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Preface

This volume collects the papers presented at the first edition of the Workshop on Next
Generation Real-Time Embedded Systems (NG-RES 2020). The workshop is co-located with
the 2020 edition of the HiPEAC conference and was held at Bologna, Italy on January 21th,
2020.

The traditional concept of embedded systems is constantly evolving to address the re-
quirements of the modern world. Cyber-physical systems, networked control systems and
Industry 4.0 are introducing an increasing need for interconnectivity. A steadily increasing
algorithmic complexity of embedded software is fueling the adoption of multicore and het-
erogeneous architectures. As a consequence, meeting real-time requirements is now more
challenging than ever. The NG-RES workshop focuses on real-time embedded systems, with
particular emphasis on the distributed and parallel aspects. The workshop is a venue for
both the networking and multicore real-time communities aiming at cross-fertilization and
multi-disciplinary approaches to the design of embedded systems.

The scope of the NG-RES workshop include the following topics:
Programming models, paradigms and frameworks for real-time computation on parallel
and heterogeneous architectures
Networking protocols and services (e.g., clock synchronization) for distributed real-time
embedded systems
Scheduling and schedulability analysis for distributed and/or parallel real-time systems
Application of formal methods to distributed and/or parallel real-time systems
Compiler-assisted solutions for distributed and/or parallel real-time systems
Middlewares for distributed and/or parallel real-time systems

In this first edition of the workshop four regular papers were accepted, each of which receiving
between two and three peer reviews. In addition, we are glad to have an invited talk by
Luis Almeida titled “SDN for dynamic reservations on real-time networks”. We would like
to thank the authors of the NG-RES 2020 papers, the members of our program committee,
our invited speaker, our publisher Schloss Dagstuhl as well as the HiPEAC organizers for
contributing to the success of this workshop.
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SDN for Dynamic Reservations on Real-Time
Networks
Luis Almeida
CISTER – Research Center on Real-Time and Embedded Computing Systems and
IT – Instituto de Telecomunicações,
University of Porto - Faculty of Engineering, Porto, Portugal
https://web.fe.up.pt/~lda/

Abstract
Recent growing frameworks such as the IoT, IIot, Cloud/Fog/Edge computing, CPS, etc, bring the
networking platforms on which they rely to the spotlight, as first class citizens of an increasingly
software-dependent landscape. As a result, networks play an increasingly central role in supporting
the needed system-wide properties. In particular, we have been working to provide openness and
adaptivity together with timeliness guarantees. This combination seems fundamental to support
inherently dynamic applications in a resource efficient way, covering not only the cases of systems
of systems, systems with variable number of users, components or resources but also systems that
undergo frequent live maintenance and even reconfiguration during their lifetime. Examples range
from autonomous vehicles to collaborative robotics, remote interactions, fog/edge computing, flexible
manufacturing, etc.

We postulate that combining openess and adaptivity with guaranteed timeliness can only be
achieved with an adequate communication abstraction supported on adequate protocols. To this end,
we have been proposing channel reservation-based communication as a means to provide scalable
and open latency-constrained communication and thus enable a more efficient system design.

In this talk we will show our recent work in using Software-Defined Networking (SDN) to provide
standard interfaces for traffic flexibility. We proposed extending the SDN OpenFlow protocol with
adequate services to take advantage of flexible real-time communication protocols and thus provide
standard interfaces for flexible real-time reservations, too. We call it the Real-Time OpenFlow
framework (RTOF). We end describing and assessing a prototype implementation based on the
HaRTES Ethernet switches.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Networks
→ Programmable networks

Keywords and phrases Latency-constrained networks, Real-time communication, Software-defined
networking

Digital Object Identifier 10.4230/OASIcs.NG-RES.2020.1

Category Invited Talk

Funding This work is funded by FCT/MCTES through national funds and when applicable co-funded
EU funds under the project UIDB/EEA/50008/2020.

Short bio. Luis Almeida graduated in Electronics and Telecommunications Eng. in 1988
and received a Ph.D. in Electrical Eng. in 1999, both from the University of Aveiro in
Portugal. He is currently an associate professor in the Electrical and Computer Engineering
Department of the University of Porto (UP), Portugal, and Vice-Director of the CISTER
research unit at UP where he coordinates the Distributed and Real-Time Embedded Systems
(DaRTES) lab. Among several appointments, he is Vice-Chair of the IEEE Technical
Committee on Real-Time Systems (chair after 2020), Program and General Chair of the
IEEE Real-Time Systems Symposium (2011-2012 respectively) and Trustee of the RoboCup
Federation (2008-2016) including Vice-President (2011-2013). His research interests revolve
around real-time networks for distributed industrial/embedded systems including for teams
of mobile robots.
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Energy Minimization in DAG Scheduling on
MPSoCs at Run-Time: Theory and Practice
Bertrand Simon
Universität Bremen, Germany
bsimon@uni-bremen.de

Joachim Falk
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
joachim.falk@fau.de

Nicole Megow
Universität Bremen, Germany
nicole.megow@uni-bremen.de

Jürgen Teich
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
juergen.teich@fau.de

Abstract
Static (offline) techniques for mapping applications given by task graphs to MPSoC systems often
deliver overly pessimistic and thus suboptimal results w.r.t. exploiting time slack in order to minimize
the energy consumption. This holds true in particular in case computation times of tasks may
be workload-dependent and becoming known only at runtime or in case of conditionally executed
tasks or scenarios. This paper studies and quantitatively evaluates different classes of algorithms for
scheduling periodic applications given by task graphs (i.e., DAGs) with precedence constraints and
a global deadline on homogeneous MPSoCs purely at runtime on a per-instance base. We present
and analyze algorithms providing provably optimal results as well as approximation algorithms
with proven guarantees on the achieved energy savings. For problem instances taken from realistic
embedded system benchmarks as well as synthetic scalable problems, we provide results on the
computation time and quality of each algorithm to perform a) scheduling and b) voltage/speed
assignments for each task at runtime. In our portfolio, we distinguish as well continuous and discrete
speed (e.g., DVFS-related) assignment problems. In summary, the presented ties between theory
(algorithmic complexity and optimality) and execution time analysis deliver important insights on
the practical usability of the presented algorithms for runtime optimization of task scheduling and
speed assignment on MPSoCs.

2012 ACM Subject Classification Software and its engineering→ Scheduling; Theory of computation
→ Scheduling algorithms

Keywords and phrases energy minimization, speed scaling, precedence graphs, scheduling, critical
path, MPSoC

Digital Object Identifier 10.4230/OASIcs.NG-RES.2020.2

1 Introduction

Dynamic voltage and frequency scaling (DVFS) on modern processors is a mean to actively
control the power and energy consumption of an MPSoC (multi-processor system-on-chip).
It is used for thermal chip management in combination with dynamic power management
(DPM) [5]. But it can also be used in the context of dynamic energy minimization of programs
executed on the MPSoC, e.g., for real-time applications. Here, a plethora of methods has
been proposed to optimize the mapping (including task assignment and scheduling) of tasks
of one or multiple applications to processor cores including the selection of processor speed(s)
such that, given worst-case task execution times, a global deadline is met. While first
investigations only considered uni-processor systems, a great number of approaches has
emerged to apply DVFS optimization algorithms offline when targeting MPSoCs [7,15,18].
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2:2 Energy Minimization in DAG Scheduling on MPSoCs at Run-Time

These approaches, however, generally suffer from assuming fixed execution times of tasks
given (e.g., WCETs). However, for most applications, the execution times of tasks may
depend on the workload to be processed. Or, tasks may only be conditionally executed
according to control flow information [22]. Hence, a static assignment of schedule and speeds
for executing tasks might not be optimal. Choudhury et al. [6] proposed a combination of
offline techniques to compute worst-case and average case execution times of tasks. At run-
time, a computationally inexpensive method calculates observed slack, and adapts processor
speeds for energy reduction, while still guaranteeing a global deadline not to be violated.
Other approaches such as [23] exploit the knowledge of special models of computation such
as synchronous dataflow (SDF) to apply a mixed offline and online DVFS optimization
for MPSoCs. Still, the structure of the task graph and thus periodicity of executions is
assumed static. In most general applications, however, both the execution times and the
task graph structure may vary over time. Here, approaches using control/dataflow graphs
(CDFGs) have been proposed such as in the work of Tariq et al. [25]. However, the presented
computationally complex analysis and optimization is again purely static as task execution
probabilities are used and thus only the expected energy consumption is targeted.

On the theoretical side, Yao et al. [27] initiated the algorithmic study of speed scaling in
1995. This area received a lot of attention since then; see the surveys [2,12]. Most of these
studies focus on scheduling independent tasks (without precedences) and a single processor.
Regarding the speed choice model, only few theoretical works address the discrete speed
model which is computationally much more complex but more realistic; see, e.g. [13, 16,17].
Most related to our investigations is the work by Aupy et al. [3] that studies the problem
of minimizing the energy consumption under a given mapping of tasks to cores, and where
the power consumed by a core running at speed s is equal to sα. They consider both the
continuous and the discrete speed model. Pruhs et al. [21] focus on the problem of minimizing
the makespan under an energy budget in the continuous speed model with the same power law.
In this framework, they designed an approximation algorithm with a polylogarithmic ratio.
Bampis et al. [4] later proposed a 2-approximation for the same problem, which matches the
best known algorithm for makespan minimization without energy considerations [10]. Our
contributions include to rephrase these results for our framework (energy minimization with
a fixed deadline) and analyze the algorithms performance experimentally. We also add new
results building on this earlier work.

A major goal of this paper is to analyze whether algorithms providing provably optimal
results or at least approximation bounds on the quality of the results can be implemented
and practically applied in a real MPSoC system to be executed at runtime. In this regard, at
least to our knowledge, the following questions have so far not satisfactorily been answered
for the problem of scheduling task graphs purely at runtime based on dynamically emerging
task dependence structure and worst case execution times.

Are there in theory sound algorithms that also can be applied in practice on
an MPSoC? E.g., depending on the absolute time scale, many real-world applications
do require solutions to be computed within a time scale of 1 to 10 ms in order to be of
practical use.
How do these execution times scale with the problem size? Problem instances
ranging in size between 10 to 500 tasks should be handled in practice within such time
scales. If not possible:
Are there fast and scalable algorithms with provable approximation bounds
on the optimality of energy consumption?

Our main contribution is to bring together theoretical and computational results for
continuous and discrete speed scaling for precedence-constrained task systems with the goal to
minimize the energy consumption. We distinguish two classes of problems: The first assuming
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a processor assignment and schedule of tasks on cores given, and the second computing the full
schedule including the task to processor mapping as well while minimizing energy. We present
algorithms building on mathematical optimization techniques such as convex and integer
linear programs as well as rounding solutions of relaxations. Previously known methods are
adapted to our setting and we also provide new results. For the full portfolio of considered
settings (continuous/discrete speed choice, unlimited/bounded number of processors) we give
both, an exact algorithm and a computationally efficient (i.e., polynomial-time) algorithm.
In cases where optimal polynomial-time algorithms are ruled out under standard complexity
assumptions, we give a polynomial-time algorithm with an approximation guarantee, i.e., we
guarantee for any input instance that the total energy needed by our algorithm to finish all
tasks by the deadline is at most a certain factor away from a minimum energy needed by any
algorithm. Such theoretical approximation results give very rigorous worst-case guarantees
on the solution quality under any possible input. They are of high importance particularly for
safety-critical real-time applications. In our experiments on real-world instances, it is shown
that the solution quality is substantially better than the ones guaranteed in our theorems for
the worst case.

Moreover, we rigorously analyze the applicability of all of our algorithms on problem
instances taken from realistic embedded system benchmarks as well as synthetic scalable
problems. As one result, it turns out that the mathematical optimization methods are
applicable for MPSoC system applications despite their complexity. Running times between
1 to 10 ms for instances up to 100 tasks are in the acceptable range for many applications. If
not, also a linear-time algorithm (previously used in similar settings [3,11,20]) that combines
optimality with scalable performance for a majority of task graph instances exhibiting a
series/parallel dependence structure is presented. Overall, our results include new and old
algorithms with optimality/approximation guarantees while revealing their practicability for
use in MPSoCs.

2 Formal problem definition and notation

We are given a set of tasks to be executed without preemption on m cores. Precedence
relations between the tasks are given as a directed acyclic graph G = (V,E), where each
node in the graph is associated with a task. If there is an arc in E from task j to task k
then task k cannot start before task j is completed. A task j ∈ V has a nominal execution
time, or weight, wj ≥ 0.

For comparability of the analyzed algorithms, we assume a homogeneous multi-processor
architecture in the following with uniform cores. At any time, the speed s of a core can be
set to any eligible value between smin > 0 and smax ≥ smin, and it is part of a scheduling
algorithms decision to which speed to set the processor. It depends on the particular model,
which values in [smin, smax] are eligible; we consider the continuous model, in which any
rational value is eligible, and the discrete model, which allows speeds only from a given finite
set of speeds. A core that is set to speed s consumes power at the rate sα, where α ≥ 1 is a
small constant. The total energy consumed is the power consumption integrated over time.

In the continuous model, we may assume that a task is executed at a uniform speed. This
follows directly from the convexity of the power function [27]. For discrete speeds, we add
the restriction that a task has to run at a uniform speed. This is a reasonable assumption as
in many processing environments it is not possible to change the processor speed during the
execution of a task. If a task j of weight wj is executed at speed sj ∈ [smin, smax], then the
time to complete is xj = wj/sj and the energy consumed during the computation of j is

Ej = xj · sαj = wj · sα−1
j = wαj /x

α−1
j . (1)

NG-RES 2020



2:4 Energy Minimization in DAG Scheduling on MPSoCs at Run-Time

We consider the following problem: given a deadline D>0 and a node-weighted graph
G = (V,E,w), schedule all tasks in graph G and decide upon the processor speeds such that
all tasks finish before the deadline D and the total energy consumption is minimized. If
minimizing the energy consumption is intractable, we design approximation algorithms. An
algorithm is called an r-approximation if it always computes a solution finishing before the
deadline, with an energy consumption being at most r times the minimal energy consumption.

In our investigations we distinguish two problem classes of different complexity:
SpeedScaling: we are given the mapping of each task to its core and the order in which
each core executes the tasks mapped to it (encoded in G). The problem is then equivalent
to minimizing the critical path of the graph G. That is, find speeds such that the total
execution time of the longest path (w.r.t. execution times xj) is minimized.
Speeds&Scheduling: in addition to selecting the speeds at which each task should be
executed, we provide a schedule for the tasks, i.e., we determine the core and the starting
time for each task.

