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Preface

This volume contains the proceedings of the 1st International Workshop on Autonomous
Systems Design (ASD 2019). The workshop is held in Florence, Italy on March 29, 2019,
and is co-located with the 22nd Design, Automation and Test in Europe Conference (DATE
2019). ASD 2019 aims at exploring recent industrial and academic trends, methods and
methodologies in autonomous systems design. The workshop is organized into regular sessions
with peer-reviewed research papers selected from an open call, complemented by 4 invited
talks and two distinguished keynotes. The presented contributions addressed different topics
on robotics, automated driving and frameworks for autonomous systems like Robot Operating
System (ROS) and AUTOSAR Adaptive.

Selected papers are included in this volume and are categorized into 6 long papers and 3
interactive presentations. The presented papers discuss recent development approaches for
autonomous systems involving the integration of ROS-based self-driving system (Autoware)
using MATLAB/Simulink, advanced implementations of model predictive control systems
and multi-view model-based design and verification approaches. Another important discussed
topic is related to dependable autonomous systems design based on degradation cascades
for sensor and communication failures in autonomous car platoons, applying STPA-based
(System Theoretic Process Analysis) hazard analysis technique for the design of robust
autonomous emergency braking systems under safety and security requirements, and the
incorporation of self-awareness in the design of autonomous systems using dynamic formal
data flow semantics.

The first invited talk will focus on the next generation of ROS frameworks developed to
address the main challenge of seamless integration of deeply embedded devices considering
resource-constrained computing platforms, non-ideal networks and real-time requirements.
The second invited talk will address the dependability challenge by providing reliable control
solutions in cloud computing provided under formal guarantees. The two last invited talks,
are dedicated to present recent research activities and derived findings of research and
industrial clusters in the field of autonomous driving. The activities of two large projects
in the field will be presented, namely the UNICARagil project to demonstrate disruptive
modular architectures for agile automated vehicle concept, and the CCC (Controlling
Concurrent Change) project to investigate automated integration of critical applications
using self-adaptation with self-protection based on contracting and self-awareness.

The workshop will host two distinguished industrial keynotes highlighting important
challenges and recent trends in the fields of autonomous design. In his keynote "Challenges
of Automated and Connected Driving", Thomas Form, Head of Electronics and Vehicle
Research at Volkswagen AG, will talk about the challenges in automated driving regarding
sensor technologies, redundancies as well as verification and validation questions. Masaki
Gondo, CTO at eSOL, the company that provides POSIX/AUTOSAR/TRON RTOS will
talk about AUTOSAR Adaptive as a standardized software platform specification for the
highly automated and autonomous driving and emphasize the role of OS architectures in
coping with recent challenges in the field.

This volume will present a short summary of the considered keynotes and invited talks in
addition to the selected long and interactive presentation papers.
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Keynotes & Invited Talks

Keynote 1: Challenges of Automated and Connected Driving
Speaker: Thomas Form, Head of Electronics and Vehicle Research, Volkswagen AG, Germany

In recent years, various publications and presentations from a lot of companies have shown
the improvements in the sector of automated driving. The vehicle- and mobility-concept
SEDRIC is a current example from the Volkswagen AG. However, for a release of these
technologies there are several unresolved issues regarding sensor technologies, redundancies
as well as verification and validation questions. Regarding sensors, the main objectives are
miniaturization and reduction of system costs. Advantages and disadvantages of existing
solutions have to be evaluated. In addition to economic aspects, ensuring the redundancy of
the system is absolute necessary. Is, for example, Artificial Intelligence able to provide an
independent second or third function path? Regarding verification and validation concepts,
current discussions are focused on which scenarios have to be tested and how, in order to
enable regulatory authorities to approve the release of automated driving functions? It
is conceivable, that this is an automotive industry wide task that can only be solved in
cooperation with all stakeholders.

Keynote 2: AUTOSAR Adaptive - Challenging the Impossible
Speaker: Masaki Gondo, Software CTO at eSOL Co., Ltd., Japan

The vast researches related to autonomous driving seem steadily progressing - it no longer
makes news to just have some research vehicle drive autonomously. However, bringing this
technology to the market, with all the associated legal, societal, and ethical responsibilities,
with justifiable cost efficiency, is hard at its best, and impossible at its worst. Furthermore,
the automotive industry is facing drastic challenges in electric vehicles, connected services,
which also heavily impact the whole vehicle architecture. AUTOSAR (AUTomotive Open
System ARchitecture) is a worldwide development partnership of automotive interested
parties. One of its latest challenges is to develop the software platform specification for the
highly automated and autonomous driving, named AUTOSAR Adaptive Platform. This talk
gives an overview of the challenges of such a platform, followed by the solution approach
of AUTOSAR reflecting the industrial needs, and the overall architecture of AUTOSAR
Adaptive. It also introduces a new multi-kernel OS technology the author develops, describing
why such OS architecture is essential for coping with the challenge in the long run.
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0:xii Keynotes & Invited Talks

Invited Talk 1: Bringing the Next Generation Robot Operating System
on Deeply Embedded Autonomous Platforms
Speaker: Ralph Lange, Robert Bosch GmbH, DE

In the last decade, the Robot Operating System (ROS) has become the primary framework
and middleware for robotics research and an important building block for the autonomous
systems engineering in general. The Next Generation Robot Operating System (ROS 2)
aims at strengthening this position by new mechanisms for resource-constrained computing
platforms, non-ideal networks, real-time requirements and further fundamental needs from
series development of autonomous systems. A particular challenge is the seamless integration
of deeply embedded devices with ROS 2. In this talk, an overview to ROS 2 will be provided,
followed by an analysis of basic issues for such seamless integration. As a solution, the micro-
ROS stack will be presented in the second part of this talk. This includes an introduction
to the up-coming DDS-XRCE middleware standard, a novel concept of system runtime
configuration for ROS2 and micro-ROS, and early results on an extended API for predictable
scheduling.

Invited Talk 2: Autonomous Data Center - Feedback Control for
Predictable Cloud Computing
Speaker: Martina Maggio, University of Lund, SE,

Cloud computing gives the illusion of infinite computational capacity and allows for
on-demand resource provisioning. As a result, over the last few years, the cloud computing
model has experienced widespread industrial adoption and companies like Netflix offloaded
their entire infrastructure to the cloud. However, with even the largest datacenter being
of a finite size, cloud infrastructures have experienced overload due to overbooking or
transient failures. In essence, this is an excellent opportunity for the design of control
solutions, that tackle the problem of mitigating overload peaks, using feedback from the
computing infrastructure. Exploiting control-theoretical principles and taking advantage of
the knowledge and the analysis capabilities of control tools, it is possible to provide formal
guarantees on the predictability of the cloud platform. This talk introduces recent research
advances on feedback control in the cloud computing domain. This talk discusses control
solutions and future research for both cloud application development, and infrastructure
management. In particular, it covers application brownout, control-based load-balancing,
and autoscaling.

Invited Talk 3: An Approach to Automotive Service-oriented Software
Architectures in a Multi-partner Research Project
Speaker: Stefan Kowalewski, RWTH Aachen, DE

Novel software architectures will become necessary to cope with the short lifetime and
innovation cycles of the technologies underpinning self-driving vehicles. In the UNICARagil
project, seven German universities and six industrial partners join forces to research and
demonstrate disruptive modular architectures for agile, automated vehicle concepts. As
today’s prevailing automotive electric, electronic and software architectures are mostly
function-oriented and design-time integrated, they often are unsuitable for infield updates
or system reconfiguration. In contrast, service-oriented software architectures are based on
runtime integrated service and are a promising way forward. We present the lean and simple
concept for service-orientation, that serves as the basis for the implementation of all vehicle
functions in the UNICARagil vehicles.
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Invited Talk 4: Controlling Concurrent Change- Design Automation for
Critical Systems Integration
Speaker: Rolf Ernst, TU Braunschweig, DE

Embedded systems for safety critical and high availability applications have moved
from isolated components to highly integrated mixed criticality networked systems with
numerous shared resources. The resulting function interference challenges the design process,
in particular in autonomous systems which shall independently manage software updates
and hardware reconfigurations. With support from the German DFG, a group of 8 PIs
has investigated automated integration of critical applications using self-adaptation with
self-protection based on contracting and self-awareness. Applications were driving automation
and space robotics. The talk will review the results of the six year project and outline the
demonstrations which will be exhibited at the workshop.
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Fault-Tolerance by Graceful Degradation for Car
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Abstract
The key advantage of autonomous car platoons are their short inter-vehicle distances that increase
traffic flow and reduce fuel consumption. However, this is challenging for operational and functional
safety. If a failure occurs, the affected vehicles cannot suddenly stop driving but instead should
continue their operation with reduced performance until a safe state can be reached or, in the case
of temporal failures, full functionality can be guaranteed again. To achieve this degradation, platoon
members have to be able to compensate sensor and communication failures and have to adjust their
inter-vehicle distances to ensure safety. In this work, we describe a systematic design of degradation
cascades for sensor and communication failures in autonomous car platoons using the example of an
autonomous model car. We describe our systematic design method, the resulting degradation modes,
and formulate contracts for each degradation level. We model and test our resulting degradation
controller in Simulink/Stateflow.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems; Computer systems organization → Availability; Software and its engineering → Software
design engineering

Keywords and phrases fault-tolerance, degradation, car platoons, autonomous driving, contracts

Digital Object Identifier 10.4230/OASIcs.ASD.2019.1

1 Introduction

In autonomous car platoons vehicles drive with short inter-vehicle distances to increase traffic
flow and reduce fuel consumption by travelling in the slipstream. The short distances can
be achieved by exploiting real-time knowledge about the driving behaviour of preceding
vehicles in the platoon. This knowledge is achieved by combining onboard sensors and
wireless communication with platoon members. If a sensor or communication failure occurs,
the required knowledge becomes unavailable and driving within a short distance is not safe
anymore. In contrast to fail-safe systems, where a shut-down of actuators leads to a safe
system state, autonomous vehicles have to be fail-operational, i.e. a shut-down of the vehicle
during operation on a highway is not acceptable. Thus, failures have to be compensated
and adherence to safety restrictions has to be guaranteed even under failure occurrence.
For autonomous car platoons, this means that the inter-vehicle distance always has to be
large enough to allow for an autonomous reaction to a sudden braking of preceding vehicles

© M. Baha E. Zarrouki, Verena Kös, Markus Grabowski, and Sabine Glesner;
licensed under Creative Commons License CC-BY
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1:2 Fault-Tolerance by Graceful Degradation for Car Platoons

without risking a collision. The required reaction time depends on the quality and speed of
information about the behaviour of preceding vehicles, i.e. available sensors and inter-vehicle
communication, and has to be reflected in the distance. One possibility to specify safe and
fault-tolerant driving behaviour for autonomous platoons is to rely on graceful degradation.
This means to systematically define a partial-order of less and less acceptable operation
modes and to select the best achievable mode in presence of failures. Thus, the system
maintains its operation as far as possible. As an example, an autonomous vehicle can be
in the platoon-mode or in a mode of cooperative adaptive cruise control (CACC), where it
only communicates with the vehicle directly in front of it, or in the mode of adaptive cruise
control (ACC), where it relies on onboard sensors only. An operating mode in which the
system is not operated at full functionality due to failures is called degradation mode and a
sequence of less and less acceptable operation modes is called degradation cascade.

With the increasing complexity of vehicles, e.g. due to increasing functionality required for
autonomous driving, the design of degradation cascades becomes challenging, i.e. managing
the resulting amount of failure combinations. In [4], a systematic approach for design
and verification of degradation cascades for embedded systems was presented. Following a
systematic process can help to cope with the increasing complexity. Inspired by this work, we
describe a systematic design of degradation cascades for sensor and communication failures
in autonomous car platoons using the example of the autonomous model car “Velox” which
serves as a case study in the AMASS research project1. Note that although this paper focuses
on safety, the proposed solutions can also be used to cope with security, i.e. attacks on
sensors, actuators and communication channels, as long as these attacks are identified by some
anomaly detection mechanisms (see [1] for an overview). We describe our systematic design
method, the resulting degradation modes, and formulate contracts 2 for each degradation
level. We model and test our resulting degradation controller in Simulink/Stateflow.

Car Platoons

Platoon-Leader1st Follower

sensors sensors sensors sensorssensors

2nd Follower3rd Follower

Figure 1 A platoon-drive.

In this paper, we focus on autonomous car platoons with at least two vehicles that drive
with a small inter-vehicle distance on one lane of the highway. They synchronize their speed
and sensor data based on onboard sensors and Vehicle-to-Vehicle (V2V) communication, as
depicted in Figure 1. The platoon members can have different vehicle types (cars, trucks)
from different manufacturers. The vehicle at the front of a platoon is the platoon leader.

1 https://www.amass-ecsel.eu/
2 Contracts are pairs of assumptions and guarantees that define the behaviour of individual system

components to lower the overall complexity of large systems.
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Based on user-inputs, it determines an efficient velocity and a desired inter-vehicle distance
for the whole platoon. As the safety of inter-vehicle distances depends on individual vehicle
characteristics (i.e. maximum braking deceleration), we assume that each platoon member
adjusts its distance control setpoint such that it is always larger or equal to the individual safe
inter-vehicle distance, and never smaller then the desired distance proposed by the platoon
leader. Furthermore, the leader keeps a safe distance to vehicles or platoons in front of it.
Each following vehicle is a follower (or platoon member) and autonomously has to maintain
the inter-vehicle distance determined by the platoon leader. This is achieved by longitudinal
control, which regulates the speed of the vehicle. The vehicles drive fully autonomously with
a driver who is not prepared to take control, i.e. as if no driver were present.

Outline

This paper is structured as follows: In Section 2, we discuss related work on degradation
concepts for car platoons. In Section 3, we systematically analyze the system architecture,
identify relevant failures for platooning and discuss how to adapt the inter-vehicle distance
to capture slower response times due to less precise information. The results are used to
infer degradation modes for sensor and communication failures. Based on these reactions, we
propose a compact degradation controller that we model in Simulink/Stateflow in Section 4.
To ensure the safety of autonomous platoons that use graceful degradation, we define contracts
and discuss how they can be analyzed and tested with our Stateflow model in Section 5. We
conclude the paper in Section 6 and outline future work.

2 Related Work

In this section, we review related work on fault-tolerant designs and degradation strategies
for CACC and platooning.

The work in [7] proposes a diagnostic system that monitors the sensors of the longitudinal
and lateral controllers in autonomous vehicles that operate in a platoon. However, it does
not detect communication failures and the authors do not define a reaction to the detected
failures. In our work, we assume that sensor and communication failures are successfully
detected and focus on appropriate and safe reactions to detected faults.

The work in [6] presents a graceful degradation technique for CACC in case of commu-
nication failures. The main idea is to estimate the acceleration of the preceding vehicle
based on distance measurement information provided by onboard sensors. This strategy
shows better performance than using ACC as a fallback option. This paper only considers
one possible failure of CACC-mode which is the communication with the preceding vehicle
and does not handle other failures i.e. distance measurement sensor failures that affect the
estimation. In our work, we cover all possible sensor and communication failures affecting
the longitudinal guidance in platoon-mode. Moreover, we define reactions and design a
global state-machine-model that guides the vehicle completely-autonomously in a running
platoon-drive. In our approach, we rely on a similar distance measurement as described in [6]
in case of communication failures with the preceding vehicle.

Our work is similar to and based on the work presented in [9], which introduces a
structured design of degradation cascades for car platoons and a contract-based design
approach to ensure safety. The presented degradation cascade only switches between Platoon,
CACC, ACC and manual driving. In our work, there is no possibility for a fallback to manual
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driving as we handle fully automated vehicles (SAE Level 5 3). Moreover, we introduce new
degradation modes that allow the vehicle to handle more failure combinations and to deliver
a better performance in the platoon.

Our work is inspired by the systematic approach to define, design, implement and
verify degradation cascades for embedded systems presented in [4]. The approach proceeds
systematically from the analysis of the system and its safety over defining degradation
cascades and its requirements down to modelling and generating code from Simulink for
real-time testing. The systematic approach is illustrated with a DC drive example. In our
work, we apply a similar approach on autonomous vehicles in a platoon-drive.

3 Systematic Analysis of Possible Failures and Alternative
Information Sources

In the regular industrial design process, the system design is followed by a safety analysis
to check whether the system adheres to safety requirements. For safe-operational systems
that rely on graceful degradation, possible failures already have to be considered during the
design of degradation modes. Thus, we follow [4], and already perform a systematic safety
analysis before the system design. With this minor change of the usual design flow, the
systematic design of degradation cascades can be easily integrated into industrial practice.

Our systematic design approach for degradation cascades consists of a systematic analysis
of the system architecture to identify a) failure sources that are relevant for platooning,
and b) fallback alternatives for faulty system components. To capture the performance loss
of fallback alternatives, we define individual failure-specific constants that we add to the
reaction time of degraded vehicles. The reaction time describes how long it takes to detect
and react to a sudden change in the behaviour of the preceding vehicle. It is used to define
the safe inter-vehicle distance xrd,i between the i-th vehicle and the preceding vehicle:

xrd,i(t) = xr + tr,i ∗ vi (1)

The parameters of the equation are the remaining distance at standstill xr, the reaction
time tr,i, and the current velocity vi of vehicle i. This distance law assumes similar vehicle
velocities and accelerations in a platoon drive.

Our failure-specific constants describe the additional time that is needed to detect sudden
breaks in the presence of specific failures. They are added to the reaction time tr,i in
equation 1. Based on our analysis results, we define degradation cascades that describe
several degradation steps as a response to sequences of failures. We combine these cascades
into a single and compact degradation controller, which we model in Simulink/Stateflow to
enable simulation, testing and later controller synthesis.

In this section, we first describe relevant parts of the system architecture of the “Velox”
car in Section 3.1. To identify degradation modes for sensor and communication failures, we
identify possible sources for required information about the environment, e.g. the distance
to the vehicle in front, and about other platoon members, e.g. the velocity of the vehicle in
front, based on available sensors and communication partners, and evaluate the influence of
alternative information sources on the reaction time of the autonomous vehicle in Section 3.2.

3 The SAE Norm [8] defines six levels of autonomy for motor vehicle automation ranging from no
automation (level 0) to full automation (level 5)
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3.1 System Architecture

Within the scope of research projects, experimental cars on a scale of 1:8, the “Velox
Cars”, were developed by “Assystem Germany GmbH”. The prototypes were designed for
training and research purposes as well as for the development of advanced functions of highly
automated systems (HAS) with a focus on autonomous driving. Various driving assistance
functions such as a lane departure warning system, the ACC/CACC/Platoon or the Traffic
Sign Assistant, have been developed. For this purpose, the model cars are equipped with a
valuable range of sensors. In this work, the analysis is based abstractly on the architecture
of the Velox car, which is generally similar to other vehicles.

In this paper, we assume a vehicle architecture as depicted in Figure 2. Each vehicle
is equipped with ultrasonic sensors and a LIDAR (LIght Detection And Ranging) radar
to measure the distance to the vehicle in front. A sensor fusion of the ultrasonic sensor
data and the LIDAR data is performed in order to detect measurement errors. In addition,
the vehicles are equipped with an odometry unit to determine their own driving behaviour
(acceleration, velocity, distance covered and position). A camera and an inertial measurement
unit (IMU) are implemented on the vehicle. However, we assume that they are not used
by the longitudinal controller for the normal Platoon/CACC function. Note that we here
assume a similar architecture and equipment of all platoon members. However, the approach
could also include vehicles that are not fully equipped with sensors or communication devices
by handling these vehicles as vehicles with corresponding senor or communication failures.

Environment 
Perception

LIDAR
 Processing Unit

Wheel-Encoder
 Processing Unit

Ultrasonic Sensor
Processing Unit

Environment 
Modelling Platoon/CACC 

Controller

Partner Vehicle 
Data

Processing

Camera
Processing Unit

External 
Communication

Velocity 
ControllerWEnc Data

LID Data

Ego-Motion
Data

Object
Tracking Data Partner Vehicle 

Data

V2V Data

. . . Longitudinal 
Control Data

.

.

.

. . .

IMU 
Processing Unit

US Data

Figure 2 A simplified vehicle architecture for platooning.

The signal flow in Figure 2 goes from the input on the left to the output on the right.
The input corresponds to the sensors, and the output corresponds to the actuator control.
All sensor data is processed in the corresponding Processing Unit in the Environment
Perception layer. This layer contains function blocks such as the Wheel-Encoder Pro-
cessing Unit, which acquires the odometer data (steering angle and wheel encoder data)
and preprocesses the odometer data. The IMU is only used if the wheel encoder fails. In
the subsequent Environment Modelling layer, the environment is modelled with the help
of different algorithms. This layer contains function blocks such as a Vehicle Detection
block. The Platoon/CACC Controller decides between platoon and CACC mode and
calculates a target velocity to maintain the desired distance between the ego-vehicle and
the vehicle in front. These decisions are based on the partner’s and the ego-vehicle data.
The partner vehicle data are received by the External Communication interface for the
communication between the own vehicle and external systems (Vehicle-to-Vehicle (V2V)
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communication, GPS etc.). The received V2V data is then filtered by Partner Vehicle
Data Processing. Furthermore, the Platoon/CACC Controller broadcasts the Ego vehicle
data. The Velocity Controller regulates the speed of the vehicle and controls the motor
based on the provided target velocity. We design our degradation concept for the Velox
Car. In practice, it can be assumed that vehicles of different manufacturers participate in a
platoon. Thus, the platoon can be regarded as a heterogeneous system of systems of different
manufacturers. In order to realize the functionality of platoon driving, all vehicles have to
be equipped with relative distance and speed sensors as well as V2V communication. Our
results can easily be transferred to similar architectures.

3.2 Failures, Consequences, and Fallback Strategies
For the platoon operation, a Velox car needs the following capabilities: it can determine the
distance to the vehicle in front, it can measure its own (ego) motion data (acceleration, speed,
distance covered and position), and it can receive the motion of the vehicle in front and of
the first vehicle in the platoon, i.e. the platoon leader. In normal platoon operation, the
distance to the vehicle in front is determined by LIDAR and ultrasonic (US) sensor fusion,
the calculation of the ego-motion is based on the wheel encoder, information about the
front-vehicle motion is available via vehicle-2-front-vehicle communication, and the motion
of the platoon leader is available via vehicle-2-leader communication.

Table 1 Default and Fallback Information Sources.

Kind of Information Default Source 1st Fallback Source 2nd Fallback Source

Distance to vehicle in
front

LIDAR and Ultra-
sonic sensor fusion

LIDAR only, Ultra-
sonic only

GPS and Wheel-
Encoder (for commu-
nication packet iden-
tification only)

Ego-Motion Wheel-Encoder Inertial-
Measurement-
Unit (IMU)

Motor-model for
speed estimation

vehicle in front mo-
tion

vehicle-2-Front
vehicle (V2F)

vehicle-2-Leader
(V2L)

based on distance
measurement

Motion of Platoon
Leader

V2L V2F -

In the case of sensor and communication failures, the required information has to be
obtained from alternative sources. In Table 1, we summarize available information sources in
the Velox car and introduce new sources for the fallback scenario. If, for example, the LIDAR
fails, ultrasonic data can be used without sensor fusion. However, the obtained information
is less precise. If this sensor also fails, the system can still rely on the second fallback option:
a combination of GPS and wheel-encoder that is precise enough to identify communication
packets from the vehicle in front, but not for ACC-mode.

In the following, we describe the identified fallback possibilities for sensor and commu-
nication failures and their influence on the reaction time to changes in the behaviour of
preceding vehicles. The resulting delays are expressed in terms of failure-specific constants.
These constants have to over-approximate the actual delays as precisely as possible to ensure
that the distance to the vehicle in front is as small as safely possible. The actual values
depend on the characteristics of the sensors, actuators and the efficiency of the algorithms
(fusion of data, recognition etc.) and can be determined with simulations and real-time tests.
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Failure in Distance Measurement

In case of a failure of the LIDAR (LID_F) or the US sensor (US_F), it is no longer possible
to use sensor fusion to increase precision, but we can still rely on the remaining sensor. As a
result, the reaction time increases due to less precise sensor data. We capture this by adding
a constant failure-specific factor, e.g. tr_lid1 for LIDAR failures and tr_us1 for US failures,
that captures the necessary increase of the reaction time, to the reaction time in the normal
platoon operation tr_pl. Thus, we get tr_pl+tr_lid1 and tr_pl+tr_us1, respectively. It
applies tr_lid1 > tr_us1, since the LIDAR is more accurate than the ultrasonic sensor.

If both distance sensors fail, the system can still rely on a combination of GPS and
wheel-encoder to identify communication packets from the vehicle in front. In this case,
tr_lid_us is added to the reaction time. However, this is not precise enough for CACC-mode.

Failure in estimating the Ego-motion

An error in the wheel encoder (WEnc_F) affects the acquisition of the covered distance, the
own acceleration and speed (Ego-Motion-Data). If a wheel encoder error occurs, the system
can still obtain 3-axis acceleration data from the motion sensor (inertial measuring unit
(IMU)). However, this information is less precise. Accordingly, the reaction time increases to
tr_pl+tr_wenc. If the IMU fails (IMU_F), it is still possible to roughly estimate the own
velocity based on electrical values by using a motor model as discussed in [4]. The reaction
time has to be increased to tr_pl+tr_wenc_imu.

Communication Failures

In the platoon operation, each vehicle communicates with the platoon leader and the vehicle
in front of it. If the communication with the vehicle in front fails (V2F_F), the vehicle in
front motion can only be estimated using the slower distance measurement, which means
that the reaction times, and, thus, the safety distance, have to be increased when switching
to the corresponding ACC mode. However, if communication to the platoon leader is still
available, the platoon leader could be requested to forward messages from the vehicle in front.
To this end, an extended packet filtering algorithm has to be implemented in the Partner
Vehicle Data Processing.

If an error in the communication with the platoon leader (V2L_F) occurs (e.g. error
during a sending procedure or error with the reception), we lose any information about the
leader’s driving behaviour. As a consequence, we would need to switch to the CACC mode
and increase the inter-vehicle distance accordingly. However, if the vehicle in front is still
able to communicate with the platoon leader and the ego vehicle has a stable communication
connection to the vehicle in front, this vehicle can forward messages from the platoon leader.
As message forwarding introduces some communication delay, reactions to sudden changes
in the behaviour of the vehicle in front / the leader will also be delayed. Thus, the reaction
time increases to tr_pl + tr_front and tr_pl + tr_lead, respectively.

Based on the results of a systematic evaluation of available fallback possibilities for
relevant sensor and communication failures, we define corresponding degradation modes for
each combination of evaluated failures in the next section.
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4 Degradation Controller

With our systematic analysis, we have identified fallback alternatives to compensate for
sensor and communication failures within a running platoon-drive. In this section, we use the
analysis results to infer degradation modes that describe less and less acceptable operation
modes for platoon members. We propose a controller, modelled in Simulink/Stateflow, that
safely guides the graceful degradation. Note that we assume the existence of a reliable and
sufficiently fast fault detection method that we can rely on. This, of course, is not trivial, but
out of the scope of this work. Our controller receives fault detection events from the fault
detector and selects the best mode based on these events. The Stateflow model is used for
systematic testing in the next section and can be further refined for controller code synthesis.

4.1 Degradation Cascades
In case of failure combinations of different information types, our fallback strategies from
the previous section can be combined step-by-step as long as information alternatives are
available. If only knowledge about the platoon leader is missing, the vehicle can still switch
to CACC and rely on vehicle-2-front-vehicle communication. If this communication also fails,
only onboard sensor-based ACC may be possible. However, degradation is only possible as
long as any acceptable operation mode can be executed. Thus, the last degradation step
leads to a final degradation mode FIN_DEG, which describes a safe exit from the platoon.
At this point, the system cannot rely on important sensor information and may not be able
to communicate with other vehicles. Thus, it should come to a standstill as far to the right
as possible, brake and warn other road users.

4.2 Controller Model
The Stateflow model, as depicted in Figure 3, consists of three hierarchical modes. The system
starts in the nominal platoon mode. Failures cause a transition to the degraded platoon
mode. If failures are resolved, it returns to nominal platoon mode. If no further acceptable
degradation is possible, the last step leads to the final degradation mode (FIN_DEG).

Figure 3 Main Statechart.
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Figure 4 Statechart for the Degraded Platoon-Mode.

The degraded platoon mode, as depicted in Figure 4, consists of three parallel states,
which in turn contain further state machines: Degradation for the communication (Figure 5),
Degradation for the distance measurement (Figure 7) and Degradation for the ego motion
measurement (Figure 8) according to the failure categories: communication failures, failures
in distance measurement and failures in measurement of the ego-motion. In each parallel
state, the reaction time is adjusted as described in the previous section. The overall reaction
time is the sum of the normal reaction time tr_pl and all added constants. If, for example,
an error occurs in the LIDAR, in the communication with the vehicle in front and in the
wheel encoder, the reaction time to be added is the sum of tr_lid, tr_front and tr_wenc.

Figure 5 Degradation for Communication Failures.

The state machine for degradation in case of communication failures is shown in Figure 5.
The initial state “wait” corresponds to states without any communication errors. This state
is active if the degraded platoon-mode is activated without communication errors, but with
an error in the distance measurement or in the measurement of own motion. There are three
different variants of degradation for communication: the failure is due to communication with
the platoon leader (V2L_F), with the vehicle in front (V2F_F), or with both. When a failure

ASD 2019



1:10 Fault-Tolerance by Graceful Degradation for Car Platoons

in the communication with the platoon leader (V2L_F) occurs, we switch to a degradation
mode for communication with the leader. If the failure is resolved, the system returns to
“wait” again. Failures within the communication with the vehicle in front (V2F_F) are
handled analogously. If the communication with both, the leader and the preceding vehicle,
is corrupted, the ACC mode is activated (ACC_m=true) and the ACC-specific constant
tr_acc_offset is added to the reaction time. When this state is left, the offset is subtracted
again. The same holds for a switch to the CACC mode, where tr_cacc_offset is added.

