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Preface

Andrej Bauer1, Peter Hertling2, and Ker-I Ko3

1 Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
2 Fakultät für Informatik, Universität der Bundeswehr München, Germany

3 Department of Computer Science, State University of New York at Stony Brook,
USA

The Sixth International Conference on Computability and Complexity in
Analysis, CCA 2009, took place on August 18 to 22, 2009, in Ljubljana, Slovenia.
It was the 15th event in a series of workshops, seminars and conferences on CCA.
For more information about CCA see http://cca-net.de.

The conference is concerned with Computable Analysis, the theory of com-
putability and complexity over real-valued data. Computability theory studies
the limitations and abilities of computers in principle. Computational complexity
theory provides a framework for understanding the cost of solving computational
problems, as measured by the requirement for resources such as time and space.
In particular, Computable Analysis supplies an algorithmic foundation for nu-
merical computation.

Scientists working in the area of computability and complexity over the real
numbers and over more general continuous data structures come from different
fields, such as theoretical computer science, domain theory, logic, constructive
mathematics, computer arithmetic, numerical mathematics and all branches of
analysis.

The conference program consisted of 4 invited talks, 2 tutorials of three talks
each, and 24 contributed talks. These proceedings contain the abstracts or ex-
tended abstracts of the invited talks, tutorials, and a selection of 22 contributed
articles. We thank all authors for their contributions, the program committee
members and the additional referees for their careful refereeing work, and the
organizing committee members for their work as well.

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 1 
http://drops.dagstuhl.de/opus/volltexte/2009/2249



Computability and Complexity of Julia Sets
(Invited Talk)

Mark Braverman

Microsoft Research New England, Cambridge, MA, USA

Studying dynamical systems is key to understanding a wide range of phenom-
ena ranging from planetary movement to climate patterns to market dynamics.
Various numerical tools have been developed to address specific questions about
dynamical systems, such as predicting the weather or planning the trajectory of
a satellite. However, the theory of computation behind these problems appears
to be very difficult to develop. In fact, little is known about computability of
even the most natural problems arising from dynamical systems.

In this talk I will survey the recent study of the computational properties
of dynamical systems that arise from iterating quadratic polynomials on the
complex plane. These give rise to the amazing variety of fractals known as Julia
sets, and are closely connected to the Mandelbrot set. Julia sets are perhaps the
most drawn objects in Mathematics due to their fascinating fractal structure.
The theory behind them is even more fascinating, and the dynamical systems
generating them are in many ways archetypal. I will present both positive and
negative results on the computability and complexity of Julia sets.

In conclusion of the talk I will discuss possible future directions and challenges
in the study of the computability and complexity of dynamical systems.

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 3 
http://drops.dagstuhl.de/opus/volltexte/2009/2250



From Interval Computations to
Constraint-Related Set Computations:

Towards Faster Estimation of Statistics and
ODEs under Interval and p-Box Uncertainty

(Invited Talk)

Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso, El Paso, TX 79968, USA

vladik@utep.edu

Abstract. Interval computations estimate the uncertainty of the result
of data processing in situations in which we only know the upper bounds
∆ on the measurement errors. In this case, based on the measurement
result x̃, we can only conclude that the actual (unknown) value x of the
desired quantity is in the interval [x̃−∆, x̃+∆].

In interval computations, at each intermediate stage of the computation,
we have intervals of possible values of the corresponding quantities. As a
result, we often have bounds with excess width. To remedy this problem,
in our previous papers, we proposed an extension of interval technique
to set computations, where on each stage, in addition to intervals of
possible values of the quantities, we also keep sets of possible values
of pairs (triples, etc.). In this paper, we show that in several practical
problems, such as estimating statistics (variance, correlation, etc.) and
solutions to ordinary differential equations (ODEs) with given accuracy,
this new formalism enables us to find estimates in feasible (polynomial)
time.

1 Formulation of the Problem

Need for data processing. In many real-life situations, we are interested in the
value of a physical quantity y that is difficult or impossible to measure directly.
Examples of such quantities are the distance to a star and the amount of oil in
a given well. Since we cannot measure y directly, a natural idea is to measure
y indirectly. Specifically, we find some easier-to-measure quantities x1, . . . , xn
which are related to y by a known relation y = f(x1, . . . , xn); this relation may
be a simple functional transformation, or complex algorithm (e.g., for the amount
of oil, numerical solution to a partial differential equation). Then, to estimate
y, we first measure or estimate the values of the quantities x1, . . . , xn, and then
we use the results x̃1, . . . , x̃n of these measurements (estimations) to compute
an estimate ỹ for y as ỹ = f(x̃1, . . . , x̃n)

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 5-16 
http://drops.dagstuhl.de/opus/volltexte/2009/2251



6 Vladik Kreinovich

-

· · ·

-

-

x̃n

x̃2

x̃1

-ỹ = f(x̃1, . . . , x̃n)f

Computing an estimate for y based on the results of direct measurements is
called data processing; data processing is the main reason why computers were
invented in the first place, and data processing is still one of the main uses of
computers as number crunching devices.

Measurement uncertainty: from probabilities to intervals. Measurement are never
100% accurate, so in reality, the actual value xi of i-th measured quantity can
differ from the measurement result x̃i. Because of these measurement errors

∆xi
def
= x̃i − xi, the result ỹ = f(x̃1, . . . , x̃n) of data processing is, in general,

different from the actual value y = f(x1, . . . , xn) of the desired quantity y.

It is desirable to describe the error ∆y
def
= ỹ − y of the result of data pro-

cessing. To do that, we must have some information about the errors of direct
measurements.

What do we know about the errors ∆xi of direct measurements? First, the
manufacturer of the measuring instrument must supply us with an upper bound
∆i on the measurement error. If no such upper bound is supplied, this means
that no accuracy is guaranteed, and the corresponding “measuring instrument”
is practically useless. In this case, once we performed a measurement and got
a measurement result x̃i, we know that the actual (unknown) value xi of the
measured quantity belongs to the interval xi = [xi, xi], where xi = x̃i −∆i and
xi = x̃i +∆i.

In many practical situations, we not only know the interval [−∆i, ∆i] of pos-
sible values of the measurement error; we also know the probability of different
values ∆xi within this interval. This knowledge underlies the traditional engi-
neering approach to estimating the error of indirect measurement, in which we
assume that we know the probability distributions for measurement errors ∆xi.

In practice, we can determine the desired probabilities of different values
of ∆xi by comparing the results of measuring with this instrument with the
results of measuring the same quantity by a standard (much more accurate)
measuring instrument. Since the standard measuring instrument is much more
accurate than the one use, the difference between these two measurement results
is practically equal to the measurement error; thus, the empirical distribution of
this difference is close to the desired probability distribution for measurement
error. There are two cases, however, when this determination is not done:

– First is the case of cutting-edge measurements, e.g., measurements in fun-
damental science. When we use the largest particle accelerator to measure



From Interval Computations to Set Computations 7

the properties of elementary particles, there is no “standard” (much more
accurate) located nearby that we can use for calibration: our accelerator is
the best we have.

– The second case is the case of measurements in manufacturing. In principle,
every sensor can be thoroughly calibrated, but sensor calibration is so costly
– usually costing ten times more than the sensor itself – that manufacturers
rarely do it.

In both cases, we have no information about the probabilities of ∆xi; the only
information we have is the upper bound on the measurement error.

In this case, after we performed a measurement and got a measurement
result x̃i, the only information that we have about the actual value xi of the
measured quantity is that it belongs to the interval xi = [x̃i −∆i, x̃i + ∆i]. In
such situations, the only information that we have about the (unknown) actual
value of y = f(x1, . . . , xn) is that y belongs to the range y = [y, y] of the function
f over the box x1 × . . .× xn:

y = [y, y] = f(x1, . . . ,xn)
def
= {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

The process of computing this interval range based on the input intervals xi

is called interval computations; see, e.g., [4].

Outline. We start by recalling the basic techniques of interval computations and
their drawbacks, then we will describe the new set computation techniques and
describe a class of problems for which these techniques are efficient. Finally, we
talk about how we can extend these techniques to other types of uncertainty
(e.g., classes of probability distributions).

2 Interval Computations: Brief Reminder

Interval computations: main idea. Historically the first method for computing
the enclosure for the range is the method which is sometimes called “straight-
forward” interval computations. This method is based on the fact that inside
the computer, every algorithm consists of elementary operations (arithmetic op-
erations, min, max, etc.). For each elementary operation f(a, b), if we know the
intervals a and b for a and b, we can compute the exact range f(a,b). The
corresponding formulas form the so-called interval arithmetic:

[a, a] + [b, b] = [a+ b, a+ b]; [a, a]− [b, b] = [a− b, a− b];

[a, a] · [b, b] = [min(a · b, a · b, a · b, a · b),max(a · b, a · b, a · b, a · b)];

1/[a, a] = [1/a, 1/a] if 0 6∈ [a, a]; [a, a]/[b, b] = [a, a] · (1/[b, b]).

In straightforward interval computations, we repeat the computations forming
the program f step-by-step, replacing each operation with real numbers by the
corresponding operation of interval arithmetic. It is known that, as a result, we
get an enclosure Y ⊇ y for the desired range.
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From main idea to actual computer implementation. Not every real number can
be exactly implemented in a computer; thus, e.g., after implementing an oper-
ation of interval arithmetic, we must enclose the result [r−, r+] in a computer-
representable interval: namely, we must round-off r− to a smaller computer-
representable value r, and round-off r+ to a larger computer-representable value r.

Sometimes, we get excess width. In some cases, the resulting enclosure is exact;
in other cases, the enclosure has excess width. The excess width is inevitable
since straightforward interval computations increase the computation time by
at most a factor of 4, while computing the exact range is, in general, NP-hard

(see, e.g., [5]), even for computing the population variance V =
1

n
·

n∑
i=1

(xi−x)2,

where x =
1

n
·

n∑
i=1

xi (see [3]).

If we get excess width, then we can use more sophisticated techniques to get
a better estimate, such as centered form, monotonicity, bisection, etc. (see, e.g.,
[4]). These methods usually decrease the excess width, but do not completely
eliminate it.

Reason for excess width. The main reason for excess width is that intermediate
results are dependent on each other, and straightforward interval computations
ignore this dependence. For example, the actual range of f(x1) = x1 − x21 over
x1 = [0, 1] is y = [0, 0.25]. Computing this f means that we first compute
x2 := x21 and then subtract x2 from x1. According to straightforward interval
computations, we compute r = [0, 1]2 = [0, 1] and then x1−x2 = [0, 1]− [0, 1] =
[−1, 1]. This excess width comes from the fact that the formula for interval
subtraction implicitly assumes that both a and b can take arbitrary values within
the corresponding intervals a and b, while in this case, the values of x1 and x2
are clearly not independent: x2 is uniquely determined by x1, as x2 = x21.

3 Constraint-Based Set Computations

Main idea. The main idea behind constraint-based set computations (see, e.g.,
[1]) is to remedy the above reason why interval computations lead to excess
width. Specifically, at every stage of the computations, in addition to keeping
the intervals xi of possible values of all intermediate quantities xi, we also keep
several sets:

– sets xij of possible values of pairs (xi, xj);
– if needed, sets xijk of possible values of triples (xi, xj , xk); etc.

In the above example, instead of just keeping two intervals x1 = x2 = [0, 1], we
would then also generate and keep the set x12 = {(x1, x21) |x1 ∈ [0, 1]}. Then,
the desired range is computed as the range of x1 − x2 over this set – which is
exactly [0, 0.25].
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To the best of our knowledge, in interval computations context, the idea of
representing dependence in terms of sets of possible values of tuples was first
described by Shary; see, e.g., [6] and references therein.

How can we propagate this set uncertainty via arithmetic operations? Let us
describe this on the example of addition, when, in the computation of f , we use
two previously computed values xi and xj to compute a new value xk := xi +xj .
In this case, we set xik = {(xi, xi + xj) | (xi, xj) ∈ xij},

xjk = {(xj , xi + xj) | (xi, xj) ∈ xij},

and for every l 6= i, j, we take

xkl = {(xi + xj , xl) | (xi, xj) ∈ xij , (xi, xl) ∈ xil, (xj , xl) ∈ xjl}.

From main idea to actual computer implementation. In interval computations,
we cannot represent an arbitrary interval inside the computer, we need an en-
closure. Similarly, we cannot represent an arbitrary set inside a computer, we
need an enclosure.

To describe such enclosures, we fix the number C of granules (e.g., C = 10).
We divide each interval xi into C equal parts Xi; thus each box xi×xj is divided
into C2 subboxes Xi×Xj . We then describe each set xij by listing all subboxes
Xi ×Xj which have common elements with xij ; the union of such subboxes is
an enclosure for the desired set xij .

This implementation enables us to implement all above arithmetic opera-
tions. For example, to implement xik = {(xi, xi + xj) | (xi, xj) ∈ xij}, we take
all the subboxes Xi ×Xj that form the set xij ; for each of these subboxes, we
enclosure the corresponding set of pairs {(xi, xi + xj) | (xi, xj) ∈ Xi ×Xj} into
a set Xi × (Xi + Xj). This set may have non-empty intersection with several
subboxes Xi ×Xk; all these subboxes are added to the computed enclosure for
xik. Once can easily see if we start with the exact range xij , then the resulting
enclosure for xik is an (1/C)-approximation to the actual set – and so when C
increases, we get more and more accurate representations of the desired set.

Similarly, to find an enclosure for

xkl = {(xi + xj , xl) | (xi, xj) ∈ xij , (xi, xl) ∈ xil, (xj , xl) ∈ xjl},

we consider all the triples of subintervals (Xi,Xj ,Xl) for which Xi ×Xj ⊆ xij ,
Xi × Xl ⊆ xil, and Xj × Xl ⊆ xjl; for each such triple, we compute the box
(Xi + Xj)×Xl; then, we add subboxes Xk ×Xl which intersect with this box
to the enclosure for xkl.

First example: computing the range of x−x. For f(x) = x−x on [0, 1], the actual
range is [0, 0], but straightforward interval computations lead to an enclosure
[0, 1]− [0, 1] = [−1, 1]. In straightforward interval computations, we have r1 = x
with the exact interval range r1 = [0, 1], and we have r2 = x with the exact
interval range x2 = [0, 1]. The variables r1 and r2 are dependent, but we ignore
this dependence.

In the new approach: we have r1 = r2 = [0, 1], and we also have r12:
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×

×

×

×

×

r1

r2

For each small box, we have [−0.2, 0.2], so the union is [−0.2, 0.2].

If we divide into more pieces, we get an interval closer to 0.

Second example: computing the range of x − x2. In straightforward interval
computations, we have r1 = x with the exact interval range interval r1 = [0, 1],
and we have r2 = x2 with the exact interval range x2 = [0, 1]. The variables
r1 and r2 are dependent, but we ignore this dependence and estimate r3 as
[0, 1]− [0, 1] = [−1, 1].

In the new approach: we have r1 = r2 = [0, 1], and we also have r12. First,
we divide the range [0, 1] into 5 equal subintervals R1. The union of the ranges
R2

1 corresponding to these 5 subintervals R1 is [0, 1], so r2 = [0, 1]. We divide
this interval r2 into 5 equal sub-intervals [0, 0.2], [0.2, 0.4], etc. We now compute
the set r12 as follows:

– for R1 = [0, 0.2], we have R2
1 = [0, 0.04], so only sub-interval [0, 0.2] of the

interval r2 is affected;

– for R1 = [0.2, 0.4], we have R2
1 = [0.04, 0.16], so also only sub-interval [0, 0.2]

is affected;

– for R1 = [0.4, 0.6], we have R2
1 = [0.16, 0.36], so two sub-intervals [0, 0.2]

and [0.2, 0.4] are affected, etc.

× × ×

× ×

×

× ×

×

r1

r2

For each possible pair of small boxes R1×R2, we have R1−R2 = [−0.2, 0.2],
[0, 0.4], or [0.2, 0.6], so the union of R1 −R2 is r3 = [−0.2, 0.6].

If we divide into more and more pieces, we get the enclosure which is closer
and closer to the exact range [0, 0.25].
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How to compute rik. The above example is a good case to illustrate how we
compute the range r13 for r3 = r1 − r2. Indeed, since r3 = [−0.2, 0.6], we divide
this range into 5 subintervals [−0.2,−0.04], [−0.04, 0.12], [0.12, 0.28], [0.28, 0.44],
[0.44, 0.6].

– For R1 = [0, 0.2], the only possible R2 is [0, 0.2], so R1 −R2 = [−0.2, 0.2].
This covers [−0.2,−0.04], [−0.04, 0.12], and [0.12, 0.28].

– For R1 = [0.2, 0.4], the only possible R2 is [0, 0.2], so R1 − R2 = [0, 0.4].
This interval covers [−0.04, 0.12], [0.12, 0.28], and [0.28, 0.44].

– For R1 = [0.4, 0.6], we have two possible R2:

• for R2 = [0, 0.2], we have R1 − R2 = [0.2, 0.6]; this covers [0.12, 0.28],
[0.28, 0.44], and [0.44, 0.6];

• for R2 = [0.2, 0.4], we have R1 −R2 = [0, 0.4]; this covers [−0.04, 0.12],
[0.12, 0.28], and [0.28, 0.44].

– For R1 = [0.6, 0.8], we have R2
1 = [0.36, 0.64], so three possible R2: [0.2, 0.4],

[0.4, 0.6], and [0.6, 0.8], to the total of [0.2, 0.8]. Here, [0.6, 0.8]− [0.2, 0.8] =
[−0.2, 0.6], so all 5 subintervals are affected.

– Finally, for R1 = [0.8, 1.0], we have R2
1 = [0.64, 1.0], so two possible R2:

[0.6, 0.8] and [0.8, 1.0], to the total of [0.6, 1.0]. Here, [0.8, 1.0] − [0.6, 1.0] =
[−0.2, 0.4], so the first 4 subintervals are affected.

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

r1

r3

Limitations of this approach. The main limitation of this approach is that when
we need an accuracy ε, we must use ∼ 1/ε granules; so, if we want to compute the
result with k digits of accuracy, i.e., with accuracy ε = 10−k, we must consider
exponentially many boxes (∼ 10k). In plain words, this method is only applicable
when we want to know the desired quantity with a given accuracy (e.g., 10%).

Cases when this approach is applicable. In practice, there are many problems
when it is sufficient to compute a quantity with a given accuracy: e.g., when
we detect an outlier, we usually do not need to know the variance with a high
accuracy, an accuracy of 10% is more than enough.

Let us describe the case when interval computations do not lead to the exact
range, but set computations do – of course, the range is “exact” modulo accuracy
of the actual computer implementations of these sets.
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Example: estimating variance under interval uncertainty. Suppose that we know
the intervals x1, . . . ,xn of possible values of x1, . . . , xn, and we need to compute

the range of the variance V =
1

n
·M− 1

n2
·E2, where M

def
=

n∑
i=1

x2i and E
def
=

n∑
i=1

xi.

This problem is important, e.g., in detecting outliers. Outliers are useful in
many application areas. For example, in medicine, to detect possible illnesses,
we analyze the healthy population, compute the averages E[x] and the standard
deviations σ[x] of different characteristics x, and if for some person, the value of
a blood pressure, weight, body temperature, etc., is outside the corresponding 2-
or 3-sigma interval [E[x]− k0 · σ[x], E[x] + k0 · σ[x]], then we perform additional
tests to see if there is any hidden problem with this person’s health. Similarly,
in geophysics, when we look for rare minerals, we know the typical values for a
given area, and if at some location, the values of the geophysical characteristics
are outliers (i.e., they are outside the corresponding interval), then these area
are probably the most promising.

Traditional algorithms for detecting outliers assume that we know the exact
values xi of the corresponding characteristics but in practice, these values often
come from estimates or crude measurements. For example, most routine blood
pressure measurements performed at health fairs, in drugstores, at the dentist
office, etc., are very approximate, with accuracy 10 or more; their objective is
not to find the exact values of the corresponding characteristics but to make sure
that we do not miss a dangerous anomaly. When we estimate the mean and the
standard deviations based on these approximate measurements, we need to take
into account that these values are very approximate, i.e., that, in effect, instead
of the exact value xi (such as 110), we only know that the actual (unknown)
value of the blood pressure is somewhere within the interval [x̃i−∆i, x̃i +∆i] =
[110− 10, 110 + 10] = [100, 120].

In all these situations, we need to compute the range on the variance V under
the interval uncertainty on xi.

A natural way to to compute V is to compute the intermediate sums Mk
def
=

k∑
i=1

x2i and Ek
def
=

k∑
i=1

xi. We start with M0 = E0 = 0; once we know the pair

(Mk, Ek), we compute (Mk+1, Ek+1) = (Mk +x2k+1, Ek +xk+1). Since the values
of Mk and Ek only depend on x1, . . . , xk and do not depend on xk+1, we can
conclude that if (Mk, Ek) is a possible value of the pair and xk+1 is a possi-
ble value of this variable, then (Mk + x2k+1, Ek + xk+1) is a possible value of
(Mk+1, Ek+1). So, the set p0 of possible values of (M0, E0) is the single point
(0, 0); once we know the set pk of possible values of (Mk, Ek), we can compute
pk+1 as

{(Mk + x2, Ek + x) | (Mk, Ek) ∈ pk, x ∈ xk+1}.

For k = n, we will get the set pn of possible values of (M,E); based on this set,

we can then find the exact range of the variance V =
1

n
·M − 1

n2
· E2.
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What C should we choose to get the results with an accuracy ε ·V ? On each
step, we add the uncertainty of 1/C; to, after n steps, we add the inaccuracy of
n/C. Thus, to get the accuracy n/C ≈ ε, we must choose C = n/ε.

What is the running time of the resulting algorithm? We have n steps; on
each step, we need to analyze C3 combinations of subintervals for Ek, Mk, and
xk+1. Thus, overall, we need n · C3 steps, i.e., n4/ε3 steps. For fixed accuracy
C ∼ n, so we need O(n4) steps – a polynomial time, and for ε = 1/10, the
coefficient at n4 is still 103 – quite feasible.

For example, for n = 10 values and for the desired accuracy ε = 0.1, we need
103 · n4 ≈ 107 computational steps – “nothing” for a Gigaherz (109 operations
per second) processor on a usual PC. For n = 100 values and the same desired
accuracy, we need 104 · n4 ≈ 1012 computational steps, i.e., 103 seconds (15
minutes) on a Gigaherz processor. For n = 1000, we need 1015 steps, i.e., 106

computational steps – 12 days on a single processor or a few hours on a multi-
processor machine.

In comparison, the exponential time 2n needed in the worst case for the exact
computation of the variance under interval uncertainty, is doable (210 ≈ 103 step)
for n = 10, but becomes unrealistically astronomical (2100 ≈ 1030 steps) already
for n = 100.
Comment. When the accuracy increases ε = 10−k, we get an exponential increase
in running time – but this is OK since, as we have mentioned, the problem of
computing variance under interval uncertainty is, in general, NP-hard.

Other statistical characteristics. Similar algorithms can be presented for comput-
ing many other statistical characteristics. For example, for every integer d > 2,

the corresponding higher-order central moment Cd =
1

n
·

n∑
i=1

(xi− x)d is a linear

combination of d moments M (j) def
=

n∑
i=1

xji for j = 1, . . . , d; thus, to find the exact

range for Cd, we can keep, for each k, the set of possible values of d-dimensional

tuples (M
(1)
k , . . . ,M

(d)
k ), where M

(j)
k

def
=

k∑
i=1

xji . For these computations, we need

n · Cd+1 ∼ nd+2 steps – still a polynomial time.

Another example is covariance Cov =
1

n
·

n∑
i=1

xi · yi −
1

n2
·

n∑
i=1

xi ·
n∑

i=1

yi.

To compute covariance, we need to keep the values of the triples (Covk, Xk, Yk),

where Covk
def
=

k∑
i=1

xi ·yi, Xk
def
=

k∑
i=1

xi, and Yk
def
=

k∑
i=1

yi. At each step, to compute

the range of

(Covk+1, Xk+1, Yk+1) = (Covk + xk+1 · yk+1, Xk + xk+1, Yk + yk+1),

we must consider all possible combinations of subintervals for Covk, Xk, Yk,
xk+1, and yk+1 – to the total of C5. Thus, we can compute covariance in time
n · C5 ∼ n6.
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Similarly, to compute correlation ρ = Cov/
√
Vx · Vy, we can update, for each

k, the values of (Ck, Xk, Yk, X
(2)
k , Y

(2)
k ), where X

(2)
k =

k∑
i=1

x2i and Y
(2)
k =

k∑
i=1

y2i

are needed to compute the variances Vx and Vy. These computations require
time n · C7 ∼ n8.

Systems of ordinary differential equations (ODEs) under interval uncertainty. A
general system of ODEs has the form ẋi = fi(x1, . . . , xm, t), 1 ≤ i ≤ m. Interval
uncertainty usually means that the exact functions fi are unknown, we only
know the expressions of fi in terms of parameters, and we have interval bounds
on these parameters.

There are two types of interval uncertainty: we may have global parameters
whose values are the same for all moments t, and we may have noise-like pa-
rameters whose values may different at different moments of time – but always
within given intervals. In general, we have a system of the type

ẋi = fi(x1, . . . , xm, t, a1, . . . , ak, b1(t), . . . , bl(t)),

where fi is a known function, and we know the intervals aj and bj(t) of possible
values of ai and bj(t).

Example. For example, the case of a differential inequality when we only know
the bounds f

i
(x1, . . . , xn, t) and f i(x1, . . . , xn, t) on fi(x1, . . . , xn, t) can be de-

scribed as
f̃i(x1, . . . , xn, t) + b1(t) ·∆(x1, . . . , xn, t),

where f̃i(x1, . . . , xn, t)
def
= (f

i
(x1, . . . , xn, t) + f i(x1, . . . , xn, t))/2,

∆(x1, . . . , xn, t)
def
= (f i(x1, . . . , xn, t)− f i(x1, . . . , xn, t))/2,

and b1(t) = [−1, 1].

Solving systems of ordinary differential equations (ODEs) under interval uncer-
tainty. For the general system of ODEs, Euler’s equations take the form

xi(t+∆t) = xi(t) +∆t · fi(x1(t), . . . , xm(t), t, a1, . . . , ak, b1(t), . . . , bl(t)).

Thus, if for every t, we keep the set of all possible values of a tuple

(x1(t), . . . , xm(t), a1, . . . , ak),

then we can use the Euler’s equations to get the exact set of possible values of
this tuple at the next moment of time.

The reason for exactness is that the values xi(t) depend only on the previous
values bj(t−∆t), bj(t− 2∆t), etc., and not on the current values bj(t).

To predict the values xi(T ) at a moment T , we need n = T/∆t iterations.
To update the values, we need to consider all possible combinations ofm+k+l

variables x1(t), . . . , xm(t), a1, . . . , ak, b1(t), . . . , bl(t); so, to predict the values at
moment T = n ·∆t in the future for a given accuracy ε > 0, we need the running
time n · Cm+k+l ∼ nk+l+m+1. This is is still polynomial in n.
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Additional advantage of our technique: possibility to take constraints into ac-
count. Traditional formulations of the interval computation problems assume
that we can have arbitrary tuples (x1, . . . , xn) as long as xi ∈ xi for all i. In
practice, we may have additional constraints on xi. For example, we may know
that xi are observations of a smoothly changing signal at consequent moments
of time; in this case, we know that |xi − xi+1| ≤ ε for some small known ε > 0.
Such constraints are easy to take into account in our approach.

For example, if know that xi = [−1, 1] for all i and we want to estimate the
value of a high-frequency Fourier coefficient f = x1 − x2 + x3 − x4 + . . .− x2n,
then usual interval computations lead to an enclosure [−2n, 2n], while, for small
ε, the actual range for the sum (x1 − x2) + (x3 − x4) + . . . where each of n
differences is bounded by ε, is much narrower: [−n · ε, n · ε] (and for xi = i · ε,
these bounds are actually attained).

Computation of f means computing the values fk = x1−x2+. . .+(−1)k+1·xk
for k = 1, . . . At each stage, we keep the set sk of possible values of (fk, xk), and
use this set to find

sk+1 = {(fk + (−1)k · xk+1, xk+1) | (fk, xk) ∈ sk & |xk − xk+1| ≤ ε}.

In this approach, when computing f2k, we take into account that the value x2k
must be ε-close to the value xk and thus, that we only add ≤ ε. Thus, our
approach leads to almost exact bounds – modulo implementation accuracy 1/C.

In this simplified example, the problem is linear, so we could use linear pro-
gramming to get the exact range, but set computations work for similar non-
linear problems as well.

Classes of probability distributions and p-boxes: a reminder. Often, in addition
to the interval xi of possible values of the inputs xi, we also have partial infor-
mation about the probabilities of different values xi ∈ xi. An exact probabil-
ity distribution can be described, e.g., by its cumulative distribution function
Fi(z) = Prob(xi ≤ z). In these terms, a partial information means that instead
of a single cdf, we have a class F of possible cdfs.

A practically important particular case of this partial information is when, for
each z, instead of the exact value F (z), we know an interval F(z) = [F (z), F (z)]
of possible values of F (z); such an “interval-valued” cdf is called a probability
box, or a p-box, for short; see, e.g., [2].

Propagating p-box uncertainty via computations: a problem. Once we know the
classes Fi of possible distributions for xi, and a data processing algorithms
f(x1, . . . , xn), we would like to know the class F of possible resulting distri-
butions for y = f(x1, . . . , xn).

Idea. For problems like systems of ODES, it is sufficient to keep, and update,
for all t, the set of possible joint distributions for the tuple (x1(t), . . . , a1, . . .).



16 Vladik Kreinovich

From idea to computer implementation. We would like to estimate the values
with some accuracy ε ∼ 1/C and the probabilities with the similar accuracy
1/C. To describe a distribution with this uncertainty, we divide both the x-
range and the probability (p-) range into C granules, and then describe, for each
x-granule, which p-granules are covered. Thus, we enclose this set into a finite
union of p-boxes which assign, to each of x-granules, a finite union of p-granule
intervals.

A general class of distributions can be enclosed in the union of such p-boxes.
There are finitely many such assignments, so, for a fixed C, we get a finite
number of possible elements in the enclosure.

We know how to propagate uncertainty via simple operations with a finite
amount of p-boxes (see, e.g., [2]), so for ODEs we get a polynomial-time algo-
rithm for computing the resulting p-box for y.

For p-boxes, we need further improvements to make this method practical. For-
mally, the above method is polynomial-time. However, it is not yet practical
beyond very small values of C. Indeed, to describe a p-subbox, we need to at-
tach one of C probability granules to each of C x-granules; these are ∼ CC such
attachments, so we need ∼ CC subboxes. For C = 10, we already get an unreal-
istic 1010 increase in computation time. (In contrast, for interval computations,
we need a feasible number C = 102 of subboxes.)
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Semilattices, Domains, and Computability
(Invited Talk)

Dana Scott

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

As everyone knows, one popular notion of Scott domain is defined as a
bounded complete algebraic cpo. These are closely related to algebraic lattices:
(i) A Scott domain becomes an algebraic lattice with the adjunction of an (iso-
lated) top element. (ii) Every non-empty Scott-closed subset of an algebraic
lattice is a Scott domain. Moreover, the isolated (= compact) elements of an
algebraic lattice form a semilattice (under join). This semilattice has a zero ele-
ment, and, provided the top element is isolated, it also has a unit element. The
algebraic lattice itself may be regarded as the ideal completion of the semilattice
of isolated elements. This is all well known. What is not so clear that is that
there is an easy-to-construct domain of countable semilattices giving isomorphic
copies of all countably based domains. This approach seems to have advantages
over both “information systems” or more abstract lattice formulations, and it
makes definitions of solutions to domain equations very elementary to justify.
The “domain of domains” also has an immediate computable structure.

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 17 
http://drops.dagstuhl.de/opus/volltexte/2009/2252



Computable Analysis of Differential Equations
(Invited Talk)

Ning Zhong
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In this talk, we discuss some algorithmic aspects of the local and global
existence theory for various ordinary and partial differential equations. We will
present a sample of results and give some idea of the motivation and general
philosophy underlying these results.
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6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 19 
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Theory and Practice of Higher-type
Computation (Tutorial)

Mart́ın Escardó

School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK

In higher-type computation, established by Kleene and Kreisel in the late
1950’s (independently), one works with the data types obtained from the dis-
crete natural numbers by closing under finite products and function spaces. For
the theory of higher-type programming languages, it is natural to work with a
corresponding hierarchy, or type structure, of domains, identified by Ershov and
Scott in the late 1960’s (again independently). The Kleene–Kreisel and Ershov–
Scott hierarchies account for total and partial computation respectively.

In this tutorial I’ll explain the theory and practice of higher-type computation
and programming languages, and develop old and new applications.

From a theoretical point of view, I’ll present Kleene–Kreisel spaces and
Ershov–Scott domains, and relate the two. Moreover, I’ll discuss common gen-
eralizations, chiefly QCB spaces and equilogical spaces, which admit further
useful closure properties, and their relationship to TTE (Schröder, Simpson.
Scott, Bauer, Weihrauch and many others). I’ll also present a natural higher-
type model of computation/programming language, namely PCF (Platek, Scott,
Plotkin).

From a practical point of view, I’ll introduce a fragment of the language
Haskell as a faithful implementation of PCF. Moreover, I’ll develop and run
several examples (and prove theorems about them), pertaining to (i) exhaustive
search of infinite sets in finite time (in particular Ulrich Berger’s algorithm and
generalizations), and (ii) computation with real numbers (in particular Alex
Simpson’s integration algorithm and generalizations).

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 21 
http://drops.dagstuhl.de/opus/volltexte/2009/2254



Computer Verified Exact Analysis (Tutorial)

Bas Spitters and Russell O’Connor

Department of Mathematics and Computer Science, Eindhoven University of
Technology, Eindhoven, The Netherlands

This tutorial will illustrate how to use the Coq proof assistant to implement
effective and provably correct computation for analysis. Coq provides a depen-
dently typed functional programming language that allows users to specify both
programs and formal proofs.

We will introduce dependent type theory and show how it can be used to
develop both mathematics and programming. We will show how to use dependent
type theory to implement constructive analysis. Specifically we will cover how
to implement effective real numbers and effective integration.

This work will be done using the Coq proof assistant. The tutorial will cover
how to use the Coq proof assistant. Attendees are encouraged to download and
install Coq 8.2 from http://coq.inria.fr/download and also download and
make the full system of C-CoRN from http://c-corn.cs.ru.nl/download.html

beforehand.

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 23 
http://drops.dagstuhl.de/opus/volltexte/2009/2255



Computing Conformal Maps onto Canonical Slit
Domains

Valentin V. Andreev1 and Timothy H. McNicholl2

1 Department of Mathematics
Lamar University

Beaumont, Texas 77710
andreev@math.lamar.edu

2 Department of Mathematics
Lamar University

Beaumont, Texas 77710
timothy.h.mcnicholl@gmail.com

Abstract. We extend the results of [2] by computing conformal maps
onto the canonical slit domains in Nehari [14]. Along the way, we demon-
strate the computability of solutions to Neuman problems.

1 Introduction

Let Ĉ denote the extended complex plane. A domain is an open connected
subset of Ĉ. A domain is degenerate if a component of its complement consists
of a single point. A domain is n-connected if its complement has precisely n
connected components and finitely connected if it is n-connected for some n.

In studying conformal mappings between domains in the extended complex
plane it is convenient for both theoretical and practical purposes to introduce the
so-called canonical domains and to study conformal maps of arbitrary domains
onto these canonical domains. If the domain is 1-connected and non-degenerate,
the canonical domain is the unit disk. In the case of doubly connected non-
degenerate domains, the canonical domain is the annulus {z ∈ C : r1 < |z| < r2}.
The modulus of this annulus is r2/r1. It is well-known that annuli with different
moduli are not conformally equivalent (see, e.g., [14] p. 333). When considering
conformal mappings of domains with connectivity n ≥ 3, it is convenient to
consider canonical domains with different geometric characteristics.

