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Preface

This is the fourth iteration of the workshop on security and dependability of critical embedded
real-time systems (CERTS) and it is co-located with the 31st Conference on Real-Time
Systems (ECRTS’19) held at the premises of Bosch in Stuttgart, Germany on July 9-12,
2019. The technical program of the workshop includes multiple peer reviewed papers and a
keynote from Dr. Borislav Nikolic from TU Braunschweig on the topic of Safety and Security
aspects of TSN.

The aim of this workshop is to bring researchers and practitioners from a variety of
domains, viz., real-time and embedded systems, security, dependability and cyber-physical
systems to name just a few. The idea is to foster a community that looks at all of these
topics and develops techniques, algorithms, policies and frameworks to improve the security
and dependability of critical systems. We hope that the papers and the keynote will help
foster such discussions and collaborations.

CERTS 2019 owes its success to a variety of people. We would like to thank the steering
committee that consists of: Paulo Esteves-Verissimo, Marcus Völp, Antonio Casimiro and
Rodolfo Pellizzoni. We would also like to thank the technical program committee members
for taking the time to review and provide feedback for the papers. In addition, we also wish
to thank the organizers of ECRTS 2019, in particular: Steve Goddard and Martina Maggio
in the Organization Committee, Sophie Quinton (Program Chair and very helpful with web
issues) and Gerhard Fohler (Real-Time Technical Committee Chair). Finally, we would like
to thank the authors and participants of the workshop without whom this event would not
be successful.

We hope that you will enjoy the CERTS 2019 program and that it will foster many new
research directions and collaborations.

Michael Paulitsch Mikael Asplund
Intel Labs Linköping University
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Abstract
Real-time critical systems have to comply with stringent timing constraints, otherwise, disastrous
consequences can occur at runtime. A large effort has been made to propose models and tools to
verify timing constraints by schedulability analysis at the early stages of system designs. Fewer
efforts have been made on verifying the security properties in these systems despite the fact that
sinister consequences can also happen if these properties are compromised. In this article, we
investigate how to jointly verify security and timing constraints. We show how to model a security
architecture (MILS) and how to verify both timing constraints and security properties. Schedulability
is investigated by the mean of scheduling analysis methods implemented into the Cheddar scheduling
analyzer. Experiments are conducted to show the impact that improving security has on the
schedulability analysis.

2012 ACM Subject Classification Software and its engineering; Computer systems organization →
Real-time system architecture

Keywords and phrases MILS (Multi Independent Levels of Security), RTCS (Real-Time Critical
Systems), Security architecture and models, Scheduling analysis, Security analysis
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1 Introduction

Real-time critical systems (RTCS) are systems characterized by the temporal behaviors of
their functions. The functions must imperatively respect deadlines specified by designers
and serious disasters may occur if these deadlines cannot be met at runtime.

Although the respect of deadlines is an important issue in RTCS design, the security has
also to be considered. The general purpose of securing a system is to prevent information
disclosure (i.e. confidentiality) and preclude information’s alteration (i.e. integrity) [22].

1 http://beru.univ-brest.fr/~singhoff/cheddar/
© Ill-ham Atchadam, Frank Singhoff, Hai Nam Tran, Noura Bouzid, and Laurent Lemarchand;
licensed under Creative Commons License CC-BY
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1:2 Combined Security and Schedulability Analysis

Security architecture models such as MILS (Multiple Independent Levels of Security)
have been designed to make RTCS compliant with security objectives [12]. However, it is a
challenge to design RTCS architectures with both resources management to enforce deadlines
and also security policies to ensure security properties.

Schedulability can be enforced by a proper assignment of the tasks on the processors
[13]. However, task assignment may lead to modify the RTCS architecture because of the
assignment of security levels to the components. Indeed, assignment of security levels may
require extra components to avoid violation of the information flow security. Then security
architecture decisions may impact schedulability of RTCS and some means have to be
proposed to RTCS designers to predict the impact of security-driven architectural design
choices on the task schedulability, i.e. on the met deadlines of RTCS.

The ultimate goal of our work is to provide methods and tools for the exploration of
real-time critical and secure architectures. Starting from a predefined model with real-time
and security specifications, we want to automate the search of the design space defined by
the constraints embedded in those specifications. It allows us to propose a set of solutions
that represent trade-offs between security and schedulability requirements. For the first
steps, in this article, we propose to evaluate the conflict aspects between security and
schedulability concerns.

In this article, we propose to integrate a security architecture (MILS) in the Cheddar
schedulability analyzer, a tool allowing RTCS designers to predict if the deadlines will
be met at runtime. We extend the modeling capabilities of Cheddar [21] to model MILS
security aspects and we ensure RTCS security properties verification by implementing several
security models (Bell-La Padula, Biba). The resulting tool allows RTCS designers to run
combined security and schedulability analysis. In addition, in order to evaluate the impact
that improving systems security has on RTCS schedulability, we build a complete case-study
used to conduct some experiments. Finally, with these experiments, we show the drawback
of enforcing security properties for the RTCS schedulability.

The rest of the article is organized as follows. Section 2 gives an overview of security
architectures, security models and the MILS architecture. Section 3 presents the Cheddar
scheduling analyzer and depicts the system model and assumptions considered in our work.
In addition, we propose our extension of Cheddar to model the MILS architecture. Section 4
details our approach of implementing security models which help to verify MILS architecture
compliance and to compute number of security violations. We present a case study and our
experiments to validate our contributions aforementioned in Section 5. Finally, Section 6
discusses related work and Section 7 concludes the article.

2 Background

This section introduces the main aspects relevant to security architecture and models. An
overview of a high-assurance security architecture named MILS is also presented.

2.1 Security architecture and models
Regarding architecture designing, the concept of layering consists on separating hardware and
software features into modular levels (Hardware, Kernel and Device Drivers, Operating System
and Applications) [6]. Systems may use classifications, such as United States government
classification system [16], which is based on the degree of secrecy and level of sensitivity.
Classification levels can be confidential, Top_secret and Secret. They can be applied to
subjects or objects. Objects can be data classified at one level and subjects apply operations
such as read, write or execute on objects.
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A security model [22] describes the security strategy for a system with the purpose of
ensuring security objectives (confidentiality, integrity). It is an implementation of some
mathematical and analytical assumptions mapped to a system specification for resolving
security issues. Examples of security models are Graham-Denning model [10], information
flow control (IFC) models [22], State-Machine model [14], non-Interference model [9]. Bell-La
Padula [3] and Biba [4] are concrete examples of IFC models.

A security architecture [6] uses an integrated view of the system to comply with security
requirements. MLS (Multiple Levels of Security) and MILS (Multiple Independent Levels of
Security) are examples of such security architecture [1].

2.2 MILS architecture
MILS is a high-assurance security architecture characterized by untrusted and trusted
components, based on security models such as IFC [12]. It ensures confidentiality [22] which
is the insurance of preventing the system from information disclosure and integrity [4] which is
the protection of the system from unauthorized alteration. To meet those requirements, MILS
is based on a set of properties named NEAT (Non-by-passable, Evaluatable, Always-invoked,
Tamperproof) [2].

In order to ensure IFC, MILS adopts a classification level for subjects and objects which is
Top_secret, Secret, Confidential and Unclassified for confidentiality; and High, Low, Medium
for integrity. MILS is also based on the divide and conquer approach in order to reduce the
effort for a system’s security evaluation.

MILS introduces the following concepts [12]:
Processes, which model the applications in a RTCS. For IFC purpose, they have to be
labeled by a confidentiality level (e.g. Top_secret) and an integrity level (e.g. High). The
same confidentiality and integrity levels are also applied to objects.
Partitions, which are units of separations that host processes and/or data. They are
characterized by a resource allocation in the space and time domains. Communications
between processes in a partition and between partitions are subjected to IFC.
Middleware Service Layer, which is a service responsible for maintaining the IFC. To
enforce IFC, such component applies restrictions and permissions expressed by the
designer according to communication between messages and processes and between
processes themselves.
Objects (message, buffer), communications.
Application layer, which concerns all the processes. The components of this layer can
be of 3 types[1]: Single Level of Security (SLS), Multiple Levels of Security (MLS), or
Multiple Single Level of Security (MSLS).

3 MILS architecture modeling in Cheddar

In this section, we give explanations and details about Cheddar, a real-time scheduling
analysis tool. We describe next how our models are represented and some assumptions
adopted for this purpose. Last, we present the MILS modelling in Cheddar.

3.1 Cheddar scheduling analyzer
Cheddar [21] is a free real-time scheduling analysis tool. It provides a graphical editor and
a library of schedulability analysis modules. The entry point of the tool is an architecture
model expressed with Cheddar ADL. Cheddar ADL is a dedicated language designed to
model software architecture of RTCS for scheduling analysis with Cheddar.

CERTS 2019



1:4 Combined Security and Schedulability Analysis

Cheddar ADL’s basic entities can be grouped into 2 types: hardware and software
components. The formers model the execution platform of the RTCS to be analyzed. Such
components allow the designer to model processors, cache units, cores or any computing
units, memory units and communication units. Software components model the software
entities, i.e. applications composing a RTCS. Those components can be entities to model
flows of control (Cheddar ADL Task entity), shared resources (entity Resource or Buffer) or
task dependencies (Cheddar ADL entity Dependency or Message).

From a Cheddar ADL model, Cheddar provides two kinds of analysis tools: feasibility
analysis tool, which assesses schedulability by analytical methods; and simulation analysis
tool, which assesses schedulability by scheduling simulations.

3.2 System model and assumptions
We assume a RTCS consisting of tasks scheduled by a preemptive fixed priority scheduler.
The system is compliant with the MILS architecture and is defined as follows:

τ1, τ2, ..., τi, ..., τn are the n tasks composing the system. Each task models a MILS
process.
Ti, Ci, Di are respectively the period, the capacity (or the worst-case execution time)
and the deadline of task τi. Any task τi makes its initial request at time 0, and then
released periodically every Ti units of time. The task set is then synchronous. A task
requires Ci units of computation time and must complete before Di units of time.
O1, O2, ..., Oi, ..., Om are the m MILS objects in the system. Objects model messages
exchanged between the tasks. Tasks can have read or write access to messages.
ILi and CLi are respectively τi or Oi integrity and confidentiality levels.
dep(τi, τj) describes a communication from task τi to task τj .
dep(τi, Oj) describes a communication from task τi to object Oj , task τi having write
access to the object Oj .
dep(Oj , τi) describes a communication from object Oj to task τi, task τi having read
access to the object Oj .

In order to model MILS architectures with Cheddar, we need to make some extensions
to Cheddar ADL, even if several Cheddar’s components can be already used to model few
MILS’s entities:

MILS partitions can be modeled by Cheddar Address_space entities.
MILS objects can be modeled by Cheddar shared resources (i.e. Buffer or Message
entities).
MILS processes can be represented by Cheddar Tasks.
MILS communications have the same semantics than Cheddar ADL dependencies. MILS
messages can be modeled by asynchronous communication Cheddar dependencies.
MILS functions do not need to be represented in Cheddar as they can be modeled by
groups of partitions (i.e. groups of Cheddar Address Spaces).
Finally, applications (which can be composed of one or more processes) are modeled by
Cheddar ADL Task entities.

To complete the modeling capabilities of Cheddar for MILS (Fig. 1) architectures, several
Cheddar ADL entities have to be extended with new attributes modeling MILS data. As an
example, we need to model Buffers and Messages confidentiality and integrity levels and
also the right levels of tasks and partitions that are using them, i.e. if a partition or a task
is allowed to handle a Buffer or a Message according to its authorization levels. We give
bellow the list of properties we actually added to Cheddar ADL entities:
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Figure 1 Modeling of MILS.

An attribute named Confidentiality_Level (Top_secret, Secret, Classified, Unclassified)
has to be defined for each Cheddar ADL address spaces, objects and tasks entities.
An attribute named Integrity_Level (High, Medium, Low) also has to be defined for each
Cheddar ADL address spaces, objects and tasks entities.
MILS_component_type (SLS, MLS, MSLS) is an attribute to model MILS type of
security level. Again, such attribute has to be defined in tasks and address spaces
Cheddar ADL entities.
Finally, MILS_compliant_type (Non_Compliant, Partition,...) specifies if a Cheddar’s
entity models a MILS’s component or not. Such attribute is defined in any Cheddar
ADL entity.

4 MILS security model implementation

In order to verify MILS architectures, we have implemented the two well-known security
models Bell-La Padula [3] and Biba [4] into Cheddar. Both of them have been adapted
and implemented in order to verify Cheddar ADL models. In the sequel, we describe
their implementation as functions that take as entry a Cheddar model composed of cores,
processors, address spaces, buffers, tasks, and dependencies.

4.1 Bell-La Padula in Cheddar
This security model was introduced to formalize the U.S. Department of Defense (DoD)
multilevel security [16]. It is based on the No read up, No write down principle. No read up
refers to the fact that a subject at a given security level cannot read data that is tagged with
a higher security level. No write down means that a subject tagged with a given security
level cannot write information to a lower security level.

CERTS 2019



1:6 Combined Security and Schedulability Analysis

We have implemented the Bell-La Padula algorithm in Cheddar. It checks if a Cheddar
ADL model conforms to Bell-La Padula rules by returning the number of No read-up/No
write-down rule violations. The algorithm is sketched below:

Sys: a Cheddar model composed of n tasks (τ1, τ2, ..., τi, ..., τj , ..., τn)
num: number of rules violations
For each dep in Sys loop

If ((dep = dep(Oj , τi)) OR (dep = dep(τi, Oj)))
AND (CLi < CLj ) Then

num := num +1
Elsif (dep = dep(τi, Oj)) AND (CLj < CLi) Then

num := num +1
Elsif (dep = dep(τi, τj)) AND (CLj < CLi) Then

num := num +1
End if

End loop
Return (num)

4.2 Biba in Cheddar
This security model was developed to ensure data integrity [4]. It is based on the No read
down, no write up principle. “No read down” means that a subject cannot read data from a
lower integrity level and “No write up” means that a subject cannot write data to an object
tagged with a higher integrity level. We have implemented Biba rule checking into Cheddar.
The algorithm is sketched below as a function that checks if a Cheddar model conforms to
Biba rules by returning how many times the Read down and Write up rules are missed.

Sys: a Cheddar model composed of n tasks (τ1, τ2, ..., τi, ..., τj , ..., τn)
num: number of rule violations
For each dep in Sys loop

If (dep = dep(Oj , τi)) AND (ILj < ILi) Then
num := num +1

Elsif(dep = dep(τi, Oj)) AND (ILi < ILj ) Then
num := num +1

Elsif (dep = dep(τi, τj)) AND (ILi < ILj ) Then
num := num +1

End if
End loop
Return (num)

4.3 MILS securing process
In order to design MILS architectures that meet the different security rules previously
presented, we propose to add the following components to the architecture model.

