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Preface

DISC, the International Symposium on DIStributed Computing, is an international forum
on the theory, design, analysis, implementation and application of distributed systems and
networks. DISC is organized in cooperation with the European Association for Theoretical
Computer Science (EATCS).

This volume contains the papers presented at DISC 2017, the 31st International Sym-
posium on Distributed Computing, held on October 16–20, 2017 in Vienna, Austria. The
volume includes the citation for the 2017 Edsger W. Dijkstra Prize in Distributed Computing,
jointly sponsored by DISC and the ACM Symposium on Principles of Distributed Computing
(PODC), that was presented at DISC 2017 to Elizabeth Borowsky and Eli Gafni for their work
Generalized FLP Impossibility Result for t-resilient Asynchronous Computations. The volume
also includes the citation for the 2017 Doctoral Dissertation Award, also jointly sponsored by
DISC and PODC, that was presented at PODC 2017 in Washington, DC, USA to Mohsen
Ghaffari for his PhD thesis titled Improved Distributed Algorithms for Fundamental Graph
Problems, supervised by Nancy Lynch at the Massachusetts Institute of Technology.

DISC 2017 received a very high number of submissions — 160 regular paper and 11 brief
announcement submissions — which were all peer reviewed. The quality of the submissions
was also very high this year, posing a challenge to the Program Committee (PC). Every
submission was read and evaluated by at least three members of the PC, with the assistance
of 134 external reviewers. Following a 7-day discussion period, the PC held a virtual meeting
on June 28–29, 2017, which was attended by all but a few of its members. The PC selected
39 contributions out of the 160 regular paper submissions, for 37 regular presentations at the
symposium: Three of the papers had highly overlapping results and were therefore asked to
combine their published and oral presentations (the combined paper appears as Three Notes
on Distributed Property Testing).

For each regular presentation, the authors were invited to submit a paper of up to 15
pages for this volume (the final number of pages per paper may vary slightly due to the final
typesetting of this volume); the only exception was the paper resulting from the 3-way merge,
which was allowed a longer proceedings version. Nineteen brief announcements were accepted
in total, for a short presentation accompanied by a 3-page publication in the proceedings each:
Four of those were originally submitted as a brief announcements; the other 15 were regular
submissions that were rejected, but generated substantial interest among the members of
the PC and were invited to be published as brief announcements. Each brief announcement
summarizes ongoing work or recent results, and it can be expected that these results will
appear as full papers in later conferences or journals.

This was the first year that DISC had its proceedings published by LIPIcs (Leibniz
International Proceedings in Informatics): Jukka Suomela, the DISC 2017 proceedings chair,
embraced the challenge and successfully led the transition to LIPIcs. Revised and expanded
versions of several selected proceedings papers will be considered for publication in a special
issue of the journal Distributed Computing.

The Best Paper Award for DISC 2017 was presented to Mohsen Ghaffari, Juho Hirvonen,
Fabian Kuhn, Yannic Maus, Jukka Suomela and Jara Uitto for their paper Improved
Distributed Degree Splitting and Edge Coloring. The Best Student Paper Award for DISC
2017 was presented to Manuela Fischer for her solo-authored paper Improved Deterministic
Distributed Matching via Rounding.
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Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
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The program featured three keynote lectures, presented by Anne-Marie Kermarrec (INRIA,
Rennes, France), Christian Cachin (IBM Research Zurich, Switzerland), and Dana Randall
(Georgia Tech, USA). An abstract of each keynote lecture is included in the proceedings.
The program also included a celebration for Yoram Moses’ 60th birthday, organized by Nir
Shavit, which included a set of invited talks by Shafi Goldwasser (MIT, USA), Joe Halpern
(Cornell University, USA), Sergio Rajsbaum (UNAM, Mexico), Moshe Tenenholtz (Technion,
Israel), and Moshe Vardi (Rice University, USA).

Six workshops were co-located with the DISC symposium this year. The following
workshops were held on the day preceding the main conference (October 16): the 4th
Workshop on Formal Reasoning in Distributed Algorithms (FRIDA), organized by Swen
Jacobs, Igor Konnov, Stephan Merz, and Josef Widder; the 1st Workshop on Blockchain
Technology and Theory, organized by Emmanuelle Anceaume, Christian Cachin, Maurice
Herlihy, and Maria Potop-Butucaru; and the 1st Workshop on the Theory and Practice
of Concurrency, organized by Dan Alistarh. The following workshops were held following
the main conference on October 20: the 6th Workshop on Advances in Distributed Graph
Algorithms (ADGA), chaired by Fabian Kuhn; the 2nd Workshop on Computing in Dynamic
Networks (CoDyn), organized by Arnaud Casteigts and Swan Dubois; and the 1st Workshop
on Hardware Design and Theory (HDT), chaired by Cristoph Lenzen.

We wish to thank the many contributors to DISC 2017: the authors of the submitted
papers, the PC members and the reviewers, the three keynote speakers, the conference
general chairs and local organizers Ulrich Schmid and Josef Widder, the publicity chair
Dan Alistarh, the proceedings chair Jukka Suomela, the web chair Kyrill Winkler, all the
workshop organizers led by the workshop chair Josef Widder, the DISC Steering Committee,
under the guidance of Shlomi Dolev, and the sponsors for their generous support of DISC
2017.

October 2017 Andréa W. Richa,
DISC 2017 Program Chair



Symposium Organization

DISC, the International Symposium on Distributed Computing, is an annual forum for
presentation of research on all aspects of distributed computing. It is organized in cooperation
with the European Association for Theoretical Computer Science (EATCS). The symposium
was established in 1985 as a biannual International Workshop on Distributed Algorithms on
Graphs (WDAG). The scope was soon extended to cover all aspects of distributed algorithms
and WDAG came to stand for International Workshop on Distributed AlGorithms, becoming
an annual symposium in 1989. To reflect the expansion of its area of interest, the name was
changed to DISC (International Symposium on DIStributed Computing) in 1998, opening
the symposium to all aspects of distributed computing. The aim of DISC is to reflect the
exciting and rapid developments in this field.
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2017 Edsger W. Dijkstra Prize in Distributed
Computing

The Edsger W. Dijkstra Prize in Distributed Computing was created to acknowledge out-
standing papers on the principles of distributed computing whose significance and impact on
the theory or practice of distributed computing have been evident for at least a decade. The
Prize is sponsored jointly by the ACM Symposium on Principles of Distributed Computing
(PODC) and the EATCS Symposium on Distributed Computing (DISC). This award is
presented annually, with the presentation taking place alternately at PODC and DISC.

The 2017 Award Committee, composed of Alexander Schwarzmann (Chair), Marcos K.
Aguilera, Alessandro Panconesi, Andrzej Pelc, Andréa W. Richa, and Roger Wattenhofer,
has selected

Elizabeth Borowsky and Eli Gafni

to receive the 2017 Edsger W. Dijkstra Prize in Distributed Computing for the outstanding
paper:

Elizabeth Borowsky, Eli Gafni:
Generalized FLP impossibility result for

t-resilient asynchronous computations.
Proceedings of the 25th Annual ACM Symposium

on Theory of Computing (STOC 1993),
pages 91–100, 1993.

This is a fundamental paper in the original sense. It contains two breakthrough con-
tributions. First, it lays a new concept of read-write simulations in the very foundation
of distributed computing. Second, it introduces the immediate-snapshot model. For the
first contribution, the paper argues that, even though distributed systems exhibit multiple
seemingly incomparable instantiations, they operate on the same fundamental principles. By
deriving these principles, we could obtain computability and complexity results concerning a
given specific distributed system via simulations and reductions.

The paper illustrates this approach by proposing an ingenious simulation tool, now
commonly referred to as the BG Simulation. The tool allows a system of k + 1 processes to
consistently simulate algorithms designed for any k-resilient system. The BG Simulation
proved to be instrumental in establishing impossibility results and building reductions
between them. In particular, this paper uses the BG Simulation to derive the fundamental
impossibility of k-resilient k-set consensus from the impossibility of wait-free set consensus.

The second key contribution, the immediate-snapshot model, leads to a simple and elegant
combinatorial characterization of the set of runs of a protocol. This characterization then
leads to the impossibility of wait-free set consensus through a simple application of Sperner’s
Lemma.

These two points—the use of a simpler model of computation to establish the wait-free
set-consensus impossibility and the use of simulation to derive the generalized k-resilient
impossibility from the wait-free one—distinguishes this paper from two concurrent papers
appeared at STOC 1993, by Herlihy and Shavit and by Saks and Zaharoglou, journal versions
of which were later awarded the prestigious Gödel prize.
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Since 1993, both contributions of this paper were widely adopted by the distributed-
computing community. The illuminating BG Simulation technique gave rise to a broad
spectrum of results in various contexts: from adversarial shared-memory computing to mobile
Byzantine robots. The BG simulation and abstractions around it establish now the very
basis of the state-of-the-art research field of distributed computability theory. The (iterated)
immediate-snapshot model is widely adopted nowadays in combinatorial representations
of distributed computations. As was correctly conjectured by the authors in a concurrent
paper, the protocol complex of this model is precisely captured by the standard chromatic
subdivision, enabling straightforward reasoning about the model’s computability. The two
contributions also help us in teaching the foundations of resilience: it is much easier to deal
with the wait-free model, and deduce computability of other models via simulation.

In summary, this paper turned out to be crucial for our understanding of fault-tolerant
distributed computing. It proposed a powerful reduction technique, the BG simulation, it
introduced the immediate-snapshot model, and it established the fundamental impossibility
of k-resilient k-set consensus.

Yehuda Afek, Tel Aviv University, Israel
Rachid Guerraoui, EPFL, Switzerland
Taisuke Izumi, Nagoya Institute of Technology, Japan
Petr Kuznetsov, Télécom ParisTech, France



2017 Principles of Distributed Computing
Doctoral Dissertation Award

The winner of the 2017 Principles of Distributed Computing Doctoral Dissertation Award
is Dr. Mohsen Ghaffari, for his dissertation Improved Distributed Algorithms for
Fundamental Graph Problems, written under the supervision of Prof. Nancy Lynch at
the Massachusetts Institute of Technology.

Ghaffari’s thesis represents an extraordinary study of network algorithms which is, at
the same time, both deep and extensive. Many of the results included in this thesis (5, to
be precise) have already been awarded “Best Student Paper” award or “Best Paper” award
(and sometimes both) in top-notch conferences. The number of publications produced by
Ghaffari while working on his thesis is also staggering (over 35 papers!): the thesis covers
only a small part of his work. Most important, Ghaffari made a very significant contribution
to the Theory of Network Algorithms, particularly to randomized network algorithms.

Specifically, the thesis contains three parts. In the first part, a new randomized algorithm
for the Maximal Independent Set (MIS) problem is developed. The algorithm is simple and
local in a strong sense: the termination time of a node depends only the coin-tosses within
distance 2. This algorithm improves on all previous results and thus leads to improved
time complexity in the many applications that use MIS as a building block. In the second
part, Ghaffari presents results concerning vertex- and edge-connectivity in graphs, with
applications to different problems such as Connected Dominated Set and Minimum Spanning
Tree computation. And in the last part of the thesis, following classical packet routing results,
scheduling multiple network tasks concurrently is considered. It is shown that in fact, there
may be an unavoidable logarithmic gap between the case of packet routing and general tasks,
but on the positive side, we never need to pay more than a single logarithmic factor (beyond
the “congestion+dilation” lower bound) to schedule multiple tasks.

The award. The award is sponsored jointly by the ACM Symposium on Principles of
Distributed Computing (PODC) and the EATCS Symposium on Distributed Computing
(DISC). This award is presented annually, with the presentation taking place alternately at
PODC and DISC. The 2017 award will be presented at PODC 2017, to be held in Washington
DC, USA.

The 2017 Principles of Distributed Computing Doctoral Dissertation Award Committee:

Cyril Gavoille (LaBRI, U. Bordeaux)
Boaz Patt-Shamir (Chair, Tel Aviv U.)
Michel Raynal (IRISA, U. Rennes 1)
Gadi Taubenfeld (IDC)
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Abstract
A blockchain is a distributed ledger for recording transactions, maintained by many nodes without
central authority through a distributed cryptographic protocol. All nodes validate the informa-
tion to be appended to the blockchain, and a consensus protocol ensures that the nodes agree
on a unique order in which entries are appended. Consensus protocols for tolerating Byzantine
faults have received renewed attention because they also address blockchain systems. This work
discusses the process of assessing and gaining confidence in the resilience of a consensus protocols
exposed to faults and adversarial nodes. We advocate to follow the established practice in cryp-
tography and computer security, relying on public reviews, detailed models, and formal proofs;
the designers of several practical systems appear to be unaware of this. Moreover, we review the
consensus protocols in some prominent permissioned blockchain platforms with respect to their
fault models and resilience against attacks.

1998 ACM Subject Classification C.2.4 Distributed Systems, D.1.3 Concurrent Programming

Keywords and phrases Permissioned blockchains, consensus, Byzantine fault-tolerance, snake
oil, protocol analysis

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.1

Category Keynote talk

1 Introduction

Blockchains or distributed ledgers are systems that provide a trustworthy service to a group
of nodes or parties that do not fully trust each other. They stand in the tradition of
distributed protocols for secure multiparty computation in cryptography and replicated
services tolerating Byzantine faults in distributed systems. Blockchains also contain many
elements from cryptocurrencies, although a blockchain system can be conceived without a
currency or value tokens. Generally, the blockchain acts as a trusted and dependable third
party, for maintaining shared state, mediating exchanges, and providing a secure computing
engine. Many blockchains can execute arbitrary tasks, typically called smart contracts,
written in a domain-specific or a general-purpose programming language.

In a permissionless blockchain, such as Bitcoin or Ethereum, anyone can be a user or
run a node, anyone can “write” to the shared state through invoking transactions (provided
transaction fees are paid for), and anyone can participate in the consensus process for
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determining the “valid” state. A permissioned blockchain in contrast, is operated by known
entities, such as in consortium blockchains, where members of a consortium or stakeholders in
a given business context operate a permissioned blockchain network. Permissioned blockchains
systems have means to identify the nodes that can control and update the shared state, and
often also have ways to control who can issue transactions. A private blockchain is a special
permissioned blockchain operated by one entity, i.e., within one single trust domain.

Permissioned blockchains address many of the problems that have been studied in the
field of distributed computing over decades, most prominently for developing Byzantine fault-
tolerant (BFT) systems. Such blockchains can benefit from many techniques developed for
reaching consensus, replicating state, broadcasting transactions and more, in environments
where network connectivity is uncertain, nodes may crash or become subverted by an
adversary, and interactions among nodes are inherently asynchronous. The wide-spread
interest in blockchain technologies has triggered new research on practical distributed
consensus protocols. There is also a growing number of startups, programmers, and industry
groups developing blockchain protocols based on their own ideas, not relying on established
knowledge.

The purpose of this paper is to give an overview of consensus protocols actually being
used in the context of permissioned blockchains, to review the underlying principles, and to
compare the resilience and trustworthiness of some protocols. We leave out permissionless
(or “public”) blockchains that are coupled to a cryptocurrency and their consensus protocols,
such as proof-of-work or proof-of-stake, although this is a very interesting subject by itself.

Due to lack of space this paper contains only a part of the text of its long version, available
online [18]. There we point out that developing consensus protocols is difficult and should
not be undertaken in an ad-hoc manner. A resilient consensus protocol is only useful when
it continues to deliver the intended service under a wide range of adversarial influence on the
nodes and the network. Detailed analysis and formal argumentation are necessary to gain
confidence that a protocol achieves its goal. In that sense, distributed computing protocols
resemble cryptosystems and other security mechanisms; they require broad agreement on
the underlying assumptions, detailed security models, formal reasoning, and wide-spread
public discussion. Any claim for a “superior” consensus protocol that does not come with the
necessary formal justification should be dismissed, analogously to the approach of “security
by obscurity,” which is universally rejected by experts.

Section 2 reviews the role of consensus for blockchain platforms. In Section 3, we discuss
the consensus protocols of a number of permissioned blockchain platforms, based on the
available product descriptions or source code. Different consensus mechanisms not directly
following the BFT approach are found in the blockchain platforms Sawtooth Lake, Ripple,
Stellar, and IOTA Tangle; they are discussed in the long version. Table 1 displays a summary
of the discussed protocols.

2 Consensus

This section presents background and models for consensus in permissioned blockchains, first
introducing the underlying concept of state-machine replication in Section 2.1. Sections 2.2
and 2.3 briefly review the most prominent family of protocols for this task, which is based
Paxos/Viewstamped Replication (VSR) and PBFT. The essential step of transaction valida-
tion is discussed in Section 2.4. In the long version [18], we furthermore demonstrate the
pitfalls of consensus-protocol design, by analyzing a proposed BFT consensus protocol called
Tangaroa and showing that it does not achieve its goals.
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2.1 Blockchains and consensus
A blockchain is a distributed database holding a continuously growing list of records, controlled
by multiple entities that may not trust each other. Records are appended to the blockchain
in batches or blocks through a distributed protocol executed by the nodes powering the
blockchain. Each block contains a cryptographic hash of the previous block, which fixes
all existing blocks and embeds a secure representation of the complete chain history into
every block. Additional integrity measures are often used in potentially malicious, Byzantine
environments, such as the requirement that a block hash is smaller than a given target (e.g.,
in Nakamoto-style proof-of-work consensus), or a multi-signature (or a threshold signature)
over a block, by the nodes powering the blockchain (for permissioned blockchains). The
nodes communicate over a network and collaboratively construct of the blockchain without
relying on a central authority.

However, individual nodes might crash, behave maliciously, act against the common goal,
or the network communication may become interrupted. For delivering a continuous service,
the nodes therefore run a fault-tolerant consensus protocol to ensure that they all agree on
the order in which entries are appended to the blockchain.

Since the whole blockchain acts as a trusted system, it should be dependable, resilient,
and secure, ensuring properties such as availability, reliability, safety, confidentiality, integrity
and more [4]. A blockchain protocol ensures this by replicating the data and the operations
over many nodes. Replication can have many roles [52, 22, 35], but blockchains replicate
data only for resilience, not for scalability. All nodes validate, in principle, the information
to be appended to the blockchain; this feature stimulates the trust of all nodes in that the
blockchain as a whole operates correctly.

For assessing a blockchain protocol, it is important to be clear about the underlying
trust assumption or security model. This specifies the environment for which the protocol is
designed and in which it satisfies its guarantees. Such assumptions should cover all elements
in the system, including the network, the availability of synchronized clocks, and the expected
(mis-)behavior of the nodes. For instance, the typical generic trust assumption for a system
with n independent nodes says that no more than f < n/k nodes become faulty (crash, leak
information, perform arbitrary actions, and so on), for some k = 2, 3, . . . . The other n− f
nodes are correct. A trust assumption always represents an idealization of the real world; if
some aspect not considered by the model can affect the actually deployed system, then the
security must be reconsidered.

State-machine replication. The formal study and development of algorithms for exploiting
replication to build resilient servers and distributed systems goes back to Lamport et al.’s
pioneering work introducing Byzantine agreement [48, 38]. The topic has evolved through a
long history since and is covered in many textbooks [2, 14, 49, 58]; a good summary can be
found in a “30-year perspective on replication” [22].

As summarized concisely by Schneider [52], the task of reaching and maintaining consensus
among distributed nodes can be described with two elements: (1) a (deterministic) state
machine that implements the logic of the service to be replicated; and (2) a consensus protocol
to disseminate requests among the nodes, such that each node executes the same sequence of
requests on its instance of the service. In the literature, “consensus” means traditionally only
the task of reaching agreement on one single request (i.e., the first one), whereas “atomic
broadcast” [31] provides agreement on a sequence of requests, as needed for state-machine
replication. But since there is a close connection between the two (a sequence of consensus
instances provides atomic broadcast), the term “consensus” more often actually stands for
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atomic broadcast, especially in the context of blockchains. We adopt this terminology here
and also use “transaction” and “request” as synonyms for one of the messages to be delivered
in atomic broadcast.

Asynchronous and eventually synchronous models. Throughout this text, we assume the
eventual-synchrony network model, introduced by Dwork et al. [26]. It models an asynchronous
network that may delay messages among correct nodes arbitrarily, but eventually behaves
synchronously and delivers all messages within a fixed (but unknown) time bound. Protocols
in this model never violate their consistency properties (safety) during asynchronous periods,
as long as the assumptions on the kind and number of faulty nodes are met. When the
network stabilizes and behaves synchronously, then the nodes are guaranteed to terminate
the protocol (liveness). Note that a protocol may stall during asynchronous periods; this
cannot be avoided due to a fundamental discovery by Fischer et al. [27] (the celebrated “FLP
impossibility result”), which rules out that deterministic protocols reach consensus in (fully)
asynchronous networks.

The model is widely accepted today as realistic for designing resilient distributed systems.
Replication protocols have to cope with network interruptions, node failures, system crashes,
planned downtime, malicious attacks by participating nodes, and many more unpredictable
effects. Developing protocols for asynchronous networks therefore provides the best possible
resilience and avoids any assumptions about synchronized clocks and timely network behavior;
making such assumptions can quickly turn into a vulnerability of the system if any one is
not satisfied during deployment.

Protocol designers today prefer the eventual synchrony assumption for its simplicity and
practitioners observe that it has broader coverage of actual network behavior, especially
when compared to so-called partially synchronous models that assume probabilistic network
behavior over time.

Consensus in blockchain. Although Nakamoto’s Bitcoin paper [45] does not explicitly
mention the state-machine replication paradigm [52], Bitcoin establishes consensus on one
shared ledger based on voting among the nodes: “(Nodes) vote with their CPU power,
expressing their acceptance of valid blocks by working on extending them and rejecting
invalid blocks by refusing to work on them. Any needed rules and incentives can be enforced
with this consensus mechanism” [45].

With the work of Garay et al. [28], a formal equivalence between the task solved by the
“Nakamoto protocol” inside Bitcoin and the consensus problem in distributed computing
was shown for the first time. This result coincided with the insight, developed in the fintech
industry, that a blockchain platform may use a generic consensus mechanism and implement
it with any protocol matching its trust model [55]. In today’s understanding a blockchain
platform may use an arbitrary consensus mechanism and retain most of its further aspects
like distribution, cryptographic immutability, and transparency.

Existing consensus and replication mechanisms have therefore received renewed attention,
for applying them to blockchain systems. Several protocols relevant for blockchains are
reviewed in the next sections. We discuss only protocols for static groups here; they
require explicit group reconfiguration [53, 7] and do not change membership otherwise. This
assumption contrasts with view-synchronous replication [23], where the group composition
may change implicitly by removing nodes perceived as unavailable.
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2.2 Crash-tolerant consensus
As mentioned earlier, the form of consensus relevant for blockchain is technically known as
atomic broadcast. It is formally obtained as an extension of a reliable broadcast among the
node, which also provides a global or total order on the messages delivered to all correct nodes.
An atomic broadcast is characterized by two (asynchronous) events broadcast and deliver
that may occur multiple times. Every node may broadcast some message (or transaction) m
by invoking broadcast(m), and the broadcast protocol outputs m to the local application on
the node through a deliver(m) event.

Atomic broadcast ensures that each correct node outputs or delivers the same sequence
of messages through the deliver events. More precisely [31, 14], it ensures these properties:
Validity: If a correct node p broadcasts a message m, then p eventually delivers m.
Agreement: If a message m is delivered by some correct node, then m is eventually delivered

by every correct node.
Integrity: No correct node delivers the same message more than once; moreover, if a correct

node delivers a message m and the sender p of m is correct, then m was previously
broadcast by p.

Total order: For messages m1 and m2, suppose p and q are two correct nodes that deliver
m1 and m2. Then p delivers m1 before m2 if and only if q delivers m1 before m2.

The most important and most prominent way to implement atomic broadcast (i.e.,
consensus) in distributed systems prone to t < n/2 node crashes is the family of protocols
known today as Paxos [36, 37] and Viewstamped Replication (VSR) [46, 41]. Discovered
independently, their core mechanisms exploit the same ideas [39, 40]. They have been
implemented in dozens of mission-critical systems and power the core infrastructure of major
cloud providers today [21].

The Zab protocol inside ZooKeeper is a prominent member of the protocol family; originally
from Yahoo!, it is available as open source [33, 34, 56] (https://zookeeper.apache.org/)
and used by many systems. A more recent addition to the family is Raft [47], a specialized
variant developed with the aim of simplifying the understanding and the implementation
of Paxos. It is contained in dozens of open-source tools (e.g., etcd – https://github.com/
coreos/etcd).

All protocols in this family progress in a sequence of views or “epochs,” with a unique
leader for each view that is responsible for progress. If the leader fails, or more precisely,
if the other nodes suspect that the leader has failed, they can replace the current leader
by moving to the next view with a fresh leader. This view change protocol must ensure
agreement, such that message already delivered by a node in the abandoned view is retained
and delivered by all correct nodes in this or another future view.

2.3 Byzantine consensus
More recently, consensus protocols for tolerating Byzantine nodes have been developed, where
nodes may be subverted by an adversary and act maliciously against the common goal of
reaching agreement. In the eventual-synchrony model considered here, the most prominent
protocol is PBFT (Practical Byzantine Fault-Tolerance) [19]. It can be understood as an
extension of the Paxos/VSR family [39, 12, 40] and also uses a progression of views and
a unique leader within every view. In a system with n nodes PBFT tolerates f < n/3
Byzantine nodes, which is optimal. Many research works have analyzed and improved aspects
of it and made it more robust in prototypes [24].
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Actual systems that implement PBFT or one of its variants are much harder to find than
systems implementing Paxos/VSR. In fact, BFT-SMaRt (https://github.com/bft-smart/
library) is the only known project that was developed before the interest in permissioned
blockchains surged around 2015 [55]. Actually, Bessani et al. [7, 6] from the University of
Lisbon started work on it around 2010. There is widespread agreement today that BFT-
SMaRt is the most advanced and most widely tested implementation of a BFT consensus
protocol available. Experiments have demonstrated that it can reach a throughput of about
80’000 transactions per second in a LAN [7] and very low latency overhead in a WAN [54].

Like Paxos/VSR, Byzantine consensus implemented by PBFT and BFT-SMaRt expects an
eventually synchronous network to make progress. Without this assumption, only randomized
protocols for Byzantine consensus are possible, such as the practical variations relying
on distributed cryptography [16] as prototyped by SINTRA [17] or, much more recently,
HoneyBadger [44].

2.4 Validation

In an atomic broadcast protocol resilient to crashes, every message is usually considered to
be an acceptable request to the service. For Byzantine consensus, especially in blockchain
applications, it makes sense to ask that only “valid” transactions are output by the broadcast
protocol. To formalize this, the protocol is parameterized with a deterministic, external
predicate V (), such that the protocol delivers only messages satisfying V (). This notion has
been introduced as external validity by Cachin et al. [15].

The predicate must be deterministically computable locally by every process. More
precisely, V () must guarantee that when two correct nodes p and q in an atomic broadcast
protocol have both delivered the same sequence of messages up to some point, then p obtains
V (m) = True for any message m if and only if q also determines that V (m) = True.

This combination of transaction validation and establishing consensus is inherent in
permissionless blockchains based on proof-of-work consensus, such as Bitcoin and Ethereum.
For permissioned-blockchain protocols, one could in principle also separate this step from
consensus and perform the (deterministic) validation of transactions on the ordered “raw”
sequence output by atomic broadcast. This could make the protocol susceptible to denial-of-
service attacks from clients broadcasting excessively many invalid transactions. Hence most
consensus protocols reviewed in this text combine ordering with validation and use a form of
external validity based on the current blockchain state.

3 Permissioned blockchains

This section discusses some notable consensus protocols that are part of (or have at least
been proposed for) the following consortium blockchain systems. We assume there are n
nodes responsible for consensus, but some systems contain further nodes with other roles.

3.1 Overview

Among the recent flurry of blockchain-consensus protocols, many have not progressed past
the stage of a paper-based description. In this section, we review only protocols implemented
in a platform; the platform must either be available as open source or have been described
in sufficient detail in marketing material. So far all implemented protocols discussed here
assume independence among the failures, selfish behavior, and subversion of nodes. This

https://github.com/bft-smart/library
https://github.com/bft-smart/library
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Table 1 Summary of consensus resilience properties, some of which use statically configured
nodes with a special role. Symbols and notes: ‘X’ means that the protocol is resilient against
the fault and ‘−’ that it is not; ‘.’ states that no such special node exists in the protocol; ‘?’
denotes that the properties cannot be assessed due to lack of information; (X) denotes the crash
of other nodes, different from the special node; + MultiChain has non-final decisions; ⊕ PoET
assumes trusted hardware available from only one vendor; ⊗ Ripple tolerates one of the five default
Ripple-operated validators (special nodes) to be subverted. The last four protocols are discussed in
the long version [18].
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Hyperledger Fabric/Kafka . X . −
Hyperledger Fabric/PBFT . X . X

Tendermint . X . X

Symbiont/BFT-SMaRt . X . X

R3 Corda/Raft . X . −
R3 Corda/BFT-SMaRt . X . X

Iroha/Sumeragi (BChain) . X . X

Kadena/ScalableBFT ? ? ? ?
Chain/Federated Consensus − (X) − −
Quorum/QuorumChain − (X) − −
Quorum/Raft . X . −
MultiChain + . X . −
Sawtooth Lake/PoET ⊕ X ⊕ −
Ripple ⊗ (X) ⊗ −
Stellar/SCP ? ? ? ?
IOTA Tangle ? ? ? ?

justifies the choice of a numeric trust assumption, expressed only by a fraction of potentially
faulty nodes.

It would be readily possible to extend such protocols to more complex fault assumptions,
as formulated by generic Byzantine quorum systems [42]. For example, this would allow
to run stake-based consensus (as done in some permissionless blockchains) or to express
an arbitrary power structure formulated in a legal agreement for the consortium [11]. No
platform offers this yet, however.

3.2 Hyperledger Fabric – Apache Kafka and PBFT
Hyperledger Fabric (https://github.com/hyperledger/fabric) is a platform for distrib-
uted ledger solutions, written in Golang and with a modular architecture that allows multiple
implementations for its components. It is one of multiple blockchain frameworks hosted
with the Hyperledger Project (https://www.hyperledger.org/) and aims at high degrees
of confidentiality, resilience, flexibility, and scalability.

Following “preview” releases (v0.5 and v0.6 ) in 2016, whose architecture [13] directly
conforms to state-machine replication, a different and more elaborate design was adopted later

DISC 2017

https://github.com/hyperledger/fabric
https://www.hyperledger.org/


1:8 Blockchain Consensus Protocols in the Wild

and is currently available in release v1.0.0-beta. The new architecture [1], termed Fabric V1
here, separates the execution of smart-contract transactions (in the sense of validating the
inputs and outputs of a program) from ordering transactions for avoiding conflicts (in the
sense of an atomic broadcast that ensures consistency). This has several advantages, including
better scalability, a separation of trust assumptions for transaction validation and ordering,
support for non-deterministic smart contracts, partitioning of smart-contract code and data
across nodes, and using modular consensus implementations [59].

The consensus protocol up to release v0.6-preview was a native implementation of
PBFT [19]. With V1 the ordering service responsible for conflict-avoidance can be provided
by an Apache Kafka cluster (https://kafka.apache.org/). Kafka is a distributed streaming
platform with a publish/subscribe interface, aimed at high throughput and low latency. It
logically consists of broker nodes and consistency nodes, where a set of redundant brokers
processes each message stream and a ZooKeeper instance (https://zookeeper.apache.
org/) running on the consistency nodes coordinates the brokers in case of crashes or network
problems. Fabric therefore inherits is basic resilience against crashes from ZooKeeper. A
second implementation of the ordering service is under development, which uses again
the PBFT protocol and achieves resilience against subverted nodes. Besides, BFT-SMaRt
(Sec. 2.3) is currently being integrated in Fabric V1 as one of the ordering services. Since
BFT-SMaRt follows the well-established literature on Byzantine consensus protocols as
mentioned earlier, its properties do not need special discussion here.

3.3 Tendermint
Tendermint Core (https://github.com/tendermint/tendermint) is a BFT protocol that
can be best described as a variant of PBFT [19], as its common-case messaging pattern is a
variant of Bracha’s Byzantine reliable broadcast [8]. In contrast to PBFT, where the client
sends a new transaction directly to all nodes, the clients in Tendermint disseminate their
transactions to the validating nodes (or, simply, validators) using a gossip protocol. The
external validity condition, evaluated within the Bracha-broadcast pattern, requires that a
validator receives the transactions by gossip before it can vote for inclusion of the transaction
in a block, much like in PBFT.

Tendermint’s most significant departure from PBFT is the continuous rotation of the
leader. Namely, the leader is changed after every block, a technique first used in BFT
consensus space by the Spinning protocol [51]. Much like Spinning, Tendermint embeds
aspects of PBFT’s view-change mechanism into the common-case pattern. This is reflected
in the following: while a validator expects the first message in the Bracha broadcast pattern
from the leader, it also waits for a timeout, which resembles the view-change timer in PBFT.
However, if the timer expires, a validator continues participating in the Bracha-broadcast
message pattern, but votes for a nil block.

Tendermint as originally described by Buchman [9] suffers from a livelock bug, pertaining
to locking and unlocking votes by validators in the protocol. However, the protocol contains
additional mechanisms not described in the cited report that prevent the livelock from
occurring [10]. While it appears to be sound, the Tendermint protocol and its implementation
are still subject to a thorough, peer-reviewed correctness analysis.

3.4 Symbiont – BFT-SMaRt
Symbiont Assembly (https://symbiont.io/technology/assembly) is a proprietary distrib-
uted ledger platform. The company that stands behind it, Symbiont, focuses on applications

https://kafka.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://github.com/tendermint/tendermint
https://symbiont.io/technology/assembly
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of distributed ledgers in the financial industry, providing automation for modeling and
executing complex instruments among institutional market participants.

Assembly implements resilient consensus in its platform based on the open-source BFT-
SMaRt toolkit (Sec. 2.3). Symbiont uses its own reimplementation of BFT-SMaRt in a
different programming language; it reports performance numbers of 80’000 transactions per
second (tps) using a 4-node cluster on a LAN. This matches the throughput expected from
BFT-SMaRt [7] and similar results in the research literature on BFT protocols [3].

Assembly uses the standard resilience assumptions for BFT consensus in the eventually-
synchronous model considered here.

3.5 R3 Corda – Raft and BFT-SMaRt
Unlike most of the other permissioned blockchain platforms discussed here, Corda (https:
//github.com/corda/corda) does not order all transactions as one single virtual execution
that forms the blockchain. Instead, it defines states and transactions, where every transaction
consumes (multiple) states and produces a new state [32]. Only nodes affected by a transaction
store it. Seen across all users, this transaction execution model produces a hashed directed
acyclic graph or Hash-DAG. Transactions must be valid, i.e., endorsed by the issuer and
other affected nodes and correct according to the underlying smart-contract logic governing
the state. Each state points to a notary responsible for ensuring transaction uniqueness, i.e.,
that each state is consumed only once. The notary is a logical service that can be provided
jointly by multiple nodes. The type of a state may designate an asset represented by the
network, such as a token or an obligation, or anything else controlled by a smart contract.

A transaction in Corda consumes only states controlled by the same notary; hence, one
notary by itself can atomically verify the transaction’s validity and uniqueness to decide
whether it is executed or not. To enable transactions that operate across states governed by
different notaries, there is a specialized transaction that changes the notary, such that one
notary will become responsible for validating the transaction.

Since a node stores only a part of the Hash-DAG, it only knows about transactions
and states that concern the node. This contrasts with most other distributed ledgers and
provides means for partitioning the data among the nodes. As is the case for other smart-
contract platforms, transactions refer to contracts that can be programmed in a universal
general-purpose language.

A notary service in Corda orders and timestamps transactions that include states pointing
to it. “Notaries are expected to be composed of multiple mutually distrusting parties who
use a standard consensus algorithm” (https://docs.corda.net). A notary service needs
to cryptographically sign its statements of transaction uniqueness, such that other nodes
in the network can rely on its assertions without directly talking to the notary. Currently
there is support for running a notary service as a single node (centralized), for running a
distributed crash-tolerant implementation using Raft (Sec. 2.2), and for distributing it using
the open-source BFT-SMaRt toolkit (Sec. 2.3). When using Raft deployed on n nodes, a
Corda notary tolerates crashes of any t < n/2 of these nodes (Sec. 2.2). With BFT-SMaRt
running on n nodes, the notary is resilient to the subversion of f < n/3 nodes.

3.6 Hyperledger Iroha – Sumeragi
Hyperledger Iroha (https://github.com/hyperledger/iroha) is another open-source block-
chain platform developed under the Hyperledger Project. Its architecture is inspired by the
original (v0.6) design of Fabric (Sec. 3.2). All validating nodes collaboratively execute a
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Byzantine consensus protocol. In that sense it is also similar to Tendermint and Symbiont
Assembly.

The Sumeragi consensus library of Iroha is “heavily inspired” by BChain [25] a chain-style
Byzantine replication protocol that propagates transactions among the nodes with a “chain”
topology. Chain replication [57, 22] arranges the n nodes linearly and each node normally
only receives messages from its predecessor and sends messages to its successor. Although
there is a leader at the head of the chain, like in many other protocols, the leader does
not become a bottleneck since it usually communicates only with the head and the tail
of the chain, but not with all n nodes. This balances the load among the nodes and lets
chain-replication protocols achieve the best possible throughput [30, 3], at the cost of higher
normal-case latency and slightly increased time for reconfiguration after faults.

In Sumeragi, the order of the nodes is determined based on a reputation system, which
takes the “age” of a node and its past performance into account.

As becomes apparent from the documentation (https://github.com/hyperledger/
iroha/wiki/Sumeragi), though, the protocol departs from the “chain” pattern, because the
leader “broadcasts” to all nodes and so does the node at the tail. Hence, it is neither BChain
nor chain replication. Assuming that Sumeragi would correctly implement BChain, then it
relies on the standard assumptions for BFT consensus in the eventually-synchronous model,
just like Fabric v0.6, Tendermint, and Symbiont.

3.7 Kadena – Juno and ScalableBFT

Juno from kadena (https://github.com/kadena-io/juno) is a platform for running smart
contracts that has been developed until about November 2016 according to its website. Juno
claims to use a “Byzantine Fault Tolerant Raft” protocol for consensus and appears to
address the standard BFT model with n nodes, f < n/3 Byzantine faults among them, and
eventual synchrony [26] as timing assumption. Later Juno has been deprecated in favor
of a “proprietary BFT-consensus protocol” called ScalableBFT [43], which is “inspired by
the Tangaroa protocol” and optimizes performance compared to Juno and Tangaroa. The
whitepaper cites over 7000 transactions per second (tps) throughput on a cluster with size
256 nodes.

The design and implementation of ScalableBFT are proprietary and not available for
public review. Being based on Tangaroa, the design might suffer from its devastating
problems mentioned in Section 2.3. Further statements about ScalableBFT made in a blog
post [50] do not enhance the trust in its safety: “Every transaction is replicated to every node.
When a majority of nodes have replicated the transaction, the transaction is committed.”
As is well-known from the literature [22, 14] in the model considered here, with public-key
cryptography for message authentication and asynchrony, agreement in a consensus protocol
can only be ensured with n > 3f and Byzantine quorums [42] of size strictly larger than
n+f

2 , which reduces to 2f + 1 with n = 3f + 1 nodes. Hence “replicating among a majority”
does not suffice.

The claimed performance number of more than 7000 tps is in line with the throughput of
30’000–80’000 tps, as reported by a representative state-of-the-art BFT protocol evaluation in
the literature [3]. However, since Juno is proprietary, it is not not clear how it actually works
nor why one should trust it, as discussed before. One should rather build on established
consensus approaches and publicly validated algorithms than on a proprietary protocol for
resilience. As the resilience of Juno and ScalableBFT cannot be assessed, it remains unclear
whether it actually provides consensus as intended.

https://github.com/hyperledger/iroha/wiki/Sumeragi
https://github.com/hyperledger/iroha/wiki/Sumeragi
https://github.com/kadena-io/juno
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3.8 Chain – Federated Consensus

The Chain Core platform (https://chain.com) is a generic infrastructure for an institutional
consortium to issue and transfer financial assets on permissioned blockchain networks. It
focuses on the financial services industry and supports multiple different assets within the
same network.

The Federated Consensus [20] protocol of Chain Core is executed by the n nodes that
make up the network. One of the nodes is statically configured as “block generator.” It
periodically takes a number of new, non-executed transactions, assembles them into blocks,
and submits the block for approval to “block signers.” Every signer validates the block
proposed for a given block height, checking the signature of the generator, validating the
transactions, and verifying some real-time constraints and then signs an endorsement for
the block. Each signer endorses only one block at each height. Once a node receives q such
endorsements for a block, the node appends the block to its chain.

The protocol is resilient to a number of malicious (Byzantine-faulty) signers but not to a
malicious block generator. If the block generator violates the protocol (e.g., by signing two
different blocks for the same block height) the ledger might fork (i.e., the consensus protocol
violates safety). The documentation states that such misbehavior should be addressed by
retaliation and measures for this remain outside the protocol.

More specifically, when assuming the block generator operates correctly and is live, this
Federated Consensus reduces to an ordinary Byzantine quorum system that tolerates f faulty
signer nodes when q = 2f + 1 and n = 3f + 1; its use for consensus is similar, say, to the
well-understood “authenticated echo broadcast” [14, Sec. 3.10.3]. Up to f block signers may
behave arbitrarily, such as by endorsing incorrect transactions or by refusing to participate,
and the protocol will remain live and available (with the correct block generator).

Overall, however, Federated Consensus is a special case of a standard BFT-consensus
protocol that appears to operate with a fixed “leader” (in the role of the block generator).
The protocol cannot prevent forks if the generator is malicious. Even if the generator simply
crashes, the protocol halts and requires manual intervention. Standard BFT protocols instead
will tolerate leader corruption and automatically switch to a different leader if it becomes
apparent that one leader malfunctions.

Since the block generator must be correct, the purpose of a signature issued by a block
signer remains unclear, at least at the level of the consensus protocol. The only reason
appears to be guaranteeing that the signer cannot later repudiate having observed a block.

3.9 Quorum – QuorumChain and Raft

Quorum (https://github.com/jpmorganchase/quorum), mainly from developers at JP-
Morgan Chase, is an enterprise-focused version of Ethereum, executing smart contracts
with the Ethereum virtual machine, but using an alternative to the default proof-of-work
consensus protocol of the public Ethereum blockchain. The platform currently contains two
consensus protocols, called QuorumChain and Raft-based consensus.

QuorumChain. This protocol uses a smart contract to validate blocks. The trust model
specifies a set of n “voter” nodes and some number of “block-maker” nodes, whose identities
are known to all nodes. The documentation remains unclear about the trust model, not
clearly expressing in which ways one or more of these nodes might fail or behave adversarially.
(One can draw some conclusions from the protocol though.)
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The protocol uses the standard peer-to-peer gossip layer of Ethereum to propagate blocks
and votes on blocks, but the logic itself is formulated as a smart contract deployed with
the genesis block. Nodes digitally sign every message they send. Only block-maker nodes
are permitted to propose block to be appended; nodes with voter role validate blocks and
express their approval by a (yes) vote. A block-maker waits for a randomly chosen time
and then creates, signs, and propagates a new block that extends its own chain. A voter
will validate the block (by executing its transactions and checking its consistency), “vote”
on it, and propagate this. A voter apparently votes for every received block that is valid
and extends its own chain, and it may vote multiple times for a given block height. Voting
continues for a period specified in real time. Each node accepts and extends its own chain
with the block that obtains more votes than a given threshold, and if there are multiple ones,
the one with most votes. There is one block-maker node by default.

To assess the resilience of the protocol, it is obvious that already one malicious block-
maker node can easily create inconsistencies (chain forks) unless the network is perfect and
already provides consensus. With one block-maker, if this node crashes, the protocol halts.
Depending on how the operator sets the voting threshold and on the network connectivity,
it may fork the chain with only two block-makers and without any Byzantine fault. With
a Byzantine fault in a block-maker node or a voter node can disrupt the protocol and also
create inconsistencies. Furthermore, the protocol relies on synchronized clocks for safety and
liveness. Taken together, the protocol cannot ensure consensus in any realistic sense.

Raft-based consensus. The second and more recent consensus option available for Quorum
is based on the Raft protocol [47], which is a popular variant of Paxos [36] available in
many open-source toolkits. Quorum uses the implementation in etcd (https://github.com/
coreos/etcd) and co-locates every Quorum-node with an etcd-node (itself running Raft).
Raft will replicate the transactions to all participating nodes and ensure that each node
locally outputs the same sequence of transactions, despite crashes of nodes. The deployment
actually tolerates that any t < n/2 of the n etcd-nodes may crash. Raft relies on timeliness
and synchrony only for liveness, not for safety.

This is a canonical design, directly interpreting the replication of Quorum smart contracts
as a replicated state machine. It seems appropriate for a protected environment, which is
not subject to adversarial nodes.

3.10 MultiChain
The MultiChain platform (https://github.com/MultiChain/multichain) is intended for
permissioned blockchains in the financial industry and for multi-currency exchanges in a
consortium, aiming at compatibility with the Bitcoin ecosystem as much as possible.

MultiChain uses a dynamic permissioned model [29]: There is a list of permitted nodes
in the network at all times, identified by their public keys. The list can be changed through
transactions executed on the blockchain, but at all times, only nodes on this list validate
blocks and participate in the protocol.

As the MultiChain platform is derived from Bitcoin, its consensus mechanism is called
“mining” [29]; however, in the permissioned model, the nodes do not solve computational
puzzles. Instead, any permitted node may generate new blocks after waiting for a random
timeout, subject to a diversity parameter ρ ∈ [0, 1] that constrains the acceptable miners
for a given block height. More precisely, if the permitted list has length L, then a block
proposal from a node is only accepted if the blockchain held by the validating node does
not already contain a block generated by the same node among the dρLe most recent blocks.

https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/MultiChain/multichain
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Any participating node will extend its blockchain with the first valid block of this kind that
it receives, and if it learns about different, conflicting chain extensions, it will select the
longer one (as in Bitcoin). Furthermore, a well-behaved node will not generate a new block
if its own chain already contains a block of his within the last dρLe blocks.

It appears that the random timeouts and network uncertainty easily lead to forks in the
ledger, even if all nodes are correct. If two different nodes may generate a valid block at
roughly the same time, and any other node will append the one of which it hears first to its
chain, then these two nodes will be forked. This is not different from consensus in Bitcoin
and will eventually converge to a single chain if all nodes follow the protocol. However, if
a single attacking node generates transactions and blocks as it wants, and assuming that
the network behaves favorably for the attack, the node can take over the entire network and
revert arbitrarily many past transactions (in the same way as a “51%-attack” in Bitcoin).

Hence, MultiChain exhibits non-final transactions similar to any proof-of-work consensus.
But whereas lack of finality appears to be a consequence of the public nature of proof-of-work,
and since MultiChain is permissioned, forks and non-final decisions could be avoided here
completely. The traditional consensus protocols for this model, discussed in Sections 2.2 and
2.3, all reach consensus with finality. In the model of non-final consensus decisions, with the
corresponding delays and throughput constraints, the MultiChain consensus protocol can
only remain consistent and live with one single correct node.

3.11 Further platforms

Another recent extension of the Ethereum platform is HydraChain (https://github.com/
HydraChain/hydrachain/blob/develop/README.md), which adds support for creating a
permissioned distributed ledger using the Ethereum infrastructure. The repository describes
a proprietary consensus protocol “initially inspired by Tendermint.” Without clear explanation
of the protocol and formal review of its properties, its correctness remains unclear.

The Swirlds hashgraph algorithm is built into a proprietary “distributed consensus
platform” (https://www.swirlds.com); a white paper is available [5] and the protocol is
also implemented in an open-source consensus platform for distributed applications, called
Babble (https://github.com/babbleio/babble). It targets consensus for a permissioned
blockchain with n nodes and f < n/3 Byzantine faults among them, i.e., the standard
Byzantine consensus problem according to Section 2.3. In contrast to PBFT and other
protocols discussed there, it operates in a “completely asynchronous” model. The white paper
states arguments for the safety and liveness of the protocol and explains that hashgraph
consensus is randomized to circumvent the FLP impossibility [27]. Since the algorithm is
guaranteed to reach agreement on a binary decision (i.e., with only 0/1 outcomes) only
with exponentially small probability in n [5, Thm. 5.16], it appears similar to Ben-Or-style
randomized agreement [14, Sec. 5.5]. However, no independent validation or analysis of
hashgraph consensus is available.
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Abstract
Recommenders are ubiquitous on the Internet today: they tell you which book to read, which
movie you should watch, predict your next holiday destination, give you advices on restaurants
and hotels, they are even responsible for the posts that you see on your favorite social media and
potentially greatly influence your friendship on social networks.

While many approaches exist, collaborative filtering is one of the most popular approaches to
build online recommenders that provide users with content that matches their interest. Interest-
ingly, the very notion of users can be general and span actual humans or software applications.
Recommenders come with many challenges beyond the quality of the recommendations. One of
the most prominent ones is their ability to scale to a large number of users and a growing volume
of data to provide real-time recommendations introducing many system challenges. Another
challenge is related to privacy awareness: while recommenders rely on the very fact that users
give away information about themselves, this potentially raises some privacy concerns.

In this talk, I will focus on the challenges associated to building efficient, scalable and privacy-
aware recommenders.
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Abstract
Markov chain Monte Carlo methods have become ubiquitous across science and engineering to
model dynamics and explore large sets of configurations. The idea is to perform a random walk
among the configurations so that even though only a very small part of the space is visited,
samples will be drawn from a desirable distribution. Over the last 20 years there have been
tremendous advances in the design and analysis of efficient sampling algorithms for this purpose,
building on insights from statistical physics. One of the striking discoveries has been the real-
ization that many natural Markov chains undergo phase transitions, whereby they change from
being efficient to inefficient as some parameter of the system is modified, also revealing interesting
properties of the underlying random structures.

We will explore how phase transitions can provide valuable insights in three settings. First,
they allow us to understand the limitations of certain classes of sampling algorithms, potentially
leading to faster alternative approaches. Second, they reveal statistical properties of stationary
distributions, giving insight into various interacting models. Example include colloids, or binary
mixtures of molecules, segregation models, where individuals are more likely move when they are
unhappy with their local demographics, and interacting particle systems from statistical physics.
Last, they predict emergent phenomena that can be harnessed for the design of distributed
algorithms for certain asynchronous models of programmable active matter. We will see how
these three research threads are closely interrelated and inform one another.

The talk will take a random walk through some of the results included in the references.
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Abstract
In many lock-free algorithms, threads help one another, and each operation creates a descriptor
that describes how other threads should help it. Allocating and reclaiming descriptors intro-
duces significant space and time overhead. We introduce the first descriptor abstract data type
(ADT), which captures the usage of descriptors by lock-free algorithms. We then develop a
weak descriptor ADT which has weaker semantics, but can be implemented significantly more
efficiently. We show how a large class of lock-free algorithms can be transformed to use weak
descriptors, and demonstrate our technique by transforming several algorithms, including the
leading k-compare-and-swap (k-CAS) algorithm. The original k-CAS algorithm allocates at
least k + 1 new descriptors per k-CAS. In contrast, our implementation allocates two descriptors
per process, and each process simply reuses its two descriptors. Experiments on a variety of work-
loads show significant performance improvements over implementations that reclaim descriptors,
and reductions of up to three orders of magnitude in peak memory usage.
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1 Introduction

Many concurrent data structures use locks, but locks have downsides, such as susceptibility to
convoying, deadlock and priority inversion. Lock-free data structures avoid these downsides,
and can be quite efficient. They guarantee that some process will always makes progress,
even if some processes halt unexpectedly. This guarantee is typically achieved with helping,
which allows a process to harness any time that it would otherwise spend waiting for another
operation to complete. Specifically, whenever a process p is prevented from making progress
by another operation, it attempts to perform some (or all) of the work of the other operation,
on behalf of the process that started it. This way, even if the other process has crashed, its
operation can be completed, so that it no longer blocks p.

In simple lock-free data structures (e.g., [27, 13, 22, 25]), a process can determine how to
help an operation that blocks it by inspecting a small part of the data structure. In more
complex lock-free data structures [12, 16, 26, 10], processes publish descriptors for their
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operations, and helpers look at these descriptors to determine how to help. A descriptor
typically encodes a sequence of steps that a process should follow in order to complete the
operation that created it.

Since lock-free algorithms cannot use mutual exclusion, many helpers can simultaneously
help an operation, potentially long after the operation has terminated. Thus, to avoid
situations where helpers read inconsistent data in a descriptor and corrupt the data structure,
each descriptor must remain consistent and accessible until no helper will ever access it again.
This leads to wasteful algorithms which allocate a new descriptor for each operation.

In this work, we introduce two simple abstract data types (ADTs) that capture the
way descriptors are used by wasteful algorithms (in Section 2). The immutable descriptor
ADT provides two operations, CreateNew and ReadField, which respectively create and
initialize a new descriptor, and read one of its fields. The mutable descriptor ADT extends
the immutable descriptor ADT by adding two operations: WriteField and CASField. These
allow a helper to modify fields of the descriptor (e.g., to indicate that the operation has been
partially or fully completed).

The natural way to implement the immutable and mutable descriptor ADTs is to have
CreateNew allocate memory and initialize it, and to have ReadField, WriteField and CASField
perform a read, write and CAS, respectively. Every implementation of one of these ADTs must
eventually reclaim the descriptors it allocates. Otherwise, the algorithm would eventually
exhaust memory. We briefly explain why reclaiming descriptors is expensive.

In order to safely free a descriptor, a process must know that the descriptor is no longer
reachable. This means no other process can reach the descriptor by following pointers in
shared memory or in its private memory. State of the art lock-free memory reclamation
algorithms such as hazard pointers [23] and DEBRA+ [6] can determine when no process has
a pointer in its private memory to a given object, but they typically require the underlying
algorithm to identify a time t after which the object is no longer reachable from shared
memory. In an algorithm where each operation removes all pointers to its descriptor from
shared memory, t is when O completes. However, in some algorithms (e.g., [9]), pointers to
descriptors are “lazily” cleaned up by subsequent operations, so t may be difficult to identify.
The overhead of reclaiming descriptors comes both from identifying t, and from actually
running a lock-free memory reclamation algorithm.

Additionally, in some applications, such as embedded systems, it is important to have a
small, predictable number of descriptors in the system. In such cases, one must use memory
reclamation algorithms that aggressively reclaim memory to minimize the number of objects
that are waiting to be reclaimed at any point in time. Such algorithms incur high overhead.
For example, hazard pointers can be used to maintain a small memory footprint, but a
process must perform costly memory fences every time it tries to access a new descriptor.

To circumvent the aforementioned problems, we introduce a weak descriptor ADT (in
Section 3) that has slightly weaker semantics than the mutable descriptor ADT, but can be
implemented without memory reclamation. The crucial difference is that each time a process
invokes CreateNew to create a new descriptor, it invalidates all of its previous descriptors.
An invocation of ReadField on an invalid descriptor fails and returns a special value ⊥.
Invocations of WriteField and CASField on invalid descriptors have no effect. We believe the
weak descriptor ADT can be useful in designing new lock-free algorithms, since an invocation
of ReadField that returns ⊥ can be used to inform a helper that it no longer needs to continue
helping (making further accesses to the descriptor unnecessary).

We also identify a class of lock-free algorithms that use the descriptor ADT, and which
can be transformed to use the weak descriptor ADT (in Section 3.1). At a high level,
these are algorithms in which (1) each operation creates a descriptor and invokes a Help
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function on it, and (2) ReadField, WriteField and CASField operations occur only inside
invocations of Help. Intuitively, the fact that these operations occur only in Help makes
it easy to determine how the transformed algorithm should proceed when it performs an
invalid operation: the operation being helped must have already terminated, so it no longer
needs help. We demonstrate our approach by transforming a wasteful implementation of a
double-compare-single-swap (DCSS) primitive [14].

We then present an extension to our weak descriptor ADT, and show how algorithms
that perform ReadField operations outside of Help can be transformed to use this extension
(in Section 4). We demonstrate our approach by transforming a wasteful implementation of a
k-compare-and-swap (k-CAS) primitive [14]. In the full paper, we also transform the LLX and
SCX primitives of Brown et al. [9], and provide proofs for all of our transformations. These
primitives can be used to implement a wide variety of advanced lock-free data structures.
For example, LLX and SCX have been used to implement lists, chromatic trees, relaxed AVL
trees, relaxed (a, b)-trees, relaxed b-slack trees and weak AVL trees [10, 7, 15].

We use mostly known techniques to produce an efficient, provably correct implementation
of our extended weak descriptor ADT. The high level idea is to (1) store a sequence number
in each descriptor, (2) replace pointers to descriptors with tagged sequence numbers, which
contain a process name and a sequence number, and (3) increment the sequence number in a
descriptor each time it is reused. With this implementation, the transformed algorithms for
k-CAS, and LLX and SCX, have some desirable properties. In the original k-CAS algorithm,
each operation attempt allocates at least k + 1 new descriptors. In contrast, the transformed
algorithm allocates only two descriptors per process, once, at the beginning of the execution,
and these descriptors are reused. This entirely eliminates dynamic allocation and memory
reclamation for descriptors, and results in an extremely small descriptor footprint.

We present extensive experiments on a 64-thread AMD system and a 48-thread Intel
system (in Section 5). Our results show that transformed implementations always perform
at least as well as their wasteful counterparts, and significantly outperform them in some
workloads. In a k-CAS microbenchmark, our implementation outperformed wasteful im-
plementations using fast distributed epoch-based reclamation [6], hazard pointers [23] and
read-copy-update (RCU) [11] by up to 2.3x, 3.3x and 5.0x, respectively.

The crucial observation in this work is that, in algorithms where descriptors are used only
to facilitate helping, a descriptor is no longer needed once its operation has terminated. This
allows a process to reuse a descriptor as soon as its operation finishes, instead of allocating
a new descriptor for each operation, and waiting considerably longer (and incurring much
higher overhead) to reclaim it using standard memory reclamation techniques. The challenge
in this work is to characterize the set of algorithms that can benefit from this observation,
and to design and prove the correctness of a transformation that takes such algorithms and
produces new algorithms that simply reuse a small number of descriptors.

2 Wasteful Algorithms

In this section, we describe two classes of lock-free wasteful algorithms, and give descriptor
ADTs that capture their behaviour. First, we consider algorithms with immutable descriptors,
which are not changed after they are initialized. We then discuss algorithms with mutable
descriptors, which are modified by helpers.

For the sake of illustration, we start by describing one common way that lock-free wasteful
algorithms are implemented. Consider a lock-free algorithm that implements a set of high-
level operations. Each high-level operation consists of one or more attempts, which either
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succeed, or fail due to contention. Each high-level operation attempt accesses a set of objects
(e.g., individual memory locations or nodes of a tree). Conceptually, a high-level operation
attempt locks a subset of these objects and then possibly modifies some of them. These locks
are special: instead of providing exclusive access to a process, they provide exclusive access
to a high-level operation attempt. Whenever a high-level operation attempt by a process
p is unable to lock an object because it is already locked by another high-level operation
attempt O, p first helps O to complete, before continuing its own attempt or starting a new
one. By helping O complete, p effectively removes the locks that prevent it from making
progress. Note that p is able to access objects locked for a different high-level operation
attempt (which is not possible in traditional lock-based algorithms), but only for the purpose
of helping the other high-level operation attempt complete.

We now discuss how helping is implemented. Each high-level operation or operation
attempt allocates a new descriptor object, and fills it with information that describes any
modifications it will perform. This information will be used by any processes that help
the high-level operation attempt. For example, if the lock-free algorithm performs its
modifications with a sequence of CAS steps, then the descriptor might contain the addresses,
expected values and new values for the CAS steps.

A high-level operation attempt locks each object it would like to access by publishing
pointers to its descriptor, typically using CAS. Each pointer may be published in a dedicated
field for descriptor pointers, or in a memory location that is also used to store application
values. For example, in the BST of Ellen et al., nodes have a separate field for descriptor
pointers [12], but in Harris’ implementation of multi-word CAS from single-word CAS,
high-level operations temporarily replace application values with pointers to descriptors [14].

When a process encounters a pointer ptr to a descriptor (for a high-level operation
attempt that is not its own), it may decide to help the other high-level operation attempt
by invoking a function Help(ptr). Typically, Help(ptr) is also invoked by the process that
started the high-level operation. That is, the mechanism used to help is the same one used
by a process to perform its own high-level operation attempt.

Wasteful algorithms typically assume that, whenever an operation attempt allocates
a new descriptor, it uses fresh memory that has never previously been allocated. If this
assumption is violated, then an ABA problem may occur. Suppose a process p reads an
address x and sees A, then performs a CAS to change x from A to C, and interprets the
success of the CAS to mean that x contained A at all times between the read and CAS.
If another process changes x from A to B and back to A between p’s read and CAS, then
p’s interpretation is invalid, and an ABA problem has occurred. Note that safe memory
reclamation algorithms will reclaim a descriptor only if no process has, or can obtain, a
pointer to it. Thus, no process can tell whether a descriptor is allocated fresh or reclaimed
memory. So, safe memory reclamation will not introduce ABA problems.

2.1 Immutable descriptors
We give a straightforward immutable descriptor ADT that captures the way that descriptors
are used by the class of wasteful algorithms we just described. A descriptor has a set of fields,
and each field contains a value. The ADT offers two operations: CreateNew and ReadField.
CreateNew takes, as its arguments, a descriptor type and a sequence of values, one for each
field of the descriptor. It returns a unique descriptor pointer des that has never previously
been returned by CreateNew. Every descriptor pointer returned by CreateNew represents a
new immutable descriptor object. ReadField takes, as its arguments, a descriptor pointer
des and a field f , and returns the value of f in des. We require the immutable descriptor
ADT operations to be lock-free, so they can be used to implement lock-free data structures.
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1 DCSS(a1, e1, a2, e2, n2) :
2 des := CreateNew(DCSSdes, a1, e1, a2, e2, n2)
3 fdes := flag(des)
4 loop
5 r := CAS(a2, e2, fdes)
6 i f r is flagged then DCSSHelp(r)
7 else exit loop
8 i f r = e2 then DCSSHelp(fdes)
9 return r

11 DCSSRead(addr) :
12 loop
13 r := ∗addr
14 i f r is flagged then DCSSHelp(r)
15 else exit loop
16 return r

17 type DCSSdes :
{ADDR1, EXP1, ADDR2, EXP2, NEW2}

21 DCSSHelp(fdes) :
22 des := unflag(fdes)
23 a1 := ReadField(des, ADDR1)
24 a2 := ReadField(des, ADDR2)
25 e1 := ReadField(des, EXP1)
26 i f ∗a1 = e1 then
27 n2 := ReadField(des, NEW2)
28 CAS(a2, fdes, n2)
29 else
30 e2 := ReadField(des, EXP2)
31 CAS(a2, fdes, e2)

Figure 1 Code for the DCSS algorithm of Harris et al. [14] using the immutable descriptor ADT.

Example Algorithm: DCSS. We use the double-compare single-swap (DCSS) algorithm
of Harris et al. [14] as an example of a lock-free algorithm that fits the preceding descrip-
tion. Its usage of descriptors is easily captured by the immutable descriptor ADT. A
DCSS(a1, e1, a2, e2, n2) operation does the following atomically. It checks whether the values
in addresses a1 and a2 are equal to a pair of expected values, e1 and e2. If so, it stores the
value n2 in a2 and returns e2. Otherwise it returns the current value of a2.

Pseudocode for the DCSS algorithm appears in Figure 1. At a high level, DCSS creates
a descriptor, and then attempts to lock a2 by using CAS to replace the value in a2 with a
pointer to its descriptor. Since the DCSS algorithm replaces values with descriptor pointers,
it needs a way to distinguish between values and descriptor pointers (in order to determine
when helping is needed). So, it steals a bit from each memory location and uses this bit to
flag descriptor pointers.

We now give a more detailed description. DCSS starts by creating and initializing a new
descriptor des at line 2. It then flags des at line 3. We call the result fdes a flagged pointer.
DCSS then attempts to lock a2 in the loop at lines 4-7. In each iteration, it tries to store
its flagged pointer in a2 using CAS. If the CAS is successful, then the operation attempt
invokes DCSSHelp to complete the operation (at line 8). Now, suppose the CAS fails. Then,
the DCSS checks whether its CAS failed because a2 contained another DCSS operation’s
flagged pointer (at line 6). If so, it invokes DCSSHelp to help the other DCSS complete,
and then retries its CAS. DCSS repeatedly performs its CAS (and helping) until the DCSS
either succeeds, or fails because a2 did not contain e2.

DCSSHelp takes a flagged pointer fdes as its argument, and begins by unflagging fdes (to
obtain the actual descriptor pointer for the operation). Then, it reads a1 and checks whether
it contains e1 (at line 26). If so, it uses CAS to change a2 from fdes to n2, completing
the DCSS (at line 28). Otherwise, it uses CAS to change a2 from fdes to e2, effectively
aborting the DCSS (at line 31). Note that this code is executed by the process that created
the descriptor, and also possibly by several helpers. Some of these helpers may perform a
CAS at line 26 and some may perform a CAS at line 28, but only the first of these CAS
steps can succeed.

When a program uses DCSS, some addresses can contain either values or descriptor
pointers. So, each read of such an address must be replaced with an invocation of a function
called DCSSRead. DCSSRead takes an address addr as its argument, and begins by reading
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addr (at line 13). It then checks whether it read a descriptor pointer (at line 14) and, if so,
invokes DCSSHelp to help that DCSS complete. DCSSRead repeatedly reads and performs
helping until it sees a value, which it returns (at line 16).

2.2 Mutable descriptors
In some more advanced lock-free algorithms, each descriptor also contains information about
the status of its high-level operation attempt, and this status information is used to coordinate
helping efforts between processes. Intuitively, the status information gives helpers some idea
of what work has already been done, and what work remains to be done. Helpers use this
information to direct their efforts, and update it as they make progress. For example, the
state information might simply be a bit that is set (by the process that started the high-level
operation, or a helper) once the high-level operation succeeds.

As another example, in an algorithm where high-level operation attempts proceed in
several phases, the descriptor might store the current phase, which would be updated by
helpers as they successfully complete phases. Observe that, since lock-free algorithms cannot
use mutual exclusion, helpers often use CAS to avoid making conflicting changes to status
information, which is quite expensive. Updating status information may introduce contention.
Even when there is no contention, it adds overhead. Lock-free algorithms typically try to
minimize updates to status information. Moreover, status information is usually simplistic,
and is encoded using a small number of bits.

Status information might be represented as a single field in a descriptor, or it might be
distributed across several fields. Any fields of a descriptor that contain status information
are said to be mutable. All other fields are called immutable, because they do not change
during an operation.

Mutable descriptor ADT. We now extend the immutable descriptor ADT to provide
operations for changing (mutable) fields of descriptors. The mutable descriptor ADT offers
four operations: CreateNew, WriteField, CASField and ReadField. The semantics for
CreateNew and ReadField are the same as in the immutable descriptor ADT. WriteField
takes, as its arguments, a descriptor pointer des, a field f and a value v. It stores v in field
f of des. CASField takes, as its arguments, a descriptor pointer des, a field f , an expected
value exp and a new value v. Let vf be the value of f in des just before the CASField. If
vf = exp, then CASField stores v in f . CASField returns vf . As in the immutable descriptor
ADT, we require the operations of the mutable descriptor ADT to be lock-free.

Example Algorithm: k-CAS. A k-CAS(a1, ..., ak, e1, ..., ek, n1, ..., nk) operation atomically
does the following. First, it checks if each address ai contains its expected value ei. If so, it
writes a new value ni to ai for all i and returns true. Otherwise it returns false.

The k-CAS algorithm of Harris et al. [14] is an example of a lock-free algorithm that has
descriptors with mutable fields. At a high level, a k-CAS operation O starts by creating a
descriptor that contains its arguments. It then tries to lock each location ai for the operation
O by changing the contents of ai from ei to des, where des is a pointer to O’s descriptor.
If it successfully locks each location ai, then it changes each ai from des to ni, and returns
true. If it fails because ai is locked for another operation, then it helps the other operation
to complete (and unlock its addresses), and then tries again. If it fails because ai contains an
application value different from ei, then the k-CAS fails, and unlocks each location aj that it
locked by changing it from des back to ej , and returns false. (The same thing happens if O

fails to lock ai because the operation has already terminated.)
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In addition to the arguments to its k-CAS operation, a k-CAS descriptor contains a 2-bit
state field that initially contains Undecided and is changed to Succeeded or Failed depending
on how the operation progresses. This state field is used to coordinate helpers.

Let p be a process performing (or helping) a k-CAS operation O that created a descriptor
d. If p fails to lock some address ai in d, then p attempts to change the state of d using
CAS from Undecided to Failed. On the other hand, if p successfully locks each address in
d, then p attempts to change the state of d using CAS from Undecided to Succeeded. Since
the state field changes only from Undecided to either Failed or Succeeded, only the first CAS
on the state field of d will succeed. The k-CAS implementation then uses a lock-free DCSS
primitive (the one presented in Section 2.1) to ensure that p can lock addresses for O only
while d’s state is Undecided. This prevents helpers from erroneously performing successful
CAS steps after the k-CAS operation is already over.

Recall that the DCSS algorithm allocates a descriptor for each DCSS operation. A
k-CAS operation performs potentially many DCSS operations (at least k for a successful
k-CAS), and also allocates its own k-CAS descriptor. The k-CAS algorithm need not be
aware of DCSS descriptors (or of the bit reserved in each memory location by the DCSS
algorithm to flag values as DCSS descriptor pointers), since it can simply use the DCSSRead
procedure described above whenever it accesses a memory location that might contain a
DCSS descriptor. However, the k-CAS algorithm performs DCSS on the state field of a
k-CAS descriptor, which is accessed using the k-CAS descriptor’s ReadField operation. To
allow DCSS to access the state field, we must modify DCSS slightly. First, instead of passing
an address a1 to DCSS, we pass a pointer to the k-CAS descriptor and the name of the state
field. Second, we replace the read of addr1 in DCSS with an invocation of ReadField.

Since k-CAS descriptor pointers are temporarily stored in memory locations that normally
contain application values, the k-CAS algorithm needs a way to determine whether a value
in a memory location is an application value or a k-CAS descriptor pointer. In the DCSS
algorithm, the solution was to reserve a bit in each memory location, and use this bit to
flag the value contained in the location as a pointer to a DCSS descriptor. Similarly, the
k-CAS algorithm reserves a bit in each memory location to flag a value as a k-CAS descriptor
pointer. The k-CAS and DCSS algorithms need not be aware of each other’s reserved bits,
but they should not reserve the same bit (or else, for example, a DCSS operation could
encounter a k-CAS descriptor pointer, and interpret it as a DCSS descriptor pointer).

When the k-CAS algorithm is used, some memory addresses may contain either values or
descriptor pointers, so reads of such addresses must be replaced by a k-CASRead operation.
This operation reads an address, and checks whether it contains a k-CAS descriptor pointer.
If so, it helps the k-CAS operation to complete, and tries again. Otherwise, it returns the
value it read. For further details on the k-CAS algorithm, refer to [14].

3 Weak descriptors

In this section we present a weak descriptor ADT that has weaker semantics than the mutable
descriptor ADT, but can be implemented more efficiently (without requiring any memory
reclamation for descriptors). We identify a class of algorithms that use the mutable descriptor
ADT, and which can be transformed to use the weak descriptor ADT, instead.

We first discuss a restricted case where operation attempts only create a single descriptor,
and we give an ADT and transformation for that restricted case. (In the next section, we
describe how the ADT and transformation can be modified slightly to support operation
attempts that create multiple descriptors.)
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The weak descriptor ADT is a variant of the mutable descriptor ADT that allows some
operations to fail. To facilitate the discussion, we introduce the concept of descriptor validity.
Let des be a pointer returned by a CreateNew operation O by a process p, and d be the
descriptor pointed to by des. In each configuration, d is either valid or invalid. Initially,
d is valid. If p performs another CreateNew operation O′ after O, then d becomes invalid
immediately after O′ (and will never be valid again).

We say that a ReadField(des, ...), WriteField(des, ...) or CASField(des, ...) operation is
performed on a descriptor d, where des is a pointer to d. An operation on a valid (resp.,
invalid) descriptor is said to be valid (resp., invalid). Invalid operations have no effect on any
base object, and return a special value ⊥ (which is never contained in a field of any descriptor)
instead of their usual return value. We say that a CreateNew operation O is performed on
a descriptor d if O returns a pointer to d. Observe that a CreateNew operation is always
valid. We say that a process p owns a descriptor d if it performed a CreateNew operation
that returned a pointer des to d.

The semantics for CreateNew are the same as in the mutable descriptor ADT. The
semantics for the other three operations are the same as in the mutable descriptor ADT,
except that they can be invalid. As in the previous ADTs, these operations must be lock-free.

3.1 Transforming a class of algorithms to use the weak descriptor ADT
We now formally define a class of lock-free algorithms that use the mutable descriptor ADT,
and can easily be transformed so that they use the weak descriptor ADT, instead. We
say that a step s of an execution is nontrivial if it changes the state of an object o in
shared memory, and trivial otherwise. In particular, all invalid operations are trivial, and an
unsuccessful CAS or a CAS whose expected and new values are the same are both trivial. In
the following, we abuse notation slightly by referring interchangeably to a descriptor and a
pointer to it.

I Definition 1. Weak-compatible algorithms (WCA) are lock-free wasteful algorithms that
use the mutable descriptor ADT, and have the following properties:
1. Each high-level operation attempt O by a process p may create (and initialize) a single

descriptor d. Inside O, p may perform at most one invocation of a function Help(d) (and
p may not invoke Help(d) outside of O).

2. A process may help any operation attempt O′ by another process by invoking Help(d′)
where d′ is the descriptor that was created by O′.

3. If O terminates at time t, then any steps taken in an invocation of Help(d) after time t

are trivial (i.e., do not change the state of any shared object, incl. d).
4. While a process q 6= p is performing Help(d), q cannot change any variables in its private

memory that are still defined once Help(d) terminates (i.e., variables that are local to the
process q, but are not local to Help).

5. All accesses (read, write or CAS) to a field of d occur inside either Help(d) or O.

At a high level, properties 1 and 2 of WCA describe how descriptors are created and
helped. Property 4 intuitively states that, whenever a process q finishes helping another
process perform its operation attempt, q knows only that it finished helping, and does
not remember anything about what it did while helping the other process. In particular,
this means that q cannot pay attention to the return value of Help. We explain why this
behaviour makes sense. If q creates a descriptor d as part of a high-level operation attempt
O and invokes Help(d), then q might care about the return value of Help, since it needs
to compute the response of O. However, if q is just helping another process p’s high-level
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operation attempt O, then it does not care about the response of Help, since it does not
need to compute the response of O. The remaining properties, 3 and 5, allow us to argue
that the contents of a descriptor are no longer needed once the operation that created it has
terminated (and, hence, it makes sense for the descriptor to become invalid). In Section 4,
we will study a larger class of algorithms with a weaker version of property 5.

The transformation. Each algorithm in WCA can be transformed in a straightforward way
into an algorithm that uses the weak descriptor ADT as follows. Consider any ReadField or
CASField operation op performed by a high-level operation attempt O in an invocation of
Help(d), where d was created by a different high-level operation attempt O′. Note that op is
performed while O is helping O′. After op, a check is added to determine whether op was
invalid, in which case p returns from Help immediately. (In this case, Help does not need to
continue, since op will be invalid only if O′ has already been completed by the process that
owns d or a helper.)

Reading immutable fields efficiently. If an invocation of Help(des) accesses many immut-
able fields of a descriptor, then we can optimize it by replacing many ReadField operations
with a single, more efficient operation. Details appear in the full paper.

4 Extended Weak Descriptors

In this section, we describe an extended version of the weak descriptor ADT, and an extended
version of the transformation in Section 3.1. This extended transformation weakens property 5
of WCA so that ReadField operations on a descriptor d can also be performed outside of
Help(d). At a high level, we handle ReadField operations performed outside of Help as follows.
For ReadFields performed inside Help, we have seen that we can simply stop helping when ⊥
is returned. However, for ReadFields performed outside of Help, it is not clear, in general,
how we should respond if ⊥ is returned. Intuitively, the goal is to find a value that ReadField
can return so that the algorithm will behave the same way as it would if the descriptor were
still valid. In some algorithms, just knowing that an operation has been completed gives us
enough information to determine what a ReadField operation should return (as we will see
below).

Extended weak descriptor ADT. This ADT is the same as the weak descriptor ADT,
except that ReadField is extended to take, as an additional argument, a default value dv

that is returned instead of ⊥ when the operation is invalid. Observe that the weak descriptor
ADT is a special case of the extended weak descriptor ADT where each argument dv to an
invocation of ReadField is ⊥.

The extended transformation. CASField and WriteField operations are handled the same
way as in the WCA transformation. However, an invocation of ReadField(des, f) is handled
differently depending on whether it occurs inside an invocation of Help(des). If it does, it is
replaced with an invocation of ReadField(des, f,⊥) followed by the check, as in the WCA
transformation. If not, it is replaced with an invocation of ReadField(des, f, dv), where the
choice of dv is specific to the algorithm being transformed.

Let A be any algorithm that uses mutable descriptors, and satisfies properties 1-4 of WCA
algorithms (see Definition 1), as well as a weaker version of property 5, called property 5′,
which states: every write or CAS to a field of a descriptor d must occur in an invocation
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of Help(d). Let e be an execution of A and let e′ be an execution that is the same as e,
except that one (arbitrary) descriptor d becomes invalid at some point t after the high-level
operation attempt O that created d terminates. (When we say that d becomes invalid at
time t, we mean that after t, each invocation of ReadField(d, f, dv) that is performed outside
of Help(d) returns its default value dv.)

Let O′ be any high-level operation attempt in e′ which, after t, performs ReadField on
d outside of Help(d). We say that an extended transformation is correct for A if, for all
choices of e, e′, d, t, and O′, the exact same changes are performed by O′ in e and e′ to any
variables that are still defined once O′ terminates (i.e., variables that are local to the process
performing O′, but are not local to O′, and variables in shared memory), and O′ returns the
same response in both executions. An algorithm A is an extended weak-compatible algorithm
(and is in the class EWCA) if there is an extended transformation that is correct for A.

Multiple descriptors per operation attempt. In some lock-free algorithms, an operation
can create several different types of descriptors, and invoke different Help procedures. For
simplicity, we think of there being a single Help procedure that checks the type of the descriptor
passed to it, and behaves differently for different types. To support such algorithms, we
make the following minor changes. We redefine CreateNew so it only invalidates previous
descriptors of the same type. We also update Property 1 as follows: Each high-level operation
attempt O by a process p may create a sequence D of descriptors, each with a unique type.
Inside O, p may perform at most one invocation of a function Help(d) for each d ∈ D (and
may not invoke Help(d) outside of O). Details appear in the full paper.

Example Algorithm: k-CAS. In this section, we explain how the extended transformation
is applied to the k-CAS algorithm presented in Section 2.2. Note that no invocations of
ReadField on a DCSS descriptor des are performed outside of HelpDCSS(des). There is only
one place in the algorithm where an invocation I of ReadField on a k-CAS descriptor des

is performed outside of Help(des) (the Help procedure for k-CAS). Specifically, I reads the
state field of a k-CAS descriptor inside the modified version of HelpDCSS. Recall that the
k-CAS algorithm passes a k-CAS descriptor pointer and the name of the state field as the
first argument to DCSS, and the DCSS algorithm is modified to use ReadField (at line 26
of Figure 1) to read this state field. We choose the default value dv = Succeeded for this
invocation of ReadField. We explain why this extended transformation is correct.

When I is performed at line 26 of DCSSHelp (in Figure 1), its response is compared with
e1, which contains Undecided. If I returns Undecided, then the CAS at line 28 is performed,
and the process p performing I returns from HelpDCSS. Otherwise, the CAS at line 31 is
performed, and p returns from HelpDCSS.

Suppose I is invalid. Then, we know the k-CAS operation attempt that created des has
been completed. We use the following algorithm specific knowledge. After a k-CAS operation
attempt has completed, its k-CAS descriptor has state Succeeded or Failed (and is never
changed back to Undecided). (This can be determined by inspection of the code.) Thus, if I

were valid, its response would not be Undecided, and p would perform the CAS at line 31
and return from HelpDCSS. Since dv = Succeeded, p does exactly the same thing when I is
invalid. (Note that the exact value of state is unimportant. It is only important that it is
not Undecided.)

Example Algorithm: LLX and SCX. In the full paper, we also transform a wasteful
implementation of the LLX and SCX primitives of Brown et al. [9].
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Implementing the extended weak descriptor ADT. We give a brief high-level overview,
here. Details appear in the full paper. It uses largely known techniques (similar to [21]), and
is not the main contribution of this work. Each process p uses a single descriptor object DT,p

in shared memory to represent all descriptors of type T that it ever creates. The descriptor
object DT,p conceptually represents p’s current descriptor of type T . At different times in an
execution, DT,p represents different abstract descriptors created by p. We store a sequence
number in DT,p that is incremented every time p performs CreateNew(T,−). Instead of
using traditional descriptor pointers, we represent each descriptor pointer as a pair of fields
stored in a single word. These fields contain the name of the process who owns the descriptor,
and a sequence number that indicates which invocation of CreateNew conceptually created
this descriptor. When a descriptor pointer is passed to an operation O on the abstract
descriptor, O compares the sequence number in des with the current sequence number in
DT,p to determine whether the operation is valid or invalid. Thus, incrementing the sequence
number in DT,p effectively makes all abstract descriptors of type T that were previously
created by p invalid. Mutable fields are stored in a single word alongside a sequence number,
so they can be updated with CAS, preventing invalid operations from making changes. (If
the mutable fields and a sequence number cannot fit in one word, then one can use multiple
words and attach the sequence number to each word.)

5 Experiments

Our experiments were run on two large-scale systems. The first is a 2-socket Intel E7-4830
v3 with 12 cores per socket and 2 hyperthreads (HTs) per core, for a total of 48 threads.
Each core has a private 32KB L1 cache and 256KB L2 cache (which is shared between HTs
on a core). All cores on a socket share a 30MB L3 cache. The second is a 4-socket AMD
Opteron 6380 with 8 cores per socket and 2 HTs per core, for a total of 64 threads. Each
core has a private 16KB L1 data cache and 2MB L2 cache (which is shared between HTs on
a core). All cores on a socket share a 6MB L3 cache.

Since both machines have multiple sockets and a non-uniform memory architecture
(NUMA), in all of our experiments, we pinned threads to cores so that the first socket is
filled first, then the second socket is filled, and so on. Furthermore, within each socket, each
core has one thread pinned to it before hyperthreading is engaged. Consequently, our graphs
clearly show the effects of hyperthreading and NUMA.

Both machines have 128GB of RAM. Each runs Ubuntu 14.04 LTS. All code was
compiled with the GNU C++ compiler (G++) 4.8.4 with build target x86_64-linux-gnu and
compilation options -std=c++0x -mcx16 -O3. Thread support was provided by the POSIX
Threads library. We used the Performance Application Programming Interface (PAPI)
library to collect statistics from hardware counters to determine cache miss rates, stall times,
etc. We used the scalable allocator jemalloc 4.2.1, which greatly improved performance.

k-CAS microbenchmark. In order to compare our reusable descriptor technique with al-
gorithms that reclaim descriptors, we implemented k-CAS with several memory reclamation
schemes. Specifically, we implemented a lock-free memory reclamation scheme that aggress-
ively frees memory called hazard pointers [23], a (blocking) epoch-based reclamation scheme
called DEBRA [6], and reclamation using the read-copy-update (RCU) primitives [11] (also
blocking). We use Reuse as shorthand for our reusable descriptor based algorithm, and
DEBRA, HP and RCU to denote the other algorithms.
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Figure 2 Results for a k-CAS microbenchmark. The x-axis represents the number of concur-
rent threads. The y-axis represents operations per microsecond.

The paper by Harris et al. also describes an optimization to reduce the number of DCSS
descriptors that are allocated by embedding them in the k-CAS descriptor. We applied this
optimization, and found that it did not significantly improve performance. Furthermore, it
complicated reclamation with hazard pointers. Thus, we did not use this optimization.

Methodology. We compared our implementations of k-CAS using a simple array-based
microbenchmark. For each algorithm A ∈ {Reuse, DEBRA, HP, RCU}, array size S ∈
{214, 220, 226} and k-CAS parameter k ∈ {2, 16}, we run ten timed trials for several thread
counts n. In each trial, an array of a fixed size S is allocated and each entry is initialized to
zero. Then, n concurrent threads run for one second, during which each thread repeatedly
chooses k uniformly random locations in the array, reads those locations, and then performs
a k-CAS (using algorithm A) to increment each location by one.

As a way of validating correctness in each trial, each thread keeps track of how many
successful k-CAS operations it performs. At the end of the trial, the sum of entries in the
array must be k times the total number of successful k-CAS operations over all threads.

Results. The results for this benchmark appear in Figure 2. Error bars are not drawn on
the graphs, since more than 97% of the data points have a standard deviation that is less
than 5% of the mean (making them essentially too small to see).

Overall, Reuse outperforms every other algorithm, in every workload, on both machines.
Notably, on the Intel machine, its throughput is 2.2 times that of the next best algorithm
at 48 threads with k = 16 and array size 226. On the AMD machine, its throughput is 1.7
times that of the next best algorithm at 64 threads with k = 16 and array size 220.
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On the Intel machine, with k = 2, NUMA effects are quite noticeable for Reuse in the
jump from 24 to 32 threads, as threads begin running on the second socket. According the
statistics we collected with PAPI, this decrease in performance corresponds to an increase in
cache misses. For example, with k = 2 and an array of size 226 in the Intel machine, jumping
from 24 threads to 25 increases the number of L3 cache misses per operation from 0.7 to 1.6
(with similar increases in L1 and L2 cache misses and pipeline stalls). We believe this is due
to cross-socket cache invalidations.

From the three graphs for k = 2 on Intel, we can see that the effect is more severe with
larger absolute throughput (since the additive overhead of a cache miss is more significant).
Conversely, the effect is masked by the much smaller throughput of the slower algorithms,
and by the substantially lower throughputs in the k = 16 case, except when the array is of
size 214. In the array of size 214, contention is extremely high, since each of the 48 threads
are accessing 16 k-CAS addresses, each of which causes contention on the entire cache line
of 8 words, for a total of 6144 array entries contended at any given time. Thus, cache
misses become a dominating factor in the performance on two sockets. These effects were
not observed on the AMD machine. There, the number of cache misses is not significantly
different when crossing socket boundaries, which suggests a robustness to NUMA effects that
is not seen on the Intel machine.

Interestingly, absolute throughputs on the AMD machine are larger with array size 220

than with sizes 214 and 226. This is because the 220 array size represents a sweet spot with
less contention than the 214 size and better cache utilization than the 226 size. For example,
with 64 threads and k = 16, Reuse incurred approximately 50% more cache misses with size
226 than with size 220, and approximately 50% of operations helped one another with size
214, whereas less than 1% of operations helped one another with size 220.

Note, however, that this is not true on the Intel machine. There, 226 is almost always as
fast as 220, because of the very large shared L3 cache (which is 5x larger than on the AMD
machine). This is reflected in the increased number of cycles where the processor is stalled
(e.g., waiting for cache misses to be served) when moving from size 220 to 226. On the Intel
machine, stalled cycles increase by 85% per operation, whereas on the AMD machine they
increase by a whopping 450% per operation.

Several additional experiments appear in the full paper, including empirical studies of
memory usage, and of the performance of a transformed LLX and SCX implementation.

6 Related Work

Several papers have presented universal constructions or strong primitives for non-blocking
algorithms in which operations create descriptors [17, 2, 1, 24, 14, 20, 18, 21, 3, 9]. A subset
of these algorithms employ ad-hoc techniques for reusing descriptors [17, 2, 1, 24, 21, 20, 18].
The rest assume descriptors will be allocated for each operation and eventually reclaimed.

Most of the ad-hoc techniques for reusing descriptors have significant downsides. Some
are complex and tightly integrated into the underlying algorithm, or rely on highly specific
algorithmic properties (e.g., that descriptors contain only a single word). Others use
synchronization primitives that atomically operate on large words, which are not available
on modern systems, and are inefficient when implemented in software. Yet others introduce
high space overhead (e.g., by attaching a sequence number to every memory word). Some
techniques also incur significant runtime overhead (e.g., by invoking expensive synchronization
primitives just to read fields of a descriptor). Furthermore, these techniques give, at best,
a vague idea of how one might reuse descriptors for arbitrary algorithms, and it would be
difficult to determine how to use them in practice. Our work avoids all of these downsides,
and provides a concrete approach for transforming a large class of algorithms.
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Barnes [4] introduced a technique for producing non-blocking algorithms that can be more
efficient (and sometimes simpler) than the universal constructions described above. With
Barnes’ technique, each operation creates a new descriptor. Creating a new descriptor for
each operation allows his technique to avoid the ABA problem while remaining conceptually
simple. Each operation conceptually locks each location it will modify by installing a pointer
to its descriptor, and then performs it modifications and unlocks each location. Barnes’
technique is the inspiration for the class WCA. Many algorithms have since been introduced
using variants of this technique [14, 12, 3, 16, 26, 9, 10]. Several of these algorithms are
quite efficient in practice despite the overhead of creating and reclaiming descriptors. Our
technique can significantly improve the space and time overhead of such algorithms.

Recent work has identified ways to use hardware transactional memory (HTM) to reduce
descriptor allocation [8, 19]. Currently, HTM is supported only on recent Intel and IBM
processors. Other architectures, such as AMD, SPARC and ARM have not yet developed
HTM support. Thus, it is important to provide solutions for systems with no HTM support.
Additionally, even with HTM support, our approach is useful. Current (and likely future)
implementations of HTM offer no progress guarantees, so one must provide a lock-free fallback
path to guarantee lock-free progress. The techniques in [8, 19] accelerate the HTM-based
code path(s), but do nothing to reduce descriptor allocations on the fallback path. In some
workloads, many operations run on the fallback path, so it is important for it to be efficient.
Our work provides a way to accelerate the fallback path, and is orthogonal to work that
optimizes the fast path.

The long-lived renaming (LLR) problem is related to our work (see [5] for a survey), but
its solutions do not solve our problem. LLR provides processes with operations to acquire
one unique resource from a pool of resources, and subsequently release it. One could imagine
a scheme in which processes use LLR to reuse a small set of descriptors by invoking acquire
instead of allocating a new descriptor, and eventually invoking release. Note, however, that a
descriptor can safely be released only once it can no longer be accessed by any other process.
Determining when it is safe to release a descriptor is as hard as performing general memory
reclamation, and would also require delaying the release (and subsequent acquisition) of a
descriptor (which would increase the number of descriptors needed). In contrast, our weak
descriptors eliminate the need for memory reclamation, and allow immediate reuse.

7 Conclusion

We presented a novel technique for transforming algorithms that throw away descriptors
into algorithms that reuse descriptors. Our experiments show that our transformation yields
significant performance improvements for a lock-free k-CAS algorithm. Furthermore, our
transformation reduces peak memory usage by nearly three orders of magnitude over the next
best implementation. We believe our transformation can be used to improve the performance
and memory usage of many other algorithms that throw away descriptors. Moreover, we
hope that our extended weak descriptor ADT will aid in the design of more efficient, complex
algorithms, by allowing algorithm designers to benefit from the conceptual simplicity of
throwing away descriptors without paying the practical costs of doing so.

Acknowledgments. We thank Faith Ellen for her gracious help in proving correctness for
our transformations, and her insightful comments. Some of this work was done while Trevor
was a student at the University of Toronto, and while Maya was visiting him there.
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Abstract
Traditionally, networks such as datacenter interconnects are designed to optimize worst-case
performance under arbitrary traffic patterns. Such network designs can however be far from
optimal when considering the actual workloads and traffic patterns which they serve. This insight
led to the development of demand-aware datacenter interconnects which can be reconfigured
depending on the workload.

Motivated by these trends, this paper initiates the algorithmic study of demand-aware net-
works (DANs), and in particular the design of bounded-degree networks. The inputs to the network
design problem are a discrete communication request distribution, D, defined over communicat-
ing pairs from the node set V , and a bound, ∆, on the maximum degree. In turn, our objective
is to design an (undirected) demand-aware network N = (V,E) of bounded-degree ∆, which
provides short routing paths between frequently communicating nodes distributed across N . In
particular, the designed network should minimize the expected path length on N (with respect to
D), which is a basic measure of the efficiency of the network.

We show that this fundamental network design problem exhibits interesting connections to
several classic combinatorial problems and to information theory. We derive a general lower
bound based on the entropy of the communication pattern D, and present asymptotically optimal
network-aware design algorithms for important distribution families, such as sparse distributions
and distributions of locally bounded doubling dimensions.
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1 Introduction

The problem studied in this paper is motivated by the advent of more flexible datacenter
interconnects, such as ProjecToR [16, 17]. These interconnects aim to overcome a fundamental
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drawback of traditional datacenter network designs: the fact that network designers must
decide in advance on how much capacity to provision between electrical packet switches,
e.g., between Top-of-Rack (ToR) switches in datacenters. This leads to an undesirable
tradeoff [25]: either capacity is over-provisioned and therefore the interconnect expensive
(e.g., a fat-tree provides full-bisection bandwidth), or one may risk congestion, resulting
in a poor cloud application performance. Accordingly, systems such as ProjecToR provide
a reconfigurable interconnect, allowing to establish links flexibly and in a demand-aware
manner. For example, direct links or at least short communication paths can be established
between frequently communicating ToR switches. Such links can be implemented using a
bounded number of lasers, mirrors, and photodetectors per node [17]. First experiments with
this technology demonstrated promising results: although the interconnecting networks is of
bounded degree, short routing paths can be provided between communicating nodes.

The problem of designing demand-aware networks is a fundamental one, and finds
interesting applications in many distributed and networked systems. For example, while
many peer-to-peer overlay networks today are designed towards optimizing the worst-case
performance (e.g., minimal diameter and/or degree), it is an intriguing question whether the
“hard instances” actually show up in real life, and whether better topologies can be designed
if we are given more information about the actual communication patterns these networks
serve in practice.

While the problem is natural, surprisingly little is known today about the design of
demand-aware networks. At the same time, as we will show in this paper, the design of
demand-aware networks is related to several classic combinatorial problems.

Our vision is reminiscent in spirit to the question posed by Sleator and Tarjan over 30
years ago in the context of binary search trees [10, 26]: While there is an inherent lower
bound of Ω(logn) for accessing an arbitrary element in a binary search tree, can we do better
on some “easier” instances? The authors identified the entropy to be a natural metric to
measure the performance under actual demand patterns. We will provide evidence in this
paper that the entropy, in a slightly different flavor, also plays a crucial role in the context of
network designs, establishing an interesting connection.

The Problem: Bounded Network Design. We consider the following network design
problem, henceforth referred to as the Bounded Network Design problem, short BND.
We consider a set of n nodes (e.g., top-of-rack switches, servers, peers) V = {1, . . . , n}
interacting according to a certain communication pattern. The pattern is modelled by D,
a discrete distribution over communication requests defined over V × V . We represent this
distribution using a communication matrixMD[p(i, j)]n×n where the (i, j) entry indicates the
communication frequency, p(i, j), from the (communication) source i to the (communication)
destination j. The matrix is normalized, i.e.,

∑
ij p(i, j) = 1. Moreover, we can interpret

the distribution D as a weighted directed demand graph GD, defined over the same set of
nodes V : A directed edge (u, v) ∈ E(GD) exists iff p(u, v) > 0. We set the edge weight to
the communication probability: w(i, j) = p(i, j).

In turn, our objective is to design an unweighted, undirected Demand-Aware Network (DAN)
defined over the set of nodes V and the distribution D, henceforth denoted as N(D) or
just N when D is clear from the context. The objective is that N(D) optimally serves the
communication requests from D under the constraint that N must be chosen from a certain
family of desired topologies N . In particular, we are interested in sparse networks (i.e.,
having a linear number of edges) with bounded degree ∆ (i.e., nodes have a small number of
lasers [17]), and we denote the family of ∆-bounded degree graphs by N∆.
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Figure 1 Example of the bounded network design problem. (a) A given demand distribution D
(which in this case is symmetric). (b) The demand graph GD (with non-normalized weights). Nodes
1, 3, and 7 have a degree more than 3. (c) An optimal solution DAN N with ∆ = 3. In this case, the
solution is not a subgraph but contains auxiliary edges (e.g., {2, 5}), and EPL(D, N) = 1.19 while
H(X | Y ) = 1.08 (the Shannon entropy to the base 3 is H(X) = 1.68).

Note that the designed network can be seen as “hosting” the served communication
pattern, i.e., the demand graph is embedded on the designed network. Accordingly, we will
sometimes refer to the demand graph as the guest network and to the designed network as
the host network.

Our objective is to minimize the expected path length [1, 2, 24] of the designed host
network N ∈ N : For u, v ∈ V (N), let dN (u, v) denote the shortest path between u and v in
N . Given a distribution D over V × V and a graph N over V , the Expected Path Length
(EPL) of route requests is defined as:

EPL(D, N) = ED[dN (·, ·)] =
∑

(u,v)∈D

p(u, v) · dN (u, v)

Since routing across the host network usually occurs along shortest paths, the expected
path length captures the average hop-count of a route (e.g., latency incurred or energy
consumed along the way).

Succinctly, the Bounded Network Design (BND) problem is to minimize the expected
path length and is defined as follows:

I Definition 1 (Bounded Network Design). Given a communication distribution, D and a
maximum degree ∆, find a host graph N ∈ N∆ that minimizes the expected path length:

BND(D,∆) = min
N∈N∆

EPL(D, N)

See Figure 1 for an example of these definitions.

Our Contributions. This paper initiates the study of a fundamental problem: the design of
demand-aware communication networks. While our work is motivated by recent trends in
datacenter network designs, our model is natural and finds applications in many distributed
and networked systems (e.g., peer-to-peer overlays). The main contribution of this paper is to
establish an interesting connection of the network design problem to the conditional entropy
of the communication matrix. In particular, we present a lower bound on the expected path
length of a network with maximum degree ∆ which is proportional to the conditional entropy

DISC 2017
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of D, H∆(X | Y ) +H∆(Y | X) where ∆ is the base of the logarithm used for calculating the
entropy. While this lower bound can be as high as logn, for many distributions it can be
much lower (even constant). Our main results are presented in Theorem 7 which proves a
matching upper bound for the case when D is a sparse distribution. It is important to note
the real datacenters traffic shows evidence that the demand distributions are indeed sparse
[23, 17]. Additionally Theorem 12 proves a matching upper bound for the case when D is a
regular and uniform (but maybe dense) distribution of a locally bounded doubling dimension.
Also in these two cases the conditional entropy could range from a constant and up to logn.
At the heart of our technical contribution is a novel technique to transform a low-distortion
network of maximum degree ∆ to a low-degree network whose maximum degree equals the
average degree of the original network, while maintaining an expected path length in the
order of the conditional entropy. Moreover, we show an interesting reduction of uniform and
regular distributions to graph spanners in Theorem 8.

Paper Organization. The remainder of this paper is organized as follows. We put our work
into perspective with respect to related work in Section 2 and introduce some preliminaries
in Section 3. We derive lower bounds in Section 4 and present algorithms to design networks
for sparse distributions resp. regular and uniform distributions in Section 5 resp. Section 6.
We conclude our work and outline directions for future research in Section 7. Due to
space constraints, some details are omitted in this paper, and we refer the reader to our
accompanying technical report [3].

2 Putting Things Into Perspective and Related Work

There are at least three interesting perspectives on our problem. The first one arises when
trying to gain some intuition about the problem complexity. If ∆ = n, the problem is simple:
the demand (or guest) graph GD itself can be used as the host graph or DAN N ∈ N∆,
providing an ideal expected path length 1. If a sparse host graph is desired, a star topology
could be used as a DAN to provide an expected path length of at most 2. At the other end of
the spectrum, if ∆ = 2 (and the host network is required to be connected) the DAN N must
be a line or a ring graph. However, the problem of how to arrange nodes on the linear chain
or the ring such that the expected path length is minimized, is already NP-hard: the problem
is essentially a Minimum Linear Arrangment (MinLA) problem [7, 11, 15]. One perspective
to see our contribution is that in this paper, we are interested in what happens between
these extremes, for other values of ∆, in particular for a constant ∆ which guarantees that
our host network will be sparse, i.e., has a linear number of edges. In contrast to the general
arrangement problem which asks for an embedding of the guest graph on a specific and
given host graph, in our network design problem we are free to choose the best host graph
from a given family of graphs (i.e., bounded degree graphs). One might wonder: does this
flexibility make the problem easier? Existing works on low maximum resp. low average
degree networks, e.g., in the context of publish/subscribe overlays [8, 20, 21], do not provide
formal performance guarantees.

Sparse and distance-preserving spanners open a second perspective on our work: intuitively,
a good host graph N for GD “looks similar” to GD. But in contrast to classic spanner
problems in the literature which are primarily concerned with minimizing the worst-case
distortion (resp. the average distortion) among all node pairs [4, 22], we are only interested
in the local distortion. Namely, we aim to find a good “spanner” which preserves locality of
neighborhoods, i.e., 1-hop neighborhoods in the demand graph. Second, unlike classic spanner
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problems but similar to geometric (metric) spanners, the designed network N does not have
to be a subgraph and may include edges which do not exist in the demand network GD, i.e.,
0-entries in the corresponding communication matrix MD. We refer the corresponding edges
as auxiliary edges (a.k.a. shortcut edges [19]). It is easy to see that auxiliary edges can indeed
be required to compute optimal network designs, and yield strictly lower communication
costs than subgraph spanners (e.g. Figure 1). Third, in contrast to the frequently studied
sparse graph spanner problem variants, we require that nodes in the designed network are of
degree at most ∆. Finally, we are not aware of any work studying the relationship between
spanners and entropy. This makes our model fundamentally different from existing models
studied in the literature.

The fact that our matrix represents a distribution provides some interesting structure. In
particular, it leads us to a third connection, namely to information and coding theory. It is
known that the expected path length in binary search trees [26] as well as in network designs
providing local routing [2, 24] is upper bounded by the entropy H(X) (over the (empirical)
distribution of accessed elements X in the data structure). The conditional entropy of the
distribution, H(X|Y ) + H(Y |X), is a lower bound on the expected path length of local
routing tree designs [24] where X, Y are the random variables distributed according to the
marginal distribution of the sources and destinations in D. This bound is tight for the limited
case where D is a product distribution (i.e., p(i, j) = p(i)p(j)). Additionally the optimal
binary search tree can be computed efficiently for every D using dynamic programming [24].
In the current work we extend this line of research by studying more general distributions
and a larger family of host networks.

3 Preliminaries

We start with some notation about D. Let D[i, j] or p(i, j) denote the probability that
source i routes to destination j. Let p(i) denote the probability that i is a source, i.e.,
p(i) =

∑
j p(i, j). Similarly let q(j) denote the probability that j is a destination. Let X,Y

be random variables describing the marginal distribution of the sources and destinations
in D, respectively. Let −→D [i] denote the normalized i’th row of D, that is, the probability
distribution of destinations given that the source is i. Similarly let←−D [j] denote the normalized
j’th column of D, that is the probability distribution of sources given that the destination
is j. Let Yi and Xj be random variables that are distributed according to −→D [i] and ←−D [j],
respectively. We say that D is regular if GD is a regular graph (both in terms of in and out
degrees). We say that D is uniform if for every D[i, j] > 0, D[i, j] = 1

m and m is the number
of edges in GD. We say that D is symmetric if D[i, j] = D[j, i].

We will show that a natural measure to assess the quality of a designed network relates to
the entropy of the communication pattern. For a discrete random variable X with possible
values {x1, . . . , xn}, the entropy H(X) of X is defined as

H(X) =
n∑
i=1

p(xi) log2
1

p(xi)
(1)

where p(xi) is the probability that X takes the value xi. Note that, 0 · log2
1
0 is considered as

0. If p̄ is a discrete distribution vector (i..e, pi ≥ 0 and
∑
i pi = 1) then we may write H(p̄)

or H(p1, p2, . . . pn) to denote the entropy of a random variable that is distributed according
to p̄. If p̄ is the uniform distribution with support s (s being the number of places in the
distribution with pi > 0, i.e., pi = 1/s) then H(p̄) = log s.

DISC 2017



5:6 Demand-Aware Network Designs of Bounded Degree

Using the decomposition (a.k.a. grouping) properties of entropy the following are well-
known [9]:

H(p1, p2, p3 . . . pm) ≥ H(p1 + p2, p3 . . . pm) (2)

H(p1, p2, p3 . . . pm) ≥ (1− p1)H( p2

1− p1
,

p3

1− p1
. . .

pm
1− p1

) (3)

For a joint distribution over X,Y , the joint entropy is defined as

H(X,Y ) =
∑
i,j

p(xi, yj) log2
1

p(xi, yj)
(4)

Also recall the definition of the conditional entropy H(X|Y ):

H(X|Y ) =
∑
i,j

p(xi, yj) log2
1

p(xi | yj)
=

∑
j

p(yj)
∑
i

p(xi | yj) log2
1

p(xi | yj)

=
n∑
j=1

p(yj)H(X|Y = yj) (5)

For X and Y defines as above from D we also have

H(X|Y ) =
n∑
j=1

p(yj)H(X|Y = yj) =
n∑
j=1

q(j)H(←−D [j]) =
n∑
j=1

q(j)H(Xj) (6)

H(Y |X) is defined similarly and we note that it may be the case that H(X|Y ) 6= H(Y |X).
We may simply write H for the entropy if the purpose is given by the context. By default, we
will denote by H the entropy computed using the binary logarithm; if a different logarithmic
basis ∆ is used to compute the entropy, we will explicitly write H∆.

We recall the definition of a graph spanner. Given a graph G = (V,E), a subgraph
G′ = (V,E′) is a t-spanner of G if for every u, v ∈ V , t · dG(u, v) ≥ dG′(u, v) and t is the
distortion of the spanner. We say that G′ = (V,E′) is a graph metric t-spanner if it is not a
subgraph of G, i.e., it may have additional edges that are not in G.

4 A Lower Bound

We now establish an interesting connection to information theory and show that the con-
ditional entropy serves as a natural metric for bounded network designs. In particular, we
prove that the expected path length BND(D,∆) in any demand-aware bounded network
design, is at least in the order of the conditional entropy. Formally:

I Theorem 2. Consider the joint frequency distributions D. Let X, Y be the random
variables distributed according to the marginal distribution of the sources and destinations in
D, respectively. Then

BND(D,∆) ≥ Ω(max(H∆(Y |X), H∆(X|Y ))

Before delving into the proof, let EPL(p̄, T ) denote the expected path length in a tree
T from the root to its nodes where the expectation it taking over a distribution p̄. That is
EPL(p̄, T ) =

∑
i pidT (root, i). We recall the following well-known theorem:

I Theorem 3 ([18], restated.). Let H(p̄) be the entropy of the frequency distribution
p̄ = (p1, p2, . . . , pn). Let T be an optimal binary search tree built for the above frequency
distribution. Then EPL(p̄, T ) ≥ 1

log 3H(p̄).
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Namely, the entropy H(p̄), is a lower bound on the expected path length from the root to
the nodes in the tree. Note that, the proof of Theorem 3 in [18] holds for any optimal binary
tree T , not necessarily a search tree. For higher degree graphs, we can extend the result:

I Lemma 4. Let H∆(p̄) be the entropy (calculated using the logarithm of base ∆) of frequency
distribution p̄ = (p1, p2, . . . , pn). Let T be an optimal ∆-ary tree built for the above frequency
distribution. Then, EPL(p̄, T ) ≥ 1

log(∆+1)H∆(p̄).

The proof almost directly follows from the proof of Theorem 3 in [18], by extending properties
of binary trees to ∆-ary trees, see [3] for details. We now prove the lower bound.

Proof of Theorem 2. The proof idea is to view any network as the union of n optimal trees,
one for each individual node. While the resulting network may violate the degree requirement,
it constitutes a valid lower bound. So we start by finding an optimal structure for each source
node i, according to all its communication destinations −→D [i]: We construct n ∆-ary trees,
and let T i∆ be the optimal tree for source node i built using −→D [i]. From Lemma 4, we have:

EPL(−→D [i], T i∆) =
n∑
j=1

p(j|i)dT i
∆

(i, j) = Ω(H∆(Y | X = i))

where EPL(−→D [i], T i∆) denotes the expected path length of T i∆ given −→D [i] and dT i
∆
denotes

the shortest path in T i∆. Now consider any bounded degree network N∆ and compare it to
the forest T made up of n trees T 1

∆, T
2
∆, . . . , T

n
∆. Then,

EPL(D, N∆) =
n∑
i=1

p(i) · EPL(−→D [i], N∆) ≥
n∑
i=1

p(i) · EPL(−→D [i], T i∆)

≥
n∑
i=1

p(i) ·H∆(Y | X = i) = Ω(H∆(Y |X))

Similarly we can consider a set of trees optimized toward the incoming communication of
node j, ←−D [j], and the marginal destination probability. We show:

EPL(D, N∆) ≥ Ω(H∆(X | Y ))

Hence the theorem follows. J

5 Network Design for Sparse Distributions

We now present families of distributions which enable DANs that match the lower bound.
Our approach will be based on replacing neighborhoods with near optimal binary (or ∆-ary)
trees. Following the lower bound of Lemma 4, it is easy to show a matching upper bound
(for a constant ∆).

I Lemma 5. Let p̄ be a probability distribution on a set of node destinations (sources) V,
and let u be a single source (destination) node. Then one can design a tree T with u as a root
node with degree one, connected to a ∆-ary tree over V such that the expected path length
from u to all destinations (or from all sources to u) is:

EPL(p̄, T ) =
∑
i

pi · dT (u, i) ≤ O(H∆(p̄)) (7)

DISC 2017
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Proof. The proof follows by designing a Huffman ∆-ary code over p̄ (with expected code
length less than H∆(p̄) + 1 [9]) and using it to build a rooted ∆-ary tree. While the nodes in
the Huffman code are tree leaves, we can move them up to become internal nodes, which
only improves the expected path length. J

5.1 Tree Distributions

A most fundamental class of distributions for which we can construct optimal network designs
is based on trees.

I Theorem 6. Let D be a communication request distribution such that GD is a tree (i.e.,
ignoring the edge direction, GD forms a tree). Let X, Y be the random variables of the
sources and destinations in D, respectively. Then, it is possible to generate a DAN N with
maximum degree 8, such that

EPL(D, N) ≤ O(H(Y | X) +H(X | Y ))

This is asymptotically optimal.

Proof. We generate N as follows. Consider an arbitrary node as the root of the tree GD, call
this tree TD, and consider the parent-child relationship implied by the root. Let π(i) denote
the parent of node i. Let −→c i denote the communication distribution from vi to its children
(not including its single parent) and −→D [i] denote the communication distribution from i to
its neighbors (children and parent). Let pπi = −→D [i][π(i)] denote the corresponding entry in
−→
D [i] for the parent of i. From entropy Eq. (3), we have that (1 − pπi )H(−→c i) ≤ H(−→D [i]).
Similarly we define ←−c i and

←−
D [i] as the communication distribution to vi, from its children

and neighbors respectively.

The construction has two phases. In the first phase we replace outgoing edges. For each
node i replace the edges between i and its children with a binary tree according to −→c i and
the method of [18] (or Lemma 5 for a general ∆) for creating a near optimal binary tree. Let
−→
B i denote this tree and recall that EPL(−→c i,

−→
B i) ≤ O(H(−→c i)). Note that every node i may

appear in at most two trees −→B i and
−→
B π(i); in

−→
B i its degree is one and in −→B π(i) its degree is

at most 3, so the outgoing degree of each node is at most 4 after this phase.

In the second phase we take care of the remaining incoming edges from children to parents.
For each node i replace the edges from its children to it with a binary tree according to ←−c i
and the method of [18] for creating a near optimal binary tree. Let ←−B i denote this tree and
recall that EPL(←−c i,

←−
B i) ≤ O(H(←−c i)). Note that every node i may appear in at most two

trees ←−B i and
←−
B π(i); in

←−
B i i’s degree is one and in ←−B π(i) i’s degree is at most 3. Thus, the

incoming degree of each node is bounded by 4 after this phase.

Now we bound EPL(D, N) by bounding the expected path lengths in the corresponding
binary trees of each node, first considering all edges from parent to children and then all
edges from children to parent. Let p(i) and q(i) denote the probabilities that node i will be
a source and a destination of a communication request, respectively. Then:
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EPL(D, N) ≤
∑

(u,v)∈D

p(u, v)dN (u, v)

=
∑

(π(i),i)∈TD

p(π(i), i)dN (π(i), i) +
∑

(i,π(i))∈TD

p(i, π(i))dN (i, π(i))

=
n∑
i=1

p(i)EPL(−→c i,
−→
B i) +

n∑
i=1

q(i)EPL(←−c i,
←−
B i)

≤
n∑
i=1

p(i)H(−→D [i]) +
n∑
i=1

q(i)H(←−D [i]) = H(Y | X) +H(X | Y )

This matches our lower bound in Theorem 2. J

5.2 General Sparse Distributions
Asymptotically optimal demand-aware networks can even be designed for general sparse
distributions.

I Theorem 7. Let D be a communication request distribution where ∆avg is the average
degree in GD (so the number of edges m = ∆avg·n

2 ). Let X, Y be the random variables of the
sources and destinations in D, respectively. Then, it is possible to generate a DAN N with
maximum degree 12∆avg, such that

EPL(D, N) ≤ O(H(Y | X) +H(X | Y )) (8)

This is asymptotically optimal when ∆avg is a constant.

Proof. Recall that GD (for short G) is a directed graph and define in-degree and out-degree
in the canonical way. Let the (undirected) degree of a node, be the sum of its in-degree and
out-degree and denote the average degree as ∆avg. Denote the n/2 nodes with the lowest
degree in G as low degree nodes and the rest as high degree nodes. Note that each low degree
node has a degree at most 2∆avg and both its in-degree and out-degree must be low. A node
with out-degree (in-degree) larger than 2∆avg is called a high out-degree (high in-degree) node
(some nodes are neither low or high degree nodes).

The construction of N will be done in two phases. In the first phase, we consider only
(directed) edges (u, v) between a high out-degree u and a high in-degree node v. We subdivide
each such edge with two edges that connect u to v via a helping low degree node `, i.e.,
removing the directed edge (u, v) and adding the edges (u, `) and (v, `). Note that there are
at most m such edges, so we can distribute the help between low degree nodes in such a way
that each low degree node helps at most ∆avg such edges. Call the resulting graph G′.

Accordingly, we also create a new matrix D′ which, initially, is identical to D. Then for
each (u, v) and ` as above we set D′(u, v) = 0, D′(u, `) = D(u, l) + D(u, v) and D′(`, v) =
D(l, v) +D(u, v). Note that D′ is not a distribution matrix anymore, as the sum of all the
entries is more than one, but it has the following property: For each high degree node i, we
have H(

−→
D′[i]) ≤ H(−→D [i] and H(

←−
D′[i]) ≤ H(←−D [i]) (see Eq. (2)).

In the second phase, we construct N from G′. Consider each node i with high out-degree
and create a nearly optimal binary tree −→B i according to

−→
D′[i] using the method of [18]. Add

an edge from i to the root of −→B i and delete all the out-edges from i from G′. Similarly
consider each node j with high in-degree and create a nearly optimal binary tree←−B j according
to D′[i] using the method of [18]. Add an edge from j to the root of ←−B j and delete all the
in-edges of j from G′. This completes the construction of N .
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We first bound the maximum degree in N . First consider a low degree node `, helping an
edge (u, v), i.e., u is high out-degree and v is high-indegree. So ` is part of both u’s and v’s
binary tree, hence `’s degree increases by at most 6 (two times degree 3 for being an internal
node). Note that ` needs to help at most ∆avg edges itself. For each of these ∆avg edges, `’s
degree will be at most 6, resulting in a degree of 6∆avg. Since `’s degree was at most 2∆avg,
in the worst case, ` was associate with 2∆avg high in-degree or out-degree nodes, i.e., ` will
be present in all these 2∆avg trees, which results in another 6∆avg degrees for `. In total, `’s
degree is 12∆avg. If a node h has both high out-degree and high in-degree, then its degree
will be two: h is connected to the root of the tree created of its out-edges and to the root of
the tree created of its in-edges. If a node u is only a high out-degree node, its degree in N is
bounded by 6∆avg + 1 (and similarly for a node u which is only a high in-degree node). If a
node is neither high nor low degree, then its degree in N is bounded by 12∆avg (originally it
was up to 4∆avg in G′). We now bound EPL(D, N). Recall that from Lemma 5 and Eq. (2),
we have,

EPL(
−→
D′[i],−→B i) ≤ O(H(Y | X = i))

and

EPL(
←−
D′[j],←−B j) ≤ O(H(X | Y = j))

For each request (i, j) in D there are two possibilities for the route on N : either the edge
(i, j) ∈ N is a direct route, or the route goes via −→B i or

←−
B j or both. Let O and I be the set

of high out-degree and in-degree nodes, respectively. Then:

EPL(D, N) =
∑

(u,v)∈D

p(u, v)dN (u, v)

≤
∑

(i,j)/∈O∪I

p(u, v) +
∑
i∈O

p(i)EPL(−→D [i]),−→B i) +
∑
j∈I

q(j)EPL(←−D [j])←−B j)

=
∑
i/∈O

p(i) +
∑
j /∈I

q(j) +
∑
i∈O

p(i)EPL(−→D [i]),−→B i) +
∑
j∈I

q(j)EPL(←−D [j])←−B j)

≤ O(H(X | Y ) +H(Y | X))

This matches our lower bound in Theorem 2. J

6 Regular and Uniform Distributions

Another large family of distributions for which demand-aware networks can be designed are
regular and uniform distributions D. While it is easy to see that both conditions can be
relaxed such that the supported distributions can be “nearly regular” and “nearly uniform”,
for ease of presentation, we keep the conditions strict in what follows.

We first establish an interesting connection to spanners. As we will see, this connection
will provide a simple and powerful technique to design a wide range of demand-aware networks
meeting the conditional entropy lower bound.

I Theorem 8. Let D be an arbitrary (possibly dense) regular and uniform request distribution.
It holds that if we can find a constant and sparse (i.e., constant distortion, linear sized)
spanner for GD, we can design a constant degree DAN N providing an expected path length of

EPL(D, N) ≤ O(H(Y | X) +H(X | Y )) (9)

This is asymptotically optimal.
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In other words, for regular and uniform distributions, the network design problem boils
down to finding a constant1 sparse spanner: as we will see, we can automatically transform
this spanner into an efficient network (which may contain auxiliary edges). The remainder of
this section is devoted to the proof of the theorem.

Assume that D is r-regular and uniform. Recall that in this case H(Y | X) = H(X |
Y ) = log r, so BND(D,∆) ≥ Ω(H(Y | X)) where ∆ is a constant. We now describe how to
transform a constant sparse (but potentially irregular) spanner for GD into a constant-degree
host network N with EPL(D, N) ≤ O(log r). This will be done using a similar degree
reduction technique as discussed earlier (in the proof of Theorem 7).

I Lemma 9. Let G be a graph of maximum degree ∆max and an average degree ∆avg.
Then, we can construct a graph G′ with maximum degree 8∆avg which is a graph metric
log ∆max-spanner of G, i.e., dG′(u, v) ≤ 2 log ∆max · dG(u, v).

Proof. Let us call the n/2 nodes with the lowest degree in G the low degree nodes and the
remaining nodes high degree nodes. By the pigeon hole principle, each low degree node has a
degree at most 2∆avg. The construction of G′ proceeds in two phases. In the first phase we
take every edge between high degree nodes u, v and subdivide it with two edges that connect
u to v via a helping low degree node `, i.e., removing the edge (u, v) and adding the edges
(u, `) and (v, `). Note that there are at most m edges connecting high degree nodes so we
can distribute the help between low degree nodes such that each low degree node helps to at
most ∆avg such edges.

In the second phase we consider each high degree node u and replace the set of edges
between u and its neighbors, Γ(u), with a balanced binary tree that connects u as the root
and Γ(u) as remaining nodes of the tree. Denote as Bu this tree and note that the height of
Bu is at most log(|Γ(u)|+ 1). We leave edges between low degree nodes as in G.

Let us analyze the degrees in G′. Since every high degree node u in G′ only connects to
low degree nodes, it is only a member of Bu and its degree reduces to 2 in G′. Now consider
a low degree node `: for each edge (u, v) it helps, ` participates in Bu and Bv. Hence, its
degree increases by at most 6 in G′ compared to G. Overall, for helping high degree nodes,
the degree of ` can increase by 6∆avg. Together with its original neighbors from G, the
degree of ` in G′ can be at most 8∆avg.

Next consider the distortion of G′. The distortion between neighboring low degree nodes
is one. The distortion between neighboring high degree nodes is at most twice log ∆max and
the distortion between a neighboring high and low degree is at most log ∆max.

So, dG′(u, v) ≤ 2 log ∆max · dG(u, v) for all u, v in G′. J

We will apply Lemma 9 to prove Theorem 8.

Proof of Theorem 8. Let S be a constant and sparse spanner of GD (G could be either a
subgraph or a metric spanner of max degree asymptotically not larger than GD) of degree at
most r. Lemma 9 then tells us how to transform S to a DAN N of degree ∆avg. Since S is a
constant spanner there is a constant c such that,

EPL(D, S) =
∑

(u,v)∈D

p(u, v) · dS(v, v) = c (10)

1 To be precise, a spanner with constant average distortion will be sufficient (see [3] for details). However,
for simplicity, we leave it as a constant spanner.
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Since S has maximum degree r, according to Lemma 9, it has a graph metric spanner N
such that, the distance of any source-destination pair of G(D) in N is at most 2 log r times
their distance in S. Hence:

EPL(D, N) =
∑

(u,v)∈D

p(u, v) · dN (u, v) ≤
∑

(u,v)∈D

p(u, v) · dS(u, v) · 2 log r

≤ log r · EPL(D, S) = O(log r) = O(H(Y | X))

The last equality holds since D is r-regular and uniform. The bound is asymptotically
optimal when ∆ is a constant: it matches our lower bound in Theorem 2. J

Theorem 8 allows us to simplify the design of asymptotically optimal networks for
uniform and regular distributions D where GD has a constant sparse spanner. In particular,
the approach can be used to design optimal networks for the following large families of
distributions which are known to have a constant and sparse graph spanners.

I Corollary 10. Let D describe a uniform and regular communication request distribution.
Then, it is possible to generate a constant degree DAN N such that

EPL(D, N) ≤ O(H(Y | X) +H(X | Y )) (11)

in the following scenarios:
If, for a constant c ≥ 1, GD has a minimum degree ∆ ≥ n 1

c .2

If GD forms a hypercube with n logn edges.
If GD forms a (possibly dense) chordal graph.

See [3] for the proof.
We round off our study of uniform and regular distributions by considering one more

interesting family of (possibly very dense) distributions: distributions D which describe
a bounded and local doubling dimension, note that this family is more general than the
standard bounded doubling dimension graphs which are sparse.

First, recall that a metric space (V, d) has a constant doubling dimension if and only
if there exists a constant λ such that every ball of radius r in V can be covered by λ

balls of half the radius r/2, for all r ≥ 1. In general, the smallest λ which satisfies this
property for a metric space is called doubling constant and log2 λ is called the doubling
dimension [6, 12, 13, 14]. A metric space is called bounded (a.k.a. constant or low) doubling
dimension if λ is a constant. There has been a wide range of work on spanners for bounded
doubling dimension metrics [5, 6, 13, 14]. However, if the metric is imposed by a graph
metric (via shortest paths) then a bounded doubling dimension implies that the graph is
nearly regular, of bounded (constant) degree and sparse. Theorem 7 already solved the case
of sparse GD, even for non-uniform and irregular distributions.

In the following, however, we are interested in a more general notion of doubling dimen-
sion, which allows a higher density, unbounded degree: we call it locally-bounded doubling
dimension:

IDefinition 11 (Locally-Bounded Doubling Dimension (LDD)). GD implied by the distribution
D has a locally-bounded doubling dimension if and only if there exists a constant λ such that

2 In this case the constant in the O notation depends linearly on c.
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the 2-hop neighbors of any node u are covered by at most λ 1-hop neighbors. Formally, for
each u ∈ V , there exists a set of nodes y1, y2, ...yλ, such that:

B(u, 2) ⊆
λ⋃
i=1

B(yi, 1)

where B(u, r) are the set of nodes that are at distance at most r-hops from u in GD.

Clearly, every bounded doubling dimension graph is also of locally-bounded doubling
dimension, but the converse is not true. In particular, the latter enables graphs which could
be dense, with unbound degree, and possibly with irregularity of degree.

In the remainder of this section, we will prove the following theorem.

I Theorem 12. Let D describe a uniform and regular communication request distribution of
locally-bounded doubling dimension. Then it is possible to design a constant degree DAN N
such that

EPL(D, N) ≤ O(H(Y | X) +H(X | Y )) (12)

This is asymptotically optimal.

Proof. Again, our proof strategy is to employ Theorem 8. Accordingly, we show that a
constant sparse spanner exists for locally-bounded doubling dimension networks. In particular,
we will design this spanner based on an ε-net construction. We first recall the definition of
ε-nets [6].

I Definition 13 (ε-net). A subset V ′ of V is an ε-net for a graph G = (V,E) if it satisfies
the following two conditions:
1. for every u, v ∈ V ′, dG(u, v) > ε

2. for each w ∈ V , there exists at least one u ∈ V ′ such that, dG(u,w) ≤ ε

Let GD = (V,E) be a locally-bounded doubling dimension network. We now first
construct a spanner S′ of GD which is a subgraph of GD, using the following (ε = 2)-net:
we sort all nodes according to decreasing (remaining) degrees, and iteratively select the
high-degree nodes into the 2-net one-by-one and remove their 2-neighborhoods. Clearly, after
this process, each node is either part of the 2-net or has a 2-net node at distance at most
2-hops, and we have computed a legal 2-net.

To form the spanner S, we next arbitrarily match each node u not in the 2-net to one of
its nearest 2-net nodes v, and select the edges along a shortest path from u to v into the
spanner S. This results in a forest of connected components (2-layered stars). We call these
connected components clusters and the corresponding nodes in the 2-net cluster heads. We
denote the cluster associated to the net node u by Cl(u).

We next connect the connected clusters to each other, in a sparse manner. Towards this
end, we connect each pair of clusters, with an arbitrary single edge, if they contain at least
one pair of communicating nodes in GD. We can claim the following.

I Lemma 14. S is a constant and sparse spanner of GD (with distortion 9) .

Proof. Let (u, v) be an edge in GD and u ∈ Cl(u), v ∈ Cl(v). By construction, there are
nodes x ∈ Cl(u) and y ∈ Cl(v) that are connected by an edge in S, and hence there is a
path u,C(u), x, y, C(v), v in S. Therefore, dS(u, v) ≤ dS(u,Cl(u))+dS(Cl(u), x)+dS(x, y)+
dS(y, Cl(v)) + dS(Cl(v), v) ≤ 9.
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The spanner is also sparse: in a nutshell, due to the 2-net properties, we know that
the distance between communicating cluster heads is at most 5: since in a locally doubling
dimension graph the number of cluster heads at distance 5 is bounded, only a small number
of neighboring clusters will communicate. More formally, after associating each node to some
unique cluster, we have a linear number of edges in the spanner. Next we bound the number
of outgoing edges from each cluster. Let (u, v) be such an edge where u ∈ Cl(u), v ∈ Cl(v).
Let the cluster heads of Cl(u) and Cl(v) be i and j, respectively. By construction i and
j are at most at distance 5 in GD, i.e., dGD (i, j) ≤ 5. So, if we can bound the number of
2-net nodes which lie within 5 hops from some net node i, it will give us a bound on the
number of edges which we add between Cl(u) and other clusters. According to Definition 11,
all the two hop neighbors of i can be covered within one hop neighbors of λ nodes, where
λ is the corresponding doubling constant. If we consider two hop neighbors of all these λ
many nodes, they cover all the 3 hop neighbors of i. To cover the 2 hop neighbors of each of
these nodes, we again require one hop neighbors of λ nodes. So, to cover all 3 hop neighbors
of i, we require at most λ2 one hop neighbors. Inductively, by repeating this argument, we
require one hop neighbors of at most λ4 nodes to cover all the 5 hop neighbors of i. Since
we constructed a 2-net, each of these λ4 balls with radius one contains at most one 2-net
node. Hence there are at most λ4 2-net nodes which are at a distance 5 hops or less from i.
Consequently, there are at most λ4 inter-cluster edges associated to some cluster Cl(u), or
cluster head i. Since there can not be more than linear number of clusters, hence the number
of edges in S′ is also linear. J

Using Lemma 14 we can directly use Theorem 8 and conclude the proof of Theorem 12. J

In fact, it turns out that if we consider a metric spanner, and by using auxiliary edges, we
can improve the above distortion and constract better constant sparse spanner S′. The idea
is to add inter-cluster edges only between the cluster heads. This will reduce the distortion to
5 while keeping the same number to total edges. The degree of each node in S′ will increase
by at most a constant, λ4. Adjusting Theorem 8 respectively to support metric spanners
(and only a subgraph spanner) will enable us to use S′ instead of S.

7 Conclusion

This paper initiated the study of a fundamental network design problem. While our work is
motivated in particular by emerging technologies for more flexible datacenter interconnects
as well as by peer-to-peer overlays, we believe that our model is very natural and of interest
beyond this specific application domain considered in this paper. For example, the design
of a sparse, bounded-degree and distance-preserving network can also be understood from
the perspective of graph sparsification [27]: the designed network can be seen as a compact
representation of the original network.

The subject of bounded network design offers several interesting avenues for future
research. In particular, while we presented asymptotically optimal network design algorithms
for a wide range of distributions and while we believe that the entropy is the right measure
to assess network designs, there remain several (dense) distributions for which the quest
for optimal network designs remains open, perhaps also requiring us to explore alternative
flavors of graph entropy.

Acknowledgments. We would like to thank Michael Elkin for many inputs and discussions.
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Abstract
On the one hand, the correctness of routing protocols in networks is an issue of utmost importance
for guaranteeing the delivery of messages from any source to any target. On the other hand, a
large collection of routing schemes have been proposed during the last two decades, with the
objective of transmitting messages along short routes, while keeping the routing tables small.
Regrettably, all these schemes share the property that an adversary may modify the content of
the routing tables with the objective of, e.g., blocking the delivery of messages between some
pairs of nodes, without being detected by any node.

In this paper, we present a simple certification mechanism which enables the nodes to locally
detect any alteration of their routing tables. In particular, we show how to locally verify the
stretch-3 routing scheme by Thorup and Zwick [SPAA 2001] by adding certificates of Õ(

√
n)

bits at each node in n-node networks, that is, by keeping the memory size of the same order
of magnitude as the original routing tables. We also propose a new name-independent routing
scheme using routing tables of size Õ(

√
n) bits. This new routing scheme can be locally verified

using certificates on Õ(
√
n) bits. Its stretch is 3 if using handshaking, and 5 otherwise.
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1 Introduction

Context. A routing scheme is a mechanism enabling to deliver messages from any source to
any target in a network. The latter is typically modeled as an undirected connected weighted
graph G = (V,E) where V models the set of routers and E models the set of communication
links between routers. All edges incident to a degree-d node are labeled from 1 to d, in an
arbitrary manner, and the label at a node u of an incident edge e is called the port number of
edge e at u. A routing scheme consists of a way of assigning a routing table to every node of
the given network. These tables should contain enough information so that, for every target
node t, each node is able to compute the port number of the incident edge through which it
should forward a message of destination t. The routing tables must collectively guarantee
that every message of any source s and any target t will eventually be delivered to t.
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6:2 Certification of Compact Low-Stretch Routing Schemes

Two scenarios are generally considered in the literature. One scenario allows the routing
scheme to assign names to the nodes, and each target is then identified by its given name.
The other, called name independent, is assuming that fixed names are given a priori (typically,
a name is restricted to be the identity of a node), and the scheme cannot take benefit of
naming nodes for facilitating routing.

Among many criteria for evaluating the quality of routing schemes, including, e.g., the
time complexity for constructing the routing tables, the two main parameters characterizing
a routing scheme are the size of its routing tables and names, and the stretch. The stretch
of a routing scheme is the maximum, taken over all pairs of source-target nodes, of the
ratio between the length of the route generated by the scheme from the source to the target,
and the length of a shortest path between these two nodes. During the last two decades,
there has been an enormous effort to design compact routing scheme (i.e., schemes using
small tables) of low stretch (i.e., with stretch upper bounded by a constant) – see, e.g.,
[1, 2, 3, 4, 11, 16, 21, 22, 24]. A breakthrough was achieved in [24] where almost tight
tradeoffs between size and stretch were explicitly demonstrated. In particular, [24] showed
how to design a routing scheme with tables of size Õ(

√
n) bits and stretch 3, in any network1.

All the aforementioned routing schemes share the property that nodes do not have the
capability to realize that the routing tables have been modified (either involuntarily or by
an attacker). That is, a group of nodes may be provided with routing tables which look
consistent with a desired routing scheme, but which do not achieve the desired performances
of that scheme (e.g., large stretch, presence of loops, etc.). Indeed, the nodes are not provided
with sufficient information to detect such an issue locally, that is, by having each node
inspecting only the network structure and the tables assigned to nodes in its vicinity.

Objective. The objective of this paper is, given a routing scheme, to design a mechanism
enabling each node to locally detect the presence of falsified routing tables, in the following
sense. If some tables are erroneous, then at least one node must be able to detect that error
by running a verification algorithm exchanging messages only between neighboring nodes.

Our mechanism for locally verifying the correctness of routing tables is inspired from
proof-labeling schemes [20]. It is indeed based on assigning to each node a certificate, together
with its routing table, and designing a distributed verification algorithm that checks the
consistency of these certificates and tables by having each node inspecting only its certificate
and its routing table, and the certificate and routing table of each of its neighbors. The set
of certificates assigned to the nodes and the verification algorithm running at all nodes in
parallel must satisfy that: (1) if all tables are correctly set, then, with some appropriate
certificates, all nodes accept, and (2) if one or more tables are incorrectly set, then, for every
assignment of the certificates, at least one node must reject. The second condition guarantees
that the verification algorithm cannot be cheated: if the tables are incorrect, there are no
ways of assigning the certificates such that all nodes accept.

Rephrasing the objective of the paper, our goal is to assign certificates to nodes, of size
not exceeding the size of the routing tables, enabling the nodes to collectively verify the
correctness of the routing tables, by having each node interacting with its neighbors only.

Our Results. We show how to locally verify the stretch-3 size-Õ(
√
n) routing scheme by

Thorup and Zwick [24]. Our certification mechanism uses certificates of Õ(
√
n) bits at each

node, that is, these certificates have size of the same order of magnitude as the original
routing tables. Hence, verifying the scheme in [24] can be done without modifying the scheme,

1 The notations Õ and Ω̃ ignore polylogarithmic factors.
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Table 1 Summary of our results compared to previous work. All the listed routing schemes have
space complexity of Õ(

√
n) bits. Our verification algorithms use certificates on Õ(

√
n) bits.

name
scheme stretch independent verifiable comment
[24] 3 no yes –
[3] 5 yes ? –
[2] 3 yes ? –

this paper 5 yes yes –
this paper 3 yes yes handshaking

and without increasing the memory space consumed by that scheme. We also show that
the same holds for the whole hierarchy of routing schemes proposed in [24] for providing a
tradeoff between size and stretch.

The situation appears to be radically different for name-independent routing schemes.
The stretch-3 name-independent routing scheme by Abraham et al. [2] also uses tables of size
Õ(
√
n) bits. However, each table includes references to far away nodes, whose validity does

not appear to be locally verifiable using certificates of reasonable size. On the other hand, a
simplified version of the scheme in [2] can be verified locally with certificates of size Õ(

√
n)

bits, but its stretch becomes at least 7. Therefore, we propose a new name-independent
routing scheme, with tables of size Õ(

√
n) bits that can be verified using certificates on

Õ(
√
n) bits as well. This new routing scheme has stretch at most 5, and the stretch can

even be reduced to 3 using handshaking2. The routing scheme of Arias et al. [3] has also
stretch 5, but it does not appear to be locally verifiable with certificates of reasonable size,
and using handshaking does not enable to reduce the stretch.

All our results are summarized in Table 1.

Related Work. The design of compact routing tables, and the explicit identification of
tradeoffs between the table size and the routes length was initiated thirty years ago, with the
seminal work in [22] and [21]. Since then, a large amount of papers were published on this
topic, aiming at refining these tradeoffs, and at improving different aspects of the routing
schemes, including routing in specific classes of graphs (see [15, 17]). In particular, routing
schemes were designed for trees in [11, 24], with space complexity O(log2 n/ log logn) bits3.
This space complexity was shown to be optimal in [12].

It was proved [18] that, in n-node networks, any shortest path routing scheme requires
tables of size Ω̃(n) bits. The aforementioned routing scheme in [24] with stretch 3 and space
complexity Õ(

√
n) bits was shown to be optimal in [16], in the following sense: no routing

scheme with space complexity o(n) bits can achieve a stretch s < 3, and, assuming the
correctness of a conjecture by Erdős regarding a tradeoff between girth and edge density in
graphs, every routing scheme with stretch s < 5 has space complexity Ω(

√
n) bits. On the

positive side, [24] tightens the size-stretch tradeoff of [21] by showing that, for every k ≥ 2,
there exists a routing scheme with stretch 4k − 5 and space complexity Õ(n1/k) bits. (The
stretch can be reduced to 2k − 1 using handshaking). Recently, [8] showed that, for k ≥ 4, a
stretch s = αk with α < 4 can be achieved using routing tables of size Õ(n1/k).

2 The handshaking mechanism is similar to DNS lookup in TCP/IP. It allows querying some node(s)
for getting additional information about the route to the target.

3 The space complexity can be reduced to O(log n) if the designer of the routing scheme is also
allowed to assign the port numbers to the nodes.
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6:4 Certification of Compact Low-Stretch Routing Schemes

The distinction between name-independent routing schemes, and routing schemes assigning
specific names to the nodes was first made in [4]. Then, [5] presented techniques for designing
name-independent routing schemes with constant stretch and space complexity o(n) bits.
Almost 15 years after, [3] described a name-independent routing scheme with stretch 5
and space complexity Õ(

√
n) bits. This was further improved in [2] thanks to a name-

independent routing scheme with stretch 3 and space complexity Õ(
√
n) bits. A couple of

years later, [1] showed that there are tradeoffs between stretch and space complexity for
name-independent routing schemes as well. Specifically, [1] showed that, for any k ≥ 1, there
exists a name-independent routing scheme with space complexity Õ(n1/k) bits and stretch
O(k).

The certification mechanism used in this paper is based on the notion of proof-labeling
scheme introduced in [20] in which an oracle, called prover, assigns certificates to the nodes,
and a distributed algorithm, called verifier, checks that this certificates collectively form a
proof that the global state of the network is legal with respect to a given boolean network
predicate. Proof-labeling schemes have been widely used in literature. For example, [23]
uses them to verify spanning trees in networks. This result has been extended in [14], where
proof-labeling schemes are used to verify spanning trees in evolving networks that are evolving
with time. Variants of proof-labeling schemes have been considered in, e.g., [7, 13], and [19].
More generally, see [10] for a survey of distributed decision.

2 Definitions

Routing Schemes. Let F be a family of edge-weighted graphs with edges labeled at each
node by distinct port numbers from 1 to the degree of the node. The weights are all
positive, and the weight of edge e represents its length. It is thus denoted by length(e). The
nodes are given distinct identities. All node-identities and edge-weights are supposed to be
stored on O(logn) bits. For the sake of simplifying notations, we do not make a distinction
between a node v and its identity, also denoted by v. Given two nodes u, v, we denote
by δ(u, v) the weighted distance between u and v. Given an edge e of end-point u, the port
number of e at u is denoted by portu(e).

We follow the usual setting of proof-labeling scheme [20] in which the values of the
edge-weights, node identities, and port numbers are fixed, and cannot be corrupted. Only
the internal memories of the nodes, storing information about, say, routing, are susceptible
to be corrupted.

A routing scheme for F is a mechanism assigning a name, name(u), and a routing table,
table(u), to every node u of every graph G ∈ F such that, for any pair (s, t) of nodes of any
G ∈ F , there exists a path u0, u1, . . . , uk from s to t in G with u0 = s, uk = t, and

table(ui)
(
name(t)

)
= portui

({ui, ui+1}) (1)

for every i = 0, . . . , k − 1. That is, every intermediate node ui, 0 ≤ i < k, can determine
on which of its ports the message has to be forwarded, based solely on its routing table,
and on the name of the target. In Eq. 1, each table is viewed as a function taking names
as arguments, and returning port numbers. The path u0, u1, . . . , uk is then called the route
generated by the scheme from s to t. It is worth pointing out the following observations.

Name-independent routing schemes are restricted to use names that are fixed a priori,
that is, the name of a node is its identity, i.e., name(v) = v for every node v. Instead,
name-dependent routing schemes allow names to be set for facilitating routing, and names
are typically just bounded to be storable on a polylogarithmic number of bits.
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The header of a message is the part of that message containing all information enabling
its routing throughout the network. The header of a message with destination t is typically
name(t). However, some routing schemes ask for message headers that can be modified. This
holds for both name-dependent schemes (like, e.g., [24]) and name-independent schemes (like,
e.g., [2]). The typical scenario requiring modifiable headers is when a message is routed from
source s to target t as follows. From name(t) and table(s), node s can derive the existence
of some node v containing additional information about how to reach t. Then the message
is first routed from s to v, and then from v to t. Distinguishing these two distinct parts of
the routes from s to t often requires to use different headers. In case of modifiable headers,
Eq. (1) should be tuned accordingly as the argument of routing is not necessarily just a
name, but a header.

Some routing schemes may use a mechanism called handshaking [24], which is an abstrac-
tion of mechanisms such as Domain Name System (DNS) enabling to recover an IP address
from its domain name. Let us consider the aforementioned scenario where a routing scheme
routes a message from s to t via an intermediate node v identified by s from name(t) and
table(s). One can then enhance the routing scheme by a handshaking mechanism, enabling s
to query v directly, and to recover the information stored at v about t. Then s can route
the message directly from s to t, avoiding the detour to v. That is, handshaking enables to
distinguish the part of the routing used to get information about the target (like in DNS),
from the part of routing used to transfer messages (like in IP). Handshaking is used in [24]
to reduce the stretch of routing schemes with space complexity Õ(n1/k) bits from 4k − 5 to
2k − 1, for every k > 2.

The size of a routing scheme is the maximum, taken over all nodes u of all graphs in F ,
of the memory space required to encode the function table(u) at node u. The stretch of a
routing scheme is the maximum, taken over all pairs (s, t) of nodes in all graphs G ∈ F , of
the ratio of the length of the route from s to t (i.e., the sum of the edge weights along that
route) with the weighted distance between s and t in G.

Distributed Verification. Given a graph G, a certificate function for G is a function
certificate : V (G)→ {0, 1}∗ assigning a certificate, certificate(u), to every node u ∈ V (G). A
verification algorithm is a distributed algorithm running concurrently at all nodes in parallel.
At every node u ∈ V (G) of every graph G ∈ F , the algorithm takes as input the identity of
node u, the certificate certificate(u) and routing table table(u) assigned to node u, as well
as the collection of pairs (table(v), certificate(v)) assigned to all neighbors v of u, with their
identities, and outputs accept or reject.

I Definition 1. A routing scheme for F is verifiable if there exists a verification algorithm
verif such that, for every G ∈ F ,

if the tables given to all nodes of G are the ones specified by the routing scheme, then
there exists a certificate function for G such that the verification algorithm verif outputs
accept at all nodes;
if some tables given to some nodes of G differ from the ones specified by the routing
scheme, then, for every certificate function for G, the verification algorithm verif outputs
reject in at least one node.

The second bullet guarantees that if an adversary modifies some routing tables, or even
just a single bit of a single table, then there are no ways it can also modify some, or even
all certificates so that to force all nodes to accept: at least one node will detect the change.
Of course, this node does not need to be the same for different modifications of the routing
tables, or for different certificates.
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6:6 Certification of Compact Low-Stretch Routing Schemes

I Remark. The above definition is the classical definition of proof-labeling scheme applied
to verifying routing schemes. In particular, it may well be the case that a correct labeling
scheme be rejected if the certificates have not been set appropriately, just like a spanning
tree T will be rejected by a proof-labeling scheme for spanning trees if the certificates have
been set for another spanning tree T ′ 6= T .

3 Name-dependent routing scheme

In this section, we show how to verify the stretch-3 routing scheme by Thorup and Zwick in
[24]. This scheme uses tables of Õ(

√
n) bits of memory at each node. We show the following:

I Theorem 2. The stretch-3 routing scheme by Thorup and Zwick in [24] can be locally
verified using certificates of size Õ(

√
n) bits.

Before proving the theorem, let us recall the structure of the routing scheme in [24]. It
assigns names and tables to nodes of every G = (V,E) as follows.

Landmarks, Bunch and Clusters. The routing scheme in [24] uses the notion of landmarks
(a.k.a. centers). These landmarks form a subset L ⊆ V of nodes. For v ∈ V , let lv denote
the landmark closest to v in G. For every v ∈ V , the bunch of v with respect to the set L is
defined as follows: bunch(v) = {u ∈ V : δ(v, u) < δ(lv, v)}. The routing scheme in [24] also
uses the notion of cluster. For every node v ∈ V , cluster(v) = {u ∈ V : δ(v, u) < δ(lu, u)}.
As a consequence, for every u, v ∈ V , we have: u ∈ cluster(v) ⇐⇒ v ∈ bunch(u). Note that
since, for every v ∈ V , and every l ∈ L, we have l /∈ bunch(v), it follows that cluster(l) = ∅
for every l ∈ L. By construction of the bunches and the clusters, it also holds that, for every
v ∈ V , cluster(v) ∩ L = ∅. Also, clusters satisfy the following property.

I Lemma 3 ([24]). If u ∈ cluster(v) then, for every node w on a shortest path between u

and v, we have u ∈ cluster(w).

In [24], the landmarks are chosen by an algorithm that samples them uniformly at random
in V until the following holds: for every node v, |cluster(v)| < 4

√
n. It is proved that this

algorithm returns, w.h.p., a set of landmarks of size at most 2 log(n)
√
n.

Names and tables. For every two nodes v and t, let next(v, t) be the port number of an
edge incident to v on a shortest path between v and t. Each node t ∈ V is assigned a
3dlog(n)e-bit name as follows: name(t) = (t, lt, next(lt, t)). Each node v ∈ V then stores the
following Õ(

√
n)-bit information in its routing table, table(v):

the identities of all the landmarks l ∈ L;
the identities of all nodes t ∈ cluster(v);
the set {next(v, t) : t ∈ L ∪ cluster(v)}.

Routing. Note that, by Lemma 3, any message from a node v to a node in cluster(v) reaches
its target along a shortest path. The same holds for landmarks since every node is given
information about how to reach every landmark. In general, let us assume that v wants to
send a message to some node t with label (t, lt, next(lt, t)) that is neither a landmark nor
belongs to cluster(v). In this case, v extracts the landmark lt nearest to t from t’s name
(note here the impact of allowing the scheme to assign specific names to nodes), and forwards
the message through the port on a shortest path towards lt using the information v has in
its table. Upon reception of the message, lt forwards the message towards t on a shortest
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path using next(lt, t) (this information can also be extracted from the name of t), to reach a
node z ∈ bunch(t). At last, since z ∈ bunch(t), we have t ∈ cluster(z), which means that z
can route to t via a shortest path using the information available in its table. By Lemma 3,
this also holds for every node along a shortest path between z and t. Using symmetry, and
triangle inequality, [24] shows that this routing scheme guarantees stretch 3.

Proof of Theorem 2. To enable local verification of the stretch-3 routing scheme in [24], a
certificate of size Õ(

√
n) bits is given to each node. Let G = (V,E) be an undirected graph

with positive weights assigned to its edges, and a correct assignment of the routing tables
to the nodes according to the specifications of [24] as summarized before. Then each node
v ∈ V is assigned a certificate composed of:

the distance between v and every landmark in L;
the distance between v and every node in cluster(v);
the set {δ(t, lt) : t ∈ cluster(v)}.

As claimed, all these information can be stored using Õ(
√
n) bits of memory.

We assume, without loss of generality, that all nodes know n (verifying the value of n is
easy using a proof-labeling scheme with O(logn)-bit certificates [20]). The verification of
the routing scheme then proceeds as follows. We describe the verification algorithm verif
running at node v ∈ V . This verification goes in a sequence of steps. At each step, either v
outputs reject and stops, or it goes to the next step.

We denote by L(v), C(v), and {N(v, t) : t ∈ L(v) ∪ C(v)} the content of the routing
table of v. These entries are supposed to be the set of landmarks, the cluster of v, and
the set of next-pointers given to v, respectively. We also denote by d the distance given
in the certificates. That is, node v is given a set {d(v, t) : t ∈ L(v) ∪ C(v)} and a set
{d(t, lt) : t ∈ C(v)} where lt is supposed to be the node in L(v) closest to t ∈ C(v). Of course,
if a node does not have a table and a certificate of these forms, then it outputs reject. So,
we assume that all tables and certificates have the above formats. The algorithm proceeds as
follows at every node v. Node v checks that
1. the information in its table satisfy |C(v)| ≤ 4

√
n and |L(v)| ≤ 2 logn

√
n bits;

2. it has the same set of landmarks as its neighbors;
3. for every l ∈ L(v) with l 6= v, there exists a neighbor u of v satisfying d(v, l) =

length({v, u}) + d(u, l), and all other neighbors satisfy d(v, l) ≤ length({v, u}) + d(u, l),
with N(v, l) pointing to a neighbor u satisfying d(v, l) = length({v, u}) + d(u, l);

4. if v ∈ L(v) then C(v) = ∅;
5. if v /∈ L(v) then v ∈ C(v) and, for every node t ∈ C(v) with t 6= v, there exists a neighbor

u of v satisfying t ∈ C(u) with d(v, t) = length({v, u}) + d(u, t), and every neighbor u
of v with t ∈ C(u) satisfies d(v, t) ≤ length({v, u}) + d(u, t), with N(v, t) pointing to a
neighbor u satisfying t ∈ C(u) and d(v, t) = length({v, u}) + d(u, t);

6. for every node t ∈ C(v), for every neighbor u of v satisfying t ∈ C(u), the distance d(t, lt)
in the certificate of u is equal to the distance d(t, lt) in the certificate of v;

7. for every t ∈ C(v), it holds that d(v, t) < d(t, lt);
8. for every neighbor u, and every t ∈ cluster(u) \ cluster(v), it holds that length{(v, u)}+

d(u, t) ≥ d(t, lt).
If v passes all the above tests, then v outputs accept, else it outputs reject.

We now establish the correctness of this local verification algorithm. First, by construction,
if all tables are set according to [24], that is, if, for every node v, L(v) = L, C(v) = cluster(v)
and N(v, t) = next(v, t) for all t ∈ L ∪ cluster(v), then every node running the verification
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6:8 Certification of Compact Low-Stretch Routing Schemes

algorithm with the appropriate certificate {δ(v, t) : t ∈ L∪cluster(v)}∪{δ(t, lt) : t ∈ cluster(v)}
where lt is the node in L closest to t ∈ cluster(v), will face no inconsistencies with its neighbors,
i.e., all the above tests are passed, leading every node to accept, as desired.

So, it remains to show that if some tables are not what they should be according to [24],
then, no matter the certificates assigned to the nodes, at least one node will fail one of the
tests. If all nodes output accept, then, by Step 1, all routing tables are of the appropriate
size. Also, by Step 2, the set L of landmarks given to the nodes is the same for all nodes, as
otherwise there will be two neighbors that would have different sets. Moreover, by Step 3,
we get that, at every node v, the distances of this node to the landmarks, as stored in its
certificate, are correct, from which we infer that N(v, l) is appropriately set in the table of v,
that is N(v, l) = next(v, l) for every l ∈ L. Hence, if all the tests in Steps 1-3 are passed, all
the data referring to L in both the tables and the certificates are consistent. In particular,
every node v knows the landmark lv which is closest to it, and its distance δ(v, lv).

We now show that if all these tests as well as the remaining tests are passed, then the
clusters in the tables are correct, w.r.t. L, as well as the next-pointers. We first show that,
if all tests are passed, then, for every node v ∈ V , C(v) ⊆ cluster(v). By Step 4, this latter
equality holds for every landmark v. By Step 5, we get that, at every node v, the distance
of this node to every node t ∈ C(u), as stored in its certificate, are correct, from which
we infer that N(v, t) is appropriately set in the table of v, that is N(v, t) = next(v, t) for
every t ∈ C(v). By Step 6, we get that, for every t ∈ C(v), we do have d(lt, t) = δ(lt, t).
Indeed, this equality will be checked by all nodes on a shortest path between v and t (whose
existence is guaranteed by Step 5), and t has the right distance δ(t, lt) in its certificate by
Step 3. Recall that cluster(v) = {t ∈ V | δ(v, t) < δ(lt, t)} where lt is the landmark closest
to t. Step 7 precisely checks that inequality.

It remains to show that there are no nodes in cluster(v) that are not in C(v). Assume
that there exists t ∈ cluster(v) \ C(v), and let P be a shortest path between v and t. Let
v′ be the closest node to v on P such that t ∈ C(v′) ⊆ cluster(v′). Note that such a node
v′ exists as t ∈ C(t). Let v′′ be the node just before v′ on P traversed from v to t. By
Lemma 3, since t ∈ cluster(v), we also have t ∈ cluster(v′′). We have t ∈ cluster(v′′) \ C(v′′).
Therefore δ(v′′, t) < δ(lt, t). Now, δ(v′′, t) = length({(v′′, v′})+δ(v′, t) because P is a shortest
path between v′′ and t passing through v′. So, length({(v′′, v′}) + δ(v′, t) < δ(lt, t). Step 8
guarantees that it is not the case. Therefore, there are no nodes in cluster(v) \ C(v). It
follows that cluster(v) = C(v) for all nodes v. This completes the proof of Theorem 2. J

4 Name-independent Routing Scheme

The purpose of this section is twofold. First, it serves as recalling basic notions that will be
helpful for the design of our new name-independent routing scheme. Second, it is used to
show why the known name-independent routing scheme in [2] appears to be difficult, and
perhaps even impossible to verify locally.

The Routing Scheme of [2]

The stretch-3 name-independent routing scheme of [2] uses Õ(
√
n) space at each node. We

provide a high level description of that scheme. Recall that, in name-independent routing,
a target node is referred only by its identity. That is, name(t) is the identity of t, i.e.,
name(t) = t. Let G = (V,E). For every node v ∈ V , the vicinity ball of v, denoted by ball(v),
is the set of the 4dα log(n)

√
ne closest nodes to v, for a large enough constant α > 0, where

ties are broken using the order of node identities. By this definition, if u ∈ ball(v) and w is
on a shortest path between v and u, then u ∈ ball(w).
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Color-Sets. In [2], the nodes are partitioned into sets C1, . . . C√n, called color-sets, and,
for i = 1, . . . ,

√
n, the nodes in color-set Ci are assigned the same color i. For every node

v ∈ V , its vicinity ball, ball(v), contains at least one node from each color-set. To get this,
the color of a given node v is determined by a hash function color which, given the identity
of a node, maps that identity to a color in {1, . . . ,

√
n}. This mapping from identities to

colors is balanced in the sense that at most O(logn
√
n) nodes map to the same color. A

color is chosen arbitrarily, and all nodes with that color are considered to be the landmarks.
Let L be the set of landmarks. It holds that |L| = O(logn

√
n). Also, each node v ∈ V has

at least one landmark in its vicinity ball. We fix, for each vicinity ball ball(v), an arbitrary
landmark, denoted by lv.

Routing in trees. This construction in [2] makes use of routing schemes in trees. More pre-
cisely, they use the results from [11, 24], which states that there exists a shortest-path (name-
dependent) routing scheme for trees using names and tables both on O(log2(n)/ log log(n))
bits in n-node trees. For a tree T containing node v, let tableT (v) and nameT (v) denote the
routing table of node v in T , and the name of v in T , as assigned by the scheme in [11].

The routing tables. For any node v, let T (v) be a shortest-path spanning tree rooted at
v. Let P (v, w, u) be a path between v and u composed of a shortest path between v and w
and a shortest path between w and u. Such a path is said to be good for (v, u) if v ∈ ball(w),
and there exists an edge {x, y} along a shortest path between w and u with x ∈ ball(w) and
y ∈ ball(u); Every node v ∈ V stores the following information in its routing table table(v):

the hash function color that maps identities in colors;
the identity of every node u ∈ ball(v), and the port number next(v, u);
for every landmark l ∈ L, the routing table tableT (l)(v) for routing in T (l);
for every node u ∈ ball(v), the routing table tableT (u)(v) for routing in T (u);
the identities of all nodes with same color as v, and, for each such node u, the following
additional information:
Rule 1: if there are no good paths P (v, w, u), v stores

(
nameT (lu)(lu), nameT (lu)(u)

)
.

Rule 2: if there exists a good path P (v, w, u), then let us pick a good path P of minimum
length among all good paths; then, let us compare its length |P | with the length |Q|
of the path Q composed of a shortest path between v and lu, and a shortest path
between lu and u; provide v with

(
nameT (lu)(lu), nameT (lu)(u)

)
if |Q| ≤ |P |, and with(

nameT (v)(w), x, portx({x, y}), nameT (y)(u)
)
otherwise.

Storing the hash function color requires O(
√
n) bits. L and ball(v) are both of size

Õ(
√
n) bits. Moreover, the number of nodes with identical color is Õ(

√
n), for every color.

Finally, shortest-path routing in any tree can be achieved using tables and names of size
O(log2 n/ log logn) bits [11, 24]. It follows that |table(v)| = Õ(

√
n), as desired.

Routing. Routing from a source s to a target t is achieved in the following way (see [2] for
more details). If t ∈ ball(s), or t ∈ L, or s and t have the same color, then s routes to t using
the information available in its table. More specifically, if t ∈ ball(s) or t ∈ L, then s sets the
header of the message as just the identity of the target t. Instead, if s and t have the same
color but t /∈ ball(s) ∪ L, the source s sets the header as one of the two possible rules 1 or
2. Otherwise, that is, if t /∈ ball(s) ∪ L and color(s) 6= color(t), node s routes the message
towards some node w ∈ ball(s) sharing the same color as t. (The color of t can be obtained
by hashing the identity of t). The header is set to t, and w will change the header upon
reception of this message, according to the rules previously specified. It is shown in [2] that
this routing guarantees a stretch 3.
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Figure 1 (Left) All the nodes in a shortest path between s and t belong to ball(s)∪ball(t). (Right)
There are nodes in a shortest path between s and t that do not belong to ball(s) ∪ ball(t).
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Figure 2 A route of stretch 7.

On the difficulty of locally verifying the scheme in [2]

We note that the routing scheme in [2], as sketched in the previous subsection, has some “global”
features that makes it plausibly difficult to locally verify, by adding certificates of size Õ(

√
n)

bits at each node. In this subsection, we mention one of these global features, illustrated in the
example depicted on Fig. 1. We are considering routing from a source s /∈ L to a target t /∈ L,
of different colors, with s /∈ ball(t) and t /∈ ball(s). Let us assume that node s has color red,
while node t has color blue. According to the routing scheme in [2], node s first routes the
message towards some blue node u ∈ ball(s) to get information about the blue target t. In the
example of Fig. 1(left), node u stores

(
nameT (u)(s), x, port(x, y), nameT (y)(t)

)
, to guarantee a

stretch 3. Instead, in the example of Fig. 1(right), node u stores
(
nameT (lt)(lt), nameT (lt)(t)

)
.

to guarantee such a small stretch. Verifying locally whether there exists a good path between
s and t, which is the condition leading to distinguishing the case where the content of rule 1
must apply, from the case where the content of rule 2 must apply, appears to be a very
difficult matter when restricted to certificates of size Õ(

√
n).

We point out that systematically applying rule 1 would result in a routing scheme that
may be locally verifiable. However, its stretch is at least 7. To see why, let us consider
the example displayed in Figure 2 where s ∈ ball(t) but t /∈ ball(s). The radius of ball(s)
is 50. Let u ∈ ball(s) be one of the farthest nodes to s, i.e., δ(s, u) = 50. The radius
of ball(t) is 100 and δ(t, lt) = 100. Although δ(u, t) = 100, we assume u /∈ ball(t) due
to lexicographical order priorities. Finally, assume that δ(s, t) = 50. The worst case
route from s to t would then be s  u  s  t  lt  t. This path is of length
δ(s, u) + δ(u, s) + δ(s, t) + δ(t, lt) + δ(lt, t) = 2× 50 + 50 + 2× 100 = 350 which is 7δ(s, t).

5 A New Name-Independent Routing Scheme

In this section, we describe and analyze a new name-independent routing scheme, denoted by
R. The section is entirely dedicated to the proof of the following theorem. Recall that, given
a family of events (En)n≥1, event En holds with high probability if Pr[En] = 1−O(1/nc) for
some c ≥ 1.
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I Theorem 4. The name-independent routing scheme R uses routing tables of size Õ(
√
n)

bits at each node. It guarantees stretch 5, and, using handshaking, its stretch can be reduced
to 3. In both cases, R can be locally verified using certificates of size Õ(

√
n) bits, using a

1-sided error verification scheme which guarantees that incorrect tables are detected with high
probability.

Our verifier used to establish Theorem 4 is actually deterministic. The certificates
however store hash functions chosen at random. We assume that these hash functions are not
corruptible, and that the adversary is not capable to create collisions (if not accidentally, by
chance). Even though this assumption may seem strong, we point out that this is relevant to
practical situations in which cryptographic hash functions designed to be collision resistant
and hard to invert are used (for more details please refere to Chapter 5 of [9]).

The new routing scheme R. Our new routing scheme R borrows ingredients from both
[2] and [24]. In particular, the landmarks are chosen as for the (name-dependent) routing
scheme in [24], i.e., in such a way that every node v has a cluster cluster(v) of size at most
4
√
n, and the landmarks form a set L of size at most 2 logn

√
n. However, we reinforce the

way the nearest landmark to v is selected, by picking the nearest landmark lv such that
lv = argminl∈Lδ(v, l) where ties are broken by choosing the landmark with smallest identity.
Also, we slightly reinforce the definition of next: For every two nodes v and t, we set next(v, t)
as the smallest port number at v of an edge incident to v on a shortest path between v and t.
These two reinforcements of the definitions of landmarks and next guarantee the following.

I Lemma 5. Let v ∈ V , and let lv be its landmark. Let u be a node on a shortest path
between v and lv. Then lu = lv.

I Lemma 6. Let v ∈ V , let lv be its landmark, and let w be the neighbor of lv such that
next(lv, v) = portlv ({lv, w)}. Let u be a node on a shortest path between v and w. We have
next(lv, u) = next(lv, v).

As in [2], each node that is not a landmark is given a color in {1, . . . ,
√
n} determined

by a hash function, color, that maps identities to colors, where at most O(logn
√
n) nodes

map to the same color. Also, each node v has a vicinity ball, ball(v), that contains the
O(log(n)

√
n) nodes closest to v (breaking ties using identities). This guarantees that, with

high probability, for every node v, there is at least one node of each color in ball(v).
For each color c, where 1 ≤ c ≤

√
n, we define Dirc = {

(
v, lv, next(lv, v)

)
: color(v) = c}

which includes the direction to take at lv for reaching v of color c along a shortest path.

The routing tables. Every node v ∈ V then stores the following information in table(v):
the hash function color that maps identities in colors;
the identity of every landmark l ∈ L, and the corresponding port next(v, l);
the identity of every node u ∈ cluster(v), and the corresponding port next(v, u);
the identity of every node u ∈ ball(v), and the corresponding port next(v, u);
the set Dircolor(v).

Storing the hash function color requires O(
√
n) bits, as we use the same function as in [2].

Since L, cluster(v), ball(v), and Dircolor(v) are all of size Õ(
√
n), we get that |table(v)| = Õ(

√
n)

as desired.
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Routing. Let us consider routing towards a target node t, and let v be the current node.
If t ∈ cluster(v), then routing to t is achieved using next(v, t). Notice that, by Lemma 3,
routing to t will actually be achieved along a shortest path. Similarly, if t ∈ ball(v), then
routing to t is achieved using next(v, t) along a shortest path, and this also holds if t is a
landmark. In general, i.e., if t is neither a landmark nor a node of cluster(v) ∪ ball(v), then
node v computes color(t) by hashing the identity of t.

If color(t) = color(v), then v forwards the message towards lt using the information in
Dircolor(v), and including (lt, next(lt, t)) in the header of the message so that intermediate
nodes carry on routing this message to lt. At lt, the message will be routed to t using the
information next(lt, t) available in the header, reaching a node ut such that t ∈ cluster(ut).
At this point, routing proceeds to t along a shortest path.

If color(t) 6= color(v), then the message is forwarded to an arbitrary node w ∈ ball(v)
having the same color as t (we know that such a node exists), with w in the header of the
message. The message then reach w along a shortest path. At w, we have color(t) = color(w),
and thus routing proceeds as in the previous case.

Handshaking. The routing with handshaking to node t proceeds as follows. If t ∈ L ∪
cluster(v) ∪ ball(v), or color(v) = color(t), then routing proceeds as above. Otherwise, v
performs a handshake with a node w ∈ ball(v) with color(w) = color(t) to get the identity of
lt as well as next(lt, t). Then v routes the message to lt, where it is forwarded to a node ut
such that t ∈ cluster(ut). At this point, routing proceeds to t along a shortest path.

Stretch of the new routing scheme R. Let s, t ∈ V be two arbitrary nodes of the graph.
We show that the routing scheme R routes messages from s to t along a route of length
at most 5 δ(s, t) in general, and along a route of length at most 3 δ(s, t) whenever using
handshaking. As we already observed, if t ∈ L ∪ cluster(v) ∪ ball(v), then the message is
routed to t along a shortest path, i.e., with stretch 1. Otherwise, we consider separately
whether the color of s is the same as the color of t, or not.

Assume first that color(t) = color(s). Then the message is routed towards lt along a
shortest path, then from lt to t along a shortest path. The length ` of this route satisfies
` = δ(s, lt) + δ(lt, t). By the triangle inequality, we get that ` ≤ δ(s, t) + 2δ(lt, t). Since
t /∈ cluster(s), we get δ(s, t) ≥ δ(t, lt). Therefore ` ≤ 3 δ(s, t). We are left with the case where
color(s) 6= color(t). Observe first that, with handshaking, the route from s to t will be exactly
as the one described in the case color(s) = color(t), resulting in a stretch 3. This completes
the proof that R achieves a stretch 3 with handshaking. Without handshaking, the message
is forwarded along a shortest path to an arbitrary node w ∈ ball(v) having the same color
as t, then from w to lt along a shortest path, and finally from lt to t along a shortest path.
This route is of length δ(s, w) + δ(w, lt) + δ(lt, t) ≤ δ(s, w) + δ(w, s) + δ(s, lt) + δ(lt, t) ≤
2 δ(s, w) + 3 δ(s, t) ≤ 5 δ(s, t), as desired.

Local Verification of R. We show how to verify R with a verification algorithm verif
using certificates on Õ(

√
n) bits. Let us define the certificates given to nodes when the

routing tables are correctly set as specified by R. For each color c, 1 ≤ c ≤
√
n, let Bc be the

number of bits for encoding the set Dirc, and let r = max1≤c≤
√
nBc. We have r = Õ(

√
n).

Let f1, . . . , fk be k = Θ(logn) hash functions, where each one is mapping sequences of at
most r bits onto a single bit. More specifically, each function fi, 1 ≤ i ≤ k, is described as
a sequence fi,1, . . . , fi,r of r bits. Given a sequence D = (d1, . . . , d`) of ` ≤ r bits, we set
fi(D) = (

∑`
j=1 fi,j dj) mod 2. Hence, if the r bits describing fi are chosen independently
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uniformly at random, then, for every two `-bit sets D and D′, we have [25]: D 6= D′ ⇒
Pr[fi(D) = fi(D′)] = 1/2. Therefore, D 6= D′ ⇒ Pr[(fi(D) = fi(D), i = 1, . . . , k)] = 1/2k.
That is, if k = βdlog2 ne with β > 1, applying the functions f1, . . . , fk to both sets D and
D′ enables to detect that they are distinct, with probability 1− 1/nβ .

Each node v ∈ V stores the certificate composed of the following fields:
the distances {δ(v, l) : l ∈ L};
the distances {δ(v, u) : u ∈ ball(v)};
the set

{(
δ(v, u), lu, δ(u, lu)

)
: u ∈ cluster(v)

}
;

the set of k hash functions f1, . . . , fk;
the set

{(
i, c, fi(Dirc)

)
: 1 ≤ i ≤ k, 1 ≤ c ≤

√
n
}
.

The first three entries, as well as the last entry, are clearly on Õ(
√
n) bits, because of the

sizes of L, cluster(v), and ball(v). Regarding the fourth entry, each function fi is described
by a sequence of Õ(

√
n) random bits.

The verification algorithm verif then proceeds as follows. In a way similar to the proof of
Theorem 2, we denote byH(v), L(v), C(v), B(v), D(v), and {N(v, t) : t ∈ L(v)∪C(v)∪B(v)}
the content of the routing table of v. These entries are supposed to be the hash function
color, the set of landmarks, the cluster of v, the ball of v, the set Dircolor(v), and the
set of next-pointers given to v, respectively. We also denote by d the distance given in
the certificates. That is, node v is given a set {d(v, t) : t ∈ L(v) ∪ B(v)}, and a set
{(d(v, t), lt, d(t, lt)) : t ∈ C(v)} where lt is supposed to be the node in L(v) closest to
t ∈ C(v).

We also denote by F v1 , . . . , F vk the hash functions given to v in its certificate, and by
F (v) = {F vi,c : 1 ≤ i ≤ k, 1 ≤ c ≤

√
n} the set of O(

√
n logn) hash values in the certificates.

Of course, if a node does not have a table and a certificate of these forms, then it outputs
reject. So, we assume that all tables and certificates have the above formats.

Clusters, balls and landmarks (including distances, ports, sizes, etc.) are checked exactly
as in Section 3 for the routing scheme in [24]. So, in particular, ignoring the colors and ignoring
the minimality of the landmarks’ identities, we can assume that, for every node v, L(v) =
L, C(v) = cluster(v) and B(v) = ball(v), and, for every node u ∈ L ∪ cluster(v) ∪ ball(v), we
have d(v, u) = δ(v, u), and N(v, u) = next(v, u) ignoring the minimality of that port number.
To check the remaining entries in the routing tables (as well as the previously ignored
colors and minimality criteria for the landmarks and the next-pointers), verif performs the
following sequence of steps. At every step, if the test is not passed at some node, then verif
outputs reject at this node, and stops. Otherwise, it goes to the next step. If all tests are
passed at a node, that node outputs accept. Node v checks that:
1. lv has the smallest identity among all landmarks closest to v;
2. it has the same hash function H(v) as its neighbors, that it has one node of each color in

B(v), that v appears in D(v), and that all nodes appearing in D(v) have the same color
as v;

3. if lv 6= v then there exists at least one neighbor u on a shortest path between v and
lv with N(lv, v) = N(lv, u); for every neighbor u on the shortest path between v and
lv (implying lu = lv) with u 6= lv, N(lv, v) ≤ N(lu, u); and if lv is a neighbor of v on a
shortest path between lv and v, N(lv, v) = portlv ({lv, v});

4. for every u ∈ L ∪ B(v) ∪ C(v), the port number N(v, u) is the smallest among all the
ports of edges incident to v on a shortest path between v and u;

5. it has the same hash functions F v1 , . . . , F vk , as its neighbors;
6. F vi (D(v)) = F vi,H(v) for every i = 1, . . . , k;
7. the hash value F vi,c, 1 ≤ i ≤ k, 1 ≤ c ≤

√
n, are identical to the ones of their neighbors.
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If v passes all the above tests, then v outputs accept, else it outputs reject.
We now establish the correctness of this local verification algorithm. First, by construction,

if all tables are set according to the specification of R, then every node running the verification
algorithm with the appropriate certificate will face no inconsistencies with its neighbors,
i.e., all the above tests are passed, leading every node to accept, as desired. So, it remains
to show that if some tables are not what they should be according to R, then, no matter
the certificates assigned to the nodes, at least one node will fail one of the tests with high
probability.

If all nodes pass the test of Step 1, then we are guaranteed that not only L(v) = L, but
also that lv is indeed the appropriate landmark of v. If all nodes pass the test of Step 2, then it
must be the case that H(v) = color(v), that B(v) = ball(v) with the desired coloring property,
and that D(v) ⊆ Dircolor(v). By Lemma 6, we get that if all nodes pass Steps 3 and 4, then
N(v, u) = next(v, u) where the minimality condition is satisfied. Let us assume that there
exists a pair of nodes (u, v) with same color such that (u, lu, next(lu, u)) ∈ Dircolor(v) \D(v).
By the previous steps, we know that (u, lu, next(lu, u)) ∈ D(u). Hence, D(u) 6= D(v). On
the other hand, if Step 5 is passed by all nodes, then all nodes agree on a set of k = Θ(logn)
hash function f1, . . . , fk. Therefore, assuming that these functions are set at random, we
get that, with high probability, there exists at least one function fi, 1 ≤ i ≤ k, such
that fi(D(v)) 6= fi(D(u)). If all nodes pass Step 6, then in particular F vi (D(v)) = F vi,c,
and Fui (D(u)) = Fui,c where c = color(v) = color(u). We know that F vi,c = fi(D(v)) and
Fui,c = fi(D(u)), which implies that F vi,c 6= Fui,c with high probability, which will be detected at
Step 7 by two neighboring nodes in the network. This completes the proof of Theorem 4. J

I Remark. We have seen that the stretch-3 name-independent routing scheme from [2] does
not seem to be locally checkable with certificates of Õ(

√
n) bits. Our new name-independent

routing scheme R is locally checkable with certificates of Õ(
√
n) bits, but it has stretch 5.

We can show that, as for the scheme in [2], the routing scheme in [3] do not appear to be
locally checkable with certificates of Õ(

√
n) bits. Moreover, handshaking, which may allow

that scheme to become locally verifiable with small certificates, does not reduce its stretch
(for details, please refer to the full version of this paper [6]).

6 Conclusion and Further Work

We have shown that it is possible to verify routing schemes based on tables of size Õ(
√
n)

bits using certificates with sizes of the same order of magnitude as the space consumed by
the routing tables. The stretch factor is preserved, but to the cost of using handshaking
mechanisms for name-independent routing. We do not know whether there exists a stretch-3
name-independent routing scheme, with tables of size Õ(

√
n) bits, that can be verified using

certificates on Õ(
√
n) bits. Our new routing scheme, which is verifiable with certificates

on Õ(
√
n), has stretch 3 only if using handshaking (otherwise, it has stretch 5). Moreover,

the certification of our routing scheme is probabilistic, and it would be of interest to figure
out whether deterministic certification exists for some stretch-3 name-independent routing
scheme, with tables and certificates on Õ(

√
n) bits. It could also be of interest to figure out

whether there exists a verification scheme using certificates of size Õ(nc) bits, with c < 1
2 .

Interestingly, our result for stretch-3 name-dependent routing can be extended to larger
stretches. Namely, by using the same techniques as for stretch 3, we can show that the family
of routing schemes in [24] using, for every k ≥ 1, tables of size Õ(n1/k) with stretch at most
4k − 5 (or 2k − 1 using handshaking) are verifiable with certificates of size Õ(n1/k) (see [6]
for more details). However, we do not know whether such a tradeoff between table sizes and
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stretches can be established for verifiable name-independent routing schemes. Specifically,
are the existing families of name-independent routing schemes using, for every k ≥ 1, tables
of size Õ(n1/k) with stretch at most O(k), verifiable with certificates of size Õ(n1/k)? If
not, is it possible to design a new family of verifiable name-independent routing schemes
satisfying the same size-stretch tradeoff?

Acknowledgements. The authors are thankful to Cyril Gavoille and Laurent Viennot for
discussions about the content of this paper.
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7:2 Near-Optimal Approximate Shortest Paths and Transshipment

1 Introduction

Single-source shortest paths (SSSP) is a fundamental and well-studied problem in computer
science. Thanks to sophisticated algorithms and data structures [20, 23, 41], it has been known
for a long time how to obtain (near-)optimal running time in the RAM model. This is not the
case in non-centralized models of computation, which become more and more relevant in a
big-data world. Despite certain progress for exact SSSP algorithms [6, 7, 9, 15, 28, 30, 39, 40],
there remain large gaps to the strongest known lower bounds. Close-to-optimal running
times have so far only been achieved by efficient approximation schemes [10, 17, 25, 32]. For
instance, in the CONGEST model of distributed computing, the state of the art is as follows:
Exact SSSP on weighted graphs can be computed in O(D1/3(n logn)2/3) rounds [15], where
D is the (hop) diameter of the graph, and (1 + ε)-approximate SSSP can be computed in
(
√
n +D) · 2O(

√
logn log (ε−1 logn)) rounds [25].2 Even for constant ε, the latter exceeds the

strongest known lower bound of Ω(
√
n/ logn+D) rounds [13] by a super-polylogarithmic

factor. As a consequence of the techniques developed in this paper, we make a qualitative
algorithmic improvement for (1+ε)-approximate SSSP in this model: we solve the problem in
(
√
n+D) · ε−O(1) polylogn rounds. We thus narrow the gap between upper and lower bound

significantly and additionally improve the dependence on ε. Our new approach achieves its
superior running time by leveraging techniques from continuous optimization.

It is inherent to our approach that we actually tackle a problem that seems more general
than SSSP. In the shortest transshipment problem, we seek to find a cheapest routing for
sending units of a single good from sources to sinks along the edges of a graph meeting the
nodes’ demands. Equivalently, we want to find the minimum-cost flow in a graph where
edges have unlimited capacity. The special case of SSSP can be modeled as a shortest
transshipment problem by setting the demand of the source to −n+ 1 (thus supplying −n+ 1
units) and the demand of every other node to 1. Unfortunately, this relation breaks when
we consider approximation schemes: A (1 + ε)-approximate solution to the transshipment
problem merely yields (1 + ε)-approximations to the distances on average. In the special
case of SSSP, however, one is interested in obtaining a (1 + ε)-approximation to the distance
for each single node and we show how to extend our algorithm to provide such a guarantee
as well.

Techniques from continuous optimization have been key to recent breakthroughs in the
combinatorial realm of graph algorithms [8, 11, 12, 27, 31, 33, 37]. In this paper, we apply
this paradigm to computing primal and dual (1 + ε)-approximate solutions to the shortest
transshipment problem in undirected graphs with non-negative edge weights. Accordingly,
we perform projected gradient descent for a suitable norm-minimization formulation of the
problem, where we approximate the infinity norm by a differentiable soft-max function. To
make this general approach work in our setting, we need to add significant problem-specific
tweaks. In particular, we develop a gradient descent algorithm that reduces the problem
of computing a (1 + ε)-approximation to the more relaxed problem of computing, e.g., an
O(logn)-approximation. We then exploit that an O(logn)-approximation can be computed
very efficiently by solving the problem on a sparse spanner, and that it is well-known how to
compute sparse spanners efficiently. To obtain the aforementioned per-node guarantee in
the approximate SSSP problem, we additionally exploit specific properties of our gradient
descent algorithm. Further effort is required to extract an approximate shortest-path tree
(i.e., a primal solution) from the dual solution (i.e., estimated distances to the source).

2 Note that these running times refer to weighted graphs. In unweighted graphs, the SSSP problem can
easily be solved in O(D) rounds by performing a BFS tree computation.
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Our method is widely applicable among a plurality of non-centralized models of com-
putation in a rather straightforward way. We obtain the first non-trivial algorithms for
approximate undirected shortest transshipment in the broadcast CONGEST,3 broadcast
congested clique, and multipass streaming models. As a further, arguably more important,
consequence, we improve upon prior results for computing approximate SSSP in these models.
Our approximate SSSP algorithms are the first to be provably optimal up to polylogarithmic
factors.

Our Contributions and Results. We summarize our technical and conceptual contributions
as follows:
(C1) We give a problem-specific gradient descent algorithm for approximating the shortest

transshipment, which requires access to an oracle computing an α-approximate dual
solution for any given demand vector.4 To compute a (1+ε)-approximation, the algorithm
performs Õ(ε−3α2) oracle calls. If the oracle returns primal solutions, so does our
algorithm.

(C2) We provide an additional analysis of the gradient descent algorithm that allows us
to extend the method to solving SSSP in order to achieve a per-node approximation
guarantee.

(C3) We observe that spanners can be used to obtain an efficient shortest transshipment
oracle with approximation guarantee α ∈ O(logn).

By implementing our method in specific models of computation, we obtain the following
concrete algorithmic results in graphs with non-negative polynomially bounded5 integer edge
weights:
(R1) We give faster algorithms for computing (1 + ε)-approximate SSSP:

1. Broadcast CONGEST model: We obtain a deterministic algorithm for computing
(1 + ε)-approximate SSSP using Õ((

√
n + D) · ε−O(1)) rounds. This improves upon

the previous best upper bound of (
√
n+D) · 2O(

√
logn log (ε−1 logn)) rounds [25]. For

ε−1 ∈ O(polylogn), we match the lower bound of Ω(
√
n/ logn+D) [13] (applying to

any (randomized) (polyn)-approximation of the distance between two fixed nodes in a
weighted undirected graph) up to polylogarithmic factors in n.

2. Broadcast congested clique model: We obtain a deterministic algorithm for computing
(1 + ε)-approximate SSSP using Õ(ε−O(1)) rounds. This improves upon the previous
best upper bound of 2O(

√
logn log (ε−1 logn)) rounds [25].

3. Multipass streaming model: We obtain a deterministic algorithm for computing (1 + ε)-
approximate SSSP using Õ(ε−O(1)) passes and O(n logn) space. This improves upon
the previous best upper bound of (2 + 1/ε)O(

√
logn log logn) passes and O(n log2 n)

space [17]. By setting ε small enough, we can compute distances up to the value logn
exactly in integer-weighted graphs using polylogn passes and O(n logn) space. Thus,
up to polylogarithmic factors in n, our result matches a lower bound of n1+Ω(1/p)/ poly p
space for all algorithms that decide in p passes if the distance between two fixed nodes in
an unweighted undirected graph is at most 2(p+ 1) for any p = O(logn/ log logn) [22].

3 Also known as the node-CONGEST model.
4 Note that dual feasibility is crucial here. In particular, this rules out an oracle based on tree embeddings [2,
16], as such trees might have stretch Ω(n) on individual edges.

5 For general non-negative weights, running times scale by a multiplicative factor of logR, where R is the
maximum ratio between non-zero edge weights.
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7:4 Near-Optimal Approximate Shortest Paths and Transshipment

(R2) We give fast algorithms for computing (1 + ε)-approximate shortest transshipment:
1. Broadcast CONGEST model: A deterministic algorithm using Õ(ε−3n) rounds.
2. Broadcast congested clique model: A deterministic algorithm using Õ(ε−3) rounds.
3. Multipass streaming model: A deterministic algorithm using Õ(ε−3) passes and
O(n logn) space.

No non-trivial upper bounds were known before in these three models.

In the case of SSSP, we can deterministically compute a (1 + ε)-approximation to the
distance from the source for every node. Using a randomized procedure, we can additionally
compute (with high probability within the same asymptotic running times) a tree on which
every node has a path to the source that is within a factor of (1 + ε) of its true distance.

In the case of shortest transshipment, we can (deterministically) return (1+ε)-approximate
primal and dual solutions. We can further extend the results to asymmetric weights on
undirected edges, where each edge can be used in either direction at potentially different
costs. Denoting by λ ≥ 1 the maximum over all edges of the cost ratio between traversing
the edge in different directions, our algorithms give the same guarantees if the number of
rounds or passes, respectively, is increased by a factor of λ4 log λ.

Related Work on Shortest Transshipment. Shortest transshipment is a classic problem
in combinatorial optimization [29, 36]. The classic algorithms for directed graphs with
non-negative edge weights in the RAM model run in time O(n(m+ n logn) logn) [35] and
O((m+ n logn)B) [14], respectively, where B is the sum of the nodes’ demands (when they
are given as integers) and the term m+ n logn comes from SSSP computations. If the graph
contains negative edge weights, then these algorithms require an additional preprocessing step
to compute SSSP in presence of negative edge weights, for example in time O(mn) using the
Bellman-Ford algorithm [4, 19] or in time O(m

√
n logN) using Goldberg’s algorithm [21].6

The weakly polynomial running time was first improved to Õ(m3/2 polylogR) [12] and then to
Õ(m

√
n polylogR) in a recent breakthrough for minimum-cost flow [31], where R is the ratio

between the largest and the smallest edge weight. Independent of our work, Sherman [38]
obtained a randomized algorithm for computing a (1+ε)-approximate shortest transshipment
in weighted undirected graphs in time O(ε−2m1+o(1)) using a generalized-preconditioning
approach. We refer the reader to the full paper for a detailed comparison of Sherman’s and
our approach. We are not aware of any non-trivial algorithms for computing (approximate)
shortest transshipment in non-centralized models of computation, such as distributed and
streaming models.

Comparison to Hop Set Based SSSP Algorithms. The state-of-the art SSSP algorithms
in the distributed CONGEST model follow the framework developed in [34], where (1) the
problem of computing SSSP is reduced to an overlay network of size N = Õ(

√
n) and (2) a

sparse hop set is constructed to speed up computing SSSP on the overlay network. An (h, ε)-
hop set is a set of weighted edges that, when added to the original graph, provides sufficient
shortcuts to approximate all pairwise distances using paths with only h edges (“hops”). In
the algorithm by Nanongkai et al. [25], the upper bound of (

√
n+D) · 2O(

√
logn log (ε−1 logn))

on the number of rounds is achieved by constructing an (h, ε)-hop set of size O(Nρ) where
h ≤ 2O(

√
logn log (ε−1 logn)) and ρ ≤ 2O(

√
logn log (ε−1 logn)). Elkin’s algorithm [15], which

takes O(D1/3(n logn)2/3) rounds, uses an exact (N/ρ, 0) hop set of size O(Nρ) similar to

6 Goldberg’s running time bound holds for integer-weighted graphs with most negative weight −N .
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the one developed by Shi and Spencer in a PRAM algorithm [40]. Elkin’s main technical
contribution lies in showing how to compute this hop set without constructing the overlay
network explicitly. Roughly speaking, in these algorithms, both h and ρ enter the running
time of the corresponding SSSP algorithms, in addition to the time needed to construct the
hop set.

The concept of hop sets has been introduced by Cohen in the context of PRAM algorithms
for approximate SSSP [10]. The increased interest in hop sets and their applications in the
last years [5, 17, 24, 25, 32] has culminated in the construction of (h, ε)-hop sets of size
O(n1+ 1

2k+1−1) for h = O
(
(kε )k

)
[18, 26]. Recent lower bounds by Abboud et al. [1] show

that this trade-off is essentially tight: any construction of (h, ε)-hop sets of size ≤ n1+ 1
2k−1

−δ

must have h = Ωk
(
( 1
ε )k
)
(where k ≥ 1 is an integer and δ > 0). This implies that the hop set

based algorithms, as long as the factor ρ has to be paid in the running time for construction
hop sets of size nρ, will never be able to achieve a running time comparable to our SSSP
algorithm exclusively by finding better hop sets.

Spanners. In our approach we use a spanner to obtain an efficient shortest transshipment
oracle.

I Definition 1 (Spanner). Given G = (V,E,w) and α ≥ 1, an α-spanner of G is a subgraph
(V,E′, w|E′), E′ ⊆ E, in which distances are at most by factor α larger than in G.

In other words, a spanner removes edges from G while approximately preserving distances.
It is well-known that for every undirected graph we can efficiently compute an α-spanner of
size O(n logn) with α = O(logn) [3].

Structure of this paper. In the following section, we will first describe the gradient descent
algorithm for the case of symmetric weights. More precisely, we will describe how to obtain a
primal/dual solution pair of approximation ratio (1+ε) for an oracle yielding both primal and
dual solutions; if the oracle provides dual solutions only, so do our algorithms. In Section 2.2,
we describe how to obtain (1 + ε)-approximate distances for every node in the SSSP case. In
Section 2.3, we show how to obtain a (1 + ε)-approximate primal tree solution. In Section 3,
we briefly describe how the above framework can be implemented in various distributed and
streaming models of computation. Due to space limitations, we refer to the full paper for
further details.

The full version also discusses how our techniques can be generalized to asymmetric edge
weights. The key observation is that, essentially, the gradient descent algorithm can be
guided by basing the oracle on solving the symmetrized variant problem on an (undirected)
spanner. The additional inaccuracy of the approximation slows down the progress of the
algorithm by a factor of λ4 log λ. However, while this generalization does not affect our
approach structurally, some technical obstacles need to be overcome. For the sake of a
streamlined presentation, we thus confine the discussion to the symmetric problem.

2 General Approach for Solving Shortest Transshipment and SSSP

Let G = (V,E) be a (w.l.o.g. connected) undirected graph with n nodes, m edges, and
positive7 integral edge weights w ∈ Zm≥1. Furthermore, let b ∈ Zn be a vector of demands.

7 Note that excluding 0 as an edge weight is a only a mild restriction, because we can always generate
new weights w′ with w′e = 1 + dn/εe · we while preserving at least one of the shortest paths between

DISC 2017



7:6 Near-Optimal Approximate Shortest Paths and Transshipment

W.l.o.g., we restrict to feasible and non-trivial instances, i.e., bT1 = 0 and b 6= 0.8 A common
approach to model the undirected shortest transshipment problem as a linear program
considers the node-arc-incidence matrix A ∈ {−1, 0, 1}n×2m of the corresponding bidirected
graph,9 where we substitute each edge e by a forward and a backward arc with the same
weight we in both directions. While this may seem redundant, it is convenient in terms of
notation and generalizes to the case of asymmetric edge weights considered in the full paper.
With W being the 2m× 2m diagonal matrix containing the weights, we obtain the following
primal/dual pair of linear programs:

min{‖Wx‖1 : Ax = b} = max{bT y : ‖W−1AT y‖∞ ≤ 1}, (1)

where for z ∈ Rd we write ‖z‖1 =
∑d
i=1 |zi| and ‖z‖∞ = maxi∈[d]{|zi|}. The primal (left)

program asks to “ship” the flow given by b from sources (negative demand) to sinks (positive
demand) along the edges of the graph, minimizing the cost of the flow, i.e.,

∑
e∈E we|xe|.

Note that, without changing that Ax = b or affecting the objective, we can remove “negative”
flow xvw < 0 by increasing xwv by |xvw| and setting xvw = 0. Thus, w.l.o.g., we may assume
that x ≥ 0; in particular, an optimal solution sends flow only in one direction over any edge.

The dual (right) program asks for potentials y such that for each edge e = (v, w) ∈ E,
|yv − yw| ≤ we, maximizing bT y. Note that, because bT1 = 0, shifting the potential by r× 1
for any r ∈ R does neither change bT y nor yv − yw for any v, w ∈ V . The goal of the dual is
thus to maximize the differences in potential of sources and sinks (weighted according to b),
subject to the constraint that the potentials of neighbors must not differ by more than the
weight of their connecting edge.

In the special case of SSSP with source s ∈ V , we have that (i) bs = −n+ 1 and bv = 1
for all v 6= s, (ii) an optimal primal solution x∗ is given by routing, for each s 6= v ∈ V , one
unit of flow along a shortest path from s to v, and (iii) optimal potentials y∗ are given by
setting y∗v to the distance from s to v.

2.1 Gradient Descent
We now describe a gradient descent method that, given an oracle that computes α-approximate
primal and dual solutions to the undirected shortest transshipment problem for any specified
demand vector b̃, returns primal and dual feasible solutions x and y to the undirected shortest
transshipment problem that are (1 + ε)-close to optimal, i.e., fulfill ‖Wx‖1 ≤ (1 + ε)bT y,
using O(ε−3α2 logα logn) calls to the oracle. We then provide an oracle with α ∈ polylog(n).
For ease of notation, we assume that logα ∈ polylogn throughout this paper.

As our first step, we relate the dual of the shortest transshipment problem to its “reciprocal”
linear program that normalizes the objective to 1 and seeks to minimize ‖W−1AT y‖∞:

min{‖W−1ATπ‖∞ : bTπ = 1}. (2)

We denote by π∗ an optimal solution to this problem, whereas y∗ denotes an optimal solution
to the dual of the original problem (1). It is easy to see that feasible solutions π of (2)
that satisfy ‖W−1ATπ‖∞ > 0 are mapped to feasible solutions of the dual program in (1)

each pair of nodes as well as (1 + ε)-approximations. As we assume edge weights to be integer we can
assume that ε ≥ 1/(n‖w‖∞) (as otherwise it is required to compute an exact solution) and thus our
asymptotic running time bounds are not affected by this modification.

8 Here 1 denotes the all-ones vector and thus bT1 = 0 simply means that the positive demands equal the
negative demands (i.e., the supplies).

9 The incidence matrix A of a directed graph contains a row for every node and a column for every arc
and Ai,j is −1 if the j-th arc leaves the i-th vertex, 1 if it enters the vertex, and 0 otherwise.
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via f(π) := π/‖W−1ATπ‖∞. Similarly, feasible solutions y of the dual program in (1) that
satisfy bT y > 0 are mapped to feasible solutions of (2) via g(y) := y/bT y. Moreover, the
map f(·) preserves the approximation ratio. Namely, for any ε > 0, if π is a solution of (2)
within factor 1 + ε of the optimum, then f(π) is feasible for (1) and within factor 1 + ε of
the optimum. In particular, f(π∗) is an optimal solution of (1).

We would like to apply gradient descent to (2). However, this is not readily possible,
since the objective is not differentiable. Hence, we will change the problem another time by
using the so-called soft-max function (a.k.a. log-sum-exp or lse for short), which is a suitable
approximation for the maximum entry (v)max := max{vi : i ∈ [d]} of a vector v ∈ Rd.10
It is defined as lseβ (v) := 1

β ln
(∑

i∈[d] e
βvi
)
, where β > 0 is a parameter that controls the

accuracy of the approximation of the maximum at the expense of smoothness. We note that
lseβ (·) is a convex function for any β > 0 and provides the following additive approximation
of the maximum:

(x)max = 1
β

ln eβ·(x)max ≤ lseβ(x) ≤ 1
β

ln
∑
i∈[d]

eβ·(x)max = ln(d)
β

+ (x)max. (3)

A trade-off in the choice of β arises because β also controls the smoothness of the lse-function.
Formally, lseβ is β-Lipschitz smooth (i.e., its gradient is β-Lipschitz continuous) w.r.t. to the
pair 1-norm/∞-norm:

‖Φβ(x)− Φβ(y)‖1 ≤ β‖x− y‖∞. (4)

Using the soft-max function, we define the potential function

Φβ(π) := lseβ
(
W−1ATπ

)
.

Recalling that A was defined to represent each edge of the graph by a forward and backward
arc, we see that (W−1ATπ)max = ‖W−1ATπ‖∞, i.e., Φβ(π) is indeed a smooth approximation
of the objective of (2). In order to control the approximation error, β is adapted in the
course of the algorithm such that the additive error ln(2m)/β is always at most ε

4Φβ(π).
Thus, we maintain a multiplicative approximation of the dual objective function of (2), i.e.,

‖W−1ATπ‖∞ ≤ Φβ(π) ≤ ‖W
−1ATπ‖∞
1− ε/4 . (5)

Our gradient descent algorithm, see Algorithm 1 for a pseudo-code implementation, first
computes a starting solution π that is an α-approximate (dual) solution to (2) and an initial β
that is appropriate for π as discussed above. This can be done, e.g., by solving the problem
on an α-spanner and scaling down (by at most a factor of α) to obtain a feasible solution for
the original graph. In each iteration, it updates the potentials π using an α-approximate
solution to a shortest transshipment problem with a modified demand vector b̃ that depends
on the gradient. Depending on the objective value of this approximation, the algorithm either
performs an update to π or terminates, see the check for the value of δ in the algorithm.

The intuition behind the algorithm is the following. As the potential function is differen-
tiable, its gradient exists everywhere and it points in the opposite direction of the steepest
descent. However, our update steps must maintain the constraint bTπ = 1, i.e., they must lie
in the orthogonal complement of b. To this end, we consider the projection of the gradient

10Note the difference to the ∞-norm, which is defined as the maximum of the absolute values of the
entries of a vector.
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7:8 Near-Optimal Approximate Shortest Paths and Transshipment

Algorithm 1: gradient_transship (G, b, ε)
1 Compute α-approximation π to min{‖W−1ATπ‖∞ : bTπ = 1}. // use oracle
2 Determine β so that 4 ln(2m) ≤ εβΦβ(π) ≤ 5 ln(2m).
3 repeat
4 Set b̃ := PT∇Φβ(π), where P := I − πbT . // project to maintain bTπ = 1
5 if b̃ = 0 then return π // Special case: optimal solution found
6 Determine h̃ with ‖W−1AT h̃‖∞ = 1 and b̃T h̃ ≥ 1

α max{b̃Th : ‖W−1ATh‖∞ ≤ 1}.
// h̃ can be obtained from the oracle with demand vector b̃ = PT∇Φβ(π)

7 Set δ := b̃T h̃
‖W−1ATPh̃‖∞

. // δ measures closeness to optimality
8 if δ > ε

8α then π ← π − δ
2β‖W−1ATPh̃‖∞

Ph̃. // project to maintain bTπ = 1
9 while 4 ln(2m) ≥ εβΦβ(π) do β ← 5

4β. // find appropriate β
10 until δ ≤ ε

8α
11 return π

PT∇Φβ(π).11 Because the gradient, and hence the direction of the steepest descent, changes
when we move away from our current solution, we use an adaptive step width restricting the
update to a region for which we know that the gradient does not vary too much.

If we had a sufficiently good guarantee on the Lipschitz smoothness of Φβ(·), using the
gradient itself (resp. its projection) as the update direction h (i.e., performing the update
π ← π − ηh for an appropriate step width η) would decrease the objective Φβ(π) fast
enough. However, we only have such a guarantee on the Lipschitz smoothness of lseβ (·).
By the convexity of the objective Φβ(π), we can argue that the (normalized) progress of
an update direction h is the ratio PT∇Φβ(π)/‖W−1ATh‖∞, which suggests finding h by
max{∇Φβ(π)TPh : ‖W−1ATh‖∞ ≤ 1}. Note that this linear program is precisely of the
form (1), with demand vector b̃ := PT∇Φβ(π), and is thus not easier to solve as the original
problem. However, finding an approximately optimal update direction only mildly affects
the number of iterations, i.e., querying the oracle for an α-approximate dual solution with
demand b̃ yields the desired guarantee.

We then use the projection P to derive a feasible update and rescale so that the gradient
does not change too much, enabling us to prove a sufficiently strong progress guarantee –
unless the current solution is already close to the optimum. This is captured by δ, which is
guaranteed to be large in case significant progress still can be made. Conversely, a small δ
implies that we are close to the optimum. Accordingly, at termination π is a near-optimal
solution of (2), and rescaling to y = π/‖W−1ATπ‖∞ yields a near-optimal dual solution
of (1). Here, scaling up β as the potential decreases ensures that the incurred approximation
error is sufficiently small. On the other hand, using large β and having the guarantee that δ
is large as long as we are not close to the optimum guarantees that the potential function
decreases rapidly and only a small number of iterations is required.

We proceed by formalizing this intuition. First, we show that a primal-dual pair that
is (1 + ε)-close to optimal in (1) can be constructed from the output potentials π and
α-approximate primal and dual solutions, say f̃ and h̃, to the transshipment problem that
was solved in the last iteration of the algorithm. If one is only interested in a dual solution
to (1), then the α-approximate dual solution h̃ is enough and thus only an oracle providing

11As bTπ = 1, we have that bTPh = bT (I − πbT )h = bTh− bTπbTh = 0 for all h.
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a dual solution is required, as done in Algorithm 1. A primal solution can be obtained from
f̃ and the vector x̃ := W−1∇ lseβ

(
W−1ATπ

)
. This choice of x̃ is obtained by applying the

chain rule of differentiation to ∇Φβ(π), i.e., ∇Φβ(π) = AW−1∇ lseβ
(
W−1ATπ

)
. In the

correctness proof we allow a more general choice of x̃, which we will exploit later on for
finding a tree solution for approximate SSSP.

I Lemma 2 (Correctness). Let 0 < ε ≤ 1/2,
π ∈ Rn and β ∈ R denote the return values of Algorithm gradient_transship,
f̃ ∈ R2m and h̃ ∈ Rn be the α-approximate pair returned by the oracle in the last iteration
of Algorithm gradient_transship, and
x̃ ∈ R2m be such that Ax̃ = ∇Φβ(π) and ‖Wx̃‖1 ≤ 1 + ε/8.

Then x := x̃−f̃
πT∇Φβ(π) , y := π

‖W−1ATπ‖∞ is a (1+ε)-approximate pair, i.e., it holds that Ax = b,
‖W−1AT y‖∞ ≤ 1, and ‖Wx‖1 ≤ (1 + ε)bT y.

Proof. First note that Af̃ = b̃ and b̃ = PT∇Φβ(π) = ∇Φβ(π) − bπT∇Φβ(π). Thus
Ax = ∇Φβ(π)−b̃

πT∇Φβ(π) = b. Moreover, ‖W−1AT y‖∞ = 1 follows directly from the definition of y.
It remains to show that ‖Wx‖1 ≤ (1+ε)bT y.12 It can be shown (see full paper for details)

that convexity of Φβ(·) and the guarantee on β yield

πT∇Φβ(π) ≥
(

1− ε

4

)
Φβ(π) ≥

(
1− ε

4

)
‖W−1ATπ‖∞ > 0. (6)

Hence, |πT∇Φβ(π)| = πT∇Φβ(π). Moreover, ‖Wx̃‖1 ≤ 1 + ε/8 by assumption and thus

‖Wx‖1
∆-ineq.
≤

1 + ε
8 + ‖Wf̃‖1

πT∇Φβ(π)
α-approx.
≤

1 + ε
8 + αb̃T h̃

πT∇Φβ(π) =
1 + ε

8 + αδ‖W−1ATPh̃‖∞
πT∇Φβ(π) ,

where δ = b̃T h̃
‖W−1ATPh̃‖∞

as in Algorithm gradient_transship. By the definition of P =
I − πbT and the triangle inequality for the infinity norm, we obtain ‖W−1ATPh̃‖∞ ≤
‖W−1AT h̃‖∞+|bT h̃|‖W−1ATπ‖∞. Using the upper bound |bT h̃| ≤ bT y∗ from the optimality
of y∗ and ‖W−1AT h̃‖∞ ≤ 1, we obtain ‖W−1ATPh̃‖∞ ≤ 1 + ‖W−1ATπ‖∞bT y∗. Using (6)
for the denominator, this yields

‖Wx‖1 ≤
1 + ε

8 + αδ(1 + ‖W−1ATπ‖∞bT y∗)
(1− ε

4 )‖W−1ATπ‖∞
≤

1 + ε
8 + ε

8 (1 + ‖Wx‖1
bT y

)
(1− ε

4 ) bT y,

since bT y∗ ≤ ‖Wx‖1 by weak duality, ‖W−1ATπ‖∞ = 1/bT y, and δ ≤ ε
8α at termination of

the algorithm. Thus (1 + ε
4 )/(1− 3ε

8 ) ≤ (1 + ε
4 )/(1− ε

2 ) ≤ (1 + ε) yields the result. J

It remains to show a bound on the number of iterations until termination. To this end,
we establish that the potential function decreases by a multiplicative factor in each iteration.

I Lemma 3 (Multiplicative Decrement of Φβ). Let π ∈ Rn, let β satisfy εβΦβ(π) ≤ 5 ln(2m),
and let h̃ satisfy ‖W−1ATPh̃‖∞ > 0, where P = I − πbT . Then, for δ := b̃T h̃

‖W−1ATPh̃‖∞
,

where b̃ = PT∇Φβ(π), it holds that

Φβ
(
π − δ

2β‖W−1ATPh̃‖∞
Ph̃
)
≤
(

1− εδ2

20 ln(2m)

)
Φβ(π).

12Here, we omit the special case b̃ = 0, which guarantees optimality. See full version for details.
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Proof. Let us denote h := δ
2β‖W−1ATPh̃‖∞

h̃. Recall that Φβ(·) is convex, thus

Φβ(π − Ph)− Φβ(π)
Convexity
≤ −∇Φβ

(
π − Ph

)T
Ph+∇Φβ(π)TPh−∇Φβ(π)TPh

=
[
∇ lseβ

(
W−1ATπ

)
−∇ lseβ

(
W−1AT (π − Ph)

)]T
W−1ATPh− b̃Th

Hölder
≤ ‖∇ lseβ

(
W−1ATπ

)
−∇ lseβ

(
W−1AT (π − Ph)

)
‖1‖W−1ATPh‖∞ − b̃Th

β-Lipschitz
≤ β‖W−1ATPh‖2∞ − b̃Th,

where we used Hölder’s inequality13 and then the fact that the lseβ-function is β-Lipschitz
smooth (see (4)). Using the definitions of h and δ yields Φβ(π−Ph)−Φβ(π) ≤ δ2

4β−
δ2

2β = − δ2

4β .
Using the upper bound on β yields the result. J

This progress guarantee is sufficient to show the following bound on the number of iterations.

I Lemma 4 (Number of Iterations). Suppose that 0 < ε ≤ 1/2. Then, it holds that Algorithm
gradient_transship terminates within O(ε−3α2 logα logn) iterations.

Proof. Note that for all x ∈ Rn, ∇β lseβ(x) ≤ 0, i.e., lseβ is decreasing as a function of β
and thus the while-loop that scales β up does not increase Φβ(π). Denote by β0 and π0
the initial values of β and π, respectively, and by β and π the values at termination. By
Lemma 3 and the fact that the algorithm ensures δ > ε/(8α) as long as it does not terminate,
the potential decreases by a factor of 1− εδ2

20 ln(2m) ≤ 1− ε3

1280α2 ln(2m) .
14 Hence, the number

of iterations k can be bounded by

k ≤ log
( Φβ(π)

Φβ0(π0)

)(
log
(

1− ε3

1280α2 ln(2m)

))−1

≤ log
(Φβ0(π0)

Φβ(π)

)1280α2 ln(2m)
ε3 .

As ln(2m) ∈ O(logn), it remains show that Φβ0 (π0)
Φβ(π) ∈ O(α). Using that π0 is an α-

approximate solution and that β0 is such that 4 ln(2m) ≤ εβ0Φβ0(π0), we obtain that

Φβ0(π0) = lseβ0

(
W−1ATπ0) (3)

≤ ‖W−1ATπ0‖∞ + ln(2m)
β0

≤ α‖W−1ATπ∗‖∞ + εΦβ0(π0)
4

and thus Φβ0(π0) ≤ α‖W−1ATπ∗‖∞/(1−ε/4). On the other hand, Φβ(π) ≥ ‖W−1ATπ‖∞ ≥
‖W−1ATπ∗‖∞ and thus Φβ0 (π0)

Φβ(π) ≤
α

1−ε/4 = O(α) and the bound follows. J

We remark that one can first run the gradient descent algorithm with ε = 1/2 and then
switch to the desired accuracy. Using this trick, the above bound slightly improves to
O((ε−3 + logα)α2 logn). From the discussion so far, we obtain the following result.

I Theorem 5. Given an oracle that computes α-approximate solutions to the undirected
transshipment problem, using Algorithm gradient_transship, we can compute primal and
dual solutions x, y to the shortest transshipment problem satisfying ‖Wx‖1 ≤ (1 + ε)bT y
with Õ(ε−3α2) oracle calls. If the oracle only returns α-approximate dual solutions, then
Algorithm gradient_transship computes a (1 + ε)-approximate dual solution.

13Hölder’s inequality states that xT y ≤ ‖x‖p‖y‖q for p, q satisfying 1
p + 1

q = 1, assuming 1
∞ = 0.

14Here, we omit the technical argument that the condition ‖W−1ATPh̃‖∞ > 0 of Lemma 3 is always
fulfilled when we apply the lemma. See full version for details.
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Algorithm 2: sssp (G, s, ε)

1 Let ŷ = 0, b = 1− n1s, and ε′ = ε3

3840α2 ln(2m) .
2 while bs < 0 do
3 Set π = gradient_transship

(
G, b, ε′

)
and y = π

‖W−1ATπ‖∞ .
4 Determine β so that 4 ln(2m) < ε′βΦβ(y) ≤ 5 ln(2m) and compute ∇Φβ(y).
5 for each v ∈ V with bv = 1 do
6 Set b̃ := PT∇Φβ(y), where P := [I − y

(1v−1s)T y (1v − 1s)T ].
7 Compute h̃ with ‖W−1AT h̃‖∞ = 1 and

b̃T h̃ ≥ 1
α max{b̃Th : ‖W−1ATh‖∞ ≤ 1}. // h̃ can be obtained from the

oracle with demand vector b̃ = PT∇Φβ(π)
8 Set δ := b̃T h̃

‖W−1ATPh̃‖∞
.

9 if δ ≤ ε
8α then set bv = 0, ŷv = yv − ys and bs ← bs + 1

10 return ŷ

2.2 Single-Source Shortest Paths
In the special case of SSSP, we have bv = 1 for all v ∈ V \ {s} and bs = 1 − n for the
source s. In fact, it is the combination of n − 1 shortest s-t-path problems. Let π be the
potentials returned by Algorithm gradient_transship and let us assume, w.l.o.g., that
πs = 0 (otherwise shift π ← π − πs1). Recall that in an optimal solution π∗ with π∗s = 0 the
value of π∗v for any v denotes the distance from s to v. Thus the approximation guarantee
from Theorem 5 yields that for the potentials π, it holds that

∑
v 6=s πv ≤ (1 + ε)

∑
v 6=s π

∗
v ,

i.e., the distances merely approximate the optimal distances on average over all sink-nodes,
which is unsatisfactory. However, we can obtain potentials π such that for every v, it holds
that πv ≤ (1 + ε)π∗v and equivalently y∗ ≥ yv ≥ y∗v/(1 + ε) for the s-v-distances.

Using the tools proposed above, we can show that when running the gradient descent
algorithm with higher precision, we can determine “good” nodes for which we know the
distance with sufficient accuracy by checking, for every node v, whether the gradient would
allow further progress for the s-v shortest path problem. We then argue that a constant
fraction of the nodes will be “good” when the algorithm is finished. We then concentrate on
the other nodes by adapting the demand vector b accordingly, i.e., setting bv = 0 for all good
nodes v. We iterate until all nodes are good. The pseudocode is given in Algorithm sssp.

I Theorem 6. Let y∗ ∈ Rn denote the distances of all nodes from the source node s.
Algorithm sssp computes a vector y ∈ Rn with ‖W−1AT y‖∞ ≤ 1 such that y∗v/(1+ε) ≤ yv ≤
y∗v holds for each v ∈ V , using polylog(n, ‖w‖∞) calls to Algorithm gradient_transship.

2.3 Finding a Primal Tree Solution
In the following, we explain how to obtain primal tree solutions, for a specific implementation
of the transshipment oracle from Section 3, where we solve the subproblem on spanner.

Recall that, as shown in Lemma 2, x := x̃−f̃
πT∇Φβ(π) is a (1+ε)-approximate primal solution,

where f̃ is the primal solution computed by the oracle in the last iteration of the algorithm
and x̃ := W−1∇ lseβ(W−1ATπ). To also obtain a (1 + ε)-approximate primal tree solution,
we first sample a tree, say T1, from x̃ by sampling for each node among its incident edges a
parent edge with probabilities proportional to the values in x̃. Then we compute an optimal
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tree solution xT in the graph G′ = (V, T1 ∪ S) consisting of the tree T1 and the edges of the
spanner S. As E[‖Wx(T1)‖1] = 1, using Markov’s inequality we get that, with probability
Ω(ε), the tree solution x(T1) corresponding to T1 satisfies ‖Wx(T1)‖1 ≤ 1 + ε/8. Repeating
the sampling O(ε logn) times and taking the best result, we obtain such a solution with high
probability. Thus, using Lemma 2, we can conclude that the optimal tree solution xT in G′
is (1 + ε)-approximate for the problem. To obtain an approximate tree solution in the case of
SSSP, we repeat this sampling after every call of the gradient descent algorithm, obtaining a
tree Ti in the i-th call. We can then find the approximate shortest path tree in the graph
G′ = (V,

⋃
i Ti ∪ S) combining the sampled edges of each iteration and the initial spanner.

Note that, since the number of calls to the gradient descent algorithm is polylog(n, ‖w‖∞),
the resulting graph is still of size O(n polylog(n, ‖w‖∞)) for a spanner of size O(n logn).

3 Implementation in Various Models of Computation

Common to all our implementations is the use of sparse spanners. An optimal solution of
an instance of the shortest transshipment problem on an α-spanner of the input graph is
an α-approximate solution to the original problem. Thus, whenever our gradient descent
algorithm asks the oracle for an α-approximate solution to a subproblem, we solve the
subproblem on a spanner to get an approximation with α = O(logn).

Broadcast Congested Clique. In the broadcast congested clique model, the system consists
of n fully connected nodes labeled by unique O(logn)-bit identifiers. Computation proceeds
in synchronous rounds, where in each round, nodes may perform arbitrary local computations,
broadcast (send) an O(logn)-bit message to the other nodes, and receive the messages from
other nodes. The input is distributed among the nodes. The first part of the input of every
node consists of its incident edges (given by their endpoints’ identifiers) and their weights.
The second part of the input is problem specific: for the transshipment problem, every node
v knows its demand bv and for SSSP v knows whether or not it is the source s. In both cases,
every node knows 0 < ε ≤ 1/2 as well. Each node needs to compute its part of the output.
For shortest transshipment, every node in the end needs to know a (1 + ε)-approximation
of the optimum value, and for SSSP every node needs to know a (1 + ε)-approximation of
its distance to the source. The complexity of the algorithm is measured in the worst-case
number of rounds until the computation is complete.

Implementing our approach in this model is straightforward. The key observations are:
Every node can locally aggregate information about its incident edges (e.g. concerning
the “stretches” under the potential of the current solution π) and make it known to all
other nodes in a single communication round. Thus, given β > 0 and π ∈ Rn, it is rather
straightforward to evaluate Φβ(π) and ∇Φβ(π) in a constant number of rounds.
An O(logn)-spanner of the input graph can be computed and made known to all nodes
quickly, following the algorithm of Baswana and Sen [3] (see full paper for details).
Local computation then suffices to solve (sub)problems on the spanner optimally. In
particular, O(logn)-approximations to transshipment problems can be computed easily.
It suffices to communicate the demand vector; in cases where the demand vector is known
a priori (e.g. when strengthening the approximation guarantee from average to worst-case
for each node in the SSSP problem), even this is not necessary.

I Theorem 7. For any 0 < ε ≤ 1/2, in the broadcast congested clique model a deterministic
(1 + ε)-approximation to the shortest transshipment problem in undirected graphs with non-
negative edge weights can be computed in ε−3 polylogn rounds.
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I Theorem 8. For any 0 < ε ≤ 1, in the broadcast congested clique model a deterministic
(1 + ε)-approximation to single-source shortest paths in undirected graphs with non-negative
edge weights can be computed in ε−9 polylogn rounds.

To compute a tree solution, the main observation is that the sampling of the tree can be
performed locally at every node.

Broadcast CONGEST Model. The broadcast CONGEST model differs from the broadcast
congested clique in that communication is restricted to edges that are present in the input
graph. That is, node v receives the messages sent by node w if and only if {v, w} ∈ E. All
other aspects of the model are identical to the broadcast congested clique. We stress that
this restriction has significant impact, however: Denoting the hop diameter of the input
graph (i.e., the diameter of the unweighted graph G = (V,E)) by D, it is straightforward
to show that Ω(D) rounds are necessary to solve the SSSP problem. Moreover, it has been
established that Ω(

√
n/ logn) rounds are required even on graphs with D ∈ O(logn) [13].

Both of these bounds apply to randomized approximation algorithms.
Our main result for this model is that we can nearly match the above lower bounds for

approximate SSSP computation. The solution is based on combining a known reduction to
an overlay network on Θ̃(ε−1√n) nodes, simulating the broadcast congested clique on this
overlay, and applying Theorem 8. Simulating a round of the broadcast congested clique for k
nodes is done by pipelining each of the k messages over a breadth-first search tree of the
underlying graph, taking O(D + k) rounds.