3 Continuous speeds

We consider the setting in which each core can be set to any rational speed value in the given
interval [smin, smax].

3.1 SpeedScaling Problem

As mentioned earlier, this problem is equivalent to determining the speeds such as to minimize
the critical path of the graph G. This problem has been studied to some extent before. We
summarize relevant known algorithms and provide new ones. We present two algorithms:
1. an optimal polynomial time algorithm CVX-speed which relies on a convex programming

formulation inspired by the idea of Bampis et al. [4];
2. a linear-time algorithm SPG-speed for a special graph class, namely Series-Parallel

Graphs, which are very common in practice. Our algorithm is a small modification of
an algorithm in [3, 11, 20] and it computes an exact optimal solution when there is no
limitation in the speeds. Our experiments show that this limitation is not prohibitive in
our context.

Details on the algorithms follow below. The experimental evaluation is presented in
Section 5.

3.1.1 CVX-speed

We provide a convex programming formulation with linear constraints that computes the
exact solution for the energy minimization problem in the SpeedScaling setting. Such
programs can be solved in polynomial time up to an arbitrary precision [19] with the Ellipsoid
method. The formulation is inspired by a convex program for makespan minimization by
Bampis et al. [4].

Each task j is associated to a constant speed sj . The variable xj represents the processing
time of Task j in the solution, which is equal to wj/sj . The variable dj represents the
completion time of task j.
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min
∑
j∈V

wαj

xα−1
j

(2)

s.t. dj ≤ D, ∀j ∈ V (3)
xj ≤ dj , ∀j ∈ V (4)

dj + xk ≤ dk, ∀(j, k) ∈ E (5)
wj/smax ≤ xj ≤ wj/smin, ∀j ∈ V. (6)

The first three constraints ensure that tasks are executed one after the other, without
preemption, respecting the precedence constraints and meeting the deadline D. Constraint 6
ensures that the speed limits are respected. Finally, the objective function computes the
energy consumption for the schedule that is to be minimized. For a computed solution of the
convex program, the speed sj for task j is implied by wj/xj . We therefore have the following
result.

I Theorem 1. CVX-speed computes an optimal solution in polynomial time.

3.1.2 SPG-speed

In the most general definition by Lawler [14], series-parallel graphs (or SP-graphs) are defined
recursively as being either a single task, the series composition of two graphs (noted (G1;G2)),
or the parallel composition of two graphs (noted (G1||G2)). In (G1;G2), the tasks of G2
cannot start before all tasks of G1 have terminated. In (G1||G2), there exist no precedence
constraints between the tasks of G1 and G2.

In the context of minimizing the makespan of malleable jobs, an algorithm has been
proposed and studied in [11, 20], and a similar algorithm has been used in our context in [3].
The principle of the algorithm is to define an equivalent task of a series and a parallel
composition of two graphs. Specifically, if LG represents the equivalent weight of G, we have:
LTi = wi

L(G1;G2) = LG1 + LG2

Lα(G1||G2) = LαG1
+ LαG2

The problem of selecting the speeds for a graph G in order to minimize the energy
consumption is then equivalent to the problem of selecting the speed for a unique task
of weight LG. The minimum energy necessary to schedule a graph G under a deadline
D is therefore equal to LαG/Dα−1, using the speed LG/D, see Equation (1). In order to
compute the speed at which each task has to be scheduled in such a solution, the algorithm
SPG-speed associates a speed s to each subgraph:

s(G) = LG/D
In (G1;G2), s(G1) = s(G2) = s(G1;G2).
In (G1||G2), s(G1) = s(G1||G2)LG1/L(G1||G2).

This result however requires to use speeds arbitrarily large, so the solution found may
not respect the speed bounds, as specified in the following theorem.

I Theorem 2 ( [3, 11, 20]). Given an SP-graph and ignoring the constraints smin and smax,
SPG-speed computes an optimal solution in linear time.

NG-RES 2020



2:6 Energy Minimization in DAG Scheduling on MPSoCs at Run-Time

3.2 Speeds&Scheduling Problem
Consider the setting in which an algorithm determines both, the speed allocation and the
actual schedule including the mapping of tasks to cores. If the optimal solution requires
to use the speed smax for each task, then computing a schedule meeting a given deadline
is already an NP-hard problem, as it is reducible to the classic P |prec|Cmax problem in
the Graham three-field notation. The Speeds&Scheduling problem can therefore not
have an approximation algorithm unless P = NP , as this includes computing a schedule
meeting the given deadline. The best known scheduling algorithm for P |prec|Cmax is a
2-approximation [10], and cannot be improved under some complexity assumptions [24]. We
therefore assume that the optimal solution uses speeds at most smax/2, in order to focus on
the problem of minimizing the energy and not on meeting the deadline, which is not the core
of this paper. We show the following result.

I Theorem 3. APX-sched is a 2α−1-approximation if the optimal solution uses speeds at
most smax/2.

The main idea of the algorithm builds on work in [4] for the related problem of minimizing
the makespan under a fixed energy budget. The algorithm consists of two steps: firstly,
a convex program is solved for computing the optimal speeds in a particular relaxation.
Secondly, we fix these speeds and run a greedy heuristic for assigning the tasks to cores. The
convex programming relaxation is as follows (recall that m is the number of cores).

min
∑
j∈V

wαj

xα−1
j

(7)

s.t.
∑
j∈V

xj/m ≤ D/2 (8)

dj ≤ D/2, ∀j ∈ V (9)
xj ≤ dj , ∀j ∈ V (10)

dj + xk ≤ dk, ∀(j, k) ∈ E (11)
wj/smax ≤ xj ≤ wj/smin, ∀j ∈ V. (12)

Given an optimal solution for this program, we fix the speeds for the tasks. In the second
step of the algorithm, we schedule the tasks using a list scheduling algorithm proposed by
Graham [10]. That is, we consider tasks in any topological ordering (i.e., respecting the given
precedence order) and assign a task to the core with currently smallest last completion time.
If the makespan C obtained is smaller than D, the speeds are then lowered by a factor C/D.

Proof of Theorem 3. For a fixed speed assignment let V :=
∑
i∈V xi/m denote the volume

and let L denote the length of the critical path in G. Both, volume and critical path, are
well known lower bounds on the makespan. Graham’s list scheduling [10] yields a makespan
of at most V + L. The convex program computes a speed assignment that minimizes the
energy among all speed assignments for which both the volume and the critical path are
not larger than D/2. Hence, Graham’s list scheduling achieves a schedule where all tasks
complete before V + L ≤ D and, thus, all tasks meet the deadline.

On the other hand, one can show that the energy consumed by this schedule is at most a
factor 2α−1 larger than the optimal. Indeed, consider an optimal schedule of makespan D
using speeds at most smax/2, and multiply every speed by 2. We obtain a speed assignment
which is a solution to the convex program above, and whose energy cost is a factor 2α−1

away from the optimal. As the speed assignment computed by the algorithm minimizes the
objective function, its energy cost is not larger. J
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In Section 5, we will show that on real-world instances, the solution quality is substantially
better than the one guaranteed in Theorem 3 above. Finally, we remark that the problem is
computationally highly intractable. Even for a given speed assignment, it is NP-complete to
compute an optimal schedule even if all tasks have unit execution time [26] or if there are no
precedence relations [9].

4 Discrete speeds

Consider the setting in which each core can run at k ∈ N possible speeds v1, v2, . . . , vk with
vi < vi+1. Let the maximum ratio of speeds be r = maxi vi+1/vi. Note that the mapping
problem in this setting is already NP-hard even with k = 2 [3]. However, the more general
model in which speed modifications are allowed during the execution admits a polynomial
exact algorithm [3]. We also underline that the approximation ratios given in this section
still hold if the optimal solution is allowed to use any rational speed in the interval [v1; vk].

4.1 SpeedScaling problem
Assume the task-to-core assignment is given and we need to determine the speeds such as
to minimize the critical path of the graph G. We present two algorithms: (1) an optimal
exponential time algorithm ILP-D-speed based on an integer linear programming (ILP)
formulation, (2) a polynomial time algorithm APX-D-speed that solves a convex program
within an approximation factor rα−1.

4.1.1 ILP-D-speed
We define nk boolean variables yi,` which are equal to 1 if task i runs at speed v` and to 0
otherwise, and consider the following program similar to the convex program (2)-(6). The
main difference is that the execution time of a task i is now equal to

∑
`≤k

wi

v`
yi,` and its

energy consumption is equal to
∑
`≤k wiv

α−1
` yi,`.

minimize
∑
i∈V

wi
∑
`≤k

vα−1
` yi,` (13)

di ≤ D ∀i ∈ V (14)∑
`≤k

wi
v`
yi,` ≤ di ∀i ∈ V (15)

di +
∑
`≤k

wj
v`
yj,` ≤ dj ∀(i, j) ∈ E (16)

∑
`≤k

yi,` = 1 ∀i ∈ V (17)

∀` ≤ k yi,` ∈ {0, 1} ∀i ∈ V. (18)

The correctness of this ILP formulation therefore follows from the correctness of CVX-
speed.

I Theorem 4. ILP-D-speed computes an optimal solution in exponential time.

In general, integer linear programs cannot be solved in polynomial time. However, our
experiments show that on the datasets considered (up to 1000 tasks), this algorithm is at
most 5 times slower than the polynomial-time algorithm CVX-speed.
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4.1.2 APX-D-speed
The following algorithm is inspired by [3]. In a first step, we compute optimal continuous
speeds s̄j for each task j. This is done by running the fast algorithm SPG-speed, and, in
case this algorithm does not succeed (e.g., the SP-graph restriction is not met), we solve the
convex program (2)-(6) (algorithm CVX-speed) with smin = v1 and smax = vk. Then, the
we run each task j at the speed sj that is equal to the smallest speed vi such that vi ≥ s̄j .

I Theorem 5. APX-D-speed computes an rα−1-approximate solution in polynomial time.

Proof. Consider a speed setting computed by the algorithm. Observe that the tasks respect
the deadlines as the speeds sj are not smaller than the speeds s̄j that gave a valid solution.
Let OPT be the energy consumed in an optimal solution. First, note that the energy
consumed by executing each task at speed s̄j is not larger than OPT . The algorithm runs
each task j at speed sj , consuming an energy wjsα−1

j . The total energy consumed is then:

E =
∑
j

wjs
α−1
j ≤

(
sj
s̄j

)α−1∑
j

wj s̄
α−1
j ≤ rα−1OPT . J

4.2 Speeds&Scheduling problem
In this setting, an algorithm determines both, the speed allocation and the actual schedule
including the mapping of tasks to cores. We present two algorithms: (1) an optimal
exponential time algorithm ILP-D-sched based on solving an ILP, (2) a polynomial time
algorithm APX-D-sched that solves a convex program within approximation factor (2r)α−1.

4.2.1 ILP-D-sched
We extend the ILP (13)-(18) by adding nm boolean variables zi,c equal to 1 if task i is
executed on core c and to 0 otherwise, as well as n2 variables ei,j indicating if task i has to
be scheduled before task j. In particular, if two tasks are executed on the same core, then
either ei,j or ej,i equals 1.

minimize
∑
i∈V

wi
∑
`≤k

vα−1
` yi,` (19)

di ≤ D ∀i ∈ V (20)∑
`≤k

wi
v`
yi,` ≤ di ∀i ∈ V (21)

di +
∑
`≤k

wj
v`
yj,` ≤ dj +D(1− ei,j) ∀i, j ∈ V (22)

∑
`≤k

vi,` = 1 ∀i ∈ V (23)

vi,` ∈ {0, 1} ∀` ≤ k, ∀i ∈ V (24)∑
c≤m

zi,c = 1 ∀i ∈ V (25)

zi,c ∈ {0, 1} ∀i ∈ V, ∀c ≤ m (26)
ei,j ∈ {0, 1} ∀i, j ∈ V (27)
ei,j = 1 ∀(i, j) ∈ E (28)

zi,c + zj,c − ei,j − ej,i ≤ 1 ∀i, j ∈ V, ∀c ≤ m (29)
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Equation (22) ensures that task j is executed after task i if ei,j = 1, and does not have
any impact if ei,j = 0, so the program returns the same result as ILP-D-speed on a graph
where the edges are represented by the variables ei,j . The second important constraint is
Equation (29), which ensures that if two tasks belong to the same core, either ei,j or ej,i
equals 1. Therefore, a valid valuation of the variables ei,j corresponds to a directed graph
which contains the edges of E, and which contains an edge between any two tasks that are
placed on the same core (by the variables zi,c). This corresponds to a valid input to the
ILP-D-speed programming, so we have the following result.

I Theorem 6. ILP-D-sched computes an optimal solution in exponential time.

4.2.2 APX-D-sched
This algorithm combines the ideas of APX-sched and APX-D-speed: assuming again that
the optimal solution uses speeds at most vk/2, solve the convex program of APX-sched in
order to associate each task to a speed s̄j ∈ [v1; vk]. Then, the algorithm runs each task j to
the speed sj equal to the smallest speed vi such that vi ≥ s̄j , and schedules the tasks using
a list scheduling algorithm.

I Theorem 7. APX-D-sched computes a (2r)α−1-approximate solution in polynomial time
if the optimal solution uses speeds at most vk/2.

Proof. We first note that, similarly to the APX-D-speed case, the energy used by the
schedule obtained by APX-D-sched is at most a factor rα−1 away from the energy used by
the APX-sched solution. Then, assuming that the optimal solution uses speeds at most
vk/2, we know that the energy used by the APX-sched solution is within a factor 2α−1 of
the optimal energy consumption. Combining these two results completes the proof. J

5 Experimental Results

In order to evaluate the quality of the presented approaches, we use a total of 5×5 benchmark
graphs, i.e., five groups of five graphs of similar size. Our 5 smallest graphs are comprised of
around 10 tasks and are derived from the Embedded System Synthesis Benchmarks Suite
(E3S) [8]. These instances target processors of maximum frequency 250MHz, with a minimum
frequency equal to 0.1MHz. 20 eligible speeds can be selected equally distributed between
these limits. The deadlines associated to these graphs equal a few milliseconds, and are rather
tight: several tasks need to be run at the maximum frequency. For larger graphs with 50,
100, 500, and 1000 tasks each, we selected graphs from the GENOME dataset of the Pegasus
library [1]. The homogeneous processors used here were specified at a maximum frequency
equal to 1.0GHz and again 20 equidistant speed setting, but assumed looser deadlines. All
benchmarks belong to the class of SP-graphs, thus allowing the application of SPG-speed.