Paul Koebe [11] outlined an iteration method for finding the conformal map-
ping from an n-connected domain to a circular domain (a domain whose com-
plement consists of n disjoint closed disks). The convergence of his method was
proved by Gaier [6], and the computability by Andreev, Daniel, and McNicholl
[2]. The circular domains are the canonical domains in the recent constructions
of the Schwarz–Christoffel mappings for domains that are sufficiently separated
(see [3] and [5] and the refernces therein) and have been used as canonical do-
mains in aircraft engineering as early as 1928 [1] and later by Halsey [8]. For

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 25-36 
http://drops.dagstuhl.de/opus/volltexte/2009/2256
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numerous applications to nonlinear problems in mechanics see the monograph
[13]. An appealing property of the circular domains as canonical domains is that
recently there have been found explicit formulas for the Green’s function (and,
hence, for the Bergman kernel) for circular domains [10] and for the modified
Green’s function [4], which then is used to derive explicit formulas for confor-
mal maps of circular domains onto the canonical slit domains. The formula in
the latter paper contains infinite products which converge for domains that are
sufficiently separated. However, it is not known if they always converge.

Paul Koebe [12] introduced several of the canonical slit domains. There have
been demonstrated deep connections between the Dirichlet and Neumann prob-
lems in multiply connected domains and conformal slit mappings, potential the-
ory and extremal problems [14], [15], [16].

We define here the canonical slit domains presented in Nehari’s book [14].

The slit disk domain

Let D denote the unit disk centered at the origin. These domains are obtained
by removing finitely many arcs from D. Each of these arcs must be an arc of a
circle centered at the origin.

The slit annulus

These domains are obtained by removing finitely many arcs from an annulus
whose outer circle is ∂D. Again, each of these arcs must be an arc of a circle
centered at the origin.

The circular slit domain

These domains are obtained by removing from Ĉ one or more arcs. Again, each
of these arcs must be an arc of a circle centered at the origin.

The radial slit domain

These domains are obtained by removing from Ĉ one or more line segments
which do not pass through the origin. Each of these line segments, when extended
indefinitely in both directions, must yield a line that passes through the origin.

The parallel slit domain

These domains are obtained by removing from Ĉ one or more parallel line seg-
ments.

We will first show that one can compute the conformal mappings onto a slit
disk domain using a result of Max Schiffer [15]. We will then use the relations
described in Nehari [14] between the conformal maps onto these domains to
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compute the conformal mappings onto the slit annulus and circular slit domains.
We use the constructions in Schiffer’s monograph to compute the maps onto the
radial slit and parallel slit domain.

We will use Type-Two Effectivity [17] as our model of computation over
spaces whose cardinality is that of the reals. The naming systems we will use
are described in Section 3.1 of [2]. Since these are the only naming systems we
will use, we will suppress their mention. We will also talk about computations
on objects when it is clear that we are really talking about computations with
names of objects. We will write our proofs in a fairly informal style. In particular,
we will rely on the informal definitions in Section 3.1 or [2].

2 Background from complex and harmonic analysis

Let D be a Jordan domain with boundary curves Γ1, . . . , Γn. For each z ∈ D,
define ω(z, Γj , D) to be the value at z of the solution to the Dirichlet problem
with boundary data

f(ζ) =

{
1 ζ ∈ Γj
0 otherwise

The function ω is called harmonic measure.
The normal derivative of u is denoted ∂u

∂n and is defined to be(
∂u

∂x
y′(t)− ∂u

∂y
x′(t)

)
1

|x′(t) + iy′(t)|

when (x, y) is a positively oriented smooth Jordan curve. In this case, we also
define

∂u

∂s
=

(
∂u

∂x
x′(t) +

∂u

∂y
y′(t)

)
1

|x′(t) + iy′(t)|
.

If v is a harmonic conjugate of u, then it follows from the Cauchy-Riemann
equations that

∂u

∂n
=
∂v

∂s
, and

∂v

∂n
= −∂u

∂s
.

If u is harmonic, and if γ is a boundary component of dom(u), then the period
of the conjugate of u about γ is defined to be

1

2π

∫
γ

∂u

∂n
|dz|

where |dz| =df |z′(t)|dt is the differential of arc length. To make sense of this
integral, we first use Schwarz Reflection to extend the domain of u to an open
set containing γ.

Let GD denote the Green’s function of domain D. The following well-known
result will be useful and is Corollary II.2.6 of [7].
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Proposition 1. Suppose D is a Jordan domain with smooth boundary curves
Γ1, . . . , Γn. Then,

ω(ζ, Γj , D) = − 1

2π

∫
Γj

∂GD(z, ζ)

∂nz
|dz|.

Suppose f is a conformal map of a domain D onto a domain D1, and
that γ, γ1 are boundary components of D,D1 respectively. Suppose that when-
ever {zn}∞n=0 is a sequence of points in D such that limn→∞ d(zn, γ) = 0,
limn→∞ d(f(zn), γ1) = 0. We say that f maps γ to γ1.

We will follow the convention of identifying a curve with its parameteriza-
tions.

3 A summary of previous results

The following three results, which are Theorems 5.2, 5.5, and 6.2 of [2], form
the cornerstone for our work. Intuitively, the first of these theorems states that
differentiation of harmonic functions is a computable operation.

Theorem 1 (Computable differentiation of harmonic functions). From
a name of a harmonic function, u, we may compute a name of u′|C.

The second of these results states, roughly speaking, that solving Dirichlet
problems (i.e. finding a harmonic function on a Jordan domain from the knowl-
edge of its values on the boundary of the domain) is a computable operation.

Theorem 2 (Computable Solution of Dirichlet Problems). Given a name
of a Jordan domain D and names of smooth γ1, . . . , γn and their derivatives, if
γ1, . . . , γn are the distinct boundary components of D, and if we are also given
a name of a continuous f : ∂D → R, then we can compute a solution of the
corresponding Dirichlet problem. Furthermore, we can compute an extension of
this solution to D.

The third of these results demonstrates the computability of a matrix (known
as the Riemann matrix ) whose components are the periods around the boundary
components of the harmonic conjugates of the harmonic measure functions.

Theorem 3 (Computability of the Riemann Matrix). Given the same ini-
tial data as in Theorem 2, we can compute a name of the period of the harmonic
conjugate of ω(·, Γi, D) around Γj.

4 Single-valued and multi-valued harmonic conjugates

Suppose u is a harmonic function with domain D. If D is 1-connected, then a
harmonic conjugate of u may be defined by the equation

v(ζ) =

∫ ζ

ζ1

∂u

∂n
|dz| (1)
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If D is multiply connected, then the right side of (1) may depend on the path
of integration. In this case, u is said to have a multi-valued harmonic conjugate.
Otherwise, u is said to have a single-valued harmonic conjugate. It follows that
if D is contained in the interior of one of its boundary components then u has
a single-valued harmonic conjugate if and only if its period around every other
boundary component is zero.

It is well-known that ifD is finitely connected and bounded by smooth Jordan
curves, one of which contains D in its interior, then one can add a unique linear
combination of the harmonic measure functions of the boundary components of
D to u and obtain a function with a single-valued harmonic conjugate. Our first
goal is to show that this can be done effectively.

Lemma 1. Given a name of a harmonic function u defined on a finitely con-
nected domain, D, and names of the boundary components of D, γ1, . . . , γn, we
may compute b1, . . . , bn−1 such that

u+

n−1∑
j=1

bjω(·, γj , D) (2)

has a single-valued harmonic conjugate provided γ1, . . . , γn are smooth Jordan
curves, D is contained in the interior of γn, and we are also given names of
γ′1, . . . , γ

′
n.

Proof. Let Rk,j be the period of ω(·, γj , D) about γk.
We first want to compute the period of the conjugate of u about each γk.

Denote this period by pk. To compute pk, we want γk to be positively oriented.
This can be checked by using the winding number∫

γk

1

z − ζ
.

We can effectively search for a rational rectangle R such that R ⊆ C − γk
on which this winding number is non-zero. If this value is positive, we can in
addition discover a positive lower bound on it. If it is negative, then we can in
addition discover a negative upper bound on it. In the former case, we know γk
is positively oriented. Otherwise, it is negatively oriented in which case we can
reparameterize it positively. Hence, we will assume without loss of generality
that each γk is positively oriented.

Now, let Rk,j be the period of ω(·, γj , D) about γk. It is well-known that the
matrix (Rk,j)k,j=1,...,n−1 is invertible. (See, e.g., Section I.10 of [14].) To ensure
that the function in (2) has no conjugate period about γk, k = 1, . . . , n − 1, it
suffices to show that

Rk,1b1 + . . .+Rk,n−1bn−1 = −pk.

It now follows from the results in [18] that b1, . . . , bn−1 can be computed from
the given information.
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5 The slit disk domain

The following lemma will be useful.

Lemma 2 (Conformal Reconfiguring Lemma). Given a name of a non-
degenerate domain D, a name of its boundary, and the number of its boundary
components, we can compute a domain D1, its boundary, a conformal map f
of D onto D1, and smooth Jordan curves γ1, . . . , γn and their derivatives such
that γ1, . . . , γn are the boundary components of D1. Furthermore, γn is a circle.
Furthermore, if we are in addition given a name of a boundary component γ of
D we can ensure that f maps γ to γn.

Proof. Follow the first n steps of the Koebe Construction (for details see Section
2 and Theorem 4.6 of [2]): let D0,1, ..., D0,n denote the connected components
of the complement of D. At the first step with the help of a Riemann mapping,
map the complement of D0,1 conformally onto the unit disk D′0,1. It follows
from Theorem 5.1 of [9] that we can compute this map from the given data. The
boundary δ1 of D0,1 is transformed into the unit circle δ′1. D0,2 is mapped onto
D′0,2, δ2 into δ′2 etc.. At step two map the complement of D′0,2 onto the unit disk
using a Riemann mapping. The image of δ′1 under the second Riemann mapping
is an analytic curve. After n analogous steps the images γ1, ..., γn of δ1, ..., δn are
analytic curves and γn is a circle. The

Theorem 4. Given a name of a finitely connected, non-degenerate domain D,
a name of its boundary, a name of one of its boundary components, γ, a name of
a point ζ0 ∈ D, and the number of boundary components of D, we can compute
a conformal mapping of D onto a slit disk domain that maps ζ0 to 0 and γ to
∂D.

Proof. We first apply the Conformal Reconfiguring Lemma. Let f,D1, γ1, . . . , γn
be thusly obtained. We may assume f maps γ onto γn. Let ζ1 = f(ζ0). We can
now compute the center and radius of γn. Label these ξ and R respectively. Let
D2, Γ1, . . . , Γn, ζ2 be the images of D1, γ1, . . . , γn, ζ1 under the inversion map

z 7→ R2

z−ξ .
Let G be the Green’s function of D2. It follows from Theorem 2 that we can

compute G from the given information.
Let ωj(z) = ω(z, Γj , D2). Compute b1(ζ), . . . , bn−1(ζ) as in the proof of

Lemma 1 for the function G(·, ζ). Let

m(z, ζ) = G(z, ζ) +

n−1∑
j=1

bj(ζ)ωj(ζ).

It follows that m has no conjugate period about any of γ1, . . . , γn−1. A fairly
straightforward calculation shows that m has a period of 1 about ζ. So, for all
z0 ∈ D2 − {ζ2}, let

g(z0) = exp

(
−m(z, ζ2)− i

∫ z0

ζ2

∂m(z, ζ2)

∂nz
|dz|

)
.
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Extend g to all of D2 by setting g(ζ2) = 0. It follows that g is single-valued and
analytic. Note that g(ζ2) = 0.

A fairly straightforward calculation shows that g is the function in (A1.21)
of [15]. Hence, g is the conformal mapping of D2 onto a slit disk domain Ω that
maps ζ2 to 0 and Γn to ∂D.

It now only remains to show that we can compute a name of g from the given
data. It suffices to show that from the given data and a name of a point z ∈ D2

we can compute a name of g(z) (see e.g. Theorem 3.3.15.2 of [17]).

When z 6= ζ2 (which, if true, will eventually be witnessed as we read the name
of z), we can through an effective search procedure discover a piecewise linear
path of integration contained in D2 − {ζ2}. If z is in a subbbasic neighborhood
of ζ2 whose closure is contained in D2, we can compute a positive lower bound
on G(z, ζ2) and arrive at a subbasic neighborhood of 0 which will contain g(z).
In either case, the computed neighborhoods will converge to g(z) if the input
neighborhoods converge to z.

It is worth noting that in the case when D is a circular domain, one can
obtain explicit formulas for the slit-disk mapping function using the formulas
for the Green’s function and harmonic measure in [10].

6 Some immediate consequences of the slit disk result

Let ‘SD’ stand for ‘slit disk’, ‘CS’ for ‘circular slit’, etc.. We introduce some
notation for the conformal maps onto these domains. Fix a non-degenerate,
finitely connected domain D. Let ζ0, ζ1 ∈ D, and let γ1, . . . , γn be the boundary
components of D. We then let fSD(·;D, ζ0, γj) denote the unique conformal map
of D onto a slit disk domain that maps ζ0 to 0 and γj onto ∂D whose derivative
at ζ0 is positive.

Let fCS(·;D, ζ0, ζ1) be the conformal map of D onto a circular slit domain
that maps ζ0 to 0, ζ1 to ∞, and whose residue at ζ1 is 1.

Let fPS(·;D, ζ1, θ) be the conformal map of D onto a parallel slit domain
where all slits have angle θ with the x-axis and whose Laurent expansion at ζ1
is of the form

1

z − ζ1
+ a(z − ζ1) + b(z − ζ1)2 + . . . .

Let fRS(·;D, ζ0, ζ1) be the conformal map of D onto a radial slit domain that
maps ζ0 to 0, ζ1 to ∞, and whose residue at ζ1 is 1.

Let fSA(·;D, γj , γk) be the conformal map of D onto a slit annulus domain
that maps γj onto ∂D and γk onto the inner circle.

We omit any of these parameters when they are made clear by context.

Suppose we are given a name of a finitely connected, non-degenerate domain
D, a name of its boundary, and the number of its boundary components. It is
now required to show that we can compute these other canonical maps uniformly
in the parameters beyond the semicolon. In the case of fCS and fSA, this follows
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from the following identities which are proven in Section VII.1 of [14].

fCS(z; ζ0, ζ1) =
f ′SD(ζ1; ζ1)

f ′SD(ζ1; ζ0)

fSD(z; ζ0)

fSD(z; ζ1)

fSA(z; γj , γk) =
fSD(z; ζ0, γj)

fSD(z; ζ0, γk)

We now discuss the computation of fPS(·;D, ζ, θ). Let ζx, ζy denote the real
and imaginary parts of ζ respectively. It is shown on page 256 of [15] that

fPS(z;D, ζ, π/2) = − ∂

∂ζx
log fSD(z;D, ζ, γj)

fPS(z;D, ζ, 0) = −1

i

∂

∂ζy
log fSD(z;D, ζ, γj)

It then follows (as on page 257 of [15]) that

fPS(z;D, ζ, θ) = eiθ[cos(θ)fPS(z;D, ζ, 0)− i sin(θ)fPS(z;D, ζ, π/2)].

Hence, we may compute fPS(·;D, ζ, θ) from the given data.

In order to compute the conformal mappings onto the other canonical do-
mains, we make a digression and consider the Neuman problem.

7 Digression: computing solutions to the Neuman
problem

Let D be a bounded domain with smooth boundary curves Γ1, . . . , Γn. Let f ∈
C(∂D), and suppose

∫
∂D

f |dz| = 0. The resulting Neuman problem is to find a
harmonic function u on D such that

∂u

∂n
= f on ∂D (3)∫

∂D

u|dz| = 0 (4)

Such solutions exist (see, e.g. Appendix B of [7]). The condition 4 ensures they
are unique. Their computability will now be demonstrated by a well-known pro-
cedure (see e.g. proof of Theorem B.1 in [7]).

Theorem 5 (Computing solutions of Neuman problems). Given a name
of a bounded domain D, names of n smooth Jordan curves Γ1, . . . , Γn which form
its boundary components as well as names of their derivatives, and a name of
f ∈ C(∂D) such that (3) holds, one can compute a name of the solution of the
resulting Neuman problem.
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Proof. There is already a well-known ‘procedure’ for finding solutions to Neuman
problems. The purpose of this proof is to explain this procedure and show that
it can be implemented on a digital computing device.

By using the winding number and a simple search procedure, we can deter-
mine which of Γ1, . . . , Γn contains D in its interior. Without loss of generality,
suppose Γn is this curve.

As in the proof of Lemma 1, we can assume Γ1, . . . , Γn are positively oriented.
Let Rj,k be the period of the conjugate of ωk about Γj . As noted in the proof

of Lemma 1, the matrix (Rj,k)j,k=1,...,n−1 is invertible. So, we can now compute
the solution to the system of linear equations

Rj,1b1 + . . .+Rj,n−1bn−1 =

∫
Γj

f |dz| j = 1, . . . , n− 1.

Let

f1 = f −
n−1∑
k=1

bk
∂ωk
∂n

.

It follows that
∫
Γj
f1|dz| = 0 if j ∈ {1, . . . , n− 1}.

It is an easy consequence of Green’s Theorem that Rj,k = Rk,j . (See, e.g.,
Section I.10 of [14].) It is also easy to show that for each j, the sum of the periods
of the harmonic conjugates of ω1, . . . , ωn is 0. (One first notes that the sum of
the harmonic measure functions is identically 1 on ∂D.) Since

∫
Γ
f |dz| = 0, it

now follows by a fairly straightforward calculation that
∫
Γn
f1|dz| = 0.

We now wish to define a function g on ∂D. We do so by defining it on each
boundary component of D. When ζ ∈ Γj , we let

g(ζ) =

∫ t0

0

f1(Γj(t))|Γ ′j(t)|dt

where t0 is such that Γj(t0) = ζ. Since
∫
Γj
f1|dz| = 0, it follows that the choice

of t0 is irrelevant when ζ = Γj(0). Hence, g is well-defined.
It is now necessary to prove the following Lemma.

Lemma 3. g can be computed from the given data.

Proof. Let ωj = ω(·, Γj , D).
Suppose we are given a name of a point ζ ∈ ∂D as input. From our name

for a parametrization of Γj , we can compute names of Γj as a closed subset of
the plane as well as a name of the open set C− Γj . (See, e.g., Theorem 6.2.4.4
of [17].) We then scan these names and our name for ζ until we find a rational
rectangle R and an index j such that ζ ∈ R, R ∩ Γj 6= ∅, and R ∩ Γk = ∅ when
k 6= j. Hence, we now know ζ ∈ Γj . Begin computing a name for the function h
defined by

h(t) =

∫ t

0

f1(Γj(t))|Γ ′j(t)|dt.
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We now continue scanning our name for ζ and our generated names for Γj(0)
and h. Suppose that at some point in this process we discover disjoint rational
rectangles R1, R2 such that ζ ∈ R1 and Γj(0) ∈ R2. So, we now know ζ 6= Γj(0).
Hence, there is exactly one value of t for which Γj(t) = ζ and we can compute
this value. (See, e.g. Corollary 6.3.5 of [17].) Hence, we can now compute g(ζ)
directly from the definition of g.

Suppose on the other hand that at some point in this process no such rational
rectangles have been discovered. We then search the portions of these names read
so far for R, [a1, b1], . . . , [am, bm], R1, . . . , Rm, R′, I1, and I2 such that

1. ζ, Γj(0) ∈ R,
2. Γj maps [al, bl] into Rl,
3. [a, b] =df

⋃
l[al, b1] is a subinterval of (0, 1),

4. Rl ∩R = ∅,
5. h maps [0, a] into I1, and
6. h maps [b, 1] into I2.

If this search fails, then we continue scanning. If it succeeds, then, although we
do not know yet if ζ = Γj(0), we do know that any Γj preimage of ζ lies in
[0, a] ∪ [b, 1]. Note that 0 ∈ I1 ∩ I2. So, we can list, for each successful search
of this kind, I1 ∪ I2 as an interval that contains g(ζ). We can also in the future
interleave listing of all rational intervals that contain I1 ∪ I2.

We now show that this process generates a name for g(ζ). Every interval
listed contains g(ζ). So, we only need to show that every interval that contains
g(ζ) is eventually listed. This is clearly true if ζ 6= Γj(0). Suppose ζ = Γj(0). It
follows that there will be infinitely many successful search of the kind described
above. It also follows that larger portions of these names are read, the diameter
of I1 ∪ I2 will tend to 0. It follows that a name of 0 = g(Γj(0)) is written on the
output tape.

We now compute the solution to the Dirichlet problem for D with boundary
data g. Call this solution v1. We now compute a1, . . . , an−1 such that

v =df v1 +

n−1∑
j=1

ajωj

has a single-valued harmonic conjugate. Note that since ωj is constant on each
curve of ∂D, ∂v

∂s = f1. Compute ξ ∈ D. Let:

u1(z0) =

∫ z0

ξ

∂(−v)

∂n
|dz|

u2 = u1 +

n−1∑
j=1

bjωj

Since u1 is a harmonic conjugate of −v, it follows that the normal derivative of
u1 on ∂D is f1. It now follows that f is the normal derivative of u2 on ∂D. We
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now complete our computation by setting

u = u2 −
∫
Γ

u2|dz|.

If D is a bounded domain bounded by smooth Jordan curves Γ1, . . . , Γn, then
the Neuman function of D, ND, is defined by the following conditions.

1. z 7→ N(z, ζ) + log |z − ζ| is harmonic.
2. ∂

∂nz
N(z, ζ) = − 2π

L on ∂D where L is the length of ∂D.

3.
∫
∂D

N(z, ζ)|dz| = 0.

Corollary 1. From names of D, Γ1, . . . , Γn, Γ ′1, . . . , Γ
′
n as in Theorem 5, we

can compute a name of ND.

8 The radial slit domain

We conclude with the following.

Theorem 6. From a name of non-degnerate, finitely connected, domain D, a
name of its boundary, names of distinct ζ0, ζ1 ∈ D, and the number of its bound-
ary components, we can compute a name of fRS(·;D, ζ0, ζ1).

Proof. Let u(z) = ND(z, ζ0) − ND(z, ζ1). It follows that u has a single-valued
harmonic conjugate. So, let

ũ(z0) =

∫ z0

ζ0

∂u

∂n
|dz|

when z0 6= ζ0, ζ1. Let f = exp(−(u+iũ)). Extend f to all of D by setting f(ζ0) =
0 and f(ζ1) =∞. It is shown in [15] (page 265, (A1.62)) that fRS(·, D, ζ0, ζ1) =
f . It only remains to demonstrate that we can compute f from the given data.

Suppose we are given the name of z ∈ D as input. Scan the names of z, ζ0, ζ1.
If at some point, we discover disjoint rational rectangles R1, R2, R3 such that
z ∈ R1, ζ0 ∈ R2, and ζ1 ∈ R3, then we can compute u(z) and ũ(z) directly.
Suppose at some point we have not found such rectangles. If we have discovered
a rational rectangle R that contains z and ζ0 but not ζ1, we can compute a
positive lower bound onND(z, ζ0)−ND(z, ζ1) and hence a neighborhood of 0 that
contains f(z). If we have discovered a rational rectangle R that contains z and
ζ1 but not ζ0, we can compute a negative upper bound on ND(z, ζ0)−ND(z, ζ1)
and hence a neighborhood of ∞ that contains f(z). By continuing this process
indefinitely, we generate a name of f(z).
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Abstract. We prove general theorems about unique existence of effec-
tive subalgebras of classical algebras. The theorems are consequences of
standard facts about completions of metric spaces within the framework
of constructive mathematics, suitably interpreted in realizability models.
We work with general realizability models rather than with a particu-
lar model of computation. Consequently, all the results are applicable in
various established schools of computability, such as type 1 and type 2
effectivity, domain representations, equilogical spaces, and others.

1 Introduction

Given an algebra, by which we mean a set with constants and operations, is there
a largest subalgebra which carries a computable structure, and is the structure
unique up to computable isomorphism? Without further assumptions the answer
is in general negative. For example, within the context of Recursive Mathematics
every computable subfield of reals may be properly extended to a subfield which
is again computable, and this remains true even if we require the subfields to be
effectively complete. However, as was proved by Moschovakis [1], by requiring
also that the strict linear order be semidecidable, we are left with only one
choice, namely the recursive reals. An analogous result for type 2 effectivity was
established by Hertling [2].

We show how these results, as well as others, can be seen as standard facts
about completions of metric spaces in the context of constructive mathematics,
suitably interpreted in realizability models. We prove two main theorems which
together give conditions under which an algebra A, equipped with a complete
metric d, has a unique effective subalgebra B that is effectively complete and for
which the relation d(x, y) < q is semidecidable in x, y ∈ B and q ∈ Q.

Rather than choosing a specific model of computation, we work in a general
realizability model. Thus our results apply to established schools of computable
mathematics, such as type 1 and type 2 effectivity, domain representations, equi-
logical spaces, and others.
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The outline of the extended abstract is as follows. Sections 2–4 introduce
the necessary background, namely realizability models, algebras, and premetric
spaces. Section 5 states the main theorems, from which two specific important
cases are inferred in Section 6. We conclude with a brief discussion of possible
further directions of research.

2 Assemblies and Realizability

Among the different kinds of realizability the most suitable one for our purposes
is relative realizability, because it subsumes type 1 and type 2 effectivity, domain
representations, equilogical spaces, and other standard models of computation,
see [3]. We review the basic definitions here and refer the readers to [4] for
background material on realizability.

A partial combinatory algebra (PCA) is a set A with a partial application
operation3 · such that there exist elements k, s ∈ A satisfying k x y = x and4

s x y z ' (x z) (y z). A PCA is a general model of computation which supports
encoding of pairs, natural numbers, recursion, partial recursive functions, etc.
An elementary sub-PCA is a subset B ⊆ A which is closed under application and
contains k and s suitable for A. For the rest of the discussion we fix a PCA A and
an elementary sub-PCA A# ⊆ A. The elements of A as “arbitrary” and those of
A# as “effective” data or programs, although the exact meaning of these words
depends on the particular choice of A and A#.

An assembly S = (S,S) is a set S together with a realizability relation
S ⊆ A × S, such that for every x ∈ S there is at least one x ∈ A for which
x S x. A realized map f : S → T between assemblies is a map f : S → T
between the underlying sets which is tracked by some f ∈ A#, which means that
whenever x S x then5 f x ↓ and f x T f(x). Note that we require maps to
be realized by the elements of the subalgebra A#. Assemblies and realized maps
form a category Asm. An assembly S is modest, or a modest set, if each realizer
realizes at most one element: for all r ∈ A, x, y ∈ S, if r S x and r S y then
x = y.

An assembly S is equivalent to a multi-valued representation δS : A→ P(S)
via the correspondence x S x ⇐⇒ x ∈ δS(x). A modest set is equivalent to
a single-valued representation. Traditional schools of computable mathematics
typically use (single-valued) representations, for example:

– When A = A# = N is the first Kleene algebra, the modest sets are equivalent
to type 1 representations, or numbered sets, which are used in the study
of recursive mathematics. In this model “effective” means “computable by
(type 1) Turing machine”.

3 We write x y instead of x · y, and associate application to the left, x y z = (x y) z.
4 Kleene equality a ' b means that if one side is defined then so is the other and they

are equal.
5 The expression t ↓ means “t is defined”.
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– When A = NN is the second Kleene algebra and A# the subalgebra of total
computable functions we get type 2 representations. In this case “effective”
means “computable by type 2 Turing machine”.

– The case A = A# = NN is the continuous version of type 2 effectivity in
which “effective” means “continuously realized”.

– When A is a universal Scott domain and A# its computable analogue, the
modest assemblies are equivalent to domain representations and computable
maps between them. Of course, “effective” is now interpreted in the sense of
domain representations.

– With Scott’s graph model A = Pω and its r.e. counterpart A# = RE we
obtain effective equilogical spaces [3].

Single-valued representations seem to be preferred to general assemblies, per-
haps because from a programmer’s perspective it makes little sense to use one
realizer for representing several things, although lately multi-valued type 2 rep-
resentations have turned out to be useful [5]. We use assemblies because they
contain the category of sets, which allows us to consider classical and effective
algebras in a single framework. Realizability toposes could be used instead, but
assemblies are easier to describe and work with.

2.1 The realizability interpretation of first-order logic

Assemblies supports an interpretation of first-order intuitionistic logic in which
a formula is deemed valid when there is an element r ∈ A# witnessing it. The
interpretation is given in terms of a realizability relation r  φ which is read as
“r realizers φ”, and is defined inductively on the structure of the sentence φ:

– always r  >, and never r  ⊥,

– 〈p, q〉  φ ∧ ψ iff p  φ and q  ψ,6

– 〈0, r〉  φ ∨ ψ iff r  φ, and 〈1, r〉  φ ∨ ψ iff r  ψ,7

– r  φ⇒ ψ iff for all q ∈ A, if q  φ then r q ↓ and r q  ψ,

– r  ∀x∈S . φ(x) iff for all a ∈ A, a ∈ S, if a S a then r a ↓ and r a  φ(a),

– 〈a, r〉  ∃x∈S . φ(x) iff for some a ∈ S, a S a and r  φ(a),

– r  a = b iff a = b.

A sentence φ is valid, written |= φ, when there exists r ∈ A# such that r  φ.
Note that r must be an element of the subalgebra A#. A formula with free
variables is valid when its universal closure is valid. Intuitionistic logic is sound
with respect to the realizability relation: if intuitionistic logic proves φ then φ is
valid.

6 〈p, q〉 is the encoding of the pair whose components are p and q.
7 n is the encoding of the natural number n.
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2.2 The role of double negation

Negation ¬φ is defined as φ⇒ ⊥. This gives us

r  ¬φ iff for all q ∈ A, not q  φ,

r  ¬¬φ iff there is q ∈ A such that q  φ.

A realizer r of a doubly negated formula ¬¬φ does not carry any information
about the computational content of φ, because we may replace it with any other.
Thus double negation is a way of erasing the constructive or computational
meaning of a formula.

A formula which is equivalent to its double negation is called ¬¬-stable. Since
φ ⇒ ¬¬φ is always intuitionistically provable, only the direction ¬¬φ ⇒ φ is
relevant. An important family of stable formulas are the negative ones, which
are those built from ⊥, >, =, ¬, ∧,⇒, ∀, and possibly other ¬¬-stable primitive
relations. The realizers of a ¬¬-stable formula φ are computationally irrelevant
in the sense that any information that can be computed with the help of a
realizer r |= φ can be computed without r, the extreme case of which is that r

itself can be computed from nothing, as long as it exists.
A mono i : S� T is ¬¬-stable when |= ∀x∈T . (¬¬(x ∈ S)⇒ x ∈ S), where

“x ∈ S” is a shorthand for ∃ y ∈S . i(y) = x. Up to isomorphism, such a mono
is a restriction of T to a subset S ⊆ T , and the realizability relation S is T

restricted to S. Thus the ¬¬-stable monos of T correspond to subsets of T .
A mono i : S � T is ¬¬-dense when |= ∀ y ∈T .¬¬∃x∈S . y = i(x). Such

a mono is always isomorphic to a mono i : S � T such that S = T and i is
the identity map. Thus the ¬¬-dense monos play in Asm the role of reductions
between representations.

2.3 Semidecidable predicates

To illustrate how the realizability interpretation is used, and for later use, we
explain how to treat semidecidable predicates in Asm. We say that a mono
i : S� T, seen as a predicate on T, is semidecidable when

|= ∀x∈T .∃ f ∈{0, 1}N . (x ∈ S ⇐⇒ ∃n∈N . f(n) = 1) .

Here N is the modest set of natural numbers, cf. Section 3.2, and the exponential
{0, 1}N is the modest set of those maps N → {0, 1} which are tracked by an
element of A. Markov Principle, which is valid in Asm, states that a formula of the
form ∃n∈N . f(n) = 1 is ¬¬-stable. Therefore only ¬¬-stable predicates can be
semidecidable. We assume without loss of generality that i : S� T is ¬¬-stable
and that i is a subset inclusion. Validity of the above formula is then equivalent
to there being r ∈ A# which works as follows: if x T x then, for all n ∈ N, r x n ↓
and r x n ∈ {0, 1}, and furthermore, x ∈ S if, and only if, r x n = 1 for some
n ∈ N. The semidecidable predicates have the expected properties: decidable
predicates are semidecidable, and the semidecidable predicates are closed under
conjunctions and existential quantification over N.
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In type 1 effectivity our notion of semidecidability coincides with the usual
one, while in type 2 effectivity the notion is known as “r.e. open subset”. In
a purely topological model, such as the continuous version of type 2 effectivity
“semidecidable” means “topologically open”. The interpretation in Set is trivial
because there every subset is semidecidable (even decidable) thanks to the law
of excluded middle.

3 Algebras

A signature Σ for an algebra is given by a list of function symbols f1, . . . , fk. Each
fi has an arity, which is a non-negative integer. The set Term(Σ) of terms over
Σ is built inductively from variables x, y, z, . . ., and terms f(t1, . . . , tn), where
f is a function symbol with arity n and t1, . . . , tn are terms. We assume that a
standard Gödel numbering p−q : N→ {?}+ Term(Σ) of terms is given.8

A Σ-algebra A in a category C with finite products is given by an object |A|
called the carrier of A, and for each function symbol f with arity n a morphism
fA : |A|n → |A|, called an operation. Each term t ∈ Term(Σ) whose free variables
are among x1, . . . , xk determines a morphism |A|k → |A|: a variable xi is the
i-th projection, while a term f(t1, . . . , tn) is the composition of fA with the the
morphisms determined by t1, . . . , tn. A subalgebra of A is a Σ-algebra B with
a mono B � A such that the operations in A restrict to operations in B. We
write B ≤ A when B is a subalgebra of A.

If C and D are categories with finite products and F : C→ D a functor which
preserves finite products then a Σ-algebra A in C is mapped by F to a Σ-algebra
F (A) in D, where |F (A)| = F (|A|) and fF (A) = F (fA). The mapping preserves
valid equations in A, and also reflects them if F is faithful.

A (first-order) formula φ over Σ is a formula in first-order logic with terms
over Σ. If A is a Σ-algebra in C, where C is either Set or Asm, then we may
interpret such a φ as a statement about A: the terms are interpreted according
to A, while the logic is interpreted either in the standard set-theoretic way, as
given by Tarski, or using the realizability interpretation from Section 2.1. We
write A |=C φ when φ is valid when so interpreted. We refer to interpretations
in Set as “classical” and those in Asm as “effective”. More generally the adjec-
tives “classical” and “effective” are used distinguish between the two settings.
For example, a “classical algebra” is an algebra in Set, while an “effective al-
gebra” is one in Asm. Similarly, a (classical) space is “classically complete” if
the formula expressing completeness is valid in Set, and an (effective) space is
“effectively complete” if the same formula is valid in Asm. Note however that
the exact interpretation of “effective” depends on the choice of the underlying
computational model.

8 The special value pnq = ? signifies that n is not a valid Gödel code. This is not neces-
sary for enumeration of all terms, but we do need it when we consider enumerations
of closed terms, of which there may be none.
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3.1 Subalgebras generated by subassemblies

Suppose A is classical Σ-algebra, and consider a subset C ⊆ |A| of the carrier.
Then there exists the least subalgebra I ≤ A such that C ⊆ |I|, namely the
intersection of all subalgebras that contain C. We say that I is generated by C
and denote it by 〈C〉A.