It contains a sub-state machine for corrupted communication with the platoon leader
(DEG_L)as shown in Figure 6(DEG_F is similar and, thus, omitted here). The vehicle
switches to CACC mode (CACC_m=true) and tr_cacc_offset is added to the reaction time.
At the same time, a request for the data of the platoon leader is sent to the preceding vehicle.
When this data is received (pos_resp_F), the vehicle changes to a degraded state (DEG_L1)
and the reaction time is increased by tr_lead. If the preceding vehicle looses connection to
the platoon leader (F2L_F), the system returns to CACC mode. During this process, the
system continuously tries to re-establish the communication with the platoon leader in order
to switch back to an operating mode with a better performance.

Figure 6 Degradation for Communication Failures with the Leader.

The state machine for degradation in case of distance measurement failures is depicted
in Figure 7. The LIDAR and the ultrasonic sensor are mainly used for the identification
of the received communication packets or for precise distance measurement in ACC mode.
Starting from a wait state (wait), the system switches to a degraded state (DEG_LID1)
and relies on the ultrasonic sensor for identification of communication packets if a LIDAR
error occurs (LID_F). tr_lid1 is added to the reaction time. However, when ACC mode is
active (ACC_m), it switches to a degraded state (DEG_LID2) and relies on the ultrasonic
sensor for precise distance measurement. tr_lid2 is added to the reaction time. The same
applies if an error occurs in the ultrasonic sensor, i.e. tr_us1 or tr_us2 are added to the
reaction time and only the LIDAR is used. The following applies: tr_lid2 > tr_lid1 and
tr_us2 > tr_us1. For failure-free communication, an estimate is sufficient to identify the
communication packets. If the communication is faulty, an exact distance measurement is
needed. Thus, the reaction times tr_lid2 and tr_us2 are higher.
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If the data of both sensors are faulty, the system switches to a degradation state in which
it relies on the GPS and the wheel encoder to identify communication packets. Compared to
the positions of platoon partners that were received via V2V communication, communication-
packets of the vehicle in front and the platoon leader can then be filtered. tr_lid_us is
added to the reaction time in this case. This degradation is only possible if communication
is available. Otherwise, the vehicle passes to the final degradation state (FIN_DEG).

Figure 7 Degradation for Distance Measurement Failures.

Figure 8 Degradation for the Measurement of Own Motion.
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In Figure 8, we depict the state machine for degradation in case of measurement failures
of the ego-motion. Starting from a wait state (wait), the system switches to a degraded state
(DEG_WENC) and relies on the inertial measurement unit to determine its own acceleration
if an error occurs in the wheel encoder (WEnc_F). tr_wenc is added to the reaction time.

If the inertial measurement unit is faulty too, we switch to a degraded state
(DEG_WENC_IMU) and add tr_wenc_imu to the reaction time. In this mode, a motor
model is introduced which estimates the motor speed from electrical values without using the
physical speed sensor. The introduction of the motor model was discussed in [4]. Although
the speed is not estimated very well, an estimation is better than a complete loss of the
measurement of the ego-vehicle motion.

The proposed fallback concept can be further refined by changing reactions to failures or
adding new actions. For example, in case of a distance measurement failure, the cameras
can be used to estimate the distances. Furthermore, the logical expression that leads to
the final degradation state can also be adjusted. This can be useful, for example, if it is
determined during simulation or testing that a safe distance cannot be maintained for a
certain combination of failures. The presented controller model contains degradation steps
for all failure combinations that were considered during our systematic system analysis.
To ensure that the controller is complete and that the reaction time estimate is safe, i.e.
leading to a safe distance to the preceding vehicle, we systematically tested our controller, as
described in the next section.

5 Assurance by Mode-Specific Contracts

To ensure a safe operation of vehicles, standards like ISO26262 [3] define concepts and
procedures which need to be considered during the development of safety-critical functions.
These standards explicitly recommend a formal system description for heavily safety-critical
systems like our car platoon. Based on the formal system description, methods like model
checking allow a partly or fully automated way of verifying and validating the system early
during development. A promising approach to this is Contract-based Design[5]. By specifying
pairs of assumptions and guarantees the behaviour of each system component can be defined
on its own and thus lowering the overall complexity of large systems. The composition of
components and their contracts can then be evaluated.

To validate our degradation controller we specify contracts in SSPL (System Specification
Pattern Language)[2], which enables a formal and verifiable description of behaviour while
also maintaining a readable appearance. We came up with 11 contracts which describe the
degradation of the platooning function. As an example, the contract defining the minimum
distance to the vehicle in front while platooning is active and no errors occur (nominal
platoon-mode) looks as follows:

Assumption all of the following conditions hold:
- platooning is ACTIVE
- com_error does not occur
- distance_meas_error does not occur.

Guarantee 1 distance_to_front is always greater than d_min_pl
Guarantee 2 Whenever break_maneuver_front occurs then in response dis-

tance_to_front is never less than distance_at_standstill starting immediately.
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As a second example, we show a contract specifying a switch to ACC-mode (drv_mode
= ACC) when the communication to the platoon head and the preceding vehicle is lost:

Assumption No specific assumption. The contract’s guarantees shall always hold.

Guarantee 1 Whenever V2L_F changes to true while all of the following conditions hold:
- V2F_F is true
- drv_mode is not FIN_DEG
then in response drv_mode changes to ACC eventually.

Guarantee 2 Whenever V2F_F changes to true while all of the following conditions hold:
- V2L_F is true
- drv_mode is not FIN_DEG
then in response drv_mode changes to ACC eventually.

As a first step towards a verified degradation controller, we have implemented and automated
tests based on these contracts in Simulink to successfully check the state machines against
our specification. To this end, we have simulated our controller in the presence of specific
failure combinations and checked whether our guarantees hold. Figure 9 gives an overview
of internal failures and external events that we have used for systematic testing of failure
combinations. Expressing our system behaviour with semi-formal contracts in SSPL, has
eased writing proper test cases for our state machines.

Figure 9 Simulink/Stateflow model used to verify against contract specification.

6 Conclusion & Future Work

We have described a systematic design of degradation cascades for sensor and communication
failures in autonomous car platoons using the autonomous model car “Velox” as example.
We have modelled our resulting degradation controller in Simulink/Stateflow. For safety
assurance, we have formulated contracts for each identified degradation level and used them
for systematic testing. The methodology of the present work and its systematic approach is
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inspired by [4] and has been adapted for the platooning function. In our work, new ideas for
degradation and reactions to errors have been developed and presented at a conceptual level.
It can serve as a basis for further improvement, development and implementation in future
work. The systematic approach presented in this paper is not restricted to autonomous
platoon driving but can also be applied to other problems and different systems in general.

In contrast to traditional, non-distributive systems, cooperative systems should not
only deal with local failures, but also with failures of the other participants. Failures can,
if possible, be transmitted via communication. However, if this is not possible due to
communication failures, participants should also be able to deal with this situations and
reach a functional and safe state. In future work, the degradation concept could be extended
to feature additional modes allowing platoon members to autonomously determine which
members are affected by malfunctions. For example, if a platoon member can only estimate
its own acceleration with poor accuracy due to sensor failures, it will communicate its
degradation mode to the other platoon participants. Another approach would be to define
reactions beyond the consideration of individual vehicles on a platoon level. For example,
if the platoon leader cannot be reached by several followers, the platoon leader could be
changed, e.g. by choosing the next achievable follower as a new platoon leader. This kind of
platoon management has not been systematically coped with so far and would definitely be
a mandatory step for a robust and applicable platooning functionality.

As a first step, we have tested our concept based on formal contract specifications. By
expressing our system behaviour with semi-formal contracts in SSPL, it has already been
much easier to write proper test cases for our state machines. In future work, we aim at
automatically verifying our contract specification against the static system architecture using
model checking. A promising candidate is the model checking tool OCRA4 as it already
supports this type of contract verification. We are currently developing a translation from
SSPL to Othello, the contract specification language supported by OCRA. With an automatic
translation, the engineers will not have to cope with difficult expressions in temporal logic
but can rather use our template approach to specify and verify their systems.
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Abstract
This paper performs a feasibility analysis of deploying Model Predictive Control (MPC) for vehicle
platooning on an On-Board Unit (OBU) and performance benchmarking considering interference
from other (system) tasks running on an OBU. MPC is a control strategy that solves an implicit
(on-line) or explicit (off-line) optimisation problem for computing the control input in every sample.
OBUs have limited computational resources. The challenge is to implement an MPC algorithm on
such automotive Electronic Control Units (ECUs) with an acceptable timing behavior. Moreover,
we should be able to stop the execution if necessary at the cost of performance.

We measured the computational capability of a unit developed by Cohda Wireless and NXP
under the influence of its Operating System (OS). Next, we analysed the computational requirements
of different state-of-the-art MPC algorithms by estimating their execution times. We use off-the-shelf
and free automatic code generators for MPC to run a number of relevant MPC algorithms on the
platform. From the results, we conclude that it is feasible to implement MPC on automotive ECUs
for vehicle platooning and we further benchmark their performance in terms of MPC parameters
such as prediction horizon and system dimension.
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1 Introduction

Vehicle platooning is an application based on Cooperative Adaptive Cruise Control (CACC)
technology, which is an extension of Adaptive Cruise Control (ACC). In ACC, the vehicle
senses the position of the preceding vehicle and adapts the speed to avoid a collision. CACC
introduces V2V messages between different vehicles. These messages have much richer
information including position, speed, acceleration or road intersection status among others.
The richer information allows the vehicles to react faster to sudden changes in the preceding
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vehicles and therefore, the distance between the vehicles can be reduced which enables to
achieve better fuel efficiency and road capacity [21].

Model Predictive Control (MPC) is an optimal control strategy capable of satisfying
constraints on the states of the system (plant) and the control input. The main challenge
of MPC is its high computational requirements since it requires to solve an optimisation
problem at every time step (sample) [7]. The MPC technology is extensively used in the
chemical industry where the dynamics is generally slower. With the advent of powerful
computing abilities of modern processors, MPC is making its way into other sectors such as
the automotive industry [10]. One of the applications of MPC in the automotive industry is
vehicle platooning. MPC has already been applied to vehicle platooning without explicitly
considering constraints on the computational resources and the V2V communication time
that is present in a real implementation [6]. In a real implementation, the ECU of a vehicle,
which is an embedded device with limited resources, needs to solve the MPC optimization
fast enough to meet the timing requirements imposed by the V2V communication.

MPC has already been implemented on embedded platforms successfully for different
applications. In [31] the authors use a simple embedded device with an ARM processor
running at 48MHz with 64kB of RAM memory. They control a system consisting of 8 states,
2 inputs and a control horizon of length 20 achieving a sampling period of 4ms. In [31], Fast
Gradient Method algorithm (FGM) was used with fixed point operations and a tuned level
of sub-optimality specific for the plant. When using floating point operations and decreasing
the control horizon length to 15, it achieves a sampling time of 8ms. In [9], the authors
achieved a sampling frequency in the kHz range using a processor with a clock frequency of
1GHz with a dedicated floating point unit. When controlling a larger system they manage to
reach a sampling time of 13ms.

A number of works approached the embedded MPC problem using hardware accelerators
[5] [28] [25] [17] [14] [22] usually on a Field Programmable Gate Array (FPGA). These works
attempt to achieve sampling rates in the kHz range or control very large systems, while the
vehicle platooning problem does not require very short sampling times nor large predictive
models.

In order to solve the MPC optimisation problem an algorithm needs to be used. There
are mainly two categories of MPC algorithms – explicit and implicit. In explicit MPC the
solution is computed off-line and given to the controller as a look up table which usually
requires large memory capacity. In implicit MPC the solution is computed on-line at each
sampling period [1]. In this paper we focus on implicit MPC. Implicit MPC is the most
commonly used method and there are a number well-developed state-of-the-art algorithms.
Almost all of them can be classified in one of the following categories – Inner Point Method
(IPM) [16], Active Set Method (ASM) [8], and (Fast) Gradient Method ((F)GM) [17] [3]. We
analysed the feasibility of these algorithms with a special focus on FGM.

In order to determine if it is feasible to implement MPC for vehicle platooning on an
embedded device, timing constraints must be met. The MPC algorithm needs to be able to
compute the solution fast enough for a problem with similar dimensions and constraints as
in vehicle platooning, described below (Section 4.2). The time available for the execution
of the MPC task depends on the message rate (or sampling rate) supported by the V2V
communication and the execution time of the other tasks running on the device. Ideally the
execution time would be deterministic or bounded, which can be achieved for some of the
state-of-the-art algorithms.

We also analyse the trade-off that needs to be made to balance the control performance
and the execution time of the MPC task. We investigate the impact of the length of the
control horizon (used in the MPC optimization) on the execution time, the effect of the
algorithm choice and provide a number of guidelines for choosing the processor.
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The rest of the paper is organised as follows. We describe the problem of vehicle platooning
in Section 2. In Section 3, we analyse the characteristics and the performance of a platform
suitable for being used for vehicle platooning. Next, we describe a possible implementation
for vehicle platooning and we measure the overhead introduced by the other tasks that need
to run on the selected platform in Section 4. We investigate a number of automatic C code
generation tools available for MPC in Section 5. We analyse the computational requirements
of different MPC algorithms in Section 6. Using the computational requirements of different
algorithms and the performance of the platform, we provide an analytical estimation of the
execution time on the selected platform in Section 7.1. We use the code generation tools to
run a number of template MPC algorithms on the V2V wireless node in Section 7.2. Using
the experimental and the analytical execution times we estimate the possible delays and
sampling periods that can be achieved using MPC and the trade-offs that can be made, in
Section 7.3. Finally we conclude in Section 8.

2 Vehicle platoons

2.1 V2V Communication and topology
The vehicle-to-vehicle communication (V2V) is performed following the standards of each
country, most notably the standard of the EU, ETSI-ITS, and the standard of the USA,
1609 WAVE. Both standards are based on the IEEE 802.11p protocol stack. Under IEEE
802.11p, we can reach up to 10Hz message rate when the network usage is below 70%. The
message rate can get as low as 1Hz under heavy traffic of vehicles with V2V communication
devices [13].

In this paper we consider the Predecessor-Follower (PF) topology, where each vehicle
receives messages from its predecessor (Fig. 1). Other topologies exist, such as Two-
Predecessor-Follower (TPF) [30] and Leader-Predecessor-Follower (LPF) [30].

In Fig. 1,mi is the message from the vehicle i including its speed, position and acceleration,
and ∆di is the error in distance (desired gap - actual gap) between the vehicles i and i− 1.

Δdi-1
i-2 i-1 i i+1

Δdi Δdi+1

mi-2 mi-1 mi mi+1mi-3 

Figure 1 Predecessor-Follower topology.

2.2 Platoon model
The platoon model is distributed, each vehicle has a model of itself (vehicle model) and its
relation with its predecessor (inter-vehicle dynamics).

The model of the vehicle i is obtained combining a simplified model of the longitudinal
dynamics of the vehicle with the dynamics of a DC motor [27, 26], and it is given by:

ẋiv = Aivx
i
v +Bivu

i
v (1)

where Aiv and Biv are the state and input matrices respectively, uiv is the duty cycle of
the input of the motor and xiv = [ai ȧi]T is the state vector. Where ai and ȧi are the
acceleration and the rate of change of the acceleration of the vehicle i, respectively. Moreover,
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the state matrix Aiv and the input vector Biv of vehicle i are defined as:

Aiv =
(

0 1
−1
τ iτ i

a

−(τ i+τ i
a)

τ iτ i
a

)
∈ R2×2, Biv =

(
0

KiKi
a

τ iτ i
a

)
∈ R2×1.

where τ i, τ ia, Ki, Ki
a are model parameters of the vehicle i.

To obtain the platoon model under the PF topology, the inter-vehicle dynamics relate
the vehicle i to the vehicle i− 1. This is done by adding two new states, ∆vi and ∆di, which
represent the speed difference and the gap error between the vehicles, respectively. They are
defined as ∆di = di − dides and ∆vi = vi−1 − vi, where ∆di is the error between the actual
gap (di) and the desired inter-vehicle gap (dides) between the vehicle i and the vehicle i− 1.
∆vi is the velocity error between the vehicle i and the vehicle i− 1, where vi denote for the
velocity of the vehicle i. di and dides are defined as dides = d0 + τhv

i and di = qi−1 − qi − Li,
where d0 is the gap between vehicles at standstill, τh is the constant headway time (the time
the vehicle i needs to reach the position of the vehicle i − 1 when d0 = 0). Li, qi are the
length and position of the vehicle i, respectively.

Combining the vehicle model with the inter-vehicle dynamics we obtain the platoon
model:

ẋip = Aipx
i
p +Bipu

i
p +Gipa

i−1 (2)

where xip = [ai ȧi ∆di ∆vi] is the state vector, ai−1 is the acceleration of the preceding
vehicle and Aip is the state matrix. The predictive model used for MPC will be obtained
based on the platoon model in Eq.(2) (see Section 4.2).

3 Embedded platform: Cohda Wireless MK5 OBU

The Cohda Wireless MK5 is a platform developed by Cohda Wireless in partnership with
NXP. It has been developed as a prototyping platform for V2V applications, such as CACC,
and other Vehicle to Everything (V2X) applications.

3.1 Hardware
The platform has one main processor, NXP i.MX6 Dual Lite @ 800MHz (dual-core processor),
paired with a communications co-processor, NXP MARS. It is equipped with 1GB of volatile
memory. With a large volatile memory, memory is not a bottleneck and we are interested
only in the computational power.

The platform has several ports and connectivity options. It can be connected to two
5.9GHz antennas, a GNSS antenna, µSD card, Ethernet port, CAN bus port and audio jack.
On top of that it has a DC power connection.

3.2 Software
The platform uses an Ubuntu distribution of Linux as its Operating System (OS). It is not a
Real-Time OS (RTOS). There are system applications available on the platform. The most
relevant are the communication stacks of the EU and the USA standards.

We also use the evaluation platform reported in [30] and available in [29], which allows to
quickly measure the string stability of the platoon and takes care of all the tasks required to
execute CACC in a modular approach. The structure of this evaluation platform is further
detailed in Section 4.
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3.3 Performance evaluation

The performance is measured in millions of floating point operations per second (Mflop/s) and
millions of fixed point operations per second (Mop/s). We evaluate the average performance
and its distribution in percentiles.

The type of operations measured are fixed point and floating point additions, and fixed
point and floating point multiplications. Most MPC algorithms use only these operations.
In Table 1, the performance of the platform is shown.

Table 1 Performance of the Cohda Wireless MK5 platform.

Fixed point
addition

Fixed point
multiplication

Floating point
addition

Floating point
multiplication

Fastest 230.1 Mop/s 214.0 Mop/s 113.0 Mflop/s 88.2 Mflop/s
95th percentile* 214.0 Mop/s 200.0 Mop/s 113.0 Mflop/s 88.2 Mflop/s
Average 174.0 Mop/s 156.0 Mop/s 112.0 Mflop/s 60.0 Mflop/s
5th percentile* 200.0 Mop/s 150.0 Mop/s 103.0 Mflop/s 78.9 Mflop/s
1st percentile* 107.0 Mop/s 88.2 Mop/s 50.8 Mflop/s 47.6 Mflop/s
*The kth percentile is the number larger than k% of the measurements.

We use an internal timer for the measurement which runs at a frequency of 1MHz, while
the processor runs at 800MHz. Therefore the accuracy of our measurement is within 800
clock cycles. The first test uses a large number of operations in a loop. We used 8 × 109,
4 × 109 and 2 × 109 operations for each of the measured types. The different number of
operations allows us to confirm that the execution time is linear to the number of operations.
These measurements give us a notion of the average performance of the system.

As our system does not use a RTOS, during the time that the test executes (over 4
minutes in some cases) there are other tasks preempting the test. In order to measure the
variability of the performance we designed a second test. In this test we measure the time
needed to perform 3000 operations, and the measurement is repeated for 1 million times.
We search for the fastest iteration and the 1st, 5th and 95th percentile. If performance
requirement is higher, the device can be overclocked to reach 1GHz, and some secondary OS
tasks such as Bluetooth can be shut down to remove their influence.

4 Overall architecture

In the Fig. 2 we can see a diagram showing how the system works. We use the platform in
[30], with the MPC design in [15]. As we will use the PF strategy for the communication,
the leader sends its state to the first vehicle, and the vehicle i sends its state to the vehicle
i+ 1. In a real environment, the leader vehicle would be driven by a human driver, and the
commands control the real vehicle. In a simulation we create a profile for the acceleration
commands and actuate the model of the vehicle.

The vehicle i receives the state from the vehicle i− 1 and uses ai−1 and xip as inputs for
the MPC controller (the upper layer), which computes the desired acceleration. The desired
acceleration is used by the lower layer as reference value and outputs the duty cycle of the
input to the motor, which controls the vehicle. The state of the vehicle (sensed or simulated)
is given as an input to the two controllers and it is also sent to the next vehicle.
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Leader vehicle 1st vehicle

Upper layer 
MPC 

Lower layer 

Desired
acceleration
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Current
vehicle
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states

Motor duty
cycle
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cycle
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Desired
acceleration

Communication 

Figure 2 Overall architecture of the system.

4.1 Lower layer controller
The lower layer controller is a state-feedback controller and it runs at a faster rate than the
upper layer with a sampling rate of 2ms [15]. The output of this controller is the motor duty
cycle which controls the vehicle.

4.2 MPC: Upper layer controller
In MPC we solve an optimisation problem by defining the following quadratic cost function
subject to specific constraints on inputs and states:

J = xiN+k|k
T
PxiN+k|k +

N−1∑
j=0

(xij+k|k
T
Qxij+k|k + uij+k|k

T
Ruij+k|k)

subject to xij+k+1|k = Φixij+k|k + Γiuij+k|k + Ψiai−1
j+k|k, j = 0, ..., N − 1

xmin ≤ xij+k|k ≤ xmax, j = 1, ..., N
umin ≤ uij+k|k ≤ umax, j = 1, ..., N (3)

where J is the cost function, N is the length of the control horizon, xij+k|k is the predicted
state vector of vehicle i after j steps computed at time k, where xik|k is the sensed state of
vehicle i. uij+k|k is the computed input vector for the vehicle i for the j step, and Q, R and
P are the weight matrices. It should be noted that a quadratic cost function is chosen so
that the problem is convex and a global minimum can be found.

In order to use MPC we must discretize the platoon model in Eq. (2) using Zero-Order
Hold (ZOH). After the discretization, the predictive model for vehicle i becomes:

xij+k+1|k = Φixij+k|k + Γiuij+k|k + Ψiai−1
j+k|k, j = 0, ..., N − 1 (4)

where xij+k|k = [aij+k|k δaij+k|k ∆dij+k|k ∆vij+k|k] represent the predicted states. uij+k|k
is the desired acceleration (the optimal control inputs that must be computed). ai−1

j+k|k is
the predicted acceleration of the preceding vehicle. We consider that the future evolution
of the acceleration of the preceding vehicle is constant. Therefore, it does not affect the
optimisation process. The predictive model has 4 states and 1 input variable. Each of the
states and the desired acceleration (ui) have an upper and a lower bound. Therefore we have
10 constraints.
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The upper layer uses MPC. It receives the current state of the vehicle and the state of
the preceding vehicle, and gives the lower layer a new acceleration reference. The upper layer
runs with a sampling time of 100ms since the maximum message rate is 10Hz. At every
sample in which a new message has been received, the MPC controller computes an optimal
series of future N inputs (N is the horizon length). When the message rate is lower than the
sampling rate, the MPC controller automatically updates the desired acceleration using the
next value of the optimal series of inputs that were computed in the last sample in which a
message had been received. As the message rate can drop to 1Hz, we need the length of the
control horizon to be at least 10 while a higher N could improve the quality of the control.
We consider 10 ≤ N ≤ 20.

4.3 Execution time budget for MPC
In this section, we compute the maximum available execution time for the MPC algorithm
considering a message rate of 10Hz. That is, the time available to execute the MPC algorithm
after performing all the other system tasks – see Fig. 3. The platform needs to send and
receive messages (communication task), and compute the result of the lower layer and upper
layer controllers. The upper layer also has some overhead besides the MPC algorithm such
as updating the value of some pointers and variables like the desired acceleration. Fig. 5
shows the tasks performed by each piece of hardware. The MARS co-processor sends and
receives packages. The main processor creates the packages that need to be sent, processes
the received packages, and executes the upper and lower layer controllers.

Communication 
tasks 

Lower 
layer (x50) 

Overhead 
(upper layer) 

100 ms

MPC 
(upper layer) 

Figure 3 Execution time requirement when running on a single core.

In order to measure the contribution of each task to the total execution time, we use the
platform developed in [29] which uses a PID controller for the upper layer and a state-feedback
controller for the lower layer. We removed the logging functions and the PID controller, so
that we get a minimal version of the platform, and added time stamps to analyse the latency
of each task. Furthermore, we have modified the platform so that the tasks in the main
processor are scheduled using POSIX threads with a Fixed-Priority Preemptive Scheduler
(FPPS). For tasks with equal priority it follows a First In, First Out (FIFO) schedule. The

Upper layer
(Overhead + MPC)

Communication 
tasks 

Lower layer

delay

τComm τComm

τOvh+τMPC

τLL τLL τLL τLL τLL

Core 1

Core 0

Figure 4 Typical execution without OS tasks. Figure 5 Task distribution and data
flow on hardware.
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OS has the highest priority, the lower layer and the (de)packetizing tasks are given an
equal medium priority, while the upper layer has the lowest priority. The processor has two
cores, making it possible to process two different tasks (threads) simultaneously. The kernel
distributes the different tasks (including the OS tasks) between the 2 cores dynamically.

In Fig. 4 we can observe the expected execution of the tasks in the absence of OS tasks.
The lower layer is represented at a lower frequency that the frequency implemented.

The results are shown in Table 2. We are mainly concerned about the tasks shown in
Fig. 3. We present the measured maximum and average latencies after 100 runs and the
execution frequency, i.e. how often does that task have to execute.

Table 2 Latency of other tasks that run on the platform.

Maximum latency Average latency Execution frequency
Lower layer controller 0.045ms 0.0151ms 500Hz
Upper layer controller
overhead 0.059ms 0.0126ms 10Hz

Communication tasks 1.063ms 0.3611ms ≤ 10Hz

With the results in Table 2 we can obtain the execution time budget for the MPC task.
In 100ms we need to perform the lower layer controller task 50 times

( 500Hz
10Hz

)
, and the

communication and the upper layer controller tasks only once. We used the worst case
latencies to compute the execution time available for the MPC algorithm in the worst case.
The worst case latencies will occur when the OS tasks are running on both cores of the
processor, therefore for the worst case analysis we assume that there is only one core available
for all the tasks. eMPC , eComm, eOvh and eLL denote the maximum latency of the MPC
task, the communications tasks, the overhead of the high level controller and the low level
controller respectively.

eMPC ≤ 100ms− (eComm + eOvh + 50eLL) = 96.628ms (5)

From the above experiments, we conclude that the effects of other tasks are almost
negligible and we obtained an upper bound for the execution time. How to respect this
requirement is analysed in Section 6. The quality of the control is affected by the sensor-to-
actuator delay. Therefore, the execution time should be as short as possible.

5 Automatic C code generation for MPC

In order to facilitate implementing MPC algorithms on embedded platforms, automatic C
code generators are developed. These tools take a description of the desired MPC problem
and generate the necessary C code to solve it with a given optimisation algorithm.

Code generators are used academically and in the industry [4]. There are many tools
available. Some of them are commercial (paid) tools, e.g., ODYS [24] or FORCES [11] while
others (e.g., µAO-MPC[32], CVXGEN [20], FiOrdOs [12], jMPC [2]) are free. We used
CVXGEN, µAO-MPC and FiOrdOs in this paper since they are free and they allow to stop
executions providing a sub-optimal solution.

CVXGEN has been developed in the University of Stanford. It allows to describe an
optimisation problem in general terms, the problem description includes the dimensions of
the different matrices and vectors, and some properties such as being positively definite, or
diagonal. It does not need the exact values of each entry of the matrices. The algorithm
used is based on CVX, a solver for MATLAB. The tool is online based and free for
academic use [20].
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Figure 6 Number of iterations as a function of the number of variables (nv) and constraints
(mc), reproduced from [19].

µAO-MPC has been developed in the Otto von Guericke University of Magdeburg. This
tool is a very similar to CVXGEN in its usage and flexibility. It uses a FGM algorithm for
obtaining the solution. The tool can be downloaded for free and it works using Python,
which is also a free tool [32].
FiOrdOs has been developed in ETH Zurich. This tool requires a full description of the
problem, with all the entries of the matrices before it can generate the code. It uses a
FGM algorithm. The tool is a free toolbox for MATLAB [12].

6 MPC algorithms and computational requirements

In order to estimate the execution time of different algorithms, we need to know their
complexity. The number of computations per iteration is deterministic in most algorithms,
but the number of iterations depends on the convergence speed of the problem and the initial
conditions making the total execution time unpredictable.1

IPM reaches the solution in steps towards solving the Karush-Kuhn-Tucker equations,
making few but computationally heavy iterations [19]. For IPM we used the estimate of
the number of flops shown in [19] which is also shown in Table 3. We use the Gauss-Jordan
elimination with pivoting method for solving the linear systems using the estimate given
in [19]. We assumed that division operations are equivalent to 10 multiplications. For
the number of iterations, we took an approximate value based on Fig. 6, reproduced
from [19], with 13 iterations.
ASM tries to guess the constraints that are active in the solution (Active Set) and does
it by adding the constraints one by one on every iteration [19]. For ASM we use the
estimate of the number of flops found in [19]. We made the same choices as for IPM. For
the number of iterations, we can find a direct linear relationship between the number of
decision variables, nv, and the number of iterations when looking at Fig. 6, see Table 3.
GM computes the gradient of the cost function in the current point and next, it moves
one step in that direction. It repeats the process until it finds the minimum. In the fast
variants, FGM, a sub-optimal solution is accepted as a trade-off for a faster computation
time. An important advantage of FGM is that it can give an output at any point in time,
making it possible to bound the execution time. These methods require the cost function
to be quadratic [17] [3].