I Corollary 9. For any 0 < ε ≤ 1, in the broadcast CONGEST model a deterministic
(1 + ε)-approximation to single-source shortest paths in undirected graphs with non-negative
weights can be computed in Õ((

√
n+D) · ε−9) rounds.

Multipass Streaming Model. In the streaming model the input graph is presented to the
algorithm edge by edge as a “stream” without repetitions. The goal is to design algorithms
that use as little space as possible. Space is counted in memory words, where we assume that
an edge weight or a node identifier fits into a word. In the multipass streaming model, the
algorithm may make several such passes over the input stream and the goal is to keep the
number of passes small (again using little space). For graph algorithms, the usual assumption
is that the edges of the graph are presented to the algorithm in arbitrary order.

The main observation is that we can apply the same approach as before with O(n logn)
space: this enables us to store a spanner throughout the entire computation, and we can
keep track of intermediate (node) state vectors. Computations on the spanner are thus “free,”
while Φβ(π) and ∇Φβ(π) can be evaluated in a single pass by straightforward aggregation.
It follows that ε−O(1) polylogn passes suffice for completing the computation.

I Theorem 10. For any 0 < ε ≤ 1/2, in the multipass streaming model a deterministic (1+ε)-
approximation to the shortest transshipment problem in undirected graphs with non-negative
weights can be computed in ε−3 polylogn passes with O(n logn) space.

I Theorem 11. For any 0 < ε ≤ 1, in the multipass streaming model, a deterministic
(1 + ε)-approximation to single-source shortest paths in undirected graphs with non-negative
weights can be computed in ε−9 log (‖w‖∞) polylogn passes with O(n logn) space.
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Abstract
In this paper we study the task of approach of two mobile agents having the same limited range of
vision and moving asynchronously in the plane. This task consists in getting them in finite time
within each other’s range of vision. The agents execute the same deterministic algorithm and are
assumed to have a compass showing the cardinal directions as well as a unit measure. On the
other hand, they do not share any global coordinates system (like GPS), cannot communicate
and have distinct labels. Each agent knows its label but does not know the label of the other
agent or the initial position of the other agent relative to its own. The route of an agent is a
sequence of segments that are subsequently traversed in order to achieve approach. For each
agent, the computation of its route depends only on its algorithm and its label. An adversary
chooses the initial positions of both agents in the plane and controls the way each of them moves
along every segment of the routes, in particular by arbitrarily varying the speeds of the agents.
Roughly speaking, the goal of the adversary is to prevent the agents from solving the task, or
at least to ensure that the agents have covered as much distance as possible before seeing each
other. A deterministic approach algorithm is a deterministic algorithm that always allows two
agents with any distinct labels to solve the task of approach regardless of the choices and the
behavior of the adversary. The cost of a complete execution of an approach algorithm is the
length of both parts of route travelled by the agents until approach is completed.

Let ∆ and l be the initial distance separating the agents and the length of (the binary
representation of) the shortest label, respectively. Assuming that ∆ and l are unknown to both
agents, does there exist a deterministic approach algorithm whose cost is polynomial in ∆ and l?

Actually the problem of approach in the plane reduces to the network problem of rendezvous
in an infinite oriented grid, which consists in ensuring that both agents end up meeting at the
same time at a node or on an edge of the grid. By designing such a rendezvous algorithm with
appropriate properties, as we do in this paper, we provide a positive answer to the above question.
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Our result turns out to be an important step forward from a computational point of view,
as the other algorithms allowing to solve the same problem either have an exponential cost in
the initial separating distance and in the labels of the agents, or require each agent to know
its starting position in a global system of coordinates, or only work under a much less powerful
adversary.

1998 ACM Subject Classification G.2.2 Graph Theory, C.2.4 Distributed Systems

Keywords and phrases mobile agents, asynchronous rendezvous, plane, infinite grid, determin-
istic algorithm, polynomial cost

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.8

1 Introduction

1.1 Model and Problem
The distributed system considered in this paper consists of two mobile agents that are initially
placed by an adversary at arbitrary but distinct positions in the plane. Both agents have a
limited sensory radius (in the sequel also referred to as radius of vision), the value of which
is denoted by ε, allowing them to sense (or, to see) all their surroundings at distance at most
ε from their respective current locations. We assume that the agents know the value of ε.
As stated in [11], when ε = 0, if agents start from arbitrary positions of the plane and can
freely move on it, making them occupy the same location at the same time is impossible in a
deterministic way. So, we assume that ε > 0 and we consider the task of approach which
consists in bringing them at distance at most ε so that they can see each other. In other
words, the agents completed their approach once they mutually sense each other and they
can even get closer. Without loss of generality, we assume in the rest of this paper that ε = 1.

The initial positions of the agents, arbitrarily chosen by the adversary, are separated by
a distance ∆ that is initially unknown to both agents and that is greater than ε = 1. In
addition to the initial positions, the adversary also assigns a different non-negative integer
(called label) to each agent. The label of an agent is the only input of the deterministic
algorithm executed by the agent. While the labels are distinct, the algorithm is the same for
both agents. Each agent is equipped with a compass showing the cardinal directions and
with a unit of length. The cardinal directions and the unit of length are the same for both
agents.

To describe how and where each agent moves, we need to introduce two important notions
that are borrowed from [11]: The route and the walk of an agent. The route of an agent
is a sequence (S1, S2, S3 . . .) of segments Si = [ai, ai+1] traversed in stages as follows. The
route starts from a1, the initial position of the agent. For every i ≥ 1, starting from the
position ai, the agent initiates Stage i by choosing a direction α (using its compass) as well
as a distance x. Stage i ends as soon as the agent either sees the other agent or reaches
ai+1 corresponding to the point at distance x from ai in direction α. Stages are repeated
indefinitely (until the approach is completed).

Since both agents never know their positions in a global coordinate system, the directions
they choose at each stage can only depend on their (deterministic) algorithm and their labels.
So, the route (the actual sequence of segments) followed by an agent depends on its algorithm
and its label, but also on its initial position. By contrast, the walk of each agent along every
segment of its route is controlled by the adversary. More precisely, within each stage Si and
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S. Bouchard, M. Bournat, Y. Dieudonné, S. Dubois, and F. Petit 8:3

while the approach is not achieved, the adversary can arbitrarily vary the speed of the agent,
stop it and even move it back and forth as long as the walk of the agent is continuous, does
not leave Si, and ends at ai+1. Roughly speaking, the goal of the adversary is to prevent
the agents from solving the task, or at least to ensure that the agents have covered as much
distance as possible before seeing each other. We assume that at any time an agent can
remember the route it has followed since the beginning.

A deterministic approach algorithm is a deterministic algorithm that always allows two
agents to solve the task of approach regardless of the choices and the behavior of the adversary.
The cost of an accomplished approach is the length of both parts of route travelled by the
agents until they see each other. An approach algorithm is said to be polynomial in ∆ and
in the length of the binary representation of the shortest label between both agents if it
always permits to solve the problem of approach at a cost that is polynomial in the two
aforementioned parameters, no matter what the adversary does.

It is worth mentioning that the use of distinct labels is not fortuitous. In the absence of a
way of distinguishing the agents, the task of approach would have no deterministic solution.
This is especially the case if the adversary handles the agents in a perfect synchronous
manner. Indeed, if the agents act synchronously and have the same label, they will always
follow the same deterministic rules leading to a situation in which the agents will always be
exactly at distance ∆ from each other.

1.2 Our Results

In this paper, we prove that the task of approach can be solved deterministically in the above
asynchronous model, at a cost that is polynomial in the unknown initial distance separating
the agents and in the length of the binary representation of the shortest label. To obtain this
result, we go through the design of a deterministic algorithm for a very close problem, that
of rendezvous in an infinite oriented grid which consists in ensuring that both agents end up
meeting either at a node or on an edge of the grid. The tasks of approach and rendezvous
are very close as the former can be reduced to the latter.

It should be noticed that our result turns out to be an important advance, from a
computational point of view, in resolving the task of approach. Indeed, the other existing
algorithms allowing to solve the same problem either have an exponential cost in the initial
separating distance and in the labels of the agents [11], or require each agent to know its
starting position in a global system of coordinates [9], or only work under a much less
powerful adversary [17] which initially assigns a possibly different speed to each agent but
cannot vary it afterwards.

1.3 Related Work

The task of approach is closely linked to the task of rendezvous. Historically, the first mention
of the rendezvous problem appeared in [32]. From this publication until now, the problem
has been extensively studied so that there is henceforth a huge literature about this subject.
This is mainly due to the fact that there is a lot of alternatives for the combinations we can
make when addressing the problem, e.g., playing on the environment in which the agents are
supposed to evolve, the way of applying the sequences of instructions (i.e., deterministic or
randomized) or the ability to leave some traces in the visited locations, etc. Naturally, in
this paper we focus on work that are related to deterministic rendezvous. This is why we
will mostly dwell on this scenario in the rest of this subsection.

DISC 2017



8:4 Asynchronous Approach in the Plane: A Deterministic Polynomial Algorithm

However, for the curious reader wishing to consider the matter in greater depth, re-
garding randomized rendezvous, a good starting point is to go through [2, 27]. Concerning
deterministic rendezvous, the literature is divided according to the way of modeling the
environnement: Agents can either move in a graph representing a network, or in the plane.

For the problem of rendezvous in networks, a lot of papers considered synchronous
settings, i.e., a context where the agents move in the graph in synchronous rounds. This
is particularly the case of [16] in which the authors presented a deterministic protocol for
solving the rendezvous problem, which guarantees a meeting of the two involved agents
after a number of rounds that is polynomial in the size n of the graph, the length l of the
shortest of the two labels and the time interval τ between their wake-up times. As an open
problem, the authors asked whether it was possible to obtain a polynomial solution to this
problem which would be independent of τ . A positive answer to this question was given,
independently of each other, in [26] and [34]. While these algorithms ensure rendezvous in
polynomial time (i.e., a polynomial number of rounds), they also ensure it at polynomial
cost because the cost of a rendezvous protocol in a graph is the number of edges traversed
by the agents until they meet – each agent can make at most one edge traversal per round.
Note that despite the fact a polynomial time implies a polynomial cost in this context, the
reciprocal is not always true as the agents can have very long waiting periods, sometimes
interrupted by a movement. Thus these parameters of cost and time are not always linked to
each other. This was highlighted in [30] where the authors studied the tradeoffs between
cost and time for the deterministic rendezvous problem. More recently, some efforts have
been dedicated to analyse the impact on time complexity of rendezvous when in every round
the agents are brought with some pieces of information by making a query to some device
or some oracle [13, 29]. Along with the work aiming at optimizing the parameters of time
and/or cost of rendezvous, some other work have examined the amount of required memory
to solve the problem, e.g., [23, 24] for tree networks and in [10] for general networks. In [5],
the problem is approached in a fault-prone framework, in which the adversary can delay an
agent for a finite number of rounds, each time it wants to traverse an edge of the network.

Rendezvous is the term that is usually used when the task of meeting is restricted to
a team of exactly two agents. When considering a team of two agents or more, the term
of gathering is commonly used. Still in the context of synchronous networks, we can cite
some work about gathering two or more agents. In [18], the task of gathering is studied
for anonymous agents while in [4, 14, 19] the same task is studied in presence of byzantine
agents that are, roughly speaking, malicious agents with an arbitrary behavior.

Some studies have been also dedicated to the scenario in which the agents move asyn-
chronously in a network [11, 20, 28], i.e., assuming that the agent speed may vary, controlled
by the adversary. In [28], the authors investigated the cost of rendezvous for both infinite
and finite graphs. In the former case, the graph is reduced to the (infinite) line and bounds
are given depending on whether the agents know the initial distance between them or not. In
the latter case (finite graphs), similar bounds are given for ring shaped networks. They also
proposed a rendezvous algorithm for an arbitrary graph provided the agents initially know
an upper bound on the size of the graph. This assumption was subsequently removed in
[11]. However, in both [28] and [11], the cost of rendezvous was exponential in the size of the
graph. The first rendezvous algorithm working for arbitrary finite connected graphs at cost
polynomial in the size of the graph and in the length of the shortest label was presented in
[20]. (It should be stressed that the algorithm from [20] cannot be used to obtain the solution
described in the present paper: this point is fully explained in the end of this subsection).
In all the aforementioned studies, the agents can remember all the actions they have made
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since the beginning. A different asynchronous scenario for networks was studied in [12]. In
this paper, the authors assumed that agents are oblivious, but they can observe the whole
graph and make navigation decisions based on these observations.

Concerning rendezvous or gathering in the plane, we also found the same dichotomy of
synchronicity vs. asynchronicity. The synchronous case was introduced in [33] and studied
from a fault-tolerance point of view in [1, 15, 21]. In [25], rendezvous in the plane is studied
for oblivious agents equipped with unreliable compasses under synchronous and asynchronous
models. Asynchronous gathering of many agents in the plane has been studied in various
settings in [6, 7, 8, 22, 31]. However, the common feature of all these papers related to
rendezvous or gathering in the plane – which is not present in our model – is that the agents
can observe all the positions of the other agents or at least the global graph of visibility is
always connected (i.e., the team cannot be split into two groups so that no agent of the first
group can detect at least one agent of the second group).

Finally, the closest works to ours allowing to solve the problem of approach under an
asynchronous framework are [9, 3, 11, 17]. In [9, 11, 17], the task of approach is solved by
reducing it to the task of rendezvous in an infinite oriented grid. In [3], the authors present a
solution to solve the task of approach in a multidimensional space by reducing it to the task
of rendezvous in an infinite multidimensional grid. Let us give some more details concerning
these four works to highlight the contrasts with our present contribution. The result from
[11] leads to a solution to the problem of approach in the plane but has the disadvantage
of having an exponential cost. The result from [9] and [3] also implies a solution to the
problem of approach in the plane at cost polynomial in the initial distance of the agents.
However, in both these works, the authors use the powerful assumption that each agent
knows its starting position in a global system of coordinates (while in our paper, the agents
are completely ignorant of where they are). Lastly, the result from [17] provides a solution at
cost polynomial in the initial distance between agents and in the length of the shortest label.
However, the authors of this study also used a powerful assumption: The adversary initially
assigns a possibly different and arbitrary speed to each agent but cannot vary it afterwards.
Hence, each agent moves at constant speed and uses clock to achieve approach. By contrast,
in our paper, we assume basic asynchronous settings, i.e., the adversary arbitrarily and
permanently controls the speed of each agent.

To close this subsection, it is worth mentioning that it is unlikely that the algorithm from
[20] that we referred to above, which is especially designed for asynchronous rendez-vous
in arbitrary finite graphs, could be used to obtain our present result. First, in [20] the
algorithm has not a cost polynomial in the initial distance separating the agents and in the
length of the smaller label. Actually, ensuring rendezvous at this cost is even impossible in
arbitrary graph, as witnessed by the case of the clique with two agents labeled 0 and 1: the
adversary can hold one agent at a node and make the other agent traverse Θ(n) edges before
rendezvous, in spite of the initial distance 1. Moreover, the validity of the algorithm given in
[20] closely relies on the fact that both agents must evolve in the same finite graph, which is
clearly not the case in our present scenario. In particular even when considering the task
of rendezvous in an infinite oriented grid, the natural attempt consisting in making each
agent apply the algorithm from [20] within bounded grids of increasing size and centered
in its initial position, does not permit to claim that rendezvous ends up occurring. Indeed,
the bounded grid considered by an agent is never exactly the same than the bounded grid
considered by the other one (although they may partly overlap), and thus the agents never
evolve in the same finite graph which is a necessary condition to ensure the validity of the
solution of [20] and by extension of this natural attempt.
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1.4 Roadmap

The next section (Section 2) is dedicated to the computational model and basic definitions.
We sketch our solution in Section 3, more formally described in Sections 4. Finally, we make
some concluding remarks in Section 5. Due to the lack of space, details on the algorithm,
the proofs of correction and cost analysis are omitted but will appear in the journal version
of the paper.

2 Preliminaries

We know from [11, 17] that the problem of approach in the plane can be reduced to that of
rendezvous in an infinite grid specified in the next paragraph.

Consider an infinite square grid in which every node u is adjacent to 4 nodes located
North, East, South, and West from node u. We call such a grid a basic grid. Two agents with
distinct labels (corresponding to non-negative integers) starting from arbitrary and distinct
nodes of a basic grid G have to meet either at some node or inside some edge of G. As for
the problem of approach (in the plane), each agent is equipped with a compass showing the
cardinal directions. The agents can see each other and communicate only when they share
the same location in G. In other words, in the basic grid G we assume that the sensory
radius (or, radius of vision) of the agents is equal to zero. In such settings, the only initial
input that is given to a rendezvous algorithm is the label of the executing agent. When
occupying a node u, an agent decides (according to its algorithm) to move to an adjacent
node v via one of the four cardinal directions: the movement of the agent along the edge
{u, v} is controlled by the adversary in the same way as in a section of a route (refer to
Subsection 1.1 ), i.e., the adversary can arbitrarily vary the speed of the agent, stop it and
even move it back and forth as long as the walk of the agent is continuous, does not leave
the edge, and ends at v.

The cost of a rendezvous algorithm in a basic grid is the total number of edge traversals
by both agents until their meeting.

From the reduction described in [17], we have the following theorem.

I Theorem 1. If there exists a deterministic algorithm solving the problem of rendezvous
between any two agents in a basic grid at cost polynomial in D and in the length of the
binary representation of the shortest of their labels where D is the distance (in the Manhattan
metric) between the two starting nodes occupied by the agents, then there exists a deterministic
algorithm solving the problem of approach in the plane between any two agents at cost
polynomial in ∆ and in the length of the binary representation of the shortest of their labels
where ∆ is the initial Euclidean distance separating the agents.

Hence in the rest of the paper we will consider rendezvous in a basic grid, instead of the
task of approach. We use N (resp. E, S, W ) to denote the cardinal direction North (resp.
East, South, West) and an instruction like “Perform NS” means that the agent traverses
one edge to the North and then traverses one edge to the South (by the way, coming back
to its initial position). We denote by D the initial (Manhattan) distance separating two
agents in a basic grid. A route followed by an agent in a basic grid corresponds to a path in
the grid (i.e., a sequence of edges e1, e2, e3, e4, . . .) that are consecutively traversed by the
agent until rendezvous is done. For any integer k, we define the reverse path to the path
e1, . . . , ek as the path ek, ek−1, . . . , e1 = e1, . . . , ek−1, ek. We denote by C(p) the number of
edge traversals performed by an agent during the execution of a procedure p.
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Consider two distinct nodes u and v. We define a specific path from u to v, denoted
P (u, v), as follows. If there exists a unique shortest path from u to v, this shorthest path is
P (u, v). Otherwise, consider the smallest rectangle R(u,v) such that u and v are two of its
corners. P (u, v) is the unique path among the shortest path from u to v that traverses all
the edges on the northern side of R(u,v). Note that P (u, v) = P (v, u).

3 Idea of the algorithm

3.1 Informal Description in a Nutshell . . .

We aim at achieving rendezvous of two asynchronous mobile agents in an infinite grid and in
a deterministic way. It is well known that solving rendezvous deterministically is impossible
in some symmetric graphs (like a basic grid) unless both agents are given distinct identifiers
called labels. We use them to break the symmetry, i.e., in our context, to make the agents
follow different routes. The idea is to make each agent “read” its label binary representation,
a bit after another from the most to the least significant bits, and for each bit it reads, follow
a route depending on the read bit. Our algorithm ensures rendezvous during some of the
periods when they follow different routes i.e., when the two agents process two different bits.

Furthermore, to design the routes that both agents will follow, our approach would require
to know an upper bound on two parameters, namely the initial distance between the agents
and the length (of the binary representation) of the shortest label. As we suppose that the
agents have no knowledge of these parameters, they both perform successive “assumptions”,
in the sequel called phases, in order to find out such an upper bound. Roughly speaking,
each agent attempts to estimate such an upper bound by successive tests, and for each of
these tests, acts as if the upper bound estimation was correct. Both agents first perform
Phase 0. When Phase i does not lead to rendezvous, they perform Phase i+ 1, and so on.
More precisely, within Phase i, the route of each agent is built in such a way that it ensures
rendezvous if 2i is a good upper bound on the parameters of the problem. Hence, in our
approach two requirements are needed: both agents are assumed (1) to process two different
bits (i.e., 0 and 1) almost concurrently and (2) to perform Phase i = α almost at the same
time – where α is the smallest integer such that the two aforementioned parameters are
upper bounded by 2α.

However, to meet these requirements, we have to face two major issues. First, since
the adversary can vary both agent speeds, the idea described above does not prevent the
adversary from making the agents always process the same type of bit at the same time.
Besides, the route cost depends on the phase number, and thus, if an agent were performing
some Phase i with i exponential in the initial distance and in the length of the binary
representation of the smallest label, then our algorithm would not be polynomial. To tackle
these two issues, we use a mechanism that prevents the adversary from making an agent
execute the algorithm arbitrarily faster than the other without meeting. Each of both these
issues is circumvent via a specific “synchronization mechanism”. Roughly speaking, the first
one makes the agents read and process the bits of the binary representation of their labels at
quite the same speed, while the second ensures that they start Phase α at almost the same
time. This is particularly where our feat of strength is: orchestrating in a subtle manner
these synchronizations in a fully asynchronous context while ensuring a polynomial cost. Now
that we have described the very high level idea of our algorithm, let us give more details.
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3.2 Under the hood

The approach described above allows us to solve rendezvous when there exists an index for
which the binary representations of both labels differ. However, this is not always the case
especially when a binary representation is a prefix of the other one (e.g., 100 and 1000).
Hence, instead of considering its own label, each agent will consider a transformed label:
The transformation borrowed from [16] will guarantee the existence of the desired difference
over the new labels. In the rest of this description, we assume for convenience that the initial
Manhattan distance D separating the agents is at least the length of the shortest binary
representation of the two transformed labels (the complementary case adds an unnecessary
level of complexity to understand the intuition).

As mentioned previously, our solution (cf. Algorithm 1 in Section 4) works in phases
numbered 0, 1, 2, 3, 4, . . . During Phase i (cf. Procedure Assumption called at line 3 in
Algorithm 1), the agent supposes that the initial distance D is at most 2i and processes
one by one the first 2i bits of its transformed label: In the case where 2i is greater than
the binary representation of its transformed label, the agent will consider that each of the
last “missing” bits is 0. When processing a bit, the agent executes a particular route which
depends on the bit value and the phase number. The route related to bit 0 (relying in
particular on Procedure Berry called at line 9 in Algorithm 2) and the route related to
bit 1 (relying in particular on on Procedure Cloudberry called at line 11 in Algorithm 2)
are obviously different and designed in such a way that if both these routes are executed
almost simultaneously by two agents within a phase corresponding to a correct upper bound,
then rendezvous occurs by the time any of them has been completed. In the light of this, if
we denote by α the smallest integer such that 2α ≥ D, it turns out that an ideal situation
would be that the agents concurrently start phase α and process the bits at quite the same
rate within this phase. Indeed, we would then obtain the occurrence of rendezvous by the
time the agents complete the process of the jth bit of their transformed label in phase α,
where j is the smallest index for which the binary representations of their transformed labels
differ. However, getting such an ideal situation in presence of a fully asynchronous adversary
appears to be really challenging. This is where the two synchronization mechanisms briefly
mentioned above come into the picture.

If the agents start Phase α approximately at the same time, the first synchronization
mechanism (cf. Procedure RepeatSeed called at line 15 in Algorithm 2) permits to force the
adversary to make the agents process their respective bits at similar speed within Phase α, as
otherwise rendezvous would occur prematurely during this phase before the process by any
agent of the jth bit. This constraint is imposed on the adversary by dividing each bit process
into some predefined steps and by ensuring that after each step s of the kth bit process,
for any k ≤ 2α, an agent follows a specific route that forces the other agent to complete
the step s of its kth bit process. This route, on which the first synchronization is based, is
constructed by relying on the following simple principle: If an agent performs a given route
X included in a given area S of the basic grid, then the other agent can “push it” over X.
In other words, unless rendezvous occurs, the agent forces the other to complete its route X
by covering S a number of times at least equal to the number of edge traversals involved in
route X (each covering of S allows to traverse all the edges of S at least once). Hence, one
of the major difficulties we have to face lies in the setting up of the second synchronization
mechanism guaranteeing that the agents start Phase α around the same time. At first glance,
it might be tempting to use an analogous principle to the one used for dealing with the
first synchronization. Indeed, if an agent a1 follows a route covering r times an area Y of
the grid, such that Y is where the first α− 1 phases of an agent a2 take place and r is the
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maximal number of edge traversals an agent can make during these phases, then agent a1
pushes agent a2 to complete its first α− 1 phases and to start Phase α. Nevertheless, a strict
application of this principle to the case of the second synchronization directly leads to an
algorithm having a cost that is superpolynomial in D and the length of the smallest label,
due to a cumulative effect that does not appear for the case of the first synchronization. As
a consequence, to force an agent to start its Phase α, the second synchronization mechanism
does not depend on the kind of route described above, but on a much more complicated route
that permits an agent to “push” the second one. This works by considering the “pattern”
that is drawn on the grid by the second agent rather than just the number of edges that
are traversed (cf. Procedure Harvest called at line 1 in Algorithm 2). This is the most
tricky part of our algorithm, one of the main idea of which relies in particular on the fact
that some routes made of an arbitrarily large sequence of edge traversals can be pushed at a
relative low cost by some other routes that are of comparatively small length, provided they
are judiciously chosen. Let us illustrate this point through the following example. Consider
an agent a1 following from a node v1 an arbitrarily large sequence of Xi, in which each Xi

corresponds either to AA or BB where A and B are any routes (A and B corresponding to
their respective backtrack i.e., the sequence of edge traversals followed in the reverse order).
An agent a2 starting from an initial node v2 located at a distance at most d from v1 can
force agent a1 to finish its sequence of Xi (or otherwise rendezvous occurs), regardless of
the number of Xi, simply by executing AABB from each node at distance at most d from
v2. To support this claim, let us suppose by contradiction that it does not hold. At some
point, agent a2 necessarily follows AABB from v1. However, note that if either agent starts
following AA (resp. BB) from node v1 while the other is following AA (resp. BB) from
node v1, then the agents meet. Indeed, this implies that the more ahead agent eventually
follows A (resp. B) from a node v3 to v1 while the other is following A (resp. B) from v1
to v3, which leads to rendezvous. Hence, when agent a2 starts following BB from node
v1, agent a1 is following AA, and is not in v1, so that it has at least started the first edge
traversal of AA. This means that when agent a2 finishes following AA from v1, a1 is following
AA, which implies, using the same arguments as before, that they meet before either of
them completes this route. Hence, in this example, agent a2 can force a1 to complete an
arbitrarily large sequence of edge traversals with a single and simple route. Actually, our
second synchronization mechanism implements this idea (this point is refined in Section 4).
This was way the most complicated to set up, as each part of each route in every phase had
to be orchestrated very carefully to permit in fine this low cost synchronization while still
ensuring rendezvous. However, it is through this original and novel way of moving that we
finally get the polynomial cost.

4 Formal description of our algorithm and its analysis

The purpose of this section is to give the formal description of our solution and the involved
subroutines along with their main objectives and how they work at a high level. The main
algorithm that solves the rendezvous in a basic grid is Algorithm RV (shown in Algorithm 1).
As mentioned in Section 3, we use the label of an agent only when it has been transformed.
Let us describe this transformation that is borrowed from [16]. Let (b0b1 . . . bn−1) be the
binary representation of the label of an agent. We define its transformed label as the binary
sequence (b0b0b1b1 . . . bn−1bn−101). This transformation permits to obtain the following
feature: Given two distinct labels, their transformed labels are never prefixes of each other.
As explained in the previous section, we need such a feature because our solution requires
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Algorithm 1 RV
1: d← 1
2: while agents have not met yet do
3: Execute Assumption(d)
4: d← 2d
5: end while

that at some point both agents follow different routes by processing different bit values.
Algorithm RV makes use of a subroutine, i.e., Procedure Assumption. When an agent

executes this procedure with a parameter α that is a “good” assumption i.e., that upperbounds
the initial distance D and the value j of the smallest bit position for which both transformed
labels differ, we have the guarantee that rendezvous occurs by the end of this execution. In
the rest of this section, we assume that α is the smallest good assumption that upperbounds
D and j. The code of Procedure Assumption is given in Algorithm 2. It makes use, for
technical reasons, of the sequence r that is defined below.

∀ power of two i, ρ(i) = 2i4 and r(i) = ρ(i) + 3i

Procedure Assumption can be divided into two parts. The first part consists of the
execution of Procedure Harvest (line 1 of Algorithm 2) and corresponds to the second
synchronization mechanism mentioned in Section 3. The main feature of this procedure is the
following: when the earlier agent finishes the execution of Harvest(α) within the execution
of Assumption(α), we have the guarantee that the later agent has at least started to execute
Assumption with parameter α (actually, as explained below, we have even the guarantee that
most of Harvest(α) has been executed by the later agent). Procedure Harvest is presented
below. The second part of Procedure Assumption (cf. lines 2− 19 of Algorithm 2) consists
in processing the bits of the transformed label one by one. More precisely when processing a
given bit in a call to Procedure Assumption(d), the agent acts in steps 0, 1, . . . , 2d(d+ 1):
After each of these steps, the agent executes Pattern RepeatSeed whose role is described
below. In each of these steps, the agent executes Berry (resp. Cloudberry) if the bit it is
processing is 0 (resp. 1). These patterns of moves (cf. Algorithms 5 and 6) are made in such
a way that rendezvous occurs by the time any agent finishes the process of its jth bit in
Assumption(α) if we have the following synchronization property. Each time any of both
agents starts executing a step s during the process of its jth bit in Assumption(α), the other
agent has finished the execution of either step s− 1 in the jth bit process of Assumption(α)
if s > 0, or the last step of the (j − 1)th bit process of Assumption(α) if s = 0 (j > 0 in
view of the label transformation given above). To obtain such a synchronization, an agent
executes what we called the first synchronization mechanism in the previous section (cf.
line 15 in Algorithm 2) after each step of a bit process. Actually, this mechanism relies
on procedure RepeatSeed, the code of which is given in Algorithm 8. Note that the total
number of steps, and thus of executions of RepeatSeed, in Assumption(α) is 2α2(α+ 1) +α.
For every 0 ≤ i ≤ 2α2(α+ 1) + α, the ith execution of RepeatSeed in Assumption(α) by an
agent permits to force the other agent to finish the execution of its ith step in Assumption(α)
by repeating a pattern Seed (its main purpose is described just above its code given by
Algorithm 7): With the appropriate parameters, this pattern Seed covers any pattern
(Berry or Cloudberry) made in the ith step of Assumption(α) and the number of times it
is repeated is at least the maximal number of edge traversals we can make in the ith step of
Assumption(α).
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Algorithm 2 Assumption(d)
1: Execute Harvest(d)
2: radius← r(d)
3: i← 1
4: while i ≤ d do
5: j ← 0
6: while j ≤ 2d(d+ 1) do
7: // Begin of step j
8: if the length of the transformed label is strictly greater than i, or its ith bit is 0

then
9: Execute Berry(radius, d)

10: else
11: Execute Cloudberry(radius, d, d, j)
12: end if
13: // End of step j
14: radius← radius+ 3d
15: Execute RepeatSeed(radius, C(Cloudberry(radius− 3d, d, d, j)))
16: j ← j + 1
17: end while
18: i← i+ 1
19: end while

Algorithm 3 gives the code of Procedure Harvest. As in Procedure Assumption, it makes
use, for technical reasons, of two sequences ρ and r that are defined above. ProcedureHarvest
is made of two parts: the executions of Procedure PushPattern (lines 1− 3 of Algorithm 3),
and the calls to the patterns Cloudberry and RepeatSeed (lines 4−5 of Algorithm 3). When
Harvest is executed with parameter α (which is a good assumption), the first part ensures
that the later agent has at least completed every execution of Assumption with a parameter
that is smaller than α, while the second part ensures that the later agent has completed
almost the entire execution of Harvest(α) (more precisely, when the earlier agent finishes
the second part, we have the guarantee that it remains for the later agent to execute at most
the last line before completing its own execution of Harvest(α)).

To give further details on Procedure Harvest, let us first describe Procedure Push-
Pattern (its code is given in Algorithm 4). When the earlier agent completes the execution
of PushPattern(2i, d) with i some power of two, assuming that the later agent had already
completed Assumption(i), we have the guarantee that the later agent has completed its
execution of Assumption(2i). To ensure this, we regard the execution of Assumption(2i) as
a sequence of calls to basic patterns (namely RepeatSeed, Berry and Cloudberry), which
is formally defined in Definition 2. This sequence is what we meant when talking about
“the pattern drawn on the grid” in Section 3. For each basic pattern p1 in the sequence,
the earlier agent executes another pattern p2 at the end of which we ensure that the later
agent has completed p1. If p1 is either Pattern Berry or Pattern Cloudberry, then p2 is
Pattern RepeatSeed: we use the same idea here as for the first synchronization mechanism.
If p1 is Pattern RepeatSeed, then p2 is Pattern Berry, relying on a property of the route XX
(with X any non-empty route) introduced in the last paragraph of Subsection 3.2: if both
agents follow this route concurrenly from the same node, then they meet. Pattern Seed can
be seen as such a route, and Procedure Berry (whose code is shown in Algorithm 5) consists
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Algorithm 3 Harvest(d)
1: for i← 1; i < d; i← 2i do
2: Execute PushPattern(i, d)
3: end for
4: Execute Cloudberry(ρ(d), d, d, 0)
5: Execute RepeatSeed(r(d), C(Cloudberry(ρ(d), d, d, 0)))

in executing Pattern Seed from each node at distance at most α. Hence, unless they meet,
the later agent completes its execution of Pattern RepeatSeed before the earlier one starts
executing Seed from the same node. Note that PushPattern uses as many patterns as the
number of basic patterns in the sequence it is supposed to push: this and the fact of doubling
the value of the input parameter of Procedure Assumption in Algorithm 1 contribute in
particular to keep the polynomiality of our solution.

Thus, once the earlier agent completes the first part of Harvest(α), the later one has
at least started the execution of Assumption(α) (and thus of the first part of Harvest(α)).
At this point, we might think at first glance that we just shifted the problem. Indeed, the
number of edge traversals that have to be made to complete all the executions of Assumption
prior to Assumption(α) is quite the same, if not higher, than the number of edge traversals
that have to be made when executing the first part of Harvest(α). Hence the difference
between both agents in terms of edge traversals has not been improved here. However, a
crucial and decisive progress has nonetheless been done: contrary a priori to the series of
Assumption executed before Assumption(d), the first part of Harvest(α) can be pushed at
low cost via the execution of Pattern Cloudberry (line 4 of Algorithm 3) by the earlier agent.
Actually this pattern corresponds to the kind of route, described at the end of Subsection 3.2
for the second synchronization mechanism, which is of small length compared to the sequence
of patterns it can push. Indeed, the first part of Harvest(α) can be viewed as a “large”
sequence of Patterns Seed and Berry: however Seed and Berry can be seen (by analogy with
Subsection 3.2) as routes of the form AA and BB respectively, while Pattern Cloudberry
executes Seed and Berry (i.e., AABB) once from at least each node at distance at most α.

Note that when the earlier agent has completed the execution of Pattern Cloudberry

in Harvest(α), the later agent has at least started the execution of Pattern Cloudberry

in Harvest(α). Hence, there is still a difference between both agents, but it has been
considerably reduced: it is now relatively small so that we can handle it pretty easily
afterwards.

I Definition 2 (Basic and Perfect Decomposition). Given a call P to an algorithm, we say
that the basic decomposition of P , denoted by BD(P ), is P itself if P corresponds to a basic
pattern, the type of which belongs to {RepeatSeed;Berry;Cloudberry}. Otherwise, if during
its execution P makes no call then BD(P ) =⊥, else BD(P ) = BD(x1),BD(x2), . . . ,BD(xn)
where x1, x2, . . . , xn is the sequence (in the order of execution) of all the calls in P that are
children of P . We say that BD(P ) is a perfect decomposition if it does not contain any ⊥.

I Remark. The basic decomposition of every call to Procedure Assumption is perfect.

Starting from a node v, the main purpose of Seed(x) is to visit all nodes of the grid at
distance at most x from v and to traverse all edges of the grid linking two nodes at distance
at most x from v (informally, the procedure permits to cover an area of radius x).

The following two theorems state the validity and the polynomial cost of Algorithm RV
(their proofs will appear in the journal version of the paper).
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Algorithm 4 PushPattern(i, d)
1: for each p in BD(Assumption(i)) do
2: if p is a call to pattern RepeatSeed with value x as first parameter then
3: Execute Berry(x, d)
4: else
5: /* pattern p is either a call to pattern Berry or a call to pattern Cloudberry (in

view of the above remark) and has at least two parameters */
6: Let x (resp. y) be the first (resp. the second) parameter of p
7: Execute RepeatSeed(d+ x+ 2y, C(Cloudberry(x, y, y, 0)))
8: end if
9: end for

Algorithm 5 Pattern Berry(x, y)
1: /* First period */
2: Let u be the current node
3: for i← 1; i ≤ x+ y; i← i+ 1 do
4: for j ← 0; j ≤ i; j ← j + 1 do
5: for k ← 0; k ≤ j; k ← k + 1 do
6: for each node v at distance k from u ordered clockwise from the North do
7: Follow P (u, v)
8: Execute Seed(i− j)
9: Follow P (v, u)

10: end for
11: end for
12: end for
13: end for
14: /* Second period */
15: L← the path followed by the agent during the first period
16: Backtrack by following the reverse path L

Algorithm 6 Pattern Cloudberry(x, y, z, h)
1: /* First period */
2: Let u be the current node
3: Let U be the list of nodes at distance at most z from u ordered in the order of the first

visit when applying Seed(z) from node u
4: for i← 0; i ≤ 2z(z + 1); i← i+ 1 do
5: Let v be the node with index h+ i (mod 2z(z + 1) + 1) in U
6: Follow P (u, v)
7: Execute Seed(x)
8: Execute Berry(x, y)
9: Follow P (v, u)

10: end for
11: /* Second period */
12: L← the path followed by the agent during the first period
13: Backtrack by following the reverse path L
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Algorithm 7 Pattern RepeatSeed(x, n)
1: Execute n times Pattern Seed(x)

Algorithm 8 Pattern Seed(x)
1: /* First period */
2: for i← 1; i ≤ x; i← i+ 1 do
3: /* Phase i */
4: Perform (N(SE)i(WS)i(NW )i(EN)i)
5: end for
6: /* Second period */
7: L← the path followed by the agent during the first period
8: Backtrack by following the reverse path L

I Theorem 3. Algorithm RV solves the problem of rendezvous in the basic grid.

I Theorem 4. The cost of Algorithm RV is polynomial in D and l, where D is the initial
(Manhattan) distance separating both agents and l is the length of the shortest label.

5 Conclusion

From Theorems 1, 3 and 4, we obtain the following result concerning the task of approach.

I Theorem 5. The task of approach can be solved at cost polynomial in the unknown initial
distance ∆ separating the agents and in the length of (the binary representation) of the
shortest of their labels.

Throughout the paper, we made no attempt at optimizing the cost. Actually, as the
acute reader will have noticed, our main concern was only to prove the polynomiality. Hence,
a natural open problem is to find out the optimal cost to solve the task of approach. This
would be all the more important as in turn we could compare this optimal cost with the
cost of solving the same task with agents that can position themselves in a global system
of coordinates (the almost optimal cost for this case is given in [9]) in order to determine
whether the use of such a system is finally relevant to minimize the travelled distance.
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Abstract
State-of-the-art software transactional memory (STM) implementations achieve good perform-
ance by carefully avoiding the overhead of incremental validation (i.e., re-reading previously read
data items to avoid inconsistency) while still providing progressiveness (allowing transactional
aborts only due to data conflicts). Hardware transactional memory (HTM) implementations
promise even better performance, but offer no progress guarantees. Thus, they must be com-
bined with STMs, leading to hybrid TMs (HyTMs) in which hardware transactions must be
instrumented (i.e., access metadata) to detect contention with software transactions.

We show that, unlike in progressive STMs, software transactions in progressive HyTMs can-
not avoid incremental validation. In fact, this result holds even if hardware transactions can
read metadata non-speculatively. We then present opaque HyTM algorithms providing progress-
iveness for a subset of transactions that are optimal in terms of hardware instrumentation. We
explore the concurrency vs. hardware instrumentation vs. software validation trade-offs for these
algorithms. Our experiments with Intel and IBM POWER8 HTMs seem to suggest that (i) the
cost of concurrency also exists in practice, (ii) it is important to implement HyTMs that provide
progressiveness for a maximal set of transactions without incurring high hardware instrumenta-
tion overhead or using global contending bottlenecks and (iii) there is no easy way to derive more
efficient HyTMs by taking advantage of non-speculative accesses within hardware.
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1 Introduction

The Transactional Memory (TM) abstraction is a synchronization mechanism that allows
the programmer to optimistically execute sequences of shared-memory operations as atomic
transactions. Several software TM designs [8, 24, 13, 11] have been introduced subsequent to
the original TM proposal based in hardware [14]. The original dynamic STM implementation
DSTM [13] ensures that a transaction aborts only if there is a read-write data conflict with
a concurrent transaction (à la progressiveness [12]). However, to satisfy opacity [12], read
operations in DSTM must incrementally validate the responses of all previous read operations
to avoid inconsistent executions. This results in quadratic (in the size of the transaction’s
read set) step-complexity for transactions. Subsequent STM implementations like NOrec [8]
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and TL2 [10] minimize the impact on performance due to incremental validation. NOrec
uses a global sequence lock that is read at the start of a transaction and performs value-based
validation during read operations only if the value of the global lock has been changed (by
an updating transaction) since reading it. TL2, on the other hand, eliminates incremental
validation completely. Like NOrec, it uses a global sequence lock, but each data item also
has an associated sequence lock value that is updated alongside the data item. When a data
item is read, if its associated sequence lock value is different from the value that was read
from the sequence lock at the start of the transaction, then the transaction aborts.

In fact, STMs like TL2 and NOrec ensure progress in the absence of data conflicts with
O(1) step complexity read operations and invisible reads (read operations which do not
modify shared memory). Nonetheless, TM designs that are implemented entirely in software
still incur significant performance overhead. Thus, current CPUs have included instructions
to mark a block of memory accesses as transactional [1, 17], allowing them to be executed
atomically in hardware. Hardware transactions promise better performance than STMs, but
they offer no progress guarantees since they may experience spurious aborts. This motivates
the need for hybrid TMs in which the fast hardware transactions are complemented with
slower software transactions that do not have spurious aborts.

To allow hardware transactions in a HyTM to detect conflicts with software transactions,
hardware transactions must be instrumented to perform additional metadata accesses, which
introduces overhead. Hardware transactions typically provide automatic conflict detection at
cacheline granularity, thus ensuring that a transaction will be aborted if it experiences memory
contention on a cacheline. This is at least the case with Intel’s Transactional Synchronization
Extensions [25]. The IBM POWER8 architecture additionally allows hardware transactions
to access metadata non-speculatively, thus bypassing automatic conflict detection. While
this has the advantage of potentially reducing contention aborts in hardware, this makes the
design of HyTM implementations potentially harder to prove correct.

In [3], it was shown that hardware transactions in opaque progressive HyTMs must
perform at least one metadata access per transactional read and write. In this paper, we
show that in opaque progressive HyTMs with invisible reads, software transactions cannot
avoid incremental validation. Specifically, we prove that each read operation of a software
transaction in a progressive HyTM must necessarily incur a validation cost that is linear in
the size of the transaction’s read set. This is in contrast to TL2 which is progressive and has
constant complexity read operations. Thus, in addition to the linear instrumentation cost in
hardware transactions, there is a quadratic step complexity cost in software transactions.

We then present opaque HyTM algorithms providing progressiveness for a subset of
transactions that are optimal in terms of hardware instrumentation. Algorithm 1 is progressive
for all transactions, but it incurs high instrumentation overhead in practice. Algorithm 2
avoids all instrumentation in fast-path read operations, but is progressive only for slow-path
reading transactions. We also sketch how some hardware instrumentation can be performed
non-speculatively without violating opacity.

Extensive experiments were performed to characterize the cost of concurrency in practice.
We studied the instrumentation-optimal algorithms, as well as TL2, Transactional Lock
Elision (TLE) [22] and Hybrid NOrec [23] on both Intel and IBM POWER architectures. Each
of the algorithms we studied contributes to an improved understanding of the concurrency vs.
hardware instrumentation vs. software validation trade-offs for HyTMs. Comparing results
between the very different Intel and IBM POWER architectures also led to new insights.
Collectively, our results suggest the following.
(i) The cost of concurrency is significant in practice; high hardware instrumentation impacts

performance negatively on Intel and much more so on POWER8 due to its limited
transactional cache capacity.



T. Brown and S. Ravi 9:3

(ii) It is important to implement HyTMs that provide progressiveness for a maximal set of
transactions without incurring high hardware instrumentation overhead or using global
contending bottlenecks.

(iii) There is no easy way to derive more efficient HyTMs by taking advantage of non-
speculative accesses supported within the fast-path in POWER8 processors.

2 Hybrid transactional memory (HyTM)

Transactional memory (TM). A transaction is a sequence of transactional operations (or
t-operations), reads and writes, performed on a set of transactional objects (t-objects). A TM
implementation provides a set of concurrent processes with deterministic algorithms that
implement reads and writes on t-objects using a set of base objects.

Configurations and executions. A configuration of a TM implementation specifies the state
of each base object and each process. In the initial configuration, each base object has its
initial value and each process is in its initial state. An event (or step) of a transaction invoked
by some process is an invocation of a t-operation, a response of a t-operation, or an atomic
primitive operation applied to base object along with its response. An execution fragment is
a (finite or infinite) sequence of events E = e1, e2, . . . . An execution of a TM implementation
M is an execution fragment where, informally, each event respects the specification of base
objects and the algorithms specified byM.

For any finite execution E and execution fragment E′, E ·E′ denotes the concatenation
of E and E′, and we say that E · E′ is an extension of E. For every transaction identifier k,
E|k denotes the subsequence of E restricted to events of transaction Tk. If E|k is non-empty,
we say that Tk participates in E, Let txns(E) denote the set of transactions that participate
in E. Two executions E and E′ are indistinguishable to a set T of transactions, if for each
transaction Tk ∈ T , E|k = E′|k. A transaction Tk ∈ txns(E) is complete in E if E|k ends
with a response event. The execution E is complete if all transactions in txns(E) are complete
in E. A transaction Tk ∈ txns(E) is t-complete if E|k ends with Ak or Ck; otherwise, Tk is
t-incomplete. We consider the dynamic programming model: the read set (resp., the write
set) of a transaction Tk in an execution E, denoted RsetE(Tk) (resp., WsetE(Tk)), is the set
of t-objects that Tk attempts to read (and resp. write) by issuing a t-read (resp., t-write)
invocation in E (for brevity, we sometimes omit the subscript E).

We assume that base objects are accessed with read-modify-write (rmw) primitives. A
rmw primitive event on a base object is trivial if, in any configuration, its application does
not change the state of the object. Otherwise, it is called nontrivial. Events e and e′ of an
execution E contend on a base object b if they are both primitives on b in E and at least
one of them is nontrivial.

Hybrid transactional memory executions. We now describe the execution model of a
Hybrid transactional memory (HyTM) implementation. In our model, shared memory
configurations may be modified by accessing base objects via two kinds of primitives: direct
and cached.
(i) In a direct (also called non-speculative) access, the rmw primitive operates on the

memory state: the direct-access event atomically reads the value of the object in the
shared memory and, if necessary, modifies it.

(ii) In a cached access performed by a process i, the rmw primitive operates on the cached
state recorded in process i’s tracking set τi.

DISC 2017
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More precisely, τi is a set of triples (b, v,m) where b is a base object identifier, v is a
value, and m ∈ {shared, exclusive} is an access mode. The triple (b, v,m) is added to the
tracking set when i performs a cached rmw access of b, where m is set to exclusive if the
access is nontrivial, and to shared otherwise. We assume that there exists some constant TS
such that the condition |τi| ≤ TS must always hold; this condition will be enforced by our
model. A base object b is present in τi with mode m if ∃v, (b, v,m) ∈ τi.

Hardware aborts. A tracking set can be invalidated by a concurrent process: if, in a
configuration C where (b, v, exclusive) ∈ τi (resp., (b, v, shared) ∈ τi), a process j 6= i

applies any primitive (resp., any nontrivial primitive) to b, then τi becomes invalid and any
subsequent event invoked by i sets τi to ∅ and returns ⊥. We refer to this event as a tracking
set abort.

Any transaction executed by a correct process that performs at least one cached access
must necessarily perform a cache-commit primitive that determines the terminal response
of the transaction. A cache-commit primitive issued by process i with a valid τi does the
following: for each base object b such that (b, v, exclusive) ∈ τi, the value of b in C is updated
to v. Finally, τi is set to ∅ and the operation returns commit. We assume that a fast-path
transaction Tk returns Ak as soon a cached primitive or cache-commit returns ⊥.

Slow-path and fast-path transactions. We partition HyTM transactions into fast-path
transactions and slow-path transactions. A slow-path transaction models a regular software
transaction. An event of a slow-path transaction is either an invocation or response of a
t-operation, or a direct rmw primitive on a base object. A fast-path transaction essentially
encapsulates a hardware transaction. Specifically, in any execution E, we say that a
transaction Tk ∈ txns(E) is a fast-path transaction if E|k contains at least one cached event.
An event of a hardware transaction is either an invocation or response of a t-operation, or a
direct trivial access or a cached access, or a cache-commit primitive.

I Remark (Tracking set aborts). Let Tk ∈ txns(E) be any t-incomplete fast-path transaction
executed by process i, where (b, v, exclusive) ∈ τi (resp., (b, v, shared) ∈ τi) after execution
E, and e be any event (resp., nontrivial event) that some process j 6= i is poised to apply
after E. The next event of Tk in any extension of E · e is Ak.

I Remark (Capacity aborts). Any cached access performed by a process i executing a fast-path
transaction Tk; |Dset(Tk)| > 1 first checks the condition |τi| = TS , where TS is a pre-defined
constant, and if so, it sets τi = ∅ and immediately returns ⊥.

Direct reads within fast-path. Note that we specifically allow hardware transactions to
perform reads without adding the corresponding base object to the process’ tracking set,
thus modeling the suspend/resume instructions supported by IBM POWER8 architectures.
Note that Intel’s HTM does not support this feature: an event of a fast-path transaction
does not include any direct access to base objects.

HyTM properties. We consider the TM-correctness property of opacity [12]: an execution
E is opaque if there exists a legal (every t-read of a t-object returns the value of its latest
committed t-write) sequential execution S equivalent to some t-completion of E that respects
the real-time ordering of transactions in E. We also assume a weak TM-liveness property for
t-operations: every t-operation returns a matching response within a finite number of its own
steps if running step-contention free from a configuration in which every other transaction is
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t-complete. Moreover, we focus on HyTMs that provide invisible reads: t-read operations do
not perform nontrivial primitives in any execution.

3 Progressive HyTM must perform incremental validation

In this section, we show that it is impossible to implement opaque progressive HyTMs with
invisible reads with O(1) step-complexity read operations for slow-path transactions. This
result holds even if fast-path transactions may perform direct trivial accesses.

Formally, we say that a HyTM implementationM is progressive for a set T of transactions
if in any execution E ofM; T ⊆ txns(E), if any transaction Tk ∈ T returns Ak in E, there
exists another concurrent transaction Tm that conflicts (both access the same t-object and
at least one writes) with Tk in E [12].

We construct an execution of a progressive opaque HyTM in which every t-read performed
by a read-only slow-path transaction must access linear (in the size of the read set) number
of distinct base objects.

I Theorem 1. LetM be any progressive opaque HyTM implementation providing invisible
reads. There exists an execution E of M and some slow-path read-only transaction Tk ∈
txns(E) that incurs a time complexity of Ω(m2); m = |Rset(Tk)|.

Proof sketch. We construct an execution of a read-only slow-path transaction Tφ that
performs m ∈ N distinct t-reads of t-objects X1, . . . , Xm. We show inductively that for
each i ∈ {1, . . . ,m}; m ∈ N, the ith t-read must access i− 1 distinct base objects during its
execution. The (partial) steps in our execution are depicted in Figure 1.

For each i ∈ {1, . . . ,m},M has an execution of the form depicted in Figure 1b. Start
with the complete step contention-free execution of slow-path read-only transaction Tφ
that performs (i − 1) t-reads: readφ(X1) · · · readφ(Xi−1), followed by the t-complete step
contention-free execution of a fast-path transaction Ti that writes nvi 6= vi to Xi and commits
and then the complete step contention-free execution fragment of Tφ that performs its ith
t-read: readφ(Xi)→ nvi. Indeed, by progressiveness, Ti cannot incur tracking set aborts and
since it accesses only a single t-object, it cannot incur capacity aborts. Moreover, in this
execution, the t-read of Xi by slow-path transaction Tφ must return the value nv written by
fast-path transaction Ti since this execution is indistinguishable to Tφ from the execution in
Figure 1a.

We now construct (i − 1) different executions of the form depicted in Figure 1c: for
each ` ≤ (i− 1), a fast-path transaction T` (preceding Ti in real-time ordering, but invoked
following the (i − 1) t-reads by Tφ) writes nv` 6= v to X` and commits, followed by the
t-read of Xi by Tφ. Observe that, T` and Ti which access mutually disjoint data sets cannot
contend on each other since if they did, they would concurrently contend on some base object
and incur a tracking set abort, thus violating progressiveness. Indeed, by the TM-liveness
property we assumed (cf. Section 2) and invisible reads for Tφ, each of these (i−1) executions
exist.

In each of these (i− 1) executions, the final t-read of Xi cannot return the new value nv:
the only possible serialization for transactions is T`, Ti, Tφ; but the readφ(X`) performed
by Tk that returns the initial value v is not legal in this serialization—contradiction to the
assumption of opacity. In other words, slow-path transaction Tφ is forced to verify the
validity of t-objects in Rset(Tφ). Finally, we note that, for all `, `′ ≤ (i− 1);`′ 6= `, fast-path
transactions T` and T`′ access mutually disjoint sets of base objects thus forcing the t-read
of Xi to access least i − 1 different base objects in the worst case. Consequently, for all
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Table 1 Table summarizing complexities of HyTM implementations.

Algorithm 1 Algorithm 2 TLE HybridNOrec
Instrumentation in fast-path reads per-read constant constant constant
Instrumentation in fast-path writes per-write per-write constant constant

Validation in slow-path reads Θ(|Rset|) O(|Rset|) none O(|Rset|), but validation only if concurrency
h/w-s/f concurrency prog. prog. for slow-path readers zero not prog., but small contention window

Direct accesses inside fast-path yes no no yes
opacity yes yes yes yes

i ∈ {2, . . . ,m}, slow-path transaction Tφ must perform at least i− 1 steps while executing
the ith t-read in such an execution. J

3.1 How STM implementations mitigate the quadratic lower bound
step complexity

NOrec [8] is a progressive opaque STM that minimizes the average step-complexity resulting
from incremental validation of t-reads. Transactions read a global versioned lock at the start,
and perform value-based validation during t-read operations iff the global version has changed.
TL2 [10] improves over NOrec by circumventing the lower bound of Theorem 1. Concretely,
TL2 associates a global version with each t-object updated during a transaction and performs
validation with O(1) complexity during t-reads by simply verifying if the version of the
t-object is greater than the global version read at the start of the transaction. Technically,
NOrec and algorithms in this paper provide a stronger definition of progressiveness: a
transaction may abort only if there is a prefix in which it conflicts with another transaction
and both are t-incomplete. TL2 on the other hand allows a transaction to abort due to a
concurrent conflicting transaction.

3.2 Implications for disjoint-access parallelism in HyTM

The property of disjoint-access parallelism (DAP), in its weakest form, ensures that two
transactions concurrently contend on the same base object only if their data sets are connected
in the conflict graph, capturing data-set overlaps among all concurrent transactions [4]. It is
well known that weak DAP STMs with invisible reads must perform incremental validation
even if the required TM-progress condition requires transactions to commit only in the
absence of any concurrent transaction [12, 16]. For example, DSTM [13] is a weak DAP STM
that is progressive and consequently incurs the validation complexity. On the other hand,
TL2 and NOrec are not weak DAP since they employ a global versioned lock that mitigates
the cost of incremental validation, but this allows two transactions accessing disjoint data
sets to concurrently contend on the same memory location. Indeed, this inspires the proof of
Theorem 1.

4 Hybrid transactional memory algorithms

4.1 Instrumentation-optimal progressive HyTM

We describe a HyTM algorithm that is a tight bound for Theorem 1 and the instrumentation
cost on the fast-path transactions established in [3]. Pseudocode appears in Algorithm 1.
For each t-object Xj , our implementation maintains a base object vj that stores Xj ’s value
and a sequence lock rj .
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Rφ(X1) · · ·Rφ(Xi−1)
i− 1 t-reads Rφ(Xi)→ nvWi(Xi, nv)

commits

Slow-PathFast-Path

TφTi

(a) Slow-path transaction Tφ performs i− 1 distinct t-reads (each returning the initial value)
followed by the t-read of Xi that returns value nv written by fast-path transaction Ti.

Rφ(X1) · · ·Rφ(Xi−1)
i− 1 t-reads

Wi(Xi, nv)
commits

Rφ(Xi)→ nv

Slow-Path

Fast-Path

TφTφ

Ti

(b) Fast-path transaction Ti does not contend with any of the i− 1 t-reads performed by Tφ
and must be committed in this execution since it cannot incur a tracking set or capacity abort.
The t-read of Xi must return nv because this execution is indistinguishable to Tφ from 1a.

Rφ(X1) · · ·Rφ(Xi−1)
i− 1 t-reads

Wi(Xi, nv)
commits

Wi(Xi, nv)
commits

Wi−1(Xi−1, nv)
commits

W1(X1, nv)
commits

Rφ(Xi)→?

Slow-Path

Fast-PathFast-Path

Fast-Path Fast-Path

TφTφ

Rφ(Xi)→?

Slow-Path

Rφ(X1) · · ·Rφ(Xi−1)
i− 1 t-reads

TφTφ

Ti−1 Ti

T1 Ti

(c) In each of these each i− 1 executions, fast-path transactions cannot incur a tracking set or
capacity abort. By opacity, the t-read of Xi by Tφ cannot return new value nv. Therefore, to
distinguish the i− 1 different executions, t-read of Xi by slow-path transaction Tφ is forced to
access i− 1 different base objects.

Figure 1 Proof steps for Theorem 1.

Fast-path transactions: For a fast-path transaction Tk executed by process pi, the readk(Xj)
implementation first reads rj (direct) and returns Ak if some other process pj holds a lock on
Xj . Otherwise, it returns the value ofXj . As with readk(Xj), the write(Xj , v) implementation
returns Ak if some other process pj holds a lock on Xj ; otherwise process pi increments
the sequence lock rj . If the cache has not been invalidated, pi updates the shared memory
during tryCk by invoking the commit-cache primitive.

Slow-path read-only transactions: Any readk(Xj) invoked by a slow-path transaction first
reads the value of the t-object from vj , adds rj to Rset(Tk) if its not held by a concurrent
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transaction and then performs validation on its entire read set to check if any of them have
been modified. If either of these conditions is true, the transaction returns Ak. Otherwise, it
returns the value of Xj . Validation of the read set is performed by re-reading the values of
the sequence lock entries stored in Rset(Tk).

Slow-path updating transactions: An updating slow-path transaction Tk attempts to
obtain exclusive write access to its entire write set. If all the locks on the write set were
acquired successfully, Tk performs validation of the read set and if successful, updates the
values of the t-objects in shared memory, releases the locks and returns Ck; else pi aborts
the transaction.

Direct accesses inside fast-path: Note that opacity is not violated even if the sequence
lock accesses during t-read may be performed directly without incurring tracking set aborts.

4.2 Instrumentation-optimal HyTM that is progressive only for
slow-path reading transactions

Algorithm 2 does not incur the linear instrumentation cost on the fast-path reading trans-
actions (inherent to Algorithm 1), but provides progressiveness only for slow-path reading
transactions. The instrumentation cost on fast-path t-reads is avoided by using a global lock
that serializes all updating slow-path transactions during the tryCk procedure. Fast-path
transactions simply check if this lock is held without acquiring it (similar to TLE [22]). While
per-read instrumentation is avoided, Algorithm 2 still has per-write instrumentation.

4.3 Sacrificing progressiveness and minimizing contention window
Observe that the lower bound in Theorem 1 assumes progressiveness for both slow-path and
fast-path transactions along with opacity and invisible reads. Note that Algorithm 2 retains
the validation step complexity cost since it provides progressiveness for slow-path readers.

Hybrid NOrec [7] is a HyTM implementation that does not satisfy progressiveness (unlike
its STM counterpart NOrec), but mitigates the step-complexity cost on slow-path transactions
by performing incremental validation during a transactional read iff the shared memory
has changed since the start of the transaction. Conceptually, Hybrid NOrec uses a global
sequence lock gsl that is incremented at the start and end of each transaction’s commit
procedure. Readers can use the value of gsl to determine whether shared memory has changed
between two configurations. Unfortunately, with this approach, two fast path transactions
will always conflict on the gsl if their commit procedures are concurrent. To reduce the
contention window for fast path transactions, the gsl is actually implemented as two separate
locks (the second one called esl). A slow-path transaction locks both esl and gsl while it
is committing. Instead of incrementing gsl, a fast path transaction checks if esl is locked
and aborts if it is. Then, at the end of the fast path transaction’s commit procedure, it
increments gsl twice (quickly locking and releasing it and immediately commits in hardware).
Although the window for fast path transactions to contend on gsl is small, our experiments
have shown that contention on gsl has a significant impact on performance.
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Algorithm 1 Progressive fast-path and slow-path opaque HyTM implementation; code for
transaction Tk

1 Shared objects
2 vj , value of each t- object Xj

3 rj , a sequence lock of each t- object Xj

5 Code for fast-path transactions

7 readk(Xj)
8 ovj := vj

9 orj := rj . direct read
10 if orj .isLocked() then return Ak

11 return ovj

13 writek(Xj , v)
14 orj := rj

15 if orj .isLocked() then return Ak

16 rj := orj .IncSequence()
17 vj := v
18 return OK

20 tryCk ()
21 commit - cachei

23 Function : release (Q)
24 for each Xj ∈ Q do rj := orj .unlock()

26 Function : acquire (Q)
27 for each Xj ∈ Q
28 if rj .tryLock() . CAS/LLSC
29 Lset(Tk ) := Lset(Tk ) ∪ {Xj }
30 else
31 release (Lset(Tk ))
32 return false
33 return true
34
35 Code for slow-path transactions

37 Readk (Xj )
38 if Xj ∈ Wset(Tk ) then return Wset(Tk ). locate (Xj )
39 orj := rj

40 ovj := vj

41 Rset(Tk ) := Rset(Tk ) ∪ {Xj ,orj }
42 if orj .isLocked() then return Ak

43 if not validate () then return Ak

44 return ovj

46 writek(Xj , v)
47 orj := rj

48 nvj := v
49 if orj .isLocked() then return Ak

50 Wset(Tk ) := Wset(Tk ) ∪ {Xj , nvj , orj }
51 return OK

53 tryCk ()
54 if Wset(Tk ) = ∅ then return Ck

55 if not acquire (Wset(Tk )) then return Ak

56 if not validate ()
57 release (Wset(Tk ))
58 return Ak

59 for each Xj ∈ Wset(Tk ) do vj := nvj

60 release (Wset(Tk ))
61 return Ck

63 Function : validate ()
64 if ∃ Xj ∈ Rset(Tk ):orj .getSequence() 6= rj .getSequence() then return false
65 return true
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Algorithm 2 Opaque HyTM implementation that is progressive only for slow-path reading
transactions; code for Tk by process pi

1 Shared objects
2 L, global lock

4 Code for fast-path transactions
5 startk ()
6 if L.isLocked() then return Ak

8 readk (Xj )
9 ovj := vj

10 return ovj

12 writek (Xj , v)
13 orj := rj

14 rj := orj .IncSequence()
15 vj := v
16 return OK

18 tryCk ()
19 return commit - cachei

23 Code for slow-path transactions

25 tryCk ()
26 if Wset(Tk ) = ∅ then return Ck

27 L.Lock()
28 if not acquire (Wset(Tk )) then return Ak

29 if not validate () then
30 release (Wset(Tk ))
31 return Ak

32 for each Xj ∈ Wset(Tk ) do vj := nvj

33 release (Wset(Tk ))
34 return Ck

36 Function : release (Q)
37 for each Xj ∈ Q do rj := nrj .unlock()
38 L.unlock(); return OK

5 Evaluation

We now study the performance characteristics of Algorithms 1 and 2, Hybrid NOrec, TLE
and TL2. Our experimental goals are:
(G1) to study the performance impact of instrumentation on the fast-path and validation

on the slow-path,
(G2) to understand how HyTM algorithm design affects performance with Intel and IBM

POWER8 HTMs, and
(G3) to determine whether direct accesses can be used to obtain performance improve-

ments on IBM POWER8 using suspend/resume instructions to escape from a hardware
transaction.

5.1 Experimental system
The experimental Intel system is a 2-socket Intel E7-4830 v3 with 12 cores per socket and 2
hyperthreads (HTs) per core, for a total of 48 threads. Each core has a private 32KB L1
cache and 256KB L2 cache (shared between HTs on a core). All cores on a socket share a
30MB L3 cache. This system has a non-uniform memory architecture (NUMA) in which
threads have significantly different access costs to different parts of memory depending on
which processor they are currently executing on. The machine has 128GB of RAM, and runs
Ubuntu 14.04 LTS. All code was compiled with the GNU C++ compiler (G++) 4.8.4 with
build target x86_64-linux-gnu and compilation options -std=c++0x -O3 -mx32.

We pin threads so that the first socket is saturated before we place any threads on the
second socket. Thus, thread counts 1-24 run on a single socket. Furthermore, hyperthreading
is engaged on the first socket for thread counts 13-24, and on the second socket for thread
counts 37-48. Consequently, our graphs clearly show the effects of NUMA and hyperthreading.

The experimental POWER8 system is a IBM S822L with 2x 12-core 3.02GHz processor
cards, 128GB of RAM, running Ubuntu 16.04 LTS. All code was compiled using G++ 5.3.1.
This is a dual socket machine, and each socket has two NUMA zones. It is expensive to
access memory on a different NUMA zone, and even more expensive if the NUMA zone is on
a different socket. POWER8 uses the L2 cache for detecting tracking set aborts, and limits
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the size of a transaction’s read- and write-set to 8KB each [20]. This is in contrast to Intel
which tracks conflicts on the entire L3 cache, and limits a transaction’s read-set to the L3
cache size, and its write-set to the L1 cache size.

We pin one thread on each core within a NUMA zone before moving to the next zone. We
remark that unlike the thread pinning policy for Intel which saturated the first socket before
moving to the next, this proved to be the best policy for POWER8 which experiences severe
negative scaling when threads are saturated on a single 8-way hardware multi-threaded core.
This is because all threads on a core share resources, including the L1 and L2 cache, a single
branch execution pipeline, and only two load-store pipelines.

5.2 Hybrid TM implementations
For TL2, we used the implementation published by its authors. We implemented the other
algorithms in C++. Each hybrid TM algorithm first attempts to execute a transaction
on the fast-path, and will continue to execute on the fast-path until the transaction has
experienced 20 aborts, at which point it will fall back to the slow-path. We implemented
Algorithm 1 on POWER8 where each read of a sequence lock during a transactional read
operation was enclosed within a pair of suspend/resume instructions to access them without
incurring tracking set aborts (Algorithm 1∗). We remark that this does not affect the
opacity of the implementation. We also implemented the variant of Hybrid NOrec (Hybrid
NOrec∗) in which the update to gsl is performed using a fetch-increment primitive between
suspend/resume instructions, as is recommended in [23].

In each algorithm, instead of placing a lock next to each address in memory, we allocated
a global array of one million locks, and used a simple hash function to map each address to
one of these locks. This avoids the problem of having to change a program’s memory layout
to incorporate locks, and greatly reduces the amount of memory needed to store locks, at
the cost of some possible false conflicts since many addresses map to each lock. Note that
the exact same approach was taken by the authors of TL2.

We chose not to compile the hybrid TMs as separate libraries, since invoking library
functions for each read and write can cause algorithms to incur enormous overhead. Instead,
we compiled each hybrid TM directly into the code that uses it.

5.3 Experimental methodology
We used a simple unbalanced binary search tree (BST) microbenchmark as a vehicle to
study the performance of our implementations. The BST implements a dictionary, which
contains a set of keys, each with an associated value. For each TM algorithm and update rate
U ∈ {40, 10, 0}, we run six timed trials for several thread counts n. Each trial proceeds in
two phases: prefilling and measuring. In the prefilling phase, n concurrent threads perform
50% Insert and 50% Delete operations on keys drawn uniformly randomly from [0, 105)
until the size of the tree converges to a steady state (containing approximately 105/2 keys).
Next, the trial enters the measuring phase, during which threads begin counting how many
operations they perform. In this phase, each thread performs (U/2)% Insert, (U/2)% Delete
and (100− U)% Search operations, on keys/values drawn uniformly from [0, 105), for one
second.

Uniformly random updates to an unbalanced BST have been proven to yield trees of log-
arithmic height with high probability. Thus, in this type of workload, almost all transactions
succeed in hardware, and the slow-path is almost never used. To study performance when
transactions regularly run on slow-path, we introduced an operation called a RangeIncrement
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Figure 2 Results for a BST microbenchmark. The x-axis represents the number of concurrent
threads. The y-axis represents operations per microsecond.

that often fails in hardware and must run on the slow-path. A RangeIncrement(low, hi)
atomically increments the values associated with each key in the range [low, hi] present in
the tree. Note that a RangeIncrement is more likely to experience data conflicts and capacity
aborts than BST updates, which only modify a single node.

We consider two types of workloads: (W1) all n threads perform Insert, Delete and
Search, and (W2) n− 1 threads perform Insert, Delete and Search and one thread performs
only RangeIncrement operations. Figure 2 shows the results for both types of workloads.

5.4 Results
We first discuss the results for the Intel machine. We first discuss the 0% updates graph
for workload type W1. In this graph, essentially all operations committed in hardware. In
fact, in each trial, a small fraction of 1% of operations ran on the slow-path. Thus, any
performance differences shown in the graph are essentially differences in the performance of
the algorithms’ respective fast-paths (with the exception of TL2). Algorithm 1, which has
instrumentation in its fast-path read operations, has significantly lower performance than
Algorithm 2, which does not. Since this is a read-only workload, this instrumentation is
responsible for the performance difference.

In the W1 workloads, TLE, Algorithm 2 and Hybrid NOrec perform similarly (with a
small performance advantage for Hybrid NOrec at high thread counts). This is because the
fast-paths for these three algorithms have similar amounts of instrumentation: there is no
instrumentation for reads or writes, and the transaction itself incurs one or two metadata
accesses. In contrast, in the W2 workloads, TLE performs quite poorly, compared to the
HyTM algorithms. In these workloads, transactions must periodically run on the slow-path,
and in TLE, this entails acquiring a global lock that restricts progress for all other threads.
At high thread counts this significantly impacts performance. Its performance decreases as
the sizes of the ranges passed to RangeIncrement increase. Its performance is also negatively
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impacted by NUMA effects at thread counts higher than 24. (This is because, when a thread
p reads the lock and incurs a cache miss, if the lock was last held by another thread on the
same socket, then p can fill the cache miss by loading it from the shared L3 cache. However,
if the lock was last held by a thread on a different socket, then p must read the lock state
from main memory, which is significantly more expensive.)

On the other hand, in each graph in the W2 workloads, the performance of each HyTM
(and TL2) is similar to its performance in the corresponding W1 workload graph. For
Algorithm 1 (and TL2), this is because of progressiveness. Although Algorithm 2 is not
truly progressive, fast-path transactions will abort only if they are concurrent with the
commit procedure of a slow-path transaction. In RangeIncrement operations, there is a long
read-only prefix (which is exceptionally long because of Algorithm 2’s quadratic validation)
followed by a relatively small set of writes. Thus, RangeIncrement operations have relatively
little impact on the fast-path. The explanation is similar for Hybrid NOrec (except that it
performs less validation than Algorithm 2).

Observe that the performance of Hybrid NOrec decreases slightly, relative to Algorithm 2,
after 24 threads. Recall that, in Hybrid NOrec, the global sequence number is a single point
of contention on the fast-path. (In Algorithm 2, the global lock is only modified by slow-path
transactions, so fast-path transactions do not have a single point of contention.) We believe
this is due to NUMA effects, similar to those described in [5]. Specifically, whenever a threads
on the first socket performs a fast-path transaction that commits and modifies the global
lock, it causes cache invalidations for all other threads. Threads on socket two must then
load the lock state from main memory, which takes much longer than loading it from the
shared L3 cache. This lengthens the transaction’s window of contention, making it more
likely to abort. (In the 0% updates graph in the W2 workload, we still see this effect, because
there is a thread performing RangeIncrement operations.)

We now discuss the results for the IBM POWER8 machine. Algorithm 1 performs poorly
on POWER8: POWER8 transactions can only load 64 cache lines before they will abort [21].
Transactions read locks and tree nodes, which are in different cache lines: together, they
often exceed 64 cache lines loaded in a tree operation, so most transactions cannot succeed
in hardware. Consequently, on POWER8, it is incredibly important either to have minimal
instrumentation in transactions, or for metadata to be located in the same cache lines as
program data. Of course, the latter is not possible for HyTMs, which do not have control
over the layout of program data. Consequently, Algorithm 2 outperforms Algorithm 1 in
POWER8 quite easily by avoiding the per-read instrumentation.

Algorithm 1 is improved slightly by the expensive (on POWER8) suspend/resume on
sequence locks during transactional reads, but it still performs relatively poorly. To make
suspend/resume a practical tool, one could imagine attempting to collect several metadata
accesses and perform them together to amortize the cost of a suspend/resume pair. For
instance, in Algorithm 1, one might try to update the locks for all of the transactional writes
at once, when the transaction commits. Typically one would accomplish this by logging all
writes so that a process can remember which addresses it must lock at commit time. However,
logging the writes inside the transaction would be at least as costly as just performing them.

Observe that Hybrid NOrec does far worse with updates in POWER8 than on the Intel
machine. This is due to the fact that fetch-increment on a single location experiences severe
negative scaling on the POWER8 processor: e.g., in one second, a single thread can perform
37 fetch-add operations while 6 threads perform a total of 9 million and 24 threads perform
only 4 million fetch-add operations. In contrast, the Intel machine performs 32 million
operations with 6 threads and 45 million with 24 threads. This is likely because this Intel
processor provides fetch-add instructions while it must be emulated on POWER8.
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In Hybrid NOrec∗, the non-speculative increment of gsl actually makes performance
worse. Recall that in Hybrid NOrec, if a fast-path transaction T1 increments gsl, and then
a software transaction T2 reads gsl (as part of validation) before T1 commits, then T1 will
abort, and T2 will not see T1’s change to gsl. So, T2 will have a higher chance of avoiding
incremental validation (and, hence, will likely take less time to run, and have a smaller
contention window). However, in Hybrid NOrec∗, once T1 increments gsl, T2 will see the
change to gsl, regardless of whether T1 commits or aborts. Thus, T2 will be forced to perform
incremental validation. In our experiments, we observed that a much larger number of
transactions ran on the fallback path in Hybrid NOrec∗ than in Hybrid NOrec (often several
orders of magnitude more).

6 Related work and discussion

HyTM implementations and complexity. Early HyTMs like the ones described in [9, 15]
provided progressiveness, but subsequent HyTM proposals like PhTM [18] and Hybrid-
NOrec [7] sacrificed progressiveness for lesser instrumentation overheads. However, the clear
trade-off in terms of concurrency vs. instrumentation for these HyTMs have not been studied
in the context of currently available HTM architectures. This instrumentation cost on the
fast-path was precisely characterized in [3]. In this paper, we proved the inherent cost of
concurrency on the slow-path thus establishing a surprising, but intuitive complexity separa-
tion between progressive STMs and HyTMs. Moreover, to the best of our knowledge, this is
the first work to consider the theoretical foundations of the cost of concurrency in HyTMs in
theory and practice (on currently available HTM architectures). Proof of Theorem 1 is based
on the analogous proof for step complexity of STMs that are disjoint-access parallel [16, 12].
Our implementation of Hybrid NOrec follows [23], which additionally proposed the use of
direct accesses in fast-path transactions to reduce instrumentation overhead in the AMD
Advanced Synchronization Facility (ASF) architecture.

Beyond the two path HyTM approach. Employing an uninstrumented fast fast-path. We
now describe how every transaction may first be executed in a “fast” fast-path with almost no
instrumentation and if unsuccessful, may be re-attempted in the fast-path and subsequently
in slow-path. Specifically, we transform an opaque HyTM M to an opaque HyTM M′
using a shared fetch-and-add metadata base object F that slow-path updating transactions
increment (and resp. decrement) at the start (and resp. end). In M′, a “fast” fast-path
transaction checks first if F is 0 and if not, aborts the transaction; otherwise the transaction
is continued as an uninstrumented hardware transaction. The code for the fast-path and the
slow-path is identical toM.

Recent work has investigated fallback to reduced hardware transactions [19] in which an
all-software slow-path is augmented using a slightly faster slow-path that is optimistically
used to avoid running some transactions on the true software-only slow-path. Amalgamated
lock elision (ALE) was proposed in [2] which improves over TLE by executing the slow-path
as a series of segments, each of which is a dynamic length hardware transaction. Invyswell [6]
is a HyTM design with multiple hardware and software modes of execution that gives
flexibility to avoid instrumentation overhead in uncontended executions. We remark that
such multi-path approaches may be easily applied to each of the Algorithms proposed in
this paper. However, in the search for an efficient HyTM, it is important to strike the fine
balance between concurrency, hardware instrumentation and software validation cost. Our
lower bound, experimental methodology and evaluation of HyTMs provides the first clear
characterization of these trade-offs in both Intel and POWER8 architectures.
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Abstract
We present the first super-linear lower bounds for natural graph problems in the CONGEST
model, answering a long-standing open question.

Specifically, we show that any exact computation of a minimum vertex cover or a maximum
independent set requires a near-quadratic number of rounds in the CONGEST model, as well
as any algorithm for computing the chromatic number of the graph. We further show that such
strong lower bounds are not limited to NP-hard problems, by showing two simple graph problems
in P which require a quadratic and near-quadratic number of rounds.

Finally, we address the problem of computing an exact solution to weighted all-pairs-shortest-
paths (APSP), which arguably may be considered as a candidate for having a super-linear lower
bound. We show a simple linear lower bound for this problem, which implies a separation between
the weighted and unweighted cases, since the latter is known to have a sub-linear complexity. We
also formally prove that the standard Alice-Bob framework is incapable of providing a super-linear
lower bound for exact weighted APSP, whose complexity remains an intriguing open question.
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1 Introduction

It is well-known and easily proven that many graph problems are global for distributed
computing, in the sense that solving them necessitates communication throughout the
network. This implies tight Θ(D) complexities, where D is the diameter of the network,
for global problems in the LOCAL model. In this model, a message of unbounded size
can be sent over each edge in each round, which allows to learn the entire topology in D
rounds. Global problems are widely studied in the CONGEST model, in which the size of
each message is restricted to O(logn) bits, where n is the size of the network. The trivial
complexity of learning the entire topology of an m-edges graph in the CONGEST model is
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O(m), and since m can be as large as Θ(n2), one of the most basic questions for a global
problem is how fast in terms of n it can be solved in the CONGEST model.

Some global problems admit fast O(D)-round solutions in the CONGEST model, such as
constructing a breadth-first search tree [60]. Some others have complexities of Θ̃(D +

√
n),

such as constructing a minimum spanning tree, and various approximation and verification
problems [33, 40, 46, 61, 62, 65]. Some problems are yet harder, with complexities that are
near-linear in n [1, 33, 42, 52, 61]. For some problems, no O(n) solutions are known and
they are candidates to being even harder that the ones with linear-in-n complexities.

A major open question about global graph problems in the CONGEST model is whether
natural graph problems for which a super-linear number of rounds is required indeed exist. In
this paper, we answer this question in the affirmative. That is, our conceptual contribution
is that there exist super-linearly hard problems in the CONGEST model. In fact,
the lower bounds that we prove in this paper are as high as quadratic in n, or quadratic up
to logarithmic factors, and hold even for networks of a constant diameter. Our lower bounds
also imply linear and near-linear lower bounds for the CLIQUE-BROADCAST model.

We note that high lower bounds for the CONGEST model may be obtained rather
artificially, by forcing large inputs and outputs that must be exchanged. However, we
emphasize that all the problems for which we show our lower bounds can be reduced to
simple decision problems, where each node needs to output a single bit. All inputs to the
nodes, if any, consist of edge weights that can be represented by polylogn bits.

Technically, we prove a lower bound of Ω(n2/ log2 n) on the number of rounds required
for computing an exact minimum vertex cover, which also extends to computing an exact
maximum independent set. This is in stark contrast to the recent O(log ∆/ log log ∆)-round
algorithm of [8] for obtaining a (2 + ε)-approximation to the minimum vertex cover. Similarly,
we give an Ω(n2/ log2 n) lower bound for 3-coloring a 3-colorable graph, which extends also
for deciding whether a graph is 3-colorable, and also implies the same hardness for computing
the chromatic number χ or computing a χ-coloring. These lower bounds hold even for
randomized algorithms which succeed with high probability.1

An immediate question that arises is whether only NP-hard problems are super-linearly
hard in the CONGEST model. We provide a negative answer to such a postulate, by showing
two simple problems that admit polynomial-time sequential algorithms, but in the CONGEST
model require Ω(n2) rounds (identical subgraph detection) or Ω(n2/ logn) rounds (weighted
cycle detection). The latter also holds for randomized algorithms, while for the former
we show a randomized algorithm that completes in O(D) rounds, providing the strongest
possible separation between deterministic and randomized complexities for global problems
in the CONGEST model.

Finally, we address the intriguing open question of the complexity of computing exact
weighted all-pairs-shortest-paths (APSP) in the CONGEST model. While the complexity of
the unweighted version of APSP is Θ(n/ logn), as follows from [33, 43], the complexity of
weighted APSP remains largely open, and only recently the first sub-quadratic algorithm was
given in [29]. With the current state-of-the-art, this problem could be considered as a suspect
for having a super-linear complexity in the CONGEST model. While we do not pin-down
the complexity of weighted APSP in the CONGEST model, we provide a truly linear lower
bound of Ω(n) rounds for it, which separates its complexity from that of the unweighted
case. Moreover, we argue that it is not a coincidence that we are currently unable to show

1 We say that an event occurs with high probability (w.h.p) if it occurs with probability at least 1− 1
nc ,

for some constant c > 0.
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super-linear lower bound for weighted APSP, by formally proving that the commonly used
framework of reducing a 2-party communication problem to a problem in the CONGEST
model cannot provide a super-linear lower bound for weighted APSP, regardless of the
function and the graph construction used. This implies that obtaining any super-linear
lower bound for weighted APSP provably requires a new technique.

1.1 The Challenge
Many lower bounds for the CONGEST model rely on reductions from 2-party communication
problems (see, e.g., [1, 17, 26, 28, 33, 42, 57, 58, 62, 65]). In this setting, two players, Alice
and Bob, are given inputs of K bits and need to a single output a bit according to some given
function of their inputs. One of the most common problem for reduction is Set Disjointness,
in which the players need to decide whether there is an index for which both inputs are 1.
That is, if the inputs represent subsets of {0, . . . ,K − 1}, the output bit of the players needs
to indicate whether their input sets are disjoint. The communication complexity of 2-party
Set Disjointness is known to be Θ(K) [50].

In a nutshell, there are roughly two standard frameworks for reducing the 2-party
communication problem of computing a function f to a problem P in the CONGEST model.
One of these frameworks works as follows. A graph construction is given, which consists of
some fixed edges and some edges whose existence depends on the inputs of Alice and Bob.
This graph should have the property that a solution to P over it determines the solution to
f . Then, given an algorithm ALG for solving P in the CONGEST model, the vertices of the
graph are split into two disjoint sets, VA and VB, and Alice simulates ALG over VA while
Bob simulates ALG over VB. The only communication required between Alice and Bob in
order to carry out this simulation is the content of messages sent in each direction over the
edges of the cut C = E(VA, VB). Therefore, given a graph construction with a cut of size |C|
and inputs of size K for a function f whose communication complexity on K bits is at least
CC(f), the round complexity of ALG is at least Ω(CC(f)/|C| logn).

The challenge in obtaining super-linear lower bounds was previously that the cuts in the
graph constructions were large compared with the input size K. For example, the graph
construction for the lower bound for computing the diameter in [33] has K = Θ(n2) and
|C| = Θ(n), which gives an almost linear lower bound. The graph construction in [33] for
the lower bound for computing a (3/2− ε)-approximation to the diameter has a smaller cut
of |C| = Θ(

√
n), but this comes at the price of supporting a smaller input size K = Θ(n),

which gives a lower bound that is roughly a square-root of n.
To overcome this difficulty, we leverage the recent framework of [1], which provides a

bit-gadget whose power is in allowing a logarithmic-size cut. We manage to provide a graph
construction that supports inputs of size K = Θ(n2) in order to obtain our lower bounds for
minimum vertex cover, maximum independent set and 3-coloring2. The latter is also inspired
by, and is a simplification of, a lower bound construction for the size of proof labelling
schemes [34].

Further, for the problems in P that we address, the cut is as small as |C| = O(1). For one
of the problems, the size of the input is such that it allows us to obtain the highest possible
lower bound of Ω(n2) rounds.

2 It can also be shown, by simple modifications to our constructions, that these problems require Ω(m)
rounds, for graphs with m edges.
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10:4 Quadratic and Near-Quadratic Lower Bounds for the CONGEST Model

With respect to the complexity of the weighted APSP problem, we show an embarrassingly
simple graph construction that extends a construction of [57], which leads to an Ω(n) lower
bound. However, we argue that a new technique must be developed in order to obtain
any super-linear lower bound for weighted APSP. Roughly speaking, this is because given
a construction with a set S of nodes that touch the cut, Alice and Bob can exchange
O(|S|n logn) bits which encode the weights of all lightest paths from any node in their set
to a node in S. Since the cut has Ω(|S|) edges, and the bandwidth is Θ(logn), this cannot
give a lower bound of more than Ω(n) rounds. With some additional work, our proof can be
carried over to a larger number of players at the price of a small logarithmic factor, as well
as to the second Alice-Bob framework used in previous work (e.g. [65]), in which Alice and
Bob do not simulate nodes in a fixed partition, but rather in decreasing sets that partially
overlap. Thus, determining the complexity of weighted APSP requires new tools, which we
leave as a major open problem.

Roadmap. Section 3 contains our lower bound for computing exact minimum vertex cover
or exact maximum independent set. In Section 4 we show our lower bound for computing
exact weighted-all-pairs-shortest-paths, and prove that the Alice-Bob framework cannot give
a super-linear lower bound for this task. Due to space limitations, our lower bounds for
3-coloring a 3-colorable graph, identical subgraphs detection, and weighted cycle detection
appear only in the full version of the paper [18].

1.2 Additional Related Work
Vertex Coloring, Minimum Vertex Cover, and Maximum Independent Set: One of the
most central problems in graph theory is vertex coloring, which has been extensively studied
in the context of distributed computing (see, e.g., [9, 10, 11, 12, 13, 14, 19, 21, 22, 30, 31,
32, 38, 54, 56, 63, 66] and references therein). The special case of finding a (∆ + 1)-coloring,
where ∆ is the maximum degree of a node in the network, has been the focus of many of
these studies, but is a local problem, which can be solved in much less than a sublinear
number of rounds.

Another classical problem in graph theory is finding a minimum vertex cover (MVC). In
distributed computing, the time complexity of approximating MVC has been addressed in
several cornerstone studies [5, 6, 8, 14, 35, 36, 37, 45, 47, 48, 49, 59, 64].

Observe that finding a minimum size vertex cover is equivalent to finding a maximum
size independent set. However, these problems are not equivalent in an approximation-
preserving way. Distributed approximations for maximum independent set has been studied
in [7, 15, 23, 53].

Distance Computations: Distance computation problems have been widely studied in the
CONGEST model for both weighted and unweighted networks [1, 33, 39, 40, 41, 42, 43, 51,
52, 57, 61]. One of the most fundamental problems of distance computations is computing all
pairs shortest paths. For unweighted networks, an upper bound of O(n/ logn) was recently
shown by [43], matching the lower bound of [33]. Moreover, the possibility of bypassing this
near-linear barrier for any constant approximation factor was ruled out by [57]. For the
weighted case, however, we are still very far from understanding the complexity of APSP, as
there is still a huge gap between the upper and lower bounds. Recently, Elkin [29] showed an
O(n 5

3 · log
2
3 (n)) upper bound for weighted APSP, while the previously highest lower bound

was the near-linear lower bound of [57] (which holds also for any (polyn)-approximation
factor in the weighted case).
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Distance computation problems have also been considered in the CONGESTED-CLIQUE
model [16, 39, 41], in which the underlying communication network forms a clique. In this
model [16] showed that unweighted APSP, and a (1 + o(1))-approximation for weighted
APSP, can be computed in O(n0.158) rounds.

Subgraph Detection: The problem of finding subgraphs of a certain topology has received
a lot of attention in both the sequential and the distributed settings (see, e.g., [2, 3, 4, 16,
24, 25, 26, 44, 55, 67] and references therein).

The problems of finding paths of length 4 or 5 with zero weight are also related to other
fundamental problems, notable in our context is APSP [2].

2 Preliminaries

2.1 Communication Complexity
In a two-party communication complexity problem [50], there is a function f : {0, 1}K ×
{0, 1}K → {TRUE, FALSE}, and two players, Alice and Bob, who are given two input strings,
x, y ∈ {0, 1}K , respectively, that need to compute f(x, y). The communication complexity
of a protocol π for computing f , denoted CC(π), is the maximal number of bits Alice and
Bob exchange in π, taken over all values of the pair (x, y). The deterministic communication
complexity of f , denoted CC(f), is the minimum over CC(π), taken over all deterministic
protocols π that compute f .

In a randomized protocol π, Alice and Bob may each use a random bit string. A randomized
protocol π computes f if the probability, over all possible bit strings, that π outputs f(x, y)
is at least 2/3. The randomized communication complexity of f , CCR(f), is the minimum
over CC(π), taken over all randomized protocols π that compute f .

In the Set Disjointness problem (DISJK), the function f is DISJK(x, y), whose output is
FALSE if there is an index i ∈ {0, . . . ,K − 1} such that xi = yi = 1, and TRUE otherwise. In
the Equality problem (EQK), the function f is EQK(x, y), whose output is TRUE if x = y,
and FALSE otherwise.

Both the deterministic and randomized communication complexities of the DISJK problem
are known to be Ω(K) [50, Example 3.22]. The deterministic communication complexity of
EQK is in Ω(K) [50, Example 1.21], while its randomized communication complexity is in
Θ(logK) [50, Example 3.9].

2.2 Lower Bound Graphs
To prove lower bounds on the number of rounds necessary in order to solve a distributed
problem in the CONGEST model, we use reductions from two-party communication com-
plexity problems. To formalize them we use the following definition. Let G be the set of all
graphs.

I Definition 1 (Family of Lower Bound Graphs). Fix an integer K, a function f : {0, 1}K ×
{0, 1}K → {TRUE, FALSE} and a predicate P : G → {TRUE, FALSE}. The family of graphs
{Gx,y = (V,Ex,y) | x, y ∈ {0, 1}K}, is said to be a family of lower bound graphs w.r.t. f and
P if the following properties hold:
(1) The set of nodes V is the same for all graphs, and we denote by V = VA∪̇VB a fixed

partition of it;
(2) The existence or the weight of edges in VA × VA may depend on x;
(3) The existence or the weight of edges in VB × VB may depend on y;
(4) P (Gx,y) = f(x, y).

DISC 2017



10:6 Quadratic and Near-Quadratic Lower Bounds for the CONGEST Model

We use the following theorem, which is standard in the context of communication
complexity-based lower bounds for the CONGEST model (see, e.g. [1, 26, 33, 41]) Its proof
is by a standard simulation argument.

I Theorem 2. Fix a function f : {0, 1}K × {0, 1}K → {TRUE, FALSE} and a predicate P . If
there is a family {Gx,y} of lower bound graphs with C = E(VA, VB) then any deterministic al-
gorithm for deciding P in the CONGEST model requires Ω(CC(f)/ |C| logn) rounds, and any
randomized algorithm for deciding P in the CONGEST model requires Ω(CCR(f)/ |C| logn)
rounds.

Proof. Let ALG be a distributed algorithm in the CONGEST model that decides P in T
rounds. Given inputs x, y ∈ {0, 1}K to Alice and Bob, respectively, Alice constructs the
part of Gx,y for the nodes in VA and Bob does so for the nodes in VB. This can be done
by items (1),(2) and (3) in Definition 1, and since {Gx,y} satisfies this definition. Alice and
Bob simulate ALG by exchanging the messages that are sent during the algorithm between
nodes of VA and nodes of VB in either direction. (The messages within each set of nodes
are simulated locally by the corresponding player without any communication). Since item
(4) in Definition 1 also holds, we have that Alice and Bob correctly output f(x, y) based
on the output of ALG. For each edge in the cut, Alice and Bob exchange O(logn) bits per
round. Since there are T rounds and |C| edges in the cut, the number of bits exchanged in
this protocol for computing f is O(T |C| logn). The lower bounds for T now follows directly
from the lower bounds for CC(f) and CCR(f). J

In what follows, for each decision problem addressed, we describe a fixed graph construction
G = (V,E), which we then generalize to a family of graphs {Gx,y = (V,Ex,y) | x, y ∈ {0, 1}K},
which we show to be a family lower bound graphs w.r.t. to some function f and the required
predicate P . By Theorem 2 and the known lower bounds for the 2-party communication
problem, we deduce a lower bound for any algorithm for deciding P in the CONGEST model.
I Remark. For our constructions that use the Set Disjointness function as f , we need to
exclude the possibilities of all-1 input vectors, as otherwise the communication graph is
not connected. However, this restriction does not change the asymptotic bounds for Set
Disjointness, since computing this function while excluding all-1 input vectors can be reduced
to computing this function for inputs that are shorter by one bit (by having the last bit be
fixed to 0).

3 Minimum Vertex Cover and Maximum Independent Set

The first near-quadratic lower bound we present is for computing a minimum vertex cover,
as stated in the following theorem.

I Theorem 3. Any distributed algorithm in the CONGEST model for computing a minimum
vertex cover or for deciding whether there is a vertex cover of a given size M requires
Ω(n2/ log2 n) rounds.

Finding the minimum size of a vertex cover is equivalent to finding the maximum size
of a maximum independent set, because a set of nodes is a vertex cover if and only if its
complement is an independent set. Thus, Theorem 4 is a direct corollary of Theorem 3.

I Theorem 4. Any distributed algorithm in the CONGEST model for computing a maximum
independent set or for deciding whether there is an independent set of a given size requires
Ω(n2/ log2 n) rounds.
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Figure 1 The family of lower bound graphs for deciding the size of a vertex cover, with many
edges omitted for clarity. The node ak−1

1 is connected to all the nodes in TA1 , and a1
2 is connected

to t0
A2 and to all the nodes in FA2 \ {f0

A2}. Examples of edges from b0
1 and b0

2 to the bit-gadgets are
also given. An additional edge, which is among the edges corresponding to the strings x and y, is
{b0

1, b1
2}, while the edge {a0

1, a0
2} does not exist. Here, x0,0 = 1 and y0,1 = 0.

Observe that a lower bound of L for deciding whether there is a vertex cover of some
given size M or not implies a lower bound of L−O(D) for computing a minimum vertex
cover. This is because computing the size of a given subset of nodes can be easily done in
O(D) rounds using standard tools. Therefore, to prove Theorem 3 it is sufficient to prove its
second part. We do so by describing a family of lower bound graphs with respect to the Set
Disjointness function and the predicate P that says that the graph has a vertex cover of size
M . We begin with describing the fixed graph construction G = (V,E) and then define the
family of lower bound graphs and analyze its relevant properties.

The fixed graph construction: Let k be a power of 2. The fixed graph (Figure 1) consists
of four cliques of size k: A1 = {ai1 | 0 ≤ i ≤ k − 1}, A2 = {ai2 | 0 ≤ i ≤ k − 1},
B1 = {bi1 | 0 ≤ i ≤ k − 1} and B2 = {bi2 | 0 ≤ i ≤ k − 1}. In addition, for each
set S ∈ {A1, A2, B1, B2}, there are two corresponding sets of nodes of size log k, denoted
FS = {fhS | 0 ≤ h ≤ log k − 1} and TS = {thS | 0 ≤ h ≤ log k − 1}.

The latter are called bit-gadgets and their nodes are bit-nodes.
The bit-nodes are partitioned into 2 log k 4-cycles: for each h ∈ {0, . . . , log k − 1} and

` ∈ {1, 2}, we connect the 4-cycle (fhA`
, thA`

, fhB`
, thB`

). Note that there are no edges between
pairs of nodes denoted fhS , or between pairs of nodes denoted thS .

The nodes of each set S ∈ {A1, A2, B1, B2} are connected to nodes in the corresponding
set of bit-nodes, according to their binary representation, as follows. Let si` be a node
in a set S ∈ {A1, A2, B1, B2}, i.e. s ∈ {a, b}, ` ∈ {1, 2} and i ∈ {0, . . . , k − 1}, and let
ih denote the bit number h in the binary representation of i. For such a node si` define
bin(si`) =

{
fhS | ih = 0

}
∪

{
thS | ih = 1

}
, and connect si` by an edge to each of the nodes in

bin(si`). The next two claims address the basic properties of vertex covers of G.

I Claim 5. Any vertex cover of G must contain at least k − 1 nodes from each of the clique
A1, A2, B1 and B2, and at least 4 log k bit-nodes.
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10:8 Quadratic and Near-Quadratic Lower Bounds for the CONGEST Model

Proof. In order to cover all the edges of each if the cliques on A1, A2, B1 and B2, any vertex
cover must contain at least k − 1 nodes of the clique. For each h ∈ {0, . . . , log k − 1} and
` ∈ {1, 2}, in order to cover the edges of the 4-cycle (fhA`

, thA`
, fhB`

, thB`
), any vertex cover

must contain at least two of the cycle nodes. J

I Claim 6. If U ⊆ V is a vertex cover of G of size 4(k − 1) + 4 log k, then there are two
indices i, j ∈ {0, . . . , k − 1} such that ai1, a

j
2, b

i
1, b

j
2 are not in U .

Proof. By Claim 5, U must contain k − 1 nodes from each clique A1, A2, B1 and B2, and
4 log k bit-nodes, so it must not contain one node from each clique. Let ai1, a

j
2, b

i′

1 , b
j′

2 be the
nodes in A1, A2, B1, B2 which are not in U , respectively. To cover the edges connecting ai1
to bin(ai1), U must contain all the nodes of bin(ai1), and similarly, U must contain all the
nodes of bin(bi′1 ).

If i 6= i′ then there is an index h ∈ {0, . . . , log k − 1} such that ih 6= i′h. So whether both
nodes of the edge

(
fhA1

, thB1

)
are in U , or both nodes of

(
thA1

, fhB1

)
are. However, U contains

exactly 4 log k bit-nodes and at least two nodes from each 4-cycle, and a simple counting
argument implies that U also contain at most two nodes from each 4-cycle. So, the other
nodes of the 4-cycle {fhA1

, thB1
, thA1

, fhB1
} are not in U , and the other edge is not covered.

Thus, it must be the case that i = i′. A similar argument shows j = j′. J

Adding edges corresponding to the strings x and y: Given two binary strings x, y ∈
{0, 1}k

2
, we augment the graph G defined above with additional edges, which defines Gx,y.

Assume that x and y are indexed by pairs of the form (i, j) ∈ {0, . . . , k − 1}2. For each such
pair (i, j) we add to Gx,y the following edges. If xi,j = 0, then we add an edge between the
nodes ai1 and aj2, and if yi,j = 0 then we add an edge between the nodes bi1 and bj2. To prove
that {Gxy} is a family of lower bound graphs, it remains to prove the next lemma.

I Lemma 7. The graph Gx,y has a vertex cover of cardinality M = 4(k − 1) + 4 log k iff
DISJ(x, y) = FALSE.

Proof. For the first implication, assume that DISJ(x, y) = FALSE and let i, j ∈ {0, . . . , k − 1}
be such that xi,j = yi,j = 1. Note that in this case ai1 is not connected to aj2, and bi1
is not connected to bj2. We define a set U ⊆ V as the union of the two sets of nodes
(A1 \ {ai1})∪ (A2 \ {aj2})∪ (B1 \ {bi1})∪ (B2 \ {bj2}) and bin(ai1)∪ bin(aj2)∪ bin(bi1)∪ bin(bj2),
and show that U is a vertex cover of Gx,y.

First, U covers all the edges inside the cliques A1, A2, B1 and B2, as it contains k − 1
nodes from each clique. These nodes also cover all the edges connecting nodes in A1 to nodes
in A2 and all the edges connecting nodes in B1 to nodes in B2. Furthermore, U covers any
edge connecting some node u ∈ (A1 \ {ai1})∪ (A2 \ {aj2})∪ (B1 \ {bi1})∪ (B2 \ {bj2}) with the
bit-gadgets. For each node s ∈ ai1, a

j
2, b

i
1, b

j
2, the nodes bin(s) are in U , so U also cover the

edges connecting s to the bit gadget. Finally, U covers all the edges inside the bit gadgets,
as from each 4-cycle (fhA`

, thA`
, fhB`

, thB`
) it contains two non-adjacent nodes: if ih = 0 then

fhA1
, fhB1

∈ U and otherwise thA1
, thB1

∈ U , and if jh = 0 then fhA2
, fhB2

∈ U and otherwise
thA2

, thB2
∈ U . We thus have that U is a vertex cover of size 4(k − 1) + 4 log k, as needed.

For the other implication, let C ⊆ V be a vertex cover of Gx,y of size 4(k − 1) + 4 log k.
As the set of edges of G is contained in the set of edges of Gx,y, C is also a cover of G, and
by Claim 6 there are indices i, j ∈ {0, . . . , k − 1} such that ai1, a

j
2, b

i
1, b

j
2 are not in C. Since

C is a cover, the graph does not contain the edges (ai1, a
j
2) and (bi1, b

j
2), so we conclude that

xi,j = yi,j = 1, which implies that DISJ(x, y) = FALSE. J

Having constructed the family of lower bound graphs, we are now ready to prove Theorem 3.
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Proof of Theorem 3. To complete the proof of Theorem 3, we divide the nodes of G (which
are also the nodes of Gx,y) into two sets. Let VA = A1 ∪ A2 ∪ FA1 ∪ TA1 ∪ FA2 ∪ TA2 and
VB = V \ VA. Note that n ∈ Θ(k), and thus K = |x| = |y| = Θ(n2). Furthermore, note that
the only edges in the cut E(VA, VB) are the edges between nodes in {FA1 ∪TA1 ∪FA2 ∪TA2}
and nodes in {FB1 ∪ TB1 ∪ FB2 ∪ TB2}, which are in total Θ(logn) edges. Since Lemma 7
shows that {Gx,y} is a family of lower bound graphs, we can apply Theorem 2 on the above
partition to deduce that because of the lower bound for Set Disjointness, any algorithm
in the CONGEST model for deciding whether a given graph has a cover of cardinality
M = 4(k − 1) + 4 log k requires at least Ω(K/ log2(n)) = Ω(n2/ log2(n)) rounds. J

4 Weighted APSP

In this section we use the following natural extension of Definition 1, in order to address more
general 2-party functions, as well as distributed problems that are not decision problems.

For a function f : {0, 1}K1 × {0, 1}K2 → {0, 1}L1 × {0, 1}L2 and a graph problem, we
define a family of lower bound graphs in a way similar to Definition 1, replacing item (4) in
Definition 1 with a generalized requirement: for Gx,y, the output values of the nodes in VA
in a solution to the problem uniquely determine the first L1 bits of f(x, y), and the output
values of the of nodes in VB uniquely determine the last L2 bits of f(x, y). Next, we argue
that theorem similar to Theorem 2 holds for this case.

I Theorem 8. Fix a function f : {0, 1}K1 × {0, 1}K2 → {0, 1}L1 × {0, 1}L2 and a graph
problem P . If there is a family {Gx,y} of lower bound graphs with C = E(VA, VB) then any
deterministic algorithm for solving P in the CONGEST model requires Ω(CC(f)/ |C| logn)
rounds, and any randomized algorithm for deciding P in the CONGEST model requires
Ω(CCR(f)/ |C| logn) rounds.

The proof is similar to that of Theorem 2. Notice that the only difference between the
theorems, apart from the sizes of the inputs and outputs of f , are with respect to item (4)
in the definition of a family of lower bound graphs. However, the essence of this condition
remains the same and is all that is required by the proof: the values that a solution to P
assigns to nodes in VA determines the output of Alice for f(x, y), and the values that a
solution to P assigns to nodes in VB determines the output of Bob for f(x, y).

4.1 A Linear Lower Bound for Weighted APSP
Nanongkai [57] showed that any algorithm in the CONGEST model for computing a poly(n)-
approximation for weighted all pairs shortest paths (APSP) requires at least Ω(n/ logn)
rounds. In this section we show that a slight modification to this construction yields an Ω(n)
lower bound for computing exact weighted APSP. As explained in the introduction, this gives
a separation between the complexities of the weighted and unweighted versions of APSP.
At a high level, while we use the same simple topology for our lower bound as in [57], the
reason that we are able to restore the missing logarithmic factor is because our construction
uses O(logn) bits for encoding the weight of each edge out of many optional weights, while
in [57] only a single bit is used per edge for encoding one of only two options for its weight.

I Theorem 9. Any distributed algorithm in the CONGEST model for computing exact
weighted all pairs shortest paths requires at least Ω(n) rounds.

The reduction is from the following, perhaps simplest, 2-party communication problem.
Alice has an input string x of size K and Bob needs to learn the string of Alice. Any algorithm
(possibly randomized) for solving this problem requires at least Ω(K) bits of communication,
by a trivial information theoretic argument.
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Notice that the problem of having Bob learn Alice’s input is not a binary function as
addressed in Section 2. Similarly, computing weighted APSP is not a decision problem, but
rather a problem whose solution assigns a value to each node (which is its vector of distances
from all other nodes). We therefore use the extended Theorem 8 above.

The fixed graph construction: The fixed graph construction G = (V,E) is defined as
follows. It contains a set of n− 2 nodes, denoted A = {a0, ..., an−3}, which are all connected
to an additional node a. The node a is connected to the last node b, by an edge of weight 0.

Adding edge weights corresponding to the string x: Given the binary string x of size
K = (n− 2) logn we augment the graph G with edge weights, which defines Gx, by having
each non-overlapping batch of logn bits encode a weight of an edge from A to a. It is
straightforward to see that Gx is a family of lower bound graphs for a function f where
K2 = L1 = 0, since the weights of the edges determine the right-hand side of the output
(while the left-hand side is empty).

Proof of Theorem 9. To prove Theorem 9, we let VA = A ∪ {a} and VB = {b}. Note that
K = |x| = Θ(n logn). Furthermore, note that the only edge in the cut E(VA, VB) is the edge
(a, b). Since we showed that {Gx} is a family of lower bound graphs, we apply Theorem 8 on
the above partition to deduce that because K bits are required to be communicated in order
for Bob to know Alice’s K-bit input, any algorithm in the CONGEST model for computing
weighted APSP requires at least Ω(K/ logn) = Ω(n) rounds. J

4.2 The Alice-Bob Framework Cannot Give a Super-Linear Lower
Bound for Weighted APSP

In this section we argue that a reduction from any 2-party function with a constant partition
of the graph into Alice and Bob’s sides is provable incapable of providing a super-linear lower
bound for computing weighted all pairs shortest paths in the CONGEST model. A more
detailed inspection of our analysis shows a stronger claim: our claim also holds for algorithms
for the CONGEST-BROADCAST model, where in each round each node must send the
same (logn)-bit message to all of its neighbors. The following theorem states our claim.

I Theorem 10. Let f : {0, 1}K1 ×{0, 1}K2 → {0, 1}L1 ×{0, 1}L2 be a function and let Gx,y
be a family of lower bound graphs w.r.t. f and the weighted APSP problem. When applying
Theorem 8 to f and Gx,y, the lower bound obtained for the number of rounds for computing
weighted APSP is at most linear in n.

Roughly speaking, we show that given an input graph G = (V,E) and a partition of
the set of vertices into two sets V = VA ∪ VB, such that the graph induced by the nodes
in VA is simulated by Alice and the graph induced by nodes in VB is simulated by Bob,
Alice and Bob can compute weighted all pairs shortest paths by communicating O(n logn)
bits of information for each node touching the cut C = (VA, VB) induced by the partition.
This means that for any 2-party function f and any family of lower bound graphs w.r.t. f
and weighted APSP according to the extended definition of Section 4.1, since Alice and
Bob can compute weighted APSP which determines their output for f by exchanging only
O(|V (C)|n logn) bits, where V (C) is the set of nodes touching C, the value CC(f) is at
most O(|V (C)|n logn). But then the lower bound obtained by Theorem 8 cannot be better
than Ω(n), and hence no super-linear lower can be deduced by this framework as is.
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Formally, given a graph G = (V = VA∪̇VB , E) we denote C = E(VA, VB). Let V (C)
denote the nodes touching the cut C, with CA = V (C) ∩ VA and CB = V (C) ∩ VB. Let
GA = (VA, EA) be the subgraph induced by the nodes in VA and let GB = (VB , EB) be the
subgraph induced by the nodes in VB. For a graph H, we denote the weighted distance
between two nodes u, v by wdistH(u, v).

I Lemma 11. Let G = (V = VA∪̇VB , E, w) be a graph with an edge-weight function
w : E → {1, . . . ,W}, such that W ∈ polyn. Suppose that GA, CB, C and the values of w
on EA and C are given as input to Alice, and that GB, CA, C and the values of w on EB
and C are given as input to Bob.

Then, Alice can compute the distances in G from all nodes in VA to all nodes in V and Bob
can compute the distances from all nodes in VB to all the nodes in V , using O(|V (C)|n logn)
bits of communication.

Proof. We describe a protocol for the required computation, as follows. For each node
u ∈ CB , Bob sends to Alice the weighted distances in GB from u to all nodes in VB , that is,
Bob sends {wdistGB

(u, v) | u ∈ CB , v ∈ VB} (or ∞ for pairs of nodes not connected in GB).
Alice constructs a virtual graph G′A = (V ′A, E′A, w′A) with the nodes V ′A = VA ∪CB and edges
E′A = EA ∪ C ∪ (CB × CB). The edge-weight function w′A is defined by w′A(e) = w(e) for
each e ∈ EA ∪ C, and w′A(u, v) for u, v ∈ CB is defined to be the weighted distance between
u and v in GB , as received from Bob. Alice then computes the set of all weighted distances
in G′A, {wdistG′

A
(u, v) | u, v ∈ V ′A}.

Alice assigns her output for the weighted distances in G as follows. For two nodes
u, v ∈ VA ∪ CB, Alice outputs their weighted distance in G′A, wdistG′

A
(u, v). For a node

u ∈ V ′A and a node v ∈ VB \CB , Alice outputs min{wdistG′
A

(u, x) + wdistGB
(x, v) | x ∈ CB},

where wdistG′
A
is the distance in G′A as computed by Alice, and wdistGB

is the distance in
GB that was sent by Bob.

For Bob to compute his required weighted distances, for each node u ∈ CA, similar
information is sent by Alice to Bob, that is, Alice sends to Bob the weighted distances in GA
from u to all nodes in VA. Bob constructs the analogous graph G′B and outputs his required
distance. The next paragraph formalizes this for completeness, but may be skipped by a
convinced reader.

Formally, Alice sends {wdistGA
(u, v) | u ∈ CA, v ∈ VA}. Bob constructs G′B =

(V ′B , E′B , w′B) with V ′B = VB ∪ CA and edges E′B = EB ∪ C ∪ (CA × CA). The edge-
weight function w′B is defined by w′B(e) = w(e) for each e ∈ EB ∪ C, and w′B(u, v) for
u, v ∈ CA is defined to be the weighted distance between u and v in GA, as received from
Alice (or ∞ if they are not connected in GA). Bob then computes the set of all weighted
distances in G′B, {wdistG′

B
(u, v) | u, v ∈ V ′B}. Bob assigns his output for the weighted

distances in G as follows. For two nodes u, v ∈ VB ∪ CA, Bob outputs their weighted
distance in G′B, wdistG′

B
(u, v). For a node u ∈ V ′B and a node v ∈ VA \ CA, Bob outputs

min{wdistG′
B

(u, x) + wdistGA
(x, v) | x ∈ CA}, where wdistG′

B
is the distance in G′B as

computed by Bob, and wdistGA
is the distance in GA that was sent by Alice. J

The proof of Theorem 10 appears in the full version of the paper [18].

I Remark. In the full version of the paper [18] we show that generalizing the Alice-Bob
framework to a shared-blackboard multi-party setting is still insufficient for providing a
super-linear lower bound for weighted APSP. We suspect that a similar argument can be
applied for the framework of non-fixed Alice-Bob partitions (e.g., [65]), but this requires
precisely defining these frameworks which is not addressed here.
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5 Discussion

This work provides the first super-linear lower bounds for the CONGEST model, raising a
plethora of open questions. First, we showed for some specific problems, namely, computing
a minimum vertex cover, a maximum independent set and a χ-coloring, that they are nearly
as hard as possible for the CONGEST model. However, we know that approximate solutions
for some of these problems can be obtained much faster, in a polylogarithmic number of
rounds or even less. A family of specific open questions is then to characterize the exact
trade-off between approximation factors and round complexities for these problems.

Another specific open question is the complexity of weighted APSP, which has also been
asked in previous work [27, 57]. Our proof that the Alice-Bob framework is incapable of
providing super-linear lower bounds for this problem may be viewed as providing evidence
that weighted APSP can be solved much faster than is currently known. Together with
the recent sub-quadratic algorithm of [29], this brings another angle to the question: can
weighted APSP be solved in linear time?

Finally, we propose a more general open question which addresses a possible classification
of complexities of global problems in the CONGEST model. Some such problems have
complexities of Θ(D), such as constructing a BFS tree. Others have complexities of Θ̃(D+

√
n),

such as finding an MST. Some problems have near-linear complexities, such as unweighted
APSP. And now we know about the family of hardest problems for the CONGEST model,
whose complexities are near-quadratic. Do these complexities capture all possibilities, when
natural global graph problems are concerned? Or are there such problems with a complexity
of, say, Θ(n1+δ), for some constant 0 < δ < 1? A similar question was recently addressed
in [20] for the LOCAL model, and we propose investigating the possibility that such a
hierarchy exists for the CONGEST model.

Acknowledgements. We thank Amir Abboud, Ohad Ben Baruch, Michael Elkin, Yuval
Filmus and Christoph Lenzen for useful discussions, and the anonymous reviewers.
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Abstract
This paper addresses the cornerstone family of local problems in distributed computing, and
investigates the curious gap between randomized and deterministic solutions under bandwidth
restrictions.

Our main contribution is in providing tools for derandomizing solutions to local problems,
when the n nodes can only send O(logn)-bit messages in each round of communication. We
combine bounded independence, which we show to be sufficient for some algorithms, with the
method of conditional expectations and with additional machinery, to obtain the following results.

First, we show that in the Congested Clique model, which allows all-to-all communication,
there is a deterministic maximal independent set (MIS) algorithm that runs in O(log2 ∆) rounds,
where ∆ is the maximum degree. When ∆ = O(n1/3), the bound improves to O(log ∆).

Adapting the above to the CONGEST model gives an O(D log2 n)-round deterministic MIS
algorithm, where D is the diameter of the graph. Apart from a previous unproven claim of a
O(D log3 n)-round algorithm, the only known deterministic solutions for the CONGEST model
are a coloring-based O(∆+log∗ n)-round algorithm, where ∆ is the maximal degree in the graph,
and a 2O(

√
logn log logn)-round algorithm, which is super-polylogarithmic in n.

In addition, we deterministically construct a (2k − 1)-spanner with O(kn1+1/k logn) edges
in O(k logn) rounds in the Congested Clique model. For comparison, in the more stringent
CONGEST model, where the communication graph is identical to the input graph, the best de-
terministic algorithm for constructing a (2k−1)-spanner with O(kn1+1/k) edges runs in O(n1−1/k)
rounds.
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1 Introduction

1.1 Motivation
A cornerstone family of problems in distributed computing are the so-called local problems.
These include finding a maximal independent set (MIS), a (∆ + 1)-coloring where ∆ is the
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maximal degree in the network graph, finding a maximal matching, constructing multiplic-
ative spanners, and more. Intuitively, as opposed to global problems, local problems admit
solutions that do not require communication over the entire network graph.

One fundamental characteristic of distributed algorithms for local problems is whether
they are deterministic or randomized. Currently, there exists a curious gap between the
known complexities of randomized and deterministic solutions for local problems. Inter-
estingly, the main indistinguishability-based technique used for obtaining the relatively few
lower bounds that are known seems unsuitable for separating these cases. A beautiful recent
work of Chang et al. [14] sheds some light over this, by proving that the randomized complex-
ity of any local problem is at least its deterministic complexity on instances of size

√
logn.

In addition, building upon a new lower bound technique of Brandt et al. [10], they show an
exponential separation between the randomized and deterministic complexity of ∆-coloring
trees. These results hold in the LOCAL model, which allows unbounded messages.

In this paper, we address the tension between the deterministic and randomized com-
plexities of local problems in the congested clique model, where the communication graph is
complete but the size of messages is restricted to O(logn) bits. The processed graph is an
arbitrary input graph which, in contrast to the LOCAL model, is not necessarily the same
as the communication graph. In some sense, the congested clique model is orthogonal to
the LOCAL model, because the diameter of the communication graph is 1, but the size of
messages is restricted. By showing how to derandomize known algorithms for the LOCAL
model, we provide fast deterministic algorithms for constructing an MIS and multiplicative
spanners in the congested clique model.

The curious phenomenon that shows up here is that the derandomization toolbox that
was developed for sequential algorithms does not seem to lend itself for the LOCAL model,
but it can be used in the congested clique model. This allows us to obtain deterministic
algorithms for local problems in the congested clique model, whose complexities roughly
match the complexities of their randomized counterparts in the LOCAL model. This can be
contrasted with the exponential in ∆ or near-exponential in n gaps between the deterministic
and randomized complexities of these problems in the LOCAL model alone.

1.2 Our Contribution
Maximal Independent Set (MIS): We begin by derandomizing the MIS algorithm of Ghaf-
fari [26], which runs in O(log ∆) + 2O(

√
log logn) rounds, w.h.p1. In a nutshell, in this al-

gorithm, nodes choose to mark themselves with probabilities that evolve depending on the
previous probabilities of neighbors. In particular, if the sum of marking probabilities of a
vertex’s neighbors is large (resp., small) – the vertex reduces (resp. , increases) its own
marking probability in the next round. A marked node that does not have any marked
neighbors joins the MIS and all of its neighbors remove themselves from the graph. The
analysis shows that after O(log ∆) phases the graph consists of a convenient decomposition
into small clusters for which the problem can be solved fast. This is called the shattering
phenomena (see e.g., [7]).

We first show that a tighter analysis for the congested clique model of Ghaffari’s MIS
algorithm can improve its running time from O(log ∆ + log∗ n) (which follows from combin-
ing [26] with the new connectivity result of [27]) to O(log ∆) rounds.

1 As standard, with high probability means with probability that is at least 1− 1/nc for a constant c.
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I Theorem 1. There is a randomized algorithm that computes MIS in the congested clique
model within O(log ∆) rounds with high probability.

For the derandomization, we use the method of conditional expectations (see e.g., [44,
Chapter 6.3]). In our context, this shows the existence of an assignment to the random
choices made by the nodes that attains the desired property of removing a sufficiently large
part of the graph in each iteration, where removal is due to a node already having an output
(whether the vertex is in the MIS or not). As in many uses of this method, we need to reduce
the number of random choices that are made in order to be able to efficiently compute the
above assignment.

However, we need to overcome several obstacles. First, we need to reduce the search
space of a good assignment to the random choices of the nodes, by showing that pairwise in-
dependence (see, e.g., [44, Chapter 13]) is sufficient for the algorithm to work. Unfortunately,
this does not hold directly in the original algorithm.

The first key ingredient is a slight modification of the constants used by Ghaffari’s al-
gorithm. Ghaffari’s analysis is based on a definition of golden nodes, which are nodes that
have a constant probability of being removed in the given phase. We show that this removal-
probability guarantee holds also with pairwise independence upon our slight adaptation of
the constants used by the algorithm.

Second, the shattering effect that occurs after O(log ∆) rounds of Ghaffari’s algorithm
with full independence, no longer holds under pairwise independence. Instead, we take
advantage of the fact that in the congested clique model, once the remaining graph has
a linear number of edges then the problem can be solved locally in constant many rounds
using Lenzen’s routing algorithm [38]. Thus, we modify the algorithm so that after O(log ∆)
rounds, the remaining graph (containing all undecided nodes) contains O(n) edges. The
crux in obtaining this is that during the first O(log ∆) phases, we favor the removal of
old nodes, which, roughly speaking, are nodes that had many rounds in which they had a
good probability of being removed. This prioritized (or biased) removal strategy allows us
to employ an amortized (or accounting) argument to claim that every node that survives
O(log ∆) rounds, can blame a distinct set of ∆ nodes for not being removed earlier. Hence,
the total number of remaining nodes is bounded by O(n/∆), implying a remaining number
of edges of O(n).

To simulate the O(log ∆) randomized rounds of Ghaffari’s algorithm, we enjoy the small
search space (due to pairwise independence) and employ the method of conditional expecta-
tions on a random seed of length O(logn). Note that once we start conditioning on random
variables in the seed, the random choices are no longer pairwise independent as they are
in the unconditioned setting. However, we do not use the pairwise independence in the
conditioning process. That is, the pairwise independence is important in showing that the
unconditional expectation is large, and from that point on the conditioning does not reduce
this value. As typical in MIS algorithms, the probability of a node being removed stems
from the random choices made in its 2-neighborhood. With a logarithmic bandwidth, col-
lecting this information is too costly. Instead, we use a pessimistic estimator to bound the
conditional probabilities rather than compute them.

Finally, to make the decision of the partial assignment and inform the nodes, we leverage
the power of the congested clique by having a leader that collects the relevant information
for coordinating the decision regarding the partial assignment. In fact, the algorithm works
in the more restricted Broadcast Congested Clique model, in which a node must send the
same O(logn)-bit message to all other nodes in any single round. Carefully placing all the
pieces of the toolbox we develop, gives the following.

DISC 2017
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I Theorem 2. There is a deterministic MIS algorithm for the broadcast congested clique
model that completes in O(log ∆ logn) rounds.

If the maximal degree satisfies ∆ = O(n1/3) then we can improve the running time in
the congested clique model. The proof of the following is deferred to the full version [12].

I Theorem 3. If ∆ = O(n1/3) then there is a deterministic MIS algorithm for the congested
clique model that completes in O(log ∆) rounds.

Combining Theorems 2 and 3 directly gives that the complexity is either O(log ∆) rounds
in case ∆ = O(n1/3), and otherwise it is O(log2 ∆) since logn is then asymptotically equal
to log ∆. We conclude that there is a deterministic MIS algorithm for the congested clique
model that completes in O(log2 ∆) rounds.

Our techniques immediately extend to the CONGEST model. The state of the art for
that setting is O(2

√
logn log logn) round algorithm, using the network decomposition of [5]

(see Cor. 5.4 there). Wes then show that MIS can be computed in O(D ·log2 n) rounds where
D is the diameter of the graph. Here, we simulate O(logn) rounds of Ghaffari’s algorithm
rather than O(log ∆) rounds as before. Each such randomized round is simulated by using
O(D · logn) deterministic rounds in which the nodes compute an O(logn) seed. Computing
each bit of the seed, requires aggregation of the statistics to a leader which can be done in
O(D) rounds, and since the seed is of length O(logn), we have the following:

I Theorem 4. There is a deterministic MIS algorithm for the CONGEST model that com-
pletes in min{O(D log2 n), O(2

√
logn log logn)} rounds.

The significance of the latter is that it is the first deterministic MIS algorithm in CON-
GEST to have only a polylogarithmic gap compared to its randomized counterpart when
D is polylogarithmic. Notice that this logarithmic complexity is the best that is known
even in the LOCAL model. In [49] it is shown that an MIS can be computed determin-
istically in 2O(

√
logn) rounds via network decomposition, which is super-polylogarithmic in

n. Moreover, the algorithm requires large messages and hence is unsuitable for CONGEST.
Focusing on deterministic algorithms in CONGEST, the only known non-trivial solution is
to use any (∆ + 1)-coloring algorithm running in O(∆ + log∗ n) rounds (for example [3, 6])
to obtain the same complexity for deterministic MIS in CONGEST (notice that there are
faster coloring algorithms, e.g., [7], but the reduction has to pay for the number of colors
anyhow). Our O(D log2 n)-round MIS algorithm is therefore unique in its parameters.

Multiplicative Spanners: We further exemplify our techniques in order to derandomize
the Baswana-Sen algorithm for constructing a multiplicative spanner. For an integer k, a
k-spanner S of G = (V,E) is a subgraph (V,ES) such that for every two neighbors v, u in
G, their distance in S is at most k. This implies that also the distance for every other pair
of nodes is stretched in S by no more than a multiplicative factor of k. The Baswana-Sen
algorithm runs in O(k2) rounds and produces a (2k − 1)-spanner with O(kn1+1/k) edges.
In a nutshell, the algorithm starts with a clustering defined by all singletons and proceeds
with k iterations, in each of which the clusters get sampled with probability n−1/k and each
node joins a neighboring sampled cluster or adds edges to unsampled clusters.

We need to make several technical modifications of our tools for this to work. The key
technical difficulty is that we cannot have a single target function. This arises from the very
nature of spanners, in that a small-stretch spanner always exists, but the delicate part is to
balance between the stretch and the number of edges. This means that a single function
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which takes care of having a good stretch alone will simply result in taking all the edges
into the spanner, as this gives the smallest stretch. We overcome this challenge by defining
two types of bad events which the algorithm tries to avoid simultaneously. One is that too
many clusters get sampled, and the other is that too many nodes add too many edges to the
spanner in this iteration. The careful balance between the two promises that we can indeed
get the desired stretch and almost the same bound on the number of edges.

Additional changes we handle are that when we reduce the independence, we cannot
go all the way down to pairwise independence and we need settle for d-wise independence,
where d = Θ(logn). Further, we can improve the iterative procedure to handle chunks
of logn random bits, and evaluate them in parallel by assigning a different leader to each
possible assignment for them. A careful analysis gives a logarithmic overhead compared to
the original Baswana-Sen algorithm, but we also save a factor of k since the congested clique
allows us to save the k rounds needed in an iteration of Baswana-Sen for communicating
with the center of the cluster. This gives the following.

I Theorem 5. There is a deterministic algorithm for the congested clique model that com-
pletes in O(k logn) rounds and produces a (2k − 1)-spanner with O(kn1+1/k logn) edges.

As in the MIS algorithm, the above algorithm works also in the broadcast congested
clique model, albeit here we lose the ability to parallelize over many leaders and thus we pay
another logarithmic factor in the number of rounds, resulting in O(k log2 n) rounds. The
entire spanner construction is deferred to the full version [12].

1.3 Related Work
Distributed computation of MIS. The complexity of finding a maximal independent set
is a central problem in distributed computing and hence has been extensively studied. The
O(logn)-round randomized algorithms date back to 1986, and were given by Luby [42],
Alon et al. [1] and Israeli and Itai [35]. [7] showed a randomized MIS algorithm with
O(log2 ∆) + 2O(

√
log logn) rounds. They also showed the bound of O(log ∆) + 2O(

√
log logn)

rounds for Maximal Matching and (∆ + 1)-coloring. Following [7], a recent breakthrough
by Ghaffari [26] obtained a randomized algorithm in O(log ∆) + 2O(

√
log logn) rounds.

The best deterministic algorithm is by Panconesi and Srinivasan [48], and completes in
2O(
√

logn) rounds. On the lower bound side, Linial [40] gave an Ω(log∗ n) lower bounds for
3-coloring the ring, which also applies to finding an MIS. Kuhn et al. [37] gave lower bounds
of Ω(

√
logn/ log logn) and Ω(

√
log ∆/ log log ∆) for finding an MIS.

Barenboim and Elkin [4] provide a thorough tour on coloring algorithms (naturally,
excluding recent results). An excellent survey on local problems is given by Suomela [55].

Distributed constructions of spanners. The construction of spanners in the distribute
setting has been studied extensively both in the randomized and deterministic setting [8,
15, 16, 17, 18, 52]. We emphasize that the construction of [18] cannot be implemented in the
congested clique by simply applying Lenzen’s routing scheme because although each node
sends O(n logn) bits of information, this information may need to be received by many
nodes, and is not split among receivers. A randomized spanner construction was given by
Baswana and Sen in [8]. They show that their well-known centralized algorithm can be
implemented in the distributed setting even with small messages. In particular, they show
that a (2k − 1) spanner with an expected number of O(n1+1/k) edges can be constructed
in O(k2) rounds in the CONGEST model (and for unweighted graphs, the algorithm takes
O(k) rounds, see [23]).
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Derandomization of similar randomized algorithms has been addressed mainly in the
centralized setting [53]. We emphasize that we need entirely different techniques to deran-
domize the Baswana-Sen algorithm compared with the centralized derandomization of [53].

The existing deterministic distributed algorithms for spanner are not based on deran-
domization of the randomized construction. They mostly use messages of unbounded size
and are mainly based on sparse partitions or network decomposition. The state of the art is
due to Derbel et al [17]. They provide a tight algorithm for constructing (2k − 1)-spanners
with optimal stretch, size and construction time of k rounds. This was complemented by a
matching lower bound, showing that any (even randomized) distributed algorithm requires
k rounds in expectation. Much less efficient deterministic algorithms are known for the
CONGEST model. [19] showed a construction of a (2k − 1)-spanner in O(n1−1/k) rounds.
Deterministic construction with an improved tradeoff was recently obtained by [5], they
showed a construction of O(logk−1 n)-spanners with O(n1+1/k) edges in O(logk−1 n) rounds.

Algorithms in the congested clique. The congested clique model was first addressed in
Lotker et al. [41], who raised the question of whether the global problem of constructing a
minimum spanning tree (MST) can be solved faster on a communication graph with diameter
1. Since then, the model gained much attention, with results about its computational power
given in [21], faster MST algorithms [27, 30], distance computation [33, 34, 46], subgraph
detection [20], algebraic computations [11, 25], and routing and sorting [38, 39, 51]. Local
problems were addressed in [32] who study ruling sets. Connections to the MapReduce
model is given in [31].

Derandomization in the parallel setting. Derandomization of local algorithms has attrac-
ted much attention in the parallel setting [1, 9, 13, 28, 29, 35, 36, 45, 50, 54]. Luby [43]
showed that his MIS algorithm (and more) can be derandomized in the PRAM model using
O(m) machines and O(log3 n log logn) time. In fact, this much simpler algorithm can also
be executed on the congested clique model, resulting in an O(log4 n) running time.

Similar variants of derandomization for MIS, maximal matching and (∆+1)-coloring were
presented in [1, 35]. Berger and Rompel [9] developed a general framework for removing
randomness from RNC algorithms when polylogarithmic independence is sufficient. The
parallel setting bears some similarity to the all-to-all communication model but the barriers
in these two models are different mainly because the complexity measure in the parallel
setting is the computation time while in our setting local computation is for free. This raises
the possibility of obtaining much better results in the congested clique model compared to
what is known in the parallel setting.

Derandomization in the distributed setting. Naor and Stockmeyer [47] showed that
constant-round randomized algorithms for problems that are locally checkable can be deran-
domized without an asymptotic overhead, extended by [14, 24] for larger time complexities
and for a wider range of problems. Awerbuch et al. [2] claim to use the derandomized MIS
algorithm of Luby [43] to obtain a deterministic CONGEST MIS algorithm. This claim is,
however, not supported in their paper and is also late stated as open in [22].

2 Preliminaries and Notation

Our derandomization approach consists of first reducing the independence between the coin
flips of the nodes. Then, we find some target function we wish to maintain during each
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iteration of the derandomized algorithm. Finally, we find a pessimistic estimator for the
target function and apply the method of conditional expectations to get a deterministic
algorithm. Below we elaborate upon the above ingredients.

d-wise independent random variables. In the algorithms we derandomize in the paper, a
node v ∈ V flips coins with probability p of being heads. As we show, it is enough to assume
only d-wise independence between the coin flips of nodes. We show how to use a randomness
seed of only t = ddmax {logn, log 1/p}e bits to generate a coin flip for each v ∈ V , such that
the coin flips are d-wise independent. We first need the notion of d-wise independent hash
functions as presented in [56].

I Definition 6 ([56, Definition 3.31]). For N,M, d ∈ N such that d ≤ N , a family of functions
H = {h : [N ]→ [M ]} is d-wise independent if for all distinct x1, x2, ..., xd ∈ [N ], the random
variables H(x1), ...,H(xd) are independent and uniformly distributed in [M ] for a randomly
chosen H in H.

In [56] an explicit construction of H is presented, with parameters as stated next.

I Lemma 7 ([56, Corollary 3.34]). For every γ, β, d ∈ N, there is a family of d-wise inde-
pendent functions Hγ,β = {h : {0, 1}γ → {0, 1}β} such that choosing a random function
from Hγ,β takes d ·max {γ, β} random bits, and evaluating a function from Hγ,β takes time
poly(γ, β, d).

Let us now consider some node v ∈ V which needs to flip a coin with probability p that
is d-wise independent with respect to the coin flips of other nodes. Using Lemma 7 with
parameters γ = dlogne and β = dlog 1/pe, we can construct H such that every function
h ∈ H maps the ID of a node to the result of its coin flip. Using only t = d · max {γ, β}
random bits we can flip d-wise independent biased coins with probability p for all nodes in
v. We define Y to be a vector of t random coins. Note we can also look at Y as a vector
of length t/ logn where each entry takes values in {1, . . . , dlogne}. We use the latter when
dealing with Y . From Y each node v can generate its random coin toss by accessing the
corresponding h ∈ H and checking whether h(ID(v)) = 0. From Definition 6 it holds that
Pr[h(ID(v)) = 0] = p, as needed.

The method of conditional expectations. Next, we consider the method of conditional
expectations. Let φ : A` → R, and let X = (X1, ..., X`) be a vector of random variables
taking values in A. If E[φ(X)] ≥ α then there is an assignment of values Z = (z1, ..., z`)
such that φ(Z) ≥ α. We describe how to find the vector Z. We first note that from the
law of total expectation it holds that E[φ(X)] =

∑
a∈AE[φ(X) | X1 = a]Pr[X1 = a], and

therefore for at least some a ∈ A it holds that E[φ(X) | X1 = a] ≥ α. We set this value to
be z1. We then repeat this process for the rest of the values in X, which results in the vector
Z. In order for this method to work we need it to be possible to compute the conditional
expectation of φ(X).

We now wish to use the method of conditional expectations after reducing the number
of random bits used by the algorithm. Let us denote by ρ̄ the original vector of random
bits used by the algorithm. Taking Y as before to be the seed vector for ρ̄, we have that
ρ̄ is a function of Y . We need to be able to compute E[φ(ρ̄(Y )) | y[1] = a1, . . . , y[i] = ai]
for all possible values of i and aj , j ≤ i. Computing the conditional expectations for φ
might be expensive. For this reason we use a pessimistic estimator. A pessimistic estimator
of φ is a function φ′ : A` → R such that for all values of i and aj , j ≤ i it holds that
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11:8 Derandomizing Local Distributed Algorithms

E[φ(ρ̄(Y )) | y1 = b1, . . . , yi = bi] ≥ E[φ′(ρ̄(Y )) | y1 = b1, . . . , yi = bi]. If φ′ is a pessimistic
estimator of φ whose expected value is still bounded from above by α, then we can use the
method of conditional expectations on φ′ and obtain z1, . . . , zn, such that φ(z1, . . . , zn) ≥
φ′(z1, . . . , zn) ≥ α.

Lenzen’s routing algorithm. We make heavy use of the deterministic routing algorithm of
Lenzen [38], which guarantees that if each node needs to send at most O(n logn) bits and
receive at most O(n logn) bits then O(1) rounds are sufficient.

3 Deterministic MIS

To prove Theorem 1, we consider the following modification of the randomized algorithm of
Ghaffari [26]. The algorithm of Ghaffari consists of two parts. The first part (shown to have
a good local complexity) consists of O(log ∆) phases, each with O(1) rounds. After this first
part, it is shown that sufficiently many nodes are removed from the graph. The MIS for what
remains is computed in the second part deterministically in time 2O(

√
log logn). We only use

the first part of Ghaffari’s algorithm, and the only change to it is a slight modification of
the constants that are used.

We define a slight modification to the first part of Ghaffari’s MIS Algorithm: Set p0(v) =
1/4. Define pt+1(v) = 1/2 · pt(v), if dt(v) ≥ 1/2 and pt+1(v) = min{2pt(v), 1/4}, otherwise.
Here dt(v) =

∑
u∈N(v) pt(u) is the effective degree of node v in phase t. In each phase t, the

node v gets marked with probability pt(v) and if none of its neighbors is marked, v joins the
MIS and gets removed along with its neighbors.

3.1 O(log ∆) round randomized MIS algorithm in the congested clique
We begin by observing that in the congested clique, what remains after O(log ∆) phases of
Ghaffari’s algorithm can be solved in O(1) rounds. This provides an improved randomized
runtime compared to [26], and specifically, has no dependence on n. The algorithm consists of
two parts. In the first part, we run Ghaffari’s algorithm for O(log ∆) phases. We emphasize
that this works with both Ghaffari’s algorithm and with our modified Ghaffari’s algorithm,
since the values of the constants do not affect the asymptotic running time and correctness
of the randomized first part of the algorithm. Then, in the second part, a leader collects all
surviving edges and solves the remaining MIS deterministically on that subgraph. We show
that the total number of edges incident to these nodes is O(n) w.h.p., and hence using the
deterministic routing algorithm of Lenzen [38], the second part can be completed in O(1)
rounds w.h.p. We note that the proof that O(n) edges remain cannot be extended to the
case of pairwise independence, which is needed for derandomization, since the concentration
guarantees are rather weak. For this, we need to develop in the following section new
machinery. The full proof Thm. 1 appears in the full version [12].

3.2 Derandomizing the modified MIS algorithm
3.2.1 Ghaffari’s algorithm with pairwise independence
We review the main terminology and notation from [26], up to our modification of constants.
Changing the constants is important as we are using pairwise independence and not complete
independence as in the original algorithm of Ghaffari. A node v is called light if dt(v) < 1/4.
We define two types of golden phases for a node v. This is a modification of the corresponding
definitions in [26].
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Type-1 golden phase: pt(v) = 1/4 and dt(v) ≤ 1/2;
Type-2 golden phase: dt(v) > 1/4 and at least dt(v)/10 of it arises from light nodes.

A node v is called golden in phase t, if phase t is a golden phase for v (of either type).
Intuitively, a node v that is golden in phase t is shown to have a constant probability of
being removed. Specifically, in a golden phase of type-1, v has a constant probability to
join the MIS and in a golden phase of type-2, there is a constant probability that v has a
neighbor that joins the MIS and hence v is removed.

We now prove the analogue of Lemma 3.3 in [26] for the setting in which the coin flips
made by the nodes are not completely independent but are only pairwise independent. We
show that a golden node for phase t is still removed with constant probability even under
this weaker bounded independence guarantee. The proof of the following appears in the full
version [12].

I Lemma 8 (golden nodes with pairwise independence). Consider the modified Ghaffari’s
algorithm with pairwise independent coin flips.
(1) If t is a type-1 golden phase for a node v, then v joins the MIS in phase t with probability

at least 1/8.
(2) If t is a type-2 golden phase for a node v then v is removed in phase t with probability

at least α = 1/160.

As a result, the following holds in the pairwise independence setting:

I Lemma 9. Within O(log ∆) phases, every node remains with probability at most 1/∆.

Recall that the proof from Subsection 3.1 that O(n) edges remain cannot be extended to
pairwise independence since the concentration guarantees are rather weak. Our algorithm
will use pairwise independence but with some crucial modifications required in order to
guarantee that after O(log ∆) phases, only O(n/∆) nodes remain undecided.

3.2.2 O(log n log ∆)-round deterministic MIS in the congested clique
Using derandomization we show there is a deterministic MIS algorithm for the broadcast
congested clique model that completes in O(log ∆ logn) rounds, as stated in Theorem 2.

3.2.2.1 The challenge

Consider phase t in the modified Ghaffari’s algorithm and let Vt be the set of golden nodes
in this phase. Our goal is to select additional nodes into the MIS so that at least a constant
fraction of the golden nodes are removed. Let v1, . . . , vn′ be the nodes that are not removed
in phase t. Towards derandomizing the algorithm, for each node, we define the corresponding
random variables x1, . . . , xn′ indicating whether vi is marked in phase t. Let Xi = (x1 =
b1, . . . , xi = bi) define a partial assignment for v1, . . . , vi (i.e., whether or not they are in the
MIS in phase t). Let X0 = ∅ denote the case where none of the decisions is fixed.

For a golden node v (in phase t), let rv,t be the random variable indicating whether v
gets removed in phase t, and let Rt be the random variable of the number of removed golden
nodes. By linearity of expectation, E(Rt) =

∑
v E(rv,t) is the expected number of removed

golden nodes in phase t. By Lemma 8, there is a constant c such that E(Rt) ≥ c · |Vt|.
Potentially, we could aim for the following: Given the partial assignment Xi, compute the
two expectations of the number of removed golden nodes conditioned on the two possible
assignments for xi+1, E(Rt | Xi, xi+1 = 0) and E(Rt | Xi, xi+1 = 1), and choose xi+1
according to the larger expectation.
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However, towards the above goal we face the following main challenges. (C1) The value of
Rt cannot be easily computed, since when using probabilities of neighboring nodes we might
be double-counting: a node might be removed while having more than a single neighbor that
joins the MIS. (C2) The search space of size 2n is too large and in particular, the conditional
expectation computation consists of n steps. (C3) Even when using pairwise independence
to enjoy an O(logn)-bit seed, searching a good seed point in a space of size O(poly n) in a
brute force manner cannot be done efficiently in the congested clique. (C4) Despite our proof
that golden nodes are removed with constant probability even with pairwise independence,
it is still not clear how to implement the second part of the MIS algorithm, because showing
that only O(n/∆) nodes survive cannot be done with pairwise independence. That is, the
proof from Subsection 3.1 that O(n) edges remain inherently needs full independence.

Addressing (C4) requires a priority-based scheme for choosing the nodes that join the
MIS, which requires a novel age-based weighting approach to be added to the MIS algorithm.
Next, we describe our main derandomization tools and then provide our algorithm.

3.2.2.2 Derandomization tools

We define a pessimistic estimator to the conditional expectation E(Rt | Xi), which can be
computed efficiently in our model. Then, we describe how to reduce the search space using
pairwise independence. In our algorithm, the nodes will apply the method of conditional
expectations on the estimator in order to find a “good” seed of length O(logn).

Tool 1: The pessimistic estimator function. Consider phase t and recall that Vt are the
golden nodes in this phase. Similarly to the clever approach of [42, 43], we define a variable
ψv,t that will satisfy that rv,t ≥ ψv,t. The idea is to account for a removed node of type-2
only if it is removed because a single one of its neighbors joins the MIS. Since this can only
occur for one of its neighbors, we avoid double-counting when computing the probabilities.
This allows coping with challenge (C1).

Letmv,t be the random variable indicating the event that v ismarked. Letmv,u,t indicate
the event that both u and v are marked. Define ψv,t = mv,t−

∑
u∈N(v) mv,u,t if v is of type-

1, and ψv,t =
∑
u∈N(v)(mu,t −

∑
w∈N(u) mu,w,t −

∑
w′∈N(v)\{u}mu,w′,t), if v is of type-2.

Denoting Ψt =
∑
v∈Vt

ψv,t gives that Ψt is a lower bound on the number of removed golden
nodes, i.e., Ψt ≤ Rt. For a partial assignment Xi = (x1 = b1, . . . , xi = bi) indicating which
of the nodes are in the MIS, we have2

E(ψv,t | Xi) =


Pr[mv,t = 1 | Xi]−

∑
u∈N(v) Pr[mv,u,t | Xi], if v is of type-1.∑

u∈N(v)(Pr[mu,t = 1 | Xi]−
∑
w∈N(u) Pr[mu,w,t = 1 | Xi]−∑

w′∈W (v)\{u} Pr[mu,w′,t = 1 | Xi)], if v is of type-2,
(1)

where W (v) ⊆ N(v) is a subset of v’s neighbors satisfying that
∑
w∈W (v) pt(w) ∈ [1/40, 1/4]

(as used in the proof of Lemma 8). By Lemma 8, it holds that E(ψv,t) ≥ α for v ∈ Vt.
Hence, we have that: E(rv,t) ≥ E(ψv,t) ≥ α. Since rv,t ≥ ψv,t even upon conditioning on the
partial assignment Xi, we get: E(Rv,t | Xi) ≥ E(Ψt | Xi) =

∑
v∈Vt

E(ψv,t | Xi) ≥ α · |Vt|.
Our algorithm will employ the method of conditional expectations on a weighted version of
E(Ψt | Xi), as will be discussed later.

2 For ease of presentation, here we condition on a n-length vector. However, our algorithm will use
the pairwise independence – discussed in the following paragraph – to condition on a seed of length
O(log n).
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Tool 2: Pairwise independence. We now combine the method of conditional expectations
with a small search space. We use Lemma 7 with d = 2, γ = Θ(logn) and a prime number
β = O(log ∆). This is because we need the marking probability, pt(v), to be Ω(1/poly ∆).

Consider phase t. Using the explicit construction of Lemma 7, if all nodes are given
a shared random seed of length γ, they can sample a random hash function h : {0, 1}γ →
{0, 1}β from Hγ,β which yields n pairwise independent choices. Specifically, flipping a biased
coin with probability of pt(v) can be trivially simulated using the hash value h(IDv) where
IDv is an O(logn)-bit ID of v.3 Since h is a random function in the family, all random
choices are pairwise independent and the analysis of of the golden phases goes through.
This standard approach takes care of challenge (C2).

Even though using a seed of length O(logn) reduces the search space to be of polynomial
size, still, exploring all possible 2O(logn) = O(nc) seeds in a brute force manner is too time
consuming. Instead, we employ the method of conditional expectations to find a good seed.
That is, we will consider E(Ψt | Yi) where Yi = (y1 = b1, . . . , yi = bi) is a partial assignment
to the seed Y = (y1, . . . , ya). The crux here is that since a random seed is good, then so
is the expectation over seeds that are sampled uniformly at random. Hence, the method of
conditional expectations will find a seed that is at least as good as the random selection.
Specifically, we still use the pessimistic estimator of Equation (1), but we condition on the
small seed Yi rather than on Xi. This addresses challenge (C3).

Tool 3: An age-based weighted adaptation. To handle challenge (C4), we compute the
expectation of a weighted version of Ψt, which favors old nodes where the age of a node
is counted as the number of golden phases it experienced. Let age(v) be the number of
golden phases v has till phase t and recall that a golden node is removed with probability
at least α. Define ψ′v,t = (1/(1− α))age(v) · ψv,t, and Ψ′t =

∑
v∈Vt

ψ′v,t. We use the method
of conditional expectations for:

E(Ψ′t | Yi) =
∑
v∈Vt

E(ψ′v,t | Yi) , (2)

rather than for E(Ψt | Yi). The choice of this function will be made clear in the proof.

3.2.2.3 Algorithm Description

The first part of the algorithm consists of Θ(log ∆) phases, where in phase t, we derandomize
phase t in the modified Ghaffari’s algorithm using O(logn) deterministic rounds. In the
second part, all nodes that remain undecided after the first part, send their edges to the
leader using the deterministic routing algorithm of Lenzen. The leader then solves locally
and notifies the relevant nodes to join the MIS. In the analysis section, we show that after
the first part, only O(n/∆) nodes remain undecided, and hence the second part can be
implemented in O(1) rounds.

From now on we focus on the first part. Consider phase t in the modified Ghaffari’s
algorithm. Note that at phase t, some of the nodes are already removed from the graph
(either because they are part of the MIS or because they have a neighbor in the MIS). Hence,
when we refer to nodes or neighboring nodes, we refer to the remaining graph induced on
the undecided nodes.

3 Flipping a biased coin with probability 1/2i, is the same as getting a uniformly distributed number y

in [1, b] and outputting 1 if and only if y ∈ [1, 2b−i].
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Let Y = (y1, . . . , yγ) be the γ random variables that are used to select a hash function
and hence induce a deterministic algorithm. We now describe how to compute the value of
yi in the seed, given that we already computed y1 = b1, . . . , yi−1 = bi−1. By exchanging IDs
(of Θ(logn) bits), as well as the values pt(v) and dt(v) with its neighbors, a node can check
if it is a golden type-1 or type-2 node. In addition, every node maintains a counter, age(v)
referred to as the age of v, which measures the number of golden phases it had so far.

Depending on whether the node v is a golden type-1 or type-2 node, based on Equation
(1), it computes a lower bound on the conditional probability that it is removed given the
partial seed assignment Yi,b = (y1, . . . , yi = b) for every b ∈ {0, 1}. These lower bound
values are computed according to the proofs of Lemma 8. Specifically, a golden node v
of type-1, uses the IDs of its neighbors and their pt(u) values to compute the following:
E(ψv,t | Yi,b) = Pr[mv,t = 1 | Yi,b] −

∑
u∈N(v) Pr[mu,t = 1 | Yi,b], where Pr[mv,t =

1 | Yi,b] is the conditional probability that v is marked in phase t (see full version [12]
for full details about this computation). For a golden node v of type-2 the lower bound is
computed differently. First, v defines a subset of neighbors W (v) ⊆ N(v), satisfying that∑
w∈W (v) pt(w) ∈ [1/40, 1/4], as in the proof of Lemma 8. Let Mt,b(u) be the conditional

probability on Yi,b that u is marked but none of its neighbors are marked. LetMt,b(u,W (v))
be the conditional probability on Yi,b that another node other than u is marked in W (v).4
By exchanging the values Mt,b(u), v computes: E(ψv,t | Yi,b) =

∑
u∈W (v) Pr[mu,t =

1 | Yi,b]−Mt,b(u)−Mt,b(u,W (v)).
Finally, as in Equation (2), the node sends to the leader the values E(ψ′v,t | Yi,b) =

1/(1 − α)age(v) · E(ψv,t | Yi,b) for b ∈ {0, 1}. The leader computes the sum of the
E(ψ′v,t | Yi,b) values of all golden nodes Vt, and declares that yi = 0 if

∑
v∈Vt

E(ψ′v,t | Yi,b) ≥∑
v∈Vt

E(ψ′v,t | Yi,b), and yi = 1 otherwise. This completes the description of computing
the seed Y .

Once the nodes compute Y , they can simulate phase t of the modified Ghaffari’s al-
gorithm. In particular, the seed Y defines a hash function h ∈ Hγ,β and h(ID(v)) can be
used to simulate the random choice with probability pt(v). The nodes that got marked send
a notification to neighbors and if none of their neighbors got marked as well, they join the
MIS and notify their neighbors. Nodes that receive join notification from their neighbors are
removed from the graph. This completes the description of the first part of the algorithm.
A pseudocode appears in the full version [12].

Analysis. The correctness proof of the algorithm uses a different argument than that of
Ghaffari [26]. Our proof does not involve claiming that a constant fraction of the golden
nodes are removed, because in order to be left with O(n/∆) undecided nodes we have to
favor removal of old nodes. The entire correctness is based upon Lemma 15 in the full
paper attached, which justifies the definition of the expectation given in Equation (2). The
remaining O(n) edges incident to the undecided nodes can be collected at the leader in O(1)
rounds using the deterministic routing algorithm of Lenzen [38]. The leader then solves MIS
for the remaining graph locally and informs the nodes. This completes the correctness of
the algorithm. Theorem 2 follows.

4 The term Mt,b(u, W (v)) is important as it is what prevents double counting, because the corresponding
random variables defined by the neighbors of v are mutually exclusive.
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3.3 An O(D log2 n) deterministic MIS algorithm for CONGEST
Here we provide a fast deterministic MIS algorithm for the harsher CONGEST model. For
comparison, in terms of n alone, the best deterministic MIS algorithm is by Panconesi and
Srinivasan [48] from more than 20 years ago and is bounded by 2O(

√
logn) rounds. However,

the algorithm requires large messages and hence is suitable for the LOCAL model but not for
CONGEST. The only known non-trivial deterministic solution for CONGEST is to use any
(∆+1)-coloring algorithm running in O(∆+log∗ n) rounds (for example [3, 6]) to obtain the
same complexity for deterministic MIS in CONGEST (notice that there are faster coloring
algorithms, but the reduction has to pay for the number of colors anyhow). The following
is our main result for CONGEST.

I Theorem 4 (restated). There is a deterministic MIS algorithm for the CONGEST model
that completes in min{O(D log2 n), O(2

√
logn log logn)} rounds.

Proof. The bound of 2O(
√

logn log logn) follows by the network decomposition of [5]. To
get a bound of O(D log2 n) rounds, we use a similar algorithm to Theorem 2 with two
main differences. First, we run Ghaffari’s algorithm for O(logn) rounds instead of O(log ∆)
rounds. Each round is simulated by a phase with O(D logn) rounds. Specifically, in each
phase, we need to compute the seed of length O(logn), this is done bit by bit using the
method of conditional expectations exactly as described eariler and aggregating the result
at some leader node (aggregation is done in the standard way). The leader then notifies
the assignment of the bit to the entire graph. Since each bit in the seed is computed in
O(D) rounds, overall the run time is O(D log2 n). For the correctness, we assume towards
contradiction that after Ω(logn) rounds, at least one node remains undecided. Then, we
show that every node that survives can charge Ω(nc) nodes that are removed, which is a
contradiction as there only n nodes. J

4 Discussion

We have shown how to derandomize an MIS algorithm and a spanner construction in the
congested clique model, and derandomize an MIS algorithm in the CONGEST model. This
greatly improves upon the previously known results. Whereas our techniques imply that
many local algorithms can be derandomized in the congested-clique (e.g., hitting set, ruling
sets, coloring, matching etc.), the situation appears to be fundamentally different for global
tasks such as connectivity, min-cut and MST. For instance, the best randomized MST
algorithm in the congested-clique has time complexity of O(log∗ n) rounds [27], but the
best deterministic bound is O(log logn) rounds [41]. Derandomization of such global tasks
might require different techniques.

The importance of randomness in local computation lies in the fact that recent devel-
opments [14] show separations between randomized and deterministic complexities in the
unlimited bandwidth setting of the LOCAL model. While some distributed algorithms hap-
pen to use small messages, our understanding of the impact of message size on the complexity
of local problems is in its infancy.

This work opens a window to many additional intriguing questions. First, we would
like to see many more local problems being derandomized despite congestion restrictions.
Alternatively, significant progress would be made by otherwise devising deterministic al-
gorithms for this setting. Finally, understanding the relative power of randomization with
bandwidth restrictions is a worthy aim for future research.
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Abstract
We first prove that there are uncountably many objects with distinct computational powers.
More precisely, we show that there is an uncountable set of objects such that for any two of them,
at least one cannot be implemented from the other (and registers) in a wait-free manner. We
then strengthen this result by showing that there are uncountably many linearizable objects with
distinct computational powers. To do so, we prove that for all positive integers n and k, there
is a linearizable object that is computationally equivalent to the k-set agreement task among
n processes. To the best of our knowledge, these are the first linearizable objects proven to be
computationally equivalent to set agreement tasks.
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1 Introduction

One of the fundamental problems in distributed computing is to determine whether two
shared objects are equivalent, i.e., whether each can be implemented from the other (and
registers) in a wait-free manner.1 Any two objects that are not equivalent do not have the
same computational power, since at least one cannot implement the other.

To address this fundamental problem, Herlihy proposed the following object classification
scheme: an object O is in level n of a hierarchy if, together with registers, O can be used to
solve consensus among at most n processes [12]. It is clear that objects in different levels
of this hierarchy are not equivalent. Unfortunately, the converse is not true: every level
n ∈ Z+ of this hierarchy contains objects that are not equivalent [2, 7, 11, 16].2 So Herlihy’s
hierarchy does not classify objects in a “precise” way. This motivates the search for a precise
object classification scheme, i.e., one that partitions the universe U of all shared objects such
that the following property holds: two objects are equivalent if and only if they are in the
same cell of the partition.

In this paper, we first prove that there is an uncountable number of objects that are not
equivalent to one another (and so they have distinct computational power). Thus any precise

1 Throughout this paper, we consider only objects, tasks, and implementations that are wait free, so we
subsequently omit all references to wait freedom.

2 We denote by Z+ the set of all positive integers.
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classification scheme of the universe U of objects contains an uncountable number of cells.
So the cells of a precise classification scheme cannot be labeled using simple integers (as in
Herlihy’s hierarchy) or finite sequences of integers.

Our proof of the above result uses the (n, k)-set agreement task where each of n processes
has a proposal value and must decide on one of the proposed values such that there are at
most k distinct decision values [8]. The set agreement power of an object O is the infinite
sequence ~n = (n1, n2, . . ., nk, . . .) where, for all k ≥ 1, nk is the largest integer such that
instances of O and registers can solve the (nk, k)-set agreement task, or ∞ if instances of O

and registers can solve the (n, k)-set agreement task for every integer n [10].
Let S denote the set of all infinite sequences of positive integers ~n = (n1, n2, . . ., nk, . . .)

such that nk+1 ≥ 2nk for all k ≥ 1. We use a result in [10] to prove that:

For all ~n ∈ S, there is an object R~n with set agreement power ~n. (1)

Note that this is not obvious because it is not the case that every infinite sequence of positive
integers ~n = (n1, n2, . . ., nk, . . .) has a corresponding object R~n with set agreement power ~n.
Finally, we use a standard diagonalization argument to prove that the set S is uncountable.
Therefore, by (1), there is an uncountable number of objects, namely the R~n objects, that
have distinct set agreement power. Since objects with different set agreement power are not
equivalent, we conclude that there are uncountably many objects that are not equivalent
(and so they have distinct computational power).

Next, we prove that the above result holds even if we restrict the universe U of objects
to contain only objects that are linearizable [13]. This result would be immediate if the R~n

objects used in our proof were such objects. Our R~n objects, however, are not linearizable:
this is because they are constructed using (n, k)-set agreement objects which, as described
in [5, 9], are simply “black-boxes” that solve the (n, k)-set agreement task. In fact, to the
best of our knowledge, all the (n, k)-set agreement objects used in the literature to date have
not been defined as linearizable objects.

To show that there are uncountably many linearizable objects with distinct computational
power, we proceed as follows:
1. We first prove that for all positive integers n and k, there is a linearizable object,

denoted LSA(n, k), that is computationally equivalent to the (n, k)-set agreement task
in the following sense: the (n, k)-set agreement task can be solved using the LSA(n, k)
object, and the LSA(n, k) object can be implemented using any solution to the (n, k)-set
agreement task (and registers). This also implies that the linearizable LSA(n, k) object
is equivalent to the (n, k)-set agreement “black-box” object.

2. We then construct linearizable objects, denoted LR~n, that are equivalent to the R~n

objects. Roughly speaking we do so by replacing the (n, k)-set agreement “black-box”
objects used to construct R~n with our linearizable LSA(n, k) objects. Since there is
an uncountable number of R~n objects with distinct computational power, and R~n is
equivalent to LR~n, there is also an uncountable number of linearizable LR~n objects with
distinct computational power.

Proving that there is a linearizable object LSA(n, k) that is computationally equivalent to
the (n, k)-set agreement task is not obvious because the two are not behaviourally equivalent.
Indeed, any linearizable object for the (n, k)-set agreement task imposes restrictions that
are not inherent to this task [15, 6]. To see this, suppose that all the proposal values are
distinct, and two processes propose concurrently. With the (n, k)-set agreement task, each of
these two processes could decide the proposal value of the other. But a linearizable (n, k)-set
agreement object does not allow this behaviour: whichever of the two processes is linearized
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first cannot decide the proposal value of the other process. Since the set of behaviours
allowed by linearizable (n, k)-set agreement objects is a proper subset of those allowed by the
corresponding task, it is conceivable that such objects inherently have greater computational
power than the task. Our result about the LSA(n, k) objects shows that this is not the case.

In summary, the main contributions of this paper are to show that:
1. For all n, k ∈ Z+, there is a linearizable object that is computationally equivalent to the

(n, k)-set agreement task.
2. The number of linearizable objects with distinct computational power is uncountable.

2 Some Basic Definitions

Object equivalence. Given any pair of shared memory objects O and O′, we denote by
O � O′ the relation: there exists an implementation of O′ from instances of O and registers.
We say that O and O′ are equivalent, denoted O ≡ O′, if and only if O � O′ and O′ � O.
Furthermore, given any object O and any collection of objects C, (i) we denote by C � O the
relation: there exists an implementation of O from instances of objects in C and registers,
and (ii) we denote by O � C the relation: there exists an implementation of each object in C
from instances of O and registers. We say O and C are equivalent, denoted O ≡ C, if and
only if O � C and C � O.

Redirection objects. Let Z∗ denote the set of all positive integers and the value ∞, i.e.,
Z∗ = Z+∪{∞}. For all n, k ∈ Z∗, we denote by SA(n, k) the “black-box” (n, k)-set agreement
object described in [5, 9]. Then, given any infinite sequence ~n = (n1, n2, . . ., nk, . . .) such that
nk ∈ Z∗ for all k ∈ Z+, we define a “redirection” object R~n that is equivalent to the collection
SA~n of set agreement objects

⋃∞
k=1{SA(nk, k)}. The object R~n supports the operation

propose(v, k), for any value v and any integer k ∈ Z+. Intuitively, when an operation
propose(v, k) is applied to the R~n object, it is redirected and applied as a propose(v)
operation on the (nk, k)-set agreement object SA(nk, k) in SA~n and the response is returned.
More precisely, for each k ∈ Z+, consider the set of all propose(−, k) operations that are
applied to the object R~n. The values returned to these operations satisfy the properties of
the SA(nk, k) object: If there are at most nk such operations, then (a) k-agreement: at most
k distinct values are returned to these operations, and (b) validity: each value returned to
these operations was proposed by one of them.

I Observation 1. For all infinite sequences ~n = (n1, n2, . . ., nk, . . .) such that nk ∈ Z∗ for
all k ∈ Z+, we have:
(a) For all k ∈ Z+, R~n � SA(nk, k); so R~n � SA~n.
(b) SA~n � R~n.
(c) Thus R~n ≡ SA~n.

3 Uncountability of Objects with Distinct Power

Let b be a non-negative integer, and (a1, a2, . . .) be non-negative integers such that only
finitely many of the a`’s are non-zero. Suppose that for each ` ∈ Z+, we are given a` copies
of SA(n`, `) objects. Using these objects, we can solve k-set agreement among n processes
where n ≤ b +

∑∞
`=1 a`n`, and k ≥ b +

∑∞
`=1 a``. To do so, we partition the n processes

as follows: for every a` that is non-zero, we create a` groups of at most n` processes each,
and we also create one group of at most b processes. In each of the a` groups of at most n`

processes, every process uses an SA(n`, `) object to propose its value and returns the object’s
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response; in the last group of at most b processes, each process returns its proposal value. In
this way, the n processes return at most b +

∑∞
`=1 a`` distinct values, each proposed by some

process. By extending a result of Chaudhuri and Reiners [9], Delporte et al. proved that the
ability to partition the n processes in such a manner is also a necessary condition to solve
k-set agreement among n processes [10]. The following theorem follows from Theorem 2
of [10]:

I Theorem 2 (Extended Set Agreement Partial Order Theorem). Let m ∈ Z∗ and k ∈ Z+,
and let ~n = (n1, n2, . . ., n`, . . .) be an infinite sequence such that n` ∈ Z∗ for all ` ∈ Z+. Then
SA~n � SA(m, k) if and only if there exists an infinite sequence (a1, a2, . . .) of non-negative
integers and an integer b ∈ N such that:3

b +
∑∞

`=1 a`n` ≥ m.
b +

∑∞
`=1 a`` ≤ k.

Recall that S is the set of all infinite sequences of positive integers ~n = (n1, n2, . . ., nk, . . .)
such that nk+1 ≥ 2nk for all k ∈ Z+. We now prove some properties of S that will be useful
for applying Theorem 2.

I Lemma 3. For all ~n ∈ S and all k ∈ Z+, nk+1
k+1 ≥

nk

k .

Proof. By definition, for all ~n ∈ S and k ∈ Z+, nk+1 ≥ 2nk. Furthermore, since k ∈ Z+,
2

k+1 ≥
1
k . Consequently,

nk+1
k+1 ≥

2nk

k+1 = ( 2
k+1 )nk ≥ ( 1

k )nk = nk

k . J

I Corollary 4. For all ~n ∈ S and all k, k′ ∈ Z+ where k′ ≥ k, n′k
k′ ≥

nk

k .

I Observation 5. For all ~n ∈ S and all k ∈ Z+, nk ≥ k.

I Lemma 6. For all ~n ∈ S and all k ∈ Z+, SA~n 6� SA(nk + 1, k).

Proof. Let ~n = (n1, n2, . . ., nk, . . .) be an infinite sequence in S and let k ∈ Z+. Fur-
thermore, let A be the set of all infinite sequences of non-negative integers. Then for all
a = (a1, a2, . . ., ak, . . .) ∈ A and b ∈ N, we define the predicate P(a, b, ~n, k) to be true if and
only if the following inequalities are true:

b +
∞∑

`=1
a`n` ≥ nk + 1 (2)

b +
∞∑

`=1
a`` ≤ k (3)

By Theorem 2, it suffices to show that P(a, b, ~n, k) is false for all a ∈ A and b ∈ N.

Case 1. There exists an integer k′ > k such that ak′ > 0.
Then b +

∑∞
`=1 a`` ≥ ak′k

′ ≥ k′ > k. Thus inequality (3) is false, and so P(a, b, ~n, k) is
false.

Case 2. For all k′ ∈ Z+ such that k′ > k, we have ak′ = 0.
Case 2(a). b +

∑k
`=1 a` = 0

Since a is a sequence of non-negative integers and b is a non-negative integer, this implies
b = 0 and for all 1 ≤ ` ≤ k, a` = 0. Then b +

∑∞
`=1 a`n` = 0 < nk + 1. Thus the

inequality (2) is false, and so P(a, b, ~n, k) is false.

3 We denote by N the set of all natural numbers, including 0.
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Case 2(b). b +
∑k

`=1 a` > 0.
Thus either a` > 0 for some 1 ≤ ` ≤ k, or b > 0. We define the function:

f(a, b, ~n, k) = k(b +
k∑

`=1
a`n`)− (nk + 1)(b +

k∑
`=1

a``)

f(a, b, ~n, k) is the left side of (2) multiplied by the right side of (3), minus the left side
of (3) multiplied by the right side of (2). Thus for all a ∈ A and b ∈ N, if P(a, b, ~n, k) is
true, then f(a, b, ~n, k) ≥ 0.
By algebra,

f(a, b, ~n, k) = k(b +
k∑

`=1
a`n`)− (nk + 1)(b +

k∑
`=1

a``)

= bk − b(nk + 1) + k(
k∑

`=1
a`n`)− (nk + 1)(

k∑
`=1

a``)

= b(k − (nk + 1)) + (
k∑

`=1
ka`n`)− (

k∑
`=1

(nk + 1)a``)

= b(k − (nk + 1)) +
k∑

`=1
(ka`n` − (nk + 1)a``)

= b(k − (nk + 1)) +
k∑

`=1
a`(kn` − (nk + 1)`)

By Observation 5, 0 > k − (nk + 1). Thus if b > 0, then b(k − (nk + 1)) < 0, whereas if
b = 0, then b(k − (nk + 1)) = 0. By Corollary 4, for all 1 ≤ ` ≤ k,

nk

k
≥ n`

`

⇒ nk` ≥ kn`

⇒ 0 ≥ kn` − nk`

⇒ 0 > kn` − (nk + 1)`

Thus for all ` ∈ [1..k], if a` > 0, then a`(kn` − (nk + 1)`) < 0, whereas if a` = 0, then
a`(kn`− (nk +1)`) = 0. Therefore, every term of the sum b(k− (nk +1))+

∑k
`=1 a`(kn`−

(nk + 1)`) is either 0 or negative. Furthermore, since b +
∑k

`=1 a` > 0, either a` > 0
for some 1 ≤ ` ≤ k, or b > 0, so at least one of the terms is negative. Therefore,
f(a, b, ~n, k) < 0, and so P(a, b, ~n, k) is false.

So, for all a ∈ A and b ∈ N, P(a, b, ~n, k) is false. Thus SA~n 6� SA(nk + 1, k). J

By Observation 1(b), SA~n � R~n, so by Lemma 6,

I Corollary 7. For all ~n ∈ S and all k ∈ Z+, R~n 6� SA(nk + 1, k).

Since for all ~n ∈ S and all k ∈ Z+, R~n � SA(nk, k) by Observation 1(a), by Corollary 7,

I Corollary 8. For all ~n ∈ S, R~n has set agreement power ~n.

We now prove:

I Lemma 9. S is uncountable.
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12:6 Objects with Distinct Computational Power and Linearizability of Set Agreement

Proof. We prove this via a standard diagonalization argument. Assume, for contradiction,
that S is countable. In other words, there exists some enumeration E of all elements in S.
For all i ∈ Z+ and j ∈ Z+, let E [i, j] denote the j-th number in the i-th sequence of the
enumeration E .

Now consider the infinite sequence ~n = (n1, n2, . . ., nk, . . .) where:
n1 = E [1, 1] + 1.
For all i ≥ 2, ni = E [i, i] + 2ni−1.

Since E is an enumeration of infinite sequences of positive integers, ni is a positive integer for
all i ∈ Z+. Furthermore, by construction, ni is at least twice as large as ni−1 for all i ≥ 2.
Consequently, ~n is an infinite sequence of positive integers where each integer is at least twice
as large as its predecessor, so ~n ∈ S. By construction, however, ni 6= E [i, i] for all i ∈ Z+, so
~n is not any of the infinite sequences in the enumeration E of S. This is a contradiction, so
we conclude that S is uncountable. J

I Theorem 10. There are uncountably many objects that are not equivalent to each other.

Proof. By Lemma 9, S is uncountable. By Corollary 8, for all ~n ∈ S, there is an object with
set agreement power ~n. So there are uncountably many objects with distinct set agreement
power. By definition, objects with different set agreement power are not equivalent. J

Note that the uncountably many objects that Theorem 10 refers to were constructed
using the “black-box” set agreement objects described in [5, 9]. In Section 5, we strengthen
this result by proving that it holds even for linearizable objects [13]. To do this, we first
prove that each set agreement task is equivalent to a linearizable object.

4 Linearizable Set Agreement Objects

Henceforth, we consider objects with ports. With such an object, each process can apply
any operation to any port i ∈ [1..n], and must then wait for a response from that port.
We assume that accesses to the ports are well-formed: no port is accessed concurrently by
multiple processes; i.e., while an operation on a port is pending, no process can apply another
operation on that port. If accesses to the object are not well-formed, the behaviour of the
object is undefined.

For all n, k ∈ Z+, we now define LSA(n, k), a simple linearizable object that we will prove
is equivalent to the (n, k)-set agreement task in the following sense: the (n, k)-set agreement
task can be solved using the LSA(n, k) object, and the LSA(n, k) object can be implemented
using any solution to the (n, k)-set agreement task (and registers).

The behaviour of the LSA(n, k) object when it is accessed sequentially is given by its
sequential specification, described below. The behaviour of LSA(n, k) when it is accessed
concurrently (in a well-formed manner) is linearizable [13].

The sequential specification of LSA(n, k) is given by Algorithm 1. LSA(n, k) has n ports:
each process can apply a propose(v) operation for any value v to any port i ∈ [1..n]. The
state of the LSA(n, k) object consists of:

The set Vin of all values proposed to LSA(n, k); Vin is initially empty.
The set Vout of all values returned by LSA(n, k); Vout is initially empty.

The sequential specification of LSA(n, k) can be formally given in terms of a set of states,
a set of operations, a set of responses, and a state transition relation. For brevity, we omit
this formal definition here.

From the above definition of LSA(n, k), we have:
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Algorithm 1 Sequential specification of the LSA(n, k) object.
Code for port i ∈ [1..n]:

1: procedure propose(v)
2: Vin ← Vin ∪ {v}
3: Let v′ be nondeterministically chosen from Vin such that |Vout ∪ {v′}| ≤ k.
4: Vout ← Vout ∪ {v′}
5: return v′

I Observation 11. For all n, k ∈ Z+, if the LSA(n, k) object is accessed in a well-formed
manner, it satisfies:

k-agreement: There are at most k distinct return values.
Validity: If an operation op returns a value v, then v was proposed by op or by an
operation linearized before op.

This implies:

I Observation 12. For all n, k ∈ Z+, the (n, k)-set agreement task can be solved using an
LSA(n, k) object.

We now show that the converse also holds: for all n, k ∈ Z+, given any algorithm that
solves the (n, k)-set agreement task, one can implement the linearizable object LSA(n, k).
This implementation of LSA(n, k), shown in Algorithm 2, uses:

P [1..n]: any algorithm that solves the (n, k)-set agreement task, where P [i] is the protocol
executed by process i.
X[1..n]: an atomic snapshot object with n fields, initially all nil; each X[i] stores a value
output by P [i].
R[1..n]: an array of registers, initially all nil; each R[i] stores the return value of the first
operation performed on port i (R[i] is used to have all operations on port i return the
same value).

Note that the atomic snapshot object X[1..n] can be implemented using only registers [1].
To perform an operation propose(v) on port i, a process executes the following steps:

1. It reads R[i] and returns the same value as the previous operation on port i, if it exists
(line 3).

2. It executes protocol P [i] with proposal value v, and stores the decided value into a
temporary local variable pvali (line 4).

3. It writes pvali to the i-th field of the atomic snapshot X (line 5), letting the other
processes know that pvali was decided by protocol P [i].

4. It takes a snapshot of X (line 6) to check whether its own proposed value v was decided
by any protocol of P [1..n]; if so, it writes v to R[i] (line 7), otherwise it writes pvali to
R[i] (line 8).

5. It returns the value in R[i] (line 9).

Note that, for every i ∈ [1..n], protocol P [i] is only executed by the first operation on
port i, and thus it is executed at most once.

I Theorem 13. For all n, k ∈ Z+, Algorithm 2 implements the linearizable object LSA(n, k)
using any algorithm P [1..n] that solves the (n, k)-set agreement task and registers.

Proof. Let H be any history of this implementation of the LSA(n, k) object where accesses
to ports are well-formed.
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12:8 Objects with Distinct Computational Power and Linearizability of Set Agreement

Algorithm 2 Implementing the linearizable object LSA(n, k) using any algorithm P [1..n]
that solves the (n, k)-set agreement task.

1: Code for port i ∈ [1..n]:
2: procedure propose(v)
3: if R[i].read() 6= nil then return R[i].read()
4: pvali ← P [i].execute(v)
5: X[i]← pvali
6: X ′ ← X.scan()
7: if v ∈ X ′ then R[i].write(v)
8: else R[i].write(pvali)
9: return R[i].read()

I Claim 14 (k-agreement). In H, there are at most k distinct return values.

Proof. A value v is returned by an operation on port i only if v 6= nil has been written into
R[i] (line 3 or 9). A value v is written into R[i] only if v was returned by X.scan() (lines 6 to
7) or v has been written into pvali (line 8). For v 6= nil to be returned by X.scan(), v must
have been written into X by an operation on some port i′ (line 5), and therefore previously
written into pvali′ . For all j ∈ [1..n], v is assigned to pvalj only if v was returned by the
protocol P [j] (line 4). Thus any value returned by the object must have previously been
returned by some protocol of the (n, k)-set agreement task solution. Since each protocol
P [j] for j ∈ [1..n] is executed at most once, at most k distinct values are returned by the
protocols and hence the object. J

We now construct a completion H ′ of H as follows: for port i with an incomplete operation
op, if op is the first operation on port i and some other port has a complete operation op′
in H that returns the value proposed by op, complete op immediately after it is invoked by
returning its own proposal value (i.e., the same value that op′ returns); otherwise remove op.
Next, we construct a linearization L of H ′ as follows:
1. Linearize every operation that returns its own proposal value at the point it is invoked.
2. Linearize every operation that returns via line 3 at the point it is invoked.
3. Linearize every remaining operation at the point when it takes a snapshot of X (line 6).
From the above, it is clear that every operation is linearized at some point during its execution
interval.

I Claim 15 (Validity). In H ′, if an operation op returns a value v, then v was proposed by
op or by an operation linearized before op in the linearization L of H ′.

Proof. Suppose an operation op on port i proposes v′ and returns v. If v′ = v, the claim holds.
Now suppose v′ 6= v. Recall that when constructing the completion H ′ of H, incomplete
operations are only completed by returning their own proposal values. Thus op is a complete
operation in H. There are two cases:
Case 1: op is the first operation on port i.

Then, since op proposes v′ and returns v 6= v′, from the code of Algorithm 2 and the way
we linearize operations, it is clear that:
(1) op obtained pvali = v from executing P [i].execute(v′) in line 4,
(2) op wrote pvali = v in X in line 5, and
(3) op is linearized the instant it takes a snapshot of X in line 6.
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Since P [1..n] is a solution for the (n, k)-set agreement task, by (1), at least one port i′

has an operation op′ that starts executing P [i′].execute(v) before or at the same time
as op obtains v in line 4. Clearly, op′ proposes v and is invoked before it starts executing
P [i′].execute(v), and so before op obtains v in line 4. We now show that op′ is linearized
before op, and therefore v was proposed by an operation linearized before op. There are
three subcases:
Case 1(a): op′ is incomplete in H.

First, recall that when constructing the completion H ′ of H, an incomplete operation
in H is completed with its own proposal value if it is the first operation on its port,
and its proposal value is decided by some complete operation in H. Since op′ executes
P [i′].execute(v), it is the first operation on port i′. Furthermore, a complete operation
in H, namely op, returns the value v that is proposed by op′, so op′ is completed in
H ′ by returning v immediately after it is invoked. Then, since op′ returns its own
proposal value, op′ is linearized at the moment it is invoked. Thus op′ is linearized
before op obtains v in line 4. Therefore op′ is linearized before op executes line 6, and
thus before op is linearized.

Case 1(b): op′ is complete in H and it returns the value v that it proposed.
Then op′ is linearized at the moment op′ is invoked. Thus op′ is linearized before
before op obtains v in line 4. Therefore op′ is linearized before op executes line 6, and
thus before op is linearized.

Case 1(c): op′ is complete in H and it returns a value different from the value v that it
proposed.
Since op′ executes P [i′].execute(v), it is the first operation on port i′. Thus op′ is
linearized when it takes a snapshot of X in line 6, and this snapshot does not contain
v (otherwise op′ would return v). Since the snapshot does not contain v, it occurs
before op writes v in X in line 5 (see (2) above). Therefore op′ is linearized before op
executes line 6, and thus before op is linearized.

Case 2: op is not the first operation on port i.
Then the first operation op′ on port i also returns the same value v. Thus from case 1,
v was proposed by op′ or by an operation linearized before op′. Since the history H is
well-formed, i.e., operations on port i are not concurrent, op′ is linearized before op. So v

was proposed by an operation linearized before op. J

Let HL be the sequential history obtained by ordering all the operations in the complete
history H ′ by their linearization points in L. Since the completion of H to H ′, and the
linearization of H ′ to HL does not introduce new return values, from Claim 14 we have:

I Observation 16 (k-agreement). In HL, there are at most k distinct return values.

By the definition of HL and Claim 15, we have:

I Observation 17 (Validity). In HL, if an operation op returns a value v, then v was proposed
by op or by an operation before op.

To prove that Algorithm 2 implements the linearizable object LSA(n, k), it suffices to
show that HL satisfies the sequential specification of LSA(n, k).

Suppose, for contradiction, that HL violates the sequential specification of LSA(n, k), and
let op be the first operation in HL that does so. Let v be the value proposed by op, and v′ be
the value returned by op. According to the sequential specification of LSA(n, k), v′ should
be such that (i) v′ is in Vin ∪ {v}, and (ii) |Vout ∪ {v′}| ≤ k. Thus, since op violates the
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12:10 Objects with Distinct Computational Power and Linearizability of Set Agreement

sequential specification of LSA(n, k), either (i) v′ is not in Vin ∪ {v}, or (ii) |Vout ∪ {v′}| > k.
We consider these two cases below:
Case 1: v′ is not in Vin ∪ {v}.

By the sequential specification of LSA(n, k), Vin ∪ {v} is the set of all values proposed by
op and the operations before op in HL. Thus op returns a value v′ that was not proposed
by op or by an operation that is before op in HL. So HL violates Observation 17.

Case 2: |Vout ∪ {v′}| > k.
By the sequential specification of LSA(n, k), Vout ∪ {v′} is the set of all values returned
by op and the operations before op in HL. Thus the operations in HL return more than
k distinct values. So HL violates Observation 16. J

I Theorem 18. For all n, k ∈ Z+, the linearizable object LSA(n, k) is equivalent to the
(n, k)-set agreement task, that is:
(a) The (n, k)-set agreement task can be solved using LSA(n, k), and
(b) LSA(n, k) can be implemented using any algorithm that solves the (n, k)-set agreement

task (and registers).

Proof. Part (a) follows by Observation 12, and Part (b) is immediate from Theorem 13. J

5 Uncountability of Linearizable Objects with Distinct Power

In this section, we prove that there are uncountably many linearizable objects with distinct
computational power.

For every infinite sequence ~n = (n1, n2, . . ., nk, . . .) such that nk ∈ Z+ for all k ∈ Z+, we
define a linearizable “redirection” object LR~n that is equivalent to the collection LSA~n of
linearizable objects

⋃∞
k=1{LSA(nk, k)}. The object LR~n has a port i for every integer i ∈ Z+,

each process can apply a propose(v, k) operation for any value v and any integer k ∈ Z+

to any port i ∈ Z+. Intuitively, when an operation propose(v, k) is applied on a port i of
the LR~n object, the operation propose(v) is applied to port i of the LSA(nk, k) object in
LSA~n and its response is returned. If no such port exists (because i > nk), the operation
simply returns ⊥ without changing the state.

The behaviour of the LR~n object when it is accessed sequentially is given by its sequential
specification, described below. The behaviour of LR~n when it is accessed concurrently (in a
well-formed manner) is linearizable [13].

The sequential specification of LR~n is given by Algorithm 3. The state of the LR~n object
consists of the following:

For all k ∈ Z+, the set V k
in of all the values proposed by propose(−, k) operations on

ports 1 to nk of LR~n; V k
in is initially empty.

For all k ∈ Z+, the set V k
out of all the values returned by propose(−, k) operations on

ports 1 to nk of LR~n; V k
out is initially empty.

From the above, it is clear that the sequential specification of LR~n can be formally given
in terms of a set of states, a set of operations, a set of responses, and a state transition
relation. For brevity, we omit this formal definition here.

I Observation 19. For all infinite sequences ~n = (n1, n2, . . ., nk, . . .) such that nk ∈ Z+ for
all k ∈ Z+, we have that:
(a) For all k ∈ Z+, LR~n � LSA(nk, k); so LR~n � LSA~n.
(b) LSA~n � LR~n.
(c) Thus LR~n ≡ LSA~n.
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Algorithm 3 Sequential specification of the LR~n object.
Code for port i ∈ Z+:

1: procedure propose(v, k)
2: if i > nk then return ⊥
3: V k

in ← V k
in ∪ {v}

4: Let v′ be nondeterministically chosen from V k
in such that |V k

out ∪ {v′}| ≤ k.
5: V k

out ← V k
out ∪ {v′}

6: return v′

I Lemma 20. For all infinite sequences ~n = (n1, n2, . . ., nk, . . .) such that nk ∈ Z+ for all
k ∈ Z+, we have that the linearizable object LR~n is equivalent to the object R~n.

Proof. By Observation 1(c), R~n ≡ SA~n, where SA~n is the collection of “black-box” set
agreement objects:

⋃∞
k=1{SA(nk, k)}. By Observation 19(c), LR~n ≡ LSA~n, where LSA~n is

the collection of linearizable set agreement objects:
⋃∞

k=1{LSA(nk, k)}.
By definition, for all k ∈ Z+, the “black-box” set agreement object SA(nk, k) is equivalent

to the (nk, k)-set agreement task. By Theorem 18, for all k ∈ Z+, LSA(nk, k) is equivalent
to the (nk, k)-set agreement task. Thus, for all k ∈ Z+, SA(nk, k) ≡ LSA(nk, k). Therefore,⋃∞

k=1{SA(nk, k)} ≡
⋃∞

k=1{LSA(nk, k)}, i.e., SA~n ≡ LSA~n. So, by transitivity, R~n ≡
LR~n. J

Consequently, by Corollary 8 and Lemma 20,

I Corollary 21. For all ~n ∈ S, LR~n has set agreement power ~n.

I Theorem 22. There are uncountably many linearizable objects that are not equivalent to
each other.

Proof. By Lemma 9, S is uncountable. By Corollary 21, for all ~n ∈ S, there is a linearizable
object with set agreement power ~n. So there are uncountably many linearizable objects with
distinct set agreement power. By definition, objects with different set agreement power are
not equivalent. J

Thus, there are uncountably many linearizable objects with distinct computational power.

6 Concluding remark

In this paper, we used Theorem 2 to prove that there are uncountably many objects with
distinct computational power. We can use the same theorem to prove an interesting result
about the robustness [14] of classifications of certain objects. Consider the subset of shared
objects UC ∈ U that are equivalent to their set agreement power, namely:

UC = {O | O ≡
∞⋃

k=1
{SA(nk, k)} where ~n = (n1, n2, . . .) is the set agreement power of O}

In some sense, UC is a generalization of the family of objects known as Common2 [3, 4], which
is the set of objects that are equivalent to the 2-consensus object. Thus UC contains every
object in Common2, which includes several common objects such as stack, swap, fetch&add,
and test&set [3, 4].

If we restrict Herlihy’s [12] consensus hierarchy to UC , we can prove the resulting hierarchy
is robust [14] in the following sense: in UC , for all n ∈ Z+, any non-empty set of objects with

DISC 2017
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consensus number at most n cannot be used to implement any object with consensus number
n′ > n. In fact, we can prove a more general result, as we now describe.

To describe our robustness result, we first define what it means for a sequence to dominate
another. Given any pair of sequences ~v = (v1, v2, . . . , v`) and ~v′ = (v′1, v′2, . . . , v′`) of the same
length ` ∈ Z+, we say that v dominates v′, denoted ~v ≥ ~v′, if for all k ∈ [1..`], vk ≥ v′k;
similarly, we say that v strictly dominates, denoted ~v > ~v′, if ~v ≥ ~v′ and ~v 6= ~v′.

Consider the set of objects UC that are equivalent to their set agreement power. For any
integer ` ∈ Z+, we can partition UC into equivalence classes such two objects are in the same
class if and only if the first ` components of their set agreement powers are the same; we
call this an `-partition of UC , and denote it P` (note that the 1-partition of UC is simply
Herlihy’s consensus hierarchy restricted to the objects in UC [12]). Let C be any equivalence
class of P`. By definition, the first ` components of the set agreement power of every object
in C is some sequence ~v = (v1, v2, . . . , v`); this sequence is the label of C. If C and C ′ are
equivalence classes of P` with labels ~v and ~v′ respectively, we say that C dominates C ′ if
~v ≥ ~v′, and C strictly dominates C ′ if ~v > ~v′.

Our generalized robustness result for can now be stated as follows: Consider the `-partition
P` of UC , and let C be any equivalence class of P`. Objects in equivalence classes that are
dominated by C cannot implement objects in equivalence classes that strictly dominate C.
A proof of this result is given in the appendix.
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A Appendix

I Theorem 23. Consider the `-partition P` of UC , and let C be any equivalence class of P`.
Objects in equivalence classes that are dominated by C cannot implement objects in equivalence
classes that strictly dominate C.

Proof. Assume, for contradiction, that there is an equivalence class C of P` and a set of
objects O such that:
(a) every object in O is in an equivalence class that is dominated by C;
(b) O implements an object O′, i.e., O � O′; and
(c) O′ is in an equivalence class C ′ that strictly dominates C.

Let ~v = (v1, v2, . . . , v`) and ~v′ = (v′1, v′2, . . . , v′`) be the labels of C and C ′, respectively.
Since C ′ dominates C, ~v′ > ~v, and so there is a d ∈ [1..`] such that v′d > vd. Since O′ is in C ′,
and the label of C ′ is ~v′ = (v′1, v′2, . . . , v′`), O′ implements the (v′k, k)-set agreement object
SA(v′k, k) for each k ∈ [1..`]. In particular, O′ implements SA(v′d, d), i.e., O′ � SA(v′d, d).

Henceforth, Oi is an arbitrary object in O. Let ~ni = (ni
1, ni

2, . . . , ni
k, . . .) be the set

agreement power of Oi. Since every object in O (including Oi) is in an equivalence class
that is dominated by C, and C has label ~v = (v1, v2, . . . , v`), we have that for all k ∈ [1..`],
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ni
k ≤ vk. Let SA~ni be the collection of set agreement objects

⋃∞
k=1{SA(ni

k, k)}. Since
Oi ∈ UC , by definition of UC , Oi ≡ SA~ni .

Let ~n = (n1, n2, . . . , nk, . . .) be the infinite sequence such that for all k ∈ [1..`], nk = vk,
and for all k > `, nk = ∞. Thus for all k ∈ Z+, nk ≥ ni

k. Let SA~n be the collection of
set agreement objects

⋃∞
k=1{SA(nk, k)}. Since for all k ∈ Z+, nk ≥ ni

k, we have SA~n �
SA~ni . Since Oi ≡ SA~ni , SA~n � Oi. Recall that Oi is an arbitrary object in O, so SA~n

implements every object in O, i.e., SA~n � O. Since O � O′ and O′ � SA(v′d, d), we have
SA~n � SA(v′d, d).

Since SA~n =
⋃∞

k=1{SA(nk, k)} implements SA(v′d, d), by Theorem 2, there is an infinite
sequence (a1, a2, . . .) of non-negative integers and an integer b ∈ N such that:

b +
∞∑

k=1
aknk ≥ v′d

b +
∞∑

k=1
akk ≤ d

Note that for all k > d, ak = 0, otherwise b +
∑∞

k=1 akk > d. Thus we have:

b +
d∑

k=1
aknk ≥ v′d

b +
d∑

k=1
akk ≤ d

Let O∗ be an arbitrary object in the equivalence class C, and ~n∗ = (n∗1, n∗2, . . . , n∗k, . . .)
be the set agreement power of O∗. Since O∗ is in C and the label of C is ~v = (v1, v2, . . . , v`),
for all k ∈ [1..`], n∗k = vk = nk. Thus, since d ∈ [1..`], we have:

b +
d∑

k=1
akn∗k ≥ v′d

b +
d∑

k=1
akk ≤ d

Since for all k > d, ak = 0, we have:

b +
∞∑

k=1
akn∗k ≥ v′d

b +
∞∑

k=1
akk ≤ d

Let SA~n∗ be the collection of set agreement objects
⋃∞

k=1{SA(n∗k, k)}. By the above
equations and Theorem 2, SA~n∗ � SA(v′d, d). Since the set agreement power of O∗ is
~n∗ = (n∗1, n∗2, . . . , n∗k, . . .) and O∗ ∈ UC , by definition of UC , we have that O∗ ≡ SA~n∗ . Thus
O∗ � SA(v′d, d). Hence the d-set agreement number of O∗ is at least v′d > vd. However,
recall that for all k ∈ [1..`], n∗k = vk, so in particular n∗d = vd. Therefore the d-set agreement
number of O∗ is vd — a contradiction. J
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1 Introduction

The problem of reaching consensus in a graph by means of local interactions is an abstraction
of such behavior in human society as well as some processes in computer networks. In a
voting process on a graph, vertices revise their opinions in a systematic and distributed
way based on opinions of other vertices, typically on the opinions of a sample of their local
neighbours. The aim is that eventually a single opinion will emerge, and that this opinion will
reflect the relative importance of the original mix of opinions in some way. Voting processes
have application in various fields of computing including consensus and leader election in
large networks [9, 22], serialisation of read/write in replicated data-bases [21], and analysis
of social behavior [16]. In general, a voting process should be conceptually simple, fast,
fault-tolerant and straightforward to implement [22, 23].

In a synchronous voting process each vertex of a connected graph has one of several
possible opinions. In each time-step, each vertex, using the same protocol, queries the opinion
of one or more of its neighbours and decides whether to modify or to keep its current opinion.
A simple voting protocol is ideally memoryless: in the current step, each vertex uses only its
current opinion and the current opinions of the queried neighbours. When all vertices have a
common (and thus final) opinion, we say a consensus has been reached. For a given voting
process, the main quantities of interest are the probability that a particular opinion wins
and the expected time to reach consensus.

In the classical voter model each vertex initially has a distinct opinion, but in general
we assume that each vertex holds one of k different opinions. The simplest case, two party
voting, is when there are initially two opinions (k = 2). If there are at least three opinions
(k ≥ 3), then the problem is often referred to as plurality consensus. We would like the
dominant opinion to eventually become the final opinion of all vertices. The probability of
this, however, strongly depends on the voting process.

Pull voting

The most well known voting process is synchronous pull voting. In this model, at each step
each vertex changes its opinion to that of a random neighbour. We assume henceforth that
the graphs which we consider are connected and non-bipartite, so that a consensus is possible.
For such a graph, the probability that pull voting ends with a particular opinion taking over
the whole graph is proportional to the initial degree of this opinion in the graph [22]. More
precisely, if A is the set of vertices initially holding a given opinion, then

Pr(A wins in the voting process) =
∑
v∈A

d(v)
2m = d(A)

2m , (1)

where d(v) is the degree of vertex v and m is the number of edges in the graph. Surprisingly,
the probability here depends only on the voting process and the total degree d(A), but does
not depend on the details of the initial arrangement of opinions on the graph.

For an n-vertex graph, let E(T ) be the expected value of the time to consensus T . Much
of the early work was on analysing E(T ) for classical pull voting in an asynchronous model
in a continuous time setting. Here the vertices have independent exponentially distributed
waiting times (Poisson clocks); see e.g. Cox [15] and Aldous [1]. In the synchronous model
the expected time to consensus is O(Hmax logn), where Hmax = O(n3) is the maximum
hitting time of any vertex by a random walk; see Aldous and Fill [2]. For regular expanders
the expected consensus time is Θ(n), see [12].
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Two- and three-sample voting

Since the classical pull voting tends to be slow (E(T ) = Θ(n) for regular expanders) and
may be viewed as undemocratic (giving only weak preference for the largest initial opinion as
shown in (1)), there has been considerable interest in modifying this simple voting process
to avoid these two problems. Instead of taking the opinion of only one neighbour, the next
simplest approach is to sample the opinions of a larger number of neighbours (say two or
three), compare them in some way, and hope that the so-called ‘power of two choices’ improves
the performance of voting. The consequences of this approach are as follows. Firstly, the
number of neighbours queried affects the consensus time and the voting outcome. Secondly,
the relative size of the opinions affects the ability of the process to ensure that the largest
initial opinion wins.

In this setting we study the following protocols for two-sample and three-sample voting. In
the two-sample voting model, at each step, each vertex v chooses two random neighbours with
replacement, and if the selected vertices have the same opinion, then v adopts it; otherwise
v keeps its current opinion. In the three-sample voting model, each vertex v chooses three
random neighbours with replacement and adopts the majority opinion among them. If there
is no majority, v picks the opinion of the first sampled neighbour. Other rules are equally
possible here, e.g. v keeps its opinion. The rule we choose is the one used by Becchetti et
al. [4].

For d-regular expanders, two-sample voting was studied in [13] for the case where there
are initially two opinions (k = 2). Provided the initial difference between the sizes of the two
opinions is sufficiently large, the initial majority wins with high probability (w.h.p.)1 and
voting is completed in O(logn) steps. This is tight since the diameter of a d-regular graph is
Ω(logn) for constant d. This result is extended in [14] to non-regular expander graphs.

Two- and three-sample voting for plurality consensus

Not so much is known about improving the performance of voting by using two or more
samples in the case where there are initially three or more opinions (k ≥ 3). Generally,
analysing plurality voting protocols tends to be more involved than analysing two party
voting. The case when some opinion has an absolute majority can usually be reduce to
two-party voting by grouping the other opinions into a single minority class. Difficulties
arise when there is no clear majority, that is, when the largest opinion is smaller than two
(or more) other opinions put together. We note that the well established techniques used in
analysis of the classical pull voting (’single-sample’ voting), for example the correspondence
with multiple coalescing random walks [1, 12], do not have ready extensions or generalisations
to multi-sample voting.

Plurality consensus using the three-sample voting protocol given above was studied by
Becchetti et al. [4]. They proved that for the complete graph, if the difference between the
initial sizes A1 and A2 of the largest and second largest opinions is at least 24n

√
2(logn)/A1,

then the largest opinion wins in O((n logn)/A1) steps w.h.p. They also showed that this result
is tight for some ranges of the parameters. Subsequently Becchetti et al. [3] analyse another
simple plurality voting protocol, which can be viewed as a variation of two-sampling, showing
that polylog convergence on complete graphs can be achieved even if A1 = o(n/polylogn),
provided that A1/A2 ≥ α > 1 for a constant α and only O(polylogn) opinions are initially
’comparable’ in size with the largest opinion. Detailed parameterized bounds are presented

1 “With high probability” (w.h.p.) means in this paper probability at least 1 −n−α, for a constant α > 0.
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in [3], but they do not improve the worst-case general bound given in [4]. Two- and three-
sample voting is memoryless, so requires only k states (log k bits) per vertex to store the
current opinion held by this vertex. The protocol in [3] requires k + 1 states, as it allows
each vertex to hold the “undecided” opinion.

Elsässer et al. [17] consider asynchronous two-sample voting and show that it converges
on complete graphs within O(k logn) rounds, subject to suitable bounds on the number
of opinions and the initial difference between the largest and the second largest opinions.
Becchetti et al. [5] analyse robustness of three-sample voting and show that it converges on
complete graphs in the number of rounds polynomial in k and logn, even if an adversary
corrupts o(

√
n) vertices in each round. Subsequently, Ghaffari and Lengler [19] improve the

number of rounds to O(k logn), allowing at the same time for a stronger adversary.
Berenbrink et al. [6] analyse two-sample and three-sample voting for the case of a large

number of initial opinions. They show that three-sample voting converges on complete graphs
in O(n3/4 logn) rounds for any number of initial opinions k ≤ n, but two-sample voting
requires Ω(n/ logn), if initially each opinion is supported by only O(logn) vertices.

Push voting

The voting processes which we have discussed so far are examples of pull protocols: each
vertex ’pulls’ the information from its (selected) neighbours. In a push protocol, a vertex
’pushes’ its own information onto its neighbours. While the push communication paradigm is
natural and effective in rumor spreading (broadcasting) protocols, it has found so far only
limited use in voting protocols. It is not clear how synchronous push voting could be defined,
so push voting has been mostly confined to asynchronous processes. An example is the work
of Copper et al. [11], who consider both pull and push voting in the context of asynchronous
’discordant voting.’ Elsässer et al. [17] develop an asynchronous plurality consensus algorithm
which combines two-sample voting with push-pull broadcasting. In the current paper, we
propose a general simple framework for push voting.

Other related previous work

Berenbrink et al. [7] propose two synchronous pull-based plurality-consensus protocols for
complete graphs. Their protocols achieve plurality consensus in O(log k log logn) rounds
with log k + Θ(log log k) bits of memory per vertex and in O(logn log logn) rounds with
log k + 4 bits of memory per vertex, provided a sufficient initial bias towards the largest
opinion. Independently, Ghaffari and Parter [20] showed a plurality consensus algorithm of
a similar type, which converges on complete graphs in O(logn log k) rounds and requires
log k +O(1) bits of memory per vertex.

While [3, 4, 5, 7, 17, 20] analyse plurality voting only on complete graphs, Berenbrink et
al. [8] consider arbitrary connected graphs. They show two protocols, which are based on
earlier work on distributed load balancing, and show a detailed analysis of their performance
in various communication models. They achieve, for example, a w.h.p. O(logn) bound on
the number of rounds for expanders in diffusion model (in each round each vertex exchanges
messages with all its neighbours), but each vertex requires Θ((n/(A1 − A2))2 logn log k)
bits of memory. In contrast, two- and three-sample voting, as well as protocols of the type
considered in [3], are very simple protocols requiring only O(logn) bits of memory per vertex.
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2 Our contributions

Our contributions are two-fold. Firstly we extend the analysis of plurality consensus on the
complete graph (using voting) to the case of regular graphs. Secondly we give a push based
algorithm which reaches consensus on the complete graph in four rounds, and apply this to
the problem of approximate plurality consensus.

Plurality consensus on regular graphs

The earlier analysis of plurality consensus on the complete graph can be extended to regular
graphs. For regular expanders our results have the same asymptotic convergence time as
given for Kn in [4]. We use the two-sample voting process of [14], but generalize the analysis
from two-party voting to k-party voting.

Let G be a connected regular n-vertex graph and let λ be the second largest absolute
eigenvalue of the transition matrix P = P (G) of a random walk on G. Let A1 be the set of
vertices with the largest initial opinion and A2 the set with the second largest opinion. If no
confusion arises, we also let A stand for the size of set A.

I Theorem 1. Let G be a regular n-vertex graph and let the initial sizes of the opinions be
A1, A2, . . . , Ak in non-increasing order. Assume that A1 − A2 ≥ Cnmax{

√
(logn)/A1, λ},

where λ is the absolute second eigenvalue of P (G) and C > 0 is a suitably large constant.
With probability at least 1− 1/n, after at most O((n/A1) log(A1/(A1 −A2)) + logn) rounds,
the two-sample voting completes and the final opinion is the largest initial opinion.

We note the following w.h.p. property of the second eigenvalue λ for random d-regular graphs
for d = o(n1/2). For d constant it is a result of Friedman [18] that λ ≤ γ/

√
d, where γ = 2 + ε

for some small ε > 0. For d growing with n, the following estimate of λ is given in [10].
Provided d = o(n1/2) there exists constant γ > 0 such that w.h.p. λ ≤ γ/

√
d. In either case

the size separation condition in Theorem 1 is A1 −A2 ≥ C ′n/
√
d.

Theorem 1 can be applied to a number of specific scenarios. Consider, for example, the
case where all k opinions are fairly evenly represented, but with one opinion slightly larger
than the average n/k. More specifically, assume that A1 ≥ (n/k)(1 + ε), for some 0 < ε ≤ 1,
and that A2 ≤ A1/(1 + ε). Theorem 1 implies the following corollary for this case.

I Corollary 2. Let the number of opinions be k ≤ ((1/C)2n/ logn)1/3, A1 ≥ (n/k)(1 + ε),
A2 ≤ A1/(1 + ε), and λ ≤ ε/(Ck), where C > 0 is the constant from Theorem 1 and
ε = k3/2/((1/C2)n/ logn)1/2 ≤ 1. Then with probability at least 1 − 1/n, after O(k logn)
rounds the two-sample voting completes and the final opinion is the largest initial opinion.

In Section 5 we show that the statements of Theorem 1 and Corollary 2 also hold for the
three-sample voting protocol analyzed by Becchetti et. al. [4]. We note that the bound on
the running time in Theorem 1 is O(logn), if A1 is Ω(n/ logn), provided that A1−A2 is also
Ω(n/ logn) and the graph has the λ parameter appropriately small. This includes complete
graphs. The bound obtained in [4] for complete graphs is O(logn) only if A1 = Θ(n).

If the graph is not very expansive (λ is too large), we can improve the ability of two-
sample voting to discriminate the plurality as follows. In `-extended two-sample voting
model (see [14]), each vertex makes two independent random walks of length ` and carries
out two-sample voting using the opinions on the terminal vertices of these walks. Random
walks of length ` replace the transition matrix P used in the proof of Theorem 1 by P `. If
the graph is regular, then the only effect on the proofs is to replace all eigenvalues by their
`-th power. This reduces the absolute second eigenvalue from λ to λ`. The effect is to replace
the condition A1 −A2 ≥ Cnmax{

√
(logn)/A1, λ} of Theorem 1 by the improved condition

A1 −A2 ≥ Cnmax{
√

(logn)/A1, λ
`}, and thus diminishing the influence of λ.
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Approximate plurality consensus by push voting

In Section 6 we describe a push based algorithm (Algorithm Pushy) and show that it reaches
consensus on Kn in four push rounds whatever the initial mix of opinions. In each round each
vertex activates with some (small) probability p and sends its opinion to all its neighbours
(so to all other vertices, if the graph is complete). Each vertex, after receiving the opinions of
the activated vertices, tallies up different opinions and adopts the opinion with the highest
count, breaking ties uniformly at random.

I Theorem 3. On the complete graph, and irrespective of the initial number and distribution
of opinions, after four rounds of Algorithm Pushy with the parameter p = Θ((logn)/n), there
is a consensus opinion with probability 1− o(1).

If the opinion sets Ai, 1 ≤ i ≤ k, are all of the same size, then in algorithm Pushy
each opinion has the same probability of becoming the consensus opinion, so in this case
the algorithm gives a completely fair solution to plurality. If there are few large opinion
classes of similar sizes, then while there is no guarantee that the largest opinion wins, there
is only small probability that the winning opinion is outside of those large ones. As an
example, suppose there are ` ≥ 1 classes of size at least Θ(n/`), where A1 ≥ A2 ≥ · · · ≥ A`
and ` = O(logn/ log logn), and let δ =

√
` log logn/ logn. Then the probability that the

winning opinion comes from opinions for which Aj(1 +O(δ)) ≤ A1 is only o(1). In particular,
if A2(1 +O(δ)) ≤ A1, then the largest opinion A1 wins with probability 1− o(1).

We can either use Pushy on its own, or combine it with another consensus algorithm
to try to solve plurality approximately but quickly in the following sense. Suppose there
is a given value s such that if possible we would like to choose a consensus opinion which
was initially supported by at least s vertices. According to (the proof of) Theorem 1, and
assuming s = Ω(n2/3 logn) and that the initial largest opinion size is at least s, then after
T = Θ((n/s) logn) rounds of two-sample voting, w.h.p. we will have discarded any opinion
of initial size at most s/(1 + ε). We then use Pushy to return quickly a consensus opinion
chosen from the remaining opinions.

On the complete graph Kn, algorithm Pushy requires O(log2 n) storage per vertex, and
the constant number of push rounds mean that the total number of message transmissions
is O(n logn), which is the same order as in O(logn) rounds of two-sample voting. In this
paper we focus on proving Theorem 3, leaving for separate investigations possibilities of
implementing algorithm Pushy on other interaction models .

3 Preliminary Markov chain results

In this section we establish some technical results used in our proof of Theorem 1. Consider
a connected and non-bipartite graph G = (V,E) with n vertices and m edges. Let P be
the transition matrix of a simple random walk on G. A random walk on a connected
and non-bipartite graph defines a reversible Markov chain with stationary distribution
π(x) = d(x)/(2m), where d(x) denotes the degree of vertex x. The reversibility of P means
that π(x)P (x, y) = π(y)P (y, x), for all vertices x, y.

Let 1 = λ1 > λ2 ≥ . . . ≥ λn > −1 be the eigenvalues of P and define λ = λ(P ) by
λ = max{|λ2|, |λn|}. We also consider the matrix P 2 = P × P (standard matrix product),
which is the transition matrix of the two-step random walk, is also reversible and has the
same stationary distribution and eigenvectors as P . Moreover, the eigenvalues of P 2 are the
squares of the eigenvalues of P . In particular, λ(P 2) = (λ(P ))2. Given A,B ⊆ V and x ∈ V ,
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we define P (x,A) =
∑
y∈A P (x, y) and the flow function Q(A,B) from A to B as

Q(A,B) =
∑
x∈A

π(x)P (x,B). (2)

Q(A,B) is the probability a random walk starting from the stationary distribution makes a
transition from a vertex in A to a vertex in B. Due to reversibility of P , Q(A,B) = Q(B,A).

We use the following standard inequalities, often referred to as the Expander Mixing
Lemma for Inhomogeneous Graphs. Let A,B ⊆ V , and Ac = V \A, then

|Q(A,Ac)− π(A)π(Ac)| ≤ λπ(A)π(Ac), (3)
|Q(A,B)− π(A)π(B)| ≤ λ

√
π(A)π(B)π(Ac)π(Bc). (4)

We also need the following lower bounds for Q2, which can be proven using (4).

I Lemma 4. For any A,B ⊆ V , we have

Q(A,B)2 ≥ (π(A)π(B))2 − 2λ(π(A)π(B))3/2(π(Ac)π(Bc))1/2. (5)

In two-sample voting, the probability vertex x adopts the opinion B in one step is
P (x,B)2 = (dB(x)/d(x))2. Given A,B ⊆ V , define the quantity

R(A,B) =
∑
x∈A

π(x)(P (x,B))2.

R(A,B) is the stationary measure π resulting from vertices in set A choosing opinion B in
one round of two-sample voting. We do not require here A and B to be disjoint, so A = B

is possible. The next lemma shows that there is a connection between two-sample voting
and two-step random walks. While two-sample voting does not refer to random walks in any
explicit way, the transition matrix P of a random walk appears in the analysis of this voting
process because of Lemma 5.

I Lemma 5. For any A ⊆ V , we have R(V,A) = Q2(A,A), where Q2 is the flow function
for the two-step transition matrix P 2.

Proof. From definition of R(V,A), reversibility of P and P 2(x, y) =
∑
z∈V P (x, z)P (z, y):

R(V,A) =
∑
x∈V

π(x)P (x,A)2 =
∑
x∈V

π(x)P (x,A)
∑
y∈A

P (x, y)

=
∑
y∈A

π(y)
∑
x∈V

P (y, x)P (x,A) =
∑
y∈A

π(y)P 2(y,A) = Q2(A,A). J

If G is a complete graph (with a loop at each vertex), then R(V,A) = π(A)2 = (|A|/n)2 and
R(A,B) = π(A)π(B)2 = |A| · |B|2/n3. The next two lemmas give bounds on deviations from
these values in regular graphs.

I Lemma 6. For A ⊆ V , we have

|R(V,A)− π(A)2| = |Q2(A,Ac)− π(A)π(Ac)| ≤ λ2π(A)π(Ac). (6)

Proof. By Lemma 5, R(V,A) = Q2(A,A). Also Q2(A,A) = Q2(A, V ) − Q2(A,Ac) =
π(A)−Q2(A,Ac), so

R(V,A)− π(A)2 = π(A)−Q2(A,Ac)− π(A)2 = π(A)π(Ac)−Q2(A,Ac).

Taking the absolute value of both sides gives the first equality in (6). To obtain the inequality,
apply (3) to P 2, Q2 and λ2 as the second largest absolute eigenvalue of P 2. J
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I Lemma 7. Let A,B ⊆ V , then

R(A,B) ≥ Q(A,B)2

π(A) ≥ π(A)π(B)2 − 2λπ(A)1/2π(B)3/2π(Ac)1/2π(Bc)1/2.

Proof. The second inequality is from Lemma 4. From convexity of the function z 7→ z2,

R(A,B) = π(A)
∑
x∈A

π(x)
π(A) (P (x,B))2 ≥ π(A)

(∑
x∈A

π(x)
π(A)P (x,B)

)2

= 1
π(A)Q(A,B)2. (7)

J

Suppose the family of sets C = (A1, . . . , Ak) is a partitioning of V . Define the quantity
SC(A) =

∑k
i=1 R(A,Ai). For a complete graph, SC(V ) =

∑k
i=1 π(Ai)2 and the following

lemma bounds the deviation from this value in regular graphs.

I Lemma 8. Consider a partitioning C = (A1, . . . , Ak) of V . Then∣∣∣∣∣SC(V )−
k∑
i=1

π(Ai)2

∣∣∣∣∣ ≤ λ2

(
1−

k∑
i=1

π(Ai)2

)
.

Proof. Using Lemma 6, we get∣∣∣∣∣SC(V )−
k∑
i=1

π(Ai)2

∣∣∣∣∣ ≤
k∑
i=1

∣∣R(V,Ai)− π(Ai)2∣∣ ≤ λ2

(
1−

k∑
i=1

π(Ai)2

)
. J

I Lemma 9. Let C = (A1, . . . , Ak) be a partitioning of V . For any A ⊆ V ,

SC(A) ≥ π(A)
k∑
i=1

π(Ai)2 − 2λπ(A)1/2
k∑
i=1

π(Ai)3/2, (8)

SC(A) ≤ π(A)
k∑
i=1

π(Ai)2 + 2λπ(A)1/2
k∑
i=1

π(Ai)3/2 + λ2. (9)

Proof. Lemma 7 gives:

SC(A) =
k∑
i=1

R(A,Ai) ≥ π(A)
k∑
i=1

π(Ai)2 − 2λπ(A)1/2π(Ac)1/2
k∑
i=1

π(Ai)3/2, (10)

and Inequality (8) follows. To show Inequality (9), observe that SC(A) + SC(Ac) = SC(V )
and use Lemma 8 and (10) applied to Ac

SC(A) = SC(V )− SC(Ac)

≤ π(A)
k∑
i=1

π(Ai)2 + 2λπ(A)1/2π(Ac)1/2
k∑
i=1

π(Ai)3/2 + λ2

(
1−

k∑
i=1

π(Ai)2

)
. J

4 Proof of Theorem 1

From now on we assume the graph is d-regular, so π(x) = 1/n, and for A ⊆ V , π(A) = |A|/n.
Furthermore, nR(A,B) =

∑
x∈A(dB(x)/d)2 is the expected number of vertices in A which

pick two opinions in B. When clear from the context, we use A instead of |A|.
Let Aj be the set of vertices with opinion j. At any step, the opinions are ordered

according to their sizes: A1 ≥ A2 ≥ . . . ≥ Ak. Thus C = (A1, . . . , Ak) is a partition of V .
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Let A′j be the set of vertices with opinion j after one round. We have the following equality,
where the second term in (11) is the expected weight of vertices changing their opinion to Aj
and the third term is the expected weight of vertices changing their opinion from Aj (using
the measure π as the weight of a set of vertices).

E(π(A′j)|C) = π(Aj) +R(V \Aj , Aj)−
∑
i 6=j

R(Aj , Ai) (11)

= π(Aj) +R(V,Aj)−R(Aj , Aj)−
∑
i 6=j

R(Aj , Ai)

= π(Aj) +R(V,Aj)− SC(Aj). (12)

The next lemma shows that, given a sufficient advantage of opinion 1, after one round of
voting opinion 1 remains the largest opinion. More precisely, the lemma gives lower bounds
on the increase of the size of opinion 1 and on the increase of the advantage of this opinion
over the other opinions.

I Lemma 10. Assume A1 ≤ 2n/3, A1 − A2 ≥ Cn
√

(logn)/A1 (requiring
A1 ≥ C2/3n2/3 log1/3 n), where C = 240

√
2, and λ ≤ (A1 −A2)/(32n). Then with probability

at least 1− 1/n2,

A′1 ≥ A1

(
1 + A1 −A2

5n

)
. (13)

min
2≤j≤k

{
A′1 −A′j

}
≥ (A1 −A2)

(
1 + A1

10n

)
, (14)

Proof. Several times in this proof we use that π(A1) ≤ 2/3, which implies that π(Ac1) ≥ 1/3.
Our proof uses the following Chernoff bounds. If X is the sum of independent Bernoulli
random variables, then for ε ∈ (0, 1) and δ ≥ 1,

Pr(X ≥ (1 + ε)E(X)), Pr(X ≤ (1− ε)E(X)) ≤ exp(−ε2E(X)/3), (15)
Pr(X ≥ (1 + δ)E(X)) ≤ exp(−δE(X)/3). (16)

From Equation (12) and Lemmas 6 and 9, we have the following lower and upper bounds on
E(π(A′j)|C) for any j ∈ [k].

