,p(n w),m = 0 and the previous inequation is true since —W, is satisfied at i’. Thus the
variable v reaches its threshold in At time (®;F (At)) and crosses it (=W,") allowing a discrete
transition h’ — h” which increases v because the signs of the celerities of v in k' and in A"

are the sames.

(7) Let us finally prove that the postcondition is satisfied after the elementary path. We
previously proved that there exists a unique continuous transition » — h’ and a discrete one
h" — h". Since h F (D[n,\n, +1], H ;), we deduce with Lemma 16: 1" & (D[n,\n, +1], H ;).
The discrete transition increases the variable v (n/ =, + 1), we deduce that:

W' & (Dln\ne+1[n\ne =11, Hi ¢[n\no—1]), thatis, A" F (D, H; ¢[n\n.—1])
The hybrid condition H" = H; ¢[n,\n, — 1] is satisfied in h":
H" = (Hyln\n,+1] A 97 (A8) A F(A8) A=WE A A(M @) AT,), ~1
= H; A (@j(m) A F(AL) A=W A A(AL, a) A jv) [\ — 1]

So, the discrete and hybrid conditions D and Hy are satisfied at A” and the postcondition is
verified.

5:19

TIME 2017

5:20

Constraint ldentification Using Modified Hoare Logic

B.2 Second Case: a = slide™ (u)

(a) Similarly to the first case, we consider the unique hybrid state h’ = (n,7’) such that
the continuous transition h — h’ exists. The time spent in the current qualitative state is
also At (sub-property ®;(At)). Since a # T, the sub-property A plays a crucial rule:

C‘1'Ul \C'Ul sWi,ny
_ _ w slide(v7)\Su,,w;,n, (A)
A(At, aZ E_[[1/\]] l E/[[} (ﬂ(ml =n;) A <I)v1> =a Slide* (u)\S- .. o (AD)
wn € R (un) ’ slide™ (1)\Sy ., (AF)
ng € [0,b,,]

Amongst all premises of these conjunctions, only one is satisfied because the current qualitative
state has a unique qualitative level for each variable v; (1,, = n;) and a unique set of resources
for each v; (®4'). We can then replace slide™ (u) by the sub-property S+:

!

S+ (At) = (ﬂ-i = 1) A (ﬂ.'f/, > 7"2/ - Cu,w,n . At)

U,w,n u

where w is the resources of u and n its current qualitative level. This formula means that the
exit position of the current qualitative state is on the top border (74" = 1). We then deduce:

Cuwn At >1— 7T7i

1— i ,
Tu _ O () because 1 —m, > 0, At > 0 and Cy.pn > 0

At >
Cu,w,n

According to Lemma 15, we have &,/ (v) = 6f"t = At and so dp/(v) > dp/(u). In other words,
u reaches its top border before v reaches its one. Thus, the continuous transition h — h' is
such that (h,h') F (At,a), see Definition 11.

(B and) The proof of the discrete transition existence from h’ is similar to the first case.
This transition leads to h” which satisfies the postcondition h” F (D, H) (see the stages 3
and v of the first case).

B.3 Third Case: a =C, O cwithceR

(o) The sub-property A(At,a) allows one to replace the celerity C,, in the assertion a by
the celerity indexed by the relevant set of resources of the current qualitative state. So, we
deduce C,, y(n,u),n, O c. From Definition 11, the unique continuous transition h — h' where
K = (n,7') is such that (h, ') F (At, a).

(B and) The proof of the discrete transition existence from h’ is similar to the first case.
This transition leads to h” which satisfies the postcondition h” E (D, H) (see the stages 3
and v of the first case).

B.4 Fourth Case: a = a1 N as

(a) From the previous cases, it is possible to construct two hybrid states h; and hg such
that (h,h1) E (At,a1) and (h, ha) F (At, a2). Because the continuous transition starting at
h is unique, hy = hy. Thus, (h,h1) E (At a1 A az).

J. Behaegel, J.-P. Comet, and M. Folschette 5:21

(B and «) The proof of the discrete transition existence from h’ is similar to the first case.
This transition leads to h’” which satisfies the postcondition h’ E (D, H) (see the stages 8
and ~ of the first case).

This proof is generalisable for all logical connectives and recursively to all formulas.

TIME 2017

Hierarchical Cost-Parity Games

Laura Bozzelli', Aniello Murano*?, Giuseppe Perelli?, and
Loredana Sorrentino®

Universita degli Studi di Napoli Federico II, Naples, Italy
Universita degli Studi di Napoli Federico II, Naples, Italy
University of Oxford, Oxford, UK

Universita degli Studi di Napoli Federico II, Naples, Italy

W N =

—— Abstract

Cost-parity games are a fundamental tool in system design for the analysis of reactive and dis-
tributed systems that recently have received a lot of attention from the formal methods research

community. They allow to reason about the time delay on the requests granted by systems, with
a bounded consumption of resources, in their executions.

In this paper, we contribute to research on Cost-parity games by combining them with hier-
archical systems, a successful method for the succinct representation of models. We show that
determining the winner of a Hierarchical Cost-parity Game is PSPACE-COMPLETE, thus match-
ing the complexity of the proper special case of Hierarchical Parity Games. This shows that
reasoning about temporal delay can be addressed at a free cost in terms of complexity.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Parity Games, Cost-Parity Games, Hierarchical Systems, System Veri-
fication

Digital Object ldentifier 10.4230/LIPIcs. TIME.2017.6

1 Introduction

In formal system design and verification [11, 12, 20, 26], Parity Games represent a fundamental
machinery for the automatic synthesis and verification of concurrent and reactive systems [5,
6, 7, 21, 22]. The determinacy and the memorylessness of parity games is crucial in various
theoretical areas useful in formal verification, among which we mention automata theory,
temporal and modal logics, and monadic second-order logics. For instance, the emptiness
problem of alternating tree automata [14] as well as model checking and satisfiability in
modal p-calculus [18] can be reduced to deciding the winner of a parity game. In particular,
model checking p-calculus is equivalent via linear time reduction to this problem [13].