The benchmarks are executed on an Intel(R) Core(TM) i7-4770 CPU running at 3.40GHz
with 32GiB of RAM using Ubuntu 18.04 LTS as underlying OS. To solve the ILPs for the
ILP-D-sched and ILP-D-speed approaches, we use CPLEX 12.6 with a running time
deadline of 5s. For the convex programs used by the CVX-speed and APX-D-speed
approaches, we used MOSEK 8.1.

Figure 1 presents the results for the SpeedScaling problem, both in the continuous
(CVX-speed and SPG-speed) and discrete speed (ILP-D-speed and APX-D-speed)
settings.

Our first observation from the experiments is that the algorithm SPG-speed can be
applied to all problem instances computing an optimal solution except for one single E3S
graph instance where the prescribed speed limits were not respected. Moreover, it is really
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Figure 1 Depicted above are the trade-offs between solver run-time and energy used by the
solution for the four approaches – � CVX-speed, � SPG-speed, � ILP-D-speed, and � APX-
D-speed – that assume that mapping and scheduling is already given (only speed assignment).
These trade-offs have been determined for five classes of five benchmark graphs each from the E3S
benchmark suite and the Pegasus library. The energy displayed is normalized by the minimal energy
consumed with continuous speeds.

fast, needing at most 0.02ms for each of the five E3S graphs and 1ms only for the largest
graphs with 1000 tasks. It can therefore be applied at runtime even for problems with
very small and tight deadlines. As a consequence, the algorithm APX-D-speed runs at a
comparable speed, except for the one instance which is not solved by SPG-speed. Even
solving optimally the convex program (CVX-speed) is possible in less than 10 ms for the E3S
benchmarks, 15ms for 100-tasks graphs, but may be unaffordable for very large graphs (in
average 60ms for 1000 tasks). When solving the ILP for discrete speeds, the solver time can
even increase to 200ms for the largest graphs, but we do not observe an exponential growth
for this dataset, contrarily to the worst-case theoretical complexity. Surprisingly, the quality
of the solution of APX-D-speed is only a few percents away from the optimal discrete
solution (ILP-D-speed). Therefore, APX-D-speed can obtain near-optimal results two
orders of magnitude faster than by solving the ILP, on SP-graph instances. The restriction to
the discrete speed model implies a higher increase in energy consumption for the GENOME
dataset. This can be explained by the fact that the deadlines are looser, so the optimal
continuous speeds are lower, and being forced to select a discrete speed incurs higher losses.

Figure 2 presents the results of the APX-D-sched algorithm that performs also task-to-
core assignment and scheduling apart from speed selection. From the color code, it can be
seen that the solver times are roughly equal the ones of the APX-sched algorithm. For
each of the 25 graphs, the number of cores has been varied between 1 and 128. In each design
point, the energy of the found solution has been normalized to the optimal energy for the
discrete speed case with no core constraints as determined by the ILP-D-speed approach.

It can be seen that APX-D-sched is able to solve many instances of graphs with 50 to
100 tasks in less than 25ms. However, it does not find a solution for 4 out of 5 E3S graphs
because of the tightness of deadlines assumed in these benchmarks and the assumptions made
in Theorem 7. Finally, we omit to present and compare the solver times of ILP-D-sched
as these start in the range of minutes even for the smallest and easiest problem instances.
Hence, we conclude this approach to be of no use to be applied on an MPSoC at run-time.
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Figure 2 Consumed energy of the 5× 5 benchmark graphs for solutions found by the APX-D-
sched approach (squares) subject to a fixed number of available (free) cores ranging from 1 to
128. The results are normalized: a value of 1 corresponds to the case with optimum discrete speeds
and infinitely many cores. The required solver time to find these solutions ranges from 7ms (�)
to 150ms (�) according to the given color key. The crosses denote optimal-energy solutions as
determined by the ILP-D-sched approach.

6 Conclusions

We have shown that for many task graphs of real-world applications, the graph structure
allows to determine energy-optimal speed assignments in the range of a ms given real-time
constraints by applying an algorithm called SPG-speed in case tasks have been mapped
already to cores. For the more complex problem of additionally determining the task-to-core
assignment and schedule of tasks on these cores, even problem instances with few tasks
cannot be practically solved optimally at runtime. Yet here, approximation algorithms have
been analyzed and shown to offer affordable solving times to determine at least solutions
with provable guarantees on the solution quality.

In the future, we would like to extend our analysis of the ties between theory and practice
from homogeneous MPSoCs to systems with more diverse and complex communication
architectures. Moreover, the presented set of algorithms shall be integrated into a framework
for run-time resource management on many-core systems that are required to stay within
given bounds on execution time, energy and also other user-specific requirement corridors.
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Abstract
Given the increasingly complex and mixed-criticality nature of modern embedded systems, virtualiz-
ation emerges as a natural solution to achieve strong spatial and temporal isolation. Widely used
hypervisors such as KVM and Xen were not designed having embedded constraints and requirements
in mind. The static partitioning architecture pioneered by Jailhouse seems to address embedded
concerns. However, Jailhouse still depends on Linux to boot and manage its VMs. In this paper,
we present the Bao hypervisor, a minimal, standalone and clean-slate implementation of the static
partitioning architecture for Armv8 and RISC-V platforms. Preliminary results regarding size, boot,
performance, and interrupt latency, show this approach incurs only minimal virtualization overhead.
Bao will soon be publicly available, in hopes of engaging both industry and academia on improving
Bao’s safety, security, and real-time guarantees.
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1 Introduction

In domains such as automotive and industrial control, the number of functional requirements
has been steadily increasing for the past few years [8, 42]. As the number of the resulting
increasingly complex and computing power-hungry applications grows, the demand for high-
performance embedded systems has followed the same trend. This has led to a paradigm shift
from the use of small single-core microcontrollers running simple bare-metal applications or
real-time operating systems (RTOSs), to powerful multi-core platforms, endowed with complex
memory hierarchies, and capable of hosting rich, general-purpose operating systems (GPOSs).
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At the same time, the market pressure to minimize size, weight, power, and cost, has pushed
for the consolidation of several subsystems onto the same hardware platform. Furthermore,
these typically take the form of mixed-criticality systems (MCSs) by integrating components
with distinct criticality levels. For example, in automotive systems, network-connected
infotainment is often deployed alongside safety-critical control systems [8]. As such, great
care must be taken when consolidating mixed-criticality systems to balance the conflicting
requirements of isolation for security and safety, and efficient resource sharing.

Virtualization, an already well-established technology in desktop and servers, emerges as
a natural solution to achieve consolidation and integration. It requires minimal engineering ef-
forts to support legacy software while guaranteeing separation and fault containment between
virtual machines (VMs). Several efforts were made to adapt server-oriented hypervisors, such
as Xen [19, 47] or KVM [26, 12], to embedded architectures (mainly Arm) with considerable
success. However, given the mixed-criticality nature of the target systems, the straightforward
logical isolation has proven to be insufficient for the tight embedded constraints and real-time
requirements [1]. Moreover, these embedded hypervisors often depend on a large GPOS
(typically Linux) either to boot, manage virtual machines, or provide a myriad of services,
such as device emulation or virtual networks [4, 41]. From a security and safety perspective,
this dependence bloats the system trusted computing base (TCB) and intercepts the chain
of trust in secure boot mechanisms, overall widening the system’s attack surface [32]. More,
due to the size and monolithic architecture of such OSs, this tight coupling also hampers the
safety certification process of systems deploying such a hypervisor.

The static partitioning hypervisor architecture, pioneered by Siemens’ Jailhouse [41], has
been recently experiencing increasing adoption in MCSs from both academia and industry.
This architecture leverages hardware-assisted virtualization technology to employ a minimal
software layer that statically partitions all platforms resources and assigns each one exclusively
to a single VM instance. It assumes no hardware resources need to be shared across guests.
As each virtual core is statically pinned to a single physical CPU, there is no need for
a scheduler, and no complex semantic services are provided, further decreasing size and
complexity. Although possibly hampering the efficient resource usage requirement, static
partitioning allows for stronger guarantees concerning isolation and real-time. Despite its
design philosophy, Jailhouse falls short by still depending on Linux to boot the system and
manage its “cells”, suffering from the same aforementioned security ills of other hypervisors.

Despite the strong CPU and memory isolation provided by the static partitioning approach,
this is still not enough as many micro-architectural resources such as last-level caches,
interconnects, and memory controllers remained shared among partitions. The resulting
contention leads to a lack of temporal isolation, hurting performance and determinism
[3, 2]. Furthermore, this can be exploited by a malicious VM to implement DoS attacks by
increasing their consumption of a shared resource [6], or to indirectly access other VM’s data
through the implicit timing side-channels [13]. To tackle this issue, techniques such as cache
partitioning (either via locking or coloring) or memory bandwidth reservations were already
proposed and implemented at both the operating system and hypervisor level [48, 27, 30, 22].

In this paper, we present Bao, a minimal, from-scratch implementation of the partitioning
hypervisor architecture. Despite following the same architecture as Jailhouse, Bao does
not rely on any external dependence (except the firmware to perform low-level platform
management). Also, given the simplicity of the mechanism, it provides baked in support for
cache coloring. Bao originally targets the Armv8 architecture, and experimental support
for the RISC-V architecture is also available. As we strongly believe that security through
obscurity, the approach followed by a majority of industry players, has been proven time and
time again to be ineffective, Bao will be available open-source by the end of 2019.
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2 Bao Hypervisor

Bao (from Mandarin Chinese “bǎohù”, meaning “to protect”) is a security and safety-oriented,
lightweight bare-metal hypervisor. Designed for MCSs, it strongly focuses on isolation for
fault-containment and real-time behavior. Its implementation comprises only a minimal,
thin-layer of privileged software leveraging ISA virtualization support to implement the
static partitioning hypervisor architecture (Figure 1): resources are statically partitioned and
assigned at VM instantiation time; memory is statically assigned using 2-stage translation;
IO is pass-through only; virtual interrupts are directly mapped to physical ones; and it
implements a 1-1 mapping of virtual to physical CPUs, with no need for a scheduler. The
hypervisor also provides a basic mechanism for inter-VM communication based on a static
shared memory mechanism and asynchronous notifications in the form of inter-VM interrupts
triggered through a hypercall. Besides standard platform management firmware, Bao has
no external dependencies, such as on privileged VMs running untrustable, large monolithic
GPOSs, and, as such, encompasses a much smaller TCB.

    Bao Hypervisor

Linux RTOS

Applications RT-Apps

Bare-metal

    Firmware (UBoot, ATF, ...)

CPUCPUCPU CPU

Supervisor 

User

Hypervisor

Monitor

Figure 1 Bao’s static partitioning architecture.

2.1 Platform Support
Bao currently supports the Armv8 architecture. RISC-V experimental support is also
available but, since it depends on the hypervisor extensions, which are not yet ratified,
no silicon is available that can run the hypervisor. Consequently, the RISC-V port was
only deployed on the QEMU emulator, which implements the latest version of the draft
specification (at the time of this writing, version 0.4). For this reason, for the remaining of
the paper, we will only focus on the Arm implementation. As of the time of this writing,
Bao was ported to two Armv8 platforms: Xilinx’s Zynq-US+ on the ZCU102/4 development
board and HiSilicon’s Kirin 960 on the Hikey 960. So far, Bao was able to host several
bare-metal applications, the FreeRTOS and Erikav3 RTOSs, and vanilla Linux and Android.

Except for simple serial drivers to perform basic console output, Bao has no reliance
on platform-specific device drivers and requires only a minimal platform description (e.g.,
number of CPUs, available memory, and its location) to be ported to a new platform. For
this reason, Bao relies on vendor-provided firmware and/or a generic bootloader to perform
baseline hardware initialization, low-level management, and to load the hypervisor and guest
images to main memory. This significantly reduces porting efforts.

On the supported Arm-based platforms, Bao relies on an implementation of the standard
Power State Coordination Interface (PSCI) to perform low-level power control operations,
further avoiding the need for platform-dependent drivers. On Arm-based devices, this has
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been provided by Arm Trusted Firmware (ATF). On such platforms, Linux itself depends on
PSCI for CPU hot-plugging. When such guests invoke PSCI services, Bao merely acts as a
shim and sanitizer for the call arguments, to guarantee the VM abstraction and isolation,
deferring the actual operation to ATF. Although we’ve been able to boot directly from ATF,
we’ve been also using the well-known U-boot bootloader to load hypervisor and guest images.

2.2 Spatial and Temporal Isolation
Following the main requirement of isolation, Bao starts by setting up private mappings
for each core. Using the recursive page table mapping technique, it avoids the need for a
complete contiguous mapping of physical memory, which would otherwise be essential to
perform software page table walks. This approach is usually not suitable when managing
multiple address spaces and typically incurs a higher TLB footprint for page table look-ups.
However, given that only a single address space is managed per CPU, and page tables are
completely set-up at initialization, this is not necessarily true for our static architecture and
design philosophy. Nevertheless, all cores share mappings for a per-CPU region for inter-core
communication, and the hypervisor’s image itself. Furthermore, only cores hosting the same
VM will map its global control structure. These design decisions follow the principle of least
privilege, where each core, and privilege level within it, only has (at least, direct) access to
what it absolutely must. This hardens data integrity and confidentially by minimizing the
available data possibly accessed by exploiting read/write gadgets available in the hypervisor.
Furthermore, hypervisor code pages are marked as read-only and a X⊕W policy is enforced
on hypervisor data pages by configuring them as non-executable.

Guest isolation itself starts, of course, with the logical address space isolation provided
by 2-stage translation hardware virtualization support. To minimize translation overhead,
page table, and TLB pressure, Bao uses superpages (in Arm terminology, blocks) whenever
possible, which also possibly improves guest performance by facilitating speculative fetches.
Regarding time, given exclusive CPU assignment, no scheduler is needed, which coupled with
the availability of per-CPU architectural timers directly managed by the guests, allows for
complete logical temporal isolation.

Despite the strong partitioning inherent to this architecture and the efforts taken to
minimize the existent virtualization overheads, this is not enough to guarantee deterministic
execution and meet the deadlines of critical guests’ tasks. Micro-architectural contention
at shared last-level caches (LLCs) and other structures still allows for interference between
guest partitions. As such, given its simplicity, Bao implements a page coloring mechanism
from the get-go, enabling LLC cache partitioning. Coloring, however, has several drawbacks.
Firstly, it forces the use of the finest-grained page size available, precluding the benefits of
using superpages. Secondly, as it also partitions the actual physical address space, leading to
memory waste and fragmentation. Another problem regarding coloring is that, as Bao relies
on a bootloader to load guest images, which are continuously laid out in memory, it needs
to recolor them, i.e., copy the non-color compliant pages from the original loaded image to
pages agreeing with the colors assigned to that specific VM, which will increase the VM’s
boot time. Coloring can be enabled and each color selected, independently for each VM.