When a communication between two tasks of different security levels doesn’t meet a
security rule, we propose to add an encrypter or a decrypter components between the
two tasks. So the tasks can still communicate but the data sent are encrypted and the
designer can decide to allow communications by using a decrypter on the other side of the
communication link. In MILS, such an encrypter (resp. a decrypter) is called a downgrader
(resp. an upgrader).
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In our implementation, downgraders and upgraders are extra Cheddar ADL tasks. Each
of them has a period, a capacity, a deadline, a confidentiality and an integrity level. Assuming
a Cheddar model composed of a set of tasks and their related dependencies, we run through
these dependencies and check if they meet Bell-La Padula or Biba rules. If not, we add a
downgrader or upgrader depending if it is Bell-La Padula or a Biba violation.

For such purpose, we make an arbitrary assumption about the downgrader (resp. upgrader)
parameters: downgraders (resp. upgraders) inherit from receiver task period and deadline.

Furthermore and for the sequel experiments, we have chosen for encryption the AES/GCM
(2K tables) algorithm (cycle per Byte: 16.1; cycles to set up key and IV(Initialization Vector):
3227) [7]. By supposing that our data size is 64 Bytes and that the frequency is 125 MHz,
then the encrypter’s execution time is 1660 us.

5 Experiments & Evaluation

The objective of our experiments is to evaluate the integration of the security architecture
MILS into Cheddar and more precisely the two security models Bell-La Padula and Biba
implemented into Cheddar. We also evaluate the impact of improving RTCS security by
applying MILS can have on the RTCS schedulability.

We assume a single processor execution platform, on which all the tasks are placed in
the same partition. The task set is synchronous and scheduled by preemptive fixed priority
scheduler. Each task has two possibilities of Confidentiality_Level (Top_secret or Secret)
and Integrity_Level (High or Medium).

The experimentation process is built by the three following parts: non secure models
generation, secure models generation and models evaluation.

In the remainder of this section, we present in 5.1 a case study made for our experiments
purpose. Sections 5.2 and 5.3 refer to the models generation part of the experiments. Finally
section 5.4 gives the evaluation of the generated models and also the results of the experiments.

5.1 Case study
To conduct the experiments, we have created the study case 2 inspired by a drone system.
It is made of two applications composed of dependent tasks: (1) a digital signal processing
application called Constant False Alarm Rate detection (CFAR) [19]. It is a set of low critical
tasks designed to detect target based on the variation of background noise. (2) A flight control
system called ROSACE (Research Open-Source Avionics and Control Engineering)[17]. It is
a longitudinal and multi-periodic flight controller designed as a benchmark to respond to
stability, real-time and performance issues. ROSACE is composed of high critical tasks.

The set of tasks and their parameters of our case study are described in Table 1. This
table does not give confidentiality and integrity levels of tasks since they are decided later in
our experiments.

5.2 Non secure models generation
This part consists of generating as many models as possible without considering if the
generated models are secure or not. Our starting point is to describe a system. We used the
case-study described in Section 5.1 with its default parameters of Table 1.

Confidentiality level of each task can be selected between two levels (Top_secret and
Secret). The same holds for the integrity level (High and Medium). So our generator, for
Bell-La Padula (resp. Biba) evaluation, takes the case-study model with an integrity (resp.

CERTS 2019



1:8 Combined Security and Schedulability Analysis

Figure 2 Case study model.

Table 1 Case study parameters.

Tasks Period/deadline [us] Capacity[us]

Cfar_complex 10000 90

Cfar_square_scale 10000 50

Cfar_gather 10000 340

Cfar_printer 10000 30

Aircraft dynamics 5000 200

Va_c, h_c 20000 500

H_filter, Az_filter, Va_filter, q_filter, Va_filter 10000 100

delta_e_c, delta_th_c 20000 500

Altitude_hold, Va_control, Vz_control 20000 100

Engine, Elevator 5000 100
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confidentiality) level fixed for all the tasks and switches the confidentiality (resp. integrity)
level of task. Each switching leads us to another different model. With 19 tasks in our
case-study, we produce 1048576 (2*219) models for both Bell-La Padula and Biba evaluation.

5.3 Secure models generation

It consists of applying MILS securing process 4.3 on each non secure model generated in the
previous step. To make all the non secure models secure, whenever a dependency doesn’t
respect Bell-La Padula or Biba’s rules, we add a downgrader or an upgrader as additional
task. For a given model, the number of downgraders or upgraders added is equal to the
number of security rules violations.

As described in Section 4.3, we choose for encryption an AES/GCM (2K tables) algorithm
with an execution time of 1660 us. Furthermore, we make an arbitrary assumption about the
downgrader (resp. upgrader) attributes: downgraders (resp. upgraders) inherit from receiver
task period and deadline.

5.4 Models evaluation

This section describes the evaluation of the schedulability and the security of all the generated
models (non secure and secure). For each model, the security is quantified by the number
of security violations while we decide to quantify the schedulability by the number of tasks
missed deadlines.

It is important to notice that the number of security violations for secured models is
null, while the number of missed deadlines will be null for the non secure models if the
starting model is schedulable. Missed deadlines occur when adding security-related tasks (i.e.
downgraders, upgraders).

As it can be noticed throughout this article, we have settled the security aspect into
two parts: confidentiality and integrity. The figure (Fig. 3) below shows the relationship
between scheduling (missed deadlines) and confidentiality (number of Bell-La Padula’s
rules violations).

In Fig. 3, each point corresponds to the number of confidentiality rules violations for a
testcase (combination of different security levels) and the number of deadlines missed when
we apply security rules to make the testcase secure by adding some downgraders.

The same work has been done for the integrity aspect. Figure 4) shows the relationship
between schedulability (missed deadlines) and integrity (number of Biba’s rules violations).

We observe that two different RTCS models with the same number of rules violations
may not lead to the same number of missed deadlines. It is explained by the fact that
downgraders/upgraders added to solve security problems may not have the same period and
deadline in both RTCS models. Indeed, a downgrader’s period and deadline depend on the
period and the deadline of the sink task of the non-secure dependency.

From our experiments, with the security metrics, we conclude that the higher number of
violations (confidentiality or integrity) is, the more we have tasks missing their deadlines
when adding downgraders/upgraders through the MILS securing process. Fig. 3 and 4 show
an quantification of such impact.

Finally, we can observe in the figures that even if the Bell-La Padula and Biba results
of our experiments look similar, for a RTCS that violates both Bell-La Padula and Biba
rules, resolving the Bell-La Padula’s problem does not solve automatically the Biba’s one
and conversely.
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Figure 3 Schedulability and confidentiality evaluation.

Figure 4 Schedulability and integrity evaluation.
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6 Related work

In [15], the authors worked on designing a security gateway in avionic domain based on
Integrated Modular Avionics (IMA) architecture, characterized by the separation of system
resources into partitions. In order to control information flow between partitions for security
issues, they applied MILS principles based on the real-time OS named PikeOS.

In [8], the authors modeled MILS using AADL (Architecture Analysis and Design
Language) [20] and proposed an automated implementation process based on code generation.
Applications are run on a MILS operating system called POK. In [5], the authors presented
a guide on securing a system design using MILS architecture. They focused their work on
distributed systems and systems of systems.

The article [11] discusses how to build a secure system by using AADL. The authors
proposed an approach to validate the confidentiality of systems by defining assumptions
based on Bell-La Padulla’s security protocol. They showed how security can have impact on
data quality, resource consumption, availability, reliability, and real-time performances.

One important concern about MILS is task partitioning. [18] presents XtratuM, a
hypervisor that helps to build partitioned systems while meeting safety critical real-time
requirements. Scheduling analysis is performed using Xcronte. The authors also measure the
cost in terms of performance and memory footprint of using XtratuM compared to other
partition development environments.

Our approach is different of the above ones because we integrate MILS concepts in
scheduling analysis as none of them have experimented joined schedulabity and MILS
security analysis . As far as we know, it is the first time one extends a scheduling analyzer
to support a secure architecture. We implemented into Cheddar several security models in
order to jointly enforce MILS properties and schedulability.

7 Conclusion

In this article, we investigated security properties in RTCS through a high assurance security
architecture MILS. Our work overlays real-time scheduling analysis, and architecture design
and security.

We have proposed an extension of Cheddar to model MILS real-time critical architecture
and to perform both schedulability analysis and security analysis. We have integrated MILS
concepts including the two security models (Bell-La Padula and Biba) with Cheddar ADL.

We have evaluated the impact of security on schedulability analysis. From the experiments,
we observed that securing a system can affect negatively its scheduling by leading some
tasks missing their deadlines. We also have shown that downgraders and upgraders periods
and deadlines have impact on numbers of missed deadlines. Finally, we observed that
confidentiality and integrity are independent, meaning that resolving one does not help to
resolve the other.

As future work, we want to measure more precisely the cost of securing a RTCS and explore
trade-offs to optimize both security and scheduling with different encryption algorithms for
downgrader and upgrader components.
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Abstract
System call relative information such as occurrences, type, parameters, and return values are well
established metrics to reveal intrusions in a system software. Many Host Intrusion Detection Systems
(HIDS) from research and industry analyze these data for continuous system monitoring at runtime.
Despite a significant false alarm rate, this type of defense offers high detection precision for both
known and zero-day attacks. Recent research focuses on HIDS deployment for desktop computers.
Yet, the integration of such run-time monitoring solution in mixed-criticality embedded systems
has not been discussed. Because of the cohabitation of potentially vulnerable non-critical software
with critical software, securing mixed-criticality systems is a non trivial but essential issue. Thus,
we propose a methodology to evaluate the impact of deploying system call instrumentation in such
context. We analyze the impact in a concrete use-case with PikeOS real-time hypervisor.
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1 Introduction

Mixed-criticality systems consolidate software applications of different criticality levels on
a single hardware platform. For example in a car, an Android operating system which
manages infotainment can run together on a single hardware, with an AUTOSAR adaptive
runtime environment that controls lights management. In such system, security is a major
and non-trivial issue at design- and run-time. On one hand, software components with a
low criticality (e.g., Android) offer full management and handling of critical resources (e.g.,
network, console I/O, file-system access) to their non-critical application workloads. On the
other hand, highly critical software components running in parallel depend on the availability
and correct operations of the same resources or shared hardware.

© Marine Kadar, Sergey Tverdyshev, and Gerhard Fohler;
licensed under Creative Commons License CC-BY

4th International Workshop on Security and Dependability of Critical Embedded Real-Time Systems (CERTS
2019).
Editors: Mikael Asplund and Michael Paulitsch; Article No. 2; pp. 2:1–2:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marine.kadar@sysgo.com
mailto:sergey.tverdyshev@sysgo.com
https://orcid.org/0000-0001-6162-2653
mailto:fohler@eit.uni-kl.de
https://doi.org/10.4230/OASIcs.CERTS.2019.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


2:2 System Calls Instrumentation for Intrusion Detection in Embedded MC Systems

The intrusion detection approach assesses that the system environment potentially
contains flaws which could be exploited by an attacker. To identify suspicious activity, this
technique continuously observes the system at runtime. Suspicious activity corresponds
either to an anomaly, defined as a deviation from normal activity, or to an intrusion, which is
identified using the signature of previously known intrusions. Intrusion detection presents a
strong potential as it can contribute to detect zero-day attacks. Intrusion Detection Systems
(IDS) are notably used for securing IT infrastructures (e.g. anti-virus software, network
monitoring, host behavior analytics). They also represent an important segment of research.
In Host Intrusion Detection Systems (HIDS), system call patterns appear to be a good metric
to identify security threats. System call monitoring has indeed been investigated since late
nineties, starting with [20]. Recent research uses these data mainly for machine-learning
based HIDS.

To the best of our knowledge, existing machine-learning based HIDS from the industry
and research focus on deployment for generic computers. The use of such defense in a
mixed-criticality system has yet not been investigated. Protecting embedded mixed-criticality
systems is however essential, as these systems are exposed to same threats than non-critical
systems. Adapting HIDS in this context is very challenging. One one hand, because it is
deployed at system level, HIDS can potentially compromise system execution; e.g. a real-time
application missing its deadline. On the other hand, HIDS can degrade time performance
of non critical workloads. Thus, we need to ensure that the add-on does not alter system
execution and constraints.

To implement system call monitoring, we have to integrate system call tracing in the
mixed-criticality OS kernel. The new feature should be fast and predictable; its impact
on real-time system execution needs to be determined. We propose an evaluation of the
feasibility of system call instrumentation for deployment in a mixed-criticality system. After
introducing our approach to evaluate the impact, we apply it in a concrete example, using
the real-time hypervisor PikeOS [8].

The remainder of the paper is organized as follows. In section 2, we summarize related
work. Section 3 introduces the methodology. Section 4 describes the experiment, while
section 5 presents the results. We discuss in section 6 the security impact of intrusion detection
as well as further implementation of the detection, We also mention other interesting data to
detect intrusions as well as their potential impact on system’s real-time constraints. Finally,
section 7 concludes this paper.

2 Related Work

2.1 Security by Design
One main approach to enforce security, as well as safety, in mixed-criticality systems is to
enforce the whole system’s design, by providing strong isolation for all workloads. The OS
kernel must be as protected in term of security and safety, as the most critical workload.
To address this need, Multiple Independent Levels of Security (MILS) [2] architecture is a
concept based on separation kernel and partitioning to ensure data and program separation.
Nevertheless, software isolation can not be enough to ensure system isolation. The misuse of
shared hardware resources by an attacker can potentially lead to system exploit, such as side
channels attacks. For example, Spectre [12] and Meltdown [15] attacks succeed in leaking
the memory of complete programs, by leveraging specific CPU vulnerability. As explained in
[10], isolation of hardware resources is a non-trivial problem; because of system complexity,
we generally can not assess 100% isolation. Hence, we need further protection to ensure
system security.
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2.2 Control Flow Integrity
Control Flow Integrity is a type of intrusion detection solution based on continuous monitoring.
It observes programs executed in the system at run-time to detect any deviation from a
defined normal execution policy. The policy can be defined for each individual program at
compilation time, using specific tools such as LLVM compiler [18]. It generally provides a
list of allowed branch transfers in the program address space.