As pointed out in [15, 23, 24], the parity winning condition corresponds to a qualitative
request-response condition [17]: Player 0 wins a play of infinite duration if all but finitely
many odd colors (which we think of as requests) are followed by larger even colors (which we
think of as responses). In this setting, there is no bound on the wait time, 4.e., the number
of steps that elapse between a request and its first response in the play. On the other hand,
in many applications, it is important to bound the wait time. In the last decade, many
papers have focused on quantitative aspects, in particular boundedness requirements, of

* The author is partially supported by the INAAM research project 2017 “Logica e Automi per il Model
Checking”.

T The author acknowledges with gratitude the the financial support of the ERC Advanced Investigator
grant 291528 (“RACE”) at Oxford.

© Laura Bozzelli, Aniello Murano, Giuseppe Perelli, and Loredana Sorrentino;
37 licensed under Creative Commons License CC-BY

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).

Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 6; pp.6:1-6:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2

Hierarchical Cost-Parity Games

formal verification [1, 19, 10], including parity games [10, 15, 23, 24]. In [19], the authors
introduce Prompt LTL, an extension of standard LTL [25] with the prompt-eventually
operator Fp: a finite system satisfies a Prompt LTL formula ¢ iff there is a bound on the wait
time for all the prompt-eventually subformulas of ¢ in all the computations of the system.
The automata-theoretic counterpart of the F, operator has been investigated in [1]. Parity
games extended with promptness requirements, the so-called finitary parity games, have been
studied in [10]. The finitary parity condition [10] extends the parity condition by additionally
requiring the existence (along the given play) of a bound k such that almost every odd
color is answered within at most k steps. Surprisingly, finitary parity games are solvable in
polynomial time, and thus simpler than parity games (according to the state-of-the-art). A
meaningful generalization of finitary games is represented by the class of parity games with
costs [15] (in the following, referred as cost-parity games). In such games, transitions are
labeled by non-negative integers (costs). The cost of traversing a transition can be used to
model resource consumption. The goal of Player 0 consists then in ensuring the underlying
parity condition by using bounded resources: a play is winning for Player 0 if there is a bound
k such that almost every odd color is followed by a larger even color that is reached with
cost at most k. On the other hand, Player 1’s goal is to exhaust the resources by making the
cost unbounded. Note that Player 1’s objective is not an w-regular property, and in general,
Player 1 needs infinite memory to win such games. However, cost-parity games enjoy some
nice properties: Player 0 has memoryless winning strategies and determining the winner
lies in NP N cONP. This upper bound has been recently improved to UP N coUP in [24],
proving thus that the increased expressiveness with respect to parity conditions comes at a
free cost in terms of complexity.

In the recent years, many other quantitative extensions of parity games have been
introduced. Among them we would like to mention Mean-Payoff Parity Games [9], whose
winning condition is a combination of a parity and a mean-payoff objective, and Energy
Parity Games [8]. These last ones are played over weighted arenas, and the winning condition
extends the parity condition by additionally requiring that the sum of the weights along a
play (interpreted as level of energy, or resource usage) remains always positive.

A well-known issue in formal verification is that the translation of a high-level description
of a system into a formal model, typically given by a finite-state machine (FSM), often
involves an exponential blow-up in the size of the FSM, thus affecting the efficiency of
the analysis procedures both in theory and practice. Several sources of this blow-up have
been identified in the literature. A well-studied one is the ability of components in the
system to work in parallel and communicating with each other, possibly using variables. The
impact of the concurrent setting on analysis problems is well-known: it costs an exponential,
leading to the so called state-explosion problem. Another source of the blow-up in the
translation of systems into FSMs is that in high-level sequential programming, one can
specify components only once and then can reuse them in different contexts, leading to
modularity and succinct system representation. A smart way to represent such modularity is
by means of hierarchical FSM, where some of the states of the FSM are boxes (superstates)
which correspond to nested FSMs (the reused components). The naive approach to model
checking such systems is to ‘flatten’ them by repeatedly substituting references to sub-
structures with copies of them. This results in a flat FSM whose size is exponential in
the nesting depth of the hierarchical system. However, differently from the concurrent
setting, a wiser approach avoiding flattening, for the case of model checking against temporal
logics like LTL, CTL and the more expressive modal p-calculus, is beneficial in terms of
complexity [3, 4, 5, 16]. Parity games have also been investigated under the hierarchical

L. Bozzelli, A. Murano, G. Perelli, and L. Sorrentino

setting. In [5], Aminof et al. prove that deciding the winner in a Hierarchical Parity Game
(HP@G) is a PsPACE-complete problem. The technique used in [5] is based on the observation
that even though a sub-arena may appear in different contexts, it is possible to extract
information about the sub-arena that is independent of the context in which it appears.