E(π(A′j)|C) = π(Aj) +R(V,Aj)− SC(Aj)
≥ π(Aj) + π(Aj)2 − λ2π(Aj)π(Acj)

−π(Aj)
k∑
i=1

π(Ai)2 − 2λπ(Aj)1/2
k∑
i=1

π(Ai)3/2 − λ2

≥ π(Aj)
(

1 + π(Aj)−
k∑
i=1

π(Ai)2

)
− 2λπ(Aj)1/2π(A1)1/2 − (5/4)λ2. (17)

E(π(A′j)|C) = π(Aj) +R(V,Aj)− SC(Aj)

≤ π(Aj) + π(Aj)2 + λ2π(Aj)π(Acj)− π(Aj)
k∑
i=1

π(Ai)2 + 2λπ(Aj)1/2
k∑
i=1

π(Ai)3/2

≤ π(Aj)
(

1 + π(Aj)−
k∑
i=1

π(Ai)2

)
+ (1/4)λ2 + 2λπ(Aj)1/2π(A1)1/2. (18)
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We have λ ≤ π(A1)/32 and π(A1) ≤ 2/3, by assumption, so (17) and (18) imply

π(A1)/2 ≤ E(π(A′1)|C) ≤ 2π(A1). (19)

Define ε1 =
√

9 logn
E(A′

1|C) ≤
√

18 logn
A1

< 1. Using the Chernoff bounds (15), we get

Pr(A′1 ≤ (1− ε1)E(A′1|C)|C) ≤ e−3 log(n) = n−3. (20)

For a fixed j, 2 ≤ j ≤ k, define εj =
√

9(logn)E(A′1|C)/E(A′j |C) and show the following
bound, using (15), for εj ≤ 1, and (16), for εj ≤ 1.

Pr(A′j ≥ (1 + εj)E(A′j |C)|C) ≤ n−3. (21)

The bounds (20) and (21) imply that with probability at least 1− n−2, for all 2 ≤ j ≤ k,

A′1 −A′j ≥ (1− ε1)E(A′1|C)− (1 + εj)E(A′j |C)

= E(A′1 −A′j |C)− 2
√

9(logn)E(A′1|C), (22)

and thus

π(A′1)− π(A′j) ≥ E(π(A′1)− π(A′j)|C)− 2
√

9(logn)E(π(A′1)|C)
n

. (23)

The right-hand side of (18) is non-increasing with increasing j, so for each 2 ≤ j ≤ k,

E(π(A′j)|C) ≤ π(A2)
(

1 + π(A2)−
k∑
i=1

π(Ai)2

)
+ (1/4)λ2 + 2λπ(A1). (24)

Let ∆ = π(A1)− π(A2). Inequalities (17) and (24) give for each 2 ≤ j ≤ k,

E(π(A′1)− π(A′j)|C) ≥ ∆
(

1 + π(A1) + π(A2)−
k∑
i=1

π(Ai)2

)
− 4λπ(A1)− (3/2)λ2

≥ ∆(1 + π(A1)π(Ac1))− 4λπ(A1)− 2λ2 (25)
≥ ∆ + ∆π(A1)/7. (26)

Inequality (25) holds because
∑k
i=2 π(Ai)2 ≤ π(A2). In the last step we used that π(Ac1) ≥ 1/3

and λ ≤ ∆/32. From (23), (26) and (19), with probability at least 1− n−2,

min
2≤j≤k

{π(A′1)− π(A′j)} ≥ E(π(A′1)− π(A′j)|C)−
ε1

n
E(A′1|C)−

εj
n

E(A′j |C)

≥ ∆
(

1 + π(A1)/7− 6
∆

√
2 logn
n

π(A1).
)
.

By assumption, ∆ ≥ 240
√

2 log(n)/A1, so with probability at least 1− n−2,

min
2≤j≤k

{π(A′1)− π(A′j)} ≥ ∆(1 + π(A1)/10), (27)

and we get we get (14). This also proves that w.h.p. opinion 1 remains the majority opinion.
The order between the other opinions might change.
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To get information about the increase in the number of vertices with opinion 1, we use
Equation (17) with j = 1 and the assumption that λ ≤ ∆/32. We obtain

E(π(A′1)|C) ≥ π(A1)(1 + π(A1)−
k∑
i=1

π(Ai)2)−∆π(A1)/16−∆2/(32)2

≥ π(A1)(1 + π(A1)− π(A1)2 − π(A2)π(Ac1)−∆/16−∆/(32)2)
> π(A1)(1 + ∆/4). (28)

By using Chernoff bounds (15) with ε =
√

9 logn
E(A′

1|C) and Inequalities (28) and (19), with
probability at least 1− n−2,

A′1 ≥ A1(1 + ∆/4)−
√

E(A′1|C)9 logn ≥ A1(1 + ∆/4)−
√

18A1 logn

= A1(1 + ∆/4− 3
√

2
√

logn/A1)). (29)

From the assumptions of the lemma, we have ∆/20 = (A1 − A2)/(20n) ≥ 3
√

2
√

logn/A1.
Therefore (29) implies A′1 ≥ A1(1 + ∆/5), which is the same as (13). J

I Lemma 11. Assume A1 ≤ 2n/3, A1 − A2 ≥ Cn
√

(logn)/A1 and λ ≤ (A1 −A2)/(32n).
With probability at least 1 − 1/n, after at most O((n/A1) log(A1/(A1 − A2))) rounds, the
number of vertices with opinion 1 is at least 2n/3.

Proof. We apply Lemma 10 to consecutive rounds until the size of opinion 1 reaches 2n/3.
Since w.h.p. the difference between the size of opinion 1 and the size of the second largest
opinion increases, our assumption about λ in Lemma 10 is maintained from round to round.
If the ordering of the opinions according to size changes at any step t, we relabel the opinions
so that A1(t) ≥ A2(t) · · · ≥ Ak(t). Lemma 10 implies that w.h.p. opinion 1 remains the
largest opinion, and thus never relabeled.

Denote by x(i) the fraction of vertices with opinion 1 at the end of round i, and by y(i)
the difference between the fraction of vertices with opinion 1 and the fraction of vertices
with the second largest opinion. Thus x(0) = π(A1), and y(0) = ∆ = π(A1)− π(A2) < x(0).
By (13) and (14) and induction on the number of rounds, with probability at least 1− 1/n,
for each round 1 ≤ i ≤ n, if x(i) < 2/3, then

x(i) ≥ x(i− 1)(1 + y(i− 1)/5), (30)
y(i) ≥ y(i− 1)(1 + x(i− 1)/10). (31)

Iterating (30) and (31) for j = d10/x(0)e < n rounds, we get y(j) ≥ 2y(0) and x(j) ≥
x(0) + y(0), or x(i) ≥ 2/3 for some i ≤ j. Repeating this r = dlog2(x(0)/y(0))e times, we get
for round i1 = rj < n, y(i1) ≥ x(0) and x(i1) ≥ x(0) + y(0) + 2y(0) + 4y(0) · · ·+ 2r−1y(0) ≥
2x(0), or x(i) ≥ 2/3 for some i ≤ i1.

If for some q ≥ 1, y(iq) ≥ 2q−1x(0) and x(iq) ≥ 2qx(0), or x(i) ≥ 2/3 for some
i ≤ iq, then at the end of round iq+1 = iq + d10/(2qx(0))e, either y(iq+1) ≥ 2qx(0) and
x(iq+1) ≥ 2q+1x(0), or x(i) ≥ 2/3 for some i ≤ iq+1, or iq+1 > n. Taking q = dlog2(1/x(0))e,
we have iq = O((1/x(0)) log(x(0)/y(0))) = O((n/A1) log(A1/(A1 − A2))) (observe that
iq < n) and 2qx(0) ≥ 1, so we must have x(i) ≥ 2/3 for some i ≤ x(iq). J

When the largest opinion reaches the size 2n/3, it will take over the whole graph within
additional O(logn) rounds. The progress of voting in this final stage would be slowest, if all
minority opinions were joined together into a single “second” opinion. The next lemma can
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13:12 Fast Plurality Consensus in Regular Expanders

be proven in the similar way as it is proven in [14] that two-sample voting finishes in O(logn)
rounds, if there are two opinions, the majority opinion has size at least cn, for a constant
c > 1/2, and λ is sufficiently small. Theorem 1 follows immediately from Lemmas 11 and 12.

I Lemma 12. Let G be a connected regular graph with λ ≤ 1/4. If the majority opinion has
size at least 2n/3, then with probability at least 1− n−2, the voting finishes within O(logn)
rounds.

5 Reducing Three-sample voting to Two-sample voting

In the three-sample voting process considered in [4], each vertex v samples in each round
three random neighbours with replacement, collecting their opinions, say, Yv,1, Yv,2, Yv,3.
Vertex v changes its opinion to the majority of {Yv,1, Yv,2, Yv,3}, or, if there is no majority,
to Yv,1. We show that our analysis of two sampling applies, with small modifications, also to
three sampling, giving the same bounds as in Theorem 1. The crucial idea is to view the
three sampling process in the following equivalent way.

Suppose in a given round we have k opinions, let C = (A1, A2, . . . , An) be the partition
of the vertices into the opinion classes and let A′j be the vertices with opinion j at the next
round. Each verstex v decides on its opinion for the next round in the following way. First, v
takes on the opinion Yv,1. Let A′′j , 1 ≤ j ≤ k, be the opinion classes after this initial updates.
Now v obtains its final opinion by the two-sampling decision using opinions Yv,2, Yv,3 (taken
in the original partition C). Observe that classes A′′j result from choosing only one (random)
vertex, that is, they are obtained by one round of the standard (single-sample and slow) pull
voting. While the sizes of opinions may change in one round of the standard pull voting,
the expected sizes are equal to the initial sizes; see, for example [22]. That is, we have
E(π(A′′j |C)) = π(Aj).

The following lemma implies that the analysis of two-sample voting can be updated to
three-sample voting by putting E(SC(A′′j )|C) in place of SC(Aj) and using the bounds (33)
and (34) on E(SC(A′′j )|C), which are exactly the same as the bounds on SC(Aj) in Lemma 9.
The proof of the lemma and further details will be included in the full version of the paper.

I Lemma 13. Let G be a connected graph and let C = (A1, . . . , Ak) partition V . Then

E(π(A′j)|C) = π(Aj) +R(V,Aj)−E(SC(A′′j )|C), (32)

E(SC(A′′j )|C) ≥ π(Aj)
k∑
i=1

π(Ai)2 − 2λπ(Aj)1/2
k∑
i=1

π(Ai)3/2, (33)

E(SC(A′′j )|C) ≤ π(Aj)
k∑
i=1

π(Ai)2 + 2λπ(Aj)1/2
k∑
i=1

π(Ai)3/2 + λ2. (34)

If C = (A,B), then E(SC(B′′)|C) ≥ π(B)/2.

6 Algorithm Pushy and Proof of Theorem 3

We describe a push-voting algorithm for reaching consensus on a graph G.

Algorithm Pushy
Repeat L times
begin

Each vertex activates with probability p and sends its opinion to all neighbours
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Each vertex keeps a tally of how many opinions of each type it has received
Let M(v) be the set of opinions received by v which have the maximal count

If |M(v)| ≥ 1, vertex v picks an opinion u.a.r. from M(v)
If |M(v)| = 0 (i.e. v has not received any opinion), v keeps its current opinion

end

The following lemma rephrases Theorem 3.

I Lemma 14. Let G = Kn and p = α logn/n, for a sufficiently large constant α > 0. Then
with probability 1− o(1), after L = 4 rounds there is a unique remaining opinion, irrespective
of the initial number and distribution of opinions.

Proof. On the complete graph Kn, for each round, the sets M(v) ≡M are the same for all
vertices. Consider one round and let m = |M |. The expected number of activated vertices
is α logn and the actual number is concentrated around this value (see (15)), so w.h.p. at
least one but fewer than β logn vertices activate in this round, where β = β(α) is a constant
sufficiently larger than α. Thus w.h.p. 1 ≤ m < β logn. If n vertices pick u.a.r. from the set
M , then w.h.p. each opinion i is chosen Ni = (1 + o(1))n/m times (use again (15)). Thus
w.h.p. the number of opinions in the next round is k = m < β logn.

Consider now a round j ≥ 2 with the number of opinions k ≥ 2 (no consensus yet).
We have w.h.p. 2 ≤ k < β logn and each opinion i is represented by Ni = (1 + o(1))n/k
vertices. We will upper bound m, which is the number of opinions with the maximal number
of activations, giving the number of opinions for the next round. The number of activations
of opinion i is a binomial random variable Xi ∼ Bin(Ni, p) independent of any other opinion.
Henceforth we use X and N = (1 + o(1))n/k to denote Xi and Ni. We use the inequalities
for binomial probabilities given below, which hold as follows: (35) for any h, (36) for h > Np,
(37) for h > Np, h = o(

√
N), hp = o(1) and θ = (1 +O(1/h) +O(h2/N))/

√
2π.

Pr(X = h) ≤ 1/
√
Np(1− p), (35)

Pr(X = h) ≤ Pr(X ≥ h) ≤ Pr(X = h) ·
(

1− N − h
h+ 1

p

1− p

)−1
, (36)

Pr(X = h) =
(
N

h

)
ph(1− p)N−h = θ√

h

(
eNp

h

)h
e−Np. (37)

We consider the following four cases, where ω = (log logn)/ log log logn.
C1: (β logn)/ω ≤ k < β logn,
C2: (logn)/ log logn ≤ k < (β logn)/ω,
C3: β(logn)1/6 ≤ k < (logn)/ log logn,
C4: 2 ≤ k < β(logn)1/6.

Case C1: (β logn)/ω ≤ k < β logn. Let h = (11/12)ω = (11/12)(log logn)/ log log logn.
Referring to (36) and recalling that β is sufficiently larger than α,

N − h
h+ 1

p

1− p ≤ (1 + o(1))Np
h
≤ (1 + o(1)) α

(11/12)β < 1/2.

Thus from (36), Pr(X ≥ h) ≤ 2 ·Pr(X = h).
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Let N = (1 + o(1))n/k, p = f/n where f = α logn. Let k = (logn)/σ where 1/β ≤ σ ≤
ω/β. Using (37),

Pr(X = h) = θ√
h

(ne
kh
p
)h
e−np/k = θ√

h

(
ef

hk

)h
e−f/k = θ√

h

(eασ
h

)h
e−ασ

= θ exp
(
−ασ − h log

(
h

eασ

)
− (1/2) log h

)
= θ exp

(
−h log h

(
1 + ασ

h log h + 1
2h −

log(eασ)
h log h

))
= exp (−h log h (1 + o(1)))

= (logn)−(11/12)(1+o(1)) = ρ.

The probability that no opinion is represented at least h times is (1 − ρ)k = o(1). The
expected number of opinions represented at least h times is kPr(X ≥ h), and

kPr(X ≥ h) ≤ 2kPr(X = h) = O(logn)(1/12)(1+o(1)) = o((logn)1/6).

Thus with probability 1− o(1), there is an opinion activated at least h times and the number
m of opinions with the maximal number of activations (that is, the number of opinions for
the next round) is less than β(logn)1/6. That is, in the next round we will have Case C4 or
k = 1.

Case C2: (logn)/ log logn ≤ k < (β logn)/ω. For any h, using (35),

Pr(X = h) ≤ 1√
np/k

= 1√
ωα/β

.

Let j = kγ/
√
ω, where γ ≥ 3e

√
B/A. The probability that more than j opinions are

transmitted the same (maximum) number of times is at most(
k

j

)(
1√
ωα/β

)j−1

≤ O(
√
ω)
(
ke

j

)j ( 1√
ωα/β

)j
= O(

√
ω) e−j = o(1).

Thus the number of opinions in the next round will be j = o(logn/ log logn), with probability
1− o(1). That is, in the next round we will have Case C3 or Case C4 or k = 1.

Case C3: β(logn)1/6 ≤ k < (logn)/(log logn). For Np ≥ α log logn, using (36) and
(37),

Pr(X ≥ eNp) ≤ O(1)√
Np

e−Np = o(1)
(logn)α ,

so with probability 1− o(1) all opinions are transmitted at most eNp times. For h = DNp,
D > 1, by direct calculation

Pr(X = h+ 1)
Pr(X = h) = p

1− p
N − h
h+ 1 = (1 + o(1)) 1

D
.

As Pr(X ≥ E(X)) = γ for some γ > 0 constant, it follows that with probability 1−o(1) there
exists 1 < D < e such that and for h = DNp, the expected number of opinions activated at
least h times is

kPr(X ≥ h) = Θ((logn)1/7).

Thus with probability 1−o(1), the number of opinions with the maximal number of activations
is at most β(logn)1/7. That is, in the next round we will have Case C4 or k = 1.
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Case C4: 2 ≤ k < β(logn)1/6. Using (35) with Np = Ω((logn)5/6), we get

Pr(X = h) = O
(

1/(logn)5/12
)
.

Let Xi be the number of activated vertices of opinion i = 1, . . . , k, then

Pr(∃(i, j) s.t. Xi = Xj) = O

(
k2

(logn)5/12

)
= O

(
1

(logn)1/12

)
= o(1),

so, with probability 1− o(1), a unique maximum opinion remains, that is, k = 1 in the next
round.

The probability that no vertex activates in one round is (1− p)n = O(n−α). Thus after 4
rounds (if Case C2, then no C3 or C4) a unique opinion remains with probability 1−o(1). J

References
1 D. Aldous. Meeting times for independent Markov chains. Stochastic Processes and their

Applications 38(2):185–193, (1991).
2 D. Aldous and J. Fill. Reversible Markov Chains and Random Walks on Graphs, http:

//stat-www.berkeley.edu/pub/users/aldous/RWG/book.html.
3 L. Becchetti, A. Clementi, E. Natale, F. Pasquale and R. Silvestri. Plurality consensus in

the gossip model. SODA 2015, pages 371–390.
4 L. Becchetti, A. Clementi, E. Natale, F. Pasquale, R. Silvestri and L. Trevisan. Simple

dynamics for plurality consensus. In Proceedings of the 26th ACM symposium on Parallelism
in Algorithms and Architectures (SPAA 2014), pages 247–256, (2014).

5 L. Becchetti, A.E.F. Clementi, E. Natale, F. Pasquale and L. Trevisan. Stabilizing Con-
sensus with Many Opinions. SODA 2016, pages 620–635.

6 P. Berenbrink, A.E.F. Clementi, R. Elsässer, P. Kling, F. Mallmann-Trenn, E. Natale.
Ignore or Comply?: On Breaking Symmetry in Consensus. PODC 2017, pages 335–344.

7 P. Berenbrink, Tom .Friedetzky, G. Giakkoupis, P. Kling. Efficient Plurality Consensus, Or:
the Benefits of Cleaning up from Time to Time. ICALP 2016, pages 136:1-136:14.

8 P. Berenbrink, T. Friedetzky, P. Kling, F. Mallmann-Trenn and C. Wastell. Plurality Con-
sensus in Arbitrary Graphs: Lessons Learned from Load Balancing. In Proceedings of the
24th Annual European Symposium on Algorithms, (ESA 2016), pages 10:1–10:18, (2016).

9 S. Brahma, S. Macharla, S. P. Pal, S. R. Singh. Fair Leader Election by Randomized Voting.
In ICDCIT 2004, pages 22–31, (2004).

10 A. Broder, A. Frieze, S. Suen and E. Upfal. Optimal construction of edge disjoint paths in
random graphs. SIAM Journal on Computing, 28(2), pages 541–573, (1999).

11 C. Cooper, M.E. Dyer, A.M. Frieze, N. Rivera. Discordant Voting Processes on Finite
Graphs. ICALP 2016, pages 145:1–145:13.

12 C. Cooper, R. Elsässer, H. Ono, T. Radzik. Coalescing Random Walks and Voting on
Connected Graphs. SIAM Journal of Discrete Math, 27, pages 1748–1758, (2013).

13 C. Cooper, R. Elsässer and T. Radzik. The power of two choices in distributed voting,
ICALP 2014, pages 435–446, (2014).

14 C. Cooper, R Elsässer, T. Radzik, N. Rivera and T. Shiraga. Fast consensus for voting
on general expander graphs. In DISC 2015 – 29th International Symposium on Distributed
Computing, Springer-Verlag LNCS 9363, pages 248–262. (2015).

15 J. T. Cox. Coalescing random walks and voter model consensus times on the torus in Zd.
The Annals of Probability 17(4):1333–1366, (1989).

16 X. Deng and C. Papadimitriou. On the Complexity of Cooperative Solution Concepts.
Mathematics of Operations Research 19, pages 257–266, (1994).

DISC 2017

http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html
http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html


13:16 Fast Plurality Consensus in Regular Expanders

17 R. Elsässer, T. Friedetzky, D. Kaaser, F. Mallmann-Trenn and H. Trinker. Rapid Asyn-
chronous Plurality Consensus. arXiv:1602.04667, February 2017.

18 J. Friedman. A proof of Alon’s second eigenvalue conjecture. In STOC 2003: Proc. 35th
Annual ACM Symposium on Theory of Computing, pages 720–724, (2003).

19 M. Ghaffari and J. Lengler. Tight Analysis for the 3-Majority Consensus Dynamics.
arXiv:1705.05583, May 2017.

20 M. Ghaffari and M. Parter. A Polylogarithmic Gossip Algorithm for Plurality Consensus. In
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing (PODC
2016), pages 117–126, (2016).

21 D. Gifford. Weighted Voting for Replicated Data. In SOSP 1979: Proceedings of the 7th
ACM Symposium on Operating Systems Principles, pages 150–162, (1979).

22 Y. Hassin and D. Peleg. Distributed probabilistic polling and applications to proportionate
agreement. Information & Computation, 171, pages 248–268, (2001).

23 B. Johnson, Design and Analysis of Fault Tolerant Digital Systems, Addison-Wesley, (1989).



Meeting in a Polygon by Anonymous Oblivious
Robots∗

Giuseppe A. Di Luna1, Paola Flocchini2, Nicola Santoro3,
Giovanni Viglietta4, and Masafumi Yamashita5

1 University of Ottawa, Ottawa, Canada
gdiluna@uottawa.ca

2 University of Ottawa, Ottawa, Canada
paola.flocchini@uottawa.ca

3 Carleton University, Ottawa, Canada
santoro@scs.carleton.ca

4 University of Ottawa, Ottawa, Canada
gvigliet@uottawa.ca

5 Kyushu University, Fukuoka, Japan
mak@inf.kyushu-u.ac.jp

Abstract
The Meeting problem for k ≥ 2 searchers in a polygon P (possibly with holes) consists in making
the searchers move within P , according to a distributed algorithm, in such a way that at least
two of them eventually come to see each other, regardless of their initial positions. The polygon is
initially unknown to the searchers, and its edges obstruct both movement and vision. Depending
on the shape of P , we minimize the number of searchers k for which the Meeting problem is
solvable. Specifically, if P has a rotational symmetry of order σ (where σ = 1 corresponds to no
rotational symmetry), we prove that k = σ + 1 searchers are sufficient, and the bound is tight.
Furthermore, we give an improved algorithm that optimally solves the Meeting problem with
k = 2 searchers in all polygons whose barycenter is not in a hole (which includes the polygons
with no holes). Our algorithms can be implemented in a variety of standard models of mobile
robots operating in Look-Compute-Move cycles. For instance, if the searchers have memory but
are anonymous, asynchronous, and have no agreement on a coordinate system or a notion of
clockwise direction, then our algorithms work even if the initial memory contents of the searchers
are arbitrary and possibly misleading. Moreover, oblivious searchers can execute our algorithms
as well, encoding information by carefully positioning themselves within the polygon. This code
is computable with basic arithmetic operations (provided that the coordinates of the polygon’s
vertices are algebraic real numbers in some global coordinate system), and each searcher can
geometrically construct its own destination point at each cycle using only a compass. We stress
that such memoryless searchers may be located anywhere in the polygon when the execution
begins, and hence the information they initially encode is arbitrary. Our algorithms use a self-
stabilizing map construction subroutine which is of independent interest.
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1 Introduction

1.1 Framework
Consider a set of k ≥ 2 autonomous mobile robots, modeled as geometric points located in a
polygonal enclosure P , which may contain holes. The boundary of P limits both visibility
and mobility, in that robots cannot move or see through the edges of P . Each robot observes
the visible portion of P (taking an instantaneous snapshot of it), executes an algorithm to
compute a visible destination point, and then moves to that point. Such a Look-Compute-
Move cycle is repeated forever by every robot, each time taking a new snapshot and moving
to a newly computed point. In this paper we study the Meeting problem, which prescribes
the k robots to move in such a way that eventually at least two of them come to see each
other and become “mutually aware”. We will refer to these robots as P -searchers, or simply
searchers.

Our searchers are severely limited, which makes the Meeting problem harder to solve.
They do not know the shape of P in advance, nor their whereabouts within P . They are
anonymous, implying that they all execute the same algorithm to determine their destination
points. They are oblivious, meaning that each destination point is computed based only on
the last snapshot taken, while older snapshots are forgotten, and no memory is retained
between cycles. They are deterministic, meaning that they cannot resort to randomness
in their computations. They are asynchronous, in the sense that we make no assumptions
on how fast each searcher completes a Look-Compute-Move cycle compared to the others
(these parameters are dynamic and are controlled by an adversarial scheduler). They are
disoriented, which means that they have no magnetic compasses, GPS devices, or agreements
of any kind. Each searcher has its own independent local orientation, unit of length, and
handedness. They are silent, in that they cannot communicate with one another in any way.
They have arbitrary initial locations within P .

In real-life applications, being in line of sight may allow robots to communicate in
environments where non-optical means of communication are unavailable or impractical [22].
Solving the Meeting problem is also a necessary preliminary step to more complex tasks,
such as space coverage [23] or the extensively studied Gathering problem, where all k robots
have to physically reach the same point and stop there. In the special case of k = 2 robots,
the Gathering problem is also called Rendezvous problem. Clearly, the terminating condition
of the Meeting problem is more relaxed than that of Gathering; hence, any solution to the
Gathering problem would also solve Meeting. Unfortunately, no solution to the Gathering
problem in the setting considered here exists in the literature (see Section 1.4), and to the
best of our knowledge there are no previous results on the Meeting problem.

In fact, given our searchers’ many handicaps, and especially their lack of memory and
orientation, it is hard to see how they could solve any non-trivial problem at all. Nonetheless,
in this paper we will present the surprising result that the Meeting problem is solvable in
almost every polygon, even for k = 2 searchers. Moreover, with the addition of a simple
synchronization phase, our Meeting algorithms can be turned into Rendezvous algorithms,
as we will discuss in Section 5.

1.2 Techniques
Since our searchers are disoriented and have no kind of a-priori agreement, they must use
the geometric features of P to implicitly agree on some “landmarks” which can help them in
their task. In order to identify such landmarks, each searcher has to visit P and construct a
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map of it. But this cannot be done straightforwardly, because searchers are oblivious, and
they forget everything as soon as they move. To cope with this handicap, they carefully
move within P in such a way as to implicitly encode information as their distance from the
closest vertex.

This positional encoding technique poses some obvious difficulties. First, it greatly limits
the freedom of the searchers: they have to do precise movements to encode the correct
information, and still manage to visit all of P and update the map as they go. Second, since
searchers can be located anywhere in P when the execution starts, they could be implicitly
encoding anything. This includes misleading information, such as a false map of P that
happens to be locally coherent with the surroundings of the searcher. Therefore, a searcher
can never rely on the information it is implicitly encoding, but it must constantly re-visit
the entire polygon to make sure that the map it is encoding is correct.

Hence, searchers cannot simply agree on a landmark and sit on it waiting for one
another, because that would prevent them from re-visiting P . This inconvenience drastically
complicates the Meeting problem, and forces the searchers to follow relatively complicated
movement patterns that make at least two of them necessarily meet.

There is also a subtle problem with the actual encoding of complex data as the distance
from a point, which is a single real number. One could naively pack several real numbers
into one by interleaving their digits, but this encoding would not be computable by real
random-access machines [3]. Hence, we propose a more sophisticated technique, which only
requires basic arithmetic operations. Such a technique can substitute the naive one under
the reasonable assumption that the vertices of P be points with algebraic coordinates (as
expressed in some global coordinate system, which is not necessarily the local one of any
searcher).

1.3 Our Contributions
We prove that the Meeting problem in a polygon P can be solved by k = σ + 1 searchers,
where σ is the order of the rotation group of P (which is also called the symmetricity of P ).
We also give a matching lower bound, showing that there are polygons of symmetricty σ
where σ searchers cannot solve the Meeting problem.

Then, since all our lower-bound examples are polygons with a hole around the center, we
wonder if the Meeting problem can be solved by fewer searchers if we exclude this small class
of polygons. Surprisingly, it turns out that in all the remaining polygons only two searchers
are sufficient to solve the Meeting problem. In particular, these include all the polygons with
no holes.

Additionally, searchers can geometrically construct their destination points with a compass,
provided that the vertices of P are algebraic points. Equivalently, searchers only have to
compute combinations of basic arithmetic operations and square root extractions on the
coordinates of the visible vertices of P . This is done via an encoding technique of independent
interest, which we apply to mobile robots for the first time.

As a subroutine of our algorithms, we employ a self-stabilizing map construction algorithm
that is of independent interest, as well.

In Section 2, we formally define all the elements of the Meeting problem. In Section 3,
we consider the Meeting problem for searchers equipped with an unlimited amount of
persistent internal memory whose initial contents can be arbitrary (hence also “incorrect”).
This simplification allows us to present “cleaner” versions of our algorithms, which are not
burdened by the technicalities of our positional encoding method. In Section 4, we present our
encoding technique and we show how to apply it to the Meeting algorithms of Section 3, thus
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extending our results to oblivious searchers. Finally, in Section 5 we discuss complementary
results and directions for further research. Among other things, we briefly explain how to
convert our Meeting algorithms into Rendezvous algorithms.

1.4 Related Work
The Gathering problem has been extensively studied in several contexts [1, 16]. The literature
can be divided into works considering robots in a geometric space, and works considering
agents on a graph [1, 11, 14]. The works on Gathering in the plane, which are more related to
our setting, pertain to robots that inhabit an unbounded plane where no extraneous objects
can block visibility or movement [2, 7, 12, 15, 18, 19]. In particular, none of these results
considers robots in a polygon.

The work that is most relevant to ours is represented by a series of papers on Rendezvous
and approximate Rendezvous by two robots in polygons or more general planar enclosures [9,
10, 11, 13]. The authors show how to guarantee that the two robots’ trajectories will intersect
(or get arbitrary close to each other in case of approximate rendezvous) within finite time, in
spite of a powerful adversary that controls the speed and the movements of the robots on
their trajectories. However, termination happens implicitly: the robots are not necessarily
aware of each other’s presence, and Rendezvous is considered solved even if they are both
moving. Moreover, none of these papers considers oblivious robots, and none of them allows
the initial memory contents of the robots to be arbitrary. Both are simplifications of the
problem, because they allow robots to implicitly agree on a single landmark and just move
there.

Other mildly related works consider robots searching for an intruder in a polygon [27, 28],
robots in an empty plane that obstruct each other’s view, whose task is to become all
mutually visible [20, 24, 25], robots tasked with constructing a map of the visibility graph
of a polygon [4, 5, 6], and a static version of the Meeting problem called the hidden set
problem [26].

The issue of defining a model of computation for mobile robots has hardly ever been
addressed in the relevant literature. It is nonetheless interesting to establish what destination
points are computable by mobile robots, and what it means for them to compute a point. To
the best of our knowledge, only two papers deal with this problem [7, 17], explicitly rejecting
transcendental functions and deeming them not intuitively computable. Interestingly, other
papers, such as [9], allow robots to compute transcendental functions.

Another contribution of this paper is a formal definition of the concept of computability
for mobile robots (see the beginning of Section 4.2). Accordingly, all of our geometric
constructions can be performed with a compass.

2 Definitions

A polygon in the Euclidean plane R2 is a non-empty, bounded, connected, and topologically
closed 2-manifold whose boundary is a finite collection of line segments. The vertices, edges,
and diagonals of a polygon are defined in the standard way, as well as the notion of adjacency
between vertices. One connected component of a polygon’s boundary, called the external
boundary, encloses all others, which are called holes. We say that a point p ∈ P sees a point
q ∈ P (or, equivalently, that q is visible to p) if the line segment pq lies in P .

If a polygon has an axis of symmetry, we say that it is axially symmetric. The largest
integer σ such that rotating a polygon around its barycenter by 2π/σ radians leaves it
unchanged is called the symmetricity of the polygon. In other words, the symmetricity is the
order of the rotation group of the polygon. If σ > 1, the polygon is said to be rotationally
symmetric.
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If P is a polygon, by P -searcher we mean an anonymous robot represented by a point
in P , which, informally, can observe its surroundings and move within P . The technical
specifications of our searchers have been listed in Section 1.1. We remark that each searcher’s
snapshots are expressed in its own local reference system, which is a Cartesian system of
coordinates with the searcher’s current location as the origin. A searcher’s local coordinate
system translates as the searcher moves (to keep the searcher’s location at the origin), but it
retains its orientation, scale, and handedness.

We say that two P -searchers are mutually aware at some point in time if they have seen
each other during their most recent Look phases. That is, if searcher s1 sees searcher s2
during a Look phase at time t1, s2 sees s1 during a Look phase at time t2 ≥ t1, and neither s1
nor s2 performs another Look phase in the time interval (t1, t2), then s1 and s2 are mutually
aware at time t2 (and they remain mutually aware until s1 performs a Look phase without
seeing s2, or vice versa). A very similar notion of mutual awareness has been defined in [21].

Given a team of P -searchers, the Meeting problem prescribes that at least two of them
become mutually aware. More precisely, the Meeting problem for k searchers in P is solvable
if there exists an algorithm A such that, if all k searchers execute A during all their Compute
phases, at least two of them eventually become mutually aware, regardless of how the
searchers are initially laid out in P , and regardless of how the scheduler decides to control
their behavior. Occasionally, we will say that two searchers meet, as a synonym of becoming
mutually aware.

In Section 3, we are going to assume that each searcher has an unlimited amount of
persistent internal memory, which can be read and updated by the searcher during each
Compute phase, and is retained for use in later Compute phases. The initial contents of the
internal memory of each searcher are arbitrary, and possibly “incorrect”. In Section 4, we
will drop the persistent memory requirements, and we will extend our algorithms to oblivious
searchers, whose computations only rely on the single snapshot taken in the most recent
Look phase, and whose internal memory is erased during each Move phase.

3 Algorithms and Correctness

3.1 General Algorithm
First we give a lower bound on the minimum number of searchers required to solve the
Meeting problem in a polygon. Our bound is in terms of the polygon’s symmetricity.

I Theorem 1. For every integer σ > 0, there exists a polygon with symmetricity σ in which
σ (or fewer) searchers cannot solve the Meeting problem.

Proof. If σ = 1, the statement is trivial. If σ > 1, we construct a polygon with symmetricity
σ shaped as a σ-pointed star with one large hole almost touching the external boundary,
as shown in Figure 1. We then arrange σ′ ≤ σ searchers and orient their local coordinate
systems in a symmetric fashion, as in Figure 1. Now, let the initial memory contents of all
the searchers be equal, and suppose that the scheduler always activates them synchronously.
By the rotational symmetry of our construction, each searcher gets an identical snapshot of
the polygon, and therefore all searchers compute symmetric destination points and modify
their memory in the same way. This holds true at every cycle, and so, by induction, the
searchers will always be found at σ′ symmetric locations throughout the execution. Note
that our polygon has the property that no two of its points whose angular distance (with
respect to the barycenter) is a multiple of 2π/σ can see each other. Hence, no matter what
algorithm the searchers are executing, no two of them will ever be mutually aware. J
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Figure 1 Constructions used in Theorem 1 for σ = 2 and σ = 5.

Algorithm 1 Meeting algorithm for general polygons.
Persistent variables
SnapshotList
Action
Direction
Polygon
PivotPoint

Procedure Compute (Snapshot)
if Snapshot contains no other searcher then

Append Snapshot to SnapshotList
if SnapshotList is inconsistent or (Action = PATROL and PivotPoint is not consistent with Polygon) then

SnapshotList := Snapshot
Action := EXPLORE

if Action = EXPLORE then
U := Extract unvisited vertices from SnapshotList
if U 6= ∅ then

v := First vertex of U
Move to the next vertex in a shortest path to v

else
Action := PATROL
Direction := CLOCKWISE
Polygon := Extract polygon from SnapshotList
S := Set of axes of symmetry of Polygon
if S = ∅ then

C := Select a rotation class of vertices of Polygon in a similarity-invariant way
PivotPoint := Select any vertex in C

else
S′ := Select a class of equivalent axes in S in a similarity-invariant way
` := Select any axis in S′

C := Select a class of points of ` on the boundary of Polygon in a similarity-invariant way
PivotPoint := Select any point in C

Augment Polygon using PivotPoint as pivot in a similarity-invariant way to make it simply connected
if Action = PATROL then

if I am in PivotPoint then
Invert Direction

Move to the next vertex of Polygon, following its boundary in the direction stored in variable Direction

Next we will prove that the bound of Theorem 1 is tight, and hence σ + 1 searchers
are optimal. We do so by giving a Meeting algorithm called Algorithm 1, which works by
constructing a map of the polygon in a self-stabilizing way. This algorithm assumes that
searchers have unlimited memory, and hence they can store the entire history of the snapshots
they have taken since the beginning of the execution. In Section 4, we will show how to drop
this requirement and apply our algorithms to oblivious searchers.

By definition, the Meeting problem is solved when two searchers become mutually aware.
So, in our algorithm, whenever a searcher sees another searcher, it stays idle for a cycle and
waits to be noticed (which does not necessarily happen, since the second searcher may be in
the middle of a Move phase and disappear shortly after). Let P be the polygon in which
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ℓ pivot

Figure 2 Augmenting an axially symmetric polygon and defining a tour of its boundary.

the searchers are located. Since the initial memory contents may be incorrect, if a searcher
notices a discrepancy between the current snapshot of P and the history of snapshots stored
in memory, it forgets everything and restarts the execution from wherever it is.

As observed in Section 1.2, each searcher must keep re-visiting every part of the boundary
of P . Hence, our main algorithm is divided into two phases: EXPLORE and PATROL.
Roughly speaking, in the EXPLORE phase, a searcher visits all vertices of P ; in the PATROL
phase, it moves back and forth along the boundary of P , searching for a companion. The
EXPLORE phase is relatively simple: as the searcher explores new vertices, it keeps track of
the ones that it has seen but not visited. Then it picks the first of such vertices and moves
to it along a shortest path.

For the PATROL phase, the searcher must first choose a pivot point of P , which is the
point where the searcher changes direction as it patrols P ’s boundary. It also has to cope
with the fact that the boundary of P may not be connected, since P may have holes. The
pivot point is always chosen on the boundary of P and on a symmetry axis of P , if one
exists. It is also chosen in a similarity-invariant way, meaning that the selection algorithm
should not depend on the scale, rotation, position, and handedness of P , but it should be
a deterministic algorithm that only looks at angles between vertices and ratios between
segment lengths. This is to guarantee that all searchers that have a correct picture of P in
memory (expressed in their respective local coordinates systems) will select pivot points that
are equivalent up to similarity.

Once a searcher has selected a pivot point, it adds some “artificial” edges to P in order
to make it simply connected, i.e., remove all its holes. This may be impossible to do in a
similarity-invariant way, so the pivot point is used to determine how symmetries are broken.
An example of this construction is illustrated in Figure 2, where the polygon is symmetric
and therefore the additional edges are symmetric, as well.

As a result of cutting P along these segments, we obtain a degenerate simply connected
polygon P̃ . It is now possible to perform a tour of the boundary of P̃ , as shown in Figure 2.
The PATROL phase of our algorithm consists in taking a tour of P̃ and switching direction
(from clockwise to counterclockwise and vice versa) every time the pivot point is reached. So,
all vertices of P are perpetually visited in some fixed order, then in the opposite order, and
so on. At any time, the searcher can always determine its next destination vertex based on
the history of snapshots stored in memory.

I Theorem 2. There is an algorithm that, for every integer σ > 0, solves the Meeting
problem with σ + 1 searchers (regardless of their initial memory contents) in every polygon
with symmetricity σ.
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Proof. We will show that Algorithm 1 correctly solves the Meeting problem for σ+1 searchers
in any polygon P with symmetricity σ. Since the initial memory contents of a searcher
may be incorrect, when a searcher notices a discrepancy between the current observation
and a previous observation, it erases its own memory and restarts the execution. The same
happens if it realizes that the pivot point it has chosen does not match the polygon. From
that point onward, the searcher’s memory will only contain correct information, and the
execution will never be restarted again. Hence, in the following, we will assume that no such
discrepancy is ever discovered, and therefore the execution is never restarted.

In the EXPLORE phase, a searcher moves to all the discovered but not yet visited vertices
of P , until there are none left. This indeed lets the searcher discover all vertices of P , due to
the connectedness of its visibility graph (which is the graph on the set of vertices of P whose
edges are the edges and diagonals of P ). This means that eventually the searcher will have a
complete and coherent representation of some polygon in memory. If this representation is
incorrect, the searcher will eventually find out during the PATROL phase, when it re-visits
all vertices of P .

We can therefore assume without loss of generality that, at some point, all searchers are
in the PATROL phase, and all have a correct representation of P in memory. Since the pivot
point is chosen by each searcher in a similarity-invariant way, there are only σ points that
can possibly be elected as pivots. By the pigeonhole principle, there are two searchers that
have the same pivot point. So, both searchers will perform a clockwise tour of the boundary
of P̃ , touching all of its vertices is some fixed order, followed by a counterclockwise tour,
touching all vertices in the opposite order, and so on. Since they both turn around at the
same pivot point, they do the same tour. As a consequence, they become mutually aware by
the time one of them has completed a full tour, thus solving the Meeting problem. J

We emphasize that, if a searcher were tasked to construct a map of P , it could do so
by simply executing the above algorithm indefinitely (i.e., ignoring the presence of other
searchers). Since the algorithm eventually discovers and corrects any possible inconsistency
in the initial memory state of the searcher, it is self-stabilizing.

3.2 Improved Algorithm for Polygons with Barycenter not in a Hole

The worst-case examples given in Theorem 1 are polygons with a hole around the barycenter.
It is natural to wonder if the Meeting problem can be solved with fewer searchers if we
exclude this special type of polygons. It turns out that in all other cases Algorithm 1 can be
drastically improved: only two searchers are needed whenever the polygon’s barycenter is
not in a hole. Notably, this includes all polygons with no holes.

It is not hard to construct counterexamples where simply making the searchers patrol the
boundary of the polygon as in the previous algorithm may not solve the Meeting problem,
even if the polygon has no holes. Hence a new strategy has to be devised: our improved
Meeting algorithm is called Algorithm 2. It begins by testing for the presence of another
searcher, followed by some consistency tests, and an EXPLORE phase, which are essentially
the same as in the previous algorithm. It then proceeds with a PATROL phase, which is
more complex than the old one. Note that Algorithm 1 already solves the Meeting problem
with two searchers if the polygon is not rotationally symmetric (i.e., for σ = 1). So, in this
special case, our improved algorithm works exactly as the previous one. In the following, we
will therefore assume that the polygon is rotationally symmetric, and we will discuss only
the new PATROL phase.
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Algorithm 2 Improved Meeting algorithm for polygons with barycenter not in a hole.
Persistent variables
SnapshotList
Action
Stage
Polygon
PivotVertex
PolygonTriangles
PolygonLevels

Procedure Compute (Snapshot)
if Snapshot contains no other searcher then

Append Snapshot to SnapshotList
if Persistent variables are inconsistent then

SnapshotList := Snapshot
Action := EXPLORE

if Action = EXPLORE then
U := Extract unvisited vertices from SnapshotList
if U 6= ∅ then

v := First vertex of U
Move to the next vertex in a shortest path to v

else
Action := PATROL
Stage := −1
Polygon := Extract polygon from SnapshotList
if Polygon is rotationally symmetric then

C := Select a class of vertices of Polygon closest to the center in a similarity-invariant way
PivotVertex := Select any vertex in C
Augment Polygon in a similarity-invariant way to make it simply connected
Triangulate each branch of augmented Polygon in a similarity-invariant way
PolygonTriangles := Total number of triangles in the triangulation of augmented Polygon
PolygonLevels := Height of the dual tree of the triangulation of each branch of augmented Polygon

else
PivotVertex := Select a vertex of Polygon in a similarity-invariant way

if Action = PATROL then
if Polygon is rotationally symmetric then

if I am in PivotVertex then
Stage := Stage + 1
if Stage ≥ 2 · PolygonLevels + 2 · PolygonTriangles2 then

Stage := 0
if Stage = −1 then

Move to the next vertex in a shortest path to PivotVertex
else if Stage < PolygonLevels then

j := Stage
Move to the next vertex of a clockwise j-tour of Polygon

else
j := 2 · PolygonLevels + 2 · PolygonTriangles2 − Stage
if j > PolygonLevels then

j := PolygonLevels
Move to the next vertex of a counterclockwise j-tour of Polygon

else
if I am in PivotVertex then

Stage := Stage + 1
if Stage is odd then

Move to the next vertex of Polygon, following its boundary in the clockwise direction
else

Move to the next vertex of Polygon, following its boundary in the counterclockwise direction

Upon ending the EXPLORE phase, a searcher does some pre-processing on the polygon
P . First it identifies a polygon Q formed by vertices of P that are closest to the center
of rotation and equivalent up to similarity. So, Q is a convex polygon that is completely
contained in P . Each connected component of P \Q is called a branch of P . Each branch is
then augmented by some extra edges to make it simply connected, obtaining a degenerate
polygon P̃ . Then, P̃ \Q is triangulated in a similarity-invariant way. This guarantees that all
searchers compute the same triangulation. Figure 3 shows an example of this construction.

Let Pj be the union of Q and the triangles of the triangulation whose corresponding
nodes of the dual graph have distance at most j from the root Q. Let m be the smallest
integer such that Pm = P . The PATROL phase has a “primitive” operation called j-tour,
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Figure 3 Augmented and triangulated axially symmetric polygon with a 3-tour and a 6-tour.

with 0 ≤ j ≤ m, which is a tour of the boundary of Pj , starting and ending at the pivot
point, following the edges of P̃ . For example, a 0-tour is simply a tour of the boundary of Q,
an m-tour is a tour of the boundary of P̃ (much like the tours of Algorithm 1), and Figure 3
shows a 3-tour and a 6-tour.

The PATROL phase consists of several stages, and in each stage the searcher performs
a j-tour, for some j. The j-tours are performed according to the following list, which is
repeated until the Meeting problem is solved: a clockwise 0-tour, a clockwise 1-tour, a
clockwise 2-tour, . . . , a clockwise (m−1)-tour, a sufficiently large number of counterclockwise
m-tours (twice the square of the total number of triangles in the triangulations of all the
branches of P is abundantly enough), a counterclockwise (m− 1)-tour, a counterclockwise
(m− 2)-tour, . . . , a counterclockwise 1-tour. The first m stages, where the searcher performs
clockwise j-tours, are called ascending stages. All the other stages are called descending
stages. Moreover, the first stage is called the central stage, and the stages in which an m-tour
is performed are called perimeter stages.

Note that, when we say “clockwise” and “counterclockwise”, we mean it in the local
reference system of the executing searcher. Recall that two different searchers executing
the algorithm may not have the same notion of clockwise direction, and therefore in their
respective ascending stages they may actually perform tours in opposite directions. If
two searchers have the same notion of clockwise direction, they are said to be concordant;
otherwise, they are discordant.

We can now proceed with the proof of correctness of Algorithm 2. The proof of the
following technical lemmas is found in the appendix.

I Lemma 3. Let two P -searchers be executing Algorithm 2, let both be in the PATROL phase,
and let both have a correct representation of the polygon P in memory, which is rotationally
symmetric. Then, they will either become mutually aware or be in a perimeter stage at the
same time, with at least one full perimeter stage still to perform.

I Lemma 4. Assume the hypotheses of Lemma 3, and let the searchers be concordant. If
one searcher begins a j-tour in an ascending (respectively, descending) stage while the other
searcher is performing a (j + 1)-tour (respectively, (j − 1)-tour) in a descending (respectively,
ascending) stage, with 0 ≤ j < m (respectively, 0 < j < m), they eventually become mutually
aware.

I Theorem 5. There is an algorithm that solves the Meeting problem with two searchers
(regardless of their initial memory contents) in every polygon whose barycenter does not lie
in a hole.
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Proof. We will show that Algorithm 2 correctly solves the Meeting problem for two searchers
in any polygon P whose barycenter does not lie in a hole. The proof of correctness is the
same as that of Theorem 2, except for the PATROL phase. So, in the following, we will
assume that both searchers already have a correct picture of P in memory, and are both
in the PATROL phase. Moreover, since the new algorithm works in the same way as the
old one if P is not rotationally symmetric (and the proof of correctness is the same as in
Theorem 2), we will assume that P is rotationally symmetric.

Suppose for a contradiction that the searchers never become mutually aware. By Lemma 3,
at some point they are both in a perimeter stage. If they are discordant, they proceed along
the boundary of P̃ in opposite directions, and therefore they become mutually aware. If
they are concordant, they will perform all the remaining descending stages, followed by the
ascending stages, starting with the central stage. If they start the central stage at the same
time, they necessarily become mutually aware, because they are on the boundary of the
central polygon Q, which is convex and empty. So, one searcher must begin the central
stage while the other is still in a descending stage. Then, as one searcher ascends and the
other descends, the hypotheses of Lemma 4 are going to be satisfied, which means that the
searchers eventually become mutually aware. J

4 Memoryless Implementations

4.1 Encoding Persistent Variables
In order to re-implement our algorithms without using any memory, we first want to be able
to encode all persistent variables (which roughly amount to a list of snapshots) as a single
real number. Since a snapshot is the visible sub-polygon of P expressed in the coordinate
system of the observing P -searcher, it can be easily expressed as the array of the visible
sub-segments of P ’s edges, or as the array of the coordinates of these segments’ endpoints.
Hence, encoding a history of snapshots amounts to encoding a finite array of real numbers
(r1, . . . , rn) as a single real number r.

As a model of computation, we choose the Blum-Shub-Smale machine [3], which is a
random-access machine whose registers can store arbitrary real numbers. Its computational
primitives are the four basic arithmetic operations, but it is customary to extend the basic
model with additional primitives, which should be somewhat well-behaved and intuitively
computable. This immediately rules out the naive approach of constructing the binary
representation of r by interleaving the binary digits of the ri’s. Indeed, such an encoding
function has a set of discontinuities that is dense in its entire domain, and is therefore not
intuitively computable.

We propose a more sophisticated encoding strategy, which is computable even on a basic
Blum-Shub-Smale machine (i.e., the one with the four basic arithmetic operations only). A
small drawback is that we can only apply this method if the vertices of the polygon P have
algebraic coordinates (i.e., they are algebraic points) in some global coordinate system. In
practice, we are not imposing a big limitation on our inputs, in that basically all the polygons
we can reasonably think of fall into this class. In particular, we can construct polygons of any
symmetricity (by contrast, using rational points would only allow us to construct polygons
with symmetricity 1, 2, and 4).

First of all, we observe that we can represent an algebraic number using finitely many
bits: if the algebraic number α is the ith real root of the polynomial with integer coefficients
anx

n + an−1x
n−1 + · · ·+ a1x+ a0, we can encode it as (n, i, an, an−1, . . . , a0), which in turn

requires only finitely many bits. Given α, a suitable polynomial can be found by simply
generating all possible polynomials in some order (they are a countable set) and evaluating
them in α.
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Once we have some algebraic numbers expressed in this implicit finite form, we can use
our basic Blum-Shub-Smale machine to do Turing-computable bit manipulations to compute
all kinds of common functions on them. In particular, there are standard ways of computing
the basic arithmetic operations, as well as root extractions of any degree. A comprehensive
exposition of these techniques, along with their theoretical background, is found in [8].
Essentially, this is also one of the several ways in which mathematical software such as Sage,
Mathematica, and CGAL handles algebraic numbers and does exact computations with then.

The key point to keep in mind is that, once a number is encoded in this form, we cannot
necessarily retrieve it in finite time; we can only approximate it arbitrarily well, for instance
via Sturm’s theorem [8]. However, we can still evaluate computable predicates on these
numbers exactly, and have them influence the flow of our algorithms.

Note that, even if the vertices of P are algebraic points in some global coordinate system,
they may not be algebraic in the coordinate system of a searcher. So, the idea is to let the
searcher use two visible vertices v and v′ as a basis to construct a new coordinate system, and
then compute the coordinates of all other visible vertices of P in this system. The resulting
coordinates are guaranteed to be algebraic numbers, and can be encoded with the above
technique. Note that some vertices of the snapshot are not necessarily vertices of P , and
may not be algebraic even in the new coordinate system. These vertices are easily identified
and discarded. This causes some loss of information, which is not going to matter in our
application to the Meeting problem.

4.2 Adapting the Algorithms
Next we are going to apply our encoding method to the Meeting algorithms of Section 3, and
we will show how oblivious searchers can solve the Meeting problem, as well. We will need
searchers to be able to compute only basic arithmetic operations on real numbers, as well as
extract square roots. Hence, internally, each searcher will run a Blum-Shub-Smale machine
extended with a square-root primitive. Only the four basic arithmetic operations are required
for our encoding method, but square roots are needed in the geometric computations. It
is well known that the points whose coordinates can be computed by composing these five
operations are precisely the ones that can be constructed with a compass and a straightedge.
In turn, the Mohr-Mascheroni theorem states that these points can also be constructed with
a compass alone.

A searcher can simulate memory by encoding data as its distance d from the closest visible
vertex of P , which we call the virtual vertex of the searcher. It is not hard to design the code
in such a way that d and d/2 have the same meaning, for every d. This gives a searcher the
ability to get arbitrarily close to its virtual vertex without losing memory. After decoding d,
a searcher will execute one of the old Meeting algorithms pretending to be located on the
virtual vertex. This approach poses several technical problems, which we examine next.

Recall that snapshots are encoded in a special coordinate system defined by two visible
vertices v and v′. As the searcher moves to a different virtual vertex, it has to re-express all
the history of snapshots into a new coordinate system, choosing a v and a v′ that will be
visible from its destination point. This can be done by letting v be the current virtual vertex
and v′ be the destination virtual vertex, and adding enough information to the encoded data
to retrieve v once the virtual vertex is v′. This way, the searcher can transport snapshots
around P and is still able to decode them.

In the EXPLORE phase, a searcher completely explores one connected component of the
boundary of P before moving to the next component. To determine the position of the next
vertex, it has to move close enough to the current virtual vertex, and possibly around it if it
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Figure 4 Symmetric partition of a branch with a 5-tour and part of a perimeter tour.

is reflex. The searcher makes sure to stop on the angle bisector of each vertex it visits and
take a snapshot from there. If implemented properly, this strategy guarantees that, when
the list of discovered but not visited vertices is empty, all vertices of P have actually been
visited, and the map of P is faithful.

For the PATROL phase, recall that a tour turns at the vertices of the augmented polygon
P̃ , which are not necessarily vertices of P . Unfortunately, our oblivious searchers cannot
approach generic points without losing information. Our solution is to modify the tours so
that they turn only at vertices of P . These modifications should retain the axes of symmetry
of the tours whenever they are required by the original algorithms. This is especially tricky
for the j-tours of Algorithm 2, where we need to redesign the partition of P̃ including not
only triangles but also isosceles trapezoids, as shown in Figure 4. Note that our new j-tours
may self-overlap and touch the same vertices multiple times, but this is not an issue. These
new j-tours have the relevant properties that are required by Lemmas 3 and 4: the pieces of
the partition are convex, and each point on a (j + 1)-tour is visible to at least an entire edge
of a j-tour.

Of course, a j-tour defines a curve that is followed only approximately by our oblivious
searchers, because they have to keep encoding information as they go. Still, they follow this
curve closely enough and without ever properly crossing it, in such a way as to preserves the
aforementioned relevant properties. Also, while they do so, they have to stop on the angle
bisector of each vertex whenever they get the opportunity: this is to guarantee that they
will discover any discrepancies between the encoded map and the real polygon.

Finally, if two searchers are doing the same tour in opposite directions, and they stay
within a thin-enough “band” around the correct curve, they are guaranteed to become
mutually aware when they cross each other.

Therefore, Theorems 2 and 5 can be extended to oblivious searchers.

I Theorem 6. There is an algorithm that, for every integer σ > 0, solves the Meeting problem
with σ + 1 oblivious searchers in every polygon with symmetricity σ. There is an algorithm
that solves the Meeting problem with two oblivious searchers in every polygon whose barycenter
does not lie in a hole. If the polygon’s vertices are algebraic points, these algorithms are
implementable on a real random-access machine that can compute basic arithmetic operations
and extract square roots.
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5 Conclusions and Further Work

Our Meeting algorithms can be converted into Rendezvous algorithms for two searchers.
Indeed, once two searchers realize that they have become mutually aware, they can implicitly
agree on a rendezvous point using the boundary of the polygon as a static reference. Note
that this “rendezvous phase” should only be performed if the searchers are in fact mutually
aware, or else they may behave incorrectly and compromise the algorithms. To detect mutual
awareness, a searcher that sees another searcher performs a preliminary “synchronization
phase”, in which it moves very slightly a few times and sees if the other searcher does the
same or disappears. If the pattern of these “synchronization moves” is unique to this phase,
i.e., it cannot be normally performed during an EXPLORE or a PATROL phase, then the
searchers know that they are mutually aware, and they can proceed to the rendezvous phase.

In some cases, we can also extend our algorithms to weaker models of searchers. Namely,
searchers with limited visibility, which can only see up to a fixed distance, and the non-rigid
setting, in which a searcher can be stopped by the scheduler during each Move phase before
reaching its destination point, but not before having moved by at least a constant δ (for
details on this model, refer to [16]). However, a complete solution for these and other searcher
models remains an open problem.
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Abstract
In this paper we present distributed property-testing algorithms for graph properties in the
congest model, with emphasis on testing subgraph-freeness. Testing a graph property P means
distinguishing graphs G = (V,E) having property P from graphs that are ε-far from having it,
meaning that ε|E| edges must be added or removed from G to obtain a graph satisfying P.

We present a series of results, including:
Testing H-freeness in O(1/ε) rounds, for any constant-sized graph H containing an edge (u, v)
such that any cycle in H contain either u or v (or both). This includes all connected graphs
over five vertices except K5. For triangles, we can do even better when ε is not too small.
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A deterministic congest protocol determining whether a graph contains a given tree as a
subgraph in constant time.
For cliques Ks with s ≥ 5, we show that Ks-freeness can be tested in O(m

1
2−

1
s−2 · ε−

1
2−

1
s−2 )

rounds, where m is the number of edges in the network graph.
We describe a general procedure for converting ε-testers with f(D) rounds, where D denotes
the diameter of the graph, to work in O((logn)/ε) + f((logn)/ε) rounds, where n is the
number of processors of the network. We then apply this procedure to obtain an ε-tester for
testing whether a graph is bipartite and testing whether a graph is cycle-free. Moreover, for
cycle-freeness, we obtain a corrector of the graph that locally corrects the graph so that the
corrected graph is acyclic. Note that, unlike a tester, a corrector needs to mend the graph in
many places in the case that the graph is far from having the property.

These protocols extend and improve previous results of [Censor-Hillel et al. 2016] and [Fraigniaud
et al. 2016].

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Property testing, Property correcting, Distributed algorithms, CON-
GEST model

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.15

1 General Introduction

Distributed decision refers to tasks in which the computing elements of a distributed system
have to collectively decide whether the system satisfies some given boolean predicate on
system states. If the system state is legal, i.e., it satisfies the given predicate, then all
computing elements must accept; if the system state is illegal, then at least one computing
element must reject. Distributed property testing is a relaxed variant of distributed decision,
which only requires distinguishing legal states from states that are “far from” being legal.
(The notion of “farness” depends on the context.)

In the context of distributed network computing, one is interested in deciding or testing
whether the actual network, modeled as a simple connected graph, satisfies some given
predicate on graphs; e.g., bipartiteness, cycle-freeness, subgraph-freeness, etc. For a positive
distance parameter ε ≤ 1, a graph G with m edges is said to be ε-far from satisfying a given
property P if removing and/or adding up to εm edges from/to G cannot result in a graph
satisfying P .

In this paper we study distributed decision in general, and distributed property testing in
particular, in the framework of distributed network computing, under the standard congest
model. This paper is the result of merging the three papers [16], [17], and [18] that were
concurrently submitted to the 31st International Symposium on Distributed Computing
(DISC 2017), which independently showed overlapping results, using different methods and
ideas. To highlight the different approaches to the problem, we chose to present a short
version of each of the three papers in the form of three notes.

The Subgraph-Freeness Problem. Each of the three notes presented here gives results on
subgraph-freeness: we are given a constant-size graph H, and we wish to determine whether
the network graph contains H as a subgraph or not. In the property testing relaxation of
the problem, we only need to distinguish the case where the network graph is H-free from

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.15
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the case where it is ε-far from H-free, in the sense that at least an ε-fraction of the graph’s
edges must be removed to eliminate all copies of H.

Hereafter, we provide a summary of the results and methods in each paper.

1.1 Summary of the Results and Techniques
Note #1: Color-Coding Based Algorithms for Testing Subgraph-Freeness

This note uses a technique called color-coding [4] to design randomized algorithms for
property-testing subgraph-freeness in O(1/ε) rounds, for any subgraph H that contains an
edge (u, v) such that any cycle in H contains at least one of u and v. In the case of trees,
the color-coding technique yields an O(1)-round algorithm for testing exactly whether the
graph contains the given tree or not. In addition, for cliques Ks with s ≥ 3, we show that
Ks-freeness can be tested in O(m

1
2−

1
s−2 · ε−

1
2−

1
s−2 ) rounds, where m is the number of edges

in the network graph. In the special case of triangles, K3-freeness can actually be solved in
O(1) rounds in n-node networks, i.e., in a number of rounds independent from ε, assuming
ε ≥ min{m− 1

3 , n
m}.

Note #2: Deterministic Tree Detection and Applications in Distributed Property
Testing

In this note, we propose a generic construction for designing deterministic distributed al-
gorithms detecting the presence of any given tree T as a subgraph of the input network,
performing in a constant number of rounds in the congest model. Our construction also
provides randomized algorithms for testing H-freeness for every graph pattern H that can be
decomposed into an edge and a tree, with arbitrary connections between them, also running
in O(1) rounds in the congest model. This generalizes the results in [9, 19, 20], where
algorithms for testing K3, K4, and Ck-freeness for every k ≥ 3 were provided.

Note #3: Algorithms for Testing and Correcting Graph Properties in the
CONGEST Model

In Section 4, we design and analyze distributed testers in the distributed congest model
all of which work in the general model. Stating that our testers work in the general model
means that our measure of distance between two graphs is measured by adding or removing
ε ·m edges.

Diameter dependency reduction and its Applications. In Section 4.2 we describe a general
procedure for converting ε-testers with f(D) rounds, where D denotes the diameter of the
graph, to work in O((logn)/ε) + f((logn)/ε) rounds, where n is the number of processors
of the network. We then apply this procedure to obtain an ε-tester for testing whether a
graph is bipartite. The improvement of this tester over state of the art is twofold: (a) the
round complexity is O(ε−1 logn), which improves over the Poly(ε−1 logn)-round algorithm
by Censor-Hillel et al. [9, Thm. 5.2], and (b) our tester works in the general model while [9]
works in the more restrictive bounded degree model. Moreover, the number of rounds of
our bipartiteness tester meets the Ω(logn) lower bound by [9, Thm. 7.3], hence our tester is
asymptotically optimal in terms of n. We then apply this “compiler” to obtain a cycle-free
tester with number of rounds of O(ε−1 · logn), thus revisiting the result by [9, Thm. 6.3].
The last application that we consider is “how to obtain a corrector of the graph by using

DISC 2017
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this machinery?” Namely, how to design an algorithm that locally corrects the graph so that
the corrected graph satisfies the property. For cycle-freeness, we are able to obtain also an
ε-corrector. Note that, unlike a tester, a corrector needs to mend the graph in many places
in the case that the graph is far from having the property.

Testers for H-freeness for |V (H)| ≤ 4. In Section 4.3 we design algorithms for testing
(in the general model) whether the network is H-free for any connected H of size up to four
with round complexity of O(ε−1).

Testers for tree-freeness. In Section 4.4, we first generalize the global tester by Iwama
and Yoshida [25] of testing k-path freeness to testing the exclusion of any tree, T , of order k.
Our tester has a one sided error and it works in the general graph model with random edge
queries. This algorithm can be simulated in the CONGEST model in O(kk2+1 · ε−k) rounds.

2 Note #1: Color-Coding Based Algorithms for Testing
Subgraph-Freeness

2.1 Introduction
The aim of this part of the paper is to improve our understanding of the question: “which
types of excluded subgraphs can be tested in constant time?”. We also explore several
related questions, such as whether limiting the maximum degree in the graphs helps (by
analogy to the bounded-degree model in sequential property testing), whether we can test
H-freeness in sublinear time for some subgraphs H for which no constant-time algorithm is
known, and whether there are cases where we can test H-freeness with no dependence on the
distance parameter ε, even when ε is sub-constant (e.g., ε = O(1/

√
n)). Using new ideas and

combining them with previous techniques, we are able to simplify and extend prior work,
and point out some surprising answers to the questions above, which point to several aspects
where distributed property testing for subgraph-freeness differs from the sequential analogue.

Our Results. First we give simple randomized algorithms for testing subgraph-freeness,
using the color-coding technique from [4], originally used to find cycles of fixed constant size
sequentially.

We begin by giving a color-coding based algorithm which tests k-cycle freeness in O(1/ε)
rounds (for constant k). Next we show that for any tree T , we can test T -freeness exactly
(without the property-testing relaxation) in constant time. Both of the results extend to
directed graphs in the directed version of the congestmodel. Combining the two algorithms,
we give a class of graphs H such that for any constant-sized H ∈ H, we can test H-freeness
in O(1/ε) rounds. The class H consists of all graphs H containing an edge {u, v} such that
each cycle in H includes either u or v (or both). This includes all graphs of size 5 except for
the 5-clique, K5.

We then turn our attention to the special case of cliques. We present a different approach
for detecting triangles, which allows us to eliminate the dependence of the running time
on ε when ε is not too small: if n is the number of nodes and m is the number of edges,
and we are promised that ε ≥ min

{
m−1/3, n/m

}
, then we can test triangle-freeness in O(1)

rounds (independent of the actual value of ε). We extend this approach to cliques of any size
s ≥ 3, and show that Ks-freeness can be tested in O

(
ε−1/2−1/(s−2)m1/2−1/(s−2)) rounds. In

particular, for constant ε and s = 5, we can test K5-freeness in O(m1/6) rounds. We also
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modify the algorithm to work in constant time in graphs whose maximum degree ∆ is not
too large with respect to the total number of edges, ∆ = O((εm)1/(s−2)).

2.2 Preliminaries
We generally work with undirected graphs, unless indicated otherwise. We let N(v) denote
the neighbors of v, and d(v) the degree of v. Note that throughout the paper, when we use
the term subgraph, we do not mean induced subgraph; we say that G′ = (V ′, E′) is a subgraph
of G = (V,E) if V ′ ⊆ V,E′ ⊆ E.

We say that a graph G = (V,E) is ε-far from property P if at least ε|E| edges need to be
added to or removed from E to obtain a graph satisfying P.

The goal in distributed property testing for H-freeness is to solve the following problem:
if the network graph G is H-free, then with probability 2/3, all nodes should accept. On the
other hand, if G is ε-far from being H-free, then with probability 2/3, some node should
reject.

We rely on the following fundamental property, which serves as the basis for most
sequential property testers for H-freeness:

I Property 1. Let G be ε-far from being H-free, then G has εm/|E(H)| edge-disjoint copies
of H.

Our algorithms assign random colors to vertices of the graph, and then look for a copy of
the forbidden subgraph H which received the “correct colors”. Formally we define:

I Definition 2 (Properly-colored subgraphs). Let G = (V,E) and H = ([k], F ) be graphs,
and let G′ = (V ′, E′) be a subgraph of G that is isomorphic to H. We say that G′ is properly
colored with respect to a mapping colorV : V → [k] if there is an isomorphism ϕ : V ′ → [k]
from G′ to H such that for each u ∈ V ′ we have colorV (v) = ϕ(v).

2.3 Detecting Constant-Size Cycles
In this section we show that Ck-freeness can be tested in O(1/ε) rounds in the congest
model for any constant integer k > 2.

I Theorem 3. For any constant k > 2, there is a 1-sided error distributed algorithm for
testing Ck-freeness which uses O(1/ε) rounds.

The key idea of the algorithm is to assign each node u of the graph a random color
color(u) ∈ [k]. The node colors induce a coloring of both orientations of each edge, where
color(u, v) = (color(u), color(v)). We discard all edges that are not colored (i, (i+ 1) mod k)
for some i ∈ [k]; this eliminates all cycles of size less than k, while preserving a constant
fraction of k-cycles with high probability.

Next, we look for a properly-colored k-cycle by choosing a random directed edge (u0, u1)1
and carrying out a k-round color-coded BFS from node u0: in each round r = 0, . . . , k − 1,
the BFS only explores edges colored (r, (r + 1) mod k). After k rounds, if the BFS reaches
node u0 again, then we have found a k-cycle.

Next we describe the implementation of the algorithm in more detail. We do not attempt
to optimize the constants. To simplify the analysis, fix a set C of εm/k edge-disjoint k-cycles

1 What we really want to do is choose a random node with probability proportional to its degree; choosing
random edge is a simple way to do that.
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(which we know exist if the graph is ε-far from being Ck-free). We abuse notation by also
treating C as the set of edges participating in the cycles in C.

For the analysis, it is helpful to think of the algorithm as first choosing a random edge
and then choosing random colors, and this is the way we describe it below.

Choosing a Random Edge. It is not possible to get all nodes of the graph to explicitly
agree on a uniformly random directed edge in constant time (unless the graph has constant
diameter), but we can emulate the effect as follows: each node u ∈ V chooses a uniformly
random weight w(e) ∈ [n4] for each of its edges e. (Note that each edge has two weights, one
for each of its orientations.) Implicitly, the directed edge we selected is the edge with the
smallest weight in the graph, assuming that no two directed edges have the same weight.

I Observation 4. With probability at least 1− 1/n2, all weights in the graph are unique.

Let EU be the event that all edge weights are unique. Conditioned on EU , the directed
edge with the smallest weight is uniformly random. Let e0 be this edge; implicitly, e0 is the
edge we select. (However, nodes do not initially know which edge was selected, or even if a
single edge was selected.)

Since the set C contains εm/k edge-disjoint k-cycles, and the graph has a total of m
edges, we have:

I Observation 5. We have Pr [e0 ∈ C | EU ] = ε.

Let ECyc be the event that e0 ∈ C, and let C0 = {u0, u1, . . . , uk−1} be the cycle to which e0
belongs given EC , where e0 = (u0, u1).

Color Coding. In order to eliminate cycles of length less than k, we assign to each node u
a uniformly random color color(u) ∈ [k]. Node u then broadcasts color(u) to its neighbors.

Since the colors are independent of the edge weights, we have:

I Observation 6. Pr [∀i ∈ [k] : color(ui) = i | EC , EU ] = 1
kk .

Let ECol be the event that each ui received color i. Combining our observations above yields:

I Corollary 7. Pr [EU ∩ ECyc ∩ ECol] > ε
2kk .

Next we show thatn when EU , ECyc and ECol all occur, we find a k-cycle.

Color-Coded BFS. Each node u stores the weight wgtu associated with the lightest edge it
has heard of so far, and the root rootu of the BFS tree to which it currently belongs. Initially,
wgtu is set to the weight of the lightest of u’s outgoing edges, and rootu is set to u.

In each round r = 0, . . . , k − 1 of the BFS, nodes u with color r send (u,wgtu, rootu) to
their neighbors, and nodes v with color r + 1 update their state: if they received a message
(u,wgtu, rootu) from a neighbor u, they set wgtv to the lightest weight they received, and
rootv to the root associated with that weight.

After k rounds, if some node colored 0 receives a message (v,wgtv, rootv) where rootv = u,
then it has found a k-cycle, and it rejects.

In Section 2.5, we will use the same Ck-freeness algorithms, but some nodes will be
prohibited from taking certain colors. We incorporate this in Algorithm 1 by having some
nodes whose state is abort. These nodes do not forward BFS messages and do not participate
in the algorithm.
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Algorithm 1: Procedure ColorCodedBFS, code for node u.
1 root ← u;
2 wgt ← min {w(u, v) | v ∈ N(u)};
3 for r = 0, . . . , k − 1 do
4 if color = r and state 6= abort then send (wgt, root) to neighbors ;
5 receive (w1, r1), . . . , (wt, rt) from neighbors;
6 if color = (r + 1) mod k then
7 i← argmin {w1, . . . , wt};
8 if wi < wgt then
9 root ← ri,wgt ← wi ;

10 if r = k − 1 and u ∈ {r1, . . . , rt} then return 1 ;
11 return 0;

I Lemma 8. If EU , ECyc and ECol all occur, and if in addition the cycle C0 contains no
nodes whose state is abort, then u0 returns 1 and Algorithm 1 finds a k-cycle (i.e., returns 1).

Proof of Theorem 3. Suppose that G is ε-far from being Ck-free. We have no nodes whose
state is abort (as we said, the abort state will be used in Section 2.5). Drawing random colors
and weights, the probability that EU , ECyc and ECol all occur is at least ε

2kk ; therefore, the
probability that we fail to detect a k-cycle after d20kk/εe attempts is at most 1/10. J

2.4 Detecting Constant-Size Trees
In this section we show that for any constant-size tree T , we can test T -freeness exactly
(that is, without the property-testing relaxation) in O(1) rounds. Let the nodes of T be
0, . . . , k − 1. We arbitrarily assign node 0 to be the root of T , and orient the edges of the
tree upwards toward node 0. Let R be the depth of the tree, that is, the maximum number
of hops from any leaf of T to node 0. Finally, let children(x) be the children of node x in the
tree.

In the algorithm, we map each node of the network graph G onto a random node of T by
assigning it a random color from [k]. Then we check if there is a copy of T in G that was
mapped “correctly”, with each node receiving the color of the vertex in T it corresponds to.

Initially the state of each node is “open” if it is an inner node of T , and “closed” if it is a
leaf. The algorithm has R rounds, in each of which all nodes broadcast their state and their
color to their neighbors. When a node with color j hears “closed” messages from nodes with
colors matching all the children of node j in T , it changes its status to “closed”. After R
rounds, if node 0’s state is “closed”, we reject.

Let x ∈ {0, . . . , k − 1} be a node of T , let T ′ be the sub-tree rooted at x, and let
G′ = (U,E′) be a subgraph of G = (V,E) isomorphic to T ′. We say that G′ is properly
colored if there is an isomorphism ϕ from G′ to T ′, such that color(u) = ϕ(u). (There may
be more than one possible isomorphism from G′ to T ′.)

I Lemma 9. Let u be a node with color color(u) = x, and let T ′ be the sub-tree of T rooted
at x. Let hx be the height of x, that is, the length of the longest path from a leaf of T ′ to x.
Then at any time t ≥ hx in the execution of Algorithm 2, we have stateu(t) = closed iff there
is a subgraph G′ containing u, which is isomorphic to T ′ and properly colored.
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Algorithm 2: Procedure CheckTree, code for node u.
1 if children(color) = ∅ then
2 state ← closed;
3 else
4 state ← open;
5 missing ← children(color);
6 for r = 1, . . . , R do
7 send (color , state) to neighbors ;
8 receive (c1, s1), . . . , (ct, st) from neighbors;
9 foreach i = 1, . . . , t do

10 if ci ∈ missing and si = closed then
11 missing ← missing \ {ci};
12 if missing = ∅ then state ← closed ;

13 if color = 0 and state = closed then
14 return 1;
15 else
16 return 0;

I Corollary 10. For any node u ∈ V , at time h we have stateu(h) = closed iff u is the root
of a properly-colored copy of T .

I Corollary 11. If G contains a copy of T , then repeating Algorithm 2 yields an constant
probability one sided-error algorithm for detecting a copy of T .

Proof. Fix a subgraph G′ which is isomorphic to T . Each time we pick a random coloring,
the probability that G′ is properly colored is at least 1/kk (perhaps more, if there is more
than one isomorphism mapping the nodes of G′ to T ). By Corollary 10, if G′ is properly
colored, the root of the tree will discover this and return 1. Therefore the probability that
we fail d10kke times is at most 1/10. J

2.5 Detecting Constant-Size Complex Graphs
In this section we define a class H of graphs, and give an algorithm for detecting those
graphs in constant number of round (taking the size of the graph as a constant). The class
H includes all graphs of size 5 except K5 (see full paper [17]).

Definition of the Class H. The class H contains all graphs that have the following property:
there exists an edge (u, v) such that any cycle in the graph contain at least one of u and v.
Equivalently, the class H contains all connected graphs that can be constructed using the
following procedure:
1. We start with two nodes, 0 and 1, with an edge between them
2. Add any number of cycles C1, . . . , C` using new nodes, such that:

Each cycle Ci contains either node 0 or node 1 or both; and
With the exception of nodes 0, 1, the cycles are node-disjoint.

3. Select a subset R of the nodes added so far, and for each node x selected, attach a tree Tx
rooted at x using “fresh” nodes (that is, with the exception of node x, each tree Tx that
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Figure 1 A good labeling for each connected graph over five vertices, except K5.

we attach is node-disjoint from the graph constructed so far, including trees Ty added for
other nodes y 6= x).

4. For each x ∈ {0, 1}, add edges Ex between node x and some subset of nodes added in
the previous steps.

The class H includes all connected nodes over five vertices, except the clique K5. In
Figure 1 we show a labeling consistent with the construction above (once the “correct” edge
to label as (0, 1) is identified, the rest is easy to verify).

Our algorithm for testing H-freeness for H ∈ H combines the ideas from the previous
sections. We begin by color-coding the nodes of G, mapping each node onto a random node
of H. Next, we choose a random directed edge (u0, u1) from among the edges mapped to
(0, 1), and begin the task of verifying that the various components of H are present and
attached properly.

For simplicity, below we describe the verification process assuming that we really do
choose a unique random edge, and all nodes know what it is; however, we cannot really do
this, so we substitute using random edge weights as in Section 2.3.
1. Nodes u0 and u1 broadcast the chosen edge (u0, u1) for diam(H) rounds.
2. Any node whose color is 0 or 1 but which is not u0 or u1 (resp.) sets its state to abort.
3. For each edge {b, x} ∈ Eb, where b ∈ {0, 1}, nodes colored x verify that they have an

edge to node ub; if they do not, they set their state to abort.
4. For each tree Tx added in stage 3 of the construction, we verify that a properly-colored

copy of Tx is present, by having nodes colored x call Algorithm 2, with the colors replaced
by the names of the nodes in Tx. We denote this by CheckTree(Tx).
If a node colored x fails to detect a copy of Tx for which it is the root, it sets its state to
abort for the rest of the current attempt.

5. For each i = 1, . . . , `, we test for a properly-colored copy of Ci. We define the owner of
Ci, denoted owner(Ci), to be node 0 if C0 contains 0, and otherwise node 1. To verify the
presence of Ci, we call Algorithm 1, using the names of the nodes in Ci as colors: instead
of color 0 we use owner(Ci), and the remaining colors are mapped to the other nodes of
Ci in order (in a arbitrary orientation of Ci). We denote this call by ColorBFS(Ci). (As
indicated in Alg. 1, nodes whose state is abort do not participate.)

6. If both u0 and u1 are not in state abort, u0 rejects, otherwise it accepts. All other nodes
accept.
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The analysis and pseudo-code of this algorithm appear in the full paper [17].

2.6 Testing Ks-Freeness

In previous sections it was shown how to test K3 and K4 freeness in O(1/ε) rounds of
communication. In this section we describe how to test Ks-freeness for cliques of any
constant size s, in a sublinear number of rounds. Moreover, we show that triangle-freeness
can be tested in O(1) rounds, with no dependence on ε, when min

(
n
m ,m

−1/3) ≤ ε ≤ 1.
Finally, we show that if the maximal degree is bounded by O((εm)

1
s−2 ) then Ks-freeness can

be tested in O(1) rounds, but due to lack of space, this appears in the full paper version
only [17].

2.6.1 Algorithm Overview

The basic idea is the following simple observation: suppose that each node u could learn the
entire subgraph induced by N(u), that is, node u knew for any two v1, v2 ∈ N(u) whether
they are neighbors or not. Then u could check if there is a set of s neighbors in N(u) that
are all connected to each other, and thus know if it participates in an s-clique or not. How
can we leverage this observation?

For nodes u with high degree, we cannot afford to have u learn the entire subgraph
induced by N(u), as this requires of N(u)2 bits of information. But fortunately, if G is ε-far
from Ks-free, then there are many copies of Ks that contain some fairly low-degree nodes,
as observed in [20]:

I Lemma 12 ([20]). Let I(G) be the set of edges in some maximum set of edge-disjoint copies
of H, and let g(G) = {(u, v) | d(u)d(v) ≤ 2m|E(H)|/ε}. Then |I(G)∩g(G)| ≥ εm/(4|E(H)|).

I Remark. [20] considers only subgraphs H with 4 vertices and constant ε, but their proof
works for any subgraph H and any 0 < ε ≤ 1.

The focus in [20] is on good edges, which are edges satisfying the condition in Lemma 12,
but here we need to focus on the endpoints of such edges. We call u ∈ V a good vertex if
its degree is at most

√
2m|E(H)|/ε, and we say that a copy of H in G is a good copy if it

contains a good vertex. Since each copy of H in I(G) contributes at most |E(H)| edges to
g(G),

I Corollary 13. If G is ε-far from H-free, then G contains at least εm/(4|E(H)|2) edge-
disjoint good copies of H.

Because there are many good edge-disjoint copies of Ks, we can sparsify the graph and
still retain at least one good copy of Ks.

We partition G into many edge-disjoint sparse subgraphs, by having each vertex u choose
for each neighbor v ∈ N(u) a random color color(v) ∈ {1, . . . , C(u)}, where the size of the
color range, C(u), will be fixed later. This induces a partition of G’s edges into C(v) color
classes; let Nc(u) denote the set of neighbors v ∈ N(u) with color(v) = c. The expected size
of Nc(u) is d(v)/C(v).

With this partition in place, we begin by showing how to solve triangle-freeness in constant
time, and then extend the algorithm to other cliques Ks with s > 3.
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2.6.2 Triangle-Freeness for ε ∈ [min
{
m−1/3, n/m

}
, 1] in O(1) rounds

Assume that ε is not too small with respect to n and m: ε ≥ min
{
m−1/3, n/m

}
. Then we

can improve the algorithm from Section 2.3 and test triangle-freeness in constant time that
does not depend on ε.

To test triangle-freeness, we set C(v) = dd(v)/200e. Each node chooses a random color
for each neighbor from the range {1, . . . , C(v)}. Then, we go through the color classes
c = 1, . . . , C(v) in parallel, and for each color class c, we look for a triangle containing two
edges from Nc(u): let Nc(u) = {v1, . . . , vtc}. for R = 202e2 rounds r = 1, . . . , R, node u
sends vr to all neighbors v1, . . . , vr in Nc(u), and each neighbor vi responds by telling u
whether it is also connected to vr, that is, whether vr ∈ N(vi) (note that we do not insist
on the edge (vr, vi) having color c). If vr ∈ N(vi), then node u has found a triangle, and it
rejects. If after 202e2 attempts node u has not found a triangle in any color class, it accepts.

I Lemma 14. If G is ε-far from being triangle-free, then with probability 2/3, at least one
vertex detects a triangle.

Proof. Let T be a set of edge-disjoint good triangles in G, of size |T | ≥ εm/(4|E(T )|2) =
εm/36. By Corollary 13 we know that there is such a set.

Assume that T = {T1, . . . , Tt}. By definition, each good triangle has a good vertex ; let vi
be a good vertex from the i’th triangle Ti.

For each i ∈ {1, . . . , t}, let Ai be the event that vi assigned the same color, ci, to the
other two vertices in Ti, and let Xi be an indicator for Ai. We have Pr [Xi = 1] = 1/C(vi) =
200/d(vi). Also, since the triangles in T are edge-disjoint, X1, . . . , Xt are independent. Now
let X =

∑t
i=1 Xi be their sum; then

Pr[X = 0] = Pr[
t⋂
i=1

(Xi = 0)] =
t∏
i=1

(
1− 1

C(vi)

)
=

t∏
i=1

(
1− 200

d(vi)

)
.

We divide into two cases:
1. m < n3/2: then ε ≥ min

(
n
m ,m

−1/3) = m−1/3. Recall vi is a good vertex, which means
d(vi) ≤

√
6m/ε, and therefore

t∏
i=1

(
1− 200

d(vi)

)
≤

(
1− 200√

6m/ε

)t
≤ e
− 200t√

6m/ε ≤ e
− 200εm

36
√

6m/ε = e
− 200ε3/2√m

36
√

6 ≤ e−2.

2. m ≥ n3/2: then ε ≥ min
(
n
m ,m

−1/3) = n
m . The degree of each vertex is no more than n,

and hence
t∏
i=1

(
1− 200

d(vi)

)
≤
(

1− 200
n

)t
≤ e− 200t

n ≤ e− 200εm
36n ≤ e−2.

So in any case we get Pr[X = 0] ≤ e−2.
Conditioned on X ≥ 1, there is at least one vertex vi which put two of its triangle

neighbors in the same color class ci, which means that if Nc(vi) is no larger than 200e2, node
vi will go through all neighbors in Nc(vi) and find the triangle. Because the colors of the
edges are independent of each other, conditioning on Ai does not change the expected size
of Nci

(vi) by much: we know that the other two vertices in Ti received color ci, but the
remaining neighbors are assigned to a color class independently. The expected size of |Nci(vi)|
is therefore (d(vi)− 2)/C(vi) + 2 < 202 = R/e2, and by Markov, Pr [|Nci

(vi)| > R] ≤ 1/e2.
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To conclude, by union bound, the probability that no node vi has Xi = 1, or that the
smallest node vi with Xi = 1 has |Nc(vj)| > 200e2 for the smallest color class c containing
two triangle neighbors, is at most 1/e2 + 1/e2 < 1/3. J

2.6.3 General Tester for Ks-Freeness
Use the same algorithm but with a different setting of the parameters, we can test Ks-freeness
for any s ≥ 3.

I Theorem 15. There is a 1-sided error distributed property-testing algorithm for Ks-freeness,
for any constant s ≥ 4, with running time O(ε

−s
2(s−2)m

s−4
2(s−2) ).

I Corollary 16. There is a 1-sided error distributed property-testing algorithm for K5-freeness,
with running time O(m1/6).

We set

C(u) =
⌈(

1
2s4 εm

) 1
s−2
⌉

to be the number of color classes at node u, and

R = 2s4e2
[
ε−1/2−1/(s−2)m1/2−1/(s−2) + s− 1

]
to be the timeout. For R rounds, each node u sends the next node vr from each color class
to all neighbors v1, . . . , vtc in that color class, and each neighbor vi responds by telling u
whether vr is its neighbor or not. Node u remembers this information; if at any point it
knows of a subset S ⊆ Nc(u) of |S| = s nodes that are all neighbors of each other, then it
has found an s-clique, and it rejects. After R rounds u gives up and accepts.

I Lemma 17. If G is ε-far from Ks-free, then with probability at least 2/3, at least one
vertex detects a copy of Ks.

I Remark. For s ≥ 5, the algorithm requires a linear estimate of m to get good running
time. If m is unknown, then the vertices may run the algorithm logn times for exponentially-
increasing guesses m = [n, 2n, ...n2] , and as the protocol has one sided error, correctness is
maintained; however, the running time increases to O(ε

−s
2(s−2)n

s−4
(s−2) ) rounds.

3 Note #2: Deterministic Tree Detection and Applications in
Distributed Property Testing

3.1 Context and Objective
Given a fixed graph H (e.g., a triangle, a clique on four nodes, etc.), a graph G is H-free if it
does not contain H as a subgraph2. Detecting copies of H or deciding H-freeness has been
investigated in many algorithmic frameworks, including classical sequential computing [2],
parametrized complexity [32], streaming [8], property-testing [3], communication complex-
ity [27], quantum computing [5], etc. In the context of distributed network computing,
deciding H-freeness refers to the task in which the processing nodes of a network G must
collectively detect whether H is a subgraph of G, according to the following decision rule:

2 Recall that H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
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if G is H-free then every node outputs accept;
otherwise, at least one node outputs reject.

In other words, G is H-free if and only if all nodes output accept.
Recently, deciding H-freeness for various types of graph patterns H has received lots of

attention (see, e.g., [9, 10, 12, 13, 26, 19, 20]) in the congest model [36], and in variants of
this model. (Recall that the congest model is a popular model for analyzing the impact of
limited link bandwidth on the ability to solve tasks efficiently in the context of distributed
network computing). In particular, it has been observed that deciding H-freeness may require
nodes to consume a lot of bandwidth, even for very simple graph patterns H. For instance, it
has been shown in [13] that deciding C4-freeness requires Ω̃(

√
n) rounds in n-node networks

in the congest model. Intuitively, the reason why so many rounds of computation are
required to decide C4-freeness is that the limited bandwidth capacity of the links prevents
every node with high degree from sending the entire list of its neighbors through one link,
unless consuming a lot of rounds. The lower bound Ω̃(

√
n) rounds for C4-freeness can

be extended to larger cycles Ck, k ≥ 4, obtaining a lower bound of Ω(poly(n)) rounds,
where the exponent of the polynomial in n depends on k [13]. Hence, not only “global”
tasks such as minimum-weight spanning tree [11, 28, 34], diameter [1, 21], and all-pairs
shortest paths [24, 30, 33] are bandwidth demanding, but also “local” tasks such as deciding
H-freeness are bandwidth demanding, at least for some graph patterns H.

In this note, we focus on a generic set of H-freeness decision tasks which includes several
instances deserving full interest on their own right. In particular, deciding Pk-freeness, where
Pk denotes the k-node path, is directly related to the NP-hard problem of computing the
longest path in a graph. Also, detecting the presence of large complete binary trees, or of
large binomial trees, is of interest for implementing classical techniques used in the design of
efficient parallel algorithms (see, e.g., [29]). Similarly, detecting large Polytrees in a Bayesian
network might be used to check fast belief propagation [35]. Finally, as it will be shown in
this note, detecting the presence of various forms of trees can be used to tests the presence
of graph patterns of interest in the framework of distributed property-testing [9]. Hence, this
note addresses the following question:

For which tree T is it possible to decide T -freeness efficiently in the congest model,
that is, in a number of rounds independent from the size n of the underlying network?

At a first glance, deciding T -freeness for some given tree T may look simpler than detecting
cycles, or even just deciding C4-freeness. Indeed, the absence of cycles enables to ignore the
issue of checking that a path starts and ends at the same node, which is bandwidth consuming
because it requires maintaining all possible partial solutions corresponding to growing paths
from all starting nodes. When detecting cycles, discarding even just a few starting nodes may
result in missing the unique cycle including these nodes. However, even deciding Pk-freeness
requires to overcome many obstacles. First, as mentioned before, finding a longest simple
path in a graph is NP-hard, which implies that it is unlikely that an algorithm deciding
Pk-freeness exists in the congest model, with running time polynomial in k at every node.
Second, and more importantly, there exists potentially up to Θ(nk) paths of length k in a
network, which makes impossible to maintain all of them in partial solutions, as the overall
bandwidth of n-node networks is at most O(n2 logn) in the congest model.

3.2 Our Results
We show that, in contrast to Ck-freeness, Pk-freeness can be decided in a constant number
of rounds, for any k ≥ 1. In fact, our main result is far more general, as it applies to any
tree. Stated informally, we prove the following:

DISC 2017



15:14 Three Notes on Distributed Property Testing

Theorem A. For every tree T , there exists a deterministic algorithm for deciding T -freeness
performing in a constant number of rounds under the congest model.

For establishing Theorem A, we present a distributed implementation of a pruning
technique based on a combinatorial result due to Erdős et al. [15] that roughly states the
following. Let k > t > 0. For any set V of n elements, and any collection F of subsets of V ,
all with cardinality at most t, let us define a witness of F as a collection F̂ ⊆ F of subsets of
V such that, for any X ⊆ V with |X| ≤ k − t, the following holds:(
∃Y ∈ F : Y ∩X = ∅

)
=⇒

(
∃Ŷ ∈ F̂ : Ŷ ∩X = ∅

)
.

Of course, every F is a witness of itself. However, Erdős et al. have shown that, for every k,
t, and F , there exists a compact witness F̂ of F , that is, a witness whose cardinality depends
on k and t only, and hence is independent of n. To see why this result is important for
detecting a tree T in a network G, consider V as the set of nodes of G, k as the number of
nodes in T , and F as a collection of subtrees Y of size at most t, each isomorphic to some
subtree of T . The existence of compact witnesses allows an algorithm to keep track of only a
small subset F̂ of F . Indeed, if F contains a partial solution Y that can be extended into a
global solution isomorphic to T using a set of nodes X, then there is a representative Ŷ ∈ F̂
of the partial solution Y ∈ F that can also be extended into a global solution isomorphic
to T using the same set X of nodes. Therefore, there is no need to keep track of all partial
solutions Y ∈ F , it is sufficient to keep track of just the partial solutions Ŷ ∈ F̂ . This
pruning technique has been successfully used for designing fixed-parameter tractable (FPT)
algorithms for the longest path problem [32], as well as, recently, for searching cycles in the
context of distributed property-testing [19]. Using this technique for detecting the presence
of a given tree however requires to push the recent results in [19] much further. First, the
detection algorithm in [19] is anchored at a fixed node, i.e., the question addressed in [19] is
whether there is a cycle Ck passing through a given node. Instead, we address the detection
problem in its full generality, and we do not restrict ourselves to detecting a copy of T
including some specific node. Second, detecting trees requires to handle partial solutions
that are not only composed of sets of nodes, but that offer various shapes, depending on the
structure of the tree T , representing all possible combinations of subtrees of T .

Theorem A, which establishes the existence of distributed algorithms for detecting the
presence of trees, has important consequences on the ability to test the presence of more
complex graph patterns in the context of distributed property-testing. Recall that, for
ε ∈ (0, 1), a graph G is ε-far from being H-free if removing less than a fraction ε of its edges
cannot result in an H-free graph. A (randomized) distributed algorithm tests H-freeness if
it decides H-freeness according to the following decision rule:

if G is H-free then Pr[every node outputs accept] ≥ 2/3;
if G is ε-far from being H-free then Pr[at least one node outputs reject] ≥ 2/3.

That is, a testing algorithm separates graphs that are H-free from graphs that are far
from being H-free. So far, the only non-trivial graph patterns H for which distributed
algorithms testing H-freeness are known are:

the complete graphs K3 and K4 (see [9, 20]), and
the cycles Ck, k ≥ 3 (see [19]).

Using our algorithm for detecting the presence of trees, we show the following (stated
informally):
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T e

C3 CkK4

K2,k

Figure 2 All these graphs are composed of a tree T and edge e with arbitrary connections between
them.

Theorem B. For every graph pattern H composed of an edge and a tree with arbitrary
connections between them, there exists a (randomized) distributed algorithm for testing
H-freeness performing in a constant number of rounds under the congest model.

At a first glance, the family of graph patterns H composed of an edge and a tree with
arbitrary connections between them (like, e.g., the graph depicted on the top-left corner of
Fig. 2) may look quite specific and artificial. This is not the case. For instance, every cycle
Ck for k ≥ 3 is a “tree plus one edge”. This also holds for 4-node complete graph K4. In fact,
all known results about testing H-freeness for some graph H in [9, 19, 20] are just direct
consequence of Theorem B. Moreover, Theorem B enables to test the presence of other graph
patterns, like the complete bipartite graph K2,k with k + 2 nodes, for every k ≥ 1, or the
graph pattern depicted on the top-right corner of Fig. 2, in O(1) rounds. It also enables to
test the presence of connected 1-factors as a subgraph in O(1) rounds. (Recall that a graph
H is a 1-factor if its edges can be directed so that every node has out-degree 1).

In fact, our algorithm is 1-sided, that is, if G is H-free, then all nodes output accept with
probability 1.

3.3 Detecting the Presence of Trees
In this section, we establish our main result:

I Theorem 18. For every tree T , there exists an algorithm performing in O(1) rounds in
the congest model for detecting whether the given input network contains T as a subgraph.

Proof. Let k be the number of nodes in tree T . The nodes of T are labeled arbitrarily by k
distinct integers in [1, k]. We arbitrarily choose a vertex r ∈ [1, k] of T , and view T as rooted
in r. For any vertex ` ∈ V (T ), let T` be the subtree of T rooted in `. We say that T` is a
shape of T . Our algorithm deciding T -freeness proceeds in depth(Tr) + 1 rounds. At round t,
every node u of G constructs, for each shape T` of depth at most t, a set of subtrees of G all
rooted at u, denoted by sosu(T`), such that each subtree in sosu(T`) is isomorphic to the
shape T`. The isomorphism is considered in the sense of rooted trees, i.e., it maps u to `. If
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we were in the local model3, we could afford to construct the set of all such subtrees of
G. However, we cannot do that in the congest model because there are too many such
subtrees. Therefore, the algorithm acts in a way which guarantees that:
1. the set sosu(T`) is of constant size, for every node u of G, and every node ` of T ;
2. for every set C ⊆ V of size at most k− |V (T`)|, if there is some subtree W of G rooted at

u that is isomorphic to T`, and that is not intersecting C, then sosu(Tl) contains at least
one such subtree W ′ not intersecting C. (Note that W ′ might be different from W ).

The intuition for the second condition is the following. Assume that there exists some
subtree W of G rooted at u, corresponding to some shape T`, which can be extended into a
subtree isomorphic to T by adding the vertices of a set C. The algorithm may well not keep
the subtree W in sosu(Tl). However, we systematically keep at least one subtree W ′ of G,
also rooted at u and isomorphic to T`, that is also extendable to T by adding the vertices of
C. Therefore the sets sosu(T`), over all shapes T` of depth at most t, are sufficient to ensure
that the algorithm can detect a copy of T in G, if it exists. Our approach is described in
Algorithm 3. (Observe that, in this algorithm, if we omit Lines 13 to 15, which prune the
set sosu(T`), we obtain a trivial algorithm detecting T in the local model). Implementing
the pruning of the sets sosu(T`) for keeping them compact, we make use of the following
combinatorial lemma, which has been rediscovered several times, under various forms (see,
e.g., [19, 32]).

I Lemma 19 (Erdős, Hajnal, Moon [15]). Let V be a set of size n, and consider two integer
parameters p and q. For any set F ⊆ P(V ) of subsets of size at most p of V , there exists a
compact (p, q)-representation of F , i.e., a subset F̂ of F satisfying:
1. For each set C ⊆ V of size at most q, if there is a set L ∈ F such that L ∩ C = ∅, then

there also exists L̂ ∈ F̂ such that L̂ ∩ C = ∅;
2. The cardinality of F̂ is at most

(
p+q
p

)
, for any n ≥ p+ q .

By Lemma 19, the sets sosu(T`) can be reduced to constant size (i.e., independent of
n), for every shape T` and every node u of G. Moreover, the number of shapes is at most k,
and, for each shape T`, each element of sosu(T`) can be encoded on k logn bits. Therefore
each vertex communicates only O(logn) bits per round along each of its incident edges. So,
the algorithm does perform in O(1) rounds in the congest model4.

Proof of correctness. First, observe that if sosu(T`) contains a graph W , then W is indeed
a tree rooted at u, and isomorphic to T`. This is indeed the case at round t = 0, and we can
proceed by induction on t. Let T` be a shape of depth `. Each graph W added to sosu(T`)
is obtained by gluing vertex-disjoint trees at the root u. These latter trees are isomorphic
to the shapes Tj1 , . . . , Tjs , where j1, . . . , js are the children of node j in T . Therefore W is
isomorphic to T`. In particular, if the algorithm rejects at some node u, it means that there
exists a subtree of G isomorphic to T .

We now show that if G contains a subgraph W isomorphic to T , then the algorithm
rejects in at least one node. For this purpose, we prove a stronger statement:

3 The local model is similar to the congest model, but it has no restriction on the size of the
messages [36].

4 We may assume that, for compacting a set sosu(T`) in Lines 13-15, every node u applies Lemma 19 by
brute force (e.g., by testing all candidates F̂ ). In [32], an algorithmic version of Lemma 19 is proposed,
producing a set F̂ of size at most

∑q

i=1 p
i in time O((p+ q)! ·n3), i.e., in time poly(n) for fixed p and q.
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Algorithm 3: Tree-detection, for a given tree T . Algorithm executed by node u.
1 for each leaf ` of T do
2 let sosu(T`) be the unique tree with single vertex u
3 exchange the sets sos with all neighbors
4 for t = 1 to depth(T ) do
5 for each node ` of T with depth(T`) = t do
6 sosu(T`)← ∅
7 let j1, . . . , js be the children of ` in T
8 for every s-uple (v1, . . . , vs) of nodes in N(u) do
9 for every (W1, . . . ,Ws) ∈ sosv1(Tj1)× · · · × sosvs

(Tjs
) do

10 if {u} and W1, . . . ,Ws are pairwise disjoint then
11 let W be the tree with root u, and subtrees W1, . . . ,Ws

12 add W to sosu(T`) ; // each Wi is glued to u by its root

13 let F = {V (W ) |W ∈ sosu(Tl)}
; // collection of vertex sets for trees in sosu(Tl)

14 construct a (|V (T`)|, k − |V (T`)|)-compact representation F̂ ⊆ F
; // cf. Lemma 19

15 remove from sosu(T`) all trees W with vertex set not in F̂
16 exchange sosu(T`) with all neighbors

17 if sosu(Tr) = ∅ then ; // r denotes the root of T

18

19 return accept
20 else
21 return reject

I Lemma 20. Let u be a node of G, T` be a shape of T , and C be a subset of vertices of G,
with |C| ≤ k − |V (Tu)|. Let us assume that there exists a subgraph Wu of G, satisfying the
following two conditions:
(1) Wu is isomorphic to T`, and the isomorphism maps u on `, and
(2) Wu does not contain any vertex of C.
Then sosu(T`) contains a tree W ′u satisfying these two conditions.

We prove the lemma by induction on the depth of T`. If depth(T`) = 0 then ` is a leaf
of T`, and sosu(T`) just contains the tree formed by the unique vertex u. Il particular, it
satisfies the claim. Assume now that the claim is true for any node of T whose subtree has
depth at most t− 1, and let ` be a node of depth t. Let j1, . . . , js be the children of ` in T .
For every i, 1 ≤ i ≤ s, let vi be the vertex of Wu mapped on ji. By induction hypothesis,
sosv1(Tj1) contains some tree W ′v1

isomorphic to Tj1 and avoiding the nodes in C ∪ {u}, as
well as all the nodes of Wv2 , . . .Wvs . Using the same arguments, we proceed by increasing
values of i = 2, . . . , s, and we choose a tree W ′vi

∈ sosvi
(Tji

) isomorphic to Tji
that avoids

C ∪ {u}, as well as all the nodes in W ′v1
, . . . ,W ′vi−1

and the nodes of Wvi+1 , . . . ,Wvs
. Now,

observe that the treeW ′′ obtained from gluing u toW ′v1
, . . . ,W ′vs

has been added to sosu(T`)
before compacting this set, by Line 11 of Algorithm 3. Since W ′′ does not intersect C, we get
that, by compacting the set sosu(T`) using Lemma 19, the algorithm keeps a representative
subtree W ′ of G that is isomorphic to Tl and not intersecting C. This completes the proof
of the lemma. �
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To complete the proof of Theorem 18, let us assume there exists a subtree W of G
isomorphic to T , and let u be the vertex that is mapped to the root r of T by this
isomorphism. By Lemma 20, sosu(Tr) 6= ∅, and thus the algorithm rejects at node u. J

3.4 Distributed Property Testing
In this section, we show how to construct a distributed tester for H-freeness in the sparse
model, based on Algorithm 3. This tester is able to test the presence of every graph pattern H
composed of an edge e and a tree T connected in an arbitrary manner, by distinguishing
graphs that include H from graphs that are ε-far5 from being H-free.

Specifically, we consider the set H of all graph patterns H with node-set V (H) =
{x, y, z1, . . . , zk} for k ≥ 1, and edge-set E(H) = {f} ∪ E(T ) ∪ E , where f = {x, y}, T is a
tree with node set {z1, . . . , zk}, and E is some set of edges with one end-point equal to x or
y, and the other end-point zi for i ∈ {1, . . . , k}. Hence, a graph H ∈ H can be described by
a triple (f, T, E) where E is a set of edges connecting a node in T with a node in f .

We now establish our second main result, i.e., Theorem B, stated formally below as
follows:

I Theorem 21. For every graph pattern H ∈ H, i.e., composed of an edge and a tree
connected in an arbitrary manner, there exists a randomized 1-sided error distributed property
testing algorithm for H-freeness performing in O(1/ε) rounds in the congest model.

Proof. Let H = (f, T, E), with f = {x, y}. Let us assume that there are ν copies of H in G,
and let us call these copies H1 = (f1, T1, E1), . . . ,Hν = (fν , Tν , Eν)). Let E = {f1, . . . , fν}.
Our tester algorithm for H-freeness is composed by the following two phases:
1. determine a candidate edge e susceptible to belong to E;
2. checking the existence of a tree T connected to e in the desired way.

In order to find the candidate edge, we exploit the following lemma:

I Lemma 22 ([20]). Let H be any graph. Let G be an m-edge graph that is ε-far from being
H-free. Then G contains at least εm/|E(H)| edge-disjoint copies of H.

Hence, if the actual m-edge graph G is ε-far from being H-free, we have |E| ≥ εm/|E(H)|.
Thus, by randomly choosing an edge e and applying Lemma 22, e ∈ E with probability at
least ε/|E(H)|.

As shown in [19], the first phase can be computed in the following way. First, every edge
is assigned to the endpoint having the smallest identifier. Then, every node picks a random
integer r(e) ∈ [1,m2] for each edge e assigned to it. The candidate edge of Phase 1 is the
edge emin with minimum rank, and indeed Pr[emin ∈ E] ≥ ε/|E(H)|.

It might be the case that emin is not unique though. However: Pr[emin is unique] ≥ 1/e2

where e denotes here the basis of the natural logarithm. Also, every node picks, for every edge
e = {v1, v2} assigned to it, a random bit b. Assume, w.l.o.g., that ID(v1) < ID(v2). If b = 0,
then the algorithm will start Phase 2 for testing the presence of H with (x, y) = (v1, v2),
and if b = 1, then the algorithm will start Phase 2 for testing the presence of H with
(x, y) = (v2, v1). We have Pr[emin is considered in the right order] ≥ 1/2. It follows that the
probability emin is unique, considered in the right order, and part of E is at least ε

2|E(H)|e2 .

5 For ε ∈ (0, 1), a graph G is ε-far from being H-free if removing less than a fraction ε of its edges cannot
result in an H-free graph.
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Using a deterministic search based on Algorithm 3, H will be found with probability at
least ε

2|E(H)|e2 . To boost the probability of detecting H in a graph that is ε-far from being
H-free, we repeat the search 2e2|E(H)| ln 3/ε times. In this way, the probability that H is
detected in at least one search is at least 2/3 as desired.

During the second phase, the ideal scenario would be that all the nodes of G search for
H = (f, T, E) by considering only the edge emin as candidate for f , to avoid congestion.
Obviously, making all nodes aware of emin would require diameter time. However, there is
no needs to do so. Indeed, the tree-detection algorithm used in the proof of Theorem 18
runs in depth(T ) rounds. Hence, since only the nodes at distance at most depth(T ) + 1 from
the endpoints of emin are able to detect T , it is enough to broadcast emin at distance up
to 2 (depth(T ) + 1) rounds. This guarantees that all nodes participating to the execution
of the algorithm for emin will see the same messages, and will perform the same operations
that they would perform by executing the algorithm for emin on the full graph. So, every
node broadcasts its candidate edge with the minimum rank, at distance 2 (depth(T ) + 1).
Two contending broadcasts, for two candidate edges e and e′ for f , resolve contention by
discarding the broadcast corresponding to the edge e or e′ with largest rank. (If e and e′ have
the same rank, then both broadcast are discarded). After this is done, every node is assigned
to one specific candidate edge, and starts searching for T . Similarly to the broadcast phase,
two contending searches, for two candidate edges e and e′, resolve contention by aborting the
search corresponding to the edge e or e′ with largest rank. From now on, one can assume
that a single search in running, for the candidate edge emin.

It remains to show how to adapt Algorithm 3 for checking the presence of a tree T
connected to a fixed edge e = {x, y} ∈ E(G) as specified in E . Let us consider Instruction 5
of Algorithm 3, that is: “for each node ` of T with depth(T`) = t do”. At each step of this
for-loop, node u tries to construct a tree W that is isomorphic to the subtree of T rooted at
`. In order for u to add W to sosu(T`), we add the condition that:

if {`, x} ∈ E(H) then {u, x} ∈ E(G), and
if {`, y} ∈ E(H) then {u, y} ∈ E(G).

Note that this condition can be checked by every node u. If this condition is not satisfied,
then u sets sosu(T`) = ∅.

This modification enables to test H-freeness. Indeed, if the actual graph G is H-free,
then, since at each step of the modified algorithm, the set sosu(T`) is a subset of the set
sosu(T`) generated by the original algorithm, the acceptance of the modified algorithm is
guaranteed from the correctness of the original algorithm.

Conversely, let us show that, in a graph G that is ε far of being H-free, the algorithm
rejects G as desired. In the first phase of the algorithm, it holds that emin ∈ E happens
in at least one search whenever G is ε-far from being H-free, with probability at least 2/3.
Following the same reasoning of the proof of Lemma 20, since the images of the isomorphism
satisfy the condition of being linked to nodes {x, y} in the desired way, the node of G that is
mapped to the root of T correctly detects T , and rejects, as desired. J

3.5 Conclusion
In this note, we have proposed a generic construction for designing deterministic distributed
algorithms detecting the presence of any given tree T as a subgraph of the input network,
performing in a constant number of rounds in the congest model. Therefore, there is a
clear dichotomy between cycles and trees, as far as efficiently solving H-freeness is concerned:
while every cycle of at least four nodes requires at least a polynomial number of rounds to be
detected, every tree can be detected in a constant number of rounds. It is not clear whether
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one can provide a simple characterization of the graph patterns H for which H-freeness
can be decided in O(1) rounds in the congest model. Indeed, the lower bound Ω̃(

√
n) for

C4-freeness can be extended to some graph patterns containing C4 as induced subgraphs.
However, the proof does not seem to be easily extendable to all such graph patterns as,
in particular, the patterns containing many overlapping C4 like, e.g., the 3-dimensional
hypercube Q3, since this case seems to require non-trivial extensions of the proof techniques
in [13]. An intriguing question is to determine the round-complexity of deciding Kk-freeness
in the congest model for k ≥ 3, and in particular to determine the exact round-complexity
of deciding C3-freeness.

Our construction also provides randomized algorithms for testing H-freeness (i.e., for
distinguishing H-free graphs from graphs that are far from being H-free), for every graph
pattern H that can be decomposed into an edge and a tree, with arbitrary connections
between them, also running in O(1) rounds in the congest model. This generalizes the
results in [9, 19, 20], where algorithms for testing K3, K4, and Ck-freeness for every k ≥ 3
were provided. Interestingly, K5 is the smallest graph pattern H for which it is not known
whether testing H-freeness can be done in O(1) rounds, and this is also the smallest graph
pattern that cannot be decomposed into a tree plus an edge. We do not know whether this
is just coincidental or not.

4 Note #3: Algorithms for Testing and Correcting Graph Properties
in the CONGEST Model

4.1 Computational Models

Notations. Let G = (V,E) denote a graph, were V is the set of vertices and E is the set of
edges. Let n , |V (G)|, and let m , |E(G)|. For every v ∈ V , let NG(v) , {u ∈ V | {u, v} ∈
E} denote the neighborhood of v in G. For every v ∈ V , let dG(v) , |NG(v)| denote the
degree of v. When the graph at hand is clear from the context we omit the subscript G.

4.1.1 Distributed CONGEST Model

Computation in the distributed congest [36] model is done as follows. Let G = (V,E)
denote a network where each vertex is a processor and each edge is a communication link
between its two endpoints. Each processor is given a local input. Each processor v has a
distinct ID - for brevity we say that the ID of processor v is simply v.6 The computation is
synchronized and is measured in terms of rounds. In each round, each processor performs
the following steps:
1. Receive the messages that were sent by its neighbors in the previous round.
2. Execute a local (randomized) computation.
3. Sends (different) messages of O(logn) bits to every neighbor neighbors (or a possible

“empty message”).
In the last round all the processors stop and output a local output.

6 In this paper we focus on randomized algorithms. Note that, with high probability, distinct IDs can be
randomly generated using O(logn) bits.
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4.1.2 (Global) Testing Model
Graph property testing [22, 23] is defined as follows. A graph property P is a subset of all
(undirected and unlabeled) graphs e.g., the graph is cycle-free, the graph is bipartite, etc.
We focus on edge monotone (with respect to deletions) properties.

I Definition 23. A graph property P is edge-monotone if G ∈ P and G′ is obtained from G

by the removal of edges, then G′ ∈ P.

We define the edge-distance between two graphs G = (V,E) and G′ = (V,E′) as the
number edges in the symmetric difference E 4 E′. We say that a graph G is ε-far (in the
general model) from having the property P if |E 4 E′| ≥ ε · |E|, for every G′ = (V,E′) ∈ P.

The tester accesses the graph via queries. The type of queries we consider are: (1) what
is the degree of v for v ∈ V ? (2) who is the ith neighbor of v ∈ V ?

We say that an algorithm is a one sided ε-tester for property P in the general model
if given query access to the graph G the algorithm ACCEPTS the graph G if G has the
property P , i.e, completeness, and REJECTS the graph G with probability at least 2/3 if G
is ε-far from having the property P, i.e., soundness.

We note that since the tester must accept graphs G ∈ P, a reject occurs if only if the
tester has a proof that that G /∈ P. Such a proof is called a witness against G ∈ P. In fact,
in [9], it is required that the witness is an induced proper subgraph of G.

The complexity measure of this model is the number of queries made to G. The goal is
to design an ε-tester with as few as possible queries. In particular, the number of queries
should be sublinear in the size of the graph.

In Section 4.4 an additional query type is allowed; this query is called a random edge
query, and enables on to pick an edge e u.a.r. from E.

4.1.3 Distributed Testing in the CONGEST model
Let G = (V,E) be a graph and let P denote a graph property. We say that a randomized
distributed CONGEST algorithm is an ε-tester for property P in the general model [9] if
when G has the property P then all the processors v ∈ V output ACCEPT, and if G is ε-far
from having the property P, then there is a processor v ∈ V that outputs REJECT with
probability at least 2/3.

4.1.4 Distributed Correcting
In this section we define correction in the distributed setting. We then explain how to obtain
correction for the property of cycle-freeness. We focus here on edge-monotone properties,
and therefore, consider only corrections that delete edges. One can view an ε-corrector as an
approximation algorithm to the distance to property P , where the approximation is additive.

I Definition 24. In the distributed CONGEST model, we say that an algorithm is an
ε-corrector for an edge-monotone property P if the following holds.
1. Let G = (V,E) denote the network’s graph. When the algorithm terminates, each

processor v knows which edges in E that intersect with v are in the set of deleted edges
E′ ⊆ E.

2. G(V,E \ E′) is in P.
3. |E′| ≤ dist(G,P) + ε|E|, where dist(G,P) denotes the minimum number of edges that

should be removed from G in order to obtain the property P.
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4.2 Reducing the Dependency on the Diameter and Applications
In this section we present a general technique that reduces the dependency of the round
complexity on the diameter. The technique is based on graph decompositions defined below.

I Definition 25 ([31]). Let G = (V,E) denote an undirected graph. A (β, d)-decomposition
of G is a partition of V into disjoint subsets V1, . . . , Vk such that
1. For all 1 ≤ i ≤ k, diam(G[Vi]) ≤ d, where G[Vi] is the vertex induced subgraph of of G

that is induced by Vi.
2. The number of edges with endpoints belonging to different subsets is at most β · |E|. We

refer to these as cut-edges of the decomposition.
Note that the diameter constraint refers to strong diameter, in particular, each induced
subgraph G[Vi] must be connected.

Algorithms for (ε, (logn)/ε)-decompositions were developed in many contexts (e.g., par-
allel algorithms [6, 7, 31]). An implementation in the CONGEST-model is presented
in [14].

I Theorem 26 ([14]). A (ε,O(logn/ε))-decomposition can be computed in the randomized
CONGEST-model in O((logn)/ε) rounds with probability at least 1− 1/Poly(n).

A nice feature of the algorithm based on random exponential shifts is that at the end of the
algorithm, there is a spanning BFS-like rooted tree Ti for each subset Vi in the decomposition.
Moreover, each vertex v ∈ Vi knows the center of Ti as well as its parent in Ti. In addition,
every vertex knows which of the edges incident to it are cut-edges.

The following definition captures the notion of connected witnesses against a graph
satisfying a property.

I Definition 27 ([9]). 7 A graph property P is non-disjointed if for every witness G′ against
G ∈ P, there exists an induced subgraph G′′ of G′ that is connected such that G′′ is also a
witness against G ∈ P.

The main result of this section is formulated in the following theorem. We refer to a
distributed algorithm in which all vertices accept iff G ∈ P as a verifier for P.

I Theorem 28. Let P be an edge-monotone non-disjointed graph property that can be verified
in the CONGEST-model in O(diam(G)) rounds, where G is the input graph. Then there is
an ε-tester for P in the randomized CONGEST-model with O((logn)/ε) rounds.

Proof. The algorithm tries to “fix” the input graph G so that it satisfies P by removing less
than ε·m edges. The algorithm consists of two phases. In the first phase, an (ε′, O((logn)/ε′))
decomposition is computed in O((logn)/ε′) rounds, for ε′ = ε/2. The algorithm removes all
the cut-edges of the decomposition. (There are at most ε ·m/2 such edges.) In the second
phase, in each subgraph G[Vi], an independent execution of the verifier algorithm for P is
executed. The number of rounds of the verifier in G[Vi] is O(diam(G[Vi])) = O((logn)/ε).

We first prove completeness. Assume that G ∈ P . Since P is an edge-monotone property,
the deletion of the cut-edges does not introduce a witness against P. This implies that each

7 An alternative (nonequivalent) definition which suffices for proving Theorem 28 is as follows. A property
P is non-disjointed if, for every nonconnected graph G, the following holds:

G ∈ P ⇐⇒ for every connected component G′ of G: G′ ∈ P.
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induced subgraph G[Vi] does not contain a witness against P , and hence the verifiers do not
reject, and every vertex accepts.

We now prove soundness. If G is ε-far from P , then after the removal of the cut-edges (at
most εm/2 edges) property P is still not satisfied. Let G′ be a witness against the remaining
graph satisfying P. Since property P is non-disjointed, there exists a connected witness
G′′ in the remaining graph. This witness is contained in one of the subgraphs G[Vi], and
therefore, the verifier that is executed in G[Vi] will reject, hence at least one vertex rejects,
as required. J

We remark that if the round complexity of the verifier is f(diam(G), n) (e.g., f(∆, n) =
∆ + logn), then the round complexity of the ε-tester is O((logn)/ε) + f((logn)/ε, n). This
follows directly from the proof.

Extensions to ε-Testers

The following “bootstrapping” technique can be applied. If there exists an ε-tester in the
CONGEST-model with round complexity O(diam(G)), then there exists an ε-tester with
round complexity O((logn)/ε). The proof is along the same lines, expect that instead of a
verifier, an ε′-tester is executed in each subgraph G[Vi]. Indeed, if G is ε-far from P, then
there must exist a subset Vi such that G[Vi] is ε′-far from P. Otherwise, we could “fix” all
the parts by deleting at most ε′ ·m edges, and thus “fix” G by deleting at most 2ε′ ·m = εm

edges, a contradiction.

4.2.1 Testing Bipartiteness
Theorem 28 can be used to test whether a graph is bipartite or ε-far from being bipartite. A
verifier for bipartiteness can be obtained by attempting to 2-color the vertices (e.g., BFS
that assigns alternating colors to layers). In our special case, each subgraph G[Vi] has a root
which is the only vertex that initiates the BFS. In the general case, one would need to deal
with “collisions” between searches, and how one search “kills” the other searches initiated by
vertices of lower ID.

4.2.2 Testing Cycle-Freeness
Theorem 28 can be used to test whether a graph is acyclic or ε-far from being acyclic. As
in the case of bipartiteness, any scan (e.g., DFS, BFS) can be applied. A second visit to a
vertex indicates a cycle, in which case the vertex rejects.

I Corollary 29. There exists an ε-tester in the randomized CONGEST-model for bipartite-
ness and cycle-freeness with round complexity O((logn)/ε).

4.2.3 Corrector for Cycle-Freeness
Our ε-testers for testing cycle freeness can be easily converted into ε-correctors as follows::
(1) All the cut-edges are removed. (2) In each G[Vi], all the edges which are not in the
BFS-like spanning tree Ti are removed.

I Theorem 30. There exists an ε-corrector for cycle-freeness in the randomized
CONGEST-model with round complexity O((logn)/ε).
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Proof sketch. The remaining edges form a forest of disjoint trees, and are therefore acyclic.
The proof that the number of deleted edges is at most dist(G,P) + ε · |E| is based on the
following two observations. Let G′ denote the graph obtained from G by deleting all the
cut-edges. dist(G′,P) ≤ dist(G,P) and dist(G′[Vi],P) = |E(G[Vi]) \ E(Ti)|. J

4.3 Testing H-Freeness in Θ(1/ε) Rounds for |V (H)| ≤ 4

4.3.1 Testing Triangle-Freeness
In this section we present an ε-tester for triangle-freeness that works in the CONGEST-model.
The number of rounds is O(1/ε).

Consider a triangle ABC in the input graph G = (V,E). This triangle can be detected if
A tells B about a neighbor C ∈ N(A) with the hope that C is also a neighbor of B. Vertex
B checks that C is also its neighbor, and if it is then the triangle ABC is detected. Hence,
A would like to send to B the name of a vertex C such that C ∈ N(A)∩N(B). Since A can
discover N(A) in a single round, it proceeds by telling B about a neighbor C ∈ N(A) \ {B}
chosen uniformly at random. Let MA→B denote the random neighbor that A reports to B.
A listing of the distributed ε-tester for triangle-freeness appears as Algorithm 4. Note that
all the messages {MA→B}(A,B)∈E are independent, and that the messages are rechosen for
each iteration.

I Claim 31. For every triangle x, the probability that triangle x is detected is at least 1/m.

Proof. Label the vertices of x arbitrarily by A,B,C. The event that triangle x is detected
is contained in the event that MA→B ∈ N(B). Since ABC is a triangle, C ∈ N(A) ∩N(B),
and Pr [MA→B ∈ N(B)] ≥ 1/d(A) ≥ 1/m. J

I Claim 32. If a graph G is ε-far from being triangle-free, then it contains at least ε ·m/3
edge-disjoint triangles.

Proof. Consider the following procedure for “covering” all the triangles: while the graph
contains a triangle, delete all three edges of the triangle. When the procedure ends, the
remaining graph is triangle-free, hence at least εm edges were removed. The set of deleted
triangles is edge disjoint and hence contains at least εm/3 triangles. J

I Theorem 33. Algorithm 4 is an ε-tester for triangle-freeness.

Proof. Completeness: If G is triangle free then Line 4 is never satisfied, hence for every v
Algorithm 4 terminates at Line 5.

Soundness: Let G = (V,E) be a graph which is ε-far from being triangle free. By Claim 32
there are ε ·m/3 edge disjoint triangles in G. Edge disjointness implies that the detection of
these triangles are independent events8. Hence, the probability of not detecting any of these
triangles in a single iteration is at most (1− 1/m)εm/3. The reject probability is amplified to
2/3 by setting the number of iterations to be t = Θ(1/ε). J

4.3.2 Testing C4-Freeness in Θ(1/ε) Rounds
In this section we present an ε-tester in the CONGEST-model for C4-freeness that runs in
O(1/ε) rounds.

8 In fact, the events are independent even for triangles which are not edge disjoint.
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Algorithm 4: Triangle-free-test(v).
1 Send v to all u ∈ N(v) // 1st round: each v learns N(v)
2 for t , Θ(1/ε) times do
3 For all u ∈ N(v), simultaneously: send u the message Mv→u ∼ U(N(v) \ {u}).
4 If ∃w ∈ N(v) such that Mw→v ∈ N(v) then return REJECT
5 return ACCEPT

Uniform Sampling of 2-paths

Let P2(v) denote the set of all paths of length 2 that start at v. The algorithm is based
on the ability of each vertex v to uniformly sample a path from P2(v). How many paths
in P2(v) start with the edge (v, w)? Clearly, there are (d(w) − 1) such paths. Hence
the first edge should be chosen according to the degree distribution over N(v) defined by
πv(w) , (d(w)− 1)/

∑
x∈N(v)(d(x)− 1). Moreover, for each x ∈ N(w) \ {v}, the (directed)

edge (w, x) appears exactly once as the second edge of a path in P2(v). Hence, given the
first edge, the second edge is chosen uniformly.

This implies that v can pick a random path p ∈ P2(v) as follows: (1) Each neighbor
w ∈ N(v) sends v its degree and a uniformly randomly chosen neighbor Bv(w) ∈ N(w) \ {v}.
The edge (w,Bv(w)) is a candidate edge for the second edge of p. (2) v picks a neighbor
A(v) ∈ N(v) where A(v) ∼ πv. The random path p is p = 〈v,A(v), Bv(A(v))〉, and it is
uniformly distributed over P2(v).

In the algorithm, vertex v reports a path to each neighbor. We denote by pu(v) the
path in P2(v) that v reports to u ∈ N(v). This is done by independently picking neigh-
bors Au(v) ∈ N(v), where each Au(v) ∼ πv. Hence, the path that v reports to u is
pu(v) , 〈v,Au(v), Bv(Au(v))〉 Algorithm 5 uses this process for reporting paths of length 2.
Interestingly, these paths are not independent, however for the case of edge disjoint copies of
C4, their “usefulness” in detecting copies of C4 turns out to be independent (see Lemma 35).

Detecting a Cycle

Consider a copy C = (v, w, x, u) of C4 in G. If the 2-path pu(v) that v reports to u is
pu(v) = (v, w, x), then u can check whether the last vertex x in pu(v) is also in N(u). If
x ∈ N(u), then the copy C in G of C4 is detected. (The vertex u also needs to verify that
w 6= u.)

Description of the Algorithm

The ε-tester for C4-freeness is listed as Algorithm 5. In the first round, each vertex v learns
its neighborhood N(v) and the degree of each neighbor. The for-loop repeats t = O(1/ε)
times. Each iteration consists of three rounds. In the first round, v independently draws
fresh values for Au(v) and Bu(v) for each of its neighbors u ∈ N(v), and sends Bu(v) to u.
In the second round, for each neighbor u ∈ N(v), v sends the path 〈v,Au(v), Bv(Au(v))〉. In
the third round, v checks if it received a path 〈w, a, b〉 for a neighbor w ∈ N(v) where a 6= v

and b ∈ N(v). If this occurs, then (v, w, a, b) is a copy of C4, and vertex v rejects. If v did
not reject in all the iterations, then it finally accepts.
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Analysis of the Algorithm

I Definition 34. We say that pu(v) is a success (wrt C = (v, w, x, u)) if pu(v) = (v, w, x).
Let Iv,u denote the indicator variable of the event that pu(v) is a success.

I Lemma 35. Let {Cj(vj , wj , xj , uj)}j∈J denote a set of edge-disjoint copies of C4 in G.
Then the random variables Ivj ,uj are independent.

Proof. The event Iv,u = 1 occurs iff Au(v) = w and Bv(w) = x. Both Au(v) and Bv(w) are
random variables assigned to (directed) edges. By construction, all the random variables
{Au(v)}(u,v∈E ∪ {Bv(w)}(v,w)∈E are independent. Since the cycles are edge-disjoint, the
lemma follows. J

I Claim 36. Pr[Iv,u = 1 | C] ≥ 1/(2m).

Proof. The path pu(v) equals (v, w, x) iff Au(v) = w and Bv(w) = x. As Au(v) and Bv(w)
are independent, we obtain

Pr [Iv,u = 1 | C] = Pr [Au(v) = w|C] · Pr [Bv(w) = x | C]

= d(w)− 1∑
x∈N(v)(d(x)− 1) ·

1
d(w)− 1 ≥

1
2m. J

I Claim 37. If a graph G is ε-far from being C4-free, then it contains at least ε · m/4
edge-disjoint copies of C4.

I Theorem 38. Algorithm 5 is an ε-tester for C4-freeness. The round complexity of the
algorithm is Θ(1/ε) and in each round no more than O(logn) bits are communicated along
each edge.

Proof. Completeness: If G is C4-free then Line 7 is never satisfied, hence for every v

Algorithm 5 terminates at Line 8.
Soundness: Let G = (V,E) be a graph which is ε-far from being C4-free. Therefore, there

exist ` , εm/4 edge disjoint copies of C4 in G. Denote these copies by {C1, . . . , C`}, where
Cj = (vj , wj , wj , uj). In each iteration, the cycle Cj is detected if Ivj ,uj = 1, which (by
Claim 36) occurs with probability at least 1/(2m). The cycles {Cj}j are edge-disjoint, hence,
by Lemma 35, the probability that none of these cycles is detected is at at most (1−1/(2m))`.
The iterations are independent, and hence the probability that all the iterations fail to detect
one of these cycles is at most (1− 1/(2m))`·t. Since ` = εm/4, setting t = Θ(1/ε) reduces
the probability of false accept to at most 1/3, as required. J

Extending Algorithm 5

The algorithm can be easily extended to test H-freeness for any connected H over four
nodes. If H is a K1,3 then clearly H-freeness can be tested in one round. Otherwise, H is
Hamiltonian and can be tested by simply sending an additional bit in the message sent in
Line 5 of the algorithm. The additional bit indicates whether v is connected to Bv(Au(v)).
Given this information, u can determine the subgraph induced on {u, v,Au(v), Bv(Au(v))},
and hence rejects if H is a subgraph of this induced subgraph. Therefore we obtain the
following theorem.

I Theorem 39. There is an algorithm which is an ε-tester for H-freeness for any connected
H over 4 vertices. The round complexity of the algorithm is Θ(1/ε) and in each round no
more than O(logn) bits are communicated along each edge.
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Algorithm 5: C4-free-test(v).
1 Send v and d(v) to all u ∈ N(v) // v learns N(v) and d(u) for every u ∈ N(v)
2 Define the following distribution πv over N(v): For every w ∈ N(v),

πv(w) , d(w)/
∑

x∈N(v) d(x) .
3 for t , Θ(1/ε) times do
4 For every neighbor u ∈ N(v) independently draw Au(v) ∼ πv and

Bu(v) ∼ U(N(v) \ {u}, send Bu(v) to u.
5 For every neighbor u ∈ N(v) send the path 〈v,Au(v), Bv(Au(v))〉 to u.
6 if ∃w ∈ N(v) s.t. v received the path 〈w, a, b〉 from w, where v 6= a and b ∈ N(v) then
7 return REJECT // A cycle C = (v, w, a, b) was found.

8 return ACCEPT

4.4 Testing T -Freeness for any Tree T

In this section we generalize the tester by Iwama and Yoshida [25] of testing k-path freeness
to testing the exclusion of any tree, T , of order k. We assume that the vertices of T are
labeled by v0, . . . , vk−1. Our tester has a one sided error and it works in the general graph
model with random edge queries. This algorithm can be simulated in the CONGEST model.
The complexities of the algorithms are stated in the next theorems.

I Theorem 40. Algorithm 6 is a global ε-tester, one-sided error for T -freeness. The query
complexity of the algorithm is O

(
kk

2+1 · ε−k
)
. The algorithm works in the general graph

model augmented with random edge samples.

I Theorem 41. There is an ε-tester in the CONGEST model that on input T , where T is a
tree, tests T -freeness. The round complexity of the tester is O

(
kk

2+1 · ε−k
)
where k is the

order of T .

Global Algorithm Description

The algorithm by Iwama and Yoshida [25] for testing k-path freeness proceeds as follows.
An edge is picked u.a.r. and an endpoint, v, of the selected edge,is picked u.a.r. A random
walk of length k is performed from v, if a simple path of length k is found then the algorithm
rejects. The analysis in [25] shows that this process has a constant probability (depends only
on k and ε) to find a k-path in an ε-far from k-path freeness graph.

We generalize this tester in the following straightforward manner. We pick a random
vertex v as in the above-mentioned algorithm. The vertex v is a candidate for being the root
of a copy of T . For the sake of brevity we denote the (possible) root of the copy of T also by
v0. From v we start a “DFS-like” revealing of a tree which is a possible copy of T with the
first random vertex acting as its root. DFS-like means that we scan a subgraph of G starting
from v as follows: the algorithm independently and randomly selects dT (v0) neighbors (out
of the possible dG(v)) and recursively scans the graph from each of these randomly chosen
neighbors. While scanning, if we encounter any vertex more than once then we abort the
process (we did not find a copy of T ). If the process terminates, then this implies that the
algorithm found a copy of T . In order to obtain probability of success of 2/3 the above
process is repeated t = f(ε, k) times. The listing of this algorithm appears in Algorithm 6.
The algorithm can be simulated in the CONGEST model in a straight-forward way. The
proofs of Theorems 40 and 41 appear in the full version of this paper [16].
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Algorithm 6: Global-tree-free-test(T, v).
1 for t , Θ(kk2

/εk) times do
2 Pick an edge u.a.r. and an endpoint, v, of the selected edge u.a.r.
3 Initialize all the vertices in G to be un-labeled.
4 Call Recursive-tree-exclusion(T, 0, v) and return REJECT if it returned 1.
5 return ACCEPT .

Procedure Recursive-tree-exclusion(T, i, v).
1 If v was already labeled then return 0, otherwise, label v by i. // The recursion

returns 0 if the revealed labeled subgraph is not T.
2 Define ` = dT (vi)− 1 if i > 0 and ` = dT (vi) otherwise.
3 Let vi1 , . . . , vi` denote the labels of the children of vi in T (in which v0 is the root).
4 Pick u.a.r. ` vertices u1, . . . , u` from NG(v) and recursively call

Recursive-tree-exclusion(T, ij , uj) for each j ∈ [`]
5 If one of the calls returned 0, then return 0, otherwise return 1.
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Abstract
Proof-labeling schemes are known mechanisms providing nodes of networks with certificates that
can be verified locally by distributed algorithms. Given a boolean predicate on network states,
such schemes enable to check whether the predicate is satisfied by the actual state of the network,
by having nodes interacting with their neighbors only. Proof-labeling schemes are typically
designed for enforcing fault-tolerance, by making sure that if the current state of the network is
illegal with respect to some given predicate, then at least one node will detect it. Such a node can
raise an alarm, or launch a recovery procedure enabling the system to return to a legal state. In
this paper, we introduce error-sensitive proof-labeling schemes. These are proof-labeling schemes
which guarantee that the number of nodes detecting illegal states is linearly proportional to the
edit-distance between the current state and the set of legal states. By using error-sensitive proof-
labeling schemes, states which are far from satisfying the predicate will be detected by many
nodes, enabling fast return to legality. We provide a structural characterization of the set of
boolean predicates on network states for which there exist error-sensitive proof-labeling schemes.
This characterization allows us to show that classical predicates such as, e.g., acyclicity, and
leader admit error-sensitive proof-labeling schemes, while others like regular subgraphs don’t.
We also focus on compact error-sensitive proof-labeling schemes. In particular, we show that the
known proof-labeling schemes for spanning tree and minimum spanning tree, using certificates
on O(logn) bits, and on O(log2 n) bits, respectively, are error-sensitive, as long as the trees are
locally represented by adjacency lists, and not just by parent pointers.
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1 Introduction

In the context of fault-tolerant distributed computing, it is desirable that the computing
entities in the system be able to detect whether the system is in a legal state (w.r.t. some
boolean predicate, potentially expressed in various forms of logics) or not. In the framework
of distributed network computing, several mechanisms have been proposed to ensure such a
detection (see, e.g., [1, 2, 4, 5, 22]). Among them, proof-labeling schemes [22] are mechanisms
enabling failure detection based on additional information provided to the nodes. More
specifically, a proof-labeling scheme is composed of a prover, and a verifier. A prover is
an oracle that assigns a certificate to each node of any given network, and a verifier is a
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distributed algorithm that locally checks whether the collection of certificates is a distributed
proof that the network is in a legal state with respect to a given predicate – by “locally”, we
essentially mean: by having each node interacting with its neighbors only.

The prover is actually an abstraction. In practice, the certificates are provided by a
distributed algorithm solving some task (see, e.g., [3, 6, 22]). For instance, let us consider
spanning tree construction, where every node must compute a pointer to a neighboring node
such that the collection of pointers form a tree spanning all nodes in the network. In that
case, the algorithm in charge of constructing a spanning tree is also in charge of constructing
the certificates providing a distributed proof allowing a verifier to check that proof locally.
That is, the verifier must either accept or reject at every node, under the following constraints.
If the constructed set of pointers form a spanning tree, then the constructed certificates must
lead the verifier to accept at every node. Instead, if the constructed set of pointers does not
form a spanning tree, then, for every possible certificate assignment to the nodes, at least
one node must reject. The rejecting node may then raise an alarm, or launch a recovery
procedure. Abstracting the construction of the certificates thanks to a prover enables to
avoid delving into the implementation details relative to the distributed construction of the
certificates, for focussing attention on whether such certificates exist, and on what should
be their forms. The reader is referred to [7] for more details about the connections between
proof-labeling schemes and fault-tolerant computing.

One weakness of proof-labeling schemes is that they may not allow the system running
the verifier to distinguish between a global state which is slightly erroneous, and a global
state which is completely bogus. In both cases, it is only required that at least one node
detects the illegality of the state. In the latter case though, having only one node raising an
alarm, or launching a recovery procedure for bringing the whole system back to a legal state,
might be quite inefficient. Instead, if many nodes would detect the errors, then bringing
back the system into a legal state will be achieved by a collection of local resets running in
parallel, instead of a single reset traversing the whole network sequentially.

Moreover, in several contexts like, e.g., property-testing [14, 15], monitoring an error-prone
system is implemented via an external mechanism involving a monitor that is probing the
system by querying a (typically small) subset of nodes chosen at random. Non-deterministic
property-testing has been recently investigated in the literature [18, 24], where a certificate
is given to the property-testing algorithm. Such a certificate is however global. Instead, we
are interested in decentralized certificates, which can also be viewed as, say, annotations
provided to the nodes of a network, or to the entries of a database. The correction of the
network, or of the database, is then checked by a property-testing algorithm querying nodes
at random for recovering the individual states of these nodes, including their certificates. To
be efficient, such distributed certificates must guarantee that, if the monitored system is far
from being correct, then many nodes are capable to detect the error. Indeed, if just one node
is capable to detect the error, then the probability that the monitoring system will query
that specific node is very low, resulting in a large amount of time before the error is detected.

In this paper, we aim at designing error-sensitive proof-labeling schemes, which guarantee
that system states that are far from being correct can be detected by many nodes, providing
faster recovery if the error detection mechanism is decentralized, or faster discovery if this
error detection mechanism is centralized.

More specifically, the distance between two global states of a distributed system is defined
as the edit-distance between these two states, i.e., the minimum number of individual states
required to be modified in order to move from one global state to the other. A proof-labeling
scheme is error-sensitive if there exists a constant α > 0 such that, for any erroneous system
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state S, the number of nodes detecting the error is at least αd(S), where d(S) is the shortest
edit-distance between S and a correct system state. The choice of a linear dependency
between the number of nodes detecting the error, and the edit-distance to legal states is not
arbitrary, but motivated by the following two observations.

On the one hand, a linear dependency is somewhat the best that we may hope for. Indeed,
let us consider a k-node network G in some illegal state S for which r nodes are detecting
the illegality of S — think about, e.g., the spanning tree predicate. Then, let us make n
copies of G and its state S, potentially linked by n− 1 additional edges if one insists on
connectivity. In the resulting kn-node network, we get that O(rn) nodes are detecting
illegality, which grows linearly with the number of nodes, as n grows.
On the other hand, while a sub-linear dependency may still be useful in some contexts,
this would be insufficient in others. For instance, in the context of property testing, for
systems that are ε-far from being correct (i.e., essentially, an ε fraction of the individual
states are incorrect), the linear dependency enables to find a node capable to detect the
error after O(1/ε) expected number of queries to random nodes. Instead, a sub-linear
dependency would yield an expected number of queries that grows with the size of the
system before querying a node capable to detect the error.

Our results. We consider boolean predicates on graphs with labeled nodes, as in, e.g., [25].
Given a graph G, a labeling of G is a function ` : V (G)→ {0, 1}∗ assigning binary strings to
nodes. A labeled graph is a pair (G, `) where G is a graph, and ` is a labeling of G. Given a
boolean predicate P on labeled graphs, the distributed language associated to P is

L = {(G, `) satisfying P}.

It is known that every (Turing decidable) distributed language admits a proof-labeling
scheme [17, 22]. We show that the situation is radically different when one is interested in
error-sensitive proof-labeling schemes. In particular, not all distributed languages admit an
error-sensitive proof-labeling scheme. Moreover, the existence of error-sensitive proof-labeling
schemes for the solution of a distributed task is very much impacted by the way the task
is specified. For instance, in the case of spanning tree construction, we show that asking
every node to produce a single pointer to its parent in the tree cannot be certified in an
error-sensitive manner, while asking every node to produce the list of its neighbors in the
tree can be certified in an error-sensitive manner.

Our first main result is a structural characterization of the distributed languages for which
there exist error-sensitive proof-labeling schemes. Namely, a distributed language admits an
error-sensitive proof-labeling scheme if and only if it is locally stable. The notion of local
stability is purely structural. Roughly, a distributed language L is locally stable if a labeling `
resulting from copy-pasting parts of correct labelings to different subsets S1, . . . , Sk of nodes
in a graph G results in a labeled graph (G, `) that is not too far from being legal, in the
sense that the edit-distance between (G, `) and L is proportional to the size of the boundary
of the subsets S1, . . . , Sk in G, and not to the size of these subsets. This characterization
allows us to show that important distributed languages (such as, e.g., acyclicity, leader, etc.)
admit error-sensitive proof-labeling schemes, while some very basic distributed languages
(such as, e.g., regular subgraph, etc.) do not admit error-sensitive proof-labeling schemes.

Our second main contribution is a proof that the known space-optimal proof-labeling
schemes for spanning tree with O(logn)-bit certificates, and for minimum spanning tree
(MST) with O(log2 n)-bit certificates, are both error-sensitive, whenever the trees are encoded
at each node by an adjacency list (and not by a single pointer to the parent). Hence, error-
sensitivity comes at no cost for spanning tree and MST. Proving this result requires to
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establish some kind of matching between the erroneously labeled nodes and the rejecting
nodes. Establishing this matching is difficult because, for both spanning tree and MST, the
rejecting nodes might be located far away from the erroneous nodes. Indeed, the presence of
certificates helps local detection of errors, but decorrelates the nodes at which the alarms
take place from the nodes at which the errors take place. (See Section 6 for a discussion
about proximity-sensitive proof-labeling schemes). Moreover, in the case of MST, the known
space-optimal proof-labeling scheme uses O(logn) “layers” of spanning trees (corresponding
roughly to the O(logn) levels of fragments constructed by Borůvka algorithm). It is not a
priori clear that errors occurring at different levels are necessarily detected by different nodes,
i.e., that k errors are necessarily detected by Ω(k) nodes, and not just by O(k/ logn) nodes.

Related work. As mentioned before, one important motivation for our work is fault-tolerant
distributed computing, with the help of failure detection mechanisms such as proof-labeling
schemes. Proof-labeling schemes were introduced in [22]. A tight bound of Θ(log2 n) bits on
the size of the certificates for certifying MST was established in [19, 20]. Several variants
of proof-labeling schemes have been investigated in the literature, including verification at
distance greater than one [17], and the design of proofs with identity-oblivious certificates [12].
Connections between proof-labeling schemes and the design of distributed (silent) self-
stabilizing algorithms were studied in [7]. Extensions of proof-labeling schemes for the design
of (non-silent) self-stabilizing algorithms were investigated in [21]. In all these work, the
number of nodes susceptible to detect an incorrect configuration is not considered, and the
only constraint imposed on the error-detection mechanism is that an erroneous configuration
must be detected by at least one node. Our work requires the number of nodes detecting an
erroneous configuration to grow linearly with the number of errors.

Another important motivation for our work is property testing. Graph property testing
was investigated in numerous papers (see [14, 15] for an introduction to the topic), and was
recently extended to a non-deterministic setting [18, 24] in which the centralized algorithm
is provided with a centralized certificate. Distributed property testing has been introduced
in [8], and formalized in [9] (see also [13]). Our work may find applications to centralized
property testing, but where the certificate is decentralized. Our error-sensitive scheme
guarantees that if the current configuration of the network is ε-far from being correct, then
probing a constant expected number of nodes is sufficient to detect that this configuration is
erroneous.

From a higher perspective, our approach aims at closing the gap between local distributed
computing and centralized computing in networks, by studying distributed error-detection
mechanisms that perform locally, but generate individual outputs that are related to the
global correctness of the system at hand. As such, it is worth mentioning other efforts in the
same direction, including especially work in the context of centralized local computing, like,
e.g., [10, 16, 26].

Distributed property testing and proof-labeling schemes are different forms of distributed
decision mechanisms, which have been investigated under various models for distributed
computing. We refer to [11] for a recent survey on distributed decision.

2 Model and definitions

Throughout the paper, all graphs are assumed to be connected and simple (no self-loops, and
no parallel edges. Given a node v of a graph G, we denote by N(v) the open neighborhood
of v, i.e., the set of neighbors of v in G. In some contexts (as, e.g., MST), the considered
graphs may be edge-weighted.
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All results in this paper are stated in the classical local model [27] for distributed
network computing, where networks are modeled by undirected graphs whose nodes model the
computing entities, and edges model the communication links. Recall that the local model
assumes that nodes are given distinct identities (a.k.a. IDs), and that computation proceeds
in synchronous rounds. All nodes simultaneously start executing the given algorithm. At each
round, nodes exchange messages with their neighbors, and perform individual computation.
There are no limits placed on the message size, nor on the amount of computation performed
at each round. Specifically, we are interested in proof-labeling schemes [22], which are
well established mechanisms enabling to locally detect inconsistencies in the global states
of networks with respect to some given boolean predicate. Such mechanisms involve a
verification algorithm which performs in just a single round in the local model. In order
to recall the definition of proof-labeling schemes, we first recall the definition of distributed
languages [12].

A distributed language is a collection of labeled graphs, that is, a set L of pairs (G, `)
where G is a graph, and ` : V (G)→ {0, 1}∗ is a labeling function assigning a binary string
to each node of G. Such a labelling may encode just a boolean (e.g., whether the node is in
a dominating set or not), or an integer (e.g., in graph coloring), or a collection of neighbor
IDs (e.g., for locally encoding a subgraph). A distributed language is said constructible
if, for every graph G, there exists ` such that (G, `) ∈ L. It is Turing decidable if there
exists a (centralized) algorithm which, given (G, `) returns whether (G, `) ∈ L or not. All
distributed languages considered in this paper are always assumed to be constructible and
Turing decidable.

Given a distributed language L, a proof-labeling scheme for L is a pair prover-verifier
(p,v), where p is an oracle assigning a certificate function c : V (G)→ {0, 1}∗ to every labeled
graph (G, `) ∈ L, and v is a 1-round distributed algorithm1 taking as input at each node v
its identity ID(v), its label `(v), and its certificate c(v), such that, for every labeled graph
(G, `) the following two conditions are satisfied:

If (G, `) ∈ L then v outputs accept at every node of G whenever all nodes of G are given
the certificates provided by p;
If (G, `) /∈ L then, for every certificate function c : V (G)→ {0, 1}∗, v outputs reject in
at least one node of G.

The first condition guarantees the existence of certificates allowing the given legally labeled
graph (G, `) to be globally accepted. The second condition guarantees that the verifier cannot
be “cheated”, that is, an illegally labeled graph will systematically be rejected by at least one
node, whatever “fake” certificates are given to the nodes. It is known that every distributed
language has a proof-labeling scheme [22].

To define the novel notion of error-sensitive proof-labeling schemes, we introduce the
following notion of distance between labeled graphs. Let ` and `′ be two labelings of a same
graph G. The edit distance between (G, `) and (G, `′) is the minimum number of elementary
operations required to transform (G, `) into (G, `′), where an elementary operation consists
of replacing a node label by another label. That is, the edit distance between (G, `) and
(G, `′) is simply

|{v ∈ V (G) : `(v) 6= `′(v)}|.

The edit-distance from a labeled graph (G, `) to a language L is the minimum, taken over
all labelings `′ of G satisfying (G, `′) ∈ L, of the edit-distance between (G, `) and (G, `′).

1 That is, every node outputs after having communicated with all its neighbors only once.
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Roughly, an error-sensitive proof-labeling scheme satisfies that the number of nodes that
reject a labeled graph (G, `) should be (at least) proportional to the distance between (G, `)
and the considered language.

I Definition 1. A proof-labeling scheme (p,v) for a language L is error-sensitive if there
exists a constant α > 0, such that, for every labeled graph (G, `),

If (G, `) ∈ L then v outputs accept at every node of G whenever all nodes of G are given
the certificates provided by p;
If (G, `) /∈ L then, for every certificate function c : V (G) → {0, 1}∗, v outputs reject
in at least α d nodes of G, where d is the edit distance between (G, `) and L, i.e.,
d = dist

(
(G, `),L

)
.

Note that the at least α d nodes rejecting a labeled graph (G, `) at edit-distance d from
L do not need to be the same for all certificate functions.

3 Basic properties of error-sensitive proof-labeling schemes

Let us first illustrate the notion of error-sensitive proof-labeling scheme by exemplifying
its design for a classic example of distributed languages. Let acyclic be the following
distributed language:

acyclic =
{

(G, `) :∀v ∈ V (G), `(v) ∈ N(v) ∪ {⊥}

and
⋃

v∈V (G) : `(v) 6=⊥

{v, `(v)} is acyclic
}

That is, the label of a node is interpreted as a pointer to some neighboring node, or to
null. Then (G, `) ∈ acyclic if the subgraph of G described by the set of non-null pointers
is acyclic. We show that acyclic has an error-sensitive proof-labeling scheme. The proof
of this result is easy, as fixing of the labels can be done locally, at the rejecting nodes.
Nevertheless, the proposition and its proof serve as a basic example illustrating the notion of
error-sensitive proof-labeling scheme.

I Proposition 2. acyclic has an error-sensitive proof-labeling scheme.

Proof. Let (G, `) ∈ acyclic. Every node v ∈ V (G) belongs to an in-tree rooted at a node r
such that `(r) = ⊥. The prover p provides every node v with its distance d(v) to the root of
its in-tree (i.e., number of hops to reach the root by following the pointers specified by `).
The verifier v proceeds at every node v as follows: first, it checks that `(v) ∈ N(v) ∪ {⊥};
second, it checks that, if `(v) 6= ⊥ then d(`(v)) = d(v)− 1, and if `(v) = ⊥ then d(v) = 0. If
all these tests are passed, then v accepts. Otherwise, it rejects. By construction, if (G, `)
is acyclic, then all nodes accept with these certificates. Conversely, if there is a cycle C
in (G, `), then let v be a node with maximum value d(v) in C. Its predecessor in C (i.e.,
the node u ∈ C with `(u) = v) rejects. So (p,v) is a proof-labeling scheme for acyclic.
We show that (p,v) is error-sensitive. Suppose that v rejects (G, `) at k ≥ 1 nodes. Let
us replace the label `(v) of each rejecting node v by the label `′(v) = ⊥, and keep the
labels of all other nodes unchanged, i.e., `′(v) = `(v) for every node where v accepts. We
have (G, `′) ∈ acyclic. Indeed, by construction, the label of every node u in (G, `′) has
a well-formatted label `′(v) ∈ N(v) ∪ {⊥}. Moreover, let us assume, for the purpose of
contradiction, that there is a cycle C in (G, `′). By definition, every node v of this cycle is
pointing to `′(v) ∈ N(v). Thus `′(v) = `(v) for every node of C, from which it follows that
no nodes of C was rejecting with `, a contradiction with the fact that, as observed before,
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v rejects every cycle. Therefore (G, `′) ∈ acyclic. Hence the edit-distance between (G, `)
and acyclic is at most k. It follows that (p,v) is error-sensitive, with sensitivity parameter
α ≥ 1. J

The definition of error-sensitiveness is based on the existence of a proof-labeling scheme for
the considered language. However, two different proof-labeling schemes for the same language
may have different sensitivity parameters α. In fact, we show that every non-trivial language
admits a proof-labeling schemes which is not error-sensitive. That is, the following result
shows that demonstrating the existence of a proof-labeling scheme that is not error-sensitive
for a language does not prevent that language to have another proof-labeling scheme which
is error-sensitive. We say that a distributed language is trivially approximable if there exists
a constant d such that every labeled graph (G, `) is at edit-distance at most d from L. The
proof of the following result can be found in the full version.

I Proposition 3. Let L be a distributed language. Unless L is trivially approximable, there
exists a proof-labeling scheme for L that is not error-sensitive.

Recall that the fact that every distributed language has a proof-labeling scheme can be
established by using a universal proof-labeling scheme (puniv,vuniv) (see [17]). Given a
distributed language L, and a labeled graph (G, `) ∈ L on an n-node graph G, a universal
certificate c : V (G)→ {0, 1}∗ for that labeled graph is defined for every node u ∈ V (G) by
the triple c(u) = (T,M,L) where nodes are ordered from 1 to n in arbitrary order, T is
a vector with n entries indexed from 1 to n where T [i] is the ID of the ith node v, L[i] is
the label `(v) of the ith node v, and M is the adjacency matrix of G. The prover puniv
assigns c(u) to every node u ∈ V (G). The verifier vuniv then checks at every node u that
its certificate is consistent with the certificates given to its neighbors (i.e., they all have the
same T , L, and M , the indexes matches with the IDs, and the actual neighborhood of v is
as it is specified in T , L and M). If this test is not passed, then vuniv outputs reject at u,
otherwise it outputs accept or reject according to whether the labeled graph described by
(M,L) is in L or not. It is easy to check that (puniv,vuniv) is indeed a proof-labeling scheme
for L. The universal proof-labeling scheme has the following nice property, that we state as
a lemma for further references in the text (see proof in the full version).

I Lemma 4. If a distributed language L has an error-sensitive proof-labeling scheme, then
the universal proof-labeling scheme applied to L is error-sensitive.

While every distributed language has a proof-labeling scheme, we show, using Lemma 4,
that there exist languages for which there are no error-sensitive proof-labeling schemes (see
the full version for the proof).

I Proposition 5. There exist languages that do not admit any error-sensitive proof-labeling
scheme.

I Remark. The language regular used in the proof of Proposition 5 to establish the
existence of languages that do not admit any error-sensitive proof-labeling schemes actually
belongs to the class LCL of locally checkable labelings [25]. Therefore, the fact that a
language is easy to check locally does not help for the design of error-sensitive proof-labeling
schemes.

We complete this warmup section by some observations regarding the encoding of dis-
tributed data structures. Let us consider the following two distributed languages, both
corresponding to spanning tree. The first language, stp, encodes the spanning trees using
pointers to parents, while the second language, stl, encodes the spanning trees by listing all
the incident edges of each node in these tree.
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stp =
{

(G, `) : ∀v ∈ V (G), `(v) ∈ N(v) ∪ {⊥}

and
( ⋃
v∈V (G) : `(v)6=⊥

{v, `(v)}
)
forms a spanning tree

}

stl =
{

(G, `) : ∀v ∈ V (G), `(v) ⊆ N(v) and u ∈ `(v) iff v ∈ `(u),

and
( ⋃
v∈V (G)

⋃
u∈`(v)

{u, v}
)
forms a spanning tree

}
.

Obviously, stp is just a compressed version of stl as the latter can be constructed from the
former in just one round. However, note that stp cannot be recover from stl in a constant
number of rounds, because stp provides a consistent orientation of the edges in the tree. It
follows that stp is an encoding of spanning trees which is actually strictly richer than stl.
This difference between stp and stl is not anecdotal, as we shall prove later that stl admits
an error-sensitive proof-labeling scheme, while we show hereafter that stp is not appropriate
for the design of error-sensitive proof-labeling schemes.

I Proposition 6. stp does not admit any error-sensitive proof-labeling scheme.

Proof. Let Pn be the n-node path u1, u2, . . . , un with n even. Let `0, `1, and `2 be labelings
defined by `1(ui) = ui+1 for all 1 ≤ i < n, and `1(un) = ⊥; `2(ui) = ui−1 for all 1 < i ≤ n,
and `2(u1) = ⊥; and `3(ui) = ui−1 for all 1 < i ≤ n

2 , `3(ui) = ui+1 for all n2 + 1 ≤ i < n, and
`3(u1) = `3(un) = ⊥. We have (Pn, `1) ∈ stp and (Pn, `2) ∈ stp, while the distance from
(Pn, `3) to stp is at least n

2 . Let (p,v) be a proof-labeling scheme for stp. Consider the
case of (Pn, `3) where every ui, i = 1, . . . , n2 , is given the certificate assigned by p to ui in
(Pn, `2), and every ui, i = n

2 + 1, . . . , n, is given the certificate assigned by p to ui in (Pn, `1).
With such certificates, (Pn, `3) is rejected by v at un

2
and un

2 +1 only. J

4 Characterization

We now define the notion of local stability, which allows us to characterize the distributed
languages admitting an error-sensitive proof-labeling scheme. This notion naturally pops
up in the context of proof-labeling schemes [22] and locally checkable proofs in general [17].
Indeed, in these latter frameworks, languages that are “hard” to prove, in the sense that they
require certificates of large size (typically of Ω(n2) bits), are not locally stable, in the sense
that glueing together two legal labeled graphs, say by connecting them by an edge, results
in a labeled graph which can be very far from being legal. Local stability also naturally
pops up in the context of the classical construction tasks which admit local algorithms, such
as (∆ + 1)-coloring and MIS [23]. Indeed, those tasks share the property that any partial
solution can be extended to a larger solution without modifying the already assigned labels.
Extending the partial solution actually only depends on the “border” of the current partial
solution.

More specifically, let G be a graph, and let H be a subgraph of G, that is, a graph H such
that V (H) ⊆ V (G), and E(H) ⊆ E(G). We denote by ∂GH the set of nodes at the boundary
of H in G, that is, which belongs to V (H), and are incident to an edge in E(G) \ E(H).
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Given a labeling ` of a graph G, and a subgraph H of G, the labeling `H denotes the labeling
of H induced by ` restricted to the nodes of H:

`H(v) =
{
`(v) if v ∈ V (H)
∅ otherwise (where ∅ denotes the empty string).

Roughly, a distributed language L is locally stable if, by copy-pasting parts of legal labelings
with small cuts between these parts, the resulting labeled graph is not too far from being legal.
More precisely, let G be a graph, and let H1, . . . ,Hk be a family of connected subgraphs of
G such that (V (Hi))i=1,...,k is a partition of V (G). For every i ∈ {1, . . . , k}, let us consider
a labeled graph (Gi, `i) ∈ L such that Hi is a subgraph of Gi. Let ` be the labeling of G
defined as ` =

∑k
i=1 `i, i.e. for every v ∈ V (G), `(v) = `i(v) where i is such that v ∈ V (Hi).

We say that such a labeled graph (G, `) is induced by the labeled graphs (Gi, `i), i = 1, . . . , k,
via the subgraphs H1, . . . ,Hk.

I Definition 7. A language L is locally stable if there exists a constant β > 0, such that, for
every labeled graph (G, `) induced by labeled graphs (Gi, `i) ∈ L, i = 1, . . . , k, via subgraphs
H1, . . . ,Hk, the edit-distance between (G, `) and L is at most β | ∪ki=1 ∂GHi ∪ ∂GiHi|.

That is, the labeled graph resulting from cut-and-pasting parts of legally labeled graphs
(Gi, `i), i = 1, . . . , k, is at edit-distance from L upper bounded by the number of nodes at
the boundary of the subgraphs Hi in G and Gi, and is independent of the number of nodes
in each of these subgraphs Hi, i = 1, . . . , k.

We have now all ingredients to state our characterization result:

I Theorem 8. Let L be a distributed language. L admits an error-sensitive proof-labeling
scheme if and only if L is locally stable.

Proof. We first show that if a distributed language L admits an error-sensitive proof-labeling
scheme then L is locally stable. So, let L be a distributed language, and let (p,v) be an error-
sensitive proof-labeling scheme for L with sensitivity parameter α. Let (G, `) be a labeled
graph induced by labeled graphs (Gi, `i) ∈ L, i = 1, . . . , h, via the subgraphs H1, . . . ,Hh for
some h ≥ 1. Since, for every i ∈ {1, . . . , h}, (Gi, `i) ∈ L, there exists a certificate function ci
such that v accepts at every node of (Gi, `i) provided with the certificate function ci. Now,
let us consider the labeled graph (G, `), with certificate ci(u) on every node u ∈ V (Hi) for all
i = 1, . . . , h. With such certificates, the nodes in V (Hi) that are not in ∂GHi ∪ ∂Gi

Hi have
the same close neighborhood in (G, `) and in (Gi, `i). Therefore, they accept in (G, `) the
same way they accept in (Gi, `i). It follows that the number of rejecting nodes is bounded by
| ∪hi=1 ∂GHi ∪ ∂Gi

Hi|, and therefore (G, `) is at edit-distance at most 1
α | ∪

h
i=1 ∂GHi ∪ ∂Gi

Hi|
from L. Hence, L is locally stable, with parameter β = 1

α .
It remains to show that if a distributed language is locally stable then it admits an

error-sensitive proof-labeling scheme. Let L be a locally stable distributed language with
parameter β. We prove that the universal proof-labeling scheme (puniv,vuniv) for L (cf.
Section 3) is error-sensitive for some parameter α depending only on β. Let (G, `) /∈ L, and
let us fix some certificate function c. The verifier vuniv rejects in at least one node. We
show that if vuniv rejects at k nodes, then the edit-distance between (G, `) and L is at most
k/α for some constant α > 0 depending only on β. For this purpose, let us consider the
outputs of vuniv applied to (G, `) with certificate c, and let us define the graph G′ as the
graph obtained from G by removing all edges for which vuniv rejects at both extremities.
Note that the graph G′ may not be connected.

Let C be a connected component of G′, with at least one node u at which vuniv accepts.
Let c(u) = (T,M,L) be the certificate of node u, as it should be in the universal proof-labeling
scheme as described in section 3. Since vuniv accepts at u, node u shares the same triple
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(T,M,L) with all its neighbors in G′, as vuniv would reject at u otherwise. Similarly, for
every neighbor v of u, it must be the case that v agrees on (T,M,L) with each of its neighbors
w in G′, as otherwise vuniv would have rejected at both v and w, and the edge {v, w} would
have been removed from G. It follows that all nodes in C share the same triple (T,M,L) as
the one given to the accepting node u. Also (M,L) coincides with the local structure of C
and its labeling ` at all accepting nodes in C. Moreover, since vuniv accepts at u, we have
(M,L) ∈ L. We denote by (GC , `C) this labeled graph in L.

Let C be a connected component of G′ where all nodes reject. In fact, by construction,
such a component is composed of just one isolated node. For every such isolated rejecting
node u, let us denote by (GC , `C) a labeled graph composed of a unique node, with ID equal
to the ID of u, and with labeling `C(u) such that (GC , `C) ∈ L.

Let C be the set of all connected components of G′. Let (G, `′) be the graph induced
by labeled graphs (GC , `C) via the subgraphs C ∈ C. Note that (G, `) and (G, `′) coincide,
but for the isolated rejecting nodes. By local stability, (G, `′) is at edit-distance at most
β |∪C∈C ∂GC ∪∂GC

C| from L. Now, the nodes in ∪C∈C∂GC ∪∂GC
C are exactly the rejecting

nodes. Thus the number k of rejecting nodes satisfies k = | ∪C∈C ∂GC ∪ ∂GC
C|, and the

edit-distance from (G, `′) to L is at most β k. On the other hand, by construction, the
edit-distance between (G, `′) and (G, `) is at most the number of isolated rejecting nodes,
that is, at most k. Therefore, the edit-distance between (G, `) and L is at most (β + 1) k.
Thus, the universal proof-labeling scheme is error-sensitive, with parameter α = 1

β+1 . J

Proposition 5 can be viewed as a corollary of Theorem 8 as it is easy to show that
regular is not locally stable. Nevertheless, local stability may not always be as easy to
establish, because it is based on merging an arbitrary large number of labeled graphs. We
thus consider another property, called strong local stability, which is easier to check, and
which provides a sufficient condition for the existence of an error-sensitive proof-labeling
scheme. Given two labeled graphs (G, `) and (G′, `′), and a subgraph H of both G and
G′, the labeling ` − `H + `′H for G is the labeling such that, for every node v ∈ V (G),
(`− `H + `′H)(v) = `′H(v) if v ∈ V (H), and (`− `H + `′H)(v) = `(v) otherwise.

I Definition 9. A language L is strongly locally stable if there exists a constant β > 0,
such that, for every graph H, and every two labeled graphs (G, `) ∈ L and (G′, `′) ∈ L
admitting H as a subgraph, the labeled graph (G, `− `H + `′H) is at edit-distance at most
β |∂G′H + ∂GH| from L.

The following lemma states that strong local stability is indeed a notion that is at least
as strong as local stability (see proof in the full version).

I Lemma 10. If a language L is strongly locally stable, then it is locally stable.

In fact, strong local stability is a notion strictly stronger than local stability, although they
coincide on bounded-degree graphs (cf. the full version). Thanks to the characterization in
Theorem 8, and to the sufficient condition of Lemma 10, we immediately get error-sensitiveness
for the language

leader =
{

(G, `) :∀v ∈ V (G), `(v) ∈ {0, 1}
and there exists a unique v ∈ V (G) for which `(v) = 1

}
.

I Corollary 11. leader admits an error-sensitive proof-labeling scheme.

Also, one can show that the language STl of spanning trees, whenever encoded by
adjacency lists, admits an error-sensitive proof-labeling scheme.

This is in contrast to Proposition 6 (see proof in the full version).
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I Corollary 12. stl admits an error-sensitive proof-labeling scheme.

Also, Theorem 8 allows us to prove (see proof in the full version) that minimum-weight
spanning tree (MST) is error-sensitive (whenever the tree is encoded locally by adjacency
lists). More specifically, let

mstl =
{

(G, `) : ∀v ∈ V (G), `(v) ⊆ N(v) and
( ⋃
v∈V (G)

⋃
u∈`(v)

{u, v}
)
forms a MST

}
. (1)

I Corollary 13. mstl admits an error-sensitive proof-labeling scheme.

5 Compact error-sensitive proof-labeling schemes

The characterization of Theorem 8 together with Lemma 4 implies an upper bound of
O(n2) bits on the certificate size for the design of error-sensitive proof-labeling schemes for
locally stable distributed languages. In this section, we show that the certificate size can be
drastically reduced in certain cases. It is known that spanning tree and minimum spanning
tree have proof-labeling schemes using certificates of polylogarithmic size Θ(logn) bits [4, 22],
and Θ(log2 n) bits [20], respectively. We show the proof-labeling schemes for spanning tree
and MST in [4, 20, 22] are actually error-sensitive.

Recall that Proposition 6 proved that spanning tree does not admit any error-sensitive
proof-labeling schemes whenever the tree is encoded at each node by a pointer to its parent:
STp does not have any error-sensitive proof-labeling scheme. However, we show that STl,
i.e., the language of spanning trees encoded by adjacency lists, does have a very compact
error-sensitive proof-labeling scheme.

I Theorem 14. STl has an error-sensitive proof-labeling scheme with certificates of size
O(logn) bits.

For figures that illustrate the construction of the following proof see the full version.

Proof. We show that the classical proof-labeling scheme (p,v) for STl is error-sensitive. On
instances of the language, i.e., on labeled graphs (G, `) where ` encodes a spanning tree T
of G, the prover p chooses an arbitrary root r of T , and then assigns to every node u a
certificate (I(u), P (u), d(u)) where I(u) = ID(r), P (u) is the ID of the parent of u in the tree
(or ID(u) if u is the root), and d(u) the hop-distance in the tree from u to r. The verifier v
at every node u first checks that:

the adjacency lists are consistent, that is, if u is in the list of v, then v is in the list of u;
there exists a neighbor of u with ID P (u), we denote it p(u);
the node u has the same root-ID I(u) as all its neighbors in G;
d(u) ≥ 0.

Then, the verifier checks that:
if ID(u) 6= I(u) then d(p(u)) = d(u)−1, and for every other neighbor w in `, d(w) = d(u)+1
and p(w) = u;
if ID(u) = I(u) then P (u) = ID(u), d(u) = 0, and every neighbor w of u in ` satisfies
d(w) = d(u) + 1 and p(w) = u.

By construction, if (G, `) ∈ STl, then v accepts at every node. Also, it is easy to check that
if (G, `) /∈ STl, then, for every certificate function c, at least one node rejects.

To establish error-sensitivity for the above proof-labeling scheme, let us assume that v
rejects at k ≥ 1 nodes with some certificate function c. Then, let (G′, `′) be the labeled
graph coinciding with (G, `) except that all edges for which v rejects at both endpoints are
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removed both from G, and from the adjacency lists in ` of the endpoints of these edges. Note
that modifying ` into `′ only requires to edit labels of nodes that are rejecting. The graph
G′ may be disconnected. Let (C, `′C) be a connected component of (G′, `′).

We claim that the edges of `′C form a forest in C. First note that if there is a cycle in
the edges of `′C , then this cycle already existed in ` because we have added no edges when
transforming ` into `′. Consider such a cycle in `, and the certificates given by p. Either
an edge is not oriented, that is no node uses this edge to point to its parent, or the cycle
is consistently oriented and then distances are not consistent. In both cases two adjacent
nodes of the cycle would reject when running v. Then this cycle cannot be present in `′C , as
at least one edge has been removed. As a consequence `′C form a forest of C. In C, if a node
is connected to no other node by an edge of `′C , we will consider it as a tree of one node.
With this convention, `′ is a spanning forest of G′.

We will now bound the number of trees in `′ by a function of k. The number of trees in
`′ is equal to the sum of the number of trees in each component (C, `′C).

Let us run v on graph (C, `′C), and let kC be the number of rejecting nodes. Observe
that for every two nodes u and v in a component C, it holds that I(u) = I(v). Indeed,
otherwise, there would exist two adjacent nodes u and v in C with I(u) 6= I(v), resulting in
v rejecting at both nodes, which would yield the removal of {u, v} from G. Consequently, at
most one tree of `′C has a root whose ID corresponds to the ID given in the certificate. Then
the number of trees in `′C is bounded by kC + 1, and the total number of trees is bounded∑
C kC + 1 = (

∑
C kC) + |C|.

Note that because of the design of the proof-labeling scheme, the nodes that accept when
running v on (G, `) also accept in (G′, `′). Then

∑
C kC ≤ k.

Let VC be the set of nodes of C. It is easy to see that for all C, there exists a node of
VC that rejects when we run v on (G, `). Indeed if there is no rejecting node, then no edge
between C and the rest of the graph is removed, and then there is only one component in
the graph. But then all node accept, which contradict the fact that k ≥ 1. Then |C| ≤ k.

So overall all `′ encodes a spanning forest with at most 2k trees. Such a labeling can thus
be modified to get a spanning tree by modifying the labels of at most 4k nodes. That is,
(p,v) is error-sensitive with parameter α ≥ 1

4 . J

Finally, we show that the compact proof-labelling scheme in [20, 22] for minimum-weight
spanning tree, as specified in Eq. (1) of Section 4 is error-sensitive when the edge weights are
distinct.

I Theorem 15. mstl admits an error-sensitive proof-labeling scheme with certificates of size
O(log2 n) bits.

Hereafter, we provide a sketch of proof for Theorem 15 (the complete proof is deferred to
the full version).

Sketch of proof. A classic proof-labeling scheme for mst (see, e.g., [19, 20, 22]) consists in
encoding a run of Borůvka algorithm. Recall that Borůvka algorithm maintains a spanning
forest whose trees are called fragments, starting with the forest in which every node forms a
fragment. The algorithm proceeds in a sequence of steps. At each step, it selects the lightest
outgoing edge from every fragment of the current forest, and adds all these edges to the
mst, while merging the fragments linked by the selected edges. This algorithm eventually
produces a single fragment, which is a mstof the whole graph, after at most a logarithmic
number of steps.
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At each node u, the certificate of the scheme consists of a table with a logarithmic number
of fields, one for each round of Borůvka algorithm. For each step of Borůvka algorithm, the
corresponding entry of the table provides a proof of correctness for the fragment including u,
plus the certificate of a tree pointing to the lightest outgoing edge of the fragment. The
verifier verifies the structures of the fragments, and the fact that no outgoing edges from each
fragment have smaller weights than the one given in the certificate. It also checks that the
different fields of the certificate are consistent (for instance, it checks that, if two adjacent
nodes are in the same fragment at step i, then they are also in the same fragment at step
i+ 1).

To prove that this classic scheme is error-sensitive, we perform the same decomposition as
in the proof of Theorem 14, removing the edges that have both endpoints rejecting. We then
consider each connected component C of the remaining graph, together with the subgraph S
of that component described by the edges of the given labeling. In general, S is not a mst
of the component C (S can even be disconnected). Nevertheless, we can still make use of
the key property that the subgraph S is not arbitrarily far from a mst of the component C.
Indeed, the edges of S form a forest, and these edges belong to a mst of the component. As
a consequence, it is sufficient to add a few edges to S for obtaining a mst. To show that S
is indeed not far from being a mst of C, we define a relaxed version of Borůvka algorithm,
and show that the labeling of the nodes corresponds to a proper run of this modified version
of Borůvka algorithm. We then show how to slightly modify both the run of the modified
Borůvka algorithm, and the labeling of the nodes, to get a mst of the component. Finally,
we prove that the collection of msts of the components can be transformed into a mst of
the whole graph, by editing a few node labels only. J

6 Conclusion

In this paper, we consider on a stronger notion of proof-labeling scheme, named error-sensitive
proof-labeling scheme, and provides a structural characterization of the distributed languages
that can be verified using such a scheme in distributed networks. This characterization
highlights the fact that some basic network properties do not have error-sensitive proof-
labeling schemes, which is in contrast to the fact that every property has a proof-labeling
scheme. However, important network properties, like acyclicity, leader, spanning tree, MST,
etc., do admit error-sensitive proof-labeling schemes. Moreover, these schemes can be designed
with the same certificate size as the one for the classic proof-labeling schemes for these
properties.

Our study of error-sensitive proof-labeling schemes raises intriguing questions. In par-
ticular, we observed that every distributed languages seems to fit in one of the following
two scenarios: either it does not admit error-sensitive proof-labeling schemes, or it admits
error-sensitive proof-labeling schemes with the same certificate size as the most compact
proof-labeling schemes known for this language. We do not know whether there exists
a distributed language admitting error-sensitive proof-labeling schemes, but such that all
error-sensitive proof-labeling schemes for that language use certificates larger than the ones
used for the most compact proof-labeling schemes for that language.

Proximity-sensitivity. Another desirable property for a proof-labeling scheme is proximity-
sensitivity, requiring that every error is detected by a node close to that error. Proximity-
sensitivity appears to be a very demanding notion, even stronger than error-sensitivity, for
the former implies the later whenever the errors are spread out in the network. It would be
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informative to provide a structural characterization of the distributed languages that can be
verified using proximity-sensitive proof-labeling schemes, and at which cost in term of label
size.
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Abstract
We present improved deterministic distributed algorithms for a number of well-studied match-
ing problems, which are simpler, faster, more accurate, and/or more general than their known
counterparts. The common denominator of these results is a deterministic distributed rounding
method for certain linear programs, which is the first such rounding method, to our knowledge.
A sampling of our end results is as follows.

An O
(
log2 ∆ · log n

)
-round deterministic distributed algorithm for computing a maximal

matching, in n-node graphs with maximum degree ∆. This is the first improvement in
about 20 years over the celebrated O(log4 n)-round algorithm of Hańćkowiak, Karoński, and
Panconesi [SODA’98, PODC’99].
A deterministic distributed algorithm for computing a (2 + ε)-approximation of maximum
matching in O

(
log2 ∆ · log 1

ε + log∗ n
)
rounds. This is exponentially faster than the classic

O(∆ + log∗ n)-round 2-approximation of Panconesi and Rizzi [DIST’01]. With some modific-
ations, the algorithm can also find an ε-maximal matching which leaves only an ε-fraction of
the edges on unmatched nodes.
An O

(
log2 ∆ · log 1

ε + log∗ n
)
-round deterministic distributed algorithm for computing a (2 +

ε)-approximation of a maximum weighted matching, and also for the more general problem of
maximum weighted b-matching. These improve over the O

(
log4 n · log1+ε W

)
-round (6 + ε)-

approximation algorithm of Panconesi and Sozio [DIST’10], where W denotes the maximum
normalized weight.
A deterministic local computation algorithm for a (2 + ε)-approximation of maximum match-
ing with 2O(log2 ∆) · log∗ n queries. This improves almost exponentially over the previous
deterministic constant approximations which have query-complexity of 2Ω(∆·log ∆) · log∗ n.

A full version of this paper with all proofs is available on arXiv.org [9].

1998 ACM Subject Classification G.2.2 Graph Algorithms

Keywords and phrases distributed graph algorithms, deterministic distributed algorithms, round-
ing linear programs, maximal matching, maximum matching approximation

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.17

1 Introduction and Related Work

We work with the standard LOCAL model of distributed computing [24]: the network is
abstracted as a graph G = (V, E), with n = |V |, m = |E|, and maximum degree ∆. Each
node has a unique identifier. In each round, each node can send a message to each of its
neighbors. We do not limit the message sizes, but for all the algorithms that we present,

∗ A full version of the paper is available at http://arxiv.org/abs/1703.00900.
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O(log n)-bit messages suffice. We assume that all nodes have knowledge of log ∆ up to a
constant factor. If this is not the case, it is enough to try exponentially increasing estimates
for log ∆.

1.1 Broader Context, and Deterministic Distributed Rounding
Efficient deterministic distributed graph algorithms remain somewhat of a rarity, despite
the intensive study of the area since the 1980’s. In fact, among the four classic problems
of the area – maximal independent set, (∆ + 1)-vertex-coloring, maximal matching, and
(2∆−1)-edge-coloring – only for maximal matching a poly log n-round deterministic algorithm
is known, due to a breakthrough of Hańćkowiak, Karoński, and Panconesi [14, 16]. Finding
poly log n-round deterministic algorithms for the other three problems remains a long-standing
open question, since [24]. In a stark contrast, in the world of randomized algorithms, all
these problems have O(log n)-round [28, 1] or even more efficient algorithms [3, 10, 17].

Despite this rather bleak state of the art for deterministic algorithms, there is immense
motivation for them. Here are three sample reasons: (1) One traditional motivation is rooted
in the classic complexity-theoretic quest which seeks to understand the difference between
the power of randomized and distributed algorithms. (2) Another traditional motivation
comes from practical settings where even small error probabilities cannot be tolerated. (3)
Nowadays, there is also a more modern motive: we now understand that in order to have
faster randomized algorithms, we must come up with faster deterministic algorithms.1 This
connection goes in two directions: (A) Almost all the recent developments in randomized
algorithms use the shattering technique [3, 10, 17, 12] which randomly breaks down the graph
into small components, typically of size poly log n, and then solves them via a deterministic
algorithm. Speeding up (the n-dependency in) these randomized algorithms needs faster
deterministic algorithms. (B) The more surprising direction is the reverse. Chang et al. [4]
recently showed that for a large class of problems the randomized complexity on n-node
graphs is at least the deterministic complexity on Θ

(√
log n

)
-node graphs. Hence, if one

improves over (the n-dependency in) the current randomized algorithms, one has inevitably
improved the corresponding deterministic algorithm.

Ghaffari, Kuhn, and Maus [11] recently proved a completeness-type result which shows that
“the only obstacle” for efficient deterministic distributed graph algorithms is deterministically
rounding fractional values to integral values while approximately preserving some linear
constraints.2 To put it more positively, if we find an efficient deterministic method for
rounding, we would get efficient algorithms for essentially all the classic local graph problems,
including the four mentioned above.

Our results become more instructive when viewed in this context. The common denomin-
ator of our results is a deterministic distributed method which allows us to round fractional
matchings to integral matchings. This can be more generally seen as rounding the fractional
solutions of a special class of linear programs (LPs) to integral solutions. To the best of our
knowledge, this is the first known deterministic distributed rounding method. We can now
say that

matching admits an efficient deterministic algorithm because
matching admits an efficient deterministic distributed rounding.

1 For instance, our improvement in the deterministic complexity of maximal matching directly improves
the randomized complexity of maximal matching, as we formally state in Corollary 3.

2 Stating this result formally and in full generality requires some definitions. See [11] for the precise
statement.



M. Fischer 17:3

1.2 Our Results
We provide improved distributed algorithms for a number of matching problems, as we
overview next.

1.2.1 Approximate Maximum Matching
I Theorem 1. There is an O

(
log2 ∆ · log 1

ε + log∗ n
)
-round deterministic distributed al-

gorithm for a (2 + ε)-approximate maximum matching, for any ε > 0.

There are three remarks in order, regarding this result:
For constant ε > 0, this O(log2 ∆ + log∗ n)-round algorithm is significantly faster than
the previously best known deterministic constant approximations, especially in low-
degree graphs: the O(∆ + log∗ n)-round 2-approximation of Panconesi and Rizzi [30],
the O(log4 n)-round 2-approximation of Hańćkowiak et al. [16], the O(log4 n)-round
(3/2)-approximation of Czygrinow et al. [6, 7], and its extension [5] which finds a
(1 + ε)-approximation in logO( 1

ε ) n rounds.
This O(log2 ∆ + log∗ n)-round complexity gets close to the lower bound – due to the
celebrated results of Kuhn et al. [22, 23] and Linial [24] – of Ω(log ∆/ log log ∆ + log∗ n)
that holds for any constant approximation of matching, even for randomized algorithms.
This distributed LOCAL algorithm can be transformed to a deterministic Local Com-
putation Algorithm (LCA) [2, 33] for a (2 + ε)-approximation of maximum matching,
with a query complexity of 2O(log3 ∆) · log∗ n. This is essentially by using the standard
method of Parnas and Ron [32], with an additional idea of [8]. Using slightly more care,
the query complexity can be improved to 2O(log2 ∆) · log∗ n. Since formally stating this
result requires explaining the computational model of LCAs, we defer that to the journal
version. We remark that this query complexity improves almost exponentially over the
previous deterministic constant approximations with 2Ω(∆·log ∆) · log∗ n [8].

1.2.2 (Almost) Maximal Matching, and Edge Dominating Set
Maximal Matching. Employing our approximation algorithm for maximum matching, we
get an O(log2 ∆ · log n)-round deterministic distributed algorithm for maximal matching.

I Theorem 2. There is an O(log2 ∆ · log n)-round deterministic maximal matching algorithm.

This is the first improvement in about 20 years over the breakthroughs of Hańćkowiak et
al., which presented first an O(log7 n)- [14] and then an O(log4 n)-round [16] algorithm for
maximal matching.

As alluded to before, this improvement in the deterministic complexity directly leads to
an improvement in the n-dependency of the randomized algorithms. In particular, plugging
in our improved deterministic algorithm in the maximal matching algorithm of Barenboim et
al. [3] improves their round complexity from O(log4 log n + log ∆) to O(log3 log n + log ∆).

I Corollary 3. There is an O(log3 log n + log ∆)-round randomized distributed algorithm that
with high probability3 computes a maximal matching.

3 As standard, with high probability means with probability at least 1−1/nc, for a desirably large constant
c ≥ 2.
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Almost Maximal Matching. Recently, there has been quite some interest in characterizing
the ∆-dependency in the complexity of maximal matching, either with no dependency on n

at all or with at most an O(log∗ n) additive term [18, 13]. Göös et al. [13] conjectured that

there should be no o(∆) + O(log∗ n) algorithm for computing a maximal matching.

Theorem 2 does not provide any news in this regard, because of its multiplicative log n-factor.
Indeed, our findings also seem to be consistent with this conjecture and do not suggest any
way for breaking it. However, using some extra work, we can get a faster algorithm for ε-
maximal matching, a matching that leaves only ε-fraction of edges among unmatched nodes,
for a desirably small ε > 0.

I Theorem 4. There is an O
(
log2 ∆ · log 1

ε + log∗ n
)
-round deterministic distributed al-

gorithm for an ε-maximal matching, for any ε > 0.

This theorem statement is interesting because of two aspects: (1) This faster almost maximal
matching algorithm sheds some light on the difficulties of proving the aforementioned
conjecture. In a sense, any conceivable proof of this conjectured lower bound must distinguish
between maximal and almost maximal matchings and rely on the fact that precisely a
maximal matching is desired, and not just something close to it. Notice that since the
complexity of Theorem 4 grows slowly as a function of ε, we can choose ε quite small. By
setting ε = ∆− poly log ∆, we get an algorithm that, in O(poly log ∆+log∗ n) rounds, produces
a matching that seems to be maximal for almost all nodes, even if they look up to their
poly log ∆-hop neighborhood. (2) Perhaps, in some practical settings, this almost maximal
matching, which practically looks maximal for essentially all nodes, may be as useful as
maximal matching, especially since it can be computed much faster.

Approximate Minimum Edge Dominating Set. As a corollary of the almost maximal
matching algorithm of Theorem 4, we get a fast algorithm for approximating minimum edge
dominating set, which is the smallest set of edges such that any edge shares at least one
endpoint with them. The proof can be found in the full version [9].

I Corollary 5. 2+eps-approx-EDS There is an O(log2 ∆ · log ∆
ε + log∗ n)-round deterministic

distributed algorithm for a (2 + ε)-approximate minimum edge dominating set, for any ε > 0.

Previously, the fastest algorithms ran in O(∆ + log∗ n) rounds [30] or O(log4 n) rounds [16],
providing 2-approximations. Moreover, Suomela [34] provided roughly 4-approximations in
O(∆2) rounds, in a restricted variant of the LOCAL model with only port numberings.

1.2.3 Approximate Maximum Weighted Matching and B-Matching
An interesting aspect of the method we use is its flexibility and generality. In particular, the
algorithm of Theorem 1 can be easily extended to computing a (2 + ε)-approximation of
maximum weighted matching, and more interestingly, to a (2+ε)-approximation of maximum
weighted b-matching. These extensions can be found in the full version [9].

I Theorem 6. There is an O(log2 ∆ · log 1
ε +log∗ n)-round deterministic distributed algorithm

for a (2 + ε)-approximate maximum weighted matching, or b-matching, for any ε > 0.

To the best of our knowledge, this is the first distributed deterministic algorithm for
approximating maximum (weighted) b-matching. Moreover, even in the case of standard
matching, it improves over the previously best-known algorithm: A deterministic algorithm
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for (6 + ε)-approximation of maximum weighted matching was provided by Panconesi and
Sozio [31], with a round complexity of O

(
log4 n · log1+ε W

)
, where W denotes the maximum

normalized weight. However, that deterministic algorithm does not extend to b-matching.

1.3 Related Work, Randomized Distributed Matching Approximation
Aside from the deterministic algorithms discussed above, there is a long line of research on
randomized distributed approximation algorithms for matching: for the unweighted case, [19]
provide a 2-approximation in O(log n) rounds, and [26] a (1 + ε)-approximation in O(log n)
for any constant ε > 0. For the weighted case, [35, 27, 26] provide successively improved
algorithms, culminating in the O(log 1

ε · log n)-round (2 + ε)-approximation of [26]. Moreover,
[21] present an O(log n)-round randomized algorithm for 2-approximate weighted b-matching.

2 Our Deterministic Rounding Method, in a Nutshell

The main ingredient in our results is a simple deterministic method for rounding fractional
solutions to integral solutions. We believe that this deterministic distributed rounding will be
of interest well beyond this paper. To present the flavor of our deterministic rounding method,
here we overview it in a simple special case: we describe an O(log2 ∆)-round algorithm for a
constant approximation of the maximum unweighted matching in 2-colored bipartite graphs.
The precise algorithm and proof appear in Section 4.1.1.

Fractional Solution. First, notice that finding a fractional approximate maximum matching
is straightforward. In O(log ∆) rounds, we can compute a fractional matching x ∈ [0, 1]m
whose total value

∑
e xe is a constant approximation of maximum matching. One standard

method is as follows: start with all edge values at xe = 2−dlog ∆e. Then, for O(log ∆) rounds,
in each round raise all edge values xe by a 2-factor, except for those edges that are incident
to a node v such that

∑
e∈E(v) xe ≥ 1/2. Throughout, E(v) := {e ∈ E : v ∈ e} denotes the

set of edges incident to node v. One can easily see that this fractional matching has total
value

∑
e xe within a 4-factor of the maximum matching.

Gradual Rounding. We gradually round this fractional matching x ∈ [0, 1]m to an integral
matching x′ ∈ {0, 1}m while ensuring that we do not lose much of the value, i.e.,

∑
e x′e ≥

(
∑

e xe)/C, for some constant C. We have O(log ∆) rounding phases, each of which takes
O(log ∆) rounds. In each phase, we get rid of the smallest (non-zero) values and thereby
move closer to integrality. The initial fractional matching has4 only values xe = 2−i for
i ∈ {0, . . . , dlog ∆e} or xe = 0. In the kth phase, we partially round the edge values xe = 2−i

for i = dlog ∆e − k + 1. Some of these edges will be raised to xe = 2 · 2−i, while others are
dropped to xe = 0. The choices are made in a way that keeps

∑
e xe essentially unchanged,

as we explain next.
Consider the graph H edge-induced by edges e with value xe = 2−i. For the sake of

simplicity, suppose all nodes of H have even degree. Dealing with odd degrees requires some
delicate care, but it will not incur a loss worse than an O

(
2−i
)
-fraction of the total value. In

this even-degree graph H, we effectively want that for each node v of H, half of its edges

4 Any fractional maximum matching can be transformed to this format, with at most a 2-factor loss in
the total value: simply round down each value to the next power of 2, and then drop edges with values
below 2−(dlog ∆e+1).
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raise xe = 2−i to xe = 2 · 2−i while the others drop it to xe = 0. For that, we generate a
degree-2 graph H ′ by replacing each node v of H with dH(v)/2 nodes, each of which gets
two of v’s edges5. Notice that the edge sets of H ′ and H are the same. Graph H ′ is simply
a set of cycles of even length, as H was bipartite.

In each cycle of H ′, we would want that the raise and drop of edge weights is alternating.
That is, odd-numbered, say, edges are raised to xe = 2 · 2−i while even-numbered edges are
dropped to xe = 0. This would keep x a valid fractional matching – meaning that each
node v still has

∑
e∈E(v) xe ≤ 1 – because the summation

∑
e∈E(v) xe does not increase,

for each node v. Furthermore, it would keep the total weight
∑

e xe unchanged. If the
cycle is shorter than length O(log ∆), this raise/drop sequence can be identified in O(log ∆)
rounds. For longer cycles, we cannot compute such a perfect alternation in O(log ∆) rounds.
However, one can do something that does not lose much6: imagine that we chop the longer
cycles into edge-disjoint paths of length Θ(log ∆). In each path, we drop the endpoints to
xe = 0 while using a perfect alternation inside the path. These border settings mean we lose
Θ(1/ log ∆)-fraction of the weight. Thus, even over all the O(log ∆) iterations, the total loss
is only a small constant fraction of the total weight.

3 Preliminaries

Matching and Fractional Matching. An integral matching M is a subset of E such that
e ∩ e′ = ∅ for all e 6= e′ ∈M . It can be seen as an assignment of values xe ∈ {0, 1} to edges,
where xe = 1 iff e ∈M , such that cv :=

∑
e∈E(v) xe ≤ 1 for all v ∈ V . When the condition

xe ∈ {0, 1} is relaxed to 0 ≤ xe ≤ 1, such an assignment is called a fractional matching.

B-Matching. A b-matching for b-values {1 ≤ bv ≤ dG(v) : v ∈ V } is an assignment of values
xe ∈ {0, 1} to edges e ∈ E such that

∑
e∈E(v) xe ≤ bv for all v ∈ V . Throughout, dG(v)

denotes the degree of v in G. Again, one can relax this to fractional b-matchings by replacing
xe ∈ {0, 1} with 0 ≤ xe ≤ 1.

Maximal and ε-Maximal Matching. An integral matching is called maximal if we cannot
add any edge to it without violating the constraints. For ε > 0, we say that M ⊆ E is an
ε- maximal matching if |Γ+(M)| ≥ (1− ε)|E| for Γ+(M) := {e ∈ E | ∃e′ ∈M : e ∩ e′ 6= ∅},
that is, if after removing the edges in and incident to M from G, at most ε|E| edges remain.

Maximum and Approximate Maximum Matching. A matching M∗ is called maximum if
it is the/a largest matching in terms of cardinality. For any c > 1, we say that a matching
is c-approximate if c

∑
e∈E xe ≥ |M∗| for a maximum matching M∗. In a weighted graph

where each edge e is assigned a weight we ≥ 0, we say that M∗ is a maximum weighted
matching if it is the/a matching with maximum weight w(M∗) :=

∑
e∈M∗ we. An integral

matching M is a c-approximate weighted matching if c
∑

e∈M we ≥ w(M∗).
We now state some simple and well-known facts about matchings.

I Lemma 7. For a maximal matching M and a maximum matching M∗ in G = (V, E), we
have the following two properties: (i) |M | ≥ |E|

2∆−1 , and (ii) |M
∗|

2 ≤ |M | ≤ |M∗|.

5 This simple idea has been used frequently before. For instance, it gives an almost trivial proof of
Petersen’s 2-factorization theorem from 1891 [29]. It has also been used by [20, 14, 16].

6 Our algorithm actually does something slightly different, but describing this ideal procedure is easier.
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Figure 1 A graph and its 2-decomposition.

I Lemma 8 (Panconesi and Rizzi [30]). There is an O(∆ + log∗ n)-round deterministic
distributed algorithm for maximal matching. Furthermore, if a q-coloring of the graph is
provided, then the algorithm runs in O(∆ + log∗ q) rounds.

Many problems are easier in small-degree graphs. To exploit this fact, we sometimes use
the following simple transformation which decomposes a graph into graphs with maximum
degree 2 – that is, node-disjoint paths and cycles – with the same edge set, in zero rounds.
As mentioned before, this has been used frequently in prior work [29, 20, 14, 16].

2-decomposition. We 2-decompose graph G as follows. For every node v ∈ V , introduce
ddG(v)

2 e copies and arbitrarily split its incident edges among these copies in such a way that
every copy has degree 2, with the possible exception of one copy which has degree 1 (when v

has odd degree). The graph on these copy nodes is what we call a 2-decomposition of G. See
Figure 1 for an example.

4 Approximate Maximum Matching

We present a (2 + ε)-approximation algorithm for maximum matching, proving Theorem 1.
The first step towards this goal is finding a constant approximation, explained in Section 4.1.
We show in Section 4.2 how to further improve this approximation ratio to 2 + ε.

4.1 Constant Approximate Maximum Matching

In this subsection, we show how to compute a constant approximation.

I Lemma 9. There is an O(log2 ∆ + log∗ n)-round deterministic distributed algorithm for a
c-approximate maximum matching, for some constant c.

The key ingredient for our c-approximation algorithm of Lemma 9 is a distributed
algorithm that computes a constant approximate maximum matching in the special case of
a 2-colored bipartite graph. We first present the algorithm for this special case in Section
4.1.1, and then explain in Section 4.1.2 how to reduce the general graph case to the bipartite
case, hence proving Lemma 9.

4.1.1 Constant Approximate Maximum Matching in Bipartite Graphs

Next, we show how to find a c-approximate matching in a 2-colored bipartite graph.

I Lemma 10. There is an O(log2 ∆)-round deterministic distributed algorithm for a c-
approximate maximum matching in a 2-colored bipartite graph, for some constant c.
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Roadmap. The proof of Lemma 10 is split into three parts. In the first step, explained in
Lemma 13, we compute a 2−dlog ∆e-fractional 4-approximate maximum matching in O(log ∆)
rounds. The second step, which is also the main step of our method and is formalized in
Lemma 14, is a method to round these fractional values to almost integrality in O(log2 ∆)
rounds. In the third step, presented in Lemma 15, we resort to a simple constant-round
algorithm to transform the almost integral matching that we have found up to this step into
an integral matching. As a side remark, we note that we explicitly state some of the constants
in this part of the paper, for the sake of readability. We remark that these constants are not
the focus of this work, and we have not tried to optimize them.

We start with some helpful definitions.

I Definition 11 (Loose and tight nodes and edges). Given a fractional matching, we call a
node v loose if cv =

∑
e∈E(v) xe ≤ 1

2 , and tight otherwise, where E(v) := {e ∈ E : v ∈ e}.
We call an edge loose if both of its endpoints are loose; otherwise, the edge is called tight.

I Definition 12 (The fractionality of a fractional matching). We call a fractional matching
2−i-fractional for an i ∈ N if xe ∈ {0}

⋃{
2−j : 0 ≤ j ≤ i

}
. Notice that a 2−0-fractional

matching is simply an integral matching.

Step 1, Fractional Matching. We show that a simple greedy algorithm already leads to a
fractional 4-approximate maximum matching.

I Lemma 13. There is an O(log ∆)-round deterministic distributed algorithm for a 2−dlog ∆e-
fractional 4-approximate maximum matching.

Proof. Initially, set xe = 2−dlog ∆e for all e ∈ E. This trivially satisfies the constraints
cv =

∑
e∈E(v) xe ≤ 1. Then, we iteratively raise the value of all loose edges in parallel by a

2-factor. This can be done in O(log ∆) rounds, since at the latest when the value of an edge
is 1/2, both endpoints would be tight. Once all edges are tight, for a maximum matching
M∗ we have

∑
e∈E xe = 1

2
∑

v∈V cv ≥ 1
2
∑

e={u,v}∈M∗(cu + cv) > |M∗|
4 . J

Step 2, Main Rounding. The heart of our approach, the Rounding Lemma, is a method
that successively turns a 2−i-fractional matching into a 2−i+1-fractional one, for decreasing
values of i, while only sacrificing the approximation ratio by a little.

I Lemma 14 (Rounding Lemma). There is an O
(
log2 ∆

)
-round deterministic distributed

algorithm that transforms a 2−dlog ∆e-fractional 4-approximate maximum matching in a
2-colored bipartite graph into a 2−4-fractional 14-approximate maximum matching.

Proof. Iteratively, for k = 1, . . . , dlog ∆e − 4, in phase k, we get rid of edges e with value
xe = 2−i for i = dlog ∆e − k + 1 by either increasing their values by a 2-factor to xe = 2−i+1

or setting them to xe = 0. In the following, we describe the process for one phase k, thus a
fixed i.

Let H be the graph induced by the set Ei := {e ∈ E : xe = 2−i} of edges with value 2−i

and use H ′ to denote its 2-decomposition. Notice that H ′ is a node-disjoint union of paths
and even-length cycles. Set ` = 12 log ∆. We call a path/cycle short if it has length at most
`, and long otherwise. We now process short and long cycles and paths, by distinguishing
three cases, as we discuss next. Each of these cases will be done in O(log ∆) rounds, which
implies that the complexity of one phase is O(log ∆). Thus, over all the O(log ∆) phases,
this rounding algorithm takes O(log2 ∆) rounds.
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0

0
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02−i+12−i+1 2−i+1 2−i+10 00 0

0

2−i+1 2−i+1 0 0 00
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0

0
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Figure 2 The edge values of a short and a long cycle induced by edges in Ei after rounding. In
the long cycle, nodes of color 1 are depicted as blue squares and nodes of color 2 as red circles.

2−i+1 0 2−i+1 0 2−i+1 0 2−i+1 0

0 0 2−i+1 0 0 02−i+1

Figure 3 The edge values of two short paths induced by edges in Ei after rounding. Tight
endpoints are depicted as (unfilled) boxes and loose endpoints as (filled) squares.

Case A, Short Cycles. Alternately set the values of the edges to 0 and to 2−i+1. Since
the cycle has even length, the values cv =

∑
e∈E(v) xe for all nodes v in the cycle remain

unaffected by this update. Moreover, the total value of the edges in the cycle stays the same.

Case B, Long Cycles and Long Paths. We first orient the edges in a manner that ensures
that each maximal directed path has length at least `. This is done in O(`) rounds. For that
purpose, we start with an arbitrary orientation of the edges. Then, for each j = 1, . . . , dlog `e,
we iteratively merge two (maximal) directed paths of length < 2j that are directed towards
each other by reversing the shorter one, breaking ties arbitrarily. For more details of this
orientation step, we refer to [15, Fact 5.2].

Given this orientation, we determine the new values of xe as follows. Recall that we are
given a 2-coloring of nodes. Set the value of all border edges (that is, edges that have an
incident edge such that they are either oriented towards each other or away from each other)
to 0, increase the value of a non-border edge to 2−i+1 if it is oriented towards a node of color
1, say, and set it to 0 otherwise.

Now, we show that this process generates a valid fractional matching while incurring only
a small loss in the value. Observe that no constraint is violated, as for each node the value of
at most one incident edge can be raised to 2−i+1 while the other is dropped to 0. Moreover,
in each maximal directed path, we can lose at most 3 · 2−i in the total sum of edge values.
This happens in the case of an odd-length path starting with a node of color 2. Hence, we
lose at most a 3

` -fraction of the total sum of the edge values in long cycles and long paths.

Case C, Short Paths. Give the path an arbitrary direction, that is, identify the first and
the last node. Set the value of the first edge to 2−i+1 if the first node is loose, and to 0
otherwise. Alternately, starting with value 0 for the second edge, set the value of every even
edge to 0 and of every odd edge to 2−i+1. If the last edge should be set to 2−i+1 (that is, the
path has odd length) but the last node is tight, set the value of that last edge to 0 instead.

We now discuss the validity of the new fractional matching. If a node v is in the interior of
the path, that is, not one of the endpoints, then v can have at most one of its incident edges

DISC 2017
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increased to 2−i+1 while the other one decreases to 0. Hence the summation cv =
∑

e∈E(v) xe

does not increase. If v is the first or last node in the path, the value of the edge incident
to v is increased only if v was loose, i.e., if cv =

∑
e∈E(v) xe ≤ 1

2 . In this case, we still have
cv =

∑
e∈E(v) xe ≤ 1 after the increase, as the value of the edge raises by at most a 2-factor.

We now argue that the value of the matching has not decreased by too much during this
update. For that, we group the edges into blocks of two consecutive edges, starting from
the first edge. If the path has odd length, the last block consists of a single edge. It is easy
to see that the block value, that is, the sum of the values of its two edges, of every interior
(neither first nor last) block is unaffected.

If an endpoint v of a path is loose, the value of the block containing v remains unchanged
or increases (in the case of an odd-length path ending in v). If v is tight, then the value of its
block stays the same or decreases by 2−i+1, which is at most a 2−i+2-fraction of the value cv.

This allows us to bound the loss in terms of these tight endpoints. The crucial observation
is that every node can be endpoint of a short path at most once. This is because, in the
2-decomposition, a node can be the endpoint of a path only if it has a degree-1 copy. This
happens only if it has odd degree, and in that case, it has exactly one degree-1 copy, hence,
also exactly one endpoint of a short path. Therefore, we lose at most a 2−i+2-fraction in∑

v∈V cv when updating the values in short paths.

Analyzing the Overall Effect of Rounding. First, we show that over all the rounding
phases, the overall loss is only a constant fraction of the total value

∑
e∈E xe.

Let x
(i)
e and c

(i)
v denote the value of edge e and node v, respectively, before eliminating

all the edges with value 2−i. Putting together the loss analyses discussed above, we get∑
e∈E

x(i−1)
e ≥

∑
e∈E

x(i)
e −

3
`

∑
e∈E

x(i)
e − 2−i+2

∑
v∈V

c(i)
v ≥

(
1− 3

`
− 2−i+3

)∑
e∈E

x(i)
e .

It follows that∑
e∈E

x(4)
e ≥

dlog ∆e∏
i=5

(
1− 3

`
− 2−i+3

)∑
e∈E

x(dlog ∆e)
e ≥

dlog ∆e∏
i=5

e−2( 3
` +2−i+3)

∑
e∈E

x(dlog ∆e)
e

≥ e−
1
4−16

∑dlog ∆e
i=5

2−i ∑
e∈E

x(dlog ∆e)
e ≥ 1

e
5
4

∑
e∈E

x(dlog ∆e)
e ≥ 1

4e
5
4
|M∗| ≥ 1

14 |M
∗|

for a maximum matching M∗, recalling that we started with a 4-approximate maximum
matching. Here, the second inequality holds because 3

` + 2−i+3 ≤ 1
2 , as i ≥ 5.

Finally, observe that in all the rounding phases the constraints cv =
∑

e∈E(v) xe ≤ 1 are
preserved, since the value cv can increase by at most a 2-factor and only when v is loose. J

Step 3, Final Rounding. So far, we have an almost integral matching. Next, we round all
edges to either 0 or 1, by finding a maximal matching in the subgraph induced by edges with
positive value.

I Lemma 15. There is an O(1)-round deterministic distributed algorithm that, given a
2−4-fractional 14-approximate maximum matching in a 2-colored bipartite graph, computes
an integral 434-approximate maximum matching.

Proof. In the given 2−4-fractional matching, xe 6= 0 means xe ≥ 1
16 . Thus, a node cannot have

more than 16 incident edges with non-zero value in this fractional matching. In this constant-
degree subgraph, a maximal matching M can be found in O(1) rounds using the algorithm in
Lemma 8, recalling that we are given a 2-coloring. We have |M | ≥ |{e∈E : xe>0}|

31 ≥ 1
31
∑

e∈E xe

by Lemma 7 (i), and, since we started with a 14-approximation, M is 434-approximate. J
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4.1.2 Constant Approximate Maximum Matching in General Graphs
We now explain how the approximation algorithm for maximum matchings in 2-colored
bipartite graphs can be employed to find approximate maximum matchings in general graphs.
The main idea is to transform the given general graph into a bipartite graph with the same
edge set in such a way that a matching in this bipartite graph can be easily turned into a
matching in the general graph.

Proof of Lemma 9. Let −→E be an arbitrary orientation of the edges E. Split every node
v ∈ V into two siblings vin and vout, and add an edge {uout, vin} to EB for every oriented
edge (u, v) ∈ −→E . Let Vin := {vin : v ∈ V } and Vout := {vout : v ∈ V } be the nodes with color 1
and 2, respectively. By Lemma 10, a c-approximate maximum matching MB in the bipartite
graph B = (Vin

⋃
Vout, EB) can be computed in O

(
log2 ∆

)
rounds. We now go back to V ,

that is, merge vin and vout back into v. This makes the edges of MB incident to vin or vout
now be incident to v, leaving us with a graph G′ = (V, MB) ⊆ G with maximum degree 2.

We compute a maximal matching M ′ in G′. Using the algorithm of Lemma 8, this can
be done in O(log∗ n) rounds. If an poly∆-coloring of G is provided, which implies a coloring
of G′ with poly∆ colors, the round complexity of this step is merely O(log∗∆).

It follows from Lemma 7 (i) that |M ′| ≥ |MB |
3 ≥ |M

∗
B |

3c ≥ |M
∗|

3c for maximum matchings
M∗

B in B and M∗ in G, respectively. Thus, M ′ is a 3c-approximate maximum matching in
G. The last inequality is true since by introducing additional nodes but leaving the edge set
unchanged (when going from G to B), the maximum matching size cannot decrease. J

4.2 Wrap-Up: (2 + ε)-Approximate Matching and Maximal Matching
In this section, we iteratively invoke the constant approximation algorithm of 9 to obtain
algorithms for a (2 + ε)-approximate maximum matching (Theorem 1) and a maximal
matching (Theorem 2).

The approximation ratio of a matching algorithm can be improved from c to 2 + ε easily,
by O

(
log 1

ε

)
repetitions: each time, we apply the algorithm of Lemma 9 to the remaining

graph, and remove the found matching together with its neighboring edges from the graph.
Before explaining the details, we present the following frequently used trick.

I Remark. If a poly∆-coloring of a graph is provided, we can go around the Ω(log∗ n) lower
bound of Linial [24], omitting the additive O(log∗ n) term from the round complexity of the
algorithms presented in this paper. More generally, if such an algorithm is invoked iteratively,
one can first precompute an O(∆2)-coloring in O(log∗ n) rounds using Linial’s algorithm [25],
which allows us to replace the O(log∗ n) term by O(log∗∆) by Lemma 8 in each iteration.

Proof of Theorem 1. Starting with G0 = G, for i = 0, . . . , k − 1, where k = O
(
log 1

ε

)
,

iteratively compute a c-approximate maximum matching Mi in Gi, using the algorithm
of Lemma 9. We delete Mi together with its incident edges from the graph, that is, set
Gi+1 = (V, E(Gi) \ Γ+(Mi)).

Now, we argue that the obtained matching
⋃k−1

i=0 Mi is (2 + ε)-approximate. To this end,
we bound the size of a maximum matching in the remainder graph Gk.

Let M∗
i be a maximum matching in Gi. An inductive argument shows that |M∗

i | ≤(
1− 1

c

)
i|M∗|. Indeed, observe |M∗

i+1| ≤ |M∗
i | − |Mi| ≤

(
1− 1

c

)
|M∗

i | ≤
(
1− 1

c

)
i+1|M∗|,

where the first inequality holds since otherwise M∗
i+1 ∪Mi would be a better matching than

M∗
i in Gi, contradicting the latter’s optimality. For k = log1− 1

c

ε
2(2+ε) , we thus have |M∗

k | ≤
ε

2(2+ε) |M
∗|. As

⋃k−1
i=0 Mi is a maximal matching in G\Gk by construction,

(⋃k−1
i=0 Mi

)
∪M∗

k
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is a maximal matching in G. By Lemma 7 (ii), this means that
∣∣∣⋃k−1

i=0 Mi

∣∣∣+ |M∗
k | ≥

|M∗|
2 ,

hence
∣∣∣⋃k−1

i=0 Mi

∣∣∣ ≥ ( 1
2 −

ε
2(2+ε)

)
|M∗| ≥ |M

∗|
2+ε .

We have O
(
log 1

ε

)
iterations, each taking O(log2 ∆ + log∗ n) rounds. As mentioned in

Remark 4.2, by precomputing an O(∆2)-coloring in O(log∗ n) rounds, the round complexity
of each iteration can be decreased to O(log2 ∆ + log∗∆) = O(log2 ∆), leading to an overall
running time of O(log2 ∆ · log 1

ε + log∗ n) rounds. J

I Remark. The analysis above shows that the matching M computed by the algorithm of
Theorem 1 is not only (2 + ε)-approximate, but also has the property that any matching in
the remainder graph (induced by E \ Γ+(M)) can have size at most ε|M∗| for a maximum
matching M∗ in G.

If one increases the number of repetitions to O(log n), the found matching is maximal.

Proof of Theorem 2. Apply the c-approximation algorithm of Lemma 9 for k = log1− 1
c

1
n

iterations on the respective remainder graph, as described in the proof of Theorem 1. The
same analysis (also adopting the notation from there) shows that a maximum matching M∗

k

in the remainder graph Gk must have size |M∗
k | ≤

|M∗|
n < 1, which means that Gk is an

empty graph. But then
⋃k−1

i=1 Mi must be maximal. J

5 Almost Maximal Matching

In the previous section, we have seen how one can obtain a matching that reduces the size of
the matching in the remainder graph, that is, the graph after removing the matching and all
incident edges, by a constant factor. Intuitively, one would expect that this also reduces the
number of remaining edges by a constant factor, which would directly lead to an (almost)
maximal matching just by repetitions. However, this is not the case, since not every matched
edge removes the same number of edges from the graph, particularly in non-regular graphs.
This calls for an approach that weights edges incident to nodes of different degrees differently,
which naturally brings into play weighted matchings.

In Lemma 16, we present a fast algorithm that finds a constant approximation of maximum
weighted matching based on the algorithm of Theorem 1. Then, we use this algorithm, by
assigning certain weights to the edges, to find a matching that removes a constant fraction
of the edges in Lemma 17. Via O

(
log 1

ε

)
repetitions of this, each time removing the found

matching and its incident edges, we get an ε-maximal matching. More details are provided
in the proof of Theorem 4 in the end of this section. Observe that when setting ε = 1

n2 , thus
increasing the number of repetitions to O(log n), we obtain a maximal matching.

I Lemma 16. There is an O
(
log2 ∆ + log∗ n

)
-round deterministic distributed algorithm for

a 256-approximate maximum weighted matching.

Proof. We assume without loss of generality that the edge weights are normalized, that is,
from a set {1, . . . , W} for some maximum weight W . Round the weights we for e ∈ E down
to the next power of 8, resulting in weights w′e. This rounding procedure lets us lose at
most a 8-factor in the total weight and provides us with a decomposition of G into graphs
Ci = (V, Ei) with Ei := {e ∈ E : w′e = 8i} for i ∈ {0, . . . , blog8 W c}.

In parallel, run the algorithm of Theorem 1 with ε = 1 on every Ci to find a 3-approximate
maximum matching Mi in Ci in O(log2 ∆ + log∗ n) rounds. Observe that while the edges in⋃

i Mi do not form a matching, since edges from Mi and Mj for i 6= j can be neighboring, a
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matching M ⊆
⋃

i Mi can be obtained by deleting all but the highest-index edge in every
such conflict, that is, by removing all edges e ∈Mi with an incident edge e′ ∈Mj for a j > i.

In the following, we argue that the weight of M cannot be too small compared to the
weight of

⋃
i Mi by an argument based on counting in two ways.

Every edge e ∈ (
⋃

i Mi) \M puts blame w′e on an edge in M as follows. Since e /∈ M ,
there is an edge e′ incident to e such that e ∈ Mi and e′ ∈ Mj for some j > i. If e′ ∈ M ,
then e blames weight we on e′. If e′ /∈M , then e puts blame we on the same edge as e′ does.

For an edge e ∈M ∩ Ei and j ∈ [i], let nj be the maximum number of edges from Mi−j

that blame e. An inductive argument shows that nj ≤ 2j . Indeed, there can be at most
two edges from Mi−1 blaming e, at most one per endpoint of e, and, for j > 1, we have
nj ≤ 2 +

∑j−1
j′=1 nj′ ≤ 2 +

∑j−1
j′=1 2j′ = 2j , since at most two edges in Mi−j can be incident

to e and at most one further edge can be incident to each edge in Mi−j′ for j′ < j.
Therefore, overall, at most

∑i
j=1 2j8i−j ≤ 1

38i ≤ 1
3w′e weight is blamed on e. This

means that
∑

e∈(∪iMi)\M w′e ≤ 1
3
∑

e∈M w′e, hence
∑

e∈∪iMi
w′e ≤ 4

3
∑

e∈M w′e, and lets us
conclude that

∑
e∈M∗ we ≤ 8

∑
e∈M∗ w′e ≤ 24

∑
e∈∪iMi

w′e ≤ 32
∑

e∈M w′e ≤ 256
∑

e∈M we

for a maximum weighted matching M∗. J

Next, we explain how to use this algorithm to remove a constant fraction of edges, by
introducing appropriately chosen weights. We define the weight of each edge to be the
number of its incident edges. This way, an (approximate) maximum weighted matching
corresponds to a matching that removes a large number of edges.

I Lemma 17. There is an O
(
log2 ∆ + log∗ n

)
-round deterministic distributed algorithm for

a 511
512 -maximal matching.

Proof. For each edge e = {u, v} ∈ E, introduce a weight we = dG(u) + dG(v)− 1, and apply
the algorithm of Lemma 16 to find a 256-approximate maximum weighted matching M in G.

For the weight w(M∗) of a maximum weighted matching M∗, it holds that w(M∗) ≥ |E|,
as the following simple argument based on counting in two ways shows. Let every edge
in E put a blame on an edge in M∗ that is responsible for its removal from the graph as
follows. An edge e ∈M∗ blames itself. An edge e /∈M∗ blames an arbitrary incident edge
e′ ∈M∗. Notice that at least one such edge must exist, as otherwise M∗ would not even be
maximal. In this way, |E| many blames have been put onto edges in M∗ such that no edge
e = {u, v} ∈M∗ is blamed more than we times, as e can be blamed by itself and any incident
edge. Therefore, indeed w(M∗) =

∑
e∈M∗ we ≥ |E|, and, as M is a 256-approximate, it

follows that
∑

e∈M we ≥ |E|256 .
Now, observe that we is the number of edges that are deleted when removing e together

with its incident edges from G. Since every edge can be incident to at most two matched
edges (and thus can be deleted by at most two edges in the matching), in total |Γ+(M)| ≥
1
2
∑

e∈M we ≥ |E|512 many edges are removed from G when deleting the edges in and incident
to M , which proves that M is a 511

512 -maximal matching. J

We iteratively invoke this algorithm to successively reduce the number of remaining edges.