TrackOS [17] is an example of real-time OS (RTOS), which integrates a CFI monitor. The
RTOS hosts different workloads called tasks. One main task with higher execution privilege,
the CFI Monitor, monitors all the other ones at run-time. Motivated by certification reasons,
the monitored programs remain unchanged. A graph of execution is generated with static
analysis from each untrusted program executable. Time credit is allocated by the user for
each task, including the CFI Monitor. During its execution time slot, the monitor checks the
stack of monitored workloads using the statically defined policy. Hence, the security impact
on execution time for monitored workloads is controlled by the user.

Because of a higher frequency of control flow transfers over system call instructions, The
impact of CFI on performance represents a major limitation to its deployment. For this
reason, we do not consider CFI approach for our research.

2.3 System Call Tracing for Security
Host Intrusion Detection System (HIDS) is a well developed security solution, which relies
on system call collection at runtime. It has been well investigated for two decades, since [20]
highlighted a statistical correlation of intrusion patterns with certain system calls sequences.
In literature, many papers focus on HIDS performance in terms of detection precision and
false positive rates. It is an efficient way to detect intrusions; detection precision is generally
above 90%, despite a high false positive rate, which can easily reach 15% in recent research.
For example [9] compares several analysis models with average 90% detection precision
and 15% false positives rates. [13] develops and HIDS based on Markov chains with 90%
detection precision and 20% false positives rate. False postives can be reduced by modifying
the model’s parameters. Nevertheless, this usually induces a loss of precision: [5] compares
six models on the same dataset, five of which show a lower false positive rate below 5%,
while the detection rate varies between 40% and 100%.

Unfortunately, very few publications focusing on HIDS describe or analyze the impact
on time execution for integrating such software at system run-time. [16] presents a short
evaluation of the impact of their HIDS implementation. The solution collects system calls
type and arguments, and analyzes traces with a Marklov model. The authors train the
model with IDEVAL dataset and some locally generated data. They admit their solution
adds a noticeable time overhead, which though does not significantly impact the overall time
performance of the system. [14] provides a more precise focus on timing impact of HIDS
deployment on system time performance. They show a large gap of time overhead, from 3% to
77%, depending on the type of executed program. However, data are not well representative
for our target system. Firstly, the study is from 2004: hardware has evolved and so time
performance did. Secondly in the authors’ implementation, the monitored workload is a
virtual machine hosted by a type-II hypervisor. A type-II hypervisor runs inside an OS; it
requires high computing power. This system architecture is not particularly adapted for
embedded systems. For our mixed-criticality system instead, we use a type-I hypervisor,
which directly manages hardware resources.

CERTS 2019
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In our literature research, all machine-learning based HIDS implementations we found are
dedicated for deployment for generic computers running rich operating systems such as Linux
or Windows. For instance, the main open-source datasets correspond to trace of execution
on desktop PC: e.g. ADFA-LD [4, 11] dataset on Linux OS and KDD99 [19] on Solaris OS.

3 Methodology

We propose a methodology to evaluate the impact of intrusion detection based on system call
monitoring on a mixed-criticality system with real-time constraints. The required system call
monitoring causes an additional delay in the kernel at system call handling, which induces two
consequences: an impact on workload performance as well as an impact on system security.

3.1 Impact on Performance
A mixed criticality system is composed of several workloads corresponding to diverse criticality
levels. We distinguish two main types of workload:

critical: software under deterministic constraints. E.g. Avionics control loops.
non-critical: software with no deadlines. E.g. Linux OS.

3.1.1 Critical Workload
To use system call tracing in a critical workload, the additional overhead should be added to
Worst Case Execution Time (WCET) of this workload. The additional delay due to system
call tracing is easy to identify. We can indeed calculate the maximal overhead duration with
WCET analysis; the precise tracing overhead can be estimated for each system call in the
kernel. Thus, we can compute the worst case overhead, corresponding to the worst system
calls combination for the analyzed software.

3.1.2 Non Critical Workload
WCET analysis does not make much sense for non-critical workloads such as Linux OS: it
would either be too pessimistic or non doable. We instead aim to analyze an average time
overhead. However, because of the large diversity of software, it is not possible to get a
representative single average value.

3.2 Impact on System Security and Dependability
In addition to the performance impact, the system call tracing time overhead located in the
kernel can potentially compromise the whole system, by breaking time isolation between
workloads. A workload raising a huge amount of system calls induces indeed a non-negligible
delay in the kernel.

Depending on the kernel implementation, we consider two scenarios:
1. system call handling can be preempted by context switch.
2. system call handling can not be preempted by context switch.
In the first case, even though the application induces a huge delay due to system call tracing,
it is stopped by the tick interrupt, responsible for context switching; the system call is
possibly aborted. Thus, time isolation is respected.

In the second case, the application can extend slightly its time window, at the expense
of other workloads: time isolation is not respected anymore. An example of such issue
consists in two applications running on the same single CPU core. The first is a non-critical
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workload, while the second is a hard real-time workload with firm deadlines. If the non-critical
application runs huge amount of system calls, there are high chances that context switch tick
interrupt is raised during system call handling. The kernel waits for system call to return
to the application before switching context to the next workload. Thus, we can assess the
maximal time overhead per context-switch to be the length of system call handling, including
system call tracing. As the system is designed for guaranteeing time isolation without
tracing, the time window of the non-critical application can be extended to a maximum of
toverheadmax . After a certain amount of context switches, the critical application possibly
fails missing its deadline. Thus, we need to define the overall time overhead induced by
system call instrumentation for typical workloads, to then be able to evaluate how it could
compromise the system.

3.3 Estimating the Tracing Time Overhead
We propose to compute an average time overhead at runtime for a set of representative non-
critical workloads, with the following approach. The total time overhead t of an application
running a sequence of N system calls corresponds to t =

∑N
i=1 tsyscalli

. The quantity t

depends on the number of system calls and on their type. Firstly, we count N the amount of
system call traces for every workload. Depending on the context of execution, the quantity
N can vary for two different executions. Secondly for a set of well used system calls, we
compute the time overhead caused by tracing. We can expect a small variation of tracing
time between different system calls. The difference is indeed due to variations in the quantity
of traced data caused by the number of parameters and return value. Finally, we can estimate
a range of possible values for the total tracing time overhead t, so that tmin ≤ t ≤ tmax with
tmin = ttracingmin

T ∗N and tmax = ttracingmax

T ∗N . T is the total time of execution, without
tracing. We can not precisely measure this value: program execution varies, depending on
the context of execution and regardless of system call tracing feature. Therefore for a single
workload execution, system call tracing time must be associated with total execution time.
Instead of T , we can measure T ′ so that T ′ = T + t. To finally evaluate the impact of system
call tracing, we will use the ratio r = t

T ′−t .

4 Experiment

4.1 System Design

4.1.1 Overview
The figure 1 details the system architecture. We run the experiment on PikeOS [8], a
commercial certified mixed-criticality OS. It can be used as a real-time OS (RTOS) to run
native applications. As a type-I hypervisor, it can also host more complex workloads such
as complete OS. Every hosted workload is attributed levels of safety and security, where
resource partitioning enforces isolated execution. A diverse range of workload types is
supported (ARINC 653, Linux, POSIX, AUTOSAR, etc.). PikeOS software complies with
safety standards, such as DO-178B (Avionics), EN 50128 (Railways).

The system call tracing driver stores system call traces in a per CPU core trace buffer
and returns them upon request. For each system call raised, two traces are stored. They
correspond to the entry and exit hooks inserted in every system call handler. Once a system
call is received, the entry hook extracts the system call type and its parameters and writes
the first trace into the corresponding trace buffer. Before returning from the handler, the
exit hook gets the return value and stores the second trace into the trace buffer.
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Figure 1 System architecture.

At user-level, the Monitoree, defined in 4.2.2, is the monitored workload. The IDS software
is composed of two main user applications. Firstly, the detector contains the analytics model
to identify a trace as footprint of an intrusion or as normal activity. This part is not yet
implemented and will be developed in further work. Secondly, the trace collector collects
traces by communicating with the system call tracing driver. It formats and stores the traces
locally until read request from the detector.

4.1.2 System Call Tracing within PikeOS

The system call tracing process goes through the following steps (see figure 1):
1. The monitoree raises a system call.
2. The OS kernel handles the system call. From events raised by hooks in the handler,

system call information are stored in the trace buffer of the initiating CPU core.
3. At some point, the trace collector requests traces to the system call tracing driver. The

driver reads the trace buffer and returns traces to the trace collector. Traces are then
formatted and stored waiting for request from the detector.

4. The detector requests a trace to the trace collector.
5. The trace is analyzed with the machine-learning engine.
6. In the case where an intrusion is detected by the engine, a signal is raised (e.g. an alarm

message is printed on the console).
Groups of operations (1,2), (3), (4,5,6) can run in parallel. Operations inside the groups are
sequential.

The tracing feature induces an additional delay for system call handling in the kernel. It
corresponds to the entry and exit hooks inserted in system call handlers. The hook consists
mainly in a memory copy operation into the CPU trace buffer.

For the sake of clarity, we isolate the monitoree on a single dedicated CPU core (core 0).
The trace collector runs on a distinct core (core 1).
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4.1.3 Limitations of the Implementation
For now, the solution does not monitor hardware virtualized guest OS. Such workload indeed
directly handles system calls, without any intervention of the hypervisor. Critical instructions
raise hypervisor calls and are trapped in the kernel. Our solution could be adapted to support
hardware-virtualized workloads, by tracing these calls in the hypervisor kernel.

4.2 Setup

4.2.1 Test Environment
For the experiment we use the NXP board QorIQ LS1043A. Time is measured with
CNTVCT_EL0 CPU core counter. It corresponds to the virtual count for execution level 0
(user mode) of the running core and is accessible from user workloads. The resolution of this
counter is 40 ns. A timestamp is defined in the kernel for every trace before it is stored in
the trace buffer.

In our tests, we measure the time for running a workload, by printing the counter value
just before and after its execution. We get the unitary time for system call tracing in the
kernel using the same method.

4.2.2 Tested Applications
We selected diverse applications from native and POSIX applications, as well as paravirtu-
alized Linux. Native and POSIX servers are stimulated with a Linux client running ping
process. For every test, we run measurements only once the system has booted.

Native applications are C programs running directly on PikeOS, using specific libraries.
Ping server is a ICMP echo server which returns echo replies upon request. Shared memory
client/server application corresponds to two applications, depending on runtime mode. Both
applications share a memory buffer to exchange 32 text messages that are emitted by the
server and read by the client, using synchronization mechanisms.

The POSIX application inetd is a server daemon, which relies on a widely used TCP/IP
stack called lightweightIP.

The Linux workload corresponds to a paravirtualized commercial embedded Linux for
PikeOS, called ElinOS [7]. Our selection gathers well used processes and common performance
benchmarks. Table 1 lists command lines for all Linux applications.

Table 1 List of Linux workloads.

Workloads Command line
unixbench unixbench
dd dd if=/dev/zero of=FILE count=CNT bs=BS
ps ps -ef
find find / > /dev/null 2&>1
netserver netserver -4 -L ADDRESS -D -d
netperf netperf -H NETSERVER
Pacman pacman
gzip gzip FILE
iperf iperf -s
ping ping ADDRESS -c 20
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5 Results

5.1 Reliability of Measurements
Every test is reproduced five times. Average values of time and amount of collected system
calls traces are represented in table 2. To evaluate the variability of results, the standard
deviation is calculated and compared to the average value. Variability of system call count
measurements is high in two situations:

for workloads which raise few system calls; e.g. native ping server and empty Linux OS.
for short execution time; e.g. ps and dd Linux processes.

In this second category, time measurement is also less precise (approximately 7% of fluctu-
ation).

5.2 System Calls in Workloads Selection
The table 2 shows that the amount of system calls varies, from 23 system calls to more than
200,000 for one second of workload execution, excluding tracing time. The results illustrate
that native applications, even with networking, raise very few system calls, comparing to
POSIX inetd daemon and Linux workloads.

Table 2 List of measurements for tested workloads.

Workloads time (s) calls/s var (%)

Native
ping server 60.45 23.2 41.16
ping server (busy) 63.98 552.0 9.60
sh.mem. (client) 31.47 410.0 0.00

POSIX inetd (no requests) 30.08 10,508.0 2.75
inetd (ping requests) 30.06 11,598.2 0.39

Linux

empty 60.34 26.7 8.80
dd (64 MiB) 0.11 34,000.0 9.57
dd (128 MiB) 0.22 19,398.1 7.52
ps -ef 0.01 225,876.8 12.10
find / 0.31 115,113.0 5.86
gzip (128 MiB) 3.48 382.0 2.70
ping (20 packets) 19.03 375.5 5.58
netserver 10.01 6,120.9 0.74
netperf 10.02 6,289.6 0.94
iperf (server) 10.02 6,196.5 0.87
iperf (client) 10.04 6,170.6 1.11
pacman 20.00 4,129.5 2.95
pacman 30.00 4,687.3 0.87
unixbench 1,677.24 4,799.5 0.14

5.3 Unitary System Call Tracing Overhead
The granularity of the hardware counter does not allow high precision; with the 40 ns
threshold, we count less than 20 ticks per unitary tracing time overhead. Nevertheless,
because of the high variability in collected values (around 20%), we can still define a range of
time overhead for a set of common system calls. We measure tracing overhead for the system



M. Kadar, S. Tverdyshev, and G. Fohler 2:9

Table 3 List of tracing overhead for a selection of system calls.

System call Min (ns) Average (ns) Max (ns) var (%)
MMAP 240 391 760 20
IPC 240 399 760 19
Thread Yield 240 343 720 24
Thread Sched. 240 362 640 19
Sleep 240 382 760 23

calls described in table 3. They indeed appear as good candidates for intrusion detection as
they have a direct impact on system execution; i.e. workloads scheduling, memory access,
inter-thread communication.

Memory mapping (MMAP): maps a number of pages from one workload’s address space
to another.
Inter-process communication (IPC): sends a message to a thread and receives an IPC
message from another.
Thread Yield: forces the running thread to yield the CPU.
Thread Scheduling: exchanges thread priority and execution time window.
Sleep: suspends the calling thread for an amount of time.

For every system call, we run 1000 measurements. For a single system call, tracing time
can take a wide range of values between 240 ns and 760 ns: minimal, average, and maximal
values are respectively equal to 240 ns, 376 ns, and 760 ns.

5.4 Interpretation of Results

Table 4 Time overhead for tested workloads.