Now letA be an effective Σ-algebra and C� |A| a subassembly of |A|. There
exists the least effective subalgebra 〈C〉A ≤ A containing C as a subassembly.
One way of proving this is to work in the internal language of the realizability
topos RT(A,A#), where 〈C〉A is the intersection of all subalgebras of A that
contain the assembly C, just like in Set. A special case is the initial subalgebra
〈∅〉A which is generated by the empty subassembly. It is always modest, even if
A is not, and is effectively enumerated by a realized map e : N → {?} + 〈∅〉A
which is essentially the composition of the Gödel numbering of the closed terms
over Σ with their interpretation in A.

3.2 Algebras characterized by their universal properties

When a classical algebra is characterized up to isomorphism by a universal prop-
erty, we may use the property to identify the corresponding effective algebra. It
turns out that we usually get the generally accepted “correct” computability
structure:

– The natural numbers N are the initial commutative semiring with unit. In
Asm this is the modest set N = (N,N) where n N n for each n ∈ N.

– The initial commutative ring in Set are the integers Z, while in Asm it is the
modest set Z = (Z,Z) where, for each m,n ∈ N and k ∈ Z, 〈m,n〉 Z k
when k = m− n.

– The field of fractions over the integers in Set are the rationals Q. In Asm
it is the modest set Q = (Q,Q) where, for all k,m, n ∈ N and q ∈ Q,
〈k,m, n〉 Q q when q = (k −m)/n.

– The reals R are the Cauchy-complete archimedean ordered field. The coun-
terpart in assemblies is the modest set R = (R,R) where x R x when
x ∈ A represents a fast Cauchy sequence9 of rational numbers converging
to x, and R = {x ∈ R | ∃ x∈A . x R x}. Depending on the PCA A the set R
could consist just of the computable reals, or all reals, or all reals computable
with respect to an oracle, etc.

Unfortunately, such universal characterizations are not always available.
Apart from first-order formulas over a signature Σ we shall also consider more

general first-order formulas which additionally refer to the natural numbers N,
the integers Z, and the rationals Q. We call them extended formulas over the
signature Σ. When they are interpreted in Set, the symbols N, Z, Q receive
their usual meaning, whereas in Asm we interpret them as the corresponding
assemblies N, Z, and Q, as described above. An extended formula may not refer

9 A sequence (an)n is fast Cauchy if |am − an| ≤ 2−min(m,n) for all m,n ∈ N.
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directly to the real numbers because Propositions 1 and 2 fail for formulas that
refer to the reals. An extended formula over Σ which is also negative is called
extended negative formula over Σ.

3.3 Transfer of algebras from sets to assemblies

Every set S may be represented as a constant assembly ∇S = (S,∇S) where
r S x holds for all r ∈ A and x ∈ S. In other words, in∇S every realizer realizes
every element. Every function f : S → T between sets S and T is realized as a
map ∇f : ∇S → ∇T , for example by the realizer s k k. This gives us a full and
faithful embedding ∇ : Set→ Asm.

The functor∇ preserves finite limits, and finite products in particular. There-
fore, ∇ maps a Σ-algebra A in Set to a Σ-algebra ∇A in Asm. The mapping
preserves and reflects equations because ∇ is faithful. Even more, it preserves
all negative formulas:

Proposition 1. Let A be a Σ-algebra in Set and φ an extended negative formula
over Σ. Then A |=Set φ if, and only if, ∇A |=Asm φ.

A ¬¬-dense subalgebra B ≤ A in Asm is a subalgebra for which the mono
|B| � |A| is ¬¬-dense. We may assume that |B| = |A| and that the mono
|B|� |A| is the identity map.

Proposition 2. Let A be an effective Σ-algebra and B ≤ A a ¬¬-dense subal-
gebra. Then A and B satisfy the same extended negative formulas over Σ.

The proofs of both propositions are standard exercises in performing an in-
duction over the structure of φ. The deeper reason for their truth is the fact that
sets are precisely the sheaves for the double negation topology on the realizability
topos RT(A,A#).

4 Premetric spaces

A metric algebra is a Σ-algebra A whose carrier is a metric space and the op-
erations are continuous maps. A metric algebra is complete if its carrier is a
complete metric space. We face a difficulty when we try to transfer metric alge-
bras from sets to assemblies: ∇ maps a metric d : S×S → R to the realized map
∇d : ∇S ×∇S → ∇R, which is not a metric anymore because its codomain ∇R
is not the object R of real numbers in Asm. To overcome the problem we use
a formulation of metric spaces which does not directly refer to real numbers, is
classically equivalent to the usual metric spaces,10 and is constructively accept-
able. Such a notion, namely premetric spaces, was defined by Fred Richman [6].
We use a slight variation:

10 We allow infinite distances but that is inessential.
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Definition 1. A premetric space (X, d) is a set X with a ternary relation d ⊆
X×X×Q satisfying the following conditions, where we write d(x, y) ≤ q instead
of (x, y, q) ∈ d:

1. if q < 0 then not d(x, y) ≤ q,
2. d(x, y) ≤ 0 if, and only if, x = y,
3. if d(x, y) ≤ q then d(y, x) ≤ q,
4. if d(x, y) ≤ q and d(y, z) ≤ r then d(x, z) ≤ q + r,
5. d(x, y) ≤ q if, and only if, d(x, y) ≤ r for all r > q.

Richman’s definition also requires that for all x, y ∈ X there is a rational q ≥ 0
such that d(x, y) ≤ q. We omit the requirement because we do not need it, and
because it is the only axiom which is not a negative formula.

Every metric space (M,d) is a premetric space (M,d′) with d′ = {(x, y, q) ∈
X × X × Q | d(x, y) ≤ q}. Classically, the converse holds if we allow infinite
distances11 because the metric d may be recovered from the premetric d′ as
d(x, y) = inf {q ∈ Q | d′(x, y) ≤ q}. Constructively however the infimum need
not exist.

The basic theory of premetric spaces parallels that of metric spaces. The
notions of completeness, continuity, density, etc., are all easily expressed in terms
of the premetric. In fact, the whole theory is constructively valid (even without
choice), as was shown by Richman [6]. Despite our allowing infinite distances,
the following theorem still holds constructively, and is therefore valid both in
Set and Asm.

Proposition 3. Let X be a premetric space and e : X → Y its completion, i.e.,
an isometry with a dense image into a complete premetric space Y . Then every
locally uniformly continuous12 f : X → Z to a complete premetric space Z has
a unique locally uniformly continuous extension f : Y → Z along e.

An easy consequence of the theorem is that any two completions of a premetric
space are isometrically isomorphic.

When a premetric space (X, d) is transferred from Set to Asm by ∇, the
relation d ⊆ X×X×Q is mapped to the mono ∇d� ∇X×∇X×∇Q, which is
¬¬-stable. The axioms for premetric structure are extended negative formulas,
so by Proposition 1 they are preserved. This proves the following proposition:

Proposition 4. If (X, d) is a classical premetric space then (∇X,∇d) is an
effective premetric space. Furthermore, (X, d) and (∇X,∇d) satisfy the same
extended negative formulas.

Moreover, ∇ preserves the completeness property, which follows easily from
the observation that the exponential assembly (∇X)N is isomorphic to ∇(XN):

Proposition 5. A classical premetric space (X, d) is classically complete if, and
only if, (∇X,∇d) is effectively complete.

11 With Richman’s extra axiom the correspondence between metric and premetric
spaces is exact, classically.

12 A map is locally uniformly continuous if it is uniformly continuous on every closed
ball.
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4.1 Complete subalgebras

When A is a classical complete premetric Σ-algebra we may ask whether every
subalgebra B ≤ A is contained in the least complete subalgebra B ≤ A. The
premetric closure |B| in |A| is an obvious candidate. For it to be a subalgebra,

each operation fB : |B|n → |B| must extend to a map fB : |B|
n
→ |B|, which

it does by Theorem 3 as long as the operations on B are locally uniformly
continuous. We have proved the following proposition.

Proposition 6. Let A be a classical complete Σ-algebra. The closure |B| of the
carrier of a subalgebra B ≤ A is the least complete subalgebra of A containing
B, provided the operations on B are locally uniformly continuous.

The argument which proved Proposition 6 is constructively valid. Its inter-
pretation in Asm gives the following effective version.

Proposition 7. Let A be an effective13 complete Σ-algebra. The effective clo-
sure |B| of the carrier of a subalgebra B ≤ A is the least effective complete
subalgebra of A containing B, provided the operations on B are effectively locally
uniformly continuous.

We remark that the complete subalgebra B generated by B is modest if B is
modest, even if A is not.

5 Main Theorems

The results of the previous sections give us a method for finding canonical effec-
tive subalgebras of classical algebras. Let A be a classical premetric Σ-algebra.
In general there will be many effective subalgebras B ≤ ∇A, each carving out
a different piece of A with its own effective structure. Our first theorem gives
conditions which severely cut down the number of possibilities. Define the rela-
tion d(x, y) < q for x, y ∈ |A| and q ∈ Q by d(x, y) < q ⇐⇒ ∃ r∈Q . d(x, y) ≤
r ∧ r < q.

Theorem 1. Suppose A is a classical premetric Σ-algebra in which the initial
subalgebra 〈∅〉A is classically dense. Up to isomorphism, there is at most one
effectively complete subalgebra B ≤ ∇A on which the relation d(x, y) < q is
semidecidable.

We omit the proof, and just note that B, if it exists, is the effective completion
of the initial subalgebra 〈∅〉∇A.

When the initial subalgebra 〈∅〉A is not dense, Theorem 1 cannot be applied.
Quite often this can be fixed with a judicious addition of new constants and
operations. For example, the initial subring of the ring C[0, 1] of continuous
real functions on the closed unit interval is the ring of integers (embedded as

13 To be precise, we are talking about an “effectively complete effectively premetric
effective Σ-algebra”.
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constant functions), which is not dense. If we adjoin the identity function and
the constant function 1

2 as primitive constants, the initial subalgebra will be the
ring of polynomials whose coefficients are dyadic rationals,14 which is dense by
the (classical) Stone-Weierstraß theorem.

Another way to deal with non-dense initial subalgebra is to replace 〈∅〉A in
Theorem 1 with a chosen dense subalgebra D ≤ A, but then the statement is
that there is at most one effectively complete subalgebra of ∇A containing ∇D
for which d(x, y) < q is semidecidable.

The next theorem complements Theorem 1 by giving conditions for existence
of subalgebras.

Theorem 2. Let A be a classical complete premetric Σ-algebra. Suppose the
relation d(x, y) < q is semidecidable on 〈∅〉∇A and the operations of 〈∅〉∇A
are effectively locally uniformly continuous. Then ∇A has an effective complete
subalgebra on which the relation d(x, y) < q is semidecidable.

Again, we omit the proof. We know from the previous theorem that the desired
subalgebra must be the completion of 〈∅〉∇A, from which a concrete represen-
tation can be computed: because 〈∅〉∇A is essentially represented by a Gödel
numbering of closed terms, its completion is represented by sequences of (Gödel
codes of) closed terms that are fast Cauchy.

6 Applications

In this section we apply the results to two common scenarios.

6.1 Discrete premetric spaces

The simplest kind of complete premetric algebras are the discrete ones. Let A
be a classical Σ-algebra and define the discrete premetric on |A| by

d(x, y) ≤ q ⇐⇒ (q < 1 =⇒ x = y),

which of course corresponds to the metric that takes on only values 0 and 1. In the
discrete premetric every set is complete and every map is uniformly continuous.
Therefore, half of the conditions in Theorems 1 and 2 are trivially satisfied.
Furthermore, a discrete premetric is semidecidable on B ≤ ∇A if, and only if,
equality is semidecidable on B, because x = y ⇐⇒ d(x, y) < 1 and d(x, y) <
q ⇐⇒ (q > 1 ∨ x = y). Thus we obtain the following result.

Proposition 8. Suppose A is a finitely generated classical Σ-algebra. Up to iso-
morphism, there is at most one effective structure on A for which the operations
and the generators are effective, and equality is semidecidable. Furthermore, if
there is such an effective structure, it is isomorphic to the effective subalgebra
〈{a1, . . . , an}〉∇A of ∇A generated by the generators a1, . . . , an for A.

14 A dyadic rational is one of the form n/2k.
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More precisely, the first part of the proposition states that there is at most one
realizability relation A on the set |A| which turns the classical algebra A into
an effective one15 such that equality is semidecidable. The second part gives an
explicit description of the effective structure, and also implies that the resulting
assembly is modest.

In the context of type 1 effectivity Proposition 8 was first proved by Mal’cev,
see [7] and [8, Theorem 4.1.2]. He actually considered two versions, one with gen-
eral recursive functions and another with partial recursive functions. Our result
corresponds to the partial recursive case because all partial recursive functions
are representable in a PCA.

6.2 The real numbers

The real numbers form a classical ordered field, and a classical complete pre-
metric space with the usual premetric d(x, y) ≤ q ⇐⇒ |x − y| ≤ q. A
slight complication is division because it is a partial operation. The journal
version of this extended abstract will include a proper treatment of partial op-
erations. For now, we circumvent division by viewing the real numbers as a ring
R = (R, 0, 1, 12 ,+,−,×) with a primitive constant 1

2 . The initial subalgebra is
the ring of dyadic rationals, which is dense in R. The relation |x − y| < q is
semidecidable, even decidable when x and y are dyadic rationals and q a ratio-
nal. The operations are easily seen to be effectively locally uniformly continuous.
Thus the conditions of both main theorems are satisfied. Up to isomorphism
there is exactly one effectively complete effective subring R ≤ ∇R on which
the relation d(x, y) < q is semidecidable. We may replace semidecidability of
d(x, y) < q with semidecidability of the strict order relation x < y because
d(x, y) < q ⇐⇒ −q < x− y < q and

x < y ⇐⇒
∃ q, r∈Q .∃ k∈N .

(
d(x, q) < 2−k ∧ d(y, r) < 2−k ∧ q + 2−k+2 < r

)
.

The dyadic rationals have approximate division: for all k ∈ N and dyadic ra-
tionals a and b 6= 0 there exists a dyadic rational c such that d(a, bc) < 2−k.
The completion of a premetric ring with approximate division is always a field,
constructively speaking. By putting all these observations together we get the
following result.

Proposition 9. Up to isomorphism, there is exactly one effectively complete ef-
fective subfield of the real numbers for which the strict linear order is is semide-
cidable.

When the proposition is specialized to type 2 effectivity it gives Hertling’s
result [2] about type 2 representations of reals, while the interpretation in type 1
effectivity corresponds to a result of Moschovakis [1].

15 This means that the operations and generators are realized by elements of A#.
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7 Conclusion

The relation d on a premetric space (X, d) induces a uniform structure on X
whose (basic) entourages are Eq = {(x, y) ∈ X ×X | d(x, y) ≤ q}, for rational
q > 0. This suggests that one should look for a generalization to uniform spaces.
We would first need a suitable constructive treatment of uniform spaces and
their completions.

Another direction which might be worth investigating follows the work of
Blanck et al. [9] who formulated general results about stability of effective al-
gebras in type 1 effectivity. Their theorems do not translate into our settings
easily, because they assume a structure which is not metric, but rather like that
of sequential or limit spaces. Again, to incorporate such results we would require
a constructive theory of limit spaces and their completions.
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Abstract. We prove the correctness of a formalised realisability inter-
pretation of extensions of first-order theories by inductive and coinduc-
tive definitions in an untyped λ-calculus with fixed-points. We illustrate
the use of this interpretation for program extraction by some simple ex-
amples in the area of exact real number computation and hint at further
non-trivial applications in computable analysis.

1 Introduction

This paper studies a realisability interpretation of an extension of first-order
predicate logic by least and greatest fixed points of strictly positive operators.
The main results are the Soundness Theorem for this interpretation and the
Adequacy Theorem for the realisers with respect to a call-by-name operational
semantics and a domain-theoretic denotational semantics. Both results together
imply the Program Extraction Theorem stating that from a constructive proof
one can extract a program that is provably correct and terminating.

In order to get a flavour of the system we discuss some examples within the
first-order theory of real closed fields with the real numbers as intended model.
In the first example we define a set N of real numbers (inductively) as the least
set satisfying

N(0) ∧ ∀x (N(x)→ N(x+ 1))

More formally, N := µX.{x | x = 0 ∨ ∃y (x = y + 1 ∧X(y))}, i.e. N is the least
fixed point of the operator mapping a set X to the set {x | x = 0 ∨ ∃y (x =
y + 1 ∧X(y))}. Clearly, in the intended model N is the set of natural numbers.

For the second example, set I := [−1, 1] = {x | −1 ≤ x ≤ 1}, SD :=
{0, 1,−1}, and avi(x) := (x + i)/2. Define C0 (coinductively) as the largest set
of real numbers satisfying

∀x (C0(x)→ ∃i ∈ SD, y ∈ I (x = avi(y) ∧ C0(y)))

Formally, C0 := νX.{x | ∃i ∈ SD, y ∈ I (x = avi(y) ∧ X(y))}, i.e. C0 is the
greatest fixed point of the operator mapping X to {x | ∃i ∈ SD, y ∈ I (x =
avi(y)∧X(y))}. Classically, one easily shows that C0 = I. Hence the coinductive
definition seems to be unnecessary. However, the point is that in order to prove
constructively C0(x) for x ∈ I, one needs the extra assumption that there is a
rational Cauchy sequence converging to x, and the (coinductive) proof gives us

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 49-60 
http://drops.dagstuhl.de/opus/volltexte/2009/2258
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a (coiterative) program transforming the Cauchy sequence into a signed digit
representation of x.

Our third example extends the previous one to unary functions. Add a new
sort for real functions, and let II denote the set of real functions mapping I to I.
Define a set of real functions by

C1 := νF.µG.{g | ∃i ∈ SD, f ∈ II (g = avi ◦ f ∧ F (f)) ∨ ∀i ∈ SDG(g ◦ avi)}

One can show that C1 coincides with the set of functions in II that are (con-
structively) uniformly continuous on I. Moreover, a constructive proof of C1(f)
contains a program that implements f as a non-wellfounded tree acting as a
(signed digit) stream transformer similar to the structures studied by Ghani,
Hancock and Pattinson [GHP06]. More precisely, this interpretation is the com-
putational content of a constructive proof the formula ∀f (C1(f)→ ∀x (C0(x)→
C0(f(x)))), which is a special case of a constructive composition theorem for
analogous predicates Cn of n-ary functions. Details as well as concrete applica-
tions with extracted Haskell programs will be worked in a forthcoming publica-
tion.

The realisability interpretation we are going to study is related to interpreta-
tions given by Tatsuta [Tat98] and Miranda-Perea [MP05]. We try to point out
the main similarities and differences. Like Tatsuta, we use untyped programs
as realisers that allow for unrestricted recursion. The necessary termination
proof for extracted programs (which seems to be missing in Tatsuta’s paper)
is obtained by a general Adequacy Theorem relating the operational with a
(domain-theoretic) denotational semantics. Miranda extracts typed terms and
uses the more general “Mendler-style” (co)inductive definitions [Men91] which
extract strongly normalising terms in extensions of the second-order polymor-
phic λ-calculus or stronger systems [Mat01,AMU05]. Tatsuta studies realisabil-
ity with truth while we omit the “truth” component. From a practical point
of view the most important difference to Tatsuta’s interpretation is that we
treat quantifiers uniformly in the realisability interpretation (as Miranda-Perea
does): M r∀xA(x) is defined as ∀x (M rA(x)), but not ∀x (M x rA(x)), and
M r ∃xA(x) is defined as ∃x (M rA(x)), but not π2(M) rA(π1(M)). In general,
a realiser never depends on variables of the object language and does not produce
output in that language, i.e. the object language and the language of realisers
are kept strictly separate. Realisers are extracted exclusively from the “propo-
sitional skeleton” of a proof ignoring the first-order part which matters for the
correctness of the realisers only. This widens the scope of applications because
it is now possible to deal with abstract structures that are not necessarily “con-
structively” given. For example the real numbers in our examples above, were
treated abstractly (i.e. axiomatically) without assuming them to be constructed
in a particular way. The ignorance w.r.t. the first-order part can also be seen as a
special case of the interpretations studied by Schwichtenberg [Sch09] and Hernest
and Oliva [HO08] which allow for a fine control of the amount of computational
information extracted from proofs.

We state most of the results without proof. Full proofs will be given in an
extended version of this paper.
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2 Induction and coinduction

We fix a first-order language L. Terms, r, s, t . . ., are built from constants, first-
order variables and function symbols as usual. Formulas, A,B,C . . ., are s = t,
P(t) where P is a predicate (predicates are defined below), A∧B, A∨B, A→ B,
∀xA, ∃xA. A predicate is either a predicate constant P , or a predicate variable
X, or a comprehension term λx.A (sometimes also written {x | A}) where A
is a formula and x is a vector of first-order variables, or an inductive predicate
µX.P, or a coinductive predicate νX.P where P is a predicate of the same arity
as the predicate variable X and which is strictly positive in X, i.e. X does not
occur free in any premise of a subformula of P which is an implication. The
application, P(t), of a predicate P to a list of terms t is a primitive syntactic
construct, except when P is a comprehension term, P = {x | A}, in which case
P(t) stands for A[t/x].

It will sometimes be convenient to write x ∈ P instead of P(x) and also
P ⊆ Q for ∀x (P(x) → Q(x)) and P ∩ Q for {x | P(x) ∧ Q(x)}, etc. We also
write {t | A} as an abbreviation for {x | ∃y (x = t∧A)} where x is a fresh variable
and y = FV(t) ∩ FV(A). Furthermore, we introduce operators Φ := λX.P (or
Φ(X) := P), where P is strictly positive in X, and then write Φ(Q) for the
predicate P[Q/X] where the latter is the usual substitution of the predicate Q
for the predicate variable X. We also write µΦ and νΦ for µX.P and νX.P. For
convenience, we also write A(X) to distinguish a particular predicate variable
X in A, and A(P) for the substitution of every free occurrence of X in A by
P. A formula, predicate, or operator is called non-computational, if it contains
neither free predicate variables nor the propositional connective ∨. Otherwise it
is called computational.

The proof rules are the usual ones for intuitionistic predicate calculus with
equality. In addition, we have the axioms

Closure Φ(µΦ) ⊆ µΦ Induction Φ(Q) ⊆ Q → µΦ ⊆ Q
Coclosure νΦ ⊆ Φ(νΦ) Coinduction Q ⊆ Φ(Q)→ Q ⊆ νΦ

In addition we allow any axioms expressible by non-computational formulas that
hold in the intended model. In particular, it is possible to add all classical non-
computational tautologies as axioms such as, for example, ∃xA ↔ ¬∀x¬A for
non-computational A. We write Γ ` A if A is derivable from assumptions in Γ
in this system. If A is derivable without assumptions we write ` A, or even just
A. We define falsity as ⊥ := µX.X where X is a 0-ary predicate variable (i.e. a
propositional variable). From the induction axiom for ⊥ it follows immediately
⊥ → A for every formula A. The following basic facts are easy to prove.

Lemma 1. (a) If Γ (X) ` A(X), then Γ (P) ` A(P).

(b) If Γ ` Φ(X) ⊆ Ψ(X), then Γ ` µΦ ⊆ µΨ and Γ ` νΦ ⊆ νΨ .

(c) P ⊆ Q → Φ(P) ⊆ Φ(Q).

(d) Φ(µΦ) = µΦ and Φ(νΦ) = νΦ.
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3 Realisability

The realisers of formulas are terms of a LISP-like untyped λ-calculus with pair-
ing, injections and recursion (which in Sect. 5 will however receive a call-by-name
operational semantics). Program-terms, M,N,K,L,R . . . (terms for short) are
variables x, y, z, . . ., the constant (), and the composite terms 〈M,N〉, inl(M),
inr(M), λx.M , πi(M) (i = 1, 2), caseM of{inl(x) → L ; inr(y) → R}, (M N),
recx .M . The free variables of a term are defined as usual (the constructs λx,
recx and inl(x) →, inr(x) → in a case term bind the variable x). The usual
conventions concerning bound variables apply.

Of particular interest are closed terms that are built exclusively from () by
pairing 〈·, ·〉 and the injections inl(·) inr(·). We call these terms data and denote
them by d, e, . . .. Roughly speaking, data stand for themselves and will in any
reasonable denotational semantics coincide with their value. In Section 5 we
will study such a denotational and also an operational semantics for arbitrary
program terms and prove an Adequacy Theorem.

In order to formalise realisability we need a system that can talk about math-
ematical objects and realisers. Therefore we extend our first-order language L to
a language r(L) by adding a new sort for program terms. All logical operations,
including inductive and coinductive definitions, are extended as well. All axioms
and rules for L, including closure, induction, coclosure and coinduction and the
rules for equality, are extended mutatis mutandis for r(L). In addition, we have
as extra axioms the equations

case inl(M) of{inl(x)→ L ; inr(y)→ R} = L[M/x] similarly for inr(M),

πi(〈M1,M2〉) = Mi, (λx.M)N = M [N/x], recx .M = M [recx .M/x]

The realisability interpretation assigns to every L-formula A a unary r(L)-
predicate r(A). Intuitively, for any program term M the r(L)-formula r(A)(M)
(sometimes also writtenM rA) states thatM “realises” A. The definition of r(A)
is relative to a fixed one-to-one mapping from L-predicate variables X to r(L)-
predicate variables X̃ with one extra argument place for program terms. The
definition of r(A) is such that if the formula A has the free predicate variables
X1, . . . , Xn, then the predicate r(A) has the free predicate variables X̃1, . . . , X̃n.
Simultaneously with r(A) we define a predicate r(P) for every predicate P,
where r(P) has one extra argument place for program terms. In the definitions
we take special care of non-computational formulas and predicates in order to
get optimised realisers. If A is non-computational, then r(A) = {() | A}. If P is
non-computational, then r(P) = {((),x) | P(x)}. In all other cases:

r(P(t)) = {x | r(P)(x, t)} r(A→ B) = {f | f(r(A)) ⊆ r(B)}
r(A ∨B) = inl(r(A)) ∪ inl(r(B)) r(A ∧B) = 〈r(A), r(B)〉
r(∃y A) = {x | ∃y (r(A)(x))} r(∀y A) = {x | ∀y (r(A)(x))}

r(X) = X̃ r({x | A}) = {(y,x) | r(A)(x)}
r(µX.P) = µX̃.r(P) r(νX.P) = νX̃.r(P)

If one uses for operators Φ = λX.P the notation r(Φ) := λX̃.r(P) one can
shorten the last two clauses to r(µΦ) = µr(Φ) and r(νΦ) = νr(Φ).
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We call a L-formula a data formula if it contains no free predicate vari-
ables and every subformula which is an implication or of the form νΦ(t) is
non-computational. We also define inductively a unary predicate Data by

Data = {()} ∪ inl(Data) ∪ inr(Data) ∪ 〈Data,Data〉

Lemma 2 (Data formulas). r(A) ⊆ Data for every data formula A.

Proof. One shows more generally: if A is a formula such that every subfor-
mula which is an implication or of the form νΦ(t) is non-computational, then
r(A)(Data′) ⊆ Data, where r(A)(Data′) is obtained from r(A) by replacing
every n + 1-ary r(L)-predicate variable X̃ by the predicate Data′ := {(x,y) |
Data(x)}. The easy proof is by induction on the structure of A.

Theorem 1 (Soundness). From a closed derivation of a formula A one can
extract a program term M and a derivation of r(A)(M).

We prove the Soundness Theorem in the next chapter.

Let us see what we get when we apply realisability to our examples from the
Introduction. In the first example, r(N) is the least relation such that

r(N) = {(inl(()), 0)} ∪ {(inr(n), x+ 1) | r(N)(n, x)}

Hence, we have for a data d and x ∈ R that d rN(x) holds iff x is a natural
number and d = x := inrx(inl(()))), i.e. d is a unary representation of x.

In the second example we first note that the formula SD(i) is shorthand for
the formula i = 0 ∨ i = 1 ∨ i = −1. Hence for suitable data di (i ∈ SD) we have
that r(C0) is the largest predicate such that

r(C0) = {(〈di, a〉, avi(y)) | i ∈ SD, y ∈ I, r(C0)(a, y)}

Hence, semantically, r(C0)(a, y) means that a = a0, a1, . . . is an infinite stream
of digits ai ∈ {0, 1,−1} such that y = Σ∞i=02−(i+1) ∗ ai.

In the third example we have

r(C1) = νF̃ . µG̃ . {(〈di, t〉, avi ◦ f) | i ∈ SD, f ∈ II, F̃ (t, f)} ∪
{(〈t0, t1, t−1〉, f) | ∀i ∈ SD G̃(ti, g ◦ avi)}

One sees that a realiser of C1(f) is a non-wellfounded tree with two kinds of
nodes: “writing nodes” labelled with (a representation of) a signed digit, which
means the algorithm writes that digit to the output without reading the input
stream, and “reading nodes” where the tree branches into three subtrees meaning
that the algorithm reads the first digit of the input stream and continuous with
the branch corresponding to the digit read and the tail of the input stream. Due
to the inner “µG̃” infinitely many writing nodes occur on each path through the
tree ensuring that in the limit an infinite output stream is produced.
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4 Proof of the Soundness Theorem

The main task in proving the Soundness Theorem (Thm. 1) is to define the
realisers of induction and coinduction and to prove their correctness.

We define program terms mapX,A, mapX,P , ItfixX .P , and CoitfixX .P ,
where X is a predicate variable, A is formula and P is a predicate, both strictly
positive in X. In Lemma 6 we will show that mapX,P realises the monotonic-
ity of P w.r.t. X. The terms ItfixX .P and CoitfixX .P will be used to realise
induction and coinduction. In [MP05] the iterators and coiterators are given as
constants which expect map-terms as extra arguments, and the property stated
in Lemma 6 is an assumption in the Soundness Theorem.

Here, the terms mapX,A, mapX,P , ItfixX .P , and CoitfixX .P are defined by
recursion on the structure of A and P. We write M ◦N as an abbreviation for
λx.M(N x) where x is fresh. mapX,A = mapX,P = λfλx . x if X is not free in
A or P. Otherwise:

mapX,P(t) = mapX,P

mapX,A∧B = λfλx . 〈mapX,Af (π1(x)),mapX,Bf (π2(x))〉
mapX,A∨B = λfλx . casex of{inl(y)→mapX,A f y ; inr(z)→mapX,B f z}
mapX,A→B = λfλg .mapX,B f ◦ g
mapX,{x|A} = mapX,A

mapX,X = λf . f

mapX,µY.P = λf . ItfixY .P(mapX,Pf)

mapX,νY.P = λf .CoitfixY .P(mapX,Pf)

ItfixX .P = λs . rec g . s ◦mapX,Pg

CoitfixX .P = λs . rec g .mapX,Pg ◦ s

Lemma 3. (a) ItfixX .Ps = s ◦mapX,P(ItfixX .Ps)
(b) CoitfixX .Ps = mapX,P(CoitfixX .Ps) ◦ s
(c) mapX,µY.Pg = mapX,Pg ◦mapY,P(mapX,µY.Pg)
(d) mapX,νY.Pg = mapY,P(mapX,νY.Pg) ◦mapX,Pg

Proof. Easy calculation using the equational axioms for the calculus.

Lemma 4 (Substitution). r(Φ)(r(Q)) = r(Φ(Q)) for every operator Φ and
predicate Q.

Proof. Straightforward induction on the (syntactic) size of Φ.

In the next lemmas we consider predicates in the language r(L) whose first
arguments range over predicate terms. The following definitions will be used:

P ◦ f := {(x,y) | (f x,y) ∈ P} f ∗ P := {(f x,y) | (x,y) ∈ P}

Clearly, (P ◦ f) ◦ g = P ◦ (f ◦ g) and f ∗ (g ∗ P) = (f ∗ g) ∗ P. The rationale
for the first of the two definitions is that r(P ⊆ Q) = {f | r(P) ⊆ r(Q) ◦ f}.



Realisability and Adequacy for (Co)induction 55

and the Induction Axiom is an implication between inclusions of predicates. The
following easy lemma shows that the two definitions are adjoints. This will allow
us to treat induction and coinduction in a similar way.

Lemma 5 (Adjunction). Q ⊆ P ◦ f ⇔ f ∗ Q ⊆ P

Lemma 6 (Map). Let Φ be an operator in the language L. and X a fresh
predicate variable. Then mapX,Φ(X) realises the monotonicity of Φ, that is

mapX,Φ(X) r (P ⊆ Q → Φ(P) ⊆ Φ(Q))

for all L-predicates P and Q. By the definition of realisability and the Adjunction
Lemma this is equivalent to each of the following two statements about arbitrary
r(L)-predicates P and Q of appropriate arity and all f :

(a) P ⊆ Q ◦ f → r(Φ)(P) ⊆ r(Φ)(Q) ◦mapX,Φ(X)f
(b) f ∗ P ⊆ Q →mapX,Φ(X)f ∗ r(Φ)(P) ⊆ r(Φ)(Q)

Furthermore, setting in (a) P := Q ◦ f and in (b) Q := f ∗ P one obtains

(c) r(Φ)(Q ◦ f) ⊆ r(Φ)(Q) ◦mapX,Φ(X)f
(d) mapX,Φ(X)f ∗ r(Φ)(P) ⊆ r(Φ)(f ∗ P)

Proof. We show a slight generalisation of (a). Let Φ be an operator of n+ 1 ar-
guments, and X,Y fresh predicate variables. Let Q = Q1, . . . ,Qn be predicates
in the language r(L). Then for all f , P, Q

P ⊆ Q ◦ f → r(Φ)(P,Q) ⊆ r(Φ)(Q,Q) ◦mapX,Φ(X)f

The proof is by induction on the structure of Φ(X,Y ). In the proof we allow
ourselves to switch between (a) and (b) whenever convenient. We only carry out
in detail the difficult cases, namely when Φ is defined by induction or coinduction.

Case Φ(X,Y ) = µZ.Φ0(X,Y , Z). Then r(Φ)(X̃, Ỹ ) = µZ̃.r(Φ0)(X̃, Ỹ , Z̃).
Assume P ⊆ Q ◦ f . Setting R := r(Φ)(Q,Q) = µZ̃.r(Φ0)(Q,Q, Z̃), we have to
show µZ̃.r(Φ0)(P,Q, Z̃) ⊆ R◦mapX,Φ(X,Y )f . We induct on µZ̃.r(Φ0)(P,Q, Z̃).
Hence, we have to show r(Φ0)(P,Q,R ◦mapX,Φ(X,Y )f) ⊆ R ◦mapX,Φ(X,Y )f .

r(Φ0)(P,Q,R ◦mapX,Φ(X,Y )f)

i.h.(c)
⊆ r(Φ0)(P,Q,R) ◦mapZ,Φ0(X,Y ,Z)(mapX,Φ(X,Y )f)

i.h.(a)
⊆ r(Φ0)(Q,Q,R) ◦mapX,Φ0(X,Y ,Z)f ◦mapZ,Φ0(X,Y ,Z)(mapX,Φ(X,Y )f)

L. 3 (c)
= r(Φ0)(Q,Q,R) ◦mapX,Φ(X,Y )f

= r(Φ0)(Q,Q, µZ̃.r(Φ0)(P,Q, Z̃)) ◦mapX,Φ(X,Y )f

Fixed P.
= µZ̃.r(Φ0)(Q,Q, Z̃) ◦mapX,Φ(X,Y )f

= R ◦mapX,Φ(X,Y )f
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Case Φ(X,Y ) = νZ.Φ0(X,Y , Z). Then r(Φ)(X̃, Ỹ ) = νZ̃.r(Φ0)(X̃, Ỹ , Z̃).
Obviously, it is now more convenient to show (b). Assume f∗P ⊆ Q. SettingR :=
r(Φ)(P,Q) = νZ̃.r(Φ0)(P,Q, Z̃) we use coinduction to show mapX,Φ(X,Y )f ∗
R ⊆ νZ̃.r(Φ0)(Q,Q, Z̃). The proof is exactly dual to the inductive proof above
(using the i.h. in the form (d) and (b)).