Proof of Theorem 4. For i = 0, . . . , k = O
(
log 1

ε

)
and G0 = G, iteratively apply the

algorithm of Lemma 17 to Gi to get a c-maximal matching Mi in Gi. Set Gi+1 =
(V, E(Gi) \ Γ+(Mi)), that is, remove the matching and its neighboring edges from the
graph. Then M :=

⋃k−1
i=0 Mi for k = logc ε is ε-approximate, since |E \ Γ+(M)| = |E(Gk)| ≤

ck|E| ≤ ε|E|, using |E(Gi+1)| ≤ c |E(Gi)|.
Overall, recalling Remark 4.2, this takes O(log2 ∆ · log 1

ε + log∗ n). J
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Abstract
Locally Checkable Labeling (LCL) problems include essentially all the classic problems of LOCAL
distributed algorithms. In a recent enlightening revelation, Chang and Pettie [FOCS’17] showed
that any LCL (on bounded degree graphs) that has an o(logn)-round randomized algorithm can
be solved in TLLL(n) rounds, which is the randomized complexity of solving (a relaxed variant of)
the Lovász Local Lemma (LLL) on bounded degree n-node graphs. Currently, the best known
upper bound on TLLL(n) is O(logn), by Chung, Pettie, and Su [PODC’14], while the best known
lower bound is Ω(log logn), by Brandt et al. [STOC’16]. Chang and Pettie conjectured that there
should be an O(log logn)-round algorithm (on bounded degree graphs).

Making the first step of progress towards this conjecture, and providing a significant improve-
ment on the algorithm of Chung et al. [PODC’14], we prove that TLLL(n) = 2O(

√
log logn). Thus,

any o(logn)-round randomized distributed algorithm for any LCL problem on bounded degree
graphs can be automatically sped up to run in 2O(

√
log logn) rounds.

Using this improvement and a number of other ideas, we also improve the complexity of a
number of graph coloring problems (in arbitrary degree graphs) from the O(logn)-round results
of Chung, Pettie and Su [PODC’14] to 2O(

√
log logn). These problems include defective coloring,

frugal coloring, and list vertex-coloring.
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1 Introduction and Related Work

The Lovász Local Lemma (LLL), introduced by Erdős and Lovász in 1975 [14], is a beautiful
result which shows that, for a set of “bad events” in a probability space that have certain
sparse dependencies, there is a non-zero probability that none of them happens. This
result has become a central tool in the probabilistic method [2], when proving that certain
combinatorial objects exist. Although the LLL itself does not provide an efficient way for
finding these objects, and that remained open for about 15 years, a number of efficient
centralized algorithms have been developed for it, starting with Beck’s breakthrough in
1991 [7], through [1, 13, 26, 28, 33], and leading to the elegant algorithm of Moser and Tardos
in 2010 [29]. See also [9, 19,21–24] for some of the related work on that track.
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In contrast, distributed algorithms for LLL and the related complexity are less well-
understood. This question has gained an extraordinary significance recently, due to revelations
that show that LLL is a “complete” problem for sublogarithmic-time problems. Next, we
first overview the concrete statement of the LLL, and then discuss what is known about its
distributed complexity, and what its special significance is for distributed algorithms. Then
we proceed to presenting our contributions.

1.1 The LLL and its Special Role in Distributed Algorithms
The Lovász Local Lemma. Consider a finite set V of independent random variables, and a
finite family X of n (bad) events on these variables. Each event A ∈ X depends on some subset
vbl(A) ⊆ V of variables. Define the dependency graph GX = (X , {(A,B) | vbl(A)∩vbl(B) 6=
∅}) that connects any two events which share at least one variable. Let d be the maximum
degree in this graph, i.e., each event A ∈ X shares variables with at most d other events
B ∈ X . Finally, define p = maxA∈X Pr[A]. The Lovász Local Lemma [14] shows that
Pr[∩A∈X Ā] > 0, under the LLL criterion that epd ≤ 1. Intuitively, if a local union bound is
satisfied around each node in GX , with some slack, then there is a positive probability to
avoid all bad events.

What’s Known about Distributed LLL? In the standard distributed formulation of LLL,
we consider LOCAL-model [25, 32] algorithms that work on the n-node dependency graph
GX , where per round each node can send a message to each of its neighbors1.

Moser and Tardos [29] provided an O(log2 n)-round randomized distributed algorithm.
Chung, Pettie, and Su [12] presented an O(logn · log2 d)-round algorithm, which was later
improved slightly to O(logn·log d) [17]. Perhaps more importantly, under a modestly stronger
criterion that epd2 < 1, which is satisfied in most of the standard applications, they gave an
O(logn)-round algorithm [12]. This remains the best known distributed algorithm. On the
other hand, Brandt et al. [8] showed a lower bound of Ω(log logn) rounds, which holds even if
a much stronger LLL criterion of p2d < 1 is satisfied. Even under this exponentially stronger
criterion, the best known upper bound changed only slightly to O(logn/ log logn) [12].

Completeness of LLL for Sublogarithmic Distributed Algorithms. Chang and Pettie [11]
showed that any o(logn)-round randomized algorithm A for any Locally Checkable Labeling
(LCL) problem P – a problem whose solution can be checked in O(1) rounds [30], which
includes all the classic local problems – on bounded degree graphs can be transformed to an
algorithm with complexity O(TLLL(n)). Here, TLLL(n) denotes the randomized complexity
for solving LLL on n-node bounded-degree graphs, with high probability.

In a nutshell, their idea is to “lie” to the algorithm A and say that the network size is some
much smaller value n∗ � n. This deceived algorithm A may have a substantial probability
to fail, creating an output that violates the requirements of the LCL problem P somewhere.
However, the probability of failure in each local neighborhood is at most 1/n∗. Choosing n∗
a large enough constant, depending on the complexity of A, the algorithm A provides an
LLL system – where we have one bad event for violation of each local requirement of P –
that satisfies the criterion pdc < 1 for a desirably large constant c. Hence, we can solve this
LLL system and thus obtain a solution for the original LCL problem P in O(TLLL(n)) time.

1 One can imagine a few alternative graph formulations, all of which turn out to be essentially equivalent
in the LOCAL model, up to an O(1) overhead in complexity.
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This result implies that LLL is important not only for a few special problems, but in
fact for essentially all sublogarithmic-time distributed problems. Due to this remarkable
role, Chang and Pettie state that “understanding the distributed complexity of the LLL is a
significant open problem.” Furthermore, although a wide gap between the best upper bound
O(logn) [12] and lower bound Ω(log logn) [8] persists, they conjecture the latter to be tight:

I Conjecture (Chang, Pettie [11]). There exists a sufficiently large constant c such that the
distributed LLL problem can be solved in O(log logn) time on bounded degree graphs, under
the symmetric LLL criterion pdc < 1.2

1.2 Our Contributions
Faster Distributed LLL. We make a significant step of progress towards this conjecture:

I Theorem 1. There is a 2O(
√

log logn)-round randomized distributed algorithm that, with
high probability3, solves the LLL problem with degree at most d = O(log1/5 logn), under a
symmetric polynomial LLL criterion p(ed)32 < 1.4

This improves over the O(logn)-round algorithm of Chung et al. [12]. We note that even
under a significantly stronger exponential LLL criterion – formally requiring 4ep2dd4 < 1 –
the best known round complexity was O(logn/ log logn) [12]. Furthermore, we note that
a key ingredient in developing Theorem 1 is a deterministic distributed algorithm for LLL,
which we present in Theorem 11. To the best of our knowledge, this is the first (non-trivial)
deterministic distributed LLL algorithm. In fact, we believe that any conceivable future
improvements on Theorem 1 may have to improve on this deterministic part.

Moreover, our method provides some further supporting evidence for the conjecture of
Chang and Pettie. In particular, if one finds a poly logn-round deterministic algorithm for(
O(logn), O(logn)

)
network decomposition [31] – a central problem that has remained open

for a quarter century, but is often perceived as likely to be true – then, combining that with
our method would prove TLLL(n) = poly(log logn).

A Gap in the Randomized Distributed Complexity Hierarchy. Putting Theorem 1 with [11,
Theorem 6], we get the following automatic speedup result:

I Corollary 2. Let A be a randomized LOCAL algorithm that solves some LCL problem P
on bounded degree graphs, w.h.p., in o(logn) rounds. Then, it is possible to transform A into
a new randomized LOCAL algorithm A′ that solves P, w.h.p., in 2O(

√
log logn) rounds.

Using a similar method, and our deterministic LLL algorithm (Theorem 11), we obtain
the following corollary, the proof of which is deferred to the full version [15]. This corollary
shows that any o(log logn)-round randomized algorithm for an LCL problem on bounded
degree graphs can be improved to a deterministic O(log∗ n)-round algorithm. This result
seems to be implicit in the recent work of Chang, Kopelowitz, and Pettie [10], though with a
quite different proof, and it can be derived from [10, Corollary 3] and [10, Theorem 3].

2 This statement, as is, has a small imprecision: one should assume either that d ≥ 2, in which case
pdc < 1 can be replaced with p(ed)c′ < 1 for some other constant c′, or that pdc < 1/2. Otherwise, two
events of head or tail for a fair coin have p = 1/2 and d = 1, thus pdc < 1, but one cannot avoid both.

3 As standard, the phrase with high probability (w.h.p.) indicates that an event has probability at least
1 − n−c, for a sufficiently large constant c.

4 We remark that we did not try to optimize the constants.
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18:4 Sublogarithmic Distributed Algorithms for Lovász Local Lemma

I Corollary 3. Let A be a randomized LOCAL algorithm that solves some LCL problem P
on bounded degree graphs, w.h.p., in o(log logn) rounds. Then, it is possible to transform A
into a new deterministic LOCAL algorithm A′ that solves P in O(log∗ n) rounds.

Faster Distributed Algorithms for Graph Colorings via LLL. For some distributed graph
problems on bounded degree graphs, we can immediately get faster algorithms by applying
Theorem 1. However, there are two quantifiers which appear to limit the applicability
of Theorem 1: (L1) it requires a stronger form of the LLL criterion, concretely needing
p(ed)32 < 1 instead of epd ≤ 1; (L2) it applies mainly to bounded degree graphs.

We explain how to overcome these two limitations in most of the LLL-based problems
studied by Chung, Pettie, and Su [12]. Regarding limitation (L1), we show that even though
in many coloring problems the direct LLL formulation would not satisfy the polynomial
criterion p(ed)32 < 1, we can still solve the problem, through a number of iterations of partial
colorings, each satisfying this stronger LLL criterion. Regarding limitation (L2), we explain
how in many problems, the first step of our LLL algorithm, which is its only part that relies
on bounded degrees, can be replaced by a faster randomized step for that coloring.

The end results of our method include algorithms with round complexity 2O(
√

log logn) for
a number of coloring problems, improving on the corresponding O(logn)-round algorithms
of Chung, Pettie, and Su [12]: defective coloring, frugal coloring, and list vertex-coloring.
The first two are presented respectively, in Section 4, Section 5. The third coloring result, as
well as some of the proofs, are deferred to the full version of this article [15].

2 Preliminaries

2.1 Network Decompositions
Roughly speaking, a network decomposition [4, 31] partitions the nodes into a few blocks,
each of which is made of a number of low-diameter connected components. More formally,
the definition is as follows:

I Definition 4 (Network Decomposition). Given a graph G = (V,E), a partition of the nodes
V into C vertex-disjoint blocks V1, V2, . . . , VC is a (C,D) network decomposition if in each
block’s induced subgraph G[Vi] each connected component has diameter at most D.

I Lemma 5 (The Network Decomposition Algorithm). Given an n-node network G = (V,E),
there is a deterministic distributed algorithm that computes a (λ, n1/λ · logn) network decom-
position of G in λ · n1/λ · 2O(

√
logn) rounds.

The proof of Lemma 5 is deferred to the full version; it works mainly by putting together
some ideas of Awerbuch and Peleg [5], Panconesi and Srinivasan [31], and Awerbuch et al. [3].
However, we are not aware of this result appearing in prior work.

2.2 Shattering
In a number of our algorithms, we make use of the following lemma which, roughly speaking,
shows that if each node of the graph remains with some small probability and we have
certain independence between these events, the remaining connected components are “small”.
We remark that this lemma or its variants are key ingredients in Beck’s LLL method
[7], sometimes referred to as the shattering lemma, and analogues of it appear in the
literature [1, 6, 17,18,20,26,27]. The proof of this lemma is deferred to the full version.
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I Lemma 6 (The Shattering Lemma). Let G = (V,E) be a graph with maximum degree ∆.
Consider a process which generates a random subset B ⊆ V where P (v ∈ B) ≤ ∆−c1 , for
some constant c1 ≥ 1, and that the random variables 1(v ∈ B) depend only on the randomness
of nodes within at most c2 hops from v, for all v ∈ V , for some constant c2 ≥ 1. Moreover,
let H = G[2c2+1,4c2+2] be the graph which contains an edge between u and v iff their distance
in G is between 2c2 + 1 and 4c2 + 2. Then with probability at least 1− n−c3 , for any constant
c3 < c1 − 4c2 − 2, we have the following three properties:
(P1) H[B] has no connected component U with |U | ≥ log∆ n.
(P2) G[B] has size at most O

(
log∆ n ·∆2c2

)
.

(P3) Each connected component of G[B] admits a (λ,O(log1/λ n · log2 logn)) network de-
composition, for any integer λ ≥ 1, which can be computed in λ · log1/λ n · 2O(

√
log logn)

rounds, deterministically.

3 Our General Algorithm for Lovász Local Lemma

In this section, we explain our sublogarithmic-time LLL algorithm of Theorem 1, which solves
LLL in 2O(

√
log logn) rounds on bounded degree graphs, given the condition that p(ed)32 < 1.

The Lovász Local Lemma Setting. We consider a finite set V of independent random
variables, and a finite family X of n bad events on these variables. Each event A ∈ X depends
on some subset vbl(A) ⊆ V of variables. In fact, essentially without loss of generality, we
assume that each random variable in V is a fair random bit. We note that in practically all
settings of interest, we can rewrite the basic random variables as a function of at most poly(n)
independent random bits, hence transitioning from arbitrary set of random variables to
another space of random variables with just fair random bits. The number of random bits will
impact only the local computations and as such, since we are working in the local model which
does not assume a limited computational power, we can allow the number of random bits to
be arbitrarily large. The distributed algorithms that we describe work on the dependency
graph of the events, defined as GX = (X , {(A,B) | vbl(A) ∩ vbl(B) 6= ∅}). That is, this
graph has one vertex for each event and that connects any two events which share at least
one variable. Then, d denotes the maximum degree in this graph, and p = maxA∈X Pr[A].

Our General LLL Algorithm. The algorithm is developed in two stages, as we overview
next. In the first stage, presented in Section 3.1, we explain a randomized algorithm with
complexity λ · log1/λ n · 2O(

√
log logn), given that an LLL criterion p(ed)4λ < 1 is satisfied.

In the main regime of interest, the best LLL criterion exponent that we will assume is
λ = O(1), and thus this (λ · log1/λ n · 2O(

√
log logn))-round algorithm, on its own, would not

get us to our target complexity of 2O(
√

log logn), although still being an improvement on the
O(logn)-round algorithm of [12].

In the second stage, presented in Section 3.2, we improve this complexity to 2O(
√

log logn).
That improvement works mainly by viewing the sublogarithmic-time local algorithm of
Section 3.1 as setting up a new LLL, with a much larger exponent λ in its LLL criterion,
hence allowing us get to a much smaller complexity by (recursively) applying the same
scheme. This speed up is inspired by the ideas of Chung and Pettie [11] which showed that
LLL can be used to speed up sublogarithmic-time local algorithms.5

5 Though, we find this recursive application of the idea to speed up the complexity of LLL itself, through
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3.1 The Base LLL Algorithm
I Theorem 7. For any integer λ ≥ 8, there is a randomized distributed algorithm solving the
LLL problem under the symmetric criterion p(ed)4λ < 1, in O(d2) +λ · log1/λ n · 2O(

√
log logn)

rounds, with high probability.

This algorithm consists of two parts: (1) a randomized algorithm, explained in Sec-
tion 3.1.1, which performs some partial sampling in the LLL space, thus setting some of the
variables, in a manner that shatters the graph, hence leaving small connected components
among the unset variables; (2) a deterministic LLL algorithm, explained in Section 3.1.2,
which we use to solve the remaining small connected components. To the best of our know-
ledge, this is the first non-trival deterministic distributed LLL algorithm. In Section 3.1.3,
we combine these two parts, concluding the proof of Theorem 7.

This general shattering style for randomized algorithms – which first performs some
randomized steps to break the graph into small remaining connected components, and then
uses deterministically solves these remaining components – is rooted in the breakthrough
LLL algorithm of Beck [7], and has been used extensively before [1, 6, 17,18,20,26,27].

3.1.1 The Randomized Part
We now explain the randomized component of our LLL algorithm for bounded degree graphs,
which performs a partial sampling in the LLL space, thus setting some of the variables, in a
manner that guarantees the following two properties: (1) the conditional probabilities of the
bad events, conditioned on the already set variables, satisfy a polynomial LLL criterion, (2)
the connected components of the events on variables that remain unset are “small” (e.g., for
bounded degree graphs, they have size at most O(logn)), with high probability.

These two properties together will allow us to invoke the deterministic LLL algorithm that
we present later in Section 3.1.2 on the remaining components of variables that remain unset.
In particular, (1) means that the bad events X form another LLL problem on the variables
that remain unset, where each new bad event has probability at most √p. Furthermore, (2)
ensures that the components are small enough to make the deterministic algorithm efficient.

Our partial sampling is inspired by a sequential LLL algorithm of Molloy and Reed [26].

I Lemma 8 (Random Partial Setting for the LLL Variables). There is a randomized distributed
algorithm that computes, w.h.p., in O(d2 + log∗ n) rounds, a partial assignment of values to
variables – setting the values of the variables in a set V∗ ⊆ V, hence leaving the variables in
V ′ := V \ V∗ unset – of an LLL satisfying p(ed)4λ < 1, for any integer λ ≥ 8, such that
(i) Pr[A | V∗] ≤ √p for all A ∈ X , and
(ii) w.h.p. each connected component of G2

X [V ′] admits a (λ,O(log1/λ n · log2 logn)) network
decomposition, which can be computed in λ · log1/λ n · 2O(

√
log logn) rounds, determinist-

ically.

Proof. We first compute a (d2 + 1)-coloring of the square graph G2
X on the events, which

can be done even deterministically in Õ(d) +O(log∗ n) rounds [16]. Suppose Xi is the set of
events colored with color i, for i ∈ {1, . . . , d2 + 1}. We process the color classes one by one.

During the process, some variables may get frozen, as we discuss soon. The process
assigns values for all non-frozen variables, as follows: For each color i ∈ {1, . . . , d2 + 1}, and
for each node A ∈ Xi in parallel, we make node A sample values for its (so far non-frozen)

strengthening the corresponding LLL criterion, somewhat amusing.
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variables locally, one by one. Notice that since we are using a coloring of G2
X , for each color

i, each event B ∈ X shares variables with at most one event A ∈ Xi. Hence, during this
iteration, at most one node A is sampling variables of event B. Consider a node A that is
choosing values for some random variables. Each time, when A is choosing a value for a
variable v ∈ vbl(A), it checks whether this setting makes one of the events B ∈ X involving
variable v dangerous. We call an event B dangerous if Pr[B|V∗B ] ≥ √p/2, where V∗B denotes
the already set variables of B up to this point in the sampling process. If the recently set
variable v leads to a dangerous event B, then node A freezes variable v as well as all the
remaining variables of event B. We do not assign values to frozen variables in the remainder
of the randomized sampling process. We have two key observations regarding this process:

I Observation 9. At the end of each iteration, for each event A ∈ X , the conditional
probability of event A, conditioned on the already made assignments V∗A, is at most √p.

Proof Sketch. The first time that an event A becomes dangerous, all of its remaining
variables get frozen and no other assignment gets made for its variables. By definition, before
A becoming dangerous, the conditional probability of event A, conditioned on the already
made assignments V∗A, is at most √p/2. If A becomes dangerous, that’s because of setting
of one last random variable. Since we have assumed that the random variables are all fair
random bits, at the time of setting one last bit, the conditional probability of event A can
increase by at most a 2 factor. Hence, once A becomes dangerous and all of its remaining
variables get frozen, its conditional probability is at most √p. J

I Observation 10. For each event A ∈ X , the probability of A having at least one unset
variable is at most 2(d+ 1)√p. Furthermore, this is independent of events that are further
than 2 hops from A.

Proof Sketch. We first claim that for each B ∈ X , the probability that B ever becomes
dangerous is at most 2√p. This is because otherwise the total probability of B happening
would exceed p. Notice that during the process, some variables get a value assigned to them,
and some variables get frozen, because of B or some other adjacent event becoming dangerous.
More concretely, to focus on just one event B, let us consider two processes for revealing
the samples values for variables of B. In the first process, we sample all the variables in one
shot. Clearly, in this process, Pr[B] ≤ p. The second process has two phases: in the first
phase, we examine the variables of B sequentially, one by one, and each time sample a value
for each variable, with one exception: at each time, an adversary might call some variables
that have not been revealed so-far ”frozen”and moves them to the second phase; any such
frozen variable will not be sampled in the first phase. This adversary can take into account
all the possibilities of neighboring LLL-events making a random variable of B become frozen.
Now in this process, if the conditional probability of event B given the already assigned
variables exceeds √p/2, or if we run out of non-frozen variables, the first phase ends. In the
second phase, we simultaneously sample all the variables that have been moved to the second
phase. Now, notice that the probability of event B happening is exactly the same in the
two processes; the second process is just a different order of revealing the sampled values of
the first process. Hence, also in the second process, we have Pr[B] ≤ p. Now, in the second
process, let B′ be the event that the conditional probability of event B at the end of the
first phase (given its assignments variables) exceeds √p/2. By definition, Pr[B′|B] ≥ √p/2.
Since Pr[B] ≤ p, we have Pr[B′] ≤ p√

p/2 = 2√p. Thus, in our LLL sampling process, the
probability that each event B ∈ X ever becomes dangerous is at most 2√p.
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Now, an event A ∈ X can have frozen variables only if at least one of its neighboring
events B, or event A itself, becomes dangerous. Since A has at most d neighboring events,
by a union bound, the latter has probability at most 2(d+ 1)√p. J

Observation 9 implies property (i) of Lemma 8. We use Observation 10 to conclude
that the events with at least one unset variable comprise “small” connected components. In
particular, we apply Lemma 6 to G2

X with the random partial setting process generating
a set B ⊆ X of the events that have at least one variable unset. By Observation 10, each
event remains with probability at most 2(d+ 1)√p ≤ 2(d+ 1) · e−2λ · d−2λ ≤ d−15. These
events depend only on events within at most 1 hop in G2

X and hence 2 hops in GX . Thus,
Lemma 6 (P3) shows that with probability at least 1− n−3 property (ii) holds. J

3.1.2 The Deterministic Part
I Theorem 11. For any integer λ ≥ 1, the distributed LLL problem can be solved determin-
istically in λ · n1/λ · 2O(

√
logn) rounds, under the symmetric LLL criterion p(ed)λ < 1. If the

algorithm is provided a (λ, γ) network decomposition of the square graph G2
X , then the LLL

algorithm runs in just O(λ · (γ + 1)) rounds.

We make a black-box invocation to the distributed algorithm stated in Lemma 5 for computing
a (λ, n1/λ · logn) network decomposition, and then solve the LLL problem on top of this
decomposition, by going through its blocks one by one.

The running time of our deterministic LLL algorithm hence directly depends on the
network decomposition it works with. In particular, if there is a poly logn-round deterministic
distributed algorithm that computes a (poly logn, poly logn) network decomposition, then
this algorithm solves any LLL problem satisfying the criterion p(ed)λ < 1 (with λ = poly logn)
deterministically in poly logn rounds. This would then directly improve the running time
of the randomized LLL algorithm of Theorem 7 to poly(log logn), proving that TLLL(n) =
poly(log logn), thus almost confirming the conjecture of Chang and Pettie [11].

In fact, we believe that a conceivable future improvement of our LLL algorithm may
need to improve this deterministic component, ideally to complexity O(logn) for proving the
TLLL(n) = O(log logn) conjecture of Chang and Pettie [11].

Proof of Theorem 11. We first compute a (λ, n1/λ · logn) network decomposition of G2
X ,

which decomposes its nodes into λ disjoint blocks X1, . . . ,Xλ, such that each connected
component of G2

X [Xi] has diameter at most n1/λ · logn. This decomposition can be computed
in λ · n1/λ · 2O(

√
logn) rounds, using Lemma 5.

Then, iteratively for i = 1, . . . , λ, we assign values to all variables of events in Xi that
have remained unset. The values are chosen is such a way that, after i steps, the conditional
probability of any event in X , conditioned on all the assignments in variables of events
in
⋃i
j=1 Xj , is at most p(ed)i < 1. Once i = λ, since the conditional failure probability is

p(ed)λ < 1 but all the variables are already assigned, we know that none of the events occurs.
The base case i = 0 is trivial. In the following, we explain how to set the values for

variables involved in events of Xi in n1/λ · logn rounds. Let Vi be the set of variables
in events of Xi that remain with no assigned value. We form a new LLL problem, as
follows: For each bad event A ∈ X , we introduce an event BA,i on the space of values of
Vi. This is the event that the values of Vi get chosen such that the conditional probability
of the event A, conditioned on the variables in

⋃i
j=1 Vj , is larger than p(ed)i. Notice that

Pr[BA,i |
⋃i−1
j=1 Vj ] ≤

p(ed)i−1

p(ed)i = 1
ed . This is because, the variables

⋃i−2
j=1 Vj are set such that
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the conditional probability of BA,i given these set values is at most p(ed)i−1, and thus, the
probability that the values of Vi−1 get chosen that the conditional probability given the
set values in

⋃i−1
j=1 Vj exceeds p(ed)i is at most p(ed)i−1

p(ed)i = 1
ed . Moreover, each event BA,i

depends on at most d other events BA′,i. Hence, the family of events BA,i on the variable
set Vi satisfies the conditions of the tight (symmetric) LLL. Therefore, by the Lovász local
lemma, we know that there exists an assignment to variables of Vi which makes no event
BA,i happen. That is, an assignment such that the conditional probability of each event A,
conditioned on the assignments in

⋃i
j=1 Vj , is bounded by at most p(ed)i.

Given the existence, we find such an assignment in n1/λ · logn rounds, as follows: each
component of G2

X [Xi] first gathers the whole topology of this component (as well as its
incident events and the current assignments to any of their variables), in O(n1/λ logn) rounds.
Then, it decides about an assignment for its own variables in Vi, by locally brute-forcing all
possibilities. Different components can decide independently as there is no event that shares
variables with two of them, since they are non-adjacent in G2

X . J

3.1.3 Wrap-Up: Base LLL Algorithm
Proof of Theorem 7. We run the randomized algorithm of Lemma 8 for computing a partial
setting of the variables, in O(d2 + log∗ n) rounds. Then, by Lemma 8 (i), the remaining
events X ′ (those which have at least one unset variable) form a new LLL system on the
unset variables, where each bad event has probability at most √p.

Moreover, by Lemma 8 (ii), each connected component of the square graph G2
X [X ′] of

these remaining events X ′ has a (λ,O(log1/λ n · log2 logn)) network decomposition, which
we can compute in λ · log1/λ n · 2O(

√
log logn) rounds, deterministically. From now on, we

handle the remaining events in different connected components of G2
X [X ′] independently.

Since √p(ed)λ < 1, we can now invoke the deterministic LLL algorithm of Theorem 11
on top of the network decomposition of each component. Our deterministic LLL then runs in
λ · log1/λ n · log2 logn additional rounds, and finds assignments for these remaining variables,
without any of the events occurring, hence solving the overall LLL problem. The overall
round complexity is O(d2) + λ · log1/λ n · 2O(

√
log logn). J

3.2 Improving the Base LLL Algorithm via Bootstrapping
Proof of Theorem 1. In Theorem 7, we saw an algorithm A that solves any n-event LLL
under the criterion p(ed)32 < 1 in Tn,d = O(d2 + log1/4 n) rounds. We now explain how to
bootstrap this algorithm to run in 2O(

√
log logn) rounds, on bounded degree graphs.

Inspired by the idea of Chang and Pettie [11], we will lie to A and say that the LLL
graph has n∗ � n nodes, for a value of n∗ to be fixed later. Then, An∗ runs in Tn∗,d =
O(d2 + log1/4 n∗) rounds. In this algorithm, the probability of any local failure (i.e., a bad
event of LLL happening) is at most 1/n∗. We can view this as a new system of bad events
which satisfies a much stronger LLL criterion. In particular, we consider each of the previous
bad LLL events as a bad event of the new LLL system, on the space of the random values
used by An∗ , but now we connect two bad events if their distance is at most 2Tn∗,d + 1.
Notice that if two events are not connected in this new LLL, then in algorithm An∗,d, they
depend on disjoint sets of random variables and thus they are independent.

The degree of the new LLL system is d′ = d2Tn∗,d+1 = dO(d2+log1/4 n∗). On the other
hand, the probability of the bad events of the new system is at most p′ = 1/n∗. Hence,
the polynomial LLL criterion is satisfied with exponent λ′ = logd n

∗

O(d2+log1/4 n∗) . We choose
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n∗ = logn, which, for d = O((log logn)1/5), means λ′ = Ω(
√

log logn). Hence, this new LLL
system can be solved using the LLL algorithm of Theorem 7 in time

(d′)2 + λ′ · log1/λ′ n · 2O(
√

log logn) =

dO(d2+(log logn)1/4) +
√

log logn · (logn)1/Ω(
√

log logn) · 2O(
√

log logn) = 2O(
√

log logn).

We should note that these are rounds on the new LLL system, but each of them can be
performed in 2Tn∗,d + 1 = O(d2 + log1/4 n∗) = O(

√
log logn) rounds on the original graph.

Hence, the overall complexity is still 2O(
√

log logn). J

We next state another result obtained via this speedup method, targeting higher degree
graphs, which we will use in our coloring algorithms. The proof is deferred to the full version.

I Lemma 12. Let A be a randomized LOCAL algorithm that solves some LCL problem P
on n-node graphs with maximum degree d ≤ 2O(log1/4 logn) in O(log1/4 n) rounds. Then, it is
possible to transform A into a new randomized LOCAL algorithm A′ that solves P, w.h.p.,
in 2O(

√
log logn) rounds.

4 Defective Coloring

An f -defective coloring is a (not necessarily proper) coloring of nodes, where each node has
at most f neighbors with the same color. In other words, in an f -defective coloring, each
color class induces a subgraph with maximum degree f . Chung, Pettie, and Su [12] gave
an O(logn)-round distributed algorithm for computing an f -defective coloring with O(∆/f)
colors. We here improve this complexity to 2O

(√
log logn

)
rounds.

I Theorem 13. There is a 2O
(√

log logn
)
-round randomized distributed algorithm that com-

putes an f-defective O(∆/f)-coloring in an n-node graph with maximum degree ∆, w.h.p.,
for any integer f ≥ 0.

Direct LLL Formulation of Defective Coloring. Chung, Pettie, and Su [12] give a formula-
tion of f -defective d2∆/fe-coloring as LLL as follows. Each node picks a color uniformly at
random. For each node v, there is a bad event Dv that v has more than f neighbors assigned
the same color as v. The probability of a neighbor u having the same color as v is f/(2∆).
Hence, the expected number of neighbors of v with the same color as v is at most f/2. By
a Chernoff bound, the probability of v having more than f neighbors with the same color
is at most e−f/6. Moreover, the dependency degree between the bad events Dv is d ≤ ∆2.
Therefore, p(ed)32 ≤ e−f/6+32+64 log ∆ < 1 for f = Ω(log ∆).

We are unable to directly apply our LLL algorithm of Theorem 1 to this formulation,
because: (A) For f = o(log ∆), this LLL formulation does not satisfy the polynomial criterion
p(ed)32 < 1, (B) even if this criterion is satisfied, the dependency degree d may be larger
than what Theorem 1 can handle.

Iterative LLL Formulation of Defective Coloring via Bucketing. Instead of directly finding
an f -defective O(∆/f)-coloring with one LLL problem – i.e., a partition of G into O(∆/f)
buckets with maximum degree f each – we gradually approach this goal by iteratively
partitioning the graph into buckets, until they have maximum degree f . In other words,
we slow down the process of partitioning. We gradually decrease the degree, moving from
maximum degree x to log5 x in one iteration. We can see each of these bucketing steps – that
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is, the partitioning into subgraphs – as a partial coloring, which fixes some bits of the final
color. Each of these slower partitioning steps can be formulated as an LLL. The function
x 7→ log5 x is chosen large enough for the corresponding LLL to satisfy the polynomial
criterion, and small enough so that decreasing the degree from ∆ to f does not take too
many iterations, namely O(log∗∆) iterations only.

We now explain how a defective coloring problem can be solved using iterated bucketing.
We first formulate the bucketing as an LLL problem satisfying the polynomial LLL criterion,
and present ways for solving this LLL for different ranges of ∆. Then, we explain how
iterated application of solving these bucketing LLLs leads to a partition of the graph into
O(∆/f) many degree-f buckets.

One Iteration of Bucketing. In one bucketing step, we would like to partition our graph with
degree ∆ into roughly ∆/∆′ buckets, each with maximum degree ∆′, for a ∆′ = Ω(log5 ∆).
Notice that we can achieve the defective coloring of Theorem 13, by repeating this bucketing
procedure, iteratively. See the proof of Theorem 13, which appears in the full version, for
details of iterative bucketing. Each iteration of bucketing can be formulated as an LLL as
follows.

LLL Formulation of Bucketing. Let k = (1 + ε)∆/∆′ for ε = log2 ∆/
√

∆′. We consider
the random variables assigning each node a bucket number in [k]. Then, we introduce a bad
event Dv for node v if more than ∆′ neighbors of v are assigned the same number as v. In
expectation, the number of neighbors of a node in the same bucket is at most ∆′/(1 + ε). By
a Chernoff bound, the probability of having more than ∆′ neighbors in the same bucket is
at most p = e−Ω(ε2∆′) = e−Ω(log4 ∆). Moreover, the dependency degree between these bad
events is d ≤ ∆2. Hence, this LLL satisfies the polynomial criterion.

If ∆ ≤ O(log1/10 logn), then d = O(log1/5 logn), and thus we can directly apply the LLL
algorithm of Theorem 1 to compute such a bucketing in 2O(

√
log logn) rounds. For larger

values of ∆, however, we cannot apply Theorem 1. The following lemma discusses how we
handle this range by sacrificing a 2-factor in the number of buckets. In a nutshell, the idea is
to just perform one sampling step of bucketing, and then to deal with nodes with too large
degree separately, by setting up another bucketing LLL. While the first LLL on the whole
graph could not be solved directly, the second LLL is formulated only for a “small” subset of
nodes, which allows an efficient solution. Because of the two trials of solving an LLL, we lose
a 2-factor in the total number of buckets.

I Lemma 14. For ∆ ≥ Ω(log1/10 logn), there is a 2O(
√

log logn)-round randomized distributed
algorithm that computes a bucketing into 2k buckets with maximum degree ∆′ each, for
∆′ = Ω(log5 ∆), ε = log ∆/

√
∆′, and k = (1 + ε)∆/∆′, with high probability.

5 Frugal coloring

A β-frugal coloring is a proper coloring in which no color appears more than β times in the
neighborhood of any node. We improve the complexity of β-frugal O(∆1+1/β)-coloring from
O(logn) by Chung, Pettie, and Su [12] to 2O(

√
log logn).

I Theorem 15. There is a 2O(
√

log logn)-round randomized distributed algorithm that com-
putes a β-frugal (120 ·∆1+1/β)-coloring6 in a n-node graph with maximum degree ∆, w.h.p.,
for any integer β ≥ 1.

6 We remark that we have not tried to optimize this constant 120.
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Direct LLL Formulation of Frugal Coloring. Molloy and Reed [27, Theorem 19.3] formu-
lated frugal coloring as an LLL problem in the following straight-forward way: Each node
picks a color uniformly at random. There are two types of bad events: On the one hand, we
have the properness condition, i.e., a bad event Mu,v, for each {u, v} ∈ E, which happens if
u and v have the same color. On the other hand, the frugality condition – requiring that
no node has more than β neighbors of the same color. That is, we have one bad event
Fu1,...,uβ+1 for each set u1, . . . , uβ+1 ∈ N(v) of nodes in the neighborhood of some node v,
which happens if all these nodes u1, . . . , uβ+1 are assigned the same color. For palettes of
size C, the probability of a bad event is at most 1/C for type 1 and at most 1/Cβ for type 2.
Each event depends on at most (β + 1)∆ type 1 and at most (β + 1)∆

(∆
β

)
type 2 events.

Iterated LLL Formulation of Frugal Coloring via Partial Frugal Coloring. While the above
formulation is enough to satisfy the asymmetric tight LLL criterion for C = O(∆1+1/β), it
does not satisfy the (symmetric) polynomial LLL. Therefore, the algorithm of Theorem 1
is not directly applicable. We show how to break down the frugal coloring problem into a
sequence of few partial coloring problems, coloring only some of the nodes that have remained
uncolored, each of them satisfying the polynomial LLL criterion.

Roadmap. In Section 5.1, we formalize our notion of partial frugal colorings and present
a method for sampling them. Then, in Section 5.2, we show how to use this sampling to
formulate the problem of finding a partial frugal coloring guaranteeing progress (to be made
precise) as a polynomial LLL and how to solve it. In Section 5.3, we explain how – after
several iterations of setting up and solving these “progress-guaranteeing” LLLs, gradually
extending the partial frugal coloring – we can set up and solve one final polynomial LLL for
completing the partial coloring, also based on the sampling method presented in Section 5.1.

5.1 Sampling a Partial Frugal Coloring
I Definition 16 (Partial Frugal Coloring). A partial β-frugal coloring of G = (V,E) is an
assignment of colors to a subset V ∗ ⊆ V such that it is proper in G[V ∗] and no node in V
has more than β neighbors with the same color. In other words, it is a β-frugal coloring of
G[V ∗] with the additional condition that no uncolored node in V ′ := V \ V ∗ has more than
β neighbors in V ∗ with the same color.

A partial coloring naturally splits the base graph G into two parts: G[V ∗] induced by
colored nodes and G[V ′] induced by uncolored nodes. However, the problem of extending or
completing a partial frugal coloring does not only depend on G[V ′], but also on the base
graph G. That is why we introduce the notion of base-graph degree, a property of the
uncolored set V ′ with respect to the base graph G.

I Definition 17 (Base-Graph Degree of a Partial (Frugal) Coloring). Given a partial coloring,
we call the number d(v, V ′) of neighboring uncolored nodes of a node v ∈ V its base-graph
degree into the uncolored set V ′. Moreover, we call the maximum base-graph degree ∆′ of a
node v ∈ V into V ′ the base-graph degree of V ′.

In the following, we show how one can sample a partial frugal coloring, thus randomly assign
some of the nodes in a set V ′ of uncolored nodes a color. The main idea of our sampling
process is to pick a color uniformly at random, and then discard it if this choice would lead
to a violation (in terms of properness and frugality). In order to increase the chances of
a node being colored, instead of just sampling one color, each node v samples x different
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colors from x different palettes at the same time, for some parameter x ≥ 1, and then picks
the first color that does not lead to a violation. If v has no such violation-free among its x
choices, then v remains uncolored.

The next lemma, the proof of which is deferred to the full version, analyzes the probability
of two kinds of events: Event (E1) that a node is uncolored. This event is important if we
aim to color all the nodes in V ′. Event (E2) that the base-graph degree of a node into the
set of uncolored nodes in V ′ is too large. This event is important if we do not aim at a
full coloring of all the nodes in V ′, but we want to ensure that we make enough progress in
decreasing the base-graph degree of the uncolored set.

I Lemma 18. Let G = (V,E) be a graph with maximum degree ∆, V ′ ⊆ V an uncolored set
with base-graph degree ∆′, β ∈ [∆], and x ≥ 1. Then there is an O(1)-round randomized
distributed algorithm that computes a partial β-frugal (20 · x ·∆′ ·∆1/β)-coloring of some of
the nodes in V ′ such that
(i) the probability that a node in V ′ is uncolored is at most 10−x,
(ii) the probability that the base-graph degree of a node v ∈ V into the uncolored subset of

V ′ is larger than 5−x ·∆′ is at most e−Ω(5−x·∆′).

5.2 Iterated Partial Frugal Coloring
In the following, we first show how a “progress-guaranteeing” partial coloring – that is, a
coloring that decreases the base-graph degree of every node quickly enough – can be found
based on the sampling process presented in Section 5.1. Then, we prove that by iterating this
algorithm for O(log∗∆) repetitions, using different palettes in each iteration, the base-graph
degree reduces to O(

√
∆).

In one iteration, given a set V ′ of uncolored nodes, we want to color a subset V ∗ ⊆ V ′
such that the uncolored nodes V ′′ := V ′ \V ∗ have a base-graph degree ∆′′ that is sufficiently
smaller than the base-graph degree ∆′ of V ′. Note that the sampling of Section 5.1 only
provides us with a partial coloring where every node is likely to have a decrease in the
base-graph degree. Here, however, we want to enforce that for every node in V there is such
a decrease. To this end, we set up an LLL as follows.

LLL Formulation for “Progress-Guaranteeing” Coloring. Performing the sampling of
Lemma 18, we have a bad event Dv for every node v ∈ V that its base-graph degree
into V ′′ is larger than ∆′′ = 5−x ·∆′. By Lemma 18 (ii), we know that the probability of Dv

is at most e−Ω(5−x·∆′). Moreover, the dependency degree is at most d ≤ ∆2. This LLL thus
satisfies the polynomial criterion.

However, as d might be large, we cannot directly apply the LLL algorithm of Theorem 1.
In the following, we present an alternative way of finding a partial coloring ensuring a
drop in the base-graph degree of every node. In a nutshell, the idea is to just perform one
sampling step of a partial frugal coloring, as described in Section 5.1, and then deal with
nodes associated with bad events (to be made precise) separately, by setting up another
“progress-guaranteeing” LLL. While the first LLL on the whole graph could not be solved
directly, the second LLL is formulated only for a “small” subset of nodes, which allows an
efficient solution. Because of the two trials of solving an LLL, we lose a 2-factor in the total
number of colors. The proof of the next lemma appears in the full version.

I Lemma 19. Given a partial β-frugal coloring with uncolored set V ′ with base-graph degree
∆′ and a parameter x ≥ 1 such that 5−x · ∆′ = Ω(

√
∆), there is a 2O(

√
log logn)-round

randomized distributed algorithm that computes a partial β-frugal (40 · x ·∆′ ·∆1/β)-coloring
such that the uncolored set has base-graph degree at most ∆′′ = 5−x ·∆′.
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The next lemma describes how through iterated application of finding partial colorings,
as supplied by Lemma 19, the base-graph degree of the uncolored set decreases to O(

√
∆)

after O(log∗∆) rounds and using O(∆1+1/β) colors. The proof appears in the full version.

I Lemma 20. There is a 2O(
√

log logn)-round randomized algorithm that computes a partial
β-frugal (80 ·∆1+1/β)-coloring such that the uncolored set V ′ has base-graph degree O(

√
∆).

5.3 Completing a Partial Frugal Coloring
In this section, we describe how, once the base-graph degree is O(

√
∆), all the remaining

uncolored nodes can be colored, hence completing the partial frugal coloring. We first give a
general formulation for the completion of partial frugal colorings.

LLL Formulation for Completion of Partial Frugal Coloring. Performing the sampling of
Lemma 18, we have a bad event Uv for every node v ∈ V that it is uncolored. By Lemma 18
(i), the probability of Uv is at most 10−x. Moreover, the dependency degree d is at most ∆2.
This LLL satisfies the polynomial criterion if x = Ω(log ∆).

In the following lemma, the proof of which appears in the full version, we show to solve
this LLL. The idea is to first perform one sampling step (of Lemma 18), which shatters the
graph into “small” components of uncolored nodes, then to set up an LLL for completing
the partial coloring, and finally to solve it by employing our deterministic LLL algorithm, on
each of the components.

I Lemma 21. Given a partial β-frugal coloring and a set V ′ of uncolored nodes with base
degree ∆′ = O(

√
∆), there is a 2O(

√
log logn)-round randomized algorithm that completes this

β-frugal coloring, by assigning colors to all nodes in V ′, using 40 ·∆1+1/β additional colors.

A wrap-up of these results about iterated partial colorings and completing a partial
coloring immediately leads to a proof of Theorem 15.

Proof of Theorem 15. We first apply the iterated coloring algorithm of Lemma 20 with
80 ·∆1+1/β colors, in 2O(

√
log logn) rounds. Then, we run the algorithms of Lemma 21 to

complete this partial coloring with 40 · ∆1+1/β additional colors, in 2O(
√

log logn) rounds.
This yields a β-frugal (120 ·∆1+1/β)-coloring, in 2O(

√
log logn) rounds. J
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Abstract
The degree splitting problem requires coloring the edges of a graph red or blue such that each
node has almost the same number of edges in each color, up to a small additive discrepancy. The
directed variant of the problem requires orienting the edges such that each node has almost the
same number of incoming and outgoing edges, again up to a small additive discrepancy.

We present deterministic distributed algorithms for both variants, which improve on their
counterparts presented by Ghaffari and Su [SODA’17]: our algorithms are significantly simpler
and faster, and have a much smaller discrepancy. This also leads to a faster and simpler determ-
inistic algorithm for (2 + o(1))∆-edge-coloring, improving on that of Ghaffari and Su.
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1 Introduction and Related Work

In this work, we present improved distributed (LOCAL model) algorithms for the degree
splitting problem, and also use them to provide simpler and faster deterministic distributed
algorithms for the classic and well-studied problem of edge coloring.

LOCAL Model. In the standard LOCAL model of distributed computing[15, 17], the network
is abstracted as an n-node undirected graph G = (V,E), and each node is labeled with a
unique O(logn)-bit identifier. Communication happens in synchronous rounds of message
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passing, where in each round each node can send a message to each of its neighbors. At the
end of the algorithm each node should output its own part of the solution, e.g., the colors of
its incident edges in the edge coloring problem. The time complexity of an algorithm is the
number of synchronous rounds.

Degree Splitting Problems. The undirected degree splitting problem seeks a partitioning
of the graph edges E into two parts so that the partition looks almost balanced around
each node. Concretely, we should color each edge red or blue such that for each node, the
difference between its number of red and blue edges is at most some small discrepancy value
κ. In other words, we want an assignment q : E → {+1,−1} such that for each node v ∈ V ,
we have

∣∣∑
e∈E(v) q(e)

∣∣ ≤ κ, where E(v) denotes the edges incident on v. We want κ to be
as small as possible.

In the directed variant of the degree splitting problem, we should orient all the edges such
that for each node, the difference between its number of incoming and outgoing edges is at
most a small discrepancy value κ.

Why Should One Care About Distributed Degree Splittings? On the one hand, degree
splittings are natural tools for solving other problems with a divide-and-conquer approach.
For instance, consider the well-studied problem of edge coloring, and suppose that we are
able to solve degree splitting efficiently with discrepancy κ = O(1). We can then compute
an edge coloring with (2 + ε)∆ colors, for any constant ε > 0; as usual, ∆ is the maximum
degree of the input graph G = (V,E). For that, we recursively apply the degree splittings on
G, each time reapplying it on each of the new colors, for a recursion of height h = O(log ε∆).
This way we partition G in 2h edge-disjoint graphs, each with maximum degree at most

∆′ = ∆
2h +

h∑
i=1

κ

2i ≤
∆
2h + κ = O(1/ε).

We can then edge color each of these graphs with 2∆′ − 1 colors, using standard algorithms
(simultaneously in parallel for all graphs and with a separate color palette for each graph),
hence obtaining an overall coloring for G with 2h · (2∆′ − 1) ≤ 2∆ + 2hκ = (2 + ε)∆ colors.
We explain the details of this relation, and the particular edge coloring algorithm that we
obtain using our degree splitting algorithm, later in Section 2.

On the other hand, degree splitting problems are interesting also on their own: they
seem to be an elementary locally checkable labeling (LCL) problem[16], and yet, even on
bounded degree graphs, their distributed complexity is highly non-trivial. In fact, they
exhibit characteristics that are intrinsically different from those of the classic problems of
the area, including maximal independent set, maximal matching, ∆ + 1 vertex coloring, and
2∆− 1 edge coloring. All of these classic problems admit trivial sequential greedy algorithms,
and they can also be solved very fast distributedly on bounded degree graphs, in Θ(log∗ n)
rounds[15]. In contrast, degree splittings constitute a middle ground in the complexity: even
on bounded degree graphs, deterministic degree splitting requires Ω(logn) rounds, as shown
by Chang et al. [6], and randomized degree splitting requires Ω(log logn) rounds, as shown
by Brandt et al. [4]. These two lower bounds were presented for the sinkless orientation
problem, introduced by Brandt et al. [4], which can be viewed as a very special case of
directed degree splitting: In sinkless orientation, we should orient the edges so that each
node of degree at least d, for some large enough constant d, has at least one outgoing edge.
For this special case, both lower bounds are tight[11].
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What is Known? First, we discuss the existence of low-discrepancy degree splittings. Any
graph admits an undirected degree splitting with discrepancy at most 2. This is the best
possible, as can be seen on a triangle. This low-discrepancy degree splitting can be viewed
as a special case of a beautiful area called discrepancy theory (see e.g. [7] for a textbook
coverage), which studies coloring the elements of a ground set red/blue so that each of a
collection of given subsets has almost the same number of red and blue elements, up to a
small additive discrepancy. For instance, by a seminal result of Beck and Fiala from 1981[2],
any hypergraph of rank t (each hyperedge has at most t vertices) admits a red/blue edge
coloring with per-node discrepancy at most 2t − 2. See [5, 3] for some slightly stronger
bounds, for large t. In the case of standard graphs, where t = 2, the existence proof is
straightforward: Add a dummy vertex and connect it to all odd-degree vertices. Then, take
an Eulerian tour, and color its edges red and blue in an alternating manner. In directed
splitting, a discrepancy of κ = 1 suffices, using the same Eulerian tour approach and orienting
the edges along a traversal of this tour.

In the algorithmic world, Israeli and Shiloach [13] were the first to consider degree
splittings. They used it to provide an efficient parallel (PRAM model) algorithm for maximal
matching. This, and many other works in the PRAM model which later used degree splittings
(e.g., [14]) relied on computing Eulerian tours, following the above scheme. Unfortunately,
this idea cannot be used efficiently in the distributed setting, as an Eulerian tour is a non-local
structure: finding and alternately coloring it needs Ω(n) rounds on a simple cycle.

Inspired by Israeli and Shiloach’s method [13], Hanckowiak et al. [12] were the first to
study degree splittings in distributed algorithms. They used it to present the breakthrough
result of a polylog(n)-round deterministic distributed maximal matching, which was the first
efficient deterministic algorithm for one of the classic problems. However, for that, they
ended up having to relax the degree splitting problem in one crucial manner: they allowed a
δ = 1/ polylogn fraction of nodes to have arbitrary splits, with no guarantee on their balance.
As explained by Czygrinow et al. [8], this relaxation ends up being quite harmful for edge
coloring; without fixing that issue, it seems that one can get at best an O(∆ logn)-edge
coloring.

Very recently, Ghaffari and Su[11] presented solutions for degree splitting without sacrifi-
cing any nodes, and used this to obtain the first polylogn round algorithm for (2 + o(1))∆-
edge coloring, improving on prior polylog(n)-round algorithms that used more colors: the
algorithm of Barenboim and Elkin [1] for ∆ · exp(O( log ∆

log log ∆ )) colors, and the algorithm of
Czygrinow et al. [8] for O(∆ logn) colors. The degree splitting algorithm of Ghaffari and
Su[11] obtains a discrepancy κ = ε∆ in O((∆2 log5 n)/ε) rounds. Their method is based
on iterations of flipping augmenting paths (somewhat similar in style to blocking flows in
classic algorithms for the maximum flow problem[9]) but the process of deterministically and
distributedly finding enough disjoint augmenting paths is quite complex. Furthermore, that
part imposes a crucial limitation on the method: it cannot obtain a discrepancy better than
Θ(logn). As such, this algorithm does not provide any meaningful solution in graphs with
degree o(logn).

Our Contributions. Our main result is a deterministic distributed algorithm for degree
splitting that improves on the corresponding result of [11]. The new algorithm is (1) simpler,
(2) faster, and (3) it gives a splitting with a much lower discrepancy.

I Theorem 1. For every ε > 0, there are deterministic O
(
ε−1·log ε−1·

(
log log ε−1)1.71·logn

)
-

round distributed algorithms for computing directed and undirected degree splittings with the
following properties:
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(a) For directed degree splitting, the discrepancy at each node v of degree d(v) is at most
ε · d(v) + 1 if d(v) is odd and at most ε · d(v) + 2 if d(v) is even.

(b) For undirected degree splitting, the discrepancy at each node v of degree d(v) is at most
ε · d(v) + 4.

An important corollary of this splitting result is a faster and simpler algorithm for
(2 + o(1))∆-edge coloring, which improves on the corresponding result from [11]. The related
proof is deferred to the full version [10].

I Corollary 2. For every ε > 1/ log ∆, there is a deterministic distributed algorithm that
computes a (2 + ε)∆-edge coloring in O

(
log2 ∆ · ε−1 · log log ∆ · (log log log ∆)1.71 · logn

)
rounds.

This is significantly faster than the O(log11 n/ε3)-round algorithm of [11]. Furthermore,
we are hopeful that with the future improvements in edge coloring for low-degree graphs,
this splitting result will play an even more important role. Ideally, in the ultimate solution
for edge coloring, say with (1 + o(1))∆ colors, this splitting will be one half of the solution:
This half brings down the degree to a small value, with a negligible (1 + o(1)) factor loss,
and the other half would hopefully color those small degree graphs efficiently.

Theorem 1 has another fascinating consequence. Assume that we have a graph in which
all nodes have an odd degree. If ε < 1/∆, we get a directed degree splitting in which each
node v has outdegree either bd(v)/2c or dd(v)/2e. Note that the number of nodes for which
the outdegree is bd(v)/2c has to be exactly n/2. We therefore get an efficient distributed
algorithm to exactly divide the number of nodes into two parts of equal size in any odd-degree
graph. For bounded-degree graphs, the algorithm even runs in time O(logn).

Our Method in a Nutshell. The main technical contribution is a distributed algorithm
that partitions the edge set of a given graph in edge-disjoint short paths such that each node
is the start or end of at most δ paths. We call such a partition a path decomposition and δ
its degree. Now if we orient each path of a path decomposition with degree δ consistently,
we obtain an orientation of discrepancy at most δ. Moreover, such an orientation can be
computed in time which is linear in the maximum path length.

To study path decompositions in graph G, it is helpful to consider an auxiliary graph H
in which each edge {u, v} represents a path from u to v in G; now δ is the maximum degree
of graph H. To construct a low-degree path decomposition where δ is small, we can start
with a trivial decomposition H = G, and then repeatedly join pairs of paths: we can replace
the edges {u, v1} and {u, v2} in graph H with an edge {v1, v2}, and hence make the degree of
u lower, at a cost of increasing the path lengths—this operation is called a contraction here.

If each node u simply picked arbitrarily some edges {u, v1} and {u, v2} to contract, this
might result in long paths or cycles. The key idea is that we can use a high-outdegree
orientation to select a good set of edges to contract: Assume that we have an orientation in
H such that all nodes have outdegree at least 2k. Then each node could select k pairs of
outgoing edges to contract; this would reduce the maximum degree of H from δ to δ − 2k
and only double the maximum length of a path.

In essence, this idea makes it possible to amplify the quality of an orientation algorithm:
Given an algorithm A that finds an orientation with a large (but not optimal) outdegree, we
can apply A repeatedly to reduce the maximum degree of H. This will result in a low-degree
path decomposition of G, and hence also provide us with a well-balanced orientation in G.
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Outline. In Section 2 we show how to partitioning graphs into edge-disjoint short paths. In
Section 3 we use these results to prove our main result on the distributed computation of
edge-splittings (Theorem 1). The proof of Corollary 2 is deferred to the full version of the
paper [10].

2 Short Path Decompositions

The basic building block of our approach is to find consistently oriented and short (length
O(∆)) paths in an oriented graph. The first crucial observation is that an oriented path going
through a node v is “good” from the perspective of v in the sense that it provides exactly
one incoming and one outgoing edge to v. Another important feature is that flipping a
consistently oriented path does not increase the discrepancy between incoming and outgoing
edges for any non-endpoint node along the path. Following these observations, we recursively
decompose a graph into a set of short paths, and merge the paths to ensure that every
node is at the end of only a few paths. If a node v is at the end of δ(v) paths an arbitrary
orientation of these paths will provide a split with discrepancy at most δ(v) for v.

The recursive graph operations may turn graphs into multigraphs with self-loops. Thus
throughout the paper a multigraph is allowed to have self-loops and the nodes of a path
v1, . . . , vk do not need to be distinct; however, a path can contain each edge at most once. A
self-loop at a node v contributes two to the degree of v.

2.1 Orientations and Edge Contractions
The core concept to merge many paths in parallel in one step of the aforementioned recursion
is given by the concept of weak k(v)-orientations. We begin by extending and adapting prior
work[11] on weak orientations to our needs.

I Definition 3. A weak k(v)-orientation of a multigraph G = (V,E) is an orientation of the
edges E such that each node v ∈ V has outdegree at least k(v).

Note that a weak 1-orientation is a sinkless orientation. By earlier work, it is known that a
weak 1-orientation can be found in time O(logn) in simple graphs of minimum degree at
least three.

I Lemma 4 (sinkless orientation, [11]). A weak 1-orientation can be computed by a determ-
inistic algorithm in O(logn) rounds in simple graphs with minimum degree 3 (and by a
randomised algorithm in O(log logn) rounds in the same setting).

In our proofs, we may face multigraphs with multiple self-loops and with nodes of degree
less than three and thus, we need a slightly modified version of this result.

I Corollary 5 (sinkless orientation, [11]). Let G = (V,E) be a multigraph and W ⊆ V a
subset of nodes with degree at least three. Then, there is a deterministic algorithm that finds
an orientation of the edges such that every node in W has outdegree of at least one and runs
in O(logn) rounds (and a randomised algorithm that runs in O(log logn) rounds).

Proof. For every multi-edge, both endpoints pick one edge and orient it outwards, ties broken
arbitrarily. For every self-loop, the node will orient it arbitrarily. This way, every node with
an incident multi-edge or self-loop will have an outgoing edge.

From here on, let us ignore the multi-edges and self-loops and focus on the simple
graph H remaining after removing the multi-edges. For every node v with degree at most
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two in H, we connect v to 3 − d(v) copies of the following gadget U . The set of nodes of
U = {u1, u2, u3, u4, u5} is connected as a cycle. Furthermore, we add edges {u2, u4} and
{u3, u5} to the gadget and connect u1 to v. This way, the gadget is 3-regular.

In the simple graph constructed by adding these gadgets, we run the algorithm of
Lemma 4. Thus, any node of degree at least three in the original graph that was not initially
adjacent to a multi-edge or self-loop gets an outgoing edge. Since we know that every node
incident to a multi-edge or self-loop in G also has an outgoing edge, the claim follows. J

The sinkless orientation algorithm from Corollary 5 immediately leads to an algorithm
which finds a weak bd(v)/3c-orientation in multigraphs in time O(logn).

I Lemma 6 (weak bd(v)/3c-orientation). There is a deterministic algorithm that finds a
weak bd(v)/3c-orientation in time O(logn) in multigraphs.

Proof. Partition node v into dd(v)/3e nodes and split its adjacent edges among them such
that bd(v)/3c nodes have exactly three adjacent edges each and the remaining node, if any,
has d(v) mod 3 adjacent edges. Note that the partitioning may cause self-loops to go between
two different copies of the same node. Then, use the algorithm from Corollary 5 to compute
a weak 1-orientation of the resulting multigraph where degree two or degree one nodes do
not have any outdegree requirements. If we undo the partition but keep the orientation of
the edges we have a weak bd(v)/3c-orientation of the original multigraph. J

The techniques in this section need orientations in which nodes have at least two outgoing
edges. Lemma 6 provides such orientations for nodes of degree at least six; but for nodes
of smaller degree it guarantees only one outgoing edge. It is impossible to improve this for
nodes with degree smaller than five (cf. [10, Theorem 7.1]) in time o(n). But we obtain the
following result for the nodes with degree five. Its proof relies on different techniques than
the techniques in this section, and therefore it is deferred to the full version of the paper.

I Lemma 7 (outdegree 2). The following problem can be solved in time O(logn) with
deterministic algorithms and O(log logn) with randomised algorithms: given any multigraph,
find an orientation such that all nodes of degree at least 5 have outdegree at least 2.

The concept of weak orientations can be extended to both indegrees and outdegrees.

I Definition 8. A strong k(v)-orientation of a multigraph G = (V,E) is an orientation of
the edges E such that each node v ∈ V has both indegree and outdegree at least k(v).

2.2 Path Decompositions
We now introduce the concept of a path decomposition. The decomposition proves to be a
strong tool due to the fact that it can be turned into a strong orientation (cf. Lemma 11).

I Definition 9. Given a multigraph G = (V,E), a positive integer λ, and a function
δ : V → R≥0, we call a partition P of the edges E into disjoint paths P1, . . . , Pρ a (δ, λ)-path
decomposition if

for every v ∈ V there are at most δ(v) paths that start or end in v,
each path Pi is of length at most λ.

For each path decomposition P, we define the multigraph G(P) as follows: the vertex set of
G(P) is V , and there is an edge between two nodes u, v ∈ V if P has a path which starts at
u and ends at v or vice versa. The degree of v in P is defined to be its degree in G(P) and
the maximum degree of the path decomposition P is the maximum degree of G(P).
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Figure 1 In two sequences of three illustrations this figure depicts two sets of contractions. In
each line the first illustration is the situation before the contraction, the second one depicts the
orientation and the selected outgoing edges which will be contracted in parallel and the third
illustration shows the situation after the contraction where new edges are highlighted.
A contraction may produce isolated nodes, multi-edges and self loops. If a self loop {v, v} is

selected to be contracted with any other edge {v, w} it simply results in a new edge {v, w} as if the
self loop was any other edge. Such a contraction still reduces the degree of v by two.

Note that we used a graph with small node degrees for illustration purposes. We cannot quickly
compute an orientation with large outdegree for nodes with degree less than five.

Notice that δ(v) is an upper bound on the degree of v in P and maxv∈V δ(v) is an upper
bound on the maximum degree of the path decomposition. Note that dG(v) − dG(P)(v)
is always even. To make proofs more to the point instead of getting lost in notation, we
often identify G(P) with P and vice versa. A distributed algorithm has computed a path
decomposition P if every node knows the paths of P it belongs to. Note that it is trivial to
compute a (d(v), 1)-path decomposition in 1 round, because every edge can form a separate
path.

Let b·c∗ denote the function which rounds down to the previous even integer, that is,
bxc∗ = 2bx/2c. The following virtual graph transformation, which we call edge contraction,
is the core technical construction in this section.

Disjoint Edge Contraction

The basic idea behind edge contraction is to turn two incident edges {v, u} and {v, w} into a
single edge {u,w} by removing the edges {v, u} and {v, w} and adding a new edge {u,w}.
We say that node v contracts when an edge contraction is performed on some pair of edges
{v, u} and {v, w}. When node v performs a contraction of edges {v, u} and {v, w}, its degree
d(v) is reduced by two while maintaining the degrees of u and w. Furthermore, any set
of nodes contracting any set of their incident edges at most doubles the distance between
any pair of non-isolated nodes. Notice that adjacent nodes can only contract disjoint pairs
of edges in parallel and a contraction may also produce isolated nodes, multi-edges and
self-loops. If a self-loop {v, v} is selected to be contracted with any other edge {v, w} it
simply results in a new edge {v, w} as if the self-loop was any other edge. Such a contraction
still reduces the degree of v by two as the self-loop was considered as both – an incoming
and an outgoing edge of v. See Figure 1 for an illustration.

DISC 2017



19:8 Improved Distributed Degree Splitting and Edge Coloring

Figure 2 The first two illustrations show that selecting the outgoing edges for a contraction can
be seen as dividing the node into a set of virtual nodes, each incident to two outgoing edges. Then,
in the third illustration, the contraction is obtained by removing the virtual nodes but keeping the
connection alive. The last two illustrations show how an orientation on contracted edges is used to
orient the edges of the original graph such that virtual nodes obtain an equal split (and such that
the original node obtains a good split).

Edge contractions can be used to compute path decompositions, e.g., an edge which is
created through a contraction of two edges can be seen as a path of length two. If an edge
{u, v} represents a path from u to v in G, e.g., when recursively applying edge contractions
on the graph G(P) for some given path decomposition P , each contraction merges two paths
of P . If each node simply picked arbitrarily some edges to contract, this might result in long
paths or cycles. The key idea is to use orientations of the edges to find large sets of edges
which can be contracted in parallel. If every node only contracts outgoing edges of a given
orientation all contractions of all nodes can be performed in parallel.

If we start with a trivial decomposition, i.e., each edge is its own path, and perform k

iterations of parallel contraction, where, in each iteration, each node contracts two edges, we
obtain a (d(v)−2k, 2k)-path decomposition. If we want the degrees d(v)−2k to be constant we
have to choose k, i.e., the number of iterations, in the order of ∆ which implies exponentially
long paths and runtime as the path lengths (might) double with each contraction.

The technical challenge to avoid exponential runtime is to achieve a lot of parallelism
while at the same time reducing the degrees quickly. We achieve this with the help of
weak orientation algorithms: An outdegree of f(v) at node v allows the node to contract
bf(v)c∗ edges at the same time and in parallel with all other nodes. If f(v) is a constant
fraction of d(v) this implies that O(log ∆) iterations are sufficient to reach a small degree.
As the runtime is exponential in the number of iterations and the constant in the O-notation
might be large, this is still not enough to ensure a runtime which is linear in ∆, up to
polylogarithmic terms. Instead, we begin with the weak orientation algorithm from the
previous section and iterate it until a path decomposition with a small (but not optimal!)
degree is obtained. Then we use it to construct a better orientation algorithm. Then, we use
this better orientation to compute an even better one and so on. Recursing with the correct
choice of parameters leads to a runtime which is linear in ∆, up to polylogarithmic terms.
We take the liberty to use the terms recursion and iteration interchangeably depending on
which term is more suitable in the respective context. Refer to Figure 2 for an illustration of
the edge contraction technique with a given orientation.

We will now apply a simple version of our contraction technique to obtain a fast and
precise path decomposition algorithm in ∆-regular graphs for ∆ = O(1). The result can also
be formulated for non-regular graphs, but here we choose regular graphs to focus on the
proof idea which is the key theme throughout most proofs of this section.

I Theorem 10 ((∆− 2k, 2k)-path decomposition). Let G = (V,E) be a ∆-regular multigraph.
For any positive integer k ≤ ∆/2 − 2 there is a deterministic distributed algorithm that
computes a (∆− 2k, 2k)-path decomposition in time O(2k logn).
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Proof. We recursively compute k multigraphs H1, . . . ,Hk where Hk corresponds to the
resulting path decomposition. To obtain H1, we begin by computing a weak 2-orientation
π of G with the algorithm from Lemma 6 (note that by assumption we have k ≥ 1 and
therefore ∆ ≥ 6). Then, every node contracts a pair of outgoing incident edges. Notice that
contractions of adjacent nodes are always disjoint. The degree of v is reduced to ∆− 2 and
each edge in the resulting multigraph H1 consists of a path in G of length at most two.

Applying this method recursively with recursion depth k yields multigraphs H1, . . . ,Hk

where the maximum degree of Hi is ∆− 2i and each edge in Hi corresponds to a path in G
of length at most 2i. Thus, Hk corresponds to a (∆− 2k, 2k)-path decomposition. Note that
there is one execution of Lemma 6 in each recursion level and it provides a weak 2-orientation
of the respective graph because the degree of each node is at least six due to i ≤ k ≤ ∆/2− 2.

One communication round in recursion level i can be simulated in 2i rounds in the original
graph. Thus, the runtime is dominated by the application of Lemma 6 in recursion level k
which yields a time complexity of O(2k logn). J

Next, we show how to turn a (δ, λ)-path decomposition efficiently into a strong orientation.
The strong orientation obtained this way has δ(v) as an upper bound on the discrepancy
between in- and outdegree of node v.

I Lemma 11. Let G = (V,E) be a multigraph with a given (δ, λ)-path decomposition P.
There is a deterministic algorithm that computes a strong 1

2 (d(v)− δ(v))-orientation of G in
O(λ) rounds.

Proof. Let H = G(P) be the virtual graph that corresponds to P and let πH be an arbitrary
orientation of the edges of H. Let (u, v) be an edge of H oriented according to πH and
let P = u1, . . . , uk, where u1 = u and uk = v, be the path in the original graph G that
corresponds to edge (u, v) in H. Now, we orient the path P in a consistent way according
to the orientation of (u, v), i.e., edge {ui, ui+1} is directed from ui to ui+1 for all 1 ≤ i ≤ k.
Since every edge in G belongs to exactly one path in the decomposition, performing this
operation for every edge in H provides a unique orientation for every edge in G. Let us
denote the orientation obtained this way by πG.

Consider some node v and observe that orienting any path that contains v but where
v is not either the start or the endpoint adds exactly one incoming edge and one outgoing
edge for v. Therefore, the discrepancy of the indegrees and outdegrees of v in πG is bounded
from above by the discrepancy in πH , which is at most δ(v) by the definition of a (δ, λ)-path
decomposition. It follows that πG is a strong 1

2 (d(v)− δ(v))-orientation.
Finally, since the length of any path in P is bounded above by λ, consistently orienting

the paths takes λ communication rounds finishing the proof. J

In the following, we formally use weak orientations to compute a path decomposition.
This lemma will later be iterated in Corollary 13

I Lemma 12. Assume that there exists a deterministic distributed algorithm that finds a
weak

(( 1
2 − ε

)
d(v)− 2

)
-orientation in time T (n,∆).

Then, there is a deterministic distributed algorithm that finds a
(( 1

2 + ε
)
d(v) + 4, 2

)
-path

decomposition in time O(T (n,∆)).

Proof. Let G be a multigraph with a weak
(( 1

2 − ε
)
d(v) − 2

)
-orientation given by the

algorithm promised in the lemma statement. Now every node v arbitrarily divides the
outgoing edges into pairs and contracts these pairs yielding a multigraph with degree at most

d(v)−
⌊( 1

2 − ε
)
d(v)

⌋
∗ + 2 ≤

( 1
2 + ε

)
d(v) + 4.
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Observing that all of the chosen edge pairs are disjoint yields that the constructed multigraph
is a

(( 1
2 + ε

)
d(v) + 4, 2

)
-path decomposition. The contraction operation requires one round

of communication. J

In the following corollary we iterate Lemma 12 to obtain an even better path decomposition.
Furthermore, more care is required in the details to avoid rounding errors and to obtain
the correct result when the degrees get small. Corollary 13 will be applied many times in
proceeding subsections.

I Corollary 13. Let 0 < ε ≤ 1/6. Assume that T (n,∆) ≥ logn is the running time of an
algorithm A that finds a weak

(
(1/2− ε)d(v)−2

)
-orientation. Then for any positive integer i,

there is a deterministic distributed algorithm B that finds a
(
(1/2 + ε)id(v) + 4, 2i+5)-path

decomposition P in time O(2i · T (n,∆)).

Proof. Let i be a positive integer. We define algorithm B such that it uses algorithm
A to recursively compute graphs H0, H1, . . . ,Hi, Hi+1, . . . ,Hi+5 and path decompositions
P1,P2, . . . ,Pi,Pi+1, . . . , Pi+5. Let G = (V,E) be a multigraph. For j = 0, . . . , i− 1 we set
H0 = G and Hj+1 = Hj(Pj+1), where Pj+1 is the path decomposition which is returned
by applying Lemma 12 with algorithm A on Hj . This guarantees that path decomposition
Pi has maximum degree ( 1

2 + ε)id(v) + 12. The remaining five graph decompositions are
computed afterward (see the end of this proof) and reduce the additive 12 to an additive 4.

Properties of P1, . . . , Pi. We first show that for j = 1, . . . , i the path decomposition Pj
is a (zj(v), 2j)-path decomposition with

zj(v) =
( 1

2 + ε
)j
d(v) + 4

j−1∑
k=0

( 1
2 + ε

)k
.

With every application of Lemma 12 the length of the paths at most double in length which
implies that the path length of Pj is upper bounded by 2j . We now prove by induction that
the variables zj(v), j = 1, . . . i behave as claimed:

Base case: z1(v) =
( 1

2 + ε
)
d(v) + 4 follows from the invocation of Lemma 12 with A on

H0 = G.
Inductive step: Using the properties of Lemma 12 we obtain

zj+1(v) =
( 1

2 + ε
)
zj(v) + 4 ≤

( 1
2 + ε

)(( 1
2 + ε

)j
d(v) + 4

j−1∑
k=0

( 1
2 + ε

)k)+ 4

=
( 1

2 + ε
)j+1

d(v) + 4
j∑

k=0

( 1
2 + ε

)k.
Using the geometric series to bound the last sum and then ε ≤ 1/6 we obtain that

zi(v) ≤
( 1

2 + ε
)i
d(v) + 12.

Reducing the Additive Term. Now, we compute the five further path decompositions
Pi+1, . . . ,Pi+5 to reduce the additive term in the degrees of the path decomposition from
12 to 4; in each path decomposition this additive term is reduced by two for certain nodes.
In each of the first four path decompositions nodes with degree at least six in the current
path decomposition reduce the additive term by at least two: we compute a weak bd(v)/3c-
orientation (using Lemma 6) and then every node with degree at least six contracts two
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outgoing edges. In the last path decomposition we compute an orientation in which every
node with degree at least five in the current path decomposition has two outgoing edges
(using Lemma 7) and then each of them contracts two incident edges. Thus in the last path
decomposition the additive term of nodes with degree five is reduced by two.

To formally prove that we obtain the desired path decomposition let xi+j(v) be the actual
degree of node v in G(Pi+j) for j = 0, . . . , 5. First note that the degree of a node never
increases due to an edge contraction, not even due to an edge contraction which is performed
by another node.

Constructing Pi+1, . . . , Pi+4. To compute path decomposition Pi+j+1, j = 0, . . . , 3, we
compute an orientation of G(Pi+j) in which every node v with xi+j(v) ≥ 6 has outdegree
at least two (one can use the algorithm described in Lemma 6). Then Pi+j+1 is obtained
if every node with xi+j(v) ≥ 6 contracts two of its incident outgoing edges. So, whenever
xi+j(v) ≥ 6 we obtain that xi+j+1(v) = xi+j(v) − 2, that is xi+j+1 ≤ zi(v) − 2(j + 1). If
xi+j(v) ≥ 6 for all j = 0, . . . , 3 we have

xi+5(v) ≤ xi+4(v) ≤ (1/2 + ε)id(v) + 4.

Otherwise, for some j = 0, . . . , 3, we have xi+j(v) ≤ 5, that is, xi+4(v) ≤ 4 or xi+4(v) = 5.
If xi+4(v) ≤ 4 we have

xi+5(v) ≤ xi+4(v) ≤ 4 ≤ (1/2 + ε)id(v) + 4.

Constructing Pi+5. For nodes with xi+4(v) = 5 we compute one more path decomposition.
We use Lemma 7 to compute an orientation of G(P4) in which each node with degree at
least five has two outgoing edges; then each node with at least two outgoing edges contracts
one pair of its incident outgoing edges. Thus the degree of nodes with degree five reduces
by two and we obtain that the path decomposition Pi+5 is a

(
( 1

2 + ε)id(v) + 4, 2i+5)-path
decomposition.

Running Time. The time complexity to invoke algorithm A or the algorithms from Lemma
6 or Lemma 7 on graph Hj is O(2jT (n,∆)) because the longest path in Hj has length 2j
and T (n,∆) ≥ logn. Thus, the total runtime is

O

( i+5∑
j=0

2jT (n,∆)
)

= O
(
2iT (n,∆)

)
. J

2.3 Amplifying Weak Orientation Algorithms
Now, we use Corollary 13 to iterate a given weak orientation algorithm A to obtain a new
weak orientation algorithm B. The goal is that B has an outdegree guarantee which is much
closer to (1/2)d(v) than the guarantee provided by algorithm A.

Let 0 < ε2 < ε1 ≤ 1
6 , α = 1

2 − ε1, and β = 1
2 + ε1. The roadmap for the proofs of this

section is as follows:
In the proof of Lemma 15:
1. Execute i iterations of a weak (αd(v) − 2)-orientation algorithm, for an i that will

be chosen later, and after each iteration, perform disjoint edge contractions. Thus,
obtain a

(
βid(v) + 4, 2i+5)-path decomposition using Corollary 13.

2. Apply Lemma 11 to obtain a weak
( 1

2 (1− βi)d(v)− 2
)
-orientation.
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3. By setting i = log(ε2)/ log(β) we get that βi = ε2 and the running time of steps 1–2 is

O(2iT (n,∆)) = O
(
ε

log−1
2 β

2 · T (n,∆)
)

= O
(
ε
−(1+24ε1)
2 · T (n,∆)

)
,

where T (n,∆) is the runtime of the weak (αd(v)− 2)-orientation algorithm. The last
equality holds because with Lemma 14, we obtain that − log−1

2 β ≤ 1 + 24ε1 when
ε1 ≤ 1/6.

In the proof of Theorem 16:
4. Use Lemma 11 with ε1 = 1/6 and ε2 = 1/ log log ∆ to obtain an algorithm which com-

putes a weak
(( 1

2−1/ log log ∆
)
d(v)−2

)
-orientation and runs in time O((log log ∆)1.71 ·

logn). In this step, we plug in ε1 = 1/6 to obtain the exponent

− log−1
2 β = − log−1

2
( 1

2 + 1
6
)
< 1.71.

5. Using the construction twice more, once with ε1 = 1/ log log ∆ and ε2 = 1/ log ∆ and
once with ε1 = 1/ log ∆ and ε2 = 1/∆, yields a weak

(( 1
2 −

1
∆
)
d(v)− 2

)
-orientation

algorithm that runs in time O(∆ · log ∆ · (log log ∆)1.71 · logn).
The following technical result is used to simplify running times; it is proved in the full version
of the paper with a Taylor expansion.

I Lemma 14. Let 0 < ε ≤ 1/6. Then, − log−1
2 ( 1

2 + ε) ≤ 1 + 24ε.

In the following lemma we perform steps 1–3 of the aforementioned agenda.

I Lemma 15. Let 0 < ε2 < ε1 ≤ 1
6 . Assume that there is a deterministic algorithm A which

computes a weak
(( 1

2 − ε1
)
d(v)− 2

)
-orientation and runs in time T (n,∆). Then there is a

deterministic weak
(( 1

2 − ε2
)
d(v)− 2

)
-orientation algorithm B with running time

O
(
ε

log−1
2 ( 1

2 +ε1)
2 · T (n,∆)

)
= O

(
ε
−(1+24ε1)
2 · T (n,∆)

)
. (1)

Proof. Let i = log2(ε2)/ log2 (1/2 + ε1). By Lemma 14, we get that i ≤ (1+24ε1) log2(1/ε2);
thus it is sufficient to show the left hand side of (1). By applying Corollary 13 with parameter i
and algorithm A, we get a distributed algorithm that finds a

(
(1/2 + ε1)r d(v) + 4, 2i+5)-path

decomposition in time

O
(
2i · T (n,∆)

)
= O

(
ε

log−1
2 ( 1

2 +ε1)
2 · T (n,∆)

)
.

The degree of node v in the path decomposition is upper bounded by
( 1

2 + ε1
)i
d(v) + 4 =

ε2d(v) + 4. Now Lemma 11 yields a weak
( 1

2
(
1− ε2

)
d(v)− 2

)
-orientation algorithm with the

same running time; in particular, this is a weak
(( 1

2 − ε2
)
d(v)− 2

)
-orientation algorithm. J

We close the section by performing steps 4–5 of the agenda. Note that the theorem is
more general than the outlined agenda as it contains an additional parameter δ which can be
used to tune the running time at the cost of the quality of the weak orientation algorithm.

I Theorem 16. Let δ be a positive integer. There exist the following deterministic weak
orientation algorithms.
(a) A: weak

(( 1
2 − 1/ log log ∆

δ

)
d(v)− 2

)
-orientation in time O

((
log log ∆

δ

)1.71 · logn
)
.

(b) B: weak
(( 1

2 − 1/ log ∆
δ

)
d(v)− 2

)
-orientation in time O

(
log ∆

δ ·
(
log log ∆

δ

)1.71 · logn
)
.

(c) C: weak
(( 1

2 −
δ
∆
)
d(v)− 2

)
-orientation in time O

(∆
δ · log ∆

δ ·
(
log log ∆

δ

)1.71 · logn
)
.
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Proof. Each statement is proven by applying Lemma 15 with different values for ε1 and ε2.

(a) We obtain the algorithm A by applying Lemma 15 with the weak b∆/3c-orientation
algorithm from Lemma 6, that is with ε1 = 1/6, and with ε2 = 1/ log log(∆/δ).

(b) Algorithm B is obtained by applying Lemma 15 with A, that is ε1 = 1/ log log(∆/δ)
and ε2 = 1/ log(∆/δ).

(c) Algorithm C is obtained by applying Lemma 15 with B, that is ε1 = 1/ log(∆/δ) and
ε2 = 1/(∆/δ) = δ/∆. J

2.4 Short and Low Degree Path Compositions Fast
Our higher level goal is to compute a path decomposition where the degree is as small as
possible to obtain a directed split with the discrepancy as small as possible (with methods
similar to Lemma 11, also see the proof of Theorem 1). As we will show in the next theorem,
with the methods introduced in this section and the appropriate choice of parameters, we
can push the maximum degree of the path decomposition down to εd(v) + 4 for any ε > 0.
This is the true limit of this approach because we cannot compute weak 2-orientations of
4-regular graphs in sublinear time (see [10, Theorem 7.1]).

I Theorem 17. Let G = (V,E) be a multigraph with maximum degree ∆. For any ε > 0 there
is a deterministic distributed algorithm which computes a (δ(v), O(1/ε))-path decomposition
in time O

(
α · logα · (log logα)1.71 · logn

)
, where α = 2/ε and δ(v) = εd(v) + 3 if εd(v) ≥ 1

and δ(v) = 4 otherwise.

Proof. Apply Corollary 13 with algorithm B from Corollary 16, δ = ∆/α, and

i = logα−1

log(1/2 + 1/ log(α)) .

This implies a path decomposition with degrees bα−1d(v) + 4c = bεd(v)/2 + 4c. If εd(v) ≥ 1
this is smaller than εd(v) + 3. If εd(v) < 1 this is at most 4. The length of the longest path is
upper bounded by O(2i) = O

(
α1+24/ logα) = O(α) where we used Lemma 14. The runtime

is bounded by O
(
2i · TB(n,∆)

)
= O

(
α · logα · (log logα)1.71 · logn

)
, where TB(n,∆) is the

running time of algorithm B. J

Choosing ε = 1/(2∆) in Lemma 17 yields the following corollary.

I Corollary 18 (constant degree path decomposition). There is a deterministic algorithm
which computes a (4, O(∆))-path decomposition in time O

(
∆ · log ∆ · (log log ∆)1.71 · logn

)
.

I Remark. For any positive integer k smaller than log∗(α)±O(1) one can improve the runtime
of Lemma 17 to O

(
α · (log(k) α)0.71 · logn ·Πk

j=1 log(j) α
)
, where log(j)(·) denotes the j times

iterated logarithm, α = 2/ε and the constant in the O-notation grows exponentially in k. This
essentially follows from a version of Theorem 16 that turns a weak

(
(1/2−1/ log(k) α)d(v)−2

)
-

orientation algorithm into a weak
(
(1/2− 1/ logα)d(v)− 2

)
-orientation algorithm in k − 1

iterations.

3 Directed and Undirected Splits

First note that an arbitrary consistent orientation of the paths in the best path decomposition
of Section 2 would result in a splitting in which each node v has discrepancy at most ε·d(v)+4.
In the case of directed splitting we slightly tune this by consistently orienting the paths in
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such a way that each node has at least one outgoing and one incoming path. As the graph
corresponding to the path decomposition is a low degree graph this is the same as finding
sinkless and sourceless orientations in low-degree graphs; the following corollary states that
these orientations can be computed efficiently. Its proof can be found in the full version of
the paper [10].

I Corollary 19 (sinkless and sourceless orientation). The following problem can be solved in
time O(logn) with deterministic algorithms and O(log logn) with randomised algorithms:
given any multigraph, find an orientation such that all nodes of degree at least 3 have outdegree
and indegree at least 1.

We are now ready to prove our main result:

I Theorem 1. For every ε > 0, there are deterministic O
(
ε−1·log ε−1·

(
log log ε−1)1.71·logn

)
-

round distributed algorithms for computing directed and undirected degree splittings with the
following properties:
(a) For directed degree splitting, the discrepancy at each node v of degree d(v) is at most

ε · d(v) + 1 if d(v) is odd and at most ε · d(v) + 2 if d(v) is even.
(b) For undirected degree splitting, the discrepancy at each node v of degree d(v) is at most

ε · d(v) + 4.

Proof. For both parts apply Lemma 17, which provides a
(
δ(v), O(1/ε)

)
-path decomposition

P with δ(v) = εd(v) + 3 if εd(v) ≥ 1 and δ(v) = 4 otherwise.

Proof of (b) Nodes color each path of P alternating with red and blue. Because the length
of a path in P is bounded by O(1/ε) this can be done in O(1/ε) rounds.

Consider some node v and observe that v has one red and one blue edge for any path
where v is not a startpoint or endpoint. Thus the discrepancy of node v is bounded above by
δ(v) ≤ εd(v) + 4.

Proof of (a) Use Corollary 19 to compute an orientation πP of G(P) in which all nodes
which have degree at least three in G(P) have at least one incoming and one outgoing edge.
Then orient paths in the original graph according to πP as in the proof of Lemma 11 and
denote the resulting orientation of the edges of G with πG.

Consider some node v and observe that orienting any path that contains v but where
v is not a startpoint or endpoint adds exactly one incoming edge and one outgoing edge
for v. Therefore, the discrepancy of the indegrees and outdegrees of v in πP bounds from
above the discrepancy of the indegrees and outdegrees in πG. The goal is to upper bound
this discrepancy as desired.

Therefor let dP(v) denote the degree of v in G(P). If dP(v) is at least three then its
discrepancy in πP is bounded by dP(v)− 2 as the algorithm from Corollary 19 provided one
incoming and one outgoing edge for v in G(P). Furthermore we obtain that dP(v) and d(v)
have the same parity because d(v) = dP(v) + 2x holds where x is the number of paths that
contain v but where v is neither a startpoint nor an endpoint. We have the following cases.

dP(v) ≥ 3:
εd(v) ≥ 1: v’s discrepancy in πG is bounded by dP(v)− 2 ≤ εd(v) + 1.
εd(v) < 1, d(v) even: v’s discrepancy in πG is bounded by dP(v)− 2 ≤ 2.
εd(v) < 1, d(v) odd: As dP(v) has to be odd and 3 ≤ dP(v) ≤ δ(v) = 4 holds we have
dP(v) = 3. Thus v’s discrepancy in πG is bounded by dP(v)− 2 ≤ 1.
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dP(v) < 3:
d(v) even: We have dP ∈ {0, 2} and v’s discrepancy in πG is also 0 or 2.
d(v) odd: We have dP = 1 and v’s discrepancy in πG is also 1.

In all cases we have that the discrepancy of node v is upper bounded by εd(v) + 1 if d(v) is
even and by εd(v) + 2 if d(v) is even, which proves the result. J
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Abstract
Graph coloring is one of the central problems in distributed graph algorithms. Much of the
research on this topic has focused on coloring with ∆ + 1 colors, where ∆ denotes the maximum
degree. Using ∆+1 colors may be unsatisfactory in sparse graphs, where not all nodes have such
a high degree; it would be more desirable to use a number of colors that improves with sparsity.
A standard measure that captures sparsity is arboricity, which is the smallest number of forests
into which the edges of the graph can be partitioned.

We present simple randomized distributed algorithms that, with high probability, color any
n-node α-arboricity graph:

using (2 + ε) · α colors, for constant ε > 0, in O(logn) rounds, if α = Ω̃(logn), or
using O(α logα) colors, in O(logn) rounds, or
using O(α) colors, in O(logn ·min{log logn, logα}) rounds.

These algorithms are nearly-optimal, as it is known by results of Linial [FOCS’87] and Bar-
enboim and Elkin [PODC’08] that coloring with Θ(α) colors, or even poly(α) colors, requires
Ω(logα n) rounds. The previously best-known O(logn)-time result was a deterministic algorithm
due to Barenboim and Elkin [PODC’08], which uses Θ(α2) colors. Barenboim and Elkin stated
improving this number of colors as an open problem in their Distributed Graph Coloring Book.
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Keywords and phrases Distributed Graph Algorithms, Graph Coloring, Arboricity

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.20

1 Introduction and Related Work

Graph coloring is one of the central and well-studied problems in distributed graph algorithms,
and it has a wide range of applications in networks and distributed systems, prototypically
in scheduling conflicting tasks, e.g., transmission in a wireless network. Much of the focus in
the area has been on obtaining fast distributed algorithms that compute a (∆ + 1)-coloring,
where ∆ denotes the maximum degree of the graph, see e.g. [1, 2, 4, 6, 9, 11, 12, 13, 14, 17,
18, 22, 23, 25, 26, 27, 28].

For a vast range of “sparse” graphs, using ∆ + 1 colors is rather unsatisfactory. To take
the point to the extreme, coloring a tree – which is obviously 2-colorable – using ∆ + 1 colors
seems quite wasteful. Generally, it is more desirable to obtain colorings in which the number
of colors improves if the graph is sparse (everywhere).

In this paper, we present simple and near-optimal randomized distributed algorithms that
compute a coloring of the graph with a number of colors that depends on its (everywhere)
sparsity, formally the arboricity of the graph. We next review the related definitions and
discuss the known results. Then, we state our contributions.
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1.1 Definitions and Setup
Graph Arboricity. A standard measure of (everywhere) sparsity of an undirected graph
G = (V,E) is its arboricity, defined as

α(G) = max
{⌈ |E(V ′)|
|V ′| − 1

⌉ ∣∣∣∣ V ′ ⊆ V, |V ′| > 2
}
,

that is, roughly speaking, the maximum ratio of the number of edges to the number of
vertices, among all subgraphs of G. By a beautiful result of Nash-Williams [21], an alternative
equivalent formulation is as follows: arboricity α(G) is the minimum number of edge-disjoint
forests to which one can partition the edges of G.

The Distributed Model. As standard in distributed graph algorithms, we work with the
LOCAL model of distributed computation [18, 24]: The network is abstracted as an undirected
graph G = (V,E), with n = |V |. Communication happens in synchronous message-passing
rounds, and per-round, each node can send one message to each of its neighbors. We note
that all of our algorithms work also in the more restricted variant of the model, known
as CONGEST [24] model, where each message can contain at most O(logn) bits. Initially,
nodes do not know the topology of the graph, except for knowing the arboricity of the graph
α(G). At the end, each node should know its own part of the output, e.g., its own color in a
coloring.

1.2 Known Results and Open Problems
Existential Aspects. Any graph G admits a 2α(G)-coloring, and this bound is tight. For
the former, note that one can easily arrange vertices as v1, . . . , vn so that each vi has at
most 2α(G)− 1 neighbors vj with higher index j > i. Then, one can greedily color this list
from vn to v1, using 2α(G) colors. For the latter, note that a graph made of several disjoint
cliques, each with 2α vertices, has arboricity α, and chromatic number 2α.

Known Lower Bounds for Distributed Algorithms. By a classic observation of Linial [18],
it is well-understood that having a small arboricity is not a local characteristic of graphs, and
any distributed algorithm for coloring with 2α(G) colors, or anything remotely close to it,
needs Ω(logn) rounds. Concretely, Linial [18] pointed out that there exists a graph with girth
Ω(log∆ n) and chromatic number Ω(∆/ log ∆) [10]1 and thus also arboricity α = Ω(∆/ log ∆).
Graphs of girth Ω(log∆ n) are indistinguishable from trees (which have arboricity α = 1), for
distributed algorithms with round complexity o(log∆ n). Hence, no distributed algorithm
with round complexity o(log∆ n) can compute a coloring of a tree with maximum degree ∆ –
which clearly has arboricity α = 1 – with less than Ω(∆/ log ∆)� poly(α) colors.

Barenboim and Elkin [3, 5, 7] presented a strengthening of this result and showed that for
any α and q < n1/4/α, any distributed algorithm for O(q · α)-coloring graphs with arboricity
α requires Ω(logqα n) rounds.

Known Distributed Algorithms for (∆ + 1) Coloring. Distributed graph coloring started
with Linial’s seminal work [18, 19]. Linial’s coloring algorithm is an O(log∗ n)-round determ-
inistic distributed algorithm that computes an O(∆2)-coloring of the input graph. This can

1 In his original writing [18], Linial referred to such high-girth graphs with chromatic number Ω(
√

∆),
but he also added remarks that the bound can probably be improved to Ω(∆/ log ∆).
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be easily turned into a ∆ + 1 coloring in O(∆2) additional rounds. In Section 2.2, we present
a variation of Linial’s algorithm due to Barenboim and Elkin [3, 5], which produces an
O(α2)-coloring in O(logn) rounds of a graph G with arboricity α. Since Linial’s algorithm,
significant advances have been made in the area, which we briefly overview next.

On the side of deterministic algorithms, the best known (∆ + 1)-coloring distributed
algorithm, in terms of dependency on n, is a (2O(

√
logn))-round algorithm by Panconesi and

Srinivasan [23]. In terms of dependency on the maximum degree ∆ of the graph, the linear in
∆ round complexity remained as the state of the art for deterministic ∆ + 1-coloring [8], until
very recently, when Barenboim [2] presented an O(∆3/4 log ∆ + log∗ n)-round distributed
(∆ + 1)-coloring algorithm. This was followed by a work of Fraigniaud, Heinrich, and
Kosowski [13], which improved the round complexity to O(

√
∆ log2.5 ∆ + log∗ n) rounds.

On the side of randomized algorithms, an O(logn)-round algorithm follows from Luby’s
maximal independent set (MIS) algorithm [20]. A direct O(logn)-round distributed algorithm
was analyzed by Johansson [15]. The fastest known randomized algorithm for (∆ + 1)-
coloring is due to a recent work of Harris et al. [14] which provides a (∆ + 1)-coloring in
O(
√

log ∆) + 2O(
√

log logn) rounds, with high probability.

Shortcomings of These Methods in Obtaining Arboricity-Dependent Coloring. All the
aforementioned deterministic and randomized algorithms perform in iterations, where in each
iteration the graph is colored partially and each node that remains uncolored removes from
its palette the colors that are taken by its neighbors, until a proper (∆ + 1)-coloring of the
whole graph is produced. This fundamental property makes these algorithms inappropriate
for our setting of obtaining an arboricity-dependent coloring of the graph. In particular, in
a graph G with arboricity α and maximum out-degree ∆� α, the above algorithms may
fail to produce an f(α)-coloring. Next, we present the known results on distributed graph
coloring in which the number of colors depends on the arboricity of the graph.

Known Distributed Algorithms for Arboricity-Dependent Coloring. Barenboim and
Elkin [3, 5] present a deterministic distributed algorithm that computes an O(α2) col-
oring within O(logn) rounds – which is essentially the time that is proven to be necessary
by the above lower bound. If one uses more colors, say O(q · α2) colors for some parameter
q ≥ 1, the algorithm can be made somewhat faster, running in O(logq n + log∗ n) rounds.
They also show that by spending more time, particularly O(α logn) rounds, one can get
close to the ideal number of colors and use b(2 + ε) · α+ 1c colors, for any constant ε > 0.
This can be turned into smoother trade-off, obtaining an O(t · α)-coloring, for any t ∈ [1, α],
in O(αt · logn+ α logα) rounds.

Kothapoli and Pemmaraju [16] study arboricity-dependent randomized distributed color-
ing algorithms, although targeting a very different range of parameters: they allow drastically
more colors, but then their algorithms run very fast. In particular, they present randomized
distributed algorithms for O(α·n1/k)-coloring in O(k) rounds, when k ∈ [Ω(log logn,

√
logn)];

see [16, Theorem 1.4] for the precise statements. They also present more detailed trade-offs
in [16, Theorem 1.3], when a low out-degree orientation of the graph is provided. By the
above lower bounds, we know that if we want something remotely close to 2α colors, or even
poly(α) colors, we can allow Ω(logα n) rounds for free. To the best of our understanding, the
trade-offs of [16, Theorem 1.4] and [16, Theorem 1.3] are not suitable when Ω(logα n) rounds
are allowed, with only one exception: for α ≥ 2ω(log1/3 n), one can obtain an O(α)-coloring in
O(logn) rounds, by putting together [16, Theorem 1.3 (ii)] and H-partitions of [5].

DISC 2017
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Open Problem. Barenboim and Elkin ask in Open Problem 11.11 of their distributed
graph coloring book [7]: “Can one use significantly less than α2 colors, and still stay within
deterministic O(logn) time?”, immediately followed by adding that “This question is open
even for randomized algorithms”.

1.3 Our Contribution
We present very simple randomized distributed algorithms that make a significant progress
on the above open problem:

I Theorem 1. For any constant ε > 0, there are randomized distributed algorithms that on
any n-node graph with arboricity α, with high probability2, compute

a
(

min
{

(2 + ε)α+O(logn · log logn), O(α logα)
})

-coloring in O(logn) rounds,
an O(α)-coloring, in O(logn ·min{log logn, logα}) rounds.

This theorem achieves a near-optimal coloring as a function of arboricity, with parameter
trade-offs that compare favorably to the previous results provided by [5, 16]. In particular, so
long as α = Ω(logn·log logn), we get the almost best-possible ((2+ε)·α)-coloring, for ε > 0, in
O(logn) time. For graphs of lower arboricity, we can either spend an O(logα) ≤ O(log logn)
factor more time and get an O(α)-coloring in O(logn · log logn) rounds, or we can use an
O(logα) factor more colors and get a coloring with O(α logα)� α2 colors in O(logn) time.

2 Warm Up: Reviewing an Algorithm of Barenboim and Elkin [3, 5]

In this section, we review an O(logn)-round deterministic distributed algorithm by Barenboim
and Elkin [5] that produces an O(α2)-coloring of any n-node graph G = (V,E) with arboricity
α. We note that the paper [5] presents other trade-offs when more time is allowed, as
overviewed in Section 1, e.g., ((2 + ε) · α)-coloring in O(α logn) time, but these algorithms
are less relevant for our target of O(logn)-time algorithms (and also their aforementioned
open problem in [7]).

The O(logn)-time O(α2)-coloring algorithm of Barenboim and Elkin [3, 5] consists of two
steps. In the first step, we use an algorithm, called H-partition, to compute an orientation
of the edges in O(logn) rounds, such that each node has out-degree at most O(α). In the
second step, we compute an O(α2)-coloring in O(log∗ n) rounds, using the low out-degree
orientation of step 1. Later in Sections 3 and 4, we will make use of this H-partition method.

2.1 Step 1: Low Out-Degree Orientation via H-partition
We now discuss a deterministic distributed algorithm that, given an n-node graph G = (V,E)
with arboricity α, in O(log1+ε/2 n) rounds, computes an acyclic orientation of the edges such
that the maximum out-degree is at most (2 + ε) · α, for a given parameter ε > 0.

The main idea behind the algorithm is to partition the nodes into ` = dlog 2+ε
2
ne disjoint

subsets H1, H2, ...H`, such that every node v ∈ Hj with j ∈ {1, 2, ..., l}, has at most (2+ε) ·α
neighbors in subsets ∪`y=jHj . We refer to partitions that satisfy this property as H-partitions
with degree d ≤ (2 + ε) · α and size ` = dlog 2+ε

2
ne. We refer to subsets H1, H2, ...,H` as

layers of the H-partition. In Lemma 2 we sketch the algorithm for computing an H-partition.

2 As standard, we use the phrase with high probability (w.h.p.) to indicate that an event happens with
probability at least 1− 1/nc, for a desirably large constant c ≥ 2.
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Once an H-partition is computed, we orient the edges that have endpoints in different
layers Hj and H ′j , for j′ > j, towards the higher layer H ′j , and orient the edges which have
endpoints in the same layer towards the greater ID endpoint. This ensures that we have an
acyclic orientation with maximum out-degree at most d ≤ (2 + ε) · α.

I Lemma 2. For a graph G with arboricity α and a parameter ε > 0, there is a deterministic
distributed algorithm that computes an H-partition of G with degree d ≤ (2 + ε) · α and size
` = dlog 2+ε

2
ne in O(log 2+ε

2
n) rounds.

Proof Sketch. A graph with arboricity α has at least ε
2+ε · n nodes with degree at most

(2 + ε) · α, as can be seen by a simple double-counting of edges. These nodes join layer H1.
In the subgraph G \H1, there are at least ε

2+ε · (n − |V (H1)|) nodes with degree at most
(2 + ε) · α. These nodes join layer H2. Iteratively, in the subgraph G \ ∪jy=1Hy there are at
least ε

2+ε · (n−
∑j
y=1 |V (Hy)|) nodes with degree at most (2 + ε) · α; these nodes join layer

Hj+1. This argument continues until all nodes have joined a layer, which happens after at
most ` = dlog 2+ε

2
ne rounds. J

2.2 Step 2: Coloring the Graph using the Low Out-Degree Orientation

We now employ the above low out-degree (acyclic) orientation to compute an O(α2)-coloring,
in O(log∗ n) additional rounds. The algorithm is based on (iterative applications of) a
single-round coloring reduction, similar to Linial’s Algorithm [18, 19].

Linial’s Coloring Algorithm

Linial’s coloring algorithm is an O(log∗ n)-round deterministic distributed algorithm that
computes an O(∆2)-coloring of the input graph, where ∆ is the largest degree in the graph.
In each round, a k-coloring is transformed to a k′-coloring, such that k′ = O(∆2 log∆ k).
This is done by letting each node compute a set that is not a subset of the union of the sets
of its neighbors. Then, it picks an arbitrary color from this set that is not in the union of its
neighbors’ sets. The existence of such a set relies on Lemma 3. The coloring is produced by
iteratively applying the single-round color reduction. We start with the initial numbering
of the vertices as a n-coloring. In a single round, we compute an O(∆2 log∆ n)-coloring.
With another single-round color reduction, we get an O(∆2 · (log∆ ∆ + log∆ log∆ n)) coloring.
After O(log∗ n) iterations, we end up with an O(∆2)-coloring. The single-round reduction
technique relies on the following lemma.

I Lemma 3 (Linial [18, 19]). For any k and ∆, there exists a ∆-cover free family of size k
on a ground-set of size k′ = O(∆2 log∆ k) i.e., a family of sets S1, S2, ..., Sk ∈ {1, 2, ..., k′}
such that there is no set in the family that is a subset of the union of ∆ other sets.

Applying Linial’s Algorithm to Low Out-Degree Graphs

Now, the second step of the O(α2)-coloring algorithm of Barenboim and Elkin [3, 5] is
running a variation of Linial’s algorithm where each node considers only the colors of its
out-neighbors. In particular, each node computes a set that is not a subset of the union of
the sets of its out-neighbors. Then, it picks an arbitrary color from this set that is not in the
union of its out-neighbors’ sets. This produces a proper coloring of the graph. Similar to
Linial’s algorithm, after O(log∗ n) rounds, the number of colors is O(α2).

DISC 2017
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3 Coloring for High-Arboricity Graphs

In this section, we present an O(logn)-round randomized distributed algorithm that, with
high probability computes, a ((2 + ε) · α + O(logn · log logn))-coloring of a graph G with
arboricity a = Ω(logn), for any desirably small constant 0 < ε ≤ 1.

Algorithm Outline. Our algorithm consists of two steps.
In the first step, we perform an O(logn)-round partial coloring that uses (2 + 2

3ε) · α
colors, in a manner that the remaining graph – i.e., the graph induced by the nodes that
remain uncolored – has arboricity at most ε

144α, with high probability.
In the second step, we partially color the remaining graph of arboricity at most ε

144α,
in O(logn) rounds, using at most ε

3α new colors. This is done such that at the end of
the second step, the subgraph induced by the uncolored nodes has arboricity at most
O(logn), with high probability.

Overall, our algorithm runs in O(logn) rounds and uses (2 + ε) · α colors. Once we are done
with this 2-step partial coloring, on the remaining graph, we apply the coloring algorithm
of Lemma 8, which we present later in Section 4. This algorithm uses O(logn · log logn)
new colors to color the remaining uncolored nodes, in O(logn) rounds. Hence, overall, we
obtain a proper ((2 + ε) · α + O(logn · log logn))-coloring of the whole graph, in O(logn)
rounds, with high probability. If we omit the first step and apply directly the second step
of the algorithm, an O(α) partial coloring is produced in O(logn) rounds. Overall, this
would produce a proper O(α)-coloring of the the whole graph, in O(logn) rounds, with high
probability.

We note that if the input graph G has arboricity α ≥ log2 n, once we reach a remaining
graph of arboricity O(logn), we can wrap up using a much simpler algorithm: we can color
the remaining graph by applying the variation of Linial’s algorithm explained in Section 2.2,
which uses O(log2 n) extra colors and colors all the remaining nodes in O(log∗ n) extra rounds.
Hence, in total, we would end up with a ((2 + ε) · α+O(log2 n))-coloring in O(logn) rounds.

3.1 Step 1: A First Partial Coloring of the Graph
Let G = (V,E) be a graph with arboricity α = Ω(logn). In this section, we present an
O(logn)-round randomized distributed algorithm that partially colors G, using (2 + 2ε

3 ) · α
colors, for a small constant 0 < ε ≤ 1, such that the remaining graph i.e., the graph induced
by the remaining uncolored nodes, has arboricity at most ε

144α. Next, for simplifying the
notation, we use ε = ε

3 .
A first preparation step of the algorithm is to compute in O(logn) rounds an H-partition

with degree d ≤ (2 + ε) · α and size ` = d 1
ε logne, together with an acyclic orientation of the

edges, such that the maximum out-degree is at most d ≤ (2 + ε) · α. Then, it partially colors
layers H1, H2, ...,H` gradually, starting from layer H` and proceeds backwards, ending with
the first layer H1. Each node receives a palette of size (2 + 2ε) · α and when we color layer
Hj , 1 ≤ j ≤ `, each (uncolored) node v ∈ Hj performs the following algorithm.

First Random Partial Coloring Algorithm, run by each node v ∈ Hj:
In iteration i ∈ {1, 2, ..., d 1+ε

ε e · log 300
ε },

Node v selects one random color x among colors {1, 2, ..., (2 + 2ε) · α}.
Node v sends the selected color x to its neighbors, and receives their selected colors.
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If no out-neighbor has selected x in this round, or picked x as its permanent color
in the previous rounds, node v gets colored permanently with x, and informs its
neighbors.

I Lemma 4. After partially coloring the graph in O(logn) rounds, the remaining graph i.e.,
the graph induced by the uncolored nodes, has out-degree at most ε

112d, with high probability.

Proof. First, we discuss the time complexity of the algorithm. We have d 1+ε
ε e · log 300

ε

iterations per layer of the H-partition and the H-partition has ` = d 1
ε logne total layers.

Hence, the whole algorithm has round complexity O(logn).
We now argue that once the algorithm is completed, with high probability, the remaining

graph has arboricity at most ε
112d. Consider an arbitrary layer Hj , 1 ≤ j ≤ ` of the

H-partition. A node v ∈ Hj has at most d ≤ (2 + ε) · α neighbors in the graph induced by
layers ∪`y=jHy. In each iteration i, each permanently colored out-neighbor of v, blocks at
most one color from v’s palette. Each out-neighbor that is in the same layer Hj and remains
uncolored in iteration i, blocks at most 1 color from v’s palette in iteration i. This implies
that in any iteration i, v has at least ε · α colors that are not blocked by its out-neighbors.
Therefore, the probability that v gets permanently colored with a color x in iteration i is at
least ε·α

(2+2ε)·α . Moreover, this holds independently of the events of other nodes being colored.
In total, after d 1+ε

ε e · log 300
ε iterations we get that, independently of the events of other

nodes being colored,

Pr[v is not colored] ≤ (1− ε · α
(2 + 2ε) · α )d

1+ε
ε e·log 300

ε ≤ (1
4) 1

2 log 300
ε ≤ ε

300 .

After applying the partial coloring in layers H1, H2, ..,H`, each node remains uncolored
with probability at most ε

300 .
At this point, the coloring process of the algorithm is completed. We now upper bound

the arboricity of the remaining graph i.e., the graph induced by the uncolored nodes after
applying the algorithm. Consider a node v that remains uncolored and let X be a random
variable that represents the number of v’s uncolored out-neighbors. Then,

E[X] ≤ d · ε

300 .

So long as the expected out-degree is Ω(logn), we can apply the Chernoff bound and conclude
that

Pr[X ≥ d · ε

112 ] ≤ 1
n10 .

Hence, the remaining graph is an H-partition with degree d ≤ ε
112 (2 + ε)α ≤ ε

336 (2 + ε
3 )α ≤

ε
144α and size ` = d 3

ε logne and is oriented such that the out-degree of each remaining node
is at most d ≤ ε

144α, with high probability. J

3.2 Step 2: A Second Partial Coloring of the Remaining Graph
Once the first step of the algorithm is completed, the remaining graph is an H-partition with
degree d ≤ ε

144α and size ` = d 3
ε logne and is oriented such that the out-degree is at most

d ≤ ε
144α , with high probability.
In this section, we present an O(logn) randomized distributed algorithm that partially

color this remaining graph using 48d ≤ ε
3α colors, in a manner that once the algorithm

is completed, the graph induced by the remaining uncolored nodes has arboricity at most
O(logn), with high probability.
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I Lemma 5. Given an H-partition with degree d = Ω(logn) and size O(logn), there is an
O(logn) randomized distributed algorithm that partially colors the graph using 48d colors, in
a manner that the remaining graph has arboricity at most O(logn), with high probability.

Proof. The algorithm consists of log∗ n phases. In each phase i, for i ∈ {0, 1, ..., log∗ n},
we perform a partial coloring of the remaining graph as follows. The input of phase i is
an H-partition of the remaining graph with degree di ≤ d

i2 and size O( logn
2i ). Here, the

tetration yx expresses xx.
.x

, with y copies of x. In each phase i, we apply the O( logn
2i )-round

randomized distributed algorithm of Lemma 6, which we discuss later on this section. In
phase i, we use 2Qi = 2 · 12d

2i colors and we partially color the graph such that at the end of
phase i, the remaining graph is an H-partition with degree di+1 ≤ d

(i+1)2 and size O( logn
2i+1 ),

with high probability. This is the input for the next phase.
After log∗ n phases, the remaining nodes have out-degree at most O(logn), with high

probability. Furthermore, the total number of rounds of the process is
∑log∗ n
i=0

O(logn)
2i =

O(logn) and the total number of colors that it uses is
∑log∗ n
i=0 2Qi ≤ 48d. J

The Coloring Algorithm for a Single Phase. For each phase i, we start with an H-partition
of the remaining graph with degree di ≤ d

i2 and size O( logn
2i ). In the coloring part of this

phase, we color some nodes in a manner that, among the nodes that remain uncolored, each
node has out-degree at most d

(i+2)1.98·20 �
d
i2 .

The coloring process in phase i consists of two iterations, as follows: In each iteration, each
remaining node receives a fresh palette of Qi = 12d

2i colors. We color the layers H1, H2, ..,H`

of the given H-partition gradually, starting from the last layer H`, and proceed backwards,
ending with the first layer H1. As we show next, one iteration is not enough to drop the
maximum out-degree to the desired level. Repeating the algorithm for a second iteration, we
end up with maximum out-degree at most d

(i+2)1.98·20 �
d
i2 , with high probability. We now

focus on coloring an arbitrary layer Hj , 1 ≤ j ≤ `. Each node v in layer Hj performs the
following algorithm.

Single-Iteration of Second Partial Coloring Algorithm, run by each node
v ∈ Hj

Node v selects f(i) = Qi
2di colors at random from a new palette of Qi colors.

Node v sends the selected colors to its neighbors, and receives their selected colors.
If there is a selected color x such that no out-neighbor has selected x in this round,
or picked x as its permanent color in the previous rounds, node v gets colored
permanently with x, and informs its neighbors.

I Lemma 6. Given an H-partition with degree di ≤ d
i2 and size O( logn

2i ), there is an O( logn
2i )-

round randomized distributed algorithm that partially colors the graph with 2Qi = 2· 12d
2i colors,

such that in the same H-partition, with size O( logn
2i ), the remaining graph has out-degree at

most d
(i+2)1.98·20 , with high probability.

Proof. First, we discuss the time complexity of the algorithm. We have two iterations, and
each iteration takes ` = O( logn

2i ) rounds, one round per layer of the H-partition. Hence, the
whole algorithm of this phase has round complexity ` = O( logn

2i ).
We now argue that at the end of the phase, with high probability, in the remaining graph

induced by the uncolored nodes each node has out-degree at most d
(i+2)1.98·20 . We do the

analysis of the two iterations separately, though they are similar.
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Consider the first iteration of phase i and an arbitrary layer Hj , 1 ≤ j ≤ `. A node v ∈ Hj

has at most di out-neighbors in the graph induced by layers ∪`y=jHy. Each permanently
colored out-neighbor of v blocks at most one color from v’s palette. Each out-neighbor that
belongs to the same layer Hj , blocks at most f(i) colors from v’s palette.

Thus, there are at most f(i) · di colors that are blocked by v’s out-neighbors, which
implies that v has at least Qi − f(i) · di = Qi

2 colors that are not blocked, when we select
random colors for v. Therefore, the probability that v gets permanently colored with a color
x that it selects is at least 1/2. Moreover, this holds independently of the events of other
nodes being colored. In total, since v selects f(i) = Qi

2di colors independently, we get that
independently of the events of other nodes being colored:

Pr[v is not colored] ≤ 2−f(i) = 2−
i2·6

2i .

After applying the 1-round coloring in layers H1, H2, ..,H`, each node remains uncolored
with probability at most 2−f(i).

At this point, the coloring process of the first iteration is completed. We now upper bound
the maximum out-degree of the remaining graph. Consider a node v that remains uncolored
and let X be a random variable that represents the number of v’s uncolored out-neighbors.
Then,

E[X] ≤ di · 2−f(i) ≤ d
i2 · 2

− i2·6
2i .

As long as the new expected out-degree is Ω(logn), we can apply the Chernoff bound and
conclude that

Pr[X ≥ d
(i+1)1.99 · 20

] ≤ Pr[X ≥ 3 d
i2 · 642−

i2
2i ] ≤ 1

n10 .

We now discuss the decrease in the out-degrees during the second iteration. At the
beginning of the second iteration, in the remaining graph, each (uncolored) node has at
most d

(i+1)1.99·20 out-neighbors, with high probability. Similarly to the first iteration, each
remaining node receives a fresh palette of size Qi. Again, applying the same process, after
we color layers H1, H2, ..,H` in the second iteration, each node remains uncolored with
probability at most 2−f(i). With a similar analysis, we conclude that in the graph induced
by nodes that remain uncolored at the end of the second iteration, each node has out-degree
at most d

(i+2)1.98·20 , with high probability. J

Re-computing the H-partition. At this point, we are done with the coloring of phase i.
As a preparation step for phase i+ 1, we compute a new H-partition of the graph induced
by the uncolored nodes. The new H-partition has degree di+1 ≤ d

(i+1)2 and size O( logn
2i+1 ).

I Lemma 7. Given an H-partition with degree at most d
(i+2)1.98·20 and size O( logn

2i ), there
is an O( logn

2i+1 )-round deterministic distributed algorithm that computes an H-partition with
degree at most d

(i+1)2 and size O( logn
2i+1 ).

Proof. We set the parameter ε > 0 of the H-partition of Lemma 2, to a value such that
the degree of the H-partition is (2 + ε) d

(i+2)1.98·20 ≤
d

(i+1)2 and the size of the H-partition
is ` = logn

log ε ≤
logn
2i+1 . In particular, we set ε = 16

(i+2)1.98
(i+1)2 , and compute an H-partition with

degree di+1 ≤ d
(i+1)2 and size ` ≤ logn

2i+1 . The round complexity of recomputing the H-partition
is at most O( logn

2i+1 ), as explained in Lemma 2. J
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4 Coloring for Low-Arboricity Graphs

In this section, we present two randomized distributed algorithms that on any n-node graph
with arboricity α, with high probability, compute respectively

an O(α logα)-coloring in O(logn) rounds, and
an O(α)-coloring in O(logn · logα) rounds.

In particular, we prove the following two lemmas in Section 4.1 and Section 4.2, respectively.

I Lemma 8. There is an O(logn)-round randomized distributed algorithm that partially
colors any n-node graph with arboricity α, using O(α logα) colors, in a manner that the
remaining graph has no path longer than O(logn), with high probability.

I Lemma 9. There is an O(logn·logα)-round randomized distributed algorithm that partially
colors any n-node graph with arboricity α, using (2 + ε) · α colors, for a constant 0 < ε ≤ 1,
in a manner that the remaining graph has no path longer than O(logn), with high probability.

After partially coloring the graph with the algorithms of Lemma 8 or Lemma 9, we apply
the O(logn)-round deterministic distributed algorithm of Lemma 13, to color the remaining
graph using O(α) extra colors.

We note that the algorithms we present in this section are more interesting for coloring
graphs with arboricity at most O(logn), since for graphs with larger arboricity, we can apply
the algorithm of Section 3 to obtain a ((2 + ε) · α+O(logn · log logn))-coloring in O(logn)
rounds.

4.1 A Randomized O(α logα) Partial Coloring in O(logn) rounds
Let G be a n-node graph with arboricity α. In this section, we provide an O(logn)-round
randomized distributed algorithm that partially colors the graph with O(α logα) colors, in a
manner that the remaining graph has no path longer than O(logn), with high probability.

A first preparation step of the algorithm is to compute in O(logn) rounds an H-partition
with degree d ≤ 3α and size O(logn), together with an acyclic orientation of the edges, such
that the maximum out-degree is at most d ≤ 3α.

The algorithm colors layers H1, H2, ...,H` gradually, starting from layer H` and proceeds
backwards, ending with the first layer H1. Initially, each node receives a palette of d log d
colors. When layer Hj , 1 ≤ j ≤ ` is colored, each remaining node v ∈ Hj performs the
following algorithm.

Low-Arb Coloring Algorithm, run by each node v ∈ Hj

In iteration i ∈ {1, 2, 3, 4}:
Node v selects log d

2 random colors among d log d colors.
Node v sends the selected colors to the neighbors, and receives their selected colors.
If there is a selected color x such that no out-neighbor has selected x in this round,
or picked x as its permanent color in the previous rounds, node v gets colored
permanently with x, and informs its neighbors.

I Lemma 10. After partially coloring the graph in O(logn) rounds, each node v ∈ V remains
uncolored with probability at most d−2. Furthermore, this holds independently of the events
of other nodes being colored.
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Proof. First, we discuss the time complexity of the algorithm. The H-partition has O(logn)
layers and we have 4 iterations per layer of the H-partition. Hence, the whole algorithm has
round complexity O(logn).

We now argue that once the algorithm is completed, in the remaining graph, each node
v ∈ V remains uncolored with probability at most d−2, independently of the events of other
nodes being colored in the graph.

Consider an arbitrary layer Hj , 1 ≤ j ≤ ` of the H-partition. A node v ∈ Hj has at most
d out-neighbors in the graph induced by layers ∪`y=jHy. In each iteration i, each permanently
colored out-neighbor of v blocks at most one color from v’s palette. Each out-neighbor that
is in the same layer Hj and remains uncolored in iteration i, blocks at most log d

2 colors from
v’s palette.

Thus, v has at least d log d
2 colors that are not blocked by its out-neighbors, when we

select random colors for v. Therefore, the probability that v gets permanently colored with a
color x that it selects in iteration i is at least 1/2. Moreover, this holds independently of the
events of other nodes being colored. This implies that in each iteration, independently of the
events of other nodes being colored, we have

Pr[v is not colored] ≤ 2−
log d

2 = 1/
√
d.

In total, after 4 iterations we get that, independently of the events of other nodes being
colored, we have

Pr[v is not colored] ≤ (1/
√
d)4 = d−2. J

Next, we prove that in the remaining graph, there exists no path longer than O(logn),
with high probability. This allows us to color the remaining graph deterministically in
O(logn) rounds, using d+ 1 extra colors, as we explain in Lemma 13.

I Lemma 11. The remaining graph has no directed path longer than O(logn), w.h.p.

Proof. There are at most n · dlogn different ways to select a path of length logn. For each
such path, the probability that all of its nodes stay is at most d−2logn. By a union bound
over all such paths, we conclude that with probability 1− n · dlogn · d−2 logn ≥ 1− n−10, no
such path exists. J

4.2 A Randomized O(α) Partial Coloring in O(logn · logα) Rounds
In this section, we present an O(logn · logα)-round randomized distributed algorithm that
colors a graph G with arboricity α, using (2 + ε) colors, for a small constant 0 < ε ≤ 1, in a
manner that the remaining graph has no path longer than O(logn), with high probability.

The algorithm is similar to the randomized distributed algorithm of Section 4.1. More
specifically, it first computes an H-partition with degree d ≤ (2 + ε

2 ) ·α and size ` = d 1
ε logne.

Each node receives a palette of size (2 + ε) · α and when we color layer Hj , 1 ≤ j ≤ `, each
(uncolored) node performs the following algorithm.

Tradeoff-Low-Arb Coloring Algorithm, run by each node v ∈ Hj:
In iteration i ∈ {1, 2, ..., d 2·(2+ε)

ε e · log d},
Node v selects one random color x among (2 + ε) · α colors.
Node v sends the selected color x to its neighbors, and receives their selected colors.
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If no out-neighbor has selected x in this round, or picked x as its permanent color
in the previous rounds, node v gets colored permanently with x, and informs its
neighbors.

I Lemma 12. After partially coloring the graph in O(logn · logα) rounds, each node v ∈ V
remains uncolored with probability at most d−2. Furthermore, this holds independently of the
events of other nodes being colored.

Proof. First, we discuss the time complexity of the algorithm. The H-partition has O(logn)
layers and we have d 2·(2+ε)

ε e · log d = O(logα) iterations per layer of the H-partition. Hence,
the whole algorithm has round complexity O(logn · logα).

We now argue that once the algorithm is completed, in the remaining graph, each node
v ∈ V remains uncolored with probability at most d−2, independently of the events of other
nodes being colored in the graph.

Consider an arbitrary layer Hj , 1 ≤ j ≤ ` of the H-partition. A node v ∈ Hj has at
most d ≤ (2 + ε

2 ) · α neighbors in the graph induced by layers ∪`y=jHy. In any iteration i,
each permanently colored out-neighbor of v, blocks at most one color from v’s palette. Each
out-neighbor that is in the same layer Hj and remains uncolored in iteration i, blocks at
most one color from v’s palette. Thus, in any iteration i, node v has at least ε

2α colors that
are not blocked by its out-neighbors. Therefore, the probability that v gets permanently
colored with a color x in iteration i is at least ε·α

2(2+ε)·α . Moreover, this holds independently
of the events of other nodes being colored.

In total, after d 2·(2+ε)
ε e · log d iterations, we get that (independently of the events of other

nodes being colored), we have

Pr[v is not colored] ≤ (1− ε · α
2(2 + ε) · α )d

2·(2+ε)
ε e log d ≤ (1

4)log d ≤ d−2. J

At this point, we apply Lemma 11 to conclude that in the remaining graph there is
no path longer than O(logn), with high probability. Then, we apply the O(logn)-round
deterministic algorithm of Lemma 13, to color the remaining graph with d+ 1 extra colors.

4.3 Deterministic Coloring
After we partially color the input graph G with either of the algorithms of Section 4.1
and Section 4.2, in the remaining graph there is no path longer than O(logn), with high
probability.

In this section, we color deterministically the remaining graph as follows. Each remaining
(uncolored) node receives d+ 1 new colors and performs the following algorithm.

Low-Arb Deterministic Coloring Algorithm, run by each uncolored node v:
Node v waits for all its remaining out-neighbors to be colored and removes their
colors from its palette.
It gets permanently colored with one remaining color x, and informs its neighbors.

I Lemma 13. After O(logn) rounds, every node is colored, with high probability.

Proof. Consider a remaining (uncolored) node v that runs the above algorithm. Since it
has at most d remaining out-neighbors, there is always at least one available color to select
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the moment that we color node v. Furthermore, by Lemma 11, there is no path longer
than O(logn) in the remaining graph, with high probability; this implies that with high
probability, v does not wait more than O(logn) rounds until it gets permanently colored. J

References
1 Baruch Awerbuch, M Luby, AV Goldberg, and Serge A Plotkin. Network decomposition

and locality in distributed computation. In Foundations of Computer Science, 1989., 30th
Annual Symposium on, pages 364–369, 1989.

2 Leonid Barenboim. Deterministic (∆+ 1)-coloring in sublinear (in ∆) time in static, dy-
namic, and faulty networks. Journal of the ACM (JACM), page 47, 2016.

3 Leonid Barenboim and Michael Elkin. Sublogarithmic distributed mis algorithm for sparse
graphs using nash-williams decomposition. In Proceedings of the Twenty-seventh ACM
Symposium on Principles of Distributed Computing, PODC’08, pages 25–34, 2008.

4 Leonid Barenboim and Michael Elkin. Distributed (∆+ 1)-coloring in linear (in ∆) time.
In Proceedings of the forty-first annual ACM symposium on Theory of computing, pages
111–120, 2009.

5 Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse
graphs using nash-williams decomposition. Distributed Computing, 22(5-6):363–379, 2010.

6 Leonid Barenboim and Michael Elkin. Deterministic distributed vertex coloring in polylog-
arithmic time. Journal of the ACM (JACM), page 23, 2011.

7 Leonid Barenboim and Michael Elkin. Distributed graph coloring: Fundamentals and recent
developments. Synthesis Lectures on Distributed Computing Theory, 4(1):1–171, 2013.

8 Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed (∆+1)-coloring in linear
(in ∆) time. SIAM Journal on Computing, 43(1):72–95, 2014.

9 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. In Foundations of Computer Science (FOCS) 2012, pages
321–330, 2012.

10 Béla Bollobás. Chromatic number, girth and maximal degree. Discrete Mathematics,
24(3):311–314, 1978.

11 Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the lovász local
lemma and graph coloring. In Proceedings of the 2014 ACM symposium on Principles of
distributed computing, pages 134–143, 2014.

12 Richard Cole and Uzi Vishkin. Deterministic coin tossing and accelerating cascades: micro
and macro techniques for designing parallel algorithms. In Proceedings of the eighteenth
annual ACM symposium on Theory of computing, pages 206–219. ACM, 1986.

13 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In Founda-
tions of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 625–634.
IEEE, 2016.

14 David G Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (∆+ 1)-coloring in
sublogarithmic rounds. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, pages 465–478, 2016.

15 Öjvind Johansson. Simple distributed ∆+ 1-coloring of graphs. Information Processing
Letters, 70(5):229–232, 1999.

16 Kishore Kothapalli and Sriram Pemmaraju. Distributed graph coloring in a few rounds.
In Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, PODC’11, pages 31–40, 2011.

17 Fabian Kuhn. Weak graph colorings: Distributed algorithms and applications. In Proceed-
ings of the Twenty-first Annual Symposium on Parallelism in Algorithms and Architectures,
pages 138–144, 2009.

DISC 2017



20:14 Simple and Near-Optimal Distributed Coloring for Sparse Graphs

18 Nathan Linial. Distributive graph algorithms global solutions from local data. In Proc. of
the Symp. on Found. of Comp. Sci. (FOCS), pages 331–335. IEEE, 1987.

19 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

20 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
journal on computing, 15(4):1036–1053, 1986.

21 CSJA Nash-Williams. Decomposition of finite graphs into forests. Journal of the London
Mathematical Society, 1(1):12–12, 1964.

22 Alessandro Panconesi and Romeo Rizzi. Some simple distributed algorithms for sparse
networks. Distributed computing, 14(2):97–100, 2001.

23 Alessandro Panconesi and Aravind Srinivasan. Improved distributed algorithms for coloring
and network decomposition problems. In Proc. of the Symp. on Theory of Comp. (STOC),
pages 581–592. ACM, 1992.

24 David Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000.

25 Seth Pettie and Hsin-Hao Su. Distributed coloring algorithms for triangle-free graphs.
Information and Computation, 243:263–280, 2015.

26 Johannes Schneider and Roger Wattenhofer. A new technique for distributed symmetry
breaking. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, pages 257–266, 2010.

27 Johannes Schneider and Roger Wattenhofer. Distributed coloring depending on the chro-
matic number or the neighborhood growth. In International Colloquium on Structural
Information and Communication Complexity, pages 246–257. Springer, 2011.

28 Márió Szegedy and Sundar Vishwanathan. Locality based graph coloring. In Proceedings of
the Twenty-fifth Annual ACM Symposium on Theory of Computing, pages 201–207, 1993.



Near-Optimal Distributed DFS in Planar Graphs
Mohsen Ghaffari1 and Merav P. Parter2

1 ETH Zürich, Switzerland
ghaffari@inf.ethz.ch

2 CSAIL, MIT, Cambridge, USA
parter@mit.edu

Abstract
We present a randomized distributed algorithm that computes a Depth-First Search (DFS) tree
in Õ(D) rounds, in any planar network G = (V,E) with diameter D, with high probability. This
is the first sublinear-time distributed DFS algorithm, improving on a three decades-old O(n)
algorithm of Awerbuch (1985), which remains the best known for general graphs. Furthermore,
this Õ(D) round complexity is nearly-optimal as Ω(D) is a trivial lower bound.

A key technical ingredient in our results is the development of a distributed method for
(recursively) computing a separator path, which is a path whose removal from the graph leaves
connected components that are all a constant factor smaller. We believe that the general method
we develop for computing path separators recursively might be of broader interest, and may
provide the first step towards solving many other problems.
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Keywords and phrases DFS, planar graphs, CONGEST, separator
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1 Introduction and Related Work

Depth First Search (DFS) is “one of the most versatile sequential algorithm techniques known
for solving graph problems” [38]. Along with its cousin BFS, these two have a long history:
DFS dates back to the 19th century [10], and BFS dates back to the 1950s [40]. Both were
first used for solving different kinds of mazes, but are nowadays among basic building blocks
in graph algorithms, covered in elementary courses, and with a wide range of applications.

In the centralized setting, computing BFS and DFS are straightforward. However, in the
distributed setting, there is a stark contrast, and DFS turns out to be much harder. Let us
first recall the definition of the distributed model.

Throughout, we use a standard message passing model of distributed computing called
CONGEST [36]. The network is abstracted as an n-node graph G = (V,E), with one processor
on each network node. Initially, these processors do not know the graph. They solve the
given graph problems via communicating with their neighbors. Communications happen in
synchronous rounds. Per round, each processor can send one O(logn)-bit message to each of
its neighboring processors.

Distributedly computing both BFS and DFS need Ω(D) rounds, in graphs of diameter D.
BFS can be computed easily in O(D) rounds, in any graph with diameter D. In contrast, the
best known distributed algorithm for DFS takes O(n) rounds, regardless of how small diameter
D is; see e.g., [36, Section 5.4] and [4]. We note that designing algorithms with complexity
o(n), when D = o(n), and ideally close to O(D), has become the target of essentially all the
distributed graph algorithms for global optimization problems, since the pioneering work of
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Garay, Kutten, and Peleg [13, 27] which gave an O(D+ n0.61) round algorithm for minimum
spanning tree. See, e.g., [5, 7, 8, 12, 14, 15, 18, 19, 24, 25, 28, 29, 32, 33, 34].

Despite this, there has been no progress on the problem over the last three decades,
and no sublinear-time distributed algorithm for DFS is known. This, and especially the
lack of any sub-linear time distributed DFS, is certainly not for the lack of trying. It is
widely understood that DFS is not easy to parallelize/decentralize; it has even been called
“inherently sequential” [38] and “a nightmare for parallel processing” [31].

1.1 Our Contribution
In this paper, making a first step of progress on the distributed complexity of this classical
problem, we present a randomized distributed algorithm that computes a DFS in O(D ·
poly logn) rounds in planar graphs, with high probability. This time complexity is nearly
optimal as it matches the trivial Ω(D) lower bound up to poly-logarithmic factors.

I Theorem 1. There is a randomized distributed algorithm that computes a DFS in any
n-node planar network with diameter D in O(D · poly logn) rounds, with high probability.

Turning to general graphs, we note that the parallel algorithms by Aggarwal and Ander-
son [1] and Goldberg, Plotkin and Vaidya [20] can be adapted to give an Õ(

√
Dn+n3/4)-round

DFS algorithm for graphs with diameters D. Therefore, a DFS can be computed in sublinear
number of rounds for graphs with sublinear diameter D = o(n). This simple corollary of [1]
and [20] is shown in the full version. Improving the bound for general graphs remains an
important open problem.

1.2 A High-Level Discussion of Our Method
Our method relies on separator paths. Generally, separators have been a key tool in working
with planar graphs, starting with the seminal work of Lipton and Tarjan [30]. In a rough
sense, separators are subgraphs whose removal from the graph leaves connected components
that are all a constant factor smaller than the initial graph. Typically, one desires the
separator to be small. However, unlike [30], we do not insist on a small separator, but instead
it is crucial for us that the separator is a simple path. This allows us to use the separator
path, with some iterations of massaging and modifications in the style of [1], as a part of a
partial DFS. See Sec. 3 for the explanations. Now that this separator is put in the partial
DFS, the left over graph is made of a number of connected components, each a constant
factor smaller than the initial graph. Hence, we would have the hope to be able to solve
each of these subproblems recursively, and moreover, to do that simultaneously for all the
subproblems.

But two key issues remain: (1) How do we compute the separator path distributedly?
This itself is the main technical contribution of our paper, and is explained in Sec. 4. But a
crucial part of the challenge of that lies in the next point. (2) How do we recurse and most
importantly, how do we compute the separator path throughout the recursions? Once we
remove the first separator, the left over components are smaller in size, but they may have
considerably larger diameter, even up to Θ(n). This large diameter can be a major obstacle
for distributed algorithms. For instance, we cannot even assume that we can compute a BFS
of each component. More generally, if we are to have a fast separator path algorithm, we
cannot confine the algorithm for each subproblem to stay within the connected component of
that subproblem. On the other hand, allowing the algorithm to use the other parts creates
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the possibility of congestion as now many subproblems may need to use the same edge,
perhaps many times each.

Our solution uses a number of novel algorithmic ideas. It would be hard to summarize
these ideas out of context, and thus we refer the interested reader to the technical sections.
One key tool from prior work, which is worth pointing out and makes our life significantly
easier, is low-congestion shortcucts for planar graphs, developed by Ghaffari and Haeupler [17].
In a very rough sense, this tool opens the road for working on many disjoint potentially
large-diameter subgraphs of the base graph G at the same time, and still enjoying the small
diameter of the base graph G. Though, this is possible only in certain conditions and only
for a very limited class of problems. We usually need quite some work to break our problems
into modules that fit these conditions and classifications.

Separators have a wide range of applications, in centralized algorithms for planar graphs.
Though, computing the separators distributedly and especially computing them recursively
in the distributed setting when the remaining components have large diameter is highly
non-trivial. We thus hope that the methods developed in this paper may open the road
for recursive computation of separators in the distributed setting, and thus be a first step
towards solving many other problems.

1.3 Related Work
Distributed Graph Algorithms in Sublinear Time. Over the past two decades, starting
with the seminal work of Garay, Kutten, and Peleg [13, 27], there has a been a big body
of work presenting sublinear-time distributed algorithms for various graph problems (for
graphs with diameter D = o(n), as otherwise that is impossible). See for instance1 [5, 7, 8,
12, 14, 15, 18, 19, 24, 25, 28, 29, 32, 33, 34]. There are also lower bounds [6, 9, 37] which for
instance show that in general graphs, computing minimum spaning trees requires Ω̃(D+

√
n)

rounds, hence ruling out the possibility of Õ(D) round MST algorithms. A similar lower
bound holds for many other problems, even when approximating, e.g., min-cut, shortest
paths, min-cost connected dominated set etc. See [6]. By now, most of the classical graph
problems are known to have sublinear-time distributed algorithms, at least when relaxing
the problem to allow some approximation. A prominent exception is DFS!

Distributed Graph Algorithms in Planar Networks. Starting with the work of Ghaffari
and Haeupler [16, 17], some attention has been paid to developing more efficient distributed
algorithms for (global) network optimizations on planar or near-planar networks. This was
in part motivated by trying to circumvent the aforementioned Ω̃(D +

√
n) general-graph

lower bound. Another motivation was also to bring in the vast array of the techniques
and methodologies developed for efficient centralized algorithms for planar networks to the
distributed domain.

In [17], the aformentioned lower bound was ruled out for planar networks by showing
an Õ(D) algorithm for MST in planar networks. A key tool in this MST algorithm was
the concept of low-congestion shortcuts, which was introduced in [17]. An algorithm for
computing this structure was also given in [17], which as one of its subroutines made use of
the planar embedding algorithm of [16]. It was shown later by Haeupler, Izumi and Zuzic [21]
that even without having the embedding, one can compute an approximate version of the
low-congestion shortcuts, which is good enough for many applications. Furthermore, low

1 This is merely a sample, and is by no means exhaustive.
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congestion shortcuts were later extended to other special graph families such as those with
fixed tree-width or genus [22].

Parallel DFS Algorithms. DFS has received vast attention in the parallel literature. It is
known that computing the lexicographically-first DFS —where the smallest ID unvisited
neighbor should be visited first — is P -complete [38], and is thus unlikely to admit an efficient
parallel algorithm. This was the reason that DFS was deemed “inherently sequential” [38].
However, over the years, several sophisticated but efficient parallel algorithms were developed
for DFS, which compute some depth first search tree (not necessarily the lexicographically-
first one). We here review the related work on only undirected graphs. Smith [41] gave an
O(log3 n)-time parallel DFS algorithm for planar graphs. Shannon [39] improved this to an
O(log2 n)-time parallel DFS algorithm for planar graphs, while also using only linear number
of processors. Anderson gave a Õ(

√
n)-time [2] and then a 2O(

√
log n)-time [3] parallel DFS

algorithm for general graphs. Aggarwal and Anderson [1] gave the first poly-logarithmic
time parallel algorithm for DFS in general undirected graphs. Kao [26] gave the first
deterministic NC algorithm for DFS in planar networks. Then Hagerup [23] gave an O(logn)-
time randomized parallel DFS algorithms for planar networks. Finding a deterministic NC
algorithm for DFS in general graphs remains open, though a quasi-NC algorithm was given
very recently in [11].

We note that our distributed DFS algorithm for planar graphs is quite different than
the parallel DFS algorithms for planar graphs (e.g., [39, 41]), mainly because we do not
compute a separator cycle distributedly. Our algorithm is morally closer to the methodology
of Aggarwal and Anderson (for general graphs) [1] which can work with (collections of)
separator paths.

2 Preliminaries

Basic Notions. Let G = (V,E) be a simple undirected planar graph. Given a tree T ⊆ G
and a non-tree edge e = (v, u) /∈ T , the cycle formed by e and the tree path connecting v to
u is called the fundamental cycle defined by e. Let F(G) = {F1, . . . , Fk} be the faces of the
planar graph G. Let G′ = (V ′, E′) be the dual graph of G, defined by including one node
v′i ∈ V ′ for each face Fi ∈ F and connecting two nodes v′i, v′j ∈ V ′ if their corresponding
faces share an edge2. We may interchange between the dual-nodes v′i and the faces Fi. A
superface F is a collection of faces whose boundary is a simple cycle.

Dual Tree and its Distributed Representation. Given a spanning tree T of G, we define
its dual-tree in the dual-graph G′ as follows: Let φF : F(G)→ V ′ be the bijection between
the faces of G and the dual-nodes of G′. The nodes of dual tree T ′ are the faces of G,
and two dual-nodes v′i and v′j are connected iff the two faces φ−1

F (v′i) and φ−1
F (v′j) share an

non-tree edge e /∈ T . We define a bijection φE : E \ E(T ) → E(T ′) between the non-tree
edges G \ T and the dual-tree edges of T ′, where in the aforementioned example, we have
φE(e) = {v′i, v′j}.

In the distributed representation of this dual-tree, the leader `(e′) of a dual-edge e′ ∈ T ′
is the higher-ID endpoint of the edge φ−1

E (e′) = {u, v}. The leader `(v′) of the dual-node
v′ is the node in the face φF (v′) of maximum ID. The dual-tree is known in a distributed

2 In-fact, the dual-graph is a multigraph as there might be many edges between two dual-nodes
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manner where for every edge e′ ∈ T ′, its leader `(e′) knows that this edge belongs to T ′. The
nodes v′ ∈ V (T ′) and dual edges e′ ∈ E(T ′) will be simulated by their leader nodes `(v′) and
`(e′) respectively.

Planar Embeddings. The geometric planar embedding of graph G is a drawing of G on a
plane so that no two edges intersect. A combinatorial planar embedding of G determines
the clockwise ordering of the edges of each node v ∈ G around that node v such that all
these orderings are consistent with a plane drawing (i.e., geometric planar embedding) of
G. Ghaffari and Haeupler [16] gave a deterministic distributed algorithm that computes a
combinatorial planar embedding in O(Dmin{logn,D}) rounds, where each node learns the
clockwise order of its own edges.

Low-Congestion Shortcuts. In a subsequent paper [17], Ghaffari and Haeupler introduced
the notion of low-congestion shortcuts which plays a key role in several algorithms for planar
graphs (e.g., MST, min-cut). We will also make frequent use of this tool. The definition is
as follows.

I Definition 2 (α-congestion β-dilation shortcut). Given a graph G = (V,E) and a partition
of V into disjoint subsets S1, . . . , SN ⊆ V , each inducing a connected subgraph G[Si], we
call a set of subgraphs H1, . . . ,HN ⊆ G, where Hi is a supergraph of G[Si], an α-congestion
β-dilation shortcut if we have the following two properties:
1. For each i, the diameter of the subgraph Hi is at most β, and
2. for each edge e ∈ E, the number of subgraphs Hi containing e is at most α.

Ghaffari and Haeupler [17] proved that any partition of a D-diameter planar graph
into disjoint subsets S1, . . . , SN ⊆ V , each inducing a connected subgraph G[Si], admits an
α-congestion β-dilation shortcut where α = O(D logD) and β = O(D logD). They also gave
a randomized distributed algorithm that computes such a shortcut in Õ(D) rounds, with
high probability. We will make black-box use of this result, frequently.

3 Outline of the Depth First Search Tree Construction

Towards proving Thm. 1, in this section, we explain the outline of our Õ(D)-round algorithm
for computing a Depth-First Search (DFS) tree. Detailed steps are explained in later sections.

We compute a DFS tree of a graph G = (V,E) rooted in a given node s ∈ V . The
algorithm is based on a divide-and-conquer style approach. A key technical ingredient is
a separator path algorithm, which we use for dividing the problem into independent sub-
problems of constant factor smaller size. We describe this separator algorithm in the next
section. In this section, we explain how via recursive (black-box) applications of a separator
path subroutine, we compute a DFS.

We note that our approach is inspired by an idea of Aggarwal and Anderson [1]. However,
the overall method is quite different. On one hand, we have an easier case here because we
need to deal with only a single path instead of a large collection of them, thanks to the nice
structure of planar graphs. On the other hand, computing this single path, and especially
being able to do it recursively, has its own challenges, as we discuss in the next section. We
will have to deal with a number of difficulties that are unique to the distributed setting, as
we will point out.
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High-Level Outline. The high-level outline of the approach is as follows. The method
is recursive. In each (independent) branch of the recursion, we have a connected induced
subgraph C ⊆ G and a root r ∈ C and we need to compute a DFS of C rooted in r. In the
beginning, we simply have C = G and r = s. Furthermore, in each step of recursion, we
will assume that C is biconnected, that is, removing any single node v ∈ C from C leaves
a connected subgraph C \ {v}. Notice that this may not hold at the beginning, that is, G
may have some cut-nodes. We will later discuss how to deal with cut nodes, by dividing
the problem further into a number of independent subproblems, one for each biconnected
component. For now, we assume that C is biconnected.

The Framework of One Recursion Level. We wish to compute a partial DFS T of C rooted
at r such that each connected component of C \ T has size at most 2|C|/3. This partial DFS
T of C is such that it can be completed to a full DFS of C rooted at r. In particular, it has
the following validity property: there are no two branches of T which are connected to each
other via a path with all its internal nodes in C \ T . In other words, for each connected
component C′i of C \ T , all neighbors of C′i in T are in one branch (i.e., rooted path) of
T . Once we compute this partial DFS T , we can then recurse on each of those remaining
connected components of C \ T , all in parallel. As the component size decreases by a 2/3
factor per level of recursion, the recursion has depth O(logn).

The Procedure for One Recursion Level. Thus, the key is to grow a partial DFS T of C
in Õ(D) rounds, in a way that each connected component of C \ T has size at most 2|C|/3.
We will do this in Õ(D) rounds. For that purpose, we compute a separator path P ⊆ C of C.
That is, each connected component of the graph C \ P has size at most 2|C|/3. We explain
this subroutine in the next section. For now, let us assume that such a path P is computed.

Let Q be a simple path that connects the root r to some node in P (and is other-
wise disjoint from P). Let v be the endpoint of Q in path P and suppose that P =
u1, u2 . . . , u`, v, w1, w2, . . . , w`′ . Let P1 = u1, u2 . . . , u`, v and P2 = v, w1, w2, . . . , w`′ . We
will use the longer one of P1 and P2 and append it to the path Q connecting the root r to v.
Without loss of generality, suppose that the longer subpath is P2. We add the path Q ∪ P2
as the first branch of the DFS T . Moreover, we update the separator P to be the remaining
part of the separator path, concretely P1 in the assumed case. We note that this is the idea
that we borrow from Aggarwal and Anderson [1]. We have two important properties: (1) the
new path P is still a separator of C \ T , and (2) the length of the new separator path P is at
most half of the length of the previous separator.

Thanks to these two properties, we have the means to continue and exhaust the separator
path in O(logn) repetitions. Each time we grow the partial DFS T further. Let us explain
one step of this repetition. Fig. 1 illustrates an example for this step. We find the deepest
node r′ in the current partial DFS T rooted at r that is directly or indirectly connected to a
node in the current separator P , in the graph C \ T . Notice that this deepest node is unique,
due to the validity of the current partial DFS, as all neighbors of the connected component of
C \ T containing P are in one branch of T . We then find a path Q as above starting from r′

and connecting to some node v in P . This is done with the help of an Õ(D) round minimum
spanning tree (MST) algorithm of Ghaffari and Haeupler [17], as we outline next.

In particular, let each node of T send its DFS depth to its neighbors in C \ T . Then, we
run a connected component identification algorithm of [17] on the subgraph C′ = C \ T of G.
In identifying the connected components of the graph C′ = C \ T , the component leader is
chosen according to having a T -neighbor with deepest DFS depth. This finds the deepest
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𝒫

𝑇

𝑄

Figure 1 Growing the partial DFS tree. The green tree shows the current partial DFS T , and
the rest of the nodes are those of C \ T . The red path shows the current separator path P. The
black path is Q, which connects the deepest point of T to some node in P. The green dotted line
indicated the path that will be added to the DFS, which is composed of Q and the longer half of P
from the point of intersection with Q. After this DFS growing, the leftover separator P will be the
single edge at the left endpoint of P. This is still a separator path of C \ T , for the new T .

node r′ of T that is in the connected component of P and thus has a path to P . Furthermore,
we can find a path Q ⊂ C \ T connecting r′ to P in a similar manner.

Let us explain this step for finding path Q, in Õ(D) rounds. On the graph C′, give an
edge weight of 0 to each P edge and edge weight of 1 to each C′ \ P edge. Then, compute
an MST of C′ according to these weights using the algorithm of [17]. The unique path of
weight-1 edges in the MST that connects node r′ to a node v ∈ P is our desired path Q.
This path Q can be identified in Õ(D) rounds. One endpoint of it r′ is clear by now. We
first identify the other endpoint v, as follows: Discard all the zero-weight edges of the MST.
Then, with another iteration of [17] on the subgraph edge-induced by weight-1 edges of the
MST, we can identify the node v ∈ P who is the endpoint of the path Q connecting r′ to P .
This is the only P-node in the same component with r′. Now that we have the two endpoints
r′ and v of our path Q, which is a part of the computed MST, we can fully mark this path
Q in Õ(D) rounds, easily. We defer the details of that step to the full version, where we
explain a routine for marking a tree-path connecting two nodes.

Now that we have found a path Q connecting the deepest possible node r′ of T to a
node v ∈ P, we work as before. We break P at v, as depicted in Fig. 1, and append the
longer half to Q, and then add the resulting path to the DFS T , essentially hanging it from
node r′ ∈ T . This is the dotted green path in Fig. 1. One can see that, as we chose v to be
the deepest T -node with a connection to P, the resulting new tree T preserves the validity
property. That is, each remaining connected component of C \ T has neighbors in only one
branch of the this new DFS tree T . This is because each newly added node is connected to
the deepest possible point in the DFS. After each such repetition, the length of the remaining
separator path P decreases by a 1/2 factor. Hence, after O(logn) iterations, we exhaust P.
At that point, we have a valid partial DFS T rooted at r and furthermore, C \ T is made of
connected components, each of which has size at most 2|C|/3.

Preparation for Next Recursions. At this point, we are almost ready for recursing on the
connected components of C \ T , each as a subproblem of its own. Though, we should do a
preparation step so that each subproblem is in the format that we assumed above, while
describing the recursive step. In particular, we should identify the connected components
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Figure 2 An induced connected subgraph C of G, depicted with its DFS root r, as well as its
biconnected components and the corresponding cut-nodes v1 to v6.

C1, C2, . . . , C` of C \ T , by giving a connected component identifier to each of them, and
more importantly, we should declare a DFS root for each of them. Let each node in T sends
its DFS depth to each of its neighbors in C \ T . Then, for each component Ci, we define the
component leader and also the DFS root ri to be a node v ∈ Ci that received the greatest
DFS depth from its T neighbors (breaking ties based on the id of v). Notice that for each
component, this greatest depth T -node is uniquely defined, because of the validity of the
partial DFS. Moreover, this is a valid DFS root, in the sense that adding a DFS of Ci rooted
at ri to the current partial DFS T would be a correct partial DFS. These component leaders
(i.e., component-wise DFS roots ri) can be identified for all the connected components in
parallel in Õ(D) rounds, using the connected component identification algorithm of Ghaffari
and Haeupler [17] for planar graphs. It is crucial to note that here D is the diameter of the
very base graph G and not just C. See [17] for details.

Dealing with Cut Nodes. Finally, we come back to the assumption of the connected
component C being biconnected, and we address the possibility of having cut nodes. Fig.
2 illustrates an example for this case, where a connected component C is drawn which has
several cut nodes. In this case, we break the problem into several independent DFS problems
that can be solved independently. In particular, we will partition the graph into edge-disjoint
parts, each being one of the biconnected components of C, and we solve a rooted DFS problem
in each of these biconnected components. The root of the biconnected component containing
root r is node r itself. For each other biconnected component C, the DFS root is the cut
node of C that lies on the shortest path to the root r. It is easy to see that if we compute
these rooted DFSs and glue them together in the natural way—hanging the DFS of each
biconnected component C from its root as a subtree of DFS of the neighboring biconnected
component closer to the node r — we get a DFS of C. Computing a rooted DFS in each of
these biconnected component is performed using the recursive method explained above. So,
what remains to be explained is identifying two things (1) the biconnected components of C,
and (2) the corresponding DFS roots. We describe these components in the full version.

4 Computing A Separator Path

4.1 Method Outline and Challenges
A celebrated result of Lipton and Tarjan [30] demonstrates the existence of a separator path
in planar graphs. Their proof shows that
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Any spanning tree T in a planar graph G = (V,E) contains a tree path P ⊆ T which is
a separator path. That is, each connected component of G \ P contains at most 2|V |/3
nodes.

If one takes T to be a BFS (i.e., shortest path tree) of G, then the separator consists of at
most two shortest paths. Hence, in this case, the separator path also has a small length of
O(D). For our purposes in this section, we do not need a small separator. Moreover, for
reasons that shall become clear during the recursive steps, we will not be able to pick our
separators based on BFS trees (of the remaining components). We will work with more
general trees, and thus will not insist on the separator path being small. As a side remark,
we note that if we did not need the separator to be a path, then there would be ways for
having it be also small (even throughout the recursions).

In most applications of separators, we need to compute the separators not once but rather
many times, recursively. That is, after computing a separator path in G, the separator is
removed and the graph breaks into connected components; then in each component, we
compute a separator and recurse. The first recursion level where we compute the separator in
G may be delusively simple. This is because, whereas the diameter of G is D, in later levels,
we need to compute the separator in connected induced subgraphs C, which potentially may
have much larger diameter than D.

Throughout this section, we describe how to compute a separator for a given induced
subgraph C ⊆ G, which is biconnected, but may have diameter much larger than D. We
note that in reality, there are potentially many subgraphs C1, C2, . . . , CN for which we
are computing separators, at the same time. Our description focuses on just one of these.
Dealing with all these disconnected subgraphs in parallel will follow by standard usage of
low-congestion shortcuts.

To avoid cumbersome notation, let us abuse notation and use n as the size of the
subgraph C. Our algorithm will compute a path P that breaks C \ P into components of size
[n/(3(1 + ε)), 2(1 + ε)n/3], for a small constant ε > 0, say ε = 0.01.

Algorithm Outline. Here, we describe a high-level outline of the algorithm for finding a
separator path. We start by computing a spanning tree T in C. This is done using the MST
algorithm of [17], in Õ(D) rounds, where D is the diameter of the base graph G rather then
the diameter of the subgraph C. Our separator path will correspond to a fundamental cycle
of the MST tree T in C. Picking this primal tree T also leads to defining a dual tree T ′,
containing the dual edges of the non T -edges, as described in Sec. 2. See Fig. 3. In this
dual-tree T ′, each two faces who share a non-tree edge e /∈ T are adjacent. We will use this
dual tree T ′ to find a collection of faces, i.e., dual nodes, that can be merged into a superface
whose boundary can be used as a separator.

To choose a separator path on the tree T , we introduce the notion of weight for the
dual-tree T ′. We define the weight of a superface to be the number of nodes on the superface
boundary plus the number of nodes inside the superface. Let Fi denote the superface
corresponding to the dual-node v′i, obtained by merging the faces of all dual-nodes in the
subtree T ′(v′i), i.e., the subtree of the dual tree T ′ rooted in v′i. The weight of the subtree
T ′(v′i) is the weight of the superface Fi.

Our algorithm would not be able to compute the exact weights and instead it would
compute a (1 + ε)-approximation of these weights. Using these approximated weights, we
explain how the algorithm chooses a separator path. First, the algorithm attempts to find
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Figure 3 Shown is a planar graph and its path separator as computed by our algorithm. Solid
edges are T -edges and the dashed blue edges are the non T -edges. These non-tree edges define the
edges of the dual-tree T ′. The dual-nodes are depicted as squares and the dual-edges of T ′ are the
curved green edges in the figure. The dual-node v′

b is a balanced dual-node as the total weight of its
superface (shown in the figure) is in [n/(3(1 + ε)), 2(1 + ε)n/3]. The boundary of the superface of
v′
b—i.e., the subtree of dual rooted in v′

b—consists of one non T -edge e = {u, v} and a T -path. The
path-separator, indicated via thick black edges, is the T -path between u and v.

an (approximate) balanced dual-node v′b such that the weight of its subtree T ′(v′b) is in
[n/(3(1 + ε)), 2(1 + ε)n/3]. If such a dual-node exists, then the boundary of the corresponding
superface—obtained by merging all the faces in the dual subtree of v′b—is a cycle separator.
It is indeed a fundamental cycle of T . See Fig. 3 for an illustration. Otherwise, if no balanced
dual-node exists, there must be a dual-node v′c such that the weight of its subtree T ′(v′c)
is larger than 2(1 + ε)n/3 but the weight of each of its descendants sub-trees is less than
n/(3(1 + ε)). We call v′c a critical dual-node.

In the case that we have a critical dual-node, we will compute a separator path slightly
differently. This will be essentially by mimicking the separator computation of Lipton and
Tarjan in the triangulated version of G. In fact, it will suffice to triangulate only the face
corresponding to the dual-node v′c. We note that generally, it is unclear how to efficiently
simulate triangulation in distributed manner as this requires simulating many virtual edges.
Our construction, however, only uses triangulation implicitly in the analysis. That is, we
compute a separator and then show that it is the same as computed by the algorithm of
Lipton and Tarjan on the triangulated version of C.

Challenges and Our Approach for Overcoming Them. Our goal is to implement the above
algorithm in Õ(D) rounds, where D is the diameter of the base graph G. Note that the
diameter of C might be as large as Θ(n). We face two key challenges: (CI) we need to
simulate each dual-node in a distributed manner. Note that a dual node is made of a face,
which can be long, and it may interact with other faces through far apart parts of this face.
(CII) More severely, we need to implement communications on the dual tree. The nodes and
edges of this tree are not real nodes and edges of the graph. Even simulating each node of it
is not straightforward, and is the challenge mentioned before. To add insult to injury, the
diameter of the dual tree (even in terms of dual-nodes) can be much larger than D. For
instance, it is possible that the primal graph has diameter D = O(1) and yet, the diameter
of the dual graph is Θ(n). We next briefly outline the methods we use for overcoming these
two challenges.

To deal with challenge (CI), we use the low-congestion shortcuts of [17], as defined in
Def. 2, one shortcut for each of the faces. This application is not straightforward because an
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important requirement for low-congestion shortcuts is not met in our setting. To use the
low-congestion shortcuts of [17], the collection of subsets S1, . . . , Sk must be node-disjoint. In
our case, however, the Si sets are the nodes of faces. Hence, these sets are not node-disjoint;
in fact, a node may belong to several different faces. We bypass this obstacle by transforming
the graph G into an auxiliary graph Ĝ, in which the sets Si, that correspond to the faces of
C, are mapped to node-disjoint connected sets. We then show that the auxiliary graph Ĝ
can be simulated efficiently in the original graph G.

To deal with challenge (CII), our approach is inspired by a method of [17, Section
5] for aggregating information on a tree with large diameter in planar graphs with low
diameter. They used this method for aggregating information on the MST. Though, we
need to adjust this method to suit our case. A straightforward combination would suggest a
round complexity of Õ(D2). This is because, our method for communication inside faces (i.e.,
dual-nodes) itself takes Õ(D) rounds, and on top of that, the method of [17, Section 5] for
dealing with large-diameter trees needs Õ(D) iterations of communicating on the dual-nodes.
Thus, the naive combination would be Õ(D2). We will however be able to put the ideas
together in a way that leads to a round complexity of Õ(D).

Roadmap. In Sec. 4.2, we present the basic computational tools for efficient distributed
communication inside a dual-node and on a dual tree, i.e., dealing with challenges (CI) and
(CII) respectively. Then, we present our algorithm for computing a path-separator in an
arbitrary (biconnected) induced subgraph C ⊆ G, using the tools explained in Sec. 4.2. The
related analysis and smaller subroutines appear in the full version.

4.2 Key Tools
We begin by explaining how to preform communication inside nodes of each face, and later
how to perform communication on the dual tree.

4.2.1 Tool (I): Communication Inside Dual-Nodes
To simulate communication inside the dual-nodes, we consider two basic tasks.
(T1) Face identification: Assign each face Fi in C a unique ID, ID(Fi), such that each node

knows the IDs of the faces to which it belongs. In addition, for each edge {u, v} ∈ C,
the endpoints of this edge should know the two face IDs, (ID(Fi), ID(Fj)), to which the
edge {u, v} belongs.

(T2) Low-Congestion Shortcuts for all Faces: Let Si denote the nodes of face Fi. Compute
an (α, β) low-congestion shortcuts Hi for the Si sets, for α, β = Õ(D).

To tackle both of these tasks, we transform the original planar graph G into a virtual planar
graph Ĝ in which the subsets of nodes belonging to the faces of C are mapped to node-disjoint
subsets Ŝi for which low-congestion shortcuts can be computed. We then show that any
r-round algorithm for Ĝ can be simulated in G using 2r rounds.

The virtual graph Ĝ is defined as follows. See Fig. 4. First, it contains all edges of G \ C.
The edges of C are transformed in the following manner. Consider a node v that belongs
to y faces Fi1 , . . . , Fiy

in C, ordered in a clockwise manner. Then, v creates y many virtual
copies of itself named v1, . . . , vy. In Ĝ, the identifier of the `th copy of v is (IDv, `). By
computing the embedding of the original graph G, each node v knows the clockwise ordering
of all its edges in G. This can be used to deduce the clockwise ordering3 of its edges in C.

3 Note that since the diameter of C can be larger than D, we cannot afford computing the embedding for
C from scratch, via communicating only inside C.
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𝑣

𝑣
𝑣1

𝑣2

𝑣3

Figure 4 The transformation from G to Ĝ, which maps faces to node-disjoint connected subsets.
The left figure depicts the graph before the transformation, and the right one depicts it after the
transformation. The dotted links show the star-edge ES . Notice that in the graph Ĝ after the
transformation, if we remove the star-edges, we get a collection of connected components, each
corresponding to a face of C.

The clockwise ordering of the edges of v in C imposes a local numbering of its faces in C,
each two consecutive edges in the clock-wise order define one new face. On each edge {u, v},
the nodes u and v exchange their local face numberings for that edge. Since a given edge
appears in at most two faces, this can be done in 2 rounds. In the graph Ĝ, we connect v
to y copies v1, . . . , vy, one per face in C. In addition, for each edge {v, u} ∈ C belonging to
the ith face of v and the jth face of u, we connect vi to uj . We use ES to denote the set of
star-edges {v, vi} in Ĝ.

The graph Ĝ is planar. Furthermore, it has the additional benefit that the nodes
corresponding to the faces of the C are now node-disjoint subsets, while still each face induces
a connected subgraph. Hence, one can construct low-congestion shortcuts for these node
sets in the graph Ĝ. Notice that Ĝ has diameter at most 3D. This is because every edge
{u, v} ∈ C becomes a path (u − ui − vj − v) in Ĝ, and every edge not in C is unchanged.
Since each edge belongs to two faces, we have:

I Lemma 3 (Simulation of Ĝ in G). Any r-round algorithm A in Ĝ can be implemented in
G within at most 2r rounds.

Proof. The edges of C are transformed into two types of edges in Ĝ: star-edges between v
and its copies, whose simulation requires no real communication in G, and face-edges {vj , ui}.
Since each edge {u, v} in G simulates the communication of two edges, namely, {ui1 , vj1}
and {ui2 , vj2} in Ĝ, every round r of A in Ĝ can be implemented in G using two rounds. J

From now on, it suffices to consider algorithms in Ĝ. Since the node faces are the connected
components of Ĝ \ ES , we have:

I Lemma 4. The Faces Identification task can be solved in Õ(D) rounds.

Proof. Let C be the induced subgraph of G, which is biconnected, and for which we are
computing a separator path. Let Ĉ be the subgraph of Ĝ. We employ the Õ(D)-round
connectivity algorithm of [17] in the graph Ĝ \ ES but only for the nodes of C. Recall that
ES denotes the star edges in Ĝ. By using Lemma 3, this algorithm can be simulated in G in
Õ(D) rounds. Let the ID of each connected component of Ĉ \ES be the node with maximum
ID in the component. Since each connected component of Ĉ \ ES corresponds to a face of C,
each node now knows the IDs of its faces, in particular, it knows the face IDs of each of its
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copies in Ĉ. In addition, each node v ∈ C also learns the IDs of the two faces ID(Fi) and
ID(Fj) of each of its edges {u, v} in C. The lemma follows. J

Turning to the second task of computing low congestion shortcuts for each face Fi, we
have:

I Lemma 5. Let S1, . . . , SN be the nodes on faces F1, . . . , FN of the graph C. W.h.p., one
can construct in Õ(D) rounds, an (α, β) low-congestion shortcut graphs H1, . . . ,HN for
α, β = O(D logD).

Proof. Consider the algorithm A of [17] for constructing the low-congestion shortcuts in Ĝ.
By Lemma 3, Algorithm A can be simulated in G in Õ(D) rounds. Let Ĥi be the (α, β/2)
low-congestion shortcuts computed for the sets Ŝi in Ĝ. Let Hi be obtained from Ĥi by
omitting star-edges {v, vj} and replacing {ui, vj} edges with {u, v} edges. The subgraphs
Hi are (α, β) low-congestion shortcuts for the sets Si in C. J

I Corollary 6. One can compute any aggregate function, which has O(logn)-bit size values,
in all faces of C in parallel in Õ(D) rounds.

4.2.2 Tool (II): Communication on the Dual Tree
In tool (I), we described how to perform efficient communication within each face, that is,
inside each node of the dual tree. We now explain how to perform efficient communication
on the dual tree T ′ of a spanning tree T of the subgraph C. We mainly need to solve the
following two computational tasks in the dual tree T ′: (D1) Edge Orientation: orienting the
dual-edges towards a given dual root, and (D2) Subset-OR: given a rooted dual tree T ′, and
initial binary input values x(v′) for each dual-node v′, the leader node `(v′) of the dual node
v′ should learn the OR of its subtree, that is, the value y(v′) = ∨u′∈T ′(v′)x(u′).

An important tool for both of these tasks is a recursive fragment merging process, which
we describe next. In Subsec. 4.2.2, we then describe how to use this recursive merging to
solve the two tasks (D1) and (D2).

Recursive Face-Merging Process. To avoid computation in time O(Diam(T ′)), we employ
an idea of [17, Section 5]. It is worth noting that this idea itself is inspired by merges in the
style of Boruvka’s classical minimum spanning tree algorithm [35].

We have O(logn) levels of merging faces, where each merge happens along some edge of
the dual-tree node T ′. The faces involved in each merge correspond to a connected subgraph
of the dual tree, which we will call a fragment or a face-fragment, stressing that it is a
merge of some faces. The dual-tree gets partitioned into fragments in a hierarchical fashion,
where the fragments of level i are formed by merging fragments of level i − 1. See Fig. 5
for an illustration. Considering that the dual-tree nodes are faces of the primal graph, the
fragments of the ith-level are obtained by merging the (sets of) faces corresponding to the
fragments of level i− 1. The O(logn) levels of face-fragment merging of the dual tree T ′ are
implemented by using low-congestion shortcuts in G, as described next. For every fragment
j in level i, let Si,j be the set of nodes appearing on the faces of fragment j. By using the
tools provided in Subsec. 4.2.1 and mainly Lemma 5, we construct low-congestion shortcut
subgraphs for each set Si,j (i.e., despite the fact that these sets are not disjoint). Here, we
slightly change the definition of the auxiliary graph Ĝ that was defined in Subsec. 4.2.1.
For simplicity, consider the first level of the face merging process where two faces of C, say
Fj and Fk, are merged. Let e = {u, v} be a common edge of Fj and Fk. The endpoint u
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Figure 5 The fragmentation of the dual-tree from Fig. 3. Shown are the first three levels of
merging. As each dual-node corresponds to a face in G, the merged fragment of the dual-tree is
formed by a merging of faces.

indicates the merging of these faces in the auxiliary graph Ĝ, by adding an edge between
its copies uj and uk corresponding to the merged faces Fj and Fk. As a result, the nodes
on the faces Fj and Fk now belong to the same connected component in the graph Ĝ \ ES

(where ES are the star-edges {u, uj}). Since the face identification is done by identifying the
connected components of Ĝ \ ES , this step ensures that Fj and Fk would be identified as
one merged face.

Equipped with the low-congestion shortcut subgraphs for each face-fragment (i.e., the
node sets Si,j), all nodes inside each fragment can communicate in their fragment in parallel,
for all fragments in level i, in Õ(D) rounds. Hence, the O(logn) face merging process can
be done in Õ(D) rounds. A detailed description of the face merging process is described in
the full version. We conclude by presenting a concise description of the entire algorithm, its
detailed description and analysis is deferred to the full version.

Algorithm ComputePathSep

Input: A n-node biconnected induced subgraph C of a planar graph G with diameter D,
approximation parameter ε ∈ (0, 1/2).
Output: A separator path P in C, so that each component of C \ P has size at most
2(1 + ε)n/3.

Step (S1): Computing the Dual Tree T ′

Compute an MST T in C. Non T -edges of C correspond to the edges of dual-tree T ′.
Step (S2): Orienting the Dual Tree T ′ Towards a Root

This step is done via a recursive face-fragment merging process.
Step (S3): Computing the Weights of the Dual Nodes in T ′

For each i ∈ {1, . . . , log1+ε n}, we have Nε = Oε(logn) experiments, as follows:
∗ Sample each of the nodes of C with probability 1/(1 + ε)i.
∗ Use Subset-OR to inform each dual-node if there is a marked node in its subtree.
Using these experiments, dual-nodes deduce a (1 + ε) approximation of their weight.
Detect a balanced dual-node, i.e., a dual-node with weight in [n/(3(1 + ε)), 2(1 + ε)n/3].
If there is no balanced dual-node, detect a critical dual-node, that is, a dual-node with
weight at least 2(1 + ε)n/3 but each of its children has weight less than n/(3(1 + ε)).

Step (S4): Marking the Separator Path
For balanced dual node: mark the tree path connecting the boundary of its superface.
For critical dual-node: mark a tree path by simulating Lipton-Tarjan on its superface.
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Abstract
The Arrow protocol is a simple and elegant protocol to coordinate exclusive access to a shared
object in a network. The protocol solves the underlying distributed queueing problem by using
path reversal on a pre-computed spanning tree (or any other tree topology simulated on top of
the given network).

It is known that the Arrow protocol solves the problem with a competitive ratio of O(logD)
on trees of diameter D. This implies a distributed queueing algorithm with competitive ratio
O(s logD) for general networks with a spanning tree of diameter D and stretch s. In this work
we show that when running the Arrow protocol on top of the well-known probabilistic tree
embedding of Fakcharoenphol, Rao, and Talwar [STOC 03], we obtain a randomized distributed
online queueing algorithm with expected competitive ratioO(logn) against an oblivious adversary
even on general n-node network topologies. The result holds even if the queueing requests occur
in an arbitrarily dynamic and concurrent fashion and even if communication is asynchronous.
The main technical result of the paper shows that the competitive ratio of the Arrow protocol is
constant on a special family of tree topologies, known as hierarchically well separated trees.
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1 Introduction

Coordinating the access to shared data is a fundamental task that is at the heart of almost
any distributed system. For example, when implementing a distributed shared memory
system on top of a message passing system, each shared register has to be kept in a coherent
state despite possibly a large number of concurrent requests to read or write the shared
register. In a distributed transactional memory system, each transaction might need to
operate on several shared objects, which need to be kept in a consistent state [17, 26, 30].
When implementing a shared object on top of large-scale network, a distributed directory
protocol can be used to improve scalability of the system [1, 2, 4, 6, 7, 17, 26]. When a
network node requires access to a shared object, the directory moves a copy of the object
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to the node requesting the object. If the node changes the state of the shared object, the
directory protocol has to make sure that all existing copies of the object are kept in a
consistent state.

Distributed Queueing. At the core of many distributed directory implementations is the
following basic distributed queueing problem that allows the system to order potential
concurrent access requests to a shared object [15]. The nodes of a network issue queueing
requests (e.g., requests to access a shared object) in a completely dynamic and possibly
arbitrarily concurrent manner. A queueing protocol needs to globally order all the requests
so that they can be acted on consecutively. Formally, each request has to find its predecessor
request in the order. That is, when enqueueing a request r issued by some node v, a queueing
protocol needs to find the request r′ that currently forms the tail of the queue and inform
the node v′ of request r′ about the new request r. The cost of enqueueing request r after
request r′ is defined as the delay from when request r is issued until when the node v′ knows
that r is the successor request of r′.

The Arrow Protocol. A particularly simple and elegant solution for this distributed queue-
ing problem is given by the Arrow protocol, which was introduced independently (in slightly
different forms) by Naimi and Trehel, Raymond, as well as van de Snepscheut in the context
of distributed mutual exclusion [21, 24, 29]. The Arrow protocol operates on a directed tree
topology T = (V,E). In a quiescent state, the tree is rooted at the node u of the current tail
of the queue, i.e., all edges of T are directed towards u. When a new queueing request is
issued at a node v, the directions of the edges on the path between v and the previous tail u
are reversed so that the tree is now rooted at v. For a precise description of the protocol,
we refer to Section 2. It has been shown in [8] that the Arrow protocol correctly solves
the queueing problem even in an asynchronous system even if the requests are issued in a
completely dynamic and possibly concurrent way. Moreover, the Arrow protocol guarantees
that every request finds the node of its predecessor on a direct path (i.e., within D time
units if D is the diameter of T ). The overall cost of some queueing algorithm is the sum
of delays between when each request is issued and when its predecessor in the final order
knows about it. In [14], it was further shown that on a tree T , the overall cost of the Arrow
protocol for ordering a dynamic set of queueing requests is within a factor O(logD) of the
cost of an optimal offline queueing algorithm, which knows the request sequence in advance.1

Contribution. In the present paper, we strengthen the result of [14] and we show that when
run on the right underlying tree, the Arrow protocol is O(logn)-competitive even on general
n-node network topologies. The competitive ratio achieved by the Arrow protocol is the worst
case ratio between the cost of Arrow and the cost of an optimal offline ordering strategy. The
best previously known competitive ratio for the distributed queueing problem with arbitrarily
dynamically injected requests on general graphs is O(log2 n · logD) as shown in [27] for
the hierarchical schemes defined of [4, 26]. This shows that (under some assumptions), the
simple and elegant Arrow protocol outperforms all existing significantly more complicated
distributed queueing protocols. We note that our protocol is based on a randomized tree
construction and its competitive ratio is w.r.t. an oblivious adversary (i.e., the adversary
needs to determine the sequence of requests before the construction of the tree). Other

1 Note that this implies a competitive ratio of O(s · log D) for general graphs if a spanning tree T of
diameter D and stretch s is given.
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protocols with polylogarithmic competitive ratio are deterministic and they therefore also
work in the presence of an adaptive adversary. For a more detailed comparison of our results
with existing protocols, we refer to the discussion in Section 1.1.

More specifically, as our main technical result, we show that the Arrow protocol is O(1)-
competitive when it is run on a special class of trees known as hierarchically well separated
trees [5]. A hierarchically well separated tree (in the following referred to as an HST) with
parameter α > 1 is a weighted rooted tree, where on each level, all the nodes are at the
same distance to the root (the distance to the root depend on α and on the level) and all
the leaves are on the same level (and thus also at the same distance to the root). Further,
the edge lengths decrease exponentially (by a factor α per level) when going from the root
towards the leaves. The properties of HSTs as well as the way we utilize HSTs are formally
described in Section 2. When running Arrow on an HST T , we assume that all requests are
issued at the leaves of T . We show that the total cost of an Arrow execution on an HST T is
within a constant factor of the total cost of an optimal offline algorithm for the given set of
requests. Our result even holds if the communication on T is asynchronous.

I Theorem 1. Assume that we are given an HST T with parameter α = 2 and queueing
requests R that arrive in an arbitrarily dynamic manner at the leaves of T . When using the
Arrow protocol on tree T , the total cost for ordering the requests in R is within a constant
factor of the cost of an optimal offline algorithm for ordering the requests R on T . This even
holds if communication is asynchronous.

I Remark. Because the statement of the theorem applies to the general asynchronous case,
it also captures a synchronous scenario, where the delay on each edge is fixed, but might be
smaller than the actual weight of the edge in the HST. Such executions are relevant because
an HST T is often built as an overlay graph on top of an underlying network graph G, where
each edge of weight w in T is mapped to a path of length at most w in G and thus even in
a synchronous execution, the delay when sending a message across the edge of T might be
smaller than the weight of the edge.

For a precise description of the Arrow protocol and the definition of queueing cost, we refer
to Section 2. When combining Theorem 1 with the celebrated probabilistic tree embedding
of Fakcharoenphol, Rao, and Talwar [9], we get our main result for general graphs. In [9], it
is shown that there is a randomized algorithm that given an arbitrary n-point metric (X, d)
constructs an HST T such all points X are mapped to leaves of T , all distances in (X, d)
are upper bounded by the respective distances in T , and the expected distance between any
two leaves in T is within an O(logn) factor of the distance between the corresponding two
points in X. When constructing such an HST T for a given graph G and when assuming
an oblivious adversary2, this implies that the expected total cost of Arrow on T is within
an O(logn) factor of the optimal offline queueing cost on G. We also note that an efficient
distributed construction of the HST embedding of [9] has been given in [10].

I Theorem 2. Assume that we are given an arbitrary graph G = (V,E) and queueing requests
R that arrive in an arbitrarily dynamic manner at the nodes of G. There is a randomized
construction of an HST T that can be simulated on G such that when running Arrow on
T , we get a distributed queueing algorithm for G with expected competitive ratio at most
O(logn) against an oblivious adversary providing the sequence of requests. This even holds
if communication is asynchronous.

2 That is, when assuming that the sequence of requests is statistically independent of the randomness
used to construct the HST T or equivalently, if the adversary determines the sequence of requests before
the tree T is constructed.
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Organization of the Paper. The remainder of the paper is organized as follows. Section 2
formally defines the queueing problem, the Arrow protocol, as well as the cost model used
in our paper. The section also contains some lemmas that establish some basic properties
that are needed for the rest of the paper. Section 3 analyzes the cost of an optimal offline
algorithm on an HST T by relating it to the total weight of an MST defined on the set of
requests. In Section 4, we introduce a general framework to analyze the queueing cost of
distributed queueing algorithms on an HST T and the framework is applied to synchronous
executions of the Arrow protocol. For the analysis of asynchronous executions, we refer to
the full version of the paper [11]. Due to lack of space, we also need to omit most proofs
throughout the technical sections of the paper. All the missing proofs can also be found in
the full version [11].

1.1 Related Work
The Arrow protocol has been introduced (in somewhat different forms) by Naimi and Trehel,
Raymond, as well as van de Snepscheut [24] as a way to solve the mutual exclusion problem
in a network. The protocol was later reinvented by Demmer and Herlihy [8], who used Arrow
to implement a distributed directory [6]. Over the years, Arrow has been used and analyzed
in different contexts [14, 16, 18, 19, 22, 28]. The protocol has been implemented as a part
of Aleph Toolkit [16] and shown to outperform centralized schemes significantly in practice
[19]. Several other tree-based distributed queueing protocols that are similar to the Arrow
protocol have also been proposed in the literature. A protocol that combines the ideas of
Arrow with path compression has been implemented in the Ivy system [20]. The amortized
cost to serve a single request is only O(logn) [12], however the protocol needs a complete
graph as the underlying network topology. There are also other similar protocols that operate
on fixed trees. The Relay protocol [30] has been introduced as a distributed transactional
memory protocol. It is run on top of a fixed spanning tree similar to Arrow, however to more
efficiently deal with aborted transactions, it does not always move the shared object to the
node requesting it. Further, in [2], a distributed directory protocol called Combine has been
proposed. Combine runs on a fixed overlay tree and it is in particular shown in [2] that
Combine is starvation-free.

The first paper to study the competitive ratio of concurrent executions of a distributed
queueing protocol is [15]. The paper shows that in synchronous executions of Arrow on a
tree T , if all requests are issued at time 0 (known as one-shot executions), the total cost of
Arrow is within a factor O(log |R|) compared with the optimal queueing cost on tree T . This
analysis has later been extended (and slightly strengthened) to the general concurrent setting
where requests are issued in an arbitrarily dynamic fashion. In [14], it is shown that in this
case, the total cost of Arrow is within a factor O(logD) of the optimal cost on the tree T .
Later, the same bounds have also been proven for the Relay protocol [30] and the Combine
protocol [2]. Typically, these protocols are run on a spanning tree or an overlay tree on top
of an underlying general network topology. While the cost of all these protocols is small
when compared with the optimal queueing cost on the tree, the cost of the protocols might
be much larger when compared with the optimal cost on the underlying topology. In this
case, the competitive ratio becomes O(s · logD), where s is the stretch of the tree. There are
underlying graphs (e.g., cycles) for which every spanning tree and even every overlay tree
has stretch Ω(n) [13, 23]. The fact that even the best spanning tree might have large stretch
initiated the work on distributed queueing protocols that run on more general hierarchical
structures. In [17], a protocol called Ballistic is introduced and analyzed for the sequential
and the one-shot case. Ballistic has competitive ratio O(logD), however the protocol requires
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the underlying distance metric to have bounded doubling dimension and it thus cannot be
applied in general networks. The best protocol known for general networks is Spiral, which
was introduced in [26]. Spiral is based on a hierarchy of overlapping clusters that cover the
graph. It’s general structure is thus somewhat resembling the classic sparse partitions and
mobile objects solutions by Awerbuch and Peleg [3, 4]. The competitive ratio of Spiral is
shown to be O(log2 n · logD) for sequential and one-shot executions in [26]. In [27], a general
framework to analyze the cost of concurrent executions of hierarchical queueing and directory
protocols has been presented. In particular, in [27], the competitive analysis of Spiral and
also of the classic mobile object algorithm of Awerbuch and Peleg [3, 4] has been extended to
the dynamic setting. In [14], it is sketched how the competitive analysis for Arrow generalizes
to the asynchronous case.

2 Model, Problem Statement, and Preliminaries

Communication Model. We consider a standard message passing model on a network
modeled by a graph G = (V,E). In some cases, the edges of G have weights w : E → R>0,
which are assumed to be normalized such that w(e) ≥ 1 for all e ∈ E. We distinguish
between synchronous and asynchronous executions. In a synchronous execution, the delay for
sending a message from a node u to a node v over an edge e connecting u and v is exactly 1
if the edge is unweighted and exactly w(e) otherwise. In an asynchronous execution, message
delays are arbitrary, however when analyzing an asynchronous execution, we assume that
the message delay over an edge e is upper bounded by the edge weight w(e) (or by 1 in the
unweighted case).

The Distributed Queueing Problem. In the distributed queueing problem on a graph
G = (V,E), a set R of queueing requests ri = (vi, ti) are issued at the nodes of V (every
node can issue multiple requests) in an arbitrarily dynamic fashion. The goal of a queueing
algorithm is to order all the requests. Specifically, if a request ri = (vi, ti) is issued at node
vi at time ti ≥ 0, the algorithm needs to enqueue the request ri by informing the node vj of
the predecessor request rj = (vj , tj) in the constructed global order. For this purpose, every
queueing algorithm in particular has to send (possibly indirectly) a respective message from
node vi to vj . We assume that at time 0, when an execution starts, the tail of the queue is
at a given node v0 ∈ V . Formally, this is modeled as a request r0 = (v0, 0) which has to be
ordered first by any queueing protocol. We sometimes refer to r0 as the dummy request. For
a set R′ of queueing requests (and sometimes by overloading notation also for a set of request
indexes), we define tmin(R′) and tmax(R′) to be the minimum and the maximum issue time t
of any request r = (v, t) ∈ R′, respectively.

The Arrow Protocol. The Arrow protocol [24] is a distributed queueing protocol that
operates on a tree network T = (V,E). At each point in time, each node v ∈ V has exactly
one outgoing link (arrow) pointing either to one of the neighbors of v or to the node v itself.
In a quiescent state, the arrow of the node of the request at the tail of the queue points
to itself and all other arrows point towards the neighbor on the path towards the tail of
the queue (i.e., the tree is directed towards the current tail). When a new request at a
node v ∈ V occurs, a “find predecessor” message is sent along the arrows until it finds the
predecessor request. While following the path to the direction of the arrows are reversed.
More formally, a request r at node v is handled as follows.
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1. If the arrow of v points to v itself, r is queued directly behind the previous request
issued at v. Otherwise if the arrow points to neighbor u, atomically, a “find predecessor”
message (including the information about request r) is sent to u and the arrow of v is
redirected to v itself.

2. If a node u receives a “find predecessor” message for request r from a neighbor w, if the
arrow of u points to itself, atomically, the request r is queued directly behind the last
request issued by node u and the arrow of u is redirected to node w. Otherwise, if the
arrow of u points to neighbor x, atomically, the “find predecessor” message is forwarded
to node x and the arrow of node u is redirected to node w.

For a more detailed description of the Arrow protocol and of how Arrow handles concurrent
requests, we refer the reader to [8, 14]. It was shown in [8] that the Arrow protocol correctly
orders a given sequence of requests even in an asynchronous network. Moreover as shown in
[8, 14], when operating on tree T , the protocol always finds the predecessor of a request on
the direct path on T . As a result, if two requests r′ and r are at distance d on T and if r′
is the predecessor of r in the queueing order, the “find predecessor” message initiated by
request r finds the node of request r′ in time exactly d in the synchronous setting and in
time at most d in the asynchronous model. Further, it is shown in [14] that the successor
request of a request r at node v in the queue is always the remaining request r′′ that first
reaches v on a direct path. This “greedy” nature of the Arrow ordering was used in [15],
where it was shown that in the one-shot case when all requests occur at time 0, the Arrow
order corresponds to a greedy (nearest neighbor) TSP path through requests, whereas an
optimal offline algorithm corresponds to an optimal TSP path on the request set. The
competitive ratio on trees then follows from the fact that the nearest neighbor heuristic
provides a logarithmic approximation of the TSP problem [25]. In [14], this analysis was
extended and it was shown that even in the fully dynamic case, it is possible to reduce the
problem to a (generalized) TSP nearest neighbor analysis. Formally, the greedy nature of
the Arrow protocol in the synchronous setting is captured by Lemma 7 in Section 3.

Hierarchically Well Separated Trees. The notion of a hierarchically well separated tree
(HST) was defined by Bartal in [5]. Given a parameter α > 1, an HST of depth h is a rooted
tree with the following properties. All children of the root are at distance αh−1 from the
root. Further, every subtree of the root is an HST of depth h − 1 that is characterized
by the same parameter α (i.e., the children 2 hops away from the root are at distance
αh−2 from their parents). The probabilistic tree embedding result of [9] shows that for
every metric space (X, d) with minimum distance normalized to 1 and for every constant
α > 1, there is a randomized construction of an HST T with a bijection f of the points
in X to the leaves of T such that for every x, y ∈ X, d(x, y) ≤ dT (f(x), f(y)) and such
that the expected tree distance E

[
dT (f(x), f(y))

]
= O(log |X|) · d(x, y). Further, an efficient

distributed implementation of the construction of [9] for the distances of a given network
graph was given in [10].

The main technical result of this paper is an analysis of Arrow on an HST T if all requests
are issued at leaves of T . Throughout the paper, the HST parameter α is set to α = 2. For
convenience, we number the levels of an HST T of depth h from 0 to h, where the level 0
nodes are the leaves and the single level h node is the root. For ` ∈ {0, . . . , h}, δ(`) := 2`+1−2
denotes the distance between two leaves for which the least common ancestor is on level `.

Cost Model. Assume when applying some queueing algorithm ALG to the dynamic set
of requests R, the requests are ordered according to the permutation πALG such that the
request ordered at position i in the order is rπALG(i) . For every i ∈ {1, . . . , |R| − 1}, we define
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the cost of ordering rπALG(i) after rπALG(i−1) as the time it takes the queueing algorithm ALG
to enqueue the request rπALG(i) as the successor of rπALG(i−1). More specifically, we assume
that request rπALG(i) can be enqueued as soon as the predecessor request rπALG(i−1) is in the
system and as soon as node vπALG(i−1) knows about request rπALG(i). Assume that algorithm
ALG informs node vπALG(i−1) (through a message) about rπALG(i) at time tALG(i). The cost
(latency) LALG(rπALG(i−1), rπALG(i)) incurred for enqueueing request rπALG(i) and the overall cost
(latency) costALG of ALG are then defined as follows.

LALG(rπALG(i−1), rπALG(i)) := max
{
tALG(i), tπALG(i−1)

}
− tπALG(i), (1)

costALG(πALG) :=
|R|−1∑
i=1

LALG(rπALG(i−1), rπALG(i)). (2)

We next specify the above cost more concretely for Arrow and for an optimal offline algorithm.
Assume that we have an execution A of the Arrow protocol that operates on a tree T . Let
πA be the ordering induced by the Arrow execution A. When the “find predecessor” message
of a request rπA(i) arrives at the node of the predecessor request rπA(i−1), clearly the request
rπA(i−1) has already occurred and thus we always have LA(rπA(i−1), rπA(i)) = tA(i)− tπA(i)
for any Arrow execution. Further note, that in a synchronous execution of arrow on tree T ,
because Arrow always finds the predecessor on the direct path, this latency cost is always
equal to the distance between the respective nodes in T .

When studying the cost of an optimal offline queueing algorithm O, we assume that O
knows the whole sequence of requests in advance. However, O still needs to send messages
from each request to its predecessor request. The message delays are not under the control
of the optimal offline algorithm. When lower bounding the cost of O, we can therefore
assume that all communication is synchronous even in the asynchronous case. Note that a
synchronous execution is a possible strategy of the asynchronous scheduler. When operating
on a graph G, the latency cost of O for ordering a request rj as the successor of a request
ri is then exactly LGO(ri, rj) = max {ti − tj , dG(vi, vj)}. As we analyze Arrow on an HST T

that is simulated on top of an underlying network G, we directly define the optimal offline
w.r.t. synchronous executions on the tree T as follows.

LTO(rπT
O(i−1), rπT

O(i)) := max
{
dT (vπT

O(i−1), vπT
O(i)), tπT

O(i−1) − tπT
O(i)

}
, (3)

costTO(πTO) :=
|R|−1∑
i=1

LTO(rπT
O(i−1), rπT

O(i)). (4)

The ordering πO is chosen such that the total cost costTO(πO) in (4) is minimized. The next
lemma shows that when using the randomized HST construction of [9], the cost (4) is within
a logarithmic factor of the optimal offline cost on the underlying network graph G.

I Lemma 3. Assume T is an HST that is constructed on top of an n-node network graph G
by using the randomized algorithm of [9] and assume that there is a dynamic set of queueing
requests issued at the nodes of G. If the sequence of requests is independent of the randomness
of the randomized HST construction, the expected optimal total cost on T (as defined in (4))
is within a factor O(logn) of the optimal offline queueing cost on G.

Given Theorem 1 (which will be proven as the main technical result of the paper) and
Lemma 3, we immediately get Theorem 2. We note in light of the remark following the
statement of Theorem 1 in Section 1, the statement of Theorem 2 is also true for synchronous
executions on the underlying graph G.
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Manhattan Cost. In the dynamic competitive analysis of Arrow on general trees in [14],
it has been shown that it is useful to study the optimal ordering w.r.t. to the following
Manhattan cost on a tree T between two queueing requests ri = (vi, ti) and rj = (vj , tj).

cTM(ri, rj) := dT (vi, vj) + |ti − tj |. (5)

As the cost function cM(ri, rj) defines a metric space on the request set, the problem of
finding an optimal ordering w.r.t. the cost cM(ri, rj) is a metric TSP problem.3 As a result,
we will for example use that the total weight of an MST on the set of request w.r.t. the weight
function cM(ri, rj) is within a factor 2 of the cost of an optimal TSP path. The following
definition is inspired by Lemma 3.12 in [14].

I Definition 4 (Condensed Request Set). A set R of queueing requests ri = (vi, ti) on a
tree T is called condensed if for any two requests ri = (vi, ti) and rj = (vj , tj) that are
consecutive w.r.t. time of occurrence, there exists requests ra = (va, ta) and rb = (vb, tb) such
that ta ≤ ti, tb ≥ tj , and dT (va, vb) ≥ tb − ta.

It is shown in [14] that for condensed request sets, the total optimal Manhattan cost is
within a constant factor of the optimal offline queueing cost.

I Lemma 5 (Lemma 3.17 in [14] rephrased). If the request set R is condensed, then on any
tree T and for every ordering π on the requests, it holds that

|R|−1∑
i=1

cTM(rπ(i−1), rπ(i)) ≤ 12 ·
|R|−1∑
i=1

LTO(rπ(i−1), rπ(i)).

For synchronous executions on trees, it is also shown in [14] that every request set R can
be transformed into a condensed request set without changing the ordering (and the cost) of
Arrow and without increasing the optimal offline cost.

I Lemma 6 (Lemma 3.11 in [14] rephrased). Let R be a set of queueing requests issued on a
tree T and let ri = (vi, ti) and rj = (vj , tj) be two requests of R that are consecutive w.r.t.
time of occurrence. Further, choose two requests ra = (va, ta) with ta ≤ ti and rb = (vb, tb)
with tb ≥ tj minimizing δ := tb− ta− dT (va, vb). If δ > 0, every request r = (v, t) with t ≥ tj
can be replaced by a request r′ = (v, t− δ) without changing the synchronous Arrow order and
without increasing the optimal offline cost.

Lemma 6 implies that every request set R can be transformed into a condensed set R′
without changing the synchronous order of Arrow and without increasing the optimal offline
cost. For the analysis of Arrow in synchronous systems, we can thus w.l.o.g. assume that the
request set is condensed.

3 Analysis of the Optimal Offline Cost

This and the next section discuss the main technical contribution of the paper and analyzes
the total cost of a synchronous Arrow execution when run on an HST T . Throughout this
section, we assume that a fixed HST T , a set of dynamic requests R placed at the leaves of T ,
and a synchronous execution of Arrow with request set R on T are given. For convenience, we

3 The relation of Arrow and the TSP problem was already exploited in [14] when analyzing Arrow on
general trees.
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relabel the requests in R so that they are ordered according to the queueing order resulting
from the given Arrow execution on T . That is, we assume that for all i ∈ {0, . . . , |R| − 1},
request ri = (vi, ti) is the ith request in Arrow’s order. Note that r0 = (v0, 0) is still the
dummy request defining the initial tail of the queue. As discussed in Section 2, the Arrow
order can be seen as a greedy ordering in the following sense. Given the first i− 1 requests in
the order, the ith request ri is a request r = (v, t) from the subset of the remaining requests
that can reach the node vi−1 of request ri−1 first immediately sending a message at time t
from node v to node vi−1. This greedy behavior is captured by the following basic lemma.
For a more thorough discussion, we refer to [14].

I Lemma 7. Consider a synchronous execution of Arrow on tree T and consider two arbitrary
requests ri and rj for which 1 ≤ i < j (i.e., rj is ordered after ri by Arrow). Then it holds
that
1. ti + dT (vi−1, vi) ≤ tj + dT (vi−1, vj) and
2. ti ≤ tj + dT (vi, vj).

Before delving into the details of the analysis, we give a short outline. In the first step
in Section 3.1, we study the ordering generated by Arrow in more detail and show that it
implies a hierarchical partition of the requests R in a natural way. To simplify the next step,
Section 3.2 transforms the given HST T into a new tree such that inside each subtree, if
ordering the request by time of occurrence, the gap between the times of consecutive requests
cannot be too large (whenever such a gap is too large, we split the corresponding subtree
into two trees). Section 3.3 then shows that the optimal offline cost can be characterized by
the total Manhattan cost of a spanning tree that respects the hierarchical structure of the
HST T in a best given way. Finally, in Section 4, we give a general framework to compare
the queueing cost of an online distributed algorithm on an HST T to the optimal offline cost
on T and we apply this method to synchronous Arrow executions.

3.1 Characterizing Arrow By A Hierarchical Partition of R

We hierarchically partition the requests R according to the Arrow queueing order and the
hierarchical structure of the HST T . On each level ` of T , we partition the requests into
blocks, where a block of requests is a maximal set of requests that are ordered consecutively
by Arrow inside some level-` subtree of T . In the following, for non-negative integers s and
t, we use the abbreviations [s] := {0, . . . , s− 1} and [s, t] := {s, . . . , t}. Formally, instead of
partitioning the set of requests R directly, we partition the set of indexes [|R|]. Recall that
the requests in R are indexed consecutively according to the queueing order of Arrow.

I Definition 8 (Hierarchical Block Partition). For each level ` ∈ [0, h], we partition [|R|] into
n(`) blocks

{
b`0, b

`
1, · · · , b`n(`)−1

}
such that

1. each block is a consecutive set of integers (i.e., a consecutively ordered set of requests),
2. for every block b`i , all requests rp for p ∈ b`i are in the same level-` subtree of T , and
3. for all i, j ∈ [n(`)] and all p ∈ b`i and q ∈ b`j , i < j =⇒ p < q.
For each block b, we define the first request of b to be the one with min. index in b.

Note that for each level ` and for the first block of this level, the first request of the block
has index 0. The block partition defined in Definition 8 is illustrated in Figure 1. Figure
1a shows the blocks within the HST structure, whereas Figure 1b shows the hierarchical
partition induced by the blocks. To simplify the presentation of our analysis, we also define
a level −1 block b−1

i for each individual request ri. Note that we have n(−1) = |R|. The
following definition allows us to navigate through the block hierarchy.
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(a) Blocks within the same subtree.
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(b) Tree induced by the block hierarchy.

Figure 1 The partition of R. (a) An HST with height 2 and 5 leaves. The leaves issue requests
at different times. The issued requests by nodes v1, v2, and v3 are partitioned into the blocks b1

0
and b1

2 on level 1. These two blocks are called neighbor blocks at a subtree rooted at height 1. (b)
The corresponding 4 level-wise partition based on Arrow’s order that forms a parent-child relation
between the blocks on different levels. Blue boxes include the requests that are ordered first by
Arrow among all requests in blocks b0

i for all i ∈ [0, 9].

I Definition 9 (Children Blocks). The set of children blocks of a block b`i on a level ` ∈ [0, h]
is defined as child(b`i) :=

{
b`−1
j : b`−1

j ⊆ b`i
}
. Block b`i is called the parent block of each of

the blocks in child(b`i).

In Figure 1b, block b1
2 is the parent block of its children blocks b0

5 and b0
6. Block b1

1 has only
one child block b0

4 and thus b1
1 = b0

4.
The blocks

{
b`0, b

`
1, · · · , b`n(`)−1

}
of level ` belong to the subtrees rooted at height ` of the

HST T . Note that by the definition of the block partition, no two consecutive blocks at the
same level ` belong to the same level-` subtree of T . The next definition specifies notation
to argue about blocks of the same subtree of T .

I Definition 10 (Blocks of Same Subtree). If two blocks b`i and b`j belong to the same level-`
subtree of T , this is denoted by b̂`ib`j . Moreover, |b̂`ib`j | :=

∣∣{w : i < w < j ∧ b̂`ib
`
w holds

}∣∣.
Two blocks b`i and b`j are called neighbor blocks if b̂`ib`j and |b̂`ib`j | = 0.

In Figure 1a, blocks b0
0, b0

2, and b0
5 are within the same subtree rooted at node v1. Blocks

b0
0 and b0

5 are not neighbor blocks, however blocks b0
0 and b0

2, as well as blocks b0
2 and b0

5 are
neighbor blocks. The next lemma lists a number of simple properties of the block partition.

I Lemma 11. The hierarchical block partition of Def. 8 satisfies the following properties:
1. For every block b`i and for all p, q ∈ b`i , we have dT (vp, vq) ≤ δ(`).
2. For each level ` and all level-` blocks b`i and b`j, if b̂`ib`j holds, for any p ∈ b`i and q ∈ b`j,

we have dT (vp, vq) ≤ δ(`).
3. For each level ` and all level-` blocks b`i and b`j, if b̂`ib`j does not hold, for all p ∈ b`i and

q ∈ b`j, we have dT (vp, vq) ≥ δ(`+ 1).
4. Assume ` < h and consider two blocks b`i and b`j that have a common parent block b`+1

w , but
for which b̂`ib`j does not hold. Then, for all p ∈ b`i and q ∈ b`j , we have dT (vp, vq) = δ(`+1).

We have seen that in a synchronous Arrow execution, the latency cost for ordering request
ri+1 as the successor of ri is exactly the distance dT (vi, vi+1) between the nodes of the two
requests. The total cost of Arrow therefore directly follows from the structure of the block
partition.
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I Lemma 12. The total cost of a synchronous Arrow execution on the HST T with corre-
sponding hierarchical block partition is given by

costA(πA) =
h−1∑
`=0

(
n(`)− n(`+ 1)

)
· δ(`+ 1).

3.2 HST Conversion
We next provide a recursive (top-down) splitting procedure that converts the original HST
into a new HST with better properties. The conversion does not change the total cost of
ordering the requests by Arrow (in fact, it does not change the block partition). Further, the
total Manhattan cost of optimal offline algorithm’s order asymptotically remains unchanged
as well. We describe how the splitting procedure works and we then argue its properties.

Splitting Procedure. We describe the splitting procedure as it is applied to a subtree T ′
that is rooted at a given level ` ∈ {0, . . . , h} of T . If ` = 0, the tree T ′ is returned unchanged.
Otherwise (` ≥ 1), we go through all level-(`− 1) subtrees T ′′ of T ′. As long as the tree T ′′
has two neighbor blocks b`−1

i and b`−1
j (for i < j) for which the following condition (6) is

true, the subtree T ′′ is split into two separate subtrees T ′′1 and T ′′2 of T ′.

tmin(b`−1
j )− tmax(b`−1

i ) ≥ δ(`). (6)

The splitting of T ′′ into T ′′1 and T ′′2 works as follows. The topology of T ′′1 and T ′′2 is identical
to the topology of T ′′. Each request r = (v, t) that is issued at some node v of T ′′ is either
placed on the isomorphic copy of v in T ′′1 or in T ′′2 . All requests r in blocks b`−1

x of T ′′ for
x ≤ i are placed in tree T ′′1 and all request in blocks b`−1

y of T ′′ for y ≥ j are placed in tree
T ′′2 . We perform such splittings for trees T ′ of level ` as long as there are subtrees of T ′ on
level ` − 1 with neighbor blocks that satisfy Condition (6). As soon as no such neighbor
blocks exist, the procedure is applied recursively to all trees T ′′ at level `− 1 (incl. the new
subtrees). The conversion is started by applying the procedure to the complete HST T .

I Lemma 13. The above splitting procedure does not change the hierarchical block partition
and it thus also preserves Arrow’s queueing order πA and its total cost costA(πA).

The next lemma shows that if a tree T ′′ is split into two trees T ′′1 and T ′′2 such that all
requests in T ′′1 are ordered before all requests in T ′′2 , there is a significant time of occurrence
gap between the requests ending up in subtrees T ′′1 and T ′′2 .

I Lemma 14. Assume that we are performing a single splitting. Further, assume that we
are working on a tree T ′ on level ` and that we are splitting a subtree T ′′ of T ′ into T ′′1 and
T ′′2 such that T ′′1 obtains the blocks that are scheduled first by Arrow. If R1 and R2 are the
request sets of T ′′1 and T ′′2 , respectively, we have tmin(R2)− tmax(R1) ≥ δ(`)− δ(`− 1).

It remains to show that the splitting also does not affect the optimal offline cost in a significant
way. The following lemma shows that the Manhattan cost cM(r, r′) for any two requests r
and r′ can increase by at most a factor 3. Hence, also the total Manhattan cost of an optimal
ordering cannot increase by more than a factor 3.

I Lemma 15. For any two requests r and r′, the splitting procedure does not increase the
Manhattan cost cM(r, r′) by more than a factor 3.
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For the remainder of the analysis, we assume that the HST T is an HST that is obtained
after applying the splitting procedure recursively. We therefore assume that for every level `
and every subtree T ′ at level `, there is no level-(`− 1) subtree T ′′ of T ′ that contains two
neighbor blocks that satisfy Condition (6).

3.3 Lower Bounding The Optimal Manhattan Cost
In this section, we construct a tree S∗ that spans all requests in R. The tree S∗ has a nice
hierarchical structure: For each subtree T ′ of T , the set of edges of S∗ induced by the request
set of the subtree T ′ forms a spanning tree of the request set of T ′. Apart from this useful
structural property, we will show that the total Manhattan cost of the spanning tree S∗ is
within a constant factor of minimum spanning tree (MST) of the request set R w.r.t. the
Manhattan cost. We have seen that on condensed request sets, the optimal TSP path of
the request set w.r.t. the Manhattan cost is within a constant factor of the optimal offline
queueing cost. Note that because any TSP path is also a spanning tree, this implies that the
total Manhattan cost of the MST and thus also the total Manhattan cost of the tree S∗ are
lower bounding the optimal offline queueing cost within a constant multiplicative factor.

For convenience, we add one more level to the HST T . Instead of placing the requests at
the leaves on level 0, we assume that each level 0 node v has a child node on level −1 for
each of the requests issued at node v. Hence, the new leaf nodes are on level −1 and each
leaf node receives exactly one request.4 The distance between a level −1 node and its parent
on level 0 is set to be 0.

Spanning Tree Construction. The spanning tree S∗ is constructed greedily in a bottom-up
fashion. For each subtree T ′ of T , we recursively define a tree S∗(T ′) as follows. For the
leaf nodes on level −1, the tree consists of the single request placed at the node. For a tree
T ′ rooted at a node v on level ` ≥ 0, the tree S∗(T ′) consists of the recursively constructed
trees S∗(T ′′1 ), S∗(T ′′2 ), . . . of the subtrees T ′′1 , T ′′2 , . . . of T ′′ and of edges connecting the trees
S∗(T ′′1 ), S∗(T ′′2 ), . . . to a spanning tree of the set of requests issued at leaves of tree T ′. The
edges for connecting the trees S∗(T ′′1 ), S∗(T ′′2 ), . . . are chosen so that they have minimum
total Manhattan cost. That is, to connect the trees S∗(T ′′1 ), S∗(T ′′2 ), . . . , we compute an
MST of the graph we get if each of the trees S∗(T ′′i ) is contracted to a single node. We can
therefore for example choose the edges to connect the trees S∗(T ′′1 ), S∗(T ′′2 ), . . . in e greedy
way: Always add the lightest (w.r.t. Manhattan cost) edge that does not close a cycle with
the already existing edges, including the edges of the trees S∗(T ′′1 ), S∗(T ′′2 ), . . . .

MST Approximation. In the following, it is shown that the total Manhattan cost of the
tree S∗ = S∗(T ) is within a constant factor of the cost of an MST w.r.t. the Manhattan cost.
Where convenient, we identify a tree τ with its set of edges, i.e., we also use S∗ to denote
the set of edges of the tree S∗. Further, the cost of an edge e = {r, r′} is the Manhattan
cost cM(r, r′). We also slightly abuse notation and use cM(e) to denote this cost. The proof
applies a general MST approximation result that appears as Theorem A.1 in the full version
[11]. Together with the following lemma, Theorem A.1 of [11] directly implies that the total
Manhattan cost of S∗ is within a factor 4 of the MST Manhattan cost. For a subtree T ′ of
T , we use R(T ′) to denote the subset of the requests in R that are issued at nodes of T ′.

4 Note that subtrees of T that do not have any queueing requests can be ignored and therefore, we can
w.l.o.g. assume that every leaf node issues some queueing request.
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I Lemma 16. Consider the constructed spanning tree S∗ and consider an arbitrary edge e
of S∗. Let S∗1 and S∗2 the two subtrees that result when removing edge e from S∗. Further,
assume e∗ be an edge that connects the two subtrees S∗1 and S∗2 and that has minimum
Manhattan cost among all such edges. We then have cM(e) ≤ 4 · cM(e∗).

I Corollary 17. The total Manhattan cost of the spanning tree S∗ is at most 4 times the
total Manhattan cost of an MST spanning all the requests.

4 Analysis of the Online Queueing Cost

In this section, we give a general framework to compare the queueing cost of an online
queueing algorithm on HST T with the bound of the offline queueing cost as established in
Section 3. At the end of the section, we apply the method to analyze synchronous Arrow
executions on T . As in Section 3.3, for convenience, we add one more level to the HST T so
that each level 0 node v has a child node on level −1 for each of the requests issued at node
v. The new leaf nodes are on level −1 and each leaf node receives exactly one request.

We first state two basic locality properties of Arrow. We will then show that those
properties are sufficient to prove a constant competitive ratio compared to the optimal offline
queueing cost on T . We define the notion of a distance-respecting queueing order and the
notion of distance-respecting latency cost of a queueing algorithm.

I Definition 18 (Distance-Respecting Order). Let R be a set of requests ri = (vi, ti) is-
sued at the nodes of a tree T and let π be permutation on [0, |R| − 1]. The ordering
rπ(0), rπ(1), . . . , rπ(|R|−1) induced by π is called distance-respecting if whenever π(i) < π(j),
we have ti − tj ≤ dT (vi, vj).

I Definition 19 (Distance-Respecting Latency Cost). An online distributed queueing algorithm
ALG is said to have distance-respecting latency cost if for any request set R and any possible
queueing order πALG of ALG, for all 1 ≤ i < j < |R|, it holds that

tπALG(i) + LALG(rπALG(i),πALG(i−1)) ≤ tπALG(j) + dT (vπALG(j), vπALG(i−1)).

4.1 Constructing a Spanning Tree
As the first part of the online queueing cost analysis, we construct a new tree S that spans
all requests in R. It will be shown that the total Manhattan cost of S asymptotically equals
the total Manhattan cost of the tree S∗ constructed in the previous section.

We construct a new tree S on R based on an ordering π of the set of requests. We assume
that the ordering of the requests given by π is rπ(0), rπ(1), . . . , rπ(|R|−1). For each index i
with i ∈ [0, |R| − 2], we define the local successor as

next(i) := min
{
j ∈ [i+ 1, |R| − 1] : dT (vπ(i), vπ(j)) = min

k∈[i+1,|R|−1]
dT (vπ(i), vπ(k))

}
. (7)

Hence, among the requests ordered after rπ(i) by order π, next(i) is the position of a request
in the order π with minimum tree distance to vπ(i) and among those, of the first one ordered
by π. Note that this means that for all requests rπ(k) for which i < k < next(i), we have
dT (vπ(i), vπ(k)) > dT (vπ(i), vπ(next(i))) and for all requests rπ(k) for which k ≥ next(i), we
have dT (vπ(i), vπ(k)) ≥ dT (vπ(i), vπ(next(i))).

The spanning tree S is constructed as follows. For every request rπ(i) for all i ∈ [0, |R|−2],
we add the edge

{
rπ(i), rπ(next(i))

}
to the tree S. Note that S is indeed a spanning tree: If
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directing each edge from rπ(i) to rπ(next(i)), each node has out-degree 1 and we cannot have
cycles because next(i) > i. The following observation shows that in addition, S has the same
useful hierarchical structure as the tree S∗ constructed in Section 3.3.

I Observation 20. As the tree S∗, also the tree S has the property that for any subtree T ′
of T , the subgraph of S induced by only the requests at nodes in T ′ is a connected subtree
of S. This follows directly from the definition of the local successor rπ(next(i)). Except for
the last ordered request inside T ′, the local successor of any other request of T ′ is inside T ′
(because the local successor is a request with minimum tree distance). J

In light of Observation 20, for any subtree T ′ of T , we use S(T ′) to denote the subtree of
S induced by the requests issued at nodes in T ′.

4.2 Bounding the Manhattan Cost of the Spanning Tree
The following lemma shows that if the spanning tree S is constructed by using a distance-
respecting ordering π, the total Manhattan cost of the spanning tree S is asymptotically
equal the total Manhattan cost of S∗.

I Lemma 21. Let CM(S) and CM(S∗) be the total Manhattan costs of S and of S∗. If the
tree S is constructed using a distance-respecting ordering π, we have CM(S) ≤ 3 · CM(S∗).

4.3 Bounding the Total Latency Cost
It remains to prove the main claim and show that the total online queueing cost on the HST
T is within a constant factor of the optimal offline cost on T . The following theorem states
that this is generally true for algorithms with distance-respecting latency cost (Def. 19) and
which produce distance-respecting queueing orders (Def. 18), as long as the request set R is
condensed (Def. 4).

I Theorem 22. Assume that we are given an HST T and a condensed set of requests issued
at the leaves of R. Further, assume that we are given a distributed queueing algorithm
ALG that has distance-respecting latency cost and that always produces a distance-respecting
queueing order π. Then, the total latency cost of ALG is within a constant factor of the
optimal offline cost on T .

I Corollary 23. The total latency cost of a synchronous execution of Arrow on an HST T is
within a constant factor of the optimal offline queueing cost on T .

I Remark. The above corollary proves Theorem 1 (cf. Section 1) for synchronous executions
on the HST T . The full statement of Theorem 1 for general asynchronous executions is
proven in the full version of the paper [11]. There, it is shown that also for asynchronous
executions, Arrow has distance-respecting latency cost and produces distance-respecting
queueing orders. In addition, we also show that we can still restrict attention to condensed
request sets. The claim of Theorem 1 for the asynchronous case then follows from Theorem
22 in the same way as in the above corollary.
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Abstract
Modern distributed systems often achieve availability and scalability by providing consistency
guarantees about the data they manage weaker than linearizability. We consider a class of such
consistency models that, despite this weakening, guarantee that clients eventually agree on a
global sequence of operations, while seeing a subsequence of this final sequence at any given point
of time. Examples of such models include the classical Total Store Order (TSO) and recently
proposed dual TSO, Global Sequence Protocol (GSP) and Ordered Sequential Consistency.

We define a unified model, called Global Sequence Consistency (GSC), that has the above
models as its special cases, and investigate its key properties. First, we propose a condition
under which multiple objects each satisfying GSC can be composed so that the whole set of
objects satisfies GSC. Second, we prove an interesting relationship between special cases of GSC–
GSP, TSO and dual TSO: we show that clients that do not communicate out-of-band cannot
tell the difference between these models. To obtain these results, we propose a novel axiomatic
specification of GSC and prove its equivalence to the operational definition of the model.
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1 Introduction

Modern distributed systems often achieve availability and scalability by providing consistency
guarantees about the data they manage weaker than the gold standard of linearizability [16].
In this paper we consider a class of such consistency models that, despite this weakening,
guarantee global operation sequencing: clients eventually agree on a global sequence of
operations, while seeing a subsequence of this final sequence at any given point of time.
An implementation of a service providing such a model may consist of a single server and
multiple clients, each maintaining a replica of the data managed by the service. Clients
accept operations from end-users, evaluate them on their local (possibly stale) data replica
and forward the operations to the server. The server arranges all received operations into a
totally ordered log and forwards them to clients in the order determined by the log. The
server log thus establishes the desired global sequence of operations.

Such consistency models arise in different domains. For instance, clients may correspond
to mobile devices, cloud servers or processor cores; the role of the server may be played by
an elected leader, a replicated state machine [26], a reliable total-order broadcast [11] or the
memory subsystem in a multiprocessor architecture [28]. Various models differ in whether
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Table 1 Specialising GSC.

Implicit fences pull push
GSP [10] no no
TSO [24, 23] yes no
dual TSO [2] no yes
OSC [22] updates yes
linearizability [16] yes yes

the propagation of operations from clients to the server and vice versa is asynchronous or
synchronous. Thus, in the Global Sequence Protocol (GSP) model [10], the propagation is
asynchronous in both directions, which allows clients to execute operations even if they get
partitioned from the server [14]. This model is implemented in Microsoft’s TouchDevelop
system for mobile app programming, to support offline access [1], and in the Orleans actor
framework [6], to support geo-replication [5]. In the Total Store Order (TSO) model [24, 23],
implemented by SPARC and x86 multiprocessors, operation propagation from clients to
the server is asynchronous, but the one from the server to clients is synchronous: clients
pull all new operations from the server before evaluating each operation. Conversely, in
the dual TSO model [2] operation propagation from the server to clients is asynchronous,
but the one from the clients to the server is synchronous: clients push operations to the
server immediately after they are executed. If we strengthen dual TSO by requiring that
all update operations are propagated synchronously in both directions, we obtain Ordered
Sequential Consistency (OSC) [22], which captures the semantics of coordination services
such as ZooKeeper [18]. Finally, we obtain linearizability [16] when operation propagation is
synchronous in both directions.

In this paper we study key properties of the consistency models from the above class. To
this end, we consider a flexible model, called Global Sequence Consistency (GSC), that has
the above models as its special cases and obtain novel results about this model: a condition
for safely composing multiple GSC services and a certain interesting relationship between the
model’s special cases. The GSC model is defined by the above client-server protocol where
operation propagation is by default asynchronous, but operations may include two kinds of
fences. The fences respectively force a client to pull all new operations from the server or
push all outstanding local operations to the server (§3). Then we obtain various existing
consistency models by systematically associating fences with operations as shown in Table 1.