Workloads Time overhead ratio
min average max

Native ping server (busy) 1.32E-04 2.08E-04 4.20E-04
sh.mem. (client) 9.84E-05 1.54E-04 3.12E-04

POSIX inetd (ping requests) 2.78E-03 4.36E-03 8.81E-03

Linux

empty 6.41E-06 1.00E-05 2.03E-05
dd (128 MiB) 4.66E-03 7.29E-03 1.47E-02
ps -ef 5.42E-02 8.49E-02 1.72E-01
find / 3.63E-03 5.68E-03 1.15E-02
gzip (128 MiB) 9.17E-05 1.44E-04 2.90E-04
ping (20 packets) 9.01E-05 1.41E-04 2.85E-04
netperf 1.51E-03 2.36E-03 4.78E-03
iperf (server) 1.49E-03 2.33E-03 4.71E-03
pacman 1.12E-03 1.76E-03 3.56E-03
unixbench 1.15E-03 1.80E-03 3.65E-03

According to the definition of security impact provided in section 3, we compute the
time ratio, r = ttracing

Ttot−ttracing
. ttracing is in the range [tmin; tmax]. Let ttracing be a variable so

that r = f(ttracing). r is an increasing function between tmin

Ttot−tmin
and tmax

Ttot−tmax
. We show

minimal, average, and maximal values of r in table 4.
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r values can vary significantly in function of the workload from 10−5 to 17%. Thus, we
can not easily define a factor to predict time overhead in function of simple parameters such
as time of execution and amount of static code instructions. The time overhead depends on
the type of system calls and context of execution (especially for Linux virtual machines).

As seen in section 5.2, because the amount of system calls for native applications is
very low, the time overhead is negligible. More complex workloads, e.g. Linux and POSIX
programs, present much higher time overhead. ps Linux process spends particularly the
longest time for tracing system calls (5% to 17% of additional time). The majority of the
selected workloads correspond to a ratio r in the order of 10−3, which represents a tracing
time overhead of 60 ms for one minute of program execution time. The overhead affects
workloads time performance, but remains reasonable in the majority of cases.

6 Discussions

6.1 Comparison of Tracing Impact with Previous Work
[14] implements a HIDS for monitoring a Linux virtual machine running on a type II
hypervisor called User-Mode Linux (UML) Monitor. The authors compute total time
overhead of system call monitoring for three well used Linux processes: ps, find, and ls. The
overhead corresponds to the whole implementation, system call tracing and detection. Their
results point already a wide diversity of time overhead, from 3% with ps -ef to 77% for
find / > /dev/null 2&>1. Our implementation shows a much reduced overhead: average
values are 8% in the first case and less than 1% for the second operation.

Another approach [16] analyzes the occurrences of system calls in workloads. From the
high throughput of system calls processed by their solution, the authors deduce a visible
but negligible impact at runtime: they argue that their HIDS can process from 12000 to
22000 system calls per seconds when common operating system’s services usually run around
2000 system calls per second (six to ten times lower). This argument seems questionable for
modern virtual machines, in light of our results; in our test, many of the applications raise
more than 4000 system calls per second (Pacman, dd, netserver, etc.).

6.2 Security Impact
As highlighted in section 3.2, in the case where the kernel implementation can not preempt
system call handling, time isolation is compromised in the system. According to our
measurements, a workload can extend its time window to maximum toverheadmax

= 760 ns
between two context switches.

6.2.1 Workloads Context-Switch Rate Influence
The risk of system call tracing impact on system security increases by reducing the context
switch period. The shorter the time period for an application running system calls is, the
more probable a context switch to be delayed by system call tracing is. Table 5 shows an
example of worst case execution, where every context switch is delayed by a system call. The
system runs two workloads, one with real-time constraints and a non-critical workload raising
continuously system calls. This second software corresponds to a Linux thread repeating the
command ps -ef in an infinite loop. In function of the context switch rate, the table shows
average amount of system calls raised by the monitored application between two context
switches and the final tracing delay for 1 s of non-critical workload cumulated execution.
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Table 5 Influence of the context switch period on tracing overhead.

Context Switch Rate Call/period Overhead (1s execution)
100 µs 2.26E-04 172 ms
100 ns 2.26 8 µs

This vulnerability could be exploited by an attacker running exclusively system calls from
a non-criticalprogramd to compromise availability of a critical program.

6.2.2 PikeOS Real-Time Hypervisor Use-Case

PikeOS kernel is non-preemptive. Thus, context switch can not directly preempt system
call handling in the kernel. Nevertheless, to control time spent in the kernel, it includes
preemption points, notably for long operations and before returning to user-space. Some
long system call handlers, such as creating or destroying a task (above 10 µs in average), can
include preemption points; though most of them do not, because of their speed (generally
less than 1 µs). Hence, tracing impact described in section 6.2.1 also applies to PikeOS
real-time hypervisor.

6.3 Considerations for the Detection Engine Implementation

Intrusions in mixed-criticality systems most likely target non-critical workloads: unlike closed
critical workloads, they usually contain vulnerabilities. The attacker aims either to steal data
from the system or to disturb its execution. In both cases, she eventually has to interact
with the system (OS kernel, other workloads) from the non-critical software. Thus, our
strategy consists in monitoring all workloads using a single detector. The detector would
analyze system call generic information (parameters, type, etc.), correlated to the thread ’s
criticality level and its execution context: e.g. the running CPU core, and interactions with
other workloads. As soon as a thread is identified as a threat, it should be isolated from
other system entities. We also consider rollback mechanisms, especially for affected critical
workloads to restore them in a safe state.

6.4 Other Promising Features for ML-based HIDS

To detect intrusions in a mixed-criticality system with Machine-Learning, we also consider
further interesting features.

6.4.1 Performance Counters

Performance counters tracing seems a promising approach to detect intrusions with machine-
learning, as highlighted by [1] and [6]. Tracing performance counters’s values would have no
direct impact on system real-time constraints as they can be read from user mode, without
kernel intervention. Tracing can then be done in a separate monitor workload, running
on same CPU core as the monitored workload, subject to the compliance of the monitor
with system real-time constraints. This must be ensured, as well as for every workload, by
the OS kernel.
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6.4.2 Branch Tracing
Branch instructions provide relevant information regarding security, e.g. to guarantee
program integrity with CFI (see section 2). Although we could not find any publication on
this topic, we consider branch instructions as interesting features to investigate for machine-
learning based HIDS. Tracing branch transfers can be done either in OS kernel software
or in the hardware: e.g. ARM CoreSight [3] debugging hardware provides this tracing
feature. Hardware implementation is preferable for performance speed-up and time isolation
of workloads. With appropriate access rights, the monitoring application can indeed collect
traces directly from user mode, without systematic interactions with the kernel.

6.4.3 Network Monitoring
Research of the last two decades has well investigated network intrusion detection systems
(NIDS), that are even proposed in main IT security solutions on the market. Network
monitoring traces network packets transiting from and to the monitored application. It relies
on same principle of system call tracing, updating the tracing location from system call
handler to the network driver. As well as with system call tracing, the overall timing impact
should be non negligible.

7 Conclusion

We evaluated the impact of system call instrumentation for deploying intrusion detection in
embedded mixed-criticality systems, through a concrete implementation based on PikeOS
hypervisor. The implementation shows a reasonable time overhead for the majority of
workloads. However, because of new delays induced for tracing in the OS kernel, time
isolation between workloads is not guaranteed anymore. In further work, we plan to develop
a system call based HIDS to monitor a mixed-criticality system, which enforces time isolation.
We will research adapted HIDS architectures for our system context. We will investigate
how system call flows from different workloads can be combined for a reliable detection.
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Abstract
Showing that dependable embedded systems fulfil vital quality attributes, e.g. by conforming to
relevant standards, can be challenging. For emerging and increasingly complex functions, such as
connected automated driving (CAD), there is also a need to ensure that attributes such as safety,
cybersecurity, and availability are fulfilled simultaneously. Furthermore, such systems are often
designed using existing parts, including 3rd party components, which must be included in the quality
assurance. This paper discusses how to structure the argument at the core of an assurance case
taking these considerations into account, and proposes patterns to aid in this task. The patterns
are applied in a case study with an example automotive function. While the aim has primarily
been safety and security assurance of CAD, their generic nature make the patterns relevant for
multi-concern assurance in general.
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1 Introduction

When releasing embedded dependability-critical electrical/electronic (E/E) systems on the
market it is typically necessary to demonstrate that they are sufficiently safe. This is often
done by showing compliance to a functional safety standard. A key design strategy to
successfully show the product is safe is to keep the safety-related part of the system as
small and simple as possible. While this is still desirable, the technological development
is inexorably moving towards higher complexity even for safety-related functionality. One
example is automated driving systems (ADS) [17], i.e. functions enabling what is commonly
referred to as self-driving or autonomous vehicles. For such functions it is difficult to keep
the safety-related part small and isolated as the goal of the function is to drive safely, a task
which by necessity involves many of the vehicle’s sensory, control and actuator subsystems.

With this complexity, it becomes more difficult to convincingly show that a product is
safe. A further complication is that safety cannot be treated in isolation in the presence of
other quality attributes (QAs) that may affect safety properties. For instance, it is expected
that most ADS equipped vehicles are also connected in order to increase performance of
the functionality, e.g. an ADS that exchanges information with surrounding vehicles and
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roadside infrastructure (traffic lights, signs, roadside sensors) will have a better world model
and be able to make better and less defensive driving decisions. However, adding connectivity
to enable connected automated driving (CAD) also increases the security risks. A hacker
may compromise the ADS remotely to e.g. circumvent its safety mechanisms. Hence, to
demonstrate that the function is safe it is also necessary to show that all security risk that
may compromise safety have been treated. This extends to arbitrarily many interrelated
concerns, e.g. it might be necessary to consider availability of the function to make sure
safety and security mechanisms do not lower availability of the function in a way that makes
the business case unviable.

Safety for vehicle E/E functions is typically demonstrated by showing conformance to the
ISO 26262 standard [8], through a safety case consisting of artefacts resulting from complying
to all its normative requirements. The implicit argument is that standard conformance
itself is proof of safety. However, making an explicit argument showing the product-specific
safety-rationale within the overall framework of the standard can aid both development
engineers and safety assessor [3]. For this work our premise is that such an argument is even
more important - even if the standards may not mandate it - when the complexity increases,
for instance when showing simultaneous conformance to several standards each representing
a different QA, also called multi-concern assurance, or when including components developed
out-of-context by 3rd party suppliers.

Our contribution in this paper is a discussion and proposed patterns for simultaneously
covering the dimensions of (1) multiple concerns, (2) standards conformance, (3) element-
out-of-context, and (4) system lifecycle in an argument for a multi-concern assurance case. A
danger with such multi-dimensional arguments is that it becomes unwieldy and incompre-
hensible, thus failing to fill its basic purpose, something we attempt to overcome with a clear
and regular structure. We also develop such an argument in a case study relevant for CAD.

In work related to ours, others have suggested patterns for ISO 26262 arguments [4, 5, 7,
13, 15, 16]. Most of these provide more detailed patterns that could be combined with what
we are proposing, but in some cases also have a somewhat different way of organizing the
argument. However these are for safety only. Taguchi et al. [19] discuss and show patterns
for different ways of integrating safety and security, which may be done by combining the two
concerns, treating them totally separately, or by handling interdependencies in different ways.
In this work we use what Taguchi calls a bi-directional reference process pattern as a multi-
concern pattern, but also combine it with the other dimensions we discuss. Work focused
on co-engineering and how to capture trade-offs between concerns in the argumentation has
also been done [1, 12, 6]. In contrast our work is about structuring the assurance case to
capture information about inter-concern dependencies together with the other mentioned
argument dimensions, not how to handle trade-offs or co-engineering.

2 Argument Dimensions

Here we elaborate on the implication of taking the four dimensions mentioned in Sec. 1 into
account. As we focus on dependability aspects and standards conformance, the conceptual
V-model used in e.g. many functional safety standards is used to illustrate the lifecycle. In
Fig. 1, a triple V-model highlighting the aspects of nominal function, safety and cybersecurity
is shown. While some standards and work processes prefer other models, e.g. to highlight
iterative aspects more clearly, we note that interpreted as a dependency chain rather than
a timeline, the concepts expressed in the V-model are usually applicable, i.e. there is an
overall function concept which is refined to implementable components, and tested in several
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integration levels. When a version of the product is completed, the process is repeated to
add new functionality for the next version, while the current version goes into production
and maintenance phases. In functional safety standards such as ISO 26262 [8], results from
all design and verification steps are collected in a safety case, which must be complete
and consistent for each product version. When treating several concerns the general term
assurance case is used instead. In this section we discuss the rationale behind the four
dimensions and return to the patterns in the next section.

Figure 1 V-model with safety and security attributes and a multi-concern assurance case.

2.1 Lifecycle
As standards and/or company-specific work processes typically prescribe specific development
lifecycles, making the lifecycle stages evident in the argument makes it easier to relate the
argument to the design process, and thereby show that the risk of introducing systematic
faults is sufficiently reduced throughout the lifecycle. In other words, showing the lifecycle in
the argument reduces the risks due to misunderstandings and omissions originating from bad
mapping between argument and the actual development work. Furthermore there is often a
distinction of product and process arguments in standards. Process arguments also include
e.g. management practices that are not specifically tied to the product. In our pattern we
make a separation of these for increased clarity.

2.2 Standards Conformance
The argument should also preferably reflect if the assurance case shall show conformance to a
standard (this is also called a conformance case). Our patterns are designed to be compatible
with the V-model used in e.g. many functional safety standards. While the patterns create
the general structure for the argument, the claims must be instantiated for the specific
quality attribute and supported by more low-level claims and supporting evidence. These
sub-claims can in many cases be requirements directly from the standard. Thus conformance
is not a separate pattern, rather the phases and modules used in our patterns are suitable for
combining with standard requirements. Using a tool allowing compliance mapping between
standard requirements and the argument, e.g. OpenCert [14], it is even possible to track
that all standard requirements have been fulfilled within the framework of the argument.
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2.3 Concerns and Their Interplay
If two quality attributes are independent, i.e. fulfilling one can never impact the other, the
only aspect of multi-concern assurance compared to separate conformance to the concerns
is possible synergies to reduce the assurance work, e.g. joint testing using the same test
frameworks (co-verification in Fig. 1). However, typically interplay in the form of potential
dependencies, conflicts or synergies between the concerns exist and must be identified and
resolved in the multi-concern argument. Again, the analysis of interplay between concerns
must cover the entire product lifecycle to make sure conflicts do not appear in any design
stage or even after production. For instance, security concerns may make over-the-air (OTA)
updates necessary so that security holes uncovered long after the product is released can be
fixed, but this makes it necessary to make sure OTA updates cannot compromise safety. We
therefore include argument for interplay in our patterns. It should be noted that interplay
arguments can become unwieldy if many dependent concerns are treated since the possible
combinations quickly grows with number of QAs. Based on [11] as well as own experience,
we also claim that specifying well-defined interaction points between concerns (co-analysis
in Fig. 1) is preferable to processes integrating several concerns.