In this paper, we further investigate the power of hierarchical representation by introdu-
cing and studying Cost-parity Games over Hierarchical Systems (HCPG). As main result,
we establish that the problem of solving HCPG is PSPACE-complete, which matches the
complexity of the proper special case of hierarchical parity games (HPG). The proposed
approach for solving the considered problem generalizes in a non-trivial and sophisticated
manner the one exploited in [5] for solving HPG, and is based on the notion of summary
function for a memoryless strategy o of Player 0 in a given sub-arena. Such a function
records in a finite and efficient way the overall behavior of all the finite plays of o leading to
exit states of the sub-arena with respect to requests and responses, by finitely abstracting the
set of associated costs and delays. The algorithm for solving HCPG then solves a sequence
of flat cost-parity games obtained by replacing sub-arenas by simple gadgets (depending only
on the set of colors and exit states of the sub-arena) that implement the summary functions.

The sequel of the paper is structured as follows. In Section 2, we first recall the framework
of cost-parity games. Then, we introduce hierarchical cost-parity games and describe our
solution approach in Section 3. Finally, we give few conclusions and future work directions
in Section 4. Due to space constraints, some proofs are omitted.

2 Preliminaries

Let N be the set of natural numbers. For all ¢,5 € N, with ¢ < j, [i, 7] denotes the set of
natural numbers h such that ¢ < h < j. We fix a non-empty finite set C' of natural numbers
of the form [0, j] for some j € N, which represents the set of colors for the given cost-parity
winning condition. We denote by C, and C, the sets of even and odd colors in C', respectively.
We assume that the maximal color j in C, denoted by C***, is odd.

For an alphabet ¥, and a non-empty finite or infinite word w over X, we denote by |w|
the length of w (we set |w| = oo if w is infinite). Moreover, for all ¢,5 > 1, with ¢ < j, w(4)
is the i-th letter of w, while w[i, j] denotes the finite subword of w given by w(i) - - - w(j),
and w' the prefix of w from position i, i.e., the word w(i)w(i +1).. ..

2.1 Cost-Parity Games

We recall the framework of Cost-parity games [15] which are two-player turn-based games
played on finite graphs equipped with a Cost-parity winning condition. In such a setting,
Player 0 wins a play of infinite duration if there is a bound ¢ € N such that almost all odd
colors (which we think of as requests) are followed by larger even colors (which we think of
as responses) that are reached with cost at most /.

A state-transition graph or FSM is a tuple (S, R,in) consisting of a finite set S of states,
a transition relation R C S x S, and an initial state in € S. For a state s € S, we write
R(s) ={s' €S| (s,s") € R} for the set of successors of s. A path in the FSM is a non-empty
finite or infinite word m over S such that 7(i + 1) € R(w (7)) for all ¢ € [1,|7| — 1].

An arena is a tuple A = (S, So, S1, R, in) consisting of an FSM (S, R, in) and a partition
{S0,S1} of S into the states of Player 0 (drawn as circles) and the states of Player 1 (drawn
as rectangles). A play of a game over A proceeds by moving a token on the states of A,
starting at some state. If the token is placed on a state s € Sy (resp., s € S1), then the play
ends if s has no successors (we call such a state a terminal state); otherwise, Player 0 (resp.,

6:3

TIME 2017

6:4

Hierarchical Cost-Parity Games

Player 1) chooses a successor s’ of s and moves the token to s’. Formally, a play of A is a
mazximal path of A, i.e., a path 7 in the underlying FSM such that either 7 is infinite, or =
is finite and ends at a terminal state.

Let p € {0,1} and Si,v be the set of non-terminal states of Player p. A strategy for Player p
is a mapping o : S* - Sév — S assigning to each non-empty sequence of states w-s € S* - ngv
leading to a non-terminal state s of Player p, a successor of s. A play 7 is consistent with the
strategy o if for all k € [1,|n| — 1] such that (k) € SJ, it holds that 7 (k + 1) = o(x[1, k]).
The strategy o is memoryless if its output does not depend on the whole prefix of the play,
but only on the last position, i.e, if for all w-s € $*- S, o(w - s) = o(s). We can thus
represent a memoryless strategy as a mapping o : Sév —S.

A (zero-sum) game is a pair (A4, Win) consisting of an arena A = (S, Sp, S1,R,in) and a
subset Win of infinite plays which are winning for Player 0. An infinite play 7 is winning for
Player 1 if it is not winning for Player 0. A finite play 7 is winning for Player p if 7 ends at a
state of the opponent Player 1 — p. A strategy o for Player p is winning from a state s if all
the plays 7 starting from s which are consistent with the strategy o are winning for Player p.
In such a case, we say that state s is winning for Player p. A game is determined if for each
state s, s is winning for one of the players. Note that since for all strategies ¢® and o! of
Player 0 and Player 1, respectively, there is a unique play starting from s which is consistent
with both 0% and ¢!, in (zero-sum) games, a state s cannot be winning for both the players.
Solving a game consists in checking whether the initial state is winning for Player 0.

Cost-parity winning conditions

We, now, recall the class of Cost-parity winning conditions. A Cost-parity arena G =
(A, Cost, Q) over the set C of colors consists of an arena A = (S, Sp, S1, R, in), a transition-
labeling Cost : R + {0, 1} (cost function), and a coloring mapping €2 : S — C assigning to
each state a color in C. Note that according to [15], the definition of transition-labelling only
allows cost 0 or 1 on a transition. Having arbitrary costs in N would not change our results, as
we are interested in boundedness questions only. We extend the transition-labeling to a cost
function Cost over paths 7 obtained by counting the number of increment transitions (i.e.,
1-labeled transitions) traversed along the path, i.e., Cost(m) = Zilzﬂ Cost(m(i — 1), 7()).
Note that Cost(m) € NU {o0}.