Proof of the Soundness Theorem (Thm. 1). As usual, one shows by in-
duction on derivations the following more general statement: From a derivation
B1, . . . , Bn ` A one can extract a program term M with free variables among
x1, . . . , xn such that r(B1)(x1), . . . , r(Bn)(xn) ` r(A)(M). The only interesting
cases are induction and coinduction.

Induction. By the Substitution Lemma, we have

r(Φ(Q) ⊆ Q → µΦ ⊆ Q) = {f | ∀s (r(Φ)(r(Q)) ⊆ r(Q)◦s→ µr(Φ) ⊆ r(Q)◦fs)}

Hence, in order to show that Itϕ(α) (=: M) realises induction, we assume

r(Φ)(r(Q)) ⊆ r(Q) ◦ s

and show µr(Φ) ⊆ r(Q) ◦ Itϕ(α)s. We use induction on µr(Φ), which reduces the
problem to showing r(Φ)(r(Q) ◦ Itϕ(α)s) ⊆ r(Q) ◦ Itϕ(α)s.

r(Φ)(r(Q) ◦ Itϕ(α))s
Map Lemma (c)

⊆ r(Φ)(r(Q)) ◦mapϕ(α)(Itϕ(α)s)

assumption
⊆ r(Q) ◦ s ◦mapϕ(α)(Itϕ(α)s)

Lemma 3 (a)
= r(Q) ◦ Itϕ(α)s

Coinduction. Similar, using the Map Lemma (d) and Lemma 3 (b).

5 Semantics of program terms

Now we study a call-by-name operational semantics of program terms which al-
lows us to use the program terms extracted from a formal proof to compute data.
As an intermediate step we employ a domain-theoretic denotational semantics.
The denotational semantics is of independent interest since it directly reflects
the intuitive mathematical meaning of program terms.

By a domain a Scott-domain, i.e. an algebraic, countably based, bounded
complete, dcpo [GHK+03]. Note that every domain has a least element ⊥ w.r.t.
the domain ordering v. Let D be the least solution of the domain equation

D = 1 +D +D +D ×D + [D → D]

where 1 is the one-point domain {()}, and +,×, [· → ·] denote the usual domain
operations, separated sum, cartesian product, and continuous function space (of
course, the domain equation holds only “up to isomorphism”). Hence, every
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element of D is of exactly one of the following forms: ⊥, (), inl(a), inr(a), 〈a, b〉,
abst(f), where a, b ∈ D and f ∈ [D → D]. It follows from standard facts in
domain theory that every program term M defines in a natural way a continuous
function [[M ]] : DVar → D. For example, [[λx.M ]]ξ = abst(f) where f(a) =
[[M ]]ξ[x 7→ a] and [[recx .M ]]ξ is the least fixed point of f . Furthermore, if [[M ]]ξ =
abst(f), then [[M N ]]ξ = f([[N ]]ξ), otherwise the result is ⊥.

If Ax is a set of non-computational L-axioms we denote by r(Ax) the system
of r(L)-axioms consisting of the axioms in Ax together with the extra axioms
introduced in Sect. 3. IfM is a model of Ax, then we denote by r(M) the obvious
expansion of M to a model of r(Ax) using the definition above of the value of
a program term. Again, it follows from standard results in domain theory that
r(M) satisfies the axioms for program terms and hence is indeed a model of
r(Ax). Note that in this model the interpretation of the predicate Data defined
in Sect. 3 is the least subset [[Data]] of D such that

[[Data]] = {()} ∪ inl([[Data]]) ∪ inr([[Data]]) ∪ 〈[[Data]], [[Data]]〉

Hence, if Data(M) is provable, then [[M ]] ∈ [[Data]].
Now we introduce the operational semantics of program terms. A closure is

a pair (M,η) where M is a program term and η is an environment, i.e. a finite
mapping from variables to closures, such that all free variables of M are in the
domain of η. Note that this is an inductive definition on the meta-level. A value
is a closure (M,η) where M is an intro term, i.e. a term of the form (), or
inl(M0), or inr(M0), or 〈M1,M2〉, or λx.M0. We let c, c′, . . . range over closures
and v, v′, . . . range over values. We inductively define the relation c −→ v (big-
step reduction):

v −→ v
η(x) −→ v

(x, η) −→ v

(M,η) −→ (inl(M0), η′) (L, η[x 7→ (M0, η
′)]) −→ v

(caseM of{inl(x)→ L ; inr(y)→ R}, η) −→ v
sim. inr(M0).

(M,η) −→ (〈M1,M2〉, η′) (Mi, η) −→ v

πi(M) −→ v

(M,η) −→ (λx.M0, η
′) (M0, η

′[x 7→ (N, η)]) −→ v

(M N, η) −→ v

(M,η[x 7→ (recx .M, η)]) −→ v

(recx .M, η) −→ v

Finally, in order to compute data we need a ‘print’ relation c =⇒ d between
closures c and data terms d.

c −→ ((), η)

c =⇒ ()

c −→ (inl(M), η) (M,η) =⇒ d

c =⇒ inl(d)
sim. inr(M)

c −→ (〈M1,M2〉, η) (M1, η) =⇒ d1 (M2, η) =⇒ d2

c =⇒ 〈d1, d2〉
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The inductive definition of c =⇒ d gives rise to an algorithm computing d from
c in a call-by-name fashion. It follows that whenever M =⇒ d, then in a call-
by-name language such as Haskell the evaluation of the program corresponding
will terminate with a result corresponding to d.

To every closure c we assign a term c by ‘flattening’, i.e. removing the struc-
ture provided by the nested environments: (M,η) = M [η(x)/x | x ∈ dom(η)].

Lemma 7 (Correctness).

(a) If c −→ v, then c = v is provable.
(b) If c =⇒ d, then c = d is provable.

Theorem 2 (Adequacy). If [[M ]] = d, then (M, ∅) =⇒ d.

The proof of the Adequacy Theorem is uses a technique that has been used for
a similar purpose in [Win93] and [CS06]. It can be viewed as transformation of
Plotkin’s Adequacy Theorem for PCF [Plo77] to the untyped setting. To carry
out the proof, we first exploit the algebraicity of the domain D. Every element of
D is the directed supremum of compact elements, which are generated at some
finite stage in the construction of D. Let D0 be the set of compact elements of
D. There is a rank function rk(·) : D0 → N satisfying:

(rk1) The images of the injections inl(·), inr(·), and the pairing function 〈·, ·〉 are
compact iff their arguments are. Injections and pairing increase rank.

(rk2) If abst(f) is compact, then for every a ∈ D, f(a) is compact with rk(f(a)) <
rk(abst(f)), and there exists a compact a0 v a with rk(a0) < rk(abst(f))
and f(a0) = f(a).

These properties allow us to define for every compact a a set Cl(a) of closures,
by recursion on rk(a): Cl(⊥) is the set of all closures, otherwise

Cl(()) = {c | ∃η (c −→ ((), η))}
Cl(inl(a)) = {c | ∃(M,η) ∈ Cl(a) (c −→ (inl(M), η))}
Cl(inr(a)) = {c | ∃(M,η) ∈ Cl(a) (c −→ (inr(M), η))}

Cl(〈a1, a2〉) = {c | ∃M1,M2, η ((M1, η) ∈ Cl(a1) ∧ (M2, η) ∈ Cl(a2) ∧
c −→ (〈M1,M2〉, η))}

Cl(abst(f)) = {c | ∃x,M, η (c −→ (λx.M, η) ∧ ∀a ∈ D0 (rk(a) < rk(abst(f))

→ ∀c′ ∈ Cl(a) (M,η[x 7→ c′]) ∈ Cl(f(a))))}

Alternatively, one could use Pitt’s method [Pit94] to define similar “candidate”
sets. Using (rk1) and (rk2) one can prove:

Lemma 8. (a) If a, b are compact with a v b, then Cl(a) ⊇ Cl(b).
(b) c ∈ Cl(a) iff there exists a value v with c −→ v and v ∈ Cl(a).
(c) If c ∈ Cl(d), where d is a data, then c =⇒ d.

In the following we write η ∈ Cl(ξ) if for all x ∈ dom(η), ξ(x) is compact and
η(x) ∈ Cl(ξ(x)).



Realisability and Adequacy for (Co)induction 59

Lemma 9 (Approximation). If η ∈ Cl(ξ) and a is compact with a v [[M ]]ξ,
then (M,η) ∈ Cl(a).

Proof. Let [[M ]]nξ denote the n-th stage in the definition of [[M ]]ξ. Hence, [[M ]]0ξ =
⊥ and e.g. [[λx.M ]]n+1ξ(a) = [[M ]]nξ[ 7→ a], e.t.c. Since the [[M ]]nξ form an in-
creasing chain inD with [[M ]]ξ as its supremum, it follows that if a is compact and
a v [[M ]]ξ, then a v [[M ]]nξ for some n. Hence, it is enough to show by induction
on n that if η ∈ Cl(ξ) and a is compact with a v [[M ]]nξ, then (M,η) ∈ Cl(a).

Proof of the Adequacy Theorem (Thm. 2). Assume [[M ]] = d for some data
d. Since d is compact, it follows, by the Approximation Lemma, (M, ∅) ∈ Cl(d).
Hence (M, ∅) =⇒ d, by Lemma 8 (c).

Theorem 3 (Program extraction). From a proof of a data formula A one
can extract a program term M with the property that (M, ∅) =⇒ d for some data
d provably realising A, i.e. r(A)(d) is provable.

Proof. By the Soundness Theorem, we obtain from a proof of A a program term
M and a proof of r(A)(M). By Lemma 2, Data(M) is provable and therefore true
in D, i.e. [[M ]] = d for some data d. By the Adequacy Theorem, (M, ∅) =⇒ d,
and by Lemma 7, M = d is provable. It follows that r(A)(d) is provable.

6 Conclusion and further work

In this paper we laid the logical and semantical foundations for the extraction of
programs from proofs involving inductive and coinductive definitions. The main
results where the Soundness Theorem for a realisability interpretation stating
that the extracted program provably realises the proven formula, and the Ad-
equacy Theorem stating that for data formulas the realisers can be computed
into canonical form via a call-by-name operational semantics.

We restricted ourselves to simple examples illustrating the method. More sub-
stantial applications are to be published in forthcoming papers. Strictly speak-
ing our results do not apply to loc. cit. because there realisers are typed (with
Haskell or ML style polymorphic types) while our realisers are untyped. We
plan to recast our results with typed realisers, which will probably technically
more complicated, but will have the advantage that the category-theoretic jus-
tification of induction and coinduction can be used to “derive” the realisability
interpretation. Moreover, this will allow for a direct interpretation of realisers as
programs in a call-by-name typed programming language such as Haskell.

A major piece of work that remains to be done is to implement the re-
alisability interpretation in an interactive theorem prover and carry out case
studies. We expect this to tie in nicely with recent work on implementations
of inductive and coinductive definitions and proofs [CDG06,Ber07], exact real
arithmetic [MRE07,GNSW07,EH02,Sch09], realisability [BS07], and functional
interpretation [HO08].
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Abstract. A summability theorem of Landau, which classically is a
simple consequence of the uniform boundedness theorem, is examined
constructively.

Edmund Landau (1877–1938) is known for many contributions to mathemat-
ics. In this paper we examine his summability theorem,

If p, q are conjugate exponents—positive integers such that 1
p + 1

q =

1—and if a = (an)n>1 is a sequence in C such that
∑∞
n=1 anxn con-

verges for each x = (xn)n>1 in the Banach space lp, then a ∈ lq,

from the viewpoint of Bishop’s constructive mathematics (BISH)—that is,
mathematics developed with intuitionistic logic and a suitable set-theoretic foun-
dation such as the Aczel-Rathjen-Myhill CST [1, 13].

The standard functional-analytic proof goes as follows. For each x = (xn)n>1

in lp and each k define

sk(x) =

k∑
n=1

anxn.

Then

|sk(x)| 6

(
k∑

n=1

|an|q
)1/q ( k∑

n=1

|xp|p
)1/p

6

(
k∑

n=1

|an|q
)1/q

‖x‖p ,

from which it follows that sk is a bounded linear functional on lp with norm

‖sk‖ =

(
k∑

n=1

|an|q
)1/q

.
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Also, the sequence (sk(x))k>1 converges in C and so is bounded. Applying the
uniform boundedness theorem to the sequence (sk)k>1 , we now obtain M > 0

such that ‖sk‖ 6 M for each k. The partial sums of the series
∑∞
n=1 |an|

q
are

therefore bounded, so the series converges in R.
From a constructive viewpoint, there are two problems with this proof. First,

the uniform boundedness theorem in the form applied there is not the construc-
tive one. Secondly, boundedness of the partial sums of a series of positive terms
is not enough to ensure its convergence (see pages 60–64 of [5]). In fact, a Brouw-
erian example shows that Landau’s summability theorem in its classical form is
not constructively valid: under its hypotheses we cannot even prove, in general,
that an → 0 as n → ∞. To see this, take a as a binary sequence with at most
one term equal to 1, and consider the case p = q = 2. The series

∑∞
n=1 anxn

certainly converges for each x in l2. But if an → 0 as n → ∞, we can find N
such that an = 0 for all n > N ; by testing a1, . . . , aN , we can decide whether
an = 0 for all n or there exists n such that an = 1. Thus the statement

For each sequence a of complex numbers, if
∑∞
n=1 anxn converges for all

x ∈ l2, then a ∈ l2

implies the essentially nonconstructive limited principle of omniscience,

LPO: For each binary sequence a, either an = 0 for all n or else there
exists n such that an = 1 .

At this stage, it remains a possibility that, under the hypotheses of Lan-
dau’s theorem, the series

∑∞
n=1 |an|

q
has bounded partial sums. To explore this

possibility, we need some background information from constructive functional
analysis.

A linear functional φ on a normed space X is said to be normed (or
normable) if its norm

‖φ‖ = sup {‖φ(x) : x ∈ X, ‖x‖ 6 1‖}

exists. Every linear functional on a finite-dimensional Banach space is normed;
but if the same holds for an infinite-dimensional Hilbert space, then we can prove
LPO. The following is the constructive version of the representation theorem
for lp spaces ([3], Chapter 7, Theorem (3.25)).

Theorem 1. If p, q are conjugate exponents, then a bounded linear functional
φ on lp is normed if and only if there exists a (perforce unique) vector a ∈ lq
such that φ(x) =

∑∞
n=1 anxn for each x ∈ lp, in which case ‖φ‖ = ‖a‖q .

We shall also need the constructive uniform boundedness theorem:

Theorem 2. Let (Tn)n>1 be a sequence of bounded linear mappings from a Ba-
nach space X into a normed space Y, such that ‖Tn‖ → ∞ as n → ∞. Then
there exists x ∈ X such that the sequence (‖Tnx‖)n>1 is unbounded.
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Proof. See [6] (Corollary 6.2.12) or [14].

The next result follows from Theorem 7 of [8]. We include the proof here
to clarify the role played by the uniform boundedness theorem in our work, is
a general one with a corollary classically equivalent to Landau’s summability
theorem.

Theorem 3. Let (Tn)n>1 be a sequence of bounded linear mappings of a sepa-
rable Banach space X into a normed space Y, converging pointwise to a linear
mapping T : X → Y. Then T is sequentially continuous.

Proof. Let (xn)n>1 be a sequence converging to 0 in X, and let ε > 0. By
Ishihara’s tricks [8] (Lemma 2), either ‖Txn‖ < ε for all sufficiently large n
or else ‖Txn‖ > ε/2 for infinitely many n. It suffices to rule out the latter
alternative. To that end, we may suppose that ‖Txn‖ > ε/2 and ‖xn‖ < 1/n for

each n. Then yn = ‖xn‖−1 xn is a unit vector such that ‖Tyn‖ > nε/2. Since
Tnx → Tx for each x ∈ X, we can construct inductively a strictly increasing
sequence (nk)k>1 of positive integers such that ‖Tnk

yk‖ > kε/2 for each k.
Applying the uniform boundedness theorem, we obtain a unit vector y ∈ X such
that the sequence (‖Tnk

y‖)k>1 is unbounded. This is absurd, since Tnk
y → Ty

as k →∞.

Corollary 1. Let p be a positive integer, and a a sequence of complex numbers
such that

f(x) =

∞∑
n=1

anxn (1)

converges for each x ∈ lp. Then f is a sequentially continuous linear functional
on lp.

Proof. Noting that

fk(x) =

k∑
n=1

anxn

defines a normed, and hence sequentially continuous, linear functional on X with

‖fk‖ =

(
k∑

n=1

|ak|q
)1/q

,

we apply Theorem 3 with X = lp.

Observe that the linear functional f in this corollary is continuous/bounded
if and only the partial sums of the series

∑∞
i=1 |ai|

q
are bounded. Indeed, if f

has a bound c > 0 and k is any positive integer, then, taking

x =
(
a∗1 |a1|

q−2
, . . . , a∗k |ak|

q−2
, 0, 0, . . .

)
,
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we obtain

k∑
n=1

|an|q =

k∑
n=1

anxn = f(x)

6 c ‖x‖p = c

(
k∑

n=1

∣∣∣a∗n |an|q−2∣∣∣p
)1/p

= c

(
k∑

n=1

|an|p(q−1)
)1/p

= c

(
k∑

n=1

|an|q
)1/p

and therefore (
k∑

n=1

|an|q
)1/q

=

(
k∑

n=1

|an|q
)1−1/p

6 c.

Conversely, if c is a positive number such that cq is a bound for the partial sums
of
∑∞
n=1 |an|

q
, then for each x ∈ l2 and each k we have

|f (x1, x2, . . . , xk, 0, 0, . . .)| =

∣∣∣∣∣
k∑

n=1

anxn

∣∣∣∣∣
6

(
k∑

n=1

|an|q
)1/q ( k∑

n=1

|xn|p
)1/p

6 c ‖x‖p .

Since (by Corollary 1) f is sequentially continuous and

x = lim
k→∞

(x1, x2, . . . , xk, 0, 0, . . .)

in lp, it follows that |f(x)| 6 c ‖x‖p. Thus our suggestion that, under the hy-

potheses of Landau’s theorem, the series
∑∞
n=1 |an|

q
has bounded partial sums

is equivalent to the corresponding linear functional, defined at (1), being contin-
uous. This equivalence, taken with work of Ishihara [7], suggests that we bring
into play the following notions.

We say that a subset S of N is pseudobounded if limn→∞ n−1sn = 0 for
each sequence (sn)n>1 in S. Following Ishihara [7], we consider the principle

BD-N Every inhabited, countable, pseudobounded subset of the set N+ of
positive integers is bounded,

which holds in the intuitionistic and recursive models of BISH, but, being inde-
pendent of Heyting arithmetic [12], is not provable within BISH. In [7], Ishihara
proved that the statement ‘Every sequentially continuous linear mapping from a
separable metric space into a metric space is pointwise continuous’ is equivalent
to BD-N.

Our next result (whose proof has, unsurprisingly, some similarities to that of
Lemma 20 in [9]) belongs to constructive reverse mathematics, a relatively new
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field in which theorems are classified according to their equivalence, over some
formal or (in this case) informal system for constructive mathematics, to certain
principles such as BD-N. For more on this topic, see [10].

Theorem 4. The following statement is equivalent to BD-N.

(*) If p, q are conjugate exponents, and a is a sequence of complex numbers such
that

f(x) =

∞∑
n=1

anxn

converges for each x ∈ lp, then
∑∞
n=1 |an|

q
has bounded partial sums.

Proof. The implication from BD-N to (*) is a consequence of Corollary 1 and
the result of Ishihara mentioned immediately before the statement of this propo-
sition. For the reverse implication, assume (*) and let

S ≡ {s1, s2, . . .}

be an inhabited, countable, pseudobounded subset of N. Without loss of gener-
ality, we may assume that s1 6 s2 6 · · · . Setting

b1 ≡ q
√
s1, bn+1 ≡ q

√
sn+1 − sn,

we need only prove that
∑∞
n=1 bnxn converges for each x ∈ lp: for then the partial

sums of the series
∑∞
n=1 |bn|

q
are bounded, which implies the boundedness of

the set S. Accordingly, fix x ∈ lp; we may assume that xn > 0 for each n. Let
(nk)k>1 be a strictly increasing sequence of positive integers such that

∞∑
n=nk

|xn|p <
(

1

2k+1k

)p
(2)

for each k. Define

Ik ≡ {nk, nk + 1 , . . . , nk+1 − 1} .

Since S is pseudobounded, there exists κ such that snk+1
< k for all k > κ. For

k′ > k > κ we have∣∣∣∣∣
nk′∑
n=nk

bnxn

∣∣∣∣∣ 6
k′∑
j=k

∑
i∈Ij

bixi

 6
k′∑
j=k


q

√∑
i∈Ij

|bi|q p

√∑
i∈Ij

|xi|p


6
k′∑
j=k

sj+1

2j+1j
6

k′∑
j=k

2−j−1 < 2−k.

It readily follows that the partial sums of
∑∞
n=1 bnxn form a Cauchy sequence,

and hence that the series converges in C.
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Perhaps the most significant aspect of Theorem 4 is this: in contrast to Ishi-
hara’s original result relating BD-N and the passage from sequential to point-
wise continuity, a result proved using a relatively strange space as the domain of
the sequentially continuous mapping, Theorem 4 uses one of the standard spaces
in functional analysis.

Our next result confirms that the use of the classical uniform boundedness
theorem in proving Landau’s theorem is not just a matter of convenience.

Proposition 1. Statement (*) of Theorem 4 is equivalent to the classical uni-
form boundedness theorem in the form

UBTc If (Tn)n>1 is a sequence of bounded linear mappings of a Banach space X
into a Banach space Y such that

{Tnx : n > 1}

is bounded for each x ∈ X, then {‖Tn‖ : N > 1} is bounded.

Proof. Ishihara [11] has shown that UBTc is equivalent to BD-N. The result
now follows from Theorem 4.

The question now arises: what can we say about Landau’s theorem without
assuming BD-N? The next three lemmas take some distance in the direction of
an answer.

Lemma 1. Let p, q be conjugate exponents, let a be a sequence of complex num-
bers such that

∑∞
n=1 anxn converges for each x in lp, and let φ : N+ → R+ be

a strictly increasing mapping such that φ(k)→∞ as k →∞. Let (λk)k>1 be an
increasing binary sequence such that if λk = 1 − λk−1, then there exists ν > k
such that

∑ν
n=1 |an|

q
> φ(k). Then either λk = 0 for all k or else there exists K

such that λK = 1.

Proof. Let u be a unit vector in lq, set λ0 = 0, and define a sequence (fk)k>1

of normed linear functionals on lp as follows. For each positive integer k if λk =
λk−1, define

fk(x) = k

∞∑
n=1

unxn (x ∈ lp)

and note that ‖fk‖ = k. If λk = 1 − λk−1, then, choosing ν > k such that∑ν
n=1 |an|

q
> φ(k), define

fk(x) =

ν∑
n=1

anxn (x ∈ lp)

and note that ‖fk‖ > (φ(k))
1/q

. Clearly, ‖fk‖ → ∞ as k →∞; so, by Theorem
2, there exists a unit vector x ∈ lp such that |fk(x)| → ∞ as k → ∞. Since∑∞
n=1 anxn converges, there exists K such that

|fk(x)| > 1 +

∣∣∣∣∣
k∑

n=1

anxn

∣∣∣∣∣ (k > K) . (3)
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Suppose that λk = 1−λk−1 for some k > K. Then fk(x) =
∑ν
n=1 anxn for some

ν > k, which is absurd in view of (3). Hence λk = λK for all k > K, from which
the desired conclusion follows.

Lemma 2. Let p, q be conjugate exponents, let a be a sequence of complex num-
bers such that

∑∞
n=1 anxn converges for each x in lp, and let φ : N+ → R+ be

a strictly increasing mapping such that φ(n) → ∞ as n → ∞. Let (λk)k>1 be
an increasing binary sequence, and (nk)k>1 an increasing sequence of positive

integers, such that if λk = 0, then
∑nk

n=1 |an|
q
> φ(k) − 1. Then there exists K

such that λK = 1.

Proof. Again let u be a unit vector in lp and set λ0 = 0. This time, for each x in
lp we define fk(x) =

∑nk

n=1 anxn if λk = 0, and fk(x) = k
∑∞
n=1 unxn if λk = 1.

This produces a sequence (fk)k>1 of normed linear functionals on lp such that
‖fk‖ → ∞ as k → ∞. Using Theorem 2, we produce a unit vector x in lp such
that |fk(x)| → ∞ as k → ∞. Since

∑∞
n=1 anxn converges, there exists K such

that (3) holds. If λK = 0, then fK(x) =
∑nK

n=1 anxn, which is absurd in view of
our choice of K. Hence λK = 1.

Lemma 3. Let p, q be conjugate exponents, let a be a sequence of complex num-
bers such that

∑∞
n=1 anxn converges for each x in lp, and let φ : N+ → R+

be a strictly increasing mapping such that φ(k) → ∞ as k → ∞. Then either∑k
n=1 |an|

q
< φ(k) for all k or else there exists k such that

∑k
n=1 |an|

q
> φ(k)−1.

Proof. Construct an increasing binary sequence (λk)k>1 such that

λk = 0⇒ ∀j6k

(
j∑

n=1

|an|q < φ(j)

)
,

λk = 1− λk−1 ⇒
k∑

n=1

|an|q > φ(k)− 1.

Now apply Lemma 1.

Proposition 2. Let p, q be conjugate exponents, let a be a sequence of complex
numbers such that

∑∞
n=1 anxn converges for each x in lp, and let φ : N+ → R+

be a strictly increasing mapping such that φ(k) → ∞ as k → ∞. Then there
exists m > K such that

∑m
n=K+1 |an|

q
< φ(m) for all m > 1.

Proof. In view of the previous lemma, we may suppose that there exists n1
such that

∑n1

n=1 |an|
q
> φ(n1)− 1. Setting λ1 = 0 and applying Lemma 3 to the

sequence (0, 0, . . . , 0, an1+1, an1+2, . . .) , we see that either
∑m
n=n1+1 |an|

q
< φ(m)

for all m > n1 or else there exists n2 > n1 such that
∑n2

n=n1+1 |an|
q
> φ(n2)−1.

In the first case we set λk = 1 and nk = n1 for all k > 2; in the second we
set λ2 = 0. Carrying on in this way, we construct an increasing binary sequence
(λk)k>1 and an increasing sequence (nk)k>1 of positive integers such that

– if λk+1 = 0, then nk+1 > nk and
∑nk+1

n=nk+1 |an|
q
> φ(nk+1)− 1;
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– if λk+1 = 1 − λk, then
∑m
n=nk+1 |an|

q
< φ(m) for all m > nk, and nj = nk

for all j > k.

Applying Lemma 2, we obtain the desired conclusion.

It follows for example, that, under the hypotheses of Landau’s theorem, for
each positive integer m there exists N such that

n∑
i=N

|ai|q < log(log(· · · (log n) · · · ))︸ ︷︷ ︸
m instances of “ log ”

for all n > N. This is a long way from showing that the partial sums of
∑∞
i=1 |ai|

q

are bounded, but it is progress of a kind.
We now have a constructive substitute for the convergence of an to 0 in

Landau’s theorem.

Proposition 3. Let p, q be conjugate exponents, and let a be a sequence of com-
plex numbers such that the series

∑∞
n=1 anxn converges for each x in lp. Then for

each ε > 0 and each positive integer ν there exists k such that
∑kν
n=(k−1)ν |an|

q
<

ε.

Proof. Fix a unit vector u in lq. For each positive integer k, construct an in-
creasing binary sequence (λk)k>1 such that

λk = 0⇒ ∀j6k

 jν∑
n=(j−1)ν

|an|q >
ε

2

 ,

λk = 1− λk−1 ⇒
jν∑

n=(j−1)ν

|an|q < ε.

Applying Lemma 2 with φ(k) = 1 + kε
2 , we see that there exists N such that

λN = 1; whence
∑kν
n=(k−1)ν |an|

q
< ε for some k 6 N.

Corollary 2. Let p, q be conjugate exponents, and let a be a sequence of complex
numbers such that the series

∑∞
n=1 anxn converges for each x in lp. Then there

exists a sequence (nk)k>1 of positive integers such that for each k, nk+k < nk+1

and
nk+k∑

n=nk+1

|an|q < 2−k.

Proof. By Proposition 3, there exists n1 such that |an1
|q < 2−1. Having com-

puted nk with the desired properties, apply Proposition 3 to the sequence (an)n>nk+k
,

to produce nk+1 > nk + k such that
nk+1+k+1∑
n=nk+1+1

|an|q < 2−k−1. This completes the

inductive construction of the sequence (nk)k>1 .
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The conclusion of Corollary 2 holds for any binary sequence with at most
one term equal to 1, and so is not enough to yield constructively the result that,
under the hypotheses of that corollary and with p = q = 2, an → 0 as n→∞.

We conclude the paper by proving a constructive version of Landau’s summa-
bility theorem that is classically equivalent to the classical version but has
stronger hypotheses and conclusion than Corollary 1. For this we recall the
constructive least-upper-bound principle:

In order that an inhabited set S of real numbers that is bounded above
have a supremum, it is necessary and sufficient that S be order located,
in the sense that for all positive α, β with α < β, either β is an upper
bound for S or else there exists x ∈ S such that x > α ([3], page 37,
Proposition (4.3)).

Theorem 5. Let p, q be conjugate exponents, and let a be a sequence of complex
numbers such that

∑∞
n=1 anxn converges for each x in lp. Then the following are

equivalent.

(i) The series
∑∞
n=1 |an|

q
is convergent.

(ii) For all α, β with 0 < α < β, either
∑k
n=1 |an|

q
< β for all k or else there

exists k such that
∑k
n=1 |an|

q
> α.

Proof. It is clear that if
∑∞
n=1 |an|

q
converges, then (ii) holds. Conversely, as-

suming (ii), construct an increasing binary sequence (λk)k>1 and an increasing
sequence (nk)k>0 of positive integers with n0 = 0, such that

B if λk = 0, then nk > nk−1 and
∑nk

i=1 |ai|
q
> k, and

B if λk = 1, then nk = nk−1 and
∑j
i=1 |ai|

q
< k + 1 for all j.

To do so, first observe that either
∑j
i=1 |ai|

q
< 2 for all j or else there exists

n1 > 1 such that
∑n1

i=1 |ai|
q
> 1. In the first case set λ1 = n1 = 1; in the second,

set λ1 = 0. Now suppose we have found λk−1 and nk−1 with the applicable
properties. If λk−1 = 1, set λk = 1 and nk = nk−1. If λk−1 = 0, then by (ii),

either
∑j
i=1 |ai|

q
< k + 1 for all j, in which case we set λk = 1 and nk = nk−1;

or else there exists nk such that
∑nk

i=1 |ai|
q
> k. In the latter case, replacing

nk by a sufficiently large positive integer, we may assume that nk > nk−1; we
then set λk = 0 to complete the inductive construction. Taking φ(k) = k + 1
in Lemma 2, we obtain K such that λK = 1. The partial sums of

∑∞
i=1 |ai|

q

are therefore bounded above by K + 1. It follows from (ii) and the constructive
least-upper-bound principle that

∑∞
i=1 |ai|

q
converges in R.

In view of the constructive least-upper-bound principle, it is curious that
condition (ii) is used to prove that the partial sums of

∑∞
n=1 |an|

2
are bounded

before it is again invoked to prove that their supremum exists.
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For related work within the framework of Weihrauch’s theory of Type Two
Effectivity [15], see [4]. For connections between that theory and Bishop-style
constructive mathematics, see [2].
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Separations of Non-monotonic Randomness
Notions

Laurent Bienvenu, Rupert Hölzl, Thorsten Kräling, and Wolfgang Merkle

Institut für Informatik, Ruprecht-Karls-Universität,
Heidelberg, Germany

Abstract. In the theory of algorithmic randomness, several notions of
random sequence are defined via a game-theoretic approach, and the
notions that received most attention are perhaps Martin-Löf randomness
and computable randomness. The latter notion was introduced by Schnorr
and is rather natural: an infinite binary sequence is computably random
if no total computable strategy succeeds on it by betting on bits in order.
However, computably random sequences can have properties that one
may consider to be incompatible with being random, in particular, there
are computably random sequences that are highly compressible. The
concept of Martin-Löf randomness is much better behaved in this and
other respects, on the other hand its definition in terms of martingales is
considerably less natural.
Muchnik, elaborating on ideas of Kolmogorov and Loveland, refined
Schnorr’s model by also allowing non-monotonic strategies, i.e. strategies
that do not bet on bits in order. The subsequent “non-monotonic” notion
of randomness, now called Kolmogorov-Loveland-randomness, has been
shown to be quite close to Martin-Löf randomness, but whether these
two classes coincide remains a fundamental open question.
In order to get a better understanding of non-monotonic randomness no-
tions, Miller and Nies introduced some interesting intermediate concepts,
where one only allows non-adaptive strategies, i.e., strategies that can still
bet non-monotonically, but such that the sequence of betting positions is
known in advance (and computable). Recently, these notions were shown
by Kastermans and Lempp to differ from Martin-Löf randomness. We
continue the study of the non-monotonic randomness notions introduced
by Miller and Nies and obtain results about the Kolmogorov complexities
of initial segments that may and may not occur for such sequences, where
these results then imply a complete classification of these randomness
notions by order of strength.

1 Introduction

Random sequences are the central object of study in algorithmic randomness and
have been investigated intensively over the last decade, which led to a wealth of
interesting results clarifying the relations between the various notions of random-
ness and revealing interesting interactions with notions such as computational
power [2, 5, 11].

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 71-82 
http://drops.dagstuhl.de/opus/volltexte/2009/2260



72 Laurent Bienvenu, Rupert Hölzl, Thorsten Kräling, and Wolfgang Merkle

Intuitively speaking, a binary sequence is random if the bits of the sequence do
not have effectively detectable regularities. This idea can be formalized in terms
of betting strategies, that is, a sequence will be called random in case the capital
gained by successive bets on the bits of the sequence according to a fixed betting
strategy must remain bounded, with fair payoff and a fixed set of admissible
betting strategies understood.

The notions of random sequences that have received most attention are Martin-Löf
randomness and computable randomness. Here a sequence is called computably
random if no total computable betting strategy can achieve unbounded capital by
betting on the bits of the sequence in the natural order, a definition that indeed
is natural and suggests itself. However, computably random sequences may lack
certain properties associated with the intuitive understanding of randomness, for
example there are such sequences that are highly compressible, i.e., show a large
amount of redundancy, see Theorem 4 below. Martin-Löf randomness behaves
much better in this and other respects. Indeed, the Martin-Löf random sequences
can be characterized as the sequences that are incompressible in the sense that
all their initial segments have essentially maximal Kolmogorov complexity, and
in fact this holds for several versions of Kolmogorov complexity according to
celebrated results by Schnorr, by Levin and, recently, by Miller and Yu [2]. On the
other hand, it has been held against the concept of Martin-Löf randomness that
its definition involves effective approximations, i.e., a very powerful, hence rather
unnatural model of computation, and indeed the usual definition of Martin-Löf
randomness in terms of left-computable martingales, that is, in terms of betting
strategies where the gained capital can be effectively approximated from below,
is not very intuitive.

It can be shown that Martin-Löf randomness strictly implies computable ran-
domness. According to the preceding discussion the latter notion is too inclusive
while the former may be considered unnatural. Ideally, we would therefore like
to find a more natural characterization of ML-randomness; or, if that is im-
possible, we are alternatively interested in a notion that is close in strength
to ML-randomness, but has a more natural definition. One promising way of
achieving such a more natural characterization or definition could be to use
computable betting strategies that are more powerful than those used to define
computable randomness.