2.3 IO and Interrupts
Bao directly assigns peripherals to guests in a pass-through only IO configuration. As in the
supported architectures, specifically Arm, all IO is memory-mapped, this is implemented for
free by using the existing memory mapping mechanisms and 2-stage translation provided by
virtualization support. The hypervisor does not verify the exclusive assignment of a given
peripheral, which allows for several guests to share it, albeit in a non-supervised manner.
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The Generic Interrupt Controller (GIC) is the interrupt router and arbiter in the Arm
architecture. Although it provides some interrupt virtualization facilities, the majority of the
available hardware platforms feature either GICv2 or GICv3, which do not support direct
interrupt delivery to guest partitions. All interrupts are forward to the hypervisor, which
must re-inject the interrupt in the VM using a limited set of pending registers. Besides the
privileged mode crossing overheads leading to an unavoidable increase in interrupt latency,
this significantly increases interrupt management code complexity, especially if features such
as interrupt priority are to be emulated. Bao’s implementation does follow this path, as many
RTOSs make use of interrupt priorities, sometimes even as a task scheduling mechanism
[33, 40]. This problem was solved in the newest version of the spec, GICv4, which bypasses
the hypervisor for guest interrupt delivery [12]. Furthermore, the limited virtualization
support dictates that guest access to the central distributor must be achieved using trap and
emulation. Depending on the frequency and access patterns of a guest to the distributor,
this might significantly decrease performance. As of now, Bao only supports GICv2.

3 Evaluation

In this section, we present Bao’s initial evaluation. First, we will focus on code size and
memory footprint. Then we evaluate the boot time, performance, and interrupt latency. We
compare guest native execution (bare) with hosted execution (solo) and hosted execution
under contention (interf) to evaluate the arising interference when running multiple guests.
We repeat the hosted scenarios with cache partitioning enabled (solo-col and interf-col), to
understand the degree to which this first level of micro-architectural partitioning impacts
the target partitions and helps to mitigate interference.

Our test platform is the Xilinx ZCU104, featuring a Zynq-US+ SoC with a quad-core
Cortex-A53 running at 1.2 GHz, per-core 32K L1 data and instruction caches, and a shared
unified 1MB L2/LLC cache. We execute the target test VM in one core while, when adding
interference, we execute two additional bare-metal applications, each in a separate VM, which
continuously write and read a 512KiB array with a stride equal to the cache line size (64
bytes). When enabling coloring, we assign half the LLC (512 KiB) to the VM running the
benchmarks and one fourth (256 KiB) to each of the interfering bare-metal apps. Both the
hypervisor code and benchmark applications were compiled using the Arm GNU Toolchain
version 8.2.1 with -O2 optimizations.

3.1 Code Size and Memory Footprint
Bao is a complete from-scratch implementation with no external dependencies. In this section,
we evaluate (i) code complexity using source lines of code (SLoC), and (ii) memory footprint
by looking at the size of the final binary and then analyzing run-time consumption.

The code is divided into four main sections: the arch and platform directories contain
target-specific functionality while the core and lib directories feature the main hypervisor
logic and utilities (e.g., string manipulation, formatted print code), respectively. The total
SLoC and final binary sizes for each directory are presented in Table 1.

Table 1 shows that, for the target platform, the implementation comprises a total of 5.6
KSLoC. This small code base reflects the overall low degree of complexity of the system.
Most of the code is written in C, although functionalities such as low-level initialization and
context save/restore (exception entry and exit) must be implemented in assembly. We can
also see that the architecture-specific code contributes the most of the total SLoC. The largest
culprit is the GIC virtualization support that amounts to almost 1/3 of the total Armv8
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Table 1 Source lines of code (SLoC) and binary size (bytes) by directory.

SLoC size (bytes)
C asm total .text .data .bss .rodata total

arch/armv8 2659 447 3106 22376 888 16388 482 40134
platform/xilinx/zcu104 281 0 281 464 136 0 0 600
core 1697 0 1697 14492 168 656 835 16151
lib 517 0 517 2624 0 0 24 2648
total 5154 447 5601 39956 1192 17045 1341 59535

code with about 750 SLoC. In core functionality, the code memory subsystem which includes
physical page allocation and page-table management encompasses the bulk of the complexity
comprising 540 SLoC. The resulting binary size is detailed in the rightmost section of Table
1. The total size of statically allocated memory is about 59 KiB. Note that the large .bss
section size is mainly due to the static allocation of the root page tables. Ignoring it, this
brings the total size of the final binary to be loaded to about 43 KiB.

Next, we assess the memory allocated at run-time. At boot time, each CPU allocates a
private structure of 28 KiB. This structure includes the private CPU stack and page tables
as well as a public page used for inter-CPU communication. For this quad-core platform,
it amounts to a total of 112 KiB allocated at boot time. During initialization, Bao further
allocates 4 pages (16 KiB) to use for an internal minimal allocation mechanism based on
object pools. Furthermore, for each VM, the hypervisor will allocate a fixed 40 KiB for the
VM global control structure plus 8 KiB for each virtual CPU. The largest memory cost for
each VM will be the number of page tables which will depend first on the size of the assigned
memory and memory-mapped peripherals, and second on if cache coloring is enabled or not.
Table 2 shows the number of page tables used for different sizes of assigned memory. It
highlights the large overhead introduced by the cache coloring mechanism on page table size.
After all VMs are initialized, with the small exception of inter-CPU message allocation using
the aforementioned object pools, no more memory allocation takes place.

Table 2 Page table size by VM memory size.

no coloring coloring
size (MiB) num. pages size (KiB) num. pages size (KiB)

32 4 16 20 80
128 5 20 68 272
512 5 20 260 1040

1024 5 20 516 2064

3.2 Boot Overhead
In this section, we evaluate Bao’s overhead on boot time (not the system’s overall boot time).
As such, no optimizations were carried out in any of the system’s or the VMs’ boot stages.
In this platform, the complete boot flow includes several platform-specific boot stages: (i) a
BootRom performs low-level initializations and loads the First-Stage Bootloader (FSBL) to
on-chip memory, which then (ii) loads the ATF, Bao, and guest images to main memory.
Next, (iii) the FSBL jumps to the ATF which then (iv) handles control to the hypervisor.

For our measurements, we use Arm’s free-running architectural timer which is enabled in
the early stages of ATF. Therefore, these are only approximate values to the platform’s total
boot time, as they do not take into account previous boot stages. We consider two cases: a
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small VM (117 KiB image size and 32 MiB of memory) running FreeRTOS, and a large one
(39 MiB image size and 512 MiB of memory) running Linux. For each VM, we consider the
native execution (bare) scenario, and hosted execution with coloring disabled and enabled
(solo and solo-col, respectively). We measure (i) hypervisor initialization as the time taken
from the first instruction executed by the hypervisor to the moment it handles control to the
VM, and (ii) the total boot time to the beginning of the first application inside the guest.
We stress the fact that Bao does not perform guest image loading, as is the case for other
embedded hypervisors. For this, it depends on a bootloader. As such, the image loading
overhead is only reflected in the total time.

Table 3 Hypervisor initialization time and total VM boot time (ms).

hyp. init. time total boot time
avg std-dev avg std-dev

freertos bare n/a n/a 2707.13 0.124
freertos solo 6.48 0.003 2720.84 0.118

freertos solo-col 9.21 0.004 2723.49 0.150
linux bare n/a n/a 11069.48 0.545
linux solo 9.59 0.004 11152.87 0.305

linux solo-col 155.39 1.202 11337.71 2.236

Table 3 shows the average results of 100 samples for each case. In the small VM case, the
hypervisor initialization overhead is minimal (6.5 and 9.2 ms for the solo and sol-col scenarios,
respectively). The total boot time increases by approximately 13 (0.5%) and 16 (0.6 %) ms,
respectively, when compared with the bare scenario. In the case of the large VM running a
Linux guest, Bao takes about 9.6 and a 156.2 ms to initialize itself and the VMs in the solo
and solo-col case, respectively. Comparing with the native execution, the total boot time
increases by about 83 (0.7 %) ms and 184 (2.4 %) ms with coloring disabled and enabled,
respectively. The first point to highlight is the large increase in hypervisor initialization time
with coloring enabled. This is mainly because Bao needs to color the flat image laid out
by the bootloader, copying several segments of the image to color-compliant pages in the
process. This is aggravated in the case of large guest images. Second, the increase in total
boot time is always larger than the hypervisor initialization time. We believe this is the
result of the virtualization overhead during guest initialization (e.g. 2-stage translation and
GIC distributor trap and emulation).

3.3 Performance Overhead and Interference
To assess virtualization performance overhead and inter-VM interference, we employ the
widely-used MiBench Embedded Benchmark Suite [14]. MiBench is a set of 35 benchmarks
split into six subsets, each targeting a specific area of the embedded market: automotive
(and industrial control), consumer devices, office automation, networking, security, and
telecommunications. For each benchmark, MiBench provides two input data sets (small and
large). We focus our evaluation on the automotive subset as this is one of the main application
domains targeted by Bao. It includes three of the more memory-intensive benchmarks and
therefore more susceptible to interference due to cache and memory contention [7] (qsort,
susan corners, and susan edges).

Figure 2 shows the results for 1000 runs of the automotive MiBench subset. For each
benchmark, we present the results as performance normalized to the bare-metal execution
case, so higher values reflect poorer performance. To further investigate and understand the
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Figure 2 Performance overheads of Mibench automotive benchmark relative to bare-metal
execution.

behavior of the benchmark, we collected information on L2 cache miss rate, data TLB miss
rate, and stall cycle rate for memory access instructions for the qsort benchmarks. Table 4
shows the results for the small and large qsort benchmarks for each scenario.

Analyzing Figure 2, the same trend can be observed across all benchmarks to a higher or
lower degree. First, observe that hosted execution causes a marginal decrease in performance.
This is reflected in Table 4 by a small increase in both L2 cache and data TLB miss rates,
which in turn explain the increase in memory access stall rate. As expected, this stems
from the virtualization overheads of 2-stage address translation. Second, when coloring is
enabled, the performance overhead is further increased. This is supported by the results in
Table 4 that show an already noticeable increase across all metrics. Again, as expected, this
can be explained by the fact that only half of L2 is available, and that coloring precludes
the use of superpages, significantly increasing TLB pressure. In the interference scenario,
there is significant performance degradation. The results in Table 4 confirm that this is due
to the foreseen explosion of L2 caches misses. Finally, we can see that cache partitioning
through coloring can significantly reduce interference. Table 4 shows that coloring can
completely reduce L2 miss rate back to the levels of the solo colored scenario. However,
looking back at Figure 2, we can see that this cutback is not mirrored in the observed
performance degradation, which is still higher in the interf-col than the solo-col scenario.
This can be explained by the still not address contention introduced downstream from LLC
(e.g. write-back buffer, MSHRs, interconnect, memory controller) reflected in the difference
in memory stall cycle rate. As expected, basicmath and bitcount were significantly less
impacted by coloring and interference, given that these are much less memory-intensive.

Another visible trend in Figure 2 is that performance degradation is always more evident
in the small data set variation of the benchmark. When comparing the small and large input
data set variants, we see that, despite the increase in L2 cache miss rate in Table 4 being
similar, the small variant experiences greater performance degradation. We believe this
might be due to the fact that, given that the small input data set benchmarks has smaller
total execution times, the cache miss penalty will more heavily impact them. This idea is
supported by the observed memory access stall cycle rate in Table 4, which incurs in a much
higher percentage increase for the small input data set case.

3.4 Interrupt Latency
To measure interrupt latency and minimize overheads unrelated to virtualization, we crafted
a minimal bare-metal benchmark application. This application continuously sets up the
architectural timer to trigger an interrupt each 10 ms. As the instant the interrupt is triggered
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Table 4 Average L2 miss rate, data TLB miss rate and stall cycle on memory access rate for the
small and large variants of MiBench’s qsort benchmark.

bare solo solo-col interf interf-col

small L2 miss % 15.5 15.7 22.6 38.1 22.7
DTLB miss % 0.021 0.023 0.058 0.023 0.059
Mem. stall cyc. % 28.6 28.7 37.4 52.6 46.6

large L2 miss % 10.1 10.1 13.4 31.7 13.4
DTLB miss % 0.002 0.002 0.007 0.002 0.007
Mem. stall cyc. % 4.9 5.0 5.6 8.5 7.2

is known, we calculate the latency as the difference between the expected wall-clock time
and the actual instant it starts handling the interrupt. The timer has a 10 ns resolution.
Results obtained from 1000 samples for each scenario are summarized in Table 5.

Table 5 Interrupt Latency (ns).

avg std-dev min max
native 140.4 11.1 140.0 490.0
solo 571.64 50.63 560.0 2170.0
solo-col 571.75 54.74 570.0 2300.0
interf 583.95 91.64 560.0 3460.0
interf-col 583.11 99.70 570.0 3620.0

When comparing native with the standalone hosted execution, we see a significant
increase in both average latency and standard deviation, of approximately 430 ns and
40 ns, respectively, and of the worst-case latency by 1680 ns. This reflects the already
anticipated GIC virtualization overhead due to the trap and mode crossing costs, as well as
the interrupt management and re-injection. It is also visible that coloring, by itself, does not
significantly impact average interrupt latency, but slightly increases the worst-case latency.
The results in Table 5 also confirm the expected adverse effects of interference by cache
and memory contention in interrupt latency, especially in the worst-case. Average latency
grows ≈12 ns with an increase in the standard deviation of ≈41 ns and in worst-case of 1160
ns. Enabling coloring has no expressive benefits in average latency, and actually increases
standard deviation and worst-case latency. We believe this was because, in this case, the
relevant interference is not actually between VMs, but between the interfering guests and
the hypervisor itself, which is not itself colored.

4 Related Work

Virtualization technology was introduced in the 1970’s [38]. Nowadays, virtualization is a
well-established technology, with a rich body of hypervisor solutions, mainly due to the large
number of use cases ranging from servers, desktops, and mobiles [4, 29, 5, 44], to high- and
low-end embedded systems [16, 46, 12, 28, 41, 21, 35].

Xen [4] and KVM [26] stand as the best representative open-source hypervisors for a
large spectrum of applications. Xen [4] is a bare-metal (a.k.a. type-1) hypervisor that relies
on a privileged VM, called Dom0, to manage non-privileged VMs (DomUs) and interface
with peripherals. KVM [26] follows a different design philosophy; it was designed as a hosted
hypervisor and integrated into Linux’s mainline as of 2.6.20. Although initially developed
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for desktop and server-oriented applications, both hypervisors have found their place into
the embedded space. Xen on Arm [19] has presented the first implementation of Xen for
Arm platforms and RT-Xen [47] has extended it with a real-time scheduling framework.
KVM/ARM [12], in turn, has brought to light the concept of split-mode virtualization and
pushed forward the hardware virtualization specification for Arm platforms.