The pair (Cost, Q) induces a winning condition for Player 0, where the occurrence of an
odd color along a play « is interpreted as a request, for which there has to be a response later
on the play by a higher even color. Formally, let 7 be a finite or infinite path of A. A request
in 7 is a position k along 7 such that 7(k) has odd color. For an odd color ¢, a c-request in
7 is a request k in 7 such that Q(mw(k)) = ¢. Moreover, we define Ans(c) = {¢' € C. | ¢/ > ¢},
i.e., the set of even colors that answers a request of color ¢. For a request k in m, let r; be the
smallest position &’ > k that answers to request k, i.e., such that Q(w(k’)) € Ans(Q(w(k))),
if such positions k' exist, and let ry = |7| otherwise. In the first (resp., second) case, we say
that the request k is answered (resp., unanswered) in w. The delay of the request k in T,
denoted by dl(m, k), then is defined as the cost of the infix of 7 from the request k to position
%, i.e., Cost(m[k,74]) if 71 # oo, and Cost(7w*) otherwise. The cost-parity winning condition
induced by (Cost, Q2), written CostParity(Cost,), is then the set of infinite plays 7 such
that there is n > 1 and a bound ¢ € N so that for all requests k in 7 with k > n, dl(7, k) < ¢
and the request k is answered in 7. Thus, an infinite play 7 € CostParity(Cost, Q) iff there
is bound ¢ such that all but finitely many requests are answered with cost less than /£.
Note that CostParity(Cost, Q) is prefiz-independent, i.e., for all infinite plays 7 and k > 1,
7 € CostParity(Cost, Q) iff 7% € CostParity(Cost, Q). We recall the following known result.

L. Bozzelli, A. Murano, G. Perelli, and L. Sorrentino

» Theorem 1 ([15]). Cost-parity games are determined and Player 0 has memoryless
winning strategies from the winning Player 0 states. Moreover, solving a cost-parity game
G = (A, Cost, Q) with k colors can be done in time |A|©*1°8K) and in polynomial space.

For technical convenience, we also consider a generalization of cost-parity arenas, called
partial cost-parity arenas, where one considers as additional input a subset Ezxit of the set of
terminal states, called exit states. Finite plays ending at states in Fxit are assumed to be
non-winning for either player and have an undefined value. In this setting, a non-loosing
strategy for Player p from state s is a strategy o for Player p such that each play starting
from s which is consistent with ¢ and does not lead to an exit state is winning for Player p.
A non-loosing strategy is a non-loosing strategy for Player 0 from the initial state in. For a
strategy o for Player 0, an exit play of ¢ is a finite play starting from in and ending at an exit
state which is consistent with o. For s € Ezit, an s-exit play of o is an exit play of o leading
to s. Two partial cost-parity arenas G = (A, Cost, Q, Exit) and G’ = (A’, Cost’, ', Ezit')
have the same interface if Exit = Exit, G and G’ have the same initial state in, and for each
s € {in} U Exit, the colors and the players of state s in G and G’ coincide.

2.2 Hierarchical Cost-Parity Games

A Hierarchical Cost-Parity Game is a cost-parity game played over a (flat) arena induced by
a hierarchical arena. The latter is a standard hierarchical FSM [4] in which the set of nodes
of each of the underlying FSMs is partitioned into nodes belonging to Player 0 and nodes
belonging to Player 1. We refer to the underlying FSMs as modular sub-arenas. Formally, a
hierarchical arena is a tuple V =(V1,...,V,) of modular sub-arenas, where each V; is in turn
a tuple of the form (N;, N9, NI B;, in;, Ezit;, Y;, E;) consisting of the following components:
A finite set N; of nodes which is partitioned into a set N? of nodes of Player 0 and a set N}
of nodes of Player 1, and a finite set B; of bozes. We assume that Ny,...,N,,B1,...,B,
are pairwise disjoint.
An initial node or entry in; € N;, ! and a subset Exit; of N; called exit-nodes. We assume
that Ezit; = 0, i.e., the top-level sub-arena V; has no exits.
An indexing function Y; : B; — {i + 1,...,n} that maps each box b of V; to an index
Yi(b) > i. The box b represents a reference to the definition of the sub-arena Vy,).
An edge relation E;. Each edge in E; is a pair (u,v) such that: (i) the source u is either
a node of V; or a pair (b, e), where b is a box of V; and e is an exit-node of the sub-arena
that b refers to, and (%) the target v is either a node or a box of V;.

Define N = (JI_; N; (the set of V-nodes), E = [J;_, E; (the set of V-edges), and Ezit =
Ui, Ezit; (the set of V-exit-nodes). In a modular sub-arena, the edges connect nodes and
boxes with one another. Edges entering a box implicitly lead to the unique entry-node of the
sub-arena that the box refers to. On the other hand, an edge exiting a box needs to explicitly
specify the identity of the exit-node among the possible exit-nodes of the sub-arena associated
with that box. The size |V;| of a modular sub-arena V; is |N;| + |B;| + |E;|. The size |V|
of Vis Z;ZL [Vi|. The nesting depth of V is the length of the longest chain i1, 1s,...,; of
indices in [1,n] such that a box of V;, is mapped to i;41 for all [€ [1,j — 1]. Note that the
fact that boxes of a sub-arena can only refer to sub-arenas with a greater index implies that

the nesting depth of V is finite. Such a restriction does not exist in the recursive setting [2].