1 In [23] an upper bound for the number of iterations of some algorithms is found. However, it requires
knowledge of the exact values of the predictive model and the bound is significantly larger than the
observed number of iterations [31].
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For FGM we use the estimations provided in [18], which analyses several different FGM
algorithms. It analyses Bemporad’s and Richter’s algorithms, each of them with 2
alternative formulations, which give different computational requirements. The equations
used can be seen in Table 3. These estimates don’t specify the type of operations. We
assume that 50 iterations are needed, based on the experiments performed in [18], but
those values are based on a different problem than the one used in [19], therefore they
might not be comparable.

Table 3 Formulas used to compute the number of flops [8] [19] [18].

Algorithm Flops per iteration Number of
iterations

IPM 2n2
v(nc + 1) + nv(7nc + 2) + 14nc + 1+

Ma(nv) +Mm(nv) + 10(3nc + 1 +Md(nv)) 13

ASM 2n2
v + 2nv(2nc + 1)− nc +Ma(nv + 0.5nc)+

Mm(0.5nc + nv) + 10(nc +Md(nv + 0.5nc)) 2.5× nv

Bemporad’s FGM
u-formulation N2nu(2nu + 3ny + 3nc) 50

Bemporad’s FGM
xu-formulation

N(4n2
x + 6nxnu) + 6N(Nc + ny)(nx + nu)+

4Nnu(nx + nu) 50

Richter’s FGM
uy-formulation 2N2(n2

y + nuny) 50

Richter’s FGM
xuy-formulation 2N(ny + nx)(5nx + 2nu + ny) 50

In Table 3 the new variables have the following meaning:
nx: Number of states of the plant model, in this case 4.
ny: Number of outputs of the plant model, in this case 1.
nu: Number of inputs of the plant model, in this case 1.
nc: Number of inequality constraints, in this case 10.
nt: Parameter computed as nt = nu + ny + nx
nv: Parameter computed as nv = N · nu
Ma(x): Number of additions needed to solve the linear system of equations, computed
as Ma(x) = 0.5(x− 1)x(x+ 1) when using Gauss-Jordan elimination.
Mm(x): Number of multiplications needed to solve the linear system of equations,
computed as Mm(x) = 0.5x2(x+ 1) when using Gauss-Jordan elimination.
Md(x): Number of divisions needed to solve the linear system of equations, computed as
Md(x) = x when using Gauss-Jordan elimination.

The effect of varying the control horizon length for a system with 4 states, 1 input, 1 output
and 10 inequality constraints can be seen in Fig. 7. We can observe that the complexity
of some algorithms grows exponentially while in others it grows linearly. Depending on the
control horizon chosen for the application, different algorithms are recommendable.

7 Performance analysis

7.1 Estimated execution time
Using the specifications of the predictive model and the constraints in Section 4.2, taking
N = 15, and the formulas given in Table 3, we can obtain the number of operations needed
to solve MPC for vehicle platooning. Combining them with the performance of the device
(Table 1) we can estimate the execution time for each algorithm.
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Figure 7 Effect of varying the length of the control horizon-Total number of flops

Table 4 Execution time estimation for different algorithms for the model described in Section
4.2 and N = 15.

Per iteration Total

Flops Time [ms]
(multiplications1)

Time [ms]
(mixed2) Flops Time [ms]

(multiplications1)
Time [ms]
(mixed2)

ASM 9.56×103 0.1593 0.1112 35.85×104 5.9750 4.1686
Bemporad’s FGM
u-formulation 9.9×103 0.1650 0.1151 49.5×104 8.2500 5.7558

Bemporad’s FGM
xu-formulation 7.92×103 0.1320 0.0921 39.6×104 6.6000 4.6047

IPM 10.11×103 0.1685 0.1176 13.14×104 2.1907 1.5284
Richter’s FGM
uy-formulation 9×103 0.1500 0.1047 45×104 7.5000 5.2326

Richter’s FGM
xuy-formulation 6.24×103 0.1040 0.0726 31.2×104 5.2000 3.6279
1 This measurement assumes that all the operations are multiplications.
2 This measurement assumes that half of the operations are additions and the other half multiplications.

In Table 4 we show the number of operations and execution time in total and per
iteration for all the considered algorithms. Two different execution times are given, one under
the assumption that all the operations are multiplications and the other assuming mixed
operations, i.e. half of the operations are additions and the other half are multiplications.

7.2 Code generation experiments
The theoretical estimations can be too optimistic, as they assume that the data is always
available, which is equivalent to having a infinitely fast memory. Using the code generation
tools described in Section 5 we run an experiment (Appendix A) on the Cohda platform,
obtaining a real execution time. The three algorithms are considered. We use approaches
based on several iterations and sub-optimality levels. Each algorithm converges to the
solution at a different speed. Therefore they need a different number of iterations. We
determined the number of iterations as the minimum necessary to reach a value within 0.001
units of the solution for a very large number of iterations, which is assumed to be the optimal
solution. This is equivalent to an error smaller that 1% in the problem used (Appendix A).

For CVXGEN the number of iterations varied with the control horizon length, being 63
for N=10, 56 for N=15 and 59 for N=20. µAO-MPC and FiOrdOs use a dual approach, with
an inner and outer loop. For µAO-MPC we needed 30 iterations for the inner loop and 30
for the outer loop. For FiOrdOs the number of iterations of the inner loop is 1, and 125 for

ASD 2019



2:12 Feasibility Study and Benchmarking of Embedded MPC for Vehicle Platoons

the outer loop for all the horizons. The time displayed in Table 5 is the average between 100
solutions. We expect that the number of iterations needed to solve the vehicle platooning
problem will be comparable to the number of iterations used in this problem.

Table 5 Execution time of different automatic code generation tools for different control horizon
lengths.

Horizon length CVXGEN µAO-MPC FiOrdOs
N=10 15.52 ms 106.150 ms 32.286 ms
N=15 26.02 ms 211.526 ms 73.632 ms
N=20 45.35 ms 358.030 ms 125.968 ms

7.3 Feasibility analysis
Following the execution diagram in Fig. 4, the delay from the sampling instant until the
new control input is computed, depends on the execution times of the upper layer and the
communication tasks. The execution time is variable due to the OS, making it impossible to
obtain an exact value. We approximate it as:

delay ≈ τMPC + τComm + τOvh (6)

where τMPC , τComm and τOvh are the average execution time of the MPC task, the commu-
nication task and the overhead of the upper layer, respectively.

Under the selected communication protocol, there is no use on having a faster sampling
rate than 10Hz, but other communication protocols could be used. Therefore we will compute
the maximum achievable sampling rate as the inverse of the delay. We consider that it is
feasible to use an algorithm if its execution time is below the budget computed in Section 4.3.

Looking at the theoretical estimates, the execution time of IPM is the shortest, while
the shortest FGM algorithm is Richter’s algorithm using the xuy-formulation. For the FGM
algorithms we don’t know the type of operations. Therefore, we use the estimate in the
case that all the operations are multiplications. For IPM the number of multiplications
and additions are very similar [19] and we use the mixed estimation. When considering the
experimental execution times, the best results are for CVXGEN for all the tested horizon
lengths. In Table 6 we present the results for the selected algorithms allowing us to make
the following observations. First, there is a significant difference in the execution time when
using different algorithms or different control horizon lengths. Second, the delay is almost
equal to the execution time of the MPC algorithm. Finally, all the selected algorithms are
feasible to be used for this problem.

7.4 Trade-off analysis
From the complexity of the different algorithms (Section 6) we observe that the size of the
predictive model and the length of the control horizon have a big impact on the complexity
of the algorithm. Generally a longer control horizon length and a more accurate predictive
model (which usually results in a larger model) give a better control performance, but
the improvement might not be sufficient to overcome the negative effects of increasing the
sensor-to-actuator delay and reducing the sampling rate.

When choosing hardware for MPC applications, the variability in the execution time must
be taken into account. In all the implicit MPC algorithms the number of iterations varies
depending on the initial conditions (making the total execution time vary), therefore it is not
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Table 6 Feasibility analysis, execution time, delay and the maximum sampling period for the
selected algorithms.

Execution
time (ms) Delay (ms) Maximum sampling

period (Hz) Feasible

IPM N = 15 1.5284 1.9021 526 Yes
Richter’s FGM
xuy-formulation
N = 15

5.2000 5.5737 179 Yes

CVXGEN N = 10 15.5200 15.8937 63 Yes
CVXGEN N = 15 26.0200 26.6368 38 Yes
CVXGEN N = 20 45.3500 46.1027 22 Yes

enough to select a processor capable of meeting the timing constraints for the average case.
The processor depends on the requirements of the application, i.e. the MPC algorithm must
be guaranteed to execute within the timing constraints 90% of the times. To provide such
guarantees, it is required to perform multiple experiments under different initial conditions
and obtain a probabilistic distribution of the execution time.

Finally, the MPC task can be parallelized when running on a multi-core processor. This
can improve the execution time of MPC but it must be done ensuring that the task in charge
of receiving new messages is able to run. Every received message needs to be processed and
it must be recalled that every vehicle broadcasts several messages per second, making it
possible to receive several hundreds of messages per second when there is traffic.

8 Conclusion

In this paper we analysed the feasibility of employing embedded MPC for vehicle platooning
and provided an overview of the trade-offs that can be done. We obtained a bound for the
maximum execution time admissible when taking into consideration the other system tasks
that run on the platform. We have shown that it is feasible in two different ways. First,
we analysed the computational complexity of different MPC algorithms and compared it
to the performance of the device, obtaining a theoretical execution time. Second, we used
automatic C code generation tools to measure the real execution time of MPC algorithms
for different control horizon lengths. We compared the execution times to the execution time
bounds, showing that it is feasible to use embedded MPC for vehicle platooning. In this
process, we have benchmarked the performance of various MPC algorithms with respect to
parameters such as the horizon length and the number of the states.
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A Parameters used in experimental analysis

Q =

[ 1.89 0 0 0
0 1.90 0 0
0 0 1.13 0
0 0 0 1.21

]
Γ =

[ 1.75
1.90
0.69
1.61

]
x0 =

[ 0.20
0.83
−0.84
0.04

]
xmax =

[ 0.61
0.23
−0.55
−1.10

]

P =

[ 1.44 0 0 0
0 1.03 0 0
0 0 1.46 0
0 0 0 1.65

]
Φ =

[ −0.88 0.71 0.36 −1.90
0.24 −0.96 −0.34 −0.87
0.77 −0.24 −1.37 0.18
1.12 −0.77 −1.11 −0.45

]
xmin =

[ −1.63
−100
−100
−100

]

R = 1.05 umax = 1.38 umin = −0.49 Ψ = [0 0 0 0]
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Abstract
This paper proposes an integrated development framework that enables co-simulation and operation
of a Robot Operating System (ROS)-based self-driving system using MATLAB/Simulink (IDF-
Autoware). The management of self-driving systems is becoming more complex as the development
of self-driving technology progresses. One approach to the development of self-driving systems is
the use of ROS; however, the system used in the automotive industry is typically designed using
MATLAB/Simulink, which can simulate and evaluate the models used for self-driving. These models
are incompatible with ROS-based systems. To allow the two to be used in tandem, it is necessary to
rewrite the C++ code and incorporate them into the ROS-based system, which makes development
inefficient. Therefore, the proposed framework allows models created using MATLAB/Simulink to
be used in a ROS-based self-driving system, thereby improving development efficiency. Furthermore,
our evaluations of the proposed framework demonstrated its practical potential.
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1 Introduction

Self-driving systems continuously increase in complexity along with the increasing number
of required functionalities. One approach to the development of complicated systems is the
use of Robot Operating System (ROS) [5] [12] [13]. ROS characteristics, such as abstracting
hardware and improving code reusability, make the development of such systems more
efficient. A ROS-based self-driving system is Autoware [1]. Autoware is open-source software
for autonomous vehicles and can be used in embedded systems, such as NVIDIA DRIVE
PX2 [10] and Kalray MPPA-256 [11].
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Figure 1 System model of IDF-Autoware.

However, in the automotive industry, the design of self-driving subsystems, such as
detection, planning, and control have often used MATLAB®/Simulink® [3]. The models
designed using MATLAB/Simulink can not be directly linked to Autoware in the currently
adopted development framework. To integrate such models into Autoware, it is necessary
to generate and incorporate the associated C++ code. Although MATLAB/Simulink has
a C++ code generation functionality, code corresponding to Autoware (i.e., ROS) can not
be generated, thereby deteriorating development efficiency. Moreover, it is possible that a
model ported to Autoware will not perform as designed because the MATLAB/Simulink
environment differs from that of Autoware. To address these limitations, we propose
a framework called IDF-Autoware [2] (Figure. 1) that manages models designed using
MATLAB/Simulink as nodes that represent individual processes in ROS. This enables data
exchange between Autoware and MATLAB/Simulink, thereby allowing the models to be
used without incorporation into Autoware.

To the best of our knowledge, this is the first work that co-simulation and operation of a
real vehicle using MATLAB/Simulink for self-driving systems. The main contributions of
this study are as follows:

We confirmed the practicality of the method by comparing the data transfer time and
processing capacity of ROS and MATLAB/Simulink (Section 3.1), as well as that the
nodes designed using MATLAB/Simulink could be applied to the co-simulation and
operation of an autonomous vehicle;

We improved the design efficiency in MATLAB/Simulink based on IDF-Autoware gener-
ating MATLAB template scripts and Simulink template models (Section 3.2), which help
a developer design nodes for Autoware using MATLAB/Simulink;

We improved usability by extending Runtime Manager, which is a graphical user interface
(GUI) tool for Autoware, to enable operations for MATLAB/Simulink (Section 3.3),
as well as making available the other functionalities provided by IDF-Autoware (e.g.,
template generation).
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(a) (c)

(b)

Figure 2 Screenshot of co-simulation using IDF-Autoware: (a)RViz displaying Autoware status,
(b) the rqt_graph_autoware, and (c) the Runtime Manager for IDF-Autoware.

2 Design and Implementation

The functionalities provided by IDF-Autoware facilitate the integrated development of
Autoware and MATLAB/Simulink. The key functionalities are as follows (Figure. 1):

They generate MATLAB template scripts and Simulink template models, and provide
visualization tools to aid template generation (Section 2.1);
They enable MATLAB/Simulink to operate on Runtime Manager, to display node
information, and to make use of the other provided functionalities (Section 2.2)

In this section, we discuss the design and implementation of each of these functionalities,
and use cases of the proposed framework are shown.

2.1 Template Generation

When MATLAB/Simulink is used to design nodes for Autoware, the nodes must contain
essential information, such as a node name, the topics to publish/subscribe, and the message
type of each topic. This information can be obtained by analyzing the source code of
Autoware and executing ROS commands. However, the need for such analyses places a
burden on developers, especially on those who are unfamiliar with ROS. Therefore, we
provided functionalities that allow the generation of MATLAB template scripts and Simulink
template models that include this necessary information, as the templates help developers
design nodes in MATLAB/Simulink. Additionally, we made two visualization tools to aid
the template generation. One is the rqt_graph_autoware plugin (Figure. 2 (b)). In addition
to the functionalities of rqt_graph [7], rqt_graph_autoware can render node dependency,
such as sensing, perception, decision, and planning, for Autoware applications. The other
tool displays a list of the running nodes and provides information on any node selected from
the list.
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As noted, before the template of a desired node is generated, it is necessary to obtain
node information; therefore, a .yaml file containing information pertaining to all Autoware
nodes was created. Based on this information, templates are created using functions pro-
vided by Robotics System Toolbox™ [4], which provides the interface between ROS and
MATLAB/Simulink. Developers can create nodes for Autoware in MATLAB/Simulink using
the generated template.

To implement the rqt_graph_autoware plugin, we created .dot files that render node
dependency graphs for each Autoware’s application. Moreover, to create the GUI for
rqt_graph_autoware, we added buttons to rqt_graph using Qt designer, which is a Qt tool
for designing a GUI. The buttons were configured to open each .dot file, and clicking on
these buttons cause a graph to be drawn. This allows developers visualization of the nodes
included in each Autoware’s application.

To display node information, we used a rosnode command-line tool [6] that includes
commands that fetch node information, including rosnode list and rosnode info node_name.
The rosnode list command displays a list of running nodes, whereas rosnode info node_name
displays information about the topics to be published/subscribed by the node. Displaying
the results of these commands in Runtime Manager renders the node information easily
comprehensible. Section 2.2 describes the method for displaying these results in Runtime
Manager.

2.2 Runtime Manager for IDF-Autoware
Autoware and MATLAB/Simulink are operated with different GUI tools; thus, this is
troublesome for users who want to use the two simultaneously. Therefore, we added GUIs
to the Autoware’s GUI tool (i.e., Runtime Manager) to allow use of MATLAB/Simulink
and the functionalities provided in IDF-Autoware (Figure. 2 (c)). These GUIs enabled the
following functionalities:

Starting MATLAB, Simulink, and rqt_graph_autoware;
Executing MATLAB scripts and Simulink models;
Generating MATLAB template scripts and Simulink template models;
Displaying node information.

This unification of operation method simplifies the MATLAB/Simulink operation and the
utilization of the provided functionalities.

Runtime Manager was designed using the wxPython toolkit [9]. Therefore, we designed
the GUIs for the added functionalities using wxGlade [8], and outputted its designs as
wxPython. The GUIs involve buttons and panels that execute each functionality.

We next modified the Runtime Manager execution code to configure them for GUI func-
tionalities. The execution code imports modules, including the code generated by wxGlade,
and loads the .yaml files. In the execution code, loading .yaml files initiates functions that
align simple operations to specified buttons. Therefore, by creating a yaml file for MAT-
LAB/Simulink, we configured the initiation of MATLAB, Simulink, and rqt_graph_autoware
to each button.

To allow the execution of MATLAB scripts and Simulink models from Runtime Manager,
we created multiple GUIs with the following configurations:

A button to open a dialog for file selection;
A panel displaying the absolute path of the selected file; and
A button to execute the file displayed on the panel.

This execution button was designed to run if the selected file was a MATLAB/Simulink file
(i.e., a .m or .slx file).
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Table 1 Evaluation environment.

CPU

Model number Intel Core i7-6700K
Cores 4

Threads 8
Frequency 4.00 GHz

Memory 32 GB
ROS Indigo

MATLAB/Simulink R2016b
OS Ubuntu 14.04.5 LTS

ROS
MATLAB/

Simulink

ROS

ROS

Data

Data

Data

DataNode1

Node2

Node3

: node : topic : publish/subscribe

Figure 3 Measurement of transfer time.

To generate MATLAB template scripts and Simulink template models, we designed the
following GUIs: a panel to input the node name and buttons to run the execution code that
generates the template of the input node.

For the node information display, we designed two panels, with the first displaying the
output of the executing rosnode list. When a node is selected from the list, the second panel
displays the output of rosnode info the_selected_node_name, which eliminates the need to
enter the rosnode command.

2.3 Use Case
IDF-Autoware allows co-simulation of Autoware and MATLAB/Simulink. The demonstration
video can be viewed at the following hyperlink: https://youtu.be/X4d9VbXnPeg (Figure.
2). In this video, one of the nodes necessary for planning is executed by MATLAB/Simulink.
This simulation facilitates an operational check of MATLAB/Simulink nodes. Moreover, it
can also be used for experiments using an autonomous vehicle. The demonstration video
showing operating of the autonomous vehicle using IDF-Autoware can be seen at the following
hyperlink: https://youtu.be/wusCU2VPGGQ.

3 Evaluations

The main goal of this study was to improve development efficiency. To demonstrate this
improvement, the practicality of IDF-Autoware, efficiency, and usability were evaluated. To
evaluate the practicality, we compared the communication times among nodes within ROS
and between ROS and MATLAB/Simulink. Additionally, we performed a co-simulation and
operation of an autonomous vehicle to show the practicality of the proposed framework. We
investigated the design efficiency by measuring the generated MATLAB/Simulink template.
To evaluate the usability, we compared the development environments with Autoware,
Robotics System Toolbox, and IDF-Autoware. These evaluations demonstrated that IDF-
Autoware improved the development efficiency. Table 1 summarizes the software and hardware
environments used in the experiments.
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Figure 4 The average transfer time according to the size of the message data.

3.1 Practicality

IDF-Autoware enabled the communication of nodes designed using MATLAB/Simulink with
Autoware nodes to improve the development efficiency. However, it was necessary to consider
the effect of using Autoware with only ROS and together with MATLAB/Simulink together.
Therefore, to evaluate practicality, ROS and MATLAB/Simulink were compared as follows:

1. According to the relationship between the transfer time and the data size when a message
is sent via ROS and via MATLAB/Simulink, respectively; and

2. According to the processing capacity when the same type of method was used.

As shown in Figure. 3, the transfer time was defined as the elapsed time when Node 1
published the message to Node 3, which subscribed the message via Node 2. The processing
capacity was compared with the processing time over 1,000 iterations and using the same
machine (Node 1 published the message at 10 Hz).

We measured the ROS and MATLAB/Simulink transfer time when the message data
size on each topic was set to 100, 1 K, 10 K, 100 K, and 1 M bytes. Figure. 4 shows the
transfer times via ROS and MATLAB/Simulink plotted against each data size. Both the
ROS and MATLAB/Simulink transfer times increased along with data size, although the
data transfer by MATLAB/Simulink had an overhead exceeding that of ROS. However, the
MATLAB/Simulink transfer time did not exceed the Autoware maximum of 32 Hz.
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Table 2 Task reduction using MATLAB template scripts.

MATLAB template scripts
Generated lines (1) + α(2) + β((3) + 2(4))
(1): Defining node
(2): Defining publisher
(3): Defining subscriber
(4): Defining callback function
α: The number of publishers
β: The number of subscribers

To evaluate the processing capacity, we measured the processing times of ROS and
MATLAB/Simulink when multiplying square matrices on the order of 50, 100, 150, and 200,
which served as easy points of reference to enable comparison of ROS with MATLAB/Simulink
rather than as a requirement for self-driving. The evaluation measured the time required to
process the time complexity at each matrix size and assessed the performance of the functions
provided by MATLAB/Simulink. Therefore, the MATLAB/Simulink processing time was
measured using two MATLAB scripts: one written in the same way as the ROS code, and
the other using MATLAB matrix functions. Figure. 5 shows the processing times at each
matrix size. When using the MATLAB script written in the same way as the ROS code, the
processing times of ROS and MATLAB/Simulink were approximately the same. By contrast,
when the MATLAB script used matrix functions, its processing time was significantly shorter
than that of the other two methods, because processing was executed on multiple cores with
multiple threads, even when this was unspecified. Comparison of the processing times with
the transfer times revealed that the script using matrix functions was again significantly
faster, thereby confirming that application of the functions provided by MATLAB/Simulink
code enabled the handling of processes with large time complexity (e.g., image processing),
even when accounting for the transfer time. Therefore, as shown the videos in Section 2.3,
the practicality of IDF-Autoware is demonstrated.
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Table 3 Task reduction using Simulink template models.

Simulink template models
Simulink blocks α((1) + (2) + (3)) + β((4) + (5) + (6))

Settings (i) + (α + β)((ii) + (iii) + (iv) + 2(v))
(1): Placing Publisher (i): Defining model name
(2): Placing Message (ii): setting message name
(3): Placing Bus Assignment (iii): setting topic name
(4): Placing Subscriber (iv): Configuring topic source
(5): Placing Bus Selector (v): Connecting blocks
(6): Placing Terminal α: The number of publishers

β: The number of subscribers

Table 4 Functionalities available with Autoware, Robotics System Toolbox, and IDF-Autoware.

Autoware [1] Robotics System Toolbox [4] IDF-Autoware [2]

Operating Autoware X X

Operating MATLAB/Simulink X X

Communicating between X X

Autoware and MATLAB/Simulink
Drawing node dependency X X

Generating MATLAB/Simulink templates X

Displaying node information X

3.2 Efficiency

To improve the design efficiency, a functionality to generate both MATLAB template scripts
and Simulink template models was provided. These templates help developers design nodes
for Autoware in MATLAB/Simulink.

Table 2 shows the amount of the template generated by a MATLAB template script.
The MATLAB template script defines the essential information, as mentioned in Section
2.1, and creates callback functions utilized when a topic is subscribed. For example, the
lane_stop node required for planning has one publisher and five subscribers. One line is
generated to define a node, a subscriber, and a publisher, and two lines are generated to
define the callback function. Therefore, in total, 17 lines are generated for the MATLAB
template script for the lane_stop node.

When creating a Simulink model, it is necessary to place and configure the Simulink
blocks, to define the model name, and to connect the blocks. Table 3 summarizes the number
of Simulink blocks placed and the settings created by a Simulink template model. The
Simulink template model defines the model name and places the essential Simulink blocks,
thereby creating a model for Autoware. Additionally, the Simulink blocks are configured and
connected together. For example, when the Simulink template model of lane_stop node is
generated, 18 Simulink blocks are placed and 31 settings are configured in total.

If the functionality allowing MATLAB/Simulink templates to be generated is not provided,
the developer must examine the node information and define it in a MATLAB script or
a Simulink model. By contrast, when the templates are used, this becomes unnecessary;
therefore, this improves design efficiency.
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3.3 Usability
IDF-Autoware enables the operation of MATLAB/Simulink in Autoware and provides
functionalities to improve the usability. Here, we compared the available functionalities
between Autoware, Robotics System Toolbox, and IDF-Autoware, as summarized in Table 4.

Autoware cannot operate MATLAB/Simulink, and Robotics System Toolbox cannot oper-
ate Autoware. IDF-Autoware provides functionalities required to operate MATLAB/Simulink
in Runtime Manager for IDF-Autoware, such as starting MATLAB/Simulink or executing
MATLAB scripts and Simulink models. Therefore, IDF-Autoware can operate both systems.
Communication between Autoware and MATLAB/Simulink is possible in Robotics System
Toolbox and IDF-Autoware. Moreover, IDF-Autoware provides a drawing to visualize node
dependency using the rqt_graph_autoware plugin created by extending rqt_graph available
in Autoware. In addition to these features, IDF-Autoware can generate MATLAB/Simulink
templates and display node information. Because this increases the number of available
functionalities, the usability is also enhanced, which in turn improves development efficiency.

4 Conclusion

In this paper, we described the development of an integrated development framework for
Autoware with MATLAB/Simulink (IDF-Autoware) that enabled communication between
Autoware and MATLAB/Simulink. We evaluated the data transfer time and processing
capacity of MATLAB/Simulink, and confirmed the practicality of the method by using both
co-simulations and experiments using an autonomous vehicle. IDF-Autoware facilitated the
generation of MATLAB/Simulink templates that can help developers create models using
MATLAB/Simulink for Autoware, thereby improving the design efficiency. Furthermore, the
functionalities added to IDF-Autoware allow Runtime Manager to operate MATLAB/Simulink
and various functionalities, further improving usability. Our findings confirmed that IDF-
Autoware improved the development efficiency.
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Abstract
The development of SAE Level 3+ vehicles [24] poses new challenges not only for the functional
development, but also for design and development processes. Such systems consist of a growing
number of interconnected functional, as well as hardware and software components, making safety
design increasingly difficult. In order to cope with emergent behavior at the vehicle level, thorough
systems engineering becomes a key requirement, which enables traceability between different design
viewpoints. Ensuring traceability is a key factor towards an efficient validation and verification of
such systems. Formal models can in turn assist in keeping track of how the different viewpoints
relate to each other and how the interplay of components affects the overall system behavior. Based
on experience from the project Controlling Concurrent Change, this paper presents an approach
towards model-based integration and verification of a cause effect chain for a component-based
vehicle automation system. It reasons on a cross-layer model of the resulting system, which covers
necessary aspects of a design in individual architectural views, e.g. safety and timing. In the
synthesis stage of integration, our approach is capable of inserting enforcement mechanisms into
the design to ensure adherence to the model. We present a use case description for an environment
perception system, starting with a functional architecture, which is the basis for componentization
of the cause effect chain. By tying the vehicle architecture to the cross-layer integration model, we
are able to map the reasoning done during verification to vehicle behavior.
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1 Introduction

In recent years, huge progress has been generated toward the commercialization of automated
vehicles systems. The focus of the industry has shifted from advanced driver assistance
systems (ADAS), corresponding to SAE level 1 and 2 [24] to automated vehicle systems of SAE
Levels 3+. However, while impressive results are achieved regarding environment perception
algorithms, also due to the introduction of machine learning technology, verification and
validation of Level 3+ systems becomes increasingly difficult. This is especially true, if it must
be considered that software intense systems will most likely require frequent after-market
updates for deploying bugfixes, and/or updates of the vehicle’s functionality.

Challenges for safety verification are on the other hand caused by increased complexity
of the perception systems required to generate a representation of the vehicle’s environment
which is sufficiently detailed to make decisions in complex traffic scenes (cf. [13]). On the
other hand, replacing the driver is equivalent to replacing vast parts of the safety system of
SAE Level 1 and 2 systems. Established safety design processes must thus be rethought and
extended in order to suit the newly arising challenges when removing the driver from the
control loop. Safety strategies which only assure that the driver can control system failures
by being able to physically overrule system commands to the drive train or steering system
do not apply anymore.