From a different perspective, and to cope with the strict timing requirements of embedded
real-time applications, a different class of systems proposes the extension of widely-used com-
mercial RTOSes with virtualization capabilities. Green Hills INTEGRITY Multivisor, SysGo
PikeOS [20], and OKL4 MicroVisor [17] are great examples of systems that take advantage
of the already developed and certified RTOS infrastructure to provide the foundation to
implement virtualization capabilities as services or modules atop. Also, there is another class
of systems that makes use of security-oriented technologies, e.g. Arm TrustZone [37], for
virtualization. TrustZone-assisted hypervisors such as SafeG [43] and LTZVisor [36] are typic-
ally dual-OS solutions which allow the consolidation of two different execution environments,
i.e. an RTOS and a GPOS. In spite of both design philosophies striving for low-performance
overhead and minimal interrupt latency, they typically present some limitations and fall
short while supporting multiple VMs and scaling for multi-core configurations [36, 37].

Small-sized type-1 embedded hypervisors, such as Xtratum [11], XVisor [34], Hellfire/prpl-
Hypervisor [31], ACRN [23], and Minos [39] provide a good trade-off between fully-featured
hypervisors and virtualization-enhanced RTOSes. Xtratum [11] was designed for safety-
critical aerospace applications targeting LEON processors; nowadays, it is also available for
the x86, PowerPC, and Armv7 instruction sets. Hellfire/prplHypervisor [31] was specially
designed for real-time embedded systems targeting the MIPS architecture (with Virtualiza-
tion Module support). XVisor [34] was designed as a tool for engaging both academia and
hobbyist with embedded virtualization for Arm platforms. Intel researchers have developed
ACRN [23], a lightweight hypervisor for the IoT segment and currently targeting the x86
platform. Minos [39] is an embryonic solution targeting mobile and embedded applications.
Similarly to these hypervisors, Bao is also a type-1 hypervisor targeting Arm and RISC-V
processors (and open to future support for MIPS or other embedded platforms); however, it
distinguishes from the aforementioned solutions by following a static partition architecture
which has an even reduced TCB and improved real-time guarantees.

Siemens’s Jailhouse [41] pioneered the static partitioning architecture adopted by Bao.
Jailhouse leverages the Linux kernel to start the system and uses a kernel module to install the
hypervisor underneath the already running Linux. It then relies on this root cell to manage
other VMs. Due to the proven advantages of static partitioning in embedded domains such
as the automotive, other hypervisors are striving to support it. Xen has recently introduced
Dom0-less execution [45], allowing DomUs to boot and execute without a Dom0, which
also eliminates the Linux dependency. We strongly believe that Bao will still be able to
distinguish itself from Xen Dom0-less by providing the same static partitioning benefits with
a much smaller TCB and by implementing clean security features (see Section 5).

Recently, Google open-sourced Hafnium [15], a security-focused, type-1 hypevisor. It aims
to provide memory isolation between a set of security domains, to better separate untrusted
code from security-critical code, where each security domain is a VM.

5 On the Road

Bao’s development is still at an embryonic stage. As of this writing, we are expanding support
for the Arm architecture including SMMU (Arm’s IOMMU) and the latest GIC versions (v3
and v4). We are also porting the system to a range of different platforms including NVIDIA’s
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Jetson TX2 and NXP’s i.MX 8. Also, given the small size codebase, we are planning an
overall refactoring to adhere to the MISRA C coding guidelines.

Bao implements cache coloring from the get-go, as a first-line of micro-architectural
partitioning and isolation. We aim at implementing other state-of-the-art partitioning
mechanisms (e.g. memory throttling), and color the hypervisor image itself, since we have
verified that there are still contention issues between VMs or between VMs and the hypervisor.
However, we believe that these issues should be supported by dedicated hardware mechanisms,
to not increase code complexity and size as well as minimize overheads. Indeed, Arm has
proposed the Memory System Resource Partitioning and Monitoring (MPAM) [25] extensions
on Armv8.4. MPAM provides hardware support for shared cache, interconnect, and memory
bandwidth partitioning. Unfortunately, no hardware featuring these extensions is available
to date. We plan to implement support for MPAM using Arm Foundation Platform models,
so we can test it on real hardware as soon as it is available.

Finally, since Bao is also a security-oriented hypervisor, Trusted Execution Environment
(TEE) support is also on the roadmap. Typically, Arm TEEs are anchored in TrustZone
technology, a set of secure hardware extensions that splits the platform into a secure and
normal world [37]. TEE kernels and applications run on the secure side, while everything
else (including the hypervisor) executes in the normal world. Currently, TrustZone does
not support multiple isolated TEEs. Several secure world virtualization approaches have
been proposed [18, 10, 24] and, recently, Arm has added secure world hypervisor support on
Armv8.4. However, the dual-world approach of TrustZone-based TEEs has been shown to be
fundamentally flawed [9]. Furthermore, we believe running an additional secure hypervisor
would unnecessarily increase complexity, and that the secure world should only be used to
encapsulate absolute security primitives (e.g. secure boot, attestation, authentication, key
management). Bao’s approach will take this into account, and using the already existing
virtualization mechanisms, with no additional scheduling logic, will allow for multiple VMs
inside a single hardware partition in the normal world. TEEs will be deployed on auxiliary
VMs and only executed per request of the main guest. Another advantage of this approach
is that it is portable and scalable across architectures and not specific to Arm.

6 Conclusion

In this paper, we presented the Bao hypervisor, a minimal, standalone and clean-slate
implementation of the static partitioning architecture as a lightweight alternative to existing
embedded hypervisors. Although development is still at an embryonic stage, preliminary
evaluation shows it incurs only minimal virtualization overhead. We outline Bao’s development
roadmap which includes extended platform support and per-partition TEE support. Bao
will be open-sourced by the end of 2019 in hopes of engaging both academia and industry in
tackling the challenges of VM isolation and security.
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Abstract
We present a wireless sensor node suitable for event-based real-time control networks. The node

achieves low-power operation thanks to tight clock synchronisation with the network master (at
present we refer to a star network but extensions are envisaged). Also, the node does not employ
any programmable device but rather an FPGA, thus being inherently immune to attacks based on
code tampering. Experimental results on a simple laboratory apparatus are presented.
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1 Introduction

Nowadays many control systems operate through a (partially) wireless network, and this
will most likely become more and more frequent in the future. It is therefore expected that
hardware and software architectures both support and foster this tendency, by allowing
non-networked and/or wired existing solutions to transition toward the wireless network
world in as seamless a manner as possible, and by prying the maximum advantage out of
going networked, and above all wireless.

Restricting now the focus to the wireless case consistently with the scope of the paper,
the important matter just mentioned has several facets, from resilience to communication
deficiencies through bandwidth and energy efficiency up to security. These facets stem from
two main motivations: the adoption of an inherently shared, disturbance-prone and publicly
accessible medium as the radio, and the widespread use of battery-operated devices to reduce
wiring as much as possible. And needless to say, the issues just sketched are to be addressed
while offering real-time capabilities sharp enough for the intended application.

In this paper, which is part of a long-term research activity on networked event-based
real-time control, we present a sensor node designed to operate in the context just mentioned,
and we provide two main contributions. The first one is implementing a sensing device
suitable for the particular event-based control technique presented in [15]. The second one is
realising the said sensor using only hardware elements, without the involvement of software
parts. The complete absence of any microcontroller or soft-core in the favour of a device
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completely based on hardwired logic – besides proving that the complexity of the designed
solution is adequate for an FPGA, and prospectively for an ASIC – brings about two main
advantages. The first one is related to power consumption, as it is well known that an ASIC
absorbs far less current1 with respect to a microcontroller. This claim grounds on two main
considerations: first of all, an ASIC-based device contains only the logic circuits necessary
to perform its functionalities, while a microcontroller has different peripherals which, even
when not in use, consume power. Then, coming to the technological side, in the fabrication
process of an ASIC suitable techniques can be exploited to significantly reduce the power
consumption, e.g. minimising the transistors’ leakage current. A microcontroller, on the
other hand, – being a pre-manufactured device – cannot be made as low power as needed, if
not by going through a customised fabrication process.

The other advantage of using an hardwired control logic, most important for a safe
operation in an IIoT context or in an industrial control network at large, is that it allows to
have a strong resilience in the face of possible malicious attacks. This is because there is
no way of altering the device’s behaviour by reprogramming it, for the trivial reason that
there is nothing to reprogram. In fact one may still think of re-configuring the FPGA, but
first this is enormously more difficult than tampering with the code of a microcontroller, and
then the same operation would be impossible if the design was turned into an ASIC. This is
a key feature of our proposal, since in an “interconnected manufacturing” world, a damage
to the communication infrastructures can lead to incidents and loss of equipment, also of
huge extent.

As for the structure of the control networks which the presented device will be part
of, at present we only target the star topology. This limitation is for the moment deemed
acceptable, being also shared by several alternatives in the literature – like, e.g., the schemes
presented in [9] and [8]. Thanks to the tight clock synchronisation technique on which our
solution is based, however, we are confident that the above limitation will be released in
future extensions, making it possible to realise real-time mesh wireless control networks.

The paper is organised as follows. After a brief literature review, we give a detailed
description of the devised sensor node. Finally, an closed-loop experiment aimed at validating
a prototype of the device is presented, alongside with a brief analysis the obtained results.

2 Related work

Most typically, digital controls are realised with periodic sampling. In recent years, however,
event-based control (EBC) has emerged as a valid alternative in which control signals are
instead computed “only when needed” [1, 2]. On the methodological side EBC requires a
specialised theory to handle non uniform sampling [3] and guarantee stability properties [4],
but its impact is evident also from the technological standpoint.

Focusing on this second aspect, in some cases EBC is viewed as a means to respond to
an event immediately and not at the first sampling time following that event [10]2. In some
others it is viewed as a means for a periodic controller to skip the control signal computation

1 It is common practice to talk about “current” instead of “power” consumption because the time integral
of current, irrespective of the voltage that instead enters in the computation of power, directly provides
the charge extracted from the battery, that can be easily compared against its capacity (correspondingly
expressed in current-by-time units) to estimate the feasible device operation time before the battery
needs replacing.

2 Rigorously speaking this is true only for continuous-time EBC, but it can be reasonably assumed to
hold also for fast-clocked event generators.
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at some steps, in this case setting the clock of the event generator equal to that of the
sampling – a particularly interesting feature wherever computational workloads are not
negligible with respect to the control period [12]. And besides the above, the interest of EBC
for real-time applications is testified by works such as [17] and many others: a survey can be
found in [16].

Even more important is nowadays the conjunction of EBC and wireless control applications,
where strict requirements in terms of energy and bandwidth consumption have to be faced,
especially with battery-operated devices. The (wider) problem of energy efficiency in wireless
devices for control has been addressed in works like [7, 13, 14], while specific reference to EBC
is made e.g. in [20, 6, 5], and architectural aspects are investigated in works like [24, 23].

We have at this point to notice that the quoted research, when talking about “savings”,
tends to overlap bandwidth and energy saving [18]. This is legitimate and sensible, as less
transmissions apparently achieve both objectives, but as EBC entails transmissions at a
priori unknown instants, care has to be taken to both preserve the required timing and
synchronisation properties [19] and minimise information losses due to network collisions [11].

Based on the minimum review above, we can conclude that a wireless device capable
of low-power event generation with guarantees on the channel occupation instants would
certainly provide a contribution to the problems above.

3 Platform description

This section describes in detail the structure of the device presented in this paper. First of
all we give an overview of the assumptions we made about the network in which the node
operates. Then, a functional description is given, followed by an in-depth description of some
of the subsystems.

3.1 Network assumptions

The device presented in this treatise has been designed to be part of a wireless network
fulfilling these requirements:

all the network elements must consume as less power as possible,
the transmission jitter of each data packet must be as low as possible to minimise the
impact on the stability degree of the closed loop system.

Both these requirements can be accomplished using a Time Division Multiple Access
(TDMA) network scheme, where each node can transmit and receive data only in prescribed
time slots, assigned and known network-wide. This scheme proves to be effective for several
aspects: as regards the power consumption, a TDMA approach allows each node to turn off
its radio transceiver – meaning that the node cannot transmit nor receive any data packet –
whenever its operation is not necessary. Each device, then, keeps its radio transceiver off
except in correspondence of its time slots and only if there is data to send. The transceiver
is also turned on periodically, to synchronise the device with the master node. In this latter
case, energy saving is maximised when suitable synchronisation schemes are used – like the
one presented in [22] – where, to synchronise, each device has to activate its radio transceiver
for a very short period (in the order of the tenths of milliseconds) once every 60 seconds or so.
The use of a properly synchronised TDMA scheme allows also to sensibly reduce the packet
transmission jitter, both reducing the variability of the transmission period and avoiding
collisions.
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3.2 Functional description
The device is composed of a printed circuit board carrying three main functional elements:

the sensing unit,
a radio transceiver,
and the control logic that manages all their functionalities.

In turn, the control logic is partitioned into three main functional blocks:
one to manage the sensing unit and the event generation,
one in charge of controlling the radio transceiver,
and a supervising one.

The overall structure is subdivided in functional subsystems, summarised in Figure 1.
The internals and the behaviour of the contained blocks are described in detail later on.

SENSOR
Sensor
mgmt

Event
triggering

Time-based at step q

Transceiver
mgmt

Event-based

RADIO

Node
supervisor

Low power High power

FPGA

Figure 1 Organisation of the FPGA-based wireless sensor node into subsystems.

The figure evidences the presence of a “low-power” part that samples the sensor at a fixed
time step and applies a digital low-pass filtering for noise mitigation, and of a “high-power’
part that is activated only on events, and takes care of transmitting data over the radio
channel.

The sensing unit and the radio transceiver were sourced from the wide variety of com-
ponents already available on the market off the shelf, while the control logic, due to its
peculiarity, should come in the form of an ASIC, which in this work we emulate – as already
said – with an FPGA. This is a component constituted by a given amount of blocks perform-
ing some basic logical operations. These blocks can be easily configured to perform more
complex operations by means of tools that require an affordable effort on the part of the
designer, which significantly lowers the burden of the development. An FPGA has however
the disadvantage of a higher power consumption with respect to an ASIC, but this is of
marginal interest when developing prototypes, as is the case here. Needless to say, therefore,
we are not reporting consumption data.