1 We assume a single entry for each sub-arena. Multiple entries can be handled by duplicating sub-arenas.

6:5

TIME 2017

6:6

Hierarchical Cost-Parity Games

A Hierarchical Cost-Parity Arena (HCPA, for short) over C is a tuple H = (), Cost, Q)
consisting of a hierarchical arena ¥V =(Vy,...,V,) equipped with a cost function Cost : E —
{0,1} for the set of V-edges, and a coloring mapping Q : N +— C for the set of V-nodes. We
can associate to H an ordinary cost-parity arena (called its flat expansion) by recursively
substituting each box by a copy of the modular sub-arena it refers to. Since different boxes
can refer to the same sub-arena, nodes may appear in different contexts. In general, a state of
the flat expansion is a vector whose last component is a node, and the remaining components
are boxes that specify the context. Formally, for each modular sub-arena V;, we inductively
define its flat expansion as the partial Cost-parity arena HI" = (A;, Cost;, Q;, Ezit;), with
Ai = (S;,S?, S, R;,in;), defined as follows:

The set of states S; is inductively defined as follows: (i) if v is a node in V;, then u € S;,
and (ii) if b is a box of V; and s € Sy,), then (b, s) € S;.

SY (resp., S}) is the set of states in S; whose node-component belongs to Player 0 (resp.,
Player 1), and the coloring function ; assigns to each state s of A;, the color Q(u) of
the node-component u of s.

The transition relation R; and the cost function Cost; are inductively defined as follows.

If (u,v) € E; and the target v is a node, then (u,v) € R; and Cost;(u,v) =
Cost(u,v). If (u,b) € E; and the target b is a box, then (u, (b,iny,))) € R; and
Cost;(u, (b,iny,s))) = Cost(u,b).

If bis a box of V; and (s, s’) € Ry, (1), then ((b, s), (b,5")) € R; and Cost;((b, s), (b, s")) =
Costy, (1) (s, 5").

Note that since Ezit; = (), H{ is an ordinary Cost-parity arena (i.e., it is not partial), called
the flat expansion of H. Moreover, observe that each state of H{" is a vector of length at
most the nesting depth d of V, and that the number of states in H{" can be exponential in d.
Solving the game on the HCPA ‘H consists in checking whether the initial state in; of the
cost-parity arena HI" is winning for Player 0.

3 Solving Hierarchical Cost-Parity Games

The naive approach for solving games on HCPA H consisting in applying Theorem 1 on the
flat expansion of H would lead to an exponential space procedure. In this section, we show
that solving hierarchical cost-parity games is PSPACE-complete. Our approach is based on
the notion of summary function for a strategy o of Player 0 in a partial cost-parity arena,
which records in a finite and efficient way the overall behavior of all the exit plays of o with
respect to requests and responses. The proposed algorithm for solving the game on the given
HCPA H then solves a sequence of partial cost-parity games, obtained by replacing each box
b referring to a sub-arena V; with simple partial-cost parity arenas (summary-gadget arenas)
having the same interface as the flat expansion HI" of V; and depending only on the set of
colors and exit states. These gadgets represent the behavior of Player 0 as a choice among
the possible summary functions associated with the non-loosing memoryless strategies in HI",
and also take into account the possibility that the game will stay forever in the sub-arena V;
for the given context b. The rest of this section is organized as follows: in Subsection 3.1,
we introduce the notions of summary and summary-gadget arena, and in Subsection 3.2 we
show how to check that a summary is associated with non-loosing memoryless strategies.
Finally, in Subsection 3.3, we illustrate the proposed algorithm for solving HCPA games.

L. Bozzelli, A. Murano, G. Perelli, and L. Sorrentino

3.1 Summaries in partial cost-parity games

In this section, for a given partial cost-parity arena G, we show how to define a finite
abstraction of the set of non-loosing strategies (of Player 0). Such an abstraction is based on
the notion of summary for a strategy o of Player 0, which is a mapping assigning to each
exit state s a value ranging over a finite set (depending only on the set of colors). Such a
value summarizes the overall behavior of all the s-exit plays of ¢ with respect to requests and
responses by finitely abstracting the set of associated costs and delays. Then, we associate
to each summary S of G a simple partial-cost parity arena Gad(G,S) — exposing the same
interface as G (the initial state and the set of exit states) — which depends only on the set
of colors and exit states, and is independent of the set of ‘internal’ states in G. The set of
summary-gadget arenas Gad(G,S) such that S is achieved by some non-loosing memoryless
strategy is ‘context-equivalent’ to G, i.e., for each memoryless strategy o achieving some
summary S, G can be equivalently replaced with Gad(G,S) in any hierarchical context where
G is exploited as a sub-arena and Player 0 chooses strategy ¢ when entering G. 2

Fix a partial cost-parity arena G = (A, Cost, Q, Ezit) over the set C of colors, where
A =(S,80,51,R,in) and Ezit is the designated set of exit states.

In order to describe the relative merit of colors, we define an ordering = over the given
set C of colors by letting ¢ >=g ¢’ when c¢ is better for Player 0 than ¢’. Formally, ¢ >=q ¢
if: either (i) ¢ and ¢ are even and ¢ > ¢, or (i) ¢ and ¢’ are odd and ¢ > ¢, or (iii) ¢
is odd and c is even. Moreover, in order to summarize in a finite way cost measures, we
exploit three special symbols, namely, bndy, dnd;, and unb to denote bounded behavior
with zero-cost, bounded behavior with non-zero cost, and unbounded behavior (cost co),
respectively. Additionally, we denote by =} the ordering on {bndy, bnd;, unb} defined as:
bndy >=p bndy and bndy; > unb. Intuitively, bndy =, bnd; and bnd; =, unb express that
bounded zero-cost is better for Player 0 then non-zero bounded cost, the latter being in turn
better than unbounded cost. Define C' = C'\ {C7%*} and C, = (C, \ {C**}) U {0}.