2.4 Component Structure
In many domains, including automotive, the most common way to build new features is to
integrate parts from suppliers, or reusing existing components. These must be included in
the assurance case for the new feature. A supplier may also sell the same part to several
customers and even develop it before having any requirements from an OEM. The supplier
may then construct their own assurance case for their part, using assumptions on its use,
i.e. an assumed context. In ISO 26262, this is called a safety-element-out-of-context. We
generalize the concept and use the term element-out-of-context (EooC), which may have an
assurance case for multiple concerns. When integrating the EooC in the complete feature,
there must be a bridge between the feature and EooC assurance cases explaining how the
part developed for the assumed context will also fulfil the requirements for the actual feature
in the real context.

3 Putting it Together in Argument Patterns

3.1 Pattern Notation
We use the argumentation structure defined in ISO/IEC 15026-2:2011 [9] which is illustrated
on the left hand side of Fig. 2. In this standard, an argument consists of one or more top-level
claims supported by sub-claims, evidence, and/or assumptions through an argument detailing
how these underlying components support the top-level claim. Sub-claims must be supported
in the same way; the argument can be arbitrarily many levels with evidence and assumptions
as leaf nodes. The choice of top-level claims must be supported by a justification, as must
an argument (at any level) have a justification for how underlying components support a
(sub-)claim. The standard is agnostic as to how the arguments are represented. In this paper
we use the GSN notation [18], which provides an illustrative graphical representation, to
show our proposed patterns. The GSN notation corresponding to the 15026-2 concepts are
shown to the right in Fig. 2; in GSN a claim is called a goal, an argument is called strategy
and evidence is called a solution.
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Figure 2 ISO/IEC 15026-2:2011 argument and corresponding GSN notation.

In addition to the basic notation we use some extensions to GSN. The modular extensions
are helpful for managing the complexity of large arguments, and the extensions allowing
for abstraction are used to express generic argument patterns. Fig. 3 shows the GSN
elements used in this paper. (a) Module is used to represent a separate sub-argument which
is used either in a module view which is a special overview diagram in GSN showing only
relationships between such modules, or to show that a goal is supported by an entire argument
contained in a separate module. (b) Contract is used when a goal will be supported in a
yet unspecified module and is used to provide decoupling. The contract module itself is
used to provide a glue argument showing how the argument in a module (which might e.g.
be provided for a re-usable component) fulfils the goal which was to be supported by the
contract. (c) Away goal repeats a goal made in another module in the argument of a local
module in order to show dependencies between goals in different modules. The away goal
also identifies the module where the original goal can be found. The (d) InContextOf arrow
is used in a way proposed by the AMASS project [2], which is to show that fulfillment of
a goal in one concern is dependent on fulfillment of a goal in another concern. (e) Option
is used to denote alternatives to satisfy a relationship, while (f) optional arrow is used for
an optional relationship, and (g) many arrow denotes a one-to-many relationship with the
cardinality shown next to the arrow. A goal can also be (h) uninstantiated which means
it is an abstract element that needs to be replaced by a concrete instance. Words within
{brackets} in the argument are tokens to be instantiated, e.g. {Goal} could be instantiated
as LaneKeepingAssist is acceptably safe as a top-level goal in the safety argument for a lane
keeping assist vehicle feature. (i) Undeveloped means a goal which is not yet fully supported,
i.e. it needs to be developed by completing the argument beneath it. Goals can be both
undeveloped and uninstantiated at the same time. Finally, (j) context is part of the basic
GSN notation and is used to provide contextual information needed for interpreting the goal
or strategy it is attached to. These concepts are more fully described in the GSN community
standard version 2 [18]. All GSN figures in the rest of the paper are produced with the
OpenCert tool [14]1.

1 Some modifications of the figures produced by the tool have been made for improved readability.
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Figure 3 GSN extensions used in the paper.

3.2 Overall Argument Structure and Lifecycle

We organize the overall argument as shown in the GSN modules view in Fig. 4. The top
level claim will be that the system (or EooC which we return to in Sec. 3.5) fulfils all quality
attributes that have been defined for it. A pattern for the topmost module of Fig. 4 is shown
in Fig. 5; this pattern references modules for all QAs and interplay arguments relevant for
the product. The concept phase is where initial concept (e.g. item definition in ISO 26262)
is defined and risk evaluation is performed (e.g. hazard analysis & risk assessment (HA&RA)
and definition of safety goals in ISO 26262). In the concept phase there will be separate
modules for each QA and for interplay between all QAs where relevant, e.g. safety and security
are not independent and therefore should have an interplay module if they are two of the
defined QAs. The rest of the argument is organized according to lifecycle with one module per
logical element on the functional concept stage, one module per component on the technical
concept/system design stage and modules for software and hardware development for each
component. There are separate modules to deal with management and post-development
issues such as production, maintenance and decommissioning. These stages are typical for
a V-model. The number of abstraction levels may vary but is easy to adapt as the basic
structure in each level is the same.

3.3 Concerns

For each quality attribute, a pattern for developing this concern in the concept phase is
shown in Fig. 6. The strategy is to use a specified lifecycle, often from a standard, with
adequate measures for the QA. The sub-goals are optional depending on the QA, but typical
components of the argument is: risk mitigation by using an analysis method and introducing
requirements specifying the risks to be avoided (and in many standards the level of risk
reduction is quantified with an integrity level [10]); adequate management and operations
and maintenance (OaM) practices; and confirmation measures, e.g. review of analysis results.

Following the goal {QA} requirements introduced to reduce {QA} risks from one of
the leaf nodes in Fig. 6 is a pattern, shown in Fig. 7, for making sure these quality
attribute requirements have also been correctly implemented. This pattern provides a way
to create a rationale around each QA requirement showing that it has been correctly refined,
implemented and verified. The pattern contains goals for refining the QA requirements to the
next abstraction level where the pattern will be repeated again for all refined requirements.
The refinement goals are optional as they are obviously not applicable on the lowest refinement
level while the verified goal is applicable (and mandatory) on all levels.
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Figure 4 Modules view of system or element-out-of-context.

Figure 5 Pattern for top-level multi-concern argument.
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Figure 6 Pattern for a quality attribute.

Figure 7 Pattern for a QA requirement at any abstraction level.
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3.4 Interplay

Interplay can be argued between two or more QAs in each interplay module depending on
which methods are found most suitable for interplay in each case. However, it must be evident
that all relevant combinations of QAs are taken into account. The pattern, shown in Fig.
8, establishes that management practices for interplay are in place and that dependencies
between QAs are found and introduced in the QA requirement hierarchy. This was shown in
Fig. 7 as an away goal for a requirement, indicating an interplay dependency. Similar to
how QA requirements were handled, the pattern in Fig. 9 then makes sure these interplay
dependencies are also refined in lower abstraction levels of the design.

Figure 8 Pattern for an interplay.

3.5 Element-out-of-Context

The final pattern is the glue between in-context feature and element-out-of-context mentioned
in Sec. 2.4. This pattern, shown in Fig. 10, simply connects in-context QAs with the same
QA for the EooC, but establishes that an argument showing their compatibility needs to be
developed. An analogous pattern (not shown) can be used for the interplay, i.e. it is also
necessary to ascertain that the relevant interplay dependencies are covered in the EooC. A
component in any abstraction level can be an EooC, which means the EooC will contain the
argument from that abstraction level down.

4 Case Study

As a case study we use a positioning element (PE) for CAD which needs to conform to both
functional safety and cybersecurity standards. PE is designed as an element-out-of-context
(EooC) and can thus be used for various functions. As it is aimed at the automotive domain,
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Figure 9 Pattern for an interplay refinement.

Figure 10 Pattern for a contract between system/component and an element-out-of-context.
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Figure 11 Demonstrator with model cars using the PE (inset) for navigation.

ISO 26262 is used as safety standard and a working draft of ISO/SAE 214342 for cybersecurity.
Fig. 11 (inset) shows the hardware for PE containing a satellite navigation receiver which
is used in conjunction with correction data for enhanced precision. To complete the use
case, PE is matched to the hypothetical context of an ADS feature - highway autopilot,
where it is used to provide accurate absolute (i.e. on a map) position. Fig. 11 also shows a
demonstrator environment for this feature with autonomous model cars.

A detailed description of the function is beyond the scope of this paper; however, it has
functional requirements which are analyzed for safety and security risks according to both
standards, resulting in safety goals (top-level safety requirements) and security goals. A
simplified version of one functional requirements is: The automated driving mode may only be
activated on roads certified for ADS vehicles. The ISO 26262 HA&RA results in safety goals
for the ADC. A safety goal related to the stated requirement is: ADC may only be activated
on certified roads3. Since the function is only designed to work within the parameters given in
the functional requirement, its behavior is undefined if enabled anywhere else, thus resulting
in high risk of harm. For cybersecurity, a threat analysis and risk assessment (TA&RA) is
used to elicit security goals. A security goal with a dependency to the mentioned safety goal
is: Integrity protection against spoofing to fulfil ADC may only be activated on certified roads.

For space reasons the entire argument for the case study cannot be shown. However, Fig.
12 shows some parts of interest: (a) dependence between the safety and security goals discussed
above; (b) the same dependence refined to functional level, (c) example of where requirements
from ISO 26262 have been connected to the assurance case (HA&RA forms a tree of its own
ending in requirements from the standard, this tree has been automatically generated to a
module), and (d) reference to the contract between function and positioning EooC.

5 Conclusions

In this paper, our goal was to propose a structured way to build the argument for a multi-
concern assurance case of a complex dependability-critical system such as a CAD function,
and demonstrate its feasibility by an example. Our claim is that the complexity can be

2 A coming cybersecurity standard for the automotive domain.
3 The actual safety and security goals also have integrity levels but as they are not relevant for the

example we have omitted them.
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Figure 12 Snippets from argument for case study.

managed by a traceable argument structure, with an attached rationale to every branching
in order to keep track of the reasoning behind the design. With this structure the overall
design can also be aggregated and contain re-usable components. The structure follows each
concern, with dependencies at certain interaction points. The interaction can be predicted
because the argument structure also reflects the development lifecycles of the concerns.
When the interaction between the concerns is planned and limited, as we propose, there is a
good possibility too keep the benefits from co-engineering, without the extra effort of high
frequency interaction between different disciplines such as safety and security.

It should be noted that even if a structured approach makes it easier to manage large
complex systems, the approach would still require good tool support to be feasible as the
arguments can become very large. Traceability and compliance management, management
of argument modules, and automation of argument integrity checks are examples where
tools are helpful. There is ample opportunity for automation, for instance detecting nodes
that have not been developed or instantiated, or solution nodes with no references to actual
evidence. Combination with semi-formal notations for goals/requirements to allow for even
better control of structure and more checks for possible omissions is yet another possibility
to increase automation opportunities. Some tools such as OpenCert already contain many of
these features. Another issue we have not discussed in the paper is how to include assurance
in the actual development workflow. For instance, today many organizations are adopting
agile practices to allow for more frequent product updates. This is an issue we are currently
exploring in our continued work.
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1 Introduction

With the exception of a handful of systems, such as the two Voyager spacecraft control
systems and the computers in the US intercontinental ballistic missile silos,1 information
and communication technology systems (ICT) rarely reach a commercially viable lifetime
that ranges into the 25+ years we have come to expect from long-lived systems like cars2,
as shown in Figure 1. Worse, rarely any networked ICT system stays secure over such a
lifetime, even if actively maintained.

Despite this potential risk, current ICT subsystems are already being integrated into
systems with significantly longer design lifetimes. For example, electronic control units in
modern (self-driving) cars, the networked control systems in critical infrastructure (e.g., cyber-
physical systems in power plants and water treatment facilities), and computer controlled
building facilities (a.k.a. smart buildings) are all examples of this mismatch in design lifetimes.
This is also applicable beyond cyber-physical systems: for example, genomic data is privacy-
sensitive for at least the lifetime of the person (if not longer), and yet it is being protected by
cryptographic algorithms with a significantly shorter expected lifespan [6]. For the currently
envisioned limited lifetime, the (functional) safety community has developed techniques
to prevent harm despite accidental faults [9]. However, for the ICT systems in the above
scenarios we aim to preserve security and safetime for the design lifetime, and often beyond.
This means that they need to preserve the value and trust in the assets entrusted to them,
their safety properties (i.e., resilience to accidental faults) and their security properties (i.e.,
resilience to malicious faults, such as targeted and persistent attacks). Even when compared
to existing approaches to achieve resilience (such as the safety approaches mentioned above),
these lifetimes translate into ultra-long periods of secure and safe operation.

Figure 1 Survival probability of passenger cars by age [2] (based on 1977-2003 NVPP data).

To address this impending challenge, we introduce a new paradigm, which we call
sustainable security & safety (S3). The central goal is that a system should be able to
maintain its security and safety, but desirably also its functionality for at least its design

1 http://www.dailymail.co.uk/news/article-2614323/Americas-feared-nuclear-missile-
facilities-controlled-computers-1960s-floppy-disks.html

2 https://www.aarp.org/money/budgeting-saving/info-05-2009/cars_that_last.html

http://www.dailymail.co.uk/news/article-2614323/Americas-feared-nuclear-missile-facilities-controlled-computers-1960s-floppy-disks.html
http://www.dailymail.co.uk/news/article-2614323/Americas-feared-nuclear-missile-facilities-controlled-computers-1960s-floppy-disks.html
https://www.aarp.org/money/budgeting-saving/info-05-2009/cars_that_last.html
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lifetime. This is particularly relevant for systems that have significantly longer design lifetimes
than their ICT subsystems (e.g., modern cars, airplanes, and other cyber physical systems).
In its broadest sense, S3 encompasses both technical and non-technical aspects, and some of
the arising challenges span both aspects.

From a technical perspective, S3 brings together aspects of two well-studied technical
fields: security and dependability. Security research typically begins by anticipating a certain
class of adversary, characterized by a threat model based on well known pre-existing threats
at the time the system is designed. From this model, defense mechanisms are then derived for
protecting the system against the anticipated adversaries or for recovering from these known
attacks. Dependability, on the other hand, begins with the premise that some components
of a system will fail, and investigates how to tolerate faults originating from these known
subsystem failures. Again, the type, likelihood, and consequences of faults are assumed to be
known and captured in the fault and fault-propagation models.