Muchnik [10] proposed to consider computable betting strategies that are non-
monotonic in the sense that the bets on the bits need not be done in the natural
order, but such that the bit to bet on next can be computed from the already
scanned bits. The corresponding notion of randomness is called Kolmogorov-
Loveland randomness because Kolmogorov and Loveland independently had
proposed concepts of randomness defined via non-monotonic selecting of bits.

Kolmogorov-Loveland randomness is implied by and in fact is quite close to
Martin-Löf randomness, see Theorem 14 below, but whether the two notions
are distinct is one of the major open problems of algorithmic randomness. In
order to get a better understanding of this open problem and of non-monotonic
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randomness in general, Miller and Nies [9] introduced restricted variants of
Kolmogorov-Loveland randomness, where the sequence of betting positions must
be non-adaptive, i.e., can be computed in advance without knowing the sequence
on which one bets.

The randomness notions mentioned so far are determined by two parameters that
correspond to the columns and rows, respectively, of the table in Figure 1. First,
the sequence of places that are scanned and on which bets may be placed, while
always being given effectively, can just be monotonic, can be equal to π(0), π(1), . . .
for a permutation or an injection π from N to N, or can be adaptive, i.e., the
next bit depends on the bits already scanned. Second, once the sequence of
scanned bits is determined, betting on these bits can be according to a betting
strategy where the corresponding martingale is total or partial computable, or
is left-computable. The known inclusions between the corresponding classes of
random sequences are shown in Figure 1, see Section 2 for technical details and
for the definitions of the class acronyms that occur in the figure.

monotonic permutation injection adaptive

total TMR = TPR ⊇ TIR ⊇ KLR

⊆ ⊆ ⊆ =

partial PMR ⊇ PPR ⊇ PIR ⊇ KLR

⊆ ⊆ ⊆ ⊆

left-computable MLR = MLR = MLR = MLR

Fig. 1. Known class inclusions

The classes in the last row of the table in Figure 1 all coincide with the class
of Martin-Löf random sequences by the folklore result that left-computable
martingales always yield the concept of Martin-Löf randomness, no matter
whether the sequence of bits to bet on is monotonic or is determined adaptively,
because even in the latter, more powerful model one can uniformly in k enumerate
an open cover of measure at most 1/k for all the sequences on which some universal
martingale exceeds k. Furthermore, the classes in the first and second row of the
last column coincide with the class of Kolmogorov-Loveland random sequences,
because it can be shown that total and partial adaptive betting strategies yield
the same concept of random sequence [6]. Finally, it follows easily from results
of Buhrman et al. [1] that the class TMR of computably random sequences
coincides with the class TPR of sequences that are random with respect to total
permutation martingales, i.e., the ability to scan the bits of a sequence according
to a computable permutation does not increase the power of total martingales.

Concerning non-inclusions, it is well-known that it holds that

KLR ( PMR ( TMR.
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Furthermore, Kastermans and Lempp [3] have recently shown that the Martin-Löf
random sequences form a proper subclass of the class PIR of partial injective
random sequences, i.e., MLR ( PIR.

Apart from trivial consequences of the definitions and the results just mentioned,
nothing has been known about the relations of the randomness notions between
computable randomness and Martin-Löf randomness in Figure 1. In what follows,
we investigate the six randomness notions that are shown in Figure 1 in the
range between PIR and TMR, i.e., between partial injective randomness as
introduced below and computable randomness. We obtain a complete picture of
the inclusion structure of these notions, more precisely we show that the notions
are mutually distinct and indeed are mutually incomparable with respect to set
theoretical inclusion, except for the inclusion relations that follow trivially by
definition and by the known relation TMR ⊆ TPR, see Figure 2 at the end of
this paper. Interestingly these separation results are obtained by investigating
the possible values of the Kolomogorov complexity of initial segments of random
sequences for the different strategy types, and for some randomness notions we
obtain essentially sharp bounds on how low these complexities can be.

Notation. We conclude the introduction by fixing some notation. The set of finite
strings (or finite binary sequences, or words) is denoted by 2<ω, ε being the
empty word. We denote the set of infinite binary sequences by 2ω. Given two
finite strings w,w′, we write w v w′ if w is a prefix of w′. Given an element x
of 2ω or 2<ω, x(i) denotes the i-th bit of x (where by convention there is a 0-th
bit and x(i) is undefined if x is a word of length less than i+ 1). If A ∈ 2ω and
X = {x0 < x1 < x2 < . . .} is a subset of N then A � X is the finite or infinite
binary sequence A(x0)A(x1) . . .. We abbreviate A � {0, . . . , n− 1} by A � n (i.e.,
the prefix of A of length n).

C and K denote plain and prefix-free Kolmogorov complexity, respectively [2,
5]. The function log designates the logarithm of base 2. An order is a function
h : N→ N that is non-decreasing and tends to infinity.

2 Permutation and injection randomness

We now review the concept of martingale and betting strategy that are central for
the unpredictability approach to define notions of an infinite random sequence.

Definition 1. A martingale is a nonnegative, possibly partial, function d :
2<ω → Q such that for all w ∈ 2<ω, d(w0) is defined if and only if d(w1) is, and
if these are defined, then so is d(w), and the relation 2d(w) = d(w0) + d(w1)
holds. A martingale succeeds on a sequence A ∈ 2ω if d(A � n) is defined for
all n, and lim sup d(A � n) = +∞. We denote by Succ(d) the success set of d,
i.e., the set of sequences on which d succeeds.

Intuitively, a martingale represents the capital of a player who bets on the bits of
a sequence A ∈ 2ω in order, where at every round she bets some amount of money
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on the value of the next bit of A. If her guess is correct, she doubles her stake. If
not, she loses her stake. The quantity d(w), with w a string of length n, represents
the capital of the player before the n-th round of the game (by convention there
is a 0-th round) when the first n bits revealed so far are those of w.

We say that a sequence A is computably random if no total computable
martingale succeeds on it. One can extend this in a natural way to partial
computable martingales: a sequence A is partial computably random if no
partial computable martingale succeeds on it. No matter whether we consider
partial or total computable martingales, this game model can be seen as too
restrictive by the discussion in the introduction. Indeed, one could allow the
player to bet on bits in any order she likes (as long as she can visit each bit at
most once). This leads us to extend the notion of martingale to the notion of
strategy.

Definition 2. A betting strategy is a pair b = (d, σ) where d is a martingale
and σ : 2<ω → N is a function.

For a strategy b = (d, σ), the term σ is called the scan rule. For a string w,
σ(w) represents the position of the next bit to be visited if the player has read
the sequence of bits w during the previous moves. And as before, d specifies
how much money is bet at each move. Formally, given an A ∈ 2ω, we define by
induction a sequence of positions n0, n1, . . . by{

n0 = σ(ε),
nk+1 = σ (A(n0)A(n1) . . . A(nk)) for all k ≥ 0

and we say that b = (d, σ) succeeds on A if the ni are all defined and pairwise
distinct (i.e., no bit is visited twice) and

lim sup
k→+∞

d (A(n0) . . . A(nk)) = +∞

Here again, a betting strategy b = (d, σ) can be total or partial. In fact, its
partiality can be due either to the partiality of d or to the partiality of σ. We
say that a sequence is Kolmogorov-Loveland random if no total computable
betting strategy succeeds on it. As noted in [8], the concept of Kolmogorov-
Loveland randomness remains the same if one replaces “total computable” by
“partial computable” in the definition.

Kolmogorov-Loveland randomness is implied by Martin-Löf randomness and
whether the two notions can be separated is one of the most important open
problems on algorithmic randomness. As we discussed above, Miller and Nies [9]
proposed to look at intermediate notions of randomness, where the power of
non-monotonic betting strategies is limited. In the definition of a betting strategy,
the scan rule is adaptive, i.e., the position of the next visited bit depends on the
bits previously seen. It is interesting to look at non-adaptive games.
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Definition 3. In the above definition of a strategy, when σ(w) only depends
on the length of w for all w (i.e., the decision of which bit should be chosen at
each move is independent of the values of the bits seen in previous moves), we
identify σ with the (injective) function π : N → N, where for all n π(n) is the
value of σ on words of length n (π(n) indicates the position of the bit visited
during the n-th move), and we say that b = (d, π) is an injection strategy. If
moreover π is bijective, we say that b is a permutation strategy. If π is the
identity, the strategy b = (d, π) is said to be monotonic, and can clearly be
identified with the martingale d.

All this gives a number of possible non-adaptive, non-monotonic, randomness
notions: one can consider either monotonic, permutation, or injection strategies,
and either total computable or partial computable ones. This gives a total of six
randomness classes, which we denote by

TMR, TPR, TIR, PMR, PPR, and PIR, (1)

where the first letter indicates whether we consider total (T) or partial (P) strate-
gies, and the second indicates whether we look at monotonic (M), permutation (P)
or injection (I) strategies. For example, the class TMR is the class of computably
random sequences, while the class PIR is the class of sequences A such that
no partial injection strategy succeeds on A. Recall in this connection that the
known inclusions between the six classes in (1) and the classes KLR and MLR
of Kolmogorov-Loveland random and Martin-Löf random sequences have been
shown in Figure 1 above.

3 Randomness notions based on total computable
strategies

We begin our study by the randomness notions arising from the game model
where strategies are total computable. As we will see, in this model, it is possible
to construct sequences that are random and yet have very low Kolmogorov
complexity (i.e. all their initial segments are of low Kolmogorov complexity). We
will see in the next section that this is no longer the case when we allow partial
computable strategies in the model.

3.1 Sequences in TMR and TPR may have low complexity

The following theorem is a first illustration of the phenomenon we just described.

Theorem 4 (Lathrop and Lutz [4], Muchnik [10]). For every computable
order h, there is a sequence A ∈ TMR such that, for all n ∈ N,

C (A � n | n) ≤ h(n) + O(1).



Separations of Non-monotonic Randomness Notions 77

Proof (Idea). Defeating one total computable martingale is easy and can be
done computably, i.e., for every total computable martingale d there exists a
sequence A, uniformly computable in d, such that A /∈ Succ(d). Indeed, given a
martingale d. For any given w, one has either d(w0) ≤ d(w) or d(w1) ≤ d(w).
Thus, one can easily construct a computable sequence A by setting A � 0 = ε
and by induction, having defined A � n, we choose A � n+ 1 = (A � n)i where
i ∈ {0, 1} is such that d((A � n)i) ≤ d(A � n). This can of course be done
computably since d is total computable, and by construction of A, d(A � n) is
non-increasing, meaning in particular that d does not succeed against A.

Defeating a finite number of total computable martingales is equally easy. Indeed,
given a finite number d1, . . . , dk of such martingales, their sum D = d1 + . . .+ dk
is itself a total computable martingale (this follows directly from the definition).
Thus, we can construct as above a computable sequence A that defeats D. And
since D ≥ di for all 1 ≤ i ≤ k, this implies that A defeats all the di. Note that
this argument would work just as well if we had taken D to be any weighted sum
α1d1 + . . .+ αkdk, with positive rational constants αi.

We now need to deal with the general case where we have to defeat all total com-
putable martingales simultaneously. What we do is simply add total martingales
one by one: we start by diagonalizing against the first total martingale d1, then
(maybe after a long time) we may introduce the second martingale d2, with a
small coefficient α2 (to ensure that introducing d2 does not cost us too much)
and then consider the martingale d1 + α2d2. Much later we can introduce the
third martingale d3 with an even smaller coefficient α3, and diagonalize against
d1+α2d2+α3d3, and so on. So in each step of the construction we have to consider
just a finite number of martingales, and if we add the martingales sufficiently
slowly, it is easy to see than we can keep the complexity low (indeed, as long
as we know what martingales we are diagonalizing against, the construction is
computable; note however that the sequence as a whole will not be computable
since whenever we add a martingale we need to store some information, consisting
of its code, when it was added and with which coefficient). ut

It turns out that, perhaps surprisingly, the classes TMR and TPR coincide.
This fact was stated explicitely in Merkle et al [8], but is easily derived from the
ideas introduced in Buhrman et al [1]. We present the main ideas of their proof
as we will later need them. We shall prove:

Theorem 5. Let b = (d, π) be a total computable permutation strategy. There
exists a total computable martingale d such that Succ(b) ⊆ Succ(d).

This theorem states that total permutation strategies are no more powerful than
total monotonic strategies, which obviously entails TMR = TPR. Before we
can prove it, we first need a definition.

Definition 6. Let b = (d, π) be a total injective strategy. Let w ∈ 2<ω. We can
run the strategy b on w as if it were an element of 2ω, stopping the game when b
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asks to bet on a bit of position outside w. This game is of course finite (for a

given w) since at most |w| bets can be made. We define b̂(w) to be the capital

of b at the end of this game. Formally: b̂(w) = d
(
wπ(0) . . . wπ(N−1)

)
where N is

the smallest integer such that π(N) ≥ |w|.

Note that if b = (d, π) is a total computable injection martingale, b̂ is total

computable. If b̂ was itself a monotonic martingale, Theorem 5 would be proven.
This is however not the case in general. The trick is, given a betting strategy b and
a word w, to look at the expected value of b on w, i.e., look at the mathematical
expectation of b(w′) for large enough extensions w′ of w. Specifically, given a
total betting strategy b = (d, π) and a word w of length n, we take an integer M
large enough to have

π ([0, . . . ,M − 1]) ∩ [0, . . . , n− 1] = π(N) ∩ [0, . . . , n− 1]

(i.e. the strategy b will never bet on a bit of position less than n after the M -th
move), and define:

Avb(w) =
1

2M

∑
wvw′

|w′|=M

b̂(w′)

Proposition 7 (Buhrman et al [1], Kastermans-Lempp [3]).

(i) The quantity Avb(w) (defined above) is well-defined i.e. does not depend
on M as long as it satisfies the required condition.

(ii) For a total injective strategy b, Avb is a martingale.
(iii) For a given injective strategy b and a given word w of length n, Avb(w) can

be computed if we know the set π(N) ∩ [0, . . . , n− 1]. In particular, if b is a
total computable permutation strategy, then Avb is total computable.

As Buhrman et al. [1] explained, it is not true in general that if a total computable
injective strategy b succeeds on a sequence A, then Avb also succeeds on A.
However, this can be dealt with using the well-known “saving trick”. Suppose we
are given a martingale d with initial capital, say, 1. Consider the variant d′ of d
that does the following: when run on a given sequence A, d′ initially plays exactly
as d. If at some stage of the game d′ reaches a capital of 2 or more, it then puts
half of its capital on a “bank account”, which will never be used again. From that
point on, d′ bets half of what d does, i.e. starts behaving like d/2 (plus the saved
capital). If later in the game the “non-saved” part of its capital reaches 2 or more,
then half of it is placed on the bank account and then d′ starts behaving like d/4,
and so on. For every martingale d′ that behaves as above (i.e. saves half of its
capital as soon as it exceeds twice its starting capital), we say that d′ has the
“saving property”.

Lemma 8. Let b = (d, π) be a total injective strategy such that d has the saving
property. Let d′ = Avb. Then Succ(b) ⊆ Succ(d′).
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Now the proof of Theorem 5 is as follows. Let b = (d, π) be a total computable
permutation strategy. By the above discussion, let d′ be the saving version of d,
so that Succ(d) ⊆ Succ(d′). Setting b′ = (d′, π), we have Succ(b) ⊆ Succ(b′). By
Proposition 7 and Lemma 8, d′′ = Avb′ is a total computable martingale, and

Succ(b) ⊆ Succ(b′) ⊆ Succ(d′′)

as wanted. ut

3.2 Understanding the strength of injective strategies: the class
TIR

While the class of computably random sequences (i.e. the class TMR) is closed
under computable permutations of the bits, we now see that this result does not
extend to computable injections. To wit, the following theorem is true.

Theorem 9. Let A ∈ 2ω. Let {nk}k∈N be a computable sequence of integers such
that nk+1 ≥ 2nk for all k. Suppose that A is such that:

C (A � nk | k) ≤ log(nk)− 3 log(log(nk))

for infinitely many k. Then A /∈ TIR

As an immediate corollary, we get the following.

Corollary 10. If for a sequence A we have for all n that C (A � n | n) < log n−
4 log log n+ O(1), then A 6∈ TIR.

The lower bound on Kolmogorov complexity given in Theorem 9 is quite tight,
as witnessed by the following theorem.

Theorem 11. For every computable order h there is a sequence A ∈ TIR
such that C(A � n | n) ≤ log(n) + h(n) + O(1) (in particular, C(A � n) ≤
2 log(n) + h(n) + O(1)).

4 Randomness notions based on partial computable
strategies

We now turn our attention to the second line of Figure 1, i.e., to those randomness
notions that are based on partial computable betting strategies.



80 Laurent Bienvenu, Rupert Hölzl, Thorsten Kräling, and Wolfgang Merkle

4.1 The class PMR: partial computable martingales are stronger
than total ones

We have seen in the previous section that some sequences in TIR (and a fortiori
TPR and TMR) may be of very low complexity, namely logarithmic. This is not
the case anymore when one allows partial computable strategies, even monotonic
ones.

Theorem 12 (Merkle [7]). If C(A � n) = O(log n) then A 6∈ PMR.

By this theorem, together with Theorem 4, we immediately see that the class
PMR is strictly contained in TMR. However, the next theorem, proven by
An. A. Muchnik, shows that allowing slightly super-logarithmic growth of the
Kolmogorov complexity is enough to construct a sequence in PMR.

Theorem 13 (Muchnik et al. [10]). For every computable order h there is a
sequence A ∈ PMR such that, for all n ∈ N,

C (A � n | n) ≤ h(n) log(n) + O(1).

4.2 The class PPR

In the case of total strategies, allowing permutation gives no real additional
power, as TMR = TPR. Very surprisingly, Muchnik showed that in the case of
partial computable strategies, permutation strategies are a real improvement over
monotonic ones. To wit, the following theorem (quite a contrast to Theorem 13!)
holds.

Theorem 14 (Muchnik [10]). If there is a computable order h such that for
all n we have K(A � n) ≤ n− h(n)−O(1), then A 6∈ PPR.

Note that the proof used by Muchnik in [10] works if we replace K by C in the
above statement. So we now know that any sequence in PPR must have infinitely
many initial segments of high Kolmogorov complexity. The following theorem
shows that some sequences in PPR also have infinitely many initial segments of
very low complexity.

Theorem 15. For every computable order h there is a sequence A ∈ PPR, such
that there are infinitely many n where C (A � n | n) < h(n).

Furthermore, if we have an infinite computable set S ⊆ N, we can choose the
infinitely many lengths n such that they all are contained in S.

The proof of this theorem requires the following “totalization” technique.

Proposition 16. Let b = (d, π) be a partial computable permutation strategy
(resp. injective strategy). Let C be an effectively closed subset of 2ω. Suppose that b
is total on every element of C. Then there exists a total computable permutation
strategy (resp. injective strategy) b′ such that Succ(b) ∩ C = Succ(b′) ∩ C.
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Proof (of Theorem 15, sketch). Like for Theorem 4, we proceed by diagonal-
ization against all partial permutation martingales, “transforming” them into
total monotonic martingales in order to carry out the construction. Suppose
that during the construction we have constructed an initial segment w of our
infinite sequence by diagonalization against a weighted sum of total monotonic
martingales α1d1 + . . .+αkdk (say that the value of this sum at w is less than 2).
Suppose that we now want to add a new partial permutation martingale D. There
are two cases:

1. Either there exists an extension v of w such that D diverges on v, and such
that the value of α1d1 + . . .+ αkdk still does not exceed 2 at v. In that case,
we choose v as an initial segment of our sequence, as it both defeats D (no
matter how we further extend v later) and keeps α1d1 + . . .+ αkdk low.

2. Or, if we are not in the first case, then D is total on the set T of sequences v
such that α1d1 + . . .+ αkdk has value less than 2 at v and at all its prefixes.
Notice that T is a computable tree, and thus defines an effectively closed
set C. By Proposition 16, we can therefore replace D by a total permutation
strategy. Then, by Theorem 5, we can additionally make D monotonic. The
martingale dk+1 we obtain can now be added to the other ones, with a
coefficient αk+1 sufficiently small to ensure that α1d1 + . . .+αkdk+αk+1dk+1

has value less than 2 at w, and go on with the diagonalization.

Here again, if we wait for a long time before introducing a new strategy, we can
keep the Kolmogorov complexity low. However, we cannot keep it low all the
time as in the above case 1, the string v cannot be found effectively (we cannot
check that a strategy diverges on a string), and in particular it may have high
Kolmogorov complexity. ut

Now that we have assembled all our tools, we can easily prove the desired results.

Theorem 17. The following statements hold.

1. PPR 6⊆ TIR
2. TIR 6⊆ PMR
3. PMR 6⊆ PPR

From these results it easily follows that in Figure 2 no inclusion holds except
those indicated and those implied by transitivity.

Proof. 1. Choose a computable sequence {nk}k fulfilling the requirements of
Theorem 9 such that C(k) ≤ log log nk for all k. The members of this set then
form a computable set S. Use Theorem 15 to construct a sequence A ∈ PPR
such that C(A � n | n) < log logn at infinitely many places in S. We then
have for infinitely many k

C(A � nk | k) ≤ C(A � nk) ≤ C(A � nk | nk) + 2 log lognk ≤ 3 log log nk,

so A cannot be in TIR according to Theorem 9.
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monotonic permutation injection

total TMR = TPR ) TIR

( ( (

partial PMR ) PPR ) PIR

Fig. 2. Assembled class inclusion results

2. Follows immediately from Theorems 11 and 12.
3. Follows immediately from Theorems 13 and 14. ut

Note: An extended version of this paper (with full proofs of theorems) can be
found at http://arxiv.org/pdf/0907.2324.
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Abstract. In this paper we study a reducibility that has been intro-
duced by Klaus Weihrauch or, more precisely, a natural extension of this
reducibility for multi-valued functions on represented spaces. We call
the corresponding equivalence classes Weihrauch degrees and we show
that the corresponding partial order induces a lower semi-lattice with
the disjoint union of multi-valued functions as greatest lower bound op-
eration. We show that parallelization is a closure operator for this semi-
lattice and the parallelized Weihrauch degrees even form a lattice with
the product of multi-valued functions as greatest lower bound opera-
tion. We show that the Medvedev lattice and hence the Turing upper
semi-lattice can both be embedded into the parallelized Weihrauch lat-
tice in a natural way. The importance of Weihrauch degrees is based on
the fact that multi-valued functions on represented spaces can be con-
sidered as realizers of mathematical theorems in a very natural way and
studying the Weihrauch reductions between theorems in this sense means
to ask which theorems can be transformed continuously or computably
into each other. This allows a new purely topological or computational
approach to metamathematics that sheds new light on the nature of the-
orems. As crucial corner points of this classification scheme we study the
limited principle of omniscience LPO, the lesser limited principle of omni-
science LLPO and their parallelizations. We show that parallelized LLPO
is equivalent to Weak Kőnig’s Lemma and hence to the Hahn-Banach
Theorem in this new and very strong sense. We call a multi-valued func-
tion weakly computable if it is reducible to the Weihrauch degree of
parallelized LLPO and we present a new proof that the class of weakly
computable operations is closed under composition. This proof is based
on a computational version of Kleene’s ternary logic. Moreover, we char-
acterize weakly computable operations on computable metric spaces as
operations that admit upper semi-computable compact-valued selectors
and we show that any single-valued weakly computable operation is al-
ready computable in the ordinary sense.
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1 Introduction

The purpose of this paper is to propose a new computational approach to meta-
mathematics that is based on the classification of mathematical theorems ac-
cording to their computational content. Such an approach started with a clas-
sification of the Weihrauch degree of the Hahn-Banach Theorem in [1] and the
intention here is to lay some careful foundations for further studies. In a following
paper [2] we analyze certain choice principles and we present a case study with
a classification on many theorems from analysis. This paper is only an extended
abstract, but a full version with all definitions and proofs is available for the
interested reader [3].

Essentially, the idea is to ask which theorems can be continuously or even
computably transferred into each other. In order to give a meaningful interpreta-
tion to this idea we consider mathematical theorems as multi-valued operations
F : X ⇒ Y that map certain input data X into certain output data Y . Such
a perspective is very natural, since many theorems in mathematics are actually
Π2 theorems, hence they have the logical form

(∀x ∈ X)(∃y ∈ Y ) (x, y) ∈ A

and one can just consider F : X ⇒ Y as a realizer or multi-valued Skolem
function for this statement.

The appropriate technical tool to study whether two such potentially partial
multi-valued functions F :⊆ X ⇒ Y and G :⊆ X ⇒ Y can be continuously
or computably transferred into each other is Weihrauch reducibility. This is a
reducibility that has been introduced by Klaus Weihrauch around 1990 in two
unpublished papers [4, 5] and since then it has been studied by several others
(see for instance [6–11, 1, 2, 12]).

Originally, this reducibility has been introduced for single-valued functions
on Baire space. Basically, the idea is to say that F is strongly Weihrauch reducible
to G, in symbols F ≤sWG, if there are computable (or alternatively continuous)
functions H and K such that

F = H ◦G ◦K.

Thus, K acts as an input modification and H acts as an output modification.
We will mainly consider the computable version of this reduction here since
the positive reduction results are stronger. For negative results the topological
version of the reduction is stronger and indeed reductions typically fail for con-
tinuity reasons. However, such topological results can usually be derived from
computational results by relativization.

It turns out that the strong version of Weihrauch reducibility is slightly too
strong for many purposes, since it distinguishes too many functions. For instance
the identity cannot be reduced to a constant function in this way, since there is
no way to feed the input through a constant function. This is the reason why
the more important reducibility is the one where we say that F is Weihrauch
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reducible to G, in symbols F ≤WG, if there are computable functions H and K
such that

F = H ◦ 〈id, G ◦K〉.

Thus, the difference is that the input is fed through to the outer function H
independently of G.

Weihrauch [4, 5] has already studied an extended version of his reducibility
to sets F and G of functions on Baire space and F is called Weihrauch reducible
to G, in symbols F ≤W G, if there are computable functions H and K such that

(∀G ∈ G)(∃F ∈ F) F = H〈id, GK〉.

Here 〈 〉 : NN × NN → NN denotes a computable standard pairing function [13].
That is, any function G ∈ G computes some function F ∈ F and the computation
is performed uniformly with two fixed computable H and K. This extension of
Weihrauch reducibility is related to ordinary Weihrauch reducibility exactly as
Medvedev reducibility is related to Turing reducibility.

We use this concept to extend Weihrauch reducibility even further to multi-
valued operations f :⊆ X ⇒ Y on represented spaces X and Y . Roughly speak-
ing, such an f is Weihrauch reducible to an analogous g, in symbols f ≤W g,
if the set of realizers of f is reducible to the set of realizers of g in the above
mentioned sense of Weihrauch reducibility for sets, i.e.

{F : F ` f}≤W{G : G ` g}.

Here a single-valued F on Baire space is called a realizer of f , in symbols F ` f ,
if F computes a name F (p) of some output value in f(x), given some name p of
x. This generalization of Weihrauch reducibility was introduced for single-valued
functions in [10] and for multi-valued functions in [1]. We call the corresponding
equivalence classes Weihrauch degrees.

Compared to strong Weihrauch reducibility, the ordinary version of Weih-
rauch reducibility has exactly the right degree of precision, it distinguishes ex-
actly what should be distinguished computationally, but not more. Among all
functions (with at least one computable point in the domain) the computable
ones form the least degree. For the continuous version of Weihrauch reducibility
exactly the continuous functions form the least degree (among all functions with
non-empty domain).

2 Products, sums and parallelization

In this section we briefly summarize some of our results on some basic properties
of Weihrauch reducibility and of Weihrauch degrees. In particular we investigate
the product operation f × g and the direct sum f ⊕ g of multi-valued operations
and we show that both operations are monotone with respect to Weihrauch
reducibility. While the product preserves single-valuedness, the disjoint union
does not and hence it requires multi-valuedness in order to be meaningful. Among
other things the partial order on Weihrauch degrees induces a lower semi-lattice
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with direct sums as greatest lower bounds. While the product operation is just
the ordinary product operation of multi-valued functions, we define the direct
sum as follows. For any two sets Y,Z we define the direct sum or disjoint union
by Y ⊕ Z := ({0} × Y ) ∪ ({1} × Z).

Definition 1 (Direct sum). Let f :⊆ X ⇒ Y and g :⊆ U ⇒ V be multi-
valued maps on represented spaces. Then the direct sum of these maps f ⊕ g :⊆
X ×U ⇒ Y ⊕ V is defined by (f ⊕ g)(x, u) := ({0}× f(x))∪ ({1}× g(u)) for all
(x, u) ∈ dom(f ⊕ g) := dom(f)× dom(g).

The first observation is that product and sum are both monotone operations
in the sense that

– f ≤W g and f ′≤W g′ =⇒ f × f ′≤W g × g′ and f ⊕ f ′≤W g ⊕ g′.

This monotonicity result guarantees that we can safely extend the product
and direct sum operation to Weihrauch degrees. Other common properties of
products and sums are that they are both associative and commutative on de-
grees. The identity is a neutral element with respect to products. An important
difference between product and sum is that functions are not necessarily idem-
potent with respect to products, i.e. there are f such that f 6≡W f × f , while
idempotency is always given for sums. A crucial property of sums is that they
yield the greatest lower bound with respect to Weihrauch reducibility.

Proposition 1 (Greatest lower bound). Let f and g be multi-valued func-
tions on represented spaces. Then f ⊕ g is the greatest lower bound of f and
g with respect to Weihrauch reducibility ≤W and strong Weihrauch reducibility
≤sW.

Is there any multi-valued map that plays the role of a neutral element with
respect to the sum operation? Naturally, this would have to be a multi-valued
function with an empty set of realizers. One should note that this is not the
nowhere defined function f :⊆ X ⇒ Y , since {F : F ` f} is the set of all
function F :⊆ NN → NN. If we accept the Axiom of Choice, then clearly, a
function without realizers does not exist and hence we add an extra object 0 to
our structure with {F : F ` 0} = ∅. Weihrauch reducibility can straightforwardly
be extended to multi-valued functions enriched by 0, just by using ∅ as the set
of realizers of 0. We denote the Weihrauch degree of 0 by 0. We assume that
we have a fixed underlying set of represented spaces R and we also assume that
this set includes (NN, id) and that R is closed under products and direct sums.

Definition 2 (Set of Weihrauch degrees). Let W denote the set that con-
tains the degree 0 and all Weihrauch degrees of all multi-valued operations
f :⊆ X ⇒ Y with at least one computable point in dom(f) and with repre-
sented spaces X,Y ∈ R. By 1 we denote the degree of the computable functions
in W.

In the following theorem we collect all the structural properties of Weihrauch
degrees that we have studied so far.
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Theorem 1 (Weihrauch degrees). The space (W,≤W) of Weihrauch degrees
is a lower semi-lattice with least element 1 and greatest element 0 and with ⊕
as the greatest lower bound operation. In particular, (W,⊕) is an idempotent
monoid with neutral element 0. Moreover, (W,×) is a monoid with neutral ele-
ment 1.

An important operation on functions is parallelization f̂ , which means to
take countably many copies of the function f in parallel, i.e.

f̂(x0, x1, x2, ...) := f(x0)× f(x1)× f(x2)× ...

This operation forms a closure operator with respect to Weihrauch reducibility.

Proposition 2 (Parallelization). Let f and g be multi-valued functions on
represented spaces. Then

1. f ≤W f̂ (extensive)

2. f ≤W g =⇒ f̂ ≤W ĝ (increasing)

3. f̂ ≡W
̂̂
f (idempotent)

An analogous result holds for strong Weihrauch reducibility.

The fact that Weihrauch reducibility is a closure operator allows us to define
a parallelized version of Weihrauch reducibility.

Definition 3 (Parallel reducibility). Let f and g be multi-valued operations
on represented spaces. Then we say that f is parallely Weihrauch reducible to g,
in symbols f ≤

Ŵ
g, if f̂ ≤W ĝ. We say that f is parallely Weihrauch equivalent

to g, in symbols f ≡
Ŵ
g, if f ≤

Ŵ
g and g≤

Ŵ
f holds. We call the corresponding

equivalence classes parallel Weihrauch degrees.

Parallel reducibility is compatible with products and sums in the following
sense:

– f̂ × g≡sW f̂ × ĝ and f̂ ⊕ g≤sW
̂̂
f ⊕ ĝ≡sW f̂ ⊕ ĝ.

Moreover, parallel Weihrauch degrees are idempotent with respect to products,
i.e. f̂ ≡sW f̂ × f̂ . The idempotency of parallel Weihrauch degrees has the conse-
quence that the product actually is the least upper bound operation for parallel
Weihrauch degrees3.

Proposition 3 (Least upper bound). Let f and g be multi-valued functions
on represented spaces. Then f×g is the least upper bound of f and g with respect
to parallel Weihrauch reducibility ≤

Ŵ
.

3 Independently, Arno Pauly [12] has recently proved that another operation on func-
tions that takes direct sums on the input and output side yields a supremum even
in the non-parallelized case. He has also proved that the corresponding upper semi-
lattice is distributive.
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The parallelized Weihrauch degrees together with their partial order even
form a lattice with the product as least upper bound operation. By Ŵ we denote
the set of parallel Weihrauch degrees, which is defined as W but using parallel
Weihrauch reducibility. As a corollary of our results we obtain that the parallel
Weihrauch degrees of multi-valued functions form a lattice.

Theorem 2 (Parallel Weihrauch degrees). The space (Ŵ,≤
Ŵ

) of parallel
Weihrauch degrees is a lattice with least element 1 and greatest element 0, with
⊕ as the greatest lower bound operation and with × as the least upper bound
operation. In particular, (Ŵ,⊕) and (Ŵ,×) are idempotent monoids with neutral
elements 0 and 1, respectively.

3 Embedding of Turing degrees and Medvedev degrees

Now we mention that the Medvedev lattice can be embedded into the Weihrauch
lattice such that least upper bounds and greatest lower bounds are preserved.
This embedding only requires total and continuous multi-valued operations on
Baire space. As a consequence, we obtain that Turing degrees can be embedded
such that least upper bounds are preserved and this embedding only requires
total and continuous single-valued functions on Baire space.

We recall that a set A ⊆ NN is said to be Medvedev reducible to B ⊆ NN, in
symbols A ≤M B, if there exists a computable F :⊆ NN → NN with B ⊆ dom(F )
and F (B) ⊆ A. In fact, Turing reducibility is a special case, since p ∈ NN is said
to be Turing reducible to q ∈ NN, in symbols p≤T q, if {p} ≤M {q} (see [14]).

Now we associate to any q ∈ NN the constant function cq : NN → NN, p 7→ q
for all p ∈ NN. In the next step we associate a multi-valued function to any
non-empty A ⊆ NN by cA : NN ⇒ NN, p 7→ A for all p ∈ NN. Then cA has
a computable realizer if and only if A contains a computable member. To the
empty set ∅ ⊆ NN we associate c∅ := 0, the special “multi-valued function”
without realizer. We note that the function cA is parallelizable, i.e. cA≡W ĉA.
Our main result of this section is now the following theorem.

Theorem 3 (Embedding of Medvedev degrees). Let A,B ⊆ NN. Then
A≤M B ⇐⇒ cA≤W cB.

It is clear that a corresponding embedding of Turing degrees follows, i.e.
p≤T q ⇐⇒ cp≤W cq. Now we want to show that our embedding of the
Medvedev lattice preserves also greatest lower and least upper bounds. For sets
A,B ⊆ NN one usually defines A ⊕ B := {〈p, q〉 : p ∈ A and q ∈ B} and
A ⊗ B := 0A ∪ 1B. The reader should note that product and sum are just
swapped compared to the way we use these operations. Now one can easily show
the following result.

Proposition 4. Let A,B ⊆ NN. Then cA⊕B ≡sW cA×cB and cA⊗B ≡sW cA⊕cB.