In order to formalize the notion of summary for a strategy o of Player 0, we consider
various cost measures with respect to the requests and the responses along the exit plays
of o. For this, we extend the cost function Cost to (possibly infinite) sets II of finite
paths. Formally, Cost(II) is the least upper bound over the costs of the paths in II, i.e.,
Cost(II) = sup{Cost(v) | v € II} where sup () = 0. Note that Cost(II) € NU {cc}. For a
finite path v of G and an even color ¢, € C¢, a ce-response in v is a position k of v such
that v(k) ha color c.. For such a response k, the cost of response k in v is the cost of the
prefix of v leading to position k, i.e., Cost(v[1,k]). The c.-response cost of v, denoted by
ResCost(v, c.), is the cost Cost(v[1, k]) of the prefix of v up to the minimal ¢/-response k in
v for some even color ¢, > ¢, if such ¢/-responses exist, and it is 0 otherwise. The mazimal
even color of the path v is the maximal even color visited by v if v visits some even color,
and it is 0 otherwise (note that a 0-response cannot answer to any request). We exploit the
following cost measures for the (possibly infinite) set of exit plays of a given strategy o of
Player 0 leading to a designated exit state.

» Definition 2 (Cost measures of Player 0 strategies). Let s € Exit, o a strategy of Player 0,
II; the (possibly empty) set of exit plays of o leading to s, and ¢, € C, an even color.
Cost of o w.r.t. s, denoted Cost(o, s): it is Cost(IL;).
Even c.-cost of o w.r.t. s, denoted Cost.(c,s,c.): it is Cost(Il.,), where II., is the
(possibly empty) set of exit plays in ITy whose maximal even color is at most ce.

2 The formal proof of such a context-equivalence is postponed to Section 3.3.

6:7

TIME 2017

6:8

Hierarchical Cost-Parity Games

ce-response cost of o w.r.t. s, denoted ResCost(o, s, c.): it is the least upper bound over
the c.-response costs of the exit plays in Il;, i.e., sup{ResCost(v, c.) | v € TIs}.
Request-cost of o w.r.t. s, denoted ReqCost(c, s): it is the least upper bound over the
delays associated with the requests along the exit plays in Ilg, i.e., sup{dl(r, k) | v €
II, and k is a request in v}.

Note that Cost.(o,s,—) is monotonic in the third argument, i.e., Cost.(o,s,c,) >
Coste(o, s,c.) for all c.,c, € C. such that ¢, > c.. We, now, introduce the notion of
summary for a strategy o of Player 0 which records for each exit state s, a value, called exit
value, ranging over a finite set depending only on the set of colors. This value summarizes
the overall behavior of the exit plays of o leading to s. We distinguish three situations (recall
that C7"** = max(C) and CJ'** is odd):

The best scenario for Player 0 is when there is no exit play of o leading to s. We represent

this situation by exploiting the special symbol |-.

The worst scenario is when the request-cost of o w.r.t. s is infinite, or there is an s-exit

play of ¢ having a C]"**-request. We use the color C7"** to describe this scenario.

If none of the two previous conditions is fulfilled, then the exit value is a sextuple of

elements: (7) the first element summarizes the cost of o w.r.t. s, (%) the second element

keeps track of the minimal color w.r.t. < over the maximal colors along the s-exit plays of

o, (i) the third element represents the maximal odd color associated with an unanswered

request, and (7v) the last three elements in the tuple summarize the overall response

behavior of the s-exit plays of o.

The formal definition of exit values for a strategy of Player 0 follows.

» Definition 3 (Exit values of Player 0 strategies). Let s € Exit, o a strategy of Player 0, and
IT; the set of exit plays of o leading to s. The exit value value(a, s) of strategy o w.r.t. s is
defined as follows. If II; = @), then value(c, s) =F. If instead either ReqCost(c,s) = oo or
there is v € II; having a C"**-request, then value(o, s) = CI***. Otherwise, value(o, s) =
(valuecost (0, 8), valuey, (0, s), value, (0, s), valuek (o, s), value (o, 5), valuet (o, 5)) € {bndo,
bndy, unb} x C x C, x C¢ x (CeU{L}) x C., and the following holds:
Cost value valuecost(o, 8): (i) valuecost (o, 8) = unb if Cost(Il) = oo, (ii) valuecost (o, 8) =
0 if Cost(Ils) = 0, and (i) valuecost (o,) = bnd; otherwise.
Parity value value,, (o, s): it is min< {c € C | ¢ is the maximal color of some v € II,}.
0dd value value, (o, s): it is the greatest odd color ¢, € C, such that for some v € I, v
has an unanswered c,-request if such an odd color ¢, exists; otherwise, it is 0.
Even-left value value® (o, s): it is the greatest even color ¢, € C, such that ResCost(a, s, ¢,)
00 and for each v € Ilg, the maximal even color in v is at least c¢., if such an even color
ce exists; otherwise, it is 0.
Buven-middle value value (o, s): it is the smallest even color ¢, such that Cost,(o, s, c.) €
N\ {0} if such a color ¢, exists, and valueX (o, s) = L otherwise (L is for ‘undefined’).
Buven-right value value? (o, s): it is the greatest even color ¢, € C, such that ResCost(a, 5, ¢,)
oo and for each ¢, € C, with ¢, < ¢, Cost.(o,s,c,) # oo, if such an even color ¢,
exists; otherwise, it is 0.