The term security-dependability gap [10] is a prototypical example of why established
solutions from the dependability field cannot be directly used to address security hazards,
and vice-versa. This arises from the way risks are assessed in safety-critical systems: safety
certifications assess risks as a combination of stochastic events, whereas security risks arise as a
consequence of intentional malicious adversaries, and thus cannot be accurately characterized
in the same way. What is a residual uncertainty in the former, becomes a strong likelihood
in the latter.

Therefore, there are two defining characteristics of S3:
Firstly, it aims to bridge the safety-security gap by considering the complementarity of
these two fields as well as the interplay between them, and addressing the above-mentioned
problems under a common body of knowledge, seeking to prevent, detect, remove and/or
tolerate both accidental faults and vulnerabilities, and malicious attacks and intrusions.
Secondly, it aims to protect systems beyond the foreseeable horizon of technological (and
non-technological) advances and therefore cannot be based solely on the characterizations
of adversaries and faults as we know them today. Instead we begin from the premise
that a long-lived system will face changes, attacks, and accidental faults that were not
possible to anticipate during the design of the system.

The central challenge is therefore to design systems that can maintain their security and
safety properties in light of these unknowns.

2 System Model

Sustainable security & safety is a desirable property of any critical system, but is particularly
relevant to long-lived systems, especially those that are easily accessible to attackers. These
systems are likely to be comparatively complex, consisting of multiple subsystems and
depending on various external systems. Without loss of generality, we use the following
terminology in this paper, which is aligned with other proposed taxonomies, such as [3]:

System: a composition of multiple subsystems. The subsystems can be homogeneous
(e.g., nodes in a swarm) or heterogeneous (e.g., components in an autonomous vehicle).
Failure: degradation of functionality and/or performance beyond a specified threshold.
Error: deviation from the correct service state of a system. Errors may lead to subsequent
failures.
Fault: adjudged or hypothesized cause of an error (e.g., a dormant vulnerability of the
system through which adversaries may infiltrate the system, causing an error which leads
to a system failure).

CERTS 2019



4:4 Sustainable Security & Safety: Challenges and Opportunities

System failure: failure of the overall system (typically with catastrophic effect).
Subsystem failure: failure of an individual subsystem. The overall system may be
equipped with precautions to tolerate certain subsystem failures. In this case, subsystem
failures can be considered as faults in the overall system.
Single point of failure: any subsystem whose failure alone results in system failure.

S3 aims to achieve the following two goals:
1. Avoid system failure: The primary goal is to avoid failure of the overall system,

including those originating from unforeseeable causes and future attacks. Note that
avoiding system failure refers to both the safety and security properties of the system
(e.g., a breach of data confidentiality or integrity could be a system failure, for certain
types of systems).

2. Minimize overheads and costs: Anticipating and mitigating additional threats gen-
erally increases the overheads (e.g., performance and energy) as well as the initial costs
(e.g., direct costs and increased design time) of the system.

In addition, higher system complexity (e.g., larger code size) may lead to increased fault
rates and an increased attack surface. On the other hand, premature system failure may
also have associated costs, such as downtime, maintenance costs, or penalties. Therefore,
a secondary goal of S3 is to develop technologies and approaches that minimize all these
potential overheads and costs.

3 Challenges of Long-Term Operation

In our S3 paradigm, we accept that we cannot know the precise nature of the attacks, faults,
and changes that a long-lived system will face during its lifetime. However, we can identify
and reason about the fundamental classes of events that could arise during the system’s
lifetime and that are relevant to the system’s security and dependability. Although these
events are not exclusive to long-term operation, they become more likely as the designed
lifetime of the system increases. We first summarize the main classes of challenges, and then
discuss each in detail in the following subsections.

Subsystem failures

In consequence of the above uncertainty about the root cause and nature of faults leading
to subsystem failure, traditional solutions, such as enumerating all possible faults and
devising mitigation strategies for each fault class individually, are no longer applicable.
Instead, reasoning about these causes must anticipate a residual risk of unknown faults
ultimately leading to subsystem failures and, treating them as faults of the system as a
whole, mechanisms included that are capable of mitigating the effects of such failures at the
system level. Subsystem failures could be the result of random events or deliberate attacks,
possibly due to new types of attack vectors being discovered. In the most general case, any
type of subsystem could fail, including hardware failures, software attacks, and failures due
to incorrect specifications of these subsystems. Subsystem failures may be hardware failures,
software failures, subsystem compromises or specification failures. The open issues in these
areas include:

Hardware failures. How can we protect spares (set our to take over in case of successful
attacks or persistent faults) from environmental and adversarial influences, such that they
remain available when they are required? How can we assert the sustainability of emerging
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material circuits, without at the same time giving adversaries the tools to stress and ultimatlely
break these circuits? How can we protect confidential information in subsystems? How can
we prevent one compromised hardware subsystem from compromising the integrity of others?
How can we prevent adversaries from exploiting safety/security functionality of excluded
components? How can we model erroneous hardware behavior? And, how can we construct
inexpensive, fine grain isolation domains to confine such errors?

Software failures. How to design systems that can detect and isolate software subsystem
failures? How to transfer software attack mitigation strategies between domains (e.g., PC to
embedded)?

Subsystem compromise. How to recover a system when multiple subsystems are comprom-
ised? How to detect subsystem compromised by a stealthy adversary? How to react to the
detection of a (potentially) compromised subsystem? How to prevent the leakage of sensitive
information from a compromised subsystem? How to securely re-provision a subsystem after
all secrets have been leaked?

Specification failures. How to design subsystems that may fail at the implementation, but
not at the specification level (and at what costs)? If specification faults are inevitable, how
to design systems in which subsystems can follow different specifications whilst providing the
same functionality, in order to benefit from diversity specifications and assumptions? How to
recover when one of the essential systems has been broken due to a specification error (e.g.,
how to recover from a compromised cryptographic subsystem)?

Requirement changes

The requirements of the system could change during its lifetime. For example, the security
requirements of a system could change due to new regulations (e.g., the EU General Data
Protection Regulation) or shifts in societal expectations. The expected lifetime of the system
itself could even be changed subsequent to its design. Requirement changes may be due to:

Regulatory changes. How to retroactively change the designed security, privacy, and/or
safety guarantees of a system? How to prove that an already-deployed system complies with
new regulations?

User expectation changes. How can a system be extended and adapted to meet new
expectations after deployment? How to demonstrate to users and other stakeholders that an
already-deployed system meets their new expectations?

Design lifetime changes. How to determine whether a deployed system will retain its safety
and security guarantees for an even longer lifetime? How to further extend the safety and
security guarantees of a deployed system?

Environmental changes

The environment in which the system operates could change during the system’s design
lifetime. This could include changes in other interdependent systems. For example, the
United States government can selectively deny access to the GPS system, which is used by
autonomous vehicles for localization.
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New threat vectors. How to tolerate failure of subsystems due to unforeseeable threats?
How to avoid single points of failure that could be susceptible to unforeseen threats? How
to improve the modeling of couplings and dependencies between subsystems such that the
space of “unforeseeable” threats can be minimized?

Unilateral system/service changes. How to design systems such that any third-party
services on which they depend can be safely and securely changed? How can a system handle
unilateral changes of (external) systems or services?

Third-party system/service fails. How to design systems such that any third-party services
on which they depend can be safely and securely changed after they have already failed?
How can a system handle the failure or unavailability of external services?

Maintenance resource becomes unavailable. How to identify all maintenance resources
required by a system? How to maximize the maintenance lifetime of a system whilst
minimizing cost? How to continue maintaining a system when a required resource becomes
completely unavailable? How to ensure that a system remains secure and safe even under a
new maintainer?

Maintainer changes

Most systems have the notion of a maintainer – the physical or logical entity that maintains
the system for some part of its design lifetime. For example, in addition to the mechanical
maintenance (replacing brakes, oil, etc.) Tesla vehicles regularly receive over-the-air software
updates from the manufacturer.3 For many systems, the maintainer needs to be trusted to
sustain the security and safety of the maintained system. However, especially in long-lived
systems, the maintainer may change (e.g., the vehicle is instead maintained by a third
party service provider), which gives rise to both technical and non-technical challenges.
Maintenance change requires answering:

Implementing a change of maintainer. How to securely inform the system that a change
of maintainer has taken place?

System becomes unmaintained. How can a system decide that it is no longer maintained?
How should an unmaintained system behave?

Ownership changes

Finally, if a system has the notion of an owner, it is possible that this owner will change over
the lifetime of the system, especially if the system is long-lived. For example, vehicles are
often resold, perhaps even multiple times, during their design lifetimes. Change of ownership
has consequences because the owner usually has privileged access to the system. A system
may also be collectively owned (e.g., an apartment block may be collectively owned by the
owners of the individual apartments). Ownership may be:

3 https://www.tesla.com/support/software-updates

https://www.tesla.com/support/software-updates
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Cooperative. How to securely inform the system about the change in ownership, without
opening a potential attack vector? How to erase sensitive data during transfer of ownership,
without allowing the previous owner to later erase usage/data of the new owner?

Non-cooperative. How to automatically detect non-cooperative ownership change? How
to erase sensitive data after loss of ownership, without allowing the previous owner to erase
usage/data of the new owner?

4 Technical Implications

Figure 2 Means to attain dependability and security.

The challenges identified in Section 3 lead to a number of technical implications, which
we highlight in the following before presenting more concrete proposals to address sustainable
security & safety in the next section. In particular, the realization that any subsystem
may fail, especially given currently unforeseeable threat vectors, and the realization that
subsystem failure is a fault in the overall system, demands a principled treatment of faults.

Although safety and security independently developed solutions to characterize the risk
associated with faults, we observe a gap to be closed, not only for automotive systems [10],
but also in any ICT system where risks are assessed based on the probability of occurrence.
Once exposed to adversaries, it is no longer sufficient to capture the likelihood of natural
causes coming together as probability distributions. Instead, probabilistic risk assessment
must take into consideration the incentives, luck, and intents of increasingly well-equipped
and highly skilled hacking teams. The conclusion may well be high risk probabilities, in
particular when irrational hackers (such as cyberterrorists) are taken into account. Also,
naively applying techniques, principles, and paradigms used in isolation in either safety or
security will not solve the whole problem, and worse, may interfere with each other. Moreover,
to reach sustainability, any such technique must withstand long-term operation, significantly
exceeding that of recent approaches to resilience.

For example, executing a service in a triple modular redundant fashion increases tolerance
against accidental faults in one of the replicas. However, it does not help to protect a secret
passed to the individual replicas by encrypting this secret for each replica and with the
replica’s key. Once the key of a single compromised replica is extracted, confidentiality is
breached and the secret revealed. Further, if a replica fails due to an attack rather than a
random fault, replaying the attack after resetting this replica will often recreate this failure
and eventually exhaust the healthy majority.
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To approach sustainable security & safety, we need a common descriptor for the root-cause
of problems in both fields – faults – and a principled approach to address them [21, 20].
As already pointed out in [3], faults can be accidental, for example, due to natural causes,
following a stochastic distribution and hence justifying the argument brought forward in
safety cases that the residual risk of a combination of rare events is within a threshold of
accepted risks. However, faults can also be malicious, caused by intentional adversaries
exploiting reachable vulnerabilities to penetrate the system and then having an up to 100%
chance of triggering the combination of rare events that may lead to catastrophe. Faults
can assume several facets, and the properties affected are the union of those both fields are
concerned with: reliability, availability, maintainability, integrity, confidentiality, etc.

Returning to the above example, treating a confidentiality breach as a fault, it becomes
evident why encrypting the whole secret for each replica individually constitutes a single
point of failure. It also gives rise to possible solutions, such as secret sharing [16], but further
research is required to ensure long-term secrecy for those application fields that require this,
e.g., simple secret sharing schemes do not tolerate a mobile adversary that subsequently
compromises and releases one replica at a time.

In the long run, failure of individual subsystems within the lifetime of the overall system
becomes an expected occurrence. We therefore distinguish normal failure (e.g., ageing causing
unavailability of a subsystem’s functionality) from catastrophic failure (causing unintended
system behavior), and devise means to attain dependability and security despite both.

4.1 S3 Lifecycle
Figure 2 sketches the path towards attaining dependability and security, and principled
methods that can be applied over the lifetime of the system to obtain sustainable security &
safety. Faults in subsystems manifest from attacks exploiting reachable vulnerabilities in
the specification and implementation of the subsystem or from accidental causes. Without
further provisioning, faults may manifest in errors, which may ultimately lead to failure
of the subsystem. Here we take only the view of a single subsystem, which may well fail
without inevitably implying system failure. More precisely, when extending the picture in
Figure 2 to the overall system, subsystem failures manifest as system faults, which must be
caught at the latest at the fault tolerance step. It may well be too late to recover the system
as a whole after a failure has manifested, since this failure may already have compromised
security or caused a catastrophe (indicated by the red arrow).

4.1.1 Design
Before deployment, the most important steps towards sustainable security & safety involve
preparing the system as a whole for the consequences of long-term operation. In the next
section, we sketch early insights what such a design may involve. Equally important is to
reduce the number of vulnerabilities in the system, to raise the bar for adversaries. Fault
and vulnerability prevention starts from a rigorous design and implementation, supported
for example by advanced testing techniques such as fuzzing [12, 13, 7, 8]. However, we
also acknowledge the limitations of these approaches and consequently the infeasibility of
zero-defect subsystems once they exceed a certain complexity, in particular in the light of
unforeseeable threats. For this reason, intrusion detection and fault diagnosis and fault and
vulnerability removal starts after the system goes into production,4 which also is imperfect

4 We consider design-time penetration testing as part of the vulnerability removal process.



A. Paverd et al. 4:9

in detecting only a subset of intrusions and rarely those following unknown patterns while
remaining within the operational perimeter of the subsystem. It is important to notice that
despite the principled imperfection of fault, vulnerability and attack prevention, detection
and removal techniques, they play an important role in increasing the time adversaries need
to infiltrate the system and in assessing the current threat level, the system is exposed to.

4.1.2 In Production

While in production, replacement of faulty hardware components is still possible, by providing
replacement parts to those systems that are already shipped and by not shipping new systems
with known faulty parts. Software updates remain possible during the whole time when the
system remains under maintenance, although development teams may already have been
relocated to different projects after the production phase.