For the automotive industry, the safety standard ISO 26262 [10] provides guidelines
for designing functionally safe systems. This subsumes hazards caused by malfunctioning
behavior of E/E components and ensures the correct implementation of functional (safety)
requirements. One frequently formulated drawback of the ISO regarding the applicability to
Level3+ systems is that it does not consider nominal behavior of the overall E/E system
(cf. [19, 4, 13, 8]) and thus does not provide guidelines on how to define the functional
requirements for the system. However, this formulation of safe nominal behavior (or external
behavior as defined in [20], according to [3]) and the boundaries of safe nominal behavior is
crucial when it comes to ensuring safety of driverless vehicles, as the system must not pose a
threat to its passengers and/or other traffic participants. For this publication, we adopt the
terminology as defined by Waymo in their 2017 safety report [32], referring to the process of
defining safe nominal behavior as behavioral safety (cf. [4]). The upcoming ISO PAS 21448
“Road Vehicles – Safety of the Intended Functionality” is partially addressing this problem,
however the scope of the current draft standard is intentionally limited to SAE Level 1 and
2 systems [12], while the defined concepts might also apply to levels of higher automation.

While there is a number of recent publications on how to extend the concept phase
of ISO 26262 toward the definition of safe behavior [19, 4, 8], e.g. based on a scenario-
driven concept phase, we would like to elaborate on the consequences of behavioral safety
considerations from a systems engineering point of view. As we have argued in [4], the design
of safe automated vehicle should follow a safety by design paradigm as a cross-domain effort
over different disciplines. For this purpose we have proposed an architecture framework in
accordance with ISO 42010 [11], featuring safety as a cross-cutting viewpoint and formulating
a functional, a capability, software and hardware viewpoint and attributing behavioral safety
to the former two and functional safety to the latter two viewpoints. Correspondences and
correspondence rules, as defined in ISO 42010, are represented in example mappings between
components in the respective viewpoints. While we formulate the need for formal methods to
represent and instantiate the different viewpoints in the architecture framework, the actual
instantiation was not part of the initial contribution.
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Behavioral and functional safety of vehicle automation systems is one of the grand
challenges for future automotive systems. Reducing the necessary testing efforts to ship
updates for vehicular systems, especially of models that are already in production and in
the field is the second grand challenge. The later is particularly interesting to reduce costs.
In this paper, we want to show that concepts for safety related systems engineering ([4])
can be combined with automated integration mechanims and tools as investigated in the
project Controlling Concurrent Change (CCC)1. As a result of such a design and integration
flow, we envision systems where software updates and upgrades can be easily deployed at a
minimum of cost for integration testing and safety validation through testing.

We illustrate this idea based on an update scenario for the automation system of a
research vehicle. Therefore, we first introduce the architecture framework we use to asses
behavioral safety in section 2. We maintain traceability from the functional viewpoint up
until integration in this architecture (cf. Figure 2), by using Traceability in this architecture
is maintained in two ways: For behavioral safety the process is still manual, first ideas to
further automate this are also presented in section 2. The example showcase is then presented
in section 3, while section 4 then presents the key ideas how we automate the integration
and verification based on the presented architecture framework. This section also includes a
description of the resulting cross-layer system model. Finally, section 5 concludes the paper.

2 Behavioral Safety in Systems Engineering

As stated in Section 1, the concept of behavioral safety is a potential missing link to extend
the concept phase of established ISO-26262-compliant processes toward the application for
SAE Level 3+ vehicle automation systems. In this section, we summarize the architecture
framework described in [4] and discuss the implications of behavioral safety on traceability
requirements for system properties in the design phase and at runtime.

Considering behavioral safety as an integral part of the safety concept creates the problem
of defining appropriate behavior in different scenarios [4]. An example scenario is displayed
in Figure 1 with the vehicle approaching a pedestrian crosswalk.

Ego

Car 1

Pedestrian 1 Pedestrian 2
Van

Figure 1 Example scenario: Automated vehicle approaching a pedestrian crosswalk occluded by
a parked vehicle with oncoming traffic and pedestrians who are likely to cross.

At the scenario level, abstract safety goals can be formulated, e.g. by stating that
the automated vehicle must not enter oncoming traffic. A process of how these abstract
safety goals can be decomposed into (functional) safety requirements and actual technical
requirements has been formulated in [4]. A short summary of the described process following
an (iterative) Item Definition can be stated as follows:

1 https://ccc-project.org
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1. Conduct Hazard Analysis and Risk Assessment by possible accidents in the defined
scenarios.

2. Define safety goals.
3. Define a risk minimal state for the scenario at hand.
4. Define functional safety concept (safety requirements and hazard mitigation strategies)

for fulfilling the safety goals.
5. Combine with functional architecture and required system capabilities derived during the

item definition to derive technical requirements.

However, the consequences of formulating behavioral safety requirements for systems
development reaches further than defining requirements at the beginning of the development
and validation and test before market release in a classic V-Model-like development process.
In addition, the adherence to safety requirements must be monitored at runtime. This is
required to initiate emergency strategies for reaching a risk minimal state in case safety
requirements are violated.

For monitoring system behavior at runtime, we have proposed the application of ability
and skill graphs [21] and their integration into a development process [20]. They represent
functional dependencies in the system, formulating the required capabilities to fulfill the
vehicle’s mission. They explicitly model external system behavior as well as dependencies for
performance assessment at a functional level, and provide guidance for the decomposition of
functional requirements into technical requirements.

A core question which needs to be addressed in this context is, how the technical
implementation, which is subject to functional safety requirements can cause hazards at
the behavioral level. This is where traceability aspects come into play: Assuming that
a functional system architecture and a capability representation are available after the
concept phase of the development process, technical architectures in terms of hardware
and software architectures are developed during system implementation. As defined in the
ISO 42010, a sound architecture framework requires the formulation of correspondences and
correspondence rules between different architectural views. In our formulated architecture
framework (cf. Figure 2), this means that we need mapping relations between functional,
capability, hardware and software components (depicted in Figure 2 as red arrows).

However, while informal formulations of those correspondences can assist during system
development, informal notations are not suitable to support system monitoring at runtime.
For this purpose a formal system model is required which can relate formalized requirements
to the current system configuration, e.g. including component mappings or interface and
task dependencies.

To demonstrate this, we performed a manual ability and skill graph based assesment for
an automated driving function of a research vehicle, and used its results as the input for
a model-based integration flow. The vehicle and the automation function is explained in
the following section. How this function is integrated into a vehicle system in a correct-by-
construction fashion is subsequently explained in section 4, which will explain our cross-layer
model instantiating the multi-view architecture.

3 Concurrent Change Use-Case

The CCC approach combines a conventional lab-based design of individual functions with an
automated integration process which ensures that updates are applied to an already deployed
system only if the system can still adhere to the required safety and security constraints.
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Figure 2 Architecture framework presented in [4]: Showing safety as a cross-cutting viewpoint
orthogonal to the functional, capability, hardware and software viewpoint. Note that depicted
architectures are examples, such as a component architecture in the software viewpoint. Red arrows
depict example mapping relations (correspondences) between components in different viewpoints.

This becomes particularly challenging as the target platform is shared by multiple
functions with different criticality. All side effects must therefore be anticipated and either be
bounded or mitigated in order to ensure safe operation of critical functions at all times. For
this purpose, all requirements and constraints must be explicitly specified in the input models.
Another challenge consists in finding (and specifying) appropriate abstractions that guide
the decisions which must be made during such a model-based integration process, as these
are usually based on experience and expert knowledge, which is only implicitly available.

We demonstrate the applicability of the approach on an environment perception and
motion planing showcase that we will introduce in the following:

3.1 Research Vehicle MOBILE
For showing the applicability of the approaches developed in the CCC project in an automotive
context, the research vehicle MOBILE [5] built at the Institute of Control Engineering at
TU Braunschweig serves as a demonstrator platform.

MOBILE was originally built as a demonstrator for the development of vehicle dynamics
control algorithms and vehicle systems engineering applications. It features of four close-
to-wheel electric drives (4× 100 kW), as well as individually steerable wheels, and electro-
mechanic brakes [5]. The vehicle features a FlexRay backbone for inter-ECU-communication
and additional CAN bus interfaces, which are used for communication with sensors and
actuators for vehicle control. The ECUs for vehicle control are programmed in a customized
MATLAB/Simulink tool chain. Combined with detailed vehicle-dynamics models, the tool
chain serves as a means to establish a rapid-prototyping process for vehicle control algorithms.

The basic idea in the project scope is to demonstrate how the CCC architecture can
contribute to a state-of-the-art environment perception system in an automated vehicle. For
this purpose, the research vehicle MOBILE has been equipped with three roof-mounted
LiDAR sensors (cf. Figure 4a), as well as a highly accurate localization platform. Additional
hardware platforms were installed in the vehicle to run environment perception and motion
planning algorithms in the CCC middleware. The ECUs and sensors of the CCC subsystem
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are interconnected by Ethernet and connected to the legacy vehicle control through a CAN
interface. In addition, the algorithms can be run on a legacy platform as it is used in the
Stadtpilot [33] project for comparison.

3.2 Environment Perception & Trajectory Planning System
The sensors provide a 360° representation of the vehicles’ environment and enable it to
navigate its path around obstacles in its vicinity. For the CCC project, we have ported
selected algorithms from the Stadtpilot project, focusing on the representation of the static
vehicle environment. For this purpose, incoming sensor raw data from the LiDAR sensors is
combined into a point cloud. Each measurement contains position and reflectivity information.
Thus, apart from the information about obstacle positions, reflectivity information can be
used to create a monochrome image, making it possible to e.g. detect lane markings in the
LiDAR data.

In several steps, measurements are annotated with measurement classes (e.g. ground
measurements, valid measurements on actual objects, clutter, etc.). The resulting annotated
point cloud is then fed into an occupancy grid [6] (cf. Figure 3a), which accumulates
measurements over time. The grid framework is based on a multi-layer approach to represent
environment features in distinct layers. Examples of three layers are depicted in Figure 3.
Figure 3a shows an example of occupancy information in terms of free (green), occupied
(red) and unkown (dark blue) space. In addition, the mentioned reflectance information
(Figure 3b) for ground-labeled points is represented in a separate layer. For a more detailed
description of the processing chain, please refer to [14], [23]. At the end of the sensor-data

(a) Occupancy grid: discretized
map displaying free (green) and
occupied areas (red) around the
vehicle.

(b) Reflectance grid: reflectance
values allow detecting lane mark-
ings (white) [23].

(c) Fused grid layer: each color
indicates a different represented
feature [23].

Figure 3 Three layers of the grid framework to represent environment features on an intersection.

processing chain for the static environment, the different layers are fused into a consistent
representation of the static vehicle environment.

The grid representation is always kept in a local coordinate frame, which moves with
the vehicle. The vehicle’s position is acquired from an accurate tightly-coupled GNSS/INS
platform (global position is obtained via GPS and fused with accelerations & angular rates).

(A) fused local occupancy grid(s) provide the basis to perform trajectory planning for
automated driving. For this purpose, the system generates a target pose in a reachable
area of the vehicle’s environment and the trajectory is planned from the current position
to the target pose in the vehicle coordinate frame. Trajectory planning is performed in a
model-based fashion, using front- and rear-axle steering. The underlying trajectory control
algorithms use the available actuators (4× steering, 4× brakes & drives) to control the vehicle
to the planned trajectory. For details on and architectural considerations for trajectory
planning, refer to [19]. Aspects of the applied control algorithms are presented in [30].
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By representing the available actuators, trajectory planning considers the vehicle’s current
abilities. By monitoring e.g. sensor quality, actuator performance and control quality, the
system will be able to react to failures in the system. A simple example here is the presence
of a steering actuator failure, which can be compensated at the control level, as well as by
adapting the trajectory planning algorithm. Monitoring of non-functional properties, such as
timing is performed directly in the middleware.

(a) Roof-mounted lidar sensors.

FlexRay

CAN

Ethernet

(Smart) Sensors

(Smart) Actuators

Control Units / PCs

Vehicle
Sensor 1

Vehicle
Sensor n

Vehicle
Actuator n

Vehicle
Actuator 1

Vehicle
ECU 1

Vehicle
ECU 2

Vehicle
ECU n

Vehicle
Control

Localization
Env.

Perception

Lidar

V2XGPS

(b) Hardware architecture used in MOBILE.

Figure 4 Research vehicle MOBILE.

The algorithms required to demonstrate the use case will run in a distributed system, as
shown in Figure 4b. The platform can be separated into two parts: While the lower part of
the displayed ECUs is responsible for controlling the individual actuators of the vehicle, the
upper part performs environment perception and trajectory planning tasks. As the CCC
middleware only runs in the context of the environment perception system, the system model
must support transitions between legacy-parts of the system, running without the project
middleware and those parts, which are fully controllable by the Multi Change Controller
(cf. section 4).

A coarse grained functional architecture of the use-case is depicted in Figure 5.

Sensor Data
Aquisition

Sensor Data
Preprocessing

Static
Environment
Modelling

Target
Pose

Generation

Trajectory
Generation

Vehicle
Control

Figure 5 Coarse functional system architecture.

4 CCC’s integration and verification system

For the model-based integration approach pursued here, the system is composed of two
segregated domains: the model domain and the execution domain.

Figure 6 shows the conceptual setup of the system. A Multi-Change Controller (MCC)
(red) hosts the model domain, consisting of the cross-layer model, as well as configuration
generation and verification. We aim for component-based models – including software as
well as hardware components – as they reduce dependencies in the architecture to the
explicitly modeled interfaces. The components are generic building blocks of the system
that is composed of these components such that they implement the desired functionality
and fit to the particular target platform. Each change to the system must be coherently
representable in this system-wide model for analyzing any potential cross-layer dependencies,
as well as for other analyses to ensure freedom from interference for the individual functions
that a set of (software) components create.
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Run-Time Environment
(including OS)

Platform Shaper/Monitor

Hardware
Component

Hardware
Component

. . .

Network

Application Shaper/Monitor

Software
Component

Software
Component

. . .

Multi-Change
Controller

(MCC)

deployment

configuration

metrics

model domain execution domain
at down time at run time

Figure 6 CCC architecture comprising a model domain (red), an execution domain (green) as
well as changing software/hardware components (gray).

Similar to the conventional V-model development process, the MCC gradually refines
the model representation of the new system configuration during the integration process.
This is done based on a cross-layer model that captures relevant viewpoints of the system.
The process generates new configurations and subsequently checks them for requirements
satisfaction. If a new configuration satisfies all requirements and is rated as an improvement
to the current one, it can be deployed into the execution domain.

Verification is separated due to the fact that not all requirements can be systematically
considered during configuration generation. E.g. software response times are hard to optimize
if arbitrary activation patterns are assumed. Consequently, an autonomous configuration
and verification goes beyond a multi-dimensional optimization of requirement satisfaction.

Our execution domain, is based on the open-source Genode OS Framework [7]. This
framework follows the microkernel approach and employs a strict decomposition of the
system on the application level, resulting in a service-oriented architecture in which separate
components implement and provide services for other components. While decomposition can
already deal with liveliness issues [1] that arise in mixed-critical systems, dependencies on
the execution time or response time of other components remain. Note that, however, the
methods developed in the model domain are not restricted to these semantics but can be
adapted to different implementation models.

4.1 The MCC’s cross-layer model
The core concept of the MCC’s model domain is that a) the system is represented on different
layers of abstraction, and b) that models describing different viewpoints of the architecture
are connected through mappings. Consequently, the described mappings between model
artifacts are the implementation of corespondences from the abstract architecture framework.

To perform the integration task in the MCC we define three architecture layers, where
each layer is treated as a graph. The top layer is a function model, that captures functional
aspects implementation independent.

I Definition 1. A function model is a graph FG = (F, ↪→) where the nodes in F describe
the functions, and ↪→ is the set of edges that describe functional interactions.

For instance the function chain depicted in Figure 5 fulfills this definition.
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A further necessity of such a layer lies in the fact that safety requirements are derived from
implementation independent functional descriptions of a system [10, Part1] (cf. section 2).
In order to implement functions, they are decomposed into components. Since during
implementation, mappings of software components to hardware components might already be
fixed, e.g. because code of one software component requires certain peripherals of a hardware
component, they are already part of the component model. In our employed Run Time
Environment (RTE), data exchange from one component to one or more others is performed
through read-only memory (ROM) components. ROMs implement synchronous bulk transfer
of data based on remote procedure calls (RPCs) [7]. If a reader on a remote resource requires
contents of a ROM, proxy ROM components on both ends of the communication are inserted
that provide the required data on the remote side via a network connection. Formally
we define:

I Definition 2. A component model is a graph CG = (C∪CRoms∪Rabs,
w−→ ∪ r−→ ∪ m−→) where

the nodes are the unified set consisting of C that describes the set of software components
implementing functions, CRoms the set of ROM components, and Rabs the set of abstract
resources of the system. The edges either describe a read ( r−→) or write ( w−→) operation
between software components and ROMs, or a mapping ( m−→) of a software component to a
resource (Rabs).

In the course of generating configuration candidates the MCC applies pattern based
transformations on FG to produce a component model instance CG. For the example use-case
the function chain from Figure 5 is mapped to components in Figure 7 (second layer from the
top). The transformation is based on selecting components that implement a function from
a component repository. The repository is populated through formal xml-based descriptions
of components. A more detailed account of this transformation is provided in [28].

In a subsequent step, the MCC’s configuration generation refines the component model
to an instance model, which only contains instantiated components. This process also
allows refining components c ∈ C into sub-components, which again can be linked by ROM
components. The semantics of the resulting instance model are similar to CG, however it
only contains the minimal number of component instantiations under cardinality constraints,
i.e. the maximum number of instantiations of a component on a particular CPU. This also
results in a mapping of components to particular hardware components, i.e. from abstract
resources to individual CPUs. The instance model of the use-case is depicted as the third
layer from the top in Figure 7. Yet note, that some components are shown as composites
(light blue) due to space limitations.

The knowledge of the concrete instance model together with the knowledge about the
communication mechanisms allows the MCC to derive and map additional layers that
model certain aspects of the system in order to represent particular viewpoints such as
safety, availability or security. The requirements for these viewpoints – e.g. a safety-level
requirement or a real-time constraint – are collected for each component in a so-called
contracting language, which serves as an input to the MCC. Viewpoint-specific analyses are
implemented as separate entities in the MCC, e.g. in order to resolve run-time dependencies
between software components as presented in [27].

4.2 Analysis and Verification by the MCC
For this paper we restrict the scope to outlining how timing and safety requirements are
verified by the MCC. W.r.t. safety we further limit ourselves to freedom from timing
interference. For the external behavior of the vehicle, timing properties are crucial when it
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comes to vehicle control. As unaccounted delays can cause degraded control performance
or even instable controllers, the adherence to timing constraints in the timing domain must
be ensured.

In order to reason about end-to-end function timing, a model describing the timing
behaviour is necessary. The transformation of the component-based software structure of the
Genode OS Framework together with the RPC semantic used by the ROM components to a
timing model is described in detail in [26]. The transformation result explicitly expresses
effects such as blocking and priority inheritance, while preserving the event chains. [26] also
describes how response-time bounds can be computed over a chain of components. Possible
alternatives to compute response-time bounds is e.g. MAST [2].

However, if hardware resources are shared with components from other cause effect chains,
possibly even components with a different criticality than the chain under analysis, only
verifying response-time bounds is insufficient. In the use-case depicted in Figure 7 this is
the case for the shared vehicle network. Following a conservative design strategy, a designer
would have to assume that by sharing the resource the components are mutually dependent
and that any dependency leads to interference, i.e. failures causing malfunctioning behavior.
Consequently, absence or strict bounds on the dependencies have to be proven in order to
argue freedom from interference.

A timing model for the Ethernet network can be derived from the knowledge of: (i) how
traffic is routed through the network, (ii) which components inject Ethernet frames into the
network at which rate, and (iii) what the maximum payload per frame is.

How traffic is routed is known, as this is under control of the MCC which also deploys
the network configuration. Similarly, the components which inject frames are already known
in the component model. The rate at which they emit a frame i into the network can
be abstracted by standard event models, δ+

i , δ
−
i . These are event model abstractions of

concrete execution traces that capture the maximum/minimum time interval between n

consecutive activation events. δ+
i and δ−

i for a frame i can be derived from the results of
the timing analysis of the component chains on the computation resources with the analysis
described in [26]. Only the maximum payload per frame must be extracted from contracting
information, which must be fed into the MCC. Based on this information a timing model
for the Ethernet network as e.g. described in [31] can be derived. It is formally based on
Compositional Performance Analysis (CPA) [22]. In this model each task τi represents a
frame that is competing for arbitration on a switch port, i.e. the switch ports are the resources.
The payload of each frame is captured by bounds on its worst-case execution time (WCET)
C +

i /best-case execution time (BCET) C −
i on the wire including all protocol overhead. Chains

of dependent tasks on different resources, i.e. Ethernet switch ports, then model a data
stream. This model provides the basis to derive the timing-dependency graph (TDG) for the
network and the components injecting the traffic as e.g. described by [15].

I Definition 3. A Timing Dependence Graph is a graph G = (V, E) consisting of nodes
vi, vj ∈ V and edges ek ∈ E where each edge ek = (vi, vj) describes that vj is dependent
on vi. Each node vi either describes a task parameter p ∈ P = {C +,C −, δ+

in, δ
−
in} or an

(intermediate) timing analysis result r ∈ R = {w+,w−, δ+
out, δ

−
out,R+,R−, qmax}.

To transform the timing model’s parameter and results into a TDG, two conversion
functions are necessary to populate the edge set of the TDG G.

I Definition 4. The parameter conversion function is a function

ϑp : T × {C +,C −, δ+
in, δ

−
in} 7→ V (1)
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that maps each input parameter type p ∈ P for a task τi ∈ T to a node v = ϑp(τi, p) with
v ∈ V in the TDG, and the result conversion function:

ϑr : T × {w+,w−, δ+
out, δ

−
out,R+,R−, qmax} 7→ V (2)

that maps each result type r ∈ R of a task τi ∈ T to a node v = ϑr(τi, r) with v ∈ V in
the TDG.

This conversion function is analysis-specific, i.e. how CPA’s busy-window (w+/w−) and
output event models (δ−

out/δ
+
out) are computed. In general, a TDG is constructed in four

steps: First, for each task in the task graph, the timing dependency graph is populated
with the nodes describing its parameters. In the second step, all explicit dependencies
between tasks on different resources are added as edges in the graph. This happens for two
tasks τa and τb by inserting two edges ek = (vi, vj) and el = (vm, vn) into the dependency
graph in order to capture the dependency between their output and input event model
(δ−

a,out/δ
+
a,out and δ−

b,in/δ
+
b,in). More precisely, vi = ϑr(τa, δ

−
out) and vj = ϑp(τb, δ

−
in) as well as

vm = ϑr(τa, δ
+
out) and vn = ϑp(τb, δ

+
in). The third step then deals with the dependencies on

each resource. It adds dependency edges according to the construction of the busy window
(w+/w−), and the computation of response times (R+/R−). This implies that, for each
scheduler, a specific transformation is necessary. Consequently, the third step must be carried
out for each resource individually, respecting its scheduling analysis. Dependent tasks on
a resource can either be treated as in step two following the generalized CPA theory, or
be treated through the local resource analysis step, as e.g. done in [25] who considers task
chains under static-priority preemptive (SPP) scheduling. The fourth step then deals with
capturing the dependencies that influence the computation of the output event model, based
on the resource-analysis results and the applied propagation strategy to bound them. W.l.g.
we assume busy-window propagation as described by Theorems 1–3 in [29].

Dependencies are consequently expressed as edges between timing model parameters in
the TDG. The TDG allows identifying timing dependencies that data which is transmitted
over the network experiences.

Since the functional model FG has a correspondence rule with the safety viewpoint (cf.
Figure 2), we can trace safety requirements from there over FG to individual task chains
and thus to the timing model and the TDG. [16] treats safety requirements on timing
requirements as so called confidence requirements. The confidence requirement expresses
how well all timing parameters to compute a timing bound must be known, in order to
utilize the computed bound as proof that the timing requirement and consequently the safety
requirement is fulfilled.

The input description of components on the other hand supplies information how accurate
timing parameters like WCET/BCET, e.g. payload sizes, are known. By propagating
confidence values through the TDG of the system in a flow like manner where the lowest
possible confidence is assigned to a TDG node, also every timing requirement in the TDG
receives a confidence value. In cases where a mismatch between the assigned confidence
and the confidence requirement exists, the MCC either must reject such a configuration or
instantiate enforcement mechanisms to guarantee the expected model behaviour at run-time.

4.3 Monitoring and Enforcement
If the timely transmission of this data is safety relevant and dependent on parameters
with lower confidence than its requirement, the MCC must take actions to bound these
dependencies.
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Several authors, e.g. [17, 9, 18] have proposed monitoring and enforcement techniques to
conform run-time inputs to model behavior. These techniques can also be used to shape the
injected traffic into the network. The MCC can deploy such mechanisms into the execution
domain (cf. Figure 6). They render a dependency innocuous since they increase the confidence
into a parameter to the confidence of the enforcement mechanism, which is typically high or
the highest in the system. This is due to the fact that the monitors are reliable middleware
components. In order to prevent overly excessive monitoring and enforcement the MCC
coordinates the model enforcement strategy. Two possible strategies for efficient placement of
monitors that perform enforcement are described by [16], a greedy input monitor placement
and a min-cut strategy. For the MCC the greedy input placement is more suitable as it
avoids complex network management where monitors would have to be implemented in the
switches of the Ethernet network.

Through this enforcement, the network is guaranteed to operate within the bounds of
the timing analysis. A reevaluation of the confidence values after placing enforcing monitors
shows that confidence requirements are now fulfilled. Together with the timing analysis
this is a sufficient proof of freedom from timing interference ([10, clause 3.75,part1]). In the
case study depicted in Figure 7 the MCC performs this for the data that is transferred over
the shared Ethernet network, i.e. between the Sensor Data Preprocessing and the Static
Environment Modelling components, as well as for the reference trajectory sent to the vehicle
control component which interfaces with the legacy control subsystem of the vehicle.

5 Conclusion

In this paper we have presented a design and integration flow that respects safety aspects
of SAE level 3+ vehicle functions. We argued that the system emergent property of safety
requires traceability in a design. To ensure this traceability during integration, we presented
the MCC based integration flow in section 4, where traceability is inherent due to the
automated model-based integration flow. This is mainly achievable due to the cross-layer
model as an implementation of multiviewpoint modelling and the dependency analysis that
is performed based on the cross-layer model. In section 4 we have particularly shown how
this is handled for complex timing dependencies. However, the derivation and formulation
of functional safety requirements for the MCC are still manual. It is our vision, to further
automize the coupling between behavioral and functional safety (cf. Figure 2), i.e. integrating
this aspecet in future versions of the MCC, as it is currently a manual process.
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Abstract
Autonomous vehicles (AVs) are coming to our streets. Due to the presence of highly complex
software systems in AVs, there is a need for a new hazard analysis technique to meet stringent
safety standards. System Theoretic Process Analysis (STPA), based on Systems Theoretic Accident
Modeling and Processes (STAMP), is a powerful tool that can identify, define, analyze and mitigate
hazards from the earliest conceptual stage deployment to the operation of a system. Applying
STPA to autonomous vehicles demonstrates STPA's applicability to preliminary hazard analysis,
alternative available, developmental tests, organizational design, and functional design of each unique
safety operation.

This paper describes the STPA process used to generate system design requirements for an
Autonomous Emergency Braking (AEB) system using a top-down analysis approach to system safety.
The paper makes the following contributions to practicing STPA for safety and security:

1. It describes the incorporation of safety and security analysis in one process and discusses the
benefits of this;

2. It provides an improved, structural approach for scenario analysis, concentrating on safety and
security;

3. It demonstrates the utility of STPA for gap analysis of existing designs in the automotive domain;

4. It provides lessons learned throughout the process of applying STPA and STPA-Sec 1.
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1 Introduction

AV functionality is rapidly adopted through ADAS technology today. Combining this rate of
adoption with the complexity of the autonomous vehicle’s system architecture and its use of
complex SoC, it is essential for Tier-12 and semiconductor suppliers to be diligent in their
collaborative effort to design for functional safety and for the mitigation of cybersecurity
threats impacting functional safety.

STPA is a new hazard analysis technique and a new model of accident causation, based
on systems theory rather than reliability theory [4]. STPA has the same goals as any other
hazard analysis technique, that is, to recognize scenarios leading to identified hazards so that
they can be eliminated or controlled. STPA, however, has an innovative theoretical basis
or accident causality model. STPA is designed to address increasingly common component
interaction accidents, along with component failure accidents, which can result from design
flaws or unsafe interactions among non-failing (operational) components [3]. In fact, the
causes identified using STPA are a superset of those identified by other techniques [4].

This paper provides an example of applying STPA to an AEB system primarily designed
for functional safety as well as to mitigate risks associated with cybersecurity vulnerabilities.
In this, we have combined functional safety analysis with safety-relevant security analysis.

A methodology is defined to analyze functional safety and cybersecurity, first for the
AEB system, and then for the interactions, searching specifically for security vulnerabilities
that might contribute to safety hazards.

The next step in the analysis is the identification of accidents and unacceptable losses
along with accident hazards and unacceptable loss hazards. We define accident hazards and
unacceptable loss hazards, keeping in mind that the implementation of the AEB system is
on an L4 AV. Because of the level of autonomy of the vehicle, it is safe to assume there
is no driver interaction for the control of the vehicle or the AEB system. In this analysis,
the system hazards lead to high-level system constraints and further refinement in STPA
Steps 1 and 2.

As we move forward in the analysis, while applying the STPA process, additional
dependencies are going to be identified. Knowing this, we can define a basic initial high-level
control structure 3 which will be updated in later steps of the analysis. The final control
diagram 4 captures the dependencies from both a safety and cybersecurity perspective.