Note that for parity winning conditions, the parity value valuey, (o, s) suffices for summar-
izing the s-exit behavior of strategy o [5]. For cost-parity winning conditions, we also need to
keep track of the maximal odd color value,(c, s) associated with unanswered requests. Note
that value, (o, s) <o valuey (o, s), and value,(o, s) <o valuey (o, s) whenever the maximal
unanswered request is associated with s-exit plays whose maximal color is even. As an
example, let un consider the sub-arena G., — parametric in the color ¢, — in the figure below:

L. Bozzelli, A. Murano, G. Perelli, and L. Sorrentino

Note that all the states are controlled by Player 1. The instances G; and G of G, have
parity value 1, and odd value 1 and 3, respectively. While by using Gy, all the plays starting
from state in are winning for Player 0, the same does not hold by using Gs since in this case,
there are plays where the request 3 is answered in an unbounded way.

For what concerns the even values, the even-left value valuei (0, s) represents, intuitively,
the maximal even color that the s-exit plays of o offer for answering — in a bounded way
— to previous requests in an arbitrary context. The even-right value valuef (0,s), where
value® (o, s) > valuel (o, s), instead represents the maximal even color which may answer to
a request preceding an s-exit play v of ¢ in a bounded way: if the maximal even color in
v is smaller than wluef‘ (0,), then the overall cost of all s-exit plays of ¢ whose maximal
even color is smaller than wluef‘(a, s) is finite. As an example, let us consider the sub-arena
Q;) — parametric in the cost p of the self-loop on the state with color 2 — in the left part of
the figure above, where all the states are controlled by Player 1. The instances Gj and G{ of
G, have even-left value 2, and even-right value 4 and 2, respectively. While for Gy, all the
plays starting from state in are winning for Player 0, the same does not hold for Gj, since
in this case, there are plays where the external request 3 is answered in an unbounded way.
Finally, in order to illustrate the importance of the even-middle value, let us consider the
sub-arena G in the right part of the figure above, where again all the states are controlled
by Player 1. The instances Gy and Gy’ of G have even-left value 2, right-even value 4, and
even-middle value L and 2, respectively. While for G{j, all the plays starting from in are
winning for Player 0, for G, there are plays where the external request 3 is answered in an
unbounded way. We make the following observations which easily follow from Definition 3.

» Proposition 4. Let o be a strategy of Player 0 in G and s € Exit such that value(o, s) =
(f, Cprs Cos Ly ™ cB). Then:
Co R0 Cpry €E <epp, b < B and M € [el if M £ L.

M= 1 if f=bndy, and M # L if f = bnd;.

c® = max(C,) if f # unb, and c® < max(C,) if f = unb and M = cF.
ck = Cpr if cpr € Ce and either f # unb, or ek < B oreM =k

» Definition 5 (Summaries of Player 0 strategies). The set ¢ of exit values for the set C of
colors is the finite set {F, ™%} U &/, where £ is the set of tuples (f, cpr, co,cl, e cB) €

{bndy, bndy , unb} x C'x Cyx Cyx (C.U{ L}) x C, satisfying Conditions (1)—(4) in Proposition 4.

A summary of G is a mapping S : Ezit — £ such that for all s € Exit with S(s) =
(f, Cprs Cos Ly ™ cB) it holds that cL =g Q(in), ¢, <0 Q(s), and Q(in) < c£. The summary

6:9

TIME 2017

6:10

Hierarchical Cost-Parity Games

S(o) of a strategy o of Player 0 in G is the summary of G associating to each s € Ezit, the
exit value value(o, s).

For each summary S, we now define a partial-cost parity game Gad(G,S), exposing the
same interface as G and independent of the set of ‘internal’ states in G, such that there is a
unique strategy og of Player 0 in Gad(G,S). Moreover, g is non-loosing and the exit values
of og correspond to the exit values of any strategy of Player 0 in G having S as summary.

» Definition 6 (Summary-Gadget Arena). Let S be a summary of G. Given ex € Ezit, we
first define the sub-gadget Gad(G,S, ex) of G for summary S and ez, which is the partial
cost-parity game with set of states S., U {S, ez} and set of edges R.;, where:
All the states in S., U {S} are controlled by Player 1, S has color 0 and is the initial
state, ex is the unique exit state, and the color and the player of state ex is as in G.

Moreover, if S(ez) =F, then S.; = 0), and R, = 0. On the opposite side, if S(ex) = C™*,
then S, consists of a unique state s having color C7***, and R, consists of two edges,
one from state S to state s with cost 0, and the other one from s to ex with cost 0 as
well. Otherwise, let S(ex) = (f, cprs o, L, M clt). Then, we distinguish six cases, where
(i) ceg is the color of ex, and (i) d, = ¢,y and d. = ctife, € {0, ¢pr}, and d, = ¢, and
d. = max({ce,c, + 1}) otherwise, where c, = cL if cpr € Uy, and c. = cp, otherwise. In the
figures illustrating the construction, we assume that ex is controlled by Player 0.

Case f = bnd,

In this case, we have ¢ = | and ¢ = max(C,). The sub-gadget Gad(G,S, ex) for this case
is a DAG and is illustrated on the left. Note that the cost of any path from state S to the
exit state ez is 0.