Fault tolerance, that is, a subsystem’s ability to gracefully reduce its functionality to a
non-harmful subset (e.g., by crashing if replicas start to deviate) or to mask errors (e.g., by
outvoting the behaviour of compromised or malicious replicas behind a majority of healthy
replicas, operating in consensus) forms the last line of defense before the subsystem failure
manifests as a fault. The essential assumption for replication to catch errors not already
captured by the fault and error removal stages is fault-independence of all replicas, which is
also known as absence of common mode faults. Undetected common mode faults bear the
risks of allowing compromise of all replicas simultaneously, which gives adversaries the ability
to overpower the fault tolerance mechanisms. Crucial building blocks for replication-based
fault tolerance are therefore the rejuvenation of replicas to repair already compromised
replicas and in turn maintain over time the required threshold of healthy replicas (at least
one for detecting and crashing and at least f + 1 to mask up to f faults) and diversification
to avoid replicas from failing simultaneously and to cancel adversarial knowledge how replicas
can be compromised.

4.1.3 Out of Production

As long as the system is maintained, the rejuvenation and diversification infrastructure for
the system may rely on an external supply of patches, updates and new, sufficiently diverse
variants for the pool of diverse subsystem images.

4.1.4 Out of Maintenance

Once the system falls out of active maintenance, replenishment of this pool is limited to
on-board diversification mechanisms (such as binary obfuscation5) or through fleet-wide
cross-fertilization, by exchanging diagnosis data between systems of the same kind, which
allows one system to learn from the intrusions that happened to its peers (e.g., by mimicking
gene crosscopying in patch generation for defense). The final state before the end of life of
the system is a reliable cleaning step of all secrets that remain until this time, followed by a
graceful shutdown of the system.
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Figure 3 Abstract view of a sustainable system and its surroundings.

5 Design Principles

Figure 3 sketches one potential architecture for sustainable security & safety and shows the
abstract view of a sustainable systems and its connections/relations with its surroundings.
A system interacts (possibly in different phases of its life cycle) with different stakeholders.
The stakeholders (or a subset thereof) usually define the applications and objectives of a
systems, e.g., the manufacturer and developer define the primary/intended functionality of a
systems. The system’s intended applications or objectives, as well as external factors such
legal frameworks, define the overall requirements a system must fulfill.

The center of Figure 3 shows the overall system that can be composed from multiple
subsystems, each of which is a combination of multiple components. Components of a
subsystem are connected with one another. Backup components (marked in grey) are
required to achieve fault tolerance, i.e., if one component of a subsystem fails it can be
(automatically) replaced by a backup component.6

Subsystems are connected and interact via defined interfaces (shown as tubes). As long
as the interfaces and the individual subsystems are fault tolerant, the overall system can
inherit this property.7

Sustainable systems usually do not operate in isolation. They often rely on external
services, e.g., cloud services to execute computation intensive tasks. If these services are
critical for the operation of the system, the resiliency of these services is relevant, e.g.,

5 https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-sean_taylor-
binary_obfuscation.pdf

6 Backup components can also be online/active to reduce the load per component as long as not failure
has occurred.

7 If an individual subsystem cannot provide the required fault tolerance level, the overall system requires
redundancy with regard to that subsystem.

https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-sean_taylor-binary_obfuscation.pdf
https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-sean_taylor-binary_obfuscation.pdf
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multiple instances of the service must be available, and the connection to the external service
must be reliable, as well.

The system’s management includes technical management as well as abstractly controlling
the system and its operation. This has to cover both the management of the system
itself and the external services upon which the system relies. The management can be
performed by a single entity (stakeholder) or distributed among different stakeholders, e.g.,
the device manufacturer provides software updates for the system while the user configures
and monitors it.

Based on the challenges discussed in the preceding section, we can already deduce certain
architectural requirements and design principles for achieving S3:

Well-defined Components and Isolation, limiting interaction to well-defined and
constrained interfaces, to ensure complexity can be handled and to confine faults to
causing components.
Avoid Single Points of Failure. For systems in long-term operation, it must be expec-
ted that any subsystem could fail, especially when exposed to unforeseen or unforeseeable
attacks or changes. Anticipating this possibility, it is clear that no single subsystem can
be responsible for the safety and security of the system as a whole.
Multiple Lines of Defense. Individual defenses can be overcome by adversaries, hence,
relying on a single defense mechanism represents a single point of failure. Multiple lines
of defense are needed to protect the system. Control-flow integrity (CFI) [1], for instance,
has been attacked by full-function reuse attacks [5, 15] while randomization approaches
suffer from information leakage [17]. Combining both can increase the security, e.g., by
relying on randomization to mitigate the above attack to CFI.
Long-term Secrets and Confidentiality. Ensuring the confidentiality of data over
long periods of time is very challenging since data, once leaked, cannot become confidential
again. To prevent the leakage of secret information their use should be minimized.
Additionally, single subsystem should not be allowed to access a secret as a whole, as this
subsystem would become a single point of failure with respect to the secret information’s
confidentiality.
Let us give an example, detailled in [22]. Combining secret sharing, permanently re-
encrypted data silos, function shipping into trusted execution environments, and sanitizing
before revealing, it is possible to give access, even to bulk data, when it is required, but
only in the form necessary. Rarely, applications require access to raw data. Instead, most
just depend on aggregate, derived information which reveals much less of the secrets used.
Revealing the classification of a deep neural network for a picture, while protecting the
weights [19] is an example of such a secret protection scheme.
Robust Input Handling. (Sub)systems should not make assumptions with respect to
the inputs it expects. This holds true for external as well as internal inputs. A robust
system should incorporate: (a) it should cope well with noisy and uncertain real-world
inputs, and (b) express its own knowledge and uncertainty of a proposed output despite
unforeseen input [11].
Contain Subsystem Failure. An immediate conclusion from the requirement to
tolerate arbitrary failures is the need to confine each subsystem into an execution
environment that acts as fault containment domain and in which the subsystem may be
rejuvenated to re-establish the functionality it provides.
Replicate to Tolerate Subsystem Failure. If the functionality provided by the failing
subsystem cannot be compensated by lower-level components (possibly at a different
quality of service), the subsystem must be replicated to mask failure of individual replicas
behind a majority of healthy replicas operating in consensus.
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Diversify Nodes and Components. Replication is not sufficient to evade attacks [4];
diversification is needed to avoid common mode faults and cancel adversary knowledge [18].
Adaption and reconfiguration is needed to stay ahead of adversaries, but also to
adjust to environmental changes.
Minimize Assumptions. Attackers may find new ways of violating assumptions to
defeat safety or security measures that rely on them. Minimizing assumptions to those
substantially required for the implementation, mitigates this threat.
Simplicity and Verifiability. While due to performance demands it is out of reach
to keep the whole system simple, the trusted core typically required in fault-tolerant
and secure architectures can be kept sufficiently small. Such a small and simple unit is
furthermore less likely to suffer from unforeseen threats.

6 Conclusion

Achieving sustainable security & safety in real-world systems is a non-trivial challenge. It
goes well beyond our current paradigms for building secure systems because it calls for
consideration of safety aspects and anticipation of threats beyond the foreseeable threat
horizon. It also goes beyond our current thinking about safety by broadening the scope
to include deliberate faults induced by an adversary. Nevertheless, sustainable security &
safety will become increasingly necessary as we become increasingly dependent on these
(ICT) systems. Even if the full vision of sustainable security & safety is not fully achieved,
any advances in this direction could have a significant impact on the design of future system.
We have set out our vision for sustainable security & safety, identified the main challenges
currently faced, and proposed a set of design principles towards overcoming these challenges
and achieving this vision.
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Abstract
Time sensitive networking (TSN) is gaining attention in industrial automation networks since it

brings essential real-time capabilities at the data link layer. Though it can provide deterministic
latency under error free conditions, TSN still largely depends on space redundancy for improved
reliability. In many scenarios, time redundancy could be an adequate as well as cost efficient
alternative. Time redundancy in turn will have implications due to the need for over-provisions
needed for timeliness guarantees. In this paper, we discuss how to embed fault-tolerance capability
into TSN schedules and describe our approach using a simple example.
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1 Introduction

Time- and safety-critical control applications in the context of factories need real-time
guarantees [26]. Commonly, such requirements are specified at design time and the system
is expected to fulfil them during its entire operational life. This necessitates guaranteed
and bounded latencies and low jitter for tasks/functions that are critical to safety (for the
end-user) [24]. The design and development of distributed embedded systems driven by the
Time-Triggered paradigm [17] has proven effective in a diversity of domains with stringent
demands of determinism [7].

There has been a steady evolution from centralized control with the control logic embedded
within a single controller to decentralized/distributed control where control is shared between
multiple controllers. A key benefit of this is to provide greater robustness to failures. For
instance, a distributed architecture is more conducive to safety, by ensuring critical functions
have the possibility of being executed at multiple physical nodes and transported across
multiple communication links (the basic notion of redundancy). However, from a network
latency perspective, this may cause additional latencies due to multiple hops (when an
alternate link or node is needed). When timeliness is of the essence, such an arrangement
may not therefore be optimal in providing determinism.
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In applications such as factory automation or automobiles, the systems could be subjected
to high degrees of Electro Magnetic Interference (EMI) from the operational environment
which can cause transmission errors. The common causes for such interference include
cellular phones and other radio equipment inside the premises/vehicle, electrical devices
like switches and relays, radio transmissions from external sources and lightning in the
environment. Complete elimination of the effects of EMI is hard since exact characterization
of all such interference defy comprehension. Though usage of an all-optical network could
greatly eliminate EMI problems, it may not be favoured by many cost-conscious industries.

These interferences cause errors in the transmitted data, which could indirectly lead
to catastrophic failures. To reduce the risks due to erroneous transmissions, designers
usually provide elaborate error checking and error confinement features in the protocol (as
in Controller Area Networks). Basic philosophy of these features is to identify an error as
fast as possible and then re-transmit the affected message. This implies that in systems
without spatial redundancy of communication medium/controllers, the fault-tolerance (FT)
mechanism employed is time redundancy. On the other hand, time redundancy increases the
latency of message sets; potentially leading to violation of timing requirements. Hence any
reliability management approaches in critical systems needs to be a holistic one incorporating
both space and time redundancy at the right levels based on the system characteristics,
resource constraints, fault models and trade-offs from cost-performance perspectives.

The time sensitive networking (TSN) [11] is a set of evolving standards under the IEEE
working group IEEE802.1, defining protocols that extend standard Ethernet to achieve
real-time networking capabilities for industrial/factory automation application scenarios.
The TSN standardization efforts consists of a number of (sub)standards that aim to achieve
four key technological paradigms - clock synchronization (802.1ASrev), frame preemption
(802.1Qbu), scheduled traffic (802.1Qbv), and redundancy management (802.1CB). These
must work together at the Ethernet layer (L2) to ensure that safety functions are executed
while meeting their respective deadlines and constraints.

The 802.1Qbv TSN standard provides scheduled traffic for time-triggered safety-critical
data frames in a predetermined manner. However, in the presence of faults, a static schedule
cannot satisfy system requirements particularly since the schedule has to be reconfigured.

Redundancy management in TSN (802.1CB) has been mainly focussing on space (link
redundancy). It is typical to start with a simplified error model assumption that only
singleton errors can occur in the systems and that they are separated at least by a known
minimum interarrival time.

In this paper, our focus is on time redundancy and how to improve fault tolerance
capability of the TSN schedule. The underlying assumptions and models in our work are
in line with our previous work and also with that followed in [2] [1]. We extend our earlier
works presented in [10] and adapt it to the context of TSN.

The rest of the paper is organised as follows. Section 2 introduces the reader to the
concept of time sensitive networking. Section 3 describes our system model and outlines its
basic components. In section 4 we detail the proposed approach. In section 5, we present an
illustrative example for our approach. Section 6 discusses the research relevant and related
to our work and finally we conclude with section 7 and briefly sketch our ongoing efforts.
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2 Time Sensitive Networking

The TSN standard is composed of a number of sub-standards. The most relevant sub-
standard for our use-case is 802.1Qbv - scheduled traffic. In this use-case, we assume that
the 802.1Qbv protocol is implemented both in the TSN switch as well as the control nodes
and robots. A fundamental principle behind TSN [11] is the time-triggered protocol (TTP)

Figure 1 TSN 802.1Qbv-enabled switch.

[18]. In Figure 1, we have three ingress ports A, B, and C and a single egress port D. The
safety frames (ES, KC) from control nodes are sent from ports A and B while port C sends
best effort (BE) frames as shown. The Gate Control List (GCL) decides the exact times
when the frames belonging to a specific priority queues will be allowed to pass through the
egress port D. From a system safety perspective, ES and KC frames must be given higher
priority than BE frames.

Such systems depend on redundant communication schedules that contain global time-
based information of message transmissions with conflict-free paths through the switches.
The static schedule of a time-triggered system maximizes predictability, while the schedule
in an event-triggered network unfolds dynamically at run-time depending on the occurrence
of events [18]. A time-triggered network ensures the partitioning of the system into a set
of independent fault containment regions (FCR), which operate correctly regardless of an
arbitrary fault outside the region.

3 System model

Having provided the background required for this use-case, the problem we tackle can be
stated as follows:

“How do you guarantee delivery of safety-critical data frames across a TSN enabled
network in the presence of faults specified by a fault model?”

In order to quantify relevant system parameters, we present a system model that is
composed of sub-models that tackles each aspect of the system function.

3.1 System and error model
We assume a distributed real-time architecture consisting of sensors, actuators and processing
nodes communicating over a time sensitive network. The communication is performed via
a set of strict periodic messages, Γ = {M1,M2, . . .}, with mixed criticality levels. The
criticality of a message indicates the severity of the consequences caused by its failure and
corresponds to the amount of resources allocated for error recovery in terms of guaranteed
re-transmissions. The basic assumption here is that the effects of a large variety of transient
and intermittent (hardware) faults can effectively be tolerated by a simple re-transmission of
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the affected frames. We assume that a fault can adversely affect only one message frame at a
time and is detected by all nodes in the network. Γc represents the subset of critical messages
out of the original message set and Γnc represents the subset of non-critical messages, so
that Γ = Γc ∪ Γnc.

A message consists of N frames, N ≥ 1, and the network communication is assumed
to be non-preemptive during the frame transmissions. Though sub-standard 802.1Qbu is
introducing preemption of frames in TSN, for simplicity’s sake we have not considered it in
current work. Of course, messages composed of more than 2 frames can preempt each other
at frame boundaries. Additionally, the non-preemptiveness of message frames may cause a
higher priority message to be blocked by a lower priority message on the same link for at
most one frame length. This priority inversion phenomenon can affect all messages except
the lowest priority one, and only once per message period, before the transmission of the
first message frame [9].