The low-power part is constituted by the sensing element and the part of the ASIC
designated to sampling, filtering and event generation: this part is always functioning and it
has been designed in order to bring the power consumption to be as low as possible. To the
high-power part belong the radio transceiver and its controlling module in the ASIC: here
the main contribution to the absorbed power is given by the transceiver. Hence, in order to
save power, the entire high-power section is generally completely turned off when there is no
need for radio communication. As will be described more in detail later, in the case of an
event, the low-power section wakes up the high-power one in order to send the measured
values of the process’ output variable to the controller.
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The above partitioning reflects also on the organisation of the clock signals used by
the control logic to perform its various operations: all the components belonging to the
low-power section are clocked with a low-frequency signal, around 32kHz, while the ones
belonging to the high-power section are clocked with a signal having a frequency in the order
of the MHz. This clock subdivision is strictly related as well to the need of reducing the
power consumption, as with logic circuits, the absorbed power is directly proportional to
the frequency of operation. Thus, all the components of the node that are going to operate
continuously, are fed with a clock signal low enough to have a small power draw while
preserving a good level of operational speed. On the other side, the section to which the
radio transceiver belongs needs to be fed with a fast clock signal, to ensure proper operation
of the transceiver itself. Nonetheless, as already mentioned, the power drawn by this part is
minimised by turning off its clock signal when there is no need to use the transceiver.

All the node functionalities are coordinated at a high level by the node supervisor, also
residing completely on the ASIC.

Sensor

In this treatise the sensor is, in the more general way, the component which allows to obtain a
measurement of the process’ output variables of interest in order to realise the control system.
Without loss of generality, we assume the presence of an Analogue to Digital Converter
(ADC) in the measurement chain, which allows to have a numerical representation of an
analogue signal – usually in the form of a voltage – applied to its input. This approach makes
our treatise applicable to a wide variety of sensors commonly used in the industrial world,
since they usually give a representation of the measured quantity - temperature, pressure,
flow, and so forth – in terms of a voltage measurable at the output terminals of the sensing
element itself, or of a prescribed current (easily turned into voltage with a precision resistor).

Sensor manager

The sensor manager is constituted by a logic circuit contained in the ASIC and belonging
to the low-power section. The purpose of this subsystem is to manage the exchange of
commands and data to and from the ADC – which as said before, we consider to be our
sensing unit. The sensor manager is in charge of acquiring, with a fixed and well-defined
period, samples of the measured variable, in order to make them available to the other
modules, namely the event trigger and the radio transceiver manager. Moreover, as already
said, we assume that the sensor manager is also performing some signal conditioning after
the samples are acquired in the form of a first-order low-pass digital filter.

Event trigger

The event trigger, like the sensor manager, is part of the ASIC and belongs to the low-power
section. The role of this subsystem is to determine, at each step q, whether or not the
measured variable has assumed a value such that there is the need to fire a wake-up event for
the control system. This is done by following the Send on Delta rule: for each new filtered
sample generated by the sensor manager, its difference with respect to the sample acquired in
the preceding sampling step is computed. Then the absolute value said difference is compared
against the event triggering threshold and, in case the this one is exceeded, an event signal is
sent to the node supervisor in order to wake up the high-power part of the node.
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Due to their strict interaction, the event trigger and the sensor manager are contained in
the same hardware module, which is composed by an single state machine and datapath to
execute both the sensor sampling and the comparison for the event triggering.

Node supervisor
The node supervisor has control over the high-level functionalities of the device, determining
the proper sampling of the input signal according to the specified period and managing their
sending to the master node in case an event is triggered. It also has the role of keeping the
node’s internal reference clock synchronised with the master node, in case a synchronised
TDMA scheme is used. This clock can also be used to provide a unique timestamp for each
measurement taken, to avoid ambiguities.

This subsystem has its own logic block, constituted by a state machine and a datapath,
and is able to wake up the high-power section of the device when there is need to exchange
date over the wireless network. Like the event trigger and sensor manager modules, this
subsystem is always active during the device’s operation.

Radio transceiver manager
This subsystem controls the radio transceiver, sending to it the commands required to send
and receive data packets. Unlike the other modules, this part is normally turned off, meaning
that no clock signal is applied to its circuitry, and is awakened only when there is the need
to exchange data over the radio channel.

Radio transceiver
In our implementation the radio transceiver is an off the shelf component, containing both
the RF front-end which processes the radio signal and the logic circuits necessary to perform
data encoding and decoding. The chip used is a CC2520 manufactured by Texas Instruments,
which provides radio communication using the IEEE 802.15.4 protocol. The management
module inside the ASIC exchanges data and commands with the transceiver through an SPI
interface, performing transceiver initialisation every time the transceiver is powered up, and
transferring data packets to and from the transceiver’s buffer.

3.3 Description of subsystems
After a general presentation of the node’s internal structure was given, this section details
the internal structure of both the event generator and transceiver manager subsystem. Each
ot them is composed by one ore more finite-state machines with input and output signals to
interact with other modules. Additionally, when the subsystem needs to manipulate some
kind of data, performing logical and/or mathematical operations on it, the state machine is
complemented with a data path block aimed at this objective.

Sampling and event generation module
The sampling and event generation module, as briefly described in the previous section, is in
charge of acquiring samples from the ADC, filtering the obtained values, and determining if
the conditions for the generation of an event are met. All these operations are performed by
a single logic block composed of a data path, performing the data processing operations, and
a state machine defining the execution sequence.
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The ADC is interfaced with this module through an SPI interface, through which both
the commands and data are exchanged and which also supplies the clock signal necessary to
perform the analog-to-digital conversion.

The raw samples returned by the ADC are processed by a single-pole low-pass filter to
avoid spurious fires of the event generator due to noise spikes. The filter having a discrete-time
realization according to the equation

x(k) = (1 − α) · x(k − 1) + α · u(k), (1)

where parameter α, 0 < α < 1, defines the time constant of the filter.
Moreover, if the value of α is restricted to be a fractional power of two, the filter can be

realised using an iterative algorithm based only on two operations of the binary mathematics,
namely the addition and the right shift by one position (which is equivalent to a division by
two). This simplifies considerably the data path structure and the control flow.

Cascaded to the filter, the event generator block processes each filtered sample in order
to determine if the conditions to fire an event are met, following the Send on Delta rule. The
event generator keeps track of the value assumed by the filter’s output when the last event
has been generated - indicated with xle hereinafter -, computes its difference ∆x with respect
to the current filtered sample x and compares the obtained value with the event triggering
threshold. If the absolute value of ∆x exceeds this threshold, an event signal is rose and the
value of xle is updated to x.

R0
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R2

R3

DQ

0
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coutcin

0

1

sum

Din

0

Dout

Figure 2 Datapath of the event generator.

The data path of the sampling and event generation module, shown in figure 2, consists
of four 16-bit registers, an adder with carry-in and carry-out connections and a set of
multiplexers and demultiplexers to manage the data flow. Each register has a particular
function, as listed below.

R0: general purpose register. Contains the raw data returned by the ADC immediately
after the sample acquisition and the intermediate results during the filtering and event
generation procedure.
R1: contains the filtered value computed in the previous iteration, x(k − 1).
R2: contains last-event filtered value, xle.
R3: contains the threshold value for ∆x.

All the values contained in the registers are binary numbers in two’s complement form,
where the most significant bit also carries information about the sign of the stored value
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(positive if this bit is zero, negative otherwise). The data path used is 1-bit wide to keep
the silicon area occupied by the module as low as possible and thus minimise the power
consumption.

Transceiver manager
The transceiver management module controls all the functionalities of the node’s radio
transceiver. Its structure consists mainly of a single state machine exchanging both data and
commands with the transceiver through a dedicated SPI bus.

The radio transceiver has two operating modes, packet transmit and packet receive, each of
which is controlled by the management module using command sequences each constituted by
multiple instructions needed to correctly initialise the transceiver’s internal circuitry. These
command sequences are permanently stored in a dedicated read-only memory: depending on
the command received by the node supervisor, the management module fetches from the
memory the correct one and sends it to the transceiver.

Not all the commands and status signals, however, are exchanged through the SPI bus:
the send packet command and the start of frame detected signal are carried through dedicated
connections between the radio transceiver’s chip and the ASIC to minimise their latency.
This aspect is fundamental when dealing with TDMA schemes and network synchronisation,
as will be done in future developments.

4 Experimental results

Figure 3 Experimental setup.

This section briefly presents an experiment aimed at evaluating the performance of our
design. Here, the FPGA-based device has been used as a wireless sensing unit to measure the
process output inside a closed-loop system. The controlled apparatus is a PT 326 thermal
process trainer, manufactured by Feedback; the apparatus is composed of a plastic tube
equipped with a blower and an electric heater on one of its ends and with a temperature
sensor on the opposite one. The objective is to control the temperature of the airflow in the
tube, as measured by the temperature sensor, acting on the heater’s power. The speed of the
blower can be changed too, to simulate different levels of external disturbances. Both the
input and output signals of the process trainer come in the form of voltage levels, allowing
for a straightforward connection to external sensing and control units.
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In the setup, the FPGA-based sensor sends the measurements through a wireless connec-
tion to a wandstem board [21], which acts both as master node for the network and controller
for the closed-loop system.
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Figure 4 Experimental results.

The presented experiment is a load disturbance rejection one, where a step-shaped increase
of the blower speed causes an non-measurable change in the airflow. The regulator used is
an IMC-PID one whose program, written in C++ language, runs on the master node. During
the experiments the process input and output and the number of samples sent have been
logged. The result is shown shown in figure 4, where from top to bottom, the plots show the
airflow temperature in ◦C, the value of the control effort and the time distribution of the
packets sent over the wireless link, where a vertical bar is plotted whenever the regulator
received a sample from the sensing node.

The results obtained in this and other experiments show that the realised device can be
effectively used as the process’ output sensor in a closed-loop system, allowing to obtain
good performances while performing a quite low number of transmissions.

5 Conclusions and future work

We realised a low-power wireless sensor node suitable for real-time event-based control systems
without making use of microcontrollers of soft-cores, thereby showing that an approach based
completely on hardware components is feasible. This allows to significantly enhance both
the energy efficiency – especially if the design is converted into an ASIC – and the resilience
to malicious attacks.

As pointed out in the introduction, at present our design is effective only in a restricted
context, namely where control networks have a single-hop star topology. Future research
activity, then, will focus on overcoming these limitations.

Future developments will also be targeted towards enhancements in the aspects more
related to event-based control. Plans are to implement a bidirectional communication
between each node and the master one, for example to force the sending of measurements
or to interrupt data sending triggered by events, and support for triggering rules different
from the Send on Delta one will be added. We are also studying a timeout mechanism to
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force the generation of an event after a given amount of time from the last one as a way to
ensure proper operation of the closed-loop system. The timeout can also be exploited as a
mechanism to periodically check the integrity of the communication channel.
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Abstract
Dynamic resource management strategies in embedded many-core systems rely on task migration to
adapt the deployment (mapping) of applications dynamically, e.g., for thermal/power management
or load balancing. In case of hard real-time applications, however, the current practice of on-line
application adaptation is limited to reconfiguring the whole application between a set of statically
computed mappings with statically verified timing guarantees. This heavily restricts the application’s
adaptability. To enable hard real-time task migrations in many-core systems without relying on a
static analysis, this paper presents (i) a predictable task migration mechanism supported with (ii) a
lightweight migration timing analysis and (iii) a lightweight migration timing feasibility check which
can be applied on-line to bound on the worst-case temporal overhead of a migration and examine
the admissibility of this overhead w.r.t. the hard real-time requirements of the application. For a
variety of applications and many-core platforms, we experimentally demonstrate the feasibility of
hard real-time task migrations, the lightness of the proposed timing analysis and feasibility check for
on-line use, and the advantage of the proposed task migration approach over mapping reconfiguration
as the state-of-the-art real-time adaptation approach for many-core systems.
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1 Introduction

The ever-increasing number of applications hosted on a shared multi/many-core platform in
modern embedded systems engenders a highly dynamic environment: Different applications
are launched and terminated on demand and independently from each other, running
applications are exposed to workload variation and fluctuating performance requirements,
and platform resources may become unavailable unexpectedly, e.g., due to the emergence of
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Figure 1 A heterogeneous tiled many-core architecture. Tiles are interconnected by a NoC. Each
tile comprises a set of cores, a set of memories, and a network adapter, interconnected via buses.

thermal hot spots or hardware faults. Such events are typically addressed using dynamic
resource management strategies which adapt the deployment of running applications. These
strategies chiefly rely on task migration for rearranging the applications.

Migration-based resource management strategies can be viewed as an ensemble of two
components: a migration policy and a migration mechanism. The migration policy determines
which task(s) must be migrated when and whereto. A major factor taken into account during
this selection process is the overhead associated with each migration option, e.g., the latency
or the resource requirement of the migration process. These overheads are primarily a
byproduct of the underlying migration mechanism which determines how a migration is
performed. The choice of migration mechanism, in turn, depends on the target hardware
architecture, particularly, its interconnection scheme and memory organization.

Many-core platforms, e.g. [8, 21, 36], are typically organized as a set of tiles with a Network-
on-Chip (NoC) interconnection and a distributed No Remote Memory Access (NORMA)
storage scheme for scalability [26], see, e.g., Fig. 1. Each tile comprises a set of cores, a
set of memories, and a Network Adapter (NA), interconnected via a set of memory buses.
This infrastructure enables the transmission of messages both between cores located on the
same tile (intra-tile transmission) and between cores located on different tiles (inter-tile
transmission). In the context of task migration, intra-tile task migrations are realized through
the on-tile memories, oftentimes implicitly. The distributed memory scheme between tiles,
however, necessitates inter-tile task migrations to be realized by explicit relocation of the
task context between the source and destination tiles over the NoC.

Motivation. Existing works in the area of real-time task migration are either tailored to
soft real-time constraints and try to reduce the number of deadline misses [1, 6], or assume a
universal shared-memory scheme which, in the context of many-core systems, restricts their
scope of applicability to intra-tile migrations only [19, 38]. Recently, composable many-core
systems have emerged, primarily to cope with the immense systems dynamism and design
complexity [2, 17, 41]. In a composable many-core system, e.g. [17], running applications
are decoupled from each other using explicit reservation of resources (or resource budgets)
required by each application so as to establish a spatial and/or temporal isolation between
concurrent applications [2, 23]. This enables the worst-case temporal behavior of each
application to be analyzed based on its reserved resources (or resource budgets), irrespective
of the choice and behavior of the other applications that may run concurrently.