Case f = bnd,

In this case, we have that ¢M € C., ™ € [cE, cF], and CF = max(C,). The associated
sub-gadget is a DAG and it is illustrated on the right, where p = 0 if ¢ < ¢ and p =1
otherwise. Note that the overall cost of all paths from state S to the exit state ex is 1.
Moreover, according to the definition of even-middle value, ¢} represents the smallest even
color ¢, such that the cost of all exit plays leading to ex and having maximal even color c, is
finite and non-null. Additionally, if cL' < ¢}, according to the definition of even-left value,
there are exit plays leading to ez whose maximal even color is cZ, and the overall cost of

such exit plays is 0.

L. Bozzelli, A. Murano, G. Perelli, and L. Sorrentino 6:11

_ M _ L _ .R
Case f = unb, c;’ = 1, and c; = c

The sub-gadget Gad(G, S, ex) for this case is illustrated on the left. When f = unb, the overall
cost of all exit plays leading to ez is infinite. This is implemented by a self-loop with cost 1 on
the state having color c¢f. Note that for a strategy o of Player 0 with valuecost (o, ex) = unb
and value}j (0, ex) = c®, the overall cost of all ez-exit plays having maximal even color at
most ¢ maybe finite. However, in this case, ¢ < max(C,) and ResCost (o, ez, cf + 2) = co.
Thus, the self-loop with cost 1 in the sub-gadget above takes into account also these possible
scenarios.

Case f = unb, ™ = 1, and c& <

This case is similar to the previous one. The unique difference is that now ¢£ < ¢£. Thus,
the associated sub-gadget — illustrated on the right — summarizes strategies o of Player 0 for
which, in particular, valueﬁ (0, ex) = cL and there are exit plays leading to ez whose maximal
even color is cZ, and the overall cost of such exit plays is 0.

Case f = unb, cM € C,, and cM < c}

M
e

associated sub-gadget is illustrated in the left part of the figure below, where p = 0 if
ck < M and p = 1 otherwise.

€ C,, hence, M € [cL cF]. The

€ e’ e

This case is similar to the previous one, but now c

Case f = unb, cM € C,, and cM =}

In this case, we have that ¢ € [cL,] and ¢ < max(C.). The associated sub-gadget

e’ -e
is illustrated on the right of the figure below, where cff = ¢! +2, p = 0 if ¢& < ¢}, and
p = 1 otherwise. In this case there is an even color, namely cf, whose response-cost with
respect to ex is infinite. This is consistent with the fact that for all strategies o of Player 0
such that valuecost (0, ex) = unb, value® (o, ex) = cf, and Cost.(o, ez, ¢?) # co, we have that

ResCost, (0, ex, cf 4 2) = oo.

ot Ao
e
0~>d, | d, 0

O o
We now define the gadget arena Gad(G,S) for the given summary S, which is intuitively
obtained by merging the sub-gadgets Gad(G,S, ex) for the various exit states ex € Ezit and

TIME 2017

6:12

Hierarchical Cost-Parity Games

by adding the state in. Formally, assuming that Se; NS¢ = 0 (i.e., sub-gadgets associated
with distinct exit states share only state S), Gad(G,S) has the same interface as G and
satisfies the following: the set of states of Gad(G,S) is {in,S} U ExitU Sez and the
set of transitions is {(in,S)} U

ex€ Exit
eac Evit Rex, Where transition (in,S) has cost 0.

» Remark. Note that in a summary-gadget arena Gad(G,S), every state which is not in
{in} U Exzit is controlled by Player 1. In particular, there is exactly one strategy of Player 0,

and such a strategy is non-loosing.

By construction, we easily obtain the following result.

» Proposition 7. Let G = (A, Cost,Q, Ezit) be a partial-cost parity arena, o a strategy
of Player 0, og the unique strategy of Player 0 in Gad(G,S(0)), and s € Ezit. Then,
value(o, s) = value(og, s). Moreover, if value(o, s) # CT**, the following holds:
Let v be an s-exit play of o with mazimal even color c.. Then, either (i) Cost.(o, s,ce) >
Coste(os, s,ce), and there is an s-exit play v’ of o whose mazximal even color is at most
Ce, or (ii) Coste(cg, s, ce) = 00, ¢c. < max(C.), and ResCost(c, s, ce + 2) = co.
For each ¢, € C,, ResCost(og, s, c.) = 0o entails that ResCost(o, s,c.) = 00.

Not all the summaries of G are associated with non-loosing strategies (of Player 0). On
the other hand, checking whether a summary is associated with a non-loosing strategy is not
an easy task since we have to check the fulfillment of unboundedness conditions. However,
we can get around the problem by exploiting monotonicity properties of the cost-parity
winning conditions. We define a reflexive and transitive relation J over the set of summaries.
Intuitively, S 3 &’ when S is not worse than S’ for Player 0. A summary S is then relevant
if S(o) O S for some non-loosing memoryless strategy o. As we will see in Section 3.2,
checking whether a summary is relevant can be done in polynomial space.

» Definition 8 (Relevant summaries). Let J be a binary relation over ¢ defined as follows:
F3 ev for all ev € Eg;
ev J C'* for all ev € E¢; o }
(fa Cpry 907 Cé, Cy,Cf’) = (f7 C;)Ta C~oa CQ,CQ/[7C§) if f =p .f~7 Cpr =0 C;ra Co 70 C~07 Cé =0 cgv
el =g ¢, and the followi