Like sequential consistency [20], GSC is not composable (aka local) [16]: objects satisfying
GSC may fail to provide this consistency guarantee when combined. This is a problem
because application programmers often want to distribute objects among multiple services,
e.g., to place them in geographical locations where they are most likely to be updated and
thereby minimise latency [21]. Non-composability does not allow programmers to easily
predict the behavior of such a system. This is a particular issue in the Orleans implementation
of geo-replication [5], which guarantees GSP only for each individual object.

To address this problem, we propose a condition under which multiple objects each
satisfying GSC can be composed so that the whole set of objects satisfies GSC (§5). Informally,
the condition requires using fences according to the following discipline: when switching
between different objects, a client has to push the operations done on the old object and
pull operations on the new object. Our result ensures that in this case clients interacting
with multiple GSC services implementing different objects will behave as though they are
interacting with a single GSC service. This result holds even when clients can communicate
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out-of-band, without using the GSC services. As its special cases, we obtain novel conditions
for composing TSO and dual TSO objects, as well as a recently proposed condition for
OSC [22, 21].

We also prove an interesting relationship between special cases of GSC– GSP, TSO and
dual TSO (§4): we show that clients that do not communicate out-of-band cannot tell the
difference between them. In particular, this result implies that a program without out-of-
band communication written assuming TSO operates correctly under much weaker, fully
asynchronous GSP. This equivalence has been previously conjectured without proof [10]; the
present paper confirms this conjecture. Assuming the absence of out-of-band communication
is common for memory models, where clients are processors that do not communicate directly.
However, this assumption is often not appropriate for distributed interactive applications,
where clients can have external means of communication. In this setting, the above special
cases of GSC are observably different.

Proving the above results about compositionality and equivalence is nontrivial due to the
complexity of reasoning about the distributed protocol implementing GSC. Our main tool in
tackling this complexity is an axiomatic specification of GSC, given in the style often used for
consistency models in shared-memory [19] and distributed storage systems [9, 8] (§6). The
specification represents service executions using several relations, declaratively describing
how operations are processed by the GSC protocol; the consistency model is then defined
by a set of axioms, constraining these relations. We prove that our axiomatic specification
is equivalent to the operational one. A particular subtlety in formulating the axiomatic
specification and proving this equivalence is the need for the specification to track the
real-time order between operations, determining when one operation finishes before another
one starts. This makes results established using the axiomatic specification applicable in the
case when clients can communicate out-of-band [12, 3].

The axiomatic specification of GSC is instrumental in obtaining our results. A recurring
challenge is to prove the existence of an execution that satisfies some conditions, e.g., is a
composition of single-object executions in the proof of the compositionality criterion (§8).
Constructing the desired execution is difficult to do directly on the operational model. Because
of the wide-ranging effect of fences, such an execution cannot be obtained simply by local
reordering of independent steps, as with simpler operational models. But via the axiomatic
specification of GSC, we can solve this problem indirectly by formulating constraints on
precedence of events in the execution as relations and then using algebraic techniques to
prove that their union is acyclic, which guarantees that there exists an execution satisfying
them. We hope that, in the future, the GSC model, with its two equivalent definitions,
and our proof techniques will provide a solid foundation for obtaining further results about
consistency models with global operation sequencing.

2 Preliminaries

We consider a distributed service managing a collection of objects Obj = {x, y, . . .}. A finite
number of clients interact with the service by performing operations on the objects, which are
ranged over by op and come from a set Op. Parameters of operations, if any, are part of the
operation name. For uniformity, we assume that all objects admit the same set of operations
and that each operation returns one value from a set Val; we can use a special member of Val
to model operations that return no value. The sequential semantics of operations is defined
by a function eval : Op∗ × Op→ Val that determines the return value of an operation on an
object given the sequence of operations previously executed on this object.
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The consistency model provided by the service defines the set of all possible interactions
between the service and its clients. We now introduce a structure that records such interactions
in a single computation, called a history. In it we denote client-service interactions using
events, which are ranged over by e, f, g and come from an infinite countable set Event. Events
have unique identifiers from a set Id. An event is of the form e = (ι, x, op, a, fen), where
ι ∈ Id is the event identifier, x ∈ Obj is the object on which the event occurs, op ∈ Op is the
operation done, a ∈ Val is its return value, and fen ⊆ {push, pull} gives the fences requested
by the client. We use obj(e), oper(e), rval(e), fences(e) to select event components.

We use the following kinds of relations. A relation is a strict partial order if it is transitive
and irreflexive. It is a total order if it additionally relates every two distinct elements one
way or another. A relation is prefix-finite if each element is reachable along directed paths
from at most finitely many others. A strict partial order R is an interval order if

∀e1, e2, f1, f2. (e1
R−→ e2 ∧ f1

R−→ f2) =⇒ (e1
R−→ f2 ∨ f1

R−→ e2).

Intuitively, an interval order R is consistent with an interpretation of events as segments of
time during which the corresponding operations executed, with R ordering e before f if e
finishes before f starts [13]. For example, the real-time order considered in linearizability [16]
is an interval order.

A history is a triple H = (E, so, rt), where: E ⊆ Event; session order so ⊆ E×E is a union
of prefix-finite total orders over a finite number of disjoint subsets of E (each corresponding
to operations by the same client); and real-time order rt ⊆ E × E is a prefix-finite interval
order such that so ⊆ rt and ∀e ∈ E. |{f ∈ E | ¬(e rt−→ f)}| <∞.

The set E defines all operations invoked by clients in a single computation and can be
infinite. The session order arranges operations by the same client in the order in which they
were executed. The real-time order e rt−→ f tells us that the operation of e finished before the
one of f started (the last restriction on rt ensures that every operation finishes). Tracking
this relationship is important because it allows the client who executed the operation of e to
communicate its return value to the client executing f out-of-band, without using the service;
the return value of e can then influence the operation executed by f [12, 3]. We denote
components of histories and similar structures as in EH and soH. A consistency model is
defined by a set of histories.

3 Operational Specification

We define Global Sequence Consistency using the idealised protocol in Figure 1, which is a
generalisation of the Global Sequence Protocol (GSP) [10]. It assumes a single server and a
finite number of clients. The server state is represented by a log server_log of operations
received from clients, tagged with unique identifiers from Id. The state of each client c
includes three logs: knownc is the prefix of server_log that c knows about; pendingc is the
log of operations by c that have not yet been pushed to the server; and unackedc is the log
of operations by c that have been pushed to the server, but knownc has not yet advanced
enough to incorporate them.

The communication between the server and each client c is modeled by transitions push(c)
and pull(c) that can fire nondeterministically at any time when the client is not executing
an operation and atomically modify the client and the server state (implementations may
refine this using asynchronous communication channels as in [10]). The push(c) function
models how the server processes the next operation by client c: it appends the oldest record
in pendingc to server_log and moves it to the end of unackedc. The pull(c) function models
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State for each client c:
knownc ∈ (Id× Op)∗

unackedc ∈ (Id× Op)∗

pendingc ∈ (Id× Op)∗

exec(c, op, fen):
if (pull ∈ fen)
while (knownc 6= server_log) pull(c)

result :=
eval(stripIds(knownc · unackedc · pendingc), op)

pendingc := pendingc · (uniqueId(), op)
if (push ∈ fen)
while (pendingc 6= [ ]) push(c)

return result

Server state:
server_log ∈ (Id× Op)∗

push(c):
if (pendingc = (id, op) · remainingc)

server_log := server_log · (id, op)
unackedc := unackedc · (id, op)
pendingc := remainingc

pull(c):
if (server_log = knownc · (id, op) ·_)

knownc := knownc · (id, op)
if (unackedc = (id, op) · remainingc)

unackedc := remainingc

Figure 1 The pseudocode of the protocol defining the GSC model. We denote sequence concat-
enation by ·, an empty sequence by [ ] and an irrelevant expression by _.

how the client c learns about the next entry in the server log: it appends to knownc the next
operation in server_log that is not yet part of knownc. If this operation is an echo of an
operation previously executed by the same client c, we remove it from the unackedc log; the
protocol ensures that in this case the operation is the first (oldest) one in unackedc.

We model a client c executing an operation op with fences fen ⊆ {push, pull} by
exec(c, op, fen). The body of exec() is executed atomically, and only a single invocation of it
can be in progress per client. At the beginning of exec(), we handle pull fences by repeatedly
calling pull(c) until the local knownc matches server_log. At the end of exec(), we handle
push fences by repeatedly calling push(c) until all pendingc operations have been processed by
the server. At the core of exec(), we first compute the result of the operation by conjoining
the logs knownc, unackedc and pendingc, stripping identifiers using stripIds and applying
the sequential semantics of operations defined by eval (§2). We then append the operation
to the pendingc with a unique identifier generated by uniqueId. Since op is evaluated on
a log that includes unackedc and pendingc, the client is always guaranteed to observe its
own operations, even before they are acknowledged by the server (the “read-your-writes”
property [29]). Note that when fen is empty, exec(c, op, fen) returns immediately without
communicating, so that in this case the protocol is partition-tolerant [14].

We only consider computations of the protocol that adhere to certain fairness constraints:
every operation by a client eventually gets pushed to the server, every operation received by
the server eventually gets pulled by any client and every invocation of exec() terminates.

The set of histories (E, so, rt) allowed by GSC is defined by considering all possible
computations of the above protocol. The invocations of exec() define the set of events E,
the order in which they are invoked on clients defines so, and two events are related by rt if
the exec() function of the former finishes before the exec() function the latter starts. We
denote the set of histories defined in this way HistGSC.

By systematically associating fences with operations in GSC we get various existing
models as its special cases (Table 1). If operations are executed without any fences, the
GSC protocol exactly matches the one used to define GSP [10]. If every operation includes
a pull fence, then the GSC protocol is isomorphic to one defining the Total Store Order
(TSO) consistency model [24, 23]. In this case, operations are always evaluated based on an
up-to-date state on the server, but are propagated to the server asynchronously. If every
operation includes a push fence, then the GSC protocol is isomorphic to one defining a
recently proposed dual TSO model [2]. In this case, all operations are pushed to the server

DISC 2017



23:6 Consistency Models with Global Operation Sequencing and their Composition

x.append(1)

x.read: [1,2]

x.append(2)

(a)

x.read: [2]

so, rt, vis so, rt, vis
rt

rt

rt, vis
ar x.append(1) x.append(2)

(b)

x.read: [2,1]

so, rt, vis
rt, vis

rt
ar

x.append(1)

y.read: [ ]

y.append(1)

(c)

x.read: [ ]

so, rt, vis so, rt, vis

rt x.read: [1]

y.read: [ ]

y.read: [1]

x.read: [ ]

so, rt so, rt

rt
y.append(1)x.append(1)

(d)

Figure 2 Examples of histories and abstract executions. Events do not include fences unless
explicitly noted. Events by the same client are related by the session order so and laid out vertically.
Thus, there are two clients in (a-c) and four in (d).

immediately, but are evaluated on a client-local possibly stale state. If every operation
includes both a pull and a push fence, then the GSC protocol produces exactly those histories
that are linearizable [16] (we prove this in [15, §C]). Informally, in this case the total order
in which the operations go into server_log defines a linearization of the execution, which
preserves the real-time order between the operations.

As a subcase of dual TSO, we also obtain a recently proposed Ordered Sequential
Consistency (OSC) [22], which captures the semantics of coordination services such as
ZooKeeper [18]. OSC assumes a partitioning of all operations into read-only and update
operations: Op = OpReadOnly ] OpUpdate. Read-only operations do not change the state
of an object: for any operation op and a sequence of operations ξ, we have eval(ξ, op) =
eval(ξ|OpUpdate, op), where ξ|OpUpdate is the projection of ξ onto OpUpdate. In our setting,
OSC is defined by requiring that every operation include a push fence (like in dual TSO) and
all updates additionally include a pull fence. Thus, update operations are evaluated on an
up-to-date state, whereas read-only operations can be evaluated on a stale state. We prove
the correspondence to the original OSC definition in [15, §C].

With unrestricted fence placements, GSC is weaker than linearizability, as we illustrate
by the example histories in Figures 2(a-c) (for now ignore the extra relations vis and ar).
They use sequence objects x and y for which eval(ξ, read) returns the sequence of values in
the append operations in ξ. The histories in Figures 2(a-c) can be produced by the GSC
protocol, but are not linearizable: there does not exist a linearization of the events consistent
with the real-time order and the sequential semantics of objects. In the following, we briefly
describe how the GSC protocol produces these histories; the reader may wish to consult [15,
§A], where we describe the corresponding protocol computations in detail.

In history (a) the read by the second client does not see 1, even though it happens after
the read by the first client that does see 1. In the GSC protocol this can happen if the
second client does not pull append(1) from the server before executing the read. This history
is disallowed if the read by the second client is executed with a pull fence: since the read by
the first client returns [1, 2], at the time the read is executed, 1 must be in known and, hence,
on the server; then the pull fence ensures that the later read by the second client sees 1.

In history (b) the return value of the read is [2, 1] even though append(1) finishes before
append(2) starts. This can happen if the latter operation is pushed to the server before the
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former. This outcome is disallowed if append(1) is executed with a push fence, so that it is
pushed to the server before the operation finishes.

In history (c) each read does not see the append by the other client; this is a variant
of the store buffering anomaly, characteristic of TSO [24]. It can be produced by the GSC
protocol if the appends are pushed to the server only after the reads execute. The history is
disallowed if the appends include push fences and the reads pull fences.

Finally, history (d) is a variant of the independent reads of independent writes anomaly [7]
and cannot be produced by the GSC protocol. There two clients concurrently append 1 to
different sequence objects x and y. A third client sees the append to x, but not to y, and a
fourth client sees the append to y, but not to x. Thus, from the perspective the latter two
clients the updates to x and y happen in different orders. This outcome cannot happen in a
GSC protocol computation, because there is a single order in which the append operations
will be incorporated into the server log. If x.append(1) precedes y.append(1) in the log, then
the read from x in the fourth client cannot return [ ]; otherwise, the read from y in the third
client cannot return [ ].

4 Equivalence between GSP, TSO and Dual TSO

We now establish a certain relationship between special cases of the GSC model: TSO [24]
(all operations pull), dual TSO [2] (all operations push) and GSP [10] (operations neither pull
nor push). We prove that the sets of histories allowed by these three models are the same
modulo the real-time order, which means that the models are observationally equivalent to
clients that cannot communicate out-of-band [12, 3].

Formally, for an event e = (ι, x, op, a, fen) let mkPull(e) = (ι, x, op, a, {pull}) and
mkPush(e) = (ι, x, op, a, {push}). We lift mkPull and mkPush to sets of events and relations
in the expected way. Let EPush = {e | push ∈ fences(e)} and EPull = {e | pull ∈ fences(e)}.

I Theorem 1.

∀E.∀so. E ∩ (EPush ∪ EPull) = ∅ =⇒ ((∃rt. (E, so, rt) ∈ HistGSC) ⇐⇒
(∃rt′. (mkPush(E),mkPush(so), rt′) ∈ HistGSC)⇐⇒
(∃rt′′. (mkPull(E),mkPull(so), rt′′) ∈ HistGSC)).

We prove Theorem 1 in §7 and [15, §C]. According to it, any GSP computation of the
protocol, where operations are propagated asynchronously both from clients to the server and
from the server to clients, can be transformed into an equivalent-modulo-rt computation where
operations can be propagated asynchronously in only one direction. While the equivalence
between TSO and dual TSO has been established before [2], the result about GSP was only
conjectured [10], and its proof is a contribution of the present paper. Like proofs of other
results of ours, this one exploits the axiomatic specification of GSC that we present in §6.

If we take the real-time order into account and, hence, allow clients to communicate
out-of-band, then GSP is strictly weaker than TSO and dual TSO, and the latter two are
incomparable. In particular, the above theorem does not hold if we additionally require
rt′ = rt or rt′′ = rt. Indeed, as we noted in §3, the history in Figure 2(a) is allowed by GSP,
but is disallowed if the operations pull; hence, it is disallowed by TSO. However, the history is
allowed if all operations push and, hence, is allowed by dual TSO. The history in Figure 2(b)
is similarly allowed by GSP, but is disallowed if all operations push; hence, it is disallowed
by dual TSO. On the other hand, it is allowed if all operations pull and, hence, is allowed
by TSO. Finally, even modulo real-time order, GSP, TSO and dual TSO are strictly weaker
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than linearizability [16]: the history in Figure 2(c) is allowed by these models, but is not
linearizable no matter how we change the real-time order.

5 Composing GSC Objects

GSC is not a composable (aka local) property [16]: objects satisfying GSC may fail to provide
this consistency guarantee when combined. Indeed, consider the history in Figure 2(d). It is
easy to see that the projections of the history to events on objects x or y yield GSC histories:
e.g., the projection to x can be produced by the GSC protocol if the rightmost client is slow
to pull updates from the server. However, as we explained in §3, the overall history is not
GSC. We now give a condition under which multiple objects each satisfying GSC behave such
that the whole set of objects satisfies GSC. The condition requires using fences according to
a certain discipline, formalised as follows. A history H = (E, so, rt) is well-fenced if

∀e, f ∈ E. e so−→ f ∧ obj(e) 6= obj(f) =⇒ ∃e′ ∈ EPush.∃f ′ ∈ EPull.

obj(e′) = obj(e) ∧ obj(f ′) = obj(f) ∧ e so?−−→ e′
so−→ f ′

so?−−→ f,

where R? is the reflexive closure of R. The above condition requires that, when switching
between different objects, a client pushes to the server the operations done on the old object
and pulls from the server operations on the new object. Let us denote by H|x the projection
of H to events on an object x. The following theorem is our main result (proved in §8).

I Theorem 2. For a well-fenced history H, we have (∀x.H|x ∈ HistGSC) =⇒ H ∈ HistGSC.

The theorem ensures that well-fenced clients interacting with multiple GSC services,
implementing different objects, behave as though they are interacting with a single GSC
service. Since our histories track the real-time order between events, this result holds even
when clients can communicate out-of-band, without using GSC services. Programmers can
thus ensure consistency when accessing multiple GSC services by placing fences according
to the proposed discipline. Even though fences are expensive (in particular, not partition-
tolerant), clients only incur this overhead when switching between different services. A client
accessing the same service incurs no overhead.

For example, assume we make the upper reads in Figure 2(d) push and the lower reads pull.
Then the projection of the history to y is no longer GSC: since the lower read from y happens
after the upper read from y and pulls operations from the server, it has to also observe 1.
Hence, in this case the outcome shown in Figure 2(d) cannot happen when clients interact
with multiple GSC services. (Actually, making the upper reads push is not required to ensure
this, since they are read-only operations. Our results could be strengthened to incorporate
such optimisations, but for simplicity we decided to treat all operations uniformly.)

As special cases of Theorem 2, we obtain novel criteria for composing TSO and dual
TSO objects. Since in TSO all operations pull, we only need to require that a client pushes
operations on an object before accessing a new one. Since in dual TSO all operations push, a
client need only pull operations on the new object. As a subcase of dual TSO, we obtain the
recently proposed criterion for composing OSC objects [22]. Recall that in OSC all operations
push and update operations pull. Hence, in this case we require that a client start accessing
a new object with an update operation. This can be ensured by adding dummy updates – a
policy implemented by the ZooNet system [21] for composing ZooKeeper services [18]. Thus,
our results generalise the compositionality criterion for OSC.
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RetVal. ∀e ∈ E. rval(e) = eval(ctxtA(e), oper(e)).
RYW. so ⊆ vis.
MonotonicView. vis ; so ⊆ vis.
ObservedVis. ar? ; (vis \ so) ; (rt ∩ (Event× EPull))? ⊆ vis.
PushedVis. ar? ; (rt? ∩ (EPush× EPull)) ⊆ vis?.
ObservedAr. (vis \ so) ; rt ⊆ ar.
PushedAr. rt ∩ (EPush× Event) ⊆ ar.
Eventual. ∀e ∈ E. |{f ∈ E | ¬(e vis−→ f)}| <∞.

Figure 3 Axioms of the GSC model, constraining an execution A = ((E, so, rt), vis, ar).

6 Axiomatic Specification

We now present the main technical tool we use to prove Theorems 1 and 2 – an axiomatic
specification of GSC, given in the style often used for consistency models in shared-memory [19]
and distributed storage systems [9, 8]. It is based on the following notion. An abstract
execution is a tripleA = ((E, so, rt), vis, ar), where: (E, so, rt) is a history; visibility vis ⊆ E×E
is a prefix-finite acyclic relation; and arbitration ar ⊆ E × E is a prefix-finite total order
such that vis ⊆ ar. Visibility and arbitration declaratively describe how the GSC protocol
processes the operations in E. Given a computation of the protocol, we have e vis−→ f

if, when a client executed the operation of f , the operation of e was in one of its three
local logs. We have e ar−→ f if the operation of e preceded the one of f in the server log.
Figures 2(a-c) give examples of abstract executions (we omit some edges irrelevant for the
following explanations).

To define the set of histories allowed by GSC, our specification constrains abstract
executions using the consistency axioms in Figure 3, which declaratively describe guarantees
the GSC protocol provides about operation processing and are explained in the following.
In the axioms R1;R2 denotes the sequential composition of relations R1 and R2; we define
ctxtA below. The axiomatic specification admits those histories that can be extended to an
abstract execution satisfying the axioms. Denoting the latter set of executions ExecGSC, the
corresponding set of histories is

HistGSCax = {H | ∃vis, ar. (H, vis, ar) ∈ ExecGSC}.

As the following shows, the axiomatic specification is equivalent to the operational one.

I Theorem 3. HistGSC = HistGSCax.

We now explain the axioms in Figure 3 and, on the way, give the key ideas for the proof
of the “⊆” direction of the theorem, showing the soundness of the axiomatic specification.
Consider a computation of the GSC protocol producing a history H = (E, so, rt). To prove
the soundness result, we extract vis and ar from the computation as described above and
show that the resulting abstract execution satisfies all the axioms in Figure 3. RetVal
says that the result of an operation e is computed by applying its sequential semantics to
the sequence of operations given by ctxtA(e), which is obtained by arranging the operations
invoked by the events in the set {f | f vis−→ e ∧ obj(e) = obj(f)} according to ar. For example,
the execution in Figure 2(b) satisfies RetVal: the read returns [2, 1] because both appends
are visible to it and x.append(2) ar−→ x.append(1). RYW formalises the “read-your-writes”
guarantee from §3: a client observes all operations it has executed before. MonotonicView
similarly ensures that a client observes all operations it has observed before.

DISC 2017



23:10 Consistency Models with Global Operation Sequencing and their Composition

The axioms ObservedVis to PushedAr are more subtle, and we thus give detailed
justifications for their soundness. They constrain vis or ar based on the fact that, by a
certain moment, a particular operation was guaranteed to have been pushed to the server.
In ObservedVis and ObservedAr this is the case because the operation was observed
by a client other the one that that executed it (expressed in the axioms using vis \ so); in
PushedVis and PushedAr this is the case because the operation included a push fence
(expressed using EPush). In more detail, these axioms are justified as follows:

ObservedVis. Assume e1
ar?−−→ e2

vis\so−−−→ e3
rt∩(Event×EPull)?−−−−−−−−−−−→ e4. Since e2

vis\so−−−→ e3, when
a client executed e3, it was aware of the event e2 by a different client. The client could
only find out about e2 from the server, so by the time e3 finished, e2 was on the server.
Since e1

ar?−−→ e2, so was e1. If e3 = e4, then the client executing this event was also aware
of e1, since clients pull operations in the order of the server log. Hence, e1

vis−→ e4. If
e3

rt∩(Event×EPull)−−−−−−−−−−→ e4, then after e3 finished, the client executing e4 pulled all updates
from the server, which must have included e1. Hence, e1

vis−→ e4 again.
PushedVis. Assume e1

ar?−−→ e2
rt?−→ e3, e2 ∈ EPush and e3 ∈ EPull. Since e2 ∈ EPush, e2

was on the server after its operation finished. Since e1
ar?−−→ e2, so was e1. If e1 = e3, we

trivially have e1
vis?−−→ e3. Otherwise, since e2

rt?−→ e3, e1 was also on the server before e3
started. Since e3 ∈ EPull, e3 pulled all operations from the server, including e1. Hence,
e1

vis−→ e3.
ObservedAr. Assume e1

vis\so−−−→ e2
rt−→ e3. Since e1

vis\so−−−→ e2, e1 must have been on the
server by the time e2 finished. Since e2

rt−→ e3, e3 started after e2 finished and thus must
follow e1 in the server log. Hence, e1

ar−→ e3.
PushedAr. Assume e1

rt−→ e2 and e1 ∈ EPush. Then e1 was pushed to the server before
e2 started. Hence, e2 was pushed onto the server after e1, so that e1

ar−→ e2.

Finally, the Eventual axiom guarantees that an event e can be invisible to at most
finitely many other events f . Its soundness is ensured by the fairness constraints in the GSC
protocol (§3). The axioms imply more properties of the relations in an execution.

I Proposition 4. If A satisfies MonotonicView and ObservedVis, then visA is transitive.
If A satisfies ObservedAr, then visA ∪ rtA is acyclic.

The executions in Figures 2(a-c) satisfy all the axioms. On the other hand, the history in
Figure 2(d) cannot be extended to an execution satisfying the axioms. Indeed, for the return
values of the upper reads to be consistent with RetVal, we must have x.append(1) vis−→
x.read : [1] and y.append(1) vis−→ y.read : [1]. Arbitration has to order the two appends one
way or another. If, for example, we have x.append(1) ar−→ y.append(2), then by ObservedVis
we must also have x.append(1) vis−→ x.read : [ ], contradicting RetVal.

Recall from §3 that GSC disallows the history in Figure 2(a) if the read in the second
client is a pull. Accordingly, there is no abstract execution that extends the resulting
history and satisfies the axioms: by ObservedVis, in such an execution we would have
x.append(1) vis−→ x.read : [2], contradicting RetVal. Similarly, there is no execution that
extends the history in Figure 2(b) assuming x.append(1) is a push. This is because by
PushedAr in such an execution we must have x.append(1) ar−→ x.append(2), so that by
RetVal the read must return [1, 2]. Finally, there is no execution for the history in
Figure 2(c) assuming the appends push and the reads pull: by PushedVis we must have
x.append(1) vis−→ x.read : [ ], contradicting RetVal.
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As follows from the “⊇” direction of Theorem 3, the axioms in Figure 3 are also complete:
given an abstract execution (H, vis, ar), we can construct a computation of the GSC protocol
producing the history H. Due to space constraints, we defer the detailed proof of Theorem 3
to [15, §B]. The completeness part of the proof is nontrivial, but uses similar techniques to
the proof of the compositionality criterion that we present in §8.

7 Proof of Model Equivalence

As a simple illustration of the use of the axiomatic specification of GSC, we prove the first
“⇐⇒” in Theorem 1, showing that GSP and dual TSO are equivalent modulo real-time order
(the rest of the proof is given in [15, §C]). Consider E and so such that E∩(EPush∪EPull) = ∅.

The “⇐=” direction. It is easy to see that

∀rt. (mkPush(E),mkPush(so),mkPush(rt)) ∈ HistGSC =⇒ (E, so, rt) ∈ HistGSC,

since erasing fences from events does not invalidate any axioms.
The “=⇒” direction. Assume rt such that (E, so, rt) ∈ HistGSC. Then for some vis and ar

we have A ∆= ((E, so, rt), vis, ar) ∈ ExecGSC. Let rt′ = mkPush(ar). Then

A′ ∆= ((mkPush(E),mkPush(so), rt′),mkPush(vis),mkPush(ar))

is an abstract execution. Further, since A satisfies all GSC axioms, so does A′. In particular,
A′ satisfies ObservedVis and PushedVis because mkPush(E)∩EPull = ∅, and ObservedAr
and PushedAr by the choice of rt′. This completes the proof.

Thus, our axiomatic specification allows easily proving the above model equivalence by
picking a witness for the real-time order and checking axiom validity. Such a proof would
be much more challenging with the operational specification, as it would require devising a
nontrivial transformation of one execution of the GSC protocol into another.

8 Proof of the Compositionality Criterion

We next show how to use our axiomatic specification of the GSC model to prove Theorem 2.
Here we give only the key ideas and defer the complete proof to [15, §D]. Consider a well-
fenced history H = (E, so, rt) such that ∀x.H|x ∈ HistGSC. Then for any x there is an
execution Ax = (H|x, visx, arx) ∈ ExecGSC. We need to show H ∈ HistGSC, to which end we
construct an execution A = (H, vis, ar) ∈ ExecGSC.

Let so0 =
⋃

x∈Obj soH|x , vis0 =
⋃

x∈Obj visx and ar0 =
⋃

x∈Obj arx. It is reasonable to
expect vis and ar to extend the corresponding per-object orders in Ax, so we should have
vis0 ⊆ vis and ar0 ⊆ ar. The most difficult part is to construct ar; once this is done, we
construct vis as the smallest relation containing vis0 that is a solution to the system of
inequalities given by the axioms RYW-PushedVis in Figure 3. The following lemma gives
a closed form for this solution. Let Id = {(e, e) | e ∈ E}.

I Lemma 5. Given any arbitration order ar ⊇ ar0, the relation

vis = so∪ (ar? ; (vis0 \so) ; (rt∩(Event×EPull))? ; so?)∪ ((ar? ; (rt?∩(EPush×EPull)) ; so?)\ Id)

is the smallest one such that vis0 ⊆ vis and (H, vis, ar) satisfies RYW-PushedVis.

The first component of vis is meant to validate RYW, the second ObservedVis and
the third PushedVis. Appending so? at the end of the last two components validates
MonotonicView.
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x.read: [1 ] 

g: y.read: [ ]/
pull

f: y.append(1)

e: x.append(1)

so, rt

ar

vis0 \ so

vis

Figure 4 Motivation for ≺.

We now describe the construction of ar. This order needs to include several relations.
Since vis0 ⊆ vis and A should satisfy ObservedAr, we must have (vis0 \ so) ; rt ⊆ ar. Since
A should satisfy PushedAr we must have rt ∆= rt ∩ (EPush× Event) ⊆ ar. Since A should
satisfy RYW and vis ⊆ ar, we must have so ⊆ ar0. Finally, for A to satisfy RetVal, ar should
include one more relation that is more subtle. We illustrate the need for it using the example
in Figure 4. Assume that we have the solid edges in the figure. If we arbitrate between the
two appends as shown by the dashed edge f ar−→ e, then according to the construction in
Lemma 5 we will also have the dashed edge f vis−→ g (needed for A to satisfy ObservedVis).
But then the resulting A will violate RetVal. We therefore include the following relation
into ar, which ensures that such situations do not happen:

e ≺ f ⇐⇒ ∃g. obj(f) = obj(g) ∧ (f, g) 6∈ vis0 ∧
(e, g) ∈ (vis0 \ so) ; (rt ∩ (Event× EPull)) ; so0? ∪ (rt ∩ (EPush× EPull)) ; so0?.

If e ≺ f , then adding an edge f ar−→ e would create a visibility edge f vis−→ g between events
on the same object that is not in vis0. Note that the expression covering (e, g) above is more
specific than the one in Lemma 5: we have so0 instead of so, and rt must be used. This
is crucial for the proof (specifically, Lemma 6 below) and, as we show, is still sufficient to
validate RetVal because the history H is well-fenced.

Thus, we need to construct an ar that includes R ∆= rt ∪ so ∪ ar0 ∪ ((vis0 \ so) ; rt) ∪ ≺.
For this to be possible, R has to be acyclic.

I Lemma 6. rt ∪ so ∪ ar0 ∪ ((vis0 \ so) ; rt) ∪ ≺ is acyclic.

Establishing this lemma is the most subtle part of the proof. To do this, we construct a
closed-form expression covering the transitive closure of R.

I Lemma 7.

(rt ∪ so ∪ ar0 ∪ ((vis0 \ so) ; rt) ∪ ≺)+

= (rt ∪ so ∪ ar0 ∪ ((vis0 \ so) ; rt))+ ∪ (≺ ∪ ar0 ; ≺) ; (rt ∪ so ∪ ar0 ∪ ((vis0 \ so) ; rt))∗ and
(rt ∪ so ∪ ar0 ∪ ((vis0 \ so) ; rt))+

⊆ rt ∪ ar0 ∪ (ar0 ; rt) ∪ (rt ; ar0) ∪ (ar0 ; rt ; ar0) ∪ ((vis0 \ so) ; rt) ∪
(ar0 ; ((vis0 \ so) ; rt)) ∪ (((vis0 \ so) ; rt) ; ar0) ∪ (ar0 ; ((vis0 \ so) ; rt) ; ar0).

The proof Lemma 7 relies on establishing that components of R satisfy various algebraic
properties, some of which exploit the fact that the history H is well-fenced. For example, we
prove that ≺ is a strict partial order, i.e., transitive and irreflexive.

To prove Lemma 6, it is thus sufficient to prove that the relation covering R+ in Lemma 7
is irreflexive. This relation describes only particular paths in R of length at most 5. Its
irreflexivity is then established by a case analysis on these paths.
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Using Lemma 6, we can extend R to a prefix-finite total order, which we take as ar; then
vis is defined by Lemma 5. We can then show that vis defined in this way is prefix-finite,
acyclic and vis ⊆ ar, so that A = (H, vis, ar) is an abstract execution. By Lemma 5, A
satisfies RYW-PushedVis. It satisfies PushedAr because rt ⊆ ar, and it is also easy to
check that it satisfies ObservedAr.

We next argue that A satisfies RetVal, which exploits the particular way in which we
constructed ar. To this end, we show that for any object x we have vis|x = visx, where vis|x
is the projection of vis to events on x. Then since for any x we have arx ⊆ ar and Ax satisfies
RetVal, so does A. Since visx ⊆ vis by construction, we only need to show vis|x ⊆ visx.
Consider arbitrary f, g ∈ E such that obj(f) = obj(g) = x and f vis−→ g. To show f

visx−−→ g

our proof considers several cases corresponding to which of the components of the union
defining vis in Lemma 5 the edge (f, g) belongs to. For illustration, here we only consider a
single case when (f, g) comes from the following instance of the second component of the
union, which uses an rt edge: (f, g) ∈ ar? ; (vis0 \ so) ; (rt ∩ (Event× EPull)) ; so?. Then for
some g′ we have

f
ar?;(vis0\so);(rt∩(Event×EPull))−−−−−−−−−−−−−−−−−−−→ g′

so?−−→ g.

Figure 4 illustrates the case when g′ = g. If obj(g′) 6= obj(g), then since the history H
is well-fenced, for some g′′ ∈ EPull we have g′ so−→ g′′

so0?−−→ g. Since so ⊆ rt, this implies
g′

rt∩(Event×EPull)−−−−−−−−−−→ g′′
so0?−−→ g. Hence,

f
ar?;(vis0\so);(rt∩(Event×EPull))−−−−−−−−−−−−−−−−−−−→ g′′

so0?−−→ g. (1)

If obj(g′) = obj(g), then g′ so0?−−→ g and we again have (1) for g′′ = g′. Thus, in all cases (1)
holds for some g′′. Then for some e we have

f
ar?−−→ e

(vis0\so);(rt∩(Event×EPull))−−−−−−−−−−−−−−−−−→ g′′
so0?−−→ g.

Now if ¬(f visx−−→ g), then e ≺ f , contradicting ≺ ⊆ ar. Hence, f visx−−→ g, as required.
Thus, A satisfies all GSC axioms except for possibly Eventual. Since ∀x. vis|x = visx

and Ax satisfies Eventual, we have

∀e ∈ E. |{f ∈ E | obj(e) = obj(f) ∧ ¬(e vis−→ f)}| <∞, (2)

i.e., an event e cannot be invisible to infinitely many events f on the same object. Then, as the
following lemma shows, we can extend vis so as to validate Eventual without invalidating
any of the other axioms.

I Lemma 8. Let H = (E, so, rt) and A = (H, vis, ar) be an execution that satisfies all GSC
axioms except for possibly Eventual. Assume (2) holds. Then there exists vis′ ⊇ vis such
that (H, vis′, ar) ∈ ExecGSC.

We thus construct an execution (H, vis′, ar) ∈ ExecGSC, which shows that H ∈ HistGSC
and thereby establishes Theorem 2.

The axiomatic specification of GSC plays an important role in the above proof. It allows
us to concisely state constraints that the global order on operations represented by ar needs
to satisfy for the global execution to be GSC. We can then show that the desired global order
exists by proving algebraic properties over relations, as exemplified by Lemma 7.
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9 Related Work and Discussion

Lev-Ari et al. [22] have proposed a criterion for composing objects providing Ordered
Sequential Consistency (OSC), which is a special case of our results (§5). In comparison
to them, we handle a more complex consistency model, which requires a different proof
approach: specifying the consistency model axiomatically and reasoning about it using
algebraic techniques. Lev-Ari et al. have also implemented their criterion in a library for
composing ZooKeeper instances and showed that it has a competitive performance [21]. We
hope that our results will enable similar practical implementations for systems providing
other consistency models from the family we considered. In particular, the implementation
of GSP in Orleans [5] provides only per-object consistency guarantees, and our results should
allow its clients to use multiple objects while preserving the consistency model.

There are other widely used consistency models that are in general non-composable, such
as sequential consistency [20]. Perrin et al. [25] proposed conditions on the use of sequentially
consistent concurrent objects under which a composition of multiple objects stays sequentially
consistent. Our compositionality result is similar in spirit, but handles a family of more
complex consistency models implemented in modern systems [10, 23, 18]. Vitenberg and
Friedman [30] showed that combining sequential consistency with any composable property
yields a non-composable property. Our compositionality criterion does not contradict this
result, since well-fencedness of histories is not a composable property.

Our operational specification of the GSC model generalizes the GSP protocol [10], with
significant differences. First, GSP allows only pure read and update operations, while GSC
permits mixed operations that both modify the state and return a value to the caller. Second,
GSP does not support push and pull fences that are attached to operations. Rather, its
original proposal [10] investigated stronger synchronization primitives, such as standalone
fences and transactions, which cannot be used to define TSO, dual TSO and OSC as special
cases. Therefore, GSP is unsuitable to serve as a unifying model that clarifies the relationship
between these instances.

Axiomatic specifications have been previously proposed for consistency models in shared-
memory [23, 19] and distributed storage systems [9, 8]. Our GSC specification uses the same
framework as for the latter. Researchers have proposed axiomatic specifications for TSO-like
models and proved their equivalence to operational ones [23, 17]. However, our specifications
are the first to formalise the role of the real-time order in distinguishing between these
models. Including real-time order into axiomatic models [8] is important in a distributed
setting because of the possibility of out-of-band communication between clients; without this
one cannot safely substitute implementations for specifications [12, 3].

We have exploited the axiomatic specification of GSC to establish a compositionality
criterion and an equivalence between GSP and TSO/dual TSO. However, axiomatic specific-
ations of consistency models have been shown useful to obtain other kinds of results, such as
criteria for robustness – checking when an application running on a weak consistency model
behaves as if it runs on a strong one [27, 4]. We hence hope that our specifications will allow
obtaining such results for consistency models with global operation sequencing.

Acknowledgements. We thank Idit Keidar, Kfir Lev-Ari and Matthieu Perrin for helpful
comments.
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Abstract
Graph spanners are fundamental graph structures with a wide range of applications in distributed
networks. We consider a standard synchronous message passing model where in each round
O(logn) bits can be transmitted over every edge (the CONGEST model).

The state of the art of deterministic distributed spanner constructions suffers from large
messages. The only exception is the work of Derbel et al. [9], which computes an optimal-sized
(2k − 1)-spanner but uses O(n1−1/k) rounds.

In this paper, we significantly improve this bound. We present a deterministic distributed
algorithm that given an unweighted n-vertex graph G = (V,E) and a parameter k > 2, constructs
a (2k− 1)-spanner with O(k · n1+1/k) edges within O(2k · n1/2−1/k) rounds for every even k. For
odd k, the number of rounds is O(2k · n1/2−1/(2k)). For the weighted case, we provide the first
deterministic construction of a 3-spanner with O(n3/2) edges that uses O(logn)-size messages
and Õ(1) rounds. If the vertices have IDs in [1,Θ(n)], the spanner is computed in only 2 rounds!

1998 ACM Subject Classification G.2.2 Graph Algorithms

Keywords and phrases spanners, clustering, deterministic algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.24

1 Introduction & Related Work

Graph spanners are fundamental graph structures that are used as a key building block
in various communication applications, e.g., routing, synchronizers, broadcasting, distance
oracles, and shortest path computations. For this reason, the distributed construction of
sparse spanners has been studied extensively [2, 5, 6, 7, 8, 9, 15]. The standard setting is a
synchronous message passing model where per round each node can send one message to
each of its neighbors. Of special interest is the case where the message size is limited to
O(logn) bits, a.k.a. the CONGEST model.

The common objective in distributed computation of spanners is to achieve the best-
known existential size-stretch trade-off as fast as possible: It is folklore that for every graph
G = (V,E), there exists a (2k − 1)-spanner H ⊆ G with O(n1+1/k) edges. Moreover, this
size-stretch tradeoff is believed to be optimal, following the girth conjecture of Erdős.

Designing deterministic algorithms for local problems has been receiving a lot of attention
since the foundation of the area in 1980’s. Towards the end of this section, we elaborate
more on the motivation for studying deterministic algorithms in the distributed setting.
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State of the art for deterministic distributed constructions of spanners. Whereas there
are efficient randomized constructions for spanners, as the reader will soon notice, the state
of the art for distributed deterministic spanner constructions suffers from large message
sizes: Derbel and Gavoille [5] construct constant stretch spanners with o(n2) edges and O(nε)
rounds for any constant ε, using messages of size O(n). Derbel, Gavoille and Peleg improved
this result and presented in [6] a construction of an O(k)-spanner with O(kn1+1/k) edges
in O(logk−1 n) rounds. This was further improved in the seminal work of Derbel, Gavoille,
Peleg, and Viennot [7], which provides a deterministic k-round algorithm for constructing
(2k− 1)-spanners with optimal size. However, again the algorithm uses messages of size O(n).
Using large messages is indeed inherent to all known efficient deterministic techniques, which
are mostly based on network decomposition and graph partitioning. In the conventional
approaches of network decomposition, the deterministic algorithms for spanners usually
require a vertex to learn the graph topology induced by its O(1)-neighborhood. This cannot
be done efficiently with small messages.

As Pettie [15] explicitly noted, all these constructions have the disadvantage of using large
messages. Derbel et al. [8] also pointed out that constructing sparse spanners deterministically
with small message sizes remains open.

The state of the art when using small messages. There are only two exceptions for this
story. Barenboim et al. [1] showed a construction of O(logk−1 n) spanner with O(n1+1/k)
edges in O(logk−1 n) rounds. Hence, whereas the runtime is polylogarithmic, the stretch-size
tradeoff of the output spanner is quite far from the optimal one.

We are then left with only one previous work that fits our setting, due to Derbel,
Mosbah and Zemmari [9]. They provide a deterministic construction of an optimal-size
(2k − 1)-spanner but using O(n1−1/k) rounds.

The state of the art in other distributed settings. Turning to randomized constructions,
perhaps one of the most well known approaches to construct a spanner is given by Baswana
and Sen [2], which we review soon. Recently, [3] showed that the Baswana-Sen algorithm can
be derandomized in the congested clique model of communication in which every pair of nodes
(even non-neighbors in the input graph) can exchange O(logn) bits per round. Note that
this model is much stronger than the standard model in which only neighboring vertices can
communicate. Indeed the algorithm of [3] requires a global evaluation of the random seed, thus
implementing this algorithm in the standard CONGEST model requires Ω(diam(G) +n1−1/k)
rounds where diam(G) is the diameter of the graph. Hence, deterministic construction of
spanners in the CONGEST model calls for new ideas!

Before we proceed with introducing our main contribution, we make a short pause to
further motivate the study of deterministic distributed algorithms.

A note on deterministic distributed algorithms. Much effort has been invested in design-
ing deterministic distributed algorithms for local problems. Examples include MIS (maximal
independent set), vertex coloring, edge coloring and and matching. Until recently, a determin-
istic poly-log n round algorithm was known only for the maximal matching problem (see [13]
and a recent improvement by [10]). In a recent breakthrough [11], a polylogarithmic solution
was provided also for the (2∆−1) edge coloring1. Aside from the general theoretical question,

1 Where ∆ is the maximum degree in the graph.
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the distributed setting adds additional motivation for studying deterministic algorithms (as
nicely noted in [10]). First, in the centralized setting, if the randomized algorithm ends with
an error, we can just repeat. In the distributed setting, detecting a global failure requires
communicating to a leader, which blows up the runtime by a factor of network diameter.
Second, for problems as MIS, [4] showed that improving the randomized complexity requires
an improvement in the deterministic complexity.

Wheres most results for deterministic local problems are for the LOCAL model, which
allows unbounded messages; the size of messages that are sent throughout the computation
is a second major attribute of distributed algorithms. It is therefore crucial to study
the complexity of local problems under bandwidth restrictions. Surprisingly, most of the
algorithms for local problems already use only small messages. The problem of spanners is
distinguished from these problems, and in fact, spanners is the only setting we are aware of,
in which all existing deterministic algorithms use large messages. Hence, the main challenge
here is in the combination of deterministic algorithms with congestion constraints.

1.1 Our Contribution

Our main result is:

I Theorem 1. For every n-vertex unweighted graph G = (V,E) and even k, there exists
a deterministic distributed algorithm that constructs a (2k − 1)-spanner with O(k · n1+1/k)
edges in O(2k · n1/2−1/k) rounds using O(logn)-size messages2.

A key element in our algorithm is the construction of sparser spanners for unbalanced
bipartite graph. This construction might become useful in other spanner constructions.

I Lemma 2 (Bipartite Spanners). Let G = (A ∪B,E) be an unweighted bipartite graph, with
|A| ≤ |B|. For even k ≥ 4, one can construct (in the CONGEST model) a (2k − 1) spanner
H with |E(H)| = O(k|A|1+2/k + |B|) edges within O(|A|1−2/k) rounds3.

Turning to weighted graphs, much less in known about the deterministic construction of
spanners in the distributed setting. The existing deterministic constructions of optimal-sized
(2k − 1)-spanners (even in the LOCAL model) are restricted to unweighted graphs, already
for k = 2. If the edge weights are bounded by some number W , there is a simple reduction4
to the unweighted setting, at the cost of increasing the stretch by a factor of (1 + ε) and the
size of the spanner by a factor of log1+εW . Hence, already in the LOCAL model and k = 2,
we only have a (3 + ε) spanner with Õ(n3/2) edges. Whereas our general approach does not
support the weighted case directly, our algorithm for 3-spanners does extend for weighted
graphs. Hence, we give here the first deterministic construction with nearly tight tradeoff
between the size, stretch and runtime.

I Theorem 3 (3-Spanners for Weighted Graphs). For every n-vertex weighted graph G =
(V,E), there exists a deterministic distributed algorithm that constructs a 3-spanner with
O(n3/2) edges in O(logn) rounds using O(logn)-size messages. If vertices have IDs in the
range of [1, O(n)], it can be done in two rounds.

2 For odd k, we obtain a similar theorem, but with O(2k · n1/2−1/(2k)) rounds.
3 Hence, yielding an improved edge bound, for |A| ≤ n(k+1)/(k+2).
4 Apply the algorithm for unweighted graphs separately for every weight scale ((1 + ε)i, (1 + ε)i+1].
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1.2 Our Approach and Key Ideas in a Nutshell
For the sake of discussion, let k = O(1) throughout this section.

A brief description of the randomized construction by Baswana-Sen. A clustering C =
{C1, . . . , C`} is a collection of vertex disjoint sets which we call clusters. Every cluster has
some a special vertex which we call the cluster center. In the high level, the Baswana-Sen
algorithm computes k levels of clustering C0, . . . , Ck−1 where each clustering Ci is obtained
by sampling the cluster center of each cluster in Ci−1 with probability n−1/k. Each cluster
C ∈ Ci has in the spanner H, a BFS tree of depth i rooted at the cluster center spanning5 all
the nodes of C. The vertices that are not incident to the sampled clusters become unclustered.
For each unclustered vertex v, the algorithm adds one edge to each of the clusters incident to
v in Ci−1. This randomized construction is shown to yield a spanner with O(kn1+1/k) edges
in expectation and it can be implemented in O(k2) rounds6. Note that the only randomized
step in Baswana-Sen is in picking the cluster centers of the ith clustering. That is, given the
n1−(i−1)/k cluster centers Zi−1 of the clusters in Ci−1, it is required to pick n−1/k fraction of
it, to be centers of the clusters in Ci−1.

The brute-force deterministic solution in O(n) rounds. A brute-force approach to pick
the new cluster centers of Ci is to iterate over the clusters in Ci−1 one by one, checking if
they satisfy some expansion criteria. Informally, the expansion is measured by the number
of vertices in the ith-neighborhood of the cluster center (i.e., number of vertices that can be
covered7 by the cluster center in case it proceeds to the ith level). If the expansion is large
enough, the current cluster “expands” (i.e., covers vertices up to distance i), and joins the
ith-level of the clustering Ci. Since in the first level there are O(n) clusters (each vertex forms
a singleton cluster), this approach gives an O(n)-round algorithm. With some adaptations,
this approach can yield an improved O(n1−1/k) round algorithm (as in [9]).

Our O(n1/2−1/k)-round deterministic solution. Inspired by the randomized construction
of Baswana-Sen and the work of Derbel, Gavoille, and Peleg [6], we present a new approach
for constructing spanners, based on two novel components which we discuss next.

1.2.1 Key Idea (I): Grouping Baswana-Sen Clusters into Superclusters
Our approach is based on adding an additional level of clustering on top of Baswana-Sen
clustering. We introduce the novel notion of a supercluster – a subset of Baswana-Sen clusters
that are close to each other in G. In every level i ≤ k/2, we group the O(n1−i/k) clusters of
Ci into O(

√
n) superclusters, each containing O(n1/2−i/k) clusters which are also close to each

other in G. Specifically, the superclusters have the following useful structure: cluster-centers
of the same supercluster are connected in G by a constant depth tree (i.e., the weak diameter
of the superclusters is O(1)), and the trees of different superclusters are edge-disjoint.

Unlike the brute-force O(n)-round algorithm mentioned above, our algorithm iterates
over superclusters rather than clusters. We define the neighborhood of the supercluster to be
all vertices that belong to – or have a neighbor in– one of the clusters of that supercluster.
The expansion of the supercluster is simply the size of this neighborhood. The importance

5 The vertices of the tree are precisely the vertices of the cluster.
6 With some care, we believe the algorithm can also be implemented in O(k) rounds
7 We say the a vertex is covered by a cluster-center if it gets into its cluster.
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of having this specific structure in each supercluster is that it allows the superclusters to
compute their expansion in O(1) rounds8. The faith of the superclusters (i.e., whether
they continue on to the next level of clustering), in our algorithm, is determined by their
expansion. If the expansion of a supercluster is sufficiently high, all the cluster centers of
that supercluster join the next level i of the clustering. Otherwise, all these clusters are
discarded from the clustering. As we will show in depth, the algorithm makes sure that at
most O(n1/2−1/k) superclusters pass this “expansion test” and the remaining superclusters
with low-expansion are handled using our second key tool as explained next.

1.2.2 Key Idea (II): Better Spanners for Unbalanced Bipartite Graphs
In our spanner construction, each supercluster with low-expansion has additional useful
properties: it has |A| = O(

√
n) vertices and only |B| = O(n1/2+1/k) many “actual” neighbors9.

We then apply Lemma 2 on these superclusters by computing the (2k − 1)-spanner for each
of these bipartite graphs obtained taking the vertices of the supercluster to be on one side of
the bipartition, A, and their “actual” neighbors on the other side B. Since there are O(n1/2)
superclusters, this adds O(n1/2+1/k · n1/2) = O(n1+1/k) edges to the spanner.

Finally to provide a good stretch in the spanner for all the edges in G between vertices
of the same supercluster10, we simply recurse inside each supercluster– this can be done
efficiently since the superclusters are vertex disjoint (as they contain sets of vertex disjoint
clusters), and each of supercluster has O(

√
n) vertices.

Roadmap. The structure of the paper is as follows. We start by considering in Section
3 the simplified case of 3-spanners (hence k = 2) and present a deterministic construction
with O(logn) rounds. Section 4 considers the general case of k > 2. In Sec. 4.1, we first
describe an O(n1−1/k)-round algorithm that already contains some of the ideas of the final
algorithm. Then, before presenting the algorithm, we describe the two key tools that it uses.
For didactic reasons, in Sec. 4.2, we first describe the construction of sparser spanners for
unbalanced bipartite graphs. Only later 4.3, we present the new notion of superclusters.
Finally, in Sec. 4.4, we show how these tools can be used to construct (2k − 1)-spanners for
graphs of low diameter. The extension for general graphs is deferred to the full version [12].

2 Preliminaries, Notation and Model

Notations and Definitions. We consider an undirected unweighted n-vertex graph G =
(V,E) where V represents the set of processors and E is the set of links between them.
Let diam(H) be the diameter of the subgraph H ⊆ G. We denote the diameter of G by
D = diam(G). For u, v ∈ V (G) and a subgraph H, let dist(u, v,H) denote the u − v

distance in the subgraph H ⊆ G. When H = G, we omit it and write dist(u, v). Let
Γ(u) = {v | (u, v) ∈ E} be the set of u’s neighbors in G and Γ+(u) = Γ(u) ∪ {u}. For a
subset of the vertices V ′ ∈ V , let Γ(V ′, G) =

⋃
u∈V ′ Γ(u) and Γ+(V ′, G) = Γ(V ′, G) ∪ V ′.

Let Γi(v) = {u | dist(u, v) ≤ i}, for a subset V ′, Γi(V ′) is defined accordingly.
For a subgraph H ⊆ G, let E(v,H) = {(u, v) ∈ E(H)} be the set of edges incident to v

in the subgraph H and let deg(v,H) = |E(v,H)| denote the degree of node v in G. For a set

8 using the collection of edge disjoint O(1)-depth trees that connect their cluster centers.
9 This term is informal, the actual neighbors are the vertices that are no longer clustered by the current

clustering.
10 Vertices whose clusters belong to the same supercluster.
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of vertices C, let G(C) be the induced graph of G on C. We say the a tuple (a, b) > (c, d) if
a > c or a = c but b > d.

Spanners and Clustering. A subgraph H ⊆ G is a (2k − 1)-spanner if dist(u, v,H) ≤
(2k − 1)dist(u, v,G) for every u, v ∈ V . Given a graph G, a subgraph H, and an edge
e = (u, v) in G, we define the stretch of e in H to be the length of the shortest path from u

to v in H. If no such path exists, we say that the stretch is infinite. We say that an edge
e = (u, v) is taken care of in H if dist(u, v,H) ≤ (2k − 1).

A cluster is a connected set C of vertices of the original graph. Often, a cluster will have
one of its vertices s ∈ C be the cluster center. The ID of the cluster is the ID of its center.
Two clusters C1 and C2 are neighbors if Γ(C) ∩ C ′ 6= ∅. For a subset of vertices S ⊆ V , the
diameter of the subset is simply the diameter of the induced graph G on S.

Ruling Sets. An (α, β)-ruling set with respect to G and V ′ ⊆ V is a subset U ⊆ V ′

satisfying the following: (I) All pairs u, v ∈ U satisfy dist(u, v) ≥ α, (II) For all v ∈ V ′,
there exists a u ∈ U such that dist(u, v) ≤ β.

The Communication Model. We use a standard message passing model, the CONGEST
model [14], where the execution proceeds in synchronous rounds and in each round, each
node can send a message of size O(logn) to each of its neighbors. In this model, local
computation is done for free at each node and the primary complexity measure is the number
of communication rounds. Each node holds a processor with a unique and arbitrary ID of
O(logn) bits. Throughout, we assume that the nodes know a constant approximation on the
number of nodes n, same holds also for the randomized algorithm of Baswana-Sen11.

3 3-Spanners in Õ(1) Rounds

The key building block of the algorithm is the construction of a linear sized 3-spanner for a√
n× n bipartite graph. A similar idea already appeared in [6], but using O(n)-bit messages.

The core construction: 3-spanners for unbalanced bipartite graphs

I Lemma 4. Let G = (A,B,E) be a (possibly weighted) bipartite graph where |A| = O(
√
n),

|B| = O(n), and each vertex knows whether it is in A or in B. Then one can construct (in
the CONGEST model) a 3-spanner H with O(n) edges within two rounds.

Algorithm Bipartite3Spanner first forms |A| vertex-disjoint star clusters (clusters of radius 1),
each centered at a vertex of A. To do that, every vertex vb ∈ B picks one of its neighbors
va ∈ Γ(vb) ∩A to be its cluster center and sends the ID of its chosen neighbor va to all of its
neighbors. We write c(vb) = va to denote that the cluster center of vb is va.

All edges (vb, c(vb)) are added to the spanner H. At this point, the graph contains O(
√
n)

clusters centered at the vertices in A. We say that two stars S1 and S2 are neighbors if the
center of S1 has a neighbor in S2, or vice-versa. Note that because the graph is bipartite,
this is the only possible connection between clusters. Then, for each vertex ua in A, and
each neighboring star-cluster u′a, the vertex ua adds to the spanner H one edge to one of its
neighbors in the cluster of u′a. For a complete description of the algorithm see Alg. 1.

11 In Baswana-Sen, each center samples itself with probability n−1/k, which requires knowing n.
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Algorithm 1 Bipartite3Spanner(G = (A ∪B,E)) for |A| = O(
√
n) and |B| = O(n).

1: H ← ∅
2: Each vertex vb ∈ B selects an arbitrary neighboring vertex va ∈ A, assigns c(vb) = va and send c(vb)

to all its neighbors. It adds the edge (vb, c(vb)) to H.
3: Each vertex ua ∈ A does the following (in parallel):
4: for each ID va received do
5: Pick a single neighbor vb satisfying c(vb) = va. Add the edge (ua, vb) to H.

To adapt the algorithm for the weighted case, we simply let each vb ∈ B pick its closest
neighbor in A. In addition, each vertex ua connects to its closest neighbor in each star of u′a.
It is easy to see that the algorithm takes 2 rounds. In the full version [12], we show:

I Lemma 5. The output H of Alg. Bipartite3Spanner is a 3-spanner with O(n) edges.

Constructing 3-spanners for general graphs in O(log n) rounds. Let Vh = {v ∈ V |
deg(v,G) ≥

√
n} be the set of high degree vertices in G and let V` = V \Vh be the remaining

low-degree vertices. First, the algorithm adds to the spanner H, all the edges of the low-degree
vertices V`. Then, it proceeds by partitioning (in a way that will be described later) the
high-degree vertices Vh into t = O(

√
n) balanced sets V1, . . . , Vt. This partition gives rise to

t bipartite
√
n× n graphs Bi obtained by taking Vi to be on one side of the partition and

V \ Vi on the other side. We describe the partitioning procedure in Lemma 6. We can then
apply Algorithm Bipartite3Spanner to construct 3-spanners for all these subgraphs in parallel.
Finally, we simply add to H, all the internal edges Vi × Vi for every i, again adding total of
t ·O(n) edges.

Algorithm Improved3Spanner

(S0) Handling Low-Degree Vertices: Add to H all edges in (V` × V ) ∩ E(G).
(SI) Balanced Partitioning of High-Degree Vertices Vh: Partition the
high-degree vertices of V into Θ(

√
n) sets V1, . . . , Vt each with O(

√
n) vertices.

(SII) Taking care of edges Vi × (V \ Vi), for every i ∈ {1, . . . , t}:
Define Bi = (Vi, V \ Vi) for every i ∈ {1, . . . , t}.
Construct a 3-spanner Hi ⊆ Bi by applying Algorithm Bipartite3Spanner on each
of the Bi graphs in parallel, for every i.

(SIII) Taking care of edges Vi × Vi, i ∈ {1, . . . , t}: Add to H all edges in
Vi × Vi for every i ∈ {1, . . . , t}.

Note that eventhough the bipartite graphs Bi are not vertex disjoint, each edge belongs to
at most two such graphs, and hence we can construct the 3-spanners for all Bi in parallel. It
is also easy to see that the final spanner has O(n3/2) edges.

The only missing piece at that point concerns the computation of partitioning Vh.

Balanced partitioning of Vh in O(log n) rounds. The partition procedure starts by com-
puting (4, O(logn))-ruling set R ⊆ V for the high-degree vertices Vh. We will use the
following lemma that uses standard technique for constructing (t, t logn)-ruling sets.

I Lemma 6. Given a graph G = (V,E) and a subset Vh ∈ V of the vertices, one can compute
in O(logn) rounds in the CONGEST model, a (4, O(logn))-ruling set U ⊆ Vh with respect to
G and the high-degree vertices Vh.
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We now view each of the vertices r ∈ R as a center of a cluster of diameter O(logn): let each
high-degree vertex join the cluster of the vertex closest to it in R, breaking ties based on IDs.
Since every vertex in Vh is at distance O(logn) from R, all the vertices Vh will be clustered
within O(logn) rounds. Each vertex r in R can then partition the vertices of its cluster into
subsets of size b

√
nc, and an additional leftover subset of size at most

√
n (this can be done

using balanced partitioning lemma, Lemma 9). We now claim that this partition is balanced.
Clearly, all sets are of size O(

√
n), so we just show that there O(

√
n) subsets. Since every

r ∈ R is high-degree and since every two vertices in R are at distance at least 4, we have that
|R| = O(

√
n). For each r ∈ R, there is at most one subset of size less than b

√
nc. Therefore,

there are O(
√
n) subsets of size less than b

√
nc. All other subsets are of size b

√
nc. However,

there can be at most O(
√
n) disjoint subsets of size b

√
nc, hence there are O(

√
n) subsets in

total, as desired.
We conclude by showing:

I Lemma 7 (3-Spanner Given Partition). Given a (possibly weighted) n-vertex graph G =
(V,E) with a vertex-partition V1, V2, . . . , Vt such that |Vi| = O(

√
n) and t = O(

√
n), one can

construct a 3-spanner H of size O(n3/2) in 2 rounds in the CONGEST model.

Finally, if the vertices IDs are bounded, two rounds are sufficient to construct the spanner.

I Theorem 8 (Small IDs). Given a graph G = (V,E) where the IDs of the vertices have
log(n) +O(1) bits, one can construct a 3-spanner H of G with |H| = O(n3/2) edges in two
rounds in the CONGEST model.

4 (2k − 1) Spanners

The structure of Baswana-Sen clustering. At the heart of the algorithm is a construction
of (k − 1)-levels of clustering C0, . . . , Ck−1. The initial clustering C0 = {{v}, v ∈ V } simply
contains n singleton clusters. For every i, each cluster C ∈ Ci has a cluster center z and we
denote by Zi the collection of cluster centers. We define Vi =

⋃
z∈Zi

Γi(z). A vertex v is
i-clustered if v ∈ Vi, otherwise it is i-unclustered. Hence Vi is the set of clustered vertices
appearing in the clusters of Ci. The algorithm consists of k− 1 steps where at the end of step
i ∈ {1, . . . , k − 1}, we have an ith-level clustering Ci = {C1, . . . , C`} and a partial spanner
Hi that satisfies the following: (P1) The clustering Ci contains ` = O(n1−i/k) clusters. (P2)
For each cluster Cj ∈ Ci with a center zj , the subgraph Hi contains a BFS tree Ti(C) of
depth at most i that spans all the vertices of C (i.e., the vertices of Ti(C) are precisely C)
and (P3) For every u ∈ Vi−1 \ Vi, and every v ∈ Γ(u), dist(u, v,Hi) ≤ 2k − 1.

High-Level Description of Phase i in Baswana-Sen Algorithm

(SI) Selecting O(n1−i/k) cluster centers Zi ⊆ Zi−1. In the randomized
algorithm, this is done by sampling each center in Zi−1 independently with
probability n−1/k. The i-clustered vertices are Vi = Γ+

i (Zi).
(SII) Taking care of unclustered vertices Vi−1 \ Vi. That is, taking care of
the vertices that stopped being clustered at that point.
(SIII) Forming the clusters of Ci around Zi. This is done by letting each
u ∈ Vi join the cluster of its closest center in Zi breaking tie based on ID’s. The
latter can be implemented in O(i) rounds of constructing BFS trees of depth i from
all centers Zi while breaking ties appropriately.
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At the final phase of Baswana-Sen, there are O(n1/k) clusters in Ck−1 and at that point,
each vertex v ∈ V adds one edge to each of its neighboring clusters in Ck−1.

Note that the only step that uses randomness in this algorithm is sub-step (SI), and
the other two sub-steps (SII-SIII) and the final phase are completely deterministic. Our
challenge is to implement sub-step (SI) deterministically in a way that in sub-step (SII) we
do not add too many edges to the spanner. The algorithms presented from now on, will
simulate the ith phase of Baswana-Sen only without using randomness. Sub-step (SIII) and
the final phase will be implemented exactly as in Baswana-Sen.

4.1 Take (I): O(n1−1/k)-Round Algorithm NaiveSpanner
It is easy to see that 0th-level clustering containing n singleton clusters satisfies properties
(P1-P3). To simulate the ith phase of Baswana-Sen algorithm, we employ O(i · n1−i/k)
deterministic rounds: Initially, we unmark all the vertices and over time, some of the
vertices will get marked (i.e., indicating that they are i-clustered). The procedure consists of
O(n1−i/k) steps where at each step, we look at the remaining set Z ′i−1 of cluster centers in
Zi−1 that have not yet been added to Zi. Let U be the current set of unmarked vertices and
let C′i−1 ⊆ Ci−1 be the corresponding clusters of Z ′i−1. For each cluster C ∈ Ci−1, define its
unmarked neighborhood by ΓU (C) =

⋃
u∈C Γ(u) ∩ U and its current unmarked-degree by

degU (C) = |ΓU (C)|. We say that cluster C is a local-maxima in its unmarked neighborhood
if it has the maximum tuple (lexicographically) (degU (C), ID(C)) among all other clusters
C ′ that have mutual unmarked neighbors (i.e., ΓU (C) ∩ ΓU (C ′) 6= ∅).

Phase i of Algorithm NaiveSpanner

(SI) Defining the centers Zi.
Set Z ′i−1 ← Zi−1, U = V and for O(n1−i/k) steps do the following:

Every center z ∈ Z ′i−1 of cluster C computes degU (C).
Every center z ∈ Z ′i−1 whose cluster C has the maximum tuple (degU (C), ID(C))
in its unmarked neighborhood, degU (C), joins Zi only if degU (C) ≥ ni/k.
Remove from Z ′i the centers z ∈ C that join Zi and mark ΓU (C).

(SII) Taking care of unclustered vertices.
Let C′i−1 be the clusters whose centers did not join Zi.
For every unmarked vertex u, add one edge per neighboring cluster in C′i−1.

(SIII) Forming the Ci clusters centered at Zi. As in Baswana-Sen.

Sketch of the Analysis. The key part to notice is that by picking the local-maxima clusters,
we have that for any two cluster-centers z1 ∈ C1, z2 ∈ C2 that join Zi, their unmarked
neighborhoods ΓU (C1),ΓU (C2) are vertex disjoint, hence Zi contains O(n1−i/k) centers; in
addition, after O(n1−i/k) steps, the clusters of all remaining centers have O(ni/k) unmarked
neighbors. Hence, at step (SII), total of O(n1−(i−1)/k) · O(ni/k) = O(n1+1/k) edges are
added to the spanner. Turning to runtime, we claim that each of the O(n1−i/k) steps can
be implemented in O(i) rounds. Since each cluster C ∈ Ci−1 is connected i G by a depth-i
tree, and since trees of different clusters are vertex-disjoint, computing the unmarked degree
degU (C) of each cluster C can be done in O(i) rounds; To avoid the double of counting of
unmarked vertices that have many neighbors at the same cluster, each unmarked vertex
respond to only one its neighbors in each cluster. Similarly, also selecting the local maxima
clusters can be done in O(i) rounds. We note that the time complexity of the algorithm is
O(n1−1/k), as opposed to O(n), since after O(n1−1/k) iterations of finding clusters of locally
maximal unmarked degree, all remaining clusters will have low unmarked degree, and can
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be dealt with in parallel in O(1) rounds, by adding an edge to every unmarked neighbor.
Towards speeding up this algorithm, we now introduce our key technical tools.

A remark regarding step (SII). Let V ′i = Vi−1 \Vi be the set of newly unclustered vertices.
In Baswana-Sen algorithm, step (SII) takes care of all the edges in V ′i × V . That is, the
edges added to the spanner H at that stage provide that dist(u, v,H) ≤ 2i − 1 for every
(u, v) ∈ (V ′i ∈ V ) ∩ E. Most of the algorithms we present in this paper, have a weaker but
sufficient guarantee when implementing step (SII). In particular, we only add edges between
the remaining unmarked vertices and the remaining clusters whose centers did not join Zi.
We now show why it is sufficient. Consider an edge (u, v) ∈ E. Let iu be the largest level of
the clustering such that u is iu-clustered, define the same for v. Without loss of generality,
assume that iv ≤ iu.
Case (1): iu = k − 1: Let C be the cluster of u in Ck−1. Since in the last step, v adds one

edge to Γ(u) ∩ C, the claim holds.
Case (2): iu ≤ k − 2: Consider phase (iu + 1) where the clustering Ciu+1 is constructed

given Ciu .
By definition, in step (SII) of phase (iu + 1) we have that the vertex v is unmarked and the
vertex u belongs to a remaining cluster C ∈ Ciu . Since every unmarked vertex adds one edge
to each remaining cluster, we have that v added one edge to C ∩ Γ(v). The claim follows.

4.2 Key Tool (I): Sparser Spanner for Unbalanced Bipartite Graphs
In this section, we consider Lemma 2. Similarly to the construction of 3-spanners in Section 3,
a key ingredient in our algorithm is the construction of sparser spanners for unbalanced A×B
bipartite graphs for |A| ≤ |B|. The algorithm of [6] constructs a (2k − 1) spanners for these
bipartite graphs with O(|A||B|2/k) edges in the LOCAL model, using large messages. Our
algorithm is slower than that of [6], but has the benefit of obtaining a sparser (2k−1)-spanner
with only O(k|A|1+2/k + |B|) edges and while using O(logn)-bit messages.

The high-level strategy of Alg. SparserBipartiteSpanner is to first compute |A| star clusters
(clusters of radius 1) by letting each vertex of B join an arbitrary neighbor in A. Hence, after
one step of clustering, we have |A| clusters rather than O(n1−1/k) clusters is in Baswana-Sen.
We then consider star graph GS obtained contracting each star into a vertex, and essentially
apply Alg. NaiveSpanner on the star-graph GS to construct a (k− 1)-spanner HS ⊆ GS with
O(|A|1+2/k) edges within O(k|A|1−2/k) rounds. To get a (2k − 1) spanner H ⊆ G from HS ,
for every star-edge (Si, Sj) ∈ HS , add a single edge in (S1 × S2) ∩E to H. Finally, adding
the star edges to the spanner, gives a total of O(|A|1+2/k + |B|) edges. Simulating Alg.
NaiveSpanner on the star-graph in the CONGEST model requires some effort. The description
of Alg. SparserBipartiteSpanner and its analysis is in the full version [12].

4.3 Key Tool (II): Superclustering – Grouping Baswana-Sen Clusters
Why Superclusters? In this section, we describe the main tool that allows us to speed
up Alg. NaiveSpanner by a factor of

√
n. The idea is to group the n1−i/k clusters in the

ith-clustering Ci into
√
n superclusters, each containing O(n1/2−i/k) clusters. Then, instead of

iterating over clusters one by one (as in Alg. NaiveSpanner), we iterate over the superclusters.
Each time, either all the cluster centers of a given supercluster join the next level of clustering,
or none of them join. As will be shown later, in order to construct the ith-clustering Ci,
it will be sufficient for our algorithm to consider n1/2−1/k superclusters (and not all

√
n

superclusters), hence yielding the round complexity of O(n1/2−1/k) (for fixed k). For a
supercluster to compute the number of its (unmarked) neighbors, all cluster centers in a given
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supercluster should be able to communicate efficiently. For that purpose, we make sure that
the cluster centers in each supercluster are connected by an O(2k)-depth tree12, and that the
trees of different superclusters are edge-disjoint. These trees will be used for communication
purposes, and will allow us to aggregate information to leaders of all superclusters in parallel.

Defining the Superclusters. Let Ci be a collection of O(n1−i/k) i-clusters. A super-
cluster SCi,j = {Cj1 , . . . , Cj`

} is a collection of clusters from Ci. A Superclustering SCi =
{SCi,1, . . . , SCi,p} is a covering partition of all clusters from Ci. That is,

⋃p
j=1 SCi,j = Ci, and

the superclusters are cluster-disjoint (every cluster in Ci belongs to exactly one supercluster).
To select the cluster centers of level i, the algorithm constructs in each phase i ∈ {1, . . . , k/2}
a superclustering SCi which satisfies some helpful properties. We call a superclustering
satisfying these properties a nice superclustering. Before defining the properties of a nice
supercluster, we introduce some notation. For a supercluster SCi,j =

{
Cj1 , . . . , Cjp

}
, let

V (SCi,j) =
⋃
C∈SCi,j

C be the set of all vertices in its clusters and NV (SCi,j) = |V (SCi,j)|
be the number of vertices in the supercluster SCi,j . Also, let NC(SCi,j) denote the number
of clusters that the supercluster SCi,j contains. A supercluster SCi,j with only one cluster
(i.e., NC(SCi,j) = 1) is called a singleton. In addition, a singleton supercluster is called a
small-singleton if NV (SCi,j) ≤

√
n (otherwise, if NV (SCi,j) >

√
n, it is a large-singleton).

Our (2k− 1)-spanner construction is based upon the construction of superclusters with some
nice useful properties, as defined next.

Nice Superclustering. A superclustering SCi = {SCi,1, . . . , SCi,`} is nice if it contains
` = O(

√
n) superclusters, and each of these superclusters SCi,j ∈ SCi satisfies the following:

(N0) Singleton: If NV (SCi,j) = Ω(
√
n), then NC(SCi,j) = 1.

Every non-singleton supercluster SCi,j (i.e., every supercluster containing at least two
clusters) satisfies:
(N1) Cluster Balance: NC(SCi,j) = O(n1/2−i/k), and
(N2) Vertex Balance: NV (SCi,j) = O(

√
n).

(N3) Connectivity: In the graph G, each SCi,j ∈ SCi has a tree T (SCi,j) of depth13 O(2k).
In addition, the trees T (SCi,1), . . . , T (SCi,`) are edge-disjoint.

Intuitive discussion of these properties. Property (N0) implies that if a supercluster has
many vertices (more than

√
n), then it is a singleton supercluster. Property (N1) implies

that non-singleton superclusters with at least two clusters are balanced with respect to the
number of clusters from Ci that they contain. Since there are O(n1−i/k) clusters in the ith
clustering, dividing it “fairly” between

√
n superclusters yields this bound. Property (N2)

also implies a balance among non-singleton superclusters, but this time with respect to the
number of vertices. Finally, Property (N3) provides the existence of a O(2k)-depth tree that
connects the cluster centers of that supercluster. This “weird” looking depth of O(2k) shows
up when computing the 0th-level superclustering for general graphs (for graphs of constant
diameter a much simpler construction exists). In particular, it shows up in Step (SI) of
Alg. ConsZeroSuperclustering [12]. Finally, (N4) requires these trees to be edge-disjoint to
allow communication within different superclusters, in parallel without congestion. As will

12 This bound arises in the algorithm for graphs with general diameter, in the full version, and will be
discussed later on.

13 When the diameter of the original graph G is O(1), the diameter of T (SCi,j) = O(1). The term O(2k)
appears when dealing with graphs of large diameter, as described in the full version.
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be shown in the next subsection, to satisfy Properties (N1) and (N2), the construction of
the ith-level of superclustering requires to partition both the vertices and the clusters into
balanced the

√
n superclusters. The key tool to achieve it is the following:

The Balanced Partitioning Lemma. The input to the partitioning lemma is a vertex-
weighted tree T , where every vertex v in T has a non-negative weight w(v) and in addition,
we are given a bound B on the allowed total weight of each tree. The goal is to partition the
tree into edge-disjoint subtrees, such that, all but one of the subtrees have a weight in [B, 2B].
The lemma achieves this but with some subtle specification. It partitions the vertices of
the tree T into p disjoint sets: V̂ (T0), V̂ (T1), . . . , V̂ (Tp). The total weight of each set V̂ (Ti),
except for at most one, V̂ (T0), is bounded by [B, 2B]. Hence, the partition respects the
weight bound. Next, each set V̂ (Ti) is connected by a subtree Ti ⊆ T . The important feature
of these trees Ti is that they might contain an additional vertex v ∈ V (T ) \ V̂ (Ti). This
additional vertex v, if exists, is the root of Ti and it is essential to connect the vertices in
V̂ (Ti). Intuitively, this additional vertex helps us to communicate between the vertices of
V̂ (Ti). Even though the trees Ti are not vertex disjoint, they are shown to be edge disjoint,
which is sufficient for our applications.

I Lemma 9 (Balanced Partitioning Lemma). In O(diam(T )) rounds, one can construct
subtrees T0, T1, . . . , Tp ⊆ T, with roots r(T0), r(T1), . . . r(Tp) and corresponding disjoint vertex
sets V̂ (T0), V̂ (T1), . . . , V̂ (Tp) such that
(D1) The V̂ (Ti) sets are vertex disjoint and

⋃p
i=1 V̂ (Ti) = V (T ).

(D2) W (Ti) ∈ [B, 2B] for every i ≥ 1, and W (T0) ≤ 2B where W (Ti) =
∑
u∈V̂ (Ti) w(u).

(D3) V (Ti) = V̂ (Ti) ∪ r(Ti).
(D4) All T0, . . . , Tp are edge-disjoint and with diameter at most diam(T ).
Intuitively, the important vertex set of the tree Ti is the set of vertices V̂ (Ti) and hence the
weight of the tree in Property (D2) is defined by summing over all these vertices (instead of
summing over all vertices in the tree). Property (D3) implies that the tree Ti might contain,
in addition to V̂ (Ti), also an additional vertex – its root – that allows the connectivity of the
set V̂ (Ti) in Ti. The full proof of Lemma 9 appears in [12]. In the common application of this
lemma, the tree T is a tree that connects the cluster-centers of a given supercluster, these
cluster-centers are given a weight (e.g., the size of their cluster) and the remaining vertices
in T are given a zero weight. The bound corresponds to the maximum allowed number of
clusters (or vertices) in the supercluster (as in Section 4.3, (N2,N3)).

4.4 Take (II): (2k − 1)-Spanners in O(2k · n1/2−1/k) Rounds

We first consider the construction for graphs with constant diameter. At the end of the
section, we discuss the extension for general graphs with arbitrary diameter. Recall that for
i ≤ k/2, Ci is a clustering that contains O(n1−i/k) vertex-disjoint clusters centered at the
vertices Zi. The set of i-clustered vertices Vi are in Γi(Zi).

The first part of the algorithm contains k/2 phases. In each phase i ∈ {1, . . . , k/2}, we
are given a (i− 1)th nice superclustering SCi−1 (whose superclusters contain the clusters of
Ci−1) and the current spanner H. We then construct the ith nice superclustering SCi and
add edges to H in order to take care of the newly unclustered vertices in Vi−1 \ Vi. At the
end of the first part, we have a (k/2)th superclustering SCk/2 with O(

√
n) clusters. At that

point, the number of clusters is small enough, and so Alg. NaiveSpanner can be applied.



O. Grossman and M. Parter 24:13

Constructing the 0th-level superclustering SC0 in O(diam(G)) rounds. To compute
SC0, we apply the Partitioning Lemma 9 on a BFS tree T rooted at some arbitrary vertex
(e.g., of maximum ID) using weights of w(v) = 1 for each v ∈ V and bound B = O(

√
n).

This partitions the vertices into Θ(
√
n) subsets Si, each of size O(

√
n). Each such subset

Si = {vi,0, . . . , vi,`} defines a supercluster SC0,i = {{vi0}, . . . , {vi,`}} containing the singleton
clusters of Si’s vertices. By that, we get O(

√
n) superclusters SC0 = {SC0,1, . . . , SC0,

√
n}.

By the partitioning lemma, we also have a tree Ti for each SC0,i, satisfying Prop. (N3).

The ith phase of Algorithm ImprovedSpanner for i ∈ {1, . . . , k/2}. At the beginning
of the phase, we are given the (i− 1)th-clustering Ci−1 grouped into the nice superclustering
SCi−1. Our first goal is to use the superclustering SCi−1 to define the set of new O(n1−i/k)
cluster centers Zi. The high-level idea here is to implement Alg. NaiveSpanner on each
supercluster rather than on each cluster. Given a set U of unmarked vertices and a supercluster
SC ∈ SCi−1, define its unmarked neighborhood and unmarked degree by

ΓU (SC) =
⋃

v∈V (SC)

(Γ+(v) ∩ U) and degU (SC) = |ΓU (SC)| . (1)

Similarly to before, we say that a supercluster SC is a local-maxima in its unmarked
neighborhood, if for every other SC ′ such that ΓU (SC) ∩ ΓU (SC ′) 6= ∅, it holds that

(degU (SC), ID(SC)) > (degU (SC ′), ID(SC ′)).

We say that supercluster SC has low-expansion if degU (SC) ≤ n1/2+1/k. Otherwise, it
has high-expansion. Note that unlike the previous algorithms presented before, here the
expansion threshold n1/2+1/k is independent14 of the level i.

Step (S1) of phase i: Selecting the centers Zi. Selecting the O(n1−i/k) cluster centers
of Zi is done in O(n1/2−1/k) iterations. We start by unmarking all vertices. At each iteration,
we have a set U of remaining unmarked vertices and a subset of remaining superclusters
SC′i−1 of superclusters whose cluster centers have not yet been added to Zi. All superclusters
SC ∈ SC′i−1 compute their unmarked degree degU (SC) in parallel. (This can be done in
O(i · 2k) rounds thanks to Prop. (N3) in Section 4.3).

I Definition 10 (Successful Supercluster). A supercluster SC that is local-maxima in its
unmarked neighborhood and has high-expansion, that is degU (SC) ≥ n1/2+1/k, is called a
successful supercluster.

It is easy to see that the leader (vertex v of maximum ID in V (SC)) of every supercluster
SC can verify in O(i · 2k) rounds whether it is a local-maxima in its unmarked neighborhood.

In the algorithm, each successful supercluster SC adds all its cluster centers to Zi, and
mark all the vertices in ΓU (SC). This continues for O(n1/2−1/k) iterations.

As we will show in the analysis section, since the unmarked neighborhoods of successful
superclusters are disjoint and large, there are at most O(n1/2−1/k) such superclusters. In
addition, by Prop. (N2), each supercluster has O(n1/2−(i−1)/k) clusters, overall |Zi| =
O(n1/2−(i−1)/k · n1/2−1/k) = O(n1−i/k) as desired.

14 The intuition is that in each level i, the superclusters have at most
√
n vertices, and we say that it has

high expansion if the size of its neighborhood size is factor n1/k larger.
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Step (S2) of phase i: Taking care of unclustered vertices. After O(n1/2−1/k) steps of
computing successful superclusters, all remaining superclusters SC have low-expansion with
respect to the remaining unmarked vertices U ′. That is, degU (SC) ≤ n1/2−1/k. First, we
take care of the singleton superclusters.

(S2.1): Singleton supercluster SC with low-expansion. Each unmarked vertex u ∈ U ′
add to H an edge to one of its neighbor in Γ(u)∩V (SC). Since there are O(

√
n) superclusters,

each with degU
′
(SC) ≤ n1/2+1/k, overall we add O(n1+1/k) such edges.

(S2.2): Non-singleton superclusters SC with low-expansion. Here, the construction of
sparser spanners for bipartite graphs comes into play (see Sec. 4.2). Recall that by Prop.
(N2), NV (SC) = O(

√
n) vertices. Let ΓU ′,−(SC) = ΓU ′(SC) \ V (SC) be the unmarked

neighbors of SC excluding the vertices of the supercluster SC. Since SC has low-expansion,
it also holds that |ΓU ′,−(SC)| = O(n1/2−1/k). For every such supercluster SC, we consider
the bipartite graph B(SC) = (V (SC),ΓU ′,−(SC)), and apply Alg. SparserBipartiteSpanner
to compute for it a (2k − 1)-spanner H(SC) ⊆ B(SC) with O(n1/2+1/k) edges (see Lemma
2). This is done for all the graphs B(SC) in parallel.

Note that the graphs B(SC) are not necessarily vertex disjoint since an unmarked vertex
can appear in several such graphs. The key observation that allows the parallel computation
of all these spanners, is that every edge (u, v) can belong to at most two bipartite graphs,
say, B(SC) and B(SC ′), where SC, SC ′ is the supercluster of u, v respectively15. Overall,
since there are O(

√
n) superclusters, this adds O(n1/2 · n1/2+1/k) = O(n1+1/k) edges.

Finally, it remains to take care of all edges between vertices belonging to the same
supercluster. Note that in Alg. NaiveSpanner, there was no need for such a step since all
vertices belonging to the same cluster are connected in H by an i-depth BFS tree rooted at
the cluster center. However, in our setting, vertices that belong to different clusters of the
same superclusters might still have large stretch (as cluster centers of the same supercluster
might be at distance O(2k) in G). At that point, we use the fact that all superclusters are
vertex disjoint and each contains O(

√
n) vertices. We then recursively apply the algorithm

ImprovedSpanner on each of these superclusters in parallel. That is, we apply ImprovedSpanner
on the induced subgraph on V (SC) for every such supercluster SC.

Note that since in each phase we unmark all the vertices, unclustered vertices can become
clustered again and in particular, edges between newly unclustered vertices and clustered
vertices will be taken care of later on. This completes the description of the second step.

Steps (SIII) and (SIV): Defining ith-clustering and the ith-superclustering. The clusters
Ci centered at the cluster centers Zi computed at step (SI) are computed exactly as in Baswana-
Sen Algorithm. The depth i-trees of these clusters are added to the spanner. The main
challenge here is to re-group the new O(n1−i/k) clusters into O(

√
n) superclusters, in a way

that satisfies all the properties of the nice superclustering mentioned in Section 4.3.
Our starting point is as follows: we have a collection ofO(n1/2−1/k) successful superclusters

SC ∈ SCi−1 whose cluster centers joined Zi. Since SCi−1 is nice, by Prop. (N3), each such
supercluster SC has a tree T (SC) of depth O(2k) that spans all its cluster centers.

First, we let each cluster C ∈ Ci with Ω(
√
n) vertices, to define its own singleton

superclusters. Since clusters are vertex disjoint, there are O(
√
n) such superclusters. It now

remains to re-group the remaining clusters of Ci into O(
√
n) superclusters.

15 Recall that the superclusters share no vertex in common.
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For each successful supercluster SC, we now consider only its centers of clusters with
O(
√
n) vertices. First, we consider Property (N1) and use Lemma 9 with the tree T (SC),

weights w(z) = 1 for every cluster-center z of SC (only those that have O(
√
n) vertices in

their cluster) and bound B = O(n1/2−i/k). All other vertices v′ in T (SC) have w(v′) =
0 (in particular, the centers z of clusters in SC which have been turned into singleton
superclusters, we set w(z) = 0). By Prop. (N2) for SCi−1, we know that SC ∈ SCi−1 has
O(n1/2−(i−1)/k) cluster centers. Hence, the partition procedure will partition each of these
superclusters into O(n1/k) superclusters SC1, . . . , SC`. In addition, by Lemma 9(D5), all
these resulting superclusters SCj are equipped with edge-disjoint trees T (SCj) of diameter
O(2k). Since there are O(n1/2−1/k) successful superclusters, overall after this partition there
are O(n1/2−1/k) ·O(n1/k) superclusters.

We then turn to property (N3), and farther partition the superclusters to obtain a balance
partition of the vertices into superclusters. For that purpose, for each supercluster SC ′
(obtained from the step above), we again apply the Partitioning Lemma on T (SC ′). This
time we use B =

√
n and the weight w(z) of each cluster center z in SC ′ is the number of

vertices in its cluster C, that is w(z) = |C| (for clusters v′ which have turned into singleton
superclusters, or any other non-center vertex in T (SC ′), we set w(v′) = 0). Since the vertices
of superclusters are disjoint, this step increase the number of superclusters only by an additive
O(
√
n) term. Hence, overall the number of superclusters is kept bounded by O(

√
n). This

completes the description of the ith phase of Alg. ImprovedSpanner.

The terminating step k/2. At the (k/2)th step we have O(
√
n) superclusters, each contain-

ing O(1) clusters, hence overall we have O(
√
n) clusters. Now we can afford using Algorithm

NaiveSpanner (described near the beginning of Section 4), which iterates over the clusters
one by one. This completes the description of the algorithm for graph with diam(G) = O(1).
The analysis of stretch, size and round complexity is in the full version [12].

Extension for general graphs of diameter diam(G). The only step that requires adapta-
tion is that of constructing the 0th-level superclustering SC0.

I Lemma 11. [12] One can construct in O(2k · n1/2−1/k) rounds, nice superclustering
SC0 = {SC0,1, . . . , SC0,p} along with a subgraph H ′ with O(kn1+1/k) edges such that for
every vertex u not participating in the clusters of these superclusters SC0,j ∈ SC0, it holds
that dist(u, v,H ′) ≤ 2k − 1 for every v ∈ Γ(u).
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behavior. This approach splits efforts between those who develop useful algorithms that run on
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1 Introduction

In this paper we present and study a communication abstraction designed to facilitate
efficient computation in dense wireless networks. In addition to defining the abstraction,
we describe and analyze an implementation on a low-level SINR-style network model, and
provide multiple applications that leverage it to efficiently solve standard network problems.

Problem: Contention Management in Dense Wireless Networks. In wireless networks
devices share channels. A common approach to avoiding contention among multiple trans-
mitters on the same channel is to have devices compete to gain exclusive use of the channel.
This strategy, for example, is deployed by both the 802.11 and Zigbee standards to prevent
message loss due to collision. It is also implicitly enforced in the graph-based models often
used by theoreticians to study distributed algorithms for wireless networks (e.g., the radio
network model [6, 1] or dual graph model [16, 4]), as these models assume any contention
leads to message loss at the receiver.

This exclusive-use strategy is effective for many existing networking scenarios. It is not
well suited, however, for dense wireless networks in which hundreds, thousands, or even
tens of thousands of wireless devices might be located in a small area. Dense networks
have become increasingly relevant due to emerging trends such as the Internet-of-Things, in
which networking capability is embedded into a wide variety of objects. The density of these
networks render exclusive-use contention management strategies too inefficient for many
problems, as the time required for each device to use the channel in isolation is prohibitive.

Solution: Abstractions that Leverage Spatial Reuse. One way to enable efficient compu-
tation in dense wireless networks is to take advantage of the reality that radio signals fade
with distance. This property makes it possible to support a large amount of concurrent
communication among closely packed devices – a strategy often called spatial reuse.1 Lever-
aging spatial reuse can allow network applications to solve certain problems much faster than
relying on an exclusive-use strategy (c.f., the summary of our results below).

Developing algorithms that leverage spatial reuse requires low-level wireless network
models that directly model radio signal fading and determine receive behavior using a signal to
interference and noise ratio (SINR) equation. These models have received extensive attention
from specialists in the algorithms community (e.g., [7, 14, 17, 13, 12, 11, 3, 19, 20, 18]), but
they are also complex, and arguably demand too high a barrier of entry for those interested
in dense networks, but not necessarily willing to master the intricacies of affectance formulas
and interference-bounded annuli. These difficulties impede efforts to develop useful and
efficient applications that are well suited for dense networks.

We argue that a solution to these problem is to develop communication abstractions
that present the network application developer with an intuitive interface that exposes the
concurrent communication benefits of spatial reuse, while hiding the low-level details of
the underlying radio signal behavior. This approach splits efforts between those developing
network applications that run on the abstraction, and those who are implementing the
abstraction in low-level models, and, eventually, on real hardware. By doing so it simplifies

1 The basic mechanism behind spatial reuse is the following: If a pair of wireless devices u and v are close
together compared to other nearby transmitters in the network, then the strength of a radio signal sent
from u and received at v might be strong enough compared to interference from other slightly more
distant transmitters to allow v to successfully receive u’s message.
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the study of efficient distributed algorithms in SINR models, and provides feedback to
practitioners about how best to innovate network stacks to accommodate the continued
growth of wireless device density.

The FadingMAC Abstraction. In this paper we propose one such communication abstrac-
tion, which we call FadingMAC. This abstraction organizes the wireless devices (called
processes in the following) into a labelled tree structure. It then moves through the levels of
the resulting tree: at each level, processes assigned to tree nodes at that level can use the
abstraction to communicate with the processes assigned to their parent and/or child nodes
in the tree. This abstraction allows processes to aggregate and disseminate information in
time proportional to the tree height. Therefore, if the tree has a small height compared to
the network size, it enables certain computations to complete faster than what is possible
with exclusive-use strategies.

Our Results. We begin by describing and analyzing an implementation of the FadingMAC
abstraction using a standard low-level SINR wireless network model. In the following, let
n be the number of processes in the system and R be the ratio between the longest and
shortest link in the low-level model (in nearly all realistic scenarios R is at most polynomial
in n). Our FadingMAC implementation guarantees the following with high probability in n:
its setup mode requires O(logR · logn · log∗ n) rounds; the height of the resulting tree is in
O(logR); and it requires only O(1) rounds to handle communication at each tree level.

We then turn our attention to applications that run on the FadingMAC abstraction. We
begin by adapting a classical parallel prefix scan strategy to our setting, and then use this
scan as a key subroutine to implement solutions to the following problems, selected due to
their relevance to dense wireless networking scenarios:

Max, min, sum, and mean calculated over input values;
Renaming processes with unique labels from 1 to n (or renaming any subset of k processes
with unique labels from 1 to k);
Leader election and consensus among arbitrary subsets of participating processes; and
Optimal packet scheduling (each process has a request for a certain number of rounds
it needs to send information, and the goal is to agree on a schedule that assigns each
process exactly their requested number of rounds).

Our solutions require visits to at most O(h) tree levels by the abstraction, where h is
the tree height. Combined with our abstraction implementation, and the assumption that R
is polynomial in n, we obtain new distributed algorithms for these problems in a low-level
SINR model that require a setup cost of O(log2 n · log∗ n) rounds and only O(logn) rounds
per instance. Given that Ω(logn) rounds is a fundamental speed limit for solving non-trivial
problems with high probability in the SINR setting (see the discussion of [8] in Section 2),
these solutions are near optimal, and exponentially faster than the Ω(n) rounds required for
solving these types of problems with exclusive-use strategies.

To summarize, our results provide three strong contributions to the study of dense wireless
networks. First, our applications combined with our abstraction implementation provide new
(and nearly optimal) solutions to multiple useful distributed algorithm problems in the SINR
model. Second, our abstraction simplifies the future development of efficient distributed
algorithms for the complicated SINR setting. Third, we validate the general argument that
in both theory and practice, the right abstractions can help tame the increasingly important
setting of dense networks.
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2 Related Work

In a 2006 paper [19], Moscibroda and Wattenhofer described and analyzed a centralized
algorithm that can schedule a connected structure of links in an SINR model in O(log4 n)
rounds. They note that in many standard models (such as the exclusive-use models cited above
as motivation) this problem requires Ω(n) rounds – underscoring the importance of spatial
reuse for efficient computation in dense networks. A subsequent series of papers [20, 18, 12]
presented refined centralized scheduling algorithms, culminating in a O(logn)-round solution
due to Halldórsson and Mitra [12]. These same authors subsequently published a distributed
version of their algorithm [11]. By comparison, our FadingMAC implementation solves this
same scheduling problem in O(logR · logn · log∗ n) rounds. These results, however, are not
directly comparable as [20, 18, 12, 11] all assume that devices can adjust their transmission
power, whereas we assume all devices use a fixed uniform power.

More recent results [14, 17] study efficient data aggregation in the SINR model with
distributed algorithms and fixed uniform power. Hobbs et al. [14] describe a deterministic
algorithm that aggregates data in a multihop network2 in O(D + ∆ · logn) rounds, where
D is the diameter of the connectivity graph and ∆ is its maximum degree (see the below
footnote about connectivity graphs). Notice, in our single hop setting D = n. In addition,
this algorithm, unlike ours, requires carrier sensing. Perhaps closer is the work of Li et al. [17],
which shows how to aggregate data in a single hop setting in O(logR) rounds. Their solution,
however, requires that devices are provided their position and neighbor count in advance –
enabling efficient strategies built on fixed geographic regions. Our FadingMAC solution, by
contrast, does not assume this information is known.

Fineman et al. [8] prove a Ω(logn) lower bound on symmetry breaking with high proba-
bility in the same SINR model we study. A closer inspection of this bound reveals it holds
for basic partition detection, and therefore applies to the applications we study in Section 7 –
establishing their time complexities as optimal or near optimal (depending on assumptions
about R and whether you include the one-time abstraction setup cost).

Our implementation of the FadingMAC abstraction adapts the reliable subgraph simula-
tion strategy introduced to solve distributed one-to-all broadcast in [7], while our applications
leverage a distributed prefix scan subroutine that adapts strategies from classical parallel
solutions to this problem (see [2] and our discussion in Section 7). We previously explored
the idea of mediating between low-level wireless models and high-level applications with our
earlier work on the Abstract MAC Layer [15], including an implementation in the SINR
model [10]. The Abstract MAC Layer is intended to abstract away the details of contention
management (primarily) in graph-based models.

3 System Model

We assume a synchronous network with n > 1 computational processes. Let V be the set of
processes. We assume each process is distinguished by a comparable and unique ID. Time
proceeds in synchronous rounds that we label 1, 2, 3, ..., and all processes start in round 1.

We assume the processes are connected by some underlying wireless network over which
they can attempt to broadcast and receive messages. We assume this network is single hop,
which we define in a general way here to mean that if a process i ∈ V transmits alone in a
given round, all nodes receive i’s message during this round. We assume message sizes are
bounded to contain at most O(polylog(n)) unique IDs and/or bits.

2 In the SINR setting, single hop and multihop refer to the connectivity graph that results from connecting
with an edge any process pair that are sufficiently close to communicate in the absence of interference.
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In this paper, we present and study a communication abstraction called FadingMAC
(defined below), that mediates between high-level network algorithms and a low-level wireless
network model. Accordingly, we assume each computational process implements two distinct
components:
(1) a FadingMAC abstraction implementation that interacts with other processes through

the low-level wireless network model; and
(2) a high-level algorithm that interacts with other processes only through the interface

provided by its local copy of the abstraction.
We sometimes say the high-level algorithm runs on the abstraction.

4 The FadingMAC Abstraction

The FadingMAC abstraction organizes the processes into a rooted tree structure. Each
process is potentially assigned to multiple nodes in the tree. The abstraction is used in
phases, with each phase dedicated to a level in the tree. A process assigned to a node u in
the level corresponding to the current phase can use a children-to-parent communication
primitive, provided by the abstraction, to communicate reliably with the process assigned
to u’s parent (assuming u is not the root). This process can also use a parent-to-children
communication primitive to reliably communicate with the processes assigned to u’s children
(if any).

We begin below by formalizing the type of tree the abstraction uses to organize the
nodes. We then detail the communication primitives provided by the abstraction, and present
the parameters that describe a particular implementation’s performance and correctness
guarantees.

The Tournament Tree. The abstraction begins an execution in a setup mode, during which
it organizes the processes into a tournament tree defined with respect to V (see below).
Formally, this means that by the end of the setup mode, the abstraction outputs to each
process information about its assigned nodes in the tree. When considered collectively, this
output information defines a unique tree T .

In more detail, a tournament tree defined over V is a rooted tree that satisfies the
following properties:

1. All leaf nodes are at the same level in the tree.
2. Each node in the tree is labeled with a process from V .3

3. The n leaves are labeled with the n unique processes from V .
4. Each non-leaf node in the tree is labeled with the label of one of its children.

We call a labeled tree of the type a tournament tree because the label of each non-leaf
node can be interpreted as the winner of a competition among the processes labeling its
children. Fix a tournament tree T . As is standard for rooted trees, we label the tree’s levels
starting with 0 for the root level and increasing the level number as we move downward
toward the leaves. We define h(T ) to describe its height (i.e., the largest level in the tree).
For a given level ` ∈ [0, h(T )], we define V (T, `) to be the set of processes labeling nodes at `.

3 Technically, the node is labelled with the unique ID corresponding to process i, but for notational
simplicity we use i and i’s ID interchangeably.
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During the setup period, the FadingMAC abstraction will identify a single tournament
tree T defined with respect to V and output to each process i ∈ V the following three pieces
of information regarding the nodes it labels in T :
(1) the smallest level in T that includes i, which we denote `(T, i) = min{` ∈ [0, h(T )] : i ∈

V (T, `)};
(2) if `(T, i) > 0, i’s parent in level `(T, i)− 1 (otherwise it receives some default value ⊥);
(3) the height h(T ) of the tree.
Notice, the collective knowledge provided to the processes about T by the abstraction uniquely
specifies T .

The Communication Primitives. After the setup period finishes producing the tree T , the
abstraction informs all processes that it is shifting into communication mode. While in
communication mode, the abstraction divides rounds into phases. Each phase is dedicated to
a single level from the tree T organized during the setup period. The abstraction notifies all
processes when each phase begins as well as the phase’s corresponding level in T . Different
applications using FadingMAC can use different orderings of the phases for visiting levels in
the tree. (The applications we study later in this paper, for example, follow a pattern of
sweeping from the leaves to the root and then back down again.)

During a phase dedicated to tree level `, every process in V (T, `) is provided the op-
portunity to communicate with processes assigned to nearby nodes in T using a pair of
communication primitives provided by FadingMAC.

In more detail, the abstraction provides both a parent-to-children and children-to-parent
broadcast primitive. During the first round of a phase dedicated to level `, each process
i ∈ V (T, `) can provide as input to the abstraction a message m1 for the parent-to-children
primitive and a message m2 for the children-to-parent primitive. By the definition of a
tournament tree, if i ∈ V (T, `), then this process is assigned to exactly one node u at this
level of T . During the subsequent rounds of the phase the abstraction attempts to deliver
m1 to the process assigned to u’s parent in T (if u is the root or process i is assigned to u’s
parent as well, then it will receive its own message back.) It also attempts to deliver m2 to
the processes assigned to u’s children in T (if any).

Abstraction Parameters. The guarantees of a given implementation of the FadingMAC
abstraction is characterized by the following parameters:

tsetup: the number of rounds required to complete the setup period.
tphase: the number of rounds required for each phase during the communication mode.
hmax: the maximum height of the tournament tree.

To accommodate probabilistic implementations of the abstraction, we include a failure
probability, pfail, describing the maximum probability that the abstraction fails to satisfy
its specified behavior.

5 The Low-Level SINR Wireless Model

Here we define a low-level wireless model that captures the fading behavior of radio signals.
We call this “the SINR” model, but note that there are many related variations on this same
style of model (the variant defined below is a generalized version of the model defined in [7]).

The SINR model is motivated by the premise that transmissions are successfully received
when the signal arriving at a given receiver is sufficiently strong compared to the sum of
interference from other transmissions. The strength of the transmissions is modeled as
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inversely proportional to a polynomial of the distance transmitted. The idea that signals
fade with distance in this manner and interference sums at the receiver match experimental
investigations (c.f., [21, 5]). This is the primary reason why the SINR model is viewed as
one of the most realistic analytic models currently available for studying low-level wireless
algorithms. We note, however, that earlier studies of the SINR model tended to place the
devices in the plane and define “distance” to be Euclidean. This assumption weakens the
realism of the model as real environments can distort and attenuate signals in complex ways.
To accommodate this reality, we replace Euclidean distances in our below model definition
with a more general metric that captures more diverse signal environments.

We now formalize the model definition. In doing so, we mostly follow notation from
[7]. We assume that all processes transmit with the same power, which for simplicity we
normalize as 1. The strength of a transmission from process u as received by a process v is
1/d(u, v)α, where d(u, v) is the distance from u to v and α is a constant. The transmission
is successful if v is listening and the SINR formula holds:

SINR(u, v, I) := 1/d(u, v)α

N +
∑
w∈I 1/d(w, v)α ≥ β ,

where I is the set of other concurrent transmitters, β is a positive constant dependent on the
hardware and coding schemes used, and N quantifies the ambient noise.

We assume that the distance metric satisfies the following doubling property: There are
constants λ and d, with λ > 0 and 0 < d < α, such that if U is a set of processes of mutual
distance at least dmin, and all processes in U are within a distance x · dmin from a given
process, then |U | ≤ λ · xd. For the Euclidean plane, this holds with d = 2. We use this
relaxed definition to account for the various effects of signal propagation.

Let rs denote the maximum distance at which successful transmission is possible, i.e.,
1/rαs = βN , or rs = (βN)−1/α. Let R denote the ratio between the largest and smallest
process distance in the network.

We assume that processes have no collision detection or carrier sensing capability, and no
advance knowledge of their distances to other processes. The processes know a polynomial
upper bound on the standard deployment parameters: the network size n = |V | and the
distance diversity R. We also assume they know reasonable approximations of the network
parameters α, β, n, and N .

6 Implementing FadingMAC in the SINR Model

We now describe and analyze a randomized distributed algorithm that implements the
FadingMAC abstraction defined in Section 3 in the SINR model defined in Section 5. Our
optimized version of this algorithm, presented in Section 6.3, implements the abstraction
with tsetup = O(logR · logn · log∗ n), tphase = O(1), hmax = O(logR), and pfail < n−c, for
a constant c > 1.

We first define in Sec. 6.1 a family of graphs that captures succinctly when nodes can
communicate effectively, and use it in Sec. 6.2 to construct a basic communication tree. In
Sec. 6.3, we improve it so that each phase can be executed in constant number of rounds.

6.1 SINR-Induced Graphs
Our construction for each given level ` is based on constructing a bounded-degree graph H`.
To distinguish, we shall refer to the nodes of the graph as vertices, reserving nodes for nodes
of the tournament tree, and noting that computation on behalf of both types of objects is
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executed by processes. To construct H`, we apply the concept of SINR-induced graphs as
defined by Daum et al. in [7]. Let U ⊆ V be a subset of the vertices, let p be a transmission
probability, and let µ ∈ (0, p) ∩ Ω(1) be a reliability parameter. We define the SINR-induced
graph Hµ

p [U ] with vertex set U and edge set Eµp [U ] as follows. Assume that each vertex in
U transmits with probability p and each vertex in V \ U transmits with probability 0. For
u, v ∈ U , we have {u, v} ∈ Eµp [U ] if and only if u receives a message from v with probability
at least µ and also v receives a message from u with probability at least µ. Note that all
distances between vertices/nodes are within the metric space, not in terms of path lengths in
the graph/tree.

Distributed Computation of SINR-Induced Graphs. Given a set of vertices U ⊆ V and
parameters p and µ, the graph Hµ

p [U ] cannot be computed exactly in a distributed way.
However, it is possible to efficiently compute a close approximation of Hµ

p [U ]. In [7], an
ε-close approximation of Hµ

p [U ] is defined as a graph H̃µ
p [U ] = (U, Ẽµp [U ]) for which:

Eµp [U ] ⊆ Ẽµp [U ] ⊆ E(1−ε)µ
p [U ]

It is shown in [7] that an ε-close approximation H̃µ
p [U ] of Hµ

p [U ] can be constructed as follows
in 2T rounds, where T = c lnn

ε2µ for a sufficiently large constant c > 0. In all 2T rounds, all
vertices in U transmit with probability p. In the first T rounds, each vertex u ∈ U compiles
a list of all vertices of which u receives a message in at least

(
1− ε

2
)
µT of the T rounds. In

the second T rounds, those lists are exchanged and an edge {u, v} is added to Ẽµp [U ] if and
only if u is in v’s list and v is in u’s list. It is shown in Lemma 3 in [7] that this algorithm
computes an ε-close approximation of Hµ

p [U ], w.h.p. We note that because in each round,
a vertex can only receive a message from a single vertex, the maximum degree of H̃µ

p [U ] is
bounded by 1/µ = O(1).

We can also show that Hµ
p [U ] contains all relatively short edges. We first need the

following lemma, which is actually somewhat surprising, even though its proof (in the
appendix) deploys relatively standard techniques.

I Lemma 1. Given a constant ζ ≥ 1, there exists a constant ν = νζ > 0 such that the
following holds. If U ⊆ V is a subset of vertices of minimum pairwise distance dmin and
u, v ∈ U are vertices of distance at most d(u, v) ≤ ζ · dmin, then whenever v transmits while
other vertices within distance ν · dmin of u are silent, u is guaranteed to successfully receive
the transmission of v.

We now extend Lemma 4 in [7], to show that Hµ
p [U ] contains all short edges.

I Lemma 2. For all p ∈ (0, 1/2] and every constant η > 1, there exists µ ∈ (0, p) such that
∀U ⊆ V with minimum pairwise distance dmin, the graph Hµ

p [U ] (and thus also the graph
H̃µ
p [U ]) contains all edges between vertices u, v ∈ U with d(u, v) ≤ η · dmin.

Proof. Let ν be the constant for which Lemma 1 holds for ζ = η. Let u, v ∈ U be any pair of
vertices with d(u, v) ≤ η · dmin. Let S be the set of vertices in V within distance ν · dmin of u,
excluding v. By the doubling property of the metric, |S| ≤ λ ·νd. By Lemma 1, u receives the
message from v if v transmits while the vertices in S are silent. The probability of the former
is p while the probability of the latter is (1− p)|S|. Since these events are independent, it
follows that u successfully receives a message from v with probability p(1−p)|S| ≥ p(1−p)λ·νd .
By a symmetric argument, the same holds for the probability that v successfully receives a
message from u. Hence, for µ ≥ p2(1− p)2λ·νd , {u, v} satisfies the condition of being an edge
in Hµ

p . J
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6.2 Construction and Properties of the Basic Tournament Tree
We now first describe the construction of a tournament tree that supports basic communication
primitives. In the next subsection, we extend this construction and show how to get a tree
and a constant-length TDMA schedule for implementing the communication primitives on
each level. For the construction of the tournament tree T , we fix a transmission probability p
and a (constant) parameter µ > 0 such that the conditions of Lemma 2 are satisfied for η = 2
and the graph Hµ

p contains all edges of length at most 2dmin for every U ⊆ V .4 Further,
for the distributed construction of an ε-close approximation H̃µ

p [U ] of Hµ
p [U ] for a vertex

set U , we fix ε := 1/10 throughout the construction. We construct the tournament tree T
bottom-up and level by level. That is, we start with level ` = h(T ) connecting the leaf nodes
to their parents and then move up the tree until we reach level 1 where we select a root node
r ∈ V (T, 1) and connect all nodes V (T, 1) to the root node r. The construction for level `
returns the set of nodes V (T, ` − 1) that proceed to the next level and it fixes the parent
nodes in level `− 1 for all nodes in V (T, `) \ V (T, `− 1).

In the following, we describe the construction for a given level ` ∈ {1, . . . , h(T )} (recall
that V (T, h(T )) = V ):
1. Compute the graph H` := H̃µ

p [V (T, `)].
2. Compute a maximal independent set (MIS) I of H` and set V (T, `− 1) := I

3. Each node u ∈ V (T, `)\V (T, `−1) chooses its parent v arbitrarily among its H`-neighbors
in V (T, `− 1).

The following theorem summarizes the basic properties of the resulting tournament tree T .

I Theorem 3. With high probability, the constructed tournament tree T has the following
properties:

The height of the tree is h(T ) = O(logR).
Suppose all nodes in V (T, `) transmit with probability p and the other nodes are silent in a
given round r and level ` ∈ {1, . . . , h(T )}. Then, for every node u ∈ V (T, `), u receives a
message from its parent in round r with constant probability, and the parent also receives
a message from u in round r with constant probability.
The tree T can be constructed in time O(logR · logn · log∗ n) in the SINR model.

Proof. We first prove that the height of the constructed tree T is O(logR), w.h.p. Let d(`)
min

be the minimum distance between vertices in V (T, `). By Lemma 2 and the choice of the
parameters p and µ, the graph H` contains an edge for every two vertices u, v ∈ V (T, `)
at distance at most min

{
2d(`)

min, rs

}
. Because V (T, ` − 1) is chosen as an MIS of the

graph H`, no two verticess in V (T, ` − 1) can be neighbors in H` and we thus get that
d

(`−1)
min > min

{
2d(`)

min, rs

}
. Hence as long as d(`)

min ≤ rs/2, we have d(`−1)
min > 2d(`)

min. As soon as

d
(`)
min > rs/2, by Lemma 2, H` is a complete graph and thus we reached the last level (` = 1).

The claim that h(T ) = O(logR) now follows because from the definition of R, the minimum
distance between vertices in V is at least rs/R.

The second property follows directly from the definition of the edges of the graph Hµ
p and

the fact that parents are neighbors in Hµ
p . In turn, it implies that every vertex in V (T, `)

successfully receives a message from each of its neighbors in H` within O(logn) rounds, w.h.p.
Hence, a single communication round in a standard message passing model on H` can be
simulated in O(logn) rounds in the SINR model. Because H` has bounded degree, an MIS
of H` can be computed in O(log∗ n) rounds in a standard message passing model on H` [9]
and the also the third claim of the lemma follows. J

4 We can for example fix p = 1/2 and choose µ > 0 as a sufficiently small constant.
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6.3 A Tournament Tree with an Efficient TDMA Schedule
We next show how to adapt and extend the construction of the previous subsection to obtain
a tournament tree with the same properties as in Theorem 3, but now with the additional
assumption of a constant-length TDMA schedule for implementing the communication
primitives on each level.

As in Section 6.2, the tree is computed in a bottom-up fashion and we describe the
construction of a single level ` in detail. We first give an outline of the construction. We fix
the parameters p, µ, and ε as before and we again construct the graph H` = H̃µ

p [V (T, `)]. As
a next step, we compute a TDMA schedule of length L = O(1) for communicating on graph
H`. That is, we assign a color φ`(v) ∈ {1, . . . , L} to each vertex v ∈ V (T, `). We then define
an L-round schedule S` for level ` such that exactly the nodes v ∈ V (T, `) with φ`(v) = i

transmit in round i. We say that an edge {u, v} ∈ E[H`] is successful w.r.t. schedule S` if
in round φ`(u) of the schedule S`, v receives a message from u and in round φ`(v) of S`, u
receives a message from v. We define H ′` as the subgraph of H` consisting of all edges that
are successful w.r.t. S`. The level ` of the tree T is then constructed in the same way as
before, but by using graph H ′` instead of graph H`.

We will next show that the coloring φ` can be constructed such that the resulting
subgraph H ′` of H` still contains all edges of length min

{
2d(`)

min, rs

}
and as a consequence,

the constructed tree still satisfies the properties of Theorem 3.
In order to construct the coloring φ`, we consider an SINR-induced graph Hµ′

p′ [V (T, `)]
such that Hµ′

p′ [V (T, `)] contains all edges between vertices in V (T, `) of distance at most
η · d(`)

min, for a sufficiently large constant η > 2. Note that by Lemma 2, we can choose
constants p′ and µ′ such that the graph Hµ′

p′ [V (T, `)] satisfies this. We choose η as the value
of ν obtained from applying Lemma 1 with ζ = 2. The coloring φ` will be computed as a
standard vertex coloring of an ε-close approximation of the SINR-induced graph Hµ′

p′ [V (T, `)].
As in the basic construction, we construct the tree T in a bottom-up way, starting at

level ` = h(T ) where the leaf nodes are connected to their parents and ending at level 1
where a root node r ∈ V (T, 1) selected. We again describe the construction for a given
level ` ∈ {1, . . . , h(T )}. In the following description, ∆(H+

` ) denotes the maximum degree of
graph H+

` .
1. Compute the graph H+

` := H̃µ′

p′ [V (T, `)].
2. Compute a (∆(H+

` ) + 1)-vertex coloring φ` of the graph H+
`

3. Compute the graph H` := H̃µ
p [V (T, `)].

4. Compute the graph H ′` consisting of all the edges of H` that are successful w.r.t. the
TDMA schedule induced by the coloring φ`.

5. Compute a maximal independent set (MIS) I of H ′` and set V (T, `− 1) := I

6. Each node u ∈ V (T, `)\V (T, `−1) chooses its parent v arbitrarily among the H ′`-neighbors
in V (T, `− 1).

Analogously to Theorem 3, the following theorem summarizes the properties of the constructed
extended tournament tree T . The proof is deferred to the appendix.

I Theorem 4. With high probability, the constructed tournament tree T has the following
properties:

The height of the tree is h(T ) = O(logR).
For every ` ∈ {1, . . . , h(T )}, when using the TDMA schedule induced by the coloring φ`
of V (T, `), (bidirectional) communication between every node u ∈ V (T, `) and its parent
in V (T, `− 1) can be carried out in O(1) rounds.
The tree T can be constructed in time O(logR · logn · log∗ n) in the SINR model.
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7 High-Level Algorithms

Here we describe and analyze several useful high-level algorithms that run on the FadingMAC
abstraction. The key subroutine used for these applications is a distributed prefix scan over
the processes’ input values. We begin below by describing and analyzing an algorithm that
computes such a scan using a small number of FadingMAC phases, before moving on to
describe the algorithms that leverage these scans.

7.1 Distributed Prefix Scans Using FadingMAC

During its setup mode, the FadingMAC abstraction returns each process information about
the nodes it labels in a tournament tree T . We can transform T into an ordered tree by using
a comparison operator defined over process labels to order the siblings of each parent from
left to right (i.e., the operator that compares the process unique ids). This ordered version
of T then allows us to order the n processes in the network from 1 to n by considering the
leaf labels from left to right.

In the following, in a slight abuse of notation, we use process i, for i ∈ [1, n], to indicate
the process ranked in position i in this ordering. Assume each process i has an input value ai
from some value domain S that includes an identity element ε. Let ⊕ be a binary associative
operator defined over S. (This combination of S and ⊕ defines a monoid.) The goal of a
distributed prefix scan for a given monoid and input value assignment in our model is for
each process i to learn: si = a1 ⊕ a2 ⊕ ...⊕ ai.

We emphasize that prefix scans (also called prefix sums) are a core primitive in algorithm
design, as they provide a building block for efficiently solving a variety of different problems.
They are therefore studied in multiple models. In an exclusive-use radio network model it is
straightforward to see that Ω(n) rounds are required (as each process needs its own round
to communicate its value). Below we describe and analyze an algorithm that leverages the
FadingMAC abstraction to calculate a prefix scan in 2h(T ) communication mode phases. We
emphasize that for the implementation of FadingMAC provided in this paper, this translates
to O(logn) rounds for most networks.5

Strategy and Comparison to Parallel Prefix Scans. Our distributed strategy adapts general
ideas from the classical parallel prefix scan algorithms; c.f., [2]. Similar to our setup, these
parallel algorithms tend to also consider an ordered tree with one input value assigned to
each of the n leaves. They move up the tree level by level, starting from the leaves and
heading toward the root, at each node u summing the values of u’s children. The result is
that each node u learns the sum of the values in the leaves of the subtree rooted at u. The
algorithm then moves down the tree level by level, with each internal node u informing each
child the sum of its siblings to its left in the tree ordering.

Our distributed prefix scan algorithm implements this same basic strategy. To do so,
however, it must overcome two difficulties that separate our model from parallel models:
(1) in the parallel setting the tree used is fixed by the algorithm and known to all processes,

while in our model the tree is returned by the abstraction and each process is only
provided partial information about the tree’s structure;

5 Our implementation requires only a constant number of rounds per phase and provides h(T ) = O(logR).
For most realistic networks, R will be at most polynomial in n.
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(2) in the parallel setting a different process can be assigned to each node in the tree, while
in our model each of the n processes might be responsible for multiple tree nodes on the
path from its leaf to the root, complicating the algorithm description.

Algorithm Preliminaries. The algorithm described below uses the FadingMAC abstraction
parameterized to visit the tree levels in order starting from the leaves and heading up to the
root (called the up sweep in the following), and then visiting the tree levels in order starting
from the root and heading back down to the leaves (called the down sweep in the following).
Only a single up sweep followed by a single down sweep are required for our algorithm to
compute it prefix scan.

Fix some node u in the ordered tournament tree. Let u.left indicate the rank of the
leftmost leaf in this interval, and r.right indicate the rank of the rightmost leaf. By definition,
r.left ≤ r.right, but it is possible that u.left = r.right. We define the sum of the subtree rooted
at u, denoted s(u), to be the sum (defined with respect to the ⊕ operator) of the input values
associated with the leaves of u’s subtree. Formally: s(u) = au.left ⊕ au.left+1 ⊕ ...⊕ au.right.

Algorithm Description. We now describe our algorithm which computes a distributed
prefix scan using the FadingMAC abstraction. We first describe its behavior during the up
sweep and then during the down sweep. The following assumes we have already entered the
abstraction’s communication mode.

Up Sweep. During the up sweep phases, the goal is to calculate the sum of the subtree
rooted at each node in the ordered tournament tree T . That is, for each node u in T , our
algorithm will calculate and store s(u). Recall, in a tournament tree, each node is labelled
with a process. In our algorithm, it will be the responsibility of the process that labels u to
calculate and store s(u). This process will also end up storing a copy of s(u′) for each child
u′ of u in T , as this will be needed during the subsequent down sweep.

To accomplish this goal, each process i maintains an accumulation variable x(i) initialized
to the identity element ε at the beginning of the upsweep. It will use this variable to help
calculate the sum values for which it is responsible.

In more detail, each process i has two types of responsibilities for each level ` visited
during the upsweep. The first type of responsibilities applies if ` > 0 and there exists a node
u at level `− 1 that is labelled with process i. If these conditions are met, then process i
will calculate s(u) by the end of this phase. To do so, process i first waits to see if node
u receives any values from its children at level ` during this phase, delivered through the
children-to-parent broadcast primitive provided by the abstraction. Assume this occurs and
that we label the received values q1, q2, ..., qj . In this case, process i updates x(i) as follows:
x(i)← x(i)⊕ q1 ⊕ q2 ⊕ ...⊕ qj . Process i will also save these received values which, as will
soon be made clear, describe the sum of the subtrees rooted at these children – knowledge
process i will need during the down sweep.

Regardless of whether or not u received any values, at the end of this phase, process i
locally calculates and stores s(u) as follows: s(u)← ai ⊕ x(i).

The second type of responsibility applies if there exists a node v at the current level `
that is labelled with process i. If v is a leaf (i.e., ` = h(T )), then process i can directly set
s(v) = ai. If v is not a leaf, then process i would have calculated s(v) during the previous
phase for level ` + 1 as described above. Therefore, in both cases, s(v) is defined. If v’s
parent is not labelled with process i, then process i will use the children-to-parent broadcast
primitive to send s(v) to (the process labelling) u’s parent.
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Down Sweep. We now describe the behavior of our algorithm during the down sweep.
The goal during the down sweep is for the process labelling each node u in T to learn:

pred(u) =
{
a1 ⊕ a2 ⊕ ...⊕ au.left−1 if u.left > 1,
ε else.

That is, pred(u) is the sum of the values (defined with respect to ⊕) associated with all
the leaves (if any) to the left of the subtree rooted at u in T .

We accomplish this goal as follows. Before the down sweep begins, the root u0 of the
tree can directly set pred(u0) ← ε. Now assume inductively that we arrive at the phase
associated with level `, 0 ≤ ` < h(T ), and pred is already calculated for all nodes at level `.
During this phase, (the processes labeling) these nodes will send (the processes labelling)
their children at level `+ 1 their pred values.

In more detail, fix some u at level `. Assume u is labelled with process i. It is the
responsibility of process i to calculate the pred value for each of u’s children and to then
send it to the processes labelling them using the parent-to-children broadcast primitive. To
do so, let u1, u2, ..., uj be u’s j ≥ 1 children nodes, ordered by the same comparison operator
we used to order T . By the postcondition of the up sweep, process i knows s(ui) for each
child ui of u. Process i can therefore calculate pred(ui), for each child ui, as follows:

pred(ui)←
{
pred(u)⊕ s(u1)⊕ s(u2)⊕ ...⊕ s(ui−1) if i > 1,
pred(u) else.

Final Calculation of Scan Values. Each process i labels a single leaf node u in tree T . By
the postcondition of the down sweep described above, process i knows pred(u) by the end
of the down sweep. Because pred(u) is the sum of all values in si except ai, process i can
conclude the algorithm by calculating si ← pred(u)⊕ ai.

Analysis. The correctness of the above distributed prefix scan algorithm follows from a
straightforward inductive argument that establishes that during the up sweep each s(u) is
correctly calculated. If these subtree sum values are correct then the correctness of the pred
values calculated during the subsequent down sweep follows directly from the operation of the
algorithm. We formalize this correctness with the following theorem, where pfail describes
the maximum probability that abstraction fails to satisfy its tphase and hmax guarantees.

I Theorem 5. This algorithm computes a distributed prefix scan using the FadingMAC
abstraction in O(tphase · hmax) rounds after the abstraction has entered the communication
mode, with probability at least 1− pfail.

7.2 Applications
We now describe multiple applications that leverage the distributed prefix scan algorithm
from the previous section as a subroutine to efficiently solve useful numerical and distributed
coordination problems. Every application below requires at most a constant number of
distributed prefix scans, which each require at most O(tphase ·hmax) rounds. When combined
with our FadingMAC implementation in the SINR model, we obtain solutions to the below
problems that run with high probability in the SINR model in at most O(logR) rounds, in
addition to the one-time time cost of O(logR · logn · log∗ n) rounds for the abstraction setup
mode. As argued above, R is at most polynomial in n for most realistic networks, meaning
these SINR solutions require only O(logn) rounds per instance, and a one-time setup cost of
O(log2 n · log∗ n) rounds.
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Renaming and Network Sizing. Our system model assumes that the n processes are only
provided comparable unique IDs. In many applications it might useful if the processes were
assigned unique IDs from the set {1, 2, ..., n}. This can be easily accomplished with a single
distributed prefix scan. In more detail, set the domain S to be the natural numbers and ⊕
to describe addition. Each process sets its initial value to 1 then computes a prefix scan. It
follows directly from the definition of the scan that each process will end up with a sum
that describes its rank order in the tournament tree leaves – providing the needed renaming
from 1 to n. To rename only a subset of k participating processes, it is sufficient for these
participants to set their initial value to 1 and the non-participants to set their initial value
to 0. The sum values at the participants provide a renaming of the participants from 1 to
k. In both cases, the process labeling the root of the tournament tree will learn the sum
of all values during the prefix scan. It can then announce this information to the rest of
the network by transmitting alone in the first round after the scan or disseminating the
information during the scan’s down sweep. The result is that all processes learn the number
of participants in the renaming, which, in the case of all processes participating, is also the
network size n.

Basic Aggregation Functions: Max, Min, Sum, Mean. It is straightforward to compute
basic aggregation function on the process inputs using distributed prefix scans. Here we
consider max, min, sum and mean functions (where the mean function assumes the values
are numerical). In all four cases, the first step is to run the renaming and network sizing
strategy described above. At the end of step, the processes are renamed from 1 to n and all
processes know n. This requires one prefix scan. To calculate max or min, the processes can
perform another prefix scan with ⊕ as the max or min operator, respectively. In both cases,
both the root and the process renamed n will end up with the correct value. To calculate
the sum of the initial values, it is sufficient to perform a scan with ⊕ describing addition.
As before, the root and the process renamed n will end up with the sum. Either of these
processes can then calculate the mean by simply dividing this sum by the network size n.

Leader Election and Consensus. Leader election and consensus are key primitives in
distributed system design. If we assume all processes are participating in the primitive, we
can solve both problems directly after the abstraction setup mode completes: the process
that labels the root can declare itself leader or announce its initial value as the decision for
consensus. On the other hand, if we assume only an arbitrary subset of the processes have an
initial value or are interested in becoming leader, we can leverage the distributed prefix scan
to break symmetry among this unknown set of participants. In more detail, the processes
execute a max computation using the prefix scan as described above. In the case of leader
election, the participating processes use their unique id as their input value, and in the case
of consensus they use their input value. The non-participating processes set their input value
to some default minimum value from the domain that is guaranteed to be at least as small as
any id or initial value. At the end of the scan, the initial value sum identifies a single leader
or correct decision value, which can then be spread to the full network as above.

Packet Scheduling. The packet scheduling problem assumes that each process i has some
request ri ≥ 0 describing the number of rounds it needs to broadcast alone on the channel
to deliver some important information to the network or perhaps a nearby base station.
Let T =

∑n
i=1 ri be the total number of rounds needed by all the processes. The packet

scheduling problem requires the processes to agree on a transmission schedule that provides



M. Halldórsson, F. Kuhn, N. Lynch, and C. Newport 25:15

each process i at least ri consecutive rounds to send its information. A distributed prefix
scan provides an eloquent and efficient solution to this problem. In more detail, the processes
use the natural numbers as the value domain and use addition for ⊕. Each process i then
sets its initial value for the scan as ai ← ri. At the end of the scan, the sum si learned
by each process i describes the sum of all request values of processes at its rank or below,
with sn = T . The processes can use these values to define a T -round packet schedule. In
particular, each process i claims the rounds si − ri + 1 to si in the schedule. The result is
an optimal length schedule in which each process gets its requested number of rounds in a
contiguous interval of the schedule.
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Abstract
Direct-sum questions in (two-party) communication complexity ask whether two parties, Alice
and Bob, can compute the value of a function f on ` inputs (x1, y1), . . . , (x`, y`) more efficiently
than by applying the best protocol for f , independently on each input (xi, yi). In spite of signif-
icant efforts to understand these questions (under various communication-complexity measures),
the general question is still far from being well understood.

In this paper, we offer a multiparty view of these questions: The direct-sum setting is just
a two-player system with Alice having inputs x1, . . . , x`, Bob having inputs y1, . . . , y` and the
desired output is f(x1, y1), . . . , f(x`, y`). The naive solution of solving the ` problems indepen-
dently, is modeled by a network with ` (disconnected) pairs of players Alicei and Bobi, with inputs
xi, yi respectively, and communication only within each pair. Then, we consider an intermediate
(“star”) model, where there is one Alice having ` inputs x1, . . . , x` and ` players Bob1, . . . ,Bob`
holding y1, . . . , y`, respectively (in fact, we consider few variants of this intermediate model, de-
pending on whether communication between each Bobi and Alice is point-to-point or whether
we allow broadcast). Our goal is to get a better understanding of the relation between the two
extreme models (i.e., of the two-party direct-sum question). If, for instance, Alice and Bob can
do better (for some complexity measure) than solving the ` problems independently, we wish to
understand what intermediate model already allows to do so (hereby understanding the “source”
of such savings). If, on the other hand, we wish to prove that there is no better solution than
solving the ` problems independently, then our approach gives a way of breaking the task of
proving such a statement into few (hopefully, easier) steps.

We present several results of both types. Namely, for certain complexity measures, com-
munication problems f and certain pairs of models, we can show gaps between the complexity
of solving f on ` instances in the two models in question; while, for certain other complexity
measures and pairs of models, we can show that such gaps do not exist (for any communication
problem f). For example, we prove that if only point-to-point communication is allowed in the
intermediate “star” model, then significant savings are impossible in the public-coin randomized
setting. On the other hand, in the private-coin randomized setting, if Alice is allowed to broadcast
messages to all Bobs in the “star” network, then some savings are possible. While this approach
does not lead yet to new results on the original two-party direct-sum question, we believe that
our work gives new insights on the already-known direct-sum results, and may potentially lead
to more such results in the future.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.2.2 Nonnumerical
Algorithms and Problems

∗ This work was partially supported by ISF grant 1709/14, BSF grant 2012378, and NSF-BSF grant
2015782.

© Itay Hazan and Eyal Kushilevitz;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


26:2 Direct-Sum Through the Lens of Multiparty Communication Complexity

Keywords and phrases Communication Complexity, Direct Sum, Multiparty Communication

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.26

1 Introduction

Communication complexity, presented by Yao [27], studies computational problems in a
distributed model, where the input is split between two parties or more. The parties
exchange messages according to a predetermined protocol in order to solve the computational
problem in question, e.g. computing a function on their inputs. The complexity of such
protocol is measured by the number of bits exchanged, on the worst possible input. The
communication complexity of a problem is the cost of the best protocol that solves it. The
literature deals with finding both upper and lower bounds for various computational problems,
and various types of protocols (deterministic, randomized, etc). In the two-party model, the
most extensively studied model in communication complexity, Alice receives an x and Bob
receives a y, both n-bit strings. Together they wish to solve the problem P (x, y). For an
overview of communication complexity and some of its applications, see [17].

Direct-sum questions ask whether solving several computational problems simultaneously
can be done more efficiently than merely solving each problem separately. The direct sum
question in two-party communication complexity, first presented in [16], is the following:
suppose that Alice and Bob attempt to solve a computational problem P (x, y), and suppose
that the cost of the best protocol for solving it is C. Now suppose Alice and Bob are each
given a sequence of ` inputs for P , i.e. Alice is given x1, . . . , x` and Bob is given y1, . . . , y`.
Alice and Bob wish to find a solution for each of the instances, namely to compute P (xi, yi)
for every i ∈ {1, . . . , `}. Clearly, this can be done by running the best protocol that solves the
problem ` times, using `C bits. However, perhaps Alice and Bob can utilize the fact that they
are given all ` inputs at once, and solve P on all of them with fewer bits of communication.
If this is possible, we say that a saving occurs. The question of existence of such savings is
the direct-sum question, namely: does any protocol for ` inputs encapsulates a protocol for a
single input whose cost is at most 1/` the cost of the original protocol?

1.1 Our Multiparty Models of Communication
In an attempt to achieve a better understanding of the source of hardness of direct-sum
questions in the two-party case, we consider several “intermediate” multiparty communication
models with one Alice and ` Bobs, denoted Bob1, . . . ,Bob`. Alice receives x1, . . . , x`, and
Bobi receives yi for every i ∈ {1, . . . , `}. As in the classical direct sum question, they wish
to compute P (xi, yi) for every i. In our “intermediate” models, the question is whether a
saving can be obtained when one party sees ` instances at once, and may send messages that
are “global”, while each of the other parties sees only one instance and sends messages that
rely solely on its instance and its view of the communication.

Specifically, we consider five communication models, to which we refer as M1 to M5. The
first model, M1, is the classical two-party direct-sum model, and the last one, M5, represents
` independent computations. Ultimately, the direct-sum question aims towards a better
understanding of the connection between M1 and M5. In order to do so, M2, M3, and M4
are defined, such that each model presents an additional constraint over the previous model.
The definitions and motivations of these models are as follows:

The Classical Direct-Sum Model (M1). In this model, there are two parties, Alice
and Bob. Alice receives an `-tuple of n-bit inputs, (x1, . . . , x`) ∈ ({0, 1}n)`, and Bob
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receives another `-tuple of n-bit inputs, (y1, . . . , y`) ∈ ({0, 1}n)`. Together, they wish to
compute P (xi, yi) for every i ∈ [`], for some computational problem P .
The Broadcast Model (M2). In this model, there are (`+ 1) parties; one Alice and `
Bobs, denoted Bob1, . . . ,Bob`. Alice receives an `-tuple of n-bit inputs, (x1, . . . , x`) ∈
({0, 1}n)`, and each Bobi receives an n-bit input, yi ∈ {0, 1}n. Together, they wish to
compute P (xi, yi) for every i ∈ [`], such that when the protocol terminates, Alice knows
all ` outputs. The communication is by broadcast among all parties; namely, every
message sent by any party is received by all other parties.
The One-Way Broadcast Model (M3). This model is similar to M2, only that the
Bobs cannot hear each other; namely, every message Alice sends is heard by all Bobs,
but a message sent by one of the Bobs is received by Alice alone. This model might be
thought of as a communication between a satellite and ` ground stations – whatever the
satellite transmits is heard by all ground stations, but messages from the ground stations
are received only by the satellite.
The Point-to-Point Model (M4). As in M2,M3, the underlying setting in this model
remains the (` + 1)-star. However, in this case the communication is point-to-point;
namely, every message sent by one of the Bobs is received by Alice alone (i.e. the Bobs
cannot send messages to each other), and every message Alice sends is sent to a single
Bob of her choice.
The Independent Computations Model (M5). In this model, there are ` Alices and
` Bobs. For every i ∈ [`], Alicei is given xi ∈ {0, 1}n and Bobi is given yi ∈ {0, 1}n. They
communicate over a point-to-point channel, which none of the other Alices or Bobs can
hear, in order to compute P (xi, yi). When the computation terminates, Alicei should
know P (xi, yi). Since each Alicei and Bobi hear no other communication but their own,
this model represents ` independent computations.

1.2 Previous Work
The direct sum question in communication complexity has been studied extensively, with
respect to different types of protocols (e.g. deterministic, nondeterministic, and randomized).
In spite of significant efforts it is far from being well understood.

The deterministic case was first studied in [16], where it was shown that if a certain
two-party direct-sum result holds, then NC1 6= NC2 and NC1 6= P. In [10] it is proved
that for any (full) boolean function f , D(f `) ≥ `

(√
D(f)/2−O(logn)

)
, while there exists a

partial function f such that D(f) = logn+ 1 but D
(
f `
)

= O(`+ logn log `)� ` ·D(f). A
setting in which the number of communication rounds is bounded has also been studied. For
example, it was shown in [10, 15] that for one-round and two-round (deterministic) protocols,
D(f `) ≥ ` (D(f)−O(logn)) for any (possibly partial) function f . However, the direct-sum
question for full functions remains open. Formally stated,

I Question 1. Does D
(
f `
)
≥ `(D(f)−O(1)), for every full function f?

In the case of randomized protocols, one may consider several types of randomness. In
the private-coin setting, each party has a private string of random bits that it can utilize in
its computation. In the public-coin setting, the string of random bits is public, namely seen
by both parties. In [10], a concrete (full) function f that satisfies Rpriv (f) = O(logn) and
Rpriv (f `) = O(`+ logn) was shown, thus demonstrating that savings can be obtained in
the private-coin randomized setting.

One might also consider a hybrid of the private and public-coin models, in which each
party sees both a private and a public string of random bits. This setting arises naturally

DISC 2017



26:4 Direct-Sum Through the Lens of Multiparty Communication Complexity

when applying information theoretic techniques to communication complexity. Such notions
were first introduced in [9] (later redefined in [3]), to measure the amount of information that
must be revealed by the two parties, about their inputs, in order to solve a communication
problem. Informally, since the amount of information revealed by the parties in a protocol
is at most the number of bits transmitted throughout its execution, then one can obtain
lower bounds on the communication complexity of a function by proving lower bounds on
its information complexity. In recent years, information complexity became a powerful tool
for understanding communication complexity and was used to prove many results, e.g. for
reproving a lower bound of Ω(n) on the communication complexity of the set-disjointness
function [2] (originally proved in [14, 23]). In fact, the main theorem in [2] is a direct-sum-
like theorem for information complexity. Furthermore, it was shown in [6, 3] that R

(
f `
)

approaches ` · IC (f) as ` tends to infinity. Therefore, a two-party direct-sum question in
which both public- and private-coin randomization are allowed, can also be stated in terms
of compression. Informally stated: given a protocol π, can one construct a “compressed”
protocol τ such that |τ | is roughly equal to the information content of π? This was proven to
be false in some settings; in [11, 13], a randomized setting in which the inputs are distributed
according to some known distribution was studied, and it was shown that there might be
an exponential gap between information and communication complexity in this setting. In
[12], a randomized non-distributional setting was studied, and it was shown that exponential
gaps between information and communication complexity can also be found in this setting,
when considering search problems. Nonetheless, the question of compression remains open
for functions in the randomized non-distributional setting.

Our proposed models are intended to naturally relate to the two-party direct-sum problem,
and for that reason we require that the same function f(x, y) is computed “on every edge”.
Contrary to our models, in most previous works, e.g. [8, 4, 5, 1], each of the ` parties
receives an n-bit input, xi, and together they compute some “global” function g(x1, . . . , x`)
rather than a “local” function f(x, y) “on every edge”, in our case. To the best of our
knowledge, a setting in which a function f is computed “on every edge” was only considered
in [22] and [7]. In [22], a direct-sum-like theorem in the randomized case was proved, with
respect to some communication complexity measure, denoted EDε

µ(f) (on which we shall not
elaborate), and it was shown that in the message passing modelRpub (f `, ε) = Ω

(
` · EDε

µ(f)
)
,

for any function f and error probability ε. In [7], quantum nondeterministic multiparty
communication complexity was considered, with which we do not deal in this work.

1.3 Our Results

In Section 3, public-coin randomized communication complexity is studied. First, we formalize
several notions of randomized and distributional communication complexity in Section 3.1,
and prove some useful connections between the different measures we present. Afterwards,
in Section 3.2, we prove our main result in the public-coin setting (Theorem 12). It states
that solving ` instances of a function f in M4 in the public-coin model costs roughly ` times
the cost of solving a single instance.

In the full version of the paper, a similar result is shown in the private-coin randomized
setting, for functions f that satisfy a certain constraint. We also present a function for which
there is a gap between M3 and M4 in this setting. For nondeterministic communication
complexity, we prove that M1, M2, and M3 are almost equivalent and that M4 and M5 are
almost equivalent; this is also omitted here, for lack of space, and included in the full version.

Interestingly, the point-to-point model proved to be hard in both the randomized and
nondeterministic settings. These results imply that the fact that Alice must send each Bob a
separate message makes practically any savings impossible.
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In Section 4, we consider the connections between our five models in a setting where
the number of rounds is bounded. In particular, for one-round protocols, we show that
a saving never occurs when solving a computational problem in either M3, M4, or M5
(Observation 18); that saving never occurs in M2 in the public-coin randomized setting
(Claim 20); and we demonstrate a gap between M2 and M3 in the deterministic setting.
Finally, in Theorem 25, we show a gap between M1 and M2 in the deterministic setting, for
some relaxed notion of one-round protocols.

2 Preliminaries

Although most of our results apply to general functions, we focus our discussion on Boolean
functions, for simplicity. Thus, unless explicitly stated otherwise, f is a function f : {0, 1}n×
{0, 1}n → {0, 1}. Given such f and a natural non-zero number `, let f ` : {0, 1}n`×{0, 1}n` →
{0, 1}` denote the following function: for every (~x, ~y) = ((x1, . . . , x`), (y1, . . . , y`)) ∈ {0, 1}n`×
{0, 1}n`, let f `(~x, ~y) , (f(x1, y1), . . . , f(x`, y`)).

Our models, as defined in Section 1.1, aim to naturally relate to the two-party direct-
sum question and, hence, throughout this work, we study asynchronous protocols whose
communication complexity is defined to be the total number of bits sent between the parties.
In a protocol π, in all models, the messages each party sends rely solely on its current view of
the state of the protocol, i.e. its input (including, possibly, its randomness) and the previous
messages it received in the protocol. We further assume that each party knows when it is its
turn to speak based on its view of the state of the protocol. Therefore, all messages sent in
the protocol are self terminating, e.g. drawn from some prefix code. One may also consider
protocols that operate in synchronous rounds, as commonly done in the study of distributed
computing (see, e.g., [21]). This may seem to be a minor difference but it is, in fact, crucial:
In synchronous protocols, parties may exchange information even in rounds in which they do
not speak; merely the fact that they remain silent may convey information.

We denote the worst-case communication complexity of π, i.e. the number of bits sent in
π on the worst possible input, by |π|. Given a computational problem P , and a complexity
measure C ∈ {D,N ,R, . . . } (i.e. Deterministic, Nondeterministic, Randomized, etc.), we
denote the communication complexity, with respect to the measure C, of a single instance
of P in the two-party model by C(P ). Furthermore, given ` ≥ 1, we define Ci(P `) to be
the communication complexity, w.r.t. the measure C, of computing ` instances of P in the
model Mi. For example, using this notation, C5(P `) = `C(P ).

The models M1, . . . ,M5 were defined such that each model presents an additional con-
straint over the former models (see Section 1.1). Therefore, intuition suggests that for any
i ∈ [4] and any computational problem P , solving P ` in Mi+1 is at least as hard as solving
it in Mi. This intuition can be easily formalized in a claim that informally states that
C1 ≤ C2 ≤ C3 . C4 ≤ C5, for any complexity measure C. The formal claim, along with its
proof, appear in the full version of the paper.

3 Public-coin Randomized Communication Complexity

In this section, we consider randomized communication complexity, in the public-coin setting,
where the players have access to a common (global) random string. The private-coin case,
where each player has its own randomness, is deferred, for lack of space, to the full version of
the paper.
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3.1 Randomized and Distributional Communication Complexity
Several definitions of the randomized and distributional settings, differentiated by the way
error is measured, have been considered in the communication complexity literature. This
section deals with the various definitions and relates the different measures to one another.
The main result of this section, showing thatM4 andM5 are “close”, appears in Subsection 3.2.
We note that all the definitions presented hereafter assume ` instances for some boolean
function f , and the definitions for the two-party setting follow by fixing ` = 1.

I Definition 2 (Public-coin randomized protocols). A protocol π is said to be public-coin
randomized protocol if at the beginning of every execution of π, each party receives, in
addition to its input, the same (public) random string r of unbounded length. Then, the
parties communicate according to a predetermined (deterministic) protocol, where the type of
communication between the parties is determined by the model in question (i.e. M1, M2, M3,
M4, or M5). A protocol π is said to compute f ` with ε-error if Prr

[
π(~x, ~y, r) = f `(~x, ~y)

]
≥

1− ε for every (~x, ~y) ∈ {0, 1}n` × {0, 1}n`. Namely, the error is considered over all instances
simultaneously. Let Rpub

k

(
f `, ε

)
denote the cost of the best public-coin randomized protocol

that computes f ` with ε-error in the model Mk.

I Definition 3 (Distributional protocols). Let ρ be a distribution over {0, 1}n` × {0, 1}n`. A
deterministic protocol π is said to be (ρ, ε)-distributionally correct for f ` if it answers correctly
on at least a (1− ε)-fraction of the inputs, weighted by ρ, i.e. Pr(~x,~y)∼ρ

[
π(~x, ~y) = f `(~x, ~y)

]
≥

1− ε. Let D(ρ,ε)
k

(
f `
)
denote the cost of the best (ρ, ε)-distributional protocol for f ` in Mk.

The following theorem relates the two measures defined above.

I Theorem 4 (Yao’s minimax principle). Rpub
k

(
f `, ε

)
≥ D(ρ,ε)

k

(
f `
)

for any distribution ρ over
{0, 1}n` × {0, 1}n`. Furthermore, if ` = 1, there exists a distribution ρ over {0, 1}n × {0, 1}n
for which Rpub (f, ε) = D(ρ,ε) (f).

Yao’s Minimax principle was first proved in [28] for the two-party case, and later gen-
eralized for the multiparty case; see, [25, 26]. It relates two settings: in the public-coin
randomized setting, error is taken over the choice of randomness, while in the distributional
setting, error is taken over the choice of inputs. One may also consider combinations of the
two settings, e.g. the randomized distributional setting that appears e.g. in [11, 12, 13]. We
now define several such measures.

I Definition 5 (Randomized distributional protocols). Let ρ be a distribution over {0, 1}n` ×
{0, 1}n`. A public-coin randomized protocol π is said to be (ρ, ε)-distributionally correct for f `
inMk if it produces a correct answer with probability at least 1−ε, taken over both the choice
of randomness and the choice of inputs, i.e. Prr,(~x,~y)∼ρ

[
π(~x, ~y, r) = f `(~x, ~y)

]
≥ 1 − ε. Let

Rρk
(
f `, ε

)
denote the cost of the best public-coin randomized (ρ, ε)-distributional protocol for

f ` in Mk, and let Rρk
(
f `, ε

)
denote the minimal expected cost of any public-coin randomized

(ρ, ε)-distributional protocol for f ` in Mk, where the expectaion is taken both over the choice
of randomness and the choice of input.

Next, we introduce another communication complexity measure for the classical two-party
setting – public-coin randomized communication complexity with (ρ, δ)-promise and ε-error.
Although this definition can be easily extended to other communication models, we only
need the two-party version for our purposes.

I Definition 6 (Public-coin randomized protocols with (ρ, δ)-promise and ε-error). Let ρ be a
distribution on {0, 1}n ×{0, 1}n, and let ε, δ ∈ (0, 1). A public-coin randomized protocol π is
said to compute f with (ρ, δ)-promise and ε-error if:
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Protocol 1 τ(x, y, r).
1: Simulation: Alice and Bob simulate π (x, y, r).
2: Early termination: If more than 1

δ2 |π| bits were sent, Alice and Bob terminate and
output ‘0’. Otherwise, Alice answers like π.

1. On a δ-fraction of the inputs, weighted by ρ, there is no correctness promise, i.e. the
protocol may always err. These are called type-A inputs of π.

2. On any other input, a (1− δ)-fraction weighted by ρ, there is at most ε-error, weighted
by the choice of the public random string. These are called type-B inputs of π.

Let R(ρ,δ) (f, ε) denote the cost of the best public-coin randomized protocol that computes f
with (ρ, δ)-promise and ε-error.

In the rest of this subsection, we discuss the settings defined above, and show how they
relate to one another. We start by the following observation:

I Observation 7. Rρk
(
f `, ε

)
≤ Rpub

k

(
f `, ε

)
for any f , `, ε ∈ (0, 1) and distribution ρ.

This is immediate: suppose π is a public-coin randomized protocol that errs with probability
at most ε on every input (over the choice of randomness). Clearly, π errs with probability at
most ε if the input is also sampled from some distribution ρ.

I Lemma 8. R(ρ,δ) (f, ε) ≥ D(ρ,δ+ε) (f), for any f , ε, δ ∈ (0, 1) and distribution ρ.

The proof of Lemma 8 is an immediate generalization of the first part of Theorem 4 and
is omitted for lack of space. We conclude this subsection with the following lemma:

I Lemma 9. R(ρ,√ε+δ) (f,
√
ε+ δ) ≤ 1

δ2R
ρ (f, ε) for any f , distribution ρ, and ε, δ ∈ (0, 1)

that satisfy 2(
√
ε+ δ) ≤ 1.

Proof. Let π be an expected (ρ, ε)-distributional randomized protocol for f . For every input
pair (x, y) and any public random string r, let I(x, y, r) be the following {0, 1}-indicator:
I(x, y, r) = 1 if and only if π errs on (x, y) when the random string is r. Furthermore, let
I(x, y) , E

r
[I(x, y, r)]. Observe that I(x, y) is exactly Prr [π(x, y, r) 6= f(x, y)], and since π

is a (ρ, ε)-distributional randomized protocol for f , then E
(x,y)∼ρ

[I(x, y)] ≤ ε.

For every (x, y), let E(x, y) , E
r

[|π(x, y, r)|] denote the expected communication com-
plexity of π on (x, y), taken over the choice of public randomness r. By the definition of π,
we have that E

(x,y)∼ρ
[E(x, y)] = |π|, where here |π| denotes the expected communication cost

of π (since π is an expected randomized distributional protocol).
We construct a protocol τ for f in Protocol 1.
We claim that τ is a public-coin randomized protocol for f with (δ +

√
ε)-promise and

(δ +
√
ε)-error. To do so, we separate the input space of π into two sets, type-A inputs and

type-B inputs, as follows: an input (x, y) is said to be a type-A input of τ if and only if

E(x, y) ≥ 1
δ
|π| or I(x, y) ≥

√
ε.

I Claim 10. Pr(x,y)∼ρ [(x, y) is a type-A input of τ ] ≤ δ +
√
ε.

Proof. First, E
(x,y)∼ρ

[E(x, y)] = |π| and, by applying Markov’s inequality,

Pr
(x,y)∼ρ

[
E(x, y) ≥ 1

δ
|π|
]
≤ Pr

(x,y)∼ρ

[
E(x, y) ≥ 1

δ
E

(x,y)∼ρ
[E(x, y)]

]
≤ δ.
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Similarly, E
(x,y)∼ρ

[I(x, y)] ≤ ε, and by applying Markov’s inequality,

Pr
(x,y)∼ρ

[
I(x, y) ≥

√
ε
]
≤ Pr

(x,y)∼ρ

[
I(x, y) ≥ 1√

ε
E

(x,y)∼ρ
[I(x, y)]

]
≤
√
ε.

A union bound argument yields that

Pr
(x,y)∼ρ

[(x, y) is a type-A input of τ ] ≤ δ +
√
ε,

and the claim follows. J

I Claim 11. Given that (x, y) is a type-B input of τ , Prr [τ(x, y, r) 6= f(x, y)] ≤ δ +
√
ε.

Proof. Since (x, y) is a type-B input of τ , then E
r

[|τ(x, y, r)|] ≤ 1
δ |π| and E

r
[I(x, y, r)] ≤

√
ε.

Observe that τ might err in either of two cases: τ was early-terminated, or τ was not early
terminated but the simulation of π answered incorrectly. By the union bound, we conclude
the following:

Pr
r

[τ(x, y, r) 6= f(x, y)] ≤ Pr
r

[
|τ(x, y, r)| > 1

δ2 |π|
]

+ Pr
r

[I(x, y, r) = 1]

≤ Pr
r

[
|τ(x, y, r)| > 1

δ
E
r

[|τ(x, y, r)|]
]

+ E
r

[I(x, y, r)]

≤ δ +
√
ε,

where the last inequality follows from Markov’s inequality. J

In conclusion, Claim 10 proves that there are at most (δ +
√
ε) type-A inputs of τ , weighed

by ρ, and Claim 11 proves that τ has at most (δ +
√
ε)-error on type-B inputs. Therefore, τ

is indeed a public-coin randomized protocol that computes f with (ρ,
√
ε+ δ)-promise and

(
√
ε+ δ)-error. Step 2 (early termination) assures that |τ | ≤ 1

δ2 |π|, and that concludes the
proof of Lemma 9. J

We remark that we have dealt with several communication complexity measures in this
subsection and, for conciseness reasons, some of the connections between the different measures
were omitted. However, the omitted connections can be shown, either by simply combining the
connections we have proved, or by slightly modifying the arguments presented in our proofs.
For instance, an argument similar to that of Lemma 9 proves that R(ρ,√ε) (f,

√
ε) ≤ Rρ (f, ε).

For another example, one can prove that there exists a distribution ρ over {0, 1}n × {0, 1}n
for which R(ρ,δ) (f, ε) ≥ Rpub (f, δ + ε) using Theorem 4 and Theorem 8.

3.2 Pushing M4 Towards M5

In this section, we prove that computing ` instances of f in the point-to-point model, M4,
cannot be done much more efficiently than just solving each instance separately, as in the
independent computations model, M5. From a more philosophical point of view, designing
protocols in which Alice sends “global” messages is virtually useless in the public-coin
randomized setting when only point-to-point communication is allowed. Formally stated:

I Theorem 12. Rpub (f, 2(
√
ε+ δ)) ≤ 1

δ2
1
`R

pub
4
(
f `, ε

)
, for any f , `, and ε, δ ∈ (0, 1) such

that 2(
√
ε+ δ) ≤ 1.
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Protocol 2 τ(x, y, r).
1: Preparation: Alice and Bob split the random string r into two independent random

strings, r , (r1, r2).
2: Augmentation: Alice and Bob construct an input (~x, ~y) for π from their (x, y):

2.1: Alice and Bob sample i ∼ Unif {[`]} from the randomness r1.
2.2: Alice samples (~u,~v) = ((u1, . . . , u`−1), (v1, . . . , v`−1)) ∼ ρ`−1 from r1.
2.3: Let ~x , aug [~u, x, i], and let ~y , aug [~v, y, i].

3: Simulation: Alice and Bob simulate the i’th channel of π (~x, ~y, r2).
That is, Bob plays the role of Dani, while Alice plays the role of Carol and all other
Dans. In their simulation, Alice and Bob only send messages that are sent between Carol
and and Dani in π. All other messages are simulated by Alice alone, with no additional
communication.

Given a protocol π for f ` in M4, our proof constructs a protocol τ for f (a single instance
in the two-party model) such that |τ | ≤ 1

δ2
1
` |π|. The construction of τ is based on the

symmetrization technique, that was introduced in [22], and was later used in, e.g., [24, 25].
In the core of the symmetrization technique lies an intuitive averaging argument: suppose
we fix some input to each of the parties in M4. In that case, the average number of bits
communicated on a uniformly-chosen channel is at most 1

` |π|. In τ , Alice and Bob augment
their single instance (x, y) to an input (~x, ~y) for π, that contains ` instances of f , and then
simulate a channel of π(~x, ~y). We thus define an augmentation operator :

I Definition 13 (The Augmentation operator). Let Q be any set, and k ∈ N an integer. Given
a k-tuple ~q = (q1, . . . , qk) ∈ Qk, an element p, and an index i ∈ [k + 1], the augmentation
operator aug [~q, p, i] is defined to be the (k + 1)-tuple obtained by “inserting” p as an i’th
element in ~q, i.e. aug [~q, p, i] , (q1, . . . , qi−1, p, qi, . . . , qk).

We now prove a central lemma from which we conclude Theorem 12:

I Lemma 14. Rρ (f, ε) ≤ 1
`R

ρ`

4
(
f `, ε

)
, for any f , `, ε ∈ (0, 1), and ρ over {0, 1}n ×{0, 1}n.

Proof. Let π be a randomized
(
ρ`, ε

)
-distributional protocol for f ` in M4. Given π, we

construct a protocol τ for a single instance of f , such that τ is an expected randomized
(ρ, ε)-distributional protocol. The construction of τ is presented in Protocol 2. To avoid
confusion, we refer to the two parties in τ as Alice and Bob, and to the `+ 1 parties in π as
Carol and Dans.

For every (x, y) ∈ {0, 1}n × {0, 1}n, let E(x, y) , E
r

[|τ(x, y, r)|] denote the expected
communication complexity of τ on (x, y), over the choice of public randomness.

I Claim 15. E
(x,y)∼ρ

[E(x, y)] ≤ 1
` |π|.

Proof of Claim 15. For every i ∈ [`] and every (~x, ~y) ∈ {0, 1}n` × {0, 1}n`, let
∣∣πi (~x, ~y)

∣∣
denote the maximum number of bits communicated between Carol and Dani when running
π on (~x, ~y). We thus have

E
(x,y)∼ρ

[E(x, y)] = E
(x,y)∼ρ

[
E

i∼Unif{[`]}

[
E

(~u,~v)∼ρ`−1

[∣∣πi (~x, ~y)
∣∣]]] ≤ E

(~x,~y)∼ρ`

[
1
`
|π|
]
≤ 1
`
|π|

and the claim follows. J
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For every (~x, ~y) ∈ {0, 1}n` × {0, 1}n` and for every random string r2, let J(~x, ~y, r2) be
the following {0, 1}-indicator: J(~x, ~y, r2) = 1 if and only if π errs on (~x, ~y) given the
random string is r2. Furthermore, for every (x, y) ∈ {0, 1}n × {0, 1}n and for every possible
random string r = (r1, r2), where r1 = (i, (~u,~v)) ∈ [`] × {0, 1}n(`−1) × {0, 1}n(`−1) and
r2 ∈ {0, 1}∗, let I(x, y, r) = J(aug [~u, x, i] , aug [~v, y, i] , r2). Let I(x, y) , E

r
[I(x, y, r)] for

every (x, y) ∈ {0, 1}n × {0, 1}n.

I Claim 16. E
(x,y)∼ρ

[I(x, y)] ≤ ε.

Proof.

E
(x,y)∼ρ

[I(x, y)] = E
(x,y)∼ρ

[
E

i∼Unif{[`]}

[
E

(~u,~v)∼ρ`−1

[
E
r2

[J(aug [~u, x, i] , aug [~v, y, i] , r2)]
]]]

≤ E
(~x,~y)∼ρ`

[
E
r2

[J(~x, ~y, r2)]
]
≤ ε,

where the last inequality holds since π is an expected randomized (ρ`, ε)-distributional
protocol for f ` in M4. J

To conclude, Claim 15 and Claim 16 show that τ is indeed an expected randomized distribu-
tional protocol for f with the desired properties, and together they imply Lemma 14. J

Proof of Theorem 12. As promised in Theorem 4, let ρ be a distribution on {0, 1}n×{0, 1}n

that satisfies D(ρ,2(δ+
√
ε)) (f) = Rpub (f, 2 (δ +

√
ε)). We therefore have that

Rpub (f, 2 (δ +
√
ε
))

= D(ρ,2(√ε+δ)) (f) (by choice of ρ)

≤ R(ρ,√ε+δ) (f,√ε+ δ
)

(Theorem 8)

≤ 1
δ2R

ρ (f, ε) (Theorem 9)

≤ 1
δ2

1
`
Rρ

`

4
(
f `, ε

)
(Theorem 14)

≤ 1
δ2

1
`
Rpub

4
(
f `, ε

)
, (Observation 7)

and the theorem holds. J

4 One-Round Communication

In this section, we consider several definitions of one-round communication protocols in
our models, and examine the connections between them. We prove that savings cannot
be obtained in M3, M4, and M5 when considering one-round protocols, for any complexity
measure (that is, deterministic, nondeterministic, and randomized). However, we prove that,
under a certain definition of one-round protocols in M2, gaps can be found between M2 and
M3 in the private-coin randomized setting and, if search problems are taken into account,
then gaps can also be found between M1 and M2 in the deterministic setting.

4.1 M3, M4 and M5 in the One-Round Setting
I Definition 17. Let P be a computational problem, ` ≥ 1, and k ∈ {3, 4, 5}.
A protocol π in Mk is a one-round protocol if Alice does not send a message to any of the
Bobs in any execution of the protocol. Given a complexity measure C, let C1

k

(
P `
)
denote
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the cost of the best one-round protocol that solves P ` in Mk with respect to the measure C.
Furthermore, let C1(P ) , C1

5 (P ) denote the cost of the best one-round protocol that solves
P in the two-party setting with respect to the measure C.

Since the Bobs in M3, M4, and M5 cannot hear each other directly in these models then,
when considering one-round protocols, the message sent by each Bobi is independent of the
messages sent by the other Bobs. The following is therefore fairly easy to prove:

I Observation 18. C1
k(P `) ≥ ` ·C1(P ), for any k ∈ {3, 4, 5}, any computational problem P ,

any ` ≥ 1, and any complexity measure C (i.e. C ∈ {D,N ,R, . . . }).

4.2 M2 in the One-Round Setting
Contrary to the models M3, M4, and M5, the Bobs are able to hear one another in M2. This
property of M2 allows for several possible variations on one-round protocols:
1. One-message-each protocols, where each Bob sends one message to Alice. However, the

messages are sent sequentially, as opposed to simultaneous protocols. Namely, each Bob
can hear all messages sent by Bobs whose turn preceded his. The identity of the next
speaker is determined by the previous messages sent in the protocol and, in the public-coin
randomized setting, by the public randomness as well. Therefore, the order in which the
Bobs speak may vary between different executions of the protocol.

2. Bobs-only protocols where Alice does not send any message but the Bobs are unconstrained,
and can exchange as many messages as they wish. We remark that these are not one-round
protocols per se, since the speaker may change multiple times. This collective view of the
Bobs is reasonable since M2 is an asymmetric model, in which Alice plays a different role
than the Bobs.

I Definition 19. Let P be a communication problem and let ` ∈ N. Let C be any complexity
measure. Let C1

2
(
P `
)
denote the cost of the best one-message-each protocol that solves P `

in M2 with respect to the measure C, and let CB2
(
P `
)
denote the cost of the best Bobs-only

protocol that solves P ` in M2 with respect to the measure C.

4.2.1 The Randomized Case
4.2.1.1 The Public-Coin Setting

The following claim proves that if public-coin randomness is allowed, then M2 and M5 are
essentially equivalent when considering Bobs-only communication complexity, and significant
gaps between them cannot be found with respect to this measure.

I Claim 20. R1,pub (f, 2(
√
ε+ δ)) ≤ 1

δ2
1
`R

B,pub
4

(
f `, ε

)
for any f , `, and ε, δ ∈ (0, 1) that

satisfy 2(
√
ε+ δ) ≤ 1.

This claim, and its proof, resemble Theorem 12. In the proof of Theorem 12, a protocol τ
that computes f in the two-party setting was constructed from a protocol π that computes
f ` in M4. Intuitively, the two parties in τ choose a uniformly random i ∈ [`] and simulate
the i’th channel of π. Hence, |τ | = O

( 1
` |π|

)
by an averaging argument.

Let us try to extend this argument to M2. As before, to avoid confusion, we refer to the
two parties in τ as Alice and Bob, and to the `+ 1 parties in π as Carol and Dans. Assume,
then, that π is a protocol for f ` in M2 (not necessarily a one-round protocol), and suppose
that Carol sends at most c bits and that the Dans send at most d bits (combined) in any run
of π. Since Carol uses broadcast communication in π, then the average number of bits sent
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between Carol and Dani in π is roughly c+ 1
`d, for a uniformly-sampled i ∈ [`]. However, c

might be very large in general protocols, and hence this averaging argument seems to provide
a very weak bound in the general case. However, if c = 0, i.e. if π is an Bobs-only protocol,
then |τ | = O( 1

`d) = O
( 1
` |π|

)
, as desired. Therefore, in the case of Bobs-only protocols, the

exact same construction of τ as in Theorem 12 proves Claim 20. The formal proof is almost
identical to that of Theorem 12, and is hence omitted.

4.2.1.2 The Private-Coin Setting

In the full version of the paper, we show that the equality function separates M3 from M4
in the unbounded-round private-coin setting, and that it also separates M2 from M3 in the
one-round setting when considering one-message-each protocols, where the lower bound on
M3 follows immediately from Observation 18 and the known fact that R1,priv (EQ, 1/3) ≥
Rpriv (EQ, 1/3) = Ω(logn) (see, e.g., [17]). Thus R1,priv

3

(
EQ`, ε

)
= Ω(` logn). As for the

upper bound on M2, it can be easily obtained using Newman’s transformation from the
public-coin setting to the private-coin setting [18]; we also show (in the full version) that
R1,pub (EQ, 1/3) = O(1) and also that R1,priv (f `, 1/3

)
= O

(
R1,pub (f `, 1/3

)
+ log(n`)

)
for

any function f and natural number `. Using amplification, we have that R1,pub
(

EQ`, 1/3
)

=

O(` log `), and conclude that R1,priv
2

(
EQ`, 1/3

)
= O (` log `+ log(n`)).

We remark that since Bobs-only protocols in M2 are stronger than one-message-each
protocols, then the gap presented also holds for Bobs-only protocols in M2.

4.2.2 The Deterministic Case
The previous subsection shows a gap between M2 and M3 when considering one-message-
each protocols in the private-coin setting. However, M2 seems to behave differently in the
deterministic setting, as suggested by the following claim:

I Claim 21. D1
2
(
P `
)
≥ ` · D1(P ), for any computational problem P and any ` ∈ N.

Proof sketch. By induction on `. The claim is clearly true for ` = 1. Let ` ≥ 2, and let π be
an optimal one-message-each protocol that solves P ` in M2. For every i ∈ [`], let mi denote
the i’th message in π. We separate into cases:

Case 1. Suppose there exists a valid prefix of the transcript m1, . . . ,m`−1 such that∑`−1
i=1 |mi| ≥ `−1

` |π|. In that case, we construct a protocol τ for P in the two-party setting by
fixing these messages and letting Bob play the role of the last party in π. The communication
complexity of τ is at most 1

` |π|, and hence |π| ≥ `C(P ).
Case 2. Suppose that every valid prefix of the transcriptm1, . . . ,m`−1 satisfies

∑`−1
i=1 |mi| <

`−1
` |π|. In that case, we construct a protocol τ for P `−1 in M2 (with one Alice and ` − 1

Bobs) by letting the Bobs play the roles of the first ` − 1 parties of π, and letting Alice
simulate the last Bob (with no communication). We therefore have that |τ | < `−1

` |π|. Since
we assumed π to be optimal, then clearly |π| ≤ `C(P ), and we thus get |τ | < (`− 1)C(P ),
in contradiction to the induction hypothesis. J

Claim 21 shows that no gaps can be found between M2 and M3 when considering one-
message-each protocols in the deterministic setting. We ask whether this is true for Bobs-only
protocols as well; namely,

I Question 22. Is it true that DB2
(
P `
)
≥ ` · D1(P ) for any P and any ` ≥ 1?
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4.2.2.1 Separating M1 from M2 for One-Message-Each Protocols

When considering the deterministic communication complexity of direct-sum problems, no
saving is known to be achievable for full functions in the two-party setting. However, some
saving can be achieved in the case of partial functions. In the rest of this section, we study
such an example in our models.

I Definition 23 (The NBA problem). Let n ∈ N. For every x = (u, v) ∈ {0, 1}n × {0, 1}n
and for every y ∈ {0, 1}n, the NBA function is defined as follows:

NBA(x, y) ,


undefined y /∈ {u, v} ∨ u = v

1 y = u

0 y = v

Intuitively, Alice knows the names of two NBA teams, u and v, that played against each
other last night. However, she does not know which of the teams had won the game. Bob,
on the other hand, knows the name of the winning team, y ∈ {u, v}, but not the name of its
opponent. The goal is for Alice to know which team had won the match.

The NBA problem was first studied in [19, 20], where it was called The League Problem,
and it was proved that D (NBA) = logn+ 1. Then, in [10], it was proved that some saving
can be achieved for its direct-sum version. In particular, an upper bound of O(`+ logn log `)
was shown. The protocol can also be run in M2 and M3, and seems to heavily rely on Alice’s
ability to see all ` instances together. Therefore, intuition would suggest that switching the
roles of Alice and Bob would put their ability to design a clever protocol for M2 in question.
We therefore define the Inverted-NBA problem:

I Definition 24 (The INBA problem). For every x ∈ {0, 1}n and y ∈ {0, 1}n × {0, 1}n, the
Inverted-NBA function is defined to be INBA(x, y) , NBA(y, x).

I Example 25. Consider the INBA partial function. We claim that it presents a deterministic
gap between M1 and M2 in the one-round setting. In particular, we examine one-message-
each protocols in M2. The lower bound in M2 follows from Claim 21 and the fact that
D (NBA) = logn + 1, which together prove that DB2

(
INBA`

)
≥ ` logn. For the upper

bound on M1, we first claim that any protocol that computes NBA` in M1 can also be used
to compute INBA` in M1, simply by switching the roles of Alice and Bob. Furthermore, we
claim (without proof) that the protocol presented in [10] can be easily turned into a one-round
protocol for INBA` in M1, and thus conclude that D1

1

(
INBA`

)
= O(` + log ` logn). The

argument appears at length and in greater detail in the full version of the paper.

Proving that DB
2

(
INBA`

)
= Ω (` logn) would strengthen the gap presented in the

example above. We conjecture that the INBA problem remains hard in M2 even in the
unbounded-round setting. That is: D2

(
INBA`

)
= Ω (` logn).

5 Conclusions and Future Work

In this work, we suggest a new approach to the study of two-party direct-sum questions in
communication complexity. Future work may extend our approach in several directions.

One such direction would be to try and find more gaps and equivalences between the
models we proposed with respect to various complexity measures; for instance, one may try
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to extend Theorem 12 and prove that savings cannot be obtained in M4 with respect to other
measures, e.g. deterministic communication complexity. This would support our intuition
that “point-to-point communication is hard”. Another example is to try and separate M1
and M2 with respect to private-coin randomized setting. To the best of our knowledge, all
currently known savings in this setting utilize Newman’s transformation which also applies
to the models M2 and M3. Therefore, the current techniques cannot be used to separate
M1 and M2. Another interesting direction, that would require devising new functions for
which savings can be obtained in the classical two-party direct-sum setting, would be to try
to separate M1 from M2 with respect to private-coin randomized communication complexity.
One may also consider a variant of the public coin randomized setting in which there is a
common random string on each communication line, that is, Alice and Bobi share a random
string ri. It may be interesting to study the connection between our five models in this
setting, and compare it to other settings, e.g. to the public coin setting we discuss in the
paper (in which there is one global random string, shared by all parties).

Finally, one can examine the two-party direct-sum question through the lens of other
multiparty models, such as more complicated bipartite communication graphs (where one
side has k Alices and the other side has t Bobs) or the clique network. Understanding these
questions may also shed new light on the source of hardness of classical direct-sum questions
in two-party communication complexity.
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Abstract
It is well-known that consensus (one-set agreement) and total order broadcast are equivalent
in asynchronous systems prone to process crash failures. Considering wait-free systems, this
article addresses and answers the following question: which is the communication abstraction
that “captures” k-set agreement? To this end, it introduces a new broadcast communication
abstraction, called k-BO-Broadcast, which restricts the disagreement on the local deliveries of
the messages that have been broadcast (1-BO-Broadcast boils down to total order broadcast).
Hence, in this context, k = 1 is not a special number, but only the first integer in an increasing
integer sequence.

This establishes a new “correspondence” between distributed agreement problems and com-
munication abstractions, which enriches our understanding of the relations linking fundamental
issues of fault-tolerant distributed computing.
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1 Introduction

Agreement problems vs communication abstractions. Agreement objects are fundamental
in the mastering and understanding of fault-tolerant crash-prone asynchronous distributed
systems. The most famous of them is the consensus object. This object provides processes
with a single operation, denoted propose(), which allows each process to propose a value and
decide on (obtain) a value. The properties defining this object are the following: If a process
invokes propose() and does not crash, it decides a value (termination); No two processes
decide different values (agreement); The decided value was proposed by a process (validity).
This object has been generalized by S. Chaudhuri in [7], under the name k-set agreement
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Table 1 Associating agreement objects and communication abstractions.

Concurrent object Communication abstraction
Consensus Total order broadcast [6]

Snapshot object [1, 2] (and R/W register) SCD-broadcast [11]
k-set agreement object (1 ≤ k < n) k-BO-broadcast (this paper)

Section 6

k-BO

k-SA Snapshot

Section 4

Figure 1 Global picture.

(k-SA), by weakening the agreement property: the processes are allowed to collectively decide
up to k different values, i.e., k is the upper bound on the disagreement allowed on the number
of different values that can be decided. The smallest value k = 1 corresponds to consensus.

On another side, communication abstractions allow processes to exchange data and
coordinate, according to some message communication patterns. Numerous communication
abstractions have been proposed. Causal message delivery [4, 19], total order broadcast,
FIFO broadcast, to cite a few (see the textbooks [3, 15, 16, 17]). In a very interesting way, it
appears that some high level communication abstractions “capture” exactly the essence of
some agreement objects, see Table 1. The most famous –known for a long time– is the Total
Order broadcast abstraction which, on one side, allows an easy implementation of a consensus
object, and, on an other side, can be implemented from consensus objects. A more recent
example is the SCD-Broadcast abstraction that we introduced in [11] (SCD stands for Set
Constrained Delivery). This communication abstraction allows a very easy implementation
of an atomic (Single Writer/Multi Reader or Multi Writer/Multi Reader) snapshot object
(as defined in [1]), and can also be implemented from snapshot objects. Hence, as shown
in [11], SCD-Broadcast and snapshot objects are the two sides of a same “coin”: one side
is concurrent object-oriented, the other side is communication-oriented, and none of them
is more computationally powerful than the other in asynchronous wait-free systems (where
“wait-free” means “prone to any number of process crashes”).

Aim and content of the paper. As stressed in [10], Informatics is a science of abstractions.
Hence, this paper continues our quest relating communication abstractions and agreement
objects. It focuses on k-set agreement in asynchronous wait-free systems. More precisely, the
paper introduces the k-BO-broadcast abstraction (BO stands for Bounded Order) and shows
that it matches k-set agreement in these systems.

k-BO-broadcast is a Reliable Broadcast communication abstraction [3, 15, 16, 17], enriched
with an additional property which restricts the disagreement on message receptions among
the processes. Formally, this property is stated as a constraint on the width of a partial order
whose vertices are the messages, and directed edges are defined by local message reception
orders. This width is upper bounded by k. For the extreme case k = 1, k-BO-broadcast
boils down to total order broadcast.
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The correspondence linking k-BO-broadcast and k-set agreement, established in the
paper, is depicted in Figure 1. The algorithm building k-SA on top of the k-BO-broadcast is
surprisingly simple (which is important, as communication abstractions constitute the basic
programming layer on top of which distributed applications are built). In the other direction,
we show that k-BO-broadcast can be implemented in wait-free systems enriched with k-SA
objects and snapshot objects. (Let us recall that snapshot objects do not require additional
computability power to be built on top of wait-free read/write systems.) This direction is not
as simple as the previous one. It uses an intermediary broadcast communication abstraction,
named k-SCD-broadcast, which is a natural and simple generalization of the SCD-broadcast
introduced in [11].

Roadmap. The paper is composed of 7 sections. Section 2 presents the basic crash-prone
process model, the snapshot object, and k-set agreement. Section 3 defines the k-BO
broadcast abstraction and presents a characterization of it. Then, Section 4 presents a simple
algorithm implementing k-set agreement on top of the k-BO broadcast abstraction. Section 5
presents another simple algorithm implementing k-BO broadcast on top of the k-SCD-
broadcast abstraction. Section 6 presents two algorithms whose combination implements
k-SCD-broadcast on top of k-set agreement and snapshot objects. Finally, Section 7 concludes
the paper. A global view on the way these constructions are related is presented in Figure 2
of the conclusion.

Due to page limitations, we recommend the reader to refer to the technical report [12]
for the proofs of some lemmas and theorems, as well as some considerations about the scope
of the results presented here.

2 Process Model, Snapshot, and k-Set Agreement

Process and failure model. The computing model is composed of a set of n asynchronous
sequential processes, denoted p1, . . . , pn. “Asynchronous” means that each process proceeds
at its own speed, which can be arbitrary and always remains unknown to the other processes.

A process may halt prematurely (crash failure), but it executes its local algorithm correctly
until its possible crash. It is assumed that up to (n−1) processes may crash in a run (wait-free
failure model). A process that crashes in a run is said to be faulty. Otherwise, it is non-faulty.
Hence a faulty process behaves as a non-faulty process until it crashes.

Snapshot object. The snapshot object was introduced in [1, 2]. It is an array REG[1..n] of
single-writer/multi-reader atomic read/write registers which provides the processes with two
operations, denoted write() and snapshot(). Initially, REG[1..n] = [⊥, . . . ,⊥]. The invocation
of write(v) by a process pi assigns v to REG[i], and the invocation of snapshot() by a process
pi returns the value of the full array as if the operation had been executed instantaneously.
Expressed in another way, the operations write() and snapshot() are atomic, i.e., in any
execution of a snapshot object, its operations write() and snapshot() are linearizable.

If there is no restriction on the number of invocations of write() and snapshot() by each
process, the snapshot object is multi-shot. Differently, a one-shot snapshot object is such
that each process invokes once each operation, first write() and then snapshot(). The one-
shot snapshot objects satisfy a very nice and important property, called Containment. Let
regi[1..n] be the vector obtained by pi, and viewi = {〈regi[x], i〉 | regi[x] 6= ⊥}. For any
pair of processes pi and pj which respectively obtain viewi and viewj , we have (viewi ⊆
viewj) ∨ (viewj ⊆ viewi).

DISC 2017
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Implementations of snapshot objects on top of read/write atomic registers have been
proposed (e.g., [1, 2, 13, 14]). The “hardness” to build snapshot objects in read/write systems
and associated lower bounds are presented in the survey [9].

k-Set agreement. k-Set agreement (k-SA) was introduced by S. Chaudhuri in [7] (see [18]
for a survey of k-set agreement in various contexts). Her aim was to investigate the impact
of the maximal number of process failures (t) on the agreement degree (k) allowed to the
processes, where the smaller the value of k, the stronger the agreement degree. The maximal
agreement degree corresponds to k = 1 (consensus).

k-SA is a one-shot agreement problem, which provides the processes with a single operation
denoted propose(). When a process pi invokes propose(vi), we say that it "proposes value vi”.
This operation returns a value v. We then say that the invoking process “decides v”, and “v
is a decided value”. k-SA is defined by the following properties.

Validity. If a process decides a value v, v was proposed by a process.
Agreement. At most k different values are decided by the processes.
Termination. Every non-faulty process that invoked propose() decides a value.

Repeated k-set agreement. This agreement abstraction is a simple generalization of k-set
agreement, which aggregates a sequence of k-set agreement instances into a single object.
Hence given such an object RKSA, a process pi invokes sequentially RKSA.propose(sn1

i , v
1
i ),

then RKSA.propose(sn2
i , v

2
i ), ..., RKSA.propose(snx

i , v
x
i ), etc, where sn1

i , sn
2
i , . . . , sn

x
i , . . . are

increasing (not necessarily consecutive) sequence numbers, and vx
i is the value proposed by

pi to the instance number snx
i . Moreover, the sequences of sequence numbers used by two

processes are sub-sequences of 0, 1, 2, etc., but are not necessarily the same sub-sequence. For
each sequence number sn, the invocations of RKSA.propose(sn, vi) verify the three properties
of k-set agreement.

3 The k-BO-Broadcast Abstraction

Communication operations. The k-Bounded Ordered broadcast (k-BO-Broadcast) abstrac-
tion provides the processes with two operations, denoted kbo_broadcast() and kbo_deliver().
The first operation takes a message as input parameter. The second one returns a mes-
sage to the process that invoked it. Using a classical terminology, when a process invokes
kbo_broadcast(m), we say that it “kbo-broadcasts the message m”. Similarly, when it invokes
kbo_deliver() and obtains a message m, we say that it “kbo-delivers m”; in the operating
system parlance, kbo_deliver() can be seen as an up call (the messages kbo-delivered are
deposited in a buffer, which is accessed by the application according to its own code).

The partial order 7→. An antichain is a subset of a partially ordered set such that any two
elements in the subset are incomparable, and a maximum antichain is an antichain that has
the maximal cardinality among all antichains. The width of a partially ordered set is the
cardinality of a maximum antichain.

Let 7→i be the local message delivery order at a process pi defined as follows: m 7→i m
′

if pi kbo-delivers the message m before it kbo-delivers the message m′. Let 7→def= ∩i 7→i.
This relation defines a partially ordered set relation which captures the order on message
kbo-deliveries on which all processes agree. In the following, we use the same notation ( 7→)
for the relation and the associated partially ordered graph. Let width( 7→) denote the width
of the partially ordered graph 7→.
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Properties on the operations. k-BO-broadcast is defined by the following set of properties,
where we assume –without loss of generality– that all the messages that are kbo-broadcast
are different and every non-faulty process keeps invoking the operation kbo_deliver() forever.

KBO-Validity. Any message kbo-delivered has been kbo-broadcast by a process.
KBO-Integrity. A message is kbo-delivered at most once by each process.
KBO-Bounded. width(7→) ≤ k.
KBO-Termination-1. If a non-faulty process kbo-broadcasts a message m, it terminates
its kbo-broadcast invocation and kbo-delivers m.
KBO-Termination-2. If a process kbo-delivers a message m, every non-faulty process
kbo-delivers m.

The reader can easily check that the Validity, Integrity, Termination-1, and Termination-2
properties define Uniform Reliable Broadcast.

The KBO-Bounded property, which gives its meaning to k-BO-broadcast, is new. Two
processes pi and pj disagree on the kbo-deliveries of the messages m and m′ if pi kbo-delivers
m before m′, while pj kbo-delivers m′ before m. Hence we have neither m 7→ m′ nor m′ 7→ m.

k-Bounded Order captures the following constraint: processes can disagree on message
sets of size at most k. (Said differently, there is no message set ms such that |ms| > k and
for each pair of messages m,m′ ∈ ms, there are two processes pi and pj that disagree on
their kbo-delivery order.) Let us consider the following example to illustrate this constraint.

An example. Let m1, m2, m3, m4, m5, and m6, be messages that have been kbo-broadcast
by different processes. Let us consider the following sequences of kbo-deliveries by the 3
processes p1, p2 and p3.

at p1: m1, m2, m3, m4, m5, m6.
at p2: m2, m1, m5, m3, m4, m6.
at p3: m2, m3, m1, m5, m4, m6.

The set of messages {m1,m2} is such that processes disagree on their kbo-delivery order.
We have the same for the sets of messages {m1,m3} and {m4,m5}. It is easy to see that,
when considering the set {m1,m2,m3,m4}, the message m4 does not create disagreement
with respect to the messages in the set {m1,m2,m3}.

The reader can check that there is no set of cardinality greater than k = 2 such that
processes disagree on all the pairs of messages they contain. On the contrary, when looking
at the message sets of size ≤ 2, disagreement is allowed, as shown by the sets of messages
{m1,m2}, {m1,m3}, and {m4,m5}. In conclusion, these sequences of kbo-deliveries are
compatible with 2-BO broadcast.

Let us observe that if two processes disagree on the kbo-deliveries of two messages m
and m′, these messages define an antichain of size 2. It follows that 1-BO-broadcast is total
order broadcast (which is computationally equivalent to Consensus [6]), while k = n imposes
no constraint on message deliveries.

Underlying intuition: the non-deterministic k-TO-channel notion. Let us define the
notion of a non-deterministic k-TO-channel as follows (TO stands for Total Order). There
are k different broadcast channels, each ensuring total order delivery on the messages broadcast
through it. The invocation of kbo_broadcast(m) by a process entails a broadcast on one and
only one of these broadcast channels, but the channel is selected by an underlying daemon,
and the issuing process never knows which channel has been selected for its invocation.

Let us consider the previous example, with k = 2. Hence, there are two TO-channels,
channel[1] and channel[2]. As shown by the following figure, they contained the following
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operation propose(nb, v) is
(1) kbo_broadcast(〈nb, v〉); wait(∃ 〈nb, x〉 ∈ decisionsi); return(x).

when a message 〈sn, x〉 is kbo-delivered do
(2) if (〈sn,−〉 never added to decisionsi) then decisionsi.insert(〈sn, x〉) end if.

Algorithm 1 From k-BO-broadcast to repeated k-set agreement.

sequences of messages: channel[1] = m1, m5, m6 and channel[2] = m2, m3, m4. On
this figure, encircled grey areas represent maximum antichains.

channel[1]

channel[2]

•
m1

•
m2

•
m3

•
m4

•
m5 •

m6

m1 7→1 m2
m2 7→2 m1

It is easy to check that the sequence of messages delivered at any process pi is a merge of
the sequences associated with these two channels.

The assignment of messages to channels is not necessarily unique, it depends on the
behavior of the daemon. Considering k = 3 and a third channel channel[3], let us observe
that the same message kbo-deliveries at p1, p2, and p3, could have been obtained by the
following channel selection by the daemon: channel[1] as before, channel[2] = m3, m4,
and channel[3] = m2. Let us observe that, with k = 3 and this daemon behavior, the
message kbo-delivery m3, m1, m5, m4, m2, m6 would also be correct at p3.

A characterization. The previous non-deterministic k-TO-channel interpretation of k-BO-
broadcast is captured by the following characterization theorem.

I Theorem 1. A non-deterministic k-TO-channel and the k-BO-broadcast communication
abstraction have the same computational power.

I Remark. It is important to see that k-BO-broadcast and k-TO-channels are not only
computability equivalent but are two statements of the very same communication abstraction
(there is no way to distinguish them from a process execution point of view).

4 From k-BO-Broadcast to Repeated k-Set Agreement

Algorithm 1 implements repeated k-set agreement in a wait-free system enriched with k-
BO-Broadcast. Its simplicity demonstrates the very high abstraction level provided by
k-BO-Broadcast. All “implementation details” are hidden inside its implementation (which
has to be designed only once, and not for each use of k-BO-Broadcast in different contexts).
In this sense, k-BO-Broadcast is the abstraction communication which captures the essence
of (repeated) k-set agreement.

When a process pi invokes propose(nb, v), it kbo-broadcasts a message containing the pair
〈nb, v〉 and waits until a pair 〈nb,−〉 appears in its local set decisionsi (line 1). Such a pair
is added in decisionsi the first time pi k-BO-delivers a pair 〈nb, x〉 (line 2). Let us observe
that this algorithm is purely based on the k-BO-Broadcast communication abstraction.

I Lemma 2. If the invocation of propose(nb, v) returns x to a process, some process invoked
propose(nb, x).
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I Lemma 3. If a non-faulty process invokes propose(nb,−), it eventually decides a value x
such that 〈nb, x〉 is the first (and only) message 〈nb,−〉 it kbo-delivers.

I Lemma 4. The set of values returned by the invocations of propose(nb,−) contains at
most k different values.

Proof. Let Πnb be the set of processes returning a value from their invocations propose(nb,−).
For each pi ∈ Πnb, let 〈nb, xi〉 denote the first message 〈nb,−〉 received by pi. By Lemma 3,
Xnb = {xi : pi ∈ Πnb} is the set of all values returned by the invocations of propose(nb,−).

For any pair xi and xj of distinct elements of Xnb, we have that pi kbo-delivered xi before
xj , and pj kbo-delivered xj before xi. Hence, 〈nb, xj〉 67→i 〈nb, xi〉 and 〈nb, xi〉 67→j 〈nb, xj〉,
which means 〈nb, xi〉 and 〈nb, xj〉 are not ordered by 7→. Therefore, {〈nb, xi〉 : pi ∈ Πnb} is
an antichain of 7→. It then follows from the KBO-Bounded property that |{xi : pi ∈ Πnb}| =
|{〈nb, xi〉 : pi ∈ Πnb}| ≤ k. J

I Theorem 5. Algorithm 1 implements repeated k-set agreement in any system model
enriched with the communication abstraction k-BO-broadcast.

5 From k-SCD-Broadcast to k-BO-Broadcast

5.1 The intermediary k-SCD-Broadcast abstraction
This communication abstraction is a simple strengthening of the SCD-Broadcast abstraction
introduced in [11], where it is shown that SCD-Broadcast and snapshot objects have the
same computability power (SCD stands for Set Constrained Delivery).

SCD-Broadcast: definition. SCD-broadcast consists of two operations scd_broadcast()
and scd_deliver(). The first operation takes a message to broadcast as input parameter.
The second one returns a non-empty set of messages to the process that invoked it. By a
slight abuse of language, we say that a process “scd-delivers a message m” when it delivers a
message set ms containing m.

SCD-broadcast is defined by the following set of properties, where we assume –without
loss of generality– that all the messages that are scd-broadcast are different and that every
non-faulty process keeps invoking the operation scd_deliver() forever.

SCD-Validity. If a process scd-delivers a set containing a message m, then m was
scd-broadcast by some process.
SCD-Integrity. A message is scd-delivered at most once by each process.
SCD-Ordering. If a process pi scd-delivers first a message m belonging to a set msi and
later a message m′ belonging to a set ms′i 6= msi, then no process scd-delivers first m′ in
some scd-delivered set ms′j and later m in some scd-delivered set msj 6= ms′j .
SCD-Termination-1. If a non-faulty process scd-broadcasts a message m, it terminates
its scd-broadcast invocation and scd-delivers a message set containing m.
SCD-Termination-2. If a process scd-delivers a message set containing m, every non-faulty
process scd-delivers a message set containing m.

k-SCD-Broadcast: definition. This communication abstraction is SCD-Broadcast strength-
ened with the following additional property:

KSCD-Bounded. No set ms kscd-delivered to a process contains more than k messages.
In the following, all properties of k-SCD-broadcast are prefixed by “KSCD”.
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operation kbo_broadcast(v) is kscd_broadcast(m).

when a message set ms is kscd-delivered do for each m ∈ ms do kbo_deliver(m) end for.

Algorithm 2 From k-SCD-broadcast to k-BO-broadcast.

An example. Like in Section 3, let m1, m2, m3, m4, m5, and m6 be messages that have
been kbo-broadcast by different processes. Let us consider the following sequences of message
sets k-scd-delivered by the 3 processes p1, p2 and p3.

at p1: {m1,m2}, {m3}, {m4,m5}, {m6}.
at p2: {m2}, {m1,m3}, {m4,m5}, {m6}.
at p3: {m1,m2}, {m3,m5}, {m4,m6}.

The processes do not agree on the message sets they k-scd-deliver. For example, p1 and
p3 k-scd-deliver m2 in the same set as m1, whereas p2 k-scd-deliver m2 in the same set as
m3. However, at any time, the union of message sets previously k-scd-delivered by any
process is part of the following sequence of message sets: {m2}, {m1,m2}, {m1,m2,m3},
{m1,m2,m3,m5}, {m1,m2,m3,m4,m5}, {m1,m2,m3,m4,m5,m6}, which implies the SCD-
Ordering property. Moreover, all k-scd-delivered message sets are of size at most k = 2.

5.2 From k-SCD-Broadcast to k-BO-Broadcast
Description of the algorithm. Algorithm 2 implements k-BO-Broadcast on top of any sys-
tem model providing k-SCD-Broadcast. It is an extremely simple self-explanatory algorithm.

I Theorem 6. Algorithm 2 implements k-BO-broadcast in any system model enriched with
the communication abstraction k-SCD-broadcast.

Proof. k-BO-Validity, k-BO-Integrity, k-BO-Termination-1 and k-BO-Termination-2 are
direct consequences of their homonym SCD-broadcast properties.

To prove the additional k-BO-Bounded property, let us consider a message set ms
containing at least (k+1) messages. For each process pi, let fmsi (resp. lmsi) denote the first
(resp. last) set containing a message in ms received by pi. Thanks to the KSCD-Ordering
property, there exists a message fm ∈ ∩i fmsi and a message lm ∈ ∩i lmsi. (Otherwise, we
will have messages m and m′ such that m ∈ fmsi ∧ m /∈ fmsj and m′ /∈ fmsi ∧ m′ ∈ fmsj .)

Let umsi denote the union of all the message sets k-scd-delivered by pi starting with
the set including fmsi and finishing with the set including lmsi. As, for each process pi,
umsi contains at least the (k + 1) messages of ms, we have fmsi 6= lmsi. Therefore, we have
fm 6= lm and fm 7→ lm. It follows that ms cannot be an antichain of 7→. Consequently, the
antichains of 7→ cannot contain more than k messages, hence width(7→) ≤ k. J

6 From Repeated k-Set Agreement and Snapshot to
k-SCD-Broadcast

6.1 The K2S abstraction
Definition. The following object, denoted K2S, is used by Algorithm 4 to implement k-SCD-
broadcast. “K2S” stands for k-set agreement plus two snapshots. A K2S object provides a
single operation k2s_propose(v) that can be invoked once by each process. Its output is a set
of sets whose size and elements are constrained by both k-set agreement and the input size
(number of different values proposed by processes). The output setsi of each process pi is a
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operation k2s_propose(v) is
(1) vali ← KSET .propose(v);
(2) SNAP1.write(vali); snap1i ← SNAP1.snapshot();
(3) viewi ← {snap1i[j] | snap1i[j] 6= ⊥};
(4) SNAP2.write(viewi); snap2i ← SNAP2.snapshot();
(5) setsi ← {snap2i[j] | snap2i[j] 6= ⊥};
(6) return(setsi).

Algorithm 3 An implementation of a K2S object.

non-empty set of non-empty sets, called views and denoted view, satisfying the following
properties. Let inputs denote the set of different input values proposed by the processes.

K2S-Validity. ∀ i: ∀ view ∈ setsi: (m ∈ view)⇒ (m was k2s-proposed by a process).
Set Size. ∀ i: 1 ≤ |setsi| ≤ min(k, |inputs|).
View Size. ∀ i : ∀ view ∈ setsi: (1 ≤ |view| ≤ min(k, |inputs|)).
Intra-process Inclusion.∀ i : ∀ view1, view2 ∈ setsi: view1 ⊆ view2 ∨ view2 ⊆ view1.
Inter-process Inclusion. ∀ i, j: setsi ⊆ setsj ∨ setsj ⊆ setsi.
K2S-Termination. If a non-faulty process pi invokes k2s_propose(), it returns a set setsi.

Algorithm. Algorithm 3 implements a K2S object. It uses an underlying k-set agreement
object KSET , and two one-shot snapshot objects denoted SNAP1 and SNAP2.

Phase 1 (line 1). When a process pi invokes k2s_propose(v), it first proposes v to the
k-set agreement object, from which it obtains a value vali (line 1).
Phase 2 (lines 2-3). Then pi writes vali in the first snapshot object SNAP1, reads its
content, saves it in snap1i, and computes the set of values (viewi) that, from its point of
view, have been proposed to the k-set agreement object.
Phase 3 (lines 4-6). Process pi then writes its view viewi in the second snapshot object
SNAP2, reads its value, and computes the set of views (setsi) obtained – as far as it
knows – by the other processes. Process pi finally returns this set of views setsi.

I Theorem 7. Algorithm 3 satisfies the properties defining a K2S object.

Repeated K2S. In the following we consider a repeated K2S object, denoted KSS . A
process pi invokes KSS .k2s_propose(r, v) where v is the value it proposes to the instance
number r. The instance numbers used by each process are increasing (but not necessarily
consecutive). Hence, two snapshot objects are associated with every K2S instance, and line 1
of Algorithm 3 becomes KSET .propose(r, v).

6.2 From k-Set Agreement and Snapshot to k-SCD-Broadcast
Algorithm 4 builds the k-SCD-Broadcast abstraction on top of k-set agreement and snapshot
objects.

Shared objects and local objects.
The processes cooperate through two concurrent objects: MEM [1..n], a multishot snapshot
object, such that MEM [i] contains the set of messages kscd-broadcast by pi, and a repeated
K2S object denoted KSS .
A process pi manages two local copies of MEM denoted mem1i and mem2i, two auxiliary
sets to_deliver1i and to_deliver2i, and a set deliveredi, which contains all the messages
it has locally kscd-delivered; mem1i[i] is initialized to an empty set.
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operation kscd_broadcast(m) is
(1) MEM .write(mem1i[i] ∪ {m}); mem1i ← MEM .snapshot();
(2) to_deliver1i ← (∪1≤j≤n mem1i[j]) \ deliveredi; wait(to_deliver1i ⊆ deliveredi).

background task T is
(3) repeat forever
(4) propi ← ⊥;
(5) if (seqi = ε) then mem2i ← MEM .snapshot();
(6) to_deliver2i ← (∪1≤j≤n mem2i[j]) \ deliveredi;
(7) if (to_deliver2i 6= ∅) then propi ← a message ∈ to_deliver2i end if
(8) else propi ← a message of the first message set of seqi
(9) end if ;
(10) if (propi 6= ⊥)
(11) then ri ← |deliveredi|; setsi ← KSS .k2s_propose(ri, propi); new_seqi ← ε;
(12) while (setsi 6= {∅}) do
(13) min_seti ← non-empty set of minimal size in setsi;
(14) new_seqi ← new_seqi ⊕min_seti;
(15) for each set s ∈ setsi do setsi ← (setsi \ {s}) ∪ {s \min_seti} end for
(16) end while;
(17) let auxi = all the messages in the sets of new_seqi;
(18) for each set s ∈ seqi do s← s \ auxi end for;
(19) seqi ← new_seqi ⊕ seqi; let firsti = head(seqi); let resti = tail(seqi);
(20) kscd_deliver(firsti); deliveredi ← deliveredi ∪ firsti; seqi ← resti

(21) end if
(22) end repeat.

Algorithm 4 From k-set agreement and snapshot objects to k-SCD-broadcast (code for pi).

ri denotes the next round number that pi will execute; setsi is a local set whose aim is
to contain the set of message sets returned by the last invocation of a K2S object.
Each process pi manages two sequences of messages sets, both initialized to ε (empty
sequence), denoted seqi and new_seqi; head(sq) returns the first element of the sequence
sq, and tail(sq) returns sq without its first element; ⊕ denotes sequence concatenation.
The aim of the local sequence new_seqi is to contain a sequence of message sets obtained
from setsi (last invocation of a K2S object) such that no message belongs to several sets.
As far as seqi is concerned, we have the following (at line 19 of Algorithm 4). Let
seqi = ms1, ms2, · · · ,ms`, where 1 ≤ ` ≤ k and each msx is a message set. This
sequence can be decomposed into two (possibly empty) sub-sequencesms1, ms2, · · · ,msy

and msy+1 · · · ,ms` such that:
ms1, ms2, · · · ,msy can be in turn decomposed as follows:
(ms1 ∪ms2 ∪ · · · ∪msa), (msa+1 ∪msa+2 ∪ · · · ∪msb), · · · , (msc ∪ · · · ∪msy)
where each union set (e.g., msa+1 ∪msa+2 ∪ · · · ∪msb) is a message set that has been
kscd-delivered by some process (some union sets can contain a single message set)1.
For each x : y + 1 ≤ x ≤ ` : mx is a message set whose messages have not yet been
kscd-delivered by a process.

Operation kscd_broadcast(). When it invokes kscd_broadcast(), a process pi first adds m
to the shared memory MEM , which contains all the messages it has already kscd-broadcast
(line 1). Then pi reads atomically the whole content of MEM , which is saved in mem1i

(line 1). Then, pi computes the set of messages not yet locally kscd-delivered and waits

1 Let us remark that it is possible that, while a process kscd-delivered the message set ms = ms1 ∪ms2 ∪
· · · ∪msa, another process kscd-delivered the messages in ms in several messages sets, e.g., first the
message set ms1 ∪ms2 ∪ms3 and then the message set ms4 ∪ · · · ∪msa.
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until all these messages appear in kscd-delivered message sets (line 2). Let us notice that, it
follows from these statements, that a process has kscd-delivered its previous message when it
issues its next kscd_broadcast().

Underlying task T . This task is the core of the algorithm. It consists of an infinite loop,
which implements a sequence of asynchronous rounds (lines 11-20). Each process pi executes
a sub-sequence of non-necessarily consecutive rounds. Moreover, any two processes do not
necessarily execute the same sub-sequence of rounds. The current round of a process pi is
defined by the value of |deliveredi| (number of messages already locally kscd-delivered).

The progress of a process from a round r to its next round r′ > r depends on the size of
the message set (denoted firsti in the algorithm, line 20) it kscd-delivers at the end of round
r (deliveredi becomes then deliveredi ∪ firsti). The message set firsti depends on the values
returned by the K2S object associated with the round r, as explained below.

Underlying task T : proposal computation. (Lines 4-9) Two rounds executed by a process
pi are separated by the local computation of a message value (propi) that pi will propose to
the next K2S object. This local computation is as follows (lines 5-9), where seqi (computed
at lines 18-20) is a sequence of message sets that, after some “cleaning”, are candidates to be
locally kscd-delivered. There are two cases.

Case 1: seqi = ε. In this case (similarly to line 2) pi computes the set of messages
(to_deliver2i) it sees as kscd-broadcast but not yet locally kscd-delivered (lines 5-6). If
to_deliver2i 6= ∅, a message of this set becomes its proposal propi for the K2S object
associated with the next round (line 7). Otherwise, we have propi = ε, which, due to the
predicate of line 10, entails a new execution of the loop (skipping lines 11-20).
Case 2: seqi 6= ∅. In this case, propi is assigned a message of the first set of seqi (line 8).

Underlying task T : benefiting from a K2S object to kscd-deliver a message set.
(Lines 11-20) If a proposal has been previously computed (predicate of line 10), pi exe-
cutes its next round, whose number is ri = |deliveredi|. The increase step of |deliveredi| can
vary from round to round, and can be any value ` ∈ [1..k] (lines 14 and 15). As already
indicated, while the round numbers have a global meaning (the same global sequence of
rounds is shared by all processes), each process executes a subset of this sequence (as defined
by the increasing successive values of |deliveredi|). Despite the fact processes skip/execute
different rounds, once combined with the use of K2R objects, round numbers allow processes
to synchronize in a consistent way. This round synchronization property is captured by
Lemmas 11-12.

From an operational point of view, a process starts a round with the invocation
KSS .k2s_propose(ri, propi) where ri = |deliveredi|, which returns a set of message sets
setsi (line 11). Then (“while” loop at lines 12-16), pi builds from the message sets belonging
to setsi a sequence of message sets new_seqi, that will be used to extract the next message
set kscd-delivered by pi (lines 17-20). The construction of new_seqi is as follows. Iteratively,
pi takes the smallest set of setsi (min_seti, line 13), adds it at the end of new_seqi (line 14),
and purges all the sets of setsi from the messages in min_seti (line 15), so that no message
will locally appear in two different messages sets of new_seqi.

When new_seqi is built, pi first purges all the sets of the sequence seqi from the messages
in new_seqi (lines 17-18), and adds then new_seqi at the front of seqi (line 19). Finally, pi

kscd-delivers the first message set of seqi, and updates deliveredi and seqi (lines 20).
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6.3 Proof of the algorithm
I Lemma 8. A message set kscd-delivered (line 20) contains at most k messages.

I Lemma 9. If a process kscd-delivers a message set containing a message m, m was
kscd-broadcast by a process.

Notations.
msg_seti(r) = message set kscd-delivered by process pi at round r if pi participated in
it, and ∅ otherwise.
seqi(r) = value of seqi at the end of the last round r′ ≤ r in which pi participated.
msgsi(r, r′) = set of messages contained in message sets kscd-delivered by pi between
rounds r (included) and r′ > r (not included), i.e. msgsi(r, r′) =

⋃
r≤r′′<r′ msg_seti(r′′).

KSS(r) = K2S instance accessed by KSS .k2s_propose(r,−) (line 11).
setsi(r) = set of message sets obtained by pi from KSS [r].

I Lemma 10. Let pi and pj be two processes that terminate round r, with |msg_seti(r)| ≤
|msg_setj(r)|. Then (i) msg_seti(r) ⊆ msg_setj(r), and (ii) there is a prefix prefi of
seqi(r) such that msg_setj(r) = msg_seti(r) ∪ (

⋃
msg_set ∈ prefi

msg_set).

Proof. Let pi and pj be two processes that kscd-deliver the message sets msg_seti(r) and
msg_setj(r), respectively, these sets being such that |msg_seti(r)| ≤ |msg_setj(r)|. Let us
observe that, as both pi and pj invoked KSS .k2s_propose(r,−) (lines 11 and 20), we have
setsi(r) ⊆ setsj(r) or setsj(r) ⊆ setsi(r) (Inter-process Inclusion).

As |msg_seti(r)| ≤ |msg_setj(r)|, it follows from the Inter-process and Intra-process
inclusion properties of KSS(r), and the definition of msg_seti(r) = firsti = min_seti ∈
setsi(r), and msg_setj(r) = firstj = min_setj ∈ setsj(r) ⊆ setsi(r), that msg_seti(r) ⊆
msg_setj(r), which completes the proof of (i).

As far as (ii) is concerned, we have the following. If msg_seti(r) = msg_setj(r), we
have prefi = ε and the lemma follows. So, let us assume msg_seti(r) ( msg_setj(r). As
msg_seti(r) is the smallest message set of setsi(r) (lines 13-14 and 19-20), and msg_setj(r)
is the smallest message set of setsj(r), it follows that setsj(r) ⊂ setsi(r). The property
msg_setj(r) = msg_seti(r) ∪ (

⋃
msg_set ∈ prefi

msg_set) follows then from the following
observation. Let setsi(r) = {s1, s2, ..., s`}, where ` ≤ k and s1 ( s2 ( · · · ( s`. As
setsj(r) ⊂ setsi(r), one sx is msg_setj(r). It follows that the union of the sets min_seti
computed by pi in the while loop of round r (lines 13-15) eventually includes all the messages
of msg_setj(r), from which we conclude that there is a prefix prefi of seqi(r) (lines 12-
19, namely a prefix of the sequence new_seqi, which is defined from the sequence of the
sets min_seti), such that msg_setj(r) = msg_seti(r) ∪ (

⋃
msg_set ∈ prefi

msg_set), which
completes the proof of the lemma. J

Lemmas 11-12 capture the global message set delivery synchronization among the processes.

I Lemma 11. Let pi and pj be two processes that terminate round r′ ≥ r + |msg_setj(r)|,
and are such that |msg_seti(r)| ≤ |msg_setj(r)|. Then (i) msgsi(r, r + |msg_setj(r)|) =
msgsj(r, r+|msg_setj(r)|), and (ii) pi and pj will both participate in round r+|msg_setj(r)|.

Proof. If |msg_seti(r)| = |msg_setj(r)| = α, both pi and pj are such that |deliveredi| =
|deliveredj | = r + α when they terminate round r. Consequently, they both proceed from
round r to round r+α, thereby skipping the rounds from r+1 until r+α−1. We then have (i)
msgsi(r, r + |msg_setj(r)|) = msg_seti(r) = msg_setj(r) = msgsj(r, r + |msg_setj(r)|),
(ii) both pi and pj will participate in round r + |msg_setj(r)|, and the lemma follows.
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Hence, let us consider that |msg_seti(r)| = α < |msg_setj(r)| = α+ β. The next round
executed by pi will be the round r + α, while the next round executed by pj will be the
round r + α + β. Moreover, to simplify and without loss of generality, let us assume that
msg_seti(r) (resp. msg_setj(r)) is the smallest (resp. second smallest) message set in the
sets of message sets sets output by KSS(r).

According to Lemma 10, after round r, the first element of seqi is msg_setj(r) \
msg_seti(r). This also applies to any other process that delivered msg_seti(r) at round r.
At round r+α, all these processes will then propose a message in msg_setj(r)\msg_seti(r).
Because of the K2S-Validity property of KSS(r + α), all these processes will then deliver a
subset of msg_setj(r) \msg_seti(r). For the same reason, until round r+α+β, no process
will propose a message not in msg_setj(r) \msg_seti(r). At round r + α + β, they will
then have delivered all the messages in msg_setj(r) \msg_seti(r), and they will participate
in round r + α+ β, from which the lemma follows. J

I Lemma 12. Let r be a round in which all the non-faulty processes participate. There is a
round r′ with r < r′ ≤ r + k in which all non-faulty processes participate and such that, for
any pair of non-faulty processes pi and pj, we have msgsi(r, r′) = msgsj(r, r′).

Proof. As initially ∀i : |deliveredi| = 0, KSS .k2s_propose(0,−) is invoked by all non-crashed
processes. We prove that there is a round r ∈ [1..k] in which all the non-crashed processes
participate, and for any pair of them pi and pj , we have msgsi(0, r) = msgsj(0, r). This
constitutes the base case of an induction. Then, the same reasoning can be used to show that
if the non-faulty processes participate in a round r, there is a round r′ with r < r′ ≤ r+k and
such that, for any pair of non-faulty processes pi and pj , we have msgsi(r, r′) = msgsj(r, r′).

Let us consider any two pi and pj that terminate round 0. Moreover, without loss of
generality, let us assume that, among the sets of message sets output by KSS(0), setsi(0) is
the greatest and setsj(0) is the smallest. It follows from the Inter-process inclusion property
that setsj(0) ⊆ setsi(0), and from line 13 plus the Intra-process inclusion property that
msg_seti(0) ⊆ msg_setj(0). Hence, |msg_seti(0)| ≤ |msg_setj(0)|. Moreover, due to the
View size property of KSS(0) we have |msg_seti(0)| ≤ |msg_setj(0)| = r ≤ k. Applying
Lemma 11, we have msgi(0, 0 + r) = msgj(0, 0 + r), which concludes the proof. J

I Lemma 13. If a process pi kscd-delivers first a message m belonging to a set msi and
later a message m′ belonging to a set ms′i 6= msi, then no process kscd-delivers first m′ in
some kscd-delivered set ms′j and later m in some kscd-delivered set msj 6= ms′j.

Proof. Let us first note that, at each process, the kscd-delivery of message sets establishes a
partial order on messages. Given a process pi, let →i be the partial order defined as follows2:
m→i m

′ if pi kscd-delivered first a message set msi including m, and later kscd-delivered a
message set ms′i including m′. Hence, if m and m′ were kscd-delivered in the same message
set by pi, we have m 6→i m

′ and m′ 6→i m.
Let us also note that, along the execution of a process pi, the partial order →i can only

be extended, i.e. if m→i m
′ at time t, we cannot have m 6→i m

′ at time t′ > t. This, along
with the fact that a faulty process executes its algorithm correctly until it crashes, allows us
to consider, in the context of this proof, that pi and pj are non-faulty.

In order to prove the lemma, we then have to show that the partial orders →i and
→j are compatible, i.e. for any two messages m and m′, (m →i m

′) ⇒ (m′ 6→j m) and
(m→j m

′)⇒ (m′ 6→i m).

2 This definition is similar to the definition of 7→i given in Section 3 devoted to kBO-broadcast.
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Figure 2 Detailing the global view.

According to Lemma 12, for each round r in which all processes participate, there is a
round r′ > r in which all processes participate. Moreover, for any two non-faulty process pi

and pj , we have msgsi(r, r′) = msgsj(r, r′). For any such round r, we then have that if pi

delivered message m strictly before round r and delivered m′ at round r or afterwards, we
have both (m→i m

′) and (m′ →j m). We will then consider the messages delivered between
two such rounds r and r′.

Without loss of generality, suppose that the message set kscd-delivered by pi at round
r is smaller than, or equal to, the message set kscd-delivered by pj at the same round, i.e.
|msg_seti(r)| ≤ |msg_setj(r)|. It follows from Lemma 11 that msgsi(r, |msg_setj(r)|) =
msgsj(r, |msg_setj(r)|). Moreover, as all the messages in msg_setj(r) were kscd-delivered
by pj in a single set, they are all incomparable when considering →j . The partial orders →i

and →j , when restricted to the messages in msg_setj(r), are thus compatible.
According to Lemma 11, pi and pj will both participate in round r+α = r+|msg_setj(r)|.

If r+α = r′, the lemma follows. Otherwise, let β = max(|msg_seti(r+α)|, |msg_setj(r+α)|).
The previous reasoning, again due to Lemma 11, can then be applied again to the messages
in msgsi(r + α, r + α+ β) = msgsj(r + α, r + α+ β), and pi and pj will both participate in
round r + α+ β. This can be repeated until round r′, showing that the partial orders →i

and →j are compatible, which concludes the proof of the lemma. J

I Lemma 14. No message m is kscd-delivered twice by a process pi.

I Lemma 15. Let m be a message that has been deposited into MEM . Eventually, m is
kscd-delivered (at least) by the non-faulty processes.

I Lemma 16. If a process kscd-delivers a message m, every non-faulty process kscd-delivers
a message set containing m.

I Lemma 17. If a non-faulty process pi kscd-broadcasts a message m, it terminates its
kscd-broadcast invocation and kscd-delivers a message set containing m.

I Theorem 18. Algorithm 4 implements KSCD-broadcast from k-set agreement and snapshot
objects.

7 Conclusion

This paper has introduced a new communication abstraction, denoted k-BO-broadcast,
which captures k-set agreement in asynchronous crash-prone wait-free systems. In the case
k = 1 (consensus is 1-set agreement), 1-BO-broadcast boils down to Total Order broadcast.
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“Capture” means here that (i) k-set agreement can be solved in any system model providing
the k-BO-broadcast abstraction, and (ii) k-BO-broadcast can be implemented from k-set
agreement in any system model providing snapshot objects. It follows that, when considering
asynchronous crash-prone wait-free systems where basic communication is through a set of
atomic read/write, or the asynchronous message-passing system enriched with the failure
detector Σ [5, 8], k-BO-broadcast and k-set agreement are the two faces of the same coin:
one is its communication-oriented face while the other one is its agreement-oriented face.

From a technical point of view, a complete picture of the content of the paper appears in
Figure 2. It is important to notice that the two constructions inside the dotted curve are
free from concurrent objects: each rests only on an underlying (appropriate) communication
abstraction.
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Abstract
Transactional memory (TM) aims at simplifying concurrent programming via the familiar abstrac-
tion of atomic transactions. Recently, Intel and IBM have integrated hardware based TM (HTM)
implementations in commodity processors, paving the way for the mainstream adoption of the TM
paradigm. Yet, existing HTM implementations suffer from a crucial limitation, which hampers
the adoption of HTM as a general technique for regulating concurrent access to shared memory:
the inability to execute transactions whose working sets exceed the capacity of CPU caches. In
this paper we propose P8TM, a novel approach that mitigates this limitation on IBM’s POWER8
architecture by leveraging a key combination of techniques: uninstrumented read-only trans-
actions, Rollback Only Transaction-based update transactions, HTM-friendly (software-based)
read-set tracking, and self-tuning. P8TM can dynamically switch between different execution
modes to best adapt to the nature of the transactions and the experienced abort patterns. In-
depth evaluation with several benchmarks indicates that P8TM can achieve striking performance
gains in workloads that stress the capacity limitations of HTM, while achieving performance on
par with HTM even in unfavourable workloads.
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1 Introduction

Transactional memory (TM) has emerged as a promising paradigm that aims at simplify-
ing concurrent programming by bringing the familiar abstraction of atomic and isolated
transactions to the domain of parallel computing. Unlike when using locks to synchronize
access to shared data or code portions, with TM programmers need only to specify what
is synchronized and not how synchronization should be performed. This results in simpler
designs that are easier to write, reason about, maintain, and compose [4].
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Over the last years, the relevance of TM has been growing along with the maturity of
available supports for this new paradigm, both in terms of integration at the programming
language as well as at the architectural level. On the front of integration with programming
languages, a recent milestone has been the official integration of TM in mainstream languages,
such as C/C++ [2]. On the architecture’s side, the integration of hardware supports in Intel’s
and IBM’s processors, a technology that goes under the name of hardware transactional
memory (HTM), has represented a major breakthrough, thanks to enticing performance
gains that such an approach can, at least potentially, enable [15, 17, 24].