From the high-level control diagram, the next step is to identify CAs (Control Actions).
Evaluation of potential hazardous sources is shown in the refined control diagram, considering
all of the diagram’s inputs and outputs. We also considered component failure, but the
analysis is not limited to this. Instead, it presents all aspects of the system’s performance,
including cybersecurity features negatively impacting functional safety. From this analysis,
we are defining a set of causal factors and causal accident scenarios.

The novelty of this paper lies in the addition of a more systematic approach to the con-
ventional STPA approach. Identifying the scenarios by analyzing the components associated
with the control flow, and the causal factors corresponding to each scenario, constitutes the
next step. From the causal factors, we are refining the safety constraints so that they can
produce technical safety requirements (TSRs). Comparison of the TSRs against an existing

2 Companies which supply components directly to the original equipment manufacturer (OEM), that set
up the chain.

3 See Figure 3.
4 See Figure 4.
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autonomous vehicle design (the autonomy vehicles designed as ASIL-D L4 fail-operational
systems) is carried out to identify design gaps for future improvement. This gap analysis on
an existing system demonstrates how to make safety and security design changes part of a
continuous improvement that must be at the heart of every safety culture.

2 How the analysis started

We started by reviewing an existing autonomous vehicle in need of formal safety analysis.
The initial plan was to use a conventional Hazards Analysis and Risk Assessment (HARA)
analysis because the group already had experience using this method. But then we learned
about STPA and decided to assess its suitability for a system of this scale. We had read
reports of its application to much larger systems [3] and wanted to determine whether it
would scale to a single, embedded system. Using this approach, we can generate high-level
safety constraints in the early stages of development. These constraints can then be tailored
to generate detailed safety requirements on individual components of the analyzed system[8].

To avoid biasing our results, we established that the safety analysis should be as general
as possible without being directly involved with the current implementation . Thus the result
of this analysis was a list of technical safety requirements which we could use to perform an
analysis on the current physical architecture and find possible security and safety issues.

We needed to select vehicle functionalities that played an important role in vehicle and
occupant safety. The vehicle component also had to be a part of a well-contained function to
complete the analysis in the time span available. For these reasons, we selected the L4 AEB
function for our analysis.

2.1 The AEB subsystem

An AEB system of L4 AV aid in avoiding accidents by identifying potential collisions with the
help of a perception system (LIDAR, RADAR, stereo vision, etc.), computing localization,
path planning and determining object trajectory. If a collision is unavoidable, these systems
prepare the vehicle to minimize the impact by lowering its speed. It is important to note
that the AEB itself is independent of the normal braking system of the vehicle. Once the
AEB has identified a potential threat, it takes control of the braking system to mitigate
the threat. This functionality has a significant effect on the safety of the vehicle and its
occupants, making it an excellent vehicle subsystem for our analysis.

When looking at the distances between the vehicles as shown in Figure 1, we can establish
safety thresholds. The first threshold is the warning distance that notifies the AV when
the proximity between ego vehicle and the vehicle in front is becoming dangerous; it is
recommended for the ego vehicle to start slowing down and increasing the distance between
the vehicles. At this distance, the probability of a collision is low. The next threshold is
the normal braking limit. At this distance, the normal braking system of the vehicle starts
slowing down the vehicle. If the braking system is unable to slow down the vehicle and
increase distance, the vehicle will reach the Collision Imminent Braking distance (CIBd) and
will activate the AEB system. At this point the collision probability is high, and the AEB
needs to take immediate action. The AEB’s objective is to stop or slow down the vehicle
before it reaches the Minimum Safe Distance (MSD). The MSD threshold is the only fixed
value amongst all the thresholds. The rest of the values are dependent on the road conditions
(weather and road surface) and the speed of the vehicle.
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Figure 1 Threshold distances for the braking system.

3 Methodology

The methodology used in the current approach combines safety and security analysis. This
approach considers the functional safety and the security-affecting safety. Figure 2 presents
the methodology we are using for the STPA analysis[2]:

1. Define analysis scope
a. Accidents
b. Hazards
c. High-level constraints

2. Develop control structure diagram
3. Identify unsafe control actions

a. Unsafe control actions
b. Corresponding safety constraints

4. Identify the occurrence of unsafe control actions
a. Hierarchical control structure with the process model
b. Causal factors, scenarios, and refined safety constraints
c. Technical safety constraints

The elements 1(c), 3(b), and 4(c) constitute the STPA analysis report which defines the
safety constraints for a safer and more secure system.

The analysis considers a detailed analysis of various blocks of Figure 2. The constituents
of the multiple blocks are referred with an identifier as the various parts of each block, to
serve as a starting ground for the next block.
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Figure 2 STPA methodology.

3.1 Scope
The methodology begins by defining the scope of the analysis. For the system under
consideration, the scope is as follows: “The analysis presents functional safety analysis for
AEB for an AV using vehicle state and environmental data analysis to contribute to the
safety of the passengers and environment.”

3.1.1 Assumptions
After defining the scope, the next step is to define certain conditions that serve as the basis
for analysis development. Thus, the analysis considers certain assumptions related to the
working conditions. These conditions are also helpful in setting the limits to the analysis.
Although, the authors recognize that it would be beneficial to further analyze the assumptions
from the perspective of an expanded scope. Here are a couple of examples:5:

Assumption 1: AEB functions for collisions from all angles, not just traditional forward-
collisions ( no lateral maneuvering or acceleration commanded, considering only the brake
actuation).

Assumption 5: Path prediction of surrounding mobile objects is available to the AEB system.

There are certain logical conditions behind including these assumptions in the analysis.
General cases assume collision primarily from the front. This analysis, however, also examines
projected paths of side objects relative to the AV projected path. Hence, the Assumption 1.

5 These are some of the assumptions we are referring here from the analysis. To have consistency with
the report [6], we are using the same identifiers.
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The analysis considers an assumption about the availability of data from the surroundings,
such as for calculating the collision imminent braking distance and path prediction from the
surrounding mobile objects. Hence, Assumption 5.

Some of the assumptions also consider certain conditions outside the scope of the analysis.
For example:

The variation in braking performance based on the mechanical condition of AV tires,
The sensor performance can be negatively impacted by maintenance or improper care,
No manufacturing defects and
All the components are correctly working as they are quality checked and properly
maintained.

3.1.2 Accidents
An accident is an undesired or unplanned event that results in the loss of a human life,
human injury, property damage, etc. The accidents considered in the analysis are:

A1: The AV collides with a mobile object.
A2: The AV collides with an immobile object.
A3: The AV passengers injured without collision.

In defining the accidents, we first discussed various scenarios that the AV can encounter
on the road. Next, we grouped the elements of the scenarios into different categories: vehicles,
pedestrians, cyclists, stationary objects, etc. As the analysis was evolving, these subsets
posed certain problems; for example, a dustbin could start off as a stationary object, but
due to the wind, could start rolling on the road and become non-stationary. We decided that
instead of defining it by its current state of activity, we can describe it with its innate ability.
So after refinement we devised two subsets: mobile and immobile. For example: if a mailbox
were on an HD map, it would be an immobile object. If that same mailbox were blown from
its bolts by high wind and became non-stationary, it would be a mobile object requiring
identification of the AD sensor system because it is no longer in its original position as
shown in the HD map. Here, “mobile” is anything that can move, irrespective of the external
influence. Thus A1 and A2 are considered as two potential accidents for the analysis. Also,
as in the definition of accident, anything that causes harm to human occupants needs to be
considered and is stated as A3. While sitting inside the AV, under certain circumstances
such as sudden braking (braking deceleration exceeds the safety physics to passengers) can
harm the occupants even when there is no collision.

The next step in the analysis was to define system-level hazards. These are the system
states or set of conditions, which together with a particular set of worst-case environmental
conditions, would probably lead to an accident.

3.1.3 System level hazards
System level hazards can lead to accidents considered in the analysis. Some of the hazards
are listed below:

AH1: AV does not maintain Minimum Safe Distance (MSD) from a Forward Mobile Object
(FMO).

AH2: AV does not maintain MSD from Prohibited Area (PA).
AH3: AV occupants exposed to unhealthy g-forces in vehicle exceeding the safety threshold

of AV.
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Maintaining a safe distance from a vehicle in front is a necessary condition for AEB. If
the vehicle is unable to keep MSD from a forward mobile object, then this could be the
potential cause of an accident and thus become a hazard that could lead to an accident. The
condition for the MSD from an FMO is a prerequisite for the safety of the AV. There are
certain areas which have restricted access to traffic. The AVs should ensure that they do not
enter such areas and this has been considered – in the analysis as AH2. PA can mean any
area – military field, recent accident site, landslide site, etc., – AV’s design is not suitable for
L4 functionality in a PA. The thresholds predefined in the system related to BFC (Braking
Force Command) shall always be complied with because they have the potential to harm
the occupants if they exceed a certain threshold level and thus constitute a hazard for the
analysis (AH3).

After the identification of hazards, the next step was to describe high-level constraints.
These prevent the accident from occurring. Thus, HLCs (High-Level Constraints) provide
the set of requirements with which the system shall comply to be functionally safe. These
are defined consistently to have traceability to the corresponding hazards. Using a consistent
structure can be helpful for the automation of the process. Although this analysis doesn’t
automate the process, consistency in the structure helped in having a symmetric structure.

During this analysis, we were struggling with the question of whether we should generate
two different reports relating to safety and security or whether they should be merged into
one. We realized that safety and security are closely interlinked and therefore merged them
into one single analysis.

For example: If the AV speed sensor information is spoofed (security threat) then it can
lead to a hazardous scenario ultimately leading to an accident (safety threat).

If, due to delayed EPS sensor information (safety threat), BFC fails to set the braking
force = 0% even after the removal of earlier hazard, this situation could lead to an un-
necessary halt, and thus personal identifiable information of occupants could be inferred
(security threat).

3.1.4 High-level safety constraints

High-level safety constraints define the initial set of safety requirements for the system.

3.2 STPA Step 1

The identification of unsafe control actions and the corresponding safety constraints are
discussed in this section.

3.2.1 Safety control structure

The control structure is a preliminary process model for the system. It is a functional
decomposition of the system. While working on the control structure, we faced certain
challenges such as level of detail to be considered. For the sake of a systematic and structured
approach, a control structure is the most crucial thing for the safety analysis . We should
only consider the blocks responsible for significant functionality such as controller, actuator,
process, and feedback. The structure is only a generic one and does not consider the level
of granularity. It gives us an overview of how the execution of instruction is taking place
without considering the complete internal functionality of the various components involved.
Here follows the description of various blocks within the analysis:
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Controller: In the system under analysis, the AEB controller is responsible for generating
and controlling the BFC.

Actuator: In this system, brakes are the actuator responsible for implementing the BFCs.
Controlled process: The AEB controls the braking of the vehicle.
Feedback: The feedback from the vehicle state and the surrounding environment through

the sensors is collected in the state estimator, and thus constitutes the feedback network.

The control structure for the system under consideration is as shown in the Figure 3.

AEB Controller

Brakes

Vehicle

Environment

State Estimator

Vehicle Sensors

AD Sensors

1

2 3

4

5

6

Color Coding:

Controller

Actuator

Vehicle

Sensors

External Influence

Process Model

Figure 3 Control loop structure.

By following the STPA process diligently, through detailed use of refined control diagrams,
we have a reference to verify that the hazards identification is adequate, and through continued
refinement, a benchmark for the design to support continuous improvement over the life
of the item. During the analysis, we struggled with the level of detail to be present in the
control loop diagram. After creating several revisions of the control loop, we concluded that
it should be generic in form and that a further level of detail would not add value to the
analysis. For the Control Loop, it shall be in basic generic form and the later stages shall
consider the details.

3.2.2 Unsafe control actions
This step performs the identification of the unsafe control actions each component can
create which helps in refining the safety requirements and constraints of the system. It will
determine the causes of these unsafe control actions. The UCAs are defined using the control
actions that can lead to accidents. So, this analysis is considering two control actions based
on the control diagram. Here we have taken the BFC (Braking Force Command) coming
from the controller; it is only the command and not the force. Two states considered in
the analysis are: BFC disengaged (0%), and BFC engaged (modulated engagement ranging
from 0% – 100%). After the identification of control actions, the next step is to identify the
potential causes of unsafe control.
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The four ways a controller can provide unsafe control are the following [3]:

1. A control action required for safety is not provided.
2. An unsafe control action is provided.
3. A potentially safe control action is provided too late or too early (at the wrong time) or

in the wrong sequence.
4. A control action required for safety is stopped too soon or applied for too long.
We considered these four categories as a basis for identification of the control table entries.
Some of the unsafe control actions considered are listed here:

UCA 1: AEB does not provide BFC when AV is at a closer distance than the CIBd.
UCA 3: AEB does not provide required braking force value when AV is at a closer distance

than the CIBd.

If BFC is not applied even when the AV is within the CIBd from an object, then this
can be a potential unsafe control action, which could lead to an accident. Hence, UCA 1
belongs to the category of “control action required, but not provided.” Another UCA is
when the BFC is applied, but the braking force < RDR (Required Deceleration Rate) can
also lead to an accident, and is therefore an unsafe control action. Similarly, other UCAs
are considered, based upon the time of application of BFC and the total time span of BFC
application. Thus, the UCA table is formed.

3.2.3 Safety constraints
The UCAs help to find reasons behind unsafe actions and guide design engineers to eliminate
or control them. We referred to table 1 for UCAs, and SCs sets the requirements for the
systems. The refined safety constraints are defined in a consistent language as follows:

SC 1: AEB shall provide BFC when AV is at a closer distance than the CIBd.
SC 3: AEB shall provide required braking force value when AV is at a closer distance than

the CIBd.

3.3 STPA Step 2
This section identifies the reasons behind the unsafe control actions.

3.3.1 Causal factors and causal accident scenarios
After the identification of the unsafe control actions, we followed STPA Step 2 (Figure 2)
to identify the potential causes of unsafe control actions, to understand their presence and
how to prevent their occurrence [9]. However, accidents can still occur even without unsafe
control actions if, for example, correct and safe control actions are provided, but not executed
by other components in the system. The identification of the causal factors can identify a
violation of safety constraints despite safe control actions; this is important.

To study the scenarios and causal factors corresponding to each UCA, we made a
structured approach:
1. Identify scenarios using UCAs.
2. Identify causal factors corresponding to each scenario by analysing the components

associated with the control flow diagram.
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Figure 4 Control loop structure.

Table 1 Table for identification of causal factors.

Blocks Actions Reasons
Sensors, Missing information Due to spoofing,
Controller, Inadequate information component failure,
Actuator, Incorrect information electrical requirements not met,
Controlled
process

Delayed information communication failure

We studied the STPA problem as a whole and took parts from the methods available
from various researchers in the field [4], [9]. Then we created a hybrid to perform the
required analysis.

For example: For the scenario table we tried to use the conventional STPA approach,
but found that for our analysis the basic scenarios are sufficient and other detailed scenarios
(scenarios arising from feedback issues, etc.) merely lead to redundant scenarios. We created
twelve scenarios, but when we started defining the causal factors after three scenarios, they
began to repeat and became redundant for our purposes. So we removed the detailed
scenarios and analyzed only basic, generic scenarios.

Table 1 provides a systematic and structured approach to analyzing the causal factors. For
each of the four blocks in the control structure, we considered four actions: the information
is missing, inadequate, incorrect and delayed. The reasons behind these unsafe actions could
be spoofing, component failure, electrical requirements not met or communication failure.
Considering these actions and the reasons behind them, the causal factors can be identified.
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3.3.2 Rationale table
The analysis uses a supporting table for the causal factor entries. It verifies the table entries
and explains the thought process behind the causal factors. It can serve as a reference table
for refined safety constraints and technical safety requirement tables.

Rationale for CF1.1a (Causal Factors). If the OPP (Object Predicted Path) is calculated
incorrectly, there is the potential for the actual object path to be closer to the AV path
than calculated. In this case, the controller will not send the BFC command, even though
the autonomous vehicle’s predicted path has reached the minimum safe distance from the
object’s predicted path. An image processing performance fault could prevent the correct
calculation required for the identification of an object that is within the MSD of AV.

It was recognized and accepted that some rationale repeated itself. When this occurred, we
reviewed the causal factor table for correctness and appropriateness, and if it still provided a
distinctly different CF (Causal Factor), then the repeated rationale conditions were accepted.
The repeated nature is suitable for automation and desirable, as long as it is applied to each
unique and new CF.

3.3.3 Refined safety constraints and Technical safety requirements
After the identification of reasons behind the UCAs, the constraints on the system were
redefined to eliminate or avoid the causes behind the UCAs. These new safety constraints
created from the causal factors contained the rationale tables.

Technical safety requirements: This step is responsible for the implementation of refined
safety constraints on the system. These represent the technical requirements for a safe
system. We used these TSRs to make the gap analysis for the already existing architecture
and modified the design of the system.

4 Results: Lessons learned

This section discusses the contribution of this work to making an adhoc STPA more systematic.
During the analysis we learned lessons, which will be useful in structuring future analysis
systematically. The lessons are summarised below:

I Lesson Learned 1. We realized that certain factors could act as a basis for the analysis
development which could have an impact on the definition of the safety fundamentals. The
first priority is to define boundaries which are defined as the assumptions for the analysis.

I Lesson Learned 2. We realized that the identification of accidents and hazards lacks a
systematic approach. SOTIF (Safety Of The Intended Function) details from current PAS
(Public Available Specification) can be useful for better structuring. We tried to make the
identification of accidents and hazards systematic by considering the various scenarios in
a symmetric way. The purpose of such a systematic approach is to get rid of the current
brainstorming process and in its place, to establish a concrete, automatic method of scenario
identification for the analysis.

I Lesson Learned 3. From our analysis we realized that the control diagram must represent
the basic blocks with generic functionalities and terms. The control diagram is essential and
must represent a complete overview of the function under consideration. During the analysis,
the control loop serves a reference block and the representation of the control structure keeps
the analysis streamlined.
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I Lesson Learned 4. We have created one single report considering safety and security
hazards that threaten safety. Because the safety and security issues are often interlinked,
one such report, addressing both problems, is an efficient way to analyze them.

I Lesson Learned 5. The novelty of our current work is the systematic analysis of causal
factors. The approach presented in Table 1 avoids unnecessary mental exercise. Here we
predefined certain actions and the possible reasons for those actions. By correlating actions
and reasons, using permutation and combination, the causal factors are devised. Since one of
our motives is to automate this process using this constructive approach, we can automate
the causal factor generation as well.

I Lesson Learned 6. Making a rationale table for each causal factor table is undoubtedly
useful as it lists the logic behind the causal factors and serves as a reference for further steps.
The cause-effect relationship of the unsafe actions is exploited in the rationale table. The
use of rationale tables helps to identify flaws in the original causal factors and thus works as
a checkpoint for those factors.

I Lesson Learned 7. While using this analysis for finding the gaps in the existing archi-
tecture we realized that any architecture could make use of it. We performed the analysis
independently of the current design and later compared the technical safety requirements
with the existing design. By using a generic rather than the specific approach we found
that more extensive applications are possible. The analysis can be used for evaluating any
existing AEB system. The gaps provided us the with the list of changes that the current
architecture might incorporate in order to be safer and more secure.

I Lesson Learned 8. Another important lesson learned is about the residual risk inherent
in any system. Residual risk refers to some risks which are present but acceptable, in our
system. The assumptions made in the analysis are part of the residual risk. The integration
of the outcome of this analysis with ISO standard is also an area where we should consider
the presence of residual risk which is an integral part of the safety analysis and should be
taken into account while doing the analysis.

5 Related work

STPA proved to be a more powerful and useful technique for evaluating safety-critical
systems in the automotive domain by identifying the potential accident scenarios that include
the entire accident process, including design errors, software flaws, component interaction
accidents and human decision-making errors contributing to accidents [1].

Both ISO 26262 and STPA are based on a systems engineering framework in which a
system is considered to be more than merely the sum of its parts [5]. The development and
top-down analysis are common to both. While ISO 26262 [7] emphasizes the importance
of considering the context of a system in achieving safety (including the role of safety
management and safety culture), there seems to be no consensus on whether ISO 26262
considers the context to be a part of the hazard analysis of an item. On the other hand,
STPA includes all relevant aspects of the system’s environment, including the driver.

6 Conclusions

In the safety analysis, the STPA process has been used to generate system design requirements
for an Automatic Emergency Brake (AEB) using a top-down analysis approach to system
safety. The STPA analysis provides an improved structured approach for scenario analysis,
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concentrating on safety and security. We learned lessons while applying the STPA process.
The STPA has benefits, but needs to be integrated with the ISO to produce more efficient
results. Doing Functional safety analysis and cyber security analysis in parallel is efficient
and effective, but tool support is required. STPA is a structured and systematic approach
that reduces mental exercise.

7 Future work

The next step can be a comparative study, comparing the analysis with standard ISO. Further,
the analysis can potentially be expanded beyond the AEB module to cover the complete
functionality of AVs.
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Abstract
Self-awareness holds the promise of better decision making based on a comprehensive assessment of a
system’s own situation. Therefore it has been studied for more than ten years in a range of settings
and applications. However, in the literature the term has been used in a variety of meanings and
today there is no consensus on what features and properties it should include. In fact, researchers
disagree on the relative benefits of a self-aware system compared to one that is very similar but
lacks self-awareness.

We sketch a formal model, and thus a formal definition, of self-awareness. The model is based
on dynamic dataflow semantics and includes self-assessment, a simulation and an abstraction as
facilitating techniques, which are modeled by spawning new dataflow actors in the system. Most
importantly, it has a method to focus on any of its parts to make it a subject of analysis by applying
abstraction, self-assessment and simulation. In particular, it can apply this process to itself, which
we call recursive self-reflection. There is no arbitrary limit to this self-scrutiny except resource
constraints.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems; Computer systems organization → Self-organizing autonomic computing

Keywords and phrases Cyber-physical systems, self-aware systems, self-reflection, self-assessment

Digital Object Identifier 10.4230/OASIcs.ASD.2019.6

1 Introduction

When the autonomous system itself and its environment are exceedingly complex, dynamic
and unpredictable, a comprehensive and correct assessment of the system’s situation is a
prerequisite for good decisions. This insight has led to a proliferation of research that approach
the challenges from various angles and run under names like autonomic computing [29,
32] and organic computing [23]. Self-awareness has become associated with many self-*
properties including self-monitoring and self-adaptation and it has been identified as key
element for designing complex computer systems [1] and cyber-physical systems [3]. The
challenge has been picked up by funding organizations such as DARPA [25] and the European
Commission [4] who have allocated significant funds for this research. These efforts have
resulted in many conference papers, journal articles and four books [11,18,26,32]. Several
surveys have systematically reviewed the research landscape [9, 16,19,27].

While the term self-awareness is used in the literature in different ways and various
definitions have been provided, researchers at a 2015 Dagstuhl Seminar have proposed a
comprehensive working definition, as summarized by Kounev et al. [13], which is worth
quoting in full:

Self-awareness, in this context, is defined by the combination of three properties that
IT systems and services should possess:
1. Self-reflective: i) aware of their software architecture, execution environment and the

hardware infrastructure on which they are running, ii) aware of their operational
goals in terms of QoS requirements, service-level agreements (SLAs) and cost-
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and energy-efficiency targets, iii) aware of dynamic changes in the above during
operation,

2. Self-predictive: able to predict the effect of dynamic changes (e.g., changing service
workloads or QoS requirements) as well as predict the effect of possible adaptation
actions (e.g., changing service deployment and/or resource allocations),

3. Self-adaptive: proactively adapting as the environment evolves in order to ensure
that their QoS requirements and respective SLAs are continuously satisfied while
at the same time operating costs and energy-efficiency are optimized.

Two reference architectures have been developed where these principles are at least
partially implemented, the EPiCS architecture [17,18] and the Learn-Reason-Act loop [12].

Although these and similar definitions are useful, they are still vague and imprecise. For
instance the definition above repeatedly uses the term “aware” in defining self-awareness and
thus does not explain what is meant by awareness. What would be the difference between
being “aware of operational goals in terms of QoS requirements” and storing a list of QoS
requirements and using them during operation? Does “aware of dynamic changes” mean that
some variables and models are updated and then the system continues to use the new values,
or does it mean that the system realizes that a change has happened and ponders its cause
and its implications?

Not least because much of the research on self-awareness is inspired by psychology (e.g.
see [16]) the term “self-awareness” seems to suggest more than a set of variables and models
that represent some features of the system, that it can access during operation. In particular,
the definition above, and all other definitions presented in the computing literature, leave it
open if the self-models are self-created based on self-observations or if the self-models are
provided by the designer. If the latter is the case, would the self-model keep track if the
reality changes? Also, should the system be aware of its self-awareness? And should this
awareness be recursive without bounds? Should the self-awareness be self-adaptive as the
environment, the system, and the self-model changes, as tasks become more or less urgent,
as resources become available or are withdrawn?

Different answers to these questions can lead to technically useful solutions and there
seems to be a spectrum between the point where everything is defined at design time and
the point where everything is self-constructed at run-time. Self-models, self-adaptation and
self-awareness push towards run-time, but how far should we go and how do we determine
the trade-offs?

Addressing these questions will require to be precise with terminology and to define
and model the involved concepts explicitly and in stringent formal terms. The following
is an attempt of a formal model of self-awareness but it should not be taken as the final
solution but rather as a first step. At several points we are less precise and less complete
than we would like to be, partially due to limited space but mostly because of an incomplete
understanding of what would be the best choices that lead to a sound basis for modeling,
design, exploration and verification. The hope is that a precise formalism will eventually
facilitate a design methodology and effective exploration of the design choices in the space of
self-aware systems.

2 Notation

We use dynamic dataflow based on static dataflow process network models such as [7, 8, 14].
But we generalize these models to allow for dynamic changes in the network structure which
results in dynamic dataflow not unlike the dynamic model proposed by Grosu and Stølen [5,6].
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The processes in the network are called actors and they communicate with each other
through signals.

2.1 Signals

Actors communicate with each other by writing to and reading from signals. Signals may
be produced by sensors or may be the control inputs for actuators. The environment of an
actor can also be modeled as an actor; hence, the actors communicate with each other and
with the environment by means of signals.

Given is a set of values V , which represents the data communicated over the signals.
Events, which are the basic elements of signals, are or contain values. Signals are sequences
of events. Sequences are ordered and we use subscripts as in ei to denote the ith event in a
signal. E.g. a signal may be written as 〈e0, e1, e2〉. In general signals can be finite or infinite
sequences of events and S is the set of all signals.

We assume an untimed model of computation [8, 15] and signals encode only a partially
ordered time, meaning that events within one signal represent a relative ordering in time but
events in different signals are not directly related in time. I.e. an event e appearing before
another event e′ in the same signal occurs before e′; but we do not know which of two events
in different signals occur earlier or later.

We use angle brackets, “〈” and “〉”, to denote ordered sets or sequences of events, but
also for sequences of signals if we impose an order on a set of signals. #s gives the length of
signal s. Infinite signals have infinite length and #〈〉 = 0.

We use the notation Signal(V ) to denote a type of signal that consists of elements of the
set V . E.g. Signal(R) would denote signals with real numbers, Signal(N) would denote
signals with natural numbers and Signal({T, F}) would denote signals that contain the two
types of elements T and F .

Signals are point-to-point connections between actors, and there can only be one producer
and one consumer for each signal. If events of a signal should be used by more than one
actor, we need a copy actor that copies the input signal to two or more output signals. If two
or more actors should contribute to one signal, we need a merge actor that defines how the
events from the producing actors are merged. In the figures of this article we sometimes omit
the copy and merge actors for convenience and clarity, but the model always requires them.

2.2 Signal Partitioning

We use the partitioning of signals into sub-sequences to define the portions of a signal that
are consumed or emitted by an actor in each activation cycle.

A partition π(ν, s) of a signal s defines an ordered set of signals, 〈ri〉, which, when
concatenated together, form the original signal s. The function ν : S→ N defines the lengths
of all elements in the partition, where S is the set of states of the partitioning process.
For example, if we have a signal s = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉, the partitioning process runs
through the sequence of states 〈q0, q1, q2, · · ·〉, and ν(q0) = ν(q1) = 3, ν(q2) = 4, then we get
the partition π(ν, s) = 〈〈1, 2, 3〉, 〈4, 5, 6〉, 〈7, 8, 9, 10〉〉.

Note, that there is nothing static about this partitioning, because the size of the next
partition can be determined by the actor during each activation. Signal partitioning only
captures the notion of activation cycles of actors which repeatedly consume part of the input
and produce more and more of the output.

ASD 2019



6:4 Towards a Formal Model of Recursive Self-Reflection

2.3 Actors
An Actor A ∈ A maps a set of input signals to a set of output signals. Actors repeatedly
evolve through activation cycles, and in each cycle part of the input signals are consumed
and part of the output signals are generated. Also, an actor may have an internal state
which is also drawn from the set of all subsets of values V .
A denotes the set of actors, and S = P(V ), the power set of the set V , denotes the set of

states, with ε ∈ S being the empty set, i.e. the state that has no values. To capture the
notion of activation cycle and to model the behavior of actors, we introduce the state, the next
state function g, the output encoding function f , and the partitioning function ν of an actor.
Thus an actor with n input and m output signals is an eight tuple A = 〈T, I, O, z0, f, g, ν, ~m〉
as follows:

T ⊆ S ... set of states
I ⊆ P(S) ... set of input signals
O ⊆ P(S) ... set of output signals
z0 ∈ T ... the initial state
ν : N→ P(N) ... input partitioning function
f : P(S)×S→ P(S) ... output encoding function
g : P(S)×S→ S ... next state function
~m : S→ Action ... a meta operator

Note, that the sets of input and output signals can dynamically change during the operation,
and, consequently, the functions ν, f and g may have to deal with different numbers of
signals at different time. Events from an input signal not consumed by an actor during an
activation cycle are left in the signal for later consumption, and if no events are generated
for a particular output signal, the signal is unchanged. Thus, an actor is free to ignore input
and output signals in which case they are never modified.