We mention that this result implies that our embedding of the Medvedev
lattice preserves least upper bounds and greatest lower bounds.
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Corollary 1 (Embedding of the Medvedev lattice). The Medvedev lattice
is embeddable into the parallel Weihrauch lattice (restricted to total and con-
tinuous multi-valued functions on Baire space and 0) with an embedding that
preserves least upper bounds and greatest lower bounds.

We also formulate the analogous result for Turing degrees.

Corollary 2 (Embedding of the Turing upper semi-lattice). The upper
semi-lattice of Turing degrees is embeddable into the parallel Weihrauch lattice
(restricted to total and continuous single-valued functions on Baire space) with
an embedding that preserves least upper bounds.

Using these results some structural properties of the parallel Weihrauch lat-
tice can be transferred from the Turing uppers semi-lattice and the Medvedev
lattice. This observation also gives raise to plenty of further research questions.

4 Omniscience principles

In this section we study the the limited principle of omniscience LPO and
the lesser limited principle of omniscience LLPO in the upper semi-lattice of
Weihrauch reducibility. Such a study has also already been initiated by Weihrauch
[5]. The principles themselves have originally been introduced by Brouwer and
Bishop in constructive mathematics [15, 16]. Roughly speaking, LPO corresponds
to the law of the excluded middle (A ∨ ¬A) and LLPO to de Morgan’s law
¬(A ∧ B) ⇐⇒ (¬A ∨ ¬B), both restricted to simple existential statements.
More precisely, they are stated as follows:

Definition 4 (Omniscience principles). We define:

– LPO : NN → N, LPO(p) =

{
0 if (∃n ∈ N) p(n) = 0
1 otherwise

,

– LLPO :⊆ NN ⇒ N, LLPO(p) 3
{

0 if (∀n ∈ N) p(2n) = 0
1 if (∀n ∈ N) p(2n+ 1) = 0

,

where dom(LLPO) := {p ∈ NN : p(k) 6= 0 for at most one k}.

One should notice that the definition of LLPO implies that LLPO(0N) =
{0, 1}. The two principles LPO and LLPO have already been studied in com-
putable analysis [4–7]. For instance, it is well-known that LPO is reducible to
any other discontinuous single-valued function on Baire space (see Lemma 8.2.6
in [13]).

Proposition 5. Let F :⊆ NN → NN be discontinuous. Then we obtain LPO≤sW F ,
relatively to some oracle.

While LPO is the “simplest” single-valued discontinuous function, its par-

allelization L̂PO is at the other end of the spectrum, it is complete among all
Σ0

2–measurable functions with respect to the Borel hierarchy.
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Similarly, as L̂PO is complete for the class of limit computable operations,

we will show that L̂LPO is also complete for a very natural class of operations

that we will call weakly computable. For technical simplicity by L̂LPO we actually
mean

L̂LPO〈p0, p1, ...〉(k) 3
{

0 if (∀n) pk(2n) = 0
1 if (∀n) pk(2n+ 1) = 0

One benefit of this understanding of L̂LPO is that it is composable with itself

and the next observation is that the composition of L̂LPO with itself is strongly
below itself. Roughly speaking this is because LLPO is defined only in terms of
universal quantifiers and two consecutive universal quantifiers can be absorbed
in one.

Lemma 1. L̂LPO ◦ L̂LPO≤sW L̂LPO.

Using the NAND operation and Kleene’s ternary logic we can show another

interesting property of L̂LPO, namely that it has some quasi-continuity property
although it is discontinuous and we will exploit this property for our main result
in this section. This result can also be interpreted as a completeness result for
parallelized LLPO.

Theorem 4 (Completeness of parallelized LLPO). For any computable func-
tion F :⊆ {0, 1}N → {0, 1}N there exists a computable function G :⊆ {0, 1}N →
{0, 1}N such that F ◦ L̂LPO = L̂LPO ◦G.

If we combine the results showed so far, then we obtain that the multi-

valued operations below L̂LPO are closed under composition. This has first been
observed in [1], where it was expressed in terms of Weak Kőnig’s Lemma (see
also Corollary 3).

Proposition 6 (Composition). Let f :⊆ X ⇒ Y and g :⊆ Y ⇒ Z be multi-
valued operations on represented spaces. Then

f ≤W L̂LPO and g≤W L̂LPO =⇒ g ◦ f ≤W L̂LPO.

The same holds true with respect to some oracle (i.e. we can replace Weihrauch
reducibility by its continuous counterpart in all occurrences here).

We believe that this result justifies to give a new name to the operations

below L̂LPO.

Definition 5 (Weakly computable). A function f :⊆ X ⇒ Y on represented

spaces X,Y is called weakly computable, if f ≤W L̂LPO. Similarly, such a function

is called weakly continuous, if f ≤W L̂LPO holds with respect to some oracle.

One main goal of this section is to show the following theorem on the om-
niscience principles. This theorem completely characterizes the relation of the
omniscience principles and their parallelizations with respect to Weihrauch re-
ducibility.
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Theorem 5 (Omniscience principles). LLPO<W LPO |W L̂LPO<W L̂PO. All
negative results also hold true with respect to some arbitrary oracle.

Note that the proof even shows the strong reduction LLPO≤sW LPO. A dif-
ferent direct proof of LPO 6≤W LLPO is presented in Theorem 4.2 in [5].

Since any discontinuous single-valued function is already above LPO, it is

clear that no such single-valued function can be below L̂LPO. In other words, the
parallel Weihrauch degree of LLPO has no single-valued member. In particular,
this means that multi-valuedness does not appear accidentally in our theory,
but in some sense it is unavoidable. Indeed we will show in Corollary 4 that any
single-valued weakly computable function is already computable in the ordinary
sense.

This has surprising algorithmic consequences. Any “algorithm” that uses
weakly computable operations such as x ≤ 0 or x ≥ 0 leads to a computable
result, as long as the result is uniquely determined, i.e. single-valued. And this is
so, although these operations are typically discontinuous and non-computable.

5 Compact choice and Weak Kőnig’s Lemma

In this section we will show that the parallel version of LLPO is equivalent to
Weak Kőnig’s Lemma. We first formalize Weak Kőnig’s Lemma for this purpose.
We recall that a binary tree is a subset T ⊆ {0, 1}∗ that is closed under the prefix
relation, i.e. if w ∈ T and v v w, then v ∈ T . We use some standard bijective
enumeration (wn)n∈N of all the binary words. By Tr we denote the set of all
binary trees and we use a representation δTr of Tr that is defined by

δTr(p) = T :⇐⇒ χT (wn) = p(n),

where χT : {0, 1}∗ → {0, 1} denotes the characteristic function of the binary
tree T . The classical statement of Kőnig’s Lemma is that any infinite binary
tree has an infinite path. An infinite path of T is a sequence p ∈ {0, 1}N, such
that p[n] ∈ T for all n ∈ N. Here p[n] = p(0)...p(n−1) is the prefix of p of length
n. By [T ] the set of infinite paths of T is denoted. Now we can formalize Weak
Kőnig’s Lemma as follows.

Definition 6 (Weak Kőnig’s Lemma). We define a multi-valued operation
WKL :⊆ Tr ⇒ {0, 1}N, T 7→ [T ] with dom(WKL) = {T ⊆ {0, 1}∗ : T is an infinite
binary tree}.

Weak Kőnig’s Lemma has already been studied in this form in [1]. Our main
result here is that the parallel version of LLPO is strongly equivalent to Weak
Kőnig’s Lemma. For the proof we use Weak Kőnig’s Lemma itself.

Theorem 6 (Weak Kőnig’s Lemma). WKL≡sW L̂LPO.

In [1] it has been proved that the Hahn-Banach Theorem HBT has the same

Weihrauch degree as WKL and hence the same Weihrauch degree as L̂LPO. We
formulate this as a corollary without exactly specifying HBT (the reader is re-
ferred to [1] for details).
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Corollary 3. HBT≡W WKL≡W L̂LPO.

Another equivalence that has been proved in [1] is that all the aforemen-
tioned theorems are equivalent to compact choice in rich spaces. We will use this
observation and we adapt the formulation to our context.

Definition 7 (Compact choice). Let X be a computable metric space. The
multi-valued operation CK(X) :⊆ K−(X) ⇒ X,A 7→ A with dom(CK(X)) :=
{A ⊆ X : A 6= ∅} is called compact choice of X.

Here K−(X) denotes the set of compact subsets of X, which is equipped
with the negative information representation κ− (here a name of a compact set
K is a list of all finite open rational covers of K, see [17] for details). In some
sense, WKL is compact choice for the Cantor space {0, 1}N and, in fact, in [1]
it has been proved that compact choice for a large class of computable metric
space is equivalent to CK({0,1}N)≡W WKL. Using this result we mention a slightly
different result here adapted to our operations.

Theorem 7 (Compact choice). Let X be a computable metric space. Then

CK(X)≤sW L̂LPO. If X is rich, i.e. if there is a computable embedding ι : {0, 1}N ↪→
X, then CK(X)≡sW L̂LPO.

The characterization of L̂LPO as compact choice allows us to derive a char-
acterization of weakly computable operations. Now we are prepared to show
the characterization of weakly computable operations. We say that a function
s :⊆ X → K−(Y ) is a selector of a function f :⊆ X ⇒ Y , if dom(s) = dom(f)
and s(x) ⊆ f(x) for all x ∈ dom(f). Continuous functions s :⊆ X → K−(Y ) are
also called upper semi-continuous.

Theorem 8 (Selection). Let X be a represented space and let Y be a com-
putable metric space. A function f :⊆ X ⇒ Y is weakly computable if and only
if f admits a computable selector s :⊆ X → K−(Y ).

It is known that for computable metric spaces (Y, δY ) the singleton operation
Y → K−(Y ), y 7→ {y} that maps a point to the corresponding singleton set is
(δY , κ−)–computable and it admits a (κ−, δY )–computable right inverse (see
for instance Lemma 6.4 in [18]). Thus we obtain the following corollary of the
Selection Theorem 8.

Corollary 4 (Weakly computability). Let X be a represented space and Y
a computable metric space. Any weakly computable single-valued operation f :⊆
X → Y is computable.

Similarly, it follows that any weakly continuous single-valued function is al-
ready continuous in the ordinary sense.
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6 Conclusions

In this paper we have studied Weihrauch reducibility of multi-valued functions
on represented spaces. Among other things, we have proved that Weihrauch de-
grees form a lower semi-lattice with the direct sum operation as greatest lower
bound operation. Moreover, we have studied parallelization as closure operator
and we have shown that the parallelized Weihrauch degrees even form a lattice
with the product as least upper bound operation. The Medvedev lattice and
the upper semi-lattice of Turing degrees can be embedded into the parallelized

Weihrauch lattice. Moreover, we have proved that the parallelized versions L̂PO

and L̂LPO of the limited principle of omniscience and the lesser limited prin-

ciple of omniscience, respectively, play a crucial role in our lattice. While L̂PO
is complete for the class of limit computable operations, we have shown that

L̂LPO can be used to define a meaningful class of weakly computable operations
that is closed under composition. Single-valued weakly computable operations
are already computable in the ordinary sense. This fact could be related to con-
servativeness properties of WKL0 in reverse mathematics [19, 20] and to known
uniqueness properties in constructive mathematics [21–24].

In a forthcoming paper [2] we discuss the classification of the Weihrauch de-
gree of many theorems from analysis, such as the Intermediate Value Theorem,
the Baire Category Theorem, the Banach Inverse Mapping Theorem and many
others. It turns out that certain choice principles are crucial cornerstones for that
classification and we believe that our classification sheds new light on the com-
putational properties of these theorems. In particular, our classification seems to
be in a well-defined sense finer than other known classifications in constructive
and reverse mathematics.
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1 Introduction

The purpose of this paper is to propose a new approach to classify mathematical
theorems according to their computational content and according to their logical
complexity3.

1.1 Realizability of theorems and Weihrauch reducibility

The basic idea is to interpret theorems, which are typically Π2–theorems of the
form

(∀x ∈ X)(∃y ∈ Y )(x, y) ∈ A,
as operations F :⊆ X ⇒ Y, x 7→ {y ∈ Y : (x, y) ∈ A} that map certain input
data X into certain output data Y . In other words, we are representing theorems
by their realizers or multi-valued Skolem functions, which is a very natural ap-
proach for many typical theorems. For instance, the Intermediate Value Theorem
states that

(∀f ∈ C[0, 1], f(0) · f(1) < 0)(∃x ∈ [0, 1])f(x) = 0

and hence it is natural to consider the partial multi-valued operation

IVT :⊆ C[0, 1] ⇒ [0, 1], f 7→ {x ∈ [0, 1] : f(x) = 0}

with dom(IVT) := {f ∈ C[0, 1] : f(0) · f(1) < 0} as a representative of this theo-
rem. It follows from the Intermediate Value Theorem itself that this operation is
well-defined. The goal of our study is to understand the computational content
of theorems like the Intermediate Value Theorem and to analyze how they com-
pare to other theorems. In order to understand the relation of two theorems T
and T ′ to each other we will ask the question whether a realizer G of T ′ can be
computably or continuously transformed into a realizer F of T . In other words,
we consider theorems as points in a space (represented by their realizers) and we
study whether these points can be computably or continuously transferred into
each other. This study is carried out entirely in the domain of classical logic and
using tools from topology, computability theory and computable analysis [17].

In fact the technical tool to express the relation of realizers to each other is a
reducibility that Weihrauch introduced in the 1990s in two unpublished papers
[15, 16] and which since then has been studied by several others (see for instance
[11, 2, 3, 12, 10, 6, 13]). Basically, the idea is to say that a single-valued function
F is Weihrauch reducible to G, in symbols F ≤WG, if there are computable
function H and K such that

F = H〈id, GK〉.

Here K can be considered as an input adaption and H as an output adaption.
The output adaption has direct access to the input, since in many cases the input

3 This paper is only an extended abstract, but a full version with all definitions and
proofs is available for the interested reader [7].
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cannot be looped through G. Here and in the following 〈 〉 denotes suitable
finite or infinite tupling functions. This reducibility can be extended to sets
of functions and to multi-valued functions on represented spaces. The resulting
structure has been studied in [6] and among other things it has been proved that
parallelization is a closure operator for Weihrauch reducibility. To parallelize a
multi-valued function F just means to consider

F̂ 〈p0, p1, p2, ...〉 := 〈F (p0)× F (p1)× F (p2)× ...〉,

i.e. to take countably many instances of F in parallel.

1.2 Effective choice and boundedness principles

A characterization of the Weihrauch degree of theorems is typically achieved by
showing that the degree is identical to the degree of some other known principle.
We have identified certain choice principles that turned out to be crucial corner-
stones in our classification. These principles are co-finite choice, discrete choice,
interval choice, compact choice, closed choice, and are exposed in Sect. 3.

Often it is more convenient to consider these choice principles as bounded-
ness principles and in particular the principles of interval choice have equivalent
boundedness versions. In Sect. 3 we will present some boundedness principles
that correspond to the above mentioned choice principles.

In Sect. 3 we will show the equivalence of certain choice and boundedness
principles and we will compare them to omniscience principles. Omniscience
principles have been introduced by Brouwer and Bishop [1, 9] as non-acceptable
principles in the intuitionistic framework of constructive analysis.

– (LPO) For any sequence p ∈ NN there exists an n ∈ N such that p(n) = 0 or
p(n) 6= 0 for all n ∈ N.

– (LLPO) For any sequence p ∈ NN such that p(k) 6= 0 for at most one k ∈ N,
it follows p(2n) = 0 for all n ∈ N or p(2n+ 1) = 0 for all n ∈ N.

The abbreviations stand for limited principle of omniscience and lesser lim-
ited principle of omniscience. The realizers of these statements correspond to
discontinuous operations of different degree of discontinuity [16].

The parallelizations L̂PO and L̂LPO turned out to be particularly important

cornerstones in our classification scheme, since L̂PO is a Σ0
2–complete operation

in the effective Borel hierarchy [3], i.e. it is complete among all limit computable

operations with respect to Weihrauch reducibility and similarly L̂LPO is complete
among all weakly computable operations [10, 6]. Limit computable operations are
exactly the effectively Σ0

2–measurable operations and these are exactly those
operations that can be computed on a Turing machine that is allowed to revise
its output. We have defined weakly computable operations exactly by the above
mentioned completeness property in [6]. In Sect. 3 we will show how the choice
and boundedness principles are related to the omniscience principles and their
parallelizations.

Figure 1 illustrates the relation between the choice principles and other re-
sults discussed in this paper.
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Fig. 1. Constructive, computable and reverse mathematics

1.3 Theorems in functional analysis

As a case study we analyze a number of theorems from analysis and functional
analysis and we classify their Weihrauch degree. In particular, we will consider
in Sections 4, 5, 6 and 7 the following theorems:

– (BCT0) Given a sequence (Ai)i∈N of closed nowhere dense subsets of a com-
plete separable metric space X, there exists a point x ∈ X \

⋃
i∈NAi (Baire

Category Theorem).
– (BCT) Given a sequence (Ai)i∈N of closed subsets of a complete separable

metric space X with X =
⋃∞

i=0Ai, there is some n ∈ N such that An is
somewhere dense (Baire Category Theorem).

– (IMT) Any bijective linear bounded operator T : X → Y on separable
Banach spaces X and Y has a bounded inverse T−1 : Y → X (Banach
Inverse Mapping Theorem).

– (OMT) Any surjective linear bounded operator T : X → Y on separable
Banach spaces X and Y is open, i.e. T (U) is open for any open U ⊆ X
(Open Mapping Theorem).

– (CGT) Any linear operator T : X → Y with a closed graph(T ) ⊆ X × Y is
bounded (Closed Graph Theorem).

– (UBT) Any sequence (Ti)i∈N of linear bounded operators that is pointwise
bounded, i.e. such that sup{||Tix|| : i ∈ N} exists for all x ∈ X, is uniformly
bounded, i.e. sup{||Ti|| : i ∈ N} exists (Uniform Boundedness Theorem).
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– (HBT) Any bounded linear functional f : Y → R, defined on some closed
subspace Y of a Banach space X has a bounded linear extension g : X → R
with the same norm ||g|| = ||f || (Hahn-Banach Theorem).

– (IVT) For any continuous function f : [0, 1] → R with f(0) · f(1) < 0 there
exists a x ∈ [0, 1] with f(x) = 0 (Intermediate Value Theorem).

– (BFT) Any continuous function f : [0, 1]n → [0, 1]n has a fixed point x ∈
[0, 1]n, i.e. f(x) = x (Brouwer Fixed Point Theorem).

– (BWT) Any sequence (xi)i∈N of numbers in [0, 1]n has a convergent subse-
quence (Bolzano-Weierstraß Theorem).

– (WAT) For any continuous function f : [0, 1]→ R and any n ∈ N there exists
a rational polynomial p ∈ Q[x] such that ||f−p|| = supx∈[0,1] |f(x)−p(x)| <
2−n (Weierstraß Approximation Theorem).

– (WKL) Any infinite binary tree has an infinite path (Weak Kőnig’s Lemma).

The Baire Category Theorem is an example of a theorem for which it mat-
ters which version is realized. In the formulation BCT0 it leads to a continuous
and even computable realizer, whereas the version BCT is discontinuous. The
realizers of the given theorems are operations of different degree of discontinuity
and our aim is classify the computational Weihrauch degree of these results.
The benefit of such a classification is that practically all purely computability
theoretic questions of interest about a theorem in computable analysis can be
answered by such a classification. Typical questions are:

1. Is the theorem uniformly computable, i.e. can we compute the output infor-
mation y ∈ Y uniformly from the input information x ∈ X?

2. Is the theorem non-uniformly computable, i.e. does there exist a computable
output information y ∈ Y for any computable input information x ∈ X?

3. If there is no uniform solution, is there a uniform computation of a certain
effective Borel complexity?

4. If there is no non-uniform computable solution, is there always a non-uniform
result of a certain arithmetical complexity or Turing degree?

Answers to questions of this type can be derived from the classification of
the Weihrauch degree of a theorem. In the diagram of Fig. 1 we summarize
some of our results. The arrows in the diagram are pointing into the direction of
computations and implicit logical implications and hence in the inverse direction
of the corresponding reductions. No arrow in the diagram can be inverted and
no arrows can be added (except those that follow by transitivity).

In Sect. 7 we provide a number of metatheorems that allow to determine
upper bounds of the Weihrauch degree of many theorems straightforwardly, just
because of the mere topological form of the statement. For instance, any classical
result of the form

(∀x ∈ X)(∃y ∈ Y )(x, y) ∈ A

with a co-c.e. closed A ⊆ X × Y and a co-c.e. compact Y has a realizer that is
reducible to compact choice CK. The table in Fig. 2 summarizes the topological
types of metatheorems and the corresponding version of computability. We il-
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metatheorem computability unique case

open computable computable
compact weakly computable computable
locally compact limit computable non-uniformly computable

Fig. 2. Types of metatheorems, choice and computability

lustrate that these metatheorems are useful and we show that one directly gets
upper bounds for theorems such as the Brouwer Fixed Point Theorem and the
Peano Existence Theorem for the initial value problem of ordinary differential
equations.

2 Weihrauch reducibility, omniscience principles and
weak computability

In this section we briefly recall some definitions from [6] on Weihrauch reducibil-
ity. We assume that the reader has some basic familiarity with concepts from
computable analysis and otherwise we refer the reader for all undefined concepts
to [17]. In a first step we define Weihrauch reducibility for sets of functions on
Baire space, as it was already considered by Weihrauch [15, 16].

Definition 1 (Weihrauch reducibility). Let F and G be sets of functions of
type f :⊆ NN → NN. We say that F is Weihrauch reducible to G, in symbols
F ≤W G, if there are computable functions H,K :⊆ NN → NN such that

(∀G ∈ G)(∃F ∈ F) F = H〈id, GK〉.

Analogously, we define F ≤sW G using the equation F = HGK and in this case
we say that F is strongly Weihrauch reducible to G.

We denote the induced equivalence relations by ≡W and ≡sW, respectively.
In the next step we define the concept of a realizer of a multi-valued function

as it is used in computable analysis [17]. We recall that a representation δX :⊆
NN → X of a set X is a surjective (and potentially partial) map. In general, the
inclusion symbol “⊆” indicates partiality in this paper. In this situation we say
that (X, δX) is a represented space.

Definition 2 (Realizer). Let (X, δX) and (Y, δY ) be represented spaces and
let f :⊆ X ⇒ Y be a multi-valued function. Then F :⊆ NN → NN is called
realizer of f with respect to (δX , δY ), in symbols F ` f , if

δY F (p) ∈ fδX(p)

for all p ∈ dom(fδX).

Usually, we do not mention the representations explicitly since they will be
clear from the context. A multi-valued function f :⊆ X ⇒ Y on represented
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spaces is called continuous or computable, if it has a continuous or computable
realizer, respectively. Using reducibility for sets and the concept of a realizer we
can now define Weihrauch reducibility for multi-valued functions.

Definition 3 (Realizer reducibility). Let f and g be multi-valued functions
on represented spaces. Then f is said to be Weihrauch reducible to g, in symbols
f ≤W g, if and only if {F : F ` f}≤W{G : G ` g}. Analogously, we define
f ≤sW g with the help of ≤sW on sets.

That is, f ≤W g holds if any realizer of g computes some realizer of f with
some fixed uniform translations H and K. It is clear that Weihrauch reducibil-
ity and its strong version form preorders, i.e. both relations are reflexive and
transitive.

One can show that the product of multi-valued functions f × g and the
direct sum f ⊕ g are both monotone operations with respect to strong and
ordinary Weihrauch reducibility and hence both operations can be extended
to Weihrauch degrees. This turns the structure of partially ordered Weihrauch
degrees into a lower-semi lattice with the direct sum operation as greatest lower
bound operation. It turns out that a very important operation on this lower semi-
lattice is parallelization, which can be understood as countably infinite product
operation.

Definition 4 (Parallelization). Let f :⊆ X ⇒ Y be a multi-valued function.

Then we define the parallelization f̂ :⊆ XN ⇒ Y N of f by

f̂(xi)i∈N :=
∞
X
i=0

f(xi)

for all (xi)i∈N ∈ XN.

We mention that parallelization acts as a closure operator with respect to
Weihrauch reducibility.

3 Choice and boundedness principles

In this section we study choice principles and boundedness principles. Both types
of principles are closely related to each other and they are also related to the
omniscience principles mentioned earlier. In some sense most of the boundedness
principles are just variants of the choice principles that are more convenient for
some applications.

By A(X) or A−(X) we denote the set of closed subsets of a metric space
X. The index “−” indicates that we assume that the hyperspace A−(X) is
equipped with the lower Fell topology and a corresponding negative information
representation ψ− (see [8] for details). All choice principles are restrictions of
the multi-valued choice map

Choice :⊆ A−(X) ⇒ X,A 7→ A,
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which is defined for non-empty closed sets A ⊆ X and maps any such set in a
multi-valued way to the set of its members. That is, the input is a non-empty
closed set A ∈ A−(X) and the output is one of the (possibly many) points
x ∈ A. We can define restrictions of the choice map by specifying the respective
domains and ranges.

Definition 5 (Choice principles). We define multi-valued operations as re-
strictions of the respective choice maps as follows:

1. CF :⊆ A−(N) ⇒ N, dom(CF) := {A ⊆ N : A co-finite}.
2. CN :⊆ A−(N) ⇒ N, dom(CN) := {A ⊆ N : A 6= ∅}.
3. CI :⊆ A−[0, 1] ⇒ [0, 1], dom(CI) := {[a, b] : 0 ≤ a ≤ b ≤ 1}.
4. CI

− :⊆ A−[0, 1] ⇒ [0, 1], dom(CI
−) := {[a, b] : 0 ≤ a < b ≤ 1}.

5. CK :⊆ A−([0, 1]) ⇒ [0, 1], dom(CK) := {K ⊆ [0, 1] : K 6= ∅ compact}.
6. CA :⊆ A−(R) ⇒ R, dom(CA) := {A ⊆ R : A 6= ∅ closed}.

We refer to these operations as co-finite choice, discrete choice, interval choice,
proper interval choice, compact choice and closed choice, respectively.

For practical purposes it is often more convenient to handle these choice
principles in form of the closely related boundedness principles that we define
now.

Definition 6 (Boundedness principles). We define the following multi-val-
ued operations:

1. BF : R< ⇒ R, x 7→ [x,∞).
2. BI :⊆ R< × R> ⇒ R, (x, y) 7→ [x, y], dom(BI) := {(x, y) : x ≤ y}.
3. BI

− :⊆ R< × R> ⇒ R, (x, y) 7→ [x, y], dom(BI
−) := {(x, y) : x < y}.

4. BI
+ :⊆ R< × R> → R, (x, y) 7→ [x, y], dom(BI

+) := {(x, y) : x ≤ y}.
5. B : R< → R, x 7→ x.

Proposition 1 (Discrete choice). BF≡sW CF≡W CN.

Proposition 2 (Interval choice). BI≡sW CI, BI
−≡sW CI

−, BI
+≤sW CA.

We recall that it is known that B is equivalent to C : A 7→ cfA, dom(C) =
A−(N) (which can be considered as countable closed choice).

Proposition 3 (Countable closed choice). B≡W C≡W L̂PO.

We have identified two chains of choice principles that are related in the given
way.

Corollary 1 (Choice hierarchies). We obtain

1. LLPO<W CI
−<W CI<W CK≡W L̂LPO<W CA.

2. LPO<W CN<W BI
+<W CA<W C≡W L̂PO.

3. LLPO<W LPO, CI
−<W CN, CI<W BI

+.

Corollary 2 (Countable choice principles). We obtain the following two

equivalence classes: L̂LPO≡W ĈI
−≡W ĈI≡W ĈK<W L̂PO≡W ĈN≡W ĈA.
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4 Discrete Choice and the Baire Category Theorem

In this section we want to classify the Weihrauch degree of the Baire Category
Theorem and some core theorems from functional analysis such as the Banach
Inverse Mapping Theorem, the Open Mapping Theorem, the Closed Graph The-
orem and the Uniform Boundedness Theorem.

Theorem 1 (Baire Category Theorem). Let X be a non-empty complete
computable metric space. Then BCTX ≡W CN.

Theorem 2 (Banach Inverse Mapping Theorem). Let X,Y be computable
Banach spaces. Then IMTX,Y ≤W CN≡W IMT`2,`2 .

Theorem 3 (Open Mapping Theorem). Let X,Y be computable Banach
spaces. Then OMTX,Y ≤W CN≡W OMT`2,`2 .

Theorem 4 (Closed Graph Theorem). Let X,Y be computable Banach spa-
ces. Then CGTX,Y ≤W CN≡W CGT`2,`2 .

Theorem 5 (Uniform Boundedness Theorem). Let X,Y be computable
Banach spaces different from {0}. Then UBTX,Y ≡W CN.

A common feature of all the theorems discussed in this section that are
equivalent to CN are:

1. They are discontinuous and hence non-computable (since CN is so).
2. They admit non-uniform computable solutions (since CN has a realizer that

maps computable inputs to computable outputs).

3. They have ∆0
2–complete sequential counterexamples (since ĈN≡W C, any

realizer maps some computable sequence to some ∆0
2–complete sequence in

the arithmetical hierarchy).

All the properties mentioned here are degree theoretic properties and any
theorem equivalent to CN will be of the same category.

5 Interval Choice and the Intermediate Value Theorem

Theorem 6 (Intermediate Value Theorem). IVT≡sW CI.

We list some common features of all theorems that are equivalent to CI.

1. They are discontinuous and hence non-computable (since CI is so).
2. They admit non-uniform computable solutions (since CI has a realizer that

maps computable inputs to computable outputs).
3. They are uniformly computable under all classical conditions where the so-

lution is uniquely determined (since CI is weakly computable).
4. They have limit computable sequential counterexamples of any basis type

(since ĈI≡W WKL).

By a basis type we mean any set B ⊆ NN that forms a basis for Π0
1 subsets

of Cantor space {0, 1}N, such as the set of low points.
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6 Compact Choice and the Hahn-Banach Theorem

Theorem 7 (Hahn-Banach Theorem). HBT≡W CK.

Common features of all theorems equivalent to CK are:

1. They are discontinuous and hence non-computable (since CK is so).
2. They are uniformly computable under all classical conditions where the so-

lution is uniquely determined (since CK is weakly computable).
3. They have limit computable counterexamples of any basis type (since we

have that CK≡W WKL).

7 Metatheorems and Applications

In this section we want to discuss a number of metatheorems that allow some
conclusions on the status of theorems merely regarding the logical form of these
theorems. Essentially, we are trying to identify the computational status of Π2–
theorems, i.e. theorems of the form

(∀x ∈ X)(∃y ∈ Y ) (x, y) ∈ A,

where depending on the properties of Y and A automatically certain computable
versions of realizers of these theorems exist. In many cases this allows to get some
upper bound on the Weihrauch degree of the corresponding theorem straight-
forwardly.

Theorem 8 (Open Metatheorem). Let X,Y be computable metric spaces
and let U ⊆ X × Y be c.e. open. If

(∀x ∈ X)(∃y ∈ Y )(x, y) ∈ U,

then R : X ⇒ Y, x 7→ {y ∈ Y : (x, y) ∈ U} is computable.

Corollary 3 (Weierstraß Approximation Theorem). WAT≡W id.

The next metatheorem is a similar observation for co-c.e. closed predicates
and co-c.e. compact Y .

Theorem 9 (Compact Metatheorem). Let X,Y be computable metric spac-
es and let Y be co-c.e. compact and A ⊆ X × Y co-c.e. closed. If

(∀x ∈ X)(∃y ∈ Y )(x, y) ∈ A,

then R : X ⇒ Y, x 7→ {y ∈ Y : (x, y) ∈ A} is weakly computable, i.e. R≤W CK.

Corollary 4 (Brouwer Fixed Point Theorem). BFT≤W WKL.
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Many other theorems of analysis that have to do with the solution of equa-
tions in compact spaces fall into the same category. This applies for instance to
the Schauder Fixed Point Theorem and also to the Intermediate Value Theorem.
Sometimes it is not immediately clear that a theorem is of this form. In case of
the Peano Existence Theorem for solutions of initial value problems of ordinary
differential equations it is easy to see that it can be reduced to the Schauder
Fixed Point Theorem (see [14]). Another example of this type is the Hahn-
Banach Theorem. As it is usually formulated, is not of the form of an equation
with a solution in a compact space. However, using the Banach-Alaoglu The-
orem, it can be brought into this form (see [4, 10]). Whenever a theorem that
falls under the Compact Metatheorem has a unique solution, then that solution
is automatically computable by Corollary 8.8 in [6].

Thus, under all (perhaps purely classical) conditions under which the Brouw-
er Fixed Point Theorem, the Intermediate Valued Theorem, the Hahn-Banach
Theorem or the Peano Existence Theorem have unique solutions, they are al-
ready automatically fully computable.

Theorem 10 (Locally Compact Metatheorem). Let X,Y be computable
metric spaces, let Y be effectively locally compact and let A ⊆ X × Y be co-c.e.
closed. If

(∀x ∈ X)(∃y ∈ Y )(x, y) ∈ A,

then R : X ⇒ Y, x 7→ {y ∈ Y : (x, y) ∈ A} satisfies R≤W CA(Y ), where CA(Y ) is
defined like CA with Y instead of R. In particular, R is limit computable.

Corollary 5. Let X be a computable metric space and let Y be an effectively
locally compact metric space. If f : X → Y is a function with a co-c.e. closed
graph graph(f) = {(x, y) ∈ X × Y : f(x) = y}, then f is limit computable.
In particular, the inverse g−1 : X → Y of any computable bijective function
g : Y → X is limit computable.
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Abstract. In this note we discuss the information needed to compute
the homology groups of a topological space. We argue that the natural
class of spaces to consider are the compact absolute neighbourhood re-
tracts, since for these spaces the homology groups are finite. We show
that we need to specify both a function which defines a retraction from
a neighbourhood of the space in the Hilbert cube to the space itself,
and a sufficiently fine over-approximation of the set. However, neither
the retraction itself, nor a description of an approximation of the set in
the Hausdorff metric, is sufficient to compute the homology groups. We
express the conditions in the language of computable analysis, which is
a powerful framework for studying computability in topology and geom-
etry, and use cubical homology to perform the computations.

Keywords: computability, homology, compact absolute neighbourhood re-
tract

1 Introduction

Homology theory is one of the cornerstones of algebraic topology. The first ho-
mology theory, simplicial homology, was developed to provide invariants of a
topological space (expressed as a simplicial complex) which could be more easily
computed than the homotopy invariants. Other homology theories, most notably
singular homology, were developed which extended the simplicial homology to
arbitrary topological spaces, topological pairs and continuous functions. For an
introduction to homology theory, see [ES52], [Mun84], [Mas91] or [Spa81]. How-
ever, while the simplicial homology can be easily computed by purely algebraic
means, it is not clear precisely what information is needed about a space in order
to compute its homology groups using a digital computer. The purpose of this
article is to discuss the computability of homology for general metric spaces.

As is standard in computability theory, we use Turing machines as the under-
lying computational model. We consider different representations of the input
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sets and/or functions in terms of symbols over some alphabet. Since the class of
compact subsets of a (infinite) separable metric space has continuum cardinality,
we need to represent these sets by streams of data, yielding successively better
approximations to the set.

Since homology groups are well defined (by the Eilenburg-Steenrod ax-
ioms [ES45]) and finite for the class of compact absolute neighbourhood retracts,
we restrict attention to these spaces. A natural way of describing a compact ab-
solute neighbourhood retract is to specify a neighbourhood retraction onto the
set. However, we shall see that this information itself is not quite sufficient to
compute the homology; we also need to give a bounding set for the set which is
a subset of the domain of the retraction.