Existing hardware implementations share various architectural choices, although they
do come in different flavours [19, 22, 25]. The key common trait of current HTM systems
is their best effort nature: current implementations maintain transactional metadata (e.g.,
memory addresses read/written by a transaction) in the processor’s cache and rely on
relatively non-intrusive modification to the pre-existing cache coherency protocol to detect
conflict among concurrent transactions. Due to the inherently limited nature of processor
caches, current HTM implementations impose stringent limitations on the number of memory
accesses that can be performed within a transaction,1 hence providing no progress guarantee
even for transactions that run in absence of concurrency. As such, HTM requires a fallback
synchronization mechanism (also called fallback path), which is typically implemented via a
pessimistic scheme based on a single global lock.

Despite these common grounds, current HTM implementations have also several relevant
differences. Besides internal architectural choices (e.g., where and how in the cache hierarchy
transactional metadata are maintained), Intel’s and IBM’s implementations differ notably by
the programming interfaces they expose. In particular, IBM POWER8’s HTM implementa-
tion extends the conventional transactional demarcation API (to start, commit and abort
transactions) with two additional, unique features [5]:

Suspend/resume: the ability to suspend and resume a transaction, allowing, between the
suspend and resume calls, for the execution of instructions/memory accesses that escape
from the transactional context.
Rollback-only transaction (ROT): a lightweight form of transaction that has lower overhead
than regular transactions but also weaker semantics. In particular ROTs avoid tracking
load operations, i.e., they are not isolated, but still ensure the atomicity of the stores
issued by a transaction, which appear to be all executed or not executed at all.

In this work we present POWER8 TM (P8TM), a novel TM that exploits these two
specific features of POWER8’s HTM implementation in order to overcome (or at least
mitigate) what is, arguably, the key limitation stemming from the best-effort nature of
existing HTM systems: the inability to execute transactions whose working sets exceed the
capacity of CPU caches. P8TM pursues this objective via an innovative hardware-software
co-design that leverages several novel techniques, which we overview in the following:

Uninstrumented read-only transactions (UROs). P8TM executes read-only trans-
actions outside of the scope of hardware transactions, hence sparing them from spurious
aborts and capacity limitations, while still allowing them to execute concurrently with
update transactions. This result is achieved by exploiting the POWER8’s suspend/re-
sume mechanism to implement a RCU-like quiescence scheme that shelters UROs from
observing inconsistent snapshots that reflect the commit events of concurrent update
transactions.

1 The list of restrictions is actually longer, including the lack of support for system calls and other
non-undoable instructions, context switches and ring transitions.
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ROT-based update transactions. In typical TM workloads the read/write ratio tends
to follow the 80/20 rule, i.e., transactified methods tend to have large read-sets and much
smaller write sets [12]. This observation led us to develop a novel concurrency control
scheme based on a novel hardware-software co-design: it combines the hardware-based
ROT abstraction—which tracks only transactions’ write sets, but not their read-sets,
and, as such, does not guarantee isolation—with software based techniques aimed to
preserve correctness in presence of concurrently executing ROTs, UROs, and plain HTM
transactions. Specifically, P8TM relies on a novel mechanism, which we called Touch-To-
Validate (T2V), to execute concurrent ROTs safely. T2V relies on a lightweight software
instrumentation of reads within ROTs’ and a hardware aided validation mechanism of
the read-set during the commit phase.
HTM-friendly (software-based) read-set tracking. A key challenge that we had
to tackle while implementing P8TM was to develop a “HTM-friendly” software-based
read-set tracking mechanism. In fact, all the memory writes issued from within a ROT,
including those needed to track the read-set, are transparently tracked in hardware.
As such, the read-set tracking mechanism can consume cache capacity that could be
otherwise used to accommodate application-level writes. P8TM integrates two read-set
tracking mechanisms that explore different trade-offs between space and time efficiency.
Self-tuning. To ensure robust performance in a broad range of workloads, P8TM integ-
rates a lightweight reinforcement learning mechanism (based on the UCB algorithm [21])
that automates the decision of whether: i) to use upfront ROTs and UROs, avoiding at all
to use HTM; ii) to first attempt transactions in HTM, and then fallback to ROTs/UROs
in case of capacity exceptions; iii) to completely switch off ROTs/UROs, and use only
HTM.

We evaluated P8TM by means of an extensive study that encompasses synthetic micro-
benchmarks and the benchmarks in the Stamp suite [7]. The results of our study show
that P8TM can achieve up ∼5× throughput gains with respect to plain HTM and extend
its capacity by more than one order of magnitude, while remaining competitive even in
unfavourable workloads.

2 Related Work

Since the introduction of HTM support in mainstream commercial processors by Intel
and IBM, several experimental studies have aimed to characterize their performance and
limitations [15, 17, 24]. An important conclusion reached by these studies is that HTM’s
performance excels with workloads that fit the hardware capacity limitations. Unfortunately,
though, HTM’s performance and scalability can be severely hampered in workloads that
contain even a small percentage of transactions that do exceed the hardware’s capacity. This
is due to the need to execute such transactions using a sequential fallback mechanism based
on a single global lock (SGL), which causes the immediate abort of any concurrent hardware
transactions and prevents any form of parallelism.

Hybrid TM [9, 20] (HyTM) attempts to address this issue by falling back to software-based
TM (STM) implementations when transactions cannot successfully execute in hardware.
Hybrid NoRec (Hy-NoRec) is probably one of the most popular and effective HyTM designs
proposed in the literature. Hy-NoRec [8] falls back on using the NoRec STM, which lends
itself naturally to serve as fallback for HTM. In fact, NoRec uses a single versioned lock for
synchronizing (software) transactions. Synchronization between HTM and STM can hence
be attained easily, by having HTM transactions update the versioned lock used by NoRec.
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Unfortunately, the coupling via the versioned lock introduces additional overheads on both
the HTM and STM side, and can induce spurious aborts of HTM transactions.

Recently, RHyNoRec [23] proposed to decompose a transaction running on the fallback
path into multiple hardware transactions: a read-only prefix and a single post-fix that
encompasses all the transaction’s writes, with regular NoRec shared operations in between.
This can reduce the false aborts that would otherwise affect hardware transactions in Hy-
NoRec. Unfortunately, though, this approach is only viable if the transaction’s postfix, which
may potentially encompass a large number of reads, does fit in hardware. Further, the
technique used to enforce atomicity between the read-only and the remaining reads relies
on fully instrumenting every read within the prefix hardware transaction, this utterly limits
the capacity—and consequently the practicality—of these transactions. Unlike RHyNoRec,
P8TM can execute read-only transactions of arbitrary length in a fully uninstrumented way.
Further, the T2V mechanism employed by P8TM to validate update transactions relies on a
much lighter and efficient read-set tracking and validation schemes that can even further
increase the capacity of transactions.

Our work is also related to the literature aimed to enhance HTM’s performance by
optimizing the management of the SGL fallback path. A simple, yet effective optimization,
which we include in P8TM, is to avoid the, so called, lemming effect [11] by ensuring that
the SGL is free before starting a hardware transaction. An alternative solution to the same
problem is the use of an auxiliary lock [3]. In our experience, these two solutions provide
equivalent performance, so we opted to integrate in P8TM the former, simpler, approach.
Herihly et al. [6] suggested lazy subscription of the SGL in order to decrease the vulnerability
window of HTM transactions. However, this approach was shown to be unsafe in subtle
scenarios that are hard to fix using automatic compiler-based techniques [10].

P8TM integrates a self-tuning approach that shares a common theoretical framework
(the UCB reinforcement learning algorithm [21]) with Tuner [13]. However, Tuner addresses
an orthogonal self-tuning problem to the one we tackled in P8TM: Tuner exploits UCB
to identify the optimal retry policy before falling back to the SGL path upon a capacity
exception; in P8TM, conversely, UCB is to determine which synchronization to use (e.g.,
ROTs/UROs vs. plain HTM). Another recent work that makes extensive use of self-techniques
to optimize HTM’s performance is SEER [14]. Just like Tuner, SEER addresses an orthogonal
problem—defining a scheduling policy that seeks an optimal trade-off between throughput
and contention probability—and could, indeed, be combined with P8TM.

Finally, P8TM builds on and extends on HERWL[16], where we introduced the idea
of using POWER8’s suspend-resume and ROT facilities to elide read-write locks. Besides
targeting a different application domain (transactional programs vs. lock elision), P8TM
integrates a set of novel techniques. Unlike HERWL, P8TM supports the concurrent execution
of update transactions in ROTs. Achieving this result implied introducing a novel concurrency
control mechanism (which we named Touch-To-Validate). Additionally, P8TM integrates
self-tuning techniques that ensure robust performance also in unfavourable workloads.

3 Background on POWER8’s HTM

This section provides background on POWER8’s HTM system, which is relevant to the
operation of P8TM. Analogously to other HTM implementations, POWER8 provides an
API to begin, commit and abort transactions. When programs request to start a transaction,
a started code is placed in the, so called, status buffer. If, later, the transaction aborts,
the program counter jumps back to just after the instruction used to begin the transaction.
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Hence, in order to distinguish whether a transaction has just started, or has undergone an
abort, programs must test the status code returned after beginning the transaction.

POWER8 detects conflicts with granularity of a cache line. The transaction capacity
(64 cache lines) in POWER8 is bound by a 8KB cache, called TMCAM, which stores the
addresses of the cache lines read or written within the transaction.

As mentioned, in addition to HTM transactions, POWER8 also supports Rollback-Only
Transactions (ROT). The main difference being that in ROTs, only the writes are tracked
in the TMCAM, giving virtually infinite read-set capacity. Reads performed by ROTs are
essentially treated as non transactional reads. From this point on, whenever we use the term
transaction, we refer to a plain HTM transaction.

Both transactions and ROTs detect conflict eagerly, i.e., they are aborted as soon as
they incur a conflict. The only exception is when they incur a conflict while in suspend
mode: in this case, they abort only once they resume. Finally, P8TM exploits how POWER8
manages conflicts that arise between non-transactional code and transactions/ROTs, i.e., if a
transaction/ROT issues a write on X and, before it commits, a non-transactional read/write
is issued on X, the transaction/ROT is immediately aborted by the hardware.

4 The P8TM Algorithm

This section describes P8TM (POWER8 Transactional Memory). We start by overviewing
the algorithm. Next, we detail its operation and present several optimizations.

4.1 Overview
The key challenge in designing execution paths that can run concurrently with HTM is
efficiency: it is hard to provide a software-based path that executes concurrently with the
HTM path, while preserving correctness and speed. The main problem is that the protocol
must make the hardware aware of concurrent software memory reads and writes, which
requires to introduce expensive tracking mechanisms in the HTM path.

P8TM tackles this issue by exploiting two unique features of the IBM POWER8 architec-
ture:
(1) suspend/resume for hardware transactions, and
(2) ROTs.
P8TM combines these new hardware features with an RCU-like quiescence scheme in a way
that avoids the need to track reads in hardware. This can in particular reduce the likelihood
of capacity aborts that would otherwise affect transactions that perform a large number of
reads.

The key idea is to provide two novel execution paths alongside the HTM path:
(i) a, so called, ROT path, which executes write transactions that do not fit in HTM as

ROTs, and
(ii) a, so called, URO path, which executes read-only transactions without any instrumenta-

tion.
Transactions and ROTs exploit the speculative hardware supports to hide writes from

concurrent reads. This allows to cope with read-write conflicts that occur during ROTs/UROs,
but it does not cover read-write conflicts that occur after the commit of an update transaction.
For this purpose, before a write transaction commits, either as a transaction or a ROT, it
first suspends itself and then executes a quiescence mechanism that waits for the completion
of currently executing ROTs/URO transactions. In addition to that, in case of ROTs, it
further executes an original touch-based validation step, which is described next, before
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begin(ROT) r(x) r(x)

begin(ROT) commitw(x)
Invalid read

T1

T2

(a) ROTs do not track reads and may observe
different values when reading the same variable
multiple times.

begin(ROT) r(x) w(y) v:r(x)

begin(ROT) abortw(x) r(y)
Conflict

T1

T2

(b) By re-reading x during rot-rset validation
at commit time (denoted by v:r), T1 forces an
abort of T2 that has updated x in the meantime.

Figure 1 Operation scenarios.

resuming and committing. This process of “suspending and waiting” ensures that the writes
of an update transaction will be committed only if they do not target/overwrite any memory
location that was previously read by any concurrent ROT/URO transaction.

4.2 Touch-based Validation

Touch-To-Validate (T2V) is a core mechanism of our algorithm that enables safe and
concurrent execution of ROTs. Indeed, ROTs do not track read accesses within the transaction,
therefore it is unsafe to execute them concurrently, as they are not serializable.

Consider the example shown in Figure 1a. Thread T1 starts a ROT and reads x. At this
time, thread T2 starts a concurrent ROT, writes a new value to x, and commits. As ROTs
do not track reads, the ROT of T1 does not get aborted and can read inconsistent values
(e.g., the new value of x), hence yielding non-serializable histories. To avoid such scenarios
T2V leverages two key mechanisms that couple:
(i) software-based tracking of read accesses; and
(ii) hardware- and software-based read-set validation during the commit phase.

For the sake of clarity, let us assume that threads only execute ROTs—we will consider
other execution modes later. A thread can be in one of three states: inactive, active, and
committing. A thread that executes non-transactional code is inactive. When the thread
starts a ROT, it enters the active phase and starts tracking, in software, each read access to
shared variables by logging the associated memory address in a special data structure called
rot-rset. Finally, when the thread finishes executing its transaction, it enters the committing
phase. At this point, it has to wait for concurrent threads that are in the active phase to
either enter the commit phase or become inactive (upon abort). Thereafter, the committing
thread traverses its rot-rset and re-reads each address before eventually committing.

The goal of this validation step is to “touch” each previously read memory location in
order to abort any concurrent ROT that might have written to the same address. For example,
in Figure 1b, T1 re-reads x during rot-rset validation. At that time, T2 has concurrently
updated x but has not yet committed, and it will therefore abort (remember that ROTs track
and detect conflicts for writes). This allows T1 to proceed without breaking consistency:
indeed, ROTs buffer their updates until commit and hence the new value of x written by
T2 is not visible to T1. Note that adding a simple quiescence phase before commit, without
performing the rot-rset validation, cannot solve the problem in this scenario.

The originality of the T2V mechanism is that the ROT does not use read-set validation
for verifying that its read-set is consistent, as many STM algorithms do, but to trigger
hardware conflicts detection mechanisms. This also means that the values read during
rot-rset validation are irrelevant and ignored by the algorithm.
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Algorithm 1 P8TM: ROT path only algorithm.
1: Shared variables:
2: status[N ]← {⊥,⊥, . . . ,⊥} . One per thread

3: Local variables:
4: tid ∈ [0..N ] . Identifier of current thread
5: rot-rset ← ∅ . Transaction’s read-set

6: function read(addr) . Read shared variable
7: rot-rset ← rot-rset ∪{addr} . Track ROT reads

8: function synchronize
9: s[N ]← status . Read and copy all status variables
10: for i← 0 to N−1 do . Wait until all threads...
11: if s[i] = ACTIVE then . ...that are active...
12: wait until status[i] 6= s[i] . ...cross barrier

13: function touch_validate
14: for addr ∈ rot-rset do . Re-read all elements...
15: read addr . ...from read-set

16: function begin_rot
17: repeat . Retry ROT forever
18: status[tid]← ACTIVE . Indicate we are active
19: mem_fence . Make sure others know
20: rot-rset ← ∅ . Clear read-set
21: tx← tx_begin_rot . HTM ROT begin
22: until tx = STARTED . Repeat until success...

23: function commit
24: tx_suspend . Suspend transaction
25: status[tid]← ROT-COMMITTING . Tell others...
26: mem_fence . ...we are committing
27: tx_resume . Resume transaction
28: synchronize . Quiescence inside ROT
29: touch_validate . Touch to validate
30: tx_commit . End transaction
31: status[tid]← ⊥

4.3 Basic Algorithm

We first present below the basic version of the P8TM algorithm (Algorithm 1) assuming we
only have ROTs and we blindly retry to execute failed ROTs irrespective of the abort cause.

To start a transaction, a thread first lets others know that it is active and initializes its
data structures before actually starting a ROT (Lines 18–21). Then, during ROT execution,
it just keeps track of reads to shared data by adding them to the thread-local rot-rset

(Line 7). To complete the ROT, the thread first announces that it is committing by setting its
shared status variable. Note that this is performed while the ROT is suspended (Lines 24–27)
because otherwise the write would be buffered and invisible to other threads.

Next, the algorithm quiesces by waiting for all threads that are in a ROT to at least reach
their commit phase (Lines 8–12). It then executes the touch-based validation mechanism,
which simply consists in re-reading all address in the rot-rset (Lines 13–15), before finally
committing the ROT (Line 30) and resetting the status.
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4.4 Complete Algorithm

The naive approach of the basic algorithm to only use ROTs is unfortunately not practical
nor efficient in real-world settings for two main reasons: (1) ROTs only provide “best effort”
properties and thus a fallback is needed to guarantee liveness; and (2) using ROTs for short
critical sections set that fit in a regular transaction is inefficient, because of the overhead of
software-hardware read-set tracking and validation upon commit. Therefore, we extend the
previous algorithm so that it first tries to use regular transactions, then switches to ROTs,
and finally falls back to a global lock (GL) in order to guarantee progress. The pseudo-code
of the complete algorithm is available in the extended version [18].

For transactions and ROTs to execute concurrently, the former must delay their commit
until completion of all active ROTs. This is implemented using an RCU-like quiescence
mechanism as in the basic algorithm. Transactions try to run in HTM and ROT modes
a limited number of times, switching immediately if the cause of the failure is a capacity
abort. The GL fallback uses a basic spin lock, which is acquired upon transaction begin
and released upon commit. Note that the quiescence mechanism must also be called after
acquiring the lock to wait for completion of ROTs that are in progress and might otherwise
see inconsistent updates. Further, the GL fallback must also wait for ROTs to fully complete.

Read-only transactions. We finally describe the URO path, i.e., the execution mode
optimized for read-only (RO) transactions in which reads are not tracked, hence significantly
decreasing runtime overheads. This would also allow to execute large RO transactions that
do not fit in hardware, and would otherwise be doomed to execute in the GL path.

To understand the intuition behind the URO path, note that whenever a URO develops
a read-after-write with any concurrent transaction/ROT T , T is immediately aborted by the
hardware. As for write-after-read conflicts, since transactions and ROTs buffer their writes and
quiesce before committing, they cannot propagate inconsistent updates to RO transactions:
this feature allows P8TM to achieve concurrency between UROs and transactions/ROTs,
even when they encounter write-after-read conflicts (by serializing the URO before the T ).

Finally, GL and RO transactions cannot conflict with each other as long as they do not
run concurrently. This is ensured by performing a quiescence phase after acquiring the global
lock, and executing RO transactions only when the lock is free. Note that, if the lock is
taken, RO transactions defer to the writer by resetting their status before waiting for the
lock to be free and retrying the whole procedure; otherwise we could run into a deadlock.

Correctness argument. When the GL path is active, concurrency is disabled. This is
guaranteed since:
(i) transactions in HTM path subscribe eagerly to the GL, and are thus aborted upon the

activation of this path;
(ii) after the GL is acquired, a quiescence phase is performed to wait for active ROTs or

UROs.
Atomicity of a transaction in the HTM path is provided by the hardware against concurrent
transactions/ROTs and by GL subscription.

As for the UROs, the quiescence mechanism guarantees two properties:
UROs activated after the start of an update transaction T , and before the start of T ’s
quiescence phase, can be safely serialized before T because they are guaranteed not to
see any of T ’s updates, which are only made atomically visible when the corresponding
transaction/ROT commits;
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UROs activated after the start of the quiescence phase of an update transaction T can be
safely serialized after T because they are guaranteed to either abort T , in case they read
a value written by T before T commits, or see all the updates produced by T ’s commit.
It is worth noting here though that this is only relevant when UROs may conflict with T ,
in case of disjoint operation both serialization orders are equivalent.

Now we are only left with transactions running on the ROT path. The same properties
of quiescence for UROs apply here and avoid ROTs reading inconsistent states produced by
concurrent HTM transactions. Nevertheless, since ROTs do modify the shared state, they
can still produce non-serializable histories; such as the scenario in Figure 2. Assume a ROT,
say T1, issued a read on X, developing a read-write conflict, with some concurrently active
ROT, say T2. There are two cases to consider: T1 commits before T2, or vice-versa.

If T1 commits first, then if it reads X after T2 (which is still active) wrote to it, then
T2 is aborted by the hardware conflict detection mechanism. Else, we are in presence of a
write-after-read conflict. T1 finds status[T2] := ACTIV E (because T2 issues a fence before
starting) and waits for T2 to enter its commit phase (or abort). Then T1 executes its T2V,
during which, by re-reading X, would cause T2 to abort.

Consider now the case in which T2 commits before T1. If T1 reads X, as well as any
other memory position updated by T2, before T2 writes to it, then T1 can be safely serialized
before T2 (as T1 observed none of T2’s updates). If T1 reads X, or any other memory position
updated by T2, after T2 writes to it and before T2 commits, then T2 is aborted by the
hardware conflict detection mechanism; a contradiction. Finally, it is impossible for T1 to
read X after T2 commits: in fact, during T2’s commit phase, T2 must wait for T1 to complete
its execution; hence, T1 must read X after T2 writes to it and before T2 commits, falling in
the above case and yielding another contradiction.

Self-tuning. In workloads where transactions fit the HTM’s capacity restrictions, P8TM
forces HTM transactions to incur the overhead of suspend/resume, in order to synchronize
them with possible concurrent ROTs. In these workloads, the ideal decision would be to just
disable the ROT path, so to spare the HTM path from any overhead. However, it is not
trivial to determine when it is beneficial to do so; this choice is workload dependent and is
not trivial to determine via static code analysis techniques.

We address this issue by integrating into P8TM a self-tuning mechanism based on a
lightweight reinforcement learning technique, UCB [21]. UCB determines, in an automatic
fashion, which of the following modes to use:
(M1) HTM falling back to ROT, and then to GL;
(M2) HTM falling back directly to the GL;
(M3) starting directly in ROT before falling back to the GL.
Note that UROs and ROTs impose analogous overheads to HTM transactions. Thus, in
order to reduce the search space to be explored by the self-tuning mechanism, whenever we
disable ROTs (i.e., case (M2)), we also disable UROs (and treat RO transactions as update
ones).

5 Read-set Tracking

The T2V mechanism requires to track the read-sets of ROTs for later replaying them
at commit time. The implementation of the read-set tracking scheme is crucial for the
performance of P8TM. In fact, as discussed in Section 3, ROTs do not track loads at the
TMCAM level, but they do track stores and the read-set tracking mechanism must issue
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stores in order to log the addresses read by a ROT. The challenge, hence, lies in designing a
software mechanism that can exploit the TMCAM’s capacity in a more efficient way than
the hardware would do. In the following we describe two alternative mechanisms that tackle
this challenge by exploring different trade-offs between computational and space efficiency.

Time-efficient implementation uses a thread local, cache aligned array, where each
entry is used to track a 64-bit address. Since the cache lines of the POWER8 CPU are 128
bytes long, this means that 16 consecutive entries of the array, each storing an arbitrary
address, will be mapped to the same cache line and occupy a single TMCAM entry. Therefore,
this approach allows for fitting up to 16× larger read-sets within the TMCAM as compared
to the case of HTM transactions. Given that they track 64 cache lines, each thread-local
array is statically sized to store exactly 1024 addresses. It is worth noting here that since
conflicts are detected at the cache line level granularity, it is not necessary to store the 7 least
significant bits, as addresses point to the same cache line. However, we omit this optimization
as this will add extra computational overhead, yielding a space saving of less than 10%.

Space-efficient implementation seeks to exploit the spatial data locality in the ap-
plication’s memory access patterns to compress the amount of information stored by the
read-set tracking mechanism. This is achieved by detecting a common prefix between the
previously tracked address and the current one, and by storing only the differing suffix and
the size (in bytes) of the common prefix. The latter can be conveniently stored using the 7
least significant bits of the suffix, which, as discussed, are unnecessary. With applications
that exhibit high spatial locality (e.g., that sequentially scan memory), this approach can
achieve significant compression factors with respect to the time-efficient implementation.
However, it introduces additional computational costs, both during the logging phase (to
identify the common prefix) and in the replay phase (as addresses need to be reconstructed).

6 Evaluation

In this section we evaluate P8TM against state-of-the-art TM systems using a set of synthetic
micro-benchmarks and complex, real-life applications. First, we start by evaluating both
variants of read-set tracking to show how they are affected by the size of transactions and
degree of contention. Then we conduct a sensitivity analysis aimed to investigate various
factors that affect the performance of P8TM. To this end, we used a micro-benchmark
that emulates a hashmap via lookup, insert, and delete transactions that accesses locations
uniformly at random. This is a synthetic data structure composed of b buckets, where each
bucket points to a linked-list, with an average length of l. By varying b and l we can control
the degree of contention and probability of triggering capacity aborts respectively, which
allows us to precisely stress different design aspects. Finally, we test P8TM using the popular
STAMP benchmark suite [7].

We compare our solution with the following baselines:
(i) plain HTM with a global lock fallback (HTM-SGL),
(ii) NoRec with write back configuration,
(iii) the Hy-NoRec algorithm with three variables to synchronize transactions and NoRec

fallback, and, finally,
(iv) the reduced hardware read-write lock elision algorithm HERWL (in this case, update

transactions acquire the write lock while read-only transactions acquire the read lock).
Regarding the retry policy, we execute the HTM path 10 times and the ROT path 5

times before falling back to the next path, except upon a capacity abort when the next
path is directly activated. These values and strategies were chosen after an extensive offline
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Figure 2 Micro-benchmarks (H=high, L=low, Cap=capacity, Con=contention).

experimentation and selecting the best configuration on average, regarding the number
of retries and policies for capacity aborts (e.g., fallback immediately vs treating it as a
conflict-induced abort). All results presented in this section represent the mean value of at
least 5 runs. The experiments were conducted on a machine equipped with an IBM Power8
8284-22A processor that has 10 physical cores, with 8 hardware threads each, summing up to
a total of 80 hardware threads. The source code, which is publicly available [1], was compiled
with GCC 6.2.1 using -O2 flag on top of Fedora 24 with Linux 4.5.5. Thread pinning was
use to pin a thread per core at the beginning of each run for all the solutions, and threads
were distributed evenly across the cores.

6.1 Read-set Tracking

The goal of this section is to understand the trade-off between the time-efficient and the
space-efficient implementations of read-set tracking that were explained earlier in Section 5.
We compare three variants of P8TM: i) a version using the time-efficient read-set tracking
(TE), ii) a variant of space-efficient read-set tracking that only checks for prefixes of length 4
bytes, and otherwise stores the whole address (SE), and, finally, iii) a more aggressive variant
of space-efficient read-set tracking that looks for prefixes of either 6 or 4 bytes (SE++).
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Throughout this section, we fixed the number of threads to 10 (number of physical cores)
and the percentage of update transactions at 100%, disabled the self-tuning module, and
varied the buckets’ lengths(l) across orders of magnitude to stress the ROT-path. First,
we start with an almost contention-free workload (using b = 10k) to highlight the effect
of capacity aborts alone. The speedup with respect to HTM-SGL, breakdown of abort
rate (calculated as the aborts divided by the sum of aborted and committed transactions)
and commits for this workload are shown in the left column of Figure 2a. As we can
notice, the three variants of P8TM achieve almost the same performance as HTM-SGL
with small transaction sizes that fit inside regular HTM transactions, as seen from the
commits breakdown (l =∼20–50). However, when moving to larger transactions, the three
variants start outperforming HTM-SGL achieving up to 5.5× higher throughput due to their
ability to fit transactions within ROTs. By looking at the aborts breakdown in this region
(l =∼100–266), we see that all P8TM variants suffer from almost 50% capacity aborts when
first executing in HTM, and almost no capacity aborts when using the ROT path. This
shows the clear advantage of the T2V mechanism and how it can fit more than 10× larger
transactions in hardware.

Comparing TE with SE and SE++, we see that both space-efficient variants are able
to execute larger transactions as ROTs: they do not suffer ROT capacity up to buckets
of length ∼1333 items. Nevertheless, they incur an extra overhead, which is reflected as
a slightly lower speedup than TE, before TE starts to experience ROT capacity aborts;
only then their ability to further compress the rot-rset pays off. Again, by looking at the
commits and aborts breakdown, we see that both space-efficient variants manage to commit
all transactions as ROTs when TE is already using the GL (l =∼800–1333). Finally, when
comparing SE and SE++, we notice that trying harder to find longer prefixes is not useful,
due to the much lower probability of addresses sharing longer prefixes.

The right column of Figure 2a shows the results for a workload that exhibits a higher
degree of contention (b = 1k). In this case, with transactions that fit inside regular HTM
transactions, we see that HTM-SGL can outperform both SE and SE++ by up to 2× and
TE by up to ∼30%. Since P8TM tries to execute transactions as ROTs after failing 10 times
with HTM due to conflicts, the ROT path may be activated even in absence of capacity
aborts; hence, the overhead of synchronizing ROTs and transaction becomes relevant also
with small transactions. With larger transactions, we notice that the computational costs of
SE and SE++ are more noticeable in this workload where they are always outperformed by
TE, as long as this is able to fit at least 50% of transactions inside ROTs (up to l =∼800
items). Furthermore, the gains of SE and SE++ w.r.t. TE are much lower when compared
to the contention-free workload. From this, we deduce that TE is more robust to contention.
This was also confirmed with the other workloads that we will discuss next.

6.2 Sensitivity analysis
We now report the results of a sensitivity analysis that aimed to assess the impact of the
following factors on P8TM’s performance:
(i) the size of transactions,
(ii) the degree of contention, and
(iii) the percentage of read-only transactions.

We explored these three dimensions using the following configurations:
(i) high capacity, low contention, (b = 1k and l = 800),
(ii) high capacity, high contention, (b = 10 and l = 800), and
(iii) low capacity, low contention (b = 1k and l = 40).
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We omitted showing the results for low capacity, high contention workload due to space
restrictions, especially since they do not convey any extra information with respect to the
low capacity, low contention scenario (which is actually even more favourable for HTM).

In these experiments we show two variants of P8TM, both equipped with the TE read-set
tracking: with (P8TMucb) and without (P8TM) the self-tuning module enabled.

High capacity, low contention. The left most column of Figure 2b shows the throughput,
abort rate and commits breakdown for the high capacity, low contention configuration with
50% update transactions.. We observe that, both variants of P8TM are able to outperform
all the other TM solutions by up to 2×. This can be easily explained by looking at the
commits breakdown, where both P8TM and P8TMucb commit 50% of their transactions as
UROs while the other 50% are committed mainly as ROTs up to 8 threads. On the contrary,
HTM-SGL commits only 10% of the transactions in hardware and falls back to GL in the
rest, due to the high capacity aborts it incurs. It is worth noting that the decrease in the
percentage of capacity aborts, along with the increase of number of threads, is due to the
activation of the fallback path, which forces other concurrent transactions to abort.

Although HERWL benefits from the URO path, P8TM was able to achieve ∼2× higher
throughput, thanks to its ability of executing ROTs concurrently. Another interesting point
is that P8TMucb can outperform P8TM due to its ability to decrease the abort rate, as shown
in the aborts breakdown. This is achieved by deactivating the HTM path, which spares from
the cost of trying once in HTM before falling back to ROT (upon a capacity abort).

High capacity, high contention. The middle column of Figure 2b reports the results for the
high capacity, high contention configuration with 50% update transactions. We can notice
that although this workload is not scalable due to the high conflict rate, P8TM manages to
achieve the highest throughput. Again this is due to P8TM’s ability to fit large transactions
into ROTs, almost all update transactions are executed in hardware up to 8 threads as can
be seen from the commits breakdown. P8TMucb also achieves higher throughput than P8TM
after it disables the HTM path, which decreases the abort rate.

Low capacity, low-contention. In workloads where transactions fit inside HTM, it is
expected that HTM-SGL will outperform all other TM solutions and that the overheads
of P8TM will prevail. The results in the right most column of Figure 2b confirm this
expectation: HTM-SGL outperforms all other solutions, achieving up to ∼1.75× higher
throughput than P8TM. However, P8TMucb, thanks to its self-tuning ability, is the, overall,
best performing solution, achieving performance comparable to HTM-SGL at low thread
count, and outperforming it at high thread count. By inspecting the commits breakdown
plots we see that P8TMucb does not commit any transaction using ROTs up to 8 threads,
avoiding the synchronization overheads that, instead, affect P8TM.

We note that, even though Hy-NoRec commits the same or higher percentage of HTM
transactions than HTM-SGL, it is consistently outperformed by P8TM. This can be explained
by looking at the performance of NoRec, which fails to scale due to the high instrumentation
overheads it incurs with such short transactions. As for Hy-NoRec, its poor performance is a
consequence of the inefficiency inherited by its NoRec fallback.

6.3 STAMP benchmark suite
STAMP is a popular benchmark suite that encompasses applications with different charac-
teristics that share a common trait: they do not have any read-only transactions. Therefore,
P8TM will not utilize the URO path and any gain it can achieve stems solely from executing
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Figure 3 Throughput and breakdown of commits for the STAMP benchmarks.

ROTs in parallel. For space constraints we can only report the results for a subset of the
STAMP benchmarks. The remaining benchmarks exhibit analogous trends and are available
in an extended technical report [18].

Vacation is an application with medium sized transactions and low contention; hence, it
behaves similarly to the previously analyzed high capacity, low contention workload. When
looking at Figure 3, we can see trends very similar to the left most column of Figure 2b.
P8TM is capable of achieving the highest throughput and outperforming HTM-SGL by up
to ∼3.2× in this case. When looking at the breakdown of commits, we notice also the ability
of P8TM to execute most of transactions as ROT up to 8 threads, while HTM-SGL never
manages to commit transactions in hardware.

At high thread count we notice that NoRec and Hy-NoRec start to outperform both
P8TM and P8TMucb. his can be explained by two reasons:

with larger numbers of threads there is higher contention on hardware resources (note
that starting from 32 threads ROT capacity aborts start to become frequent) and
the cost of quiescence becomes more significant as threads have to wait longer.

Nevertheless, it is worth noting that the maximum throughput achieved by P8TM (at 8
threads) is ∼2× higher than NoRec (at 32 threads). This is due to the instrumentation
overheads of these solutions. These overheads are completely eliminated in case of write
accesses within P8TM and are much lower for read accesses—recall we only need to log the
addresses and read them during validation.

SSCA2 generates transactions with small read/write sets and low contention. These are
HTM friendly characteristics, and by looking at the throughput results in Figure 3 we see
that HTM-SGL is able to outperform all the other baselines and scale up to 80 threads. This
is also reflected in its ability to commit almost all transactions in hardware as shown in the
commits breakdown. Although Hy-NoRec is able to achieve performance similar to HTM up
to 32 threads, it is then outperformed due to the extra overheads it incurs to synchronize
with the NoRec fallback.

Although P8TM commits almost all transactions using HTM up to 64 threads, it performed
worse than both HTM-SGL and Hy-NoRec due to the costs of synchronization. An interesting
observation is that the overhead is almost constant up to 32 threads. In fact, up to 64 threads
there are no ROTs running and the overhead is is dominated by the cost of suspending and
resuming the transaction. At 64 and 80 threads P8TM started to suffer also from capacity
aborts similarly to Hy-NoRec. This led to a degradation of performance, with HTM-SGL
achieving 7× higher throughput at 80 threads. This is a workload where P8TMucb comes in
handy as it manages to disable the ROT path and thus tends to employ HTM-SGL.

Yada has long transactions, large read/write set and medium contention. This is an
example of a workload that is not hardware friendly and where hardware solutions are
expected to be outperformed by software based ones. Figure 3 shows the clear advantage
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of NoRec over any other solution, achieving up to 3× higher throughput than hardware
based solutions. When looking at the commits and abort break down, one can see that
up to 8 threads P8TM commits ∼80% of the transactions as either HTM or ROTs. Yet,
despite P8TM manages to reduce the frequency of acquisition of the GL path with respect
to HTM-SGL, it incurs overheads that end up outweighing the benefits provided by P8TM
in terms of increased concurrency.

7 Conclusion

We presented P8TM, a TM system that tackles what is, arguably, the key limitation of existing
HTM systems: the inability to execute transactions whose working sets exceed the capacity
of CPU caches. This is achieved by novel techniques that exploit hardware capabilities
available in POWER8 processors. Via an extensive experimental evaluation, we have shown
that P8TM provides robust performance across a wide range of benchmarks, ranging from
simple data structures to complex applications, and achieves remarkable speedups.

The importance of P8TM stems from the consideration that the best-effort nature of
current HTM implementations is not expected to change in the near future. Therefore,
techniques that mitigate the intrinsic limitations of HTM can broaden its applicability to a
wider range of real-life workloads. We conclude by arguing that the performance benefits
achievable by P8TM thanks to the use of the ROT and suspend/resume mechanisms represent
a relevant motivation for integrating these features in future generations of HTM-enabled
processors (like Intel’s ones).
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Abstract
This paper considers several closely-related problems in synchronous dynamic networks with
oblivious adversaries, and proves novel Ω(d + poly(m)) lower bounds on their time complexity
(in rounds). Here d is the dynamic diameter of the dynamic network and m is the total number
of nodes. Before this work, the only known lower bounds on these problems under oblivious
adversaries were the trivial Ω(d) lower bounds. Our novel lower bounds are hence the first non-
trivial lower bounds and also the first lower bounds with a poly(m) term. Our proof relies on a
novel reduction from a certain two-party communication complexity problem. Our central proof
technique is unique in the sense that we consider the communication complexity with a special
leaker. The leaker helps Alice and Bob in the two-party problem, by disclosing to Alice and Bob
certain “non-critical” information about the problem instance that they are solving.
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1 Introduction

Dynamic networks [22] is a flourishing topic in recent years. We consider a synchronous
setting where the m (fixed) nodes in the network proceed in synchronous rounds. Each
node has a unique id of size O(logm), and the messages are of size O(logm) as well. The
nodes never fail. The topology of the dynamic network can change from round to round, as
determined by an adversary, subject to the only constraint that the topology in each round
must be a connected and undirected graph. The time complexity of a protocol is the number
of rounds needed for all nodes to generate the final output, over the worst-case adversary,
worst-case initial values, and average coin flips of the protocol. We consider a number of
fundamental distributed computing problems within such a context:
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29:2 Some Lower Bounds in Dynamic Networks with Oblivious Adversaries

Consensus: Each node has a binary input. The nodes aim to achieve a consensus (with
the standard agreement, validity, and termination requirements) and output the final
decision.
LeaderElect: Each node should output the leader’s id.
ConfirmedFlood: A certain node ν aims to propagate a token of size O(logm) to
all other nodes, and wants to further confirm that all nodes have received the token.1
Formally, node ν’s output is correct only if by the time that ν outputs, the token has
already been received by all the nodes. (The value of the output is not important.) The
remaining nodes can output any time.
Aggregation: Each node has a value of O(logm) bits, and the nodes aim to compute a
certain aggregation function over all these values. We consider two specific aggregation
functions, Sum and Max.

Let d be the (dynamic) diameter (see definition later) of the dynamic network. (Note
that since the topology is controlled by an adversary, the protocol never knows d beforehand.)
Given an optimal protocol for solving any of the above problems, let tc(d,m) denote the
protocol’s time complexity, when it runs over networks with d diameter and m nodes. It
is easy to see that tc(d,m) crucially depends on d, since we trivially have tc(d,m) = Ω(d).
Given such, this paper focus on the following central question:

Ignoring polylog(m) terms, is tc(d, m) independent of the network size m?

Answering this fundamental question will reveal whether the complexity of all these basic
problems is due to the diameter or due to both the diameter and the network size.

Existing results. If the network were static, then building a spanning tree would solve all
these problems in either O(d) or O(d logm) rounds, implying a yes answer to the above
question. In dynamic networks, the picture is more complex. In a dynamic network model
without congestion (i.e., message size unlimited), Kuhn et al. [20] have proposed elegant upper
bound protocols with O(d) complexity for all these problems. Hence the answer is yes as well.
For dynamic networks with congestion (i.e., message size limited to O(logm)), Yu et al. [25]
recently have proved that tc(d,m) = O(d logm) for Consensus and LeaderElect, if the
nodes know a good estimate on m.2 Hence the answer is yes in such cases. On the other hand,
if nodes’ estimate on m is poor,3 then Yu et al. [25] prove a lower bound of Ω(d+ poly(m))
for Consensus and LeaderElect, implying a no answer. For ConfirmedFlood and
Aggregation, they have also proved tc(d,m) = Ω(d+ poly(m)), even if the nodes know m.
This implies a no answer for those two problems.

All the lower bound proofs in [25], however, critically relies on a powerful adaptive
adversary: In each round, the adaptive adversary sees all the coin flip outcomes so far
of the protocol P and manipulates the topology based on those. In particular, in each
round the adversary sees whether each node will be sending (and can then manipulate the
topology accordingly), before the nodes actually send their messages. Their proof breaks

1 Such confirmation does not have to come from explicit acknowledgements, and can be via implicit
means, such as counting the number of rounds.

2 More precisely, if the nodes know m′ such that |m
′−m
m | ≤ 1

3 − c for some positive constant c. Obviously,
this covers the case where the nodes know m itself.

3 More precisely, if the nodes only knows m′ such that |m
′−m
m | reaches 1

3 or above. Obviously, this covers
the case where the nodes do not have any knowledge about m.
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under oblivious adversaries, which do not see P’s coin flip outcomes and have to decide the
topologies in all the rounds before P starts.4

In summary, our central question of whether tc(d,m) is largely independent of the network
size m has been answered in:
(i) static networks,
(ii) dynamic networks without congestion under both adaptive and oblivious adversaries,

and
(iii) dynamic networks with congestion under adaptive adversaries.

Our results. This work gives the last piece of the puzzle for answering our central ques-
tion. Specifically, we show that in dynamic networks with congestion and under oblivious
adversaries, for Consensus and LeaderElect, the answer to the question is no when
the nodes’ estimate on m is poor. (If the nodes’ estimate on m is good, results from [25]
already implied a yes answer.) Specifically, we prove a novel Ω(d+ poly(m)) lower bound
on Consensus under oblivious adversaries, when the nodes’ estimate on m is poor. This
is the first non-trivial lower bound and also the first lower bound with a poly(m) term, for
Consensus under oblivious adversaries. The best lower bound before this work was the
trivial Ω(d) lower bound. Our Consensus lower bound directly carries over to LeaderElect
since Consensus reduces to LeaderElect [25].

Our approach will also lead to a Ω(d+ poly(m)) lower bound under oblivious adversaries
for ConfirmedFlood, which in turn reduces to Sum and Max [25]. Such a lower bound
similarly gives a no answer for ConfirmedFlood and Aggregation. But since the lower
bound proof for ConfirmedFlood is similar to and in fact easier than our Consensus
proof, for clarity, we will not separately discuss it in this paper.

Different adversaries. In dynamic networks, different kinds of adversaries often require
different algorithmic techniques and also yield different results. Hence it is common for
researchers to study them separately. For example, lower bounds for information dissemination
were proved separately, under adaptive adversaries [13] and then later under oblivious
adversaries [1]. Dynamic MIS was investigated separately under adaptive adversaries [17]
and later under oblivious adversaries [8]. Broadcasting was first studied under adaptive
adversaries [18], and later under oblivious adversaries [14].

Our approach. Our novel Consensus lower bound under oblivious adversaries is obtained
via a reduction from a two-party communication complexity (CC) problem called Gap
Disjointness with Cycle Promise or Gdc. Our reduction partly builds upon the reduction in
[25] for adaptive adversaries, but has two major differences. In fact, these two novel aspects
also make our central proof technique rather unique, when compared with other works that
use reductions from CC problems [9, 12, 21].

The first novel aspect is that we reduce from Gdc with a special leaker that we design.
The leaker is an oracle in the Gdc problem, and is separate from the two parties Alice and
Bob . It helps Alice and Bob, by disclosing to them certain “non-critical” information in the
following way. For a CC problem Π, let Πn(X,Y ) be the answer to Π for length-n inputs X
and Y . Let xi and yi denote the i-th character of X and Y , respectively. A pair (a, b) is
defined to be a leakable pair if for all n, X, Y , and i ∈ [0, n], Πn(x1x2 . . . xn, y1y2 . . . yn) =

4 Note however that all upper bounds, from [20] and [25], will directly carry over to oblivious adversaries.
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29:4 Some Lower Bounds in Dynamic Networks with Oblivious Adversaries

Πn+1(x1x2...xiaxi+1xi+2...xn, y1y2...yibyi+1yi+2...yn). Intuitively, inserting or removing a
leakable pair does not impact the answer to Π. For each index i where (xi, yi) is leakable,
independently with probability 1

2 , our leaker leaks the index i, by letting both Alice and Bob
know for free the value of i and the value of the pair (xi, yi), before Alice and Bob start
running their protocol.

Our reduction from Gdc (with our leaker) to Consensus still does not allow us to
directly use an oblivious adversary. Instead, as the second novel aspect, we will use a special
kind of adaptive adversaries which we call sanitized adaptive adversaries. These adversaries
are still adaptive, but their adaptive decisions have been “sanitized” by taking XOR with
independent coin flips. We then show that a sanitized adaptive adversary is no more powerful
than an oblivious adversary, in terms of incurring the cost of a protocol.

2 Related Work

This section discusses related works beyond those already covered in the previous section.

Related work on Consensus and LeaderElect. Given the importance of Consensus and
LeaderElect in dynamic networks, there is a large body of related efforts and we can only
cover the most relevant ones. In dynamic networks without congestion, Kuhn et al. [20]
show that the simultaneous consensus problem has a lower bound of Ω(d+ poly(m)) round.
In this problem, the nodes need to output their consensus decisions simultaneously. Their
knowledge-based proof exploits the need for simultaneous actions, and does not apply to our
setting. Some other researchers (e.g., [3, 4]) have studied Consensus and LeaderElect
in a dynamic network model where the set of nodes can change and where the topology is
an expander. Their techniques (e.g., using random walks) critically reply on the expander
property of the topology, and hence do not apply to our setting. Augustine et al. [2]
have proved an upper bound of O(d logm) for LeaderElect in dynamic networks while
assuming d is known to all nodes. This does not contradict with our lower bound, since
we do not assume the knowledge of d. Certain Consensus and LeaderElect protocols
(e.g., [15]) assume that the network’s topology eventually stops changing, which is different
from our setting where the change does not stop. Consensus and LeaderElect have
also been studied in directed dynamic networks (e.g., [11, 23]), which are quite different
from our undirected version. In particular, lower bounds there are mostly obtained by
exploiting the lack of guaranteed bidirectional communication in directed graphs. Our
Aggregation problem considers the two aggregation functions Sum and Max. Cornejo
et al. [10] considers a different aggregation problem where the goal is to collect distributed
tokens (without combining them) to a small number of nodes. Some other research (e.g., [6])
on Aggregation assumes that the topology is each round is a (perfect) matching, which is
different from our setting where the topology must be connected.

Related work on reductions from CC. Reducing from two-party CC problems to obtain
lower bounds for distributed computing problem has been a popular approach in recent years.
For example, Kuhn et al. [21] and Das Sarma et al.[12] have obtained lower bounds on the
hear-from problem and the spanning tree verification problem, respectively, by reducing from
Disjointness. In particular, Kuhn et al.’s results suggest that the hear-from problem has
a lower bound of Ω(d +

√
m/ logm) in directed static networks. Chen et al.’s work [9] on

computing Sum in static networks with node failures has used a reduction from the Gdc1,q
n

problem. Our reduction in this paper is unique, in the sense that none of these previous
reductions use the two key novel techniques in this work, namely CC with our leaker and
sanitized adaptive adversaries.
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Related work on CC. To the best of our knowledge, we are the first to exploit the CC with
a leaker in reductions to distributed computing problems such as Consensus. Our leaker
serves to allow oblivious adversaries. Quite interestingly, for completely different purposes,
the notions of leakable pairs and a leaker have been extensively (but implicitly) used in
proofs for obtaining direct sum results on the information complexity (IC) (e.g., [5, 7, 24])
of various communication problems: First, leakable pairs have been used to construct a
collapsing input, for the purpose of ensuring that the answer to the problem Π is entirely
determined by (xi, yi) at some index i. Second, an (implicit) leaker has often been used (e.g.,
in [7, 24]) to enable Alice and Bob to draw (X,Y) from a non-product distribution.

Because of the fundamentally different purposes of leaking, our leaker differs from those
(implicit) leakers used in works on IC, in various specific aspects. For example in our work,
all leakable pairs are subject to leaking, while in the works on IC, there is some index i that
is never subject to leaking. Also, when our leaker leaks index j, it discloses both xj and yj
to both Alice and Bob. In comparison, in works on IC, the (implicit) leaking is usually done
differently: For example, Alice and Bob may use public coins to draw xj and Bob may use
his private coins to draw yj . Doing so (implicitly) discloses xj to both Alice and Bob and
(implicitly) discloses yj only to Bob.

A key technical step in our work is to prove a lower bound on the CC of Gdcg,qn with our
leaker. For simpler problems such as Disjointness (which is effectively Gdc1,2

n ), we believe
that such a lower bound could alternatively be obtained by studying its IC with our leaker.
But the gap promise and the cycle promise in Gdcg,qn make IC arguments rather tricky.
Hence we will (in Section 8) obtain our intended lower bound by doing a direct reduction
from the CC of Gdcg,qn′ without the leaker to the CC of Gdcg,qn with the leaker.

3 Model and Definitions

Conventions. All protocols in this paper refer to Monte Carlo randomized algorithms. We
always consider public coin protocols, which makes our lower bounds stronger. All log is
base 2, while ln is base e. Upper case fonts (e.g., X) denote strings, vectors, sets, etc. Lower
case fonts (e.g., x) denote scalar values. In particular, if X is a string, then xi means the
i-th element in X. Bold fonts (e.g., X and x) refer to random variables. Blackboard bold
fonts (e.g., D) denote distributions. We write x ∼ D if x follows the distribution D. Script
fonts (e.g., P and Q) denote either protocols or adversaries.

Dynamic networks. We consider a synchronous dynamic network with m fixed nodes, each
with a unique id of Θ(logm) bits. A protocol in such a network proceeds in synchronous
rounds, and starts executing on all nodes in round 1. (Clearly such simultaneous start makes
our lower bound stronger.) In each round, each node υ first does some local computation,
and then chooses to either send a single message of O(logm) size or receive. All nodes who
are υ’s neighbors in that round and are receiving in that round will receive υ’s message at
the end of the round. A node with multiple neighbors may receive multiple messages.

The topology of the network may change arbitrarily from round to round, as determined
by some adversary, except that the topology in each round must be a connected undirected
graph. (This is the same as the 1-interval model [19].) A node does not know the topology
in a round. It does not know its neighbors either, unless it receives messages from them in
that round. Section 1 already defined oblivious adversaries and adaptive adversaries. In
particular in each round, an adaptive adversary sees all P’s coin flip outcomes up to and
including the current round, and manipulates the topology accordingly, before P uses the
current round’s coin flip outcomes.
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29:6 Some Lower Bounds in Dynamic Networks with Oblivious Adversaries

We use the standard definition for the (dynamic) diameter [22] of a dynamic network:
Intuitively, the diameter of a dynamic network is the minimum number of rounds needed for
every node to influence all other nodes. Formally, we say that (ω, r)→ (υ, r + 1) if either ω
is υ’s neighbor in round r or ω = υ. The diameter d of a dynamic network is the smallest d
such that (ω, r) (υ, r + d) for all ω, υ, and r, where “ ” is the transitive closure of “→”.
Since the topology is controlled by an adversary, a protocol never knows d beforehand.

Communication complexity. In a two-party communication complexity (CC) problem Πn,
Alice and Bob each hold input strings X and Y respectively, where each string has n
characters. A character here is q-ary (i.e., an integer in [0, q − 1]) for some given integer
q ≥ 2. For any given i, we sometimes call (xi, yi) as a pair. Alice and Bob aim to compute
the value of the binary function Πn(X,Y ). Given a protocol P for solving Π (without a
leaker), we define cc(P, X, Y,CP) to be the communication incurred (in terms of number
of bits) by P, under the input (X,Y ) and P’s coin flip outcomes CP. Note that CP is a
random variable while cc() is a deterministic function. We similarly define err(P, X, Y,CP),
which is 1 if P’s output is wrong, and 0 otherwise. We define the communication complexity
of P to be cc(P) = maxX maxY ECP

[cc(P, X, Y,CP)], and the error of P to be err(P) =
maxX maxY ECP

[err(P, X, Y,CP)]. We define the δ-error (0 < δ < 1
2 ) communication com-

plexity of Πn to be Rδ(Πn) = min cc(P), with the minimum taken over all P where err(P) ≤ δ.
For convenience, we define Rδ(Π0) = 0 and Rδ(Πa) = Rδ(Πbac) for non-integer a.

We define similar concepts for CC with our leaker. Section 1 already defined leakable
pairs and how our leaker works. Given P for solving Π with our leaker, cc(P, X, Y,CP,CL) is
the communication incurred by P, under the input (X,Y ), P’s coin flip outcomes CP, and
the leaker’s coin flip outcomes CL. Here (X,Y ) and CL uniquely determine which indices
get leaked. We define cc(P) = maxX maxY ECL

ECP
[cc(P, X, Y,CP,CL)]. We similarly define

err(P, X, Y,CP,CL) and err(P). Finally, we define the δ-error (0 < δ < 1
2 ) communication

complexity of Πn with our leaker, denoted as Lδ(Πn), to be Lδ(Πn) = min cc(P), with the
minimum taken over all P such that P solves Πn with our leaker and err(P) ≤ δ. Note that
we always have Lδ(Πn) ≤ Rδ(Πn).

4 Preliminaries on Gap Disjointness with Cycle Promise

The section defines the two-party Gdc problem and describes some basic properties of Gdc.

I Definition 1 (Gap Disjointness with Cycle Promise). In Gap Disjointness with Cycle Promise,
denoted as Gdcg,qn , Alice and Bob have input strings X and Y , respectively. X and Y

each have n characters, and each character is an integer in [0, q − 1]. Alice and Bob aim to
compute Gdcg,qn (X,Y ), defined to be 1 if (X,Y ) contains no (0, 0) pair, and 0 otherwise.
The problem comes with the following two promises:

Gap promise: (X,Y ) contains either no (0, 0) pair or at least g such pairs.
Cycle promise [9]: For each index i, xi and yi satisfy exactly one of the following four
conditions: i) xi = yi = 0, ii) xi = yi = q − 1, iii) xi = yi + 1, or iv) xi = yi − 1.

One can easily verify that the cycle promise is trivially satisfied when q = 2. It is also
easy to see Gdc1,2

n degenerates to the classic Disjointness problem. The gap promise and
the cycle promise start to impose material restrictions when g ≥ 2 and q ≥ 3, respectively.
For example for g = 2 and q = 4, X = 02103 and Y = 03003 satisfy both the two promises,
where (X,Y ) contains 2 pairs of (0, 0), at indices 1 and 4. For Gdc, all (0, 0) pairs are



I. Jahja, H. Yu, and Y. Zhao 29:7

non-leakable, while all other pairs are leakable. For example for X = 02103 and Y = 03003,
those 3 pairs at index 2, 3, and 5 are leakable. The following result (proven in the full version
[16] of this paper) on the CC of Gdc is a simple adaption from the result in [9]:

I Theorem 2. For any δ where 0 < δ < 0.5, there exist constants c1 > 0 and c2 > 0 such
that for all n, g, and q, Rδ(Gdcg,qn ) ≥ c1n

gq2 − c2 log n
g .

The proof of Theorem 2 also showed that Rδ(Gdcg,qn ) ≥ Rδ(Gdc1,q
n/g). It is important to

note that Lδ(Gdcg,qn ) ≥ Lδ(Gdc1,q
n/g) does not hold in general (see [16] for more discussion).

Hence when later proving the lower bound on Lδ(Gdcg,qn ), we will have to work with the
gap promise directly, instead of obtaining the lower bound via Lδ(Gdc1,q

n/g).

5 Review of Existing Proof under Adaptive Adversaries

This section gives an overview of the recent Consensus lower bound proof [25] under adaptive
adversaries. That proof is quite lengthy and involved, hence we will stay at the high-level,
while focusing on aspects that are more relevant to this paper.

Overview. Consider any oracle Consensus protocol P with 1
10 error. Let tc(d,m) be P’s

time complexity, when running over dynamic network controlled by adaptive adversaries and
with d diameter and m nodes. The proof in [25] is mainly for proving tc(8,m) = Ω(poly(m)).
The proof trivially extends to tc(d,m) for all d ≥ 8. Combining with the trivial Ω(d) lower
bound will lead to the final lower bound of Ω(d+ poly(m)).

To prove tc(8,m) = Ω(poly(m)), [25] uses a reduction from Gdcg,qn to Consensus. To
solve Gdcg,qn (X,Y ), Alice knowing X and Bob knowing Y simulate the Consensus protocol
P in the following way: In the simulation, the input (X,Y ) is mapped to a dynamic network.
Roughly speaking, if Gdcg,qn (X,Y ) = 1, the resulting dynamic network will have a diameter
of 8. Hence P should decide within r1 = tc(8,m) rounds on expectation. If Gdcg,qn (X,Y ) = 0,
then the resulting dynamic network will have a diameter of roughly q

2 . It is then shown [25]
that P must take r2 = Ω(q) rounds to decide in dynamic networks with such a diameter. The
value of q is chosen, as a function of tc(8,m), such that r2 > 10r1. Alice and Bob determine
the answer to Gdc based on when P decides: If P decides within 10r1 rounds, they claim
that Gdcg,qn (X,Y ) = 1. Otherwise they claim Gdcg,qn (X,Y ) = 0.

To solve Gdc using the above simulation, Alice and Bob need to simulate P for 10r1 =
10tc(8,m) rounds. In each round, to enable the simulation to continue, Alice and Bob will need
to incur O(logm) bits of communication. Hence altogether, they incur 10tc(8,m) ·O(logm)
bits for solving Gdcg,qn . The lower bound on the CC of Gdcg,qn then immediately translates
to a lower bound on tc(8,m).

Crux of the proof. When solving Gdc, Alice only knows X and not Y . This means that
Alice does not actually have the full knowledge of the dynamic network, which is a function
of (X,Y ). Hence the proof’s central difficulty is to design the dynamic network in such a way
that Alice can nevertheless still properly simulate P over that dynamic network. The proof
in [25] overcomes this key difficulty by i) leveraging the cycle promise in Gdc, and ii) using
an adaptive adversary — in particularly, using an adaptive adversary is highlighted [25] as a
key technique. We give a concise review below.

Given (X,Y ), the dynamic network constructed in [25] has one chain for each index
i ∈ [1, n]. Each chain has 3 node in a line (Figure 1). Consider as an example the i-th chain
where xi = 0. Since xi = 0, yi must be either 0 or 1 (by the cycle promise). The set of edges
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ti ti+1 ti+2 

(a) ν is sending in round ti + 1

ti ti+1 ti+2 

(b) ν is receiving in round ti + 1

Figure 1 The adaptive decisions of the adversary in [25].

on this chain will be different depending on whether yi is 0 or 1 — this serves to make the
diameter of the dynamic network different when Gdc = 1 and when Gdc = 0, as discussed
earlier. The difficulty for Alice, is that she does not know yi, and hence does not know the
exact set of edges on this chain. This prevents her from properly simulating those nodes that
she need to simulate for this chain. Similar difficulty applies to Bob.

To overcome this difficulty, if a pair (xi, yi) is not (0, 0), the adversary in [25] will make
an adaptive decision for manipulating the edges on the i-th chain,5 to help enable Alice (and
also Bob) to simulate. The cycle promise already tells us that for given xi (e.g., 0), there are
two possibilities for yi (e.g., 0 and 1). The adaptive decisions of the adversary will have the
following end effects: Under the topology resulted from such adaptive decisions, the behavior
of those nodes that Alice needs to simulate will depend only on xi and no longer depend on
yi. A similar property holds for Bob.

The details on why those adaptive decisions can achieve such end effects are complex, and
are related to the fundamental fact that a node does not know its neighbors in a round until
it receives messages from them. At the same time, those details are entirely orthogonal to
this work. Hence due to space limitations, we refer interested readers to [25] for such details.
Here we will only describe the specifics of all the adaptive decisions made by the adversary,
which is needed for our later discussion: Consider any i where (xi, yi) is not (0, 0). At the
beginning of round ti + 1 where ti is some function of xi and yi, the adversary examines
the coin flip outcomes of P and determines whether the middle node ν on the i-th chain is
sending or receiving in round ti + 1 (see Figure 1). If ν is sending, the adversary removes a
certain edge e that is incidental to ν, immediately in round ti + 1. Otherwise the adversary
will remove the edge e in round ti + 2. Except these adaptive decisions, the adversary does
not make any other adaptive decisions. In particular, the adversary does not need to make
adaptive decisions for chains corresponding to (0, 0).

6 Roadmap for Lower Bound Proof under Oblivious Adversaries

This section provides the intuition behind, and the roadmap for, our novel proof of Consensus
lower bound under oblivious adversaries. To facilitate discussion, we define a few simple
concepts. Consider the i-th chain in the previous section where (xi, yi) is not (0, 0), and the
middle node ν on the chain. We define binary random variable z = 0 if ν is sending in round
ti + 1, and define z = 1 otherwise. We use A′ to denote the adaptive adversary described
in the previous section. We define λA′ to be the adaptive decision made by A′, where A′

removes the edge e in round ti + 1 +λA′ . With these concepts, A′ essentially sets its decision
λA′ to be λA′ = z.

5 In the actual proof, the adversary only needs to make adaptive decisions for a subset (usually a constant
fraction) of such chains. But it is much easier to understand if we simply let the adversary make an
adaptive decision on all of them. Doing so has no impact on the asymptotic results.
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Making guesses. A′ is adaptive since λA′ depends on z, and z in turn is a function of P’s
coin flips. An oblivious adversary A cannot have its decision λA depend on z. At the highest
level, our idea of allowing A in the reduction is simple: We let A make a blind guess on
whether ν is sending. Specifically, imagine that A itself flips a fair coin c, and then directly
set its decision to be λA = c. Same as A′, A still removes the edge e in round ti + 1 + λA,
except that now λA = c. Some quick clarifications will help to avoid confusion here. First,
such a guess c may be either correct (i.e., c = z) or wrong (i.e., c = z̄). A itself cannot tell
whether the guess is correct, since A (being oblivious) does not know z. Alice and Bob,
however, can tell if the guess is correct, because they are simulating both the protocol P and
the adversary A, and hence know both z and c. But they cannot interfere with the guess
even if they know it is wrong.

Now if the guess is correct, then the decision of A will be exactly the same as A′, and
everything will work out as before. But if the guess is wrong, then A can no longer enable
Alice to simulate without knowing Y . More specifically, if the guess is wrong, then for the
i-th chain, the behavior of those nodes that Alice needs to simulate will depend on the value
of yi, and Alice does not know yi. To overcome this main obstacle, our key idea is to add
a special leaker entity in the two-party CC problem, which should be viewed as an oracle
that is separate from Alice and Bob. If the guess is wrong for the i-th chain, the leaker will
disclose for free to Alice and Bob the pair (xi, yi). The knowledge of yi then immediately
enables Alice to infer the exact behavior of the nodes that she needs to simulate. Similar
arguments apply to Bob.

Roadmap. There are two non-trivial technical issues remaining in the above approach: i)
when to make guesses, and ii) how the leaker impacts the CC of Gdc. Overcoming them will
be the main tasks of Section 7 and 8, respectively. Section 9 will present our final Consensus
lower bound, whose lengthy and somewhat tedious proof is deferred to the full version [16]
of this paper.

7 Sanitized Adaptive Adversaries

The difficulty. It turns out that it does not quite work for Alice and Bob to approach the
leaker for help when they feel needed. Consider the following example Gdc2,4

6 instance with
X = 000000 and Y = 111100. As explained in Section 5, the dynamic network corresponding
to this instance has six chains. For all i, we say that the i-th chain is an “|ab chain” if xi = a

and yi = b. The first four chains in the dynamic network are thus all |01 chains, while the
remaining two are |00 chains. The adaptive adversary A′ in [25] (see Section 5) will make
adaptive decisions for all |01 chains, but does not need to do so for |00 chains. Applying the
idea from Section 6, the oblivious adversary A should thus make guesses for those four |01
chains. Note that A needs to be simulated by Alice and Bob. The difficulty is that Alice
does not know for which chains a guess should be made, since she does not know which
chains are |01 chains. In fact if she knew, she would have already solved Gdc in this instance.
Similar arguments apply to Bob.

A naive fix is to simply make a guess for each of the six chains. Imagine now that the
guess turns out to be wrong for the last chain, which is a |00 chain. Alice and Bob will then
ask the leaker to disclose (x6, y6). Such disclosure unfortunately directly reveals the answer
to the Gdc instance. This in turn, reduces the CC of Gdc to 0, rendering the reduction
meaningless. (Refusing to disclose (x6, y6) obviously does not work either, since the refusal
itself reveals the answer.)
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Our idea. To overcome this, we do not let Alice and Bob decide for which chains the
adversary A should make a guess. Instead, we directly let our leaker decide which indices
should be leaked: For every i where (xi, yi) 6= (0, 0), the leaker leaks the pair (xi, yi) with
half probability, to both Alice and Bob. In the earlier example, the leaker will leak each of
the indices 1 through 4 independently with half probability.

For any given i, define binary random variable s = 1 iff the leaker leaks index i. If
s = 1, then Alice and Bob will “fabricate” a wrong guess for the adversary A that they
are simulating, so that the guess of A is wrong (and hence index i needs to be leaked).
Specifically, Alice and Bob examine the coin flip outcomes of the protocol P to determine
the value of z, and then set the guess c of A to be c = z̄. (Recall that z indicates whether
the middle node is sending in round ti + 1.) In such a case, the decision λA of A will be
λA = c = z̄. On the other hand, if s = 0 (meaning that index i is not leaked), then Alice and
Bob let A behave exactly the same as the adaptive adversary A′ in Section 5. In particular,
if A′ makes an adaptive decision λA′ = z for this chain, then the decision λA of A will also
be λA = z (i.e., as if A guessed correctly). Combining the two cases gives λA = z⊕ s.

Obviously A here is no longer oblivious (since λA now depends on z), which seems to
defeat the whole purpose. Fortunately, this adaptive adversary A is special in the sense
that all the adaptivity (i.e., z) has been “sanitized” by taking XOR with the independent
coin of s. Intuitively, this prevents A from effectively adapting. The following discussion
will formalize and prove that such an A is no more powerful than an oblivious adversary, in
terms of incurring the cost of a protocol.

Formal framework and results. Without loss of generality, we assume that an adversary
makes binary decisions that fully describe the behavior of the adversary. An adversary is
deterministic if its decisions are fixed given the protocol’s coin flip outcomes, otherwise it is
randomized. Consider any deterministic adaptive adversary A′. A decision λA′ made by A′

is called adaptive if λA′ can be different under different coin flip outcomes of the protocol. A
randomized adaptive adversary A is called a sanitized version of A′, if A behaves the same as
A′ except that A sanitizes all adaptive decisions made by A′ and also an arbitrary (possibly
empty) subset of the non-adaptive decisions made by A′. Here A sanitizes a decision λA′

made by A′ by setting its own decision λA to be λA = λA′ ⊕ s, where s is a separate fair
coin and is independent of all other coins. We also call the above A as a sanitized adaptive
adversary. In our discussion above, λA′ = z, while λA = z ⊕ s = λA′ ⊕ s. The following
simple theorem, proven in the full version [16] of this paper, confirms that A is no more
powerful than an oblivious adversary:

I Theorem 3. Let cost(P,A, CP, CA) be any deterministic function (which the adversary
aims to maximize) of the protocol P, the adversary A, the coin flip outcomes CP of P, and the
coin flip outcomes CA (if any) that may also influence the behavior of A. For any protocol P,
any deterministic adaptive adversary A′, and its sanitized version A, there exists a determ-
inistic oblivious adversary B such that ECP

[cost(P,B,CP,−)] ≥ ECP,CA
[cost(P,A,CP,CA)].

Furthermore, for every CP in the support of CP, there exists CA in the support of CA, such
that B’s decisions are exactly the same as the decisions made by A under CP and CA.

Summary of this section. Recall that A′ denotes the adaptive adversary used in [25] and
reviewed in Section 5. Based on the discussion in this section, our reduction from Gdc
(with a leaker) to Consensus will use a sanitized adaptive adversary A for the dynamic
network. A behaves exactly the same as A′ except: For each i-th chain where A′ makes
an adaptive decision λA′ for that chain, A sets its own decision λA for that chain to be
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λA = λA′ ⊕ s. Here s denotes whether index i is leaked by the leaker. Theorem 3 confirms
that the consensus protocol P’s end guarantees, even though P was designed to work against
oblivious adversaries instead of adaptive adversaries, will continue to hold under A.

8 Communication Complexity with The Leaker

To get our final Consensus lower bound , the next key step is to prove a lower bound on
the CC of Gdc with the leaker. At first thought, one may think that having the leaker will
not affect the CC of Gdc much, since i) the leakable pairs have no impact on the answer to
the problem and are hence “dummy” parts, and ii) the leaker only leaks about half of such
“dummy” parts. As a perhaps surprising example, Lemma 1 in the full version [16] of this
paper shows that having the leaker reduces the CC of Gdc16

√
n ln 1

δ ,2
n from Ω(

√
n) to 0. This

implies that the impact of the leaker is more subtle than expected. In particular, without a
careful investigation, it is not even clear whether the CC of Gdc with our leaker is large
enough to translate to our intended Ω(d+ poly(m)) lower bound on Consensus.

This section will thus do a careful investigation and eventually establish a formal connec-
tion between the CC with the leaker (Lδ) and the CC without the leaker (Rδ):

I Theorem 4. For any constant δ ∈ (0, 1
2 ), there exist constants c1 > 0 and c2 > 0 such

that for all n, g, q, and n′ = c2
√
n/(q1.5 log q), Lδ(Gdcg,qn ) ≥ c1Rδ(Gdcg,qn′ ).

Later we will see that the lower bound on Gdc with our leaker as obtained in the above
theorem (combined with Theorem 2) is sufficient for us to get a final Ω(d+ poly(m)) lower
bound on Consensus. The theorem actually also holds for many other problems beyond
Gdc, though we do not present the general form here due to space limitations.

8.1 Our Approach and Key Ideas
While we will only need to prove Theorem 4 for Gdc, we will consider general two-party
problem Π, since the specifics of Gdc are not needed here. We will prove Theorem 4 via a
reduction: We will construct a protocol Q for solving Πn′ without the leaker, by using an
oracle protocol P for solving Πn with the leaker, where n′ is some value that is smaller than
n. Such a reduction will then lead to Rδ′(Πn′) = O(Lδ(Πn)).

We will call each kind of leakable pairs as a leakable pattern. For example, Gdc1,2
n has

leakable patterns of (1, 1), (0, 1), and (1, 0). Note that leakable patterns are determined by
the problem Π and not by an instance of the problem. We use k ∈ [0, q2] to denote the total
number of leakable patterns for Π whose inputs are q-ary strings. For Gdcg,qn , k = 2q − 1.

Simulating the leaker via padded pairs. The central difficulty in the reduction is that
Alice and Bob running Q need to simulate the leaker, in order to invoke the oracle protocol
P. (Note that P here is the two-party protocol, and has nothing to do with the Consensus
protocol.) This is difficult because each party only knows her/his own input. Our first step
to overcome this difficulty is to pad known characters to the inputs and then leak only those
padded characters, as explained next.

Let (X ′, Y ′) be the given input to Q. Assume for simplicity that (2, 1) is the only leakable
pattern in Π, and consider the problem instance in Figure 2 where X ′ = 02 and Y ′ = 01.
Alice and Bob will append/pad a certain number of occurrences of each leakable pattern
to (X ′, Y ′). Let (X,Y ) denote the resulting strings after the padding. In the example in
Figure 2, Alice and Bob append 1 occurrence of (2, 1) to (X ′, Y ′) — or more specifically,
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leaked pair

from X’ and Y’
this pair was appended

0  1  1

0  2  2

these pairs originated

X = 0  2  2

0  1  1Y = 

0  2  2

0  1  1

2  0  2

1  0  1

2  0  2

1  0  1

2  2  0

1  1  0

2  2  0

1  1  0

2  0  2

1  0  1

2  2  0

1  1  0
0  2  2

0  1  1

by Alice and Bob

after leaking by the leaker after leaking by the leaker after leaking by the leaker

how
Alice
and

simulate
the
leaker

how the
leaker
behaves over
a distribution
of 3 inputs

permute and then leak the padded pair

Bob

Figure 2 How padding and permutation enable Alice and Bob to simulate the leaker. In this
example X ′ = 02, Y ′ = 01, X = 022, and Y = 011. Here to help understanding, we assume that the
leaker leaks exactly half of all the leakable pairs.

Alice appends 2 to X ′ and Bob appends 1 to Y ′. Doing so gives X = 022 and Y = 011. Note
that doing so does not involve any communication, since the leakable patterns are publicly
known. Imagine that Alice and Bob now invoke P using (X,Y ), where X = 022 and Y = 011.
Note that the two-party protocol P assumes the help from our leaker. Alice and Bob can
easily simulate the leaking of (x3, y3), since (x3, y3) is the padded pair and they both know
that the pair is exactly (2, 1). However, (x2, y2) is also a leakable pair. Alice and Bob still
cannot simulate the leaking of this pair, since this pair originated from (X ′, Y ′) and they do
not know the value of this pair.

To overcome this, Alice and Bob use public coins to generate a random permutation,
and then use the permutation to permute X and Y , respectively (Figure 2). This step
does not involve communication. For certain problems Π (e.g., for Gdc), one can easily
verify that such permutation will not affect the answer to Π. Such permutation produces an
interesting effect, as illustrated in Figure 2. The upper part of Figure 2 plots the 6 possible
outcomes after the permutation, for our earlier example of X = 022 and Y = 011. Before
the permutation, the last pair in (X,Y ) is a padded pair. Imagine that Alice and Bob leak
this pair. Now after the permutation, this leaked pair will occupy different indices in the 6
outcomes of the permutation.

The bottom part of Figure 2 illustrates the (real) leaker’s behavior over certain inputs.
To help understanding, assume here for simplicity that the leaker leaks exactly half of all the
leakable pairs. Now consider 3 different inputs (022, 011), (202, 101), and (220, 110). One
can see that the behavior of the leaker over these 3 inputs (see Figure 2) exactly matches
the result of permutation as done by Alice and Bob. Hence when Alice and Bob feed the
result of the permutation into P while leaking the padded pair, it is as if P were invoked
over the previous 3 inputs (each chosen with 1/3 probability) together with the real leaker.
This means that P’s correctness and CC guarantees should continue to hold, when Alice and
Bob invoke P while leaking only the padded pair.

How many pairs to leak. Imagine that (X ′, Y ′) contain o pairs of (2, 1), and Alice and
Bob pad p pairs of (2, 1) to (X ′, Y ′). The result of the padding, (X,Y ), will contain o+ p

pairs of (2, 1). Let f be the number of (2, 1) pairs in (X,Y ) that should be leaked, which



I. Jahja, H. Yu, and Y. Zhao 29:13

Protocol 1: Our δ′-error protocol Q for solving Πn′ without our leaker. Q invokes
the δ-error oracle two-party protocol P that solves Πn with our leaker. The following
only shows Alice’s part of Q. Bob’s part of Q can be obtained similarly.

Input :X ′, n, n′, δ, δ′, where δ < δ′

1 s← Rδ′ (Πn′ )
4 log q ; foreach j = 1, . . . , k do vj ← 0 ;

2 repeat s times do
3 draw a uniformly random integer i ∈ [1, n′] using public coins;
4 send x′i to Bob and receive y′i from Bob ;
5 foreach j = 1, . . . , k do if (x′i, y′i) equals the j-th leakable pattern then vj ← vj + n′

s
;

6 end
/*** Here hj is the number of times that the j-th leakable pattern is padded to (X ′, Y ′).
***/

7 h← 2n′ + 500
(δ′−δ)2 (k2 + kn′2

2s ln 24k
δ′−δ );

8 foreach j = 1, . . . , k − 1 do hj ← h ;
9 hk ← n− n′ − (k − 1)h; if hk < h then generate an arbitrary output and exit;

10 foreach j = 1, . . . , k do
11 draw an integer bj from the binomial distribution B(hj+vj

2 ) using public coins ;
// B(µ) is the distribution for the number of heads obtained when flipping 2µ fair coins.

12 if bj > hj then bj ← hj ;
13 let (a, b) be the j-th leakable pattern ;
14 append hj copies of a to X ′, and flag the first bj indices of these hj indices as “to be

leaked”;
15 end
16 generate a uniformly random permutation M using public coins;
17 X←M(X ′) /* the flags in X ′ will be treated as part of X ′ and be permuted as well. */;
18 invoke P (together with the other party) using X as input, while leaking all those indices

that are flagged, until either P outputs or P has incurred ( 6
δ′−δ )cc(P) bits of

communication ;
/* when leaking index i, both x′i and y′i will be given to P — this can be done since a leaked
index here must correspond to a padded pair at Line 14 */;

19 if P has incurred ( 6
δ′−δ )cc(P) bits of communication then exit with an arbitrary output ;

20 else output P’s output and exit ;

obviously follows a binomial distribution with a mean of o+p2 . Ideally, Alice and Bob should
draw f from the above binomial distribution, and then simulate the leaking of f pairs of
(2, 1). (They can do so as long as f ≤ p — with proper p, we easily throw Pr[f > p] into the
error.) The difficulty, however, is that Alice and Bob do not know o, and hence cannot draw
f with the correct mean of o+p2 .

To overcome this, Alice and Bob will estimate the value of o by sampling: For each
sample, they use public coin to choose a uniformly random i ∈ [1, n′], and then send each
other the values of x′i and y′i. They will spend total Rδ′ (Πn′ )

2 bits for doing this, so that such
sampling is effectively “free” and does not impact the asymptotic quality of the reduction.
Alice and Bob will nevertheless still not obtain the exact value of o. This means that the
distribution they use to draw f will be different from the distribution that the (real) leaker
uses. Our formal proof will carefully take into account such discrepancy.
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8.2 Formal Reduction and Final Guarantees
Pseudo-code. Protocol 1 presents the protocol Q for solving Πn′ without our leaker, as run
by Alice. Q internally invokes the oracle two-party protocol P, where P solves Πn with our
leaker. At Line 1–6, Alice and Bob first exchange sampled indices to estimate the occurrences
of each leakable pattern. Next Line 7–9 calculate the amount of padding needed. Line 10–15
do the actual padding, and then for each leakable pattern, flag a certain number of padded
pairs as “to be leaked”. At Line 16–20, Alice and Bob do a random permutation to obtain
(X,Y), and then invoke P on (X,Y) while leaking all those flagged pairs.

Final properties of Q. The full version [16] of this paper will prove that Q solves Π without
our leaker, with an error of δ + 11

12 (δ′ − δ), while incurring Rδ′ (Πn′ )
2 + 5.5cc(P) bits of

communication. This will eventually lead to the proof of Theorem 4 (see the full version [16]
of this paper).

9 Consensus Lower Bound under Oblivious Adversaries

Following is our final theorem on Consensus under oblivious adversaries:

I Theorem 5. If the nodes only know a poor estimate m′ for m such that |m
′−m
m | reaches 1

3 or
above, then a 1

10 -error Consensus protocol for dynamic networks with oblivious adversaries
must have a time complexity of Ω(d+m

1
12 ) rounds.

Our proof under oblivious adversaries partly builds upon the previous proof under adaptive
adversaries [25], as reviewed in Section 5. The key difference is that we reduce from Gdc
with our leaker to Consensus. The complete proof is lengthy and tedious as it needs to build
upon the lengthy proof in [25]. Since Section 7 and 8 already discussed the key differences
between our proof and [25], we leave the full proof to the full version [16] of this paper, and
only provide an overview here on how to put the pieces from Section 7 and 8 together.

Consider any oracle Consensus protocol P with 1
10 error. Let tc(d,m) denote P’s time

complexity when running over dynamic networks controlled by oblivious adversaries and with
d diameter and m nodes. As explained in Section 5, the crux will be to prove tc(8,m) ≥ m 1

12 .
To do so, we consider Gdcg,qn with n = m−4

3 , q = 20tc(8,m) + 20, and g = 15q ln q. To solve
Gdcg,qn (X,Y ), Alice and Bob simulate P in the following way: In the simulation, the input
(X,Y ) is mapped to a sanitized adaptive adversary A that determines the topology of the
dynamic network. Roughly speaking, if Gdcg,qn (X,Y ) = 1, the resulting dynamic network
will have a diameter of 8. Even though A is an adaptive adversary, by Theorem 3 in Section 7,
P’s time complexity should remain tc(d,m) under A. Hence P should decide within tc(8,m)
rounds on expectation. If Gdcg,qn (X,Y ) = 0, then the resulting dynamic network will have a
diameter of Θ(q). For P to decide in this dynamic network, we prove that it takes at least
roughly q

2 rounds. Note that q
2 > 10tc(8,m) — in other words, it takes longer for P to decide

if Gdcg,qn (X,Y ) = 0. Alice and Bob do not know the other party’s input, and hence does
not have full knowledge of the dynamic network. But techniques from [25], together with
the help from our leaker, enable them to still properly simulate P’s execution. Finally, if P
decides within 10tc(8,m) rounds, Alice and Bob claim that Gdcg,qn (X,Y ) = 1. Otherwise
they claim Gdcg,qn (X,Y ) = 0. Our proof will show that to solve Gdcg,qn with our leaker,
using the above simulation, Alice and Bob incur Θ(tc(8,m) · logn) bits of communication.
We thus have Θ(tc(8,m) logn) ≥ Lδ(Gdcg,qn ). Together with the lower bound on Lδ(Gdcg,qn )
from Theorem 4 in Section 8 (and Theorem 2 in Section 4), this will lead to a lower bound
on tc(8,m).
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Abstract
Traditional mutual exclusion locks are not resilient to failures: if there is a power outage, the
memory is wiped out. Thus, when the system comes back on, the lock will have to be restored
to the initial state, i.e., all processes are rolled back to the Remainder section and all variables
are reset to their initial values. Recently, Golab and Ramaraju showed that we can improve this
state of the art by exploiting the Non-Volatile RAM (NVRAM). They designed algorithms that,
by maintaining shared variables in NVRAM, allow processes to recover from crashes on their
own without a need for a global reset, even though a crash can wipe out the local memory of a
process.

We present a Recoverable Mutual Exclusion algorithm using the commonly supported CAS
primitive. The main features of our algorithm are that it satisfies FCFS, it ensures that each
process recovers in a wait-free manner, and in the absence of failures, it guarantees a worst-case
Remote Memory Reference (RMR) complexity of O(lgn) on both Cache Coherent (CC) and
Distributed Shared Memory (DSM) machines, where n is the number of processes for which the
algorithm is designed. This bound matches the Ω(lgn) RMR lower bound by Attiya, Hendler,
and Woelfel for Mutual Exclusion algorithms that use comparison primitives.
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1 Introduction

Recent research has focused on exploiting non-volatile main memory to design algorithms that
can tolerate process crashes. The underlying idea of these algorithms is that upon a crash a
process executes a recovery code that consults the shared state stored in the non-volatile
main memory and brings the system back to a usable state. Due to an explicit recovery
procedure to emerge out of a crash, these algorithms are called recoverable algorithms. We
present a recoverable algorithm for the FCFS Mutual Exclusion problem.
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Let us recall the traditional (non-recoverable) mutual exclusion problem [2], which captures
the requirements of a system of processes that share an exclusive resource – a resource that
can be accessed by only one process at a time. Specifically, we consider a system consisting
of n > 1 asynchronous processes, where each process cycles through four sections of code –
Remainder, Try, Critical Section (CS), and Exit. Initially, all processes are in the Remainder
section. When a process gets interested in accessing the resource, it executes the Try section,
where it competes with other processes for exclusive access to the resource. When the Try
section terminates, the process moves to CS, where it actually accesses the resource. When
the process no longer needs the resource, it executes the Exit section to relinquish its access
to the resource. A standard version of the mutual exclusion problem is to come up with code
for the Try and Exit sections so that the following properties are ensured:
(i) mutual exclusion: at most one process is in the CS at any time;
(ii) bounded exit: every process completes the exit section in a bounded number of its steps;

and
(iii) starvation freedom: if a process is in the Try section, it eventually enters the CS (under

the assumptions that every process that enters the CS eventually leaves the CS, and no
process permanently stops taking steps while in the Try or Exit sections).

We could additionally require the fairness property FCFS [8] which, informally, states that
processes enter the CS in the order in which they request the CS. A mutual exclusion lock is
a solution to the mutual exclusion problem.

A traditional mutual exclusion lock cannot gracefully tolerate failures. In particular, if a
process crashes, its memory – including its Program Counter – can lose their contents. As
a result, when a process restarts after a crash, it cannot tell where in the algorithm it had
failed and from where and how to resume its execution. Thus, process crashes can render a
lock permanently unusable. One solution would be a global reset: to recover from a crash,
roll back all processes to the Remainder section and set all variables to their initial values.
There are two disadvantages to such a global reset. First, if the crash occurs while a process
is in the CS and while the data structures manipulated in the CS are in an inconsistent state,
the inconsistency will persist even after the reset. Second, a local failure (e.g., the crash of a
single process) causes the reset of the entire system, which can be unacceptable in very large
systems where the probability that some process or the other crashes is non-negligible.

It would be ideal if the lock can be designed so that the failure of some processes do
not affect other processes and even the failed processes, when they eventually restart, can
proceed as if they had never failed. Golab and Ramaraju’s recoverable mutual exclusion
algorithm [4] shed some light on how one might realize this goal by cleverly exploiting hybrid
architectures [10] that use NVRAM (nonvolatile random access memory) technology for
shared memory. When a process crashes, all its local variables are wiped out. So, when a
process restarts after a crash, the general idea for an algorithm is that the process could
consult the non-volatile shared memory to reconstruct its lost state and then resume its
execution of the algorithm from the point where it crashed, making it seem like the crash
never occurred. For instance, if a process crashes while in the CS, after restart a recovery
procedure could put the process right back in the CS, making the crash appear simply like a
long delay.

Ensuring such seamless recovery while also guaranteeing efficiency is where the intellectual
challenge lies. At first glance it might seem that if each process stores its state in the non-
volatile memory after every step, then when restarting after a crash, the process should
be able to easily restore its state, thereby rendering the design of a recoverable algorithm
easy. This strategy however falls short because, even with such a laborious storing of its
state, when a process attempts to restore its state after a crash, if the stored value for its
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program counter is k, it cannot distinguish whether it had crashed before or after executing
the instruction at k. This seemingly small ambiguity makes the design of an algorithm
challenging. To appreciate this fact, a reader familiar with the MCS lock should imagine the
plight of a recovering process that crashed right after the initial swap operation.

We present an implementation of a recoverable lock using CAS that has the following
merits:
(i) it satisfies FCFS,
(ii) its recovery is wait-free, and
(iii) it has a Remote Memory Reference (RMR) complexity of O(f + lgn) on both Cache

Coherent (CC) and Distributed Shared Memory (DSM) machines, where n is the number
of processes for which the lock is designed and f is the number of times a process crashes
between the time it invokes and exits the lock.

The wait-free recovery of our algorithm ensures that when a process that crashes in the CS
subsequently restarts, it gets back into the CS in a bounded number of its own steps, i.e.,
without any waiting whatsoever, regardless of however many other processes have failed or
are slow. Attiya, Hendler, and Woelfel proved a lower bound that the RMR complexity is
Ω(lgn) for even a non-recoverable CAS-based lock [1]. Thus, our algorithm adds only O(1)
RMRs per crash. It would be interesting to resolve if the O(f + lgn) complexity of our
algorithm is optimal.

In comparison, Golab and Ramaraju’s locks [4] do not satisfy FCFS and, except for their
tournament based algorithm, they do not have wait-free recovery. Ramaraju’s lock [11]
satisfies FCFS, but it works only on CC machines and uses the memory-to-memory swap
primitive, which is not supported on any of the current multiprocessors. Golab and Hendler
adapt the MCS lock in three different ways to implement recoverable locks. Two of their
locks, although not claimed in their paper, appear to satisfy FCFS. One of these two works
only on CC machines; further, even a process that crashes just once can incur Ω(n) RMRs
in the worst case (but on the positive side a process that does not crash incurs at most O(1)
RMRs). The other algorithm of theirs that satisfies FCFS uses a double word primitive,
which is not supported on any of the current multiprocessors.

Recoverable algorithms are typically designed by adapting existing (non-recoverable)
mutual exclusion algorithms. Golab and Ramaraju’s recoverable algorithms [4] adapt Yang
and Anderson’s tournament algorithm [12]. Ramaraju’s [11] and Golab and Hendler’s
recoverable algorithms [3] adapt Mellor-Crummey and Scott’s algorithm [9]. Our algorithm
in this paper adapts Jayanti’s mutual exclusion algorithm [7].

2 Model and Specification

The system consists of n processes named 1, 2, . . . , n and atomic shared variables that support
read, write, and compare&swap operations. Each process has five sections of code – Remainder,
Recover, Try, CS, and Exit. A recoverable mutual exclusion algorithm specifies the code for
Recover, Try, and Exit sections of all processes, and the initial values for all local and shared
variables. We make no assumptions about the Remainder section and CS other than that
none of the shared and local variables of the mutual exclusion algorithm are modified by
these sections. All processes are initially in the Remainder section.

2.1 Configuration and step
A configuration of the system is specified by the values of all shared variables and the states
of the n processes, where the state of a process p is in turn specified by the value of PCp
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(p’s program counter) and the values of p’s local variables. The configuration changes when
a process takes a step. There are two types of steps that a process can take – normal step or
crash step – explained as follows.

A normal step by a process p from a configuration C causes p to perform the instruction
that PCp points to in C. We assume that in a normal step p performs a single operation
on a single shared variable, and p’s state changes based on the value returned by the
shared variable. A special case occurs if p is in the Remainder section: if p is in the
Remainder section in a configuration C, a normal step by p from C causes p to transfer
control to the Recover section and execute the first instruction of the Recover section.
The flow of control from other sections is modeled as usual. If p is in the Try section,
after a normal step p either remains in Try or moves to CS. If p is in the CS, after a
normal step p moves to the Exit section. If p is in the Exit section, after a normal step p
either remains in Exit or moves to the Remainder section. If p is in the Recover section,
after a normal step p can be in any of the sections, and the exact rules are specified in
Section 2.4.
A crash step models a process crash. We only model process crashes that occur outside
the Remainder section. Specifically, if a process p is in the Recover, Try, CS, or Exit
sections in a configuration C, then a crash step by p from C sets PCp to the Remainder
section and sets all the local variables of p to arbitrary values. (The crash step does not
affect any shared variables since they are assumed to reside in the non-volatile memory,
which is unaffected by the crash failures of processes.)

2.2 Execution and Attempt
From the above, we see that a step is determined by which process takes the step and whether
the step is normal or crash. Thus, a step is an element of {1, 2, . . . , n} × {normal, crash}. A
schedule is any finite or infinite sequence of steps. An execution corresponding to a schedule
σ = s1, s2, . . . is C0, s1, C1, s2, C2, . . ., where C0 is the initial configuration specified by the
mutual exclusion algorithm, C1 is the configuration after step s1, C2 is the configuration
after steps s1 and s2, and so on.

Let E be an execution and s be a step by a process p from a configuration C in E. We
say p initiates an attempt in step s if p is in the Remainder section in C and p’s latest step
before s is a normal step. We say p completes an attempt in step s′ if s′ is a normal step by p
that moves p to the Remainder section. An attempt by p in E is a fragment of E that starts
with an attempt initiation step s by p and ends with p’s earliest attempt completion step s′

that follows s. We say p is active in a configuration C if C occurs in an attempt by p. It is
important to note that p might visit the Remainder section multiple times during an attempt
because of its crash steps; thus, p can be active even when it is in the Remainder section.

2.3 Basic properties
Mutual exclusion, bounded exit, and starvation-freedom are properties normally required
of any algorithm. The last two properties require suitable adaptation from how they are
normally stated for the failure-free setting.
Mutual Exclusion: An algorithm satisfies Mutual Exclusion if at most one process is in the

CS in every configuration of every execution.
Bounded Exit: The bounded exit property stipulates that a process be able to relinquish its

access to the CS without being obstructed by other processes. Formally, an algorithm
satisfies Bounded Exit if there is an integer b such that, for all executions E and for all
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processes p, if p is in the Exit section in any configuration in E and the subsequent steps
of p in E are normal steps, then p moves to the Remainder section in at most b of its
own steps.

Starvation Freedom: Intuitively, starvation-freedom requires that every process that initiates
an attempt eventually enters the CS. However, it is impossible to satisfy this condition
unless each process that enters the CS eventually gives up the CS, no process fails infinitely
many times in an attempt, and no active process permanently stops taking steps. The
last condition means that if a process crashes, it must eventually restart and perform
normal steps. We formalize starvation-freedom as follows.
An execution E is fair if, for all processes p, we have:
(i) if p is in the CS and does not crash while there, then p subsequently enters the Exit

section;
(ii) p has only a finite number of crash steps in any one attempt; and
(iii) if p initiates an attempt then either p completes that attempt or p has an infinite

number of normal steps.
An algorithm satisfies Starvation Freedom if in every fair execution every process that
initiates an attempt enters the CS in that attempt.

2.4 Well-formedness: how control transfers upon crash and restart
We know from the definition of a normal step that control moves from the Remainder section
to the Recover section when a process initiates a new attempt or when a process restarts
after a crash during an ongoing attempt. Control moves out of the Recover section either
because the process crashes (and the crash step moves the control to Remainder) or because
the process eventually completes the Recover section at some normal step. In the latter case,
where control moves to is governed by the following expectations:
(i) a process must enter the CS in each of its attempts,
(ii) if a process enters the Recover section because of a crash in the CS, then the Recover

section will put the process right back in the CS, and
(iii) if a process enters the Recover section because of a crash in the Exit section, the Recover

section can put the process back in the Exit section, bypassing the Try and CS.
More specifically, let s be a normal step by p in which p completes the Recover section, and
s′ be the latest step by p before s in which p initiates an attempt or p crashes outside of the
Recover section (i.e., in Try, CS, or Exit). Then, the rules for where the control moves to
after step s are as follows:

If s′ is an attempt initiation step, then s moves control to Try section or CS.
Informally, if p enters the Recover section from the Remainder section due to an attempt
initiation step, when control transfers out of the Recover section eventually due to a
normal step, it transfers to Try section or CS.
If s′ is a crash step while p is in Try section, then s moves control to Try section or CS.
Informally, if p crashes in the Try section and subsequently enters the Recover section,
when control transfers out of the Recover section eventually due to a normal step, it
transfers to Try section or CS.
If s′ is a crash step while p is in CS, then s moves control to CS.
Informally, if p crashes in the CS and subsequently enters the Recover section, when
control transfers out of the Recover section eventually due to a normal step, it transfers
to CS.
If s′ is a crash step while p is in Exit, then s moves control to CS, Exit section, or
Remainder section.
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Informally, if p crashes in the Exit section and subsequently enters the Recover section,
when control transfers out of the Recover section eventually due to a normal step, it
transfers to CS, Exit section, or Remainder section.

An execution E is well-formed if all of the above rules are met in E. An algorithm
satisfies Well-formedness if every execution of the algorithm is well-formed.

2.5 Critical Section Reentry

Suppose that a process p crashes while in the CS. Well-formedness guarantees that, once
p restarts, Recover section puts p back in the CS. Since the data structures that p was
manipulating in the CS could be in an inconsistent state at the time of p’s crash, it is
important that no other process visits the CS between p’s crash in the CS and its subsequent
reentry into the CS. Golab and Ramaraju captured this requirement through a property that
they called Critical Section Reentry (CSR), stated as follows.

An algorithm satisfies Critical Section Reentry if, for all executions E, if a process p
crashes inside the CS, then no other process enters the CS before p reenters the CS.

2.6 Wait-free Recovery

Intuitively, the purpose of the Recover section is to enable a process that is restarting after a
crash to repair its state and resume from where it was before the crash. It is desirable if a
process can do this recovery without being obstructed by other processes, neither by their
relative speeds nor by their crashes. Accordingly, we define:

An algorithm satisfies Wait-free Recovery if there is a bound b such that, for all executions
E and for all processes p, if p is in the Recover section in a configuration C of E and the
subsequent steps of p in E are normal steps, then p moves out of the Recover section in at
most b of its own steps.

Wait-free recovery, together with well-formedness, yields two significant benefits:
1. When a process that crashed in the CS restarts, it gets back into the CS in a bounded

number of its own steps, regardless of whether other processes are slow, fast, or have
crashed.

2. Similarly, when a process that crashed in the Exit restarts, it gets back into the CS or
Exit in a bounded number of its own steps, which means that it can complete the protocol
without any obstruction from others.

Furthermore, Wait-free Recovery implies Critical Section Reentry, as shown below.

I Lemma 1. Wait-free Recovery, together with Well-Formedness and Mutual Exclusion,
implies Critical Section Reentry.

Proof. Suppose that p crashes inside the CS at some time t. When p subsequently restarts,
Well-Formedness and Wait-free Recovery ensure that p will reenter the CS at some time t′.
Assume, for a contradiction, that Critical Section Reentry is violated because some process q
gets into the CS at some time τ such that t < τ < t′. Let C be the configuration at time
τ . In C, q is in the CS and p is in the Remainder or Recover sections. If p alone takes
steps from C, then Well-Formedness and Wait-free Recovery ensure that p will enter the CS,
thereby violating Mutual Exclusion. J
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2.7 FCFS
Intuitively, FCFS (First Come First Served) requires that processes enter the CS in the order
in which they request the CS [8]. For the traditional model where processes are assumed
not to crash, Lamport [8] formalized this intuition by (i) stipulating that the Try section
be structured as a bounded section of code, called the doorway, followed by the rest of the
Try section code that he called the waiting room, and (ii) requiring that if a process p is in
the waiting room in an attempt A before a process p′ initiates an attempt A′, then p′ does
not enter the CS in attempt A′ before p enters the CS in attempt A. For the traditional
model where processes are assumed not to crash, an equivalent formulation that avoids this
syntactic separation of Try into doorway and waiting room would be as follows:

An algorithm satisfies FCFS if there is a bound b such that, for all executions E and
for all attempts A and A′ in E, if A is an attempt by p, A′ is an attempt by p′, and p
executes b steps in attempt A before p′ initiates attempt A′, then p′ does not enter
the CS in attempt A′ before p enters the CS in attempt A.

In the current setting, in order to get to the CS, a process needs to execute not only
the Try section, but also the Recover section where the attempt is initiated. Therefore,
formulating FCFS via doorway and waiting room is cumbersome. Consequently, we have
chosen to adapt the above stated alternative specification to the current setting. Two issues
arise in this exercise, as we discuss below.

A process that initiates an attempt might crash before completing the b steps required
to establish its “priority”. Therefore, to prohibit p′ from entering the CS before p, the
specification should require that p completes b consecutive normal steps before p′ initiates
its attempt.
A process might enter and leave the CS multiple times within the same attempt if it
crashes repeatedly. In particular, if a process leaves the CS and crashes in the Exit
section, subsequent execution of the Recover section can put the process back in the CS.
Therefore, the final phrase in the FCFS specification that states “p′ does not enter the
CS in attempt A′ before p enters the CS in attempt A” is revised to “p′ does not enter
the CS in attempt A′ before p first enters the CS in attempt A”.

Putting these elements together, the final specification of FCFS is as follows. Below, when
we say “p performs b consecutive normal steps in attempt A before p′ initiates attempt A′”
we mean that the sequence of steps that p performs in attempt A (before p′ initiates A′)
includes b consecutive steps all of which are normal.

An algorithm satisfies FCFS if there is a bound b such that, for all executions E and for
all attempts A and A′ in E, if A is an attempt by p, A′ is an attempt by p′, and p performs b
consecutive normal steps in attempt A before p′ initiates attempt A′, then p′ does not enter
the CS in attempt A′ before p first enters the CS in attempt A.

2.8 RMR complexity
An operation by a process p on a shared variable X is considered a Remote Memory Reference
(RMR) if it involves traversing the processor-memory interconnect. On a Cache-Coherent
(CC) machine, a read of X by p counts as an RMR if X was not in p’s cache (in which case
the read brings X into p’s cache), and a non-read operation on X by p always counts as an
RMR and removes X from all caches. On a Distributed Shared Memory (DSM) machine,
shared memory is partitioned and each process hosts a partition. An operation by p on X,
whether a read or a non-read, is counted as remote if and only if X is not in p’s partition.
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For mutual exclusion algorithms that are designed to run on a CC or a DSM machine, the
standard performance metric is the RMR complexity, which is the worst case number of
RMRs that a process performs in a single attempt. Unlike in a non-recoverable algorithm
where a process executes the Try and Exit sections exactly once in an attempt, a process in
the current setting can execute the Recover, Try, and Exit sections an unbounded number of
times within the same attempt because of its repeated crashes during the attempt. Therefore,
we express the RMR complexity of an attempt in terms of n and f , where n is the number
of processes for which the algorithm is designed and f is the number of times the process
crashes during the attempt.

2.9 Specification of Recoverable Mutual Exclusion
The recoverable mutual exclusion problem is to design an algorithm that satisfies Mutual
Exclusion, Well-Formedness, Starvation Freedom, Bounded Exit, and Critical Section Reentry.
We solve this problem with an algorithm that additionally satisfies FCFS and Wait-free
Recovery.

3 Important differences with prior works

Golab and Ramaraju’s work [4] is the first to explore the use of non-volatile memory to help
processes recover from crash when solving mutual exclusion. The subsequent work by Golab
and Hendler [3] uses the same model. Our model and specification differs from these in two
significant ways.

In Golab and Ramaraju’s model, the Recover section always puts a process p in Try,
thereby causing p to execute Try, CS, and Exit sections in that order each time it restarts
after a crash. Consequently, even if the crash occurs after p has completed the CS, when
p restarts, it is forced to compete once more for the CS (in the Try section). In contrast,
in our model the Recover section can put p in any of the sections. In particular, if p
crashes while in the Exit section, when p later restarts, the Recover section will put p
directly in CS, Exit, or Remainder, bypassing the needless repetition of Try.
The properties of wait-free recovery and well-formedness that we have defined differentiate
our two works, and have significant implication to how quickly a process can recover
after a crash. For instance, suppose that a process p crashes while in the CS. When
p subsequently restarts, our well-formedness and wait-free recovery properties together
ensure that p will get back into CS in a bounded number of its own steps, i.e., without
any waiting whatsoever regardless of however many other processes crashed or are slow.
In contrast, Golab and Ramaraju’s specification does not have such a guarantee.

We note that, given an algorithm A designed for our model, it is straightforward to
transform it into an algorithm A′ that conforms with Golab and Ramaraju’s model: if the
Recover section in A puts a process in Exit section, then the Recover section in A′ will make
p complete the Exit code (within the Recover section itself) and then send it to Try section.

4 An auxiliary min-array object

Our recoverable FCFS mutual exclusion algorithm, presented in the next section, relies on a
special object O that we call a min-array. A min-array O has n locations, one per process,
and supports two types of operations:
(i) write(v), which when executed by process p sets O[p] to v, and
(ii) findmin(), which returns the minimum value in the array.
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No hardware directly supports a min-array, so we implement it using read, write, and CAS
operations. Such an implementation of a min-array O specifies code for two procedures,
namely, O.write(p, v) that p can execute to set O[p] to v and O.findmin() that a process can
execute to get the minimum element in O. For the implementation to be useful in the design
of our algorithm, we require it to satisfy wait-freedom and idempotence, which are explained
below.

As always, wait-freedom means that if p invokes O.write(p, v) or O.findmin() and executes
the steps of that procedure without crashing, then p will complete and return from that
procedure in a bounded number of its own steps [5].
To explain what we mean by idempotence, let us begin with the notion of a partial
execution by p of a procedure Π, where Π is either O.write(p, v) (for a fixed v) or
O.findmin(). An execution of Π is partial if p invokes Π and performs an arbitrary
number of steps of Π, but does not run Π to completion. With most implementations,
if p executes Π partially and then reexecutes Π from the start, the implementation
can go completely haywire and return arbitrary responses. We however require the
implementation to behave gracefully in such a scenario because, if p crashes in the middle
of Π, by our model it goes to the Remainder section and subsequently when it starts
running again, it might reexecute Π. Motivated by this requirement, we define an epoch
of Π by p as consisting of one or more partial/complete executions of Π. We say the
epoch has length f if it consists of f partial/complete executions of Π. By idempotence
we mean that (i) if the epoch contains at least one complete execution of Π, then the
epoch linearizes to some point within the epoch; (ii) if the epoch does not contain a
complete execution of Π, then either the epoch never takes effect or it linearizes to some
point after the start of the epoch; and (iii) if the same process executes an epoch e of Π
and later an epoch e′ of a different procedure Π′, e′ will not linearize before e. (Reader
unfamiliar with linearizability is referred to [6].)

Jayanti designed a wait-free, linearizable implementation of a min-array [7] which, although
not claimed in his paper, is idempotent. That implementation uses LL/SC operations and
has an RMR complexity of O(lgn) for O.write(p, v) and O(1) for O.findmin(). We make
a simple modification so that the implementation uses CAS instead of LL/SC and has an
RMR complexity of O(f + lgn) for an epoch of O.write(p, v) of length f . We briefly describe
this implementation in the appendix and summarize the result below.

I Lemma 2. The algorithm in Algorithm 2 and 3 in the appendix presents a wait-free,
idempotent implementation of a min-array O using read, write, and CAS primitives. The
RMR complexity of an epoch of O.write(p, v) of length f is O(f + lgn) and the RMR
complexity of an epoch of O.findmin() of length f is O(f).

5 The Algorithm

Our Recoverable Mutual Exclusion algorithm is presented in Algorithm 1. We assume that
all the shared variables are stored in the Non-volatile Main Memory, and the local (or private)
variables are stored in the respective processor registers.

5.1 Shared variables and their purpose
We describe below the role played by each shared variable used in the algorithm.

Go[p]: This is a boolean flag that process p busywaits on, before entering the CS. This
variable is set to true by p at the start of its Try Section. When a process q makes p the
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Algorithm 1 Recoverable Mutual Exclusion Algorithm with FCFS and Wait-free Recovery.
Algorithm for process p.
Constants
P = {1, 2, . . . , n} // Set of process names.

Shared variables (stored in NVMM)
Registry : A min-array, initially empty.
CSowner ∈ (P × P) ∪ (⊥ × P), initially (⊥, 1); supports read, write, and CAS operations.
∀p ∈ P,Go[p] is a boolean initialized to true; supports read and write operations.
∀p ∈ P,Rem[p] is a boolean initialized to true; supports read and write operations.
∀p ∈ P,MyToken[p] is an integer initialized to ∞; supports read and write operations.
Token is an integer initialized to 0; supports read and CAS operations.

Private variables
∀p, gp is a boolean arbitrarily initialized, local to p.
∀p, tp is an integer arbitrarily initialized, local to p.
∀p, ip, jp, sp, αp contain a process name from P, all initialized arbitrarily, and local to p.

Recover Section
1. if Rem[p] == true goto Line 7
2. gp ← Go[p]
3. if ((sp,−)← CSowner) ∧ (sp 6=⊥)
4. if ¬Go[sp]
5. if (sp, p) == CSowner

if sp == p goto Line 16
else αp ← sp; goto Line 23

6. tp ←MyToken[p]
if ¬gp

if tp ==∞ goto Line 9
else goto Line 12

else if sp == p
if tp ==∞ goto Line 19
else goto Critical Section

else goto Line 21

Try Section
7. Go[p]← false
8. Rem[p]← false
9. tp ← Token
10. CAS(Token, tp, tp + 1)
11. MyToken[p]← tp
12. Registry.write(p, (tp, p))
13. if ((ip, jp)← CSowner) ∧ (ip ==⊥)
14. if Registry.findmin() == (tp, p)
15. if CAS(CSowner, (⊥, jp), (p, p))
16. Go[p]← true
17. wait till Go[p] == true

Exit Section
18. MyToken[p]←∞
19. Registry.write(p, (∞,∞))
20. CSowner← (⊥, p)
21. if ((−, αp)← Registry.findmin()) ∧ (αp 6=∞)
22. if CAS(CSowner, (⊥, p), (αp, p))
23. Go[αp]← true
24. Rem[p]← true

owner of the CS, q releases p from its busywait loop by assigning false to Go[p]. The
operations supported by Go[p] are read and write. To achieve the local-spin property,
Go[p] is allocated to p’s memory module.
Rem[p]: This is a boolean flag that process p uses during recovery to distinguish whether
p is active in an attempt or if p entered the Recover section from the Remainder section to
initiate a new attempt. This variable is set to false by p during its Try Section indicating
that it has initiated an attempt. p completes its attempt by setting Rem[p] to true in
the Exit Section. The operations supported by Rem[p] are read and write.
Token is an integer variable supporting read and CAS operations. Token is used to
implement a counter so that its values can be used to assign token numbers to processes
requesting the CS: in the Try section, a process reads Token to get its token number
and then increments Token. As a result, if p executes up to Line-10 and obtains a token
during an attempt A before q begins its attempt A′, p will get a smaller token number
than q (this fact helps achieve the FCFS and starvation-freedom properties).
Registry is a min-array that supports write and findmin operations. We require that
the two operations satisfy wait freedom and idempotence as mentioned in Section 4. In
our algorithm, Registry acts like a queue by holding the names of processes waiting to
enter the CS, and orders them according to their token numbers. Specifically, in the Try
section, a process p inserts in Registry an element (t, p) (Line 12), where t is p’s token
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number. When exiting, p deletes this element (Line 19). The elements in Registry
are ordered according to their token numbers: (t, p) < (t′, q) if t < t′ or t = t′ ∧ p < q.
Thus, the findmin operation returns (t, p), where p is the process in Registry with the
smallest token. If Registry is empty, findmin returns the special value (∞,∞).
MyToken[p] is an integer variable supporting read and write operations. It is used
by processes to remember the token numbers they use while registering their attempt.
A process may acquire a token, attempt to insert its entry into the Registry, and
crash while completing the insertion. So that it does not acquire a different token and
attempt to insert the new token into Registry after recovery from that crash, the process
remembers the token that it acquired by recording the token into MyToken[p].
CSowner: This variable holds a tuple both components of which hold process names.
The first component holds the name of the process that currently owns the CS. If no
process currently owns the CS, the first component holds the value ⊥. The second
component holds the name of the process that gave the ownership of the CS to a certain
process. A process may crash just after granting the ownership of CS to some process but
right before letting that process into CS, hence not setting the Go flag of that process
to true. We use the second component for recovery purposes in such a case so that
the process can easily remember that it needs to let the waiting process into the CS
which is made owner of the CS but not yet let into the CS. The operations supported by
CSowner are read, write, and CAS.

5.2 Informal description
We now describe informally the algorithm in Algorithm 1. When a process p wants to enter
the CS from the Remainder section, it executes an attempt initiation step. In this step it
executes the first instruction of Recover and finds that Rem[p] is true. Therefore, the process
proceeds to Line 7 in the Try section. It sets its Go flag (Line 7), and then signals that it
is now active in an attempt by setting Rem[p] to false (Line 8). It then proceeds to obtain
a token for itself and increments the global counter (Line 9-10). It also saves the token it
obtained for itself (Line 11), so that in the event of a crash it does not obtain a different token
and try registering its attempt with the new token. Then, it inserts its name, tagged with
its token, into the Registry (Line 12). If a process p executes normal steps upto Line 12 in
attempt A before q initiates an attempt A′, then q does not enter the CS in A′ before p first
enters the CS in A. After executing the Line 12, p tries to capture the CS on its own by first
confirming that the CS is free to be occupied (Line 13), the process with the smallest token in
the Registry is p itself (Line 14), and then attempting to capture the CS for itself (Line 15).
If p succeeds in capturing the CS, it sets its own Go flag to true (Line 16), informing itself
that it no longer needs to wait. Following this, p busy-waits until it is informed that it no
longer needs to wait (Line 17). It then enters the CS. When p leaves the CS, it first wipes
out the token that it obtained for the attempt (Line 18). It then removes its own name from
the Registry (Line 19), and marks the CS as available (Line 20). Following this, p tries to
capture the CS for a waiting process (Line 21-22) and informs the waiting process that it
no longer needs to wait (Line 23), if successful in capturing the CS. Whether p lets another
process into the CS or not, it completes the attempt by setting Rem[p] to true (Line 24) to
indicate that it is no longer active in an attempt.

Next we describe the Recover section. A process p may go to the Recover section due to
one of two reasons:
(i) p may crash,
(ii) p may initiate a new attempt due to an attempt initiation step.
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Therefore, p first reads Rem[p] to determine if it wants to initiate an attempt (Line 1). If so,
p proceeds to the Try Section. Otherwise, p reads its own Go flag so that it can decide later
where it crashed during the attempt (Line 2). p then checks if any process is currently the
owner of CS. The section of code on Lines 4-5 is executed when p learns that some process
owns the CS. Suppose p learns that some process owns the CS. Then p checks the Go flag of
that process to determine if that process was informed to no longer wait. If that process is
still waiting without any information, p checks if the CS is still owned by the same process,
and whether p installed that process as the owner. If that is so, p was either installing itself
as the owner, in which case it has to go back to the Try section (i.e. Line 16), or while
exiting p was installing some other process as the owner of the CS, in which case it has to
go to the Exit section again. If any of the checks at Lines 4-5 fail, p is not responsible in
informing any waiting process. If no process is the owner, then p definitely did not crash
while letting some process into the CS. Therefore, p proceeds to read its own token (Line 6).
Depending on p’s token value, Go flag, and the value of sp (used only to identify if p itself is
the owner of CS), p decides whether to go back to Try, CS, or Exit section.

5.3 The subtle features of the algorithm
From the above description it might not be clear why we perform certain operations in the
algorithm, namely,
(A) the need to set Rem[p] after setting Go[p] (Line 7-8),
(B) the need to read CSowner twice in the Recover section (Lines 3, 5).
We demonstrate below that the first feature is necessary to preserve Well-formedness. The
second feature is necessary to preserve Mutual Exclusion.

The need for feature A: In order to distinguish between a fresh attempt and a recovery
to an active attempt, we have to maintain the boolean variable Rem[p]. The placement of
the lines that modify Rem[p] is also important. Suppose, instead, we set Rem[p] to false in
the first line of the Try Section. Then it is possible for a process to re-initiate an already
completed attempt as we demonstrate in the following scenario. Process p initiates a new
attempt, obtains the lock and executes the CS, and continues to the Exit section. p executes
all the steps upto Line 24. Right when PCp = 24, p executes a crash step. The next steps that
p executes are from the Recover section. p notices that Rem[p] = true, MyToken[p] =∞,
and Go[p] = true. Since p didn’t crash at Line 23 (which it knows after reading CSowner),
it incorrectly concludes that it crashed somewhere in the Try section before obtaining a
token for itself. Therefore, p goes back to the Try section instead of the Exit section. This
violates Well-formedness. This problem would not arise with p if Rem[p] is set to false in
Line 8, because by reading Go[p] it can infer that the value of Go[p] is true due to its own
completed attempt. If p had not initiated an attempt, Go[p] would still be true, but Rem[p]
would also be true. Therefore, p can infer correctly that it needs to go to the Exit instead of
Try section.

The need for feature B: Suppose p crashes either at Line 16 or Line 23, i.e., while setting
the Go flag of some process. Then, during recovery, in order to conclude that p crashed just
before writing to the Go flag, p has to read CSowner and suppose the second component
contains p’s name, then it has to read the Go flag of the process whose name appears in
the first component of CSowner. Let s1 be the step when p reads CSowner the first time
for recovery. Let q be the process whose name p read in the first component of CSowner
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and p read its own name in the second component. Let s2 be the step when p reads Go[q].
Suppose p finds that Go[q] is false during s2. There are two cases applicable here:
(1) During s1 Go[q] was true,
(2) During s1 Go[q] was false.
In the first case, p had already let q into the CS. Between steps s1 and s2, q completed that
attempt (this would change the value of CSowner to something other than (q, p)), and later
came back for another attempt setting Go[q] back to false. Hence, p found Go[q] as false by
executing s2 in the first case. In the second case, q was actually somewhere in the Try during
s1 and s2 and it continues to be so, therefore, q has to be let into the CS by p. In order
to distinguish between the two cases, we read CSowner again at Line 5. If p finds that
CSowner is still (q, p), it concludes that it crashed just before setting Go[q] to true. Hence,
it goes back to the appropriate line. Otherwise, p hasn’t obstructed any process from going
into the CS, therefore, it resumes with the rest of the recovery. If p didn’t read CSowner
for the second time in Line 5, p would incorrectly inform q to proceed to CS in the first case
discussed above. Hence, q would continue to CS when some other process already occupies
it, violating Mutual Exclusion.

5.4 Main theorem
The theorem below presents our main result. We will soon release a Dartmouth College
Technical report that includes a detailed proof of correctness based on an invariant satisfied
by the algorithm.

I Theorem 3. The algorithm in Algorithm 1 solves the recoverable mutual exclusion problem
for n processes and additionally satisfies FCFS and Wait-free Recovery. The algorithm uses
read, write and CAS operations. On both CC and DSM machines, a process that fails at
most f times in an attempt performs at most O(f + lgn) RMRs.

Acknowledgment. We are grateful to the anonymous reviewers for their careful and detailed
reviews and Wojciech Golab for helpful discussions.
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A Min-Array implementation with f -arrays

In this section we describe Jayanti’s f -arrays implementation [7]. Detailed explanation
and a proof of correctness are presented in Jayanti’s paper. Here we present a modified
version of the implementation so that it incurs only a constant extra RMR in the event of a
failure during any procedure call. Since the original implementation uses LL/SC, we give an
equivalent implementation that uses CAS and unbounded counters.

Algorithm 2 gives the tree-based implementation of the f -arrays using CAS. In the
implementation there is one node for every process, for a total of n nodes, representing the
array cells. These n nodes are the leaves of a binary tree such that the height of the tree is
lgn.

In computing the min function, the idea is that a process enters an element in its own
cell first. It then traces a leaf to root path so that at each node in the path it takes the
values of that node’s children and writes the minimum among these values into the node.
This continues until the process reaches the root, where it stores the minimum value it
encountered in the path.

The shared variable SavedState is an additional component that stores the address of
a node in the tree. During the execution of the write operation a process may abort (in
our case crash) to resume the execution at a later point of time. When a process invokes
a procedure call to write, we first check if the call was to write a different value from the
previous call (Line 26). If so, then start percolating the value into the f -array from the leaf
nodes of the tree as explained above. Otherwise, the current call is an invocation to write
the same value as before, hence, to maintain idempotence, start percolating the value up the
tree from the point where the process stopped in the last invocation before the abort.

As described in [7], after the second call to refresh we are sure that the value in val
is percolated upto the node in the tree pointed to by currNode. Therefore, we save this
progress as a checkpoint along with the value in the shared variable SavedState, and
continue percolating the value up the tree.

In each call the function min() (or f() in case of an f -array) in Line 42 takes the minimum
value stored in the child nodes of the node pointed by currNode and writes the minimum
value into currNode. The call to refresh happens repeatedly so that a value that is first
written to a leaf node in the tree (Line 25) gets percolated up and ultimately once the process
reaches the root of the tree, it writes in the root the minimum value in the array. To read the
minimum value, the process simply reads the root node and returns the value (Line 37, 38).

https://uwspace.uwaterloo.ca/handle/10012/9473
https://uwspace.uwaterloo.ca/handle/10012/9473
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Algorithm 2 Tree algorithm to implement f -arrays object with CAS. Algorithm for process
p. Adaptation of algorithm is from Figure 4 in [7]. Note, here we explicitly substitute the
min() function in Line 42 instead of the function f() since we know we will use this as a
min-array. Algorithm 1 does not constrain the structure of the object tree τ ′. Therefore, we
assume that τ ′ is a binary tree of height O(lgn).
Shared objects (stored in NVMM)
τ ′: Object tree corresponding to a type tree τ as described in Section 4.2 of [7].
∀p, Lp is the pth leaf of τ ′.

Shared variables (stored in NVMM)
∀p,SavedState[p] : An array storing the node in the tree to start update from,

and the value on which writep was called. Initialized to (&Lp,∞).
Private variables
val, val′ are integers, initialized arbitrarily.
currNode is a reference to a node in τ ′, initialized arbitrarily.
res, seq, v, v1, v2, . . . , vk are integers, initialized arbitrarily.

procedure writep(val)
25. Lp ← val; res← val
26. if (((currNode, val′)← SavedState[p])∧

val 6= val′)
27. currNode← Lp

28. if currNode == root(τ ′)
29. return res
30. repeat
31. currNode← parent(currNode)
32. if ¬refresh(currNode)
33. refresh(currNode)
34. SavedState[p]← (currNode, val)
35. until currNode == root(τ ′)
36. return res

procedure read()
37. (v,−)← read(root(τ ′))
38. return v

procedure refresh(currNode)
Let C1, . . . , Ck be currNode’s children

39. (val, seq)← read(currNode)
40. for i← 1 to k
41. vi ← read(Ci)
42. return CAS(currNode, (val, seq),

(f(v1, v2, . . . , vk), seq + 1))

Algorithm 3 Implementation of min-array using f -arrays (see Algorithm 2; substitute min()
function for the function f() in Line 42) adapted from algorithm of Figure 8 in [7]. Algorithm
for process p.
Shared variables and objects (stored in NVMM)
A : An f -array of n components as described in Algorithm 2.

Private variables
val, v are integers, initialized arbitrarily.

procedure O.write(p, val)
43. writep(A, val)

procedure O.findmin()
44. v ← read(A)
45. return v

In Algorithm 3 we give an f -array implementation of Registry used in our algorithm.
We adapt this from Jayanti’s f -arrays paper [7] except that we do not utilize adaptivity as
done in the paper.
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Abstract
The field of compression studies the question of how many bits of communication are necessary
to convey a given piece of data. For one-way communication between a sender and a receiver, the
seminal work of Shannon and Huffman showed that the communication required is characterized
by the entropy of the data; in recent years, there has been a great amount of interest in extending
this line of research to interactive communication, where instead of a sender and a receiver we
have two parties communication back-and-forth. In this paper we initiate the study of interactive
compression for distributed multi-player protocols. We consider the classical shared blackboard
model, where players take turns speaking, and each player’s message is immediately seen by all
the other players. We show that in the shared blackboard model with k players, one can compress
protocols down to Õ(I ·k), where I is the information content of the protocol and k is the number
of players. We complement this result with an almost matching lower bound of Ω̃(I · k), which
shows that a nearly-linear dependence on the number of players cannot be avoided.
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1 Introduction

In their seminal work, Shannon, Fano and Huffman considered the data compression problem:
a sender wants to send a message x to a receiver. We think of x as a random variable
generated from some distribution µ. How many bits does the sender need to send, so that
the receiver will be able to recover x with high probability? The answer given in [15, 9,
11] is that he needs to send only dH(x)e bits, in expectation, where H denotes Shannon’s
entropy function. Roughly speaking, this means that every message can be compressed to
its information content.

While classical information theory studied the case of one-way transmission, over the last
decades, interactive communication protocols were also studied extensively. The interactive
compression problem [2] is the analog of the data compression problem in the interactive
setting: it asks whether the transcript of any interactive protocol can be compressed to
its information content. Roughly speaking, compressing a protocol Π means constructing
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a different protocol Π′, hopefully with smaller communication, which computes the same
function. The interactive compression problem for the two players setting attracted a lot of
attention in recent years, resulting in several compression protocols for different settings [10,
2, 6, 4, 7, 3, 14, 12, 16].

Interactive compression can be viewed as a tool for protocol design: one first designs a
communication-inefficient protocol, making sure only that it does not reveal a lot of inform-
ation about the inputs; interactive compression then allows us to convert the protocol into
a communication-efficient one.

In this work we initiate the study of distributed interactive compression. We show how
to compress a given k-party communication protocol, in order to reduce its communication,
and we also show the limitation of such compression schemes.

We study the shared blackboard model of multi-party communication. In this classical
model, the players communicate over a “shared blackboard”, taking turns to write messages
on the board. All players can see the contents of the board, and the player whose turn it
is to write next is determined by what was written so far. The model can be viewed as
a single-hop radio network: when a player sends a message, the message is immediately
received by all the other players.

Measuring information content. As discussed above, in the case of one-way communica-
tion, the information content of the data D we wish to compress is measured by its Shan-
non entropy, H(D). The analog of entropy for interactive communication is information
cost [8, 1, 2], which measures how much information the players reveal about their inputs.

The precise notion we work with here is called external information cost: it measures, in
mutual information, the amount of information an external observer learns about the players’
inputs from observing the transcript of the protocol. Formally, if X1, . . . ,Xk are random
variables denoting the inputs to the k players, sampled according to the joint distribution
µ, and Π(X1, . . . ,Xk) is a random variable denoting the transcript of the protocol Π when
it is run with the inputs X1, . . . ,Xk, then the external information cost of the protocol Π
with respect to the distribution µ is defined as

IC
µ

(Π) = I(Π(X1, . . . ,Xk); X1, . . . ,Xk),

where I denotes the mutual information, I(A; B) = H(A)−H(A|B) = H(B)−H(B|A).
We mention that in the two-player case, another notion of information cost, called in-

ternal information cost, was studies extensively. This notions measures the amount of
information that the players learn about each other’s inputs from their interaction. Internal
information cost differs from external information cost when the players’ inputs are not in-
dependent, because in this case the players potentially know something about each other’s
inputs just by looking at their own inputs, while an external observer has no such prior in-
formation. However, it is unclear how to adapt the definition of internal information to the
multi-player setting in a meaningful way (and indeed, this is an interesting open problem).
In the sequel, when we say “information cost”, we mean external information cost.

1.1 Our Results
1.1.1 A compression protocol in the shared blackboard model
We show that a protocol with information cost I can be compressed down to Õ(I ·k) bits of
communication, where the Õ-notation hides polylogarithmic factors in I, k, and the original
communication cost of the protocol.
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What does it mean to “compress” a protocol? As in the case of non-interactive data
compression, we give a compression scheme and a decoding function dec. Given any protocol
Π, we can apply the compression scheme to obtain a compressed protocol Π′ (hopefully with
less communication), and we can apply the decoder dec to Π′’s transcripts (and its public
randomness) to extract from them transcripts of Π. Our compression has some error: for
any input X, the transcript we extract from Π′ on X is close in distribution to the transcript
of Π on X.

More formally, let πX be the distribution of the transcript of Π on a specific input X,
and let dec(π′X) be the distribution of the extracted transcript obtained by running Π′ on
X and then applying the decoding function dec. Then our compression result can be stated
(slightly informally) as follows:

I Theorem 1 (Compression in the Shared Blackboard Model, Informal). Let ρ > 0 and k ∈ N.
Let Π be a randomized shared blackboard protocol between k players, and let µ be a joint
distribution over the inputs for the players in Π. Then there exists a randomized protocol Π′
in the shared blackboard model satisfying the following properties:
1. The worst case communication complexity of Π′ is Õ(k · ICµ(Π)/ poly(ρ)).
2. There exists a deterministic function dec that given a transcript of Π′, outputs a corres-

ponding transcript of Π, such that for any global input X we have SD(πX , dec(π′X)) ≤ ρ.

Here, SD(µ, η) = supA⊆Ω |µ(A) − η(A)| denotes the statistical distance between the distri-
butions µ, η over the universe Ω, and µ(A), η(A) denote the probability of event A under µ
and η respectively.

Our compression scheme is based on the beautiful two-player compression scheme of [2]
for external information, but we face several non-trivial challenges in adapting the scheme
to work with multi-player protocols.

1.1.2 Compression lower bound
Our compression scheme achieves communication Õ(I ·k). For any compression scheme, the
information cost IC(Π) is a lower bound on the communication of the compressed protocol,
as any bit communicated by the protocol can give at most one bit of information about
the inputs. However, it is natural to ask whether the blowup by a factor of k in the
communication complexity of our above compression result is necessary, and we show that
indeed it is: there is a communication protocol with information cost I, which cannot be
compressed to a protocol that uses less than Ω̃(k · I) bits of communication. This rules out
the existence of a better compression scheme than the one suggested by Theorem 1, up to
logarithmic factors.

To show this lower bound, we construct a function f on k inputs, and show that f can
be computed by a protocol Π with information cost I. In contrast, we prove an Ω̃(k · I)
lower bound on the distributional communication complexity of f , that is, we show that no
protocol with communication cost Õ(k · I) can compute f . This gives a separation between
information and communication in the distributed multi-player setting. Observe that this
also means that the protocol Π, which has information cost I, cannot be simulated by a
protocol with communication complexity less than Ω̃(k · I), because this would give us a
low-communication protocol for solving f .

I Theorem 2. Let I, k ∈ N. There exists a function f(X1, . . . , Xk) on k inputs, and a joint
distribution µ over the inputs X = (X1, . . . , Xk) for f , such that the following hold:
1. There exists a deterministic communication protocol Π with ICµ(Π) = I for which the

output of Π(X) is f(X) for every X ∈ supp(µ).
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2. Any randomized (public coin) communication protocol Π′ satisfying

Pr[Π′(X) outputs f(X)] ≥ 0.99,

must communicate Ω̃(k · I) bits on average. Here the error probability and the average
communication are over inputs X drawn from µ and the randomness used by Π′,

We sketch the proof in Section 4.
A gap of Ω̃(k) between information and communication in the shared blackboard model

was first shown in [5], where it is shown that the And function on k input bits has a
protocol with information cost O(log k), but any protocol that computes and with high
probability communicates at least Ω(k) bits. However, this leaves open the possibility
that the difference is additive in k: that is, it could conceivably be that every protocol
Π can be compressed to a protocol with communication complexity Õ(I + k). Indeed, con-
sider the Disjointness problem, Disjn,k, where each player i gets a set Xi ⊆ [n], and we
want to determine if

⋂
iXi = ∅. We can view Disjm,k as the OR of n instances of And:

Disjn,k(X1, . . . , Xk) =
∧n−1
j=0

∨k
i=1 ¬Xi

j . It is shown in [5] that Disjn,k has information
Θ(n log k) and communication cost Θ̃(n log k + k) in the shared blackboard model, so even
though And exhibits a gap of k/ log k between communication and information, somehow
“many instances of And” no longer exhibit the same gap. Nevertheless, Theorem 2 above
shows that compression to Õ(I+k) is impossible in general, so Disjn,k is the exception and
not the rule.

1.2 Organization of the Paper

The remainder of the paper is organized as follows. In Section 2, we review the basic
notions of communication complexity and information theory required to state and prove
our compression results. In Section 3 we sketch the compression scheme; for lack of space,
some technical details are omitted here, and will appear in the full version of the paper.
Finally, in Section 4 we describe our compression lower bound.

2 Preliminaries

Notation. We use bold-face letters to denote random variables. For variables
A1, . . . ,A` with joint distribution µ, we let µ(Ai) denote the marginal distribution of Ai,
and µ(Ai |Aj = aj) denote the distribution of Ai conditioned on Aj = aj (and similarly
for more variables). For a string S, we let |S| denote the length of S.

Communication complexity. For a protocol Π in the shared blackboard model, we define
the communication complexity of Π, denoted CC(Π), as the worst-case number of bits that
are written on the board in any execution of Π. We say that Π solves a problem P :
X k → Y if for any input X = (X1, . . . , Xk) ∈ X k, the probability that Π’s output on X

is P (X) is at least 2/3. The communication complexity of a problem P , denoted CC(P ),
is the minimum communication complexity of a protocol that solves P . We also study the
distributional communication complexity of P , denoted CCµ(P ), where now the minimum
is taken over protocols that only need to succeed with high probability over inputs drawn
from the distribution µ.
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Information theory. We require the following notions.
For a pair of random variables X,Y with joint distribution µ, we denote by Iµ(X; Y ) =

H(X)−H(X|Y ) themutual information between X and Y (here H is the Shannon entropy).
We omit the distribution µ when clear from the context.

For a pair of distributions p, q over the same domain, we denote by D (p ‖ q) the KL
divergence between p and q, given by D (p ‖ q) = Ex∼p

[
log
(
p(x)
q(x)

)]
. Mutual information

and KL divergence satisfy: I(X; Y ) = Ex∼µ(X) [D (µ(Y |X = x) ‖ µ(Y ))], where µ is the
joint distribution of X,Y , µ(X) (resp. µ(Y )) is the marginal distribution of X (resp. Y ),
and µ(Y |X = x) is the distribution of Y conditioned on X = x. Intuitively, the mutual
information measures the differences between the distribution of Y when we know X, and
the prior distribution of Y .

Information cost. We will use the following measure of the information revealed by an
interactive protocol.

I Definition 3. The information cost of a (private coin) protocol Π over random inputs
X = X1, . . . ,Xk drawn according to a joint distribution µ, is defined as

IC
µ

(Π) = I
µ
(Π; X1, . . . ,Xk),

where Π is a random variable indicating the transcript of Π on inputs X1, . . . ,Xk.

3 Compression for Multi-Party Protocols: a Proof Sketch

Suppose we are given a protocol Π, with communication CC = CC(Π) and information cost
I = ICµ(Π) on some input distribution µ. We want to construct another protocol, Π′, which
on a given input generates a transcript of Π, but with communication cost that depends only
polylogarithmically on CC(Π), and mainly depends on the information cost I of Π and on
the number of players, k. We follow the framework introduced in [2] for two-party protocols.

All compression schemes rely on the intuition that if ICµ(Π) = Iµ(Π; X) is small, then
someone who does not know the input X can sample “close to” the correct distribution Π
even without knowing the input X. For example, in the extreme case where the information
cost is 0, transcript is independent of the inputs and we can sample it from its correct
distribution without knowing the inputs. More generally, if the information cost is very
small, O(1) bits, then we can sample the transcript without looking at the inputs, and have
the players look at their inputs and “correct the mistakes” afterwards without using a lot
of communication (the manner in which we do this is described in Sections 3.3 and 3.4).
When the protocol has high information cost, IC(Π) = ω(1), we reduce to the case of
constant information cost by chopping the transcript up into pieces that each reveals a
constant amount of information: this way, we get O(IC(Π)) “pieces” that each reveal Θ(1)
information, and we can compress each “piece” separately.

It is not trivial to “chop up the transcript” into pieces with Θ(1) information cost,
because we may not know a-priori how much information has been revealed at each point.
For example, suppose that player 1 gets two bits of input, a, b ∈ {0, 1}, which are uniform
and independent. If a = 0, then player 1 sends a uniformly random bit, and in this case it
reveals zero information about its input; if a = 1, player 1 sends the bit b, revealing one bit
of information about its input. Only player 1 knows how much information it has revealed,
and in general all the players could behave this way; therefore the players need to cooperate
to cut up the transcript into pieces that each reveal Θ(1) information.
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Next we describe more formally what we mean by “the information revealed” up to some
point in the protocol, and how this notion relates to our ability to sample transcripts without
looking at the input.

3.1 The divergence tree

We view the run of Π on an input x = (x1, . . . , xk) as a binary tree representing all possible
transcripts of Π. Since Π is randomized, it induces a distribution πx on the leafs of the
tree; our goal is to sample a leaf of the tree (that is, a transcript of Π) from a distribution
that is close to πx, but using as little communication as possible. In the sequel we freely
interchange transcripts with nodes of the transcript tree. For convenience we introduce the
following short-hand notation: π≤r, π<r denote the distribution of the first r or the first
(r − 1) bits of Π, respectively. To denote a distribution η conditioned on an event of the
form A = a, we write η|a, and for a specific value y, we write its probability under η|a as
η(y|a). (When we condition on multiple values we write, e.g., η|a, b).

At each node v of the tree, there is some player O(v) whose turn it is to speak when
we reach node v. We call this player the owner of node v. The two children of node v
correspond to the case where player O(v) writes 0 and 1 on the board, respectively.

The owner O(v) of v knows the correct distribution over children of v induced by πx,
because this distribution depends only on its input (the player determines which child we
will go to by speaking). We denote by cvx this “correct” distribution; formally, for each
b ∈ {0, 1}, if v is a node at depth r, then

cvx(b) = Pr [Π≤r+1 = v · b |Π≤r = v,X = x] .

(Note that actually this probability only depends on the input xO(v) of the player that owns
v, because what a player decides to write on the board depends only on its input and what
was written so far.)

The other players and the observer do not know cvx, because they do not know x (only
their own private input). But they know the prior distribution cv on the children of node
v, which is simply the probability over the protocol’s randomness and the input, that player
O(v) will write 0 (resp. 1), given that we reached node v. Formally, for b ∈ {0, 1},

cv(b) = Pr [Π≤r+1 = v · b |Π≤r = v] =
∑
x

(
Pr
µ

[X = x |Π≤r = v] · cvx(b)
)
.

(Here again r is the depth of node v.)
Re-written in short-hand notation, we have

cvx(b) = π≤r+1(vb|v, x), cv(b) = π≤r+1(vb|v) =
∑
x

(µ(x|v)cvx(b)) .

3.2 Relating the information cost to the tree

Intuitively, if Π has low information cost, then the true distribution cvx and the prior cv
should be “close” for most nodes v in the tree corresponding to input x, because the message
each player decides to write on the board does not depend strongly on its input (otherwise
it would reveal a lot of information about the input). And this is made formal by recalling
that ICµ(Π) = Iµ(Π; X), and using the chain rule and the relationship between mutual
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information and divergence to see that

IC
µ

(Π) =
CC(Π)∑
r=1

I
µ
(Πr; X |Π<r) =

CC(Π)∑
r=1

E
v∼π<r

[
E

x∼µ|v
[D (πr|v, x ‖ πr|v)]

]

=
CC(Π)∑
r=1

E
v∼π<r

[
E

x∼µ|v
[D (cvx ‖ cv)]

]
. (1)

So, what we “pay” at each round is the expected divergence between the true distribution cvx
and the prior cv. Call this quantity the divergence cost of v on input x: Dx(v) = D (cvx ‖ cv) .
We extend this to paths p = v0, . . . , vs in the natural way: the cost of the path is the sum
of the costs of the nodes on the path, that is, Dx(p) =

∑s
i=0 D (cvix ‖ cvi

) . By re-arranging
the order of the expectations in (1) we get that ICµ(Π) = Ex∼µ,t∼π|x [Dx(t)], where here t
is a complete transcript, viewed as path from the root of the tree to a leaf. Thus, protocols
with low information cost have on average a low divergence cost on paths from the root to
a leaf, so at most nodes on the path, the true distribution cvx is close to the prior cv in
divergence. We rely on this characterization in our compression scheme.

A key technical ingredient in the compression algorithm is rejection sampling, which we
review below.

3.3 Rejection sampling
Suppose we want to sample from some distribution p, but we only have access to samples
generated from another distribution q. If we know an upper bound M ≥ maxw p(w)/q(w)
on the ratio between p and q, we can use rejection sampling, which works as follows:
1. Generate a candidate sample w ∼ q.
2. Accept w with probability p(w)/(M · q(w)), and otherwise reject w and try again.
It is not hard to show that the probability that for any w, the probability that w is generated
by the procedure above is exactly p(w): informally, we sample from q, but then “self-correct”
by accepting the sample only with probability p(w)/(M · q(w)), so the probability that the
candidate is w and we accept it is q(w) · (p(w)/(Mq(w)) = p(w)/M . Also, at each attempt,
the probability that we accept the candidate is

∑
w

(
q(w) · p(w)

Mq(w)

)
= 1
M

∑
w

p(w) = 1
M
,

so the distribution generated given that we accepted is exactly p. Moreover, the number of
attempts required until we accept a candidate is O(M) in expectation.

For our purposes we use rejection sampling as follows:
The distribution q that we know how to sample from is the prior distribution π on
leafs (or later on, internal nodes) of the tree, which all players know, because it does
not depend on the input. (This is the distribution where at each node v we sample a
child from the prior cv.) We can sample from this distribution simply using the public
randomness.
The distribution p that we want to sample from is the true distribution πx on leafs
(obtained by taking cvx at each node v), which is not known to any player.

We will show that the players can approximate the ratio πx(t)/π(t) for any leaf (or internal
node) t. This allows us to first sample t ∼ π from the prior, and then reject it with
approximately the right probability πx(t)/(Mπ(t)), where M is an appropriately chosen
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normalization factor. In this way we generate leafs from a distribution that is close to the
true distribution πx(t).

(A major difference between our work and [2] is that in [2], where there are only two
players, they do not need to explicitly compute the ratio πx(t)/π(t); they use a clever trick
that rejects with the right probability. For a general number of players k ≥ 2, we can no
longer do this, and we must compute an approximation of the ratio and reject with that
probability.)

To instantiate this outline, we must answer the following questions:
1. What is a good upper bound M ≥ maxt πx(t)/π(t)? Actually, we will not be able to find

a perfect bound, only a high probability bound which holds for most t.
2. How do we compute or approximate the ratio πx(t)/(Mπ(t)) ?

3.4 Compressing protocols with constant information cost
To start with, suppose we have a protocol Π with ICµ(Π) = I = O(1), that is, a typical
path from the root to a leaf of Π incurs only constant divergence cost. In this case we can
compress Π to a protocol Π′ with communication 2O(I). This initially looks very bad, but
since I = O(1), in fact the communication cost of Π′ is also 2O(1) = O(1), regardless of the
communication cost of the original protocol Π.

Recall that the divergence between two distributions p, q is defined as

D (p ‖ q) = E
w∼p

[
log p(w)

q(w)

]
,

that is, D (p ‖ q) is the expected log-ratio between p and q when we sample from p. This
means that if D (p ‖ q) = d and we sample w ∼ p, then with good probability we will have
p(w)/q(w) ≤ 2O(d) [4]. Therefore we can use 2O(d) = 2O(I) as our (high-probability) upper
bound M in the rejection sampling scheme, which leads to an expected communication
cost of 2O(I), times the cost of a single attempt of rejection sampling (that is, sampling a
candidate using public randomness, and then deciding whether to accept it).

It remains to describe how we approximate the acceptance probability of a leaf t, which
should be πx(t)/(Mπ(t)). Here we use the following observation about k-party protocols,
which generalizes the corresponding observation for two players from [2]: for each player
i, let πix be the distribution where at each node v we select a child with probability cvx if
player i owns node v, and with probability cv otherwise. Each player i can compute πix(t)
for any leaf t. And if we take the product of the πix(t)’s, we get:

k∏
i=1

πix(t) =
CC(Π)−1∏
r=0

(
ctrx(tr+1) · ctr (tr+1)k−1) ,

where tr is the r-th node on the path from the root to t; this is because exactly one player,
the owner of tr, uses ctrx to select a child at tr, and the other players use ctr . Now let
fi(t) = πix(t)/π(t) for each i = 1, . . . , k. Then the product of the fi’s is

k∏
i=1

fi(t) =
∏CC(Π)−1
r=0 ctrx(tr+1) · ctr (tr+1)k−1∏CC(Π)−1

r=0 ctr (tr+1)k
=

CC(Π)−1∏
r=0

ctrx(tr+1)
ctr (tr+1) = πx(t)

π(t) ,

giving us exactly the ratio we want.
Thus, in order to implement the rejection sampling, we need to approximate the product∏k

i=1 fi(t), and use it to get an approximate acceptance probability. We require very good
precision: the approximation needs to be to within a factor (1 ± ε), where ε = O(1/I) (for
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now, I is constant, but later it will not be). This is not hard: we can estimate the product to
within (1± ε) by estimating

∑k
i=1 log fi(t) to within (1±O(ε)), but first discarding from the

sum terms that have very small absolute value, | log fi(t)| < O(ε/k). Because 2x = 1 +O(x)
for very small x, even if we ignore all the small terms, they only add up to O(ε) in absolute
value, and we still get a (1± ε)-multiplicative approximation.

For the larger terms, log fi such that | log fi| ≥ ε/k, we estimate each one of them to
within (1 ± ε) by dividing the range of possibilities for their absolute value, [ε/k,M ], into
intervals of exponentially-increasing width, where each interval is (1 + ε) the size of the
preceding interval. We then have each player i tell us which interval their contribution
log fi(t) lies in, and its sign. Combining all the estimates of the individual contributions, we
come up with a (1± ε)-approximation to the product

∏k
i=1 fi(t).

Using an approximation instead of the exact value of the acceptance probability means
that the rejection sampling does not generate the correct distribution πx. However, we prove
that if we use a (1± ε)-approximation for the acceptance probability, then the distribution
generated is O(ε)-close to πx in statistical distance, so that our compression scheme generates
a distribution that is very close to the correct one. In the shared blackboard model, the cost
of the approximation is O(k log 1/ε) bits of communication.

3.5 Compression for protocols with large information cost

Following [2], compression for protocols with constant information cost can be extended to
protocols with higher information cost as follows: we “chop up” each path in the protocol
tree into segments with divergence cost Θ(1) each. This induces a set of frontiers in the
tree, where each frontier intersects each path from the root at exactly one node. Instead of
directly sampling a complete transcript, which corresponds to directly sampling leaf of the
tree, we sample the transcript in segments: first we sample a node from the first frontier,
then a node from the second frontier, and so on, until we reach a leaf. Because the divergence
cost of each segment is constant, we can use rejection sampling as outlined above for constant
divergence cost. And since each frontier “consumes” Ω(1) of the total divergence cost of the
path, and we know that the total divergence cost is O(I) with high probability, the total
number of steps is O(I).

Our overall compression scheme is as follows: we start from the root of the tree, and
while we have not yet reached a leaf, we sample a node from the next frontier, using rejection
sampling to sample very close to the correct distribution induced by πx. The cost of each
such step is Õ(k), so the total cost of sampling a leaf of the tree is Õ(I · k).

Next we give a more precise definition of the frontiers, and show how we can sample a
node from the next frontier.

3.5.1 Frontiers

The definition of a frontier is subtle (and differs from [2] significantly; having only two
players makes life much easier). The main question is: how can we define the frontier in a
way that is precise enough so that each path segment between two frontiers has divergence
cost Θ(1), but on the other hand allows us the players to find the frontier using only Õ(k)
communication? In particular, we cannot afford to have the players send real numbers with
high precision. So how can we identify the point where together the players’ divergence cost
has reached Θ(1)?
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Fix a parameter β, which is the target divergence cost we want each path segment
between two frontiers to have. Denote by Di(v, w) the individual divergence cost of player
i, defined as the sum of the divergence costs on the path from v to u, but only at nodes
owned by player i. Then by definition, D(v, w) =

∑k
i=1 Di(v, w). Moreover, each player can

compute Di(v, w), because it knows the divergence cost at nodes it owns: it knows both the
true distribution and the prior, and can compute the divergence between them. Finally, let
D̃i(v, w) = bDi(v, w)/(β/k)c denote the player i’s divergence cost Di(v, w) divided by β/k
and rounded down to the nearest integer.

Formally, we define the frontier of a node v in the tree to be the Fvx set of nodes w such
that
1. For each strict prefix w′ of the path from v to w we have

∑k
i=1(β/k)D̃i(v, w′) < β, but

2. For the full path we have
∑k
i=1(β/k)D̃i(v, w) ≥ β.

That is, the frontier is the first point on the path where the sum of the divergence costs of
the players, each rounded down to the nearest β/k, first exceeds β.

Each player can compute its own contribution D̃i(v, w) given v and w and announce a
constant multiplicative approximation of it. This is good enough to ensure that for any
frontier node w ∈ Fvx we have D(v, w) = Θ(β).

(In [2], the frontier is defined as the point where one of the two players first reaches
divergence cost Di(v, w) ≥ β. Since there are only two players, this also means that the
total divergence cost is Θ(β). This has the advantage that in order to check if a node is on
the frontier, all we need to do is ask the two players whether they have individual divergence
cost at most β or not, costing a single bit per player. In our case, if we tried to take this
approach, the total divergence cost could be as high as Θ(kβ), which we cannot afford, as
our probability of accepting in the rejection sampling would then be only 2−Θ(kβ). Thus,
we must define the frontier by the total divergence cost directly, and this leads to technical
complications.)

We define two distributions on the frontier Fvx: the first, Fvx, is the “correct” distribution
induced by πx, where we sample a path from v to a leaf, t ∼ πx|v, and cut the path at the
(unique) point where it intersects Fvx. The second distribution, denoted Fv, is the prior
distribution, induced by the prior π in the same way.

3.5.2 Sampling from the frontier
Suppose we are currently at node v in the tree, and we want to sample from the correct
distribution Fvx on the frontier at node v. Let us recall the ingredients we need to sample
from the frontier using rejection sampling:
1. We need to sample a frontier node w ∼ Fv,
2. We need to compute or approximate the acceptance probability, Fvx(w)/(MFv(w)).
We already saw how to approximate the acceptance probability in Section 3.4. Here it
becomes important to set the precision parameter ε to O(1/I), because we will be passing
through O(I) frontiers, and the error adds up; we can only afford an error of O(1/I) per
frontier to get constant error in the end.

It remains to describe how we can sample a frontier node from the prior, w ∼ Fv. To
do this, we first sample a leaf t ∼ π|v, using public randomness (since π|v is known to all
players). Next, we find the point where the frontier Fvx intersects the path from v to t, and
return this node. In order to find the cut-point of the frontier we use binary search (as in [2]),
to find the first node w on the path from v to t where we have

∑k
i=1(β/k)D̃i(v, w) ≥ β.

The total cost of sampling from w ∼ Fv is bounded by log CC times the cost of ap-
proximating

∑k
i=1(β/k)D̃i(v, w) ≥ β to within a constant multiplicative factor ε, which is

O(k log(k/ε)) bits.
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4 Compression Lower Bound

In this section we present the AndTreeh function, parameterized by h, with low information
cost, O (h log k), but high communication cost, Ω̃ (k · h). This function serves to separate
information from communication in the shared blackboard model, ruling out the existence
of a compression scheme whose cost does not depend nearly-linearly on k.

4.1 The AndTree problem
The input to AndTreeh is represented by a complete binary tree of depth h; at each node
u of the tree, we embed an instance of And, with each player i receiving a bit Xi

u. We
represent each node of the tree by the path from the root, with the root denoted λ, a left
child appending zero to its parent, and a right child appending one to its parent.

For a tree T , let leaf(T ) be the leaf obtained by starting at the root, turning left at each
node u such that

∧
i Xi

u = 0, and turning right at each node u such that
∧
i Xi

u = 1. We
define the output of the AndTreeh problem to be the parity of this leaf: AndTreeh(T ) =
parity(leaf(T )).

4.2 The information cost of AndTree
A single instance of And can be solved with O(log k) bits of information under any input
distribution: simply have the players announce their inputs one-by-one, until we either find
a player with input 0, in which case we halt and output 0, or all players have announced
that their input is 1, in which case we output 1. This protocol has only k + 1 possible
transcripts: if all players got 1, the transcript is 1k, and otherwise the transcript is 1i0,
where i is the index of the first player that got 0. Therefore the entropy of the transcript is
O(log k), meaning that the information cost of the protocol is also O(log k).

To solve a full instance of AndTree, we start at the root, and use the protocol above to
solve each node, moving down to the correct child. When we arrive at a leaf, we output its
parity. The information cost is O(h log k) under any input distribution.

4.3 The communication complexity of AndTree
Next we must show that no randomized protocol with o(k · I) communication can solve
AndTree with small error in the worst-case. We show a slightly stronger lower bound: we give
an input distribution µ, and show that no randomized protocol with o(k · I) communication
can solve AndTree with small average error when inputs are drawn from µ.

For the analysis, we divide the tree into R layers, each of depth d = Θ(log k+ log h). We
define the input distribution µR on an R-layer tree as follows: for each node u of the tree,
we draw a random player P (u) uniformly and independently. The input of player P (u) is
drawn uniformly, Bu ∼ U({0, 1}); the other players receive 1. Thus, under µR, for each
node u we have

∧
i Xi

u = X
P (u)
u = Bu.

It is convenient to represent an r-layer tree as T = (S,R1, . . . , R2d), where S is the top
layer (i.e., the first d levels of the tree), and R1, . . . , R2d are the subtrees starting at the
leafs of S.

I Theorem 4. For sufficiently small constant ε, the randomized public-coin communication
complexity of AndTreeh is CC(AndTreeh, ε) = Ω (R · k), where R = Θ(h/(log k + log h)).

We prove the theorem by induction on the number of layers: for each r ≤ R, given an
protocol with communication C and error ε for the r-layer tree, we “peel off” a layer, and
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Figure 1 Embedding X in an r-layer tree

construct a protocol with communication C − Θ(k) and error ε + Θ(1/R) for the (r − 1)-
layer tree. If we started out with communication less than c ·R ·k for some sufficiently small
constant c, then eventually we obtain a protocol with zero communication and constant
error for the one-layer tree, which is impossible.

The induction step. Let d = β(log k+log h) be the height of a layer, where β is a constant
whose value will be fixed later.

Given a protocol Π for the r-layer tree AndTreer·d, with communication cost CC(Π) = C

and distributional error ε on µr, we construct a new protocol, Π̃, for (r − 1)-layer trees.

Embedding in an r-layer tree

The input to Π̃ is an (r − 1)-layer tree X, but the protocol Π that we are given takes as
input r-layer trees. How can we use Π to solve our input, which has one fewer layer? The
answer is that we embed our (r − 1)-layer input in a larger r-layer tree T , the rest of which
we generate using public randomness. We design the embedding so that the answer on the
input X can be extracted from the answer on T .

More formally, we embed X in an r-layer tree by publicly generating a random “top
layer”, S ∼ µ1, and placing X as the J -th subtree of S, where J is the “correct” leaf of S,
obtained by solving the And at each node and turning left when the answer is 0 and right
when the answer is 1. Note that by definition, parity(J) = AndTree(S).

The other 2d − 1 subtrees, placed under the leafs of S that are not the “correct” leaf
J , are generated publicly and independently from µr−1. Let T1, . . . ,T2d denote these
subtrees. Then formally, what we said above is that we set TJ = X, and we sample
(T1, . . . ,TJ−1,TJ+1, . . . ,T2d) ∼ (µr−1)2d−1.

Let T = (S,T1, . . . ,T2d) be the resulting r-layer tree.

I Property 5. Observe that since AndTreed(S) = parity(J), and we set TJ = X, we have
AndTree(r−1)d(X) = AndTree(r−1)d (TJ ) = AndTreerd(T )⊕ parity(J).

We can now solve our (r − 1)-layer input X by calling Π on the r-layer tree T that we
constructed, but this is not enough: for the induction step we need to construct a protocol
with less communication than Π. Our goal is therefore to simulate the execution of Π on
T , but using less communication than Π requires. If we can do this, then we can solve
AndTree(r−1)d using less communication.
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Saving Θ(k) bits of communication

We split the transcript of the original protocol Π into two parts, Π = Π1Π2, where the
prefix Π1 is of length |Π1| = αk for a constant α whose value will be fixed later, and the
suffix Π2 consists of the rest of the transcript.

In Π̃, instead of sampling Π1 “correctly” by having each player look at their input
and send the messages indicated under Π, we fix a prefix m1 of length αk, and have the
players sample Π2 as though they had said m1; that is, the transcript of Π̃ is the suffix
Π ∼ π2|Π1 = m1,J = j. We need to show that there is a “good” choice for m1 and j, under
which the suffix has small error probability on our real input X.

I Definition 6. We say that a pair (m1, j) is good, where m1 ∈ {0, 1}αk , j ∈ [2d], if the
following holds:
1. D (µr−1(Tj |Π1 = m1,J = j) ‖ µr−1(Tj)) ≤ 1

100R2 , and,
2. Pr [Π errs |Π1 = m1,J = j] ≤

(
1 + 1

R

)
· ε.

Note that since Tj is independent of J , the first condition can also be written as:

D (µr−1(Tj |Π1 = m1,J = j) ‖ µr−1(Tj |J = j)) ≤ 1
100R2 .

I Lemma 7. There exists a good pair (m1, j).

Before proving that there exists a good setting for (m1, j), let us show that if (m1, j) is
good, then when we sample Π2 ∼ π2|Π1 = m1,J = j we have small error on our (r−1)-layer
input, Tj = X.

I Lemma 8. If (m1, j) is good, then PrX∼µr−1 [Π errs on X | J = j,Π1 = m1] ≤
(
1 + 1

R

)
·

ε+ 1
10R .

Proof sketch. Let µ′ be the distribution µr−1(Tj |Π1 = m1,J = j) of the j-th subtree,
given Π1 = m1 and J = j. Let E = E(X) be an indicator for the event that the output
produced by the suffix Π2 is incorrect on X. Finally, let π2 be the distribution of Π2 given
Π1 = m1,J = j when the input is X ∼ µr−1, and let π′2 be the distribution of Π2 given
Π1 = m1,J = j when the input is X ∼ µ′.

Re-stated in this notation, the lemma asserts that Prπ2 [E] ≤
(
1 + 1

R

)
· ε + 1

10·R , and
Condition 2 of Definition 6 says that Prπ′2 [E] ≤

(
1 + 1

R

)
· ε. Thus, to show the lemma, we

show that π2(E) and π′2(E) are “close”, and therefore the expectation of E cannot differ by
much between them. We get the required “closeness” from the first condition of 6, which
bounds the divergence between the two distributions. J

I Corollary 9. Let Π̃ be the protocol defined by taking a good pair (m1, j), embedding the
input in location Tj, sampling the suffix Π2 from its distribution given Π1 = m1,J = j (the
missing parts of the input are sampled from public randomness according to m1 and j) and
returning (Π′2s output)⊕ parity(S). Then PrX∼µr−1

[
Π̃ errs on X

]
≤
(
1 + 1

R

)
· ε+ 1

10R .

Now let us sketch the proof that with high probability there is a good pair (m1, j).

Proof sketch of Lemma 7. We show that the probability over M1 and J that either the
first or the second condition of Definition 6 fails to hold is smaller than 1, which means that
there is a pair (m1, j) satisfying both conditions.

First consider the first condition, which requires that m1 does not reveal a lot of inform-
ation about the subtree Tj . Since m1 is short, only αk bits, the total information it reveals
about all the sub-trees T1, . . . ,T2d together is at most O(αk) with high probability. The sub-
trees T1, . . . ,T2d are initially independent, and information has the super-additivity property:
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if A1, . . . ,Am are independent, then for any B, I(B; A1, . . . ,Am) ≥
∑m
i=1 I(B; Ai). In our

case this means that if we choose a uniformly random index J ∈
{

1, . . . , 2d
}
which is inde-

pendent of m1, the information m1 reveals about TJ is at most O(αk)/2d = O(αk)/ poly(k),
which is negligible.

Unfortunately, the choice of the index J where we embed our input is not independent
of m1: there is a hypothetical possibility that the players can discover where the input is
embedded by computing the correct leaf of the top layer S (which is how we defined J). If
they can do this, then they can focus all their attention on the correct sub-tree TJ , and m1
can reveal a lot of information about it. We need to show that since m1 is short, the players
cannot discover J .

To capture the fact that the players cannot learn J , except with small probability, we
use the notion of min-entropy: for a random variable A ∼ η over domain Ω, the min-entropy
of A is defined as H∞(A) = minω∈Ω log 1

η(ω) . The min-entropy corresponds to our ability to
guess the correct value of A (unlike Shannon entropy).

We use a lemma from [13] which generalizes the super-additivity of information to vari-
ables with high min-entropy, and asserts that

E
J|Π1=m1

[D (µr−1(TJ |Π1 = m1,J) ‖ µr−1(TJ |J))]

≤ 2−H∞(J|m1) · D
(
µ2d

r−1(T1, . . . ,T2d |Π1 = m1) ‖ µ2d

r−1(T1, . . . ,T2d)
)
. (2)

To use this lemma, we must show that with high probability the min-entropy H∞(J |m1)
of the correct leaf given the message m1 is high. This holds because m1 consists of only αk
bits of communication, which allows only an α-fraction of players to speak; for most nodes
u in the top layer S, the “influential” player P (u), whose input determines the correct child
of u, does not get to say anything at all. Therefore the correct child at most nodes remains
uniformly random even after seeing the message m1, and the correct leaf J retains high
min-entropy.

For the second condition of a good pair, we know that the overall error of Π is ε, and
therefore, by Markov and the law of total expectation,

Pr
Π1,J

[
Pr [Π errs | J ,Π1] >

(
1 + 1

R

)
ε

]
<

ε

ε(1 + 1/R) < 1− 1
2R.

A union bound over the probabilities that the first and second condition fail to hold yields
the lemma. J

Proof of Theorem 4. Suppose Π is a protocol for AndTreeh with error 1/100 and com-
munication C. Let R = bh/dc − 1. Using Corollary 9, we construct a series of protocols
Π0, . . . ,ΠR, where ΠR = Π is the protocol we started with, and for each r > 0, the protocol
Πr solves AndTreeh−(R−r)d with error at most εr, and its communication cost is C − αrk.
Applying Corollary 9 R times, we get that the final protocol Π0, solves AndTreeh−Rd with
error

ε0 <

(
1 + 1

R

)R(
εR +R · 1

10R

)
< e ·

(
1

100 + 1
10

)
< 1/3.

Since h − Rd > 0 by definition of R, the problem AndTreeh−Rd cannot be solved with
error 1/3 with no communication (indeed, we know that the communication required is
Ω(k) to solve even a single instance of And), and therefore we must have C > αRk =
Ω
(

h
log k+loghk

)
. J
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We have now shown that for any sufficiently large h, the AndTreeh problem can be solved
using O(h log k) bits of information, but requires Ω(hk/(log k+log h)) bits of communication.
This shows that our compression scheme is optimal up to polylogarithmic factors in k and
the input size.
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Abstract
We give fault-tolerant algorithms for establishing synchrony in distributed systems in which each
of the n nodes has its own clock. Our algorithms operate in a very strong fault model: we require
self-stabilisation, i.e., the initial state of the system may be arbitrary, and there can be up to
f < n/3 ongoing Byzantine faults, i.e., nodes that deviate from the protocol in an arbitrary
manner. Furthermore, we assume that the local clocks of the nodes may progress at different
speeds (clock drift) and communication has bounded delay. In this model, we study the pulse
synchronisation problem, where the task is to guarantee that eventually all correct nodes generate
well-separated local pulse events (i.e., unlabelled logical clock ticks) in a synchronised manner.

Compared to prior work, we achieve exponential improvements in stabilisation time and the
number of communicated bits, and give the first sublinear-time algorithm for the problem:

In the deterministic setting, the state-of-the-art solutions stabilise in time Θ(f) and have
each node broadcast Θ(f log f) bits per time unit. We exponentially reduce the number of
bits broadcasted per time unit to Θ(log f) while retaining the same stabilisation time.
In the randomised setting, the state-of-the-art solutions stabilise in time Θ(f) and have each
node broadcast O(1) bits per time unit. We exponentially reduce the stabilisation time to
polylog f while each node broadcasts polylog f bits per time unit.

These results are obtained by means of a recursive approach reducing the above task of self-
stabilising pulse synchronisation in the bounded-delay model to non-self-stabilising binary con-
sensus in the synchronous model. In general, our approach introduces at most logarithmic over-
heads in terms of stabilisation time and broadcasted bits over the underlying consensus routine.
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1 Introduction

Many of the most fundamental problems in distributed computing relate to timing and
fault tolerance. Even though most distributed systems are inherently asynchronous, it is
often convenient to design such systems by assuming some degree of synchrony provided
by reliable global or distributed clocks. For example, the vast majority of existing Very
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Large Scale Integrated (VLSI) circuits operate according to the synchronous paradigm: an
internal clock signal is distributed throughout the chip neatly controlling alternation between
computation and communication steps. Of course, establishing the synchronous abstraction
is of high interest in numerous other large-scale distributed systems, as it makes the design
of algorithms considerably easier.

However, as the accuracy and availability of the clock signal is typically one of the most
basic assumptions, clocking errors affect system behavior in unpredictable ways that are often
hard – if not impossible – to tackle at higher system layers. Therefore, reliably generating
and distributing a joint clock is an essential task in distributed systems. Unfortunately, the
cost of providing fault-tolerant synchronisation and clocking is still poorly understood.

Pulse synchronisation. In this work, we study the self-stabilising Byzantine pulse synchron-
isation problem [16, 9], which requires the system to achieve synchronisation despite severe
faults. We assume a fully connected message-passing system of n nodes, where
1. an unbounded number of transients faults may occur anywhere in the network, and
2. up to f < n/3 of the nodes can be faulty and exhibit arbitrary ongoing misbehaviour.
In particular, the transient faults may arbitrarily corrupt the state of the nodes and result
in loss of synchrony. Moreover, the nodes that remain faulty may deviate from any given
protocol, behave adversarially, and collude to disrupt the other nodes by sending them
different misinformation even after transient faults have ceased. Note that this also covers
faults of the communication network, as we may map faults of communication links to one of
their respective endpoints. The goal is now to (re-)establish synchronisation once transient
faults cease, despite up to f < n/3 Byzantine nodes. That is, we need to consider algorithms
that are simultaneously (1) self-stabilising [7, 15] and (2) Byzantine fault-tolerant [23].

More specifically, the problem is as follows: after transient faults cease, no matter what
is the initial state of the system, the choice of up to f < n/3 faulty nodes, and the behaviour
of the faulty nodes, we require that after a bounded stabilisation time all the non-faulty
nodes must generate pulses that

occur almost simultaneously at each correctly operating node (i.e., have small skew), and
satisfy specified minimum and maximum frequency bounds (accuracy).

While the system may have arbitrary behaviour during the initial stabilisation phase due to
the effects of transient faults, eventually the above conditions provide synchronised unlabelled
clock ticks for all non-faulty nodes:

skew accuracy

stabilisation
phase

faulty node, arbitrary behaviour

transient 
faults cease

next pulse
at the earliest

next pulse 
at the latest

correct nodes
pulse with small skew

Node 1
Node 2
Node 3 
Node 4

In order to meet these requirements, it is necessary that nodes can estimate the progress of
time. To this end, we assume that nodes are equipped with (continuous, real-valued) hardware
clocks that run at speeds that may vary arbitrarily within 1 and ϑ, where ϑ ∈ O(1). That is,
we normalize minimum clock speed to 1 and assume that the clocks have drift bounded by a
constant. Observe that in an asynchronous system, i.e., one in which communication and/or
computation may take unknown and unbounded time, even perfect clocks are insufficient to
ensure any relative timing guarantees between the actions of different nodes. Therefore, we
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additionally assume that the nodes can send messages to each other that are received and
processed within at most d ∈ Θ(1) time. The clock speeds and message delays can behave
adversarially within the respective bounds given by ϑ and d.

In summary, this yields a highly adversarial model of computing, where further restrictions
would render the task infeasible: (1) transient faults are arbitrary and may involve the entire
network; (2) ongoing faults are arbitrary, cover erroneous behavior of both the nodes and the
communication links, and the problem is not solvable if f ≥ n/3 [10]; and (3) the assumptions
on the accuracy of local clocks and communication delay are minimal to guarantee solvability.

Background and related work. If one takes any one of the elements described above out
of the picture, then this greatly simplifies the problem. Without permanent faults, the
problem becomes trivial: it suffices to have all nodes follow a designated leader. Without
transient faults [22], straightforward solutions are given by elegant classics [33, 34], where [34]
also guarantees asymptotically optimal skew [29]. Taking the uncertainty of unknown
message delays and drifting clocks out of the equation leads to the so-called digital clock
synchronisation problem [3, 11, 25, 28, 26], where communication proceeds in synchronous
rounds and the task is to agree on a consistent (bounded) round counter. While this
abstraction is unrealistic as a basic system model, it yields conceptual insights into the
pulse synchronisation problem in the bounded-delay model. Moreover, it is useful to assign
numbers to pulses after pulse synchronisation is solved, in order to get a fully-fledged shared
system-wide clock [24].

In contrast to these relaxed problem formulations, the pulse synchronisation problem was
initially considered to be very challenging – if not impossible – to solve. In a seminal article,
Dolev and Welch [16] proved otherwise, albeit with an algorithm having an impractical
exponential stabilisation time. In a subsequent line of work, the stabilisation time was
reduced to polynomial [6] and then linear in f [12]. However, the linear-time algorithm
relies on simulating multiple instances of synchronous consensus algorithms [30] concurrently,
which results in a high communication complexity.

The consensus problem [30, 23] is one of the fundamental primitives in fault-tolerant
computing. Most relevant to this work is synchronous binary consensus with (up to f)
Byzantine faults. Here, node v is given an input x(v) ∈ {0, 1}, and it must output y(v) ∈ {0, 1}
such that the following properties hold:
1. Agreement: There exists y ∈ {0, 1} such that y(v) = y for all correct nodes v.
2. Validity: If for x ∈ {0, 1} it holds that x(v) = x for all correct nodes v, then y = x.
3. Termination: All correct nodes eventually decide on y(v) and terminate.
In this setting, two of the above main obstacles are not present: the system is properly
initialised (no self-stabilisation required) and computation proceeds in synchronous rounds,
i.e., well-ordered compute-send-receive cycles. This confines the task to understanding how
to deal with the interference from Byzantine nodes. Synchronous consensus is extremely
well-studied; see e.g. [32] for a survey. It is known that precisely b(n − 1)/3c faults can
be tolerated in a system of n nodes [30], Ω(nf) messages need to be sent in total [14],
the connectivity of the communication network must be at least 2f + 1 [8], deterministic
algorithms require f + 1 rounds [19, 1], and randomised algorithms can solve the problem
in constant expected time [18]. In constrast, no non-trivial lower bounds on the time or
communication complexity of pulse synchronisation are known.

The linear-time pulse synchronisation algorithm in [12] relies on simulating (up to) one
synchronous consensus instance for each node simultaneously. Accordingly, this protocol
requires each node to broadcast Θ(f log f) bits per time unit. Moreover, the use of de-
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Table 1 Summary of pulse synchronisation algorithms for f ∈ Θ(n). For each respective algorithm,
the first two columns give the stabilisation time and the number of bits broadcasted by a node per
time unit. The third column denotes whether algorithm is deterministic or randomised. The fourth
column indicates additional details or model assumptions. All algorithms tolerate f < n/3 faulty
nodes except for (*), where we have f < n/(3 + ε) for any constant ε > 0.

time bits type notes reference

poly f O(log f) det. [6]
O(f) O(f log f) det. [12]
O(f) O(log f) det. this work and [4]

2O(f) O(1) rand. adversary cannot predict coin flips [16]
O(f) O(1) rand. adversary cannot predict coin flips [9]
polylog f polylog f rand. private channels, (*) this work and [21]
O(log f) poly f rand. private channels this work and [18]

terministic consensus is crucial, as failure of any consensus instance to generate correct
output within a prespecified time bound may result in loss of synchrony, i.e., the algorithm
would fail after apparent stabilisation. In [9], these obstacles were overcome by avoiding
the use of consensus by reducing the pulse synchronisation problem to the easier task of
generating at least one well-separated “resynchronisation point”, which is roughly uniformly
distributed within any period of Θ(f) time. This can be achieved by trying to initiate
such a resynchronisation point at random times, in combination with threshold voting and
locally checked timing constraints to rein in the influence of Byzantine nodes. In a way, this
seems much simpler than solving consensus, but the randomisation used to obtain a suitable
resynchronisation point strongly reminds of the power provided by shared coins [31, 2, 18, 3] –
and this is exactly what the core routine of the expected constant-round consensus algorithm
from [18] provides.

Contributions. Our main result is a framework that reduces pulse synchronisation to an
arbitrary (non-self-stabilising) synchronous binary consensus routine at very small overheads.
In other words, given any efficient algorithm that solves consensus in the standard synchronous
model of computing, we show how to obtain an efficient algorithm that solves the pulse
synchronisation problem in the bounded-delay model with clock drift.

While we build upon existing techniques, our approach has many key differences. First
of all, while Dolev et al. [9] also utilise the concept of resynchronisation pulses, these
are generated probabilistically. Moreover, their approach has an inherent time bound
of Ω(f) for generating such pulses. In contrast, we devise a new recursive scheme that
allows us to (1) deterministically generate resynchronisation pulses in Θ(f) time and (2)
probabilistically generate resynchronisation pulses in o(f) time. To construct algorithms that
generate resynchronisation pulses, we employ resilience boosting and filtering techniques
inspired by our recent line of work on digital clock synchronisation in the synchronous
model [28, 25, 26]. One of its main motivations was to gain a better understanding of the
linear time/communication complexity barrier that research on pulse synchronisation ran
into, without being distracted by the additional timing uncertainties due to communication
delay and clock drift. The challenge here is to port these newly developed tools from the
synchronous model to the bounded-delay bounded-drift model in a way that keeps them in
working condition.
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The key to efficiency is a recursive approach, where each node participates in only dlog fe
consensus instances, one for each level of recursion. On each level, the overhead of the
reduction over a call to the consensus routine is a constant multiplicative factor both in time
and bit complexity; concretely, this means that both complexities increase by overall factors
of O(log f). Applying suitable consensus routines yields exponential improvements in bit
complexity of deterministic and time complexity of randomised solutions, respectively:
1. In the deterministic setting, we exponentially reduce the number of bits each node

broadcasts per time unit to Θ(log f), while retaining Θ(f) stabilisation time. This is
achieved by employing the phase king algorithm [4] in our construction.

2. In the randomised setting, we exponentially reduce the stabilisation time to polylog f ,
where each node broadcasts polylog f bits per time unit. This is achieved using the
algorithm by King and Saia [21]. We note that this slightly reduces resilience to f <
n/(3 + ε) for any fixed constant ε > 0 and requires private communication channels.

3. In the randomised setting, we can also obtain a stabilisation time of O(log f), polynomial
communication complexity, and optimal resilience of f < n/3 by assuming private
communication channels. This is achieved using the consensus routine of Feldman and
Micali [18]. This almost settles the open question by Ben-Or et al. [3] whether pulse
synchronisation can be solved in expected constant time.

The running times of the randomised algorithms (2) and (3) hold with high probability and
the additional assumptions on resilience and private communication channels are inherited
from the employed consensus routines. Here, private communication channels mean that
Byzantine nodes must make their decision on which messages to sent in round r based on
knowledge of the algorithm, inputs, and all messages faulty nodes receive up to and including
round r. The probability distribution is then over the independent internal randomness of the
correct nodes (which the adversary can only observe indirectly) and any possible randomness
of the adversary. Our framework does not impose these additional assumptions: stabilisation
is guaranteed for f < n/3 on each recursive level of our framework as soon as the underlying
consensus routine succeeds (within prespecified time bounds) constantly many times in a
row. Our results and prior work are summarised in Table 1.

Regardless of the employed consensus routine, we achieve a skew of 2d, where d is the
maximum message delay. This is optimal in our model, but overly pessimistic if the sum of
communication and computation delay is not between 0 and d, but from (d−, d+), where
d+−d− � d+. In terms of d+ and d−, a skew of Θ(d+−d−) is asymptotically optimal [29, 34].
We remark that in [20], it is shown how to combine the algorithms from [9] and [34] to
achieve this bound without affecting the other properties shown in [9]; we are confident that
the same technique can be applied to the algorithm proposed in this work. Finally, all our
algorithms work with any clock drift parameter 1 < ϑ ≤ 1.007, that is, the nodes’ clocks can
have up to 0.7% drift. In comparison, cheap quartz oscillators achieve ϑ ≈ 1 + 10−5.

We consider our results of interest beyond the immediate improvements in complexity of
the best known algorithms for pulse synchronisation. Since our framework may employ any
consensus algorithm, it proves that pulse synchronisation is, essentially, as easy as synchronous
consensus – a problem without the requirement for self-stabilisation or any timing uncertainty.
Apart from the possibility for future improvements in consensus algorithms carrying over,
this accentuates the following open question:

Is pulse synchronisation at least as hard as synchronous consensus?

Due to the various lower bounds and impossibility results on consensus [30, 19, 8, 14]
mentioned earlier, a positive answer would immediately imply that the presented techniques
are near-optimal. However, one may speculate that pulse synchronisation may rather have
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the character of (synchronous) approximate agreement [13, 17], as precise synchronisation of
the pulse events at different nodes is not required. Considering that approximate agreement
can be deterministically solved in O(logn) rounds, a negative answer is a clear possibility
as well. Given that all currently known solutions either explicitly solve consensus, leverage
techniques that are likely to be strong enough to solve consensus, or are very slow, this would
suggest that new algorithmic techniques and insights into the problem are necessary.

2 Preliminaries

Let V denote the set of all n nodes, F ⊆ V be the set of faulty nodes such that |F | < n/3,
and G = V \F the set of correct nodes. The sets G and F are unknown to the correct nodes
in the system. We assume a continous reference time [0,∞) that is not available to the nodes
in the distributed system. The reference time is only used to reason about the behaviour
of the system. The adversary can choose the initial state of the system (memory contents,
initial clock values, any messages in transit), the set F of faulty nodes which it controls, how
the correct nodes’ clocks progress and what is the delay of each individual message within
the respective maximum clock drift and message delay bounds of ϑ and d. We assume that
ϑ and d are known constants. For the full formal description of the model we refer to [27].

Pulse synchronisation algorithms. In the pulse synchronisation problem, the task is to
have all the correct nodes locally generate pulse events in an almost synchronised fashion,
despite arbitrary initial states and the presence of Byzantine faulty nodes. In addition, these
pulses have to be well-separated. Let p(v, t) ∈ {0, 1} indicate whether a correct node v ∈ G
generates a pulse at time t. Moreover, let pk(v, t) ∈ [t,∞) denote the time when node v
generates the kth pulse event at or after time t and pk(v, t) =∞ if no such time exists. We
say that the system has stabilised from time t onwards if
1. p1(v, t) ≤ t+ Φ+ for all v ∈ G,
2. |pk(v, t)− pk(u, t)| < σ for all u, v ∈ G and k ≥ 1,
3. Φ− ≤ pk+1(v, t)−min{pk(u, t) : u ∈ G} ≤ Φ+ for all v ∈ G and k ≥ 1,
where Φ− and Φ+ are the accuracy bounds controlling the separation of the generated pulses.
That is, (1) all correct nodes generate a pulse during the interval [t, t + Φ+], (2) the kth
pulse of any two correct nodes is less than σ time apart, and (3) for any pair of correct nodes
their subsequent pulses are at least Φ− but at most Φ+ time apart.

We say that A is an f -resilient pulse synchronisation algorithm with skew σ and accuracy
Φ = (Φ−,Φ+) with stabilisation time T (A), if for any choices of the adversary such that
|F | ≤ f , there exists a time t ≤ T (A) such that the system stabilises from time t onwards.
Moreover, a pulse synchronisation algorithm A is said to be a T -pulser if the accuracy
bounds satisfy Φ−,Φ+ ∈ Θ(T ). We use M(A) to denote the maximum number of bits a
correct node communicates per unit time when executing A.

Resynchronisation algorithms. In our pulse synchronisation algorithm, we use so-called
resynchronisation pulses to facilitate stabilisation. Essentially, the resynchronisation pulses
are given by a weak variant of a pulse synchronisation algorithm, where the guarantee is
that at some point all correct nodes generate a pulse almost synchronously, which is followed
by a long period of silence. At all other times, the behaviour can be arbitrary.

Formally, we say that B is an f -resilient resynchronisation algorithm with skew ρ and
separation window Ψ that stabilises in time T (B) if the following holds: for any choices
of the adversary such that |F | ≤ f , there exists a time t ≤ T (B) such that every correct
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node v ∈ G locally generates a resynchronisation pulse at time r(v) ∈ [t, t+ ρ) and no other
resynchronisation pulse before time t+ ρ+ Ψ. We call such a resynchronisation pulse good.
In particular, we do not impose any restrictions on what the nodes do outside the interval
[t, t+ ρ+ Ψ), that is, there may be spurious resynchronisation pulses outside this interval:

Node 1
Node 2
Node 3 
Node 4

good resynchronisation pulse

faulty node, arbitrary behaviour

spurious pulses

t t + ⇢ + t + ⇢
no pulses for 

time 

3 The transformation framework

Our main contribution is a modular framework that allows us to turn any non-self-stabilising
synchronous consensus algorithm into a self-stabilising pulse synchronisation algorithm in the
bounded-delay model. In particular, this construction yields only a small overhead in time
and communication complexity. This shows that efficient synchronous consensus algorithms
imply efficient pulse synchronisation algorithms. As our construction is relatively involved,
we opt to present it in a top-down fashion.

The main result. For notational convenience, we say that C is a family of synchronous
consensus routines with running time R(f) and message size M(f), if for any f ≥ 0 and
n ≥ n(f), there exists a synchronous consensus algorithm C ∈ C that runs correctly on n
nodes given that there are at most f faulty nodes, terminates in R(f) rounds, and uses
messages of size M(f). Here n(f) gives the minimum number of nodes needed as a function
of the resilience parameter f . Note that R(f),M(f), and n(f) depend on C; however, making
this explicit would clutter notation. We emphasise that the algorithms in C are not assumed
to be self-stabilising. Our main technical result states that given a family of consensus
routines, we can obtain pulse synchronisation algorithms with only small additional overhead.

I Theorem 1. Let C be a family of synchronous consensus routines that satisfy (i) for any
f0, f1 ∈ N, n(f0 + f1) ≤ n(f0) + n(f1) and (ii) both M(f) and R(f) are increasing. Then,
for any f ≥ 0, n ≥ n(f), and 1 < ϑ ≤ 1.007, there exists a T0(f) ∈ Θ(R(f)), such that for
any T ≥ T0(f) we can construct a T -pulser A with skew 2d. The stabilisation time T (A)
and number of bits M(A) broadcasted per time unit satisfy

T (A) ∈ O

d+
dlog fe∑

k=0
R(2k)

 and M(A) ∈ O

1 +
dlog fe∑

k=0
M(2k)

 ,

where the sums are empty when f = 0.

In the deterministic case, the phase king algorithm [5] provides a family of synchronous
consensus routines that satisfy the requirements. Moreover, it achieves optimal resilience
(i.e., the minimal possible n(f) = 3f + 1 [30]), constant message size, and asymptotically
optimal [19] running time R(f) ∈ O(f). Thus, this immediately yields the following result.

I Corollary 2. For any f ≥ 0 and n > 3f , there exists a deterministic f-resilient pulse
synchronisation algorithm over n nodes with skew 2d and accuracy bounds Φ−,Φ+ ∈ Θ(f)
that stabilises in O(f) time and has correct nodes broadcast O(log f) bits per time unit.
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Randomised algorithms. Extending Theorem 1 for use with randomised consensus routines
is straightforward; the reader is referred to the full paper [27] for details. By applying our
construction to a fast and communication-efficient randomised consensus algorithm, e.g. the
one by King and Saia [21], we get an efficient randomised pulse synchronisation algorithm.

I Corollary 3. Suppose we have private channels. For any f ≥ 0, constant ε > 0, and
n > (3 + ε)f , there exists a randomised f-resilient Θ(polylog f)-pulser over n nodes that
stabilises in polylog f time w.h.p. and has nodes broadcast polylog f bits per time unit.

We can also utilise the constant expected time protocol by Feldman and Micali [18]. With
some care, we can show that for R(f) ∈ O(1), Chernoff’s bound readily implies that the
stabilisation time is not only in O(logn) in expectation, but also with high probability.

I Corollary 4. Suppose we have private channels. For any f ≥ 0 and n > 3f , there exists a
randomised f-resilient Θ(log f)-pulser over n nodes that stabilises in O(log f) time w.h.p.
and has nodes broadcast poly f bits per time unit.

Proof sketch for Theorem 1. The proof of the main result takes an inductive approach.
In the inductive step, we assume two pulse synchronisation algorithms with small resilience.
We then use these to construct (via some hoops we discuss later) a new pulse synchronisation
algorithm with higher resilience. This step is formalised in the following lemma.

I Lemma 5. Let f, n0, n1 ∈ N, n = n0 +n1, f0 = b(f−1)/2c, and f1 = d(f−1)/2e. Suppose
for i ∈ {0, 1} there exists an fi-resilient Θ(R)-pulser Ai that runs on ni nodes and whose
accuracy bounds Φ−h and Φ+

h satisfy Φ+
h = ϕΦ−h for sufficiently small constants ϕ > ϑ. Let

C be an f-resilient consensus algorithm for a network of n nodes that has running time R
and uses messages of at most M bits. Then there exists a Θ(R)-pulser A that

runs on n nodes and has resilience f ,
stabilises in time T (A) ∈ max{T (A0), T (A1)}+O(R),
has nodes broadcast M(A) ∈ max{M(A0),M(A1)}+O(M) bits per time unit, and
has skew 2d and whose accuracy bounds Φ− and Φ+ satisfy that Φ+ = ϕΦ−.

Given the above lemma, it is relatively straightforward to show Theorem 1. Essentially,
we can prove the claim for f ∈

⋃
k≥0[2k, 2k+1) using induction on k. As the base case, we

use f = 0, that is, pulse synchronisation algorithms that tolerate no faulty nodes. These
are trivial to obtain for any n: we pick a single node as a leader that generates a pulse
when Φ+ − ϑd time has passed on its local clock. Whenever the leader node pulses, all other
nodes observe this within d time units. We have all other nodes generate a pulse whenever
they observe the leader node generating a pulse. Thus, for f = 0 we have algorithms that
stabilise in O(d) time, broadcast O(1) bits in O(d) time, and have accuracy bounds such that
Φ− = Φ+/ϑ−d. For the inductive step, we can assume that f ′-resilient pulse synchronisation
algorithms exist for all f ′ < 2k and n′ ≥ n(f ′) and apply Lemma 5.

The auxiliary results. In order to show Lemma 5, we use two main ingredients: (1) a pulse
synchronisation algorithm whose stabilisation mechanism is triggered by a resynchronisation
pulse and (2) a resynchronisation algorithm providing the latter. These ingredients are
formalised in the following two theorems.

I Theorem 6. Let f ≥ 0, n > 3f and (1 +
√

5)/3 > ϑ > 1. Suppose for a network of n
nodes there exist

an f -resilient synchronous consensus algorithm C, and
an f-resilient resynchronisation algorithm B with skew ρ ∈ O(d) and sufficiently large
separation window Ψ ∈ O(R) that tolerates clock drift of ϑ,
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A(7, 2): pulse synchronisation algorithm (Theorem 6)

A(2, 0) A(2, 0) 

B(4, 1): resynchronisation algorithm (T7)

A(4, 1): pulse synchronisation algorithm (T6) A(3, 0): trivial pulse synchronisation algorithm 

B(7, 2): resynchronisation algorithm (Theorem 7)

Figure 1 Recursively building a 2-resilient pulse synchronisation algorithm A(7, 2) over 7 nodes.
The construction utilises low resilience pulse synchronisation algorithms to build high resilience
resynchronisation algorithms which can then be used to obtain highly resilient pulse synchronisation
algorithms. Here, the base case consists of trivial 0-resilient pulse synchronisation algorithms A(2, 0)
and A(3, 0) over 2 and 3 nodes, respectively. Two copies of A(2, 0) are used to build a 1-resilient
resynchronisation algorithm B(4, 1) over 4 nodes using Theorem 7. The resynchronisation algorithm
B(4, 1) is used to obtain a pulse synchronisation algorithm A(4, 1) via Theorem 6. Now, the
1-resilient pulse synchronisation algorithm A(4, 1) over 4 nodes is used together with the trivial
0-resilient algorithm A(3, 0) to obtain a 2-resilient resynchronisation algorithm B(7, 2) for 7 nodes
and the resulting pulse synchronisation algorithm A(7, 2). White nodes represent correct nodes
and black nodes represent faulty nodes. The gray blocks contain too many faulty nodes for the
respective algorithms to correctly operate, and hence, they may have arbitrary output.

where C runs in R = R(f) rounds and lets nodes send at most M = M(f) bits per round.
Then a ϕ0(ϑ) ∈ 1 +O(ϑ− 1) exists so that for any constant ϕ > ϕ0(ϑ) and sufficiently large
T ∈ O(R), there exists an f -resilient pulse synchronisation algorithm A for n nodes that

has skew σ = 2d and satisfies the accuracy bounds Φ− = T and Φ+ = Tϕ,
stabilises in T (B) +O(R) time and has nodes broadcast M(B) +O(M) bits per time unit.

To apply the above theorem, we require suitable consensus and resynchronisation al-
gorithms. We rely on consensus algorithms from prior work and construct efficient resyn-
chronisation algorithms ourselves. The idea is to combine pulse synchronisation algorithms
that have low resilience to obtain resynchronisation algorithms with high resilience.

I Theorem 7. Let f, n0, n1 ∈ N, n = n0 + n1, f0 = b(f − 1)/2c, f1 = d(f − 1)/2e, and
1 < ϑ ≤ 1.007. Suppose that for some given Ψ ∈ Ω(1), sufficiently small constant ϕ > ϕ0(ϑ),
and T0 ∈ Θ(Ψ), it holds that for any h ∈ {0, 1} and T0 ≤ T ∈ O(Ψ) there exists a pulse
synchronisation algorithm Ah that

runs on nh nodes and tolerates fh faulty nodes,
has skew σ = 2d and accuracy bounds Φ−h = T and Φ+

h = Tϕ.
Then there exists a resynchronisation algorithm B with skew ρ ∈ O(d) and separation window
of length Ψ that generates a resynchronisation pulse by time max{T (A0), T (A1)}+O(Ψ),
where nodes broadcast only O(1) additional bits per time unit.

Given a suitable consensus algorithm, one can readily combine Theorems 6 and 7 to
obtain Lemma 5. Therefore, we can reduce the problem of constructing an f -resilient pulse
synchronisation algorithm to finding algorithms that tolerate up to bf/2c faults and recurse;
see Figure 1 for an example on how the two types of algorithms are interleaved.

In the remainder of this paper, we overview the main ideas behind the above two theorems.
As the proofs are relatively involved due to a large number of technicalities arising from the
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(2) auxiliary state machine

Output:
synchronised pulses

(1)

resync.
pulses P : non-SS pulser alg.

BD

B : resync. alg.
SS + BD

A : pulse sync. alg.
output of C

C : consensus alg.
synchronous, non-SS

(3) main state machine
SS + BD

transitions to 
WAIT

Figure 2 Constructing a self-stabilising (SS) and Byzantine fault-tolerant (BD) pulse synchron-
isation algorithm A out of a Byzantine fault-tolerant but non-stabilising pulse synchronisation
algorithm P, synchronous consensus algorithm C, and resynchronisation algorithm B. All algorithms
run on the same node set. (1) The resynchronisation algorithm B eventually outputs a good resyn-
chronisation pulse, which resets the stabilisation mechanism used by the auxiliary state machine. (2)
The auxiliary state machine simulates the executions of C using P. Simulations are initiated either
due to nodes transitioning to a special wait state of the main state machine (see Figure 3) or a
certain time after a resynchronisation pulse. (3) The main state machine. It generates pulses when
a consensus instance outputs “1” and, when stabilised, guarantees re-initialisation of the consensus
algorithm by the auxiliary state machine.

uncertainties introduced by the clock drift and message delay, we focus on summarising the
key ideas and deliberately skip over a number of details and avoid formalising the claims.
All the missing details and full proofs are given in the full paper [27].

4 The self-stabilising pulse synchronisation algorithm (Theorem 6)

We now overview the key elements in the construction of Theorem 6 illustrated in Figure 2:
a non-self-stabilising pulse synchronisation algorithm P,
a synchronous, non-self-stabilising consensus routine C,
a self-stabilising resynchronisation algorithm B, and
the constructed pulse synchronisation algorithm A.

Non-self-stabilising pulse synchronisation. The first component we need is a non-self-
stabilising pulse synchronisation algorithm P that tolerates Byzantine faults. To this end,
we use a variant of the classic clock synchronisation algorithm by Srikanth and Toeug [33]
that avoids transmitting clock values in favour of unlabelled pulses. As we do not require
self-stabilisation for now, we can assume that all nodes receive an initialisation signal during
the time window [0, τ) for a given parameter τ . The following theorem summarises the
properties of the algorithm.

I Theorem 8. Let n > 1, f < n/3, and τ > 0. If every correct node receives an initialisation
signal during [0, τ), then there exists a pulse synchronisation algorithm P such that:

all correct nodes generate the first pulse (after initialisation) within time O(ϑ2dτ),
the pulses have skew 2d,
the accuracy bounds are Φ− ∈ Ω(ϑd) and Φ+ ∈ O(ϑ2d), and
the algorithm communicates at most one bit per time unit.

We can simulate synchronous message-passing algorithms with the above algorithm as
follows. Assuming that no transient failures or new initialisation signals occur after time τ ,
by time O(ϑ2dτ) the algorithm starts to generate pulses with skew 2d and accuracy bounds
Φ− ∈ Ω(ϑd) and Φ+ ∈ O(ϑ2d). We can set the Ω(ϑd) term to be large enough so that all
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pulserecover
G1

G1’

G2’
Transition guards:

G2

G2

wait ⌘ T1 expires and saw � n � f ‘pulse’ messages within time T1

at some point before the timeout expires

⌘ T1 expires and G1 is not satisfied

⌘ auxiliary machine signals ‘output 1’

⌘ Twait expires or auxiliary machine signals ‘output 0’

G1

G1’
G2
G2’

Figure 3 The main state machine. When a node transitions to state pulse, it generates a pulse
event and sends a pulse message to all nodes. When the node transitions to state wait, it broadcasts
a wait message to all nodes. Guard G1 employs a sliding window memory buffer, which stores any
pulse messages that have arrived within time T1. When a correct node transitions to pulse, it
resets a local timer of length T1. Once it expires, either Guard G1 or Guard G1’ become satisfied.
Similarly, the timer Twait is reset when a node transitions to wait. Once it expires, Guard G2’ is
satisfied and the node transitions from wait to recover. The node transitions to state pulse when
Guard G2 is satisfied, which requires an “output 1” signal from the auxiliary state machine.

correct nodes can complete local computations and send/receive messages for each simulated
round i − 1 before the ith pulse occurs. Thus, nodes can associate each message with a
distinct round i (by counting locally) and simulate synchronous message-passing algorithms.

The self-stabilising algorithm. The general idea is to repeatedly simulate C to agree on
the time of the next pulse. However, we must deal with an arbitrary initial system state. In
particular, the correct nodes may be scattered over the states, with inconsistent memory
content, and also the timers employed in the transition guards may have arbitrary values
(within their domains). Nonetheless, assume for the moment that there is a small window of
length ρ ∈ O(d) during which each node receives a resynchronisation pulse, which triggers
the initialisation of the stabilisation mechanism.

The construction relies on two components: (1) a main state machine given in Figure 3
and (2) an auxiliary state machine that acts as a wrapper for an arbitrary consensus algorithm.
The main state machine is responsible for generating pulses, whereas the auxiliary state
machine generates signals that drive the main state machine. The main machine works as
follows: whenever a node enters the pulse state, it waits for some time to see if at least n−f
nodes generated a pulse within a short time window. If not, the system has not stabilised,
and the node goes into the recover state to indicate this. Otherwise, the node goes into
the wait state, where it remains for long enough to (a) separate any subsequent pulses from
previous ones and (b) receive the next signal from the auxiliary machine. Once stabilised, the
auxiliary machine is guaranteed to send the signal “1” within bounded time. This indicates
that the node should pulse again. If no signal arrives on time or the signal is “0”, this means
that the system has not stabilised and the node goes into the recover state.

While the auxiliary state machine is slightly more involved, the basic idea is simple:
(a) nodes try to check whether at least n− f nodes transition to the wait state in the main
state machine in a short enough time window (that is, a time window that would suffice
during correct operation) and (b) then use a consensus routine to agree on this observation.
Assuming that all correct nodes participate in the simulation of the consensus routine, we
get the following:

If the consensus algorithm C outputs “0”, then some v ∈ G did not see n − f nodes
transitioning to wait in a short time window, and hence, the system has not yet stabilised.
If the consensus algorithm C outputs “1”, then every v ∈ G agrees that a transition to
wait happened recently.
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In particular, the idea is that when the system operates correctly, the consensus simulation
will always succeed and output “1” at every correct node.

The obvious problem here is that the consensus routine is not self-stabilising and it
operates in a synchronous model of computation. To remedy the latter problem, we use the
algorithm from Theorem 8 to simulate round-based execution. However, this requires that
an initialisation signal is generated within a time window of length τ , thus requiring some
level of synchrony among the correct nodes. To wiggle our way out of this issue, we carefully
construct the main state machine and auxiliary machine to satisfy the following properties:
1. The main state machine guarantees that if some correct node transitions to wait, then

after a short interval no correct node transitions to wait for an extended period of time.
2. If a node u ∈ G sees at least n− f nodes transitioning to wait in a short time window

(including itself), then the node attempts to start a consensus instance with input “1”.
3. If node u ∈ G attempts to start a simulation of consensus with input “1”, then at least

n− 2f > f correct nodes v ∈ G must have recently transitioned to wait. As all nodes
can reliably detect this event, this essentially ensures that their auxilliary machines
synchronise. This way, we can guarantee that all correct nodes initialise a new consensus
instance within τ time of each other and generate a consistent output.

4. If this output is “1”, all correct nodes generate a synchronised pulse and the system
stabilises. Otherwise, all of them transition to state recover.

5. If no u ∈ G attempts to start a simulation of consensus with input “1” within a certain
time, we make sure that all correct nodes end up in recover. Here, we exploit that any
consensus instance can be made silent [26], which means that no messages are sent by
correct nodes if they all have input “0”. Hence, even if not all correct nodes actually
participate in an instance, it does not matter as long as no correct node has input “1”.

Thus, either the system stabilises within a certain time or all correct nodes end up in state
recover. This is where we utilise the resynchronisation signals: when a resynchronisation
signal is received, the nodes reset a local timer. Since the resynchronisation signal has a
small skew of ρ ∈ O(d), these timers expire within a relatively small time window as well. If
the timer expires when all correct nodes are in the recover state, then they can explicitly
restart the system in synchrony, also resulting in stabilisation. The key here is to get a good
resynchronisation pulse at some point, so that no spurious resynchronisation pulses interfere
with the described stabilisation mechanism until it is complete. Once succesful, no correct
nodes transition to recover anymore. Thus, any subsequent resynchronisation pulses do
not affect pulse generation. For a detailed discussion and formal analysis, see [27].

5 Generating resynchronisation pulses (Theorem 7)

The final ingredient is a mechanism to generate resynchronisation pulses; see Figure 4 for the
general structure of the construction. Recall that a good resynchronisation pulse is an event
triggered at all correct nodes within a small time interval, followed by at least Ψ time during
which no correct node triggers a new such event. In order to construct an algorithm that
generates such an event, we partition the set of n nodes into two disjoint blocks of roughly
n/2 nodes. Each block runs an instance of a pulse synchronisation algorithm tolerating fi

faults, where f0 + f1 + 1 = f (and f0 ≈ f1 ≈ f/2). For these two algorithms, we choose
different pulsing frequencies (that is, accuracy bounds) that are roughly coprime integer
multiples of the desired separation window Ψ. Both algorithms are used as potential sources
of resynchronisation pulses. The idea behind our construction is illustrated in Figure 5. If
both instances stabilise, it is not difficult to set up the frequencies such that Ai eventually
generates a pulse that is not followed by a pulse from A1−i within time Ψ.
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F₀(n, f) : filter 0

A₀(n₀, f₀) 

Output: resynchronisation pulses

block 0

n = n₀ + n₁ = 4
f = f₀ + f₁ + 1 = 1F₁(n, f) : filter 1

A₁(n₁, f₁) 
block 1 (faulty) Legend

correct node

Parameters

faulty node

Figure 4 Construction of an f -resilient resynchronisation algorithm on n nodes from fi-resilient
pulse synchronisation algorithms on ni nodes, where f = f0 + f1 + 1 and n = n0 + n1. The n nodes
are divided into two groups of n0 and n1 nodes. These groups run pulse synchronisation algorithms
A0 and A1, respectively. At least one of these algorithms is guaranteed to stabilise eventually. Here,
A1 (gray block) has too many faulty nodes and does not stabilise. All of the n nodes together run
two filtering mechanisms F0 and F1 for the outputs of A0 and A1, respectively. These ensure that
no correct node locally generates a resynchronisation pulse without all correct nodes registering this
event, and then apply timeout constraints to enforce the desired frequency bounds.

source

output

(a)
faulty source 

source

output

(b) spurious (early) pulse

source

Figure 5 Idea of the resynchronisation algorithm. We take two pulse sources with (up to scaling)
coprime frequencies and output the logical OR of the two sources. In this example, the pulses of the
first source should occur in the blue regions, whereas the pulses of the second source should hit the
yellow regions. The green regions indicate a period where a pulse from either source is followed by
at least Ψ time of silence. Eventually, such a region appears. (a) Two correct sources that pulse
with set frequencies. (b) One faulty source that produces spurious pulses. Here, a pulse occurs too
early (red region), and thus, we then enforce that the faulty source is silenced for Θ(Ψ) time.

Unfortunately, one of the instances (but not both) could have more than fi faulty nodes,
never stabilise, and thus generate possibly inconsistent pulses at arbitrary points in time.
We overcome this by a two-step filtering process illustrated in Figure 6. First, we apply a
number of threshold votes ensuring that if a pulse of a block is considered as a candidate
resynchronisation pulse by some correct node, then all correct nodes observe this event.
Second, we locally filter out any observed events that do not obey the prescribed frequency
bounds for the respective block. Thus, the faulty block either generates (possibly inconsistent)
pulses within the prescribed frequency bounds only, or its influence is suppressed entirely
(for sufficiently long time). Either way, the correctly operating block will eventually succeed
in generating a resynchronisation pulse. Further details and all missing proofs appear in the
full version of this paper [27].
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Filter for A₀

The local outputs of a single node

<  >  
faulty, arbitrary behaviour

1:
2:
3:
4:

5:
6:
7:
8:

Filter for A₁ 
— threshold votes 
ensure that if 
someone accepts a 
pulse, all see this
— timeout since last 
pulse; reject early or 
late pulses

good pulsebad pulsesA₀

A₁

faulty, arbitrary behaviour

Same as the 
first filter, but
apply to A₁

Figure 6 Example of the resynchronisation construction for 8 nodes tolerating 2 faults. We
partition the network into two parts, each running a pulse synchronisation algorithm Ai. The
output of Ai is fed into the respective filter and any pulse that passes the filtering is used as a
resynchronisation pulse. The filtering consists of (1) having all nodes in the network participate in
a threshold vote to see if anyone thinks a pulse from Ai occurred (i.e. enough nodes running Ai

generated a pulse) and (2) keeping track when was the last time a pulse from Ai occurred to check
that the accuracy bounds of Ai are respected: pulses that appear too early or too late are ignored.
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Abstract
We study distributed algorithms implemented in a simplified biologically inspired model for
stochastic spiking neural networks. We focus on tradeoffs between computation time and network
complexity, along with the role of noise and randomness in efficient neural computation.

It is widely accepted that neural spike responses, and neural computation in general, is
inherently stochastic. In recent work, we explored how this stochasticity could be leveraged to
solve the ‘winner-take-all’ leader election task. Here, we focus on using randomness in neural
algorithms for similarity testing and compression. In the most basic setting, given two n-length
patterns of firing neurons, we wish to distinguish if the patterns are equal or ε-far from equal.

Randomization allows us to solve this task with a very compact network, using O
(√

n logn
ε

)
auxiliary neurons, which is sublinear in the input size. At the heart of our solution is the design of
a t-round neural random access memory, or indexing network, which we call a neuro-RAM. This
module can be implemented with O(n/t) auxiliary neurons and is useful in many applications
beyond similarity testing – e.g., we discuss its application to compression via random projection.

Using a VC dimension-based argument, we show that the tradeoff between runtime and
network size in our neuro-RAM is near optimal. To the best of our knowledge, we are the first to
apply these techniques to stochastic spiking networks. Our result has several implications – since
our neuro-RAM can be implemented with deterministic threshold gates, it shows that, in contrast
to similarity testing, randomness does not provide significant computational advantages for this
problem. It also establishes a separation between feedforward networks whose gates spike with
sigmoidal probabilities, and well-studied deterministic sigmoidal networks, whose gates output
real number sigmoidal values, and which can implement a neuro-RAM much more efficiently.
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and artificial intelligence, they have received little attention from a distributed computing
perspective. Our goal is to study biological neural networks through the lens of distributed
computing theory. We focus on understanding tradeoffs between computation time, network
complexity, and the use of randomness in implementing basic algorithmic primitives, which
can serve as building blocks for high level pattern recognition, learning, and processing tasks.

Spiking Neural Network (SNN) Model. We work with biologically inspired spiking neural
networks (SNNs) [18, 19, 12, 15], in which neurons fire in discrete pulses in synchronous
rounds, in response to a sufficiently high membrane potential. This potential is induced by
spikes from neighboring neurons, which can have either an excitatory or inhibitory effect
(increasing or decreasing the potential). As observed in biological networks, neurons are
either strictly inhibitory (all outgoing edge weights are negative) or excitatory. As we will
see, this restriction can significantly affect the power of these networks.

A key feature of our model is stochasticity – each neuron is a probabilistic threshold unit,
spiking with probability given by applying a sigmoid function to its potential. While a rich
literature focuses on deterministic circuits [21, 13] we employ a stochastic model as it is
widely accepted that neural computation is stochastic [1, 24, 9].

Computational Problems in SNNs. We consider an n-bit binary input vector X, which
represents the firing status of a set of input neurons. Given a (possibly multi-valued) function
f : {0, 1}n → {0, 1}m, we seek to design a network of spiking neurons that converges to an
output vector Z = f(X) (or any Z ∈ f(X) if f is multi-valued) as quickly as possible using
few auxiliary (non-input or output) neurons.

The number of auxiliary neurons used corresponds to the “node complexity” of the
network [14]. Designing circuits with small node complexity has received a lot of attention –
e.g., the work of [10] on PARITY and [3] on AC0. Much less is known, however, on what is
achievable in spiking neural networks. For most of the problems we study, there is a trivial
solution that uses Θ(n) auxiliary neurons for inputs of size n. Hence, we primarily focus on
designing sublinear size networks – with n1−c auxiliary neurons for some c.

Past Work: WTA. Recently, we studied the ‘winner-take-all’ (WTA) leader election task
in SNNs [17]. Given a set of firing input neurons, the network is required to converge to
a single firing output – corresponding to the ‘winning’ input. In that work, we critically
leveraged the noisy behavior of our spiking neuron model: randomness is key in breaking the
symmetry between initially identical firing inputs.

This Paper: Similarity Testing and Compression. In this paper, we study the role of
randomness in a different setting: for similarity testing and compression. Consider the
basic similarity testing problem: given X1, X2 ∈ {0, 1}n, we wish to distinguish the case
when X1 = X2 from the case when the Hamming distance between the vectors is large –
i.e., dH(X1, X2) ≥ εn for some parameter ε. This problem can be solved very efficiently
using randomness – it suffices to sample O(logn/ε) indices and compare X1 and X2 at these
positions to distinguish the two cases with high probability. Beyond similarity testing, similar
compression approaches using random input subsampling or hashing can lead to very efficient
routines for a number of data processing tasks.
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1.1 A Neuro-RAM Unit
To implement the randomized similarity testing approach described above, and to serve as a
foundation for other random compression methods in spiking networks, we design a basic
indexing module, or random access memory, which we call a neuro-RAM. This module solves:

I Definition 1 (Indexing). Given X ∈ {0, 1}n and Y ∈ {0, 1}logn which is interpreted as an
integer in {0, ..., n− 1}, the indexing problem is to output the value of the Y th bit of X1.

Our neuro-RAM uses a sublinear number of auxiliary neurons and solves indexing with high
probability on any input. We focus on characterizing the trade-off between the convergence
time and network size of the neuro-RAM, giving nearly matching upper and lower bounds.

Generally, our results show that a compressed representation (e.g., the index Y ) can be
used to access a much larger datastore (e.g., X), using a very compact neural network. While
binary indexing is not very ‘neural’ we can imagine similar ideas extending to more natural
coding schemes used, for example, for memory retrieval, scent recognition, or other tasks.

Relation to Prior Work. Significant work has employed random synaptic connections
between neurons – e.g., the Johnson-Lindenstrauss compression results of [2] and the work of
Valiant [26]. While it is reasonable to assume that the initial synapses are random, biological
mechanisms for changing connectivity (functional plasticity) act over relatively large time
frames and cannot provide a new random sample of the network for each new input. In
contrast, stochastic spiking neurons do provide fresh randomness to each computation. In
general, transforming of a network with m possible random edges to a network with fixed
edges and stochastic neurons requires Ω(m) auxiliary neurons and thus fails to fulfill our
sublinearity goal, as there is typically at least one possible outgoing edge from each input. Our
neuro-RAM can be thought of as improving the naive simulation – by reading a random entry
of an input, we simulate a random edge from the specified neuron. Beyond similarity testing,
we outline how our result can be used to implement Johnson-Lindenstrauss compression
similar to [2] without assuming random connectivity.

1.2 Our Contributions
1.2.1 Efficient Neuro-RAM Unit
Our primary upper bound result is the following:

I Theorem 2 (t-round Neuro-RAM). For every integer t ≤
√
n, there is a ( recurrent)

SNN with O(n/t) auxiliary neurons that solves the indexing problem in t rounds with high
probability. In particular, there exists a neuro-RAM unit that contains O(

√
n) auxiliary

neurons and solves the indexing problem in O(
√
n) rounds.

Above, and throughout the paper ‘with high probability’ or w.h.p. to denotes with probability
at least 1− 1/nc for some constant c. Theorem 2 is proven in Section 3.

Neuro-RAM Construction. The main idea is to first ‘encode’ the firing pattern of the input
neurons X into the potentials of t neurons. These encoding neurons will spike with some
probability dependent on their potential. However, simply recording the firing rates of the
neurons to estimate this probability is too inefficient. Instead, we use a ‘successive decoding

1 Here, and throughout, for simplicity we assume n is a power of 2 so logn is an interger.
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strategy’, in which the firing rates of the encoding neurons are estimated at finer and finer
levels of approximation, and adjusted through recurrent excitation or inhibition as decoding
progresses. The strategy converges in O(n/t) rounds – the smaller t is the more information
is contained in the potential of a single neuron, and the longer decoding takes.

Theorem 2 shows a significant separation between our networks and traditional feedforward
circuits where significantly sublinear sized indexing units are not possible.

I Fact 3 (See Lower Bounds in [16]). A circuit solving the indexing problem that consists
of AND/OR gates connected in a feedforward manner requires Θ(n) gates. A feedforward
circuit using linear threshold gates requires Θ(n/ logn) gates.

We note, however, that our indexing mechanism does not exploit the randomness of the
spiking neurons, and in fact can also be implemented with deterministic linear threshold
gates. Thus, the separation between Theorem 2 and Fact 3 is entirely due to the recurrent
(non-feedforward) layout of our network. Since any recurrent network using O(m) neurons
and converging in t rounds can be ‘unrolled’ into a feedforward circuit using O(mt) neurons,
Fact 3 shows that the tradeoff between network size and runtime in Theorem 2 is optimal up
to a logn factor, if we use our spiking neurons in this restricted way. However, it does not
rule out improvements using more sophisticated randomized strategies.

1.2.2 Lower Bound for Neuro-RAM in Spiking Networks

Surprisingly, we are able to show that despite the restricted way in which we use our spiking
neuron model, significant improvements are not possible:

I Theorem 4 (Lower Bound for Neuro-RAM in SNNs). Any SNN that solves indexing in t
rounds with high probability in our model must use at least Ω

(
n

t log2 n

)
auxiliary neurons.

Theorem 4, whose proof is in Section 4, shows that the tradeoff in Theorem 2 is within a
log2 n factor of optimal. It matches the lower bound of Fact 3 for deterministic threshold
gates up to a logn factor, showing that there is not a significant difference in the power of
stochastic neurons and deterministic gates in solving indexing.

Reduction from SNNs to Deterministic Circuits. We first argue that the output distribu-
tion of any SNN is identical to the output distribution of an algorithm that first chooses a
deterministic threshold circuit from some distribution and then applies it to the input. This
is a powerful observation as it lets us apply Yao’s principle: an SNN lower bound can be
shown via a lower bound for deterministic circuits on any input distribution [27].

Deterministic Circuit Lower Bound via VC Dimension. We next show that any determ-
inistic circuit that succeeds with high probability on uniform random inputs cannot be too
small. The bound is via a VC dimension-based argument, which extends the work of [16].
As far as we are aware, we are the first to give a VC dimension-based lower bound for
probabilistic and biologically plausible networks and we hope our work significantly expands
the toolkit for proving lower bounds in this area. In contrast to our lower bounds on the
WTA problem [17], which rely on indistinguishability arguments based on network structure,
our new techniques allow us to give more general bounds for any network architecture.
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Separation of Network Models. Aside from showing that randomness does not give signi-
ficant advantages in constructing a neuro-RAM (contrasting with its importance in WTA
and similarity testing), our proof of Theorem 4 establishes a separation between feedforward
spiking networks and deterministic sigmoidal circuits. Our neurons spike with probability
computed as a sigmoid of their membrane potential. In sigmoidal circuits, neurons output
real numbers, equivalent to our spiking probabilities. A neuro-RAM can be implemented
very efficiently in these networks:

I Fact 5 (See [16], along with [19] for similar bounds). There is a feedforward sigmoidal
circuit solving the indexing problem using O(

√
n) gates.2

In contrast, via an unrolling argument, the proof of Theorem 4 shows that any feedforward
spiking network requires Ω

(
n

log2 n

)
gates to solve indexing with high probability.

It has been shown that feedforward sigmoidal circuits can significantly outperform
standard feedforward linear threshold circuits [20, 16]. However, previously it was not known
that restricting gates to spike with a sigmoid probability function rather than output the real
value of this function significantly affected their power. Our lower bound, along with Fact
5, shows that in some cases it does. This separation highlights the importance of modeling
spiking neuron behavior in understanding complexity tradeoffs in neural computation.

1.2.3 Applications to Randomized Similarity Testing and Compression
As discussed, our neuro-RAM is widely applicable to algorithms that require random sampling
of inputs. In Section 5 we discuss our main application, to similarity testing – i.e., testing if
X1 = X2 or if dH(X1, X2) ≥ εn. It is easy to implement an exact equality tester using Θ(n)
auxiliary neurons. Alternatively, one can solve exact equality with three auxiliary neurons
using mixed positive and negative edge weights for the outgoing edges of inputs. However
this is not biologically plausible – neurons typically have either all positive (excitatory) or all
negative (inhibitory) outgoing edges, a restriction included in our model. Designing sublinear
sized exact equality testers under this restriction seems difficult – simulating the three neuron
solution requires at least Θ(n) auxiliary neurons – Θ(1) for each input.

By relaxing to similarity testing and applying our neuro-RAM, we can achieve sublinear
sized networks. We can use Θ(logn/ε) neuro-RAMs, each with O(

√
n) auxiliary neurons to

check equality at Θ(logn/ε) random positions of X1 and X2 distinguishing if X1 = X2 or if
dH(X1, X2) ≥ εn with high probability. This is the first sublinear solution for this problem in
the spiking neural networks. In Section 5, we discuss possible additional applications of our
neuro-RAM to Johnson-Lindenstrauss random compression, which amounts to multiplying
the input by a sparse random matrix – a generalization of input sampling.

2 Computational Model and Preliminaries

2.1 Network Structure
We now give a formal definition of our computational model. A Spiking Neural Network
(SNN) N = 〈X,Z,A,w, b〉 consists of n input neurons X = {x1, . . . , xn}, m output neurons
Z = {z1, . . . , zm}, and ` auxiliary neurons A = {a1, ..., a`}. The directed, weighted synaptic

2 Note that [20] shows that general deterministic sigmoidal circuits can be simulated by our spiking model.
However, the simulation blows up the size of the circuit size by

√
n, giving Θ(n) auxiliary neurons.
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connections between X, Z, and A are described by the weight function w : [X ∪ Z ∪ A]×
[X ∪ Z ∪A]→ R. A weight w(u, v) = 0 indicates that a connection is not present between
neurons u and v. Finally, for any neuron v, b(v) ∈ R≥0 is the activation bias – as we will see,
roughly, v’s membrane potential must reach b(v) for a spike to occur with good probability.

The weight function defining the synapses in our networks is restricted in a few notable
ways. The in-degree of every input neuron xi is zero. That is, w(u, x) = 0 for all u ∈ [X∪Z∪A]
and x ∈ X. This restriction bears in mind that the input layer might in fact be the output
layer of another network and so incoming connections are avoided to allow for the composition
of networks in higher level modular designs. Additionally, each neuron is either inhibitory
or excitatory: if v is inhibitory, then w(v, u) ≤ 0 for every u, and if v is excitatory, then
w(v, u) ≥ 0 for every u. All input and output neurons are excitatory.

2.2 Network Dynamics

An SNN evolves in discrete, synchronous rounds as a Markov chain. The firing probability
of every neuron at time t depends on the firing status of its neighbors at time t− 1, via a
standard sigmoid function, with details given below.