The meta operator ~m can invoke any of the following actions, which modify the global
dataflow network:

Action
addsig(s) add signal s
connectisig(s,A) add signal s to the set of input signals in actor A.
connectosig(s,A) add signal s to the set of output signals in actor A.
delsig(s) delete input signal s and remove it from the input and

output signals of the connected actors.
addactor(T′, I ′, O′, z′

0, f
′, g′, ν′, ~m′) create a new actor A′ = 〈T′, I ′, O′, z′

0, f
′, g′, ν′, ~m′〉

delactor(A′) delete actor A′

nop do nothing

Since the addactor action assumes all involved signals exist, unconnected signals have to
be created first with addsig and used in addactor calls or attached to existing actors with
connectisig and connectosig actions.

An actor A can be applied to a set of input signals to generate events on output signals.
It does so by repeatedly consuming values from the input signals and producing values for
the output signals. Each such activity is called activation or activation cycle. The number of
input values consumed in each activation cycle is determined by the partitioning function ν.
g computes the sequence of states 〈z1, z2, z3, · · ·〉 and f gradually produces the values for the
output signals. For actor A we write A(〈s1, s2〉) = 〈s3, s4〉 to denote an actor that consumes
two input signals s1 and s2 and generates two output signals s3 and s4.
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Let A and B be two actors with input and output signals IA, IB , OA and OB , respectively.
If a subset O′

A of A’s output signals has the same type as a subset of B’s input signals I ′
B ,

they can be connected such that the signals O′
A = I ′

B. This results in a compound actor
C with input signals IC = IA ∪ (IB \ I ′

B) and output signals OC = (OA \ O′
A) ∪ OB. The

semantics of such actor networks (or process networks) are developed in [7], together with an
analysis of loops and deadlocks.

3 Abstraction

Abstraction is a prerequisite for self-modeling because the model that an actor entertains of
itself, must be simpler, hence more abstract, than itself. Since we try to capture the notion
of unlimited recursive self-modeling, we need to make sure, that the self-model at one level is
more abstract than the self-model of the previous level. Here we do not show what a “good”
abstraction is or how to derive it, but we only show that certain signal abstractions, that we
use in later sections, have reduced information content.

3.1 Signal Abstraction
Given two signals s1 : Signal(V1) and s2 : Signal(V2), an abstraction of s1 is a mapping
Bα : Signal(V1) → Signal(V2) with an abstraction function α : 〈V1〉 → V2 that maps
sequences of s1 onto individual values of s2.

For instance, if a thermometer measures the sequence of temperature values as
s1 = 〈36.7, 36.8, 36.7, 36.8, 36.9, 36.9, 37.0, 37.0, 37.1, 37.2, 37.3, 37.2, 37.3, 37.3, 37.4, 37.5, 37.6, 36.6〉,
then the abstraction Bα with

α(〈t1, t2, t3〉) =


l if (t1 + t2 + t3)/3 < 35.5
n if 35.5 ≤ (t1 + t2 + t3)/3 < 37.5
e if 37.5 ≤ (t1 + t2 + t3)/3 < 38.5
h if 38.5 ≤ (t1 + t2 + t3)/3

the abstraction Bα would map three consecutive temperate measurements onto one symbol,
i.e. Bα(s1) = 〈n, n, n, n, n, e〉.

Many signal processing functions can be considered abstractions. E.g. an ECG signal can
be abstracted into a sequence of pulse periods, or into a sequence of P,Q,R, S, T symbols
to indicate the main components of the ECG signal. The important points are that the
abstracted signal represents less information and thus can be encoded with fewer bits, and that
it reflects regularities and repetitive patterns. If a sequence of values appears many times in
the input signal, this sequence can be abstracted into one abstract symbol. (GrammarViz [28]
and unsupervised symbolization [20] are examples for general methods for signal abstraction.)

3.2 Information Reduction by Abstraction
The Shannon Entropy [2] provides a formalism for measuring the information content of a
signal.1 Let V = {v1, v2, . . . , vN} be the set of symbols that appear on the signal s and let

1 The Shannon Entropy assumes independent, identically distributed random variables, which in fact
cannot be assumed in our case. In the following we use the Shannon Entropy as an estimate but
recognize the need for a more appropriate model.
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the probability of vi be pi, then the Shannon Entropy H of signal s is

H(s) = −
N∑
i=1

pi log pi.

H(s) gives the average amount of information per symbol. For a signal of length
m, s = 〈e1, e2, . . . , em〉 the information content is

I(s) = −
m∑
j=1

E[log p(ej)] = −m
N∑
i=1

pi log pi

where p(e) is the probability of event e and N is the number of distinct symbols.

3.2.1 Value Abstraction
We consider two types of abstraction, time and value abstraction. Let the value abstraction
function αv be

αv(〈x〉) =
{
A if x = a or x = b

x otherwise

which maps two symbols a and b onto the same symbol A and leaves all other symbols
unmodified. The abstraction Bαv

leaves the lengths of signals unchanged but reduces the
number of different symbols by one. As a consequence, the information content of the
abstracted signal is reduced as well which can be expressed by way of the Shannon Entropy.

Let V = {v1, v2, . . . , vN} be a set of symbols with v1 = a and v2 = b, let VA =
{A, v3, . . . , vN} be another set of symbols with N − 1 elements, let pi be the probability of
occurrence of vi with p1 = pa and p2 = pb, and pA. Further, let s be a signal of length m
and let sA = Bαv (s) be the abstracted signal of equal length. The Shannon entropy of these
two signals is

H(s) = −
N∑
i=1

pi log pi = −pa log pa − pb log pb −
N∑
i=3

pi log pi

H(sA) = −pA log pA −
N∑
i=3

pi log pi

Since the last sum is identical in both expressions and since pA = pa + pb we have as entropy
difference of these two signals

Hδ = H(s)−H(sA) = pa log pa + pb
pa

+ pb log pa + pb
pb

The information content decreases on average by Hδ per symbol and it depends only on the
probabilities of the two abstracted symbols a and b. For the special case pa = pb = p and
the base 2 logarithm we have Hδ = 2p.

3.2.2 Time Abstraction
Let the time abstraction function αt be

αt(〈x1, x2〉) =
{
A if x1 = a and x2 = a

〈x1, x2〉 otherwise
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Bαt maps two consecutive occurrences of a onto A and leaves all other symbols unchanged.
We assume that all symbols a appear in pairs, thus all a’s are replaced by A’s. This is not a
simplification since we can pick an arbitrary pair of symbols, say 〈b, c〉 and first apply a value
abstraction to transform it into 〈a, a〉 pairs, and then apply the time abstraction function αt.
The key point is that αt shortens the signal by replacing all pairs of symbols 〈a, a〉 by a new
symbol A.

αt reduces the signal length but not the number of symbols and not necessarily the
information per symbol. Thus, the reduction of information content comes from the decreasing
signal length. While the general case is quite involved, we can illustrate the trend with a
special case. Assume an abstraction function

αt(〈x1, x2〉) =


A if x1 = a and x2 = a

B if x1 = b and x2 = b

C if x1 = c and x2 = c

· · ·

Assume further that s consists only of symbol pairs like s = 〈a, a, c, c, a, a, b, b, a, a, d, d, b, b,
. . .〉. The abstraction Bαt

(s) will then half the length of s but probabilities will be maintained
like pa = pA, pb = pB, pc = pC, etc. Thus, the Shannon Entropy for s and sA = Bαt

(s) is

H(s) = −
∑

i∈{a,b,c,... }

pi log pi

H(sA) = −
∑

i∈{A,A,C,... }

pi log pi = H(s)

Hence, the Shannon Entropy denotes the average information content per symbol, which
is unchanged. However, the information content of the entire signal is as follows.

I(s) = mH(s)

I(sA) = m

2 H(sA) = I(s)
2

if the length of s is m and the lengths of sA is m/2 as a result of the abstraction.
Time abstraction has its name because signals encode timing information. This means

that merging two consecutive symbols into one decreases the number of symbols per time.
Hence, timing abstraction reduces the information content per time unit.

Reducing the amount of information is a necessary condition for an abstraction but it is
not sufficient for a useful abstraction. A useful abstraction will reduce the information that
is less relevant and keep the important information, thus increasing its prominence. Much
could be said about finding good abstractions, see for instance [30] for effective abstraction
techniques. Also note, that what constitutes a useful abstraction depends on the actor’s
goals and condition.

3.3 Abstractions as Actors
Signal abstraction is modeled as an actor that maps one or more input signals onto
output signals. Let B = 〈T, I, O, z0, ν, f, g, ~m0〉 with T = {ε} (the actor is stateless),
I = {Signal(V1), Signal(V2), . . . }, O = {Signal(V ′)} (one or more input and one output
signal), z0 = ε, (No initial state), ν(.) = 〈c1, c2, . . .〉 (the actor consumes a constant number
of values from each input signal), g(·, ·) = ε (no states), ~m0(·) = nop (no meta actions).
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B maps one or more input signals consisting of symbols from V1, V2, . . . onto one output
signal with symbols from V ′, and if it applies a combination of value and time abstractions,
we call it a signal abstraction. We can of course conceive more complex abstractions with
internal states, but this kind of abstraction will suffice to illustrate the approach.

Given three actors A,BI , BO an actor abstraction ActAbstraction(A,BI , BO) = AA
denotes an abstraction of actor A, if

BO(A(SI)) = AA(BI(SI))

for all set of input signals SI that can be consumed by A.

... SI

...
SO

...
...

S ′O

S ′′O

A

BI
AA

BO

Figure 1 AA is an abstraction of A if S′
O = S′′

O.

This situation is depicted in Figure 1. AA operates on an abstraction of the input signals
SI , abstracted by the actor BI . If the output signals S′′

O generated by AA are identical to
the signals S′′

O, which are abstractions of SO, then actor AA is an abstraction of actor A.
This definition is not constructive and does not tell us how to derive AA, or BI or BO; nor
does it tell us what a useful abstraction is. Intuitively AA should be significantly simpler
than A but should faithfully reflect relevant properties of A.

4 Self-Model

An actor with a self-model has an abstract model of its own behavior, an abstract model
of the environment it interacts with, and the capability to simulate these abstract models
together.

Let A be an atomic or compound actor (as defined in section 2.3) arbitrarily complex
actor, let BI and BO be abstractors of the input and output of A, respectively, and let
ActAbstraction(A,BI , BO) = AA, just as discussed in section 3.3. Further, let E be the
environment the actor interacts with through the signal sets SI and SO, and let EA be an
abstraction of E, such that we have ActAbstraction(E,BO, BI) = EA.

Moreover, let Ā be a simulatable actor derived from A which behaves like A with the
following additions:

It has an additional input signal denoted as control signal.
It can be stopped and resumed at will through the control signal.
For each input signal of A it has two input signals of the same type; hence it has two sets
of input signals with identical types. The control signal selects one of the two sets for
input in each activation cycle.
It has an additional output signal, denoted as status signal that reports its internal status
under control of the control signal.

The whole situation is illustrated in Figure 2a. In addition we see in the figure a Sim
actor, which controls the models ĀA, ĒA, B̄I and B̄O to simulate them. Also, instead of actor
A we have a modified actor A′ which acts just like A but can at appropriate times invoke the



A. Jantsch 6:9

simulator, learn about simulation results, which then can support its decision process. Thus,
given appropriate actors A, ĀA, ĒA, B̄I , B̄O and Sim, ActorSelfModel(A, ĀA, ĒA, B̄I , B̄O) =
ASM is a resulting actor corresponding to the one shown in Figure 2a.

4.1 Self-Assessment

ASM

B̄I

E

ĀA

ĒA

B̄O

A′

Sim

S ′′
O

S ′
O

S ′
I

SI

SO

S ′′
I

(a) ASM with a self-model can
simulate its own behavior to-
gether with an abstract model
of the environment.

ASM

E

A′′

Sim

B̄I

ĀA

B̄O

ĒA

JA′′

SI

SO

S ′′
I S ′′

O

S ′
O

∆J

S ′
I

(b) An actor JA′′ continually
monitors and assesses the beha-
viour and performance of A′′.

AASM

E

A′′

ĀL
A

ĒL
A

D2

D1

B̄L
O

B̄L
I

Sim

JA′′

S ′′
O

S ′
I

∆S′
O

S ′′
I

∆S′
I

S ′
O

SI SO

∆J

(c) Adaptive actors require
learning capabilities and error
signals.

Figure 2 A self modeling actor AASM .

To allow for self-assessment the actor requires a model of the specification and requirements
of itself. Such a model can be an elaborate functional model, or it can be a list of properties
that at all times have to be fulfilled. A large body of literature has studied this problem
under terms such as run-time monitoring, fault tolerance, and reliability. Thus, we assume
solutions readily exist and a dedicated actor, named JA′′ , continually monitors the input
and output signals of the actor under observation and detects functional and performance
aberrations. We could connect JA′′ to the actor inputs SI and outputs SO, however, it is
more likely that JA′′ operates on abstractions of those signals like the one provided by B̄I
and B̄O. The output of actor JA′′ in Figure 2b is denoted as ∆J and signifies the difference
between expected and observed behavior. It is fed back to actor A′′ to allow for the use
of this information and improve its performance. Hence, we have a variation of the actor
without that facility, which was named A′.

If JA′′ also maintains a history of the assessment, it facilitates a holistic lifetime self-
assessment as a basis for hindsight analysis, self-explanation and self-improvement.

4.2 Adaptive Self-Model
To model adaptive actors we need to capture the notion of learning.2 A Learning Actor AL
is an actor that takes an error signal as input, in addition to the other signals it needs for its
operation, and modifies its behavior with the goal to minimize the error in the error signal.
Hence, let A be an actor with input signals IA and output signals OA, the learning actor

2 The meaning of terms “learning”, “adaptation” and “optimization” overlap. Here we use the term
“learning” as a basic capability of an actor to modify its own behavior based on an error signal. Depending
on how this capability is used, the actor may be self-optimizing, when the behavior improves within
the same environment, or adaptive, when its behavior appropriately changes as response to a changing
environment, or both.
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AL has input signals IAI = IA ∪ {σε} and output signals OAL = OA, where σε is an error
signal that reflects the quality of A’s performance in some way. It could be a simple numeric
signal or it could be structured to detail which parts and aspects of A’s behavior exhibits
which quality.

Considering Figure 2b, there are several parts that we would like to see continually
improved, in particular the abstractions B̄I and B̄O, and the abstract models ĀA and ĒA. If
we want to make them learning actors, we have to identify the source of the error information.
While actors could use application specific information, obvious generic sources are the
differences between signals S′

O and S′′
O, and between signals S′

I and S′′
I .

Consequently, we introduce actors that analyze the differences in two sets of signals to
generate ∆ signals that inform other actors about observed differences. Figure 2c shows two
actors, D1 and D2 that analyze and compare signals S′

I , S′′
I and signals S′

O, S′′
O, respectively,

to generate the signals ∆S′
I
and ∆S′

O
. These ∆ signals are then used by the learning actors

B̄LI , B̄LO, ĀLA and ĒLA to improve their models and their behavior. Figure 2c shows one
possible scenario but many other strategies are conceivable and other information sources
can be utilized to improve learning actors. We imagine that the learning actors in Figure 2c
start with an initial, relatively crude model or behavior which then is continuously improved
with the expectation that this continuous improvement eventually leads to far better models
and behaviors for B̄LI , B̄LO, ĀLA and ĒLA than could possibly be accomplished with careful
engineering at design time.

5 Recursive Self-Reflection

Our actor has been extended quite significantly as illustrated in figure 2c. Before moving on,
let’s step back and consider what we have done. We have added functionality to our original
actor A twice, as indicated by the two ticks. We have added assessment and simulation
facilities together with abstract models of the actor itself and the environment. This allows
for improved behavior of the actor by using self-assessment information from JA′′ and by
using predictions from Sim. In addition we have introduced learning capabilities for the
abstractions. Thus, A′′ is continually improving by three different means: self-assessment,
simulation based prediction, improving abstract models.

As a result we have obtained the actor AASM , an adaptive, self-modeling actor. Is it
self-aware? The abstract self-model, the simulation engine, the self-assessment and the
learning capabilities are all ingredients of self-awareness but they are not self-awareness, just
like flour, sugar, raisins, yeast are ingredients for a cake, but they are not yet the cake. In
fact, AASM can be considered the cake, but we are not looking for the cake, we are looking
for the process of baking. So far we have used the mechanisms abstraction, simulation,
assessment, and learning deliberately to construct something which resembles self-awareness,
but the result is not self-awareness because self-awareness is the process, not the result. We
need a general method that uses those mechanisms and can be applied to any actor, not just
A. In particular, it must also be applicable to itself.

Consider Figure 3, where a learning actor AL interacts with the environment and is
continuously monitored by JAL . Imagine the monitor JAL is more complex than checking
properties. It keeps track of a set of goals that may be hierarchically organized and in part
mutually contradictory. The goals could be to perform some useful function, to keep the
battery loaded, avoid harming people, avoid damage to itself and to its environment, etc.
The ∆J signal informs to which extent these goals are satisfied at any time during operation.



A. Jantsch 6:11

�
�
�
�
�

�
�
�
�
�

E

AL

JAL

∆J
AL

SAF

SI SO

sAL

sJ
AL

~m

ASA

Figure 3 A self-awareness facilitating actor.

In addition we have an actor ALSAF that facilitates self-awareness. It is informed by
JAL about the actor’s performance and, through the signals sAL and sJAL

it keeps track of
which actors are in the system. If it deems necessary, for instance when it is unhappy about
the actor’s performance, it can trigger an investigation. At its disposal it has simulation,
abstraction, learning and other facilities. Picking an actor, for instance AL, it can spawn a
monitoring and assessment setup as illustrated in Figure 4a. It does all this through meta
actions through the ~m output in the figure. The self-awareness facilitator still keeps track of
many, but not necessarily all, actors in the system, which is indicated by the SA input signal.
It can spawn a new investigation into any of the newly created actors if deemed useful and if
the available resources suffice.
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SAF .

Figure 4 A self-awareness facilitating actor AL
SAF targeting other actors for study.

In addition, we propose to also provide an explanation actor F that, through a question
and explanation interface (signals sQ and sF ), provides a mechanism to explain what has
happened, which decisions have been taken, what observations have been made. We expect
this actor to be useful in the interaction with other systems. In particular in the interaction
with humans it will convey to which extent the ASA actor is self-aware and at what level it
understands what it is doing.

For now, let’s assume ALSAF deletes the newly created actors and returns to the state
shown in figure 3, and then picks actor JAL as a next target for investigation, the result
of which is shown in figure 4b. Moreover, it may target itself, if unhappy with its own
performance or if just curious, and thus create a situation as shown in figure 4c.

In its simplest form the proposed self-reflection mechanism picks an actor, atomic or
compound, abstracts this actor and assesses the behavior of the abstracted actor by comparing
it to the actor’s stated goals. Hence, a prerequisite for this operation is the accessibility of
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stated goals, which may be part of the actor under study or may come from somewhere else.
From that it follows, that ALSAF can study any other actor for which it has access to its
inputs, outputs and goals. This may in principle be the case for any of the actors visible in
Figures 4a – 4c. But note, that not every interior detail of an actor is necessarily subject to
this mechanism, since it is limited to behavior visible from the outside.

To warrant the name “recursive” the mechanism must be applicable to itself and to thus
recursively derived actors, without principle limits. Consequently, any actor created by ALASF
in Figure 4 could have its inputs, outputs and goals again be accessible to ALASF . Without
working out the details here this is plausible for all created actors because ALASF generates
the inputs and outputs itself and “knows” what it is supposed to accomplish.

In summary, we define self-awareness as the capability to pick any actor in the system,
it may be a simple or compound actor or the entire system itself, and apply abstraction,
assessment, prediction, and learning techniques, as outlined in this article, in order to analyze,
assess and possibly improve its performance.

6 Related Work

As alluded to in the introduction a substantial amount of papers have been published on the
topic of self-awareness. Here we only compare our proposal to definitions of self-awareness
that have similar scope and ambition.

In 2009 Agarwal et al. [1] argue that self-aware subjects should be “introspective” (they
can observe and optimise their own behaviour), “adaptive”, “self-healing”, (they monitor
themselves for faults and take corrective actions), “goal oriented”, and “approximate”, (they
use the least amount of precision to accomplish a given task).

In 2011 Lewis et al. [19] base their concepts on work in psychology, in particular on Morin’s
definition of self-awareness as “the capacity to become the object of one’s own attention” [22]
and Neisser’s five-level model [24] which includes the “ecological self ”, the “interpersonal self ”,
the “extended self ”, the “private self ” and the “conceptual self ”, the last being “the most
advanced form of self-awareness, representing that the organism is capable of constructing
and reasoning about an abstract symbolic representation of itself ” [19].

In 2014 Jantsch et al. [10] give seven properties that constitute awareness and define a
subject to be aware at level 0 to 5, depending on which of these properties are exhibited
by the subject. For instance level 4 requires that the subject assesses its own performance
over the history of its lifetime, and can simulate future actions for prediction and planning
purposes. The highest level 5 defines group awareness which requires subjects to be aware of
its peers in a group.

We have cited the 2017 definition by Kounev et al. [11] in the introduction and repeat
here only that it requires a subject to be self-reflective, self-predictive and self-adaptive.

All these definitions have some concepts in common, like goal orientation, adaptation, and
introspection, but also differ in whether they include self-healing, approximation, learning,
or prediction. But note that a definition that does not include an aspect such as learning
probably does not mean to exclude it either. What is mentioned explicitly may only reflect
the prominence given to some of the aspects, while others are less emphasized. These
ambiguities and imprecision are a consequence of the informal style used to describe rather
than define the key concepts of self-awareness.

Hence the first main difference to the work cited above is our attempt to provide a formal
semantic for the involved concepts thus avoiding ambiguities and imprecision. We admit,
that this attempt in giving a formal semantic is not complete but we argue it is a first step
that shows the contours of such a semantic and that suggests it can be given.
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The work by Vassev and Hinchey [31] is a formal approach to model self-awareness based
on knowledge representation. It captures knowledge the system has about itself that includes
information, rules, constraints and methods. The formal model has the benefit of clarity and
unambiguity which makes clear that awareness is reduced to knowledge representation. In
the described case study this self-knowledge is used by robots in a swarm to make situation
dependent decisions that sensibly contribute to an overall swarm behavior. However, a
mechanism to observe, assess and reason about its own usage of self-knowledge is missing.

Hence, the second main difference is the concept of recursive reflection. No other previous
definition or model allows for applying self-awareness recursively onto its own activity.
However, we contend that this unbounded recursion is the essence of self-awareness and it
requires a formal model to demonstrate its feasibility and its utility.

7 Conclusions

The proposed formal model of self-awareness is based on a dynamic dataflow semantics. It
captures the notion of signal abstraction, actor abstraction, adaptive actors, self-assessment,
and recursive self-reflection. Even though many details of the formalism are still missing and
the approach has not yet been demonstrated we are hopeful that it can be implemented and
simulated in an appropriate framework.

A particular appealing aspect of recursive self-reflection is its promise, that any particular
situation can be abstracted up to a level, where it is amenable to the assessment and planning
capabilities of the system. Thus, there is no situation too complex that the self-aware
actor is able to handle, provided it finds the appropriate sequence of abstractions. Since an
abstraction step reduces the amount of information and since abstractions can be recursively
applied, a given situation can be abstracted up to the level, where its information amount is
within the limit of the system. The human mind seems to be doing something similar, because
it manages to analyze, elaborate, and handle arbitrarily complex subjects even though the
amount of conscious information processing is severely limited as has been established in
Miller’s seminal paper in 1956 on the magical number seven [21], and confirmed many times
since then. If this analogy is correct, and if sufficiently effective and efficient abstraction
techniques can be developed and employed, recursive self-reflection would turn out to be a
wonderfully general tool for dealing with arbitrary situations where assessment and planning
is crucial but an overwhelming diversity and complexity seems to render any general technique
futile. These are big Ifs and a number of questions arise.

Abstraction techniques. We need efficient techniques for automated abstraction. The defin-
ition of ActAbstraction is not constructive and there seems to be no good, general
method to abstract an arbitrary actor. However, many abstraction methods exist but all
of them have their strength and drawbacks. Thus, we need to identify good abstraction
methods for our purpose and we need methods to select the most appropriate for a specific
actor and for specific objectives.

Abstraction level. Related to the abstraction method is the question of the right abstraction
level. A given set of data and a given abstractor can be abstracted more or less. It is not
well understood what constitutes a good abstraction level in general, and how to identify
a good abstraction level in a particular case.

Assessment techniques. We need good assessment techniques. Again, we do not have good
general methods for assessment of an arbitrary actor.

Goal Management. Complex systems often have a complex goal structure, which may be
hierarchical and dynamic with partially overlapping and partially mutually exclusive
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goals. Handling these goals and assessing an actor’s performance with respect to given
goals is an interesting challenge.

Learning. Machine learning is an active research domain and many methods have been
proposed and studied. The challenge for us is to identify appropriate and efficient learning
methods streamlined for our purpose.

Simulation. Finally, general and efficient simulation methods will be instrumental to make
self-awareness as proposed efficient. The key here is probably not the simulation method
itself, but to find the right abstraction level in combination with efficient simulation
methods.

With a precise, formal and operational model of self-awareness we can identify its
challenges, address the open problems and study its benefits and drawbacks in the context
of specific applications. As a result, self-awareness could be made into a powerful generic
method that can be the foundation of truly autonomous systems.
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Abstract
Traffic intersections will become automated in the near future with the advent of Connected
Autonomous Vehicles (CAVs). Researchers have proposed intersection management approaches that
use the position and velocity that are reported by vehicles to compute a schedule for vehicles to
safely and efficiently traverse the intersection. However, a vehicle may fail to follow intersection
manager (IM) scheduling commands due to erroneous sensor readings or unexpected incidents like
engine failure, which can cause an accident if the failure happens inside the intersection. Additionally,
rogue vehicles can take the advantage of the IM by providing false position and velocity data and
cause traffic congestion. In this paper, we present a new technique and infrastructure to detect
anomalies and inform the IM. We propose a vision system that can monitor the position of incoming
vehicles and provide real-time data for the IM. The IM can use this data to verify the trajectories
of CAVs and broadcast a warning when a vehicle fails to follow commands, making the IM more
resilient against attacks and false data. We implemented our method by building infrastructure for
an intersection with 1/10 scale model CAVs. Results show our method, when combined with an IM
dataflows, is more dependable in the event of a failure compared to an IM without it.
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1 Introduction

CAVs are expected to shape the future of the automobile industry because they have the
potential to minimize traffic, increase user satisfaction by enabling user autonomy, and, most
importantly, increase safety for all interaction models. In order to truly be accepted by the
community, it is important to have reliable infrastructure to support these vehicles.

A point of complexity in this fully autonomous system is managing traffic at an intersection.
To manage traffic best, infrastructure is implemented to support intersection management.
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7:2 A Dependable Detection Mechanism for IM of CAVs

Automated Intersection Management or Intersection Managers (IM(s)) as they are referred to
in this paper interact with vehicles as they approach an intersection. IMs have the potential
to make intersections safer and more efficient compared to the involvement of human drivers
in interactions, as these IMs instruct traffic as an unbiased external system specifically
designed for both safety and efficiency. Humans are biased and prone to making a greedy
decision in safety-critical situations which can decrease throughput and lead to accidents.
Thus, many researches regarding intersection optimization have involved the use of IMs.

Some of the most notable existing researches using IMs are Autonomous Intersection
Management(AIM)[7], Crossroads[2], and Robust Intersection Management(RIM)[11]. In
AIM, vehicles query the IM with a specific velocity of arrival and trajectory of arrival in
order to reserve a timeslot through the intersection, which is commonly called a query-based
IM(QB-IM). In Crossroads, vehicles provide their current position and velocity to the IM
and request a velocity from the IM to drive safely through the intersection; this technique is
commonly referred to as a velocity-assignment Intersection Management(VA-IM). VA-IM
is improved in RIM; typically a VA-IM assumes constant velocity through the intersection
but RIM tracks position trajectory in order to account for external disturbances. From
experimentation, we know that even RIM can’t account for all external disturbances, because
it has no physical monitoring system to ensure that the trajectory of arrival assigned in RIM
is actually achieved.

A common technique in these IMs to achieve safe operation despite uncertainty in vehicle’s
trajectory is to consider a safety buffer around the vehicles to ensure safe scheduling of vehicles
through the intersection. Though this achieves some level of reliability by considering worst
case position uncertainty of vehicles, this can still be erroneous if too much trust is placed on
one system. Consider the case where a vehicle has inaccurate positioning information which
is being reported to the IM. If the error of positioning is greater than the threshold safety
buffer, an accident is likely to occur in the intersection. For example in AIM to achieve a safe
scheduling of vehicles through the intersection, the CAVs send the IM completion times; this
way the IM knows which vehicles are about to enter the intersection, are in the intersection,
or have completed their trajectories through the intersection. The completion time data
which the IM uses to create a schedule are based on the data the car is reporting for its
position, and in the case that the car is reporting positioning outside of the threshold safety
buffer value the schedule will be inaccurately computed. True safety relies on redundancy of
systems to maximize the safety of the IMs.