Contribution. In this paper, we exploit system composability to enable hard real-time
task migrations without relying on a static timing analysis and verification. To that end,
we present (i) a predictable migration mechanism which complies with the storage- and
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communication schemes of many-core systems and can be employed for both intra- and inter-
tile migrations, even in the case of migrations between cores of different types. We supply
the proposed migration mechanism with (ii) a lightweight migration timing analysis which
can be used on-line to calculate a safe bound on the worst-case latency of each migration
process. To verify the real-time conformity of a migration, we then present (iii) a lightweight
migration timing feasibility check which examines the admissibility of the migration latency
w.r.t. the given hard real-time deadline of the application and the changes in its timing
behavior during and after the migration. Our experimental results demonstrate the feasibility
of hard real-time task migrations, the lightness of the proposed timing analysis and feasibility
check for on-line use, and the advantage of the proposed task migration approach over the
state-of-the-art hard real-time adaptation approach, namely, mapping reconfiguration.

2 Related Work

A large body of work exists on task migration in multi/many-core systems used for load
balancing [4, 14, 22], temperature balancing [16, 24, 27], or fault resilience [3, 37]. They,
however, either (i) rely on assumptions about the platform which do not necessarily apply to
embedded many-core platforms, or (ii) disregard the temporal overhead of migration, making
them inapplicable for hard real-time applications. For instance, in [1, 5, 19, 20, 30, 37], a
globally shared-memory scheme is assumed for context migration while many-core systems
typically manifest a distributed NORMA scheme [26]. Likewise, the migration approaches
in [1, 12, 15, 27, 30] rely on a full/partial static replication of tasks on every memory in the
system, which imposes an immense storage overhead that is often not tolerable in embedded
many-core systems. From a predictability viewpoint, only a few existing migration approaches
investigate the timing overhead of task migration [1, 6, 19, 38]. They, however, either assume
soft real-time requirements and do not provide timing guarantees [1, 6] or investigate hard
real-time task migration but rely on assumptions such as a globally shared-memory scheme
which makes them inapplicable for inter-tile migrations in many-core systems [19, 38].

In the context of dynamic many-core systems, existing approaches [11, 32, 33, 40] for
hard real-time application adaptation verify the admissibility of migration overhead using
compute-intensive static timing analyses. Authors in [11] investigate real-time system
reconfigurations between statically known system modes, each corresponding to a unique
choice and deployment of active applications. Since the number of system modes and
migrations per mode transition grows exponentially with the number of applications, this
approach is generally not considered a viable solution for highly dynamic systems. To
improve scalability, authors in [32, 33, 40] investigate per-application composable mapping
reconfigurations in which each running application can be independently reconfigured between
a set of statically computed mappings without affecting the other running applications.

In this paper, we present a task migration mechanism and timing analysis which, compared
to mapping reconfiguration, enables a finer adaptation granularity as it empowers the real-
time migration of any subset of an application’s tasks without relying on a static analysis.
Contrarily to existing migration solutions, our approach complies with the distributed
memory scheme of embedded many-core systems. It is supported with a lightweight timing
analysis and feasibility check which bound the worst-case temporal overhead of the migration
processes at run time and examine the admissibility of this overhead w.r.t. the application
deadline and the changes in its timing behavior during and after the migrations.
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3 System Model

3.1 Platform Architecture
The target many-core platform is assumed to be organized as a set of (possibly heterogeneous)
tiles interconnected by a Network-on-Chip (NoC), see, e.g., Fig. 1. Each tile comprises a set
of homogeneous cores, memories, and a Network Adapter (NA), interconnected via buses.

Composability. The platform is assumed to be devoid of timing anomalies [35] and fully
composable [2, 17], so that applications can share resources without affecting each other’s
worst-case timing behavior. Composability is established by means of exclusive reservation of
resources (or reservation of periodic time budgets on resources) per application at its launch
time. To establish this scheme, each potentially shared resource, i.e., core, bus, NoC link,
and NA, must have a contentionless time-triggered arbitration policy, e.g., Time-Division
Multiplexing (TDM) or Weighted Round-Robin (WRR). In this context, the worst-case
timing behavior of each application can be analyzed based on its required resources (or
resource budgets). As a result, as long as the reserved resource budgets of an application
remain intact, its analyzed worst-case timing guarantees will hold, regardless of the presence
and the behavior of other applications which utilize the remaining budget of these resources.

Memory Model. We consider a distributed NORMA scheme between tiles which is common
for many-core systems [26]. Under this memory scheme, inter-tile data exchanges are realized
by means of explicit message passing between communicating tiles over the NoC, while intra-
tile data exchanges are realized through dedicated spaces in the memories on the respective tile.
To achieve storage composability, the memory space in each tile is dynamically partitioned
among tasks executed on it and messages produced and/or consumed on it.

NoC Model. The NoC is assumed to have a wormhole-switched- [29] and credit-based
virtual-channel [7] flow control, see, e.g., the NoC in [18]. Under wormhole switching, packets
are decomposed into so-called flits which are routed independently from each other in pipeline.
Virtual channels provide multiple buffers per link which enables transmission preemption and
composable link sharing among multiple communication flows. For each flow, the required
bandwidth budget can be reserved on each link located on its transmission route, and its
transfer latency can be analyzed based on its reserved budget, irrespective of the other flows.

3.2 Application and Mapping
We consider data-flow applications with a hard real-time constraint on their end-to-end
latency (makespan), denoted as the application deadline. Each application is specified by an
acyclic task graph (DAG) GP (T ∪M,E) where T denotes the set of tasks and M denotes
the set of unicast messages, each exchanged between one pair of tasks. E is a set of directed
edges which represent data dependencies among tasks and messages. For each task t∈T ,
the Worst-Case Execution Time (WCET) Ct per core type, the minimum interarrival time
Pt, and the maximum context size Bt are given. For each message m∈M , the minimum
interarrival time Pm and the maximum payload size Bm are given.

To execute an application, a so-called mapping of it on the platform is used which specifies
(i) the binding and budget of the tasks on cores and (ii) the routing and budget of the
inter-tile messages on the NoC. The Worst-Case Response Time (WCRT) Lt of each task
t∈T and the Worst-Case Traversal Time (WCTT) Lm of each message m∈M are derived
based on the budget reserved for each task (message) on its bound core (NoC route). For
this purpose, we use the timing analysis from [31].
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4 Real-Time Task Migration

Resource management in many-core systems, particularly, the migration of tasks, is typically
controlled and operated by a so-called Run-time Manager (RM), see [39] for an overview.
In the following, we consider a scenario where, during the execution of an application,
task migration becomes necessary to address a run-time event, e.g., a thermal hot spot.
Assume that the RM has selected a subset of the application’s tasks for migration to different
destinations. Before starting the migrations, the RM must first check the availability of
resources required by each migrating task. These are (i) the target core, (ii) the post-migration
NoC routes for inter-tile messages to/from the migrating task, and (iii) migration routes for
data transfer between the source and destination tiles in case of inter-tile migrations.

In a non-real-time context, the RM performs the migrations after the availability of the
required resources for all migrating tasks is verified. In a hard real-time context, however,
the migrations can take place only after the RM also verifies that (iv) the timing overhead
imposed during the migrations and (v) the changes in the timing behavior of the application
after the migrations cannot lead to a violation of its real-time deadline. To enable this
verification, in Section 4.1 we present a migration mechanism that enables the RM to migrate
tasks in a predictable fashion and transparently to the application. In Section 4.2, we present
a migration timing analysis which enables the RM to bound the worst-case latency of the
steps involved in the migration of each task and, then, the end-to-end latency of the multi-task
migration process. In Section 4.3, we present a migration timing feasibility check which
enables the RM to verify the real-time conformity of the migrations w.r.t. the end-to-end
migration latency and the changes in the timing behavior of the application during and after
the migrations. Finally, we present an illustrative example in Section 4.4 and elaborate on
the run-time overhead and complexity of our approach in Section 4.5.

4.1 Migration Mechanism
This section presents a task migration mechanism which enables the RM to perform task
migrations in a predictable manner and transparently to the application. Our migration
mechanism is non-preemptive. This enables migrations between heterogeneous cores using
fat binaries without requiring source code modification and state transformation mechanisms
which are typically not available in embedded systems. A fat binary comprises a set of
binaries, one per Instruction Set Architecture (ISA), from which the fitting binary is selected
at the migration destination, see [28]. We distinguish between intra- and inter-tile migrations:

Intra-Tile Task Migration. If a task is to be migrated between two cores on the same
tile, the migration is realized implicitly via the memories on the tile. Here, the RM simply
schedules the task for its next execution iteration (job) on the target core instead of the
source core. The latency of this process can be safely bounded by the (known) worst-case
context-switch latency LOS of the operating system.

Inter-Tile Task Migration. Migrating a task between different tiles requires an explicit
transfer of the task’s dataset between the source and destination tiles. To that end, first
the execution of the migrating task is suspended non-preemptively, i.e., after completing its
current job. At the same time, its input/output (i/o) messages are suspended by blocking the
injection of new messages into the NoC while allowing the already-injected messages to reach
their destination node. The former ensures execution consistency between the jobs executed
before the migration and the jobs executed after the migration, while the latter is crucial
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to prevent communication inconsistencies that may arise, e.g., due to out-of-order delivery
or even loss of input messages if they arrive at the old location after the migration process.
Note that system services such as message forwarding or buffer reordering for resolving these
issues are not typical for embedded systems. After the current job is completed and the i/o
messages are suspended, the relocation process between the migration source- and destination
tiles begins. In this step, the task’s context, its unprocessed input messages, and its blocked
output messages – all residing in the source tile’s memory – are relocated to the destination
tile. The task’s execution is resumed after the relocation process has completed.

4.2 Migration Timing Analysis
This section presents a migration timing analysis that enables the RM to bound the worst-case
end-to-end latency of migration processes. To that end, let T̂ ⊆ T denote the set of tasks
selected for inter-tile migration. Also, let function Mio(t) provide the set of input and output
messages of task t ∈ T . For each task t ∈ T̂ , the worst-case migration latency consists of
two components: (i) suspension latency δsusp(t) and (ii) relocation latency δreloc(t). In the
following, we present a lightweight timing analysis to bound the suspension- and relocation
latency of each migrating task, and, subsequently, the end-to-end latency of the multi-task
migration process for the two predominant cases of sequential and parallel migrations.

4.2.1 Suspension Latency
The suspension process of a migrating task t ∈ T̂ – which begins after the current job of t
has completed – involves two parallel operations: (i) storing the state of t in the tile memory
and (ii) suspending the i/o messages of t. State storage is performed by the operating system.
The latency of this process is bounded by the (known) worst-case context-switch latency LOS

of the operating system. Communication suspension is realized by blocking the injection of
new input messages and output messages of the migrating task into the NoC and allowing
the already-injected i/o messages to reach their destination. In the worst case, the suspension
process is initiated right after the i/o messages are injected into in the NoC. Since each
message m is guaranteed to be transmitted within its WCTT Lm, the worst-case latency
for suspending all i/o messages of t can be bounded by the largest WCTT among its i/o
messages. Taking into account the two parallel operations above, (i) and (ii), the worst-case
suspension latency δsusp(t) of each migrating task t ∈ T̂ can be bounded as:

δsusp(t) = max
{
LOS , max

m∈Mio(t)
{Lm}

}
(1)

4.2.2 Relocation Latency
The relocation of a migrating task t ∈ T̂ begins only after t is suspended and involves the
transfer of the migration dataset of t from the memory on the source tile to the destination tile.
The migration dataset denotes the data required for a seamless resumption of t’s execution at
the destination tile. It contains t’s context (code, state, etc.) of size Bt and its unprocessed
input- and blocked output messages m ∈Mio(t), residing in the source tile’s memory. Thus,
the size of the migration dataset for task t ∈ T̂ is bounded by Bmig(t) = Bt +

∑
m∈Mio(t) Bm,

where Bm denotes the maximum payload size of message m.
The migration dataset is transferred to the destination tile in three steps: (i) the NA on

the source tile reads the dataset from the memory, decomposes it into flits, and injects the
flits into the NoC. (ii) The flits are then transferred over the NoC to the destination tile.
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Finally, (iii) the NA on the destination tile reconstructs the dataset from the flits and stores
it in the memory. The worst-case relocation latency δreloc(t) of a task t ∈ T̂ can be bounded
using Eq. (2). Here, the first term bounds the latency of steps (i) and (iii), which we derive
using the NA latency analysis from [31]. Note that the source and destination NAs have
identical worst-case latencies, as they read/write the same amount of data Bmig(t) from/to
the memories. The second term in Eq. (2) bounds the NoC latency for transferring Bmig(t)
over the migration route ρmig(t), which we derive using the NoC latency analysis from [33].
Both NA- and NoC analyses [31, 33] are lightweight and can be used on-line.

δreloc(t) = 2× LNA

(
Bmig(t)

)
+ LNoC

(
Bmig(t), ρmig(t)

)
(2)

4.2.3 End-To-End Migration Latency
The end-to-end migration latency denotes the overall time overhead imposed on the regular
execution of the application due to the migration of one or more tasks. It reflects the interval
between the moment when the state storage of the first migrating task begins and the moment
when the relocation processes for all migrating tasks are completed. In case of a single-task
migration, the end-to-end migration latency is bounded by the sum of the suspension time
δsusp(t) and the relocation time δreloc(t) of that task t. If multiple tasks are to be migrated,
the migrations may be performed (i) in parallel or (ii) sequentially. These two approaches
enable the RM to draw a trade-off between the end-to-end migration latency and the amount
of NoC budget that must be reserved for establishing the migration routes.

Parallel Migrations. In case of parallel migrations, for each migrating task t, a suspension
latency δsusp(t) and a relocation latency δreloc(t) is imposed. Thus, the end-to-end latency of
parallel migrations can be bounded using Eq. (3). Note that parallel migrations are possible
only if sufficient budget on NoC links is available so that the RM can reserve a migration
route ρmig(t) for each migrating task t ∈ T̂ . Congestion could then particularly occur when
multiple migrating tasks have overlapping migration routes.