For each neuron u, and each time t ≥ 0, let ut = 1 if u fires (i.e., generates a spike) at
time t. Let u0 denote the initial firing state of the neuron. Our results will specify the initial
input firing states x0

j = 1 and assume that u0 = 0 for all u ∈ [Z ∪ A]. For each non-input
neuron u and every t ≥ 1, let pot(u, t) denote the membrane potential at round t and p(u, t)
denote the corresponding firing probability (Pr[ut = 1]). These values are calculated as:

pot(u, t) =
∑

v∈X∪Z∪A
wv,u · vt−1 − b(u) and p(u, t) = 1

1 + e−pot(u,t)/λ
(1)

where λ > 0 is a temperature parameter, which determines the steepness of the sigmoid. It is
easy to see that λ does not affect the computational power of the network. A network can
be made to work with any λ simply by scaling the synapse weights and biases appropriately.

For simplicity we assume that λ = 1
Θ(logn) . Thus by (1), if pot(u, t) ≥ 1, then ut = 1

w.h.p. and if pot(u, t) ≤ −1, ut = 0 w.h.p. (recall that w.h.p. denotes with probability at
least 1−1/nc for some constant c). Aside from this fact, the only other consequence of (1) we
use in our constructions is that pot(u, t) = 0 =⇒ p(u, t) = 1/2. That is, we use our spiking
neurons entirely as random threshold gates, which fire w.h.p. when the incoming potential
from their neighbors’ spikes exceeds b(u), don’t fire w.h.p. when the potential is below b(u),
and fire randomly when the input potential equals the bias. It is an open question if there
are any problems which require using the full power of the sigmoidal probability function.

2.3 Additional Notation

For any vector x we let xi denote the value at its ith position, starting from x0. Given binary
x ∈ {0, 1}n, we use dec(x) to indicate the integer encoded by x. That is, dec(x) =

∑n−1
i=0 xi ·2i.

Given an integer x we use bin(x) to denote its binary encoding, where the number of digits
used in the encoding will be clear from context. We will often think of the firing pattern of a
set of neurons as a binary string. If B = {y1, ..., ym} is a set of m neurons then Bt ∈ {0, 1}m
is the binary string corresponding to their firing pattern at time t. Since the input is
typically fixed for some number of rounds, we often just write X to refer to the n-bit string
corresponding to the input firing pattern.
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Boolean Circuits. We mention that SNNs are similar to boolean circuits, which have
received enormous attention in theoretical computer science. A circuit consists of gates (e.g.,
threshold gates, probabilistic threshold gates) connected in a directed acyclic graph. This
restriction means that a circuit does not have feedback connections or self-loops, which we
do use in our SNNs. While we do not work with circuits directly, for our lower bound, we
show a transformation from an SNN to a linear threshold circuit. We sometimes refer to
circuits as feedforward networks, indicating that their connections are cycle-free.

3 Neuro-RAM Network

In this section we prove our main upper bound:

I Theorem 6 (Efficient Neuro-RAM Network). There exists an SSN with O(
√
n) auxiliary

neurons that solves indexing in 5
√
n rounds. Specifically, given inputs X ∈ {0, 1}n, and

Y ∈ {0, 1}logn, which are fixed for all rounds t ∈ {0, ..., 5
√
n}, the output neuron z satisfies:

if Xdec(Y ) = 1 then z5
√
n = 1 w.h.p. Otherwise, if Xdec(Y ) = 0, z5

√
n = 0 w.h.p.

Theorem 6 easily generalizes to other network sizes, giving Theorem 2, which states the
full size-time tradeoff. Here we discuss the intuition behind the basic construction. The full
details and proof are given in Appendices A.1 and A.2 of our full paper.

We divide the n input neurons X into
√
n buckets each containing

√
n neurons3:

X0 = {x0, ..., x√n−1}, ..., X√n−1 = {x(
√
n−1)

√
n, ..., xn−1}.

Throughout, all our indices start from 0. We encode the firing pattern of each bucket Xi

via the potential of a single neuron ei. Set w(xi√n+j , ei) = 2
√
n−j for all i, j ≥ 0. Thus, for

every round t, the total potential contributed to ei by the firing of the inputs in bucket Xi is:
√
n−1∑
j=0

xi
√
n+j · 2

√
n−j = 2 · dec(X̄i). (2)

where X̄i is the reversal of Xi and dec(·) gives the decimal value of a binary string, as defined
in the preliminaries. We set b(ei) = 2

√
n+2 + 2

√
n − 1. We will see later why this is an

appropriate value. We defer detailed discussion of the remaining connections to ei for now,
first giving a general description of the network construction.

In addition to the encoding neurons e0, ..., e√n−1, we have decoding neurons d0,k, ...,

d√n−1,k for k = 1, 2, 3 (3
√
n neurons total). The idea is to select a bucket Xi (via ei) using the

first log
√
n = logn

2 bits in the index Y . Let Y1
def= {y0, ..., y logn

2 −1} and Y2
def= {y logn

2
, ..., ylogn−1}

be the higher and lower order bits of Y respectively. It is not hard to see that using O(
√
n)

neurons we can construct a network that processes Y1 and uses it to select ei with i = dec(Y1).
When a bucket is selected, the potential of any ej with j 6= dec(Y1) is significantly depressed
compared to that of ei and so after this selection stage, only ei fires.

We then use the decoding neurons to ‘read’ each bit of the potential encoded in ei. The
final output is selected from each of these bits using the lower order bits Y2, which can again
be done efficiently with O(

√
n) neurons. We call this phase the decoding phase since ei

encodes the value (in decimal) of its bucket Xi, and we need to decode from that value the
bit of the appropriate neuron inside that bucket.

3 Throughout we assume for simplicity that n = 22m for some integer m. This ensures that
√
n, logn,

and log
√
n are integers. It will be clear that if this is not the case, we can simply pad the input, which

only affects our time and network size bounds by constant factors.
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Figure 1 Illustration of the neuro-RAM module. Di represents the set of 3 decoding neurons for
each bit: {di,1, di,2, di,3}. The dotted lines from Y1 and Y2 represent connections to the buckets and
decoding neurons which are not currently selected. The index encoded by Y is marked in bold and
the selected encoding and decoding neurons are highlighted.

The decoding process works as follows: initially, ei will fire only if the first bit of bucket i
is on. Note that the weight from this bit to ei is 2

√
n and thus more than double the weight

from any other input bit. Thus, by appropriately setting b(ei), we can ensure that the setting
of this single bit determines if ei fires initially.

If the first bit is the correct bit to output (i.e., if the last logn
2 bits of the index Y2 encode

position 0), this will trigger the output z to fire. Otherwise, we iterate. If ei in fact fired,
this triggers inhibition that cancels out the potential due to the first bit of bucket i. So ei
will now only fire if the second bit of Xi is on. If ei did not fire, the opposite will happen.
Further excitation will be given to ei again ensuring that it can fire as long as the second bit
of Xi is on. The network iterates in this way, successively reading each bit, until we reach
the one encoded by Y2 and the output fires. The first decoding neuron for position j, dj,1, is
responsible to triggering the output to fire if j is the correct bit encoded by Y2. The second
decoding neuron dj,2 is responsible for providing excitation when ei does not fire. Finally,
the third decoding neuron dj,3 provides inhibition when ei does fire.

In Appendix A.1 of our full paper, we describe the first stage in which we use the first
logn/2 index bits to select the bucket to which the desired index belongs to.

In Appendix A.2, we discuss the second phase where we use the last logn/2 bits of Y , to
select the desired index inside the bucket i. Our successive decoding process is synchronized
by a clock mechanism. This clock mechanism consists of chain of Θ(

√
n) neurons that govern

the timing of the Θ(
√
n) steps of our decoding scheme. Roughly, traversing the

√
n bits of

the chosen ith bucket from left to right, we spend O(1) rounds checking if the current index
is the one encoded by Y2. If yes, we output the value at that index and if not, the clock
“ticks” and we move to the next candidate.

Note that our model and the proof of Theorem 6 assume that no auxiliary neurons or
the output neuron fire in round 0. However, in applications it will often be desirable to run
the neuro-RAM for multiple inputs, with execution not necessarily starting at round 0. We
can easily add a mechanism that ‘clears’ the network once it outputs, giving:

I Observation 7 (Running Neuro-RAM for Multiple Inputs). The neuro-RAM of Theorem 6
can be made to run correctly given a sequence of multiple inputs.

4 Lower Bound for Neuro-RAM in Spiking Networks

In this section, we show that our neuro-RAM construction is nearly optimal. Specifically:
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I Theorem 8. Any SNN solving indexing with probability ≥ 1 − 1
2n in t rounds must use

` = Ω
(

n
t log2 n

)
auxiliary neurons.

This result matches the lower bound for deterministic threshold gates of Fact 3 up to a logn
factor, demonstrating that the use of randomness cannot give significant runtime advantages
for the indexing problem. Even if one just desires a constant (e.g., 2/3) probability of success,
a lower bound of Ω

(
n

t log3 n

)
applies: by replicating any network with success probability

2/3, Θ(logn) times and taking the majority output (which can be computed with just a
single additional auxiliary neuron), we obtain a network that solves the problem w.h.p.

4.1 High Level Approach and Intuition

The proof of Theorem 8 proceeds in a number of steps, which we overview here.

Reduction to Deterministic Indexing Circuit. We first observe that a network with `

auxiliary neurons solving the indexing problem in t rounds can be unrolled into a feedforward
circuit with t layers and ` neurons per layer. We then show that the output distribution of a
feedforward stochastic spiking circuit is identical to the output distribution if we first draw
a deterministic linear threshold circuit (still with t layers and ` neurons per layer) from a
certain distribution, and evaluate our input using this random circuit.

This equivalence is powerful since it allows us to apply Yao’s principle [27]: assuming
the existence of a feedforward SNN solving indexing with probability ≥ 1− 1

2n , given any
distribution of the inputs X,Y , there must be some deterministic linear threshold circuit
ND which solves indexing with probability ≥ 1− 1

2n over this distribution.
If we consider the uniform distribution over X,Y , this success probablity ensures via an

averaging argument that for at least 1/2 of the 2n possible values of X, ND succeeds for at
least a 1− 1

2n fraction of the possible Y inputs. Note, however, that the Y can only take on
n possible values – thus this ensures that for 1/2 the possible values of X, ND succeeds for
all possible values of the index Y . Let X be the set of ‘good inputs’ for which ND succeeds.

Lower Bound for Deterministic Indexing on a Subset of Inputs. We have now reduced
our problem to giving a lower bound on the size of a deterministic linear threshold circuit
which solves indexing on an arbitrary subset X of 1

2 · 2
n = 2n−1 inputs. We do this using

VC dimension techniques inspired by the indexing lower bound of [16].
The key idea is to observe that if we fix some input X ∈ X , then given Y , ND evaluates

the function fX : {0, 1}logn → {0, 1}, whose truth table is given by X. Thus ND can be
viewed as a circuit for evaluating any function fX(Y ) for X ∈ X , where the X inputs are
‘programmable parameters’, which effectively change the thresholds of some gates.

It can be shown that the VC dimension of the class of functions computable by a
fixed a linear threshold circuit with m gates and variable thresholds is O(m logm). Thus
for a circuit with t layers and ` gates per layer, the VC dimension is O(`t log(`t)) [5].
Further, as a consequence of Sauer’s Lemma [23, 25, 4], defining the class of functions
F = {fX for any X ∈ X}, since |F| = |X | = 2n−1, we have V C(F) = Θ(n/ logn). These
two VC dimension bounds, in combination with the fact that we know ND can compute any
function in F if its input bits are fixed appropriately, imply that `t · log(`t) = Ω(n/ logn).
Rearranging gives ` = Ω

(
n

t log2 n

)
, completing Theorem 8.
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4.2 Reduction to Deterministic Indexing Circuit
We now give the argument explained above in detail, first describing how any SNN that
solves indexing w.h.p. implies the existence of a deterministic feedforward linear threshold
circuit which solves indexing for a large fraction of possible inputs X.
I Lemma 9 (Conversion to Feedforward Network). Consider any SNN N with ` auxiliary
neurons, which given input X ∈ {0, 1}n that is fixed for rounds {0, ..., t}, has output z
satisfying Pr[zt = 1] = p. Then there is a feedforward SNN NF (an SNN whose directed edges
form an acyclic graph) with (t− 1) · (`+ 1) auxiliary neurons also satisfying Pr[zt = 1] = p

when given X which is fixed for rounds {0, ..., t}.
Proof. Let B = A∪ z – all non-input neurons. We produce t− 1 duplicates of each auxiliary
neuron a ∈ A : {a1, ..., at−1} and of z : {z1, ..., zt−1}, which are split into layers B1, ..., Bt−1.
For each incoming edge from a neuron u to v and each i ≥ 2 we add an identical edge from
ui−1 to vi. Any incoming edges from input neurons to u are added to each ui for all i ≥ 1.
Finally connect z to the appropriate neurons in Bt−1 (including zt−1 if there is a self-loop).

In round 1, the joint distribution of the spikes B1
1 in NF is identical to the distribution

of B1 in N since these neurons have identical incoming connections from the inputs, and
since any incoming connections from other auxiliary neurons are not triggered in N since
none of these neurons fire at time 0.

Assuming via induction that Bii is identically distributed to Bi, since Bi+1 only has
incoming connections from Bi and the inputs which are fixed, then the distribution of Bi+1

i+1
identical to that of Bi+1. Thus Bt−1

t−1 is identically distributed to Bt−1, and since the output
in NF is only connected to Bt−1 its distribution is the same in round t as in N . J

I Lemma 10 (Conversion to Distribution over Deterministic Threshold Circuits). Consider any
spiking sigmoidal network N with ` auxiliary neurons, which given input X ∈ {0, 1}n that
is fixed for rounds {0, ..., t}, has output neuron z satisfying Pr[zt = 1] = p. Then there is a
distribution D over feedforward deterministic threshold circuits with (t− 1) · (`+ 1) auxiliary
gates that, for ND ∼ D with output z, PrD[zt = 1] = p when presented input X.
Proof. We start with NF obtained from Lemma 9. This circuit has t−1 layers of `+1 neurons
B1, ..., Bt−1. Given X ∈ {0, 1}n that is fixed for rounds {0, ..., t}, NF has Pr[zt = 1] = p,
which matches the firing probability of the output z in N in round t.

Let D be a distribution on deterministic threshold circuits that have identical edge weights
to NF . Additionally, for any (non-input) neuron u ∈ NF , letting ū be the corresponding
neuron in the deterministic circuit, set the bias b(ū) = η, where η is distributed according
to a logistic distribution with mean µ = b(u) and scale s = λ. The random bias is chosen
independently for each u. It is well known that the cumulative density function of this
distribution is equal to the sigmoid function. That is:

Pr[η ≤ x] = 1
1 + e−

x−b(u)
λ

. (3)

Consider ND ∼ D and any neuron u in the first layer B1 of NF . u only has incoming
edges from the input neurons X. Thus, its corresponding neuron ū in ND also only has
incoming edges from the input neurons. Let W =

∑
x∈X w(x, u) · x0. Then we have:

Pr
D

[ū1 = 1] = Pr[W − η ≥ 0] = Pr[η ≤W ] (Deterministic threshold)

= 1
1 + e−

W−b(u)
λ

(Logistic distribution CDF (3))

= Pr[u1 = 1]. (Spiking sigmoid dynamics (1))
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Let B̄i denote the neurons in ND corresponding to those in Bi. Since in round 1, all neurons
in B1 fire independently and since all neurons in B̄1 fire independently as their random biases
are chosen independently, the joint firing distribution of B1

1 is identical to that of B̄1
1 .

By induction assume that B̄ii is identically distributed (over the random choice of
deterministic network ND ∼ D) to Bii . Then for any u ∈ Bi+1 we have by the same argument
as above, conditioning on some fixed firing pattern V of Bi in round i:

Pr
D

[ūi+1 = 1|B̄ii = V ] = Pr[ui+1 = 1|Bii = V ].

Conditioned on Bii = V , the neurons in Bi+1 fire independently in round i+ 1. So do the
neurons of B̄i+1 due to their independent choices of random biases. Thus, the above implies
that the distribution of B̄i+1

i+1 conditioned on B̄ii = V is identical to the distribution of Bi+1
i+1 .

This holds for all V , so, the full joint distribution of B̄i+1
i+1 is identical to that of Bi+1

i+1 .
We conclude by noting that the same argument applies for the outputs of NF and ND

since B̄t−1
t−1 is identically distributed to Bt−1

t−1 . J

Lemma 10 is simple but powerful – it demonstrates that the output distribution of a
spiking sigmoid network is identical to the output distribution of a deterministic feedforward
threshold circuit drawn from some distribution D. Thus, the performance of any SNN is
equivalent to the performance of a randomized algorithm which first selects a linear threshold
circuit using D and then applies this circuit to the input. This lets us show:

I Lemma 11 (Application of Yao’s Principle). Assume there exists an SNN N with ` auxiliary
neurons, which given any inputs X ∈ {0, 1}n and Y ∈ {0, 1}logn which are fixed for rounds
{0, ..., t}, solves indexing with probability ≥ 1− δ in t rounds. Then there exists a feedforward
deterministic linear threshold circuit ND with (t− 1) · (`+ 1) auxiliary gates which solves
indexing with probability ≥ 1− δ given X,Y drawn uniformly at random.

Proof. We use the idea of Yao’s principle, employing an averaging argument to show that the
existence of a randomized circuit succeeding with high probability implies the existence of a
deterministic circuit succeeding with high probability on uniform random inputs. Specifically,
given X,Y drawn uniformly at random, N solves indexing with probability ≥ 1− δ (since
by assumption, it succeeds with this probability for any X,Y ). By Lemma 10, N performs
identically to an algorithm which selects a deterministic circuit from some distribution D and
then applies it to the input. So at least one circuit in the support of D must succeed with
probability ≥ 1− δ on X,Y drawn uniformly at random, since the success probability of N
on the uniform distribution is just an average over the deterministic success probabilities. J

From Lemma 11 we have a corollary which concludes our reduction from our spiking
sigmoid lower bound to a lower bound on deterministic indexing circuits.

I Corollary 12 (Reduction to Deterministic Indexing on a Subset of Inputs). Assume there exists
an SNN N with ` auxiliary neurons, which, given inputs X ∈ {0, 1}n and Y ∈ {0, 1}logn

which are fixed for rounds {0, ..., t}, solves indexing with probability ≥ 1 − 1
2n in t rounds.

Then there exists some subset of inputs X ⊆ {0, 1}n with |X | ≥ 2n−1 and a feedforward
deterministic linear threshold circuit ND with (t− 1) · (`+ 1) auxiliary gates which solves
indexing given any X ∈ X and any index Y ∈ {0, 1}logn.

Proof. Applying Lemma 11 yields ND which solves indexing on uniformly random X,Y
with probability 1 − 1

2n . Let I(X,Y ) = 1 if ND solves indexing correctly on X,Y and 0

DISC 2017
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otherwise. Then:

1− 1
2n ≤

1
n · 2n

∑
X∈{0,1}n

∑
Y ∈{0,1}logn

I(X,Y ) = E
X uniform from {0,1}n

 1
n

∑
Y ∈{0,1}logn

I(X,Y )


which in turn implies:

E
X uniform from {0,1}n

 1
n

∑
Y ∈{0,1}logn

(1− I(X,Y ))

 ≤ 1
2n. (4)

If 1
n

∑
Y ∈{0,1}logn(1− I(X,Y )) 6= 0 then 1

n

∑
Y ∈{0,1}logn(1− I(X,Y )) ≥ 1

n just by the fact
that the sum is an integer. Thus, for (4) to hold, we must have 1

n

∑
Y ∈{0,1}logn(1−I(X,Y )) = 0

for at least 1
2 of the inputs X ∈ {0, 1}n. That is, ND solves indexing for every input index

on some subset X with |X | ≥ 1
2 |{0, 1}

n| ≥ 2n−1. J

4.3 Lower Bound for Deterministic Indexing on a Subset of Inputs
With Corollary 12 in place, we now turn to lower bounding the size of a deterministic linear
threshold circuit ND which solves the indexing problem on some subset of inputs X with
|X | ≥ 2n−1. To do this, we employ VC dimension techniques first introduced for bounding
the size of linear threshold circuits computing indexing on all inputs [16].

Consider fixing some input X ∈ X , such that the output of ND is just a function of
the index Y . Specifically, with X fixed, ND computes the function fX : {0, 1}logn → {0, 1}
whose truth table is given by X. Note that the output of ND with X fixed is equivalent to
the output of a feedforward linear threshold circuit NX

D where each gate with an incoming
edge from xi ∈ X has its threshold adjusting to reflect the weight of this edge if xi = 1.

We define two sets of functions. Let F = {fX |X ∈ X} be all functions computable using
some NX

D as defined above. Further, let G be the set of all functions computabled by any
circuit N ′D which is generated by removing the input gates of ND and adjusting the threshold
on each remaining gate to reflect the effects of any inputs with xi = 1. We have F ⊆ G and
hence, letting V C(·) denote the VC dimension of a set of functions have: V C(F) ≤ V C(G).
We can now apply two results. The first gives a lower bound V C(F):

I Lemma 13 (Corollary 3.8 of [4] – Consequence of Sauer’s Lemma [23, 25]). For any set of
boolean functions H = {h} with h : {0, 1}logn → {0, 1}:

V C(H) ≥ log |H|
logn+ log e .

We next upper bound V C(G). We prove in Appendix B of our full paper:

I Lemma 14 (Linear Threshold Circuit VC Bound). Let H be the set of all functions computed
by a fixed feedforward linear threshold circuit with m ≥ 2 gates (i.e., fixed edges and weights),
where each gate has a variable threshold. Then: V C(H) ≤ 3m logm.

Applying the bounds of Lemmas 13 and 14 along with V C(F) ≤ V C(G) gives:

I Lemma 15 (Deterministic Circuit Lower Bound). For any set X ⊆ {0, 1}n with |X | ≥ 2n−1,
any feedforward deterministic linear threshold circuit ND with m non-input gates which solves
indexing given any X ∈ X and any index Y ∈ {0, 1}logn must have m = Ω

(
n

log2 n

)
.
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Proof. Let F and G be as defined in the beginning of the section. We have V C(F) ≤ V C(G).
At the same time, by Lemma 13 we have V C(F) ≥ log |F|

logn+log e = log |X |
logn+log e ≥

cn
logn for some

fixed constant c. By Lemma 14 we have V C(G) ≤ 3m logm. We thus can conclude that
cn

logn ≤ 3m logm, and so m = Ω
(

n
log2 n

)
. J

We conclude by proving our main lower bound:

Proof of Theorem 8. The existence of a spiking sigmoidal network with ` auxiliary neurons,
solving indexing with probability ≥ 1− 1

2n in t rounds implies via Corollary 12 the existence
of a feedforward deterministic linear threshold circuit with (t−1)`+1 non-input gates solving
indexing on some subset of inputs X with |X | ≥ 2n−1. So by Lemma 15, ` ·t = Ω

(
n

log2 n

)
. J

5 Applications to Similarity Testing and Compression

5.1 Similarity Testing

I Theorem 16 (Similarity Testing). There exists an SNN with O
(√

n logn
ε

)
auxilary neurons

that solves the approximate equality testing problem in O(
√
n) rounds. Specifically, given

inputs X1, X2 ∈ {0, 1}n which are fixed for all rounds t ∈ {0, .., 5
√
n + 2}, the output z

satisfies w.h.p. z5
√
n+2 = 1 if dH(X1, X2) ≥ εn. Further if X1 = X2 then z5

√
n+2 = 0 w.h.p.

Our similarity testing network uses K = Θ
(

logn
ε

)
copies of our neuro-RAM network

from Theorem 6, labeled S1,k and S2,k for all k ∈ {1, ...,K}. The idea is to employ logn
auxiliary neurons Yk = y1,k, ..., ylogn,k whose values encode a random index i ∈ {0, ..., n− 1}.
By feeding the inputs (X1, Yk) and (X2, Yk) into S1 and S2, we can check whether X1 and
X2 match at position i.

Checking Θ
(

logn
ε

)
different random indices suffices to identify if dH(X1, X0) ≥ εn w.h.p.

Further, if X1 = X0, they will never differ at any of the checks, and so the output will never
be triggered. We use:

I Observation 17. Consider X1, X2 ∈ {0, 1}n with dH(X1, X0) ≥ εn. Let i1, ..., iT be chosen
independently and uniformly at random in {0, ..., n− 1}. Then for T = c lnn

ε ,

Pr[(X1)it = (X2)it for all t ∈ 1, ..., T ] ≤ 1
nc
.

Proof. For any fixed t, Pr[(X1)it = (X2)it ] = 1− εn
n = 1− ε as we select indices at random.

Additionally, each of these events is independent since i1, ...iT are chosen independently so:
Pr[(X1)it = (X2)it for all t ∈ 1, ..., T ] ≤ (1− ε)T =

(
1− ε)1/ε)c lnn ≤ 1

ec lnn ≤ 1
nc . J

5.1.1 Implementation Sketch
It is clear that the above strategy can be implemented in the spiking sigmoidal network
model – we sketch the construction here. By Theorem 6, we require O

(√
n logn
ε

)
auxiliary

neurons for the 2K = Θ
(

logn
ε

)
neuro-RAMs employed, which dominates all other costs.

It suffices to present a random index to each pair of neuro-RAMs S1, k an S2, k for 5
√
n

rounds (the number of rounds required for the network of Theorem 6 to process an n-bit
input). To implement this strategy, we need two simple mechanisms, described below.
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Figure 2 Illustration of our ε-approximate similarity testing network.

Random Index Generation: For each of the logn index neurons in Yk we set b(yi) = 0 and
add a self-loop w(yi, yi) = 2. In round 1, since they have no-inputs, each neuron has potential
0 and fires with probability 1/2. Thus, Y 1

k represents a random index in {0, ..., n− 1}. To
propagate this index we can use a single auxiliary inhibitory neuron g, which has bias b(g) = 1
and w(x, g) = 2 for every input neuron x. Thus, g fires w.h.p. in round 1 and continues
firing in all later rounds, as long as at least one input fires.

We add an inhibitory edge from g to yi for all i with weight w(g, yi) = −1. The inhibitory
edges from g will keep the random index ‘locked’ in place. The inhibitory weight of −1
prevents any yi without an active self-loop from firing w.h.p. but allows any yi with an
active self-loop to fire w.h.p. since it will still have potential b(yi) + w(yi, yi)− 1 = 1.

If both inputs are 0, g will not fire w.h.p. However, here our network can just output 0
since X1 = X2 so it does not matter if the random indices stay fixed.

Comparing Outputs: We next handle comparing the outputs of S1,k and S2,k. We use two
neurons – f1,k and f2,k. f1,k is excitatory and fires w.h.p. if at least one of S1,k or S2,k
has an active output. f2,k is an inhibitor that fires only if both S1,k and S2,k have active
outputs. We then connect f1,k to z with weight w(f1,k, z) = 2 and connect f2,k with weight
w(f2, z) = −2 for all k. We set b(z) = 1. Thus, z fires in round 5

√
n+ 2 w.h.p. if for some

k, exactly one of S1,k or S2,k has an active output in round 5
√
n and hence an inequality is

detected. Otherwise, z does not fire w.h.p. This gives the output condition of Theorem 16.

5.2 Randomized Compression
We conclude by discussing informally how our neuro-RAM can be applied beyond similarity
testing to other randomized compression schemes. Consider the setting where we are given n
input vectors Xi ∈ {0, 1}d. Let X ∈ {0, 1}n×d denote the matrix of all inputs. Think of d as
being a large ambient dimension, which we would like to reduce before further processing.

One popular technique is Johnson-Lindenstrauss (JL) random projection, where X is
multiplied by a random matrix Π ∈ Rd×d′ with d′ << d to give the compressed dataset
X̃ = XΠ. Regardless of the initial dimension d, if d′ is set large enough, X̃ preserves
significant information about X. d′ = Õ(logn) is enough to preserve the distances between
all points, d′ = Õ(k) is enough to use X̃ for approximate k-means clustering or k-rank
approximation [6, 8], and d′ = Õ(n) preserves the full covariance matrix of the input and so
X̃ can be used for approximate regression and many other problems [7, 22].

JL projection has been suggested as a method for neural dimensionality reduction [2, 11],
where Π is viewed as a matrix of random synapse weights, which connect the input neurons
representing X to the output neurons representing X̃. While this view is quite natural, we
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often want to draw Π with fresh randomness for each input X. This is not possible using
changing synapse weights, which evolve over a relatively long time scale. Fortunately, it is
possible to simulate these random connections using our neuro-RAM module.

Typically, Π is sparse so can be multiplied by efficiently. In the most efficient construc-
tion [7], it has just a single nonzero entry in each row which is a randomly chosen ±1 placed
in a uniform random position. Thus, computing a single bit of X̃ = XΠ requires selecting on
average d/d′ random columns of X, multiplying their entries by a random sign and summing
them together. This can be done with a set of neuro-RAMS, each using O(

√
d) auxiliary

neurons which select the random columns of X. In total, we need Õ(d/d′) networks – the
maximum column sparsity of Π with high probability, yielding O(d3/2/d′) auxiliary neurons
total. In contrast, a naive simulation of random edges using spiking neurons requires Θ(d)
auxiliary neurons, which is less efficient whenever d′ > d1/2. Additionally, our neuro-RAMs
can be reused to compute multiple entries of X̃, which is not the case for the naive simulation.

Traditionally, the value of an entry of X̃ is a real number, which cannot be directly
represented in a spiking neural network. In our construction, the value of the entry is encoded
in its potential, and we leave as an interesting open question how this potential should be
decoded or otherwise used in downstream applications of the compression.

Acknowledgments. We thank Mohsen Ghaffari – the initial ideas regarding the importanace
of the indexing module came up while Merav Parter was visiting him at ETH Zurich. We
also thank Sergio Rajsbaum, Ron Rothblum, and Nir Shavit for helpful discussions.
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Abstract
We consider the problem of estimating the graph size, where one is given only local access to the
graph. We formally define a query model in which one starts with a seed node and is allowed to
make queries about neighbours of nodes that have already been seen. In the case of undirected
graphs, an estimator of Katzir et al. (2014) based on a sample from the stationary distribution
π uses O

(
1
‖π‖2

+ davg

)
queries; we prove that this is tight. In addition, we establish this as a

lower bound even when the algorithm is allowed to crawl the graph arbitrarily; the results of
Katzir et al. give an upper bound that is worse by a multiplicative factor tmix(1/n4).

The picture becomes significantly different in the case of directed graphs. We show that
without strong assumptions on the graph structure, the number of nodes cannot be predicted to
within a constant multiplicative factor without using a number of queries that are at least linear
in the number of nodes; in particular, rapid mixing and small diameter, properties that most real-
world networks exhibit, do not suffice. The question of interest is whether any algorithm can beat
breadth-first search. We introduce a new parameter, generalising the well-studied conductance,
such that if a suitable bound on it exists and is known to the algorithm, the number of queries
required is sublinear in the number of edges; we show that this is tight.
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1 Introduction

Networks contain a wealth of information and studying properties of networks may yield
important insights. However, most networks of interest are very large and ordinary users
may have rather restricted access to them. One of most basic questions about networks is
the number of nodes contained in them. For example, the number of pages on the world
wide web (WWW) is estimated to be just shy of 50 billion at the time of writing.1 Facebook
currently reports having about one and three quarter billion users;2 Twitter reports having
about 300 million active users. It is undesirable to rely on a small number of sources for
such information. At times we might be interested in more specific graphs for which there is

∗ See [11] for the full version, http://arxiv.org/abs/1702.03959.
1 www.worldwidewebsize.com
2 Here, billion refers to one thousand million, not a million million.
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no public information available at all. Is there a way to estimate the total number of nodes
using rather limited access to these graphs?

Our model is motivated by the kind of access ordinary users may have to graphs of
interest. For example, most social network companies provide some sort of an application
programming interface (API). In the case of the world wide web, one option is to simply
crawl. The graph query access models we use are formally defined in Section 2.1. For now,
we mention four specific networks, each of which captures an important modelling aspect.
First, Facebook is an undirected graph of friendships, and as long as privacy settings allow it,
it is possible to request the number of friends for a given user and the identity of the friends.
Second, the world wide web, which is a directed graph – it is possible to extract out-links on
a given webpage; however, there is no obvious method to access all in-links. The third is
what we refer to as the “fan” network – for a specific user it is possible to query who she is a
fan of, however in terms of her fans only the number is revealed.3 And finally, the fourth is
the twitter network, which is directed, however both the followers and followees of a given
user are accessible, as far as privacy settings allow. Obviously, the method to estimate the
number of nodes may be rather different in each case. It is worth mentioning that the twitter
network can essentially be treated as an undirected graph, however it still leaves open the
possibility that differentiating in-links and out-links leads to better estimators.

While memory and computational requirements do act as constraints when dealing with
large graphs, possibly the most important one is the rate limits set on queries made using the
API. Even when crawling the web, there is the risk of simply being blocked if large volumes
of requests are sent to the same server. Thus, the most scarce resource in this instance is
the number of queries made about the graph. Our query model counts these costs strictly –
essentially every time a new node is discovered, its degree is revealed at unit cost and a unit
cost is incurred for every neighbour requested.

1.1 Related Work
There is a large body of literature on estimating statistical properties of graphs, reflecting
the relevance of and interest in studying complex networks. Much of this work is in the more
applied literature and in particular, we were unable to pin down a precisely defined query
model. The work most closely related to ours is that of Katzir et al. [13]. They consider the
setting where a random sample drawn from the stationary distribution of the random walk
is available. If the random walk mixes rapidly and a suitable bound on the mixing time is
known, this can be simulated in the models we consider. They show that O

(
1
‖π‖2

+ davg

)
queries suffice, where π is the stationary distribution and davg is the average degree. We
show that this is tight when given access to a sample from the stationary distribution. When
only neighbour queries are allowed, we show that this bound is tight up to a multiplicative
factor of the mixing time and other polylogarithmic factors. It is worth mentioning what
this bound actually yields in graphs where the average degree is small, something common
to most real world networks. It is always the case that ‖π‖−1

2 ≤
√
n, where equality holds in

the case of regular graphs. Thus, the number of queries required is significantly sublinear in
the number of nodes. For graphs with power law degree distributions with parameter β = 2,
Katzir et al. calculated that ‖π‖−1

2 = O(n1/4 log(n)). See Section 3.1 for further discussion.
In more recent work, Hardiman and Katzir give another estimator based on counting

3 Although it is not obvious which of the extant networks have this property, there are close approximations
such as Blogger. In any case, it is a very natural intermediate model between the second and the fourth.
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shared neighbours [12]. They give a slightly better bound on the number of nodes sampled
than the earlier work of Katzir et al. [13]. However, it is unclear that this can be implemented
efficiently in the query model in our paper. Cooper et al. [5] obtain estimators for the number
of edges, triangles and nodes. The estimators are based on random walks over the graph,
but in particular, for estimating the number of nodes, the transition probabilities are not
inversely proportional to the degree. Their estimator relies on counting the time required
for the kth return to a particular vertex. It seems unlikely that either their random walk or
their estimator can be implemented in a query efficient manner. Brautbar and Kearns [3]
show that estimating the size of cycle takes Ω(

√
n) queries in the model where one has access

two types of queries: one can query (i) outgoing edges and (ii) a node chosen uniformly at
random. They also obtained bounds on the query complexity of the maximum degree and
the clustering coefficient. Musco et al. [17] develop a distributed collision based approach to
estimate the graph size and the average degree – in this model several random walks traverse
the graph and count the number of collisions with other random walks. Dasgupta et al. [7]
provide an estimator of the average degree that uses O(log(U) log log(U)) samples, where
U is an upper bound on the maximum degree. Somewhat surprisingly, this seems to be an
easier task than estimating the number of nodes.

Cooper and Frieze [4] estimate the graph size in a dynamic setting where the graph grows
over time and there exists an agent that is allowed to move through the network every time
a new node arrives. They prove that this agent visits asymptotically a constant fraction of
the vertices. If one has access to the complete neighbourhood of a node when it is visited,
it is shown by Mihail et al. that the expected time in which a walk discovers a power law
random graph is sublinear [16]. There has been some older theoretical work on estimating
the size of graphs motivated primarily by search algorithms [14, 15, 18]. They consider trees
and directed acyclic graphs, however, the model of graph access is unrelated and they do not
present bounds on the estimates.

Related to the question of estimating graph properties is that of testing whether graphs
have specific properties. Property testing has received much attention in the last two decades
with properties of undirected graphs being one of the important areas of focus (see e.g., [9]).
Directed graphs have received somewhat less attention; there are two main query models,
unidirectional where only out-neighbours may be queried, and bidirectional where both in and
out-neighbours may be queried [1]. Bender and Ron showed that there exist properties such
as strong connectivity, where the query complexity may be either O(1) or Ω(

√
n) depending

on the model used, even when allowing two-sided error. More recently, Czumaj et al. have
shown that if a property can be tested with constant query complexity in the bidirectional
setting, it can be tested with sublinear query complexity in the unidirectional model [6].
Although, these query models are closely related to the ones in this paper, a crucial aspect
exploited by most property testing algorithms is the ability to sample nodes uniformly at
random, something that is not available in our setting.

A closely related line of work is that on estimating properties of distributions from
samples; of most interest, in our case is the support size. This problem has a long history
going back at least to Good and Turing [10]. We only mention a few recent relevant results
here. Given access to uniformly sampled elements from a set, O(

√
n) samples suffice to derive

a good estimate of the set size using the birthday problem [8]. However, it is not clear how
to sample from the uniform distribution over the nodes of the graph in the query model we
consider. Valiant and Valiant show that support size can be estimated to a good accuracy
using O(n/ log(n)) samples for any distribution [19, 20]. However, their result requires that
any element in the support has Ω(1/n) probability mass, something that is not true for
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the stationary distribution of a random walk on a graph. (In the case of directed graphs
this problem becomes even more severe, since some nodes may have exponentially small
stationary probability mass.)

1.2 Our contributions
Firstly, our contribution is to express the problem of estimating graph properties formally. As
discussed in the introduction, networks of interest vary significantly in terms of what access
might be easily available to an ordinary user. Keeping in mind the examples of Facebook,
the web, the fan-network and Twitter, we introduce different types of oracles that provide
access to the graph.

The focus of this work is on estimating the number of nodes. For any ε > 0 and δ > 0,
we say that an algorithm (with access to a query oracle) provides an ε-accurate estimate of
the number of nodes, if with probability at least 1− δ it outputs n̂, such that |n− n̂| ≤ εn.
The main quantity to be optimised is the number of oracle queries, though all algorithms
considered in this paper are also computationally highly efficient. Allowed queries are defined
precisely in Section 2.1. Here, we point out that a unit cost must be paid for every disclosed
neighbour as well as to know the degree of a node. All algorithms have access to the identifier
of one seed node in the graph to begin with. Throughout we will assume that ε and δ are
constants and the use of O(·) and Ω(·) notation in this paper hides all dependence on ε and δ.

Undirected Graphs. Katzir et al. [13] implicitly assume the ability to sample from the
stationary distribution. They show that in this setting O

(
1
‖π‖2

+ davg

)
samples from the

stationary distribution π suffice, where davg is the average degree. If the graph is connected and
a suitable bound on the mixing time exists which is known to the algorithm, O(tmix(1/n4))4
queries suffice to draw one node from a distribution that is close (up to inverse polynomial
factors in variation distance) to the stationary distribution using only neighbour queries.
This gives an upper bound of O

(
tmix(1/n4) ·

(
1
‖π‖2

+ davg

))
queries with a neighbour query

oracle (Corollary 2). In terms of lower bounds, we establish that
(Theorem 5) Any algorithm with access to random samples from the stationary distribution
π and outputs a 0.1-accurate estimate of the number of nodes with probability at least
0.99, requires Ω

(
1
‖π‖2

+ davg

)
samples.

(Theorem 7) Any algorithm with access to neighbour queries and outputs a 0.1-accurate
estimate of the number of nodes with probability at least 0.99, requires Ω

(
1
‖π‖2

+ davg

)
queries.

We remark that there is a gap between the upper bound and lower bound when considering
an oracle with neighbour access. A question left open by our work is whether the multiplicative
factor of tmix(1/n4) is required, or whether a more efficient estimator can be designed.

Directed Graphs. The estimator of Katzir et al. is not applicable in the setting when graphs
are directed, unless the query model allows in-neighbour queries as well as out-neighbour
queries, in which case all results in the undirected setting hold. The reason for this is that
even if one did receive a sample drawn from the stationary distribution, it is no longer the
case that πv ∝ deg(v), a crucial property exploited by the estimator of Katzir et al.. In

4 tmix(1/n4) is the expected time it takes until the random walk is 1/n4-close to the stationary distribution
w.r.t. to the total variation distance.
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fact, unless strong assumptions are made on the relationship between the in-degree and the
out-degree (e.g., being Eulerian), no simple expression for π in terms of degrees exists.5

We provide constructions of graphs that demonstrate that low average degree, rapid
mixing and small diameter are not sufficient to design algorithms to estimate the graph size
with sublinear (in n) query complexity. In fact, we show that when only given access to a
sample from the stationary distribution, a superpolynomially large sample may be required
even for graphs with constant average degree, logarithmic diameter and rapid mixing. The
reason for this is that in the case of directed graphs most of the stationary mass can be
concentrated on a very small number of nodes.

In order to understand the query complexity when neighbour-queries are allowed, we
define a new parameter called general conductance. Roughly speaking a graph has ε-general
conductance φε, if every set containing at most (1 − ε)n nodes has at least φε fraction of
directed edges going out. If a suitable bound on the value of φε is known, we show that a
simple edge-sampling algorithm outputs an estimate to within relative error ε while using
O(n/φε) queries (Theorem 10) and that this is almost tight, in the sense that any algorithm
that outputs an estimate that is even slightly better than ε requires at least Ω(n/φε) queries
(Theorem 12). The algorithm only requires access to out-neighbours, while the lower bound
holds even with respect to an oracle that allows in-neighbour queries, which means that it
also applies in the case of undirected graphs.

1.3 Discussion

In terms of improvements to our results, the most interesting question is whether any
reasonable subclass of directed graphs are amenable to significantly improved query complexity
(ideally sublinear) for the problem of estimating the number of nodes. The constructions
in Section 4 show that having low average degree, small diameter and rapid mixing is not
enough. For undirected graphs, it is an interesting question whether the extra factor of
mixing time tmix must be paid, when only neighbour queries are allowed. It is conceivable
that an improved estimator that can handle correlated pairs of nodes can be designed, so as
to not waste all but one query for every tmix queries. Finally, it’d be interesting to study the
question of estimating other properties of graphs, number of edges, number of triangles, etc.
in this framework.

The model choices we made reflect the publicly available access to most extant networks;
in particular, we were very stringent with accounting – every neighbour query counts as unit
cost. Many APIs return the list of neighbours, although in chunks of a fixed size, e.g., 100.
It is hard to argue that 100 should be treated as constant in the context of social networks.
Nevertheless, if we wanted a list of all followers of Barack Obama, this would still result
in a very large number of queries. A natural extension to the query model in this paper
is to allow the entire neighbourhood (possibly restricted to the out-neighbourhood in the
case of directed graphs) to be revealed at unit cost. Estimators such as the one involving
common neighbours of Hardiman and Katzir [12] can be implemented efficiently under such
a model. Understanding the query complexity of estimation in these more powerful models
is an interesting question.

5 We mention that the distribution is closely related to the PageRank distribution. However, the PageRank
random walk jumps to a uniformly random node in the graph with a small probability; this is done to
avoid problems when the graph is not strongly connected.

DISC 2017



34:6 How Large Is Your Graph?

2 Model and Preliminaries

Graphs. Graphs G = (V,E) considered in this paper may be directed or undirected;
typically we assume |V | = n and |E| = m, though if there is scope for confusion we use
|V | or |E| explicitly. For undirected graphs, for a node v ∈ V , we denote by N(v) its
neighbourhood, i.e., N(v) = {w | {v, w} ∈ E}, and its degree by deg(v) := |N(v)|. In
the case of directed graphs, we denote N+(v) := {w | (v, w) ∈ E} its out-neighbourhood
and by deg+(v) := |N+(v)| its out-degree. Similarly, N−(v) := {u | (u, v) ∈ E} denotes
its in-neighbourhood and deg−(v) := |N−(v)| its in-degree. Furthermore, davg denotes the
average degree, i.e,

∑
v∈V deg(v)/n. Whenever there is scope for confusion, we use the

notations degG(u), NG(v), davg(G), etc. to emphasise that the terms are with respect to
graph G.

Random walks in graphs. A discrete-time lazy random walk (Xt)t≥0 on a graph G = (V,E)
is defined by a Markov chain with state space V and transition matrix P = (p(u, v))u,v∈V
defined as follows: For every u ∈ V , p(u, u) = 1/2 (Laziness). In the undirected setting,
for every v ∈ N(u), p(u, v) = 1/(2 deg(u)). In the directed setting, for every v ∈ N+(u),
p(u, v) = 1/(2 deg+(u)). The transition probabilities can be expressed in matrix form
as P = (I + D−1A)/2, where A is the adjacency matrix of G, D is the diagonal matrix
of node degrees (only out-degrees if G is directed), and I is the identity. Let pt(u, ·)
denote the distribution over nodes of a random walk at time step t with X0 = u. For
the most part, we will consider (strongly) connected graphs. Together with laziness, this
ensures that the stationary distribution of the random walk, denoted by π, is unique
and given by πP = π. In the undirected case, the form of the stationary distribution is
particularly simple, π(u) = deg(u)/(2|E|); furthermore, the random walk is reversible, i.e.,
π(u)p(u, v) = π(v)p(v, u). As before, πG is used to emphasise that the stationary distribution
is respect to graph G.

Mixing time. To measure how far pt(u, ·) is from the stationary distribution we consider the
total variation distance; for distributions µ, ν over sample space Ω the total variation distance
is ‖µ− ν‖TV = 1

2
∑
x∈Ω |µ(x) − ν(x)|. The mixing time of the random walk is defined as

tmix := maxu∈V min{t ≥ 1 | ‖pt(u, ·)− π‖TV ≤ e−1}. Although the choice of e−1 is arbitrary,
it is known that after tmix log(1/ε) steps, the total variation distance is at most ε.

2.1 Query Model

In this section, we formally define the query model that allows us to access the graph. We
consider four different neighbour query oracles, O, −→O , −→O (1) and −→O (2). We also assume that
all oracles have graphs stored as adjacency lists. In the case of directed graphs, there are
two adjacency lists for every vertex, one for in-neighbours and one for out-neighbours. No
assumption is made regarding the order in which the adjacency lists are stored. In words,
O captures access to undirected graphs such as social networks like Facebook, −→O captures
directed graphs such as the world wide web, where only out-edges are available, −→O (1) captures
directed graphs such as fan-networks, where the in-degree but not in-neighbours may be
available, and −→O(2) captures directed graphs such as Twitter where access is available to
both in-edges and out-edges.
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All oracles also make use of labelling functions6 ; for some space L, a labelling function
` : V → L used by an oracle is an injection. We allow ` to be defined dynamically. The
labelling function we use throughout the paper is the consecutive labelling function defined
as follows: The label set is L = N. If S denotes all the vertices labelled by the oracle so
far, for a new vertex v 6∈ S picked by the oracle, the label is assigned as follows: if S = ∅,
`(v) = 1, else `(v) = max{`(u) | u ∈ S}+1. For these neighbour query oracles, any algorithm
can essentially make two types of queries, (i) init, and (ii) (l, i) for undirected graphs or
(l, i, etype) for directed graphs, where etype is either in, out. We assume that oracles use a
labelling function `.
(i) init: The oracle initialises a set S := {v}, where v is chosen to be an arbitrary node in

the graph. The different oracles respond as defined below.
O responds with (`(v), deg(v)) for some v ∈ V . −→O responds with (`(v), deg+(v)) for
some v ∈ V .
−→
O(1) and −→O(2) both respond with (`(v), deg+(v), deg−(v)).

(ii) (l, i) or (l, i, etype): O only responds to query of type (l, i) and the remaining to queries
of the type (l, i, etype).

For query (l, i), if there is v ∈ S such that `(v) = l and i ≤ deg(v), then O returns
(`(u), deg(u)), where u is the ith element in the adjacency list of v. The oracle updates
S ← S ∪ {u}. Otherwise it returns null.
For query (l, i, out), if there is v ∈ S such that `(v) = l and i ≤ deg+(v), then −→O
returns (`(u),deg+(u)), while both −→O(1) and −→O(2) return (`(u), deg+(u), deg−(u))
where u is the ith element on the out-neighbour adjacency list of v. The oracles all
update S ← S ∪ {u}. Otherwise, all oracles return null.
For query (l, i, in), −→O and −→O(1) always return null. If there exists v ∈ S, such that
`(v) = l and i ≤ deg−(v), then −→O (2) returns (`(u),deg+(u), deg−(u)), where u is the
ith element on the adjacency list of in-neighbours of v; otherwise, it returns null. In
the case of −→O(2), it updates S ← S ∪ {u}.

It is worth pointing out that a response of null provides no new information to the
algorithm. The algorithm only knows that it hadn’t received l as a label before or that the
degree of the node with label l is strictly smaller than i, things it already knew. This is
because the oracle maintains a history of past queries; if this were not the case the algorithm
could generate (random) labels and try to find out whether they corresponded to nodes in
the graph. However, even for oracles that don’t maintain such state explicitly, by choosing `
to be collision-resistant hash function, essentially the same behaviour can be achieved.

In some of our proofs, we also allow oracles to return side information. These are denoted
by a superscript s, e.g., Os. Access to oracles with (truthful) side information can only help
to reduce query complexity, since an algorithm can choose to ignore any side information it
receives. Finally, we say that an algorithm is sensible if it does not make a query to which it
already knows the answer. It is clear that given any algorithm, there is a sensible algorithm
that is at least as good as the original algorithm. The sensible algorithm merely simulates
the original algorithm and whenever the original algorithm made a query to which the answer
was known, the sensible algorithm simulates the oracle response. Finally, we consider the
stationary query oracle, Oπ, which when queried returns (`(v), deg(v)), where v ∼ π; π is
the stationary distribution.

6 We do assume that there is unit cost in sending the label of a node to the algorithm, thus implicitly
we may think of every label having a bit-representation that is logarithmic in the size of the graph.
However, the bit-length of the label reveals minimal information, which we assume that the algorithm
has access to anyway.
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3 Undirected graphs

In this section, we focus on the question of estimating the number of nodes in undirected
graphs. We show that the results obtained by Katzir et al. [13] are essentially tight, up to a
factor of the mixing time and polylogarithmic terms in n. This suggests that rapid mixing is
a critical condition for being able to estimate the size of the graph.

3.1 Results of Katzir et al.
In this section, we discuss the result of Katzir et al. [13] regarding estimating the number of
nodes in a graph. Though, they don’t discuss this formally, their method essentially boils
down to having access to the stationary query oracle Oπ. For the sake of completeness, we
outline the estimator of Katzir et al. here. Let

X = {(`(x1), deg(x1)), (`(x2), deg(x2)), . . . , (`(xr),deg(xr))}

be drawn from the stationary query oracle Oπ. Let Ψ1 =
∑r
i=1 deg(xi) and Ψ−1 =∑r

i=1 1/ deg(xi); let C =
∑
i 6=j 1(`(xi) = `(xj)) denote the random variable counting the

number of collisions. Then, it is fairly straightforward to see that E [ Ψ1Ψ−1 ] = r+2n
(
r
2
)
‖π‖22

and E [C ] = 2
(
r
2
)
‖π‖22. Katzir et al. use the the following as an estimator for the number of

nodes n̂ := Ψ1Ψ−1−r
C . They prove the following result.

I Theorem 1 (Katzir et al. [13]). Let ε > 0 and δ > 0. Suppose that the number of samples
is r ≥ 1 + 32

ε2δ max
{

1
‖π‖2

, davg

}
, where davg = 2m/n. Then, P [ |n̂− n| ≥ εn ] ≤ δ.

Given a bound T on tmix and access to oracle O, the stationary query oracle Oπ can be
approximately simulated. (We assume that the graph is connected.) We simply perform a
random walk on the graph for T log(1/ρ) steps, if a sample from a distribution at most ρ far
from π in total variation distance is desired. Using the above theorem, we get the following
straightforward corollary. The proof of the corollary follows by simulating s random walks
for O(T log s) time steps (queries) ensuring that each random walk has a total variation
distance of s−2 from π.

I Corollary 2. Let ε > 0 and δ > 0. For a connected, undirected graph, G = (V,E) let T
be such that tmix ≤ T . Then there exists an algorithm that given T and access to oracle O,
outputs n̂, such that, P [ |n̂− n| ≥ εn ] ≤ δ. Furthermore, the number of queries made by the
algorithm to O is O (Ts log s), where s = O

(
1
ε2δ ·max

{
1
‖π‖2

, davg

})
.

The key question is, are these bounds tight? In Section 3.2, we give much stronger
lower bounds, where we show that for any valid degree sequence d = (d1, . . . , dn) on n

nodes, there exists a sequence d′ on 2n nodes, such that any algorithm with access to a
stationary oracle for either sequence d or d′, cannot distinguish between the two unless
it makes Ω

(
1
‖π‖2

+ davg

)
queries. Here, we discuss simple instances where the bound in

Theorem 1 is tight; we don’t give formal proofs which are relatively straightforward.

Let G1 and G2 be d-regular graphs on n and 2n nodes respectively, for d < n. Thus,
samples from the stationary distribution are essentially just uniformly chosen random
nodes in the graph. As the degrees are identical, they reveal no additional information.
Thus, the algorithm has to query until a collision is observed, which requires Ω(

√
n)

queries. Clearly for these graphs 1
‖π‖2

= Θ(
√
n).
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We define the sun graph as a Kn with an additional edge out of each vertex to a node
with degree 1. The bright sun graph is the same as the sun graph, except that there
is a path of length 2 coming out of each vertex, rather than just an edge. Under the
stationary oracle model, Ω(n) queries are required before any degree 1 or 2 nodes are
returned since the total probability on these nodes is O(1/n). As can be seen for these
graphs davg = Θ(n).

The above examples show that there are graphs for which the bound of Katzir et al. is
tight. In this paper, we show a significantly stronger statement – given any degree sequence
d, there are graphs for which the bound is almost tight.

3.2 Lower Bounds in the Stationary Query Model
In this section, we show that for any undirected, connected graph G = (V,E), there exists
an undirected, connected graph G̃, such that any algorithm which has access to either the
oracle Oπ(G) or Oπ(G̃), cannot distinguish between the two with significant probability
without making Ω

(
1
‖π‖2

+ davg

)
queries. Thus, it cannot output an estimate n̂ satisfying

|n̂ − |V || < |V |/2 with probability 2/3. The graphs (G̃) we construct are constructed as
follows. For the lower bound of Ω

(
1
‖π‖2

)
we consider two connected copies of the original

graph. Using a coupling we show, by considering the total variation distance, that the
resulting graph is indistinguishable from the original graph unless a node is sampled twice
(“collision”). For the lower bound of Ω (davg) we augment the original graph by adding a
3-regular expander to it. This time we use a coupling together with the variation distance
to show that it requires Ω(davg) queries to sample at least once a node from the 3-regular
expander and hence making the graphs indistinguishable if fewer samples are taken.

I Lemma 3. Let G = (V,E) be an undirected, connected graph with |V | = n and |E| ≥ n.
Then there exists a graph G̃ = (Ṽ , Ẽ), with |Ṽ | = 2n, such that any algorithm given access
to either Oπ(G) or Oπ(G̃) with equal probability, cannot distinguish between the two with
probability greater than 2

3 , unless it makes at least Ω
(

1
‖πG‖2

)
queries. As a consequence, no

algorithm can output n̂ satisfying |n̂ − n∗| < n∗/2 w.p. at least 2/3, where n∗ = n if the
chosen graph is G and 2n if it is G̃.

I Lemma 4. Let G = (V,E) be an undirected, connected graph with |V | = n and |E| ≥ n.
Then there exists a graph G̃ = (Ṽ , Ẽ), with |Ṽ | = 2n, such that any algorithm given access
to either Oπ(G) or Oπ(G̃) with equal probability, cannot distinguish between the two with
probability greater than 2

3 , unless it makes at least Ω (davg(G)) queries. As a consequence,
no algorithm can output n̂ satisfying |n̂− n∗| < n∗/2 w.p. at least 2/3, where n∗ = n if the
oracle chosen corresponds to G and n∗ = 2n if it corresponds to G̃.

The proof can be found in the full version. As a consequence of Lemma 3 and Lemma 4, we
get the following theorem.

I Theorem 5. Given an undirected, connected graph G = (V,E), there exist graphs G̃,
Ḡ with 2|V | nodes and a constant p < 1, such that any algorithm that is given access
to one of three oracles Oπ(G), Oπ(G̃) and Oπ(Ḡ), chosen with equal probability, requires
Ω
(

1
‖πG‖2

+ davg(G)
)

queries to distinguish between them with probability at least p. As
a consequence, any algorithm that outputs n̂, such that |n̂ − n∗| < n∗/2 requires at least
Ω
(

1
‖πG‖2

+ davg(G)
)
queries, where n∗ = n if the graph is G and n∗ = 2n if the graph is

either G̃ or Ḡ.
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3.3 Oracle Sampling from the Neighbour Query Model
In this section, we show that with access to the oracle O(G), any algorithm that predicts the
number of nodes in a graph G to within a small constant fraction requires Ω

(
1

‖πG‖2
+ davg

)
queries. For proving the lower bounds we use graphs generated according to the configuration
model [2]. A vector d = (d1, d2, . . . , dn) is said to be graphical if there exists an undirected
graph on n nodes such that vertex i ∈ [n] has degree di. We briefly describe here how graphs
are generated in the configuration model:
1. Create disjoint sets Wi, for i ∈ {1, . . . n}, with |Wi| = di. The elements of Wi are called

stubs.
2. Create a uniform random maximum matching in the set

⋃n
i=1Wi (note that

∑n
i=1 di

must be even since d is graphical).
3. For a stub edge {x, y} in the matching, such that x ∈Wi and y ∈Wj , the edge {i, j} is

added to the graph.
The above procedure creates a graph where vertex i has degree exactly di. However, the
graph may not be simple, i.e., it may have multiple edges and self-loops. Also, this procedure
does not necessarily produce a uniform distribution over graphs having degree sequence d.
The expected number of multi-edges and self-loops in the graph is, for many interesting
graph families, only a small fraction and in any graph with bounded degree their expected
number is a constant. We use G ∼ G(d) to denote that a graph G was generated in the
configuration model with degree sequence d.

Recall the definition of a sensible algorithm as one that never makes a query to which
it already knows the answer. A sensible algorithm has the following behaviour: (i) for
every u ∈ V and i ≤ deg(u) (deg+(u) and deg−(u), respectively) it makes the query (`(u), i)
((`(u), i, in) and (`(u), i, out), respectively) at most once, and (ii) it never queries a (`(v), i) if
it has not received `(v) as a valid label or if i 6∈ [1, deg(v)]. Note that there exists for any
algorithm, in the above defined query model, a sensible implementation which needs at most
as many queries as the original algorithm.7 Clearly, any sensible algorithm wouldn’t query
(`(u), j) after querying (`(v), i). The degree sequences we uses to construct the lower bound
graphs are essentially the same as in the stationary query model. This time, however, we are
facing changing probability distributions which depend on the random choices revealed so
far. The proof of the following lemma can be found in the full version.

I Lemma 6. Let ε > 0. Let d = (d1, . . . , dn) be an arbitrary graphical sequence and let
D :=

∑n
i=1 di. Let G ∼ G(d), and let G̃ be an arbitrary graph with degree sequence d.

There exists an implementation of an oracle Os(G) (with side-information) such that if
(`(Xt), degG(Xt))Tt=1 is the sequence of responses to a sensible algorithm, where T equals

min
{

min{τ ≥ 0 | all neighbours of all known nodes are disclosed using τ queries}, ε
√
D

16

}
,

and if (`(X̃t), deg
G̃

(X̃t))Tt=1 is the sequence returned by oracle Oπ(G̃), then there exists a
coupling so that the sequences ((`(Xt), degG(Xt)))Tt=1 and ((`(X̃t), deg

G̃
(X̃t)))Tt=1 are identical

with probability at least 1− ε.

7 For technical reasons, in the proof of Lemma 6, we use an oracle Os with side-information as an
extension of O: Os returns, upon query, exactly the same information as O, but can add additional
truthful information. In particular, we allow the oracle when queried (`(v), i) to not only return the
corresponding node (`(u),deg(u)), where u is the ith element in the adjacency list of v, but also the
index, say j, in the adjacency list of u which corresponds to v.
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Figure 1 The Line graph on 6 nodes.

The proof of the main theorem of this section can be found in the full version.

I Theorem 7. Let d = (d1, . . . , dn) be a graphical vector satisfying mini di ≥ 3. Then there
exists a graphical d̃ = (d̃1, . . . , d̃n, d̃n+1, . . . , d̃2n) with mini d̃i ≥ 3, such that for G ∼ G(d) and
G̃ ∼ G(d̃), there exists c > 0, such that any algorithm with access to one of two oracles O(G)
or O(G̃) chosen with equal probability, cannot distinguish between the two with probability
greater than 1− c unless it makes Ω

(
1

‖πG‖2
+ davg(G)

)
queries to the oracle.

4 Directed Graphs

In this section, we consider the query complexity of estimating the number of nodes in
directed graphs. We first observe that estimating n using the approach of Katzir et al. [13]
is not possible since the stationary distribution of a node is in general not proportional to its
degree. Another obstacle is that the stationary distribution of a node can be exponentially
small as the graphs in Figure 1 and Figure 2 illustrate. In particular, it takes an exponentially
large sample drawn from the stationary distribution to distinguish between the line graph
of Figure 1 on n nodes and the line graph on 2n nodes, since the probability mass of the
additional nodes is 2−Ω(n). It is also not very difficult to show that even with access to one
of the two oracles −→O or −→O(1), Ω(n) queries are required to distinguish the line graph on n
vertices from the line graph on 2n vertices.

As the example of the line graph reveals, unlike in the undirected case, rapid mixing and
low average degree are not sufficient conditions to design a good estimator of the number of
nodes using sublinear number of queries. The line graph shows that in the directed case,
rapid mixing does not imply short (directed) diameter. One might hope that if one throws
small diameter into the mix, in addition to low average degree and rapid mixing, a better
estimator could be designed. Below, we show that this is not the case. The problem of
estimation remains stubbornly hard, and Ω(n) queries to the oracle −→O , and 2Ω(n) queries to
the stationary query oracle are required to achieve a good estimate of the number of nodes.

These observations suggest that exploring the graph, e.g., through breadth-first search,
is much faster than sampling from the stationary distribution. The question of interest is
whether there is a property, satisfied by graphs of interest, which yields a query complexity
better than Ω(m). We answer this positively in Section 4.1, where we introduce a parameter
that generalises the conductance φε and give almost tight bounds on the number of queries
required to estimate n up to an ε relative error. Our Algorithm EdgeSampling takes this
parameter as an input and terminates after O(n/φε) queries which can be much smaller than
the sample complexity of breadth-first search.8

8 The results in Section 3 can be used if access to −→O(2) is provided. In this case, we can simply treat
the graph as being undirected. However, it is still interesting to understand whether the distinction
between in-neighbours and out-neighbours allows one to design better estimators. At present, we are
unaware of any graphs where this might be the case.
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v1
v2v3v4

Figure 2 The graph Comet(20, 4).

v1
v2v3v4v5

v6v7v8

Figure 3 The graph DoubleComet(40, 8). DoubleComet(2n, 2k) consists of two copies of
Comet(n, k) connected in the following way. First we remove all directed neighbours of vk+1

as well as the edge (vk, v1). Then we add (vk, vk+1), (vk+1, vk+2) as well as (vk+1, v1).

The Comet Graph

The Comet graph, Comet(n, k) is constructed as follows. Assume that k divides n. There
is a directed cycle on the vertices v1, v2, . . . , vk, with edges (vi, vi+1) for 1 ≤ i < k and
(vk, v1). We denote these k vertices as centres. For every ` ∈ [k], there is a directed star
S` = {(v`, v`,j) : j ∈ [n/k − 1]} with centre in v` of degree n/k − 1. For each leaf v`,j in
star S` with ` ∈ [k], j ∈ [n/k − 1], there is a directed edge to the first star centre v1, that
is, {(v`,j , v1) : ` ∈ [1, k], j ∈ [n/k − 1]}. We write vG` and vG`,j to emphasise that the nodes
belong to graph G.

I Theorem 8. Let n be a multiple of k. Then Comet(n, k) has mixing time tmix = O(1) and
diameter k. Furthermore, any algorithm requires at least Ω((nk )k−1) queries to Oπ and Ω(n)
queries to −→O to distinguish between G = Comet(n, k) and G̃ = Comet(2n, 2k).

The proof can be found in the full version. Note that the above results only apply to the
oracles −→O and Oπ, but not to −→O (1), since the in-degrees make it easy to distinguish between
the two graphs. However, it is straightforward to extend the graph such that the sample
complexity remains Ω(n) even if the in-degrees are known; thus even with access to −→O(1),
Ω(n) queries are required.

I Observation 9. Let n be a multiple of k. Then DoubleComet(2n, 2k) (defined in Figure 3)
has mixing time tmix = O(1) and diameter 2k. Furthermore, any algorithm requires at least
Ω(n) queries to −→O (1) to distinguish between G = Comet(n, k) and G̃ = DoubleComet(2n, 2k)
on 2n nodes.

4.1 Assuming a Bound on the Connectivity
In this section we introduce the parameter general conductance. We first recall some graph
notation in the directed setting. Given a non-empty proper subset of vertices S ⊂ V , let
deg+(S) = |{(u, v) ∈ E : u ∈ S}| be the out-degree of S. The cut of S, ∂S, is the set
of edges crossing between S and V \ S, that is, ∂S = {(u, v) ∈ E : u ∈ S, v /∈ S}. The
general conductance of S, φ(S), is the ratio between the cut of S, and the out-degree of S.
That is, φ(S) = |∂S|/ deg+(S). Given ε ∈ (0, 1), the graph ε-general conductance, φε, is the
minimum of φ(S) over every non-empty proper subset of V of size at most (1− ε)|V |, i.e.,
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φε(G) = minS⊆V :1≤|S|≤(1−ε)|V | φ(S). Note that the parameter φε decreases monotonically
as ε decreases. In the undirected setting for ε = 1/2 this is just what is commonly known as
the conductance.9 In the following we describe the algorithm that estimates the graph size.

Upper bound in terms of the general conductance

We consider algorithm EdgeSampling for estimating the number of nodes. The algorithm
takes as input the parameter φ, a lower bound on the general conductance φε. The query
complexity is O(n/φε) and the output estimate n̂ satisfies (1− ε)n ≤ n̂ ≤ n with arbitrary
confidence controlled by an input parameter `. Observe that O(n/φε) can be much smaller
than the run time of breadth-first search Ω(m).

Algorithm overview. The algorithm works as follows. At each time step the algorithm
maintains a counter Y . If at some point the counter exceeds the threshold `, then the
algorithm terminates. The algorithm divides the queries into blocks of length at most 2/φ
corresponding to the execution of the for loop. In each block, at every step the algorithm
samples one outgoing edge uniformly at random from those available and not queried before.
If at any step a new node is disclosed, then this finishes the block (break of the for loop) and
the counter Y is decreased by 1. If the block finishes without finding a new node, then the
counter is increased by 1. Once the counter reaches `, which will happen eventually, then the
algorithm outputs the number of nodes it discovered. Even though our goal is to minimise
the query complexity, it is worth noticing that the time and space complexity can be kept
low by choice of suitable data structures. Although the oracle returns labels of nodes, we
use nodes and their labels interchangeably in the algorithm and the analysis of Theorem 10.
The proof can be found in the full version.

I Theorem 10. Algorithm EdgeSampling(−→O , `, φ) on graph G has a query complexity of
min{2(2n + `)/φ,m} and outputs an estimate n̂ ≤ n. Furthermore, if G has general
conductance φε(G) of at least φ, then the algorithm satisfies n̂ ≥ (1 − ε)n w.p. at least
1− 2−`.

I Observation 11. The error made by Algorithm EdgeSampling is one-sided – the estimate
never exceeds n. Allowing a two-sided error and given ε, one can instead output an estimate
with smaller additive error. Consider a modification of Algorithm EdgeSampling(−→O , `, φ) on
graph G which takes the additional parameter ε and outputs n̂∗ := |St|(1 + ε

2−ε ) instead of
|St|. If G has general conductance φε(G) of at least φ, then n̂∗ satisfies |n− n̂∗| ≤ ε

2−εn w.p.
at least 1− 2−`. The poof can be found in the full version article.

Lower bound in terms of the general conductance

In the following we show that the bound of Observation 11 is almost tight. Recall that, given
φε, the modified version of Algorithm EdgeSampling in Observation 11 returns an estimate
with and additive error of at most ε

2−εn using O(n/φε) queries. In what follows we show that
any algorithm, given the values φε and ε, cannot output an estimate with an error smaller

9 The definition of conductance in the directed setting is more involved and more importantly doesn’t
seem be directly relevant to the question of estimating the number of nodes. It suffers from similar
problems as the skewed stationary distributions. Graphs having poor connectivity to a large fraction of
the nodes may still have very good conductance if the total mass of the poorly connected nodes under
the stationary distribution is very small.
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Algorithm 1 EdgeSampling(−→O , `, φ).
1: Y0 = 0 (fail surplus counter)
2: v = (node) −→O .init (query oracle to get the initial node)
3: S0 = {v}
4: E0 = {(v, i) | i ≤ deg+(v)} (set of undisclosed edges)
5: t = 1
6: while Yt ≤ ` do
7: for τ = 1 to 2/φ do
8: choose (u, i) uniformly at random from E(t−1)·2/φ+τ−1.
9: v = (node) −→O .(u, i, out)

10: if v 6∈ St−1 then
11: St = St−1 ∪ {v}
12: E(t−1)·2/φ+τ ← (E(t−1)·2/φ+τ−1 ∪ {(v, i) | i ≤ deg+(v)}) \ {(u, i)}
13: break
14: else
15: Et·2/φ ← Et·2/φ−1 \ {(u, i)}
16: if |St| = |St−1|+ 1 then
17: Yt ← Yt − 1
18: else
19: Yt ← Yt + 1
20: St ← St−1
21: t← t+ 1
22: Output |St|.

Figure 4 The graphs of Theorem 12. G contains the black nodes and the black and red (dashed)
edges which form a d1/φe-regular expander on cliques of size d1/φe. G′ is obtained by removing the
red (dashed) edge and adding the blue (dotted) graph. At least one blue edge needs to be sampled,
which takes Ω(n/φ) time, in order to estimate n accurately.

than ε−δ
2−ε−δn unless it makes Ω(n/φε) queries, for any δ < ε/2. We prove the following

theorem for undirected graphs using O, but it should be clear that the same result holds for
directed graphs, by making the graph directed, with symmetric edges, and using −→O (2) (and
hence also for oracles −→O and −→O(1)).

I Theorem 12. Let n ∈ N, φ ∈ [1/n, 1] and ε ∈ (0, 1/2]. There exists an undirected graph
with general conductance φε = Θ(φ) such that any algorithm with access to O requires
Ω(n/φε) queries to output n̂ such that |n− n̂| ≤ ε−δ

2−ε−δn w.p. at least 2/3 for any δ < ε/2.
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Abstract
In this paper, we show that the protocol complex of a Byzantine synchronous system can remain
(k−1)-connected for up to dt/ke rounds, where t is the maximum number of Byzantine processes,
and t ≥ k ≥ 1. This topological property implies that dt/ke + 1 rounds are necessary to solve
k-set agreement in Byzantine synchronous systems, compared to bt/kc+1 rounds in synchronous
crash-failure systems. We also show that our connectivity bound is tight as we indicate solutions
to Byzantine k-set agreement in exactly dt/ke+1 synchronous rounds, at least when n is suitably
large compared to t. In conclusion, we see how Byzantine failures can potentially require one
extra round to solve k-set agreement, and, for n suitably large compared to t, at most that.
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1 Introduction

A task is a distributed coordination problem where multiple processes start with private
inputs, communicate among themselves (by shared memory or message passing), and halt
with outputs consistent with the task specification. There are crash-failure systems [1], where
processes can fail only by permanent, unannounced halting, or Byzantine-failure systems [18],
where processes can fail arbitrarily, even maliciously. Communication among processes can
be synchronous or asynchronous. In synchronous systems, communication and computation
are organized in discrete rounds. In each round, each non-faulty process performs as follows,
in order:
(i) sends a message;
(ii) receives all messages sent in the current round by the other processes; and
(iii) performs internal computation.
In asynchronous systems, processes may have different relative speeds, and communication is
subject to unbound, finite delays.

The problem of consensus in the synchronous Byzantine message-passing model was
among the earliest to be investigated, and upper and lower consensus bounds in that model
are well-understood. In this paper, we turn our attention to the bounds for problems such as
k-set agreement, using concepts and techniques adapted from combinatorial topology. We can
capture all possible information dissemination patterns permitted by this model in a single
combinatorial structure called a simplicial complex (or just complex). A classical topological
property of a simplicial complex is its level of connectivity, which is, roughly speaking, the
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dimension below which it has no holes. Many classical proofs of consensus impossibility can be
reformulated as showing that certain complexes are 0-connected (also called path-connected),
and all known impossibility proofs for k-set agreement rely on showing that certain complexes
are (k − 1)-connected. Very informally, the higher the degree of connectivity imposed by
the adversary, the weaker the model’s computational power. Here, we present the first tight
bounds on connectivity for the synchronous Byzantine message-passing model.

Prior work using topological techniques is discussed in Section 2. Our operational setting
is detailed in Section 3, and our topological model is formalized in Section 4.

Our first contribution comes in Section 5. We show that, in a Byzantine synchronous
system, the protocol complex can remain (k − 1)-connected for dt/ke rounds, where t is an
upper bound on the number of Byzantine processes. Perhaps surprisingly, this is only one
more round than the upper bound for crash-failure systems (bt/kc, shown in [8]). In order
to show that, as part of our second contribution, we conceive a combinatorial operator
modeling the ability of Byzantine processes to equivocate – that is, to transmit ambiguous
state information – without revealing their Byzantine nature. We compose this operator
with regular crash-failure operators, extending the protocol complex connectivity for one
extra round. As noted before, connectivity is of interest because a (k− 1)-connected protocol
complex prevents important problems such as k-set agreement [7, 9] from having solutions.

Our third contribution comes in Section 6. We show that the above connectivity bound
is tight in certain settings (described in Section 6), by solving k-set agreement in dt/ke+ 1
rounds. We do so with a full-information protocol that assumes n suitably large compared
to t. The protocol suits well our purpose of tightening the dt/ke bound, and also exposes
clearly the reason why dt/ke+ 1 rounds is enough to solve k-set agreement.

These results give new insight into the power of Byzantine adversaries for problems beyond
consensus. Although Byzantine adversaries seem much more powerful than crash-failure
ones, we show that a Byzantine adversary can impose at most one additional synchronous
round beyond that imposed by a crash-failure adversary. In terms of solvability vs. number
of rounds, the penalty for moving from crash to Byzantine failures, captured by (k − 1)-
connectivity in the protocol complex, can be quite limited in synchronous systems, particularly
when n is relatively large compared to t.

2 Related Work

The Byzantine failure model was initially introduced by Lamport, Shostak, and Pease [18].
The use of simplicial complexes to model distributed computations was introduced by Herlihy
and Shavit [15]. The asynchronous computability theorem for general tasks in [16] details the
approach for asynchronous wait-free computation in the crash-failure model. This model was
recently generalized by Gafni, Kuznetsov, and Manolescu [10]. Computability in Byzantine
asynchronous systems, where tasks are constrained in terms of non-faulty inputs, was recently
considered in [19].

The k-set agreement problem was originally defined by Chaudhuri [7]. Alternative
formulations with different validity notions, or failure/communication settings, are discussed
in [22, 9]. A full characterization of optimal translations between different failure settings is
given in [2, 23], which requires different number of rounds depending on the relation between
the number of faulty processes, and the number of participating processes.

The relationship between connectivity and the impossibility of k-set agreement is described
explicitly or implicitly in [8, 16, 24]. Recent work by Castañeda, Gonczarowski, and Moses [6]
considers an issue of chains of hidden values, a concept loosely explored here. The approach
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based on shellability and layered executions for lower bounds in connectivity has been used
by Herlihy, Rajsbaum, and Tuttle [14, 13, 12], assuming crash-failure systems, synchronous
or asynchronous.

3 Operational Model

We have n+ 1 processes1 P = {P0, . . . , Pn} communicating by message-passing via pairwise,
reliable channels (authenticated channels in the literature [5]). Technically, all transmitted
messages are delivered uniquely, and with sender reliably identified.

At most t processes are faulty or Byzantine [18], and may display arbitrary, even malicious
behavior, at any point in the execution. The actual behavior of Byzantine processes is defined
by an adversary. Byzantine processes may execute the protocol correctly or incorrectly, at
the discretion of the adversary. Processes that perform internal state transitions and message
exchanges in strict accordance to the protocol for rounds 1 up to some r (inclusive) are called
non-faulty processes up to round r, and are denoted by Gr. Also, faulty processes up to round
r are denoted by Br = P \Gr. A non-faulty process up to any round r ≥ 1 is called simply
non-faulty or correct, which we denote by G.

We model processes as state machines. The input value (resp. output value) of a non-
faulty process Pi is written Ii (resp. Oi). Byzantine processes may have apparent inputs,
denoted as above, and defined as one of the valid input values transmitted to other processes
in the first round of computation. Each non-faulty process Pi has an internal state called
view, which we denote by view(Pi). In the beginning of the protocol, view(Pi) is Ii. At any
round r, any non-faulty process:
(1) sends its internal state to all other processes;
(2) receives the state information from other processes;
(3) concatenates that information to its own internal state.
After completing some number of iterations, each process applies a decision function δ to its
current state in order to decide Oi. Thus, we assume that processes follow a full-information
protocol [13].

For simplicity of notation, we define a round 0 where processes are simply assigned their
inputs. Without losing generality, all processes are assumed non-faulty up to round 0: G0 = P
and B0 = ∅. For any round r ≥ 0, a global state up to round r formally specifies:
(1) the non-faulty processes up to round r; and
(2) the view of all non-faulty processes up to round r.

4 Topological Model

We now sketch the required concepts from combinatorial topology. For details, please refer
to Munkres [20], Kozlov [17], or Herlihy et al. [11].

4.1 Basics
A simplicial complex K consists of a finite set V along with a collection of subsets of V closed
under containment. An element of V is called a vertex of K. The set of vertices of K is
referred by V (K). Each set in K is called a simplex, usually denoted by lower-case Greek
letters: σ, τ , etc. The dimension dim(σ) of a simplex σ is |σ| − 1.

1 Choosing n + 1 processes rather than n simplifies the topological notation, but slightly complicates the
computing notation. Choosing n processes has the opposite trade-off. We choose n + 1 for compatibility
with prior work.
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A subset of a simplex is called a face. The collection of faces of σ with dimension exactly x
is called Facesx(σ). A face τ of σ is called proper if dim(τ) = dim(σ)−1. We use “k-simplex”
as shorthand for “k-dimensional simplex”, analogously in “k-face.” The dimension dim(K) of
a complex is the maximal dimension of its simplexes, and a facet of K is any simplex having
maximal dimension in K. A complex is said pure if all facets have dimension dim(K). In a
pure complex, we define the codimension of σ in K, denoted codimK(σ), as dim(K)− dim(σ).
The set of simplexes of K having dimension at most ` is a subcomplex of K, which is called
`-skeleton of K, denoted by skel`(K).

4.2 Maps

Let K and L be complexes. A vertex map f carries vertices of K to vertices of L. If f
additionally carries simplexes of K to simplexes of L, it is called a simplicial map. A carrier
map Φ from K to L takes each simplex σ ∈ K to a subcomplex Φ(σ) ⊆ L, such that for all
σ, τ ∈ K, we have Φ(σ ∩ τ) ⊆ Φ(σ) ∩ Φ(τ). If additionally Φ(σ ∩ τ) = Φ(σ) ∩ Φ(τ), we say
that the carrier map is strict. A simplicial map φ : K → L is carried by the carrier map
Φ : K → 2L if, for every simplex σ ∈ K, we have φ(σ) ⊆ Φ(σ).

Although we defined simplexes and complexes in a purely combinatorial way, they can
also be interpreted geometrically. An n-simplex can be identified with the convex hull of
(n+ 1) affinely-independent points in the Euclidean space of appropriate dimension. This
geometric realization can be extended to complexes. The point-set that underlies such
geometric complex K is called the polyhedron of K, denoted by |K|. For any simplex σ, the
boundary of σ, which we denote ∂ σ, is the simplicial complex of (dim(σ)− 1)-faces of σ. The
interior of σ is defined as Intσ = |σ| \ | ∂ σ|.

We can define simplicial/carrier maps between geometrical complexes. Given a simplicial
map φ : K → L (resp. carrier map Φ : K → 2L), the polyhedrons of every simplex in K
and L induce a continuous simplicial map φc : |K| → |L| (resp. continuous carrier map
Φc : |K| → |2L|). We say φ (resp. φc) is carried by Φ if, for any σ ∈ K, we have |φ(σ)| ⊆ |Φ(σ)|
(resp. φc(|σ|) ⊆ Φc(|σ|)).

4.3 Connectivity

In light of topology, two geometrical objects A and B are homeomorphic if, there is a
bicontinuous map from A into B. In other words, there exists a continuous map between
those objects, with a continuous inverse [21, 20].

I Fact 1. [20] For any k-simplex σ, the boundary of σ is homeomorphic to a (k− 1)-sphere,
and σ is homeomorphic to a k-disk.

We say that a simplicial complex K is x-connected, x ≥ 0, if every continuous map of
a subset of |K| homeomorphic to an x-sphere in |K| can be extended into a subset of |K|
homeomorphic to an (x+ 1)-disk in |K|. In analogy, think of the extremes of a pencil as a
0-disk, and the pencil itself as a 1-sphere (the extension is possible if 0-connected); the rim of
a coin as a 1-sphere, and the coin itself as a 2-disk (the extension is possible if 1-connected);
the outer layer of a billiard ball as a 2-sphere, and the billiard ball itself as a 3-disk (the
extension is possible if 2-connected). For us, (−1)-connected is understood as non-empty,
and (−2)-connected or lower imposes no restriction.
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4.4 Pseudospheres & Shellability
I Definition 2. Let S = {(Pi, Si) : Pi ∈ P′}, where each Si is an arbitrary set and P′ ⊆ P.
A pseudosphere Ψ(P′,S) is a simplicial complex where σ ∈ Ψ(P′,S) if σ = {(Pi, Vi) : Pi ∈
P′, Vi ∈ Si}.

Essentially, a pseudosphere is a simplicial complex formed by independently assigning
values to all the specified processes. If Si = S for all Pi ∈ P′, we simply write Ψ(P′, S).

I Definition 3. A pure, simplicial complex K is shellable if we can arrange the facets of K
in a linear order φ0 . . . , φt such that

(⋃
0≤i<k φi

)
∩ φk is a pure (dim(φk)− 1)-dimensional

simplicial complex for all 0 < k ≤ t. We call the above linear order φ0, . . . , φt a shelling
order.

Intuitively, a simplicial complex is shellable if it can be built by gluing its x-simplexes
along their (x− 1) faces only, where x is the dimension of the complex. Note that φ0, . . . , φt
is a shelling order if any φi ∩ φj (0 ≤ i < j ≤ t) is contained in a (dim(φk)− 1)-face of φk
(0 ≤ k < j). Hence,

for any i < j exists k < j where (φi ∩ φj) ⊆ (φk ∩ φj) and |φj \ φk| = 1. (1)

Shellability and pseudospheres are important tools to characterize connectivity in simplicial
complexes. The following lemmas are proved in [12] and [11] (pp. 252–253).

I Lemma 4. Any pseudosphere φ(P′,S) is shellable, considering arbitrary S = {(Pi, Si) :
∀Pi ∈ P′}.

I Lemma 5. For any k ≥ 1, if the simplicial complex K is shellable and dim(K) ≥ k then
K is (k − 1)-connected.

4.5 Nerve Theorem
Let K be a simplicial complex with a cover {Ki : i ∈ I} = K, where I is a finite index set.
The nerve N ({Ki : i ∈ I}) is the simplicial complex with vertexes I and simplexes J ⊆ I

whenever KJ =
⋂
j∈J Kj 6= ∅. We can characterize the connectivity of K in terms of the

connectivity of the intuitively simpler nerve of K with the next theorem.

I Theorem 6 (Nerve Theorem [17, 3]). If for any J ⊆ I denoting a simplex of N ({Ki : i ∈ I})
(thus, KJ 6= ∅) we have that KJ is (k − |J |+ 1)-connected, then K is k-connected if and only
if N ({Ki : i ∈ I}) is k-connected.

4.6 Protocol Complexes
We represent the evolution of the global state of the system throughout the rounds by
simplicial complexes that we call protocol complexes. The first, round-0 protocol complex
K0, represents the possible inputs attributed to processes. After each round r, the round-r
protocol complex Kr represents all possible global states of the system at round r. We also
call K0 the input complex, also denoted I.

I Definition 7. For r ≥ 0, a name-view simplex σ is such that:
1. σ = {(Pi, viewr(Pi)) : ∀Pi ∈ Gr}, where viewr(Pi) denotes Pi’s view at round r; and
2. if (Pi, viewr(Pi)) and (Pj , viewr(Pj)) are both in σ, then Pi 6= Pj .
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Unless otherwise noted, all of our simplicial and carrier maps f are such that names(σ) =
names(f(σ)), that is, they map between vertices associated with the same processes.

I Definition 8. For any name-view simplex σ, define
1. names(σ) = {Pi : ∃V such that (Pi, V ) ∈ σ}; and
2. views(σ) = {Vi : ∃P such that (P, Vi) ∈ σ}.

The round-0 protocol complex K0 has name-view n-simplexes σI = {(Pi, Ii) : ∀Pi ∈ G0},
representing all the possible process inputs in the beginning of the protocol. The round-r
protocol complex Kr, for any r ≥ 0, is defined as follows: if σ ∈ Kr, then σ = {(Pi, viewr(Pi)) :
∀Pi ∈ Gr}, representing a possible global state of the system for round r.

5 Connectivity Upper Bound

Informally, if the adversary displays Byzantine behavior early in the execution, then in a
synchronous, full-information protocol, subsequent communication among the non-faulty
processes can reveal the identities of the Byzantine processes, using simple techniques inspired
from [2, 4, 25]. Instead, it behooves the adversary to postpone malicious behavior to the
very last round, where it cannot be detected.

Say that non-faulty processes start the computation with inputs in V = {v0, . . . , vd},
arbitrarily assigned, with some d ≥ k and t ≥ k ≥ 1. To prove our upper bound, we show how
the adversary can impose a particular admissible execution that preserves high connectivity
in the protocol complex: by admissible, we mean an execution where at most t processes fail,
with other processes behaving in accordance with the protocol.

Let r = bt/kc and m = t mod k. We have r crash rounds, where in each round k processes
fail by crashing, but display no Byzantine behavior. If m > 0, we have an extra equivocation
round, where a single Byzantine process sends different views to different processes, causing
extra confusion. This round-by-round execution produces a sequence of protocol complexes
K0, . . . ,Kr+1, related by carrier maps Ci : Ki−1 → 2Ki , for 1 ≤ i ≤ r, and E : Kr → 2Kr+1 .

K0 C1
−−−−→K

1 . . . Cr−−−−→K
r E−−−→K

r+1︸ ︷︷ ︸
only if m > 0

. (2)

5.1 A Quick Background Detour: The Tools of the Trade
In each of the first r rounds, exactly k processes are failed by the adversary. The crash-failure
carrier maps are defined as follows [12, 11]:

I Definition 9. For any 1 ≤ i ≤ r, the crash-failure operator Ci : Ki−1 → 2Ki is such that

Ci(σ) =
⋃

τ∈Facesn−ik(σ)

Ψ(names(τ); [τ : σ]) (3)

for any σ ∈ Ki−1, with [τ : σ] denoting the set of simplexes µ where τ ⊆ µ ⊆ σ.

I Definition 10. A q-connected carrier map Φ : K → 2L is a strict carrier map such that,
for all σ ∈ K, dim(Φ(σ)) > q − codimK(σ) and Φ(σ) is (q − codimK(σ))-connected.

I Definition 11. A q-shellable carrier map Φ : K → 2L is a strict carrier map such that, for
all σ ∈ K, dim(Φ(σ)) > q − codimK(σ) and Φ(σ) is shellable.

After r rounds, note that Kr only contains simplexes with dimension exactly n − rk.
In [12, 11], the following lemmas are proved:
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I Lemma 12. For 1 ≤ i ≤ r, the operator Ci : Ki−1 → 2Ki is a (k − 1)-shellable carrier
map.

I Lemma 13. IfM1, . . . ,Mx are all q-shellable carrier maps, andMx+1 is a q-connected
carrier map, the composition M1 ◦ . . .Mx ◦Mx+1 is a q-connected carrier map, for any
x ≥ 0.

5.2 Byzantine Systems: Equivocation and Interpretation

After the crash-failure rounds, if m > 0 the adversary picks one of the remaining processes to
behave maliciously at round r+ 1. This process, say Pb, may send different views to different
processes (which is technically called equivocation), but, informally speaking, all views are
“plausible.” For example, two non-faulty processes Pi and Pj could be indecisive after round
r on whether the global state is σ1 or σ2 in Kr, while Pb, a Byzantine process, sends a state
corresponding to σ1 to Pi, and a state corresponding to σ2 to Pj . The faulty process Pb does
not reveal its Byzantine nature, yet it promotes ambiguity in the state information diffusion.

At the final round, when a non-faulty process receives the states sent from the other
processes, it must decide correctly even if one other process equivocates. If the non-faulty
process can receive simplexes σ1 and σ2, representing global states that differ in only one
process’s contribution (that is, dim(σ1 ∩ σ2) = n − rk − 1), then the interpretation of a
message containing one such state must be the same as a message containing the other. We
capture this notion using the equivocation operator, called E , describing the behavior of a
Byzantine process, coupled with an interpretation operator, called Interp, describing the
required behavior of non-faulty processes. Informally, Interp(σ1) = Interp(σ2) for processes
in names(τ), where τ = σ1 ∩ σ2 with dim(τ) = n− rk − 1. Formally:

I Definition 14. For arbitrary simplexes σ1 and σ2 in K, with dim(K) = n − rk, let
(Pi, Interp(σ1)) = (Pi, Interp(σ2)) if and only if σ1 = σ2; or Pi ∈ names(τ) where τ = σ1∩σ2
and dim(τ) = n− rk − 1.

I Definition 15. For any pure simplicial complexes K and L with dim(K) ≤ n − rk and
K ⊇ L, the K-equivocation operator EK is

EK(L) =
⋃

τ∈Facesn−rk−1(L)

Ψ(names(τ); {Interp(σ∗) : σ∗ ∈ K, σ∗ ⊃ τ})). (4)

Note that EK(L) = ∅ whenever dim(L) < n− rk − 1 or dim(K) < n− rk, and also that

EK(σ) =
⋃

τ∈Facesn−rk−1(σ)

Ψ(names(τ); Interp(σ)) (5)

for any σ ∈ K with dim(σ) = n− rk. For convenience of notation, define EK(K) = E(K).

5.3 Connectivity under Equivocation

Next, we investigate some technical properties of these constructions that allow us to prove
that the final complex is (k − 1)-connected.

I Lemma 16. For any pure, shellable simplicial complex with dim(K) ≤ n − rk, the K-
equivocation operator EK is a carrier map.
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Proof. Let τ ⊆ σ ∈ K. We show that EK(τ) ⊆ EK(σ). If dim(τ) < n − rk − 1 then
EK(τ) = ∅ and EK(τ) ⊆ EK(σ) for any σ ⊇ τ ∈ K. Otherwise, if dim(τ) = dim(σ) then
τ = σ and EK(τ) = EK(σ), as we assumed that σ ⊇ τ ∈ K. The remaining case is
when dim(τ) = n − rk − 1 and dim(σ) = n − rk, which makes EK(τ) ⊆ EK(σ) in light of
Definition 15. J

Let (Cr ◦ E) be the composite map such that (Cr ◦ E)(σ) = ECr(σ)(Cr(σ)). While, for
an arbitrary complex K, EK is not a strict carrier map per se, we show in the following
lemmas that (Cr ◦ E) is a strict (k − 1)-connected carrier map. Lemma 17 shows that
(Cr ◦ E) is a strict carrier map, and Lemma 18 shows that for any σ ∈ Kr−1, (Cr ◦ E)(σ) is
((k − 1)− codimKr−1(σ))-connected.

I Lemma 17. (Cr ◦ E) is a strict carrier map.

Proof. Consider σ, τ ∈ Kr−1, with L = Cr(σ) and M = Cr(τ). Both L and M are pure,
shellable simplicial complexes with dimension n−rk (Definition 9 and Lemma 12). Therefore,
both the L-equivocation andM-equivocation operators are well-defined. Also, Cr is a strict
carrier map, hence L ∩M = Cr(σ) ∩ Cr(τ) = Cr(σ ∩ τ). Note that L ∩M = Cr(σ ∩ τ), if
not empty, is a pure, shellable simplicial complex with dimension n − rk. Therefore, the
(L ∩M)-equivocation operator is well-defined.

First, we show that E(L)∩E(M) ⊆ E(L∩M), which implies one direction of our equality:

E(Cr(σ)) ∩ E(Cr(τ)) ⊆ E(Cr(σ) ∩ Cr(τ)) = E(Cr(σ ∩ τ)).

For clarity, let F (K) = Facesn−rk−1(K). Then,

E(L) ∩ E(M) =
⋃

µ∈F (L)

EL(µ) ∩
⋃

ν∈F (M)

EM(ν) =
⋃

µ∈F (L)
ν∈F (M)

EL(µ) ∩ EM(ν).

For arbitrary µ ∈ F (L) and ν ∈ F (M), if EL(µ) ∩ EM(ν) 6= ∅, consider two cases:
1. µ and ν are proper faces of φ ∈ (L ∩M). In this case,

EL(µ) ∩ EM(ν) = Ψ(names(µ) ∩ names(ν); Interp(φ)),

which is inside EL∩M(φ) ⊆ EL∩M(L ∩M).
2. Otherwise, µ ⊂ φ1 ∈ L or ν ⊂ φ2 ∈M. In this case,

EL(µ) ∩ EM(ν) = Ψ(names(µ) ∩ names(ν); Interp(φ1) ∩ Interp(φ2)).

By Definition 14, the above is non-empty only when Interp(φ1) = Interp(α) with α ∈ L,
Interp(φ2) = Interp(β) with β ∈ M, and there exists a non-empty set P′ such that
P′ ⊆ names(µ) ∩ names(ν) ⊆ names(γ), where γ = α ∩ β with dim(γ) = n− rk − 1. Let
P′′ be a maximal P′ satisfying such condition. Note that γ ∈ (L ∩M), so (L ∩M) 6= ∅.
Since (L ∩M) is non-empty, it is pure, shellable with dimension n − rk, there must
exist a simplex γ′ ⊃ γ with dimension n − rk. Moreover, Interp(γ′) = Interp(α) =
Interp(φ1) and Interp(γ′) = Interp(β) = Interp(φ2) for processes in names(γ), given
the definition of Interp. In conclusion, we have EL(µ) ∩ EM(ν) = Ψ(P′′; Interp(γ′)) ⊆
Ψ(names(γ); Interp(γ′)), which is inside EL∩M(γ′) ⊆ EL∩M(L ∩M).

In the other direction, we have E(L∩M) def= EL∩M(L∩M) ⊆ EL(L∩M) ⊆ EL(L) def= E(L),
since
(i) EL∩M(X ) ⊆ EL(X ) for any X ⊆ L ∩M (Definition 15); and
(ii) EL is a carrier map (Lemma 16).
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The same argument proves that E(L ∩M) ⊆ E(M), and therefore E(L ∩M) ⊆ E(L) ∩
E(M). J

I Lemma 18. For any σ ∈ Kr−1, E(Cr(σ)) is ((k − 1)− codimKr−1(σ))-connected.

Proof. Consider σ ∈ Kr−1 with codimKr−1(σ) ≤ k. By Lemma 12, M = Cr(σ) is a pure,
shellable simplicial complex with dim(M) = n − rk = d. By Definition 15, E(M) is well-
defined and dim(E(M)) = n− rk − 1 = d′. Note that d′ ≥ n− t ≥ 2t ≥ 2k, since n+ 1 > 3t
and t ≥ k.

First, we show that E(M) is “highly-connected” – that is, (2k−1)-connected. We proceed
by induction on µ0 . . . µ`, a shelling order of facets ofM.

Base. We show that EM(µ0) is (2k − 1)-connected. Considering Definition 15, we have that
EM(µ0) = EM(τ0) ∪ . . . ∪ EM(τd), with τ0 . . . τd being all the proper faces of µ0.
Consider the cover {EM(τi) : 0 ≤ i ≤ d} of EM(µ0), and its associated nerve N ({EM(τi) :
0 ≤ i ≤ d}). For any index set J ⊆ I = {0 . . . d}, let

KJ =
⋂
j∈J
EM(τj) = Ψ(

⋂
j∈J

names(τj); Interp(µ0))

For any J with |J | ≤ d, we have ∩j∈J names(τj) 6= ∅, making KJ a non-empty pseu-
dosphere with dimension d′ − |J | + 1 ≥ 2k − |J | + 1. So, KJ is ((2k − 1) − |J | + 1)-
connected by Lemmas 4 and 5. The nerve is hence the (d − 1)-skeleton of I, which
is (d − 2) = (d′ − 1) ≥ (2k − 1)-connected. By the Nerve Theorem, EM(µ0) is also
(2k − 1)-connected.

IH. Assume that Y = ∪0≤y<xEM(µy) is (2k − 1) connected, and let X = EM(µx). We must
show that Y ∪X = ∪0≤y≤xE(µy) is (2k−1)-connected. Note that X is (2k−1)-connected
by an argument identical to the one above for the base case EM(µ0). Besides,

Y ∩ X =

 ⋃
0≤y<x

EM(µy)

 ∩ EM(µx) =
⋃

0≤y<x
(EM(µy) ∩ EM(µx)) ?=

⋃
i∈S
EM(τi),

where i ∈ S is such that (∪0≤y<x µy) ∩ µx = ∪i∈S τi. The set S is well-defined sinceM
is shellable. The step (?) holds because:
1. Y ∩ X must include at least

⋃
i∈S EM(τi); and

2. EM(µy) ∩ EM(µx) 6= ∅ only if ψ = Ψ(names(µy ∩ µx); Interp(µx)) exists, the latter
inside ψ′ = Ψ(names(τj); Interp(µx)) for some j ∈ S, or we contradict the fact that
M is shellable.

Using an argument identical to the one for EM(µ0), yet considering the cover {EM(τi) :
i ∈ S}, the nerve of X ∩ Y is either the (d − 1)-skeleton of S (if S = {0 . . . d}) or the
whole simplex S (otherwise). By the Nerve Theorem, ∪i∈SEM(τi) is (2k − 1)-connected.
Once again, using the Nerve Theorem, since Y is (2k − 1)-connected, X is (2k − 1)-
connected, and Y ∩ X is (2k − 1)-connected, we have that Y ∪ X is (2k − 1)-connected.

While the equivocation operator yields high connectivity (2k − 1) in the pseudosphere Cr(σ),
the composition of Cr and ECr(σ)(Cr(σ)) limits the connectivity to (k − 1), since the former
map is only defined for simplexes with codimension ≤ k. Formally, as Cr(σ) 6= ∅ for any
simplex σ ∈ Kr−1 with codimKr−1(σ) ≤ k, we have that E(Cr(σ)) is ((k−1)−codimKr−1(σ))-
connected. J

From Lemmas 17 and 18, we conclude the following.
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I Corollary 19. (Cr ◦ E) is a (k − 1)-connected carrier map.

I Theorem 20. An adversary can keep the protocol complex of a Byzantine synchronous
system (k − 1)-connected for dt/ke rounds.

Proof. If m = 0, t mod k = 0, and the adversary runs only the crash rounds failing k

processes each time, for r = bt/kc = dt/ke consecutive rounds. We have the following
scenario:

(C1 ◦ . . . ◦ Cr)(σ).

Since Ci : Ki−1 → 2Ki is a (k − 1)-shellable carrier map for 1 ≤ i ≤ r (Lemma 12), the
composition (C1 ◦ . . . ◦ Cr) is a (k− 1)-connected carrier map for any facet σ ∈ I (Lemma 13).

If m > 0, the adversary performs r crash rounds (failing k processes each time), followed
by the extra equivocation round. We have the following scenario:

(C1 ◦ . . . ◦ Cr−1 ◦ (Cr ◦ E))(σ). (6)

Since Ci : Ki−1 → Ki is a (k − 1)-shellable carrier map for 1 ≤ i ≤ r − 1 (Lemma 12), and
(Cr ◦ E) is a (k − 1)-connected carrier map (Corollary 19), we have that the composition
above (C1 ◦ . . . ◦ Cr−1 ◦ (Cr ◦ E)) is a (k − 1)-connected carrier map for any facet σ ∈ I
(Lemma 13). J

6 k-Set Agreement and Lower Bound

The k-set agreement problem [7], is a fundamental task having important associations with
protocol complex connectivity. In Byzantine systems, it can be difficult to characterize the
input of a faulty process, since this process can ignore its “prescribed” input and behave
as having a different one. This intrinsically leads to many alternative formulations for the
problem in Byzantine systems [9]. In our algorithm, for each Byzantine process, we can
commit to at most a single value transmitted as input. We define such value as the apparent
input value of the Byzantine process. In our adopted formulation, each non-faulty process Pi
starts with any value Ii from V = {v0, . . . , vd}, with d ≥ k and t ≥ k ≥ 1, and finishes with
a value Oi from V , respecting:
1. Agreement. At most k values are decided: |{Oi : Pi ∈ G}| ≤ k.
2. Validity. For any non-faulty process Pi, the output Oi is the input value of one of the

participating processes.
3. Termination. The protocol finishes in a finite number of rounds.

The k-set agreement problem and connectivity are closely related. Lemma 21, proved in
Appendix A, shows that no solution is possible for k-set agreement with a (k − 1)-connected
protocol complex, which, as seen in Section 5, can occur at least until round dt/ke.

I Lemma 21. If, starting σ ∈ I, the protocol complex P(σ) is (k − 1)-connected, then no
decision function δ solves the k-set agreement problem.

Proof. Please refer to Appendix A. J

We now present a simple k-set agreement algorithm for Byzantine synchronous systems,
running in dt/ke+ 1 rounds. The procedure requires a relatively large number of processes
compared to t: we assume n+ 1 ≥ k(3t+ 1). The procedure was designed with the purpose
of tightening the connectivity lower bound, favoring simplicity over the optimality on the
number of processes.
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Algorithm 1 Px.Agree(I)
1: if k = 1 then
2: return Decision(Multiset(Cont(p) output by consensus algorithm))
3: Cont(w)← ⊥ for all w ∈ T
4: Cont(λ)← I . Gossip
5: for ` : 1 to dt/ke+ 1 do
6: send(S`−1

x = {(w,Cont(w)) : |w| = `− 1})
7: upon recv(S`−1

y = {(w, v) : |w| = `− 1, v ∈ V ∪ {⊥}}) from Py
8: Cont(wPy)← v for all (w, v) ∈ S`−1

y

9: end upon
10: P′ ← {Pi : Pi has a quorum} . Validation
11: if |P′| = (n+ 1)− t then
12: Apply completion rule for all wb where b ∈ P \ P′ and |wb| = dt/ke
13: g ← any g such that T (g) is pivotal . Decision
14: for ` : dt/ke − 1 to 1 do
15: Apply consensus rule for all non-validated wb where b ∈ P(g) and |wb| = `

16: return Decision(Multiset(Cont(p) : p ∈ T (g)))

Non-faulty processes initially execute a gossip phase for dt/ke+ 1 rounds, followed by a
validation phase, and a decision phase, where the output is chosen. Define R = dt/ke, and
consider the following tree, where nodes are labeled with words over the alphabet P. The root
node is labeled as λ, which represents an empty string. Each node w such that 0 ≤ |w| ≤ R
has n + 1 child nodes labeled wp for all p ∈ P. Any non-faulty process Pi maintains such
tree, denoted Ti.

6.1 The Gossip Phase
For each of the trees maintained by the processes, as discussed above, all nodes w are
associated with the value Contp(w), called the contents of w. The meaning of those trees
is well-known [1]: after the gossip phase, if node w = p1 . . . px is such that Contp(w) = v,
then px told that px−1 told that . . . p1 had input v to p. The special value ⊥ represents an
absent input. We omit the subscript p when the process is implied or arbitrary. We divide
the processes into k disjoint groups: P(g) = {Px ∈ P : x = g mod k}, for 0 ≤ g < k. For any
tree T , we call T (g) the subtree of T having only nodes wp ∈ T such that p ∈ P(g).

6.2 The Validation Phase
In the validation phase, if we have a set Q containing (n+ 1)− t processes that acknowledge
all messages coming from process p (making sure that p ∈ Q) in all rounds 1 ≤ r ≤ R, we
call such set the quorum of p, denoted Quorum(p). Formally, Quorum(p) = Q ⊆ P such that
p ∈ Q, |Q| ≥ (n + 1) − t, and q ∈ Q whenever Cont(wp) = v implies Cont(wpq) = v, for
any wp with 1 ≤ |wp| ≤ R. It should be clear that every non-faulty process has a quorum
containing at least all other non-faulty processes. If a process p has a quorum as seen by
process Pi ∈ G, we say that wp has been validated on Pi, for any wp with 1 ≤ |wp| ≤ R.
We also say that p has been validated on Pi in this case. Note that in our definition either
all entries wp with 1 ≤ |wp| ≤ R are validated, or none is. Lemma 22 shows that validated
entries are unique across non-faulty processes.
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I Lemma 22. If p has been validated on non-faulty processes Pi and Pj, then Conti(wp) =
Contj(wp) for any 0 ≤ |w| < R.

Proof. If p has been validated on Pi ∈ G, then Conti(wp) = v implies Conti(wpq) = v

for (n+ 1)− t different processes q ∈ Qi, and Contj(wp) = v′ implies Contj(wpq) = v′ for
(n+ 1)− t different processes q ∈ Qj , for any 0 ≤ |w| < R. As we have at most t non-faulty
processes and n+ 1 > 3t, |Qi ∩Qj | ≥ (n+ 1)− 2t > t+ 1, containing at least one non-faulty
process that, in contradiction, would be broadcasting values consistently in its run. Hence,
v = Conti(wp) and v′ = Contj(wp) must be identical. J

6.3 The Decision Phase
In the decision phase, if we see t processes without a quorum, we have technically identified
all non-faulty processes B. In this case, we fill R-th round values of any b ∈ B using the
completion rule: we make Cont(wb) = v if we have (n + 1) − 2t processes G′ ⊆ G where
Cont(wbg) = v for any g ∈ G′ and |wb| = R. If a process b has its R-round values completed
as above in process Pi ∈ G, we say that wb has been completed on Pi for any |wb| = R.
Lemma 23 shows that completed entries are identical and consistent with validated entries
across non-faulty processes. (Intuitively, the completion rule was done over identical values
from correct processes.)

I Lemma 23. If wp has been completed or validated on a non-faulty process Pi, and wp has
been completed on a non-faulty process Pj, then Conti(wp) = Contj(wp).

Proof. Say wp has been validated on Pi and completed in Pj . Since wp has been validated
on Pi, Conti(wp) = v implies Conti(wpq) = v for (n+ 1)− t different processes q ∈ Q. When
Pj applies the completion rule on wp, we must have Contj(wpq) = v for (n+ 1)− 2t different
processes q ∈ G, as we have at most t faulty processes. Therefore, Conti(wp) = Contj(wp).

If wp has been completed on all non-faulty processes, they all have identified t faulty
processes, and the completion rule is performed over identical entries associated with non-
faulty processes. Therefore, Conti(wp) = Contj(wp) in this case as well. J

I Definition 24. We define a pivotal subtree as follows:
1. If there exists a subtree T (g) with less than dt/ke non-validated processes, define this

subtree as pivotal;
2. Otherwise, we identified k · dt/ke ≥ t Byzantine processes, so we apply the completion

rule consistently to R-round values in T (0), and define T (0) as pivotal instead.

A pivotal subtree, therefore, must exist according to Definition 24. For that subtree, any
sequence p1, (p1p2), . . . , (p1p2 . . . px), with p1 6= . . . 6= px, has size x < R = dt/ke. As we see
further ahead, this will allow us to suitably perform consensus over consistent values.

We first highlight that, essentially, our algorithm is separating the possible chains of
unknown values across disjoint process groups, which either forces one of these chains to be
smaller than R = dt/ke, or reveals all faulty processes, giving us the ability to perform the
completion rule in a consistent way. This fundamental tradeoff underlies our algorithm, and
ultimately explains why the dt/ke connectivity bound is tight for relatively large numbers of
n compared to t.

6.3.1 The Consensus Rule
Denote the set of processes in the word w as SetProc(w). For any non-validated wb with
b ∈ P(g) in a pivotal subtree T (g), where 1 ≤ |wb| < R, we establish consensus on Cont(wb).
We apply the consensus rule: Cont(wb) = v if the majority of processes in P(g) \SetProc(wb)
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is such that wbp = v. This rule is applied first to entries labeled wb where |wb| = R− 1, and
then moving upwards (please refer to Algorithm 1). Lemma 25 shows that the consensus rule
indeed establishes consensus across non-faulty processes that identify T (g) as the pivotal
subtree.

I Lemma 25. For any two-non-faulty processes Pi and Pj that applied the consensus rule on
a pivotal subtree T (g), with 0 ≤ g < k, we have that Conti(p) = Contj(p) for any p ∈ P(g).

Proof. Consider a non-faulty process Pi establishing the value of Conti(wp) with the con-
sensus rule. Define SetCons(wp) = P(g) \ SetProc(wp) for any wp ∈ T (g) with |wp| < R,
noting that |SetCons(wp)| ≥ 2t+ 2 as |P(g)| ≥ 3t+ 1 and |wp| < t.

There are two possible cases:
1. If wp has been validated at a non-faulty process Pj with Contj(wp) = v, at most t values

from Si = Multiset(Conti(wpq) : q ∈ SetCons(wp)) will be different than v. Hence, there
will always be a majority of values in Si that will contain v, because |Si| ≥ 2t+ 2.

2. Otherwise, if wp has not been validated at any non-faulty process, all Cont(wp) values
are being calculated over consistent values, by Lemma 23, which makes all non-faulty
processes establish Cont(wp) consistently with the consensus rule. J

I Theorem 26. Algorithm 1 solves k-set agreement in dt/ke+ 1 rounds for n+ 1 > k(3t+ 1).

Proof. Termination is trivial, as we execute exactly R = dt/ke+ 1 rounds. By Lemma 25,
each pivotal subtree yields a unique decision value. As we have at most k pivotal subtrees
identified across non-faulty processes, up to k values are possibly decided across non-faulty
processes. J

7 Conclusion

In Byzantine synchronous systems, the protocol complex can remain (k − 1)-connected for
dt/ke rounds, potentially one more round than in crash-failure systems. We conceive a
combinatorial operator modeling the ability of Byzantine processes to equivocate without
revealing their Byzantine nature, just after bt/kc rounds of crash failures. We compose this
operator with the regular crash-failure operators, extending (k − 1)-connectivity up to dt/ke
rounds. We tighten this bound, at least when n is relatively large compared to t, via a
full-information protocol that solves a formulation of k-set agreement.

It may be surprising that Byzantine failures impose only one additional synchronous round
over the crash-failure model, and at most that in our setting, where inputs are arbitrarily
attributed to processes, and the number of processes is at least k(3t + 1). In terms of
solvability vs. number of rounds, the penalty for moving from crash to Byzantine failures
can thus be quite limited. Previous work has hinted this possibility operationally, since
(i) in synchronous systems where n is large enough compared to t, we can simulate crash

failures on Byzantine systems with a 1-round delay [2]; and
(ii) techniques similar to the reliable broadcast of [4, 25] deal with the problem of Byzantine

equivocation, also with a 1-round delay.
This extra round is crucial – but enough – to limit the impact of Byzantine behavior in
rather usual operational settings.

The algorithm that matches the connectivity bound was designed to separate chains of
unresolved values, such that we suitably limit their size, or force the adversary to reveal
the identity of all faulty processes. The prospect of an algorithm that applies similar ideas,
however with better resilience, is a thought-provoking perspective for future work.
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A Appendix: Proofs for the Connectivity Arguments

Proof of Lemma 21. Consider a k-simplex α = {u0, . . . , uk} ⊆ {v0, . . . , vd} with k + 1
different inputs. Let Iβ = Ψ(P, β) for any β ⊆ α, and Ix =

⋃
β∈skelx(α) Ψ(P, β). We

construct a sequence of continuous maps gx : | skelx(α)| → |Kx| where Kx is homeomorphic
to skelx(α) in | skelx(P(Ix))|.

Base. Let g0 map any vertex v ∈ α to a vertex in Kv = P(I{v}). We know that Kv
is k-connected since dim(I{v}) = dim(I) and P is a k-connected carrier map. We just
constructed

g0 : | skel0(α)| → |K0|,

where K0 is isomorphic to a skel0(α) in | skel0(P(I0))|.

Induction Hypothesis. Assume gx−1 : | skelx−1(α)| → |Kx−1| for any x ≤ k, where Kx−1
is isomorphic to skelx−1(α) in | skelx−1(P(Ix−1))|. For any β ∈ skelx(α), we have that
skelx(P(Iβ)) is (x− 1)-connected, hence the continuous image of the (x− 1)-sphere in P(Iβ)
can be extended to the continuous image of the x-disk in skelx(P(Iβ)). We just constructed

gx : | skelx(α)| → |Kx|,

where Kx is isomorphic to skelx(α) in | skelx(P(I0))|. In the end, we have gk : |α| → |Kk|
where Kk is isomorphic to α in skelk(P(Ik)).

Now suppose, for the sake of contradiction, that k-set agreement is solvable, so there
must be a simplicial map δ : P(I) → O carried by ∆. Then, induce the continuous map
δc : |Kk| → |α| from δ such that δc(v) ∈ | views(δ(µ))| if v ∈ |µ|, for any µ ∈ Kk. Also, note
that the composition of gk with the continuous map δc induces another continuous map
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|α| → | ∂ α|, since by assumption δ never maps a k-simplex of Kk to a simplex with k + 1
different views (so δc never maps a point to | Intα|). We built a continuous retraction of α to
its own border ∂ α, a contradiction (please refer to [20, 17]). Since our assumption was that
there existed a simplicial map δ : P(I)→ O carried by ∆, we conclude that k-set agreement
is not solvable. J
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1 Introduction

Today’s distributed systems are key pieces of infrastructure that must remain available
even though the servers that implement them are constantly failing. These systems are
long-lived and must be able to tolerate nodes crashing and rejoining the system. In particular,
nodes must be able to rejoin the system even after losing their disk state, a real concern for
large-scale data centers where hard drive failures are a regular occurrence [7].

This paper addresses the problem of how to build recoverable shared objects even when
processes lose their entire state. We consider the Diskless Crash-Recovery model: each
process in the system may go down at any time; upon recovery, it loses all state it had
before the crash except for its identity. However, processes can run a recovery protocol to
reconstruct their state before deeming themselves operational again. This model matches
the way that many distributed systems are built in practice.

The Diskless Crash-Recovery model (DCR) is more challenging than the traditional
Crash-Stop model (CS) or the Crash-Recovery with Stable Storage model (CRSS). The main
challenge is that an invariant that holds at one process may not hold on that process’s next
incarnation after recovery. This leads to the problem of unstable quorums: it is possible
for a majority of processes to acknowledge a write operation, and yet processes can still
subsequently lose that knowledge after crash and recovery.

We provide a general mechanism for building recoverable shared objects in the DCR
model. We show that an operation can be made recoverable once it is stored by a crash-
consistent quorum, which we informally define as one where no recoveries happen during the
quorum responses. Crash-consistent quorums can be efficiently identified using a mechanism
called the crash vector : a vector, maintained by each process, that tracks the latest known
incarnation of each process. By including crash vectors in protocol messages, processes can
identify the causal relationship between crash recoveries and other operations. This makes it
possible to discard responses that are not part of a crash-consistent quorum. We show that
this is sufficient to make storage mechanisms recoverable.

The crash-consistent quorum approach is a general strategy for making storage primitives
recoverable. We give two concrete examples in this paper, both of which are always safe and
guarantee liveness during periods of stability; other storage primitives are also possible:

First, we build a multi-writer, multi-reader atomic register by extending the well-known
ABD protocol [3] with crash vectors. This improves on the best prior protocol by Konwar
et al. [17], RADON (S)

R , for this problem: it requires fewer rounds (2 rather than 3),
requires fewer nodes to participate in the protocol (a simple majority vs 3/4), and has a
less restrictive liveness condition.
Second, we construct a single-writer, single-reader atomic set, which has weaker semantics
yet permits a more efficient implementation, requiring only a single round of communica-
tion for writes. We refer to this algorithm as virtual stable storage, as it offers consistency
semantics similar to a local disk. We show that the virtual stable storage protocol can be
used to transform any protocol that operates in the traditional CS or CRSS models to
one that operates in DCR.

We discuss the application of this work to state machine replication, a widely used
distributed system technique. Recovering from disk failures is an important concern in
practice, and recent replication protocols attempt to support recovery after complete loss
of state. Surprisingly, we find that each of the three such protocols [7, 16,22] can lose data.
We identify a general problem: while these protocols go to great lengths to ensure that a
recovering replica reconstructs the set of operations it previously processed, they fail to
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recover critical promises the replica has previously made, e.g., to elect a new leader. This
is due to the fact that these protocols rely on unstable quorums to persist these promises.
This causes nodes to break important invariants upon recovery, causing the system to violate
safety properties. Our approach provides a correct, general, and efficient solution.

To summarize, this paper makes the following contributions:
It formalizes a Diskless Crash-Recovery (DCR) failure model in a way that captures the
challenges of long-lived applications (Section 3).
It introduces the notion of crash-consistent quorums and provides two communication
primitives for reading from and writing to crash-consistent quorums (Section 4).
It presents algorithms built on top of our communications primitives for two different
shared objects in the DCR model: an atomic multi-writer, multi-reader register and an
atomic single-writer, single-reader set. The former is a general purpose register which
demonstrates the generality of our approach, while the latter provides a virtual stable
storage interface that can be used to port any protocol in the CRSS model to one for the
DCR model (Section 5).
Finally, it examines prior protocols for state machine replication in the DCR failure model
and demonstrates flaws in these protocols that lead to violations of safety properties. Our
two communication primitives can provide correct solutions (Section 6).

2 Background and Related Work

Static Systems. A static system comprises a fixed, finite set of processes. Fault-tolerant
protocols for reliable storage for static systems have been studied extensively in the Crash-Stop
(CS) failure model, where processes that fail never rejoin the system, and the Crash-Recovery
with Stable Storage model (CRSS). In the latter model, processes recover with the same state
after a crash. Consensus and related problems, in particular, have been studied extensively
in these settings [8, 12,30]. In CRSS, a crashed and recovered node is no different than one
which was temporarily unavailable; asynchronous algorithms that tolerate lossy networks are
inherently robust to these types of failures [8].

Prior work on fault-tolerant shared objects and consensus without stable storage generally
requires some subset of the processes to never fail [2, 11]. Aguilera et al. [2] showed an
impossibility result for a crash-recovery model: even with certain synchrony assumptions,
consensus cannot be solved without at least one process that never crashes. The main
differentiator between that work and this paper is that in their model, the states of processes
were binary – either “up” or “down.” We overcome this limitation by adding an extra
“recovering” state. As long as the number of processes which are “down” or “recovering” at
any given time is bounded, certain problems can be solved even without processes that never
fail.

Recently, Konwar et al. [17] presented a set of algorithms for implementing an atomic
multi-writer, multi-reader (MWMR) register in a model similar to ours. We generalize and
improve on this work using new primitives for crash-consistent quorums. Our techniques are
applicable to other forms of shared objects as well, and our MWMR register is more efficient:
it requires one fewer phase and a simple majority quorum (vs 3/4).

Several recent practical state machine replication systems [7,16,22] incorporate ad hoc
recovery mechanisms for nodes to recover from total disk loss. The common intuition behind
these approaches is that a write to disk can be replaced with a write to a quorum of other
nodes, recovering after a failure by performing a quorum read. However, we show that these
protocols are not correct; they can lose data in certain failure scenarios. A more recent
design, Replacement [13], provides a mechanism for replacing failed processes. Like our work
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and the epoch vectors in JPaxos [16], it draws on concepts like version vectors [31] and vector
clocks [9] to determine the causal dependencies between replacements and other operations.
We build on these techniques to provide generic communication primitives in DCR.

Dynamic Systems. In a dynamic setting, processes may leave or join the system at will.
Although we consider a static system, DCR may be viewed as a dynamic system with a
finite concurrency level [26], i.e, where there is a finite bound on the maximum number of
processes that are simultaneously active, over all runs. Here, a recovering process without
state is equivalent to a newly joined process.

Many dynamic systems implement reconfiguration protocols [1, 10, 21–24,33]. Reconfigu-
ration allows one to change the set of members allowed to participate in the computation.
This process allows both adding new processes and removing processes from the system.
Reconfiguration is a more general problem than recovery: it can be used to handle disk failure
by introducing a recovering node as a new member and removing its previous incarnation.
However, general reconfiguration protocols are a blunt instrument, as they must be able to
handle completely changing the membership to a disjoint set of processes . As a result, these
protocols are costly. Most use consensus to agree on the order of reconfigurations, which
delays the processing of concurrent operations [28]. DynaStore [1] is the first proposal which
does not require consensus, but reconfigurations can still delay R/W operations [28]. Smart-
Merge [14] improves on DynaStore by offering a more expressive reconfiguration interface.
Recovery is a special case of reconfiguration, where each recovering process replaces, and
has the same identity as, a previously crashed process. As a result, it permits more efficient
solutions.

Other protocols implement shared registers and other storage primitives in churn-prone
systems [4–6,15]. In these systems, processes are constantly joining and leaving the system,
but at a bounded rate. These protocols remain safe only when churn remains within the
specified bound, in contrast to our work which is always safe. Most of these protocols also
require synchrony assumptions for correctness. However, under these assumptions they are
able to provide liveness guarantees even during constant churn.

3 System Model

We begin by defining our failure model: Diskless Crash-Recovery (DCR), a variant of the
classic Crash-Recovery model where processes lose their entire state upon crashing.

We consider an asynchronous distributed system which consists of a fixed set of n
processes, Π. Each process has a unique name (identifier) of some kind; we assume processes
are numbered 1, . . . , n for simplicity. Each process executes a protocol (formally, it is an
I/O automaton [25]) while it is up. An execution of a protocol proceeds in discrete time
steps, numbered with N, starting at t = 0. At each step, at most one process either processes
an input action, processes a message, crashes, or restarts. If it crashes, the process stops
receiving messages and input actions, loses its state, and is considered down. A process that
is down can restart and transition back to the up state. We make the following assumptions
about a process that restarts: (1) it knows it is restarting, (2) it knows its unique name
and the names of the other processes in the system (i.e., this information survives crashes),
and (3) it can obtain an incarnation ID that is distinct from all the ones that it previously
obtained. Note that the incarnation ID need only be unique among different incarnations
of a specific process, not the entire system. These are reasonable assumptions to make for
real-world systems: (1) and (2) are fixed for a given deployment, and (3) can be obtained,
for example, from a source of randomness or the local processor clock.
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Processes are connected by an asynchronous network. Messages can be duplicated a finite
number of times or reordered arbitrarily – but not modified – by the network. We assume
that if an incarnation of a process remains up, sends a message, and an incarnation of the
destination process stays up long enough, that message will eventually be delivered.1

The unique incarnation ID makes it possible to distinguish different incarnations of the
same process. Without unique incarnation IDs, processes are vulnerable to “replay attacks:”

I Theorem 1. Any state reached by a process that has crashed, restarted, and taken steps
without receiving an input action or crashing again will always be reachable by that process.

Proof. Suppose process p has crashed, restarted, and taken some number of steps without
crashing or receiving an input action. That is, suppose that after it restarted, p received some
sequence of messages,M. Because p is an I/O automaton without access to randomness or
unique incarnation IDs, anytime p crashes and restarts, it restarts into the exact same state.
Furthermore, if p crashes, restarts, and receives the same sequence of messages,M, having
been duplicated by the network, p will always end up in the same state. J

A corollary to Theorem 1 is that any protocol in the DCR model without unique incarnation
IDs satisfying the safety properties of consensus – or even a simple shared object such as a
register – can reach a state from which terminating states are not reachable (i.e., a state
of deadlock). If all processes crash and recover before deciding a value or receiving a write,
they can always return to this earlier state, so the protocol cannot safely make progress.

For simplicity of exposition, we assume that the incarnation ID increases monotonically.
We explain in our technical report [27] how to eliminate this requirement.

A restarting process must recover parts of its state. To do so, it runs a distinct recovery
protocol. This protocol can communicate with other processes to recover previous state.
Once the recovery protocol terminates, the process declares recovery complete and resumes
execution of its normal protocol. We describe a process that is up as recovering if it is
running its recovery protocol and operational when it is running the initial automaton. A
protocol in this model should satisfy recovery termination: a recovering process eventually
becomes operational, as long as it does not crash again in the meantime. This precludes
vacuous solutions where recovering process never again participate in the normal protocol.

Using a separate recovery protocol matches the design of existing protocols like View-
stamped Replication [22]. Importantly, the distinction between recovering and opera-
tional allows failure bounds in terms of the number of operational processes, e.g., that
fewer than half of the processes can be either down or recovering at any moment. This
circumvents Aguilera et al.’s impossibility result for consensus [2], which does not make such
a distinction (i.e., restarting processes are immediately considered operational).

4 Achieving Crash-Consistent Quorums

Making shared objects recoverable in the DCR model requires a new type of quorum to
capture the idea of persistent, recoverable knowledge. A simple quorum does not suffice. We
demonstrate the problem through a simple straw-man example, and introduce the concepts
of crash-consistent quorums and crash vectors to solve the problem. We use these to build
generic quorum communication and recovery primitives.

1 This model is equivalent to one in which the network can drop any message a finite number of times,
with the added stipulation that processes resend messages until they are acknowledged.
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4.1 Unstable Quorums: Intuition
Consider an intentionally simple example: a fault-tolerant safe register that supports a
single writer and multiple readers. A safe register [19] is the weakest form of register, as
the behavior of READ operations is only defined when there are no concurrent WRITEs.
We further constrain the problem by allowing the writer to only ever execute one WRITE
operation. That is, the only safety requirement is that once the WRITE completes, all
subsequent READs that return must return the value written.

In the Crash-Stop model, a trivial quorum protocol suffices: WRITE(val) broadcasts val
and waits for acknowledgments from a quorum. Here, we consider majority quorums:

I Definition 2. A quorum Q is a set of processes such that Q ∈ Q = {Q : Q ∈ 2Π ∧ |Q| >
n/2}.

A subsequent READ would then be implemented by reading from a quorum. The quorum
intersection property (i.e., ∀Q1, Q2 ∈ Q Q1 ∩Q2 6= {} ) guarantees that at least one process
will return val for a READ that happens after the WRITE. It is easy to extend this protocol
to the CRSS model simply by having each process log val to disk before replying to a WRITE.

Could we use this same quorum protocol in our DCR model, where processes that crash
recover without stable storage, by augmenting it with a recovery protocol that satisfies
recovery termination? In fact, for this particular protocol, there is no recovery protocol that
both guarantees the safety requirement and recovery termination – even if there is a majority
of processes which are operational at any instant! In order to tolerate the crashes of a
minority of processes and satisfy recovery termination, any recovery protocol must be able to
proceed after communicating with only a simple majority of processes. However, if a process
crashes in the middle of the WRITE procedure – after acknowledging val – it may recover
before a majority of processes have received val. No recovery procedure that communicates
only with this quorum of processes can cause the process to relearn val.

We term the resulting situation an unstable quorum: the WRITE operation received
responses from a quorum, and yet by the time it completes there may no longer exist a
majority of processes that know val. It is thus possible to form a quorum of processes that
either acknowledged val but then lost it during recovery, or never received the write request
(delayed by the network). A subsequent READ could fail by reading from such a quorum.

Although this is a simple example, many important systems suffer from precisely this
problem of unstable quorums. We show in Section 6 that essentially this scenario can cause
three different state machine replication protocols to lose important pieces of state.

4.2 Crash-Consistent Quorums
We can avoid this problem – both for the straw-man problem above and in the general case –
by relying not just on simple quorums of responses but crash-consistent ones.

Crash Consistency. We informally define a crash-consistent quorum to be one where no
recoveries of processes in the quorum happen during the quorum responses. More precisely:

I Definition 3. Let E be the set of all events in an execution. A set of events, E ⊆ E , is
crash-consistent if ∀e1, e2 ∈ E there is no e3 ∈ E that takes place at a later incarnation of
the same process as e1 such that e3 → e2. Here, → represents Lamport’s happens-before
relation [18].

In Section 4.3, we show how to build recoverable primitives using crash-consistent quorums,
in which all quorum replies (i.e. the message send events at a quorum) are crash-consistent.
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Crash Vectors. How does a process acquire a crash-consistent quorum of responses? The
mechanism that allows us to ensure a crash-consistent quorum is the crash vector. This
is a vector that contains, for each process, its latest known incarnation ID. Like a version
vector, processes attach their crash vector to the relevant protocol messages and use incoming
messages to update their crash vector. The crash vector thus tracks the causal relationship
between crash recoveries and other operations. When acquiring a quorum on a WRITE
operation, we check whether any of the crash vectors are inconsistent with each other,
indicating that a recovery may have happened concurrently with one of the responses. We
then discard any responses from previous incarnations of the recovering process, ensuring a
crash-consistent quorum, and thus avoiding the aforementioned problem.

4.3 Communication Primitives in DCR

We now describe in detail two generic quorum communication primitives, one of which acquires
a crash-consistent quorum, as well as a generic recovery procedure. These primitives require
their users to implement an abstract interface: Read-State, which returns a representation
of the state of the shared object; Update-State, which alters the current state with a
specific value; and Rebuild-State, which is called during recovery and takes a set of state
representations and combines them.

The Acquire-Quorum primitive writes a value to a crash-consistent quorum and returns
the latest state. The Read-Quorum primitive returns a fresh – but possibly inconsistent –
snapshot of the state as maintained at a quorum of processes. If Acquire-Quorum(val)
succeeds, then any subsequent Read-Quorum will return at least one response from a
process that knows (i.e., has previously updated its state with) val.

The detailed protocol implementing the two primitives and the recovery procedure is
presented as pseudo-code in Algorithm 1. We present the algorithm using a modified I/O
automaton notation. In our protocol, procedures are input actions that can be invoked
at any time (e.g., in a higher level protocol); functions are simple methods; and upon
clauses specify how processes handle external events (i.e., messages, system initialization, and
recovery). We use guards to prevent actions from being activated under certain conditions.
If the guard of a message handler or procedure is not satisfied, no action is taken, and the
message is not consumed (i.e., it remains in the network undelivered).

Each of the n process in Π maintains a crash vector, v, with one entry for each process in
the system. Entry i in this vector tracks the latest known incarnation ID of process i. During
an incarnation, a process numbers its acquire and read messages using the local variable
c to match messages with replies. When a process recovers, it gets a new value from its
local, monotonic clock and updates its incarnation ID in its own vector. When the recovery
procedure ends, the process becomes operational and signals this through the op flag. A
process’s crash vector is updated whenever a process learns about a newer incarnation of
another process. Crash vectors are partially ordered, and a join operation, denoted t, is
defined over vectors, where (v1 t v2)[i] = max(v1[i], v2[i]). Initially, each process’s crash
vector is [⊥, . . . ,⊥], where ⊥ is some value smaller than any incarnation ID.

The Acquire-Quorum function handles both writing values and recovering. Acquire-
Quorum ensures the persistence of both the process’s current crash vector – in particular
the process’s own incarnation ID in the vector – as well as the value to be written, val. It
provides these guarantees by collecting responses from a quorum of processes and ensuring
that those responses are crash-consistent. It uses crash vectors to detect when any process
that previously replied could have crashed and thus could have “forgotten” the written value.
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Algorithm 1 Communications primitives.
Permanent Local State:

n ∈ N+ . Number of processes
i ∈ [1, . . . , n] . Process number

Volatile Local State:
v ← [⊥ for i ∈ [1, . . . , n]] . Crash vector
op← false . Operational flag
R← {} . Reply set
c← 0 . Message number

1: upon System-Initialize
2: op← true

3: end upon
4: upon Recover
5: v[i]← Read-Clock
6: Σ← Acquire-Quorum(null)
7: Rebuild-State(Σ)
8: op← true

9: end upon
10: function Acquire-Quorum(val)
11: R← {}
12: c← c + 1
13: m← 〈acquire〉
14: m.c← c
15: m.val← val
16: for all j ∈ [1, . . . , n] do
17: Send-Message(m, j)
18: end for
19: Wait until |R| > n/2
20: return {m.s : m ∈ R}
21: end function
22: function Read-Quorum
23: R← {}
24: c← c + 1
25: m← 〈read〉
26: m.c← c
27: for all j ∈ [1, . . . , n] do
28: Send-Message(m, j)
29: end for
30: Wait until |R| > n/2
31: return {m.s : m ∈ R}
32: end function

33: function Send-Message(m, j)
34: m.f ← i . Sender
35: m.v ← v
36: Send m to process j
37: end function
38: upon receiving 〈acquire〉, m
39: guard: op

40: v ← v tm.v
41: m′ ← 〈acquire-rep〉
42: if m.val 6= null then
43: Update-State(m.val)
44: end if
45: m′.s← Read-State
46: m′.c← m.c
47: Send-Message(m′, m.f)
48: end upon
49: upon receiving 〈acquire-rep〉, m
50: guard: m.v[i] = v[i] ∧ c = m.c

51: v ← v tm.v
52: Add m to R

. Discard inconsistent, duplicate replies
53: while ∃m′ ∈ R where
54: m′.v[m′.f ] < v[m′.f ] do
55: Remove m′ from R
56: Resend 〈acquire〉 message to m′.f

57: end while
58: while ∃m′, m′′ ∈ R where
59: m′.f = m′′.f ∧m′ 6= m′′ do
60: Remove m′ from R
61: end while
62: end upon
63: upon receiving 〈read〉, m
64: guard: op

65: v ← v tm.v
66: m′ ← 〈read-rep〉
67: m′.s← Read-State
68: m′.c← m.c
69: Send-Message(m′, m.f)
70: end upon
71: upon receiving 〈read-rep〉, m
72: guard: m.v[i] = v[i] ∧ c = m.c

73: v ← v tm.v
74: Add m to R
75: end upon

4.4 Correctness
We show that our primitives provide the same safety properties as writing and reading to
simple quorums in the Crash-Stop model. First, we formally define quorum knowledge in
the DCR context.

I Definition 4 (Stable Properties). A predicate on the history of an incarnation of a process
(i.e., the sequence of events it has processed) is a stable property if it is monotonic (i.e., X
being true of history h implies that X is true of any history with h as a prefix).

I Definition 5. If stable property X is true of some incarnation of a process, p, we say that
incarnation of p knows X.
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I Definition 6 (Quorum Knowledge). We say that a quorum Q knows stable property X if,
for all processes p ∈ Q, one of the following holds:
(1) p is down,
(2) p is operational and knows X, or
(3) p is recovering and either already knows X or will know X if and when it finishes

recovery.

In our analysis of Algorithm 1, we are concerned with knowledge of two types of stable
properties: knowledge of values and knowledge of incarnation IDs. An incarnation of a process
knows value val if it has either executed Update-State(val) or executed Rebuild-State
with an acquire-rep message in the reply set sent by a process which knew val. Knowledge
of a process’s incarnation ID, i, is the stable property of having an entry in a crash vector
for that process greater than or equal to i.

Next, we define crash-consistency on acquire-rep messages with crash vectors.

I Definition 7 (Crash Consistency). A set of acquire-rep messages R is crash-consistent if
∀s1, s2 ∈ R. s1.v[s2.f ] ≤ s2.v[s2.f ].

Note that Definition 7, phrased in terms of crash vectors, is equivalent to the sending events
of the acquire-rep messages being crash-consistent according to Definition 3.

I Definition 8 (Quorum Promise). We say that a crash-consistent set of acquire-rep
messages constitutes a quorum promise for stable property X if the set of senders of those
messages is a quorum, and each sender knew X when it sent the message.

I Definition 9. If process p sent one of the acquire-rep message belonging to a quorum
promise received by some process, we say that p participated in that quorum promise.

The post-condition of the loop on line 53 guarantees the crash-consistency of the reply set
by discarding any inconsistent messages; the next loop guarantees that there is at most one
message from each process in the reply set. Therefore, the termination of Acquire-Quorum
(line 10) implies that the process has received a quorum promise showing that val was written
and that every participant had a crash vector greater than or equal to its own vector when
it sent the acquire message. This implies that whenever a process finishes recovery, it
must have received a quorum promise showing that the participants in its recovery had that
process’s latest incarnation ID in their crash vectors.

Unlike having a stable property, that a process participated in a quorum promise holds
across failures and recoveries. That is, we say that a process, not a specific incarnation of
that process, participated in a quorum promise. Also note that only operational processes
ever participate in a quorum promise, guaranteed by the guard on the acquire message
handler.

4.4.1 Safety
Finally, we are ready to state the main safety properties of our generic read/write primitives.

I Theorem 10 (Persistence of Quorum Knowledge). If at time t, some quorum, Q, knows
stable property X, then for all times t′ ≥ t, Q knows X.

Proof. We prove by strong induction on t′ that the following invariant, I, holds for all t′ ≥ t:
For all p in Q: (1) p is operational and knows X, (2) p is recovering, or (3) p is down.
In the base case at time t, Q knows X by assumption, so I holds.
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Now, assuming I holds at all times t′ − 1 ≥ t, we show that I holds at time t′. The only
step any process p ∈ Q could take to falsify I is finishing recovery. If recovery began at or
before time t, then because Q knew X, p must know X now that it has finished recovering.
Otherwise, if it began after time t, then p must have received some set of acquire-rep
messages from a quorum, all of which were sent after time t. By quorum intersection, one
of these messages must have come from some process in Q. Call this process q. Since q’s
acquire-rep message, m, was sent after time t and before t′, by the induction hypothesis,
q must have known X when it sent m. Therefore, p must know X upon finishing recovery
since it updates its crash vector and rebuilds its state using m.

Since I holds for all times t′ ≥ t, this implies the theorem. J

I Theorem 11 (Acquisition of Quorum Knowledge). If process p receives a quorum promise
for stable property X from quorum Q, then Q knows X.

Proof. We again prove this theorem by (strong) induction, showing that the following
invariant, I, holds for all times, t:
1. If a process receives a quorum promise for stable property X from quorum Q, then Q

knows X.
2. If process p ever participated in a quorum promise for X at or before time t, and p is

operational, then p knows X.
I holds vacuously at t = 0. We show that if I holds at time t− 1, it holds at time t:

First, we consider part 1 of I. If p has received a quorum promise, R, from quorum Q for
X, then because R is crash-consistent, we know that at the time they participated in R no
process in Q had participated in the recovery of any later incarnation of any other process in
Q than the one that participated in R. If they had, then by the induction hypothesis, such a
process would have known the recovered process’s new incarnation ID when it participated
in R, and R would not have been crash-consistent.

Given that fact, we will use a secondary induction to show that for all times, t′, all of the
processes in Q either:
(1) haven’t yet participated in R,
(2) are down,
(3) are recovering, or
(4) are operational and know X.
In the base case, no process in Q has yet participated in R. For the inductive step, note that
the only step any process q could take that would falsify our invariant is transitioning from
recovering to operational after having participated in R. If q finished recovering, it must
have received a quorum promise showing that the senders knew its new incarnation ID. By
quorum intersection, at least one of these came from some process r ∈ Q. We already know
r couldn’t have participated in q’s recovery before participating in R. So by the induction
hypothesis, r knew X at the time it participated in q’s recovery. Because knowledge of values
and incarnation IDs is transferred through acquire-rep messages, q knows X, completing
this secondary induction.

Finally, we know that since p has received R at time t, all of the process in Q have already
participated in R, so all of the processes in Q are either down, recovering (and will know
X upon finishing recovery), or are operational and know X. Therefore, Q knows X, and
this completes the proof that part 1 of I holds at time t.

Now, we consider part 2 of I. Suppose, for the sake of contradiction, that p is operational
at time t and doesn’t know X, but participated in quorum promise R for X at or before
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time t. Let Q be the set of processes participating in R. Since p does not know X, p must
have crashed and recovered since participating in R. Consider p’s most recent recovery, and
let the quorum promise it received showing that the senders knew p’s new incarnation ID (or
a greater one) be R′. Let the set of participants in R′ be Q′. By quorum intersection, there
exists some r ∈ Q ∩Q′.

It must be the case that r participated in R′ before R; otherwise by induction, when
r participated in R′, it would have known X, and then transferred that knowledge to the
current incarnation of p (at time t). r couldn’t have participated in R before time t, because
then by part 2 of I, it would have known p’s latest incarnation ID when participating in R,
violating the consistency of R. However, r cannot participate in R at or after time t, either.
Because p has received a quorum promise for its new incarnation ID at or before time t, by
part 1 of I, Q′ knows p’s new incarnation ID. By Theorem 10, Q′ continues to know this at
all later times. Because r ∈ Q′, it must know p’s incarnation ID, and thus cannot participate
in R without violating its crash-consistency. This contradicts the fact that r participates in
R and completes the proof that part 2 holds at time t. J

Since Acquire-Quorum(val) obtains a quorum promise for val, Theorem 11 implies
quorum knowledge of val, and Theorem 10 shows that that knowledge will persist for all
future time, subsequent Acquire-Quorums and Read-Quorums will get a response from
a process which knows val.

4.4.2 Liveness

Acquire-Quorum and Read-Quorum terminate if there is some quorum of processes that
all remain operational for a sufficient period of time.2 This is easy to see since a writing
or recovering process will eventually get an acquire-rep from each of these operational
processes, and those replies must be crash-consistent. Note that the termination of Acquire-
Quorum implies the termination of the recovery procedure, Recover. Therefore, the same
liveness conditions are required for Acquire-Quorum and for recovery termination.

We define a sufficient liveness condition, LC, below. It is a slightly weaker version of
the network stability condition N2 from [17]: the period in which processes must remain
operational is shorter.

I Definition 12 (Liveness Condition (LC)). Consider a process p executing either the
Acquire-Quorum or Read-Quorum function, φ, and consider the following statements:
1. There exists a quorum of processes, Q, all of which consume their respective messages

sent from φ.
2. Every process in Q either

a. remains operational during the interval [T1, T2], where T1 is the point in time
at which φ was invoked and T2 the earliest point in time at which p completes the
consumption of all the responses sent by the processes in Q or

b. becomes down and remains down during the same interval after p consumed its
response.

If these two statements are true for every invocation of a Acquire-Quorum or Read-
Quorum function, then we say that LC is satisfied.

2 We assume that the application-provided Read-State, Update-State, and Rebuild-State functions
execute entirely locally and do not block.
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Our protocol implementing the group communication primitives is live if LC is satisfied. For
LC to be satisfied, it is necessary that at most a minority of processes are down at any
given time. Otherwise, no process can ever receive replies from a quorum again.

5 Recoverable Shared Objects in DCR

In this section we demonstrate the benefits of our quorum communication primitives for DCR:
generality and efficiency. We present protocols for two different shared objects: a multi-writer,
multi-reader (MWMR) atomic register and a single-writer, single-reader (SWSR) atomic set.
In both protocols, Read and Write are intended to be invoked serially.

The first protocol implements a shared, fault-tolerant MWMR atomic register in DCR. It
is more efficient and has better liveness conditions than prior work. The second protocol
implements a weaker abstraction – a shared, fault-tolerant SWSR atomic set. We use this
set as a basic storage primitive to provide processes with access to their own virtual stable
storage (VSS), an emulation of a local disk. This enables easy migration of protocols to DCR.

5.1 Multi-writer, Multi-reader Atomic Register
We present a protocol for implementing a fault-tolerant, recoverable multi-writer, multi-
reader (MWMR) atomic register in DCR, which guarantees the linearizability of Reads
and Writes [19]. Our protocol is similar to the ABD protocol [3] but augments it with
a recovery procedure. Its pseudo-code is presented in Algorithm 2. Timestamps are used
for version control, as in the original protocol. A timestamp is defined as a triple (z, i, v[i]),
where z ∈ N , i ∈ [1..n] is the ID of the writing process, and v[i] is the incarnation ID of that
process. Timestamps are ordered lexicographically. By replacing each quorum write phase
in the original protocol with our Acquire-Quorum function and each quorum read phase
with Read-Quorum, we guarantee that every successful write phase is visible to subsequent
read phases, despite concurrent crashes and recoveries, thus preserving safety in DCR. The
Rebuild-State function reconstructs a value of the register at least as new as the one of
the last successful write that finished before the process crashed.

Discussion. The most recent protocol for fault-tolerant, recoverable, MWMR atomic reg-
isters is RADON [17]. The always-safe version of RADON , RADON (S)

R , introduces an
additional communication phase after each quorum write to check whether any of the pro-
cesses that acknowledged the write crashed in the meantime. This increases the latency
of both the Read and Write procedures. Also, our liveness conditions are weaker: our
protocol is live if any majority of processes do not crash for a sufficient period of time, while
RADON

(S)
R requires a supermajority (3/4) of processes to not crash.

5.2 Virtual Stable Storage
Algorithm 3 presents a protocol for a fault-tolerant, recoverable, SWSR set, where the reader
is the same as the writer. It guarantees that the values written by completed Writes and
those returned in Reads are returned in subsequent Reads. Given the group communication
primitives, its implementation is straightforward; the only additional detail is that values
read during recovery should be written back to ensure atomicity (line 17).

Discussion. We can use this set to provide a virtual stable storage abstraction. It is well
known that any correct protocol in CS can be transformed into a correct protocol in the
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Algorithm 2 Multi-writer, multi-reader atomic register in Diskless Crash-Recovery.
Volatile Local State:

(t, d)← (t0, d0) . Value of register

1: procedure Write(dnew)
2: guard: op

. Get latest timestamp
3: Σ← Read-Quorum
4: (tmax, dmax)← max(Σ)

. Write value
5: tnew ← (tmax.z + 1, i, v[i])
6: Acquire-Quorum((tnew, dnew))
7: end procedure
8: procedure Read
9: guard: op

. Get latest register value
10: Σ← Read-Quorum
11: (tmax, dmax)← max(Σ)

. Write latest register value
12: Acquire-Quorum((tmax, dmax))
13: return dmax
14: end procedure

15: function Update-State(val)
16: if val.t > t then
17: (t, d)← val
18: end if
19: end function
20: function Read-State
21: return (t, d)
22: end function
23: function Rebuild-State(Σ)
24: (t, d)← max(Σ)
25: end function

Algorithm 3 Single writer, single reader atomic set in Diskless Crash-Recovery.
Permanent Local State:

owner . Owner of set flag

Volatile Local State:
S ← {} . Local set

1: procedure Write(s)
2: guard: op ∧ owner

3: Acquire-Quorum({s})
4: S ← S ∪ {s}
5: end procedure
6: procedure Read
7: guard: op ∧ owner
8: return S
9: end procedure

10: function Update-State(val)
11: S ← S ∪ val
12: end function
13: function Read-State
14: return S
15: end function
16: function Rebuild-State(Σ)
17: Acquire-Quorum(Σ)
18: S ←

⋃
Σ

19: end function

CRSS model by having processes write every message they receive (or the analogous state
update) to their local disk before sending a reply. By equipping each process with VSS, any
correct protocol in the CRSS model can then be converted into a safe protocol in the DCR
model, wherein processes write to crash-consistent quorums instead of stable storage.

6 Recoverable Replicated State Machines in DCR

We further extend our study of DCR to another specific problem: state machine replication
(SMR). SMR is a classic approach for building fault-tolerant services [18,32] that calls for the
service to be modeled as a deterministic state machine, replicated over a group of replicas.
System correctness requires each replica to execute the same set of operations in the same
order, even as replicas and network links fail. This is typically achieved using a consensus-
based replication protocol such as Multi-Paxos [20] or Viewstamped Replication [22,29] to
establish a global order of client requests.
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We examined three diskless recovery protocols for SMR: Viewstamped Replication [22],
Paxos Made Live [7], and JPaxos [16]. We found that each of these protocols suffers from the
problem illustrated in the example at the beginning of Section 4: they use regular quorums of
responses (instead of crash-consistent ones) when persisting critical data, which could violate
their invariants. This can lead to operations being lost, or different operations being executed
at different replicas, both serious correctness violations. We provide here brief explanations
of the problems in each of these protocols. For more details on how the protocols work and
complete traces, see our technical report [27].

Viewstamped Replication [29] is the first consensus-based SMR protocol. The original
version of the protocol requires a single write to disk, during a view change. A recent VR
variant [22] replaces the write to disk with a write to a quorum of replicas, in an attempt to
eliminate the necessity for disks. However, it uses simple quorum responses, allowing the
recovering replica to violate an important invariant: once a replica committed to take part
in a new view, it will never operate in a lower view. As a result, an operation can complete
successfully and then be lost after a view change.

Paxos Made Live [7] is Google’s Multi-Paxos implementation. To handle corrupted
disks, it lets a replica rejoin the system without its previous state and runs an (unspecified)
recovery protocol to restore the application state. The replica must then wait to observe
a full instance of successful consensus before participating. This successfully prevents the
replica from accepting multiple values for the same instance (e.g., one before and one after the
crash). However, it does not prevent the replica from sending different promises (i.e., leader
change commitments) to potential new leaders, which can lead to a new leader deciding a
new value for a prior successful instance of consensus.

JPaxos [16], a hybrid of Multi-Paxos and VR, provides a variety of deployment options,
including a diskless one. Nodes in JPaxos maintain an epoch vector that tracks which nodes
have crashed and recovered to discard lost promises made by prior incarnations of recovered
nodes. However, like VR and PML, certain failures during node recovery can cause the
system to lose state and violate safety properties.

All of these protocols can be correctly migrated to DCR, with little effort, using VSS
write operations, as explained in Section 5.2. This approach is straightforward, efficient, and
requires no invasive protocol modifications.

7 Conclusion

This paper examined the Diskless Crash-Recovery model, where process can crash and recover
but lose their state. We show how to provide persistence guarantees in this model using
new quorum primitives that write to and read from crash-consistent quorums. These general
primitives allow us to construct shared objects in the DCR model. In particular, we show a
MWMR atomic register protocol requiring fewer communication rounds and weaker liveness
assumptions than the best prior work. We also build a SWSR atomic set that can be used
to provide each process with virtual stable storage, which can be used to easily migrate any
protocol from traditional Crash-Recovery models to DCR.

Acknowledgments. We thank Marcos K. Aguilera for his comments on early drafts of this
work, as well as Irene Zhang, the anonymous reviewers, and Jennifer L. Welch for their
helpful feedback.
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Abstract
Technology trends suggest that byte-addressable nonvolatile memory (NVM) will supplant many
uses of DRAM over the coming decade, raising the prospect of inexpensive recovery from power
failures and similar faults. Ensuring the consistency of persistent state remains nontrivial, how-
ever, in the presence of volatile caches; cached values can “leak” back to persistent memory in
arbitrary order. To ensure consistency, existing persistent memory algorithms use expensive, ex-
plicit write-back instructions to force each value back to memory before performing a dependent
write, thereby incurring significant run-time overhead.

To reduce this overhead, we present a new design paradigm that we call periodic persistence.
In a periodically persistent data structure, updates are made “in place,” but can safely leak back
to memory in any order, because only those updates that are known to be valid will be heeded
during recovery. To guarantee forward progress, we periodically force a write-back of all dirty
data in the cache, ensuring that all “sufficiently old” updates have indeed become persistent, at
which point they become semantically visible to the recovery process.

As an example of periodic persistence, we present a transactional hash map, Dalí, together
with an informal proof of safety (buffered durable linearizability). Experiments with a prototype
implementation suggest that periodic persistence can offer substantially better performance than
either file-based or incrementally persistent (per-access write-back) alternatives.
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1 Introduction

For decades, programmers have been accustomed to partitioning program state into memory,
which is transient – used during a single program run – and storage, which is persistent –
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intended for use across program runs and even system crashes. The design of data structures
is rooted in the use of memory; data in storage is typically relegated to a file or database.

Since the 1970s, memory has been virtually synonymous with DRAM, accessed (since the
1980s) through a rich hierarchy of caches. Storage has been the province of magnetic disks or,
more recently, flash drives. Several new memory technologies, however, promise to provide
byte-addressable nonvolatile memory (NVM) with access latencies and costs comparable to
those of DRAM. These technologies provide the opportunity to re-think the memory–storage
divide, and to entertain the possibility of maintaining traditional in-memory data structures
across program runs and crashes.

We are particularly interested in crashes, as they present unique consistency challenges.
For simplicity, and in keeping with the real-world common case, we assume a “whole system
crash” failure model (caused, for example, by power failure or an OS kernel panic). We wish
to ensure, in the wake of a crash, that data in memory are consistent. At first blush, it is
tempting to model this goal as a conventional concurrency problem: “normal” execution
entails one or more threads performing atomic updates to the data; a recovery procedure
runs in the wake of a crash and (since the crash can occur at any time) functions as if it
were merely an additional concurrent thread (with the possible simplifying assumption that
it runs in isolation).

The problem with this model is that the recovery procedure does not have access to the
view of memory shared by threads during normal execution. Caches are likely to remain
volatile, at least for the foreseeable future, so what the recovery procedure sees is whatever
has been written back to nonvolatile memory prior to the crash. Unfortunately, hardware
capacity and associativity constraints require that caches be permitted to perform their
writes-back in essentially arbitrary order. When this order differs from the happens-before
order of the running program, the values that happen to have “leaked back” to memory at
any particular time may be mutually inconsistent. If, for example, a program creates an
object and then aims a pointer at it, it is possible for the pointer to reach memory before
the object to which it points. Persistent data structures must be carefully designed to avoid
this sort of problem.

In current real-world processors, instructions to control the ordering, timing, and gran-
ularity of writes-back from caches to memory are rather limited. On Intel processors, for
example, the clflush instruction [16] takes an address as argument, and blocks until the
cache line containing the address has been both evicted from the cache and written back to
the memory controller. When combined with an mfence instruction to prevent compiler
and processor instruction reordering, clflush allows the programmer to force a write-back
that is guaranteed to persist (reach nonvolatile memory) before any subsequent store. The
overhead is substantial, however – on the order of hundreds of cycles. Future processors may
provide less expensive persistence instructions, such as the pwb, pfence, and psync assumed
in our earlier work [17], or the ofence and dfence of Nalli et al. [21]. Even in the best of
circumstances, however, “persisting” an individual store (and ordering it relative to other
stores) is likely to take time comparable to a memory consistency fence on current processors
– i.e., tens of cycles. Due to power constraints [8], we expect that writes and flushes into
NVM will be guaranteed to be failure-atomic only at increments of eight bytes – not across a
full 64-byte cache line.

We use the term incremental persistence to refer to the strategy of persisting store w1
before performing store w2 whenever w1 occurs before w2 in the happens-before order of the
program during normal execution (i.e., when w1 <hb w2). Given the expected latency of
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even an optimized persist, this strategy seems doomed to impose significant overhead on the
operations (method calls) of any data structure intended to survive program crashes.

As an alternative, we introduce a strategy we refer to as periodic persistence. The key
to this strategy is to design a data structure in such a way that modifications can safely
leak into persistence in any order, removing the need to persist locations incrementally
and explicitly as an operation progresses. To ensure that an operation’s stores eventually
become persistent, we periodically execute a global fence that forces all cached data to be
written back to memory. The interval between global fences bounds the amount of work
that can ever be lost in a crash (though some work may be lost). To avoid depending on
the fine-grain ordering of writes-back, we arrange for “leaked” lines to be ignored by any
recovery procedure that executes before a subsequent global fence. After the fence, however,
a known set of cache lines will have been written back, making their contents safe to read.
Like naive uninstrumented code, periodic persistence allows stores to persist out of order.
It guarantees, however, that the recovery procedure will never use a value v from memory
unless it can be sure that all values on which v depends have also safely persisted.

In contrast to checkpointing, which creates a consistent copy of data in nonvolatile
memory, periodic persistence maintains a single instance of the data for both the running
program and the recovery procedure. This single instance is designed in such a way that
recent updates are nondestructive, and the recovery procedure knows which parts of the data
structure it can safely use.

In some sense, periodically persistent structures can be seen as an adaptation of traditional
persistent data structures [12] (in a different sense of the word “persistent”) or of multiversion
transactional memory systems [3], both of which maintain a history of data structure changes
over time. In our case, we can safely discard old versions that predate the most recent global
fence, so the overall impact on memory footprint is minimal. At the same time, we must
ensure not only that the recovery procedure ignores the most recent updates but also that it
is never confused by their potential structural inconsistencies.

As an example of periodic persistence, we introduce Dalí,1 a transactional hash map
for nonvolatile memory. Dalí demonstrates the feasibility of using periodic persistence
in a nontrivial way. Experience with a prototype implementation confirms that Dalí can
significantly outperform alternatives based on either incremental or traditional file-system-
based persistence. Our prototype implements the global fence by flushing (writing back and
invalidating) all on-chip caches. Performance results would presumably be even better with
hardware support for whole-cache write-back without invalidation.

The remainder of this paper is organized as follows: Section 2 elaborates on the motivation
for our work in the context of persistent hash maps. We describe Dalí’s design in Section 3
and prove its correctness in Section 4. Section 5 then presents experimental results. Section 6
reviews related work. Section 7 summarizes our conclusions.

2 Motivation

As a motivating example, consider the construction of a persistent hash map, beginning with
the nonblocking structure of Schwalb et al. [24]. To facilitate transactional update of entries
in multiple buckets, we switch to a blocking design with a lock in each bucket, enabling the
use of two-phase locking (and, for atomicity in the face of crashes, undo logging).

1 The name is inspired by Dalí’s painting The Persistence of Memory.
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bucket

(B)
x=3 y=2 x=1

(a) A bucket containing three records.

bucket

(B)
x=3 y=2 x=1

y=4
1

2

x
A write operation followed

by a persistence operation

(b) An example of the write-ordering overhead
entailed in updating a data object.

Figure 1 A hash map data structure that demonstrates the overhead of write ordering.

This hash map, which is incrementally persistent, consists of an array of buckets, each
of which points to a singly-linked list of records. Each record is a key-value pair. Figure 1a
shows a bucket with three records. For the sake of simplicity, each list is prepend-only:
records closer to the head are more recent. It is possible that multiple records exist for
the same key – the figure shows two records for the key x, for instance, but only the most
recent record is used. Deletions are handled by inserting a “not present” record. Garbage
collection / compaction can be handled separately; we omit the description here.

Figure 1b shows an update to change the value of y to 4. The update comprises several
steps: (1a) A record, rnew with the new key-value pair is written. The record points to
the current head of the list. (1b) A persist of rnew serves to push its value from cache to
NVM. (2a) The bucket list head pointer, B, is overwritten to point to rnew. (2b) A second
persist pushes B to NVM. The first persist must complete before the store to B: it prevents
the incorrect recovery state in which rnew is not in NVM and B is a dangling pointer. The
second persist must complete before the operation that updates y returns to the application
program: it prevents misordering with respect to subsequent operations.

On current hardware, a persist operation waits hundreds of cycles for a full round trip
to memory. On future machines, hardware support for ordered (queued) writes-back might
reduce this to tens of cycles. Even so, incremental persistence can be expected to increase
the latency of simple operations several-fold. The key insight in Dalí is that when enabled
by careful data structure design, periodic persistence can eliminate fine-grain ordering
requirements, replacing a very large number of single-location fences with a much smaller
number of global fences, for a large net win in performance, at the expense of possible
lost work. In practice, we would expect the frequency of global fences to reflect a trade-off
between overhead and the amount of work that may be lost on a crash. Fencing once every
few milliseconds strikes us as a good initial choice.

3 Dalí

Dalí is our prepend-only transactional hash map designed using periodic persistence. It
can be seen as the periodic persistence equivalent of the incrementally persistent hash map
of Section 2 and Figure 1. As a transactional hash map, Dalí supports the normal get, set,
delete, and replace methods. It also supports ACID transactions comprising any number
of the above methods.

Dalí updates or inserts by prepending a record to the appropriate bucket; the most recent
record for a key is the one closest to the head of the list (duplicates may exist, but only
the most recent record matters). Records in a bucket are from time to time consolidated to
remove obsolete versions. Dalí employs per-bucket locks (mutexes) for isolation. A variant of
strong strict two-phase locking (SS2PL) is used to implement transactions.
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class node:
key k; val v
node* next

class bucket:
mutex lock
int stat<a, f, c, ss> // 2/2/2/58 bits
node* ptrs[3]

class dali:
bucket buckets[N_BUCKTS]
int list flist
int epoch

Figure 2 Dalí globals and data types.

Committed pointer (c)

In-flight pointer (f)

Active pointer (a)

Figure 3 The structure of a bucket.

3.1 Data Structure Overview
As mentioned above, Dalí uses a periodic global fence to guarantee that changes to the data
structure have become persistent. The fence is invoked by a special worker thread in parallel
with normal operation by application threads. We say that the initiation points of the global
fences divide time into epochs, which are numbered monotonically from the beginning of
time (the numbers do not reset after a crash). Each update (or transactional set of updates)
is logically confined to a single epoch, and the fence whose initiation terminates epoch E

serves to persist all updates that executed in E. The execution of the fence, however, may
overlap the execution of updates in epoch E+1. The worker thread does not initiate a global
fence until the previous fence has completed. As a result, in the absence of crashes, we are
guaranteed during epoch E+1 that any update executed in epoch E−1 has persisted. If a
crash occurs in epoch F , however, updates from epochs F and F−1 cannot be guaranteed to
be persistent, and should therefore be ignored. We refer to epochs F and F−1 as failed epochs,
and revise our invariant in the presence of crashes to say that during a given epoch E, all
updates performed in a non-failed epoch prior to E− 1 have persisted. Failed epoch numbers
are maintained in a persistent failure list that is updated during the recovery procedure.

In Dalí, hash map records are classified according to their persistence status. Assume
that we are in epoch E. Committed records are ones that were written in a non-failed epoch
at or before epoch E−2. In-flight records are ones that were written in epoch E−1 if it is
not a failed epoch. Active records are ones that were written during the current epoch E.
Records that were written in a failed epoch are called failed records. By steering application
threads around failed records, Dalí ensures consistency in the wake of a crash.

Dalí’s hash map buckets are similar in layout to those of the incrementally persistent
hash map presented in Figure 1. Dalí adds metadata to each bucket, however, to track the
persistence status of the bucket’s records. The metadata in turn allows us to avoid persisting
records incrementally. Specifically, a Dalí bucket contains not only a singly-linked list of
records, but also a 64-bit status indicator and, in lieu of a head pointer for the list of records,
a set of three list pointers (see pseudocode in Figure 2 and illustration in Figure 3). The
status indicator comprises a snapshot (SS) field, denoting the epoch in which the most recent
record was prepended to the bucket, and three 2-bit role IDs, which indicate the roles of
the three list pointers. A single store suffices to atomically update the status indicator on
today’s 64-bit machines.2

2 With 6 bits devoted to role IDs, 58 bits remain for the epoch number. If we start a new epoch every
millisecond, roll-over will not happen for 9 million years.
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Each of the three list pointers identifies a record in the bucket’s list (or NULL). The
pointers assume three roles, which are identified by storing the pointer number (0, 1, or 2) in
one the three role ID fields of the status indicator. Roles are fixed for the duration of an
epoch but can change in future epochs. The roles are:
Active pointer (a): provided that epoch SS has not failed, identifies the most recently added

record (which must necessarily have been added in SS). Each record points to the record
that was added before it. Thus, the active pointer provides access to the entire list of
records in the bucket.

In-flight pointer (f): provided that epochs SS and SS−1 have not failed, identifies the most
recent record, if any, added in epoch SS−1. If no such record exists, the in-flight role ID
is set to invalid (⊥).

Committed pointer (c): identifies the most recent record added in a non-failed epoch equal
to or earlier than SS−2.

To establish these invariants at start-up, we initialize the global epoch counter to 2 and, in
every bucket, set SS to 0, all pointers to NULL, the in-flight role ID to ⊥, and the active
and committed IDs to arbitrary values.

Figure 3 shows an example bucket. In the figure SS is equal to 5, which means that the
most recent record was prepended during epoch 5. The active pointer is Pointer 0. It points
to record e, which means that e was added in epoch 5, even if we are reading the status
indicator during a later epoch. Pointer 1 is the in-flight pointer, which makes d the most
recently added record in epoch 4. Because a record points only to records that were added
before it, by transitivity, records a, b, and the prior a were added before or during epoch 4.
Finally, Pointer 2 is the committed pointer. This makes record b the most recently added
record before or during epoch 3. By transitivity, the earlier record a was also added before
or during epoch 3. Both record b and the earlier record a are therefore guaranteed persistent
(shown in green) as of the most recent update (the time at which e was added), while the
remainder of the records may not be persistent (shown in red).

It is important to note that the status indicator reflects the bucket’s state at SS (the
epoch of the most recent update to the bucket) even if a thread inspects the bucket during a
later epoch. For example, suppose that a thread in epoch 10 reads the bucket state shown in
Figure 3. Given the status indicator, the thread will conclude that all records were written
during or before epoch 5 and thus are all committed and persistent (assuming that epochs 4
and 5 are not in the failure list). If one or both epochs are on the failure list, the thread can
navigate around their records using the in-flight or committed pointers.

3.2 Reads

The task of the read method is to return the value, if any, associated with a given key. A
reader begins by using a hash function to identify the appropriate bucket for its key, and
locks the bucket. It then consults the bucket’s epoch number (SS) and the global failed epoch
list to identify the most recent, yet valid, of the three potential pointers into the bucket’s
linked list (Figure 4). Call this pointer the valid head. If SS is not a failed epoch, the valid
head will be the active pointer, which will identify the most recently added record (which
may or may not yet be persistent). If SS is a failed epoch but SS−1 is not, the valid head
will be the in-flight pointer. If SS and SS−1 are both failed epochs, the valid head will be
the committed pointer.

Starting from the valid head, a reader searches records in order looking for a matching
key. Because updates to the hash map are prepends, the most recent matching record will
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// Bucket is assumed locked via SS2PL
val bucket::read(key k):

node* valid_head =
if ss 6∈ flist then ptrs[a]
elsif ss-1 6∈ flist && f 6= ⊥ then ptrs[f]
else ptrs[c]

return search(k, valid_head)

Figure 4 Dalí read method.

// Bucket is assumed locked via SS2PL
void bucket::update(key k, val v):

bool curr_fail = ss ∈ flist
bool prev_fail =

ss-1 ∈ flist || f == ⊥
node* valid_head =

if !curr_fail then ptrs[a]
elsif !prev_fail then ptrs[f]
else ptrs[c]

node* n = new node(k, v, valid_head)

// Get new pointer roles from table
int new_stat = lookup(epoch,

curr_fail, prev_fail, stat)
ptrs[new_stat.a] = n
stat = new_stat

Figure 5 Dalí update method.

SS SS∈
flist

SS−1 ∈
flist or
f = ⊥

new
a

new
f

new
c

1 E N/A N/A a f c
2 E−1 7 7 c a f
3 E−1 7 3 f a c
4 E−1 3 N/A a ⊥ c
5 < E−1 7 N/A c ⊥ a
6 < E−1 3 7 a ⊥ f
7 < E−1 3 3 a ⊥ c

Figure 6 Lookup table for pointer
role assignments. Current epoch is E.

be found first. If the key has been removed, the matching value may be NULL. If the key is
not found in the list, the value returned from the read will also be NULL.

3.3 Updates
Updates in Dalí prepend a new version of a record, as in the incrementally persistent hash
map of Section 2. Deletions / overwrites of existing keys and inserts of new keys are processed
identically by a unified update method. Like the read method, update locks the bucket. An
update to a Dalí bucket comprises several steps:
1. Determine the most recent, valid pointer (as in the read method).
2. Create a new record with the key and its new value (or NULL if a remove).
3. Determine the new pointer roles (if the new and old epochs are different).
4. Retarget the new active pointer to the new record node.
5. Update SS and the role IDs by overwriting the status indicator.
Pseudocode appears in Figure 5.

Step 3 is the most important part of the update algorithm, as it is the part that allows the
update’s component writes to be reordered. The problem to be addressed is the possibility
that writes from neighboring epochs might be written back and become mixed in the persistent
state. We might, for example, mix the snapshot indicator from the later epoch with the
pointer values from the earlier epoch. Given any combination of update writes from bordering
epochs, and an indication of epoch success or failure, the read procedure must find a correct
and valid head, and the list beyond that head must be persistent.

The details of step 3 appear in Figure 6. They are based on the following three rules.
First, the new committed pointer was last written at least two epochs prior, guaranteeing
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(a) Initial state in epoch 5.
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(b) Adding record g in epoch 6.

status indicator

Snapshot (ss) = 71

T

2

cfa

abcde

Ptr. 0 Ptr. 1 Ptr. 2

fgh

(c) Adding record h in epoch 7;
epochs 5 and 6 have failed.

Figure 7 A sequence of Dalí updates.

that its value and target have become persistent (and would survive a crash in the current
epoch). Second, the new active pointer was either previously invalid or pointed to an earlier
record than the new committed pointer. In other words, according to both the old and new
status indicators, the new active pointer will never be a valid head, so it is safe to reassign.
Third, the new in-flight pointer is the most recent valid record set in the previous epoch, or
⊥ if no such record exists. These rules are sufficient to enumerate all entries in the table.

Because each bucket is locked throughout the update method, there is no concern about
simultaneous access by other active threads. We assume that each of the two key writes in
an update – to a pointer and to the status indicator – is atomic with respect to crashes, but
the order in which these two writes persist is immaterial: neither will be inspected in the
wake of a crash unless the global epoch counter has advanced by 2.

Figure 7 displays two example updates. In Figure 7a, an update to the bucket has
occurred in epoch 5. In Figure 7b, record g is added to the bucket in epoch 6. First, we
initialize the new record to point to the most recent valid record, f . Then, we change
the status indicator to update pointer roles and the epoch number. As we are in epoch 6,
the most recent committed record was added in epoch 4 (the previous in-flight pointer).
Therefore, pointer 1 is now the committed pointer. The new in-flight pointer is the one
pointing to the most recent record added in the previous epoch (pointer 0). The remaining
pointer, pointer 2, whose target is older than the new committed pointer, is then assigned
the active role and is retargeted to point to the newly prepended record, g.

In Figure 7c, an additional record, h, is added to the bucket after a crash has occurred in
epoch 6 (after the update of Figure 7b). Because of the crash, epochs 5 and 6 are on the
failure list. Records e, f , and g are thus failed records, because they were added during these
epochs and cannot be relied upon to have persisted. The new record, h, refers to the valid
head d instead. Then, the status indicator is updated. The snapshot number SS becomes 7.
The committed pointer is the one pointing to the most recent persistent record, d. Pointer 1,
which points to d, is assigned the committed role. One currently invalid pointer (pointer 2)
will point to the newly added record, h. Since the previous epoch is a failed one, there are
no in-flight records, so we set the in-flight role as invalid. The net effect is to transform the
state of the bucket in such a way that the failed records, e, f , and g, become unreachable.

3.4 Further Details
Global Routines. As noted in Section 3.1, our global fences are executed periodically by
a special worker thread (or by a repurposed application thread that has just completed
an operation). The worker first increments and persists the global epoch counter under
protection of a sequence lock [19]. It then waits for all threads to exit any transaction in the
previous epoch, thereby ensuring that every update occurs entirely within a single epoch.
(The wait employs a global array, indexed by thread ID, that indicates the epoch of the
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thread’s current transaction, or 0 if it is not in a transaction.) Finally, the worker initiates
the actual whole-cache write-back. In our prototype implementation, this is achieved with a
custom system call that executes the Intel wbinvd instruction. This instruction has the side
effect of invalidating all cache content. We hypothesize that future machines with persistent
memory will provide an alternative instruction that avoids the invalidation.

Following a crash, a recovery procedure is invoked. This routine reads the value, F , of the
global epoch counter and adds both F and F−1 to the failed epoch list (and persists these
additions). The crashed epoch, F , is added because the fence that would have forced its
writes-back did not start; the previous epoch, F−1, is added because the fence that would
have forced its writes-back may not have finished. Significantly, the recovery procedure does
not delete or modify failed records in the hash chains: as illustrated in Figure 7c, recovery is
performed incrementally by application threads as they access data.

Transactions. Transactions are easily added on top of the basic Dalí design. Our prototype
employs strong strict two-phase locking (SS2PL): to perform a transaction that includes
multiple hash map operations, a thread acquires locks as it progresses, using timeout to
detect (conservatively) deadlock with other threads. To preserve the ability to abort (when
deadlock is suspected), it buffers its updates in transient state. When it has completed
its code, including successful acquisition of all locks, it performs the buffered updates, as
described in Section 3.3, and releases all its locks.

In-place Updates. A reader executing in epoch E is interested only in the most recent
update of a given key k in E. If there are multiple records for k in E, only the most recent
will be used. As a means of reducing memory churn, we modify our update routine to look for
a previous entry for k in the current epoch, and to overwrite its associated value, atomically
and in place, if it is found.

Multiversioning. Because historical versions are maintained, we can execute read-only
operations efficiently, without the need for locking, by pretending that readers execute two
epochs in the past, seeing the values that would persist after a crash. This optimization
preserves serializability but not strict serializability. It improves throughput by preventing
readers from interfering with concurrent update transactions. To ensure consistency, read-
only transactions continue to participate in the global array that stalls updates in a new
epoch until transactions from the previous epoch have completed.

Garbage Collection. Garbage collection recycles obsolete records that are no longer needed
because newer persistent records with the same key exist; it operates at the granularity of a
bucket. At the end of an update operation, before releasing the bucket’s lock, a thread will
occasionally peruse the committed records and identify any for which there exists a more
recent committed record with the same key. Removal from the list entails a single atomic
pointer update, which is safe as the bucket is locked. Once the removal is persistent (two
epochs later), the record can safely be recycled. If memory pressure is detected, we can use
incremental persistence to free the record immediately. Otherwise we keep the record on a
“retired” list and reclaim it in the thread’s first operation two epochs hence.

Because the retired list is transient, we must consider the possibility that records may
be lost on a crash, thereby leaking memory. Similar concerns arise when bypassing failed
records during an update operation, as illustrated in Figure 7b, and when updating the
free list of the memory allocator itself. To address these concerns, we can end the recovery
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procedure with a sweep of the heap that reclaims any node not found on a bucket list [2].
Since the amount of leakage is likely to be small, this need not occur on every crash.

4 Correctness

We here present an informal proof of Dalí’s safety. Specifically, we argue that it satisfies buf-
fered durable linearizability [17], an extension of traditional linearizability that accommodates
whole-system crashes. For clarity of exposition (and for lack of space), we consider only read
and update operations, omitting garbage collection, in-place updates, multiversioning, and
transactions. We begin by arguing that a crash-free parallel history of Dalí is linearizable.
We then show that the operations preserved at a crash represent a consistent cut of the
history prior to the crash, so that when crashes and lost operations are removed from the
history, what remains is still linearizable.

4.1 Linearizability
The code of Figures 4 and 5 defines a notion of valid_head for a Dalí bucket. Let us say
that a bucket is well formed if valid_head points to a finite, acyclic list of nodes. We define
the valid content of a well-formed bucket to comprise the initial occurrences of keys on this
list, together with their associated values.

I Theorem 1. In the absence of crashes, Dalí is a linearizable implementation of an unordered
map.

Proof. All Dalí operations on the same bucket acquire the bucket’s lock; by excluding one
another in time they trivially appear to take effect atomically at a point between their
invocation and response. While the roles of the various pointers may rotate at epoch
boundaries, inspection of the code in Figure 5 confirms that, in the absence of crashes, each
newly created node in update links to ptrs[a] (which is always valid_head), and ptrs[a]
is always updated to point to the new node. A trivial induction (starting with initially
empty content) shows that this prepending operation preserves both well formedness and
the desired sequential semantics. J

4.2 Buffered Durable Linearizability
Buffered durable linearizability [17] extends linearizability to accommodate histories with
“full-system” crashes. Such crashes are said to divide a history into eras, with no thread
executing in more than one era.3 Information is allowed to be lost in a crash, but only in a
consistent way. Specifically, if event e1 happens before event e2 (e1 <hb e2 – e.g., e1 is a
store and e2 is a load that sees its value), then e1 cannot be lost unless e2 is also.

Informally, a history is buffered durably linearizable (BDL) if execution in every era
can be explained in terms of information preserved from the consistent cut of the previous
era. More precisely, history H is BDL if, for every era ending in a crash, there exists a
happens-before consistent cut of the events in that era such that for every prefix P of H,
the history P ′ is linearizable, where P ′ is obtained from P by removing all crashes and, in
all eras other than the last, all events that follow the cut. A concurrent object or system is
BDL if all of its realizable histories are.

3 With apologies to geologists, eras here are generally longer than epochs.
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Our BDL proof for Dalí begins with the following lemma:

I Lemma 2. An epoch boundary in Dalí represents a consistent cut of the happens-before
relation on the hash map.

Proof. Straightforward: The worker thread that increments the epoch number does so under
protection of a sequence lock, and it doesn’t release the lock until (a) no thread is still
working in the previous epoch and (b) the new epoch number has persisted (so no thread
will ever work in the previous epoch again). J

Suppose now that we are given a history H comprising read, update, and epoch boundary
events, where some of the epoch boundaries are also marked as crashes. The two epochs
immediately preceding a crash are said to have failed; the rest are successful. An update
operation is said to be successful if it occurs in a successful epoch and to have failed otherwise.
Let us define the “valid content” of bucket B at a point between events in H to mean “a
singly linked chain of update records reflecting all and only the successful updates to B prior
to this point in H.” The following is then our key lemma:

I Lemma 3. For any realizable history H of a Dalí bucket B, and any prefix P of H ending
with a successful update u, ptrs[a] will refer to valid content immediately after u.

Proof. By induction on successful updates. We can ignore the reads in H as they do not
change state. As a base case, we adopt the convention that the initial state of B represents
the result of a successful initialization “update.” The lemma is trivially true for the history
prefix consisting of only this single “update,” at the end of which ptrs[a] is NULL.

Suppose now that for some constant k and all 0 ≤ i < k, the lemma is true for all prefixes
Pi ending with the ith successful update, ui. We want to prove that the lemma is also true for
Pk. First consider the case in which there is no crash between the previous successful update,
uk−1, and uk. By the same reasoning used in the proof of Theorem 1, uk will prepend a new
record onto the chain at ptrs[a], preserving valid content.

If there is at least one crash between uk−1 and uk, there must clearly be at least two
failed epochs between them. This means that the valid content as of the end of uk−1 will
have persisted as of the beginning of uk – its chain will be intact. We wish to show that no
changes to the pointers and status indicator that occur between uk−1 and uk – caused by
any number of completed or partial failed updates – can prevent uk from picking up and
augmenting uk−1’s valid content. We do so by reasoning on the transitions enumerated in
Figure 6.

Let Ek−1 denote the epoch of uk−1 and Ek the epoch of uk. We note that all failed
updates between uk−1 and uk occur in epochs numbered greater than Ek−1. Further, let v

denote the value of a (0, 1, or 2) immediately after uk−1. Any update that sees the state
generated by uk−1 will use row 2, 3, or 5 of Figure 6, and will choose, as its “new a” a value
other than v. Over the course of subsequent failed updates before uk, ptrs[v]’s role may
transition at most twice, from a to f to c. As a consequence, the code of Figure 5 will never
change the value of ptrs[v] – that pointer will continue to reference uk−1’s valid content
until the beginning of uk.

Reasoning more specifically about the ID roles, a status indicator change persisted by a
failed update that happens in epoch Ek−1 + 1 will, by necessity, make ptrs[v] the in-flight
pointer. A subsequent update that sees this change in epoch Ek−1 + 2 or later will by
necessity make ptrs[v] the committed pointer. Alternatively, a failed update in epoch
Ek−1 + 2 or later, without having seen a previous failed update in epoch Ek−1 + 1, will also
make ptrs[v] the committed pointer. A subsequent update that sees this change will leave
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ptrs[v]’s role alone. The net result of all these possibilities is that uk will chose ptrs[v]
as the valid_head regardless of which failed update’s status indicator is read. It will then
copy this value to the next field of its new node and point ptrs[a] at that node, preserving
valid content. J

I Theorem 4. Dalí is a buffered durably linearizable implementation of an unordered map.

Proof. Straightforward: Given history H, containing crashes, we choose as our cut in each
era the end of the last successful epoch. In the era that follows a crash, the visible content of
each bucket (the records that will be seen by an initial read or update) will be precisely the
valid content of that bucket. J

5 Experiments

We have implemented a prototype version of Dalí in C/C++ with POSIX threads. As
described in Section 3.4, we implemented the global fence by exposing the privileged wbinvd
instruction to user code using a syscall into a custom kernel module. Since non-volatile
memory is not yet widely available, we simulated NVM by memory mapping a tmpfs file
into Dalí’s address space. This interface is consistent with industry projections for NVM [25].

As a representative workload for a hash map, we chose the transactional version of the
Yahoo! Cloud Serving Benchmark (YCSB) [9, 11]. Each thread in this benchmark performs
transactions repeatedly, for a given period of time. Keys are 8 bytes in length, and are drawn
randomly from a uniform distribution of 100 million values. Values are 1000 bytes in length.
We initialize the map with all keys in the key range.

The tested version of Dalí uses both mentioned optimizations (in-place updates and
multiversioning) and our prototype SS2PL transaction processing system. Garbage collection
is enabled. Epoch duration is a configurable parameter in Dalí; our experiments use a
duration of 100ms. We compared Dalí with three alternative maps: Silo [26], FOEDUS [18],
and an incrementally persistent hash map (IP).

Silo [26] is an open source in-memory database for large multi-core machines.4 It is a
log-based design that maintains both an in-memory and a disk-resident copy. A decentralized
log, maintained by designated logging threads, is used to commit transactions. We configured
Silo to use NVM for persistent storage – i.e., Silo writes logs to main memory instead of disk.

FOEDUS [18] is an online transaction processing (OLTP) engine, available as open
source.5 The engine is explicitly designed for heterogeneous machines with both DRAM and
NVM. Like Silo, FOEDUS is a log-based system with both an transient and persistent copy
of the data. Unlike Silo, FOEDUS adopts a dual paging strategy in which a logical page may
exist in two physical forms: a mutable volatile page in DRAM and an immutable snapshot
page in NVM. FOEDUS commits transactions with the aid of a decentralized logging scheme
similar to Silo. FOEDUS offers both key-ordered and unordered storage, based respectively
on a B-tree variant and a hash map; our experiments use the latter. Like Dalí, both Silo and
FOEDUS may lose recent transactions on a crash (their decentralized logs are reaped into
persistence in the background).

We also implemented a data store called IP, an incrementally persistent hash map [24],
as described in Section 2. As in Dalí, transactions in IP are implemented using SS2PL. To

4 https://github.com/stephentu/silo
5 https://github.com/HewlettPackard/foedus

https://github.com/stephentu/silo
https://github.com/HewlettPackard/foedus
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ensure correct recovery, per-thread undo logging is employed. In contrast to Dalí, Silo, and
FOEDUS, transactions are immediately committed to persistence.

We benchmarked all four systems on a server-class machine with four Intel Xeon E7-
4890 v2 processors, each with 15 cores, running Red Hat Enterprise Linux Server version 7.0.
The machine has 3 TB of DRAM main memory. Each processor has a 37.5MB shared L3
cache, and per-core private L2 and L1 caches of 256KB and 32KB, respectively.

Figure 8 shows the transaction throughput of Dalí and the comparison systems while
varying the number of worker threads from 1 to 60; transactions here comprise three reads
and one write. Dalí achieves a throughput improvement of 2–3× over Silo and FOEDUS
across the range of threads. The removal of write-ordering overhead in Dalí reduces the time
spent blocking per transaction, thereby improving throughput.

Figure 9 shows experiments that vary the read-to-write ratio at 60 threads across
transactions containing four operations. Dalí’s performance advantages compared to Silo and
FOEDUS are larger for workloads with more reads due to the multiversioning optimization,
whereas IP’s advantage lies in the reduction in persist instructions at high read percentages.

6 Related Work

Dalí builds upon years of research on in-memory and NVM-centric designs, and upon decades
of research on traditional database and multiversioning algorithms. As the promise of NVM
is fast and fine-grained durable storage, tailored NVM systems have focused on specific types
of applications: namely transactional memory and data storage.

Transactional memory systems are a natural fit for NVM, since a common challenge is to
ensure consistent persistent state. The transaction-based NV-Heaps [7] and REWIND [5]
and the lock-based Atlas [4] use undo logs to track writes to persistent state as they occur; on
system crash, changes are rolled back. In contrast, the redo-logging Mnemosyne [27] redirects
writes of persistent state to a thread-private location; on transaction commit, it copies
changes to the shared state. All these systems are fine-grained “incrementally persistent”
designs. A more novel design is SoftWrAP, which uses aliasing to keep both a transient and
a persistent copy of data, thus avoiding inconsistencies caused by leaking cache lines [13].

Other authors have built intricate NVM data structures for data storage and transaction
processing. Several projects use custom NVM-adapted trees that support atomic and durable
updates [5, 6, 23, 28]. Schwalb et al. present a lock-free NVM hash map [24] similar to
the incrementally persistent design of Section 2. These data structures all use incremental
persistence, either within individual updates or in transaction logging.
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Recent research on in-memory databases has also investigated NVM-based durability.
Both DeBrabant et al. [10] and Arulraj et al. [1] explore how traditional database designs
can be adapted for architectures with NVM, while Kimura’s FOEDUS [18] builds a custom
DBMS for NVM from the ground up.

Like Dalí, traditional disk-resident databases maintain a single persistent copy of the
data (traditionally on disk, but for Dalí in NVM) and must move data into transient storage
(traditionally DRAM, but for Dalí CPU caches) in order to modify it. Viewed in this light,
CPU caches in Dalí resemble a database’s STEALING, FORCEABLE buffer cache [15]. The
updating algorithm of the incrementally persistent hash map is similar to traditional shadow
paging [14, 29], but at a finer granularity. To the best of our knowledge, no prior art in this
space has allowed writes to be reordered within an update or transaction, as Dalí does.

The prepend-only buckets of Dalí resemble several structures designed for RCU [20]. Dalí
also resembles work on persistent data structures, where “persistent” here refers to the data
structure’s ability to preserve its own history [12]. Data structures of this sort are widely
used in functional programming languages, where their ability to share space among multiple
versions provides an efficient alternative to mutating a single version [22]. In the notation of
this field, Dalí resembles a partially persistent data structure – one in which earlier versions
can be read but only the most recent state can serve as the basis for new versions [12].

7 Conclusion

We have introduced periodic persistence as an alternative to the incremental persistence
employed by most previous data structures designed for nonvolatile memory. Dalí, our
periodically persistent hash map, executes neither explicit writes-back nor persistence fences
within updates; instead, it tracks the recent history of the map and relies on a periodic global
fence to force recent changes into persistence. Experiments with a prototype implementation
suggest that Dalí can provide nearly twice the throughput of file-based or incrementally
persistent alternatives. We speculate other data structures could be adapted to periodic
persistence, and that the paradigm might be adaptable to traditional disk based architectures.

Acknowledgments. The authors sincerely thank Hideaki Kimura and Tianzheng Wang for
their helpful suggestions and assistance.
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Abstract
We study local symmetry breaking problems in the Congest model, focusing on ruling set
problems, which generalize the fundamental Maximal Independent Set (MIS) problem. The time
(round) complexity of MIS (and ruling sets) have attracted much attention in the Local model.
Indeed, recent results (Barenboim et al., FOCS 2012, Ghaffari SODA 2016) for the MIS problem
have tried to break the long-standing O(logn)-round “barrier” achieved by Luby’s algorithm,
but these yield o(logn)-round complexity only when the maximum degree ∆ is somewhat small
relative to n. More importantly, these results apply only in the Local model. In fact, the
best known time bound in the Congest model is still O(logn) (via Luby’s algorithm) even for
moderately small ∆ (i.e., for ∆ = Ω(logn) and ∆ = o(n)). Furthermore, message complexity has
been largely ignored in the context of local symmetry breaking. Luby’s algorithm takes O(m)
messages on m-edge graphs and this is the best known bound with respect to messages. Our
work is motivated by the following central question: can we break the Θ(logn) time complexity
barrier and the Θ(m) message complexity barrier in the Congest model for MIS or closely-
related symmetry breaking problems?

This paper presents progress towards this question for the distributed ruling set problem in
the Congest model. A β-ruling set is an independent set such that every node in the graph is
at most β hops from a node in the independent set. We present the following results:

Time Complexity: We show that we can break the O(logn) “barrier” for 2- and 3-ruling sets.
We compute 3-ruling sets in O

(
logn

log logn

)
rounds with high probability (whp). More generally

we show that 2-ruling sets can be computed in O
(

log ∆ · (logn)1/2+ε + logn
log logn

)
rounds for

any ε > 0, which is o(logn) for a wide range of ∆ values (e.g., ∆ = 2(logn)1/2−ε). These
are the first 2- and 3-ruling set algorithms to improve over the O(logn)-round complexity of
Luby’s algorithm in the Congest model.
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38:2 Symmetry Breaking in the Congest Model

Message Complexity: We show an Ω(n2) lower bound on the message complexity of computing
an MIS (i.e., 1-ruling set) which holds also for randomized algorithms and present a contrast
to this by showing a randomized algorithm for 2-ruling sets that, whp, uses only O(n log2 n)
messages and runs in O(∆ logn) rounds. This is the first message-efficient algorithm known
for ruling sets, which has message complexity nearly linear in n (which is optimal up to a
polylogarithmic factor).

1998 ACM Subject Classification C.2.4 Distributed Systems, F.1.2 Modes of Computation,
F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph Theory

Keywords and phrases Congest model, Local model, Maximal independent set, Message com-
plexity, Round complexity, Ruling sets, Symmetry breaking

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.38

1 Introduction

The maximal independent set (MIS) problem is one of the fundamental problems in distributed
computing because it is an elegant abstraction of “local symmetry breaking,” an issue that
arises repeatedly in distributed computing. About 30 years ago Alon, Babai, and Itai [1]
and Luby [17] presented a randomized algorithm for MIS, running on n-node graphs in
O(logn) rounds with high probability (whp)1. Since then the MIS problem has been studied
extensively and recently, there has been some exciting progress in designing faster MIS
algorithms. For n-node graphs with maximum degree ∆, Ghaffari [10] presented an MIS
algorithm running in O(log ∆) + 2O(

√
log logn) rounds, improving over the algorithm of

Barenboim et al. [5] that runs in O(log2 ∆) + 2O(
√

log logn) rounds. Ghaffari’s MIS algorithm
is the first MIS algorithm to improve over the round complexity of Luby’s algorithm when
∆ = 2o(logn) and ∆ is bounded below by Ω(logn).2

While the results of Ghaffari and Barenboim et al. constitute a significant improvement
in our understanding of the round complexity of the MIS problem, it should be noted that
both of these results are in the Local model. The Local model [20] is a synchronous,
message-passing model of distributed computing in which messages can be arbitrarily large.
Luby’s algorithm, on the other hand, is in the Congest model [20] and uses small messages,
i.e., messages that are O(logn) bits or O(1) words in size. In fact, to date, Luby’s algorithm
is the fastest known MIS algorithm in the Congest model; this is the case even when ∆
is between Ω(logn) and 2o(logn). For example, for the class of graphs with ∆ = 2O(

√
logn),

Ghaffari’s MIS algorithm runs in O(
√

logn) rounds whp in the Local model, but we don’t
know how to compute an MIS for this class of graphs in o(logn) rounds in the Congest
model. It should be further noted that the MIS algorithms of Ghaffari and Barenboim et
al. use messages of size O(poly(∆) logn) (see Theorem 3.5 in [5]), which can be much larger
than the O(logn)-sized messages allowed in the Congest model; in fact these algorithms do
not work even if messages of size O(poly(logn)) were allowed. Furthermore, large messages
arise in these algorithms from a topology-gathering step in which cluster-leaders gather the

1 Throughout, we use “with high probability (whp)” to mean with probability at least 1− 1/nc, for some
c > 1.

2 For ∆ = o(logn), the deterministic MIS algorithm of Barenboim, Elkin, and Kuhn [3] that runs
O(∆ + log∗ n) rounds is faster than Luby’s algorithm.

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.38
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entire topology of their clusters in order to compute an MIS of their cluster – this step seems
fundamental to these algorithms and there does not seem to be an efficient way to simulate
this step in the Congest model.

Ruling sets are a natural generalization of MIS and have also been well-studied in the
Local model. An (α, β)-ruling set [11] is a node-subset T such that (i) any two distinct
nodes in T are at least α hops apart in G and (ii) every node in the graph is at most β
hops from some node in T . A (2, β)-ruling set is an independent set and since such ruling
sets are the focus of this paper, we use the shorthand β-ruling sets to refer to (2, β)-ruling
sets. (Using this terminology an MIS is just a 1-ruling set.) The above mentioned MIS
results [5, 10] have also led to the sublogarithmic-round algorithms for β-ruling sets for β > 2.
The earliest instance of such a result was the algorithm of Kothapalli and Pemmaraju [14]
that computed a 2-ruling set in O(

√
log ∆ · (logn)1/4) rounds by using an earlier version of

the Barenboim et al. [4] MIS algorithm. There have been several further improvements in the
running time of ruling set algorithms culminating in the O(β log1/β ∆) + 2O(

√
log logn) round

β-ruling set algorithm of Ghaffari [10]. This result is based on a recursive sparsification
procedure of Bisht et al. [7] that reduces the β-ruling set problem on graphs with maximum
degree ∆ to an MIS problem on graphs with degree much smaller. Ghaffari’s β-ruling set
result is also interesting because it identifies a separation between 2-ruling sets and MIS
(1-ruling sets). This follows from the lower bound of Ω

(
min

{√
logn

log logn ,
log ∆

log log ∆

})
for MIS

due to Kuhn et al. [15]. Again, we emphasize here that all of these improvements for ruling
set algorithms are only in the Local model because these ruling set algorithms rely on
Local-model MIS algorithms to “finish off” the processing of small degree subgraphs. As
far as we know, prior to the current work there has been no o(logn)-round, β-ruling set
algorithm in the Congest model for any β = O(1).

The focus of all the above results has been on the time (round) complexity. Message
complexity, on the other hand, has been largely ignored in the context of local symmetry
breaking problems such as MIS and ruling sets. For a graph with m edges, Luby’s algorithm
uses O(m) messages in the Congest model and until now there has been no MIS or ruling
set algorithm that uses o(m) messages. We note that the ruling set algorithm of Goldberg
et al. [11] which can be implemented in the Congest model [12] also takes at least Ω(m)
messages.

The focus of this paper is symmetry breaking problems in the Congest model and the
specific question that motivates our work is whether we can go beyond Luby’s algorithm
in the Congest model for MIS or any closely-related symmetry breaking problems such
as ruling sets. In particular, can we break the Θ(logn) time complexity barrier and the
Θ(m) message complexity barrier, in the Congest model for MIS and ruling sets? In many
applications, especially in resource-constrained communication networks and in distributed
processing of large-scale data [13], it is important to design distributed algorithms that have
low time complexity as well as message complexity.

We present two sets of results, one set focusing on time (round) complexity and the other
on message complexity.

1. Time complexity: (cf. Section 2) We first show that 2-ruling sets can be computed in
the Congest model in O

(
log ∆ · (logn)1/2+ε + logn

log logn

)
rounds whp for n-node graphs

with maximum degree ∆ and for any ε > 0. This is the first algorithm to improve over
Luby’s algorithm, by running in o(logn) rounds in the Congest model, for a wide range
of values of ∆. Specifically our algorithm runs in o(logn) rounds for ∆ bounded above
by 2(logn)1/2−ε for any value of ε > 0. In the full version [18], we show how to compute

DISC 2017



38:4 Symmetry Breaking in the Congest Model

3-ruling sets (for any graph) in O
(

logn
log logn

)
rounds whp in the Congest model, using our

2-ruling set algorithm as a subroutine. We also present a simple 5-ruling set algorithm
based on Ghaffari’s MIS algorithm that runs in O(

√
logn) rounds in the Congest model.

2. Message complexity: (cf. Sections 3 and 4) We show that Ω(n2) is a fundamental lower
bound for computing an MIS (i.e., 1-ruling set) by showing that there exists graphs
(with m = Θ(n2) edges) where any distributed MIS algorithm needs Ω(n2) messages. In
contrast, we show that 2-ruling sets can be computed using significantly smaller message
complexity. In particular, we present a randomized 2-ruling set algorithm that, whp,
uses O(n log2 n) messages and runs in O(∆ logn) rounds. This is the first o(m)-message
algorithm known for ruling sets, which takes near-linear (in n) message complexity. This
message bound is tight up to a polylogarithmic factor, since we show that any O(1)-ruling
set (randomized) algorithm that succeeds with probability 1−o(1) requires Ω(n) messages
in the worst case. We also present a simple 2-ruling set algorithm that uses O(n1.5 logn)
messages, but runs faster – in O(logn) rounds.

Our results make progress towards understanding the complexity of symmetry breaking,
in particular with respect to ruling sets, in the Congest model. With regards to time
complexity, our results, for the first time, show that one can obtain o(logn) round algorithms
for ruling sets in the Congest model. With regards to message complexity, our results are
(essentially) tight: while MIS needs quadratic (in n) messages in the worst case, 2-ruling sets
can be computed using near-linear (in n) messages. Other related work and omitted proofs
can be found in the full version [18].

1.1 Distributed Computing Model

We consider the standard synchronous Congest model [20] described as follows.
We are given a distributed network of n nodes, modeled as an undirected graph G. Each

node hosts a processor with limited initial knowledge. We assume that nodes have unique IDs
(this is not essential, but simplifies presentation), and at the beginning of the computation
each node is provided its ID as input. Thus, a node has only local knowledge3. Specifically
we assume that each node has ports (each port having a unique port number); each incident
edge is connected to one distinct port. This model is referred to as the clean network model
in [20] and is also sometimes referred to as the KT0 model, i.e., the initial (K)nowledge of
all nodes is restricted (T)ill radius 0 (i.e., just the local knowledge) [2].

Nodes are allowed to communicate through the edges of the graph G and it is assumed
that communication is synchronous and occurs in discrete rounds (time steps). In each
round, each node can perform some local computation including accessing a private source
of randomness, and can exchange (possibly distinct) O(logn)-bit messages with each of its
neighboring nodes. This model of distributed computation is called the Congest(logn)
model or simply the Congest model [20].

3 Our near-linear message-efficient algorithm (Section 3) does not require knowledge of n or ∆, whereas
our time-efficient algorithms (Section 2) assume knowledge of n and ∆ (otherwise it will work up to a
given ∆).
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1.2 Technical Overview

1.2.1 Time Bounds

The MIS algorithms of Barenboim et al. [5] and Ghaffari [10] use a 2-phase strategy, attributed
to Beck [6], who used it in his algorithmic version of the Lovász Local Lemma. In the first
phase, some number of iterations of a Luby-type “base algorithm” are run (in the Congest
model). During this phase, some nodes join the MIS and these nodes and their neighbors
become inactive. The first phase is run until the graph is “shattered”, i.e., the nodes
that remain active induce a number of “small” connected components. Once the graph is
“shattered”, the algorithm switches to the second, deterministic phase to “finish off” the
problem in the remaining small components. It is this second phase that relies critically on
the use of the Local model in order to run fast.

In general, in the Congest model it is not clear how to take advantage of low degree or
low diameter or small size of a connected component to solve symmetry-breaking problems
(MIS or ruling sets) faster than the O(logn)-round bound provided by Luby’s algorithm.
In both Barenboim et al. [5] and Ghaffari [10], a key ingredient of the second “finish-off”
phase is the deterministic network decomposition algorithm of Panconesi and Srinivasan [19]
that can be used to compute an MIS in O(2

√
log s) rounds on a graph with s nodes in the

Local model. If one can get connected components of size O(poly(logn)) then it is possible
to finish the rest of the algorithm in 2O(

√
log logn) rounds and this is indeed the source of

the “2O(
√

log logn)” term in the round complexity of these MIS algorithms. In fact, the
Panconesi-Srinivasan network decomposition algorithm itself runs in the Congest model,
but once the network has been decomposed into small diameter clusters then algorithms
simply resort to gathering the entire topology of a cluster at a cluster-leader and this requires
large messages. Currently, there seem to be no techniques for symmetry breaking problems in
the Congest model that are able to take advantage of the diameter of a network being small.
As far as we know, there is no o(logn)-round O(1)-ruling set algorithm in the Congest
model even for constant-diameter graphs, for any constant larger than 1. To obtain our
sublogarithmic β-ruling set algorithms (for β = 2, 3, 5), we use simple greedy MIS and 2-ruling
set algorithms to process “small” subgraphs in the final stages of algorithm. These greedy
algorithms just exchange O(logn)-bit IDs with neighbors and run in the Congest model,
but they can take Θ(s) rounds in the worst case, where s is the length of the longest path
in the subgraph. So our main technical contribution is to show that it is possible to do a
randomized shattering of the graph so that none of the fragments have any long paths.

1.2.2 Message Bounds

As mentioned earlier, our message complexity lower bound for MIS and the contrasting upper
bound for 2-ruling set show a clear separation between these two problems. At a high-level,
our lower bound argument exploits the idea of “bridge crossing” (similar to [16]) whose
intuition is as follows. We consider two types of related graphs: (1) a complete bipartite
graph and (2) a random bridge graph which consists of a two (almost-)complete bipartite
graphs connected by two “bridge” edges chosen randomly (see Figure 1 and Section 4 for a
detailed description of the construction). Note that the MIS in a complete bipartite graph is
exactly the set of all nodes belonging to one part of the partition. The crucial observation
is that if no messages are sent over bridge edges, then the bipartite graphs on either side
of the bridge edges behave identically which can result in choosing adjacent nodes in MIS,
a violation. In particular, we show that if an algorithm sends o(n2) messages, then with
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38:6 Symmetry Breaking in the Congest Model

probability at least 1− o(1) that there will be no message sent over the bridge edges and by
symmetry, with probability at least 1/2, two nodes that are connected by the bridge edge
will be chosen to be in the MIS.

Our 2-ruling set algorithm with low-message-complexity crucially uses the fact that,
unlike in an MIS, in a 2-ruling set there are 3 categories of nodes: category-1 (nodes
that are in the independent set), category-2 (nodes that are neighbors of category-1)
and category-3 nodes (nodes that are neighbors of category-2, but not neighbors of
category-1). Our algorithm, inspired by Luby’s MIS algorithm, uses three main ideas.
First, category-2 and category-3 nodes don’t initiate messages; only undecided nodes
(i.e., nodes whose category are not yet decided) initiate messages. Second, an undecided
node does “checking sampling” (cf. Algorithm 3) first before it does local broadcast, i.e., it
samples a few of its neighbors to see if there are any category-2 nodes; if so it becomes a
category-3 node immediately. Third, an undecided node tries to enter the ruling set with
probability that is always inversely proportional to its original degree, i.e., Θ(1/d(v)), where
d(v) is the degree of v. This is unlike in Luby’s algorithm, where the marking probability is
inversely proportional to its current degree. These ideas along with an amortized charging
argument [8] yield our result: an algorithm using O(n log2 n) messages and running in
O(∆ logn) rounds.

2 Time-Efficient Ruling Set Algorithms in the Congest model

The main result of this section is a 2-ruling set algorithm in the Congest model that runs in
O
(

log ∆ · (logn)1/2+ε + logn
log logn

)
rounds whp, for any constant ε > 0, on n-node graphs with

maximum degree ∆. An implication of this result is that for graphs with ∆ = 2O((logn)1/2−ε)

for any ε > 0, we can compute a 2-ruling set in O
(

logn
log logn

)
rounds in the Congest model. A

second implication is that using this 2-ruling set algorithm as a subroutine, we can compute
a 3-ruling set for any graph in O

(
logn

log logn

)
rounds whp in the Congest model. These are

the first sublogarithmic-round Congest model algorithms for 2-ruling sets (for a wide range
of ∆) and 3-ruling sets. Combining some of the techniques used in these algorithms with the
first phase of Ghaffari’s MIS algorithm [10], we show that a 5-ruling set can be computed
in O(

√
logn) rounds whp in the Congest model. The 3-ruling set and 5-ruling set results

appear in the full paper [18].

2.1 The 2-ruling Set Algorithm
Our 2-ruling set algorithm (described in pseudocode below) takes as input an n-node graph
with maximum degree ∆ 6 2

√
logn, along with a parameter ε > 0. For ∆ > 2

√
logn, we

simply execute Luby’s MIS algorithm to solve the problem. The algorithm consists of dlog ∆e
scales and in scale t, 1 6 t 6 dlog ∆e, nodes with degrees at most ∆t := ∆/2t−1 are processed.
Each scale consists of Θ(log1/2+ε n) iterations. In an iteration i, in scale t, each undecided
node independently joins a set Mi,t with probability 1/(∆t · logε n) (Line 5). Neighbors
of nodes in Mi,t, that are themselves not in Mi,t, are set aside and placed in a set Wi,t

(Lines 6-8). The nodes in Mi,t ∪Wi,t have decided their fate and we continue to process the
undecided nodes. At the end of all the iterations in a scale t, any undecided node that still
has ∆t/2 or more undecided neighbors is placed in a “bad” set Bt for that scale (Line 11),
thus effectively deciding the fate of all nodes with degree at least ∆t/2. We now process the
set of scale-t “bad” nodes, Bt, by simply running a greedy 2-ruling set algorithm on Bt (Line
13). We also need to process the sets Mi,t (Line 15) and for that we rely on a greedy 1-ruling
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Algorithm 1: 2-ruling Set(Graph G = (V,E), ε > 0):
1 I ← ∅; S ← V ;
2 for scale t = 1, 2, . . . , dlog ∆e do
3 Let ∆t = ∆

2t−1 ; St ← S;
4 for iteration i = 1, 2, . . . , dc · log1/2+ε ne do
5 Each v ∈ S marks itself and joins Mi,t with probability 1

∆t·logε n ;
6 if v ∈ S is unmarked and a neighbor in S is marked then
7 v joins Wi,t;
8 end
9 S ← S \ (Mi,t ∪Wi,t);

10 end
11 Bt ← {v ∈ S | degS(v) > ∆t/2};
12 S ← S \Bt;
13 I ← I ∪GreedyRulingSet(G[St], Bt, 2);
14 end
15 I ← I ∪ (∪t ∪i GreedyRulingSet(G[St],Mi,t, 1));
16 return I;

Algorithm 2: GreedyRulingSet(Graph G = (V,E), R ⊆ V , integer β > 0):
1 I ← ∅; U ← R; // U is the initial set of undecided nodes
2 while U 6= ∅ do
3 for each node v ∈ U in parallel do
4 if (v has higher ID than all neighbors in U) then
5 I ← I ∪ {v};
6 v and nodes within distance β in G are removed from U
7 end
8 end
9 end

10 return I

set algorithm (i.e., a greedy MIS algorithm). Note that the Mi,t’s are all disconnected from
each other since the Wi,t’s act as “buffers” around the Mi,t’s. Thus after all the scales are
completed, we can compute an MIS on all of the Mi,t’s in parallel. Since each node in Wi,t

has a neighbor in Mi,t, this will guarantee that every node in Wi,t has an independent set
node at most 2 hops away. In the following algorithm we use degS(v) to denote the degree of
a vertex v in the G[S], the graph induced by S.

The overall round complexity of this algorithm critically depends on the greedy 2-ruling
set algorithm terminating quickly on each Bt (Line 13) and the greedy 1-ruling set algorithm
terminating quickly on each Mi,t (Line 15). To be concrete, we present below a specific
β-ruling set algorithm that greedily picks nodes by their IDs from a given node subset R.

To show that the calls to this greedy ruling set algorithm terminate quickly, we introduce
the notion of witness paths. If GreedyRulingSet(G,R, β) runs for p iterations (of the
while-loop), then R must contain a sequence of nodes (v1, v2, . . . , vp) such that vi, 1 6 i 6 p,
joins the independent set I in iteration i and node vi, 1 < i 6 p, must contain an undecided
node with higher ID in its 1-neighborhood in G, which was removed when vi−1 and its
β-neighborhood in G were removed in iteration i − 1. We call such a sequence a witness
path for the execution of GreedyRulingSet. Three simple properties of witness paths are
needed in our analysis:
(i) any two nodes vi and vj in the witness path are at least β + 1 hops away in G,
(ii) any two consecutive nodes vi and vi+1 in the witness path are at most β + 1 hops away

in G, and
(iii) G[R] contains a simple path with (p− 1)(β + 1) + 1 nodes, starting at node v1, passing

through nodes v2, v3, . . . , vp−1 and ending at node vp.
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38:8 Symmetry Breaking in the Congest Model

To show that each Mi,t can be processed quickly by the greedy 1-ruling set algorithm we
show (in Lemma 1) that whp every witness path for the execution of the greedy 1-ruling set
algorithm is short. Similarly, to show that each Bt can be processed quickly by the greedy
2-ruling set algorithm we prove (in Lemma 2) that whp a “bad” set Bt cannot contain a
witness path of length

√
logn or longer to the execution of the greedy 2-ruling set algorithm.

At the start of our analysis we observe that the set St, which is the set of undecided nodes
at the start of scale t, induces a subgraph with maximum degree ∆t = ∆/2t−1.

I Lemma 1. For all scales t and iterations i, GreedyRulingSet(G[St],Mi,t, 1) runs in
O
(

logn
ε log logn

)
rounds, whp.

Proof. Consider an arbitrary scale t and iteration i. By Property (iii) of witness paths, there
is a simple path P with (2p− 1) nodes in G[St], all of whose nodes have joined Mi,t. Due to
independence of the marking step (Line 5) the probability that all nodes in P join Mi,t is
at most (1/∆t · logε n)2p−1. Since ∆(G[St]) 6 ∆t, the number of simple paths with 2p− 1
nodes in G[St] is at most n ·∆2p−1

t . Using a union bound over all candidate simple paths
with 2p − 1 nodes in G[St], we see that the probability that there exists a simple path in
G[Mi,t] of length 2p− 1 is at most: n ·∆2p−1

t ·
(

1
∆t logε n

)2p−1
= n · 1

(logn)ε(2p−1) . Picking p
to be the smallest integer such that 2p− 1 > 4 logn

ε log logn , we get

Pr(∃ a simple path with 2p− 1 nodes that joins Mi,t) 6 n· 1

(2log logn)ε
4 log n

ε log log n

= n· 1
n4 = 1

n3 .

We have O(log ∆ · (logn)1/2+ε) different Mi,t’s. Using a union bound over these Mi,t’s, we
see that the probability that there exists an Mi,t containing a simple path with 2p −
1 nodes is at most n−2. Thus with probability at least 1 − 1/n2, all of the calls to
GreedyRulingSet(G[St],Mi,t, 1)) (in Line 15) complete in O

(
logn

log logn

)
rounds. J

I Lemma 2. For all scales t, the call to GreedyRulingSet(G[St], Bt, 2) takes O(
√

logn)
rounds whp.

Proof. Let P be a length-p witness path for the execution of GreedyRulingSet(G[St], Bt, 2)
(Line 13). By Property (i) of witness paths, all pairs of nodes in P are at distance at least 3
from each other. Fix a scale t. We now calculate the probability that all nodes in P belong
to Bt. Consider some node v ∈ P . For v to belong to Bt, it must have not marked itself
in all iterations of scale t and moreover at least ∆t/2 neighbors of v in St must not have
marked themselves in any iteration of scale t. Since the neighborhoods of any two nodes in
P are disjoint, the event that v joins Bt is independent of any other node in P joining Bt.
Therefore,

Pr(P is in Bt) 6
∏
v∈P

Pr(v and at least ∆t/2 neighbors do not mark themselves in scale t).

This can be bounded above by
∏
v∈P

(
1− 1

∆t(logn)ε

)∆t
2 ·c(logn)1/2+ε

6 exp
(
− c

2 · (logn)1/2 · p
)
.

Plugging in p =
√

logn we see that this probability is bounded above by n−c/2. By Property
(ii) of witness paths and the fact that ∆(G[St]) 6 ∆t, we know that there are at most n·(∆t)3p

length-p candidate witness paths. Using a union bound over all of these, we get that the
probability that there exists a witness path that joins Bt is at most n∆3p ·n−c/2. Plugging in
∆ 6 2

√
logn and p =

√
logn we get that this probability is at most n · n3 · n−c/2 = n−c/2+4.
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Picking a large enough constant c guarantees that this probability is at most 1/n2 and
taking a final union bound over all dlog ∆e scales gives us the result that all calls to
GreedyRulingSet(G[St], Bt, 2) take O(

√
logn) rounds whp. J

Lemmas 1 and 2 prove upper bounds on the number of rounds it takes for the calls to
GreedyRulingSet (in Lines 13 and 15). Now analyzing Algorithm 2-Ruling Set is
straightforward and leads to the following theorem.

I Theorem 3. Algorithm 2-RulingSet computes a 2-ruling set in the Congest model in
O
(

log ∆ · (logn)1/2+ε + logn
ε log logn

)
rounds, whp.

3 A Message-Efficient Algorithm for 2-Ruling Set

In this section, we present a randomized distributed algorithm for computing a 2-ruling set
in the Congest model that takes O(n log2 n) messages and O(∆ logn) rounds whp, where
n is the number of nodes and ∆ is the maximum node degree. The algorithm does not
require any global knowledge, including knowledge of n or ∆. We show in Theorem 9 that
the algorithm is essentially message-optimal (up to a polylog(n) factor). This is the first
message-efficient algorithm known for 2-ruling set, i.e., it takes o(m) messages, where m is
the number of edges in the graph. 4

3.1 The Algorithm
Algorithm 3 is inspired by Luby’s algorithm for MIS [17]; however, there are crucial differences.
(Note that Luby’s algorithm sends Θ(m) messages.) Given a ruling set R, we classify nodes
in V into three categories:

category-1: nodes that belong to the ruling set R;
category-2: nodes that have a neighbor in R; and
category-3: the rest of the nodes, i.e., nodes that have a neighbor in category-2.

At the beginning of the algorithm, each node is undecided, i.e., its category is not set and
upon termination, each node knows its category.

Let us describe one iteration of the algorithm (Steps 3-19) from the perspective of an
arbitrary node v. Each undecided node v marks itself with probably 1/2d(v). If v is marked
it samples a set of Θ(log(d(v)) random neighbours and checks whether any of them belong to
category-2 – we call this the checking sampling step. If so, then v becomes a category-3
node and is done (i.e., it will never broadcast again, but will continue to answer checking
sampling queries, if any, from its neighbors). Otherwise, v performs the broadcast step, i.e.,
it communicates with all its neighbors and checks if there is a marked neighbor that is of
equal or higher degree, and if so, it unmarks itself; else it enters the ruling set and becomes
a category-1 node.5 Then node v informs all its neighbors about its category-1 status
causing them to become category-2 nodes (if they are not already) and they are done.

A node that does not hear from any of its neighbors knows that it is not a neighbor
of any category-1 node. Note that category-2 and category-3 nodes do not initiate
messages, which is important for keeping the message complexity low. Another main idea

4 In the full paper [18] we present a simpler algorithm for 2-ruling set that, whp, takes O(n1.5 logn)
messages and runs in O(logn) rounds.

5 Alternately, if v finds any category-2 neighbor (that was missed by checking sampling) during
broadcast step it becomes a category-3 node and is done. However, this does not give an asymptotic
improvement in the message complexity analysis compared to the stated algorithm.