In addition to safety, these IMs must be more efficient to be accepted by the community.
A study done by University of Michigan [5] showed that connected vehicles, while improving
quality of life for humans, also opens the door for cyber-attacks. Their study attacked I-SIG
sponsored by the United States Department of Transportation and their results showed how
drastically throughput can decrease if traffic control is not secured. Those doing research
on IMs use encryption to prevent outsiders from attacking the system. Additionally, IMs
are external systems and therefore unbiased because they produce the schedule to proceed
through the intersection instead of vehicles possibly making greedy decisions. However, if an
attacker found a way to spoof into the system, there is no way to detect a sybil attack since
there is no data validation.

We propose a Detection System as an additional way to advance safe operation. The
Detection System will act as a supervisory system that can verify the behavior of vehicles
before and inside the intersection. This external system will supplement IMs positioning data
given by the CAVs with real-time, environmental sensing data. Additionally, this system
will have the capability to validate if vehicles are communicating with the IM, if a vehicle is
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actually entering the intersection (eg. sensing for a sybil attack), and ensuring the connected
data aligns with the environmental data. In the event of an accident-prone situation, the
IM can broadcast a warning to the CAVs interacting with the intersection. This solution
can be applied to many intelligent intersection management schemes already implemented
or in development, since it acts as an external agent whose primary focus is to identify
positioning information(which can be extrapolated to velocity data using a simple distance
versus time equation). This enables many IMs to have more fine-tuned positioning data
and these management schemes can therefore make more informed decisions for scheduling
vehicles through the intersections. The implementation of the Detection System was done by
building intersection infrastructure and CAVs that are 1/10 scale.

2 Related Work

Many different intelligent autonomous intersection schemes has been proposed so far
[3, 9, 12, 13]. We need to validate that the intersection management schemes are as robust,
resilient, reliable, and redundant as possible.

A popular solution to this problem is known as the Autonomous Intersection Management
(AIM)[7]. As vehicles approach the intersection at a constant speed, the vehicle sends a
speed query to the IM and the IM replies with either a yes or a no to the request based
on other requests it is managing for safe operation. If the answer from the IM is yes, the
vehicle continues through the intersection at the requested constant speed; however if the
answer is no the vehicle slows down and again queries the IM. Once the vehicle is through
the intersection it would send a done signal to the intersection manager. This query-based
approach worked well on both hybrid (both autonomously-driven and human-driven vehicles
operating on the road) and completely autonomous intersections and it did not degrade the
position uncertainty due to computational delay on the IM, however it increased network
traffic and the amount of computation done on both the vehicle and the IM. In order to
have safe operation, AIM relies on the accuracy of the data being communicated between
the vehicles and the IM.

Another cutting-edge solution followed it, known as Crossroads [2], whose contribution
was to have the IM calculate and assign the velocity of completely autonomous vehicles
requesting to cross the intersection. This method when compared to AIM decreased network
traffic and computational delay. Vehicles in this research were given a safety buffer which
accounted for uncertainty in velocity and position. Network and computational delays are
included in finding the round trip delay and this round trip delay is incorporated into the
safety buffer. The main issue with this scheme was that it was prone to external disturbances
and model mismatches (i.e. a bump in the road or wind). This is because Crossroads tracked
a constant velocity through the intersection without accounting for the effect of position
uncertainty resulting from these disturbances. The resulting position uncertainty leads to
the possibility of inaccurate positioning data being communicated between the vehicles and
the IM. This situation could eventually lead to accidents since the IM isn’t aware of the
vehicles’ exact positioning.

The research which improved on Crossroads was Robust Intersection Management
(RIM)[11], whose contribution was to track the trajectory of vehicles through the inter-
section. The premise was to assign a velocity of arrival(VOA) and trajectory of arrival(TOA)
to vehicles who were about to enter the intersection. The tracked trajectory accounted for
the time it would take the vehicle to speedup or slowdown its velocity to reach its respective
VOA. This helped account for any position disturbances and therefore lead to a more accurate
model for scheduling vehicles crossing the intersection. Though RIM has higher certainty of
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vehicle positioning, it still relies entirely on accurate data transmission from the vehicles to
the IM which can be error prone as seen in Figure 1.

Since all the researches above have one point of failure for obtaining positioning informa-
tion, they are all prone to attacks which involve spoofing of location. Further, the system
may fail if the communication between the vehicle and the IM fails. Whether a direct attack
or lack of validation of connected data, any positioning inaccuracy can be detrimental to
safe operation of the IM. To improve all these models, it is extremely beneficial to create
redundant systems.

Time of  Arrival and 

Velocity of  Arrival

Actual

Actual

Actual
Expected

Expected

Expected

Figure 1 RIM Algorithm: A car will communicate with the IM to get a Time of Arrival (TOA)
and Velocity of Arrival (VOA). However, it may not be able to meet the TOA and VOA and can
cause an accident.

3 Proposed Method

The Detection System needs to be able to gain a robust understanding of the environment,
and the solution implemented to find positioning data was image processing. It is important
for this system to act independently from the IM to prevent interaction bias. To act
independently, this system must do all processing externally from any of the IM researches,
acting only as a reporting mechanism. The interaction model between the IM and Detection
System uses I2C, where position determined by the Detection System is sent using I2C to
the IM to be used for computation. Note that for security purposes, the Detection System is
completely offline, so accessing the system can only be done physically. This adds a layer of
data integrity which is dependent on the physical security to the Detection System and the
cyber-security available to the IM. Because the Detection System contains four subsystems,
there were four I2C communication points between the IM and the Detection System.

As described in Algorithm 1, the Detection System uses live video feed, parses the image
using image processing, and alerts the IM using interrupts that a vehicle with a given
identification is approaching the intersection. To do the image processing, the camera is
calibrated, the image is normalized, and then the front bumper of the car is identified. Once
the bumper is located in the image, the distance to the car can be found. This distance is
transferred over I2C to the IM.

In Algorithm 2, the IM uses the calculated distance and identification provided by the
Detection System to parse for specific packets being sent from the vehicles. Then the IM will
process the environmental data and compare it to the connected vehicle data. During this
comparison the IM can perceive four different scenarios: The first is that the image processing
data doesn’t match the connected data, the second is that a request is received but no vehicle
is detected, the third is the Detection System recognizes a vehicle is approaching even though
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Algorithm 1: Pseudocode for Camera platform.
1 for every ∆t seconds do
2 Read Image;
3 Process Image ;
4 Send vehicles’ data to IM;
5 end

the vehicle hasn’t communicated with the IM, and the last is that the connected data is the
same as the environmental sensing data. These scenarios are discussed in Section 4.

Algorithm 2: Pseudocode for IM.
1 Timer_ISR (every t seconds){
2 Get data from cameras;
3 }
4 if (A packet is received) then
5 Process the data;
6 if Scenario 1: Camera’s data doesn’t match the expected then
7 Send back a packet to the vehicle
8 end
9 if Scenario 2: A request is received but no vehicle is detected then

10 Change Policy e.g. MAC blocking
11 end
12 if Scenario 3: vehicle didn’t communicate (A rouge driver) then
13 Broadcast an alert to other automated vehicles
14 end
15 end

4 Empirical Evaluation

The Detection System is beneficial to preserve high precision of position certainty for
the IM. We implemented and tested with the four previously discussed scenarios in order to
show the advantages of using the Detection System. Our testing has shown that in all four
scenarios, the Detection System was able to observe and report the vehicle’s location within
2 cm accuracy.

4.1 Testbed

4.1.1 The components
The Detection System created in this research involved four separate, equivalent subsys-

tems to work together. Each subsystem’s purpose was to monitor a given lane of traffic. Given
a typical intersection, there are four lanes of traffic therefore four subsystems were needed for
testing of the Detection System. Each subsystem was built using a Raspberry Pi 3 Model B
as the processing agent, running operating system Raspbian Sketch 4.14. A Raspberry Pi
V2 Camera was used for capturing the visual input to the subsystem. OpenCV 2.4.9.1 in
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Python 3.5 was used for image detection. Note the interaction of all these components in
Figure 2.

Intersection Manager

Intersection Manager
ESP8266

Car Detection System

n Cameras

Actuators

Controller

Sensors

1

2

3

4

5

6

Figure 2 The IM, Detection System and vehicle interact with each other in five steps to verify
the car data using the environmental sensing data.

4.1.2 Chosen IM
In order to test the Detection System, a version of RIM was used for the IM. RIM iterated

on both AIM and Crossroads, and has the most accurate model for positioning data. By
using the model with the most accurate positioning, the potential of the Detection System
can be seen more clearly.

Briefly, RIM divides the action of a vehicle approaching the intersection into four phases.
Initially, the vehicles synchronize their clocks with the IM and pass a physical synchronization
line. If the synchronization is not successful the vehicle tries to synchronize again. If the
synchronization is successful, then when the vehicles pass the physical transmit line they
send to the IM a packet containing position, velocity, acceleration, timestamp, outgoing lane,
minimum and maximum acceleration, and identification. If this transmit is unsuccessful,
the vehicle slows down and tries again. If this transmit is successful, the IM calculates a
trajectory of arrival and velocity of arrival for the vehicle based on the packet sent by the
vehicle and the respective scheduling algorithm being used to control the vehicles which
are currently interacting with the intersection. Then the IM sends this packet back to the
requesting vehicle, meanwhile the vehicle is keeping a constant velocity headed toward the
intersection until it receives further instruction. Finally, the vehicle creates a reference
trajectory from the received packet from the IM and follows it through the intersection[11].

Using RIM described above as the basis for the IM, the Detection System was incorporated
into a variant algorithm for RIM which for our purposes will be called RIM Robust. RIM
Robust varies from RIM after phase two finishes. In phase three after the vehicle transmits
its data to the IM, the IM verifies that the transmitted data is the same as the environmental
sensing data from the Detection System.

To implement RIM Robust as seen in Figure 3, the first step was to build a model
intersection with model CAVs. The vehicles were built using TRAXXAS RC Car with
onboard ESP8266 boards for communication with the IM, which also used an ESP8266 board.
All boards were designed using the Arduino software suite. A wooden arch was crafted for
the infrastructure to support the Raspberry Pi and Camera above the 1/10 scale model of
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Time of  Arrival and 

Velocity of  Arrival

Figure 3 RIM Robust has a surveillance Detection system that monitors the position of vehicles
and reports it to the IM.

intersection using TRAXXAS RC car. Given that the average traffic light is approximately
18 ft. to 22 ft. in height, our scaled, wooden infrastructure’s height was 26 inches tall. The
infrastructure of the model intersection can be seen in Figure 4.

Figure 4 At one corner of the intersection, you can see one of the four subsystems of the Detection
System mounted on top of the wooden infrastructure with a TRAXXAS RC Car about to drive
underneath.

4.1.3 Image Processing
For image processing, the camera first had to be calibrated. It is important to note the

field of view(a restriction to what is visible in the frame[1]) because it is directly related to
the focal length(the distance from the focal point to the vertex of the first optical surface[10])
which is needed to understand distances in a picture. Note that depending on the angle at
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which the camera is pointed at the intersection, different focal lengths will result. Once the
camera is calibrated and the focal length is found, the images read in could be normalized for
image processing and the front bumper of the RC cars can be more easily detected. Once the
bumper was detected, trackers were created for each RC car[8] which could be used to find
distance by comparing with a base set of images. This base set of images defined the ratio of
pixels to distance, so by comparing an identified pixel to the base set you can estimate the
distance as shown in Figure 5.

Figure 5 Detect the front bumper use the pixels to approximate actual distance from the camera
to the vehicle.

4.1.4 Preliminary results
In Figure 6, the chart shows a comparison between the vehicle self-reporting error and the

Detection System error. The Detection System has an error of approximately 2cm on average
for true distance compared to actual distance. This uncertainty could be introduced by error
in the perception algorithm itself. This error is small, though in a real-world scenario noisy
perception data is likely and thus this methodology to obtain data will need to be tuned
to any given environment. The results from testing show that safety of the intersection is
increased because the likelihood of an accident is minimized, and the total throughput is
increased because there are no accidents that result (where accidents cease throughput of
cars through the intersection). Throughput here is a measure of managed vehicles divided
by total wait time.

4.2 The Benefits of the Detection System
Analyzing RIM Robust, four scenarios may occur shown briefly in Algorithm 2. Note

that the positioning data reported by the CAVs is prone to higher amounts of error com-
pared to the Detection System, which has positioning data that is not prone to external
disturbance/misreporting and therefore the Detection System’s data overwrites the CAVs’
data. In the first scenario, the environmental data is different from the reported data from
the vehicle. This scenario requires the IM to go into recovery mode and update the vehicle’s
information packet to what is observed from the environmental data. The second scenario is
that a request is received by the IM from a vehicle but the requesting vehicle is not detected
by the Detection System. This implies an invalid request is coming from an attacker or an
error occurred, therefore mark this user as an invalid user by implementing methods such as
MAC blocking. This scenario requires that RIM Robust’s policy will be updated so as to
handle attackers who are trying to slow throughput or cause harm. The third scenario is that
the Detection System finds a vehicle entering the intersection which didn’t communicate.
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Figure 6 Observe the difference in position from the known distance to the calculated distance
by the Detection System during one run of the program.

This scenario again requires RIM Robust’s policy will be updated to handle a rouge driver
attack, where a vehicle outside the system maliciously goes rouge. Note the interactions for
the three error scenarios described here are depicted in Figure 7. Finally in the last scenario,
the vehicle’s data matches the Detection System’s data. This requires no change to the
operation of RIM and so the algorithm continues as described in RIM.

In order to test this system, RIM Robust was implemented using recovery mechanisms
such as alerting CAVs of potential attacks, MAC blocking, and updating vehicle’s information.

4.3 Sybil Attack case study
4.3.1 Theory

The Sybil attacker uses false data(eg. ID) to authenticate itself and sends a request to
the IM for passage through the intersection[4]. The attack would cause the IM to schedule
a vehicle which isn’t actually present in the intersection with the intention of decreasing
throughput through the intersection[6]. This leaves the intersection vulnerable in high traffic
situations. To control such situations, the Detection System can monitor the traffic and
determine whether or not the vehicle exists or not. If there is a vehicle detected using the
environmental sensing data, the Detection System goes a step further and identifies the
vehicle using the identification characteristics such as license plate. If the identification packet
sent by the vehicle contains a matching license plate, the vehicle can continue communication
with the intersection. If the vehicle does not match any existing, approaching vehicles in the
intersection the vehicle is label as a Sybil attacker and is marked as an invalid user in the
intersection using MAC blocking.

A large scale sybil attack could result in denial of service to valid vehicles entering the
intersection because the sybil attacker is jamming the IM network with requests. To explain
this in more detail, in a typical traffic situation there is a worst case time it takes a vehicle
to go through an intersection; this would be in fast, high traffic situations. By simulating
this traffic situation, the worst case downtime between requests can be approximated. The
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Actual

Expected

Actual

Expected

Figure 7 Three beneficial scenarios of the Detection System (from top to bottom): when the
vehicle’s communication systems are malfunctioning, when an attacker claims there is a vehicle
nearing the intersection when there is not, and when there is a discrepancy between the connected
data and environmental detection data.

worst case downtime is representative of the time interval between requests in the case where
the maximum number of requests are being made in a short period of time, and therefore the
worst case downtime is the smallest time interval that can occur between requests in high
traffic situations. If the interval were any smaller than the determined worst case downtime
it would mean that vehicles were physically overlapping which is impossible.

4.3.2 Implementation

In this experiment we used one ESP8266 microcontroller board for simulating the attacker.
In the event that a sybil attack is sensed, based on the identification and information sent in
the packet from the vehicle, the Detection System verifies that in the respective outgoing
lane there is a vehicle that matches the identification information. If such a vehicle doesn’t
exist, the first step is to alert CAVs in the intersection to a potential threat and to proceed
with caution. The next step is to get the MAC of the malicious requesting vehicle and use
the MAC address to block it from interacting with the IM and other CAVs on the network.
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4.3.3 Results
It was observed that as the number of these sybil attacks increases, the throughput of

the intersection decreases drastically in RIM because RIM schedules all vehicles that make
a request. However using RIM Robust, the vehicles are tracked and if a vehicle that is
communicating with the IM isn’t detected, it is blocked from the intersection; therefore,
the only vehicles scheduled are those physically present at the intersection and there is no
throughput degradation.

4.4 Vehicle failure

4.4.1 Theory
If vehicle fails to communicate with the IM, whether it be that the communication systems

aren’t functional or possibly the vehicle doesn’t have enough power for communication, the
intersection should be able to manage traffic. A distinction should be made here: a vehicle
failure is not a latency issue in communication between IM and CAV. In the scenario of
latency in communication and the vehicle is too close to the intersection, the vehicle would
slow to a stop if necessary to initiate communication. However, in the situation where
vehicles don’t have the ability to communicate at all, the Detection System should be able
to identify them once they are within bounds of entering the intersection.

4.4.2 Implementation
When the Detection System identifies a vehicle which has crossed the synchronization line

and hasn’t communicated with the IM yet, RIM Robust can plan its scheduling accordingly.
Two cases may occur if the vehicle doesn’t communicate with the intersection. The first is if
the vehicle comes to a stop outside of the intersection. In this case vehicles already scheduled
proceed normally and vehicles which are communicating to receive a schedule slow down.
These vehicles wait for a notice from the IM, whose job is to observe the location of the
vehicle. The second case is if the vehicle doesn’t stop before reaching the intersection. In
this case the car continues through the intersection without communicating to the Detection
System. For this situation, the vehicles already scheduled proceed with caution and vehicles
which are communicating to receive a schedule slow down until the car has passed through
the intersection. Once the vehicle which is not communicating exits the intersection, normal
operation proceeds. For this case study, TRAXXAS RC cars went through the intersection
without communicating with the IM. This was done to observe if the Detection System
recognized that cars were present in the intersection and prevent a potential accident.

4.4.3 Results
This is a necessary precaution for managing vehicles who cannot be scheduled. The broken-

down vehicle situation eliminates a lane of traffic, which is extremely harmful to managing
traffic properly. This case study didn’t implement managing this situation beyond alerting
CAVs to the situation. In the other scenario of this case study where a vehicle proceeds
through the intersection without communication, it is assumed the vehicle which cannot
communicate with the IM is either a potentially malicious vehicle or it is a vehicle whose
communication is down. Both are a threat to safe operation, and due to the unpredictable
nature of this vehicle it is safest to clear the intersection of all vehicles and let this vehicle
make its decision (pass through the intersection) before normal operation begins. Comparing

ASD 2019



7:12 A Dependable Detection Mechanism for IM of CAVs

throughput in this scenario, RIM may cease safe operation if a rogue car causes an accident
but RIM Robust ensures no accident will occur so traffic will continue normally after the
rogue car is handled.

4.5 Reporting error

4.5.1 Theory
The vehicle may fail to maintain the expected trajectory of arrival or velocity of arrival,

and this failure can cause a position error greater than the threshold set for an acceptable
safety buffer. This leaves the intersection vulnerable to collision, so to validate this situation
the Detection System monitors the vehicles’ positioning data and ensures scheduling doesn’t
violates any safety buffer boundaries.

4.5.2 Implementation
RIM Robust was tested for this scenario by hard-coding an error in the reporting

mechanism of the TRAXXAS RC Car to be plus or minus one meter from a given position.
The role of the Detection System is to monitor the actual position of the vehicle and report
this to the IM. If the IM recognizes a discrepancy between the reported value from the vehicle
and the observed value from the environmental sensing data the IM defaults to using the
data provided by the Detection System and updates both the vehicle’s information and the
scheduling algorithm inputs.

4.5.3 Results
No safety buffers were violated in the RIM Robust. Violation of safety buffers may lead

to accidents in RIM and halt operation of the intersection entirely, but this scenario won’t
occur using RIM Robust.

5 Conclusion

As processes for driving continue to become more automated, it becomes pertinent to
ensure safe passage during traffic. Intersections become an area of concern for safe passage,
as this is the most complex area of traffic to navigate given the infinite scenarios that can
occur. IMs are typically a great way to increase efficiency of traffic, but ultimately IMs are
unsuccessful if they cannot direct vehicles safely in all scenarios. Many researchers using IMs
to conduct traffic have one source for position reporting and therefore lack redundancy. The
advantage of using the Detection System is the high level of position certainty that can be
obtained. Adding the Detection System to an IM makes the intersection more resilient to
attack or inaccurate reporting because it increases the reliability of the system by duplicating
positioning data sources. By relaying the information obtained by the Detection System
back to the IM, and combining it with the connected data between vehicles and the IM, a
more accurate portrayal of the intersection is obtained and vehicles can react safely to even
more scenarios than was possible before.
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Abstract
Real time perception and understanding of the environment is essential for an autonomous vehicle.
To obtain the most accurate perception, existing solutions propose to combine multiple sensors.
However, a large number of embedded sensors in the vehicle implies to process a large amount of
data thus increasing the system complexity and cost. In this work, we present a novel approach that
uses only one LIDAR sensor. Our approach enables reducing the size and complexity of the used
machine learning algorithm. A novel approach is proposed to generate multiple 2D representation
from 3D points cloud using the LIDAR sensor. The obtained representation solves the sparsity and
connectivity issues encountered with LIDAR-based solution.
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1 Introduction

Camera, Stereo-camera, RADAR, and LIDAR are the sensors that provide our view of
the world. To enable machines to understand our world, multiple approaches have been
developed. Camera-based systems are the most dominant [2, 19, 3]. Recently, approaches
using depth information generated from stereo-camera have started to gain popularity, as
they have proven to improve accuracy. Knowing that camera and stereo-camera are almost
the same since the stereo-camera enable the recovery of depth information compared to
the monocular camera. Similar Machine Learning (ML) algorithms for multi-class object
detection and segmentation are used with minor modifications. On the other hand, the
LIDAR has fallen behind performing mainly detection tasks [20, 17, 14] as the variance in
the points coordinates ease the task.

The richness and variation of data fed to an ML determine its complexity and size. These
two factors have a direct impact on network accuracy. Images are well structured and rich in
information, as each pixel has a non-zero value and adjacent to another pixel on a 2D plane.
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However, this richness adds more challenges like illumination conditions, shadows, colors, and
textures. All these parameters require an ML architecture to have more layers to capture
abstract aspects like car tires and window edges. A large amount of filters is also needed
to accommodate the infinite changes that we can obtain like car shapes and the possible
textures of an object. The LIDAR is an active sensor capable of operating in the majority of
weather conditions and at any daytime. Unfortunately, due to its rotatory movement, the
obtained points are unstructured, unordered and have no connectivity between them. These
weaknesses make it difficult to use for multiple purposes when compared to the camera sensor.

In this work, we propose a new approach to generate multiple 2D representations using
only a 3D LIDAR. These representations reflect the real world and are immune to camera
limitations. These representations allow us to see the silhouette of objects without the added
textures, colors and illumination condition. Some of the generated representations are an
up-sampled version of the ranging data projected into an image, where the new values are
filled using interpolation. Further, the obtained representations simplify the ML architecture
and reduce its size thus gaining in processing time and getting closer to real time.

Our Contributions are as follow:
Novel range data up-sampling process to enable camera-based approaches to be used
with LIDAR data.
Robust normal map estimation.
We present a new approach to reducing the complexity of current machine learning
algorithms and their computation overhead.

In Section 2, we present the related work to up-sampling the ranging data, then we
introduce the concept in Section 3 and method to generate the representation in Section 4.
We then conclude the paper by presenting the benefits of the proposed representations for
machine learning algorithms.

2 Related Work

The first attempt to generate dense information from range data which corresponds to LIDAR
points cloud in our case was made by Diebel et al [4]. The authors proposed a range of data
and image fusion to generate a dense depth map from a low-resolution one. They fed the
projected range data with the image to Markov Random Field regressor, then they generate
the high-resolution depth map by iterating through the MRF. Their experiments showed
that textured surfaces had a negative impact on the estimated values as color value changed.

In [1], Andreasson et al. proposed 5 interpolation methods as a replacement to the
MFR proposed by [4]. The nearest range (NR) and multi-linear interpolation (MLI) are
color free estimations. The color was considered in the two modified version NRC and LIC.
These approaches relied on an empirically predefined constant and parameter-free version
of LIC was further introduced as PLIC. Their results in a laboratory environment under
controlled illumination has proved that color improved accuracy. However, experiments in
real conditions showed that color had the opposite effect. This limitation is caused mainly
by variant illumination conditions.

In [10], Yuhang et al proposed a new approach to generate depth, height and a normal
map from the range data and image. They used different features to determine the value
of the new pixels. The features were used to minimize the effects of textured surfaces and
illumination conditions on the final result. However, their result accuracy varies according to
the used window size. These representations have proven their effectiveness in the work of [9].
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Further, the KITTI benchmark recently launched a competition to generate the depth map
from the LIDAR data, when used solely or in conjunction with a camera. This competition
saw the introduction of machine learning algorithms, where the best at the time of writing
this paper is [15]. The authors considered the up-sampling task as a deep regression problem.
They feed depth data and color sequences to the regression network.

Ku et al [13] proposed a simpler approach to up-sample the range data, by using a
computational fast process like morphological dilatation, filling and blurring. They were able
to generate the depth map in 11ms on a CPU and their results were comparable to results
obtained by convolutional neural networks.

In [16], Schneider et al. propose to use the edge information to guide the up-sampling.
The authors considered the up-sampling as a global energy minimization problem. Although
the approach was developed for time-of-flight cameras, the authors were able to extend it to
range data and compete in the KITTI depth completion.

Dimitrievski et al [5] proposed a morphological neural network, their approach approx-
imates morphological operations using a novel Contraharmonic Mean Filter layers. The
proposed network is modified U-net architecture with morphological layers.

Multiscale networks have produced very interesting results in the KITTI challenge. In
[11], Huang et al proposed a hierarchical multi-scale network, they introduced three sparsity-
invariant operations. These operations were used to create a sparsity-invariant multi-scale
encoder-decoder network. The method was developed to deal with the sparsity problem in
the range data generated by LIDAR.

Although these approaches are able to generate dense depth map representations and
more representations in some of them, the following problems arise:

A degraded image quality is obtained under unfavorable illumination conditions.
A large number of points must be used for the estimation.
The whole process must be repeated much time to obtain a different representation. This
factor increases the processing time with the number of generated representations.

Existing approaches use a window to retrieve the close points for the estimation. A wide
window utilization could augment greatly the number of used points, thus generating false
estimations at high variance regions. Furthermore, the number of points cannot be reduced
due to adapt the algorithm to the hardware processing constraints. In this work, we consider
a newly generated pixels as part of a triangle surface, where the value is an interpolation
between three closest points. This approach removes the need for a fixed window and allows
the generation of the representations without the need to repeat the process.

3 Optimized 3D representation for LIDAR data

Real objects are in general modeled as 3D model mesh consisting of 3D points and their
connectivity list. In this work, we propose to generate a 3D mesh from the LIDAR ranging
data. The high accuracy of this data enables the creation of a mesh that mimics the
environment of the vehicle. Greater control over desired the desired output resolution is then
possible. This obtained mesh enable the generation of a set of representations, which we
formulate as follows:

R3 ≡ {R2,R2,R2, ....} (1)

Figure 1 presents a 3D mesh obtained by our approach and Figure 2 shows the multiple
obtainable representations. The Figures 2.b to 2.d representations show (respectively) the
rendered X, Z, Y and the reflection of the surface. These representation using only the mesh
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Figure 1 Reconstructed mesh from point cloud.

Figure 2 Rendered representations (from top to bottom) a) Initial image, b) up-sampled x
coordinates, c) Up-sampled z coordinates, d) Up-sampled y coordinates, e) Reflection data, f)
Estimated normal map (final result).

Figure 3 Overall Algorithm.
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and points coordinates in the real world. The last representation is a 3-channel image, where
each channel contains one of the normal parameter estimated from the three points making
the surface. In the last representation (Figure 2.f), the coordinates of the points and their
connectivity were used to generate the results.

Further results can be acquired, such as object contours, using the mesh connectivity
list and the angle between the points. This last feature is very interesting as it allows to
obtains the contours with a relatively reduced processing. In the next section, we present
our method to obtain the connectivity list.

4 Method

A 3D mesh is a virtual construct composed of a 3D point set and their connectivity list.
The LIDAR generates an accurate point cloud from its environment. These points can be
considered as the first half of the mesh. However, the rotatory movement, the angular speed,
the number of receptors and the used algorithm have a great impact on the number of points.
These factors have an important variance in the possible results obtained.

The steps to generate the representation are shown In Figure 3. We bring the reader
attention to the fact that all the steps can be done in parallel.

4.1 Division and Filtering
Point clouds are unordered and have no connectivity by nature. Attempting to generate a
mesh in this format will be time-consuming. A simpler and effective approach is to process
the points in 2D space. This allows to reduce the complexity of the algorithm and gives
faster processing compared to 3D space representation.

The projected point number can be also be reduced to accelerate the processing. Our
experiments show that reducing the number of points will not greatly reduce the quality of
the results. This point will be discussed in the experiments section.

After the projection, the points are divided into a grid with equal dimensions. The
number of points in each grid cell is then reduced based on distance criteria. This distance
controls the number of points used to create the mesh. In this work, the Manhattan distance
is used for its computation simplicity. In Figure 4, reduced points with different distances
are shown. We attract the reader attention to the blue rectangle. As can be seen, the details
of the scene are preserved even with a big distance.

4.2 Triangulation and mesh creation
Delaunay triangulation is used to create the connectivity list between the points. Multiple
variants of the algorithm exist from which we denote: Flip algorithms [12], Incremental [8, 7]
and Divide and Conquer [6]. The Divide and conquer variant is chosen in our approach for
two main reasons. First, generating these representations have to be as fast as possible. The
work of Su et. Al [18] proved that this variant is the most performing approach. Secondly,
the algorithm has been developed with GPUs in mind. The points in the grid cells can be
processed separately and in parallel then merged at the end.