The original approach to homology theory via simplicial complexes is well-
suited to the computation of the homology of a topological space when an explicit
construction of the space is known. However, it is less-well suited for the compu-
tation of the homology of an arbitrary continuous function, unless a homotopic
simplicial map can easily be constructed. Further, the relative simplicity of inter-
val methods for rigorous evaluation of continuous functions suggests the devel-
opment of a homology theory based on cubical complexes. The first algorithms
for the computation of cubical homology were developed in [KMŚ98,KMW99];
see [KMM04] for a self-contained exposition. More advanced algorithms have
since been developed [MMP05,MPŻ08,MB09]. The computational homology
package CHomP [KMP] contains implementations of the computation of the
homology of simplicial and cubical complexes by Kalies, Mrozek and Pilarczyk.

The main results of this paper are that the homology of a general compact
separable metric space X cannot be computable from a name of X as a compact
set, and neither can the homology of a compact absolute neighbourhood retract
X be computed from a name of a neighbourhood retraction r : U −→ X. How-
ever, the homology can be computed given both pieces of data; this is equivalent
to a name of r and a single bound on X.

2 Preliminaries

In this section we review the main concepts and results from the theory of re-
tracts, homology theory, computational cubical homology and computable anal-
ysis that we require.

2.1 Theory of retracts

Let E be a metrisable space. Recall that if X ⊂ E, then a function r : E −→ X
is a retraction if r|X = idX . If U is an open neighbourhood of X in E and
r : U −→ X is such that r|X = idX , then r is a neighbourhood retraction.
We say X is a neighbourhood retract if there exists a neighbourhood retraction
r : U −→ X. If X ⊂ E, we denote the embedding of X in E as i : X −→ E; note
that r|X = r ◦ i. We say that r : U −→ X is a weak (neighbourhood) retraction
if r|X ∼ id|X , i.e. r is homotopic to the identity of X.
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Recall that the Hilbert cube is the countably infinite product space [−1,+1]∞.
We can give a metric by

d(x, y) =

( ∞∑
k=1

(xk − yk
k

)2 )1/2

.

The relative interior of the Hilbert cube is the subset (−1,+1)∞, which is not
locally-compact.

A countable base for the Hilbert cube is given by open sets of the form

I1 × I2 × · · · Ik × [−1,+1]× · · ·

with each Ij of the form (aj , bj), (aj ,+1], [−1, bj) or [−1,+1] for aj , bj ∈ Q. The
closures of these sets have the form

[a1, b1]× · · · × [ak, bk]× [−1,+1]× · · ·

with ai, bi ∈ Q and −1 ≤ ai < bi ≤ +1 for i = 1, . . . , k. A countable base for the
relative interior of the Hilbert cube is given by the sets

(a1, b1)× · · · × (ak, bk)× (−1,+1)× · · ·

with ai, bi ∈ Q and −1 ≤ ai < bi ≤ +1 for i = 1, . . . , k.
A space X is an absolute neighbourhood retract if, whenever it embeds as a

closed subset of a normal space Y , there is an open neighbourhood U of X in Y
and a retraction r : U −→ X. It can be shown that a separable metric space is
an absolute neighbourhood retract if, and only if, it embeds as a neighbourhood
retract in the Hilbert cube. We can therefore consider absolute neighbourhood
retracts as subsets of the Hilbert cube. A space is a Euclidean neighbourhood
retract if it embeds as a neighbourhood retract in Euclidean space Rd for some
d.

2.2 Homology Theory

Recall that a topological pair is a pair (X,A) where X is a topological space and
A is a subset of X. By a slight abuse of notation, we will sometimes write X for
the pair (X, ∅). A map of pairs f : (X,A) −→ (Y,B) is a continuous function
f : X −→ Y such that f(A) ⊂ B.

Recall that a graded abelian group G is a sequence (Gq)
∞
q=0 of abelian groups.

A homomorphism φ between graded abelian groups G and H is a sequence of
group homomorphisms φq : Gq −→ Hq. A graded abelian group G is finite if
each Gq is finite, and Gq = {e} for all but finitely many q.

Recall that a (finite or infinite) sequence of (graded) group homomorphisms

· · · −→ Gk
φk−→ Gk+1

φk+1−→ Gk+2 −→ · · ·

is exact if im(φk) = ker(φk+1) for all k.
There are a large number of homology theories, each with different properties.

However, they all satisfy the following axioms.
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Axioms 1 (Eilenberg-Steenrod) A homology theory consists of a covariant
functor H∗ from (a full subcategory of) the category of topological pairs to the
category of graded abelian groups, and a natural transformation ∂∗ of degree −1
from H∗(X,A) to H∗(A) satisfying Axioms (i) to (iv) below.

In other words, Hq(X,A) is an abelian group for q = 0, 1, . . ., if f :
(X,A) −→ (Y,B) then Hq(f) : Hq(X,A) −→ Hq(Y,B), H∗(g ◦ f) = H∗(g) ◦
H∗(f) and δq : Hq(X,A) −→ Hq−1(A).

1. Homotopy: If f0, f1 : (X,A) −→ (Y,B) are homotopic, then

H∗(f0) = H∗(f1) : H∗(X,A) −→ H∗(Y,B).

2. Exactness: Each pair (X, A) induces a long exact sequence in homology, via
the inclusions i : A −→ X and j : X −→ (X,A) by

· · · −→ Hq(A)
i∗−→ Hq(X)

j∗−→ Hq(X,A)
∂∗−→ Hq−1(A) −→ · · · .

3. Excision: If (X,A) is a pair and U is a subset of X such that U ⊂ A◦, then
the inclusion map i : (X \ U,A \ U) −→ (X,A) induces an isomorphism in
homology

i∗ : H∗(X \ U,A \ U) ≈ H∗(X,A).

4. Dimension: If P is a one-point space, then

Hq(P ) ≡

{
0 if q 6= 0

Z if q = 0.

It is well-known that the homology of a compact absolute neighbourhood
retract is uniquely determined by the axioms. For the homology of simplicial set
is determined by the axioms, and can be effectively computed from the axioms
(though the computation is usually performed in practice using the simplicial
homology theory). Additionally, any compact absolute neighbourhood retract is
dominated by a finite simplicial complex, allowing computation of the homology.
That any compact absolute neighbourhood retract has the homotopy type of a
finite simplicial complex was a long-standing open conjecture, finally proved by
West [Wes77]. We shall use a similar technique to relate the homology of a
compact absolute neighbourhood retract to that of a finite cubical complex.

Recall that a single-valued function f : X −→ Y is a selection of a multi-
valued function F : X ⇒ Y if f(x) ∈ F (x) for all x ∈ X. It is not difficult to
show that if F : X ⇒ Y is convex-valued and f0, f1 are two continuous selec-
tions of F , then f0 and f1 are homotopic. We say that F : (X,A) ⇒ (Y,B) is a
multivalued map of pairs if F : X ⇒ Y and F (a) ⊂ B for all a ∈ A. Hence if
F : (X,A) ⇒ (Y,B) is a multivalued map of pairs with convex values, then any
continuous selections f0, f1 : (X,A) −→ (Y,B) are homotopic, and so have the
same homology. We can therefore speak of the homology of a multivalued map.
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2.3 Computational Homology

The computational homology approach begins with the computation of the ho-
mology of cubical sets which are essentially finite unions of cubes in Euclidean
space.

The following definition is modified from [KMM04, Definitions 2.1,3,9].

Definition 2 (Cubical Set). An elementary interval is a closed interval I ⊂ R
of the form I = [k, k] or I = [k, k + 1] for some k ∈ Z. An elementary cube
Q ⊂ Rd is a finite product of elementary intervals Q = I1 × I2 × · · · × Id.
An elementary cubical chain is a formal sum of oriented elementary cubes. The
boundary ∂Q of an elementary cube Q is the formal sum of the elementary cubes
of dimension dim(Q)− 1 with the natural orientation.

An elementary cubical complex Q is a set of elementary cubes Q such that
if Q ∈ Q, then any elementary cube which is a subset of Q is also an element of
Q.

A cubical complex is a set X of the form X = {sl(Q) | Q ∈ Q} where Q
is an elementary cubical complex and sl(x) = x/2l is a scaling transformation.
A cubical complex X ′ is a refinement of X if Q =

⋃
{Q′ ∈ X ′|Q′ ⊂ Q} for all

Q ∈ X .
The support |X | of a cubical complex X is the union of all elementary cubes

of X. A set X is cubical if there is a cubical complex X such that X = |X |.

Definition 3 (Cubical Map). Let X and Y be cubical complexes. A cubical
function is a multivalued function F : X ⇒ Y such that F(Q1 ∩Q2) = F(Q1) ∩
F(Q2). A cubical function is convex if |F(Q)| is convex for all Q ∈ X .

The support |F| of a cubical function F is the lower-semicontinuous multi-
valued map |F| : |X | ⇒ |Y| defined by |F|(x) = |F(Q)| for x ∈ rel int(Q). We
say that a multivalued map F : X −→ Y is cubical if there are cubical complexes
X and Y with X = |X |, Y = |Y|, and a cubical function F : X ⇒ Y such that
F = |F|.

The following theorem asserts that cubical homology is effectively computable.

Theorem 4.

1. Let (X ,A) be cubical complexes. Then the cubical homology H∗(|X |, |A|) is
effectively computable given X and A.

2. Let F : (X ,A) −→ (Y,B) be a convex cubical function. Then the cubical
homology H∗(|F|) is effectively computable given F .

Note that the cubical homology theory is essentially a combinatorial theory (for
cubical complexes and convex cubical functions) which induces a topological
theory on the supports. It is possible to show that the homology of a cubical
set (or map) does not depend on the cubical complex (or function) used for the
representation. However, the cubical theory is only defined on the special classes
of cubical sets and cubical maps. To extend the theory to arbitrary sets and
maps, we need to reduce to the cubical theory. The main results of this paper
involve showing that these reductions can be performed effectively.
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2.4 Computability Theory

In this section we give an overview of computability in analysis, following the
type-two effectivity theory of [Wei00].

Let Σ be a finite alphabet, such as the binary digits {0, 1} or the ASCII
character set. By Σ∗ we mean the set of finite words on Σ, and by Σω the set
of infinite sequences. We say a function η :⊂ Σ∗/ω × · · · × Σ∗/ω −→ Σ∗/ω is
computable if it can be evaluated by a Turing machine. The set of computable
functions is closed under composition.

We will sometimes need a computable tupling operation τ (Σ∗)ω −→ Σω,
denoted (w1, w2, . . .) 7→ 〈w1, w2, . . .〉.

Let M be a set. A notation of M is a partial surjective function ν :⊂ Σ∗ −→
M . A representation of M is a partial surjective function δ :⊂ Σω −→ M . A
δ-name of x ∈M is an element p ∈ Σω such that δ(p) = x.

If δ0, . . . , δk are representations of M0, . . . ,Mk respectively, then a function
f : M1 × · · · × Mk −→ M0 is computable if there is a computable function
η :⊂ Σω × · · · × Σω −→ Σω such that f(δ1(p1), . . . , δk(pk)) = δ0(η(p1, . . . , pk))
whenever the left-hand side is defined. If the representations of M0, . . . ,Mk being
used are clear from the context, we simply say that f is (effectively) computable.

If M is a topological space, we are interested in representations which are
compatible with the topological structure. A computable topological space is a
tuple (M, τ, σ, ν) where σ is a sub-base for a T0 topology τ on M , and ν is a
notation of τ . The standard representation of (M, τ, σ, ν) is the representation δ
of M defined by

δ〈w1, w2, w3, . . .〉 = x ⇐⇒ {ν(wi) | i ∈ N} = {I ∈ σ | x ∈ I}.

In other words, p encodes a list of all sub-basic sets I containing x. By the T0
hypothesis on (M, τ), this p encodes a unique element of M .

If M is the Hilbert cube and ν is an encoding of the standard basis set β,
then the standard arithmetical operations +, −, × and ÷ are computable with
respect to the standard representation.

Given a locally-compact Hausdorff space X and a base β for X with notation
ν we can construct representations for open and compact subsets of X as follows:

1. A θ<-name of an open subset U of X encodes a list of all I ∈ β such that
Ī ⊂ U .

2. A κ>-name of a compact subset C of X encodes a list of all tuples
(J1, . . . , Jk) ∈ β∗ such that C ⊂

⋃k
i=1 Ji.

3. A κ-name of a compact subset C of X encodes a list of all tuples
(J1, . . . , Jk) ∈ β∗ such that C ⊂

⋃k
i=1 Ji and Ji ∩ C 6= ∅ for all i = 1, . . . , k.

These are standard representations with respect to the Scott topology on open
sets, and the (upper) Vietoris topology on compact sets. We can also construct
representations for continuous functions:.

4. Let U be an open subset of X, and f : U −→ Y a continuous function. A
γ-name of f encodes a list of all pairs (I, J) ∈ βX ×βY such that Ī ⊂ U and
f(Ī) ⊂ J .
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Note that a γ-name of f implicitly contains a θ<-name of dom(f). This is a stan-
dard representation with respect to the compact-open topology on continuous
functions.

3 Computability of Homology Groups

In this section we present the main results on computability and uncomputability
of homology groups. We first show that homology is uncomputable with respect
to certain representations of the space, and then find conditions under which
homology is computable.

3.1 Uncomputability of homology

We now show that the homology cannot be computed from a κ-name of X, nor
from a γ-name of a neighbourhood retract r : U −→ X alone. These results
are strong, in the sense that there is no space for which the homology can be
computed from the given data.

Theorem 5. Let X be a compact absolute neighbourhood retract. The homol-
ogy function H∗ is discontinuous at X in the Vietoris topology, and hence is
uncomputable.

Proof. It suffices to construct a sequence of compact absolute neighbourhood
retracts Xn such that Xn → X in the Vietoris topology, but H∗(Xn) does not
converge to H∗(X). Let xi be a sequence of points such that each xi 6∈ X but

limn→∞ xi = x∞ ∈ X. Let Xn = X ∪
⋃2n
i=n+1 xi. Then each Xn is an absolute

neighbourhood retract and Xn → X in the Vietoris topology on compact sets,
but H0(Xn) ≈ H0(X)⊕ Zn, so the homology does not converge.

Theorem 6. Let X ⊂ R∞ be a compact absolute neighbourhood retract. The
homology of X cannot be computed from a γ-name of a neighbourhood retraction
r : U → R∞ with r(U) = X.

Proof. Let p ∈ Σω be a γ-name of r encoding a sequence (Ik, Jk) of basic open
sets such that r(Īk) ⊂ Jk. Let U ′ be an open ball cl(U ′) ∩ cl(U) = ∅, let x′ ∈ U ′
and r′ : U ′ −→ {x′}. Let p′ be a γ-name of r′ encoding a sequence (I ′k, J

′
k) such

that r′(Ī ′k) ⊂ J ′k.

Take Û = U ∪ U ′, X̂ = X ∪ X ′ and define r̂ : Û −→ X̂ by r̂(a) = r(a) if
a ∈ U and r̂(a) = r′(a) if a ∈ U ′. Then r̂ is a retraction from Û to X̂. We can
construct names of r̂ by taking an arbitrarily long prefix of a name of r̃, and
then splicing in a name of r′. For n ∈ N, define (În,k, Ĵn,k) = (Ik, Jk) for k ≤ n,

and (În+2j−1, Ĵn+2j−1) = (In+j , Jn+j), (În+2j , Ĵn+2j) = (In+j , Jn+j) for j ∈ N.

Let p̂n be the encoding of the sequence (În,i, Ĵn,i). Then for all n ∈ N, p̂n is an
encoding of r̂, but limn→∞ p̂n = p, which is a name of r. This means that given
the name p of r, at no point can we deduce p is a name of r and not r̂, and so
at no point can we deduce H0(X).
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We note that while the first result is due to an argument that the homology
is discontinuous, for the second we needed to consider the details of the repre-
sentation. This suggests that the homology can “almost” be computed from a
name of a neighbourhood retraction. In the next section we shall see that this is
indeed the case.

3.2 Homology of Euclidean neighbourhood retracts

To give an idea of the general method, we first prove effective computability of
H∗(X) for a Euclidean neighbourhood retract X.

Theorem 7. Let X be a compact Euclidean neighbourhood retract. Then H∗(X)
can be effectively computed from a γ-name of a retraction r : U −→ X with U
an open subset of Rd, and from a κ>-name of X as a compact subset of Rd.

Proof (Proof (Sketch)). From the κ>-name of X and a θ<-name of U we can
effectively compute a cubical set C such that X ⊂ C◦ and C ⊂ U . Since r(C) =
X ⊂ C◦, every point x of C has a basic open neighbourhood I such that f(Ī) ⊂ J
with J ⊂ C. From a γ-name of r, we can therefore compute a convex-valued
cubical map R : C ⇒ C such that r(x) ∈ R(x) for all x. Since C is a cubical set
and R is a cubical map, H∗(C) and H∗(R) can be computed using Theorem 4.

Let i : X −→ C be the embedding of X in C, and p : C −→ X be the
restriction of r to C. Then p ◦ i = idX , so H∗(p ◦ i) = idH∗(X). Hence H∗(p) is
surjective and H∗(i) is injective. Since i ◦ p = r|C , the cubical map R is an over-
approximation to i ◦ p, so H∗(i ◦ p) = H∗(R). Then H∗(X) = H∗(p)(H∗(C)) ≈
H∗(i)(H∗(p)(H∗(C))) = H∗(i◦p)(H∗(C)) = H∗(R)(H∗(C)), so can be effectively
computed.

The presentation of H∗(X) is as a subgroup of H∗(C) for which we have an
explicit presentation. The subgroup is the image of H∗(C) under the homo-
morphism H∗(R). Notice that H∗(R) is a projection on H∗(C), since H∗(R) =
H∗(i ◦ p) = H∗(i ◦ (p ◦ i) ◦ p) = H∗(i ◦ p ◦ i ◦ p) = H∗(i ◦ p)2 = H∗(R)2.

3.3 Computation of homology for compact absolute neighbourhood
retracts

Lemma 8. Let (X,A) be a pair of compact absolute neighbourhood retracts em-
bedded in the Hilbert cube. Then given κ>-names of X and A, and γ-names
of rX : UX −→ X and rA : UA −→ A, it is possible to effectively compute
a pair (X̂, Â) of cubical sets, and maps of pairs i : (X,A) −→ (X̂, Â) and
p : (X̂, Â) −→ (X,A) such that p ◦ i ∼ idX,A.

Proof. By the effective Urysohn lemma [Wei01], we can construct a function
φ : UX −→ [0, 1] such that φ(x) = 1 on a small neighbourhood of A, and φ(x) = 0
outside UA. We define q : UX −→ X by q(x) = rX(φ(x)rA(x) + (1− φ(x))x). It
is straightforward to verify that q maps a small neighbourhood VA of A in UX
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to A, that q|X is homotopic to the identity, and that we can compute a γ-name
of q.

Since X ⊂ UX , and using the topology of the Hilbert cube, we can effectively
compute a cubical subset X̂ of Rd such that X ⊂ X̂◦ × (−1,+1)∞ and X̂ ×
[−1,+1]∞ ⊂ UX . Further, we can ensure that X̂ has a cubical subset Â such
that A ⊂ Â◦ × (−1,+1)∞ and Â× [−1,+1]∞ ⊂ VA.

We take i : (X,A) −→ (X̂, Â) as i(x) = π(x), which is clearly computable,
and p : (X̂, Â) −→ (X,A) by p(x) = q(x, 0, . . .). Since q is homotopic to the
identity on (X,A), we find p ◦ i ∼ idX,A by the homotopy extension theorem.

Lemma 9. Let (X̂, Â) and (Ŷ , B̂) be cubical sets, and f : (X̂, Â) −→ (Ŷ ◦, B̂◦).
Then given a γ-name of f , it is possible to effectively compute a convex cubical
map F : (X̂, Â) −→ (Ŷ , B̂) such that f is a selector of F .

Proof. Given a γ-name of f , we list all pairs (I, J) such that f(Ī) ⊂ J , that
J̄ ⊂ Ŷ ◦ and J̄ ⊂ B̂◦ if I ∩ A 6= ∅. We eventually obtain an open cover of X̂ by
such sets I. By refining X̂ if necessary, we can assume that each cell Q of X̂ lies
in some I with corresponding J . We define F(Q) = {Q′ ∈ K(Ŷ ) | J ∩Q′ 6= ∅}.
It is easy to verify that |F| is the required convex cubical map.

We can now compute the homology of an arbitrary topological pair.

Theorem 10. Let (X,A) be a pair of compact absolute neighbourhood retracts
embedded in the Hilbert cube. Then the homology H∗(X,A) can be effectively
computed from κ>-names of X and A, and γ-names of rX and rA.

Proof. Let i : (X,A) −→ (X̂, Â) and p : (X̂, Â) −→ (X,A) be as given by
Lemma 8, so that p◦i ∼ idX,A. Then H∗(p◦i) = idH∗(X,A) so H∗(p) is surjective,

and H∗(i) is injective, and hence H∗(X,A) ≈ H∗(i ◦ p)(H∗(X̂, Â)). By Lemma 9
we can effectively compute a cubical map P : (X̂, Â) ⇒ (X̂, Â) such that i◦p is a
selection of P . Since i◦p is a selection of P , H∗(i◦p) = H∗(P ). The result follows
since we can compute the homology of H∗(X̂, Â) and H∗(P ) by Theorem 4.

We now consider the computation of the homology of a map of pairs.

Theorem 11. Let (X,A) and (Y,B) be compact absolute neighbourhood re-
tracts, equipped with the information needed to compute the homology. Let
f : (X,A) −→ (Y,B) be a map of pairs. Then the homology H∗(f) can be
computed from a γ-name of f .

Proof. From Lemma 8, the approximate projection p : (X̂, Â) −→ (X,A) can be
effectively computed, as can the approximate embedding i : (Y,B) −→ (Ŷ , B̂).
Then iY,B ◦ f ◦ pX,A : (X̂, Â) −→ (Ŷ , B̂) can be effectively computed. We

can therefore compute a cubical map f̂ : (X̂, Â) −→ (Ŷ , B̂) which is an
over-approximation to iY,B ◦ f ◦ pX,A. The homology of f is then given by

H∗(f) ≈ H∗(pY,B) ◦ H∗(f̂), since H∗(pY,B) is a projection of H∗(Ŷ , B̂) onto

H∗(Y,B) considered as a subgroup of H∗(Ŷ , B̂).
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4 Conclusions

In this paper, we have considered the information required to compute the ho-
mology groups of compact absolute neighbourhood retracts. We have shown that
the homology can be computed given a bound for the set, and the name of a
neighbourhood retract from a subset of the Hilbert cube to the space. The deriva-
tions use standard homotopy arguments to reduce the problem to a problem of
computing cubical homology.

An interesting question for further research is whether the requirements that
X be a compact absolute neighbourhood retract can be weakened. If X is not
compact, then the homology groups are not finite, but X still has the homotopy
type of a (now infinite) simplicial complex. If X is not an absolute neighbourhood
retract, then it cannot be embedded in Euclidean space or the Hilbert cube as
a neighbourhood retract, and so a different representation of X is required.

An alternative approach would be to reduce the problem to the problem of
computing simplicial homology. However, since existing numerical approaches
work better with interval arithmetic and cubical sets, the cubical approach is
closer to existing implementations.

References

[ES45] Samuel Eilenberg and Norman E. Steenrod. Axiomatic approach to homol-
ogy theory. Proc. Nat. Acad. Sci. U. S. A., 31:117–120, 1945.

[ES52] Samuel Eilenberg and Norman Steenrod. Foundations of algebraic topology.
Princeton University Press, Princeton, New Jersey, 1952.

[KMM04] Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek. Compu-
tational homology, volume 157 of Applied Mathematical Sciences. Springer-
Verlag, New York, 2004.

[KMP] William Kalies, Marian Mrozek, and Pawe l Pilarczyk. Homol-
ogy software [in:] computational homology program. available at:
http://chomp.rutgers.edu/.
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Abstract. We investigate a hierarchy of representations of topologi-
cal spaces by measurable functions that extends the traditional notion
of admissible representations common to computable analysis. Specific
instances of these representations already occur in the literature (for ex-
ample, the naive Cauchy representation of the reals and the “jump” of a
representation), and have been used in investigating the computational
properties of discontinuous functions. Our main contribution is the inte-
gration of a recently developing descriptive set theory for non-metrizable
spaces that allows many previous results to generalize to arbitrary count-
ably based T0 topological spaces. In addition, for a class of topological
spaces that include the reals (with the Euclidean topology) and the power
set of ω (with the Scott-topology), we give a complete characterization
of the functions that are (topologically) realizable with respect to the
level of the representations of the domain and codomain spaces.

1 Introduction

In this paper, we introduce and investigate the topological properties of a hi-
erarchy of representations of topological spaces, which we call Σ0

α-admissible
representations. A partial function ρ:⊆ ωω → X is called a Σ0

α-admissible
representation (1 ≤ α < ω1) of the topological space X if and only if ρ is
Σ0
α-measurable and every Σ0

α-measurable partial function to X is continuously
reducible to ρ (see Definition 4). As Σ0

1-measurable functions are exactly the
continuous functions, a Σ0

1-admissible representation is the same as the tradi-
tional notion of an “admissible” representation common to computable analysis
(see [12] and [9]). A well known example of a Σ0

2-admissible representation is the
naive Cauchy representation of the reals [4], and examples of representations in
the finite levels of the hierarchy can be obtained iteratively by taking the “jump”
of a representation [14]. These representations have been used in investigating
the computational properties of discontinuous functions (see [3], [14], and [5]).

Whereas previous results have focused on metrizable spaces and finite lev-
els of the hierarchy, in this paper we will investigate these representations for
arbitrary countably based T0 spaces and all countable levels of the hierarchy. Per-
haps one reason that previous research has been restricted to metrizable spaces

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 119-130 
http://drops.dagstuhl.de/opus/volltexte/2009/2264
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is that the classical definition of the Borel hierarchy behaves rather poorly on
non-metrizable spaces. Since the domain of a Σ0

α-admissible representation is a
metrizable space, we can use the classical definition of the Borel hierarchy in
defining these representations, even for arbitrary topological spaces. However,
to better understand their properties, a slight modification of the definition of
the Borel hierarchy is needed for non-metrizable spaces. It turns out that the
correct definition is the one that has only recently been used by Tang [11] in
studying P(ω) and more extensively studied by Selivanov (see [10] for a survey).
Using this modification, it can be shown that the Borel complexity of a subset
of a countably based T0 space is exactly determined by the complexity of the
preimage of the set under a Σ0

1-admissible representation (see Corollary 3 be-
low). Similar properties hold for higher levels of the hierarchy, and this regularity
allows us to easily characterize the types of functions that are topologically re-
alizable with respect to these representations. In particular, we give a complete
characterization for a class of topological spaces that include the reals and P(ω)
(see Theorem 9), and have also extended some important realizability results by
Brattka [3] and Ziegler [14] to all countably based T0-spaces (see Theorem 8).

A final result worth mentioning is that, given a representation ρ:⊆ ωω → X
of a set X, if there is a sequential topology τ on X that makes ρ a Σ0

α-admissible
representation, then both τ and α are uniquely determined (see Corollary 4).
Thus, Σ0

α-admissible representations provide a useful means of characterizing
representations that cannot be interpretted as being admissible in the usual
(continuous) sense.

We will define the Borel hierarchy for arbitrary topological spaces and review
its basic properties in the next section. In Section 3 we will investigate some basic
properties of Σ0

α-measurable functions between topological spaces. We prove that
Σ0
α-admissible representations exist for all countable ordinals α and all countably

based T0 spaces in Section 4, and further investigate their properties in Section 5.
Section 6 investigates which functions between topological spaces are realizable
with respect to Σ0

α-admissible representations, and we conclude in Section 7.
Several proofs have been omitted due to a lack of space. They can be obtained
by contacting the first author.

2 The Borel Hierarchy

In this section we define the Borel hierarchy on arbitrary topological spaces
and introduce some basic properties. We will use a definition of the Borel hi-
erarchy that differs from the classical definition (e.g., the definition in [7]) on
non-metrizable spaces, but is more suitable for general topological spaces.

We let ω1 denote the least uncountable ordinal, ω the set of natural numbers
(or the first infinite ordinal), and for sets A and B we let A\B denote the subset
of A of elements not in B.

Definition 1. Let X be a topological space. For each ordinal α (1 ≤ α < ω1)
we define Σ0

α(X) inductively as follows.
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1. Σ0
1(X) is the set of all open subsets of X.

2. For α > 1, Σ0
α(X) is the set of all subsets A of X which can be expressed in

the form

A =
⋃
i∈ω

Bi \B′i,

where for each i, Bi and B′i are in Σ0
βi

(X) for some βi < α.

We define Π0
α(X) = {X \ A |A ∈ Σ0

α(X)}, ∆0
α(X) = Σ0

α(X) ∩ Π0
α(X), and

B(X) =
⋃

1≤α<ω1
Σ0
α(X). ut

The above definition of the Borel hierarchy is equivalent to the definition that
was used by Tang [11] in studying descriptive set theory on P(ω) (the power
set of the natural numbers with the Scott-topology), and more systematically
investigated by Selivanov (see [10] for a survey of results and an extensive list of
references).

The classical definition of the Borel hierarchy (which requires Bi = X for all
i in the second clause of Definition 1) is not suitable for non-metrizable spaces.
For example, consider the Sierpinski space S = {⊥,>} (where {>} is open, but
{⊥} is not). If we used the classical definition then Σ0

2n+1(S) is the set of open
subsets of S and Σ0

2n+2(S) is the closed subsets, so Σ0
2n+1(S) 6⊆ Σ0

2n+2(S) (for
0 ≤ n < ω). The Borel hierarchy defined in Definition 1 is equivalent to the
classical definition for all metrizable spaces, and behaves as we expect it should
even for non-metrizable spaces.

In the following, X and Y will denote arbitrary topological spaces, unless
stated otherwise. The following results are easily proven, and can also be found
in [10].

Proposition 1. For each α (1 ≤ α < ω1),

1. Σ0
α(X) is closed under countable unions and finite intersections,

2. Π0
α(X) is closed under countable intersections and finite unions,

3. ∆0
α(X) is closed under finite unions, finite intersections, and complementa-

tion.
ut

Proposition 2. If β < α then Σ0
β(X) ∪Π0

β(X) ⊆∆0
α(X). ut

Proposition 3. For α > 2, each A ∈ Σ0
α(X) can be expressed in the form

A =
⋃
i∈ω Bi, where for each i, Bi is in Π0

βi
(X) for some βi < α. ut

Proposition 4. If X is a metrizable space, then every A ∈ Σ0
2(X) is equal to

a countable union of closed sets. ut

Proposition 5. If X is a subspace of Y , then Σ0
α(X) = {A ∩X |A ∈ Σ0

α(Y )}
and Π0

α(X) = {A ∩X |A ∈ Π0
α(Y )}. ut

A topological space X is called a TD-space if every singleton set {x} ⊆ X is
locally closed, i.e. {x} is equal to the intersection of an open set and a closed
set. TD is a separation axiom proposed by Aull and Thron [2] that is strictly
between the T0 and T1 axioms.
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Proposition 6. For any first-countable topological space X,

1. Every singleton set {x} ⊆ X is in Π0
2(X) ⇐⇒ X is a T0-space,

2. Every singleton set {x} ⊆ X is in ∆0
2(X) ⇐⇒ X is a TD-space,

3. Every singleton set {x} ⊆ X is in Π0
1(X) ⇐⇒ X is a T1-space,

4. Every singleton set {x} ⊆ X is in ∆0
1(X) ⇐⇒ X is a discrete space.

ut

3 Σ0
α-measurable functions

In this section we will investigate some basic properties of Σ0
α-measurable func-

tions. Below, we will write f :⊆ X → Y to indicate that f is a partial function
from X to Y . The domain of definition of f will be denoted dom(f). We say
that f :⊆ X → Y is continuous if and only if for every open U ⊆ Y , there is
open V ⊆ X such that f−1(U) = V ∩ dom(f). In other words, f :⊆ X → Y is
continuous if and only if the total function f : dom(f) → Y is continuous with
respect to the subspace topology on dom(f).

Definition 2. A function f :X → Y is Σ0
α-measurable if and only if for every

open U ⊆ Y , f−1(U) ∈ Σ0
α(X). A partial function f :⊆ X → Y is said to be

Σ0
α-measurable if and only if for every open U ⊆ Y , there is A ∈ Σ0

α(X) such
that f−1(U) = A ∩ dom(f). ut

Equivalently, a partial function f :⊆ X → Y is Σ0
α-measurable if and only

if for every open U ⊆ Y , f−1(U) ∈ Σ0
α(dom(f)), where dom(f) is given the

relative topology.
For any fixed α > 1, the Σ0

α-measurable functions are not closed under
composition. To characterize how composition behaves, we will need ordinal
addition. Addition on ordinals is defined recursively as follows:

1. α+ 0 = α
2. α+ (β + 1) = (α+ β) + 1 = the successor of α+ β.
3. α+ λ = limβ<λ(α+ β) for limit ordinal λ.

Note that ordinal addition is non-commutative. For example, 1+ω = ω 6= ω+1.
Also note that if α < β, then there is a unique ordinal γ such that α+ γ = β.

Composing with continuous functions does not change the level of a function.
For that reason it would have been more convenient for our purposes to define
the Borel Hierarchy so that open sets and continuous functions were of level 0
(the additive identity for ordinals). To simplify the statement of some of the
following theorems and proofs, we will often make use of the following “hat”
notation, so that we can treat the Borel Hierarchy as if we defined the open sets
to be at level 0.

Definition 3. For 0 ≤ α < ω1, define α̂ = α+ 1 if α < ω and α̂ = α if α ≥ ω.
ut
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Note that α < β ⇐⇒ α̂ < β̂ and α̂+ β = α̂ + β hold for any countable
ordinals α and β.

Lemma 1. Let X and Y be countably based T0 spaces. If f :⊆ X → Y is Σ0
α̂-

measurable (0 ≤ α < ω1) and A ∈ Σ0
β̂
(Y ) (0 ≤ β < ω1), then f−1(A) ∈

Σ0

α̂+β
(dom(f)). ut

Theorem 1. Let X, Y , and Z be countably based T0 spaces, f :⊆ X → Y a Σ0
α̂-

measurable function (0 ≤ α < ω1), and g:⊆ Y → Z a Σ0
β̂

-measurable function

(0 ≤ β < ω1). Then g ◦ f :⊆ X → Z is Σ0

α̂+β
-measurable. ut

In particular, if f is Σ0
2-measurable and g is Σ0

ω-measurable, then due to
the non-commutativity of ordinal addition, g ◦ f is Σ0

ω-measurable but f ◦ g is
Σ0
ω+1-measurable (assuming the compositions make sense).

The following is due to Wadge (this is Theorem 22.10 in [7]). We let ωω

denote the Baire space.

Proposition 7 (Wadge). If B ⊆ ωω is in B(ωω)\Π0
α̂(ωω) (0 ≤ α < ω1), then

for any A ∈ Σ0
α̂(ωω) there is continuous total f :ωω → ωω such that A = f−1(B).

ut

We will need the following generalization of Wadge’s results that characterize
reductions using measurable functions.

Theorem 2. For 0 ≤ α < ω1 and 0 ≤ β < ω1, if B ∈ B(ωω) \Π0
β̂
(ωω), then

for any A ∈ Σ0

α̂+β
(ωω) there exists a Σ0

α̂-measurable total function f :ωω → ωω

such that A = f−1(B). ut

4 Existence of Σ0
α-admissible representations

The goal of this section is to show that every countably based T0 space has a Σ0
α-

admissible representation for 1 ≤ α < ω1 (Theorem 3 below). We also show the
complexity of converting between representations of different levels (Theorem 4),
and consider representations of representations of a space (Corollary 2), which
is a generalization of Ziegler’s “jump” of a representation [14].