DISC 2017



38:10 Symmetry Breaking in the Congest Model

Algorithm 3: Algorithm 2-rulingset-msg: code for a node v. d(v) is the degree
of v.
1 statusv = undecided;
2 while statusv = undecided do
3 if v receives a message from a category-1 node then
4 Set statusv = category-2;
5 end
6 if v is undecided then it marks itself with probability 1

2d(v) ;
7 if v is marked then
8 ( Checking Sampling Step:) Sample a set Av of 4 log(d(v)) random neighbors

independently and uniformly at random (with replacement) ;
9 Find the categories of all nodes in Av by communicating with them;

10 if any node in Av is a category-2 node then
11 Set statusv = category-3;
12 end
13 else
14 ( (Local) Broadcast Step:) Send the marked status and d(v) value to all neighbors;
15 If v hears from an equal or higher degree (marked) neighbor then v unmarks itself;
16 If v remains marked, set statusv = category-1;
17 Announce status to all neighbors;
18 end
19 end
20 end

in reducing messages is the random sampling check of a few neighbors to see whether any
of them are category-2. Although some nodes might send O(d(v)) messages, we show in
Section 3.2 that most nodes send (and receive) only O(logn) messages in an amortized sense.
Nodes that remain undecided at the end of one iteration continue to the next iteration. It is
easy to implement each iteration in a constant number of rounds.

3.2 Analysis of Algorithm 2-rulingset-msg
One phase of the algorithm consists of Steps 3-19, which can be implemented in a constant
number of rounds. We say that a node is decided if it is in category-1, category-2, or
category-3. The first lemma, which is easy to establish, shows that if a node is marked, it
has a good chance to get decided.

I Lemma 4. A node that marks itself in any phase gets decided with probability at least
1/2 in that phase. Furthermore, the probability that a node remains undecided after 2 logn
marked phases is at most 1/n2.

The next lemma bounds the round complexity of the algorithm and establishes its correctness.
The round complexity bound is essentially a consequence of the previous lemma and the
correctness of the algorithm is easy to check.

I Lemma 5. The algorithm 2-rulingset-msg runs in O(∆ logn) rounds whp. In particular,
with probability at least 1− 2/n2, a node v becomes decided after O(d(v) logn) rounds. When
the algorithm terminates, i.e., when all nodes are decided, the category-1-nodes form a
2-ruling set of the graph. Moreover, each node is correctly classified according to its category.

We now show a technical lemma that is crucially used in proving the message complexity
bounds of the algorithm in Lemma 7. It gives a high probability bound on the total number
of messages sent by all nodes during the Broadcast step in any particular phase (i.e., Step
14) of the algorithm in terms of a quantity that depends on the number of undecided nodes



S. Pai, G. Pandurangan, S.V. Pemmaraju, T. Riaz, and P. Robinson 38:11

and their neighbors. While bounding the expectation is easy, showing concentration is more
involved. (We note that we really use only part (b) of the Lemma for our subsequent analysis,
but showing part (a) first, helps understand the proof of part (b)).

I Lemma 6. Let U ⊆ V be a (sub-)set of undecided nodes at the beginning of a phase. Let
N(v) be the set of neighbors of v. Then the following statements hold:
(a) Let Z(U) = U ∪ (∪v∈UN(v)). The total number of messages sent by all nodes in U

during the Broadcast step in this phase (i.e., Step 14) of the algorithm is O(|Z(U)| logn)
with probability at least 1− 1/n3.

(b) Let N ′(v) be the set of undecided and category 3 neighbors of v and suppose |N ′(v)| >
d(v)/2 (where d(v) is the degree of v), for each v ∈ U . Let Z ′(U) = U ∪ (∪v∈UN ′(v)).
The total number of messages sent by all nodes in U during the Broadcast step in this
phase (i.e., Step 14) of the algorithm is O(|Z ′(U)| logn) with probability at least 1− 1/n3.

I Lemma 7. The algorithm 2-rulingset-msg uses O(n log2 n) messages whp.

Proof. We will argue separately about two kinds of messages that any node can initiate.
Consider any node v.
1. type 1 messages: In the checking sampling step in some phase, v samples 4 log d(v) random

neighbours which costs O(log d(v)) messages in that phase.
2. type 2 messages: In the broadcast step in some phase, v sends to all its neighbors which

costs d(v) messages. This happens when all the sampled neighbors in set Av (found in
Step 9) are not category-2 nodes.

Note that v initiates any message at all, i.e., both type 1 and 2 messages happen, only when
v marks itself, which happens with probability 1/2d(v).

We first bound the type 1 messages sent overall by all nodes. By the above statement, a
node does checking sampling when it marks itself which happens with probability 1/2d(v).
By Lemma 4, with probability at least 1− 1/n2, a node is marked (before it gets decided) at
most 2 logn times. Hence, with probability at least 1− 1/n2, the number of type 1 messages
sent by node v is at most O(log d(v) logn); this implies, by union bound, that with probability
at least 1− 1/n every node v sends at most O(log d(v) logn) type 1 messages. Thus, whp,
the total number of type 1 messages sent is

∑
v∈V O(log d(v) logn) = O(n log2 n).

We next bound the type 2 messages, i.e., messages sent during the broadcast step. There
are two cases to consider in any phase.

Case 1. In this case we focus (only) on the broadcast messages of the set U of undecided
nodes v that (each) have at least d(v)/2 neighbors that are in category-3 or undecided (in
that phase). We show by a charging argument that any node receives amortized O(logn)
messages (whp) in this case. When a node u (in this case) broadcasts, its d(u) messages are
charged equally to itself and its category-3 and undecided neighbors (which number at
least d(u)/2).

We first show that any category-3 or undecided node v is charged by amortized O(logn)
messages in any phase. Consider the set U(v) which is the set of undecided nodes (each of
which satisfy Case 1 property of having at least half of its neighbors that are in category-3
or undecided in this phase) in the closed neighborhood of v (i.e., {v}∪N(v)). Note that v will
be charged only by messages broadcast by nodes in the closed neighborhood of v (this “local
charging” is needed for the subsequent argument in the next para). Hence we consider the set
Z ′(U(v)) as in in Lemma 6.(b), i.e., define Z ′(U(v)) = U(v) ∪ (∪w∈U(v)N

′(w)), where N ′(w)
is the set of all undecided or category-3 neighbors of w. Since, by assumption of Case 1,
every undecided node u ∈ U(v) has at least d(u)/2 neighbors that are in category-3 or
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undecided in the current phase, applying Lemma 6 (part (b)) to the set Z ′(U(v)) tells us
that, with probability at least 1−1/n2, the total number of messages broadcast by undecided
nodes in U(v) is O(|Z ′(U(v))| logn). Hence, amortizing over the total number of (undecided
and category-3) nodes in Z ′(U(v)), we show that v (which is part of Z ′(U(v))) is charged
(amortized) O(logn) in a phase. Taking a union bound, gives a high probability result for all
nodes v.

To show that the same node v is not charged too many times across phases, we use
the fact that category-2 nodes are never charged (and they do not broadcast). We note
that if a node enters the ruling set (i.e., becomes category-1) in some phase, then all its
neighbors become category-2 nodes and will never be charged again (in any subsequent
phase). Furthermore, since a marked node enters the ruling set with probability at least 1/2,
a neighbor of v (or v itself) gets charged at most O(logn) times whp. Hence overall a node
is charged at most O(log2 n) times whp and by union bound, every node gets charged at
most O(log2 n) times whp.

Case 2. In this case, we focus on the messages broadcast by those undecided nodes v
that have at most d(v)/2 − 1 neighbors that are in category-3 or undecided, i.e., at
least d(v)/2 + 1 neighbors are in category-2. By the description of our algorithm, a
node enters the broadcast step, only if checking sampling step (Step 8) fails to find a
category-2 node. The probability of this “bad” event happening is at most 1

d(v)4 , which
is the probability that a category-2 neighbor (of which there are at least d(v)/2 many)
is not among any of the 4 log(d(v)) randomly sampled neighbors. We next bound the total
number of broadcast messages generated by all undecided nodes in Case 2 during the entire
course of the algorithm. By Lemma 4, for any node v, Case 2 can potentially happen only
2 logn times with probability at least 1− 1/n2, since that is the number of times v can get
marked. Let r.v. Yv denote the number of Case 2 broadcast messages sent by v during the
course of the algorithm. Conditional on the fact that it gets marked at most 2 logn times,
we have E[Yv] = 2 logn 1

d(v)4 d(v) = 2 logn 1
d(v)3 .

Let Y =
∑
v∈V Yv. Hence, conditional on the fact that each node gets marked at most

2 logn times (which happens with probability > 1 − 1/n) the total expected number of
Case 2 broadcast messages sent by all nodes is E[Y ] =

∑
v∈V E[Yv] =

∑
v∈V 2 logn 1

d(v)3 =
O(n logn).

We next show concentration of Y (conditionally as mentioned above). We know that
Var[Yv] = 4 log2 n( 1

d(v)2 − 1
d(v)6 ) 6 4 log2 n. Since the random variables Yv are independent,

we have Var[Y ] =
∑
v∈V V ar(Yv) = 4n log2 n. Noting that Yv − E[Yv] 6 2n logn, we apply

Bernstein’s inequality [9] to obtain

Pr(Y > E[Y ] + 4n log2 n) 6 exp
(
− 16n2 log4 n

8n log2 n+ (2/3)2n logn(4n log2 n)

)
6 O(1/n2).

Since the conditioning with respect to the fact that all nodes get marked at most 2 logn
times happens with probability at least 1 − 1/n, unconditionally, Pr(Y > Θ(n log2 n)) 6
O(1/n2) + 1/n. Hence, the overall broadcast messages sent by nodes in Case 2 is bounded
by O(n log2 n) whp.

Combining type 1 and type 2 messages, the overall number of messages is bounded by
O(n log2 n) whp. J

Thus we obtain the following theorem. In the full paper [18], we show that this analysis of
the Algorithm 2-rulingset-msg is tight up to a polylogarithmic factor.
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I Theorem 8. The algorithm 2-rulingset-msg computes a 2-ruling set using O(n log2 n)
messages and terminates in O(∆ logn) rounds with high probability.

4 Message Complexity Lower Bounds

We first point out that the bound of Theorem 8 is tight up to logarithmic factors. The proof
is a simple indistinguishability argument and is relegated to the full paper [18].

I Theorem 9. Any O(1)-ruling set algorithm that succeeds with probability 1− o(1) sends
Ω(n) messages in the worst case. This is true even if nodes have prior knowledge of the
network size n.

Next, we show a separation between the message complexity of computing an β-ruling set
(β > 1) and an MIS (i.e., 1-ruling set) by proving an unconditional Ω(n2) lower bound for
the latter.

I Theorem 10. Any maximal independent set algorithm that succeeds with probability 1− ε
on connected networks, where 0 6 ε < 1

2 is a constant, has a message complexity of Ω(n2) in
expectation. This is true even if nodes have prior knowledge of the network size n.

Proof. For the sake of a contradiction, assume that there is an algorithm A that, with
probability 1− o(1), sends at most µ = o(n2) messages. Moreover, assume that A succeeds
with probability > 1− ε, for some ε < 1

2 . In the remainder of the proof, we condition on A
sending at most o(n2) messages.

Consider two copies G and G′ of the complete bipartite graph on n/2 nodes.6 For now,
we consider the anonymous case where nodes do not have access to unique IDs; we will later
show how to remove this restriction. Recall that in our model (cf. Section 1.1), we assume
that nodes do not have any prior knowledge of their neighbors in the graph. Instead, each
node u has a list ports 1, . . . , degu, whose destination are wired in advance by an adversary.

We consider two concrete instances of our lower bound network depending on the wiring
of the edges. First, let D = (G,G′) be the disconnected graph consisting of G and G′ and
their induced edge sets. It is easy to see that there are exactly 4 possible choices for an MIS
on D, as any valid MIS must contain the entire left (resp. right) half of the nodes in G and
G′ and no other nodes. We denote the events of obtaining one of the four possible MISs
by LL′, LR′, RL′, RR′, where, e.g., RL′ is the event that the right half of G (i.e. nodes in
R) and the left half of G′ (i.e. nodes in L′) are chosen. Let “on D” be the event that A is
executed on graph D. Of course, we cannot assume that algorithm A does anything useful
on this graph as we require A only to succeed on connected networks. However, we will make
use of the symmetry of the components of D later on in the proof.

I Observation 11. Pr[LL′ | on D] = Pr[LR′ | on D] = Pr[RL′ | on D] = Pr[RR′ | on D].

We now define the second instance of our lower bound graph. Consider any pair of edges
e = (u, v) ∈ G = (L,R) and e′ = (u′, v′) ∈ G′ = (L′, R′). We define the bridge graph by
removing e and e′ from G respectively G′ and, instead, adding the bridge edges b = (u, u′)
and b′ = (v, v′) by connecting the same ports that were used for e and e′; see Figure 1. We
use B to denote a graph that is chosen uniformly at random from all possible bridge graphs,
i.e., the edges replaced by bridge edges are chosen uniformly at random according to the
above construction. Let “G↔ G′” be the event that A sends at least 1 message over a bridge
edge and, similarly, we use “G 6↔ G′” to denote the event that this does not happen.

6 To simplify our analysis, we assume that n/2 and n/4 are integers.
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G G′

u1

u2

...

un/4

v1

v2

...

vn/4

u′1

u′2

...

u′n/4

v′1

v′2

...

v′n/4

Figure 1 The lower bound graph B(G,G′) for Theorem 9 with bridge edges (u2, u
′
2) and (vn/4, v

′
2).

The disconnected graph D is given by replacing the bridge edges with the dashed edges.

I Lemma 12. Consider an execution of algorithm A on a uniformly at random chosen bridge
graph B. The probability that a message is sent across a bridge is o(1), i.e., Pr[G 6↔ G′] =
1− o(1).

A crucial property of our construction is that, as long as no bridge edge is discovered, the
algorithm behaves the same on B as it does on D. The following lemma can be shown by
induction over the number of rounds.

I Lemma 13. Let Y be any event that is a function of the communication and computation
performed by algorithm A. Then, Pr[Y | G 6↔ G′] = Pr[Y | on D].

Now consider a run of algorithm A on a uniformly at random chosen bridge graph B. Let
“A succ.” denote the event thatA correctly outputs an MIS. Observe thatA succeeds when exe-
cuted on B if and only if we arrive at an output configuration corresponding LR′ or RL′. It fol-
lows that Pr[A succ.] =

∑
W∈{LR′,RL′} Pr[W | G 6↔ G′ ]·Pr[G 6↔ G′]+Pr[A succ. | G↔ G′]·

Pr[G↔ G′] > 1− ε. Lemma 12 tells us that Pr[G↔ G′] = o(1) and, using Pr[G 6↔ G′] 6 1,
allows us to rewrite the above inequality as

∑
W∈{LR′,RL′}Pr[W | G 6↔ G′ ] > 1−ε−o(1). Ap-

plying Lemma 13 to the terms in the sum, we get
∑
W∈{LR′,RL′}Pr[W | on D] > 1− ε−o(1).

By Observation 11, we know that Pr[LR′ | on D] + Pr[RL | on D] 6 1
2 , which we can plug

into the previously obtained bound on
∑
W∈{LR′,RL′}Pr[W | on D] to obtain ε > 1

2 − o(1),
yielding a contradiction to ε being a constant less than 1

2 . So far, we have conditioned
on A sending at most o(n2) messages. Since this event happens with probability 1− o(1),
removing the conditioning reduces the above bound on ε by at most o(1), which still provides
a contradiction.

Finally, we can remove the restriction of not having unique IDs by arguing that the
algorithm can generate unique IDs with high probability, since we assume that nodes know
n; see the proof of Theorem 9 in the full paper [18] for a similar argument. This completes
the proof of Theorem 10. J

5 Conclusion

Several key open questions are motivated by the results in this paper. First, can the MIS
lower bounds in the Local model shown by Kuhn et al. [15] be extended to 2-ruling sets?
In an orthogonal direction, can we derive time lower bounds for MIS in the Congest model,
that are stronger than their Local-model counterparts? And on the algorithms side, can we
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improve ruling-set time bounds in the Congest model. e.g., by showing that the 2-ruling
set problem can be solved in O(logα n) rounds, α < 1, in Congest?

Second, although we have presented near-tight message bounds for 2-ruling sets, we don’t
have a good understanding of the message-time tradeoffs. In particular, a key question is
whether we can design a 2-ruling set algorithm that uses O(n polylogn) messages, while
running in O(polylogn) rounds? More generally, can we obtain a tradeoff that characterizes
the dependence of one measure on the other or obtain lower bounds on the complexity of
one measure while fixing the other measure.
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Abstract
Consensus, or state machine replication is a foundational building block of distributed systems
and modern cryptography. Consensus in the classical, “permissioned” setting has been extensively
studied in the 30 years of distributed systems literature. Recent developments in Bitcoin and
other decentralized cryptocurrencies popularized a new form of consensus in a “permissionless”
setting, where anyone can join and leave dynamically, and there is no a-priori knowledge of
the number of consensus nodes. So far, however, all known permissionless consensus protocols
assume network synchrony, i.e., the protocol must know an upper bound of the network’s delay,
and transactions confirm slower than this a-priori upper bound.

We initiate the study of the feasibilities and infeasibilities of achieving responsiveness in per-
missionless consensus. In a responsive protocol, the transaction confirmation time depends only
on the actual network delay, but not on any a-priori known upper bound such as a synchronous
round. Classical protocols in the partial synchronous and asynchronous models naturally achieve
responsiveness, since the protocol does not even know any delay upper bound. Unfortunately, we
show that in the permissionless setting, consensus is impossible in the asynchronous or partially
synchronous models.

On the positive side, we construct a protocol called Hybrid Consensus by combining classical-
style and blockchain-style consensus. Hybrid Consensus shows that responsiveness is nonetheless
possible to achieve in permissionless consensus (assuming proof-of-work) when 1) the protocol
knows an upper bound on the network delay; 2) we allow a non-responsive warmup period after
which transaction confirmation can become responsive; 3) honesty has some stickiness, i.e., it
takes a short while for an adversary to corrupt a node or put it to sleep; and 4) less than 1/3
of the nodes are corrupt. We show that all these conditions are in fact necessary – if only one
of them is violated, responsiveness would have been impossible. Our work makes a step forward
in our understanding of the permissionless model and its differences and relations to classical
consensus.
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of servers seek to agree on an ever-growing, linearly-ordered log, such that two important
properties are satisfied:
1. consistency, i.e., all servers must have the same view of the log; and
2. liveness, i.e., whenever a client submits a transaction, the transaction is incorporated

quickly into the log.
For more than a decade, companies such as Google and Facebook rely on state machine
replication protocols (in the crash fault model) to replicate a significant fraction of their
database and computing infrastructure. For simplicity, henceforth we use the term consensus
to refer to state machine replication protocols throughout this paper.

Traditionally, consensus protocols were studied in a permissioned setting where the set of
participating nodes is known a-priori. The enormous success of decentralized cryptocurrencies
such as Bitcoin and Ethereum have brought to our attention a new model of distributed
consensus, that is, the permissionless model. Informally speaking, a permissionless model
has the following notable differences from the classical permissioned model:
1. anyone can join the protocol and the network provides no authentication;
2. nodes come and go;
3. there may not be a priori knowledge how many nodes will actually show up; and
4. the number of nodes participating can vary over time.

Although recent (and concurrent) works have begun to explore the theoretical (in)feasibility
of reaching consensus in the permissionless model [13,17,19,21], our understanding of the
permissionless model is nonetheless relatively little in comparison with our rich body of
knowledge for permissioned consensus. In this paper, we make an endeavor at furthering our
understanding of the permissionless model.

All known permissionless consensus protocols work in the synchronous model. So far, it
is somewhat well-understood that proofs-of-work can be employed to thwart Sybil attacks [5,
13,14,18,19] and thus circumvent earlier known theoretical infeasibilities for the permissionless
model [7] – but all known consensus protocols in the permissionless model rely on network
synchrony [5, 13,14,18,19]. Remarkedly, the famous Nakamoto blockchain [13,18,19] (that
underlies Bitcoin) also works only in the synchronous model where the protocol must know an
a-priori upper bound of the network delay (henceforth denoted ∆) [19]. Otherwise, if a delay
upper bound ∆ is unknown, Pass et al. [19] shows that Nakamoto blockchain’s security can be
broken. Pass et al. [19] also show that the expected block interval of Nakamoto’s blockchain
must be set to be, roughly speaking, a constant factor larger than ∆ for consistency.

Relying a synchronous model, however, can be undesirable in practice. Since the synchrony
parameter ∆ must be set conservatively to leave a sufficient safety margin, in practice
the actual network’s delay is typically much better than this pessimistic upper bound.
Unfortunately, any protocol that must wait for at least one synchronous round (or one block-
interval) for transaction confirmation cannot benefit from the network’s actual performance.
We naturally desire a protocol that can confirm transactions as fast as the network makes
progress, a notion that we shall henceforth refer to as responsiveness. The notion of
responsiveness was first defined by Attiya et al. [6]: in a responsive consensus protocol, we
require that the transaction confirmation time is a function of the actual network’s delay δ,
but not of the a priori upper bound ∆ that is provided to the protocol as input [6].

We thus ask the following natural question:

Can we achieve responsiveness in permissionless consensus? In other words, is slow
confirmation inherent in permissionless consensus?
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1.1 Our Results and Contributions
Impossibility of permissionless consensus in the partially synchronous model. Tradition-
ally, permissioned state machine replication protocols achieve responsiveness by adopting
a partially synchronous or asynchronous model1, where the protocol does not know any
a-priori upper bound of the network delay ∆.

Thus, to answer our earlier question, a first attempt is to design a permissionless consensus
protocol for the partially synchronous or asynchronous setting. Unfortunately, this task turns
out to be impossible – we show that no consensus protocol unaware of a delay upper bound
∆ can simultaneously guarantee consistency and liveness in the permissionless setting – yet
another reason why the permissionless setting is fundamentally different from permissioned!

Is responsiveness hopeless for permissionless? At first sight, this pessimistic observation
seems to have closed the question: perhaps waiting for the synchronization delay is inevitable
in permissionless consensus. Even more discouragingly, it is easy to see that when the number
of nodes n is unknown a priori, this lower bound generalizes to one-shot consensus even when
the protocol knows ∆ but must be responsive – by one-shot consensus, we mean that we need
to confirm exactly one transaction proposed to honest nodes upfront, and responsiveness
requires that the confirmation time be independent of ∆.

Hybrid consensus. One might now be attempted to think that responsiveness is impossible
in a permissionless setting. Perhaps somewhat surprisingly, we construct a protocol called
Hybrid Consensus through which we show that responsiveness is actually possible in permis-
sionless state machine replication (assuming proof-of-work), provided that
1. less than 1

3 − ε fraction of nodes are corrupt where ε is an arbitrarily small constant;
2. the protocol is aware of the upper bound ∆, and moreover, we allow a warmup period that

depends on ∆ – transactions start to confirm as fast as the actual network’s performance
after this warmup period but not before; and

3. honest nodes stick around and remain honest for a while even when an adversary may
try to adaptively corrupt or crash the node – in other words, corruption is not an instant
operation but requires some time to take effect. We shall formally define this requirement
as the τ -mildly adaptive corruption model where τ is the stickiness parameter.

Lower bounds. Are the above constraints necessary for achieving responsiveness in the
permissionless model? Earlier we have argued that requirement (2) is necessary since
responsiveness is impossible for one-shot consensus even when the protocol knows ∆. Later
we will prove several simple but hopefully insightful lower bounds, and show that indeed, all
the remaining conditions are necessary as well!
1. We prove that 1

3 corruption is the optimal resilience parameter for responsiveness – even
assuming proof-of-work, static corruption, and even when the number of players is known
in advance and all players spawn upfront.

2. If honest nodes do not stick around at least for a while (i.e., if the stickiness parameter
τ = 0), responsiveness would also be impossible when the number of players can vary by
a factor of 2 (or more) in adjacent rounds.

In summary, our paper gives a somewhat comprehensive answer towards understanding
the feasibilities and infeasibilities of achieving responsiveness in permissionless consensus.

1 For the purpose of this paper, the technical difference between partial synchrony and asynchrony is
non-essential.
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Our results contribute to the further understanding of the permissionless model, how it differs
from the classical permissioned model, and how techniques from permissioned consensus can
lend to permissionless consensus.

2 Preliminaries

2.1 Permissionless Execution Model

We consider a standard, round-based Interactive Turing Machine (ITM) execution model.
The execution proceeds in atomic time steps called rounds – henceforth in our paper the
terms time and round are used interchangably.

Corruption model. We consider the following corruption model.
Spawning. The adversary is allowed to spawn new nodes in any round during the execution.
Newly spawned nodes can either be honest or corrupt.
Corruption. To corrupt a node during the protocol, the adversary must first issue a
“target corrupt” instruction to an honest node i – let t denote this round. This “target
corrupt” instruction will take effect only τ rounds later, i.e., the node i actually becomes
corrupt in round t+ τ . When a node actually becomes corrupt, its internal states are
exposed to the adversary and the adversary fully controls the node’s actions. Henceforth,
the parameter τ is referred to as the agility parameter. If τ = 0, we model fully adaptive
corruptions; if τ =∞, we model static corruption; anywhere in between, corruption is
said to be mildly adaptive.
Killing. The adversary can issue a “kill” instruction to kill a corrupt node, and the
instruction takes effect immediately. A killed node is no longer considered live. The
adversary is not allowed to corrupt honest nodes directly without corrupting them first.

Henceforth, in every round, all nodes that have been spawned but have not been killed
are considered live. We say that the adversary is subject to a ρ corruption budget iff in every
round, the number of honest nodes that have not received “target corrupt” is more than
1− ρ fraction of the total number of live nodes in that round.

Communication model. The adversary is responsible for delivering all messages sent by
nodes (honest or corrupt) to all other nodes. The adversary cannot modify the contents of
messages broadcast by honest nodes, but it may arbitrarily delay or reorder the delivery of
a message subject to the following δ-bounded delay constraint: if an honest node sends a
message at time t, then in any round r ≥ t+ δ, any honest node that is live in round r will
have received the message, including nodes that may possibly have been sleeping but just
woke up in round r, as well as nodes which may have just been spawned at the beginning of
round r. We assume that the identity of the sender is not known to the recipient.

Henceforth in this paper, we assume that the protocol is provided with an input ∆ which
is an a-priori upper bound of the actual network delay δ.

Number of nodes. For simplicity we make a mild assumption about how the number of
players may vary. We assume that
1. the protocol is given an estimate n∗ of the number of players; and
2. the number of players in every round is between [n

∗

2 , n
∗].
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We stress that our partial synchrony impossibility and fully adaptive impossibility results
hold as long as the protocol’s estimate of the number of players can be off by a factor of 2
(or more)2.

2.2 State Machine Replication
In this paper, a permissionless consensus protocol is a protocol that realizes the “state machine
replication” abstraction in a permissionless environment. In a state machine replication
protocol, in every round, every honest node receives one or more transactions as input, and
outputs a log. Henceforth let LOGri denote node i’s output log in round r. A state machine
replication protocol is said to satisfy consistency, iff except with negligible probability,
1. for any node i honest in round r and any node j honest in round t, either LOGri ≺ LOGtj

or LOGtj ≺ LOGri , where ≺ denotes “is a prefix of” (by convention, we assume that x ≺ x
for any x); and

2. any honest node’s log should not shrink over time.
A state machine replication protocol is said to satisfy (Twarm, Tconfirm)-liveness, iff except
with negligible probability, if an honest node receives some transaction tx as input or has tx
in its output log in round r ≥ Twarm, then in round r + Tconfirm or later, tx appears in all
honest nodes’ output logs.

Responsiveness. A state machine replication protocol that satisfies (Twarm, Tconfirm)-liveness
is said to be responsive, iff the function Tconfirm depends only on the actual maximum network
delay δ but not on the a-priori upper bound ∆. Note that we allow the warmup period
Twarmup to be non-responsive, i.e., dependent on the a-priori upper bound ∆.

3 Limits on Responsiveness in Permissionless Consensus

We present our lower bounds for responsiveness. Due to space constraints, we present proof
intuitions in this section and defer full, formal proofs to our online full version [20].

Impossibility of partial synchrony for permissionless. One obvious approach towards
achieving responsiveness is to rely on a partially synchronous or asynchronous model –
indeed, classical, permissioned consensus protocols in the partially synchronous or asyn-
chronous models naturally provide responsiveness, since the protocol does not even know a
network delay upper bound. Unfortunately, as it turns out, the same approach would fail in
the permissionless setting.

We prove the following theorem where a partially synchronous protocol is defined to be
one whose protocol instructions do not depend on the a-priori delay upper bound ∆.

I Theorem 1 (Impossibility of partial synchrony). No partially synchronous, permissionless
consensus protocol can achieve both consistency and liveness in an execution environment
where the protocol is provided with an a-priori estimate of the number of players that can be
off by a factor of 2 (or more) – even when no node is corrupt.

2 On the other hand, for upper bounds: although the earlier blockchain analysis work by Pass et al. [19]
and Fruitchain [21] assume that the number of players in every round stays fixed and is known to the
protocol – we observe that it is straightforward to extend these earlier works to the case when the
number of players may vary by any known constant factor, and that the protocol is given an estimate
that can be off by a known constant factor (see online full version [20] for additional details).
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Proof sketch. We explain the proof intuition but defer the formal proof to the online full
version [20]. Imagine an execution where honest nodes P0 and P1 have a slow network link.
P0 cannot distinguish whether its network link to P1 is slow, or if P1 simply did not show up.
Had it been the latter case, P0 must output a decision quickly (and for a sufficiently large
choice of ∆, the decision will be output before the end of ∆ rounds). Thus P0 must output
a decision quickly in the current execution too (i.e., former case). By symmetry, P1 must
output a decision quickly too. Now, if P0 and P1 received different, high-entropy transactions
as inputs, they would have resulted in disagreement except with negligible probability. J

Resilience lower bound. We next ask the question, suppose that we do allow the protocol
to know ∆, and moreover we allow a non-responsive warmup period – in this case, can we
achieve responsive permissionless consensus, and if so, what fraction of corruption can we
tolerate? We prove the following lower bound.

I Theorem 2 (Resilience lower bound). No responsive, permissionless consensus protocol
can tolerate 1

3 or more corruptions, even assuming the existence of a proof-of-work oracle,
static corruptions, and even when assuming that all nodes are spawned upfront (i.e., no late
spawning), and moreover, the protocol is provided with the exact number of players.

Proof sketch. Our proof is inspired by the well-known 1
3 -corruption lower bound by Dwork

et al. [11]. Dwork et al.’s proof considers an execution with three nodes, honest nodes P0, P1
and a corrupt node Q. The corrupt node Q simulates two nodes Q0 and Q1 in its head where
Qb plays with Pb for b ∈ {0, 1}. Messages between P0 and P1 are delayed for a sufficiently
long time. Dwork et al. argues that in such an execution, P0’s view is the same as an
alternate execution where P1 is the corrupt node, and thus P0 should output a decision
responsively. By symmetry, so will P1. Now, if P0 and P1 received different, high-entropy
transactions as inputs, then they would disagree.

The main challenge in our proof is that we must essentially prove the same statement,
but assuming a proof-of-work oracle. Since a corrupt node can query the proof-of-work oracle
only once in each time step, the adversary cannot simulate two parallel executions without
causing any slowdown. Fortunately, there is a way to temporally interleave the two simulated
executions, such that the second execution waits for the first one to finish before starting –
and the lapse in time till the second execution starts can be charged to the network delay.
We defer the full, formal proof to the online full version [20]. J

Impossibility of responsiveness with a fully adaptive adversary. We show that respons-
iveness is impossible if the adversary is fully adaptive, i.e., τ = 0, and moreover, if the
number of players in every round can differ by a factor of 2. The intuition is the following:
when the agility parameter τ = 0, i.e., if “honesty” has no stickiness, then the adversary
can corrupt and kill honest nodes instantly. In other words, the adversary can kill an old
batch of honest nodes and spawn a new batch instantly, such that the nodes in two adjacent
rounds are completely disjoint – notice that the adversary can do this without even charging
to the corruption budget ρ! Thus every round behaves like the start of the execution where
the number of online nodes is unpredictable by a factor of 2×. This means that even a
non-responsive warmup period will not help. We formalize this intuition in the following
theorem. It is interesting to note why this lower bound no longer holds when honesty does
have some stickiness. In this case, swapping out an old batch of nodes and swapping in
a new batch is no longer for free – since when an honest node receives a “target corrupt”
instruction, it is charged to the corruption budget ρ.
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I Theorem 3 (Impossibility of responsiveness with a fully adaptive adversary). No protocol
(even in the proof-of-work model), given an estimate n∗, can achieve responsive permissionless
consensus in a fully adaptive environment (i.e., τ = 0) where the number of nodes in each
round is allowed to vary between [n

∗

2 , n
∗] – moreover this holds for any corruption budget ρ.

We defer the formal proof of the above theorem to our online full version [20].

4 Hybrid Consensus

4.1 Blockchain Preliminaries

An abstract blockchain protocol. One way to realize state machine replication is through
a blockchain protocol. In a blockchain protocol, in every round, every honest node receives
one or more transactions as input. In every round, every honest node outputs a chain
consisting of linearly ordered blocks, where each block is a sequence of logical records (e.g.,
transactions). As defined by Garay et al. [13] and Pass et al. [19], a blockchain protocol is
expected to satisfy three properties except with negligible probability:
1. consistency, i.e., all honest nodes’ output chains agree with each other except for the

trailing λ blocks where λ is a security parameter;
2. Q-chain quality, i.e., in any λ consecutive blocks in an honest node’s output chain, more

than Q fraction must be contributed by honest nodes that have not received “target
corrupt”; and

3. (G,G′)-chain growth, i.e., over any duration of length t where Gt ≥ λ, honest nodes’
chains grow by at least Gt and at most G′t.

It is not hard to see that given a blockchain protocol snailchain, we can construct a non-
responsive permissionless consensus protocol, where we simply run the blockchain protocol
snailchain, and have each node’s output log be its chain minus the trailing Θ(λ) blocks. In
particular, the resulting permissionless consensus protocol’s liveness can be inferred from
snailchain’s (positive) chain quality and chain growth lower bound3.

Nakamoto’s blockchain. Earlier, Garay et al. [13] and Pass et al. [19] analyze Nakamoto’s
blockchain protocol [18] for the case when the number of players n is fixed – we observe that
it is straightforward to extend these earlier results to deal with the case when n varies by a
known constant factor (see our online full version [20] for additional details). In other words,
the following statement is immediately implied by these earlier works [13, 19]: assuming the
existence of an “idealized” proof-of-work oracle, there exists a blockchain protocol, as long
as
(i) the protocol is provided with an estimate of the number of players that is off by a known

constant factor;
(ii) the number of players in every round varies by a known constant; and
(iii) the protocol is aware of a upper bound ∆ of the network’s delay.

3 Although a blockchain abstraction may resemble the state machine replication definition in Section 2.2,
the blockchain abstraction additionally allows us to express a rough notion of time through chain growth,
and express “fairness” through chain quality.
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4.2 Our Ideas in a Nutshell
To clarify our contributions, the high-level idea of combining classical- and blockchain-style
consensus has been proposed before [9] or in concurrent work [15]. However, these earlier
works do not achieve responsiveness or are flawed (see Section 5 for detailed discussions).
Our hybrid consensus scheme is different in nature from these other works [9, 15] despite the
superficial resemblance in the high-level idea. We now explain intuitively how to derive our
hybrid consensus scheme step by step.

At a very high level, the idea is to run an underlying blockchain protocol denoted
snailchain – for the time being, imagine that we are running Nakamoto’s blockchain as the
snailchain. We rely on the blockchain to re-elect committees over time where each committee
consists of recently online miners. Each committee will now execute a classical, partially
synchronous consensus instance (e.g., PBFT) henceforth referred to as “daily consensus” to
confirm transactions. To periodically elect committees, we can do the following: whenever
the blockchain advances by λ number of blocks, we re-elect a committee in the following way:
1. first, chop off Θ(λ) number of trailing, unstable blocks; and
2. in the remaining chain, the most recent λ blocks’ miners’ are elected as the new committee.

Now, we make the following useful observations:
1. Due to the consistency property of the blockchain, as long as we removed the trailing

Θ(λ) blocks, except with negligible probability, all nodes will agree on the committee –
for this reason, removing the trailing Θ(λ) blocks is important, and previous works that
neglected this [15] could lead to inconsistency.

2. If the underlying blockchain satisfies 2
3 -chain quality, then in every window of λ consecutive

blocks in an honest node’s chain, at least 2
3 fraction of blocks that are contributed by

honest nodes (that have not received “target corrupt”).
3. Finally, due to chain growth, it does not take too long to re-elect each new committee.

To make our scheme fully work, however, various non-trivial challenges must be addressed,
including
1. how to achieve (near) optimal resilience;
2. how to smoothly switch between multiple daily consensus instances and compose their

output logs; and
3. how to deal with a posterior corruption attack.
As we discuss more in the Section 5, some earlier works [9,15] neglect a subset to all of these
issues, making their claims somewhat incomplete or flawed. We now discuss how to address
these non-trivial technicalities one by one.

Achieving optimal resilience. For near optimal resilience, our hope is that we can achieve
2
3 -chain quality as long as more than 2

3 of the nodes are honest (and have not received
“target corrupt”) – however, perhaps somewhat surprisingly, this is fact false for Nakamoto’s
blockchain! Due to a well-known selfish mining attack [12], Nakamoto’s blockchain in fact
does not achieve “perfect” chain quality. Specifically, for Nakamoto’s blockchain to achieve
2
3 chain quality, we must in fact assume that more than 3

4 of the nodes are honest!
To aid understanding, we briefly explain the selfish mining attack. When a corrupt node

mines a block, it withholds the block without releasing it to honest nodes. Later, when an
honest node mines a equal-length fork, the adversary now immediately releases his private
block to race against the honest node’s. If the adversary additionally controls network
delivery, he can perform a rushing attack such that his private fork is guaranteed to arrive
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first at other nodes, and thus everyone will now mine off the adversary’s private fork. Such
an attack effectively “erases” a portion of the honest node’s mining power, a direct effect of
which is degraded chain quality as mentioned above.

As argued above, if we use Nakamoto’s blockchain as the underlying snailchain, we can
tolerate only 1

4 corruption. However, our goal is to tolerate 1
3 − ε corruption and thus achieve

near optimal resilience. To this end, we rely on the recent Fruitchains [21] as a drop-in
replacement for Nakamoto’s blockchain, i.e., we will instantiate snailchain with Fruitchains [21].
Interestingly, Fruitchains realizes exactly the same abstraction as Nakamoto’s blockchain but
achieves near optimal chain quality – more specifically, it achieves this by piggybacking two
independent mining processes on top of each other, one for mining fruits, and one for mining
blocks. In Fruitchains, blocks contain fruits and fruits in turn contain transactions. One can
show that the underlying blockchain’s liveness guarantees that honest nodes’ work in mining
fruits cannot be erased by the adversary. Thus, if we regard the fruits as the new blocks,
Fruitchain achieves near optimal chain quality.

Switching between daily consensus instances. Another technicality is how to smoothly
transition between multiple daily consensus instances without causing “glitches” in responsive
transaction confirmation. To this end, our idea is the following: whenever the blockchain
advances by another λ number of blocks, we initiate a stopping procedure for the present
daily consensus instance while simultaneously starting the next daily consensus instance.
Since the stopping procedure may take some time to complete, during a short window, two
or more daily consensus instances may be executing concurrently. Although the new daily
consensus instance may start accumulating a log, we defer including this log in the output
until the previous daily consensus instance has fully terminated and its log fully output. It
is not hard to see that as long as this stopping procedure is responsive, all transactions will
confirm responsively without any glitches during the switch. In our online full version [20], we
show that subtle composition issues arise when composing multiple daily consensus instances.

On-chain stamping and posterior corruption defense. Although it takes a while for the
adversary to adaptively corrupt nodes, it is possible for the adversary to eventually corrupt
entire past committees. We would like to retain consistency even when entire past committees
can be corrupt – henceforth we refer to this problem as posterior corruption. The challenge
with posterior corruption is that the corrupt past committee can sign equivocating transac-
tions; and whenever a new node joins the protocol, it cannot distinguish which signature is
real and which signature was generated a-posteriori by a corrupt past committee – this can
lead to inconsistency. To defend against such a posterior corruption attack, we introduce
an on-chain stamping mechanism. When a committee completes its term of appointment
(where each term is said to be a day), it will propose hash of the daily log, signed by more
than 1

3 of the committee, to be stamped on the blockchain. Now, although the entirety of a
past committee can become corrupt sometime after its term of appointment and can sign
arbitrary messages of the past – at this point, these signatures will be too late to deceive
anyone, since the hash of the committee’s daily log will already be stamped on the blockchain,
and thus the corrupt committee of the past can no longer equivocate about their past daily
log unless they can find hash collisions.

4.3 Detailed Protocol
We present our protocol below but defer formal definition of building blocks and proofs
to the online full version [20]. For modular composition, we make use of a global signing
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functionality GΣ
sign (parametrized by a signature scheme Σ) shared by all protocol instance.

Gsign provides the following interfaces:
1. upon receiving keygen from a node i: Gsign calls Σ’s key generation to generate a new

(pk, sk) pair and returns pk;
2. upon receiving mykeys from a node i, output the set of all public keys that have been

generated for i;
3. upon receiving sign(pk,msg) from a node i, if pk was recorded as a public key generated

for i, call Σ.Sign(sk, (sid,msg)) where sid is the current session identifier, and sk is the
secret key corresponding to pk, and return the signature;

4. when i becomes corrupt: return all of node i’s secret keys to A.

4.3.1 Offchain BFT
We call each committee’s term of service a day. For modular protocol composition, we define
an intermediate abstraction called a daily offchain consensus protocol, denoted DailyBFT. In
DailyBFT, committee members run an offchain BFT instance to decide a daily log, whereas
non-members count signatures from committee members. A DailyBFT[R] parametrized by
the session identifier R (representing the day) has the following syntax.

Inputs and outputs. In each time step, the environment Z can provide the following types
of inputs multiple times:
1. start(comm) where comm = {pki}i∈[m];
2. TXs; and
3. stop.
Honest nodes output the following to Z:

In each time step t, honest nodes output to the environment Z notdone(logt), until in
one final step t∗, it outputs done(logt

∗
, recs), where recs is either ∅ or a set of signed

tuples vouching for the hash of the final daily log. After outputting done(logt
∗
, recs),

honest nodes stop outputting in future time steps.

Construction. In Figure 1, we construct DailyBFT from a “strongly secure BFT” protocol
denoted BFT. A strongly secure BFT protocol is a strengthening of the classical, property-
based definition of a state machine replication protocol – this strengthening is necessary to
defend against a selective opening attack as we discuss in more detail in our formal proofs in
the online full version. We give an overview of the protocol below.

BFT virtual nodes and selective opening of committee. When DailyBFT receives a
start(comm) command, if comm contains one or more of its own public keys, then the
node is elected as a committee member. In this case, the node will fork a BFT virtual
node for each public key in comm that belongs to itself. Here the committee is selectively
opened by the environment through the start(comm) command, later our proof will
need to leverage the strong security of BFT.
Member and non-member basic operations. Committee members populate their daily logs
relying on the BFT protocol, whereas committee non-members count signatures from
committee members to populate their logs.
Termination. Nodes implement a termination procedure as follows: whenever an honest
committee member receives a stop instruction, it inputs a special, signed stop transaction
to each of its BFT virtual node. As soon as the inner BFT instance outputs a log containing
stop transactions signed by at least d|comm|/3e distinct committee public keys, the log is
finalized and output. All transactions after the first d|comm|/3e stop transactions (with
distinct committee public keys) are ignored.
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Signed daily log hashes. When committee members output done, they also output a
signed digest of the final daily log – later, our HybridConsensus protocol will stamp this
digest onto the snailchain.

4.3.2 Hybrid Consensus
We now describe our hybrid consensus protocol built on top of a blockchain protocol
denoted snailchain. The description of our hybrid consensus relies on snailchain being any
protocol that realizes an abstract blockchain (see Section 4.1). For conceptual simplicity, we
recommend that the reader first think of snailchain as being Nakamoto’s original blockchain
protocol [13,18,19]. However, later we will actually plug in the Fruitchains [21] protocol as a
drop-in replacement of Nakamoto to instantiate snailchain. Since Fruitchains [21] has near-
optimal chain quality, the resulting hybrid consensus protocol, instantiated with Fruitchains,
will have almost-optimal resilience.

Hybrid consensus consumes multiple instances of DailyBFT where rotating committees
agree on daily logs. Hybrid consensus primarily does the following:

It manages the spawning and termination of DailyBFT instances effectively using snailchain
as a global clock that offers weak synchronization among honest nodes;
Recall that each DailyBFT instance does not ensure security for nodes that spawn too late,
since committee members can become corrupt far out in the future at which point they
can sign arbitrary tuples. Therefore, hybrid consensus introduces an on-chain stamping
mechanism to extend security guarantees to even nodes that spawn late.

Figure 2 is an algorithmic description of the HybridConsensus protocol. Each node
maintains a history of all past transcripts denoted history – we assume this for simplicity of
formalism, and it can be optimized away in practice. Nodes that newly spawn obtain the
historical transcripts instantly (in practice this can be instantiated by having honest nodes
offer a history retrieval service). When a new node spawns, it populates its LOG as follows:

Matching on-chain valid tuples. A newly spawned node first identifies all on-chain valid
tuples of the form (R, h), where R is the day number and h is the hash of the daily
log. Then, the node will search history and identify an appropriate daily log logR that is
consistent with h. The node populates LOG with these daily logs. This on-chain matching
process effectively provides a safe mechanism for a newly spawned node to catch up and
populate old entries of its output LOG.
Through daily offchain consensus. Once this catch-up process is complete, the node will
henceforth rely on DailyBFT instances to further populate remaining entries of its output
LOG. In each DailyBFT instance, a node can act as a committee member or non-member.
To do this, a node monitors its chain from the snailchain instance. As soon as the chain
length exceeds csize·R+λ, the R-th day starts, at which point the node inputs stop to the
previous DailyBFT[R−1] instance (if one exists), and inputs start(MinersOf(chain[lower(R) :
upper(R)])) to the DailyBFT[R] instance. There is typically a period of overlap during
which both DailyBFT[R− 1] and DailyBFT[R] instances are running and outputting daily
logs simultaneously. When nodes assimilate their daily logs into the final output LOG,
they make sure that LOG is always contiguous leaving no gaps in between. Due to the
timely termination property of DailyBFT, the old DailyBFT[R− 1] will terminate fairly
soon at which point the new DailyBFT[R] instance fully takes over.

Concrete instantiation. The recent work Fruitchains [21] showed the following informal
theorem: under a corruption budget of ρ < 1

2 (where ρ is a constant), for any τ ≥ 0, and any
arbitrarily small positive constant η, there is a blockchain protocol (called Fruitchains) in the
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Subprotocol DailyBFT[R]

On input init: ` := 0, log := ∅, henceforth let mykeys be an alias for Gsign.mykeys

On input stop : for each BFTpk virtual node forked: input TXs := {{stop}pk−1} to BFTpk

On input start(comm): if mykeys ∩ comm 6= ∅: isMember = true, else isMember = false

Case isMember = true

For each pk ∈ mykeys ∩ comm: fork a BFT virtual node, and BFT.start(pk, comm).
// henceforth this BFT virtual node is denoted BFTpk

On input TXs: input TXs to each BFT virtual node forked

Let BFT0 denote the first such BFT virtual node forked

Let complete(log) = true iff log contains stop correctly signed by th := d|comm|/3e
distinct pks in comm

Every time step t if start has been received and done has not been output:
Receive output log∗ from BFT0

If complete(log∗) then log∗ := shortest prefix of log∗ such that complete(log∗)
For each tx ∈ log∗ − log that is not a stop transaction:
Let ` := `+ 1, for each pk ∈ mykeys ∩ comm: gossip {R, `, tx}pk−1

log := log∗

If complete(log): call Finalize; else output notdone(log)

Finalize:
recs := ∅, remove all stop transactions from log
For each pk ∈ mykeys ∩ comm: let x := {R, hash(log)}pk−1 , recs := recs ∪ {x}, gossip x
Output done(log, recs), and stop outputting in future time steps.

Case isMember = false

On receive {R, `}pk−1 or {R, `, tx}pk−1 : add message to history and check the following:

On collect (r, `, tx) and signatures s.t. r = R and th := d|comm|/3e distinct pks
in comm signed the tuple correctly:
If log[`] has not been set, let log[`] := tx

On collect (r, `) and signatures s.t. r = R and th := d|comm|/3e distinct pks
in comm signed the tuple correctly:
Wait till log[: `] all populated
Output done(log, ∅), and stop outputting in future time steps.

Each time step until done is output:
let log′ := longest contiguous prefix of log, output notdone(log′)

Figure 1 Daily offchain consensus protocol. All signing operations are achieved by calling
Gsign.sign which signs the message tagged with the session identifier.
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Protocol HybridConsensusλ, parametrized by λ

On init: let R := 0, LOGs := ∅, LOG := ∅, csize := λ, let the “warmup window” W0 := 2λ.

Mempools:
Fork an instance of mempool denoted snailpool that stores pending records for snailchain.
Fork another instance of mempool that stores pending transactions, denoted txpool.
On input TXs: txpool.propose(TXs).

Snailchain: Fork an instance of snailchain, in each time step:
let chain denote the current local chain
let pk := Gsign.keygen
let recs := snailpool.query(ExtractRecs(chain[: −λ])), input (recs, pk) to snailchain

Preprocess:
Wait till |chain| ≥W0

L := Find in history maximal, ordered list of (R, logR) tuples such that R is incrementing
with no gaps, and (R, hash(logR)) is on-chain valid w.r.t. chain
LOG := log1||log2|| . . . ||log|L|

Daily Offchain Consensus:
Let R := |L|
Loop:
Wait till |chain| ≥ upper(R+ 1) + λ, let R := R+ 1
Let commR := MinersOf(chain[lower(R) : upper(R)]) where MinersOf parses each block as
(recsi, pki) and returns a list containing all pkis
If an instance DailyBFT[R− 1] was started, DailyBFT[R− 1].stop
DailyBFT[R].start(commR)

Each time step: let TXs := txpool.query(LOG), input TXs to DailyBFT[R]

Output: In each time step: let R denote the current day. Let isdone(r) = true if DailyBFT[r]
has output done in this or earlier time steps.

If DailyBFT[R − 1] outputs done(log−1, recs) in this time step: LOGs := LOGs||log−1,
snailpool.propose(recs)
Let log−1 and log be the output logs of DailyBFT[R− 1] and DailyBFT[R] in this time
step respectively (or ∅ if nothing is output)
If isdone(R− 1): LOG := LOGs||log; else LOG := LOGs||log−1. Output LOG

On-chain valid: A tuple (R, h) is on-chain valid w.r.t chain iff the following holds
For at least 1

3 fraction of distinct pk ∈ MinersOf(chain[lower(R), upper(R)]):
{R, h}pk−1 is the first occurrence in chain[: −λ] where pk signed some tuple of
the form (R,_).

Figure 2 Main HybridConsensus protocol. A newly spawned, honest node starts running this
protocol. We assume history is the set of all historical transcripts sent and received. We assume that
message routing to subprotocol instances is implicit: whenever any subprot[sid] instance is forked,
history[subprot[sid]] and protocol messages pertaining to subprot[sid] are automatically routed to the
subprot[sid] instance.
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proof-of-work model that satisfies consistency, (1− η)(1− ρ)-chain quality, and ( 1
c0∆ ,

1
c1∆ )

for appropriate constants c0 and c1. As mentioned, although the original Fruitchains work
assumes a pre-determined and fixed n, it is straightforward to extend their result to the
case when n can vary by a known constant factor, and moreover the protocol knows only an
estimate of n that can be off by a known constant factor (see our full version for details [20]).

We will instantiate hybrid consensus with Fruitchains as the underlying snailchain, since
Fruitchains has almost ideal chain quality. If we do so, and assuming that the agility
parameter τ is sufficiently large, we have the following theorem whose proof is deferred to
the online full version [20].

I Theorem 4 (Hybrid consensus over Fruitchains). Assume the existence of a proof-of-work
oracle and one-way functions. Further, assume that τ > Cλ∆ for some appropriate constant
C, and assume that the adversary is subject to ρ < 1

3 corruption budget where ρ is a
constant. Then, there exists a permissionless consensus protocol that achieves consistency
and (Twarm, Tconfirm)-liveness for Twarm = O(λ∆) and Tconfirm = O(λδ).

5 Related Work

Although the idea of combining permissionless consensus and permissioned consensus has
been discussed in the community (e.g., the recent work by Decker et al. [9] and the concurrent
and independent work ByzCoin [15]), these other works are of a different nature. The
concurrent work ByzCoin [15] (Usenix Security’16) does not remove trailing unstabilized
blocks from the blockchain for committee election; consequently the nodes may not agree
on the committee (and thus consistency can be broken). Although their paper claims to
tolerate 1

3 corruption, the claim is incorrect – due to a well-known selfish mining attack, the
adversary can control up to a half of the blocks under 1

3 corruption, and thus the adversary
will control a half of the committee in Byzcoin. Indeed, the authors of Byzcoin themselves
acknowledged flaws of their protocol in subsequent blog posts [1, 2], and acknowledged that
they need to rely on some of our ideas to fix their incorrect claim. Even with the fixes in
their blog posts, it remains unclear what properties their protocol guarantees since they
do not offer formal proofs of security – for example, their protocol overlooks the issue of
posterior corruption which, as we show, requires non-trivial techniques to handle. The prior
work by Decker et al. [9] does not aim to achieve responsiveness which is our primary goal.
Specifically, Decker et al. [9] relies on classical consensus such as PBFT to vote on each block
as it is mined – thus they have to wait for at least one “block interval”. Moreover, Decker
et al.’s blockchain variant [9] suffers from the same type of selfish mining attack [12] that
Nakamoto’s blockchain is prone to. Thus, they cannot tolerate 1

3 corruption due to degraded
chain quality.

Earlier works on permissioned consensus have also considered group reconfiguration.
For example, Vertical Paxos [16] and BFT-SMART [8] allow nodes to be reconfigured in a
dynamic fashion. These works consider group reconfiguration for a related but somewhat
different purpose. A line of research starting from Dolev et al. [10] investigated Byzantine
agreement protocols capable of early-stopping when conditions are more benign than the
worst-case faulty pattern: e.g., the actual number of faulty nodes turns out to be smaller
than the worst-case resilience bound. However, these works are of a different nature: First,
these earlier works focus on stopping in a fewer number of synchronous rounds, and it is not
part of their goal to achieve responsiveness. Second, although some known lower bounds [10]
show that the number of actual rounds must be proportional to the actual number of faulty
processors – these lower bounds work only for deterministic protocols, and thus they are not
applicable in our setting.
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The concurrent work SPETRE [22] also aims to achieve responsiveness in permissionless
consensus by relaxing the consistency requirement. The subsequent work Solidus [4] aims to
achieve responsive permissionless consensus and additionally obtain incentive compatibility
guarantees – their paper does not precisely articulate under what model their protocol
retains security, but all the lower bounds we prove should apply to their setting, so even if
their protocol could be proven secure, it would require the same type of restrictions on the
model that we impose. Their incentive compatibility guarantees are heuristic and without
a formal proof [3] – we also point out for regarding incentive compatibility, by combining
the reward distribution mechanism proposed in Fruitchains [21] with Hybrid Consensus,
it is straightforward how to distribute rewards in a manner that provably achieves ε-Nash
equilibrium against any 1

3 − ε
′ coalition. This means that no attacker wielding less than

1
3 hashpower can gain more than ε fraction more rewards than its fair share even if he is
allowed to arbitrarily deviate from the honest protocol. We leave it as an open question how
to provably achieve strict Nash equilibrium.

Acknowledgements. We would like to thank the reviewers for their insightful comments,
especially Christian Cachin whose feedback was critical in helping us improve the paper.
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Abstract
Providing clean and efficient foundations and tools for reconfiguration is a crucial enabler for dis-
tributed system management today. This work takes a step towards developing such foundations.
It considers classic fault-tolerant atomic objects emulated on top of a static set of fault-prone
servers, and turns them into dynamic ones. The specification of a dynamic object extends the
corresponding static (non-dynamic) one with an API for changing the underlying set of fault-
prone servers. Thus, in a dynamic model, an object can start in some configuration and continue
in a different one. Its liveness is preserved through the reconfigurations it undergoes, tolerating
a versatile set of faults as it shifts from one configuration to another.

In this paper we present a general abstraction for asynchronous reconfiguration, and exemplify
its usefulness for building two dynamic objects: a read/write register and a max-register. We first
define a dynamic model with a clean failure condition that allows an administrator to reconfigure
the system and switch off a server once the reconfiguration operation removing it completes.
We then define the Reconfiguration abstraction and show how it can be used to build dynamic
registers and max-registers. Finally, we give an optimal asynchronous algorithm implementing
the Reconfiguration abstraction, which in turn leads to the first asynchronous (consensus-free)
dynamic register emulation with optimal complexity. More concretely, faced with n requests for
configuration changes, the number of configurations that the dynamic register is implemented
over is n; and the complexity of each client operation is O(n).
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1 Introduction

The goal of this paper is to take a static fault-tolerant object like an atomic read/write
register and turn it into a dynamic fault-tolerant one. A static object exposes an API (e.g.,
read/write) to its clients, and is emulated on top of a set of fault-prone servers (sometimes
called base objects) via protocols like ABD [5]. We refer to the underlying set of fault-prone
servers as a configuration. To convert a static object into a dynamic one, we first extend the
object’s API to support reconfiguration. Such an API is essential for administrators, who
should be able to remove old or faulty servers and add new ones without shutting down
the service. One of the challenges in formalizing dynamic models is to define a precise fault
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condition, so that an administrator who requests to remove a server s via a reconfiguration
operation will know when she can switch s off without risking losing the object’s state (e.g.,
the last written value to a read/write register).

To this end , we first define a clean dynamic failure model, in which an administrator
can immediately switch a server s off once a reconfiguration operation that removes s

completes. Then, we provide an abstraction for consensus-less reconfiguration in this
model. To demonstrate the power of our Reconfiguration abstraction we use it to implement
two dynamic atomic objects. First, we focus on the basic building block of a read/write
register; thus, other (static) objects that can be emulated from read/write registers (e.g.,
atomic snapshots) can be made dynamic by replacing the underlying registers with dynamic
ones. Second, we emulate a max-register [4], which on the one hand can be implemented
asynchronously [5, 12] (on top of fault-prone servers), and on the other hand cannot be
emulated (for an unbounded number of clients) on top of a bounded set of read/write
registers1 [12, 4]. Thus, a standalone implementation of dynamic max-registers is required.

Complexity. We present an optimal-complexity implementation of our Reconfiguration
abstraction in asynchronous environments, which in turn leads to the first optimal imple-
mentation of a dynamic read/write register in this model. More concretely, faced with n

administrator reconfiguration requests, the number of configurations that the dynamic object
is implemented over is n; and the number of rounds (when the algorithm accesses underlying
servers) per client operation is O(n). A comparison with previous solutions appears in
Section 2.

Dynamic fault model. In Section 3 we provide a succinct failure condition capturing a
versatile set of faults under which the dynamic object’s liveness is guaranteed. We define
the dynamic fault model as an interplay between the object’s implementation and its
environment: New configurations are introduced by clients, (which are part of the object’s
environment). The object implementation then activates the requested configuration, at which
point old configurations are expired. Between the time when a configuration is introduced
and until it is expired, the environment can crash at most a minority of its servers. For
example, when reconfiguring a register from configuration {A, B, C} into {D, E, F}, initially
a majority of {A, B, C} must be available to allow read/write operations to complete. Then,
when reconfiguration is triggered, {D, E, F} is introduced, and subsequently, majorities of
both configurations must be available, to allow state-transfer to occur. Finally, when the
reconfiguration operation completes, leading to {D, E, F}’s activation, {A, B, C} is expired,
and every server in it may be immediately shutdown.

Reconfiguration abstraction. Since a configuration is a finite set of servers, we can use
ABD [5] to emulate in each configuration a set of (static) atomic read/write registers (as
well as max-registers), which are available as long as the configuration is not expired. The
Reconfiguration abstraction, in contrast, is not tied to a specific configuration, but rather
abstracts away the coordination among clients that wish to change the underlying set of
servers (configuration) emulating the dynamic object. Its specification, which is formally
defined in Section 4, exposes two API methods, Propose and Check. Clients use Propose
to request changes to the configuration, and Check to learn of changes proposed by other

1 A max-register for k clients requires at least k read/write registers [12].
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(a) Dynamic atomic read/write register on top
of the Reconfiguration abstraction.

(b) Dynamic atomic max-register on top of the
Reconfiguration abstraction.

Figure 1 The Reconfiguration abstraction usage. Solid (dashed) blocks depict dynamic (resp.
static) objects.

clients. Both return a configuration and a set of speculations. The returned configuration
reflects all previous proposals and possibly some ongoing ones. The less obvious return value
of Reconfiguration is the speculation set. This set is required since there is no guarantee that
all clients see the same sequence of configurations (indeed, Reconfiguration is weaker than
consensus). Therefore, a dynamic object implementation that uses Reconfiguration needs to
read from every configuration that Check returned to any other client, and transfer the most
up-to-date value read in any of these to the new configuration returned from Check. To this
end, Reconfiguration returns a speculation set that includes all configurations previously
returned to all clients (and possibly additional proposed ones).

In Section 5, we implement (1) a dynamic atomic read/write register on top of the Recon-
figuration abstraction and static atomic ranked registers [11] (one in every configuration), and
(2) a dynamic atomic max-register on top of Reconfiguration and static atomic max-registers.
See Figure 1 for illustrations. In Section 6 we give an optimal consensus-less algorithm for
Reconfiguration, which together with the read/write register emulation of Section 5 yields
an optimal dynamic read/write register algorithm.

In summary, this paper makes three contributions: it defines a failure condition that
allows an administrator to shutdown removed servers; it introduces the Reconfiguration
abstraction, which captures the essence of reconfiguration; and it presents an asynchronous
optimal-complexity solution for dynamic atomic registers. Section 7 concludes the paper,
and formal correctness proofs of all algorithms are given in the full paper [25].

2 Related Work

Model. The problem of object reconfiguration has gained growing attention in recent
years [15, 20, 3, 21, 18, 14, 24, 13, 23, 17, 22, 6, 7]. However, dynamic failure models do
not always make it clear when exactly an administrator can shutdown a removed server.
Early works supporting dynamic objects [20, 15, 10] simply assume that a configuration
is available as long as some client may try to access it. SmartMerge [18] uses a shared
non-reconfigurable auxiliary object (lattice agreement) that is forever available to all clients,
meaning that a majority of the servers emulating this auxiliary object can never be switched
off. DynaStore [3] was the only previous work to define dynamic failure conditions based
on a reconfiguration API, but these conditions are complicated, and restrict reconfiguration
attempts as well as failures. Moreover, DynaStore does not separate clients from servers as

DISC 2017



40:4 Dynamic Reconfiguration: Abstraction and Optimal Asynchronous Solution

we do here. Following [13, 18], we formulate the problem in shared memory, which makes it
easier to reason about and clearer.

Other works [6, 7] assume a broadcast mechanism for announcing joins instead of an API
for adding and removing processes, and bound the rate of changes of the underlying set of
servers; the latter is necessary if one wants to ensure liveness for all operations (as [6] does) –
no asynchronous reconfigurable service can ensure liveness unless the reconfiguration rate is
limited in some way [23]. Like many earlier works [3, 13, 18], we do not explicitly bound
the reconfiguration rate, and hence ensure liveness only if the number of reconfigurations is
finite.

Abstractions. All previous works have considered reconfiguration in some specific context –
state machine replication [19, 8, 9], read/write register emulation [3, 18, 13, 15], or atomic
snapshot [22]. To the best of our knowledge, this work is the first to specify general dynamic
objects as extensions of their static counterparts and to provide a general abstraction for
dynamic reconfiguration. We note that although [13] define a reconfigure primitive intended
to capture the core reconfiguration problem, that primitive is not sufficiently strong for
implementing an atomic register, (in particular, since it does not require real-time order),
and indeed, they do not implement their atomic register on top of it.

Dynamic register complexity. In a recent non-refereed tutorial [24], we give a generic
formulation that allows us to compare the complexity of different algorithms [15, 20, 18, 13, 3],
as follows: Given that n is the number of proposed configuration changes and m is the total
number of operations (read/write/reconfig) invoked on the atomic register, DynaStore [3] goes
through O(min(mn, 2n)) configurations, and requires a constant number of operations in every
configuration, so O(min(mn, 2n)) is also DynaStore’s operation complexity. Parsimonious
SpSn [13] reduces the number of traversed configurations to O(n), but since they invoke a
linear number of operations in every configuration, their total operation complexity is O(n2).

Now notice that it is always possible to stagger reconfiguration proposals in a way that
forces the system to go through Ω(n) configurations. The asymptotically optimal O(n)
operation complexity is straightforward to achieve in consensus-based solutions [15, 20, 10].
This complexity was also achieved by SmartMerge [18], but this was done using an auxiliary
object that was assumed to be live indefinitely, i.e., was not reconfigurable in itself. Our
algorithm is the first consensus-free and fully reconfigurable dynamic register algorithm with
optimal complexity.

3 Dynamic Model

We consider a fault-prone shared memory model [16]: The system consists of an infinite set
Π of clients (sometimes called processes), any number of which may fail by crashing, and an
infinite set Φ of servers (sometimes called base objects) supporting arbitrary atomic low-level
objects. Clients access servers via-low level operations (e.g., read/write), which may take
arbitrarily long to arrive and complete, hence the system is asynchronous.

We address in the paper two atomic objects: a classical fault tolerant read/write register
and a max-register [4]. Both registers provide clients with two API methods: Read and
Write in case of read/write register, and MRead and MWrite in case of max-register. In a
well-formed execution, a client invokes API methods one at a time, though calls by different
clients may be interleaved in real time. For a well-formed execution, there exists a serialization
of all client operations that preserves the operations’ real time order, such that (1) in case of
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read/write register a Read returns the value written in the latest Write preceding it, or ⊥ if
there is no preceding Write; and (2) in case of max-register an MRead returns the highest
value written by an MWrite that precedes it, or ⊥ if there is no preceding MWrite. (In case
of max-registers, the values domain is ordered.)

Configurations. The universe of servers is infinite, but at any moment in time, a client
chooses to interact with a subset of it. In our model, a configuration is a set of included and
excluded servers, where configuration membership is the set of included and not excluded
servers in the configuration. Formally:

Changes , {+s | s ∈ Φ} ∪ {−s | s ∈ Φ}
Configuration , subset of Changes
C.membership , {s | +s ∈ C ∧ −s 6∈ C}

For example C = {+s1, +s2,−s2, +s3} is a configuration representing the inclusion of
servers s1, s2, and s3, and the exclusion of s2, and C.membership is {s1, s3}. Tracking
excluded servers in addition to the configuration’s membership is important in order to
reconcile configurations suggested by different clients. The configuration size is the number
of changes it includes– in this example, |C| = 4.

Dynamic fault model. A dynamic fault model is an interplay between the adversary’s
power and the following events, which are invoked as part of client operations:

introduce(C): indicates that C is going into use; and
activate(C): indicates that the state transfer to C is complete.

By convention we say that the initial configuration Cinit is introduced and activated at
time 0.

The above events govern the life-cycle of configurations. A configuration C becomes
activated once an activate(C) event occurs. Note that not all introduced configurations are
necessarily activated at some point. A configuration C becomes expired once activate(D)
occurs s.t. C does not contain D. Intuitively, D reflects events (inclusions or exclusions)
that are not reflected in C, and hence C has become “outdated”. Our algorithm will enforce
a containment order among activated configurations, and will thus ensure that the latest
activated one is not expired.

The following two conditions constrain the power of the adversary:

I Definition 1 (liveness conditions).
Availability: The adversary can crash at most a minority of C.membership between the time

when introduce(C) occurs and until C is expired.
Weak Oracle: When a client interacts with an expired configuration C, it either receives

responses to calls from a majority of C.membership, or returns an exception notification
〈error, D〉 for some activated D, where C 6⊇ D.

Note that such an oracle (sometimes called directory service) is inherently required in
order to allow slow clients to find non-expired configurations in an asynchronous system
where old configurations may become unavailable [2, 22]. Our oracle definition is weak– in
particular, the activated configuration it returns may itself be expired, and different clients
may get different responses; it can be trivially implemented using a broadcast mechanism
as assumed in some previous works [6, 7], and trivially holds if configurations must remain
available as long as some client may access them, as in other previous works [15, 20, 10].
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Static versus dynamic objects. A static object is one in which clients interact with a fixed
configuration. In order to disambiguate a static object, scoped within a configuration C,
from a dynamic one, we will label the methods of a static object with a “C.”. For every
configuration C, as long as a majority of C.membership is alive, clients can use ABD [5] to
emulate (static) atomic registers on top of the servers in C.membership. We denote:

C.x← value A Write(value) operation to register x in configuration C

C.x A Read of x

C.collect(array) A bulk Read of all the registers in array

Since a complete array can be collected from servers using ABD in the same number of
rounds as reading a single variable, we count a collect as a single operation for complexity
purposes. Note that each register in the array is atomic in itself, but the collect is not atomic.

The methods of a dynamic object are not scoped with any configuration; it can start
in some configuration and continue in a different one. A dynamic object’s API includes a
ChangeConfig operation that allows clients to change the set of servers implementing the
object. The implementation of ChangeConfig is object-specific, because it needs to transfer
the state of the object across configurations, e.g., the last written value in case of an atomic
register.

Clients pass to ChangeConfig a parameter Proposal ⊂ Changes containing a proposed set
of configuration changes. ChangeConfig returns a configuration C s.t. (1) C is activated, (2)
C ⊇ Proposal, and (3) every configuration introduced or activated by ChangeConfig consists
of Cinit plus a subset of changes proposed by clients before the operation returns.

The liveness guarantee of a dynamic object is that, assuming the number of ChangeConfig
proposals is finite, every correct client’s operation eventually completes. Note that if the
number of ChangeConfig proposals is infinite, it is impossible to ensure liveness for all
operations [23].

Usage example. Consider an administrator (a privileged client) who wants to switch
server s off and invokes ChangeConfig({−s}). By liveness, ChangeConfig completes, and
by properties (1) and (2), it returns an activated configuration C ⊇ {−s}. The activation
of C expires all configurations that do not contain C, and in particular, those that do not
include −s. Hence, s is not part of the membership of any unexpired configuration, and
by the availability condition, the administrator can safely switch s off immediately once
ChangeConfig({−s}) returns.

4 Reconfiguration Abstraction

We introduce a generic reconfiguration abstraction, which can be used for implementing
dynamic objects as we illustrate in the next section. A Reconfiguration abstraction has two
operations:
Propose(C, P ) for a configuration C and a proposed set of changes P ; and
Check(C) for a configuration C.

Propose is used to reconfigure the system, whereas Check is used in order to learn about
other clients’ reconfiguration attempts. Propose and Check invoke the introduce and activate
events. Both Check and Propose return a pair of values 〈D, S〉, where D is a configuration
and S is a speculation set containing configurations; when 〈D, S〉 is returned we say that D

is nominated by the operation that returns it. Intuitively, a nominated configuration is one
that has been introduced and is a candidate for activation. By convention, we say that Cinit
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is nominated at time 0. We assume that the first argument passed to both operations is a
nominated configuration.

The first propert of Reconfiguration is validity, which (i) requires Propose(C, P ) to include
P in the returned nominated configuration; and (ii) does not allow configurations to include
spurious changes not proposed by any client. Formally:
D1 (Validity) (i) If Propose(C, P ) returns 〈D, S〉 for some S, then D ⊇ P , and (ii) for

every configuration D that is introduced or nominated by an operation op, for every
e ∈ D \Cinit, there is a Propose(C ′, P ′) for some C ′ that is invoked before op returns s.t.
e ∈ P ′.

The second property ensures that nominated configuration sizes monotonically increase
over time, which is essential for real-time order of operations invoked on objects that use
this abstraction:
D2 (Real-time Order) A configuration D nominated by operation op is larger than or equal

to every configuration nominated by an operation that strictly precedes op.

Since Reconfiguration is weaker than consensus, clients do not agree on a sequence of
nominated configurations. Hence, in case some client c1 proceeds to a configuration C ′, we
want to ensure that if another client c2 “skips” C ′, c2 has C ′ in its speculation set, and
can thus transfer any state that c1 may have written there to the newer configuration c2
nominates. This is captured by property S1(ii) below. Property S1(i) stipulates that these
configurations are also introduced, ensuring a live majority in these configurations in order
to allow state transfer.

S1 (Speculation) If Check(C) or Propose(C, P ) returns 〈D, S〉, then every C ′ ∈ S is (i)
introduced and (ii) S includes all nominated configurations C ′ s.t. |C| ≤ |C ′| ≤ |D|. As a
practical matter, if any C ′ between C and D has been activated, any C ′′ s.t. |C ′′| < |C ′|
may be omitted.

In addition, we have to define when configurations are activated. Note that an activation
of a new configuration leads to expiration of old ones, and thus to possible loss of information
stored in them. Therefore, a configuration D is not immediately activated when a Propose
returns 〈D, S〉 for some S. Instead, a configuration C is activated if Check(C) does not
report any newer configuration:
A1 (Activation) If Check(C) returns 〈C, S〉 for some S, then C is activated.

The liveness property of Reconfiguration is the same as in other dynamic objects [3, 18,
13, 22], namely, if the number of Propose operations is finite, then every operation by a
correct client completes.

5 Building Dynamic Objects Using Reconfiguration

We first present a dynamic atomic read/write register emulation using Reconfiguration, and
then explain the modifications needed for supporting a dynamic atomic max-register [4]. A
formal proof is provided in the full paper [25].

5.1 Dynamic atomic read/write register
Besides the Reconfiguration abstraction, our dynamic register implementation uses a (static)
ranked register [11] emulation in every configuration, as illustrated in Figure 1a. A ranked
register stores a tuple, called version, that consists of a value v and a monotonically increasing
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Algorithm 1 Dynamic atomic read/write register using Reconfiguration.

Client local variables:
1: configuration Ccurr, initially Cinit

2: T S = N×Π with selectors num and id

3: version ∈ V× T S with selectors v and ts, initially 〈v0, 〈0,client’s id〉〉
4: pickTS ∈ {true, false}, initially true.

Code for client ci ∈ Π:

5: Read()
6: transferState(Check(Ccurr),⊥)
7: checkConfig()
8: return version.v

9: Write(v)
10: transferState(Check(Ccurr), v)
11: checkConfig()
12: pickTS← true

13: return ok

14: ChangeConfig(P)
15: transferState(P ropose(Ccurr, P ),⊥)
16: checkConfig()
17: return Ccurr

18: On 〈error, D〉 do
19: Ccurr ← D

20: restart operation

21: procedure checkConfig()
22: 〈D, S〉 ← Check(Ccurr)
23: while D! = Ccurr do
24: transferState(〈D, S〉,⊥)
25: 〈D, S〉 ← Check(Ccurr)

26: procedure transferState(〈D, S〉, value)
27: for each C ∈ S do
28: tmp← C.RRRead()
29: if tmp.ts > version.ts then
30: version← tmp

31: if value 6= ⊥ ∨ pickTS = true then
32: version ← 〈value, 〈version.ts.num +

1, i〉〉
33: pickTS← false
34: D.RRWrite(version)
35: Ccurr ← D

timestamp ts, and supports RRRead() and RRWrite(version) operations. The sequential
specification of a ranked register is following: An RRRead() returns the version with the
highest ts written by an RRWrite that precedes it, or ⊥ if there is no preceding RRWrite.
Like all static objects in our model, if the configuration where the ranked register is emulated
expires, the oracle returns an error.

The basic framework for implementing the Read, Write, and ChangeConfig operations
is a loop: (i) Check, (ii) read (using RRread) the highest version from all speculated
configurations returned by Check, (iii) write (with RRWrite) the highest version to the
configuration nominated by Check, (iv) repeat. The loop terminates when Check does not
nominate a new configuration. The specific action of each of the three operations is as
follows. A Read simply returns the value of the highest version at the end of the loop. A
Write increments the timestamp and writes it with a new value at the beginning of the loop.
ChangeConfig proposes a configuration change via Propose instead of Check in the first
iteration.

The pseudocode appears in Algorithm 1. The transferState method reads the register’s
version from the entire speculation set S and writes the latest version to the new configuration
D. The checkConfig method repeatedly calls transferState until the configuration returned by
Check stops changing. During the loop execution, an operation on an expired configuration
may incur an exception, with a notification of the form 〈error, D〉 (see line 18). In this
case, the loop is aborted and the operation starts over at configuration D. In case write is
restarted after it has chosen a new timestamp, it skips the timestamp selection step.
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Algorithm 2 Dynamic atomic max-register using Reconfiguration.

Client local variables:
1: configuration Ccurr, initially Cinit

2: value ∈ V, initially v0

Code for client ci ∈ Π:

3: MRead()
4: transferState(Check(Ccurr),⊥)
5: checkConfig()
6: return value

7: MWrite(v)
8: transferState(Check(Ccurr), v)
9: checkConfig()
10: return ok

11: ChangeConfig(P)
12: transferState(P ropose(Ccurr, P ),⊥)
13: checkConfig()
14: return Ccurr

15: On 〈error, D〉 do
16: Ccurr ← D

17: restart operation

18: procedure checkConfig()
19: 〈D, S〉 ← Check(Ccurr)
20: while D! = Ccurr do
21: transferState(〈D, S〉,⊥)
22: 〈D, S〉 ← Check(Ccurr)

23: procedure transferState(〈D, S〉, v)
24: if v 6= ⊥ then
25: value← v

26: for each C ∈ S do
27: tmp← C.MRead()
28: if tmp > value then
29: value← tmp

30: D.MWrite(value)
31: Ccurr ← D

We say that a configuration C becomes stable when some version is written to C in step
(iii). We refer to the first version written to C as the opening version of C. Consider a
completed operation (Read, Write, or ChangeConfig) op and let C be the last configuration
in which op writes some version v, we say that op commits v in C when it completes. The
correctness of the register emulation, proven in the full paper [25], is based on the following
key invariant:

I Invariant 2. For every stable configuration C, the opening version of C is higher than or
equal to the highest version committed in any configuration C ′ s.t. |C ′| < |C|.

In other words, a larger stable configuration always holds a newer (or equal) version of the
register’s value than that committed in a smaller activated one.

Complexity. We measure complexity in terms of the number of accesses to low level objects,
namely static atomic registers. Note that Read/Write/collect operations on static registers
are emulated in a constant number of rounds using ABD. The complexity of the dynamic
register’s operations is determined by (1) the complexity of the operations inside the Checks
invoked during the loop (plus possibly one Propose); and (2) the sum of the sizes of all
speculation sets returned by Propose/Check operations in this loop (where the register’s
implementation performs Reads).

In a run with n ChangeConfig proposals, clearly, the best complexity we can hope for is
O(n). In the next section we present our algorithm for Reconfiguration, which achieves the
asymptotically optimal O(n) complexity.
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5.2 Dynamic atomic max-register
The emulation of a max-register on top of Reconfiguration is similar to the read/write register
emulation. It differs in how we keep and transfer the state, i.e., the register’s value. First,
instead of a (static) ranked register in each configuration, we use a (static) max-register.
Second, instead of timestamps, we use the actual written values, that is, a writer writes
its value in step (iii) only if it is higher than all the values read in step (ii) (Otherwise, it
transfers the highest value it read). The pseudocode appears in Algorithm 2.

6 The Reconfiguration Abstraction Implementation

In this section we present an optimal and modular Reconfiguration implementation. In
Section 6.1 we introduce the Common Set (CoS) building block, which is used by the
Reconfiguration abstraction in every configuration. In Section 6.2 we show how CoS is used
for non-optimal Reconfiguration and give the main correctness argument. In Section 6.3 we
optimize the algorithm and give the main complexity and correctness claims. Formal proofs
can be found in the full paper [25].

6.1 CoS building block
The Common Set (CoS) building clock is a static shared object, emulated in every config-
uration C over a set of (static) registers. Its API consists of a single operation, denoted
C.CoS(P), where P is a set of arbitrary values. C.CoS returns an output set of sets satisfying
the following:

I Definition 3 (Common Set in configuration C).
(CoS1) Each set in the output is the union of some of the inputs and strictly contains C;
(CoS2) if a client’s input strictly contains C, then its output is not empty;
(CoS3) there is a common non-empty set in all non-empty outputs; and
(CoS4) every C.CoS invocation that strictly follows a C.CoS call that returns a non-empty
output returns a non-empty output.

For example, consider three concurrent clients that input to C.CoS the sets P1, P2, and
P3, all of which contain C. A possible outcome is for their outputs to be {P 1}, {P 1, P 1∪P 2},
and {P 1, P 2, P 3}, respectively. The intuitive explanation behind using CoS is that it builds
a common sequence of configurations inductively: The first configuration in the sequence is
Cinit, the next is the common configuration returned by Cinit.CoS (property CoS3), and so
on. Although this sequence is not known to the clients themselves, every client observes this
sequence starting with some activated configuration. Every configuration in this sequence
contains the previous one.

CoS can be implemented directly using consensus or atomic snapshot, as illustrated
in [24]. In Algorithm 3, (without the PreCompute function, which is an optimization and
will be discussed later), we give an implementation based on DynaStore’s weak snapshot [3].
In the pseudocode, we denote by

⋃
S the union of all sets in a set of sets S. If the proposal

P strictly contains C, pi has something new to propose and it writes P into its cell in the
“weak” snapshot array Warr (lines 9-10). (Note that Warr is a static array emulated in the
configuration where CoS is implemented). Either way, it collects Warr (line 11). In case the
collect is not empty, pi collects Warr again and returns the set of collected proposals (lines
12-15). The second collect ensures that the intersection of non-empty outputs includes the
first written input, implying CoS3; the remaining properties are satisfied by a single collect.
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Algorithm 3 Efficient CoS; algorithm of client pi in configuration C; optimization code
shaded.
1: Local variables: . flags accessible outside CoS
2: firstTime set by reconfig and read by CoS
3: drop set by CoS and read by reconfig

4: Shared variables (emulated in configuration C):
5: Boolean startingPoint, initially false . Is C a starting point for some client
6: Mapping from client to registers Warr and Sarr , initially {}.

7: procedure CoS(P )
8: P ← PreCompute(P ) . optimization
9: if P ⊃ C then

. Something new to propose
10: C.Warr[i]← P

11: ret← C.collect(Warr)
12: if ret = {} then
13: return ret
14: else
15: return C.collect(Warr)

16: procedure PreCompute(P )
17: if firstTime then
18: C.startingP oint← true
19: C.Sarr[i]← P
20: drop← false
21: if ¬C.startingPoint then
22: return P

. repeat collect until P stops changing.
23: drop← true
24: tmp←

⋃
C.collect(Sarr)

25: while tmp 6= P do
26: P ← tmp
27: tmp←

⋃
C.collect(Sarr)

28: return P

6.2 Simple Reconfiguration

Given CoS, we can solve Reconfiguration in a generic way as shown in Algorithm 4 (ignore
the shaded areas for now). Both Check and Propose use the auxiliary procedure reconfig.
Propose(C, P ) first sets a local variable proposal to the union of C and P , whereas Check(C)
initiates proposal to be C. Both then execute the loop in line 40. Each iteration selects
the smallest configuration in ToTrack; we say that the iteration tracks this configuration.
The loop tracks all configurations returned by CoS, smallest to largest, starting with C. In
each tracked configuration C ′, the client introduces C ′, invokes C ′.CoS(proposal) and adds
to proposal the union of the configurations returned from C ′.CoS. This repeats for every
configuration C ′ returned from CoS until there are no more configurations to track. Recall
that by the liveness condition, if some configuration C ′ is expired and no longer supports
C ′.CoS, then the client gets in return to C ′.CoS an exception with some newer activated
configuration Ca. In this case, reconfig starts over from Ca. At the end, Propose and Check
return proposal and the set of all tracked configurations.

The common sequence starts with Cinit, and is inductively defined as follows: If Ck.CoS

has a non-empty output, then Ck+1 is the smallest common configuration returned by all
non-empty Ck.CoSs. By CoS3, all non-empty return values have at least one configuration
in common, and if there is more than one such configuration, then we pick the smallest,
breaking ties using lexicographic order. By CoS1, each configuration in the common sequence
strictly contains the previous one.

Correctness. The validity property (D1) immediately follows from CoS property CoS1 and
the observation that proposal is set to include P at beginning of reconfig and never decreases.

To provide intuition for the remaining properties, we discuss the case in which all
operations start in Cinit and no exceptions occur; the proof for the general case appears in
the full paper [25]. Observe that since proposal always contains

⋃
ToTrack and configurations
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Algorithm 4 Generic Reconfiguration algorithm; optimization code shaded.

29: Propose(C, P)
30: return reconfig(C, P )

31: Check(C)
32: ret← reconfig(C, {})
33: if ret = 〈C, ∗〉 then activate(C)
34: return ret

35: procedure reconfig(C, P )
36: proposal← P ∪ C
37: ToTrack← {C}
38: speculation← {}
39: firstTime← true
40: while ToTrack 6= {} do
41: C′ ← argmin

C′′∈T oT rack

|C′′| . smallest configuration

42: introduce(C′)
43: speculation← speculation ∪ {C′}
44: ret← C′.CoS(proposal)
45: if ret = 〈“error”, Ca〉 then . C′ is expired - restart from Ca

46: return reconfig(Ca, proposal)
47: ToTrack← (ToTrack ∪ ret) \ {C′}
48: firstTime← false
49: if drop = true then . drop old configurations in ToTrack
50: ToTrack← ret
51: proposal← proposal ∪

⋃
ToTrack

52: Ccurr ← proposal
53: return 〈proposal, speculation〉

are traversed from smallest to largest, we get from property CoS2 that C.CoS returns an
empty set only if C includes ToTrack, i.e., C is the last traversed configuration. The key
correctness argument is that all nominated configurations belong to the common sequence,
and are thus related by containment:

I Lemma 4. For every reconfig that returns 〈D, S〉, D belongs to the common sequence.

Proof - sketch for the special case (starting in Cinit, no exceptions). Assume by way of
contradiction that Dj is returned by reconfig operation recj but does not belong to the
common sequence. Note that Cinit is in the common sequence and is tracked by recj . Let
C̃j be the last configuration tracked by recj that belongs to the common sequence. By
assumption, C̃j 6= Dj , and thus, recj gets a non-empty output from C̃j .CoS (it gets an output
since we assume that there are no exceptions). But, this output includes some configuration
in the common sequence, so recj tracks a configuration in the common sequence after C̃j . A
contradiction.

Liveness follows since (i) every call to CoS returns, either successfully or with an exception;
and (ii) tracked configurations are monotonically increasing, and, provided that the number
of reconfigurations is finite, they are bounded.

6.3 Optimal Reconfiguration
The key to the efficiency of our new algorithm is in its thrifty CoS implementation, and the
signals it conveys to the reconfiguration algorithm, which minimize the number of tracked
configurations. To this end, the efficient solution for CoS shares (local) state variables
firstTime and drop with the Reconfiguration implementation.
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To explain the intuition behind our algorithm, let us first consider a scenario in which
all clients invoke register operations (Read, Write, or ChangeConfig) in the same starting
configuration C0 (e.g., C0 may be Cinit), and no exceptions occur. If n of the clients
invoke Propose, then there are n sets P1, . . . , Pn proposed by reconfig(C, Pi) operations.
The unoptimized (weak snapshot-based) CoS may return up to 2n different subsets in CoS
responses (assuming many clients invoke Read/Write operations), inducing high complexity.

Our algorithm reduces this complexity by running a pre-computation phase in PreCompute,
which imposes a containment order on all configurations passed to, and hence returned from,
CoS. This is done by running a variant of (strong) atomic snapshot [1] on all client proposals
in configuration C0. Specifically, each process writes its own proposal P (line 19) to the
“strong” array Sarr, and then (lines 24-27) repeatedly collects the union of all Sarr cells
into P , until P stops changing. Like an atomic snapshot, this ensures that all results of
PreCompute are related by containment. Note, however, that unlike an atomic snapshot,
the complexity of this pre-computation is linear in the number of different proposals written,
rather than in the number of participating processes; if collect encounters a newly written
value that does not change the union of written values, PreCompute returns. In case all
operations start in C0, there are no new proposals in other configurations, and so the
containment order is preserved throughout the computation. This ensures that the number
of different configurations tracked by all clients is at most n.

Next, we account for the case that clients invoke (or restart due to exceptions) their
operations in different starting configurations. We have to identify configurations where
some client starts, and run PreCompute in them too. To this end, we have clients signal (by
raising the startingPoint flag) if a configuration is their starting point. Every client that later
runs C.CoS sees this flag true, and executes the pre-computation. If a client pi sees the flag
false in C.CoS, pi does not run the pre-computation. Nevertheless, since pi checks the flag
after writing its value to Sarr, pi’s proposal is already in the array before new clients that
start in this configuration perform their collects, and so pi’s proposal is contained in theirs.
Thus, at this new starting point, all clients obtain proposals that are related by containment
among themselves.

The tricky part is that old proposals that were included in ToTrack before the new
starting point are not necessarily ordered relative to ensuing proposals, as in the following
scenario:

Clients p1 and p2 start in C0 and propose C0 ∪ {+a} and C0 ∪ {+b}, respectively; p1
gets {C1}, where C1 = C0 ∪ {+a}, from C0.CoS and p2 gets {C1, C2}, where C2 =
C0 ∪ {+a, +b}.
Client p1 tracks C1, gets an empty set from C1.CoS, and activates it. Client p3 starts in
C1, (which is now activated), proposes C3 = C1 ∪ {+c} in C1.CoS, and gets {C3}.
Later, p2 tracks C1, and gets C3 in C1.CoS’s output. At this point p2’s ToTrack contains
C2 and C3, neither of which contains the other.

To achieve linear complexity, we have clients drop all configurations previously returned from
CoS at all the starting points they encounter. One subtle point is ensuring safety in the
presence of such drops, and our proof of the general case of Lemma 4 in the full paper [25]
addresses this issue.

Intuitively, since the purpose of tracking all configurations is to ensure that clients traverse
the common sequence, once we know C is in the common sequence, there is no need to
continue to track any configuration older than C. So, the drop is safe.

A second subtle point is preserving linear complexity despite executing PreCompute in
multiple starting points. But since (i) the worst-case complexity of a single pre-computation
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is linear in the number of different proposals written to it, (ii) each CoS begins with a
proposal that reflects all those seen in previous CoSs, and (iii) there are n new proposals
overall, the combined complexity of all pre-computations is O(n).

Finally, we provide intuition for the complexity of the high-level dynamic atomic register
given in Section 5. The full proof, which wraps this intuition into a technical induction,
appears in the full paper [25]. Recall that the register emulation performs a loop in which
it repeatedly calls Check(C), where C is the configuration returned from the previous
Check/Propose, until some Check(C ′) returns 〈C ′, S〉 for some C ′ and S. The loop performs
a constant number of operations in every configuration returned in a speculated set S

from Check. Therefore, we want the Checks in this loop to return the optimal number of
configurations, and have optimal complexity themselves.

Since all the configurations introduced (and returned in speculation sets) by our algorithm
are related by containment, we immediately conclude that the number of configurations
returned in speculated sets S of all Checks together is bounded by n. Now we show that the
complexity of all Checks combined is O(n). First observe that all Checks combined invoke at
most n CoSs. Second, each CoS writes at most three times to shared registers (lines 10, 18,
and 19), reads once (in line 21), and performs each of the collects in lines 11, 15, and 24 at
most once. Now observe that CoS performs the collect in line 27 only if the previous collect
(in line 24 or 27) contained a proposal P1 6⊆ P , which means that none of the CoSs collected
P1 before. Since there are at most n proposals, all CoSs together perform the collect in line
27 at most n times. All in all, we get that the complexity of all Checks is O(n).

7 Conclusions

We defined a dynamic model with a clean failure condition that allows an administrator to
reconfigure an object and switch a removed server off once the reconfiguration operation
completes. In this model, we have captured a succinct abstraction for consensus-less recon-
figuration, which dynamic objects like atomic read/write register and max-register may use.
We demonstrated the power of our abstraction by providing an optimal implementation of a
dynamic register, which has better complexity than previous solutions in the same model.
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Abstract
This paper presents new protocols for Byzantine state machine replication and Byzantine agree-
ment in the synchronous and authenticated setting. The PBFT state machine replication protocol
tolerates f Byzantine faults in an asynchronous setting using n = 3f + 1 replicas. We improve
the Byzantine fault tolerance to n = 2f + 1 by utilizing the synchrony assumption. Our protocol
also solves synchronous authenticated Byzantine agreement in fewer expected rounds than the
best existing solution (Katz and Koo, 2006).
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1 Introduction

Byzantine consensus is a fundamental problem in distributed computing and cryptography.
Broadly speaking, Byzantine consensus considers the problem of reaching agreement among
a group of n parties, among which up to f can have Byzantine faults and deviate from the
protocol arbitrarily. There exist a few variant formulations for the Byzantine consensus
problem. Two theoretical formulations are Byzantine broadcast and Byzantine agreement [4].
In Byzantine broadcast (BB), there is a designated sender who tries to broadcast a value; In
Byzantine agreement (BA), every party holds an input value. To rule out trivial solutions, both
problems have additional validity requirements. BA and BB have been studied under various
combinations of timing (synchrony, asynchrony or partial synchrony) and cryptographic
assumptions (whether or not to assume digital signatures). It is now well understood that
these assumptions drastically affect the bounds on fault tolerance. In particular, BA requires
f < n/3 under partial synchrony or asynchrony even with digital signatures, but can be
solved with f < n/2 under synchrony with digital signatures.

A more practice-oriented problem formulation is Byzantine fault tolerant (BFT) state
machine replication (SMR) [1]. In this formulation, the goal is to design a replicated
service that provides the same interface as a single server, despite some replicas experiencing

∗ The full version of this paper is available at https://arxiv.org/abs/1704.02397. We use the word
“consensus” as a collective term for all variants; other papers have different conventions.
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Byzantine faults. In particular, honest replicas agree on a sequence of values and their order,
while the validity of the values is left outside the protocol. PBFT is an asynchronous SMR
protocol that tolerates f < n/3 Byzantine faults [1]. As the first BFT protocol designed for
practical efficiency, PBFT has since inspired numerous follow-up works.

Perhaps somewhat surprisingly, we do not yet have a practical solution for Byzantine
consensus in the seemingly easier synchronous and authenticated (i.e., with digital signatures)
setting. To the best of our knowledge, the most efficient BA protocol with the optimal f < n/2
fault tolerance in this setting is due to Katz and Koo [2], which requires in expectation 24
rounds of communication (not counting the random leader election subroutine). The only
SMR protocol we know of in this setting is XFT [5]. Relying on an active group of f + 1
honest replicas to make progress, XFT is designed to optimize efficiency for small n and f

(e.g., f = 1). Its performance degrades as n and f increase, especially when f = bn−1
2 c. In

that case, among the
(

n
f+1

)
f + 1-sized groups in total, only one is all-honest. The simplest

variant of XFT, as presented in [5], requires an exponential number of view changes to find
that group. The best XFT variant we can think of still requires Θ(n2) view changes.

This paper presents efficient Byzantine consensus protocols for the synchronous and
authenticated setting tolerating f < n/2 faults. Our main focus is BFT SMR, for which our
protocol requires amortized 4 rounds per slot independent of n and f . (We say each value
in the sequence fills one slot.) Meanwhile, our protocol can also solve multi-valued BA and
BB for f < n/2 in expected 10 rounds assuming a random leader oracle. (The higher round
complexity is due to the fact that BA/BB considers a single slot and cannot be amortized.)

1.1 Overview of the Our Protocols
Interestingly, our core protocol draws inspiration from the Paxos protocol [3], which is neither
synchronous nor Byzantine fault tolerant. Since our main focus is SMR, we will describe the
core protocol with “replicas” instead of “parties”. The core of our protocol resembles the
synod algorithm in Paxos, but is adapted to the synchronous and Byzantine setting. In a
nutshell, it runs in iterations with a unique leader in each iteration (how to elect leaders is
left to higher level protocols). Each new leader picks up the states left by previous leaders
and drives agreement in its iteration. A Byzantine leader can prevent progress but cannot
violate safety. As soon as an honest leader emerges, then all honest replicas reach agreement
and terminate at the end of that iteration.

While synchrony is supposed to make the problem easier, it turns out to be non-trivial to
adapt the synod algorithm to the synchronous and Byzantine setting while achieving the
optimal f < n/2 fault tolerance. The major challenge is to ensure quorum intersection [3]
at one honest replica. The core idea of Paxos is to form a quorum of size f + 1 before a
commit. With n = 2f + 1, two quorums always intersect at one replica, which is honest in
Paxos. In order to tolerate f Byzantine faults, PBFT uses quorums of size 2f + 1 out of
n = 3f + 1, so that two quorums intersect at f + 1 replicas, among which one is guaranteed
to be honest. At first glance, our goal of one honest intersection seems implausible with the
n = 2f + 1 constraint. Following PBFT, we need two quorums to intersect at f + 1 replicas
which seems to require quorums of size 1.5f + 1. On the other hand, a quorum size larger
than f + 1 (the number of honest replicas) seems to require participation from Byzantine
replicas and thus loses liveness. Our solution is to utilize the synchrony assumption to form
a post-commit quorum of size 2f + 1. A post-commit quorum does not affect liveness and
intersects with any pre-commit quorum (of size f + 1) at f + 1 replicas. This satisfies the
requirement of one honest replica in intersection.

To implement the above quorum intersection idea, each iteration in our core protocol
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consists of 4 rounds. The first three rounds are conceptually similar to Paxos: (1) the leader
learns the states of the system, (2) the leader proposes a safe value, and (3) every replica
sends a commit request to every other replica. If a replica receives f + 1 commit requests for
the same value, it commits on that value and notifies all other replicas about the commit
using a 4th round. Upon receiving a notification, other replicas accept the committed value
and will vouch for that value to future leaders. To tolerate Byzantine faults, we need to
add equivocation checks and other proofs of honest behaviors at various steps. We can then
apply the core synod protocol to SMR as well as BA/BB.

For SMR, a simple strategy is to rotate the leader role among the replicas after each
iteration. Because each honest leader is able to fill at least one slot, the protocol spends
amortized 2 iterations (8 rounds) per slot with f < n/2 faults. We then improve the protocol
to allow a stable leader and only replace the leader if it is not making progress. The improved
protocol fills one slot in every iteration (4 rounds). While our view change protocol resembles
that of PBFT at a high level, the increased fault threshold f < n/2 again creates new
challenges. In particular, two views in PBFT cannot make progress concurrently: f + 1
honest replicas need to enter the new view to make progress there, leaving not enough replicas
for a quorum in the old view. In contrast, with a quorum size of f + 1 and n = 2f + 1 in our
protocol, if a single honest replica is left behind in the old view, the f Byzantine replicas
can exploit it to form a quorum and violate safety. Thus, our view change protocol needs to
ensure that two honest replicas are never in different views. In the end, our protocol achieves
the result in Theorem 1.

I Theorem 1. There exists a synchronous leader-based SMR protocol with optimal Byzantine
fault tolerance n = 2f + 1. If a leader is non-faulty, each decision takes 4 rounds. A view
change (replacing a leader) takes 4 rounds.

To solve BB, we let the designated sender be the leader for the first iteration. After the
first iteration, we rotate the leader role among all n parties. It is straightforward to see
that this solution achieves both agreement and validity. If the designated sender is honest,
every honest party agrees on its value and terminates. Otherwise, the first honest leader
that appears down the line will ensure agreement and termination for all honest parties.
Assuming we have a random leader oracle, there is a (f + 1)/(2f + 1) > 1/2 probability
that each leader after the first iteration is honest, so the protocol terminates in expected 2
iterations after the first iteration. To solve BA, we can use the classical transformation from
Lamport et al. [4]. These give rise to the results in Theorem 2.

I Theorem 2. Assuming a random leader election oracle, there exist synchronous BA and
BB protocols for f < n/2 that terminate in expected 10 rounds.

We remark that the f < n/2 Byzantine fault tolerance in our protocols is optimal for
synchronous authenticated BA and SMR, but not for BB. Our quorum-based approach
cannot solve BB in the dishonest majority case (f ≥ n/2).
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Abstract
What can be computed by a network of n randomized finite state machines communicating under
the stone age model [4] (a generalization of the beeping model’s communication scheme)? The
inherent linear upper bound on the total space of the network implies that its global computa-
tional power is not larger than that of a randomized linear space Turing machine, but is this
tight? The reported reseach answers this question affirmatively for bounded degree networks by
introducing a stone age algorithm (operating under the most restrictive form of the model) that
given a designated I/O node, constructs a tour in the network that enables the simulation of the
Turing machine’s tape. To construct the tour, it is first shown how to 2-hop color the network
concurrently with building a spanning tree, with high probability.
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1 Introduction

Synergy, the whole is greater than the sum of its parts, is many times true, however in
traditional distributed computing, each node is usually assumed to be as powerful as a Turing
machine, hence its local computational power is equivalent to the global computational power
of the whole network. Here, we address the computational power of a network of randomized
finite state machines with a very weak communication scheme (similar to the communication
scheme of the beeping model), and show that even under these harsh conditions, synergy can
be achieved: the whole is at least as powerful as the sum of its parts.

Recently, there is a growing interest in the study of networks of sub-silicon devices,
including biological networks [1, 6, 8] and networks of man-made nano-devices [7, 3, 2],
through the lens of theoretical distributed computing. These are typically large networks
of primitive devices that nevertheless perform complicated tasks, thus raising the following
question: How do limitations on the local computation and communication capabilities of
the individual nodes affect the global computational power of the whole network?

The reported research addresses this question using the stone age (SA) model of Emek
and Wattenhofer [4] that captures a network of randomized finite state machines (FSMs)
with very weak communication capabilities (refer to [4] for a formal definition). It has been
shown in [4, Sec. 5 (full version)] that an n-node SA network with a path topology can
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simulate a randomized O(n)-space Turing machine, referred to hereafter as an RSPACE(n)
machine. Little is known though about the global computational power of SA networks with
more general topologies and/or more restrictive communication schemes. In th reported
research, we shed some light into this unexplored research domain.

2 Sequential Stone Age Machines

We wish to use a SA network to simulate an RSPACE(n) machineM, but before we can
describe this simulation, we have to explain how the O(n)-bit input I ofM, that is normally
stored inM’s tape at the beginning of the execution, is provided to the implementing SA
algorithm. Clearly, no node in the network can hold more than a constant number of bits of
I and unlike [4], where a path topology is assumed, here the network topology is arbitrary
and does not (initially) induce any sequential order on the nodes, so storing I in the network
nodes before the execution commences does not seem to work. Instead, we introduce the
key notion of a sequential stone age machine (SSAM), where I is fed to the SA algorithm
bit-by-bit in a sequential fashion.

Formally, given a network G = (V, E), a SSAM is a SA algorithm operating in G that
allows an external user to
(1) pick any node v ∈ V and send to it a designated I/O_prepare message;
(2) wait until v sends a designated I/O_ready message;
(3) feed v with a sequence of input bits by means of sending a sequence of designated input

messages (and receiving a corresponding sequence of acknowledgments from v);
(4) wait until the computational process terminates; and
(5) get the desired output back from v by means of receiving from it a sequence of designated

output messages.
We refer to node v picked by the user in (1) as an I/O node. To exploit the combined
computational power of all the nodes the computational process described in (4) typically
involves the whole network. The SSAM is said to be a (T p, T io)-SSAM if it is guaranteed
that the external user waits at most T p time between sending the I/O_prepare message and
receiving the I/O_ready message and at most T io time between feeding the input bits and
getting back the output bits.

3 Our Results

We prove that any problem that can be solved with high probability (abbreviated whp
hereafter) by an RSPACE(n) machine in time T can be solved whp on any bounded degree
network of n randomized finite state machines, with a designated I/O node, using a b = 1
stone age communication scheme, in O(D + T ) time, where D denotes the diameter of the
network. In the b = 1 stone age communication model a node cannot tell whether a received
message with text M was sent to it by one neighbor or by more than one. In other words,
it takes O(D) time to initialize the SSAM so that it is ready to accept its input, whereas
the actual simulation of the RSPACE(n) machine takes O(T ) time. Specifically, our main
algorithmic contribution is a SA algorithm that given an n-node bounded degree graph
G = (V, E) and a designated root node r ∈ V , constructs a 2-hop coloring of G and a node
sequence 〈S(i)〉2n−1

i=0 , referred to as a tour, that satisfies: (i) every node appears in S exactly
twice; (ii) S(0) = S(2n− 1) = r; and (iii) the state of node S(i) encodes enough information
to route a message to S(i + 1 mod 2n) and to S(i− 1 mod 2n) that reaches its destination
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in O(1) time for every 0 ≤ i ≤ 2n− 1; our algorithm terminates with a correct 2-hop coloring
and a correct tour in time O(D) whp.

In the SSAM context, the tour S is constructed during phase (2) (while the external user
waits for the I/O_ready message) with the I/O node serving as the root. This tour can then
be employed to simulate a randomized Turing machineM with a (2n)-cell tape in phase (4).

4 Main Technical Challenges

A 2-hop coloring is a useful construction in anonymous networks (see, e.g., [5]) that enables
local point-to-point communication under broadcast communication schemes. As discussed in
[4, Sec. 4.3], it is fairly easy to design a 2-hop coloring SA algorithm in bounded degree graphs
with bounding parameter b = 2 (refer to [4] for the definition of a bounding parameter).
However, here the bounding parameter is set to b = 1, thus turning the 2-hop coloring
construction into a challenging task because the nodes can no longer verify (deterministically)
that their neighborhood does not admit color conflicts. The setting considered in the reported
research is even harder since the graph may contain self-loops (unlike the simple graphs
considered in [4]).

Our algorithm resolves this issue by coloring the nodes concurrently with growing a tree
T̃ of depth O(D), rooted at the designated root r. The nodes use a randomized test that
looks for color conflicts and if a conflict is detected, the tree T̃ is carefully used to reset
the coloring and tree construction processes. It is interesting to point out that without a
designated root, it is impossible to obtain even a 1-hop coloring in our setting.

Another source of difficulty that we had to overcome when designing our algorithm stems
from the requirement that the algorithm terminates correctly whp. While whp guarantees are
common in traditional distributed graph algorithms, they are more challenging to obtain with
SA algorithms: the individual nodes do not (and cannot) have any notion of n; nevertheless,
the algorithm should err with probability that decreases (polynomially) with n.
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Abstract
We present the first self-stabilizing algorithm for leader election in arbitrary topologies whose
space complexity is O(max{log ∆, log log n}) bits per node, where n is the network size and ∆
its degree. This complexity is sub-logarithmic in n when ∆ = no(1).
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1 Context and Motivarion

This paper tackles the problem of designing memory efficient self-stabilizing algorithms for
the leader election problem. Self-stabilization [5] is a general paradigm to provide recovery
capabilities to networks. Intuitively, a protocol is self-stabilizing if it can recover from any
transient failure, without external intervention. Leader election is one of the fundamental
building blocks of distributed computing, as it enables a single node in the network to be
distinguished, and thus to perform specific actions. Leader election is especially important
in the context of self-stabilization as many protocols for various problems assume that a
single leader exists in the network, even after faults occur. Memory efficiency relates to the
amount of information to be sent to neighboring nodes for enabling stabilization. A small
space-complexity induces a smaller amount of information transmission, which (i) reduces the
overhead of self-stabilization when there are no faults, or after stabilization, and ii) facilitates
mixing self-stabilization and replication [9].

A foundational result regarding space-complexity in the context of self-stabilizing silent
algorithms is due to Dolev et al. [6], stating that in n-node networks, Ω(log n) bits of memory
per node are required for solving tasks such as leader election. So, only talkative algorithms
may have o(log n)-bit space-complexity for self-stabilizing leader election. So far, o(log n)-bits
solutions only exist for ring shaped networks, and the best protocol to date is due to Blin et
al. [3], which present a deterministic solution for arbitrary shaped n-rings with O(log log n)
bits per node.

In general networks, self-stabilizing leader election is tightly connected to self-stabilizing
tree-construction. On the one hand, the existence of a leader permits time- and memory-
efficient self-stabilizing tree-construction [5]. On the other hand, growing and merging trees
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is the main technique for designing self-stabilizing leader election algorithms in networks, as
the leader is often the root of an inward tree [5]. This high space-complexity is due to the
implementation of two main techniques, used by all algorithms, and recalled below.

The first technique is the use of a pointer-to-neighbor variable, that is meant to designate
unambiguously one particular neighbor of every node. For the purpose of tree-construction,
pointer-to-neighbor variables are typically used to store the parent node in the constructed
tree. Specifically, the parent of every node is designated unambiguously by its identifier,
requiring Ω(log n) bits for each pointer variable. In principle, it would be possible to reduce
the memory to O(log ∆) bits per pointer variable in networks with maximum degree ∆,
by using node-coloring at distance 2 instead of identifiers to identify neighbors. However,
this, in turn, would require the availability of a self-stabilizing distance-2 node-coloring
algorithm that uses o(log n) bits per node. Unfortunately, self-stabilizing distance-2 coloring
algorithms [10, 8, 8] use variables of O(log n) bits per node. To date, no self-stabilizing
algorithm implements pointer-to-neighbor variables with space-complexity o(log n) bits in
arbitrary networks.

The second technique for tree-construction or leader election is the use of a distance
variable that is meant to store the distance of every node to the elected node in the network.
Such distance variable is used in self-stabilizing spanning tree-construction for breaking
cycles resulting from arbitrary initial state (see [5]). Clearly, storing distances in n-node
networks may require Ω(log n) bits per node. There are a few self-stabilizing tree-construction
algorithms that are not using explicit distance variables (see, e.g., [11, 7, 4]), but their space-
complexity is O(log n) bits per node. Using the general principle of distance variables with
space-complexity below Θ(log n) bits was attempted by Awerbuch et al. [1], and Blin et
al. [2, 3]. These papers distribute pieces of information about the distances to the leader
among the nodes according to different mechanisms, enabling to store o(log n) bits per node,
however, these sophisticated mechanisms have only been demonstrated in rings. To date, no
self-stabilizing algorithms implement distance variables with space-complexity o(log n) bits
in arbitrary networks.

2 Compact Leader Election

In this “Brief Announcement”, we present a self-stabilizing leader election algorithm with
space-complexity O(max{log ∆, log log n}) bits in n-node networks with maximum degree ∆.
This algorithm is the first self-stabilizing leader election algorithm for arbitrary networks
with space-complexity o(log n) (whenever ∆ = no(1)). It is designed for the standard state
model (a.k.a. shared memory model) for self-stabilizing algorithms in networks.

The design of our algorithm requires overcoming several bottlenecks, including the
difficulties of manipulating pointer-to-neighbor and distance variables using o(log n) bits in
arbitrary networks. Overcoming these bottlenecks was achieved thanks to the development
of sub-routine algorithms, each deserving independent special interest described hereafter.

First, we generalize to arbitrary networks the results proposed [2, 3] for rings, and aiming
at publishing the identifiers in a bit-wise manner. This generalization allows us to manipulate
the identifiers with just O(log log n) bits of memory per node.

Second, we propose the first silent self-stabilizing algorithm for distance-2 coloring that
breaks the space-complexity of Ω(log n) bits per node. More precisely this new algorithm
achieves a space-complexity of O(max{log ∆, log log n}) bits per node. As opposed to previous
distance-2 coloring algorithms, we do not use identifiers for encoding pointer-to-neighbor
variables, but we use a compact representation of the identifiers to break symmetries. This
algorithm allows us to design a compact encoding of spanning trees.
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Third, we design a new technique to detect the presence of cycles in the initial configuration
resulting from a transient failure. This approach does not use distances, but it is based on
the uniqueness of each identifier in the network. Notably, this technique can be implemented
by a silent self-stabilizing algorithm, with space-complexity O(max{log ∆, log log n}) bits
per node.

Last but not least, we design a new technique to avoid the creation of cycles during the
execution of the leader election algorithm. Again, this technique does not uses distances but
maintains a spanning forest, which eventually reduces to a single spanning tree rooted at
the leader at the completion of the leader election algorithm. Implementing this technique
results in a self-stabilizing algorithm with space complexity O(max{log ∆, log log n}) bits
per node.

Due to space constraints, the details of our approach are presented in the companion
technical report available as arXiv:1702.07605 (https://arxiv.org/abs/1702.07605).
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Abstract
We revisit the hardness of approximating the diameter of a network. In the CONGEST model,
Ω̃(n) rounds are necessary to compute the diameter [Frischknecht et al. SODA’12]. Abboud et al.
[DISC 2016] extended this result to sparse graphs and, at a more fine-grained level, showed that,
for any integer 1 ≤ ` ≤ polylog(n), distinguishing between networks of diameter 4`+ 2 and 6`+ 1
requires Ω̃(n) rounds. We slightly tighten this result by showing that even distinguishing between
diameter 2`+ 1 and 3`+ 1 requires Ω̃(n) rounds. The reduction of Abboud et al. is inspired by
recent conditional lower bounds in the RAM model, where the orthogonal vectors problem plays
a pivotal role. In our new lower bound, we make the connection to orthogonal vectors explicit,
leading to a conceptually more streamlined exposition. This is suited for teaching both the lower
bound in the CONGEST model and the conditional lower bound in the RAM model.
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1 Introduction

In distributed computing, the diameter of a network is arguably the single most important
quantity one wishes to compute. In the CONGEST model, where in each round every vertex
can send to each of its neighbors a message of size O(logn), it is known that Ω̃(n) rounds
are necessary to compute the diameter [3] even in sparse graphs [1], where n is the number
of vertices. With this negative result in mind, it is natural that the focus has shifted towards
approximating the diameter. In this note, we revisit hardness of computing a diameter
approximation in the CONGEST model from a fine-grained perspective.

The current fastest approximation algorithm [4], which is inspired by a corresponding
RAM model algorithm [5], takes O(

√
n logn+D) rounds and computes a 3

2 -approximation
of the diameter, i.e., an estimate D̂ such that b 2

3Dc ≤ D̂ ≤ D, where D is the true diameter.
In terms of lower bounds, Abboud, Censor-Hillel, and Khoury [1] showed that Ω̃(n) rounds
are necessary to compute a ( 3

2 − ε)-approximation of the diameter for any constant 0 < ε < 1
2 .

At a more fine-grained level, they show that, for any integer 1 ≤ ` ≤ polylog(n), at least
Ω̃(n) rounds are necessary to decide whether the network has diameter 4` + 2 or 6` + 1,
thus ruling out any “relaxed” notions of ( 3

2 − ε)-approximation that additionally allow small
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additive error. We tighten this result by showing that, for any integer ` ≥ 1, at least Ω̃(n)
rounds are necessary to distinguish between diameter 2`+ 1 and 3`+ 1.

The reduction of Abboud et al. [1] is inspired by recent work on conditional lower
bounds in the RAM model, where the orthogonal vectors problem plays a pivotal role. In
particular, the Orthogonal Vectors Hypothesis (OVH) is a weaker “polynomial-time analogue”
of the Strong Exponential Time Hypothesis (SETH); it is well-known that SETH implies
OVH. In our new lower bound, we make the connection to orthogonal vectors explicit: we
consider a communication complexity version of orthogonal vectors that we show to be
hard unconditionally by a reduction from set disjointness and then devise a reduction from
orthogonal vectors to diameter approximation. The latter reduction also has implications
in the RAM model. We show that under OVH, for any integer 1 ≤ ` ≤ no(1), there is
no algorithm that distinguishes between graphs of diameter 2` and 3` with running time
O(m2−δ) for some constant δ > 0, where m is the number of edges of the graph. This
tightens the result of Cairo, Grossi, and Rizzi [2], who provide the same lower bound under
the stronger hardness assumption SETH. To summarize, our approach is more streamlined
than in previous works [3, 2, 1], allowing for a more unified view of CONGEST model and
RAM model lower bounds.

2 Reduction via Orthogonal Vectors

Set disjointness is a problem in communication complexity between two players, called
Alice and Bob, in which Alice is given an n-dimensional bit vector x and Bob is given an
n-dimensional bit vector y and the goal for Alice and Bob is to find out whether there is
some index k at which both vectors contain a 1, i.e., such that x[k] = y[k] = 1. The relevant
measure in communication complexity is the number of bits exchanged by Alice and Bob in
any protocol that Alice and Bob follow to determine the solution. A classic result states that
any such protocol requires Alice and Bob to exchange Ω(n) bits to solve set disjointness.

In the orthogonal vectors problem, Alice is given a set of bit vectors L = {l1, . . . , ln} and
Bob is given a set of bit vectors R = {r1, . . . , rn}, and the goal for them is to find out if
there is a pair of orthogonal vectors li ∈ L and rj ∈ R (i.e., such that, for every 1 ≤ k ≤ d,
li[k] = 0 or rj [k] = 0). We give a reduction from set disjointness to orthogonal vectors.

I Theorem 1. Any b-bit protocol for the orthogonal vectors problem in which Alice and
Bob each hold n vectors of dimension d = 2dlogne + 3, gives a b-bit protocol for the set
disjointness problem where Alice and Bob each hold an n-dimensional bit vector.

I Corollary 2. Any protocol solving the orthogonal vectors problem with n vectors of dimension
d = 2dlogne+ 3, requires Alice and Bob to exchange Ω(n) bits.

We now establish hardness of distinguishing between networks of diameter 2`+ q and 3`+ q,
where ` ≥ 1 and in the CONGEST model q ≥ 1, whereas in the RAM model q ≥ 0. To unify
the cases of odd and even `, we introduce an additional parameter p ∈ {0, 1} and change
the task to distinguishing between networks of diameter 4`′ − 2p + q and 6`′ − 3p + q for
integers `′ ≥ 1, q ≥ 0, and p ∈ {0, 1}. This covers the original question: if ` is even, then set
`′ := `/2 and p := 0 and if ` is odd, then set `′ := d`/2e and p := 1.

Given an orthogonal vectors instance 〈L := {l1, . . . , ln}, R := {r1, . . . , rn}〉 of d-dimen-
sional vectors and parameters ` ≥ 1, q ≥ 0, and p ∈ {0, 1}, we define an unweighted
undirected graph G := GL,R,`,p,q as follows. The graph G contains the following exterior
vertices: uL1 , . . . , uLn , uR1 , . . . , uRn , vL1 , . . . , vLn , vR1 , . . . , vRn , wL1 , . . . , wLd , wR1 , . . . , wRd , xL, xR,
yL, and yR. These exterior vertices are connected by paths as depicted in Figure 1, where
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Figure 1 Visualization of the graph G := GL,R,`,p,q used in our reduction from orthogonal vectors
to diameter distinction. The red, dashed edges encode the orthogonal vectors instance.

each path introduces a separate set of interior vertices. In particular, the instance 〈L,R〉 is
encoded as follows: for every 1 ≤ i ≤ n and every 1 ≤ k ≤ d, if li[k] = 1, then add a path
from vLi to wLk of length `, and if ri[k] = 1, then add a path from vRi to wRk of length `.

I Theorem 3. Let 〈L,R〉 be an orthogonal vectors instance of two sets of d-dimensional
vectors of size n each and let ` ≥ 1, p ∈ {0, 1}, and q ≥ 0 be integer parameters. Then
the unweighted, undirected graph G := GL,R,`,p,q has O(nd` + dq) vertices and edges and
its diameter D has the following property: if 〈L,R〉 contains an orthogonal pair, then
D = 6`− 3p+ q, and if 〈L,R〉 contains no orthogonal pair, then D = 4`− 2p+ q.

For the CONGEST model, observe that G has a small cut of size d+ 1 between its left
hand side and its right hand side. A standard simulation argument, where communication
between Alice and Bob is limited to messages sent along the small cut, yields our main result.

I Corollary 4. In the CONGEST model, any algorithm distinguishing between graphs of
diameter 2`+ q and 3`+ q when ` ≥ 1 and q ≥ 1 requires Ω(n/((`+ q) log3 n)) rounds.

In the RAM model, the Orthogonal Vectors Hypothesis (OVH) states that there is no
algorithm that decides whether a given orthogonal vectors instance contains an orthogonal
pair in time O(n2−δ poly(d)) for some constant δ > 0. Under this hardness assumption, our
reduction has the following straightforward implication.

I Corollary 5. In the RAM model, under OVH, there is no algorithm distinguishing between
graphs of diameter 2` + q and graphs of diameter 3` + q when ` ≥ 1 and q ≥ 0 in time
O(m2−δ/(`+ q)2−δ) for any constant δ > 0.
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Abstract
Recent work introduced a method to automatically produce concurrent data structures for numa
architectures. We present a summary of that work.
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1 Introduction

Modern data centers increasingly employ non-uniform memory access (numa) machines with
multiple numa nodes. Each node consists of some (hardware) threads and local memory. A
thread can access memory in any node, but accessing local memory is faster than remote
memory at another node. To obtain the best performance, concurrent data structures must
take this fact into consideration: they must be numa-aware. Unfortunately, designing
concurrent data structures is difficult, and numa-awareness makes it harder because the
algorithm must try to reduce the number of remote memory accesses.

In this work, we show how to obtain numa-aware concurrent data structures automatically.
We propose an algorithm called Node Replication or nr, which can transform any sequential
data structure into a numa-aware concurrent data structure. In a nutshell, nr relies on
three techniques: replication, an efficient log data structure, and flat combining.

The data structures produced by nr are linearizable [3], thus providing a strong consistency
guarantee: an operation appears to take effect instantaneously at some point in time between
the operation’s invocation and response.

This brief announcement summarizes work published recently [1].

2 The Node Replication algorithm

The nr algorithm takes a sequential data structure and replicates it across numa nodes
to promote locality of accesses. We use flat combining [2] within each node to ensure safe
access to each replica (§2.2). Across nodes, we use a shared log data structure to provide
consistency across replicas (§2.1). The log is implemented as a circular buffer allocated from
the memory of one of the nodes, providing efficient memory management. Only the combiner
within each node accesses the log, ensuring the amount of sharing and contention between
nodes is kept to a minimum.
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Local Replica

Local Tail

Local Replica

Local Tail

LogTail

Thread 1 Thread 2 Thread 1 Thread 2

Shared LogNUMA node 1 NUMA node 2

Figure 1 nr algorithm, shared log and per-node replicas. logTail indicates the first unreserved
entry in the log. Each localTail indicates the next operation in the log to be executed on each
local replica. Threads on the same node share a replica and coordinate access to the replica using
a combiner lock. Threads 2 and 1 are the combiners for nodes 1 and 2, respectively. Node 1’s
replica executed 5 operations from the log. Node 2’s replica executed 3 more operations and found a
reserved entry that is not yet filled. A combiner must wait for all empty entries preceding its batch
in the log, so Thread 1 cannot proceed until the entry is filled. Readers can return when they find
an empty entry without waiting (§2.3).

2.1 Sharing across NUMA nodes: the log data structure

A shared log data structure is used to encode the state of the concurrent data structure. This
log contains a representation of all the update operations performed on the data structure,
giving a total order of these operations. Read-only operations, which do not modify the data
structure, are not included in the log.

There are a few important variables that act as indices on the log. First, logTail is a
global index in the log that points to the next empty entry in the log. Second, each numa
node has an index into the log, localTail, which indicates how far each replica has been
updated from the log. When the localTails differ, replicas will be in different states.

A single elected thread on each node, the combiner, can access the log on behalf of all
the concurrent threads executing at the same time on that node. This thread collects all
the other operations and writes them to the log in a batch using a Compare-And-Swap
(CAS) instruction to first reserve space in the log, and then using normal stores to write the
operations. This batching strategy decreases the amount of contention on the log. Next,
the combiner reads the old operations from the log, starting with the entry at localTail, and
updates the local replica with the operations logged before its own batch. The combiner may
find empty entries in the log, identified by a bit in the entry. If so, it must wait until the
operation becomes available in the entry. Figure 1 shows two combiners on different numa
nodes reading from the log to update their local replicas.

The log is implemented as a circular buffer, for efficient memory management. The bit
indicating empty entries alternates as the log wraps around. Another index in the log, logMin,
indicates which entries are safe to write to – the ones that have been applied to all replicas.
This index is updated lazily and in a lock-free manner, by the thread that writes to the last
available safe entry in the log. This thread checks the values of all localTail indices on all
numa nodes and updates logMin to the smallest one. The algorithm could block if a node is
slow to update its replica, but in practice this is not a problem if at least one thread on each
node accesses the data structure regularly.
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2.2 Sharing within a NUMA node: combining
On each numa node, safe access to the replica on that node is provided by flat combining [2].
Using this method, threads announce their operations in per-thread slots1 and then try to
acquire a combiner lock. The thread who succeeds becomes the combiner : it collects opera-
tions from all other threads, writes them to the shared log, and executes them sequentially
on the local replica as described above. Only the combiner on each numa node accesses the
shared log (Figure 1).

2.3 Read-only operations
Flat combining treats update and read-only operations in the same way: the combiner
executes all operations sequentially. In contrast, nr optimizes read-only operations, by
extending the local replicas with a readers-writer lock that enables the threads performing
read-only operations to proceed in parallel. Moreover, read-only operations do not need to be
inserted in the log, because they do not need to be executed at all replicas. However, before
returning a value read from the local replica, a read-only operation needs to ensure that the
replica is fresh so that it does not return a stale value. We use a new index in the shared log,
completedTail, to indicate all completed operations in the log. The read-only operation needs
to read this index as it starts executing and ensure that the replica is updated at least until
this index. A thread performing a read-only operation could either wait for a co-located
combiner to update the replica, or acquire a writer lock and update the replica itself if no
co-located combiner exists.

3 Conclusion

This brief announcement summarized nr, a method to automatically transform sequential
data structures into concurrent data structures optimized for numa architectures. nr
replicates the sequential data structure on each numa node, using a shared log to synchronize
the replicas across nodes and flat combining to synchronize access to each replica. We
implemented and evaluated nr (not shown in this paper) [1]. We found that nr outperforms
prior black-box techniques for concurrent data structures and, under high contention, can
even perform better than specialized data structures.
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Abstract
We revisit the problem of distributed consensus in directed graphs tolerating crash failures; we
improve the round and communication complexity of the existing protocols. Moreover, we prove
that our protocol requires the optimal number of communication rounds, required by any protocol
belonging to a specific class of crash-tolerant consensus protocols in directed graphs.
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1 Introduction

A crash-tolerant reliable consensus protocol [3] allows a set of n mutually distrusting parties,
each with some private input, to agree on a common output. This is ensured even in the
presence of a computationally unbounded centralized adversary, who may crash any f out
of the n parties and try to prevent the remaining parties from achieving consensus. While
most of the prior work in the literature (see [2, 1, 4] and their references) have considered
the undirected graph model, where parties are assumed to be a part of a complete undirected
graph, in [5], necessary and sufficient condition for crash-tolerant consensus is presented for
a more generic directed graph model. We revisit the round complexity of crash-tolerant
consensus protocols in the latter model.
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Informally, in directed graphs the necessary condition for crash-tolerant consensus demands
that even if an arbitrary set of f nodes crashes, there should still exist a special node in the
graph, called source, which should have a directed path to every other node in the remaining
graph. The authors in [5] proved the sufficiency of this condition by presenting two consensus
protocols, a consensus protocol for the binary domain and a multi-valued consensus protocol
for an arbitrary domain {0, . . . ,K}. These protocols belong to a special class of protocols,
based on “flooding”. In more detail, the protocols consist of several “phases” of d rounds
of “send-receive-update”, where d is called the crash-tolerant diameter of a directed graph.
Informally, d is the maximum distance of any node from a potential source in the graph. Thus
any given potential source can propagate its value to all remaining nodes in a single phase
within the d rounds of flooding. In a round every node (including the source) broadcasts its
value to its neighbours. At the end of the round, each node “updates” its value, by locally
applying an update function to the received values. In the subsequent round, nodes broadcast
their updated value. The two types of update function applied are a min function for a min
phase and a max function for a max phase. The min (resp. max) function requires nodes
to update their value by taking the minimum (resp. maximum) of all the received values
(including its own value).

The binary consensus protocol of [5] requires 2f + 2 alternate min-max phases, each with
d rounds. The round complexity of the protocol is (2f + 2) · d rounds and the communication
complexity is O(nfd) bits. In [5] the authors claimed that their binary consensus protocol
cannot be extended trivially to the multi-valued case. They present a multi-valued consensus
protocol, which requires (2f + 2) · d ·K rounds of interaction and communication complexity
is O(nfdK logK) bits. Clearly the protocol has exponential round and communication
complexity, as K = 2log K (K is the domain size).

Our Results. In this work, we improve the round and communication complexity of the
min-max based consensus protocols of [5]. We consider the binary consensus protocol of [5]
and observe that if instead of d, we allow d+1 rounds of communication in each of the phases,
then it is possible to achieve consensus with just f+2 alternate min-max phases, thus making
the round complexity (f + 2)(d+ 1). We then show an optimization of our protocol, where
we allow only d rounds in the first and the last phase, thus reducing the round complexity to
(f + 2)(d+ 1)− 2. Interestingly, we show that our protocol works even for the multi-valued
case, with no modifications what so ever. Thus, unlike [5], the round complexity of our
multi-valued consensus protocol is independent of K. The communication complexity of our
protocol is O(nfd logK) bits and for significantly large values of K our protocol improves
upon the round and communication complexity of the multi-valued consensus protocol of [5].
Moreover, we improve the number of rounds for the binary consensus, for every f, d ≥ 2.

We also address the problem of lower bound on the minimum number of rounds required
by any crash-tolerant consensus protocol in a directed graph, based on min-max strategy and
derive three interesting lower bounds. We first consider the case, where only f + 1 min-max
phases are allowed in the protocol and with no restriction on the number of communication
rounds in each phase. We show that it is impossible to achieve crash-tolerant consensus
within f + 1 phases. Next we consider min-max based consensus protocols with at least d
rounds in each phase. For such protocols, we show that it is impossible to achieve consensus
in general with (f + 2)(d + 1) − 3 rounds in total. This implies that our min-max based
protocol with (f + 2)(d+ 1)− 2 rounds is round optimal. Finally we consider min-max based
consensus protocols with exactly d rounds of communication in each phase. Note that the
consensus protocols of [5] belong to this class. For several values of f and d, we show that the
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minimum number of phases required to achieve consensus in this case is 2f + 2, thus showing
that the binary consensus protocol of [5] has the optimal number of communication rounds.
The lower bounds establish that our protocol is the best in terms of the round complexity if
one is interested to design consensus protocols based on min-max strategy.

High Level Description of Our Protocol. Our starting point is the binary consensus
protocol of [5] with 2f + 2 phases, each with d rounds. The correctness of their protocol is
based on the guaranteed occurrence of two consecutive crash-free phases, among the 2f + 2
alternate min-max phases, within which consensus is shown to be achieved. We observe that
if instead of d rounds, we allow d+ 1 rounds in each phase then consensus can be achieved if
we either have two consecutive crash-free phases or a crashed phase followed by a crash-free
phase, provided only one node crashes during the crashed phase. The base of our observation
is the following: if during the crashed phase the single node to be crashed is a non-source
node, then it is equivalent to having two consecutive crash-free phases (with source node(s)
being unaltered) and so consensus will be achieved within these two phases. On the other
hand, if during the crashed phase the single node to be crashed is a source node, then at
least one of new source nodes will be at a distance of one from the crashed source (this
observation lies at the heart of our protocol). So if at all the crashed source node sends its
value to one of the new source node before crashing, there will be still d rounds left for this
new source node in the crashed phase to further propagate the crashed source node’s value
in the remaining graph. So in essence, we still get the effect of two consecutive crash-free
phases. We further show that with f + 2 alternate min-max phases, there always exist either
two crash-free phases or a crashed phase with a single crash, followed by a crash-free phase.

We find that the above ideas are applicable even for the multi-valued case. For simplicity,
we consider the case when there are two crash-free phases and without loss of generality,
let these be a min phase followed by a max phase. Let λmin be the least value among the
source nodes at the beginning of crash-free min phase. If the non-source nodes have their
value greater than or equal to λmin at the beginning of this phase, then clearly consensus will
be achieved at the end of this min phase itself; this is because each node will update their
value to λmin at the end of the min phase. On the other hand, if some non-source node has a
value smaller than λmin at the beginning of the crash-free min phase, then consensus will not
be achieved in this phase. However, at the end of this min phase, the modified values of all
the nodes (both source as well as non-source) is upper bounded by λmin; moreover all the
source nodes will have λmin as their modified value. Hence in the next crash-free phase which
is a max phase, the value λmin of the source nodes will be the maximum value in the graph
and hence consensus will be achieved at the end of the crash-free max phase. The above
argument also works for the case when there is a crashed phase followed by a crash-free
phase, where it is guaranteed that exactly one node crashes during the crashed phase. The
complete formal details of the protocols and the lower bounds will be available in the full
version of the article.
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Abstract
The Undecided-State Dynamics is a well-known protocol that achieves Consensus in distributed
systems formed by a set of n anonymous nodes interacting via a communication network. We
consider this dynamics in the parallel PULL communication model on the complete graph for
the binary case, i.e., when every node can either support one of two possible colors or stay in
the undecided state. Previous work in this setting only considers initial color configurations with
no undecided nodes and a large bias (i.e., Θ(n)) towards the majority color. A interesting open
question here is whether this dynamics reaches consensus quickly, i.e. within a polylogarithmic
number of rounds. In this paper we present an unconditional analysis of the Undecided-State
Dynamics which answers to the above question in the affirmative. Our analysis shows that,
starting from any initial configuration, the Undecided-State Dynamics reaches a monochromatic
configuration within O(log2 n) rounds, with high probability (w.h.p.). Moreover, we prove that
if the initial configuration has bias Ω(

√
n logn), then the dynamics converges toward the initial

majority color within O(logn) round, w.h.p. At the heart of our approach there is a new ana-
lysis of the symmetry-breaking phase that the process must perform in order to escape from
(almost-)unbiased configurations. Previous symmetry-breaking analysis of consensus dynamics
essentially concern sequential communication models (such as Population Protocols) and/or sym-
metric updated rules (such as majority rules).
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1 Introduction

Strong research interest has been recently focussed on the study of simple, local mechanisms
for Consensus problems in distributed systems [3, 2, 11, 12, 16, 17]. In a basic setting of the
consensus problem, the system consists of a set of n anonymous nodes that run elementary
operations and interact by exchanging messages. Every node initially supports a color chosen
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from an alphabet Σ and a Consensus Protocol is a local procedure that, starting from any
color configuration, let the system converge to a monochromatic configuration. The consensus
is valid if the winning color is one among those initially supported by at least one node.
Moreover, once the system reaches a consensus configuration it will stay there forever.

We study the consensus problem in the PULL model [8, 10, 14] in which, at every
round, each active node contacts one neighbor uniformly at random to pull information. A
well-studied consensus protocol is the Undecided-State Dynamics (for short, the U-Dynamics)
in which the state of a node can be either a color or the undecided state. When a node is
activated, it pulls the state of a random neighbors and updates its state according to the
following updating rule: If a colored node pulls a different color from its current one, then it
becomes undecided, while in all other cases it keeps its color; moreover, if the node is in the
undecided state then it will take the state of the pulled neighbor. The U-Dynamics has been
studied in both sequential and parallel models. As for the sequential model, [3] provides an
unconditional analysis showing (among other results) that the U-Dynamics solves the binary
consensus problem (i.e. when |Σ| = 2) in the complete graph within O(n logn) activations
(and, thus in O(logn) “parallel” time), w.h.p.1 As for the parallel PULL model, even though
it is easy to verify that the U-Dynamics achieves consensus in the complete graph (w.h.p.),
the convergence time of this dynamics is still an interesting open issue, even in the binary
case. We remark that the stochastic process yielded by the parallel dynamics significantly
departs from the process yielded by the sequential one. A crucial difference lies in the random
number of nodes that may change color at every round: In the sequential model, this is at
most one, while in the parallel one all nodes may change state in one shot and indeed, for
most phases of the process, the expected number of changes is linear in n. It thus turns
out that the probabilistic arguments used in the analysis of [3] appear not useful in the
parallel setting. In [5], the author analyze the U-Dynamics in the parallel PULL model
on the complete graph when the alphabet Σ has size k, where k = o(n1/3). The analysis
in [5] considers this dynamics as a protocol for Plurality Consensus [2, 3, 15], a variant of
Consensus, where the goal is to reach consensus on the color that was initially supported by
the plurality of the nodes: Their analysis requires that the initial configuration must have a
relatively-large bias s = c1 − c2 between the size c1 of the (unique) initial plurality and the
size c2 of the second-largest color. More in details, in [5] it is assumed that c1 ≥ αc2, for
some absolute constant α > 1 and, thus, this condition for the binary case would result into
requiring a very-large initial bias, i.e., s = Θ(n). This analysis clearly does not show that
the U-Dynamics efficiently solves the binary consensus problem, mainly because it does not
manage balanced initial configurations.

Our results. We prove that, starting from any color configuration2 on the complete graph,
the U-Dynamics reaches a monochromatic configuration (thus consensus) within O(log2 n)
rounds, w.h.p. This bound is almost tight since, for some (in fact, a large number of) initial
configurations, the process requires Ω(logn) rounds to converge. Not assuming a large initial
bias of the majority color significantly complicates the analysis. Indeed, the major challenges
arise from (almost) balanced initial configurations where the system needs to break symmetry.
A key ingredient of our analysis is a suitable application of the martingale optional stopping
theorem. While the use of that theorem is standard in the analysis of sequential processes of
interacting particles that can be modeled as birth-and-death chains, our new approach allows

1 As usual, we say that an event En holds w.h.p. if P (En) ≥ 1− n−Θ(1)
2 Our analysis also considers initial configurations with undecided nodes.
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us to analyze the process yielded by running the U-Dynamics in synchronous parallel rounds,
that is a somewhat “wild” process where an unbounded number of particles may change
state at every round. The symmetry-breaking phase terminates when the U-Process reaches
some configuration having a bias s = Ω(

√
n logn). Then we prove that, starting from any

configuration having that bias, the process reaches consensus within O(logn) rounds, with
high probability. Even though our analysis of this “majority” part of the process is based
on standard concentration arguments, it must cope with some non-monotone behaviour
of the key random variables (such as the bias and the number of undecided nodes at the
next round). Our refined analysis shows that, during this majority phase, the winning color
never changes and, thus, the U-Dynamics also ensures Plurality Consensus in logarithmic
time whenever the initial bias is s = Ω(

√
n logn). Interestingly enough, we also show that

configurations with s = O(
√
n) exist so that the system may converge toward the minority

color with non-negligible probability.

Other related work. The interest in the U-Dynamics arises in fields beyond the borders of
Computer Science and it seems to have a key-role in important biological processes modelled
as so-called chemical reaction networks [7, 12]. For such reasons, the convergence time of this
dynamics has been analyzed on different communication models [1, 3, 4, 6, 9, 11, 13, 15, 17].
Concerning the sequential model, [15] recently analyzes the U-Dynamics in arbitrary graphs
when the intitial configuration is sampled uniformly at random between the two colors. In
this (average-case) setting, they prove that the system converges to the initial majority color
with higher probability than the initial minority one. They also give results for special classes
of graphs where the minority can win with large probability if the initial configuration is
chosen in a suitable way. In [4, 6, 13, 17], the same dynamics for the binary case has been
analyzed in further sequential communication models.
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Abstract
Shape formation is a basic distributed problem for systems of computational mobile entities.
Intensively studied for systems of autonomous mobile robots, it has recently been investigated in
the realm of programmable matter. Namely, it has been studied in the geometric Amoebot model,
where the anonymous entities, called particles, operate on a hexagonal tessellation of the plane,
have constant memory, can only communicate with neighboring particles, and can only move
from a grid node to an empty neighboring node; their activation is controlled by an adversarial
scheduler. Recent investigations have shown how, starting from a well-structured configuration
in which the particles form a (not necessarily complete) triangle, the particles can form a large
class of shapes. This result has been established under several assumptions: agreement on the
clockwise direction (i.e., chirality), a sequential activation schedule, and randomization.

In this paper we provide a characterization of which shapes can be formed deterministic-
ally starting from any simply connected initial configuration of n particles. As a byproduct, if
randomization is allowed, then any input shape can be formed from any initial (simply connec-
ted) shape by our algorithm, provided that n is large enough. Our algorithm works without
chirality, proving that chirality is computationally irrelevant for shape formation. Furthermore,
it works under a strong adversarial scheduler, not necessarily sequential. We also consider the
complexity of shape formation both in terms of the number of rounds and the total number of
moves performed by the particles executing a universal shape formation algorithm. We prove
that our solution has a complexity of O(n2) rounds and moves: this number of moves is also
asymptotically optimal.
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1 Background

The term programmable matter, introduced by Toffoli and Margolus [4], is used to denote
matter that has the ability to change its physical properties in a programmable fashion,
based upon user input or autonomous sensing. Often programmable matter is envisioned as
a very large number of very small locally interacting computational particles, programmed
to collectively perform a complex task. Such particles could have applications in a variety of
important situations: smart materials, minimally invasive surgery, etc.

Of particular interest, from the distributed computing viewpoint, is the geometric Amoebot
model. In this model, introduced in [3] and so called because inspired by the behavior of
amoeba, programmable matter is viewed as a swarm of decentralized autonomous self-
organizing entities, operating on a hexagonal tessellation of the plane. These entities, called
particles, are constrained by having simple computational capabilities (they are finite-state
machines), strictly local interaction and communication capabilities (only with particles
located in neighboring nodes of the hexagonal grid), and limited motorial capabilities (from
a grid node to an empty neighboring node); furthermore, their activation is controlled by
an adversarial (but fair) synchronous scheduler. A feature of the Amoebot model is that
particles can be in two modes: contracted and expanded. When contracted, a particle occupies
only one node, while when expanded the particle occupies two neighboring nodes; it is indeed
this ability of a particle to expand and contract that allows it to move on the grid.

The pioneering study of [1] on shape formation in the geometric Amoebot model showed
how particles can build simple shapes, such as a hexagon or a triangle. Subsequent investiga-
tions [2] have recently shown how, starting from a well-structured configuration in which the
particles form a (not necessarily complete) triangle, they can form a larger class of shapes
under several assumptions, including randomization (which is used to elect a leader), chirality,
and a sequential activation schedule (i.e., at each time unit the scheduler selects only one
particle which will interact with its neighbors and possibly move). Notice that, without the
availability of a unique leader (provided by randomization), dropping the chirality assumption
becomes a problem with a non-sequential schedule.

2 Our Contributions

We continue the investigation, significantly extending the existing results. Among other things,
we provide a constructive characterization of which shapes SF can be formed deterministically
starting from an unknown simply connected initial configuration S0 of n particles (i.e., a
connected configuration without “holes”).

As in [2], we assume that the size of the description of SF is constant with respect to
the size of the system, so that it can be encoded by each particle in a part of its internal
memory. Such a description is available to all the particles at the beginning of the execution
as their “input”. The particles will form a final configuration that is an appropriate scaling,
translation, rotation, and perhaps reflection of the input shape SF . Since all particles of S0
must be used to construct SF , they may have to scale up SF in order to fit: we stress that an
appropriate scale factor is unknown to particles, and they must determine it autonomously.
(We assume that the input shape SF that is actually given to the particles is the smallest
possible among the scaled copies of itself that can be embedded in the hexagonal grid.)

Given two shapes S0 and SF , we say that the pair (S0, SF ) is feasible if there exists a
deterministic algorithm that, in every execution (thus, regardless of the activation schedule),
allows the particles to form a scaled copy of SF starting from S0, and no longer move. Our
characrerization of feasibility is based on symmetries that are unbreakable: a shape is said
to be unbreakably k-symmetric, for some integer k > 1, if it has a center of k-fold rotational
symmetry that does not coincide with any vertex of the hexagonal grid.
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I Theorem 1. If (S0, SF ) is a feasible pair and S0 is unbreakably k-symmetric, then SF is
also unbreakably k-symmetric.

Interestingly, all the pairs not excluded by the above theorem turn out to be feasible
(provided that the size of S0 is large enough with respect to the size of SF ), and for them we
give a universal shape formation algorithm: this algorithm does not need any information on
S0, except that it is simply connected. The algorithm first elects 1, 2, or 3 leaders among
the particles. Electing a unique leader may be impossible due to the symmetry of S0: if
k > 1 leaders are elected, it means that S0 is necessarily unbreakably k-symmetric. Each
leader takes an equal portion of S0 and rearranges it into a straight line. Then, all leaders
reconfigure their respective lines to form a portion of SF , scaled up by an appropriate factor.
The optimal factor is computed by each leader by simulating a Turing machine on its line of
particles: the leader acts as the head, and uses the particles as memory cells on a tape.

I Theorem 2. Let P be a system of n particles forming a simply connected shape S0. Let
SF be a shape of constant size m that is unbreakably k-symmetric if S0 is unbreakably
k-symmetric. If all particles of P execute the universal shape formation algorithm with input
a representation of the final shape SF , and if n is at least Θ(m2), then eventually P forms a
scaled copy of SF , and the particles cease to move.

The total number of movements performed by the system executing our algorithm is
O(n2), which is asymptotically optimal: indeed, if S0 is a full hexagon and SF is a line
segment, Ω(n2) moves are needed. The number of rounds (i.e., periods of time in which each
particle is activated at least once) that an execution of our algorithm takes is also O(n2).

Our algorithm works under a stronger adversarial scheduler than [2], as it activates
an arbitrary number of particles at each execution step (i.e., not necessarily just one, like
the sequential scheduler). We also need a slightly less demanding communication system.
Moreover, in our algorithm, no chirality is assumed: indeed, unlike in [2], different particles
may have a different notion of clockwise direction. Because of this difficutly, part of the
algorithm is dedicated to a “handedness agreement” procedure. We stress that our results
prove that chirality is computationally irrelevant for shape formation.

These results concern deterministic shape formation. If randomization were allowed, we
could always elect a unique leader with arbitrarily high probability, and apply our algorithm
to any pair of shapes (S0, SF ) where S0 is simply connected, regardless of their symmetry.
This extends the result of [2], which assumes the initial configuration to be a (possibly
incomplete) triangle. Additionally, our notion of shape generalizes the one used in [2], where
a shape is only a collection of full triangles, while we include also 1-dimensional segments
as its constituting elements. Our technique actually allows us to generalize the concept of
shape much further, to include essentially anything that is Turing-computable.
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Abstract
The coalescence protocol plays an important role in the population protocol model. The con-
ceptual structure of the protocol is for two agents holding two non-zero values a, b respectively
to take a transition (a, b) → (a + b, 0), where + is an arbitrary commutative binary operation.
Obviously, it eventually aggregates the sum of all initial values. In this paper, we present a fast
coalescence protocol that converges in O(

√
n log2 n) parallel time with high probability in the

model with an initial leader (equivalently, the model with a base station), which achieves an
substantial speed-up compared with the naive implementation taking Ω(n) time.
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1 Introduction

A passively-mobile system, which is an abstract notion of wireless ad-hoc networks, consists of
a collection of moving objects (called agents) in a certain region, with computing devices that
do not control over how they move. Despite the restrictions on communication range, memory,
and computational power caused by the mobility requirement, the devices must execute
cooperatively some task through tiny local computation and short-range communication with
other devices located nearby. Typical examples of passively-mobile systems are the network
of smart devices attached to cars or animals. Population protocol is one of the promising
models for such a system, which is first introduced by Angluin et al. [2]. A Population
protocol consists of anonymous and identical n agents, which are defined as deterministic
state machines. The communication among agents is performed by pairwise interactions,
where two interacting agents change their states following a transition function (protocol)
deployed to all agents. An execution of a population protocol is a sequence of pairwise
interactions. In the basic model, the scheduling of interactions is worst-case but guaranteed
to be fair, which means that if in the infinitely-many interactions every two agents interact
infinitely often.

Recent trends of this model are to design fast protocols for popular problems (e.g. leader
election, majority) converging in O(polylog(n)) time, and to reveal trade-offs between time
and space for several problems. To measure time in the runs of the population protocol
models, the (uniform) probabilistic scheduler is often assumed. In the model, two agents
interacting at each step are selected at random uniformly and independently. In the literature
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of this model, time complexity is defined as the number of interactions divided by the number
of agents n, and space complexity is the number of states used by each agent.

We consider some abstract problem, called the aggregation problem. Precisely, the
aggregation problem is defined by any monoid (X, +), where initially each agent i has a
value xi ∈ X, and eventually one specific agent must output the value of s =

∑
i xi. This

problem can be solved by the traditional coalescence protocol, whose transition rule for two
agents with values a and b respectively is specified by (a, b)→ (a + b, 0). One can see that,
the standard coalescence protocol needs Θ(n) time for convergence, since the probability
that the last two agents having non-zero values interact is 1/n2.

In this paper, we present a new coalescence protocol. It achieves O(
√

n log2 n)-convergence
time in the special model with existence of one unique leader (equivalently, the model with
a base station). On the space complexity side, agents (including the leader) uses O(|X|3)
states.

Problem Statement

Let (X, +) be an arbitrary commutative monoid whose identity element is zero (where + is
not necessarily the standard arithmetic sum), and X̂ = X \ {0}. In the aggregation problem
for (X, +), each agent i initially has a value xi ∈ X, and the goal of the task is that the
leader computes the value s =

∑
i xi. More precisely, we assume that the leader equips an

output register storing a value in X. The value of the output register must be converged
and stabilized into s. Note that the leader does not have to detect the termination of an
execution, and is allowed to update answers multiple times. The computation time of the
aggregation problem is defined as the time taken until the convergence of the output register.

Outline of Our Algorithm

Our algorithm utilizes several algorithmic tools proposed in past literature as building blocks.
Before the presentation of our protocol, we illustrate three tools. The first algorithm called
epidemics (or propagation) is a straightforward subroutine used in many algorithms. The
abstract structure of the epidemics is as follows: At first there are at least one agent with
value v, which wishes to propagate v to all other agents, and the other agents initially with
value ⊥. The transition rule is (v,⊥) or (⊥, v) to (v, v). The analysis by Angluin et al. [3]
shows that under the random scheduler the epidemics algorithm finishes within O(log n)
parallel time with high probability.

The second tool is a synchronization mechanism called phase clock which counts approxi-
mately O(log n) time or O(log2 n) time. The phase clock is first presented in the paper by
Angluin et al. [3]. The phase clock is mainly introduced for a unique leader to detect the
end of the epidemics (i.e. O(log n) time), and by a simple extension, it is also possible to
count O(log2 n) time [4]. A non-trivial advantage of the phase clock mechanism is that it
uses only O(1) states per agent.

The third tool is synthetic coin flips due to Alistarh et al. [1], which provides the
accessibility of private random bits to each agent. It gives a coin flipping mechanism with
reasonably small bias to the agents. The randomness of the synthetic coin flips is extracted
from the random interaction-pattern of the scheduler, and thus it works only on the random
scheduler.

The idea of our algorithm is very simple: The bottleneck of the standard coalescence
algorithm is the situation where the number of agents with non-zero values becomes small. If
only m agents have non-zero values, an interaction selected by the scheduler gets no progress
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of the algorithm with probability 1−Θ((m/n)2). In the naive coalescence algorithm, spending
O(
√

npolylog(n)) parallel time, Θ(
√

n) agents still have non-zero values. To accelerate the
following coalescence process, when only O(

√
n) agents have non-zero values, we utilizes

another mechanism, called sequential absorption. The sequential absorption first chooses
an agent (which is not leader) with a non-zero value as an absorption agent only spending
O(log n) parallel time. This process is achieved by utilizing the phase clock and the synthetic
coin flips: At each phase, the agents with non-zero values flip the synthetic coin, the agents
which get value 1 start epidemics, and the epidemics kill the agents with value 0. The number
of phases to elect one unique absorption agent is O(log n), thus the total time to elect the agent
is O(log2 n). The absorption agent runs the epidemics its value, and immediately become
an agent with value zero. The value reaches to the leader within O(log n) time. Repeating
this procedure Θ(

√
n) times, we can complete the aggregation. Since both the election

and epidemics take O(log2 n) time, the total running time of the sequential absorption is
O(
√

n log2 n). The remaining issue is to combine those two algorithms. While the sequential
composition is obviously correct, it requires the timer for (exactly or approximately) counting
Θ(
√

n) parallel time. To avoid consuming extra memory space, instead we choose fair
composition, that is, simply running them concurrently. This composition does not affect
the correctness of our protocol, since the absorption agent behave following way so that
the value of the sum does not change: When the absorption agent with value xi detect its
uniqueness by the phase clock counting O(log2 n) time, it immediately change its state to
the value zero, and thus xi is never aggregated in the standard coalescence side. Here we
present our main theorem. Note that our algorithm have a low probability of error, that is
conversely the algorithm convergences only with high probability.

I Theorem 1. Our algorithm solves an aggregation problem for (X, +) in expected
O(
√

n log2 n) time using O(|X3|) states per agent, with high probability.

Discussion and Research Direction

In [2], authors show the simple coalescence protocol can compute semilinear predicates, which
are exact characterization of the basic population protocol model, and thus our protocol
computes the predicates in O(

√
n log2 n) time. However for computation of semilinear

predicates with leader, there is much faster protocol presented by Angluin et al. [3] which
converges in O(log4 n) time with high probability. We believe that due to its simplicity and
generality, there are some applications of our algorithm in population protocol models.
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Abstract
Non-volatile memory is expected to coexist with (or even displace) volatile DRAM for main
memory in upcoming architectures. As a result, there is increasing interest in the problem
of designing and specifying durable data structures that can recover from system crashes. Data-
structures may be designed to satisfy stricter or weaker durability guarantees to provide a balance
between the strength of the provided guarantees and performance overhead. This paper proposes
three novel implementations of a concurrent lock-free queue. These implementations illustrate
the algorithmic challenges in building persistent lock-free data structures with different levels of
durability guarantees. We believe that by presenting these challenges, along with the proposed
algorithmic designs, and the possible levels of durability guarantees, we can shed light on avenues
for building a wide variety of durable data structures. We implemented the various designs and
evaluate their performance overhead compared to a simple queue design for standard (volatile)
memory.
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1 Introduction

Memory is said to be non-volatile if it does not lose its contents after a system crash. Non-
volatile memory is soon expected to co-exist with or even displace volatile DRAM for main
memory (but not caches or registers) in many architectures. As a result, there is increasing
interest in the problem of designing and specifying durable data structures, that is, data
structures whose state can be recovered after a system crash.

A major challenge in designing durable data structures is that caches and registers are
expected to remain volatile. Thus, the state of main memory following a crash may be
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inconsistent, missing all previous writes to the data structure that were present in the cache,
but not yet written into the main memory. Dealing with arbitrary missing words after a
crash requires non-trivial data structure algorithms that make sure key data does get written
to main memory (without incurring too much overhead), so that restoration of the data
structure to a consistent state becomes possible.

It would be interesting to know if it is possible to build libraries of high performance
persistent data structures that are heavily optimized using ad-hoc techniques informed by
the data structure architecture and semantics. Previous work focuses on B-tree implementa-
tions. The interest in B-trees is natural given their prevalence in file system and database
implementations. However, other foundational data structures are also used in application
domains that care about persistence; e.g. hash tables in key-value stores, persistent message
queues, etc. Since traditional storage media have been block-based, all these applications
persist these data structures by marshaling them to a block-based format. Doing so involves
non-trivial overhead that was dwarfed by the high cost of disk access. As a result, the
in-memory representation and on-disk (-SSD) representation of these data structures are
quite different. Byte-addressable persistent memory can be used to create a unified persistent
representation. As far as we know, there is no previous work that attempts to optimize these
data structures for persistent memory. Furthermore, none of the above works attempt to
build highly concurrent, nonblocking persistent data structures.

In order to strive for high-performance crash-resilient software on non-volatile memories,
we propose to look at modern highly-concurrent data structures, such as the ones used in
java.util.concurrent, and enhance them to work with non-volatile memories. Designing such
concurrent data structures for upcoming non-volatile memories requires dealing with the
challenge of high concurrency and non-volatile durability combined.

We study these challenges by designing a durable version of the lock-free concurrent
queue data structure of Michael and Scott [2], which also serves as the base algorithm for
the queue in java.util.concurrent. This concurrent data structure is complicated enough to
demonstrate the challenges that concurrent durable data structures raise, and simple enough
to demonstrate solutions for these challenges.

Recently various definitions were proposed to formalize durability. In this paper we adopt
and work with the definition of linearizable durability by Izraelevitz et al. [1]. Informally,
durable linearizability guarantees that the state of a data structure following a crash reflects
a consistent subhistory of the operations that actually occurred. This subhistory includes
all operations that completed before the crash, and may or may not include operations in
progress when the crash occurred. The main tool for achieving durable linearizability for a
concurrent data structure is the use of explicit instructions that force volatile cashed data
to be written to non-volatile memory. While such persistence barrier instructions enforce
correctness, they also carry a performance cost and their use should be minimized.

An alternative, weaker condition, is buffered durable linearizability. Informally, this
condition guarantees that the state of the object following a crash reflects a consistent
subhistory of the operations that actually occurred, but this subhistory need not include all
operations that completed before the crash.

The first main contribution of this paper is the proposal of three novel designs of durable
concurrent queues, extending the original Michael-Scott queue for use with non-volatile
memory. It is easy to obtain a durable linearizable queue by adding many persistence barrier
operations automatically. But, in general, the obtained performance can be very low. In this
paper, we attempt to minimize the overhead and still achieve robustness to crashes. The
first implementation, denoted durable queue, provides durable linearization. The second
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implementation, denoted log queue, provides durable linearization, as well as an additional
property that we discuss next. The third implementation, denoted relaxed queue, provides
buffered durable linearizability.

When crashes occur during an execution, it is often difficult to tell which operations were
executed and which operations failed to execute when a crash occurs. Durable linearizability
does not provide a mechanism to determine whether an operation that executed concurrently
with a crash was eventually executed. Without the ability to distinguish completed operations
from lost operations, it would be difficult to recover the entire program, because in practice
it is often important to execute each operation exactly once. In this paper we enable a more
robust use of the queue, by defining a new (natural) notion of detectable execution. A data
structure provides detectable execution if it is possible to tell at the end of a recovery phase
whether a specific operation was executed. The log queue provides durable linearization and
detectable execution. If the program that uses the queue follows a similar procedure for
detecting execution, then it is possible to tell how much of the execution has completed on
recovery from a crash, and program recovery at higher level becomes possible.

2 Measurements

We have implemented the three queue designs and evaluated their performance by comparing
them one against the other and also against the original MS queue. We ran measurements
on an 8-cores Intel Xeon D-1540 2.6GHz.

Above, we depict the throughput of five queues: MSQ is the Michel and Scott’s queue,
Durable is the durable queue, Log is the queue that can detect which operations completed
before the crash, and Relaxed is the queue that only guarantees a view of a prefix of the
operations executed before the crash. We ran Relaxed with an additional operation sync
that makes all history durable once every 100 or 1000 operations, denoted Relaxed100
and Relaxed1000. As expected, implementations that provide durable linearization have a
noticeable cost, and interestingly, providing detectable execution does not add a significant
overhead and may be worthwhile in this case. In addition, implementations that provides
only buffered durable linearizability obtain good performance when the sync() method is
invoked infrequently.
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Abstract
In this work we study the performance of asymptotic and approximate consensus algorithms in
dynamic networks. The asymptotic consensus problem requires a set of agents to repeatedly set
their outputs such that the outputs converge to a common value within the convex hull of initial
values. This problem, and the related approximate consensus problem, are fundamental building
blocks in distributed systems where exact consensus among agents is not required, e.g., man-
made distributed control systems, and have applications in the analysis of natural distributed
systems, such as flocking and opinion dynamics. We prove new nontrivial lower bounds on the
contraction rates of asymptotic consensus algorithms, from which we deduce lower bounds on
the time complexity of approximate consensus algorithms. In particular, the obtained bounds
show optimality of asymptotic and approximate consensus algorithms presented in [Charron-Bost
et al., ICALP’16] for certain classes of networks that include classical failure assumptions, and
confine the search for optimal bounds in the general case.

Central to our lower bound proofs is an extended notion of valency, the set of reachable limits
of an asymptotic consensus algorithm starting from a given configuration. We further relate
topological properties of valencies to the solvability of exact consensus, shedding some light on
the relation of these three fundamental problems in dynamic networks.
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1 Introduction

In the asymptotic consensus problem a set of agents, each starting from an initial value
in Rd, update their values such that all agents’ values converge to a common value within
the convex hull of initial values. The problem is closely related to the approximate consensus
problem, in which agents have to irrevocably decide on values that lie within a predefined
distance ε > 0 of each other. The latter is weaker than the exact consensus problem in
which agents need to decide on the same value. Both the asymptotic and the approximate
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consensus problems have not only a variety of applications in the design of man-made control
systems like sensor fusion [1], clock synchronization [8], formation control [6], rendezvous
in space [9], or load balancing [5], but also for analyzing natural systems like flocking [11],
firefly synchronization [10], or opinion dynamics [7]. These problems often have to be solved
under harsh-environmental restrictions: with limited computational power and local storage,
under restricted communication abilities, and in presence of communication uncertainty.

In this work we study asymptotic consensus in round-based computational models with a
dynamic communication topology whose directed communication graphs are chosen each
round from a predefined set of communication graphs, the so-called network model. In
previous work [2], Charron-Bost et al. showed that asymptotic consensus is solvable precisely
within rooted network models in which all communication graphs contain rooted spanning
trees. These rooted spanning trees need not have any edges in common and can change from
one round to the next.

An interesting special case of rooted network models are network models whose graphs
are non-split, that is, any two agents have a common incoming neighbor. Their prominent
role is motivated by two properties: (i) They occur as communication graphs in benign
classical distributed failure models. For example, in synchronous systems with crashes,
in asynchronous systems with a minority of crashes, and synchronous systems with send
omissions. (ii) In [2], Charron-Bost et al. showed that non-split graphs also play a central
role in arbitrary rooted network models: they showed that any product of n − 1 rooted
graphs with n nodes is non-split, allowing to transform asymptotic consensus algorithms for
non-split network models into their amortized variants for rooted models.

Contribution

In this work, we prove lower bounds on the contraction rate of any asymptotic consensus
algorithm. All lower bounds hold regardless of the structure of the algorithm. In particular,
algorithms can be full-information and agents can set their outputs outside the convex hull
of received values. This, e.g., includes using higher-order filters in contrast to the 0-order
filters of averaging algorithms.

The proof strategy is as follows: The central idea is the concept of the valency of a
configuration of an asymptotic consensus algorithm, defined as the set of limits reachable from
this configuration. By studying the changes in valency along executions, we infer bounds on
the contraction rate. Notably, the lower bounds are valid for arbitrary dimensions.

Note that if exact consensus is solvable in network model N , an optimal contraction rate
of 0 can be achieved. Otherwise, we show the following non trivial bounds:

We show a tight lower bound of 1/3 in non-split network models with n = 2 agents.
We prove that the contraction rate is lower bounded by 1/2 in a system with n ≥ 3
agents and deaf(G) ⊆ N where, for an arbitrary communication graph G, deaf(G) =
{F1, . . . , Fn} and Fi is derived from G by making agent i deaf in Fi, i.e., removing the
incoming links of i in G. Additionally we show tightness for d ∈ {1, 2} dimensional values.
The study of the valencies’ topological structure with respect to the network model where
the asymptotic consensus algorithm is executed in, reveals that any asymptotic consensus
algorithm must have a contraction rate of at least 1/(D + 1), where D is the so-called
α-diameter of N . This generalizes the previous two lower bounds.

Tightness for 1/3 and 1/2 results from the combination with algorithms presented in [3] and
[4]. Together with the algorithm for arbitrary dimensions d with contraction rate d

d+1 in
non-split models [4] the bounds in Table 1 follow. Furthermore we extend our results on
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Table 1 Summary of lower and upper bounds on contraction rates if consensus is not solvable.
New lower bounds proved in this work are marked with a ∗. The three right columns distinguish
between the case the network model is (i) non-split and contains deaf(G) for some communication
graph G, (ii) is non-split, and (iii) is rooted.

network model in which exact consensus is unsolvable
agents dimension non-split with deaf graphs ⊆ non-split ⊆ rooted
n = 2 d ≥ 1 1

3
∗ 1

3
∗ 1

3
∗

n ≥ 3 d ∈ {1, 2} 1
2

∗ [
1

D+1
∗
, 1

2

] [
1

D+1
∗
, n−1
√

1
2

]
d ≥ 3

[
1
2

∗
, d

d+1

] [
1

D+1
∗
, d

d+1

] [
1

D+1
∗
, n−1
√

d
d+1

]

contraction rates to derive new lower bounds on the decision time of approximate consensus
algorithms.
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Abstract
We show that many techniques developed in the context of predicate detection are applicable to
the stable marriage problem. The standard Gale-Shapley algorithm can be derived as a special
case of detecting linear predicates. We also show that techniques in computation slicing can be
used to represent the set of all constrained stable matchings.
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1 Introduction

The Stable Matching Problem (SMP) [2] has wide applications in economics, distributed
computing, and resource allocation.

In this paper, we show that techniques for detecting global predicates can be used to derive
solutions to a more general problem than SMP, called constrained SMP. In our formulation,
in addition to men and women preferences, there may be a set of constraints on the set of
marriages consistent with men’s preferences. For example, we may state that Peter’s regret
[4] should be less than that of Paul where the regret of a man in a matching is the choice
number he is assigned.

To solve a constrained SMP, we define a distributed computation such that every assign-
ment of women to men corresponds to a global state of the distributed computation. The set
of global states form a finite distributive lattice under the natural order on the global states.
The problem of finding a stable matching reduces to that of finding a consistent global state
that satisfies the boolean predicate B for the constrained stable matching. We show that
B satisfies the linearity property introduced in predicate detection [1]. Consequently, we
can use the algorithm that can detect a linear predicate in [1] to find a constrained stable
matching. The stable matching found by this algorithm is man-optimal [2]. The Gale-Shapley
algorithm is a special case of the linear predicate detection algorithm when the set of external
constraints is null. While there always exists a stable matching for the SMP problem, there
may not exist a stable matching in the constrained SMP. Our algorithm is guaranteed to
find one whenever it exists. In addition, the stable matching it finds is man-optimal.

We then consider the constrained SMP in a distributed setting where men and women
know only those constraints that either they choose (such as their preference lists) or the
external constraints in which they participate. We present a distributed algorithm based on
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diffusing computation that solves the constrained SMP. When external constraints are null,
the algorithm reduces to a distributed version of the Gale-Shapley Algorithm [2]. To our
knowledge, this paper is the first one to propose sequential and distributed algorithms for
constrained SMP.

In the full version of the paper [3], we also consider the problem of computing all
constrained stable matchings. Since the number of stable matchings may be exponential
in the number of men, instead of keeping all matchings in an explicit form, we would like
a concise representation of polynomial size that can be used to enumerate all constrained
stable matchings. In SMP literature, rotation posets are used to capture all stable matchings.
We use the notion of computation slicing introduced in [5] for this purpose. In particular, we
give an efficient algorithm to compute the slice for the constrained SMP computation. A
rotation poset [4] is a special case of the slice when the set of external constraints is empty.

2 Modeling Stable Matching Problem (SMP) as a Distributed
Computation

Let E be the set of proposals made by men to women. We also call these proposals events
which are executed by n processes corresponding to n men denoted by {P1 . . . Pn}. Each
of the events can be characterized by a tuple (i, j) that corresponds to the proposal made
by man i to woman j. We impose a partial order →p on this set of events to model the
order in which these proposals can be made. In the standard SMP, every man Pi has its
preference list mpref[i] such that mpref[i][k] gives the kth most preferred woman for Pi. We
model mpref using →p; if Pi prefers woman j to woman k, then there is an edge from the
event (i, j) to the event (i, k). As in SMP, we assume that every man gives a total order on
all women.

In the standard stable matching problem, there are no constraints on the order of
proposals made by different men, and →p can be visualized as a partial order (E,→p) with
n disjoint chains. We generalize the SMP problem to include external constraints on the set
of proposals. In the constrained SMP problem, →p can relate proposals made by different
men and therefore →p forms a general poset (E,→p).

A global state G ⊆ E is simply the subset of events executed in the computation such
that it preserves the order of events within each Pi. A global state G is consistent if it
preserves the →p order. We will deal only with consistent global states from now on. We let
G[i] denote the last proposal made by Pi. Initially, G[i] is null for all men. If Pi has made
k > 0 proposals, then mpref[i][k] gives the identity of the woman last proposed by Pi. We
model women preferences using edges on the computation graph as follows. If an event e

corresponds to a proposal by Pi to woman q and she prefers Pj , then we add a →w edge
from e to the event f that corresponds to Pj proposing to woman q. The set E along with
→w edges also forms a partial order (E,→w) where e →w f iff both proposals are to the
same woman and that woman prefers the proposal f to e.

The above discussion motivates the following definition.

I Definition 1 (Constrained SMP Graph). Let E = {(i, j)|i ∈ [1..n] and j ∈ [1..n]}. A
Constrained SMP Graph ((E,→p),→w) is a directed graph on E with two sets of edges →p

and→w with the following properties: (1) (E,→p) is a poset such that the set Pi = {(i, j)|j ∈
[1..n]} is a chain for all i, and (2) (E,→w) is a poset such that the set Qj = {(i, j)|i ∈ [1..n]}
is a chain for all j and there is no →w edge between proposals to different women, i.e., for
all i, j, k, l : (i, j)→w (k, l)⇒ (j = l).
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We define the frontier of a global state G as the set of maximal events executed by any
process in G. It includes only the last event executed by Pi (if any). We call the events in G

that are not in frontier(G) as pre-frontier events. A consistent global state G is admissible
if ∀e, f ∈ frontier(G) : ∀g ∈ G : (e →w g) ⇒ ¬((g →p f) ∨ (g = f)). We now have the
following lemma.

I Lemma 2. Let ((E,→p),→w) be a constrained SMP graph. A consistent global state
G such that G ∩ Pi 6= ∅ for all i is admissible iff the assignment by G corresponds to a
constrained stable matching.

Therefore, the problem of finding a stable matching is the same as finding a consistent
global state that satisfies the predicate admissible which is defined purely in graph-theoretic
terms on the constrained SMP graph.

We now show that admissibility satisfies linearity introduced in [1]. Any linear predicate
can be detected efficiently. A key concept in deriving an efficient predicate detection algorithm
is that of a forbidden state. Let L be the lattice of all global states of a poset (E,→p).
Given a predicate B, and a global state G ∈ L, a state G[i] is called forbidden if its
inclusion in any global state H ∈ L, where G ⊆ H, implies that B is false for H. Formally,
forbidden(G, i, B) ≡ ∀H ∈ L : G ⊆ H : (G[i] 6= H[i]) ∨ ¬B(H).

A predicate B is linear with respect to the poset (E,→p) if for any global state G in the
poset, B is false in G implies that G contains a forbidden state. Formally, a boolean predicate
B is linear with respect to a poset (E,→p) iff ∀G ∈ L : ¬B(G) ⇒ ∃i : forbidden(G, i, B).
We now have

I Lemma 3. For any global state G that is not a constrained stable matching, there exists
an i such that forbidden(G, i, admissible).

We now discuss detection of linear global predicates. On account of linearity of B,
if B is evaluated to be false in some global state G, then we can determine i such that
forbidden(G, i, B). We can then simply advance on any i such that forbidden(G, i, B) holds.

We now consider the constrained SMP in a distributed system setting. We assume that
each man and woman knows only his or her preference lists. In addition, each man is given a
list of prerequisite proposals for each of the women that he can propose to. In terms of the
constrained-SMP graph, this corresponds to every man knowing the incoming →p edges for
the chain that corresponds to that man in the graph. The full paper [3] presents a diffusing
computation for solving the constrained SMP problem.

Acknowledgements. I thank Rohan Garg for many discussions on this topic and anonymous
reviewers for their comments.
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Abstract
Contrary to common belief, a recent work by Ellen, Gelashvili, Shavit, and Zhu has shown
that computability does not require multicore architectures to support “strong” synchronization
instructions like compare-and-swap, as opposed to combinations of “weaker” instructions like
decrement and multiply. However, this is the status quo, and in turn, most efficient concurrent
data-structures heavily rely on compare-and-swap (e.g. for swinging pointers).

We show that this need not be the case, by designing and implementing a concurrent lineariz-
able Log data-structure (also known as a History object), supporting two operations: append(item),
which appends the item to the log, and get-log(), which returns the appended items so far, in order.
Readers are wait-free and writers are lock-free, hence this data-structure can be used in a lock-free
universal construction to implement any concurrent object with a given sequential specification.
Our implementation uses atomic read, xor , decrement, and fetch-and-increment instructions sup-
ported on X86 architectures, and provides similar performance to a compare-and-swap-based
solution on today’s hardware. This raises a fundamental question about minimal set of synchron-
ization instructions that the architectures have to support.
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1 Introduction

In order to develop efficient concurrent algorithms and data-structures in multiprocessor
systems, processes that take steps asynchronously need to coordinate their actions. In shared
memory systems, this is accomplished by applying hardware-supported low-level atomic
instructions to memory locations. An atomic instruction takes effect as a single indivisible
step. The most natural and universally supported instructions are read and write, as these
are useful even in uniprocessors to store and load data from memory.

A concurrent implementation is wait-free, if any process that takes infinitely many
steps completes infinitely many operation invocations. An implementation is lock-free if
in any infinite execution infinitely many operations are completed. Binary consensus is a
synchronization task where processes start with input bits, and must agree on an output bit
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that was an input to one of the processes. For one-shot tasks like consensus, wait-freedom and
lock-freedom are equivalent. Herlihy’s Consensus Hierarchy [2] assigns a consensus number to
each object, namely, the number of processes for which there is a wait-free binary consensus
algorithm using only instances of this object and read-write registers. An object with a higher
consensus number is hence a more powerful tool for synchronization. Moreover, Herlihy
showed that consensus is a fundamental synchronization task, by developing a universal
construction which allows n processes to wait-free implement any object with a sequential
specification, provided that they can solve consensus among themselves.

Herlihy’s hierarchy provides an explanation as to why, for instance, the compare-and-swap
instuction can be viewed “stronger” than fetch-and-increment, as the consensus number of a
Compare-and-Swap object is n, while the consensus number of Fetch-and-Increment is 2.

However, key to this hierarchy is treating synchronization instructions as distinct objects,
an approach that is far from the real-world, where multiprocessors do let processes apply
supported atomic instructions to arbitrary memory locations. In fact, a recent work by Ellen
et al. [1] has shown that a combination of instructions like decrement and multiply-by-n,
whose corresponding objects have consensus number 1 in Herlihy’s hierarchy, when applied
to the same memory location, allows solving wait-free consensus for n processes. Thus, in
terms of computability, a combination of instructions traditionally viewed as “weak” can be
as powerful as a compare-and-swap instruction, for instance.

The practical question is whether we can really replace a compare-and-swap instruction
in concurrent algorithms and data-structures with a combination of weaker instructions.
compare-and-swap is ubiquitous in practice and used heavily for various tasks like swinging a
pointer. Also, the protocol given by Ellen et al. solves only binary n-process consensus. It is
not clear how to use it for implementing complex concurrent objects, as utilizing Herlihy’s uni-
versal construction is not a practical solution. On the optimistic side, there exists a concurrent
queue implementation based on fetch-and-add that outperforms compare-and-swap-based
alternatives [3]. Both a Queue and a Fetch-and-Add object have consensus number 2, and
this construction does not “circumvent” Herlihy’s hierarchy by applying different non-trivial
synchronization instructions to the same location. Indeed, we are not aware of any practical
construction that relies on applying different instructions to the same location.

We develop a lock-free universal construction using only read, xor , decrement, and
fetch-and-increment instructions. The construction could be made wait-free by standard
helping techniques. In particular, we implement a Log object (also known as a History object),
which supports high-level operations get-log() and append(item), where get-log() returns all
previously appended items in order. This interface can be used to agree on a simulated object
state, and thus, provides the universal construction [2]. In practice, we require a get-log() for
each thread to return a suffix of items after the last get-log() by this thread. We design a
lock-free Log with wait-free readers, which performs as well as a compare-and-swap-based
solution on modern hardware. We could replace fetch-and-increment and decrement with
the atomic fetch-and-add instruction, reducing the instruction set size even further.

2 Algorithm

We work in the bounded concurrency model where at most n processes will ever access
the Log implementation. The object is implemented by a single fetch-and-increment-based
counter C, and an array A of b-bit integers on which the hardware supports atomic xor
and decrement instructions. We assume that A is unbounded. Otherwise, processes can
use A to agree on the next array A′ to continue the construction. C and the elements of
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Figure 1 Element of A.

A are initialized by 0. We call an array location invalid if it contains a negative value, i.e.,
if its most significant bit is 1, empty if it contains value 0, and valid otherwise. The least
significant m = dlog2 (n + 1)e bits are contention bits and have a special importance to the
algorithm. The remaining b−m− 1 bits are used to store items. See Figure 1 for illustration.

For every array location, at most one process will ever attempt to record a (b−m− 1)-bit
item, and at most n− 1 processes will attempt to invalidate this location. No process will try
to record to or invalidate the same location twice. In order to record item x, a process invokes
xor(x′), where x′ is x shifted by m bits to the left, plus 2m − 1 ≥ n, i.e., the contention bits
set to 1. To invalidate a location, a process calls a decrement. The following properties hold:
1. After a xor or decrement is performed on a location, no read on it ever returns 0.
2. If a xor is performed first, no later read returns an invalid value. Ignoring the most

significant bit, the next most significant b−m− 1 bits contain the item recorded by xor .
3. If a decrement is performed first, then all values returned by later reads are invalid.
A xor instruction fails to record an item if it is performed after a decrement. To implement
a get-log operation, process p starts at index i = 0, and keeps reading the values of A[i] and
incrementing i until it encounters an empty location A[i] = 0. By the above properties, from
every valid location A[j], it can extract the item xj recorded by a xor , and it returns an
ordered list of all such items (xi1 , xi2 , . . . , xik

). In practice, we require p to return only a
suffix of items appended after the last get-log() invocation by p. This can be accomplished by
keeping i in static memory instead of initializing it to 0 in every invocation. To make get-log
wait-free, p first performs l = C.read(). Then, if i becomes equal to l during the traversal,
it stops and returns the items extracted so far. To implement append(x), process p starts
by ` = C.fetch-and-increment(). Then it attempts to record item x in A[`] using an atomic
xor instruction. If it fails to record an item, the process does another fetch-and-increment
and attempts xor at that location, and so on, until it is able to successfully record x.
Suppose this location is A[`′]. Then p iterates from j = `′ − 1 down to j = 0, reading each
A[j], and if A[j] is empty, performing a decrement on it. Afterwards, process p can safely
return. The proofs of lock-freedom and linearizability can be found in the full version at
http://arxiv.org/abs/1705.02808.

We implemented the algorithm on X86 processor and with 32 threads. It gave the same
performance as an implementation that used compare-and-swap for recording items and
invalidating locations. It turns out that in today’s architectures, the cost of supporting
compare-and-swap is not significantly higher than that of supporting xor or decrement. This
may or may not be the case in future Processing-in-Memory architectures [4]. Finding a
compact set of synchronization instructions that, when supported, is equally powerful as the
set of instructions used today is an important question to establish in future research.
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Abstract
Recently, very fast deterministic and randomized algorithms have been obtained for connectivity
and minimum spanning tree in the unicast congested clique. In contrast, no solution faster than
a simple parallel implementation of the Boruvka’s algorithm has been known for both problems
in the broadcast congested clique. In this announcement, we present the first sub-logarithmic
deterministic algorithm for connected components in the broadcast congested clique.
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1 Introduction

In the congested clique model, each pair of n nodes of a network is connected by a separate
communication link. Communication is synchronous, each node in each round can send
message of O(log n) bits to each other node of the network. The main purpose of such a
model is to understand the role of congestion in distributed computation, separately from
limitations of locality. In the unicast congested clique, a node can send (possibly) different
message to each other node of the network. In contrast, in the broadcast congested clique,
each node can only send a single (the same) message to all other nodes in a round.

Graph problems in the congested clique model are considered under the assumption that
the input is an undirected n-node weighted graph G(V, E, w), where each node corresponds
to a node of the communication network which initially knows the network size n, its unique
ID in [n], the IDs of its neighbors in the input graph and the weights of its incident edges.
In the connected components problem, the set of edges inducing connected components of
the input graph has to be determined.

The main complexity measure is round complexity, equal to the number of rounds in an
execution of an algorithm. A natural generalization parametrizes the size (in bits) of messages
transmitted in a round, called bandwidth and denoted by b. Yet another generalization is that
the size of messages in various rounds might be different, but not larger than the bandwidth.
Then, bit complexity is defined as the sum of sizes of messages in all rounds.

Formal study of the congested clique model was initiated in [4], where a O(log log n)
round deterministic algorithm for minimum spanning tree (MST), and therefore also for
the connected components problem, in the unicast congested clique is presented. The best
known randomized solution for MST in the unicast model works in O(log∗ n) rounds [2],
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improving the O(log log log n) bound [3]. If the bandwidth is b =
√

n log n, one can compute
deterministically Connectivity in O(1) of rounds, even in the broadcast congested clique [5].
In an extreme scenario of one-round protocols in the broadcast congested clique, connected
components can be computed with public random bits using Θ(log3 n)-size messages [1].

2 Connected Components Algorithm

In this section we describe our algorithm for the connected components problem. In the
following [p] denotes the set {1, 2, . . . , p}. Given a partition C of a graph G(V, E) into
connected components and v ∈ V , Cv denotes the component containing v. We define
degC(v) for a vertex v wrt a partition C as the number of components connected with v,
i.e., degC(v) = |NC(v)|, where NC(v) = {C ∈ C | ∃u ∈ C such that (v, u) ∈ E and C 6= Cv}.
For a component C ∈ C, we define degC(C) = maxv∈C{degC(v)}. Given a partition C of the
graph into components, we define the linear ordering � of components, where C � C ′ iff
degC(C) > degC(C ′) or degC(C) = degC(C ′) and ID(C) > ID(C ′). A component C is a local
maximum if all its neighbors are smaller with respect to the � ordering.

The algorithm consists of the main part and the playoff (see Alg. 1). The main part is
split into phases. In a phase, edges connecting currently build connected components are
reported. The edges which connect nodes to the components of large degree are preferred.
The intended result of a phase is that each component either has a small degree (smaller
than s) or it is connected to some “host” of large degree (directly or by a path). As the
number of such “hosts” will be relatively small, we obtain significant reduction of the number
of components of large degree in each phase. Moreover, we separately deal with components
of small degree by allowing them to broadcast all their neighbours in the playoff.

At the beginning of phase 1 of the main part, each node is active and it forms a separate
component. During an execution of the algorithm, nodes from components of small degree
(smaller than s) are deactivated. At the beginning of a phase, a partition C of the graph of
active nodes is known. In Round 1 of a phase, each node v determines NC(v) and announces
its degree degC(v). With this information, each node v knows the ordering of components of
C according to �. Then, each active node v (except of members of local maxima) broadcasts
its incident edge to the largest active component from NC(v) according to � (Round 2). Next,
each node v of each local maximum C checks whether edges connecting C to all components
from NC(v) have been already broadcasted. If it is not the case, an edge connecting v to
a new component C ′ is broadcasted by v (Round 3). Based on broadcasted edges, new
components are determined and their degrees are computed (Round 4). Each new component
with degree smaller than s is deactivated at the end of a phase.

The playoff lasts s rounds in which each node v of each deactivated component broadcasts
an edge going to each component connected to v at the moment of deactivation (there are at
most s such components for each deactivated node).

The key property of the algorithm is that each active component C of degree ≥ s is
either connected during a phase to all its neighbors or to a component which is larger than
C according to �. Thus, the number of active components decreases s times in each phase.

I Theorem 1. Alg. 1 solves the spanning forest problem in O(s + logs n) rounds.

For s = log n
log log n Algorithm 1 gives the claimed o(log n) result.

I Corollary 2. It is possible to solve the connected components problem in the broadcast
congested clique in O

(
log n

log log n

)
rounds.
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Algorithm 1 BroadcastCC(v, s) . s is the threshold between small/large degree
1: C ← the partition into one-node components {v1}, . . . , {vn}
2: while there are active components do . execution at a node v

3: Round 1: v broadcasts degC(v)
4: if degC(v) > 0 then . C – the current partition into connected components
5: Cmax(v)← the largest element of NC(v) wrt the ordering �
6: Round 2:
7: if Cv is not a local maximum then v broadcast an edge (u, v) such that u ∈ Cmax

8: Round 3:
9: if Cv is a local maximum then
10: Nlost(v)← {C |C ∈ NC(v) and no edge connecting C and Cv was broadcasted}
11: if Nlost(v) 6= ∅ then
12: u← a neighbor of v such that u ∈ C for some C ∈ Nlost(v)
13: v broadcasts an edge (u, v)
14: v computes the new partition C into components, using all broadcasted edges
15: Round 4: v broadcasts degC(v) . degrees wrt the new components!
16: if degC(Cv) < s then deactivate v

17: Remove deactivated components from the partition C
18: Playoff (s rounds): deactivated nodes broadcast edges to neighboring components.

Now, assume that the bandwidth is b = d log n. If s = d in Algorithm 1, we get logd n phases,
each requiring O(log n) bits per node. Edges from deactivated nodes can be broadcasted
during playoff in one round, using O(d log n) bits bandwidth. This gives O(logd n) round
algorithm using O(log n(d + log n

log d )) bit complexity.

I Corollary 3. It is possible to solve the connectivity problem in the broadcast congested
clique with bandwidth d log n in logd n rounds and O(log n(d + log n

log d )) bit complexity.

The above corollary gives an improvement over a result from [5], where bit complexity is
O

(
d log2 n

log d

)
in O(logd n) rounds. Moreover, our algorithm does not use number theoretic

techniques as d-pruning or deterministic sparse linear sketches needed in [5].

Conclusions. We have shown the first sub-logarithmic algorithm for connected components
in the broadcast congested clique. On the other hand, it is still not known whether MST can
be computed in o(log n) rounds.
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Abstract
The congested clique model of distributed computing has been receiving attention as a model for
densely connected distributed systems. While there has been significant progress on the side of
upper bounds, we have very little in terms of lower bounds for the congested clique; indeed, it
is now know that proving explicit congested clique lower bounds is as difficult as proving circuit
lower bounds. In this work, we use traditional complexity-theoretic tools to build a clearer picture
of the complexity landscape of the congested clique, proving non-constructive lower bounds and
studying the relationships between natural problems.
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Digital Object Identifier 10.4230/LIPIcs.DISC.2017.55

1 Introduction

In this work, we study computational complexity questions in the congested clique model of
distributed computing. The congested clique is essentially a fully-connected specialisation of
the classic CONGEST model of distributed computing: There are n nodes that communicate
with each other in a fully-connected synchronous network by exchanging messages of size
O(logn). Each node in the network corresponds to a node in an input graph G, each node
starts with knowledge about their incident edges in G, and the task is to solve a graph
problem related to G.

The congested clique has recently been receiving increasing attention especially on the
side of the upper bounds, and the fully-connected network topology allows for significantly
faster algorithms than what is possible in the CONGEST model. However, on the side of
complexity theory, there has been significantly less development. Compared to the LOCAL
and CONGEST models, where complexity-theoretic results have generally taken the form of
explicit unconditional lower bounds for concrete problems, such developments have not been
forthcoming in the congested clique. Indeed, it was show by Drucker et al. [5] that congested
clique lower bounds imply circuit lower bounds, and the latter are notoriously difficult to
prove – overall, it seems that there are many parallels between computational complexity in
the congested clique and centralised computational complexity.
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Following these parallels, we apply concepts and techniques from centralised complexity
theory to map out the complexity landscape of the congested clique model. In this brief
announcement, we present an overview of our main results. For more details, refer to the full
version of this paper [8].

2 Results in brief

Time hierarchy. We prove a time hierarchy theorem for the congested clique, analogous to
the centralised time hierarchy theorem [7]. Writing CLIQUE

(
T (n)

)
for the set of decision

problems that can be solved in O(T (n)) rounds, we prove the following: for any computable
increasing functions S and T with S(n) = o(T (n)), we have that

CLIQUE
(
S(n)

)
( CLIQUE

(
T (n)

)
.

In particular, this stands in contrast to the widely studied distributed computing setting of
LCL problems in the LOCAL model, where complexity gaps are known to exist [3, 4, 9].

The proof of the time hierarchy theorem is based on the earlier circuit counting arguments
for a non-uniform version of the congested clique [1, 5]. We show how to lift this result into
the uniform setting, allowing us to show the existence of decision problems of essentially
arbitrary complexity.

Nondeterministic congested clique. The class NP and NP-complete problems are central
in our understanding of centralised complexity theory. We build towards a similar theory for
the congested clique by introducing a nondeterministic congested clique model. We define the
class NCLIQUE

(
T (n)

)
as the class of decision problems that have nondeterministic algorithms

with running time O(T (n)), or equivalently, as the set of decision problems L for which there
exists a deterministic algorithm A that runs in O(T (n)) rounds and satisfies

G ∈ L if and only if ∃z : A(G, z) = 1 ,

where z is a labelling assigning each node v a nondeterministic guess zv.
We show that nondeterminism is only useful up to the number of bits communicated by

the algorithm: any nondeterministic algorithm with running time O(T (n)) can be converted
to a normal form in which we only need to use O(T (n)n logn) bits of nondeterminism. As
an application of this result, we show that NCLIQUE

(
S(n)

)
does not contain CLIQUE

(
T (n)

)
for any S(n) = o(T (n)).

Constant-round nondeterministic decision. We argue that the class NCLIQUE(1) is a
natural complexity class of interest; it can be seen as the analogue of the class NP in centralised
computing, and the class LCL in the LOCAL model of distributed computing. In particular,
the question of proving that CLIQUE(1) 6= NCLIQUE(1) can be seen as playing a role similar
to the P vs. NP question. While we cannot prove a separation between deterministic and
nondeterministic constant time, we identify a family of canonical edge labelling problems for
NCLIQUE(1), which give a limited notion of completeness for NCLIQUE(1).

Constant-round decision hierarchy. We extend the notion of nondeterministic clique by
studying a constant-round decision hierarchy, where each node runs an alternating Turing
machine, similarly to the recent work in the LOCAL model [2,6] – the centralised analogue is
the polynomial hierarchy. Unlike for nondeterministic algorithms, it turns out that the label
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size for algorithms on the higher levels of this hierarchy is not bounded by the amount of
communication. Thus, we get two very different versions of this hierarchy:

Unlimited hierarchy (Σk,Πk)∞
k=1 with unlimited label size: we show that this version of

the hierarchy collapses, as all decision problems are contained on the second level.
Logarithmic hierarchy (Σlog

k ,Πlog
k )∞

k=1 with label size O(n logn) per node: we show that
there are problems that are not contained in this hierarchy.

Fine-grained complexity. There are decision problems of all complexities, but it is beyond
our current techniques to prove lower bounds for any specific problem, assuming we exclude
lower bounds resulting from input or output sizes. However, what we can do is study
the relative complexity of natural problems, much in the vein of centralised fine-grained
complexity: for a problem P , we define the exponent of P as

δ(P ) = inf
{
δ ∈ [0, 1] : P can be solved in O(nδ) rounds

}
.

The basic idea is that the problem exponent captures the polynomial complexity of the
problem, and we can compare the relative complexity of problems by comparing their
exponents. In the full version of this paper [8], we map out some known relationships between
prominent problems in the congested clique using this framework.

Acknowledgements. We thank Alkida Balliu, Parinya Chalermsook, Juho Hirvonen, Petteri
Kaski, Dennis Olivetti and Christopher Purcell for comments and discussions.
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Abstract
The paper proposes a simple topological characterization of a large class of adversarial distributed-
computing models via affine tasks: sub-complexes of the second iteration of the standard chro-
matic subdivision. We show that the task computability of a model in the class is precisely
captured by iterations of the corresponding affine task. While an adversary is in general defined
as a non-compact set of infinite runs, its affine task is just a finite subset of runs of the 2-round it-
erated immediate snapshot (IIS) model. Our results generalize and improve all previously derived
topological characterizations of distributed-computing models.
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1 Introduction

Distributed computing is a jungle of models, parameterized by types of failures, synchrony
assumptions, and employed communication primitives. Determining relative computability
power of these models (“is model A more powerful than model B”) is an intriguing and
important problem.

The task computability of the wait-free model of computation, which makes no assumptions
about the number of failures that can occur, was characterized by Herlihy and Shavit [7]
through the existence of a specific continuous map from a subdivision of the input complex of
a task I to its output complex O. (The reader is referred to [6] for a thorough discussion of the
use of combinatorial topology in distributed computability.) In particular, the characterization
can consider the iterated standard chromatic subdivision (Chr s depicted in Figure 1a) and,
thus, derive that a task is wait-free solvable if and only if it can be solved in the IIS model.

The aim of this paper is to generalize this topological characterization to models beyond
the wait-free model using the formalism of affine tasks [5]. An affine task is defined through
a pure subcomplex of an iterated standard chromatic subdivision or, equivalently, a subset
of finite runs of the IIS model. Iterations of such affine tasks provide a failure-less compact
model (according to the “longest-prefix” metric [1]).

Given that many fundamental tasks are not wait-free solvable, the prominent adversarial
failure model [2] has been introduced to strengthen the wait-free model. An adversary

∗ A full version of the paper is available at https://hal.archives-ouvertes.fr/hal-01572257.
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Synchronous
run: {p1, p2, p3}

Ordered run:
{p2}, {p1}, {p3}

p1 sees {p1, p2} p3 sees {p2, p3}

p2 sees {p1, p2} p2 sees {p2, p3}

p2 sees {p1, p2, p3}

p1 sees {p1} p3 sees {p3}

p2 sees {p2}

(a) Chr1(s), equivalent to the output complex of
the immediate snapshot (IS) task.

(b) The affine task of the adversary consisting of
{p1}, {p2, p3} with all super-sets (in blue).

Figure 1 Standard chromatic subdivision and an affine task example for n = 3.

A is defined through a collection of process subsets, called live sets. In every run of the
corresponding adversarial A-model, the set of processes taking infinitely many steps must
be a live set. The sub-class of fair adversaries [8] does not, intuitively, allow a subset of
processes participating in a computation to achieve a better set consensus than the whole
set of participants (processes taking at least one step). The class of fair adversaries is pretty
large, as it includes the existing sub-classes of superset-closed and symmetric adversaries.

We show that a specific affine task RA, defined as a subcomplex of the second iteration of
the standard chromatic subdivision, captures the task computability of any fair adversary A.
A task is solved in the A-model if and only it is solvable in the set of IIS runs resulting from
iterations of RA (denoted R∗A).

The notion of agreement functions [8] was instrumental for this result. (An agreement
function α associates each set of processes P with the best level of set consensus solvable when
only processes in P might participate.) Fair adversaries are characterized by their agreement
function in the sense that they belong to the weakest equivalence class (in terms of task
computability) of models with the same agreement function. Our characterization can then
be put as a generalization of the celebrated Asynchronous Computability Theorem (ACT) [7]:

A task T = (I,O,∆), where I is the input complex, O is an output complex, and ∆
is a map from I to sub-complexes of O, is solvable in a fair adversarial A-model if and
only if there exists a natural number ` and a simplicial map φ : R`

A(I)→ O carried
by ∆ (informally, respecting the task specification ∆).

2 Affine tasks for fair adversaries.

Two classes of affine tasks were recently defined. The class Rt−res was introduced in [10],
with R∗t−res equivalent to the t-resilient model. Similarly, the class Rk was introduced in [4],
with R∗k equivalent to the k-concurrent model. Interestingly, these models correspond to two
“well-behaved” sub-classes of fair adversaries on opposite sides of the spectrum. In a sense, a
fair adversary can be seen as a combination of concurrency and resilience, grasped using,
resp., contention and critical simplices:

Contention simplices: If processes are executed sequentially, they not only obtain
distinct views out of IS, but also obtain the same view (inclusion) ordering out of multiple
iterations. But to be combined with resiliency features, concurrency restrictions must be
weaken to focus on “fully” conflicting processes. This is why we say that a simplex, or a
group of processes, forms a 2-contention simplex if any two of its processes have distinct
views in both IS iterations, ordered alternatively in each (see [9] for a formal definition).
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Critical simplices: For fair adversaries, concurrency may rise with participation irregu-
larly. Critical simplices act as representatives of each increase of participation resulting
in a concurrency increase. They are selected among processes with the smallest first
IS output providing an observed participation corresponding to some non-nul level of
set-consensus power. Moreover, in order to be identifiable as critical, they are selected as
critical simplices only if grouped with sufficiently many other processes with the same IS
output, so that if they are withdrawn from their own first IS observed participation the
remaining participation is associated to a strictly smaller set-consensus power. Hence
observing in the second IS all members of a critical simplex is enough to check that they
together form a critical simplex.

Now we are ready to define the subcomplex RA ⊆ Chr2 s. The idea is that a large
2-constention simplex may be allowed only if it terminates after a critical simplex associated
with a large enough view, i.e., concurrency may rises only after sufficient ensured resilience.
A (n− 1)-dimensional simplex σ ∈ Chr2 s (composed of n vertices) belongs to RA if and only
if every sub-simplex of σ of size k which (1) is a 2-contention simplex; (2) does not include
critical simplices members; (3) does not include processes observed by identifiable critical
simplices (with a smaller second IS view); must observe a critical simplex with a first IS view
associated to an agreeent power greater than or equal to k (see Figure 1b for an example).

The proof of equivalence between R∗A and the fair A-adversary model is done using
the equivalent α-model [8] which (1) allows for a simple resolution of RA in the α-model
by simply executing two rounds of an IS algorithm, with a waiting phase in between the
rounds (similarly to [10]); and (2) can be simulated easily as soon as α-adaptive set-consensus
(see [8]) is solvable in the presence of read-write memory (similarly to [4]).

To summarize, this paper generalizes all previous topological characterizations of distrib-
uted computing models [7, 5, 4, 10]. We believe that the results can further be extended to all
“practical” restrictions of the wait-free model of computations, beyond fair adversaries, which
may potentially result in a complete computability theory for distributed computing [3].
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Abstract
Constructing a sparse spanning subgraph is a fundamental primitive in graph theory. In this paper,
we study this problem in the Centralized Local model, where the goal is to decide whether an
edge is part of the spanning subgraph by examining only a small part of the input; yet, answers
must be globally consistent and independent of prior queries.

Unfortunately, maximally sparse spanning subgraphs, i.e., spanning trees, cannot be con-
structed efficiently in this model. Therefore, we settle for a spanning subgraph containing at
most (1 + ε)n edges (where n is the number of vertices and ε is a given approximation/sparsity
parameter). We achieve a query complexity of Õ(poly(∆/ε)n2/3),1 where ∆ is the maximum
degree of the input graph. Our algorithm is the first to do so on arbitrary bounded degree
graphs. Moreover, we achieve the additional property that our algorithm outputs a spanner, i.e.,
distances are approximately preserved. With high probability, for each deleted edge there is a
path of O(logn · (∆ + logn)/ε) hops in the output that connects its endpoints.
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1 Introduction

When operating on very large graphs, it is often impractical or infeasible to (i) hold the
entire graph in the local memory of a processing unit, (ii) run linear-time (or even slower)
algorithms, or even (iii) have only a single processing unit perform computations sequentially.
These constraints inspired the Centralized Local model [9], which essentially views the input
as being stored in a (likely distributed) database that provides query access to external
processing units. To minimize the coordination overhead of such a system, it is furthermore
required that there is no shared memory or communication between the querying processes,
except for shared randomness provided alongside the access to the input. The idea is now to
run sublinear-time algorithms that extract useful global properties of the graph and/or to
examine the input graph locally upon demand by applications.

∗ A full version of the paper is available at http://arxiv.org/abs/1703.05418.
† See [2] for the full version of this paper.
1 Õ-notation hides polylogarithmic factors in n.
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Studying graphs in this model leads to the need for query access to a variety of graph-
theoretical structures like, e.g., independent or dominating sets. In such a case, it is crucial
that locally evaluating whether a node participates in such a set is consistent with the
same evaluation for other nodes. This is a non-trivial task, as local decisions can only be
coordinated implicitly via the structure of the input (which is to be examined as little as
possible) and the shared randomness. Nonetheless, this budding field brought forth a number
of elegant algorithms solving, e.g., maximal independent set, hypergraph coloring, k-CNF,
and approximate maximum matching (see survey [6] and references therein).

In this work, we consider another very basic graph structure: sparse spanning subgraphs.
Here, the task is to select a subset of the edges of the (connected) input graph so that the
output is still connected, but has only few edges. By “few” we mean that, for some input
parameter ε > 0, the number of selected edges is at most (1 + ε)n, where n denotes the
number of nodes. One may see this as a relaxed version of the problem of outputting a
spanning tree of the graph, which can not be obtained in sub-linear number of queries.

I Definition 1 ([5]). An algorithm A is a Local Sparse Spanning Graph (LSSG) algorithm if,
given n,∆ ≥ 1, a parameter ε ≥ 0, and query access to the incidence list representation of a
connected graph G = (V,E) over n vertices and of degree at most ∆, it provides oracle access
to a subgraph G′ = (V,E′) of G such that: (1) G′ is connected. (2) |E′| ≤ (1 + ε) · n with
high probability (w.h.p.),2 where E′ is determined by G and the internal randomness of A.
By “providing oracle access to G′” we mean that on input {u, v} ∈ E, A returns whether
{u, v} ∈ E′, and for any sequence of edges, A answers consistently w.r.t. the same G′.

We are interested in LLSG algorithms that, for each given edge, perform as few queries as
possible to G. Observe that Item (2) implies that the answers of an LLSG algorithm to
queries cannot depend on previously asked queries. We note that relaxing from requiring a
tree as output makes it possible to ask for additional guarantees. Instead of merely preserving
connectivity, it becomes possible to maintain distances up to small factors. Such subgraphs
are known as (sparse, multiplicative) spanners [7, 8].

Our Contribution. We give the first non-trivial LSSG algorithm in the Centralized Local
model that runs on arbitrary graphs. We achieve a query complexity of Õ(poly(∆/ε)n2/3)
per edge, w.h.p. Moreover, we guarantee that for each edge that is not selected into the
spanner, w.h.p. there is a path of O(logn · (∆ + logn)/ε) hops consisting of edges that are
selected into the spanner; this is referred to as a stretch of O(logn · (∆ + logn)/ε).

For simplicity, assume for the moment that ∆ and ε are constants. Our algorithm
combines the following key ideas. We classify edges as expanding if there are sufficiently
many (roughly n1/3) nodes within O(logn) hops of their endpoints. For non-expanding
edges, we can efficiently simulate a standard distributed spanner algorithm at small query
complexity, as solutions of running time O(logn) are known (e.g. [1]).

On the node set induced by expanding edges, we can construct a partition into Voronoi
cells with respect to roughly n2/3 randomly sampled centers. The Voronoi cells are spanned
by trees of depth O(logn), as expanding nodes have their closest center within O(logn) hops
w.h.p. Finding the closest center has query complexity Õ(n1/3).

We refine the partition into Voronoi cells further into clusters of Õ(n1/3) nodes. We
simply let a node be a singleton cluster if its subtree in the spanning tree of its cell contains
more than Õ(n1/3) nodes. This construction has query complexity Õ(n2/3) for constructing
a complete cluster, yet ensures that there are Õ(n2/3) clusters in total due to the low depth
of the trees; moreover, each cluster is completely contained in some Voronoi cell.

2 That is, with probability at least 1 − 1/nc for an arbitrary constant c > 0 that is chosen upfront.
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It remains to select few edges to interconnect the Voronoi cells. This is the main challenge,
for which the above properties of the partition are crucial. To keep the number of selected
edges small in expectation, we mark a subset of expected size Θ̃(n1/3) of the clusters by
marking each Voronoi cell (and thereby its constituent clusters) with probability n−1/3. We
then try to ensure that (i) clusters select an edge to each adjacent marked Voronoi cell
and (ii) for each marked Voronoi cell adjacent to an adjacent cluster, they select one edge
connecting to some cluster adjacent to this cell.

The main issue with the previous step is that we cannot afford to construct each adjacent
cluster, preventing us from guaranteeing (ii). We circumvent this obstacle by identifying for
adjacent clusters in which cell they are and keeping an edge for the purpose of (ii) if it satisfies
a certain minimality requirement with respect to the rank of the cell used for symmetry
breaking purposes. This way, we avoid construction of adjacent clusters, instead needing
to determine the rank of their Voronoi cells only. This way, we maintain query complexity
Õ(n2/3). However, this now entails an inductive argument for ensuring connectivity, which
also affects stretch. By choosing Voronoi cell ranks uniformly at random, we obtain a total
bound of O(log2 n) on the stretch of our scheme.

Related work. The problem of finding a sparse spanning subgraph in the Centralized Local
model was first studied in [5], where the authors show a lower bound of Ω(

√
n) queries for

constant ε and ∆.They also present an upper bound with nearly tight query complexity for
graphs that have very good expansion properties. However, for general (bounded degree)
graphs their algorithm might query the entire graph for completing a single call to the oracle.
They also provide an efficient algorithm for minor-free graphs that was later improved in [4].
A characterization of the query complexity of the problem in terms of expansion properties
of the input graph was presented in [3].
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Abstract
SplayNets are reconfigurable networks which adjust to the communication pattern over time. We
present DiSplayNets, a distributed (concurrent and decentralized) implementation of SplayNets.
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1 Introduction

SplayNets [3] are locally-routable tree networks whose topology self-adjusts to the workload:
nodes communicating more frequently become topologically closer to each other over time.
SplayNets are hence reminiscent of classic splay tree data structures: however, in contrast
to splay trees where requests always originate from the root, in a SplayNet, requests occur
between arbitrary node pairs. SplayNets are motivated, among other, by the advent of
reconfigurable datacenter interconnects like ProjecToR [2], and are very different from many
traditional network designs which are either entirely oblivious to the communication demand
or are optimized towards the demand but cannot be reconfigured over time [1].

In this work, we present DiSplayNets, the first distributed, i.e., decentralized and con-
current implementation of SplayNets. Moving from centralized-sequential to decentralized-
concurrent algorithms is challenging, as simultaneous local network reconfigurations can
interfere, potentially leading to starvation or even deadlocks, and hence ruining the potential
benefits of concurrent operations. Moreover, it needs to be ensured that traffic forwarding
and (locally/greedy) routing is unaffected by the topological changes.

We present a distributed algorithm that overcome these challenges, and demonstrate that
decentralized SplayNets are feasible.

I Theorem 1. DiSplayNets self-adjust to the communication pattern in a fully-decentralized
manner, eventually serving all communication requests (in a starvation- and deadlock-free
manner).
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2 DiSplayNets

Background and Model. We want to design a tree T (i.e., a SplayNet) which adjusts
according to a sequence σ = (σ0, σ1, . . . , σm−1) of communication requests occurring over
time, where σi = (s, d) denotes that source src(σi) = s communicates to destination
dst(σi) = d. Each request σi is generated in some time-slot tb(σi), and we will denote its
completion time (which depends on the algorithm) by te(σi).

SplayNets are Binary Search Trees (BST) and hence naturally support greedy routing.
SplayNets aggressively move communicating nodes together, using the classic splay operations
zig, zig-zig and zig-zag [4] of splay trees. However, rather than splaying nodes to the root of
the BST, in contrast to splay tree data structures, locality is preserved in that the source
and the destination nodes are only rotated to their least common ancestor (LCA(s, d)).

This motivates us to use the following notion of splay request Si(s, d): A splay request
between the source and destination node of a communication request σi(s, d) ∈ σ is comprised
of two sequences of local network transformations, requested by s and d, with the objective
to bring these two nodes topologically closer, without violating the BST properties. We say
that the splay request Si(s, d) has been completed in time-slot t′ if the distance dt′(s, d) = 1,
i.e., s becomes the parent of d or vice versa, whichever happens first.

We define a distributed SplayNet as follows: DiSplayNet Tt = (V,Et) is comprised of
n nodes, with distinct identifiers, interacting concurrently according to the communication
pattern of σ. In each time-slot t, the set of edges Et connects the nodes in V , s.t. Tt is a BST.
We assume that the execution starts with an arbitrary BST topology T0. Each node u stores
the identifiers of its direct neighbors in the tree, i.e., its parent (u.p), its left child (u.l) and
its right child (u.r), and the smallest (u′) and the largest (u′′) identifiers currently present in
the sub-tree rooted at u. This information is used for local routing and for splaying.

DiSplayNet Design and Distributed Algorithm. In DiSplayNet, a changing communication
pattern leads to local adjustments (possibly concurrently to prior requests) of the commu-
nication links in Tt over time. Consider a DiSplayNet instance Tt, and a communication
request σi(s, d) ∈ σ, tb(σi) ≤ t. Differently from sequential SplayNets, s and d rotate in
parallel towards the LCAt(s, d). Due to concurrency, the LCA might change over time.
Therefore, instead of approaching a specific LCA node, s and d keep splaying towards the
root of Tt, until becoming each other’s ancestor. Upon generating a request σi(s, d), node s
must advertise node d so that both start splaying.

DiSplayNet can be described in terms of a state machine, executed by each node in parallel:
(1) Passive: a node is in passive state in time-slot t if it is not the source or destination of
any request in σi ∈ σ, tb(σi) ≤ t; (2) Climbing: a node s (or d) is climbing in time-slot t if
it has an active request: ∃σi(s, d) ∈ σ, tb(σi) ≤ t and dt(s, d) > 1, and additionally s (or d)
6= LCAt(s, d); (3) Waiting: a node s (or d) is waiting in time-slot t if has an active request
and s = LCAt(s, d). (4) Communicating: a node s or d is communicating in time-slot t if
∃σi(s, d) ∈ σ, tb(σi) ≤ t and dt(s, d) = 1. Figure 1 shows the states transitions.

In order to ensure deadlock and starvation freedom, concurrent rotations are performed
according to a priority. An older request in the network has a higher priority than a more
recent request (Figure 2). Note that, a node s in the waiting state might be removed from the
LCA position by a rotation with higher priority. If that happens, s returns to the climbing
state and resumes requesting rotations. Finally, when s and d meet, they communicate.

To synchronize the process between the nodes, we execute the algorithm in rounds. Each
round is composed of five phases (1. Rotation Requests; 2. Top-down Acks; 3. Bottom-up
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Figure 1 State Transition Diagram.
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Figure 2 DiSplayNets: σ1(s1, d1) and σ2(s2, d2) ∈ σ, te(σ1) < te(σ2).

Algorithm 1 The distributed DiSplayNets algorithm (one round).
1: Rotation Requests (3 time-slots)

if Climbing for some σi(s, d) then
send own rotation request β(u) upward;
insert β(u) into buffer;

upon receiving rotation request β(v):
insert β(v) into buffer;
forward β(v) upward;

2: Top-down Acks (3 time-slots)
get highest priority request β(x) in buffer
if Master(β(x)) then . farthest node from x

send Ack(β(x)) downward

3: Bottom-up Acks (3 time-slots)
upon receiving top-down ack(β(v))
if β(v) = β(x) then . highest priority ack

send ack(β(v)) up toward master
4: Link Updates (1 time-slot)

if received bottom-up ack(β(x)) then
update links according to β(x);

5: State Updates (1 time-slot)
update state; . Figure 1
clear buffer;

Acks; 4. Link Updates; 5. State Updates), summarized in Algorithm 1. Each node u
maintains a local buffer, containing a queue of rotation requests, generated by itself, its right
or left child, one of its four grandchildren or eight great-grandchildren. In each round, each
rotation request β(u) is sent upwards until reaching its master (2 hops ancestor in case of
a zig and 3 hops ancestor in case of a a zig-zig or zig-zag). Once all requests have been
received, the highest priority request is acknowledged top down, from master to requesting
node. Upon receiving a top-down ack, the requesting node sends an acknowledgment upwards
to the master. We say that neighboring nodes agree to perform rotation β(u) if all of them
received one top-down and one bottom-up acknowledgment for β(u).

Future Work. It remains to rigorously analyze the efficiency, i.e., amortized work and time.
Our simulations show first promising results.
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Abstract
In peer-to-peer networks, it is desirable that the logical topology of connections between the con-
stituting nodes make a well-connected graph, i.e., a graph with low diameter and high expansion.
At the same time, this graph should evolve only through local modifications. These requirements
prompt the following question: are there local graph dynamics that i) create a well-connected
graph in equilibrium, and ii) converge rapidly to this equilibrium?

In this paper we provide an affirmative answer by exhibiting a local graph dynamic that
mixes provably fast. Specifically, for a graph on N nodes, mixing has occurred after each node
has performed O(polylog(N)) operations. This is in contrast with previous results, which required
at least Ω(N polylog(N)) operations per node before the graph had properly mixed.
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1 Introduction

Peer-to-peer networks perform best if the graph describing their topology is well-connected.
Indeed, the diameter of the graph conditions the time required to broadcast information
from any one node to the rest of the network. The expansion of the graph conditions the
robustness of epidemic algorithms for maintaining content in the system. It also conditions
how quickly a random walk over the graph reaches stationarity, and as such determines the
performance of various distributed algorithms, e.g., for searching content over the network.

The distributed evolution of such networks, however, can potentially create ill-connected
graphs through an unlucky series of node arrivals and departures. This motivates our goal in
the present paper: identify local graph dynamics that create a well-connected graph in a
short amount of time, i.e., after each node has performed few operations (O(polylog(N)),
where N denotes the total number of nodes), and this regardless of how poorly connected
the initial graph is.

2 Related Work

Graph models meant to capture properties of real-life networks have been thoroughly studied
[7]. Important examples include the Barabási-Albert preferential attachment model, yielding
graphs with power law degree distribution [1], and random regular graphs, shown to have the
small-world property of social networks (i.e., a small diameter) with high probability [12, 15].
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Other papers address the design of dynamics meant to alter the overall structure of the
graph in a given way [13] or to minimize the convergence rate [9]. Closer to our present work,
these issues have been considered specifically for the construction of p2p networks in [6, 5, 8].

The speed of convergence to equilibrium of graph dynamics has been studied in different
contexts. [4] considers non-local dynamics. Local dynamics are considered in [14] and [10]
for the synthesis of cladograms and bipartite graphs respectively. Closer to our context, [2]
considers the local switch dynamic introduced in [8], and proves that it yields an expander
graph after O(N polylog(N)) operations per node. The analysis in [2] is very elaborate, and
the stated bound improves upon all previous results on local graph dynamics proposed for
peer-to-peer topology maintenance. Nevertheless, this bound is not yet satisfactory, as it
still increases quickly (at least linearly) with the system size.

3 Our Contribution

Consider the following setting: fix a vertex set [N ] = {1, . . . , N}, where N is a positive integer,
and connect the vertices in [N ] as follows. First, add a set of fixed edges (i, i+ 1) constituting
a cycle (N + 1 ≡ 1). Then, have each node n ∈ [N ] maintains two pointers: a blue pointer
to a node bn ∈ [N ], and a red one to rn ∈ [N ], such that each node n is the destination of
exactly one blue pointer and one red pointer. In essence, b and r constitute permutations
over [N ]. From these, we construct a set of undirected blue edges {(n, bn) : n ∈ [N ]}, and a
set of undirected red edges {(n, rn) : n ∈ [N ]}. The result is a 6-regular graph G over [N ]
composed of N cycle edges, N blue edges and N red edges.

The dynamic then proceeds as follows. The graph evolves through alternating red and
blue phases; during a blue phase, only the blue pointers are modified, while the red pointers
are kept fixed. The blue pointers slide along the graph Gr formed by the union of the cycle
edges and the undirected edges {(n, rn) : n ∈ [N ]} formed by the red pointers. For the red
phases, the roles of the blue and red pointers are swapped.

Formally, the dynamic for the blue edges over Gr is as follows: at each time step, pick
an edge (i, j) uniformly at random in Gr, and denote n and m the two nodes in [N ] such
that bn = i and bm = j. These two nodes swap their pointers: now bn = j and bm = i.
Notice that b is still a permutation over [N ]. This dynamic is known in the literature as the
interchange process [11, 3]. Our main result is then as follows:

I Theorem 1. Let T = N ln(N)a where a > 8 is a constant. Then with high probability,
after O(ln(N)) alternating phases of length T , the blue and red pointers constitute uniformly
and independently distributed permutations of [N ].

I Corollary 2. With the above process, G is an expander with high probability after each
node has performed only O(polylog(N)) operations.

4 Sketch of Proof

For any d-regular graph H over [N ], denote φk(H) = minS⊂[N ]:0<|S|≤k
|∂S|
d|S| , where ∂S is the

set of edges between a node in S and a node not in S. Exploiting properties of the interchange
process stated in [3], we show that, if φN/2(Gr) ≥ γ for a well chosen γ, dependent on N ,
then at the end of the following blue phase, the blue pointers are uniformly distributed with
high probability.

We then construct an increasing sequence (kt)t∈N such that i) at the end of the t-th
blue/red phase, φkt(Gb/r) ≥ γ and ii) there exists τ = O(log(N)) such that kτ = N/2.
Joining the dots proves the theorem.
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