δparmig(T̂ ) = max
t∈T̂

{
δsusp(t) + δreloc(t)

}
(3)

Sequential Migrations. In case of a sequential relocation of tasks, the end-to-end migration
latency depends on the order in which the migrating tasks are relocated. Here, it may happen
that the suspension of those tasks that are decided to be migrated first takes longer than the
suspension of those that are decided to be migrated after the former. As a result, the latter
suffer an idle time before the relocation of the former begins. Here, the worst-case scenario
arises when (i) the task t′ ∈ T̂ chosen to be migrated first is the one with the highest WCRT,
i.e., Lt′ = maxt∈T̂ {Lt}, (ii) the suspension request is issued right after t′ starts its execution
iteration, and (iii) at least one other migrating task t̃ ∈ T̂ has finished its execution iteration
and updated its state in the memory prior to the suspension request. In this situation, t̃
undergoes the highest possible idle time before the relocation of the first migrating task t′
begins. This idle time is guaranteed not to exceed the sum of t′’s WCRT Lt′ and worst-case
suspension time δsusp(t′). Thus, the worst-case migration latency for a sequential relocation
of migrating tasks can be bounded as:

δseqmig(T̂ ) = max
t∈T̂

{
Lt + δsusp(t)

}
+
∑
t∈T̂

δreloc(t) (4)
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4.3 Migration Timing Feasibility Check
Task migration affects the temporal behavior of the application twofold: First, the regular
execution of migrating tasks and the injection of their i/o messages into the NoC are
suspended during the migration process. Second, the WCRT of each migrating task and
the WCTT of its i/o messages may change after the migration; The WCRT of a task may
change, e.g, if its pre- and post-migration cores are heterogeneous. The WCTT of a message
may change, e.g., if its pre- and post-migration NoC routes have different lengths.

We present a lightweight migration timing feasibility check to enable the RM to examine
whether performing a given set of migrations can lead to the violation of the application’s
deadline, taking into account the worst-case migration latency as calculated in Section 4.2
and the changing timing behavior of the application during and after the migrations. The
migration timing feasibility check must verify that the application deadline will be respected
by the end-to-end latency of each application input which either (i) arrives before the
migrations and is processed by some migrating tasks before their migration and by some
others after their migration or (ii) arrives during/after the migrations and is, therefore,
processed by the migrating tasks after their migration. We examine the satisfaction of the
given application deadline for both of these cases simultaneously by calculating a safe upper
bound on the end-to-end latency of any application input as follows:
i For each migrating task t ∈ T̂ , the post-migration WCRT L′

t is calculated using the
response time analysis from [31]. For all other tasks t ∈ T \T̂ , we consider L′

t = Lt.
ii For each message m∈M to/from the migrating tasks, the post-migration WCTT L′

m is
calculated using the traversal time analysis from [31]. For other messages, L′

m = Lm.
iii For each application task/message x ∈ T ∪M , a safe bound on x’s pre- and post-migration

latency is derived as L̂x =max{Lx, L
′
x}, referred to as the compound latency of x.

iv The latency of the longest path in the application DAG is derived using the DFS
algorithm [13] where the compound latency of each task/message is used as its weight.
The result is referred to as the compound application latency and denoted by L̂app.

The compound application latency L̂app provides a safe bound on the end-to-end latency
of any application input whose processing may be affected by the migrations in question.
Therefore, the RM can check the real-time conformity of the migrations by verifying that
L̂app + δmig(T̂ ) does not exceed the given application deadline. Here, L̂app bounds the end-
to-end latency of the application and δmig(T̂ ) (derived in Section 4.2) bounds the end-to-end
latency of the migrations.

4.4 Example
Consider the exemplary application depicted in Fig. 2a which is mapped on four tiles of a
many-core architecture as shown in Fig. 2b. The application tasks t0–t6 communicate with
each other via messages m0–m7. For brevity, the NoC routes of messages and the internal
layout of tiles (including the binding of tasks to cores, the memories, and the NAs) are not
depicted in Fig. 2b. The WCRT Lt of each task t and the WCTT Lm of each message m are
also given in Fig. 2a. Assume a scenario where the RM has selected tasks t1–t3 for migration
to the destinations indicated by red arrows in Fig. 2b. Task t1 is selected for intra-tile
migration, whereas tasks t2 and t3 are selected for inter-tile migration, thus, T̂ = {t2, t3}.

To check whether the migration of t2 and t3 can lead to the violation of the application’s
deadline, the RM first calculates the end-to-end latency of the migrations. Assuming a
context-switch latency of LOS = 1, Eq. (1) bounds the suspension latency of the migrat-
ing tasks as δsusp(t2) = max{1,max{2, 3}} = 3 and δsusp(t3) = max{1,max{1, 3, 0, 3}} = 3.



B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich 5:9

t0

m0

m1

t1

t2

m2

m3

t3

m4

m5

t4

t5

m6

m7

t6

L=7

L=0

L=2
L′ =1

L=9

L=10
L′ =7

L=1
L′ =3

L=3
L′ =2

L=7
L′ =9

L=0
L′ =2

L=3
L′ =3

L=11 L=2

L=8 L=2

L=6

(a) example application.

t0
t1 t4

t3

t6

t2t5

(b) on-chip deployment (mapping).

Figure 2 (a) Example application annotated with pre-/post-migration latencies of tasks and
messages and (b) its pre-migration mapping on the chip, used in the illustrative example in Section 4.4.

Then, assuming relocation latencies of δreloc(t2) = 4 and δreloc(t3) = 6, the end-to-end migra-
tion latency of t2 and t3 is guaranteed not to exceed δparmig(T̂ ) = max {(3 + 4), (3 + 6)} = 9
in case of parallel migrations, or δseqmig(T̂ ) = max {(10 + 3), (7 + 3)}+ (4 + 6) = 23 in case of
sequential migrations, derived using Eq. (3) and Eq. (4), respectively.

For migration timing feasibility check, assume that the RM has derived – using the
analysis from [31] – the post-migration WCRT L′

t of each migrating task t ∈ T̂ and the
post-migration WCTT L′

m of t’s i/o messages m ∈Mio(t) as given in Fig. 2a. Based on
these, the compound application latency is bounded to L̂app = 53, following steps (i)–(iv)
in Section 4.3. Recall that L̂app = 53 bounds the end-to-end latency of application inputs that
are affected by the migration process. In our example, this is the latency for an input that
passes through t0, m1, t2, and m3 before the migrations, is blocked at the input buffer of t3
prior to the migration process, is relocated with t3 during the migrations, and passes through
t3, m5, t5, m7, and t6 after the migrations. Based on the latency bounds above, the RM
performs the migrations only if the application deadline is at least δparmig(T̂ )+L̂app=9+53=62
in case of parallel migrations, or δseqmig(T̂ )+L̂app=23+53=76 in case of sequential migrations.

4.5 Run-Time Overhead and Complexity

Any analysis targeted for on-line use must be lightweight so as to introduce an acceptable
overhead for the RM. In the following, we elaborate on the computational complexity of
the proposed migration timing analysis and feasibility check. Note that the WCRT and
WCTT analyses adopted from [31], and the NA- and NoC latency analyses adopted from [31]
and [33], respectively, are constant-time non-iterative operations with a complexity of O(1).

The migration timing analysis presented in Section 4.2 embodies a 2-level nested loop
where the outer loop iterates through migrating tasks and the inner loop iterates through
their i/o messages. Since each message is unicast (has one producer and one consumer,
see Section 3.2), the inner loop can have a maximum total of 2 |M | iterations, resulting in a
linear time complexity of O(|T |+ 2 |M |) = O(|T |+ |M |) for the migration timing analysis.

For the migration timing feasibility check, the main compute overhead stems from the
calculation of the compound application latency in steps (i)–(iv) in Section 4.3. Here,
steps (i)–(iii) are implemented by simple loops with a computational complexity of O(|T |),
O(|M |), and O(|T |+ |M |), respectively. Having the application DAG provided as adjacency
lists, the DFS algorithm in step (iv) will have a complexity of O(|T |+ |M |). Therefore, the
migration timing feasibility check presented in Section 4.3 has a linear time complexity of
O(|T |+ |M |). When examining the real-time conformity of a (possibly multi-task) migration,
the RM applies the migration timing analysis and the feasibility check in succession. This
introduces a compute overhead of linear time complexity O(|T |+ |M |) for the RM, rendering
the proposed migration timing analysis and feasibility check scalable for on-line use.
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5 Experimental Results

For our experiments, we consider two heterogeneous tiled many-core architectures with 6×6
and 8×8 tiles, respectively. Each tile is composed of four homogeneous cores while each
platform comprises tiles of three different core types. Every shared resource (core, bus, NA,
and NoC link) has a WRR arbitration policy. For the NoC, the XY-routing algorithm [29] is
used. We consider four hard real-time applications from areas of automotive (18 tasks, 21
messages), telecommunication (14 tasks, 20 messages), consumer (11 tasks, 12 messages), and
networking (7 tasks, 9 messages) provided by the Embedded System Synthesis Benchmarks
Suite (E3S) [10]. To obtain a set of mappings for each application per architecture, we use
the OpenDSE framework [34] to perform a Design Space Exploration (DSE), employing the
NSGA-II evolutionary algorithm [9] provided by the Opt4J optimization framework [25].
The DSE is performed over 1, 000 generations and retains a population of 100 mappings. It
optimizes the mappings w.r.t. five design objectives to be minimized: (i) distance to the hard
real-time application deadline (set to 80% of the aggregate interarriavl time of tasks and
messages on the longest path) evaluated using the analysis from [31], (ii) energy consumption
evaluated based on [10] for cores and [42] for buses/NoC links with wire lengths of 5mm
and 2mm, respectively, and (iii)–(v) number of allocated cores from each of the three core
types. The DSE provides a set of Pareto-optimal mappings Vi per application i.

In our experiments, we investigate the feasibility and the effectiveness of the proposed
real-time task migration approach in a case study on adaptive thermal management of
many-core systems. Consider the scenario in which a real-time application i is launched
using one of its precomputed mappings v ∈ Vi. During the execution of the application,
the RM identifies the emergence of a thermal hot spot around one of the cores in use by
the application which, consequently, necessitates the evacuation of the thermally affected
core while guaranteeing that the evacuation process will not lead to the violation of the
application’s deadline. For the evacuation, we consider two adaptation approaches:

(i) Mapping Reconfiguration. In this approach, the RM reconfigures the application to
another one of its precomputed mappings which does not depend on the thermally affected
core. To that end, the RM iterates through the mappings v′∈Vi\{v} and checks per mapping
(i) the availability of its required cores and NoC routes, (ii) the availability of migration
routes for the relocation of (potentially all) tasks, and (iii) the real-time conformity of the
reconfiguration process. We implement this approach using the mapping reconfiguration
mechanism and timing analysis from [33] which are developed based on a sequential migration
of tasks. This approach represents the state of the art in hard real-time application adaptation.
Here, the evacuation of the thermally affected core is considered successful iff a mapping is
found which passes both the resource checks, (i) and (ii), and the timing check, (iii).

(ii) Task Migration. In this approach, the RM migrates only those tasks that are running
on the thermally affected core. We implement this approach using the proposed migration
mechanism, supported by our migration timing analysis and timing feasibility check for the
worst-case timing verification of the migrations. For the sake of comparability with mapping
reconfiguration, the migrations are performed sequentially. For a migration-based evacuation,
the RM iterates through the platform tiles (excluding the heated tile) and checks for each
candidate tile, (i) the availability of a free core, (ii) the availability of NoC routes for i/o
messages of the migrating tasks after the migration, and (iii) the availability of a NoC route
for the relocation of migrating tasks. If the availability of all required resources is verified,
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Figure 3 Success rate of task migration and mapping reconfiguration at different background
utilization levels. The plots in each column (or row) correspond to one application (or architecture).

the RM performs (iv) the migration timing analysis and feasibility check. If the required
resources are not available or the timing check is not passed, the RM continues its search
through the remaining tiles. The evacuation is considered successful iff a destination tile is
found with passes both the resource checks, (i)–(iii), and the timing check, (iv).

We perform the evacuation experiment for each mapping v ∈ Vi of each application i as
follows: First, application i is launched on an empty platform using mapping v. Then, we
introduce additional (background) load into the system by iteratively occupying free resources
(cores and NoC links) at random, thereby, generating different background utilization levels.
At each utilization level, we then iterate through the cores in use by the application and,
in each iteration, mark one core as an emerging hot spot so that its evacuation becomes
necessary in near future. Then, for each investigated approach, i.e., mapping reconfiguration
and task migration, we check whether the affected core can be evacuated successfully.

Evacuation Success. For each background utilization level, we record the evacuation
success of each approach. Figure 3 illustrates the success rate of the two approaches versus
background utilization level per application (plot column) on each architecture (plot row).
The reported results are an average over five runs of DSE per application and architecture
and 20 repetitions of the run-time thermal management experiment per DSE to incorporate
diverse mixes of preoccupied resources for each background utilization level. The obtained
results offer two major insights: First, the high success rate of task migration demonstrates the
practicality of task migration also in a hard real-time context. Second, compared to mapping
reconfiguration, task migration offers a substantially higher success rate, demonstrating its
advantage over mapping reconfiguration as a real-time deployment adaptation approach.
Among all applications and architectures, task migration exhibits an up to 95% higher success
rate (35% on average), compared to mapping reconfiguration. This success difference roots
in three advantages of task migration over mapping reconfiguration: Since it often involves
the relocation of only a subset of the application’s tasks, task migration (i) requires a smaller
set of resources which increases its chances of passing the resource checks, (ii) imposes a
lower timing overhead which increases its chances of passing the timing check, and, thanks
to its lightweight timing analysis and feasibility check, (iii) enables the RM to consider all
possible adaptation options instead of a restricted set of statically computed options.
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Run-Time Overhead. During the RM’s search for a destination tile, the application contin-
ues its regular execution. Thus, the overhead of the search process is not critical w.r.t. the
real-time constraints. However, to fit for on-line use, this overhead – which is mainly due to
the resource- and timing checks – must be acceptable. In Section 4.5, we demonstrated the
scalability of the proposed analyses which were shown to exhibit a linear time complexity
of O(|T | + |M |). To assess their overhead in absolute time, in the thermal management
experiment, we also record the time spent during the RM’s search process before the first
destination is found which passes both the resource- and the timing checks – performed on an
Intel i7-4770 CPU at 3.4GHz with 32GiB of RAM. The records denote an average overhead
of 1.08ms (standard deviation of 0.16ms) for the resource checks and 0.57ms (standard
deviation of 0.06ms) for the timing check. According to the results, the overhead of the
proposed migration timing analysis and feasibility check is by an average of 47% lower than
that of the resource check which verifies their lightness of for on-line use.

6 Conclusion

In this paper, we proposed a predictable migration mechanism supported with a migration
timing analysis and feasibility check to enable hard real-time task migrations in composable
many-core systems. The proposed migration mechanism complies with the distributed
memory scheme of many-core systems, and its supporting analysis is lightweight and, therefore,
applicable for on-line use. Experimental results demonstrate the feasibility of hard real-
time task migrations, the lightness of the proposed timing analysis and feasibility check for
on-line use, and the advantage of the proposed task migration mechanism over mapping
reconfiguration as the state-of-the-art hard real-time adaptation approach.
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