4.3 Rendering
The rendering step is where the up-sampling is performed. For each triangle, the value and
positions of the delimiting points are used to interpolate the new values at rendering time.
Figure 5 presents four examples of rendered triangles.
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Figure 4 Ranging data projected after filtering with different distances: a) 1 pixel, b) 5 pixels, c)
10 pixels, d) 15 pixels.

Figure 5 Samples of rendered triangles mimicking possible interpolations cases.
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Figure 6 Up-sampled ranging data: a) the original image, b ,c and the respective up-sampled x,
y and z coordinates.

Each example in Figure 5 represents a possible case.
In this example P1, P2, and P3 are the delimiting points of the triangle, each point has a

different color to mark its contribution to the interpolation. In 5.a), the three points have
the same value to simulate points on the same surface. The three points contribute equally
to the interpolation. In the case of 5.b), P2 and P3 are 0.05 the value of P1 to simulate the
case of a distant point that is connected to close ones, it can be observed that P2 and P3
do not contribute. Case 5.c) simulates the case where the three points belong to the same
object with a slight difference in the value. We bring the reader’s attention to the differences
between this case and case In 5.a) for comparison. Case In 5.d) present a randomly shaped
triangle.

5 Improving ML

Machine Learning (ML) based algorithms is becoming popular where a large set of data
must be processed in a reduced time period. The three most researched tasks in ML are
classification, detection, and segmentation. With the proposed representations in this paper,
detection and segmentation tasks are targeted for AV. We present two possible improvements
to accelerate and train machine learning algorithms.

Detection and segmentation algorithms are used to extract object shape, delimiters, and
position from the provided images. In contrast to existing classification algorithms that have
to differentiate between two visually different instance of the same object. We propose to
use the generated representations as a replacement to camera provided images. The idea is
that object in a scene can be detected using their silhouettes instead of their texture. Figure
6 shows the image of a car and the corresponding x, y and z representations. The reduced
visual complexity produced by textures, illumination, and shadows allows the reduction of
filters number inside layers, thus compressing the size of the model and accelerating the
processing time.
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Figure 7 Generated normal map for a complex environment: a) The original image b) The
generated normal map.

Furthermore, the generated normal map enables the clustering of points into surfaces
and ease the differentiation between the multiple objects in a scene. In Figure 7 we present a
scene that contains the normal that can be found in a complex environment.

As a second improvement, we propose to train ML algorithms using synthesized repres-
entations using modeling software. In fact, the representations do not require any realism
and can be used in real-world applications.

6 Experiments

To evaluate the accuracy of the generated meshes, a ground-truth mesh is needed. However,
this information is unavailable, as an alternative, the evaluation was carried using the
generated representations. A 100 scene was chosen at random from different sets, and for
each scene we generated the X, Y and Z representations with filtering distances in the range
[5 - 25] pixels between the points, we found through experiments that a distances less than 5
pixels will create small triangles that cannot be rendered in the flowing step. The results are
compared using the Root of Mean Squared Error (RMSE), Mean of Absolute Error (MAE)
to the ranging data, and the number of triangles. The RMSE will give an insight on the
standard deviation of interpolation error, whereas the MAE will reflect the common error
value. Finally, the number of triangles in the mesh present us with the impact of rendering
on the hardware. In Figure 7, the MAE and RMSE metric is plotted for the height (Z)
representation, the results are in relation to pixels distance between projected points, in
addition to triangles count. The result shows that with a distance of 5 pixels introduces a 1
cm absolute error and a 10 cm deviation compared to 3 cm absolute error with 25 pixels
distance, it can be observed that standard deviation is only about 2 cm more for 25 pixels
distance for 45% of the triangles counts. Thus, enabling the possibility to choose a balance
between the desired accuracy and the dedicated processing power or processing time.
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Figure 8 The different fusion architectures.

Table 1 Interpolation error MAE and RMSE in meters.

Error Metric per coord Filtering distance in pixel
5 11 19 25

X MAE 0.160 0.320 0.443 0.498
RMSE 1.857 1.902 2.053 2.119

Y MAE 0.045 0.088 0.153 0.168
RMSE 0.763 0.768 0.807 0.824

Z MAE 0.009 0.019 0.026 0.029
RMSE 0.100 0.102 0.109 0.113

In Table 1, the interpolation error is presented, in relation to the distance by which the
number of points is reduced. From the table, it can be observed that the error is strongly
connected to the range. For example, values for the X coordinates range from 0 to 60 meters,
where the mean absolute error increase from 16 cm to about 50 cm the more the filtering
distance increase, which is not the case for the Z coordinates that range from −2m to 1m
relative to LIDAR position.

7 Conclusion and Future Works

This paper presents an ongoing work on generating multiple representations from LIDAR
ranging data. Our aim is to introduce a novel approach to reduce the size of ML architectures
and augmenting the training set. Currently, we are implementing the generation of the
representation to run in parallel on a GPU. In the next steps, we will evaluate the impact of
reducing the number of points on the processing time and results in accuracy. We will also
validate our hypothesis of compressing ML architecture by testing it on a variety of detection
and segmentation architectures.
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Abstract
Making decisions under uncertainty is a common challenge in numerous application domains, such as
autonomic robotics, finance and medicine. Decision Networks are probabilistic graphical models that
propose an extension of Bayesian Networks and can address the problem of Decision-Making under
uncertainty. For an embedded version of Decision-Making, the related implementation must be
adapted to constraints on resources, performance and power consumption. In this paper, we introduce
a high-level tool to design probabilistic Decision-Making engines based on Decision Networks tailored
to embedded constraints in terms of performance and energy consumption. This tool integrates
high-level transformations and optimizations and produces efficient implementation solutions on a
reconfigurable support, with the generation of HLS-Compliant C code. The proposed approach is
validated with a simple Decision-Making example for UAV mission planning implemented on the
Zynq SoC platform.
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1 Introduction

Embedded Decision-Making is necessary in a number of contexts including medical applic-
ations and autonomous vehicles. Embedded solutions make it possible to adapt to the
constraints of a real-time response that would be impossible with centralized off-board
decision making due to the need for communication media access. For instance, in the case of
unmanned aerial vehicles (UAVs) or intelligent vehicles, on-board decision making based on
image recognition enables real-time responses to propose appropriate action (e.g., to continue
tracking or to dismiss) in an autonomous manner. Many examples of embedded decisions
have been recently tested [26] [20] [6].

Among the techniques available for Decision-Making, three approaches have recently
emerged in the literature [3]: 1) Multicriteria Decision-Making techniques, 2) Mathematical
Programming techniques and 3) Artificial Intelligence. Nevertheless, to deal with uncertainty
of the environment and of the system (external or internal hazards), fuzzy techniques [2]
or stochastic/probabilistic models such as Bayesian Networks [21] are used. In this paper,
we focus on Decision Networks (also called Influence Diagrams), which are considered as an
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extension to Bayesian Networks (BN), including a Decision-Making (DM) mechanism based
on utility tables. Compared with a fuzzy model, a Decision Network (DN) is specified by a
causality graph that encapsulates the expert knowledge of the system and provides a good
comprehensive and efficient formulation for the designer.

For an embedded version of a Decision-Making mechanism, the following features are of
major importance: 1) achieving (real-time) performance under the constraints of memory or
computation related to the embedded system, 2) ensuring quality of service under power
consumption constraints. For Bayesian Networks, literature on embedded implementation
can be found for both software [22] and hardware versions, the latter with reconfigurable
hardware [16] [18] [25] using Field-Programmable Gate Array (FPGA). In [25], the authors
propose BN in reconfigurable hardware, but the decision mechanism that integrates temporal
specification in temporal logic is operated by the embedded processor. For embedded DN,
the ARPHA framework [22] [7] makes it possible to design specific failure scenarios from fault
tree specifications. ARPHA generates an embedded software version of a DN, but does not
propose any hardware alternative. To the best of our knowledge, no hardware implementation
of DN on reconfigurable platforms have been proposed as alternative embedded solutions.

In this paper, we propose a design tool to generate a reconfigurable implementation
of Decision Networks from high-level specifications of a Decision-Making engine. This is
the first design tool that proposes automatic generation of Decision Networks on FPGA.
The main contributions are: 1) the specific High Level Synthesis (HLS) transformations to
produce a HLS-Compliant C Code, 2) the generation of adequate HLS directives for efficient
implementation on an FPGA/SoC (System On Chip) platform.

The paper is organized as follows. Section 2 gives an introduction to Decision Networks.
Section 3 introduces the design tool to generate the embedded Decision-Making engine from
DN specifications, with a specific focus on the dedicated HLS transformations and HLS
directives for an efficient implementation on the FPGA/SoC platform. Section 4 presents a
case study that validates the flow up to implementation on a Zynq platform.

2 Background on Decision Networks and Probabilistic Beliefs

Decision Networks extend Bayesian Networks to provide a mechanism for making rational
decisions by combining probability and utility theory. In addition to chance nodes defined
by a BN, a DN also includes utility and decision nodes. Decision nodes represent the set
of choices open to the decision maker, while utility nodes are used to express preferences
among possible states of the world represented by the chance nodes and decision nodes.

2.1 Bayesian networks for probabilistic beliefs
BNs are probabilistic graphical models used to understand and control the behaviour of
systems [8] by providing diagnoses. They are composed of nodes and oriented arcs between
nodes representing the knowledge expertise of the system. In Fig. 1 a), we propose to evaluate
the probability of a UAV increasing or decreasing its altitude (U_A) based on the information
given by two sensors: the altimeter sensor (S_A) and the barometer sensor (S_B). The
BN nodes of the networks represent random variables whose values can depend on specific
states, and the arcs of the network indicate the conditional dependencies represented by the
conditional probabilities defined with probability tables (CPTs). In the example, each node
has two states, represented by the values inc and dec. The probabilities of the BN are also
known as the parameters of the network.
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Figure 1 BN principle and DN example: a) BN example, b) Inference illustration, c) Dynamic
BN, d) DN example.

To obtain the probability of one variable being in a specific state (A), we use an inference
mechanism that takes into account some observations (evidence indicators) of the system in
order to compute the posterior probabilities over A using Bayes’ theorem (Eq. 1).

P (A|B)P (B) = P (A ∩B) = P (B|A)P (A) (1)

We use Bayes’ theorem for our example (illustration in Fig. 1 b) to compute the probability
of the variable U_A being in a state "increasing" by taking into account the value of the
altimeter S_A as evidence.

This is done as follows:

P (U_A = Inc|S_A = Inc) =P (S_A = Inc|U_A = Inc)P (U_A = Inc)
P (S_A = Inc)

= 0.7 ∗ 0.5
0.7 ∗ 0.5 + 0.2 ∗ 0.5 = 0.778

We can thus say that the probability of the altitude status being "increasing" is equal
to 0.778. If, for example, we add observations from the barometer sensor, also giving it an
increasing value, the probability P (U_A = Inc|S_A = Inc, S_B = Inc) increases to 0.969.

The probabilities can change over time. So it could be more appropriate to use dynamic
BN to model the change. In the case of a UAV, if we have a greater chance of maintaining
an increasing altitude if the UAV is already in this situation, and can model this with
time-dependent variables as proposed in Fig. 1 c).

As BN are dedicated to computing the probabilities of the states, we need an extra
mechanism to express the decision making that takes into account these values for the choice
of appropriate actions to safely continue a mission. We therefore use the Decision Networks
for the Decision-Making process.

ASD 2019



9:4 Generation of a Reconfigurable Probabilistic Decision-Making Engine

2.2 Example of a Decision Network
DN are directed acyclic graphs (DAG) with nodes belonging to three different categories:
chance nodes (ellipses or circles in graphical notation), which represent (as in BN) discrete
random variables; decision nodes (rectangles), which represent actions or decisions with
a predefined set of states; and value nodes (diamonds), which represent utility (or cost)
measures associated with random or decision variables. Edges represent direct (possibly
causal) influence between connected objects. An example of Decision-Making (see Fig. 1 d)),
linking the two BNs (representing the probabilities of the UAV Altitude state and of the
well-functioning Battery state), and the possible actions (Speed Up action, Slow Down action
and Emergency Landing action) to be chosen with the respect of a utility table. The utility
table (detailed in the Table 1) gives a score for each action relative to the BNs, and the
choice of the adequate action is given by computing a utility function (Uf ) for each action.

Table 1 Utility table for decision making with DN associated with the actions Speed Up (SU),
Slow Down (SD) and Emergency Landing (EL).

UAV inc dec
Alt.
(UA)
Battery ok bad ok bad
(HE)
Actions SU SD EL SU SD EL SU SD EL SU SD EL
(A)
U 100 0 0 0 0 100 0 100 0 0 0 100

To compute the utility function we need the probabilities provided by the BNs. The
utility function of each action is equal to the sum of the products of the action with the
adequate probability concerning the UAV state and the battery state. The action to be
chosen is the action that has the highest utility function.

Let us consider the example of Fig. 1 d):

Action_to_activate = Max(U_fSU , U_fSD, U_fEL)

where each U_fk(k = {SU, SD,EL}) is equal to

U_fk =
∑
i

∑
j

U(A = k, UA = i,HE = j) ∗ P (UA = i) ∗ P (HE = j)

(i = {inc, dec} and j = {ok, bad})

In this example, if we take the BN probabilities P (UA = inc) = 0.9 and P (HE = ok) = 0.8
and the utility table in Table 1, then U_fSU = 72, U_fSD = 8 and U_fEL = 20, which
means that the action chosen is SU ("Speed up") this case.

3 Design Tool Proposal

The proposed design tool (Fig. 2) incorporates the two following main layers:
1. In the first layer, the Bayesian core tool takes a DN as input. The DN specifications

can be expressed in .net format or .m format to make them compatible with other
tools such as Genie [14] or BNT [19] for Matlab. First, a series of dedicated high-level
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transformations are proposed for the BN part: AC compilation based on model patterns
and evidence optimization. Then, optimizations on the whole DN part are proposed, such
as bitwidth optimization and a functional/structural decomposition based on the choice
of the elementary function for a hierarchical decomposition before the generation of the
C-code.

2. In the second layer, a refinement of C-code is proposed by introduction of HLS directives
for code parallelization, memory and interface management. This latter C-HLS compliant
code is tailored for complete FPGA implementation on ZedBoard.

The first layer proposes high-level transformations and provides parallel opportunities for the
code, independent of the target platform. The second layer gives a more practical guide for
parallel implementation on a FPGA/SoC platform. This second layer is platform dependent.
In this presentation, we focus on specific high-level transformations for BN and on the
generation of C-code in order to show the ability of the design tool to generate parallelism.
We therefore do not detail the bitwidth adaptation and functional/structural decomposition.
The probabilities are defined here in a floating-point representation in the different examples
of Section 4, but they can easily be limited to fixed-point representation, thus saving some
FPGA resources at the same time.

C−HLS Compliant

Bitwidth optimization

C−HLS Compliant 
with directives
for FPGA/SoC

BN Pattern recognition
Modular AC generation
Evidence optimization

DN specification in .net or .m

Bayesian Networks

Influence Diagram for DM

Structural decomposition

HLS tool/FPGA implementation

HLS directives
(for parallelisation, 
memory optimisation,

SW/HW interface)

Figure 2 Proposed HLS Design tool for Decision Networks on an FPGA support.

3.1 Bayesian core tool for DN: Dedicated high-level transformations
for DN

In this section, we start with an introduction to the intermediate representation (arithmetic
circuit compilation) used to synthesize the BN specifications. High-level transformations are
then proposed to generate a synthesizable C-code for DN specifications.
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9:6 Generation of a Reconfigurable Probabilistic Decision-Making Engine

3.1.1 Arithmetic circuit (AC) compilation for BN inference
BN inference algorithms are used to answer queries when computing posterior probabilities.
Classical inference algorithms are based on propagation on the junction tree. A major
problem for embedded systems is the complexity of the computation. Algorithms based on
ACs are powerful and can produce predictable real-time performances [4] [10].

The AC representation of BN can be built from the multilinear function (MLF) f [11]
associated with the marginal probabilities of the BN (Figure 3). The leaves of the arithmetic
circuit are λ (evidence indicator) and θ (network parameter), and the inner nodes of the
tree represent a multiplication (*) or an addition (+), alternately. To compute the posterior
probability P (x|e)= f(x,e)

f(e) (where x is a variable and e the evidence) for the diagnostic, two
steps are required: the first to evaluate f(e) and the second to compute the circuit derivatives
to obtain f(x,e)= ∂f

∂λx
.

A B

A θA

a θa = 0.3
a θa = 0.7

+

*

λa θa +

*

λb θb|a

*

λb θb|a

*

λa θa +

*

λb θb|a

*

λb θb|a

A B θBA

a b θb|a = 0.1
a b θ

b|a = 0.9
a b θb|a = 0.2
a b θ

b|a = 0.8

f = λaθa(λbθb|a + λbθb|a) + λaθa(λbθb|a + λbθb|a)

(a) (b)

Figure 3 (a) A Bayesian network with a multilinear function. (b) The corresponding arithmetic
circuit.

3.1.2 Modular AC generation associated with model patterns
It is possible to simplify the generation of AC if the BN structures correspond to identified
patterns. For instance, in the examples of Section 4, the structure of BN is clearly repetitive
and matches the pattern we named the FMEA_HM pattern, described in Fig. 4. Other
patterns can also be used, like the SWHM (software Health Management) model proposed
in [24]. The BN of FMEA_HM pattern evaluates the probability of well functioning for a
specific item in the system providing the diagnosis, also called HM (Health Management).

In such cases, the generation of the AC uses a modular approach of inference computation
by taking advantage of the factorization of the MLF and the regular structure associated
with the pattern. In the case of an FMEA_HM pattern, the AC MLF factorization is based
on the relationship between child and parent nodes. The sub-MLFs for child nodes (if there
is no conditional dependence between them) are represented by a + in the AC, and parent
nodes combine them with a *. In this model, all error type nodes and all monitor nodes are
children of the U node (unobservable status of the system). Since there is no conditional
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dependence between these nodes, their MLF can be calculated separately and in parallel,
similar to the sub-BNs of each error type, where the parent node is the error type and
the child nodes are the monitor and appearance context nodes. This allows us to have a
hierarchical and modular AC.

Figure 4 FMEA_HM pattern for BN where the S_U , S_Ei nodes represent the sensor nodes
of either a hardware or a software monitor, the nodes U , U_Ei are the internal states possibly
affected by an error Ei, the H_U node represents the health of the system, H_S and H_Ei nodes
represent the health of the sensor, and the A_H, A_H_Ei are the appearance contexts.

This principle can be easily extended to Dynamic Bayesian Networks by considering the
temporal variables.

3.1.3 BN optimization based on evidence

In an AC, we can see that the values (λx, λx̄) of evidence of a variable X are equal to:
(λx, λx̄) = (1, 1) when there is no observation on the variable X,
(λx, λx̄) = (1, 0) when the evidence is on the variable X and the observation is x,
(λx, λx̄) = (0, 1) when the evidence is on the variable X and the observation is x̄.

Furthermore, in our examples in Section 4, two types of node (observable and unobservable)
are known: C, A and S nodes are observable (evidence), so they take the values (1, 0) or (0, 1)
for evidence. The other nodes are unobservable, so they take the values (1,1) for evidence.
These observations and the symmetrical structure of the AC make it possible to reduce the
AC as follows:

Delete the left (or right) topmost branch containing a C (or an H) node, and in all
sub-branches where C (or H) appears, replace the probability parameters by a choice
between the right or left value. We can simplify here, because the value of (λx, λx̄) of
these nodes is never equal to 1 at the same time,
Repeat this procedure for all C and H nodes,
Fix all the λx values for the unobservable nodes at (1, 1).
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9:8 Generation of a Reconfigurable Probabilistic Decision-Making Engine

3.1.4 C-synthesizable code for DN
The decision-making approach is based on the utility function equation, taking the HM
results from BNs, actions and utility table as input. The C-synthesizable code is generated
for BN in two ways: a) in a hierarchical way, by choosing several kinds of elementary block,
or b) in a flat way. In a hierarchical version, the elementary blocks are chosen considering
the structure of the AC tree.

The C-synthesizable code of the DN is given by the following algorithm:

Algorithm 1 Decision Making.
Require: Proba from BNs HM1, HM2, ...., HMn, actions A1, A2, ...., An and the utility
table U
for all states i1 of HM1 do
...
for all states in of HMn do

for all actions Ak do
// Compute utility function for each action

Uf_Ak = Uf_Ak + U(Ak, HM1 = i1, ..., HMn = in)
∗P (HM1 = i1) ∗ ... ∗ P (HMn = in)

end for
end for
...

end for
return Maximum of Uf_Ak

3.2 Generation of HLS directives for a SoC implementation on
ZedBoard

3.2.1 ZedBoard target for SoC/FPGA implementation
Our design approach is characterized by the separation of processing components from
functional programmable components. The proposed design targets the ZedBoard incorpor-
ating a hybrid Zynq processor [9]. As shown in Figure 5, the architecture is built around
the ARM Cortex-A9 processor (Zynq processing system PS). The processor communicates
with dedicated HW accelerators using programmable logic through an Advanced eXtensible
Interface (AXI) bus.

For the SoC implementation on ZedBoard, numerous HLS directives have been proposed [1].
Here, we list only the main ones used for this experimentation.

3.2.2 Parallelization directives at function calls and for loops
In order to increase the parallelism, the following main directives are chosen:
1. INLINE: Inlines this function call (does not create a separate level of RTL hierarchy) and

allows resource sharing and optimization across hierarchy levels.
2. UNROLL: Duplicates computation inside the loop and increases computation resources,

decreases number of iterations.
3. PIPELINE: Pipelines computation within the loop (or region) scope and increases through-

put and computation resources.
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Figure 5 The hybrid architecture of the Zynq processor for SoC implementation.

Most of the time, the resources available for the IP are limited because other applications can
share the resource. So the parallelization directives are used considering resource constraints.

3.2.3 Memory management directives
For the storage of the parameters of the Bayesian network, two main options are used for an
embedded version inside the programmable logic component:
1. BRAM: with the directives array_map or array_partition
2. LUT: default option
The data organization should be addressed correctly taking into account the interface
mechanism.

3.2.4 Interface management
The inputs of the SoC are the evidence of the networks that are data provided by sensors.
These are stored in an external memory (DDR). As for the evidence of the networks, the
parameters of the BN are inputs of the IP and can be stored either inside the SoC (BRAM,
LUT or CACHE) or outside in an external memory. This choice depends on the designer’s
needs and on the possible changes of the network parameter values. To access the external
memory, different interface options are possible:
1. STREAM: AXI stream
2. DMA: Master DMA

4 Case Study of a Simple UAV Mission Plan

In this section, we present a case study that validates the design flow up to implementation
on the Zynq platform. In this section we consider a simple UAV mission that address two
main failure scenarios; one related to GPS failure and the other to the battery failure. Both
can be expressed by BN, considering the FMEA_HM pattern.

4.1 Bayesian networks for the health of the GPS receiver and of the
battery

The accuracy and reliability of the position given by a GPS depend on contextual factors
affecting the satellite signal during its propagation or its reception. The sources of error
can be identified at the system level by means of additional bias in the computation of
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pseudo-range measurements [17] [23]. These measurements can tune the GPS positioning
accuracy from slightly imprecise to completely faulty. They can be improved by introducing
observations [12] or real environments [13]. The main GPS localization errors are illustrated
in Fig. 6 with a BN.

H_U_GPS

U_GPSS_GPS

H_S_GPS

V ibration

Altitude

U_EMultipath

Ground

S_LaserWeather

H_S_Laser U_EIonosphere

Geo.Temp.Elev.

S_Freq.

H_S_Freq.

U_ET roposphere

Hum.V ap.

S_Model.

H_S_Model.

Figure 6 GPS potential errors and BN description.

To model battery behaviour, we use a dynamic BN to represent the linear progression of
the energy consumption over time.

This dynamic Bayesian network is described at two time steps (2TBN, cf Figure 7) to
take into account the previous past value. External events such as strong wind can increase
the energy consumption, as may any application/component used in a period of time. Each
status of an application (U node) is associated with a command node (C) that represents an
action to enable or disable the application. The battery level is given by a sensor that can
fail; its health is reinforced by the appearance contexts (low temperature, for example).

4.2 Decision making with an influence diagram
Figure 8 shows the decision-making mechanism of the mission considering the two cases of
failure (GPS failure (GPS HM), Battery failure (Energy HM)) and three actions (Nothing
to report, Change localization method, Emergency Landing). This figure illustrates the
monitoring of the GPS HM, the energy consumption HM and the DM at each time. Figure
8.(a) shows the interest of the context appearance nodes, which reinforces the confidence
in error types and sensor health. For example, from time t = 0 until t = 4, we observe
no problem in the GPS localization and, due to the evidence on appearance contexts, the
probability of the health of the system grows from 0.835 to 0.915. At time t = 4, a problem
in the GPS localization is observed. Without observation on the appearance context nodes,
the probability of the health of the system decreases to 0.365, but according to the evidence
on appearance contexts it decreases to 0.143. Figure 8.(b) shows monitoring in a nominal
case for energy consumption. According to observation of sensors and appearance contexts,
the energy consumption is healthy but decreases over time because the related Bayesian



S. Zermani and C. Dezan 9:11

H_U_En.(t− 1)

U_En.(t− 1)S_En.(t− 1)

H_S_En.(t− 1)

A_H_En.(t− 1)

U_EEv.(t− 1)

A_EEv.(t− 1)S_EEv.(t− 1)

A_H_EEv.(t− 1)

H_EEv.(t− 1)

C_App(t− 1) C_App(t)

H_U_En.(t)

U_En.(t)S_U_En.(t)

H_S_En.(t)

A_H_En.(t)

U_EEv.(t)

A_EEv.(t)
S_EEv.(t)

A_H_EEv.(t)

H_EEv.(t)

� -� -
SLICE 1SLICE 0

Figure 7 2TBN for Health Management for the battery.

Network evolves dynamically. Figure 8.(c) shows the evolution of Decision Making over time
based on the health probability of the GPS localization and energy consumption. From time
t = 0 until t = 4, the maximum of the utility functions is “nothing to report”, which reflects
the case of “no problem in the mission”. At time t = 4, the maximum of the utility functions
is “change localization method”, which reflects a problem in the mission, i.e., the GPS failure
scenario is detected.

4.3 SoC implementation
For our case study, Table 2 shows the evaluation of resources used for our implementation in
terms of Bloc RAM (memory BRAM), Digital Signal Processors (DSP), Look Up Tables
(LUT) and Flip Flop registers (FF). The total number of DSPs on the ZedBoard equals
220, that of LUTs is 53200 and that of FFs is 106400. The results are given for hardware
solutions maximizing parallelism. The parallelism is better exploited in the case of GPS
because there is less conditional dependency between nodes. The complete DM model uses
the same number of DSPs as in case of GPS HM, which is explained by resource sharing.

Table 2 Resources used by the BN model for the programmable logic part.

BRAM DSP LUT FF
GPS localization HM 0% 34% 33 % 9%
Energy consumption HM 0% 29% 27% 7%
GPS HM+ Energy HM+ Decision 0% 34 % 51% 14%

Table 3 shows the performance for the HW/SW implementation. We observe a good HW
speed-up in all cases because the SW implementation is sequential. A better speed-up is
observed in the energy case, which is due to the computational complexity from the dynamic
BN. The complete DM model has a good speed-up, which could be improved, but only at
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Figure 8 Results for the Decision Making of a simple UAV mission.

the expense of more resources. We also observe that although the communication time to
send the network parameters is high, this can be eliminated or reduced if a local memory is
used, which also means an increase in HW resources.

Table 3 The HW/SW performance of the BN nodes and DM, where HW Speed-up =SW
execution time/HW execution time.

SW time HW time HW
(cycles) (cycles) Speed-up

GPS localization HM 955 391 2.42
Energy consumption HM 1268 339 3.74
GPS HM+ Energy HM+ Decision 2190 698 3.13

Table 4 Performance, Resource and Energy consumption of the Decision Making mechanism.

Resource Latency Speed-up Energy
BRAM DSP LUT FF (cycles) cons.(µJ)

HM/DM
in HW 14% 50% 34% 21% 419 6.28 9.81
HM in
HW only 13% 44% 42% 20% 665 3.96 15.11

The results in Table 4 show the interest of a complete solution implemented in HW in
terms of performance and energy consumption. Nevertheless with three actions, a good
speed-up is already obtained for both versions of the DM, if HM are implemented in HW.
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5 Summary and Conclusions

We present an original design tool for the implementation of Decision Networks on FPGA.
This tool helps the designer to specify and implement the Decision-Making process under
real-time constraints and energy constraints, making it suitable for embedded solutions
on autonomous vehicles. We detail the design flow, giving the specific HLS optimizations
and transformations available to generate implementation on an FPGA/SoC platform. We
propose a validation example that demonstrates the interest of such a tool by providing
efficient HW implementation for the Decision-Making engine.

Because of the complexity related to BN and DN definition and to their related classical
inefficient implementation using junction trees [15], decision-making mechanisms based on
DN were not really considered as a possible engine for embedded applications until now.
Nevertheless, new compilation methods based on AC and on pattern identification for the
BN description can help to achieve efficient implementation on both CPU and FPGA. These
methods also help us to define a completely new embedded Decision-Network engine on the
both supports. The present paper addresses this opportunity.

As perspectives for future work, we propose to integrate the runtime constraints of the
sensors to fit the constraints of the mission in a more realistic manner. In this way, we could
extend and couple the presented offline tool, which provides HW/SW implementation of
mission planning, by adding an online engine that can choose the most appropriate version
of the decision core implementation considering the CPU load, the system constraints in
terms of energy and timing, and which can take into account service quality requirements.
If the implementation of the decision process can be achieved on an FPGA/SoC support,
the HW/SW alternatives can be chosen dynamically at runtime in the same way as this is
possible for other applications, such as those for image processing [5].
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