Each message Mi is characterized by a 4-tuple < Ti, Di, Ni, Ri >, where Ti is the period,
Di is the relative deadline, Ni is the number of frames that form this message and Ri is the
fault tolerant requirement in terms of the number of re-transmissions the message needs to
be able to execute upon faults. Hence, the total number of frames that need to be guaranteed
for re-transmission ri is calculated by

ri = dNi ∗Rie (1)

Note that for non-critical messages Ri = 0. Additionally, rate constrained and best effort
messages have a priority Pi.

In an error-free scenario, the worst case transmission time Ci of message Mi is

Ci = Ni ∗ f ∗ τbit (2)

where f is the maximum frame size and τbit is the transmission time for a bit.
Each message instance M j

i is characterized by a feasibility window delimited by its earliest
start time est(M j

i ) and its deadline Dj
i .

Obviously, in order to be able to guarantee the specified fault tolerance requirements,
the maximum network utilization of the critical messages together with their required re-
transmissions can never exceed 100% of the bandwidth capacity. This will imply that, during
the error recovery, non-critical message transmissions may need to be shed in order to avoid
overload conditions.

3.2 Traffic model
Real-time traffic in control systems is highly regular and periodic. The schedules for such
traffic can be statically synthesized during design phase. This plan may not only define the
communication paths and bandwidth reservations, but also particular points in a network-
wide reference time at which messages are to be transmitted. Such a plan that incorporates
the time aspects is called a “communication schedule” and the execution of the schedule by the
network obeys the time-triggered approach. Safety critical messages are usually transmitted
through time-triggered (TT) class since bounded delivery latency is guaranteed [24].

A basic fault tolerance mechanism in the presence of faults is to re-transmit an alternate of
the original message at a later time instant. This is suitable for single errors during message
transmissions. It is also assumed that no errors affect the alternate message transmission.
For simple cases one could consider the re-transmission of the original message itself, but the
approach could as well cater to initiation of another alternate task leading to an alternate
message (for example in critical scenarios warranting an “emergency stop”).
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4 Proposed approach

Our research objective is to provide efficient and fault-tolerant scheduling algorithms and
mechanisms for TSN that ensure:
1. All safety critical messages (time triggered traffic) have guaranteed correct delivery within

their deadlines under given fault assumptions
2. All non-critical traffic is given best-effort schedulability guarantees
3. The generated schedules also possess flexibility to incorporate evolving changes traffic

patterns particularly in the absence of faults

We make the following assumptions to start with:
1. A fault can affect only one message at a time
2. A specified number of re-transmissions of the message is sufficient to overcome the effect

of a transient or intermittent fault.
3. There exist sufficient fault detection capabilities (such as watchdog timers, CRC etc.) in

the system so that a fault can be detected reliably within a specified short time interval.
4. There exist ARQ mechanisms so that the sender node is able to know within a specified

time whether the message sent has reached the destination (or intermediate node) correctly.
Our ongoing research efforts aims at providing specific contributions in the following directions:
1. The use of phased re-transmissions that can achieve better bandwidth utilization than

possible with the approach of Alvarez et. al. [1].
2. Combined scheduling of critical and non-critical messages using the concept of fault-

tolerant windows and fault aware windows
3. Making more realistic fault model assumptions
4. Making our schemes more flexible to support evolution of systems
5. Suggesting mechanisms for implementation for induction into standards

The focus of current paper is only first two items above. Here we propose an approach
to jointly schedule critical and non-critical messages as time triggered and rate constrained
traffic in TSN. We propose to schedule critical messages with completely known attributes as
time triggered traffic. Some critical messages, however, may have requirements that cannot
be accommodated in an off-line schedule a-priori. These are, instead, scheduled as rate
constrained (RC). It is essential, however, to schedule them at priority levels that guarantee
their re-transmissions in case of faults. At the same time, we aim to provide the non-critical
best effort traffic the best possible service in case the system is not overloaded due to faults.

The key concept in our proposed approach is the derivation of the feasibility windows for
the message transmissions. Traditionally the feasibility window for a message is the time
interval between its earliest start time (or release time) and its deadline. These parameters,
however, do not typically express the fault tolerant requirements on the critical messages,
e.g., a message transmission finishes just before its deadline, will not leave enough time for a
feasible (before its deadline) re-transmission in case the message is hit by a fault. We propose
the derivation of new feasibility windows for each message instance M j

i ∈ Γ that reflect the
FT requirements.

While transmitting non-critical messages using a background priority band can be a safe
and straightforward solution, our aim is to provide non-critical messages a better service than
what can be achieved through background scheduling. Hence, depending on the criticality of
the original set of messages, the new feasibility windows we are looking for differ as:
1. Fault-Tolerant (FT) feasibility windows for critical messages
2. Fault-Aware (FA) feasibility windows for non-critical messages
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Derivation of fault-tolerant 
feasibility windows for critical messages

Derivation of fault-aware feasiblity 
windows for non-critical messages

Message interference analysis

Integer Linear Programming (ILP)

Fault Model

Message Criticalities

Original 
Message Attributes

Rate constrained frame attributes

Off-line schedule for TT frames

A

B

C

D

E

Input

Output

Figure 2 Methodology overview.

While critical messages need to be entirely transmitted within their FT feasibility windows
to be able to be feasibly re-transmitted upon an error, according to the reliability requirements,
the derivation of FA feasibility windows has two purposes: 1) to prevent non-critical messages
from interfering with critical ones thus causing a critical message to miss its deadline, while
2) enabling the transmission of the non-critical messages at high priority levels in error
free situations.

The major steps of the proposed methodology are shown in Figure 2. The inputs to the
method are message attributes, criticalities and fault model in terms of frequency of faults
and fault-tolerance requirements.

Since the size of the FA feasibility windows depends on the size of the FT feasibility
windows, in our approach we first derive FT-feasibility windows and then FA feasibility
windows (as steps A and B Figure 2). Then, we assign time slots for TT traffic and priorities
to rate constrained traffic to ensure the message transmissions within their newly derived
feasibility windows.

Subsequently we generate an off-line schedule for the TT traffic (in step C) followed
by assigning message identifiers (priorities) for the rate constrained traffic (in step D) that
ensure the message transmissions within their new feasibility windows, thus, fulfilling the FT
requirements. We generate an offline schedule for the TT messages, by using the Earliest
Deadline First (EDF) heuristics and provisioning for the specified number of re-transmission
upon faults. Then we identify the optimal priorities for the critical rate based traffic in order
to ensure its coexistence with the TT traffic, as well as its FT requirements. At the same
time, we derive the priorities for the non-critical messages that ensure their timeliness in the
absence of faults. As the network utilisation will heavily increase due to the re-transmissions
of the critical messages under faults, we assume that in these situations the non-critical
messages are shed by their sending nodes.
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In some cases, however, a fixed priority scheme cannot express all our assumed FT
requirements and error assumptions on the rate constrained traffic. General FT requirements
may require that instances of a given set of periodic messages needs to be transmitted in
different order on different occasions. Obviously, there exists no valid fixed priority assignment
that can achieve these different orders. Our approach proposes a priority allocation scheme
based on EDF at message instance level that efficiently utilizes the resources while minimizing
the priority levels. We use Integer Linear Programming (ILP) (Step E) to off-line analyze
the interference between the message frames and to derive the minimum number of fixed
priorities that guarantees the message transmissions within their FT/FA Feasibility Windows.

5 Discussions

We discuss our approach by resorting to a simple but instructive example detailed below.
A set of three messages A,B, and C are considered, wherein A and C are critical and B

is non-critical with periods T(A) = 4, T(B) = 8, T(C) = 16 and transmission times, C(A)
= 1, C(B) = 4, C(C) = 3. We assume the deadlines for the messages equal their periods.
We re-transmit only critical messages when subject to a single fault per message instance.
Figure 3 shows a feasible message transmission under the assumption of “no faults”.

Our proposed approach is illustrated in a set of figures depicting various scenarios and
schedules. As part of our motivation for the proposed fault tolerant windows based approach,
we first show the Rate monotonic(RM) schedule for the message transmissions in Figure 3.

0

Message A
(Critical)

168

0 16

4 12

Message B
(Non-critical)

Message C
(Critical)

8

A1 A2 A3 A4

C1

16

3 7 11 15

5

9

C1

765

C1

B1 B1B1 B2B2B2 B2

9

B1

Figure 3 RM-based schedule with no faults - but not an FT schedule.

Figure 4 shows the infeasibility of the critical message C in case 2 instances of A a hit by
faults and need to be re-transmitted.

0

Message A
(Critical)

168

0 16

4 12

Message B
(Non-critical)

Message C
(Critical)

8

A1 A2 A3 A4

16

3 7 11 15

5

C1C1

B1B1B1 B2B2B2 B2

9

B1

DL miss

Figure 4 Two faults on message A causing even primary of critical message C to miss deadline.

Figure 5 shows that that the critical message C cannot even tolerate a single fault.
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Figure 5 A single fault in message C prevents re-transmission possibilities.

A solution could be, however, to increase the priority of the critical message C above
the priority of the non-critical message B. In this case, however, the first instance of B will
always miss its deadline, even in a fault free scenario (Figure 6).
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B2B2B2 B2

DL miss

Figure 6 Priority modification (non-RM) still causing B to miss deadline.

Figure 7 illustrates the derivation of the fault tolerant (FT) windows for critical messages
A and C. The dashed boxes represent the re-transmissions that would be needed if the critical
messages were to experience a single fault per instance.
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3 7 11 15
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Figure 7 Derivation of FT windows for critical messages.

Figure 8 shows the derivation of fault aware (FA) windows for non-critical message (B).
This is done after the fault tolerant windows for the critical messages have been calculated.
Figure 9 shows a resulting schedule which would meet all deadlines under a fault free scenario.

Figure 10 illustrates the benefits provided by our approach. The critical message A is
transmitted in a time-triggered (TT) manner while the other messages are assigned to the
rate-constrained traffic class (RC). We have three faults occurring on the critical messages.
Our scheduling approach ensures that all critical messages are scheduled in a fault tolerant
manner while only one instance of the non-critical message fails to meet the deadline.
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Figure 8 Derivation of fault-aware windows for non-critical messages.
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Figure 9 Fault free messages with no deadline misses.
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Figure 10 Three faults with all critical messages scheduled and only one instance of non-critical
message un-schedulable.

Finally, Figure 11 shows a scenario with 5 faults. Critical messages A and C still remain
fault tolerant while the non-critical message B is prevented from execution. However, in the
event that critical messages do not experience faults, the non-critical message B can still
meet its deadline, thereby providing a better service than background scheduling.

In summary, the above example scenarios shows that:
For a given message set A,B,C where A and C are critical, a RM priority assignment
(A>B>C) will not guarantee the 100% FT (i.e. one re-transmission upon a potential
fault per message instance). C will miss its deadline.
A new priority ordering where the non-critical message has a lower priority than the
critical message (A>C>B) will guarantee the 100% FT of the critical messages but B
will miss its first deadline even in a fault free scenario
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Figure 11 Each critical message instance hit by a fault can be re-transmitted within its deadline.

What we propose is a new stream/message allocation and priority assignment that:

Maximises the FT capability of critical messages in the presence of fault
Maximises the service of the non-critical messages in the absence of faults

We derive FT feasibility windows and FA feasibility windows based on Chetto and Chetto [6]
and further Aysan et al [4] that ensure the above. In the example, we put A in the TT traffic
and B and C in the RC traffic with priorities derived by an ILP solver given the feasibility
windows constraint.

6 Related work

For scheduling on time-triggered networks, Steiner [22] introduced a method to synthesize
the time-triggered traffic using an SMT YICES solver. A common approach is to have a
“recovery slack” in the schedule in order to accommodate time needed for re-executions in
case of faults [10]. It has been shown that the time-triggered paradigm which forms a core
part of the time sensitive network standard (as 802.1Qbv time-aware shaper [23]) ensures
the fail-silent semantics whereby a packet is received only if correct or not received at all.
Fault recovery studies such as [25] depend on a fast spanning tree reconfiguration algorithm
to reduce the total fault recovery time, and a delayed link inactivation scheme that allows
real-time connections which are not affected by the failed links/switches to continue to exist.

Recent approaches by Steiner et al [21][13] based on reconfiguration of GCL schedules
at runtime for 802.1Qbv TSN discuss a configuration agent that is aware of the traffic
conditions at each node in the network. The objective is to ensure that new traffic flows can
be accommodated with use of as few queues in the switch ports as possible while maintaining
a feasible schedule.

Proenza et al [5] [19] have proposed a flexible time triggered paradigm for distributed
real time systems. Flexibility refers to the adaptation of the nodes to new and evolving hard
real-time requirements such as periodic and sporadic messages and updating the parameters
of such messages at run-time. Some recent studies on reconfiguration by means of spatial
and temporal techniques are discussed in [2] [3]. Desai et al [8] discuss safety of industrial
automation systems, although focused towards fog/edge paradigms. Pozo et al [20] have
shown that schedules can be “repaired” to combat the presence of faults.

Recovery from a transient or permanent fault in a time triggered network implies a
certain amount of flexibility in the mechanisms to ask for changes in real-time requirements
at runtime to reconfigure nodes and switches according to a new schedule [12]. Gutiérrez et
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al [14] and Raagard et al [21] discuss a configuration agent that can synthesize new schedules
for TSN at runtime. Time synchronization aspects are also extremely crucial and addressed
in works such as [16] and [15].

7 Conclusion and Ongoing Work

Scheduling of safety-critical data frames (and tasks) constitutes a fundamental design
requirement. The principal limitation of the time-triggered approach is the inability to
adapt to unanticipated changes in the system parameters such as traffic patterns or faults.
This causes the schedule not to guarantee the transmission of all frames within their timing
requirements. If the network does not contain a backup schedule predicting that specific
change, the schedule needs to be synthesized again from scratch, which is computationally
and time intensive.

With respect to 802.1Qbv, our goal is to ensure that the schedule offsets representing
the opening and closing of the gates (the GCL table) for the TSN switches are recalculated
first for the TT traffic while simultaneously meeting the timing requirements (deadlines) for
message transmissions.

In this paper we saw how our FT/FA aware scheduling approach provides critical messages
to meet their deadlines even when all instances of the critical messages experience single
faults. Additionally, in case faults do not occur, we have the possibility for non-critical
messages to be served in a better way (compared to background scheduling). We are currently
in the process of performing detailed evaluation of the approach thorough simulations.

As part of ongoing work, we are focusing on transmitting critical messages as time-
triggered traffic which will enforce a much stricter time assignment.
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