Definition 4. A Σ0
α-admissible representation of a topological space X is a

Σ0
α-measurable partial function ρ:⊆ ωω → X such that for every Σ0

α-measurable
partial function f :⊆ ωω → X, there exists continuous g:⊆ ωω → ωω such that
f = ρ ◦ g. ut

Note that the above definition implies that Σ0
α-admissible representations

are always surjective. Clearly, a Σ0
1-admissible representation is equivalent to

what is usually called an “admissible representation” in the computable analy-
sis literature (see, e.g., [12] and [9]). The above definition applies to arbitrary
topological spaces, but most of our results will focus on countably based spaces.

We let S denote the Sierpinski space, which has only two points > and ⊥,
and where {>} is open but {⊥} is not open.



124 Matthew de Brecht and Akihiro Yamamoto

Proposition 8. Let A ∈ Σ0
α(ωω)\Π0

α(ωω) and define ρ:ωω → S so that ρ(y) =
> if y ∈ A and ρ(y) = ⊥ if y 6∈ A. Then ρ is a Σ0

α-admissible representation for
S.

Proof. It is clear that ρ is Σ0
α-measurable. Let f :⊆ ωω → S be a Σ0

α-measurable
partial function. Then f−1({>}) ∈ Σ0

α(dom(f)), so there is B ∈ Σ0
α(ωω) such

that f−1({>}) = B∩dom(f). From Proposition 7 there is continuous g:ωω → ωω

such that g−1(A) = B. Then for all y ∈ dom(f), f(y) = > ⇐⇒ g(y) ∈ A ⇐⇒
ρ(g(y)) = >. Hence, by restricting the domain of g if necessary, f = ρ ◦ g. ut

Corollary 1. For 0 ≤ α < ω1 and 0 ≤ β < ω1, if ρα+β :⊆ ωω → S is a
Σ0

α̂+β
-admissible representation of S and ρβ :⊆ ωω → S is a Σ0

β̂
-admissible

representation of S, then there exists a Σ0
α̂-measurable function f :⊆ ωω → ωω

such that ρα+β = ρβ ◦ f .

Proof. Immediate from Theorem 2 and Proposition 8. ut

Proposition 9. If X is a subspace of Y and ρ:⊆ ωω → Y is a Σ0
α-admissible

representation of Y , then ρX :⊆ ωω → X defined as the restriction of ρ to
dom(ρX) = ρ−1(X), is a Σ0

α-admissible representation of X. ut

Proposition 10. If {Xi}i∈ω and {Yi}i∈ω are all countably based T0-spaces, and
for each i fi:⊆ Xi → Yi is Σ0

α-measurable (1 ≤ α < ω1), then fω:⊆
∏
Xi →∏

Yi is Σ0
α-measurable, where

∏
Xi and

∏
Yi are given the product topologies

and fω is defined so that fω(ξ)(i) = fi(ξ(i)). ut

For the following proposition, let φ:ωω → (ωω)ω be a homeomorphism.

Proposition 11. Let Xi be a countably based T0 space and ρi:⊆ ωω → Xi a
Σ0
α-admissible representation for Xi (i ∈ ω). Then ρω ◦ φ is a Σ0

α-admissible
representation for

∏
Xi.

Proof. The proof that ρω ◦ φ is Σ0
α-measurable follows from Proposition 10.

Let f :⊆ ωω →
∏
Xi be a Σ0

α-measurable partial function. By the Σ0
α-

admissibility of ρi:⊆ ωω → Xi, for i ∈ ω there is continuous gi:⊆ ωω → ωω such
that πi ◦ f = ρi ◦ gi, where πi:

∏
Xi → X is the i-th projection. Since πi is a

total function, we must have that dom(f) = dom(πi ◦f) ⊆ dom(gi) for all i ∈ ω.
Define g:⊆ ωω → (ωω)ω so that g(ξ)(i) = gi(ξ). Then dom(f) ⊆ dom(g) and

ρω(g(ξ))(i) = ρi(g(ξ)(i)) = ρi(gi(ξ)) = πi(f(ξ)) = f(ξ)(i),

so f = ρω ◦ g. Define h:⊆ ωω → ωω as h = φ−1 ◦ g. Clearly, h is continuous and
f = ρω ◦ g = ρω ◦ φ ◦ h. ut

Since every countably based T0 space is homeomorphic to a subspace of Sω,
we obtain the following.

Theorem 3. For every countably based T0 space X and every α (1 ≤ α < ω1),
there exists a Σ0

α-admissible representation of X. ut
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The following can be proved for X = Sω by using representations obtained
from Proposition 11 and applying Corollary 1 in parallel. Subspaces of Sω are
handled by restricting the functions as necessary.

Theorem 4 (Reductions between representations). Let X be a countably
based T0-space. For 0 ≤ α < ω1 and 0 ≤ β < ω1, if ρα+β :⊆ ωω → X is a
Σ0

α̂+β
-admissible representation of X and ρβ :⊆ ωω → X is a Σ0

β̂
-admissible

representation of X, then there exists a Σ0
α̂-measurable function f :⊆ ωω → ωω

such that ρα+β = ρβ ◦ f . ut

Corollary 2 (Representations of representations). Let X be a countably
based T0 space, ρβ :⊆ ωω → X a Σ0

β̂
-admissible representation of X, and ρα:⊆

ωω → dom(ρβ) a Σ0
α̂-admissible representation of dom(ρβ), (0 ≤ α < ω1, 0 ≤

β < ω1). Then ρβ ◦ ρα:⊆ ωω → X is a Σ0

α̂+β
-admissible representation of X.

Proof. First note that ρβ ◦ρα is Σ0

α̂+β
-measurable by Theorem 1. Let ρ:⊆ ωω →

X be a Σ0

α̂+β
-admissible representation of X. By Theorem 4, there is a Σ0

α̂-

measurable f :⊆ ωω → ωω such that ρ = ρβ ◦ f . We can assume without loss
of generality that range(f) ⊆ dom(ρβ), and so by the Σ0

α̂-admissibility of ρα
there is a continuous g:⊆ ωω → ωω such that f = ρα ◦ g. It follows that g is a
continuous reduction of ρ to ρβ ◦ ρα, thus ρβ ◦ ρα is Σ0

α̂+β
-admissible. ut

Let ι′:⊆ ωω → ωω be a Σ0
2-admissible representation of ωω. By the above

theorem, if ρ:⊆ ωω → X is a Σ0
β-admissible representation (1 ≤ β < ω) of a

countably based T0 space X, then ρ◦ι′ is a Σ0
β+1-admissible representation of X.

This corresponds to Ziegler’s “jump” of a representation [14]. However, it should
be noted that if ρ is Σ0

β-admissible for β ≥ ω, then ρ ◦ ι′ is still Σ0
β-measurable

and thus not Σ0
β+1-admissible.

5 Properties of Σ0
α-admissible representations

The main purpose of this section is to relate the Borel complexity of a subset of a
space with the complexity of the preimage of the subset under a Σ0

α-admissible
representation. These results will be useful in the following section where we
characterize the functions that are realizable with respect to these representa-
tions.

Many of the following results are heavily dependent on the following propo-
sition by J. Saint Raymond (Lemma 17 in [8]). Although the original statement
of the result was in terms of metrizable spaces, it is easy to verify that the ar-
guments in the proof hold for more general spaces when we define the Borel
hierarchy according to Definition 1.

Proposition 12 (Saint-Raymond [8]). Let φ:X → Y be an open continuous
surjective total function with Polish fibers (i.e. φ−1(y) is Polish for each y ∈ Y ),
where X is a separable metric space and Y is a countably based T0 topological
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space. Then for every A ⊆ Y and 1 ≤ α < ω1, A ∈ Σ0
α(Y ) if and only if

φ−1(A) ∈ Σ0
α(X). ut

Since every countably based T0 space has a Σ0
1-admissible representation that

is open and has Polish fibers (see Corollary 15 and Proposition 16 in [4]), we
find that the Borel hierarchy is preserved under Σ0

1-admissible representations
of countably based T0 spaces.

Corollary 3. Let X be a countably based T0 space and ρ:⊆ ωω → X a Σ0
1-

admissible representation of X. Then for 1 ≤ α < ω1, A ∈ Σ0
α(X) if and only if

ρ−1(A) ∈ Σ0
α(dom(ρ)). ut

Our next goal is to generalize Corollary 3 to some Σ0
α-admissible represen-

tations. Let ω∗ have as a base set ω∪{∞} and the topology so that U is open if
and only if either∞ 6∈ U or else U is cofinite (i.e., for some m < ω, n ∈ U for all
n ≥ m). Note that ω∗ is the one-point compactification of ω with the discrete
topology, hence the notation (which should not be confused with the set of finite
strings of natural numbers).

Lemma 2. Let ρ:⊆ ωω → ω∗ be Σ0
α-admissible (1 ≤ α < ω1). Then S ⊆ ω∗ is

open if and only if ρ−1(S) ∈ Σ0
α(dom(ρ)). ut

Definition 5. Let X be an arbitrary topological space. A subset A ⊆ X is se-
quentially open if and only if for every sequence {xi}i∈ω that converges to x ∈ A,
there is some m such that xn ∈ A for all n ≥ m. X is a sequential space if and
only if all sequentially open subsets of X are open. ut

Note that all countably based spaces are sequential spaces (see Theorem
1.6.14 in [6]).

Theorem 5. Let X be a sequential T0 space and ρ:⊆ ωω → X be Σ0
α-admissible

(1 ≤ α < ω1). Then U ⊆ X is open if and only if ρ−1(U) ∈ Σ0
α(dom(ρ)).

Proof. If U is open then ρ−1(U) ∈ Σ0
α(dom(ρ)) holds because ρ is Σ0

α-measurable.
Assume that ρ−1(U) ∈ Σ0

α(dom(ρ)) and let {xi}i∈ω be a sequence converging
to x ∈ U . Define f :ω∗ → X so that f(n) = xn and f(∞) = x. Then f is
clearly continuous. If δ is a Σ0

α-admissible representation of ω∗, then f ◦δ is Σ0
α-

measurable, so by the Σ0
α-admissibility of ρ there is continuous g:⊆ ωω → ωω

such that f ◦ δ = ρ ◦ g. Since g is continuous, δ−1(f−1(U)) = g−1(ρ−1(U)) ∈
Σ0
α(dom(δ)). It follows that f−1(U) is open by Lemma 2. Since ∞ ∈ f−1(U),

there is m < ω such that n ∈ f−1(U) for all n ≥ m. Therefore, xn ∈ U for all
n ≥ m. Since {xi}i∈ω and its limit x ∈ U were arbitrary, U is sequentially open,
hence open because X is a sequential space. ut

The rest of this section extends Theorem 5 to the entire hierarchy for a special
class of topological spaces.

Lemma 3. Let ρ:⊆ ωω → ωω be a Σ0
α̂-admissible representation of ωω (0 ≤

α < ω1). For 0 ≤ β < ω1 and A ⊆ ωω, A ∈ Σ0
β̂
(ωω) if and only if ρ−1(A) ∈

Σ0

α̂+β
(dom(ρ)). ut
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Lemma 4. Let X be a zero-dimensional Polish space and ρ:⊆ ωω → X a Σ0
α̂-

admissible representation of X (0 ≤ α < ω1). For 0 ≤ β < ω1, A ∈ Σ0
β̂
(X) if

and only if ρ−1(A) ∈ Σ0

α̂+β
(dom(ρ)).

Proof. For the non-trivial part of the lemma, we can assume that X is a closed
subset of ωω (see Theorem 7.8 in [7]) and ρ:⊆ ωω → X is the restriction of
a Σ0

α̂-admissible representation ρ′:⊆ ωω → ωω of ωω as in Proposition 9 (i.e.,
dom(ρ) = (ρ′)−1(X), and ρ = ρ′|dom(ρ)). It follows from these assumptions that
dom(ρ) ∈ Π0

α̂(ωω) because X is a closed subset of ωω and ρ′ is Σ0
α̂-measurable.

The case β = 0 is the statement of Theorem 5, so assume β ≥ 1 and A ⊆ X
is such that ρ−1(A) ∈ Σ0

α̂+β
(dom(ρ)). By Proposition 5 there is B ∈ Σ0

α̂+β
(ωω)

such that ρ−1(A) = B ∩ dom(ρ). Since α < α + β and dom(ρ) ∈ Π0
α̂(ωω),

ρ−1(A) ∈ Σ0

α̂+β
(ωω). Since (ρ′)−1(A) = ρ−1(A), it follows from Lemma 3 that

A ∈ Σ0
β̂
(ωω) and hence A ∈ Σ0

β̂
(X). ut

Definition 6. We will say that a space X has a Polish representation if and
only if there is a Σ0

1-admissible representation ρ:⊆ ωω → X of X such that
dom(ρ) with the subspace topology is a (zero-dimensional) Polish space.

In particular, the real numbers with the Euclidean topology and P(ω) with
the Scott-topology have Polish representations (an admissible representation of
the reals with closed domain of definition is given in [13], and the representation
δ:ωω → P(ω) defined as δ(ξ) = {n − 1 | ∃j(ξ(j) = n 6= 0)} is total and can be
shown to be admissible).

Theorem 6. Let X be a countably based T0 space with a Polish representation
and ρ:⊆ ωω → X a Σ0

α̂-admissible representation of X (0 ≤ α < ω1). For
0 ≤ β < ω1, A ∈ Σ0

β̂
(X) if and only if ρ−1(A) ∈ Σ0

α̂+β
(dom(ρ)).

Proof. For the non-trivial part of the proof, let δ:⊆ ωω → X be Σ0
1-admissible

such that dom(δ) is Polish. Let δ′:⊆ ωω → dom(δ) be a Σ0
α̂-admissible represen-

tation of dom(δ). Since δ◦δ′ is Σ0
α̂-measurable, there is continuous f :⊆ ωω → ωω

such that δ ◦ δ′ = ρ ◦ f .
AssumeA ⊆ X is such that ρ−1(A) ∈ Σ0

α̂+β
(dom(ρ)). Then (δ′)−1(δ−1(A)) =

f−1(ρ−1(A)) ∈ Σ0

α̂+β
(dom(δ′)) because f is continuous (here we are using

the fact that dom(δ′) ⊆ dom(f)). It follows from Lemma 4 that δ−1(A) ∈
Σ0
β̂
(dom(δ)), hence A ∈ Σ0

β̂
(X) from Corollary 3. ut

6 Realizability Theorems

In this section we will investigate which functions are realizable with respect to
Σ0
α-admissible representations. We only consider topological realizability, and

do not consider computational issues.
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Definition 7. Let X and Y be arbitrary topological spaces, and f :X → Y a
function. We say that f is 〈Σ0

α,Σ
0
β〉-realizable by a Σ0

γ-measurable function if

there is a Σ0
α-admissible representation ρX of X and a Σ0

β-admissible represen-

tation ρY of Y and a Σ0
γ-measurable partial function g:⊆ ωω → ωω such that

f ◦ ρX = ρY ◦ g. If a continuous such g exists, then we say that f is 〈Σ0
α,Σ

0
β〉-

continuously realizable. ut

Lemma 5. Let X be an arbitrary topological space, and ρ:⊆ ωω → X be a
Σ0
α-admissible representation of X (1 ≤ α < ω1). Then X is a T0-space.

Proof. Exactly like Schröder’s proof for Σ0
1-admissible representations (Theorem

13 in [9]). ut

Lemma 6. For 1 ≤ β < α < ω1, a function from the discrete two point space 2
to the Sierpinski space S is 〈Σ0

α,Σ
0
β〉-continuously realizable if and only if it is

a constant function. ut

Note that the following theorem does not assume that X and Y are countably
based.

Theorem 7. Let X and Y be any topological spaces such that X has a Σ0
α-

admissible representation and Y has a Σ0
β-admissible representation, where 1 ≤

β < α < ω1. Then a function from X to Y is 〈Σ0
α,Σ

0
β〉-continuously realizable

if and only if it is a constant function. ut

Statement (3) in the following is a topological generalization of Brattka’s
extention [3] of the Kreitz-Weihrauch Representation Theorem [12] to all count-
ably based T0-spaces and all countable ordinals. Statements (1) and (2) are
generalizations of some results by Ziegler [14].

Theorem 8. Let X and Y be countably based T0 spaces, f :X → Y a total
function, and 1 ≤ α < ω1.

1. f is 〈Σ0
1,Σ

0
α〉-continuously realizable if and only if f is Σ0

α-measurable,
2. f is 〈Σ0

α,Σ
0
α〉-continuously realizable if and only if f is continuous,

3. f is 〈Σ0
1,Σ

0
1〉-realizable by a Σ0

α-measurable function if and only if f is Σ0
α-

measurable.

Proof. The “if” part of (1) and (2) immediately follow from the definition of
admissibility. For (3), assume f is Σ0

α-measurable. From statement (1) it fol-
lows that f is 〈Σ0

1,Σ
0
α〉-continuously realizable, and by Theorem 4 there is a

Σ0
α-measurable reduction of any Σ0

α representation of Y to a Σ0
1-admissible rep-

resentation of Y . Composing the two produces a Σ0
α-measurable function that

〈Σ0
1,Σ

0
1〉-realizes f .

The proof of the “only if” parts are similar for all three statements, so we only
prove (1). Let ρX be a Σ0

1-admissible representation of X, ρY a Σ0
α-admissible

representation of Y , and assume g:⊆ ωω → ωω is continuous such that f ◦ ρX =
ρY ◦ g. Let U ⊆ Y be open. Then ρ−1X (f−1(U)) = g−1(ρ−1Y (U)) ∈ Σ0

α(dom(ρX))
because ρY is Σ0

α-measurable, g is continuous, and dom(ρX) ⊆ dom(g). By
Corollary 3, it follows that f−1(U) ∈ Σ0

α(X), hence f is Σ0
α-measurable (for

statement (2), use Theorem 5 instead of Corollary 3). ut
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The following shows that, assuming that a representation of a set is admissible
at some level with respect to some topology on the set, then the level of the
representation and any corresponding sequential topology on the set is uniquely
determined. Note, however, that it is easy to construct representations of a set
that are not admissible at any level with respect to any topology on the set.

Corollary 4. Let X be a set with at least two elements, and let ρ:⊆ ωω → X
be an arbitrary function. If τ and τ ′ are two topologies on X such that ρ is Σ0

α-
admissible (1 ≤ α < ω1) with respect to τ , and ρ is Σ0

β-admissible (1 ≤ β < ω1)
with respect to τ ′, then α = β. If in addition τ and τ ′ are sequential topologies
then τ = τ ′. ut

Finally, we give a complete characterization for the case that X has a Polish
representation (recall that ordinal addition is non-commutative). Note that a
generalization of Theorem 6 to all countably based T0-spaces would allow us to
drop the “Polish representation” restriction on X.

Theorem 9. Let X and Y be countably based T0 spaces, and further assume X
has a Polish representation. For any total function f :X → Y and any countable
ordinals α, β and γ, there exists a Σ0

γ̂-measurable g:⊆ ωω → ωω that 〈Σ0
α̂,Σ

0
β̂
〉-

realizes f if and only if:

1. α > γ + β and f is a constant function, or
2. α ≤ γ+β and f is a Σ0

η̂-measurable function, where η is (the unique ordinal)
such that α+ η = γ + β.

ut

7 Conclusion

We have introduced and investigated the basic properties of a hierarchy of rep-
resentations of topological spaces. Σ0

α-admissible representations provide a well-
behaved topological interpretation of representations that can not be interpret-
ted as admissible in the traditional (continuous) sense (see Corollary 4). These
representations are also significant for better understanding the computational
properties of discontinuous functions, which has been investigated for metric
spaces in [3], [14], and [5].

The first open problem is to generalize Theorem 6 to all countably based T0-
spaces. One difficulty in generalizing Saint-Raymond’s result (Proposition 12) is
that the fibers of Σ0

α-admissible representations are not Polish in general.
A second open problem is to classify precisely which topological spaces have

Σ0
α-admissible representations. An attractive conjecture is that they are exactly

the spaces with Σ0
1-admissible representations, which were completely classified

by Schröder [9].
Finally, a further refinement of the hierarchy would be useful, particularly be-

tween the continuous and Σ0
2 representations. One interesting class of functions

are the ∆0
2-functions (i.e., preimages of open sets are ∆0

2, or, equivalently, preim-
ages of Σ0

2 sets are Σ0
2), which are closed under composition. Wadge reducibility
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and game semantics for these functions have been investigated by Andretta [1].
Note that a Σ0

2-admissible representation of a discrete space can be interpretted
as a “∆0

2-admissible” representation, and, because they are closed under compo-
sition, a ∆0

2-admissible representation can at best only determine the topology
of the represented set up to ∆0

2-isomorphism (i.e., a bijection that along with
its inverse is a ∆0

2-function).
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Abstract. We extract a quantitative variant of uniqueness from
the usual hypotheses of the implicit functions theorem. This leads
not only to an a priori proof of continuity, but also to an alternative,
fully constructive existence proof.

1 Introduction

To show the differentiability of an implicit function one often relies on its continu-
ity. The latter is mostly seen as a by-product of the not uncommon construction
of the implicit function as the limit of a uniformly convergent sequence of con-
tinuous functions. We now show that the continuity of the implicit function is
prior to its existence, and thus independent of any particular construction. More
specifically, we deduce the continuity from a quantitative strengthening of the
uniqueness, which in turn follows from the hypotheses one needs to impose on
the equation the implicit function is expected to satisfy. The same quantitative
strengthening of uniqueness enables us to ultimately give an alternative existence
proof for implicit functions that is fully constructive in Bishop’s sense.

We use ideas from [6], which loc.cit. have only been spelled out in the case
of implicit functions with values in R. The existence proof given in [6] therefore
can rely on reasoning by monotonicity, whereas in the general case—treated
in this paper—of implicit functions with values in Rm we need to employ an
extreme value argument. Similar considerations in related contexts can be found
in Sections 3.3 and 3.4 of [10] during the course of the proof of the theorem
on implicit functions via the inverse mapping theorem and Banach’s fixed point
theorem, respectively. We refer to [11, 20] for the implicit function theorem and
the open mapping theorem in computable analysis à la Weihrauch [19].

The predecessor [18] of the present paper essentially contains the same ma-
terial as far as uniqueness and continuity of the implicit function are concerned.
When it comes to proving existence, however, it follows the intrinsically classical
argument that a continuous function on a compact set attains its minimum. This

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 131-140 
http://drops.dagstuhl.de/opus/volltexte/2009/2265
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argument fails being practicable constructively, unless one adds the hypothesis
that there quantitatively is at most one point at which the minimum can be
attained. In fact, there is a heuristic principle valid [17] even in Bishop–style
constructive mathematics without countable choice: if a continuous function on
a complete metric space has approximate roots and in a quantitative manner at
most one root, then it actually has a root. We may refer to [17] for more on this,
including the principle’s history with references.

As a matter of fact, however, in the case of implicit functions the required ad-
ditional hypothesis is contained in the quantitative variant of uniqueness which
we find at our disposal anyway. Therefore, we only need to prove that for ev-
ery parameter the given equation admits approximate solutions. Altogether we
achieve the existence of an exact solution at every parameter and then, by the
principle of unique choice, the existence of an implicit function: as the one and
only function which assigns to every parameter the solution uniquely determined
by this parameter.

The present paper as a whole is conceived in the realm of Bishop’s construc-
tive mathematics [4, 5, 7, 8]. Compared with the—so-called classical—customary
way of doing mathematics, the principal characteristic of the framework created
by Bishop is the exclusive use of intuitionistic logic, which allows one to view
Bishop’s setting as a generalisation of classical mathematics [13]. Moreover, we
follow [14] in doing constructive mathematics à la Bishop without countable
choice, also inasmuch as we understand real numbers as located Dedekind cuts.
In particular, the so-called cotransitivity property “if x < y, then x < z or
z < y” amounts to say that the Dedekind cut z is located whenever x, y are
rational numbers, and follows by approximation in the general case.

Avoiding countable choice is further indispensable, because we want our work
to be expressible in constructive Zermelo–Fraenkel set theory (CZF) as begun
in [1]: countable choice does not belong to CZF. Details on this and on CZF
in general can be found in [2, 12]. We will, however, use the principle of unique
choice, sometimes called the principle of non–choice. By the functions–as–graphs
paradigm common to set theory, unique choice is trivially in CZF.

2 Preliminaries

We first recall that in Bishop’s setting every differentiable function comes with a
continuous derivative [5, Chapter 2, Section 5]. In other words, for Bishop every
differentiable function is by definition continuously differentiable. We nonethe-
less keep speaking of continously differentiable functions, also to facilitate any
reading by a classically trained person. Note in this context that in Bishop’s
framework continuity means uniform continuity on every compact (that is, to-
tally bounded and complete) subset of the domain; see [15] for a discussion of
this.

Secondly, although in the work of Bishop and of his followers there barely is
any talk of (partial or total) differentiability for functions of several real vari-
ables, we do not develop this concept in the present paper either. According to
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our opinion it is in order to take this for granted: the task of checking the classical
route as far as necessary can indeed be performed in a relatively straightforward
way, and is sometimes simplified by Bishop’s assumption of the automatic con-
tinuity of the derivative.

For the lack of appropriate references in the constructive literature we next
transfer two facts from real analysis. With Theorem 5.4 and Theorem 6.8 of [5,
Chapter 2] at hand the standard proofs indeed go through constructively. (For
instance, the proofs of Satz 5 and of its Corollar given in [9, I, §6] require only
one addendum to the proof of the Hilfssatz: for all K,L ∈ R with L > 0 the
implication “if K2 6 KL, then K 6 L” is also constructively valid. To verify
this, assume that K2 6 KL; it suffices to prove that K < L+ ε for every ε > 0.
For each ε > 0 either 0 < K or K < ε. In the former case, multiplying K2 6 KL
by 1/K > 0 yields K 6 L; in the latter case we have K < L+ ε because L > 0.)

Lemma 1. Let g : W → Rn be a continuously differentiable mapping on an open
set W ⊆ Rm, and c, d ∈ W . If the line segment between c and d lies entirely in
W , then

g(d)− g(c) =

(∫ 1

0

Dg(c+ t(d− c))dt
)
· (d− c) .

Corollary 2. Under the hypotheses of Lemma 1 we have

‖g(d)− g(c)‖ 6 sup
t∈[0,1]

‖Dg(c+ t(d− c))dt‖ · ‖d− c‖ .

While Lemma 5.5 of [5, Chapter 2] is an approximative alternative of Rolle’s
theorem, our next lemma is a strong variant of the contrapositive.

Lemma 3. Let h : [c, d] → R be continuously differentiable, and assume that
there is r > 0 such that h′(x) > r for all x ∈ [c, d]. Furthermore assume that
c < d. Then h(c) < h(d).

Proof. Assume that h(d)− h(c) < r(d−c)
4 . By the mean value theorem [5, Theo-

rem 5.6] there exists ξ ∈ [c, d] such that

|h′(ξ)(d− c)− (h(d)− h(c))| < r(d− c)
2

.

Then

h′(ξ)(d− c)− (h(d)− h(c)) > r(d− c)− (h(d)− h(c))

> r(d− c)− r(d− c)
4

>
r(d− c)

2
.

Hence we get a contradiction, and thus h(d)− h(c) > 0. ut
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The last lemma in this section is an approximative substitute for the classical
result that if a differentiable function attains its minimum at a point in the
interior of a compact set, then the gradient of that function vanishes at this
point.

Lemma 4. Let W ⊆ Rn be an open neighbourhood of [0, 1]n and h : W → R a
continuously differentiable function. If there is a point ξ ∈ [0, 1]n and s > 0 such
that

h(x) > h(ξ) + s (1)

for all x ∈ ∂[0, 1]n, then for every ε > 0 there exists y ∈ [0, 1]n such that
‖∇h(y)‖ < ε.

Proof. For convenience we will use the supremum norm on Rn throughout this
proof. Choose N ∈ N such that for x, y ∈ [0, 1]n, if ‖y − x‖ < 2−N then both

‖∇h(x)−∇h(y)‖ < ε

4
(2)

and

|h(x)− h(y)| < s

2
. (3)

Let

G =

{(
i1
2N

, . . . ,
in
2N

)
: (i1, . . . , in) ∈ Nn

}
∩ [0, 1]n.

For any x ∈ G and i 6 n, let x±i denote the point x±2−Nei—i.e. the neighbouring
point of x in G in the positive/negative direction of the ith coordinate. For any
x ∈ G and i 6 n fix λ+x,i ∈ {−1, 0, 1} and λ−x,i ∈ {−1, 0, 1}, such that

λ+x,i = 0⇒
∣∣∣∣ ∂h∂xi (x+ 2−(N+1)ei)

∣∣∣∣ < 3ε

4
,

λ+x,i = −1⇒ ∂h

∂xi
(x+ 2−(N+1)ei) < −

ε

2
,

λ+x,i = 1⇒ ∂h

∂xi
(x+ 2−(N+1)ei) >

ε

2
,

λ−x,i = 0⇒
∣∣∣∣ ∂h∂xi (x− 2−(N+1)ei)

∣∣∣∣ < 3ε

4
,

λ−x,i = −1⇒ ∂h

∂xi
(x− 2−(N+1)ei) >

ε

2
,

λ−x,i = 1⇒ ∂h

∂xi
(x− 2−(N+1)ei) < −

ε

2
.

Notice that if λ+x,i = −1 then for all y ∈ [x, x+i ]

∂h

∂xi
(y) < −ε

4
,
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and therefore, by Lemma 3,
h(x) > h(x+i ). (4)

Similarly, when λ−x,i = −1, we obtain

∂h

∂xi
(y) >

ε

4

for all y ∈ [x−i , x], and then
h(x) > h(x−i ). (5)

Furthermore notice that, by continuity and (2),

if λ+x,i ∈ {0, 1} and λ−x,i ∈ {0, 1}, then

∣∣∣∣ ∂h∂xi (x)

∣∣∣∣ < ε. (6)

Next, because of (3), we can find x0 ∈ G such that |h(x0) − h(ξ)| < s. If there
exists i such that λ+x0,i

= −1 (or λ−x0,i
= −1), set x1 = (x0)+i (or x1 = (x0)−i ), for

which h(x0) > h(x1). Continuing this construction we will, because of (4), never
visit the same point twice and never reach a point in ∂[0, 1]n ∩ G. Therefore,
we eventually reach a point xm ∈ (0, 1)n ∩ G for which both λ+xm,i 6= −1 and

λ−xm,i 6= −1 for all 1 6 i 6 n. By (6) this implies that ‖∇h(xm)‖ < ε. ut

3 Uniqueness and Continuity

Situation. Let U ⊆ Rn and V ⊆ Rm be open neighbourhoods of a ∈ Rn and
b ∈ Rm, respectively, with m,n > 1. We denote the coordinates on Rn and Rm
by x = (x1, . . . , xn) and y = (y1, . . . , ym), respectively, and endow Rn×Rm with
the norm ‖(x, y)‖ = ‖x‖+‖y‖. The Jacobian of a partially differentiable function
F : U × V → Rm at (x, y) ∈ U × V is written as

DF (x, y) =

(
∂F

∂x
(x, y) ,

∂F

∂y
(x, y)

)
,

∂F

∂x
(x, y) ∈ Rm×n ,

∂F

∂y
(x, y) ∈ Rm×m .

Finally, let F : U × V → Rm be a continuously differentiable function such that
∂F
∂y (a, b) is invertible; in particular ν > 0 where

ν =

∥∥∥∥∂F∂y (a, b)
−1
∥∥∥∥ .

Lemma 5. For every λ ∈ ]1,+∞[ there are compact neighbourhoods Uλ ⊆ U
and Vλ ⊆ V of a and b, respectively, such that for all x ∈ Uλ und y, y′ ∈ Vλ:

‖y − y′‖ 6 λ · ν · ‖F (x, y)− F (x, y′)‖ . (7)

Proof. By replacing F with ∂F
∂y (a, b)

−1 · F , we may assume that ∂F
∂y (a, b) is the

unit matrix and therefore ν = 1. Now consider

G : U × V → Rm , (x, y) 7→ y − F (x, y) .
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Since G is continuously differentiable with ∂G
∂y (a, b) = 0, there are compact

neighbourhoods Uλ ⊆ U and Vλ ⊆ V of a and b, respectively, such that Vλ is
convex and ∥∥∥∥∂G∂y (x, y)

∥∥∥∥ 6 1− 1/λ (8)

for all (x, y) ∈ Uλ × Vλ. Then, for all x ∈ Uλ and y, y′ ∈ Vλ, we have

‖y − y′‖ 6 ‖(y −G (x, y))− (y′ −G (x, y′))‖+ ‖G (x, y)−G (x, y′)‖
6 ‖F (x, y)− F (x, y′)‖+ (1− 1/λ) · ‖y − y′‖

by (8) and Corollary 2; whence (7) holds with ν = 1. ut

Throughout the following λ ∈ ]1,+∞[ is arbitrary and Uλ, Vλ are as in Lemma
5.

Equation (7) implies, for fixed x ∈ Uλ, that y ∈ Vλ and y′ ∈ Vλ lie close
together, whenever F is small at (x, y) and (x, y′). Therefore (7) can be seen as
a quantitative way to express that any y with F (x, y) = 0 is uniquely determined
by x.

This can be made more precise. We say that a function H : S → R on a
metric space S with H > 0 has uniformly at most one root [16] if

∀δ > 0 ∃ε > 0 ∀y, y′ ∈ S (d (y, y′) > δ ⇒ H (y) > ε ∨H (y′) > ε) .

If H has uniformly at most one root, then H has at most one root [3]: i.e.,

∀y, y′ ∈ S (y 6= y′ ⇒ H (y) > 0 ∨H (y′) > 0) .

If H has at most one root, then its root—if it exists at all—is uniquely deter-
mined:

∀y, y′ ∈ S (H (y) = 0 ∧H (y′) = 0 ⇒ y = y′) .

Corollary 6. For each x ∈ Uλ the function

H : Vλ → R, y 7→ ‖F (x, y)‖

has uniformly at most one root; in particular, for all y, y′ ∈ Vλ,

F (x, y) = 0 ∧ F (x, y′) = 0 ⇒ y = y′ .

Theorem 7. Every function f : Uλ → Vλ with F (x, f (x)) = 0 for all x ∈ Uλ
is continuous.

Proof. Consider ε > 0 arbitrary. Since F is uniformly continuous on the compact
set Uλ × Vλ, there exists δ > 0 such that

‖F (x, y)− F (x′, y′)‖ 6 (λ · ν)
−1 · ε .

whenever (x, y), (x′, y′) ∈ Uλ × Vλ are such that ‖x− x′‖ + ‖y − y′‖ < δ. In
particular,

‖F (x, f(x′))‖ 6 (λ · ν)
−1 · ε
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for all x, x′ ∈ Uλ with ‖x− x′‖ < δ (recall that F (x′, f(x′)) = 0). Using this and
(7) we get

‖f(x)− f(x′)‖ 6 λ · ν · ‖F (x, f(x))− F (x, f(x′))‖
= λ · ν · ‖F (x, f(x′))‖
6 ε

for all x, x′ ∈ Uλ with ‖x− x′‖ < δ. Hence f is uniformly continuous. ut

This proof’s heuristic can be explained as follows. If x and x′ are close, then
F (x, f(x′)) is close to F (x′, f(x′)) = 0, and therefore close to F (x, f(x)) = 0;
Equation (7) now implies that f(x) and f(x′) are close.

Following the standard argument, one can now easily show that every f as
in Theorem 7 is differentiable in the interior of U0

λ with uniformly continuous
derivative

Df (x) = − ∂F

∂y
(x, f (x))

−1 · ∂F
∂x

(x, f (x)) .

Note that the quantitative version (7) of uniqueness was sufficient to prove con-
tinuity, which therefore only depends on differentiability inasmuch as this is
needed to prove (7).

4 Existence

Last, we present an alternative approach to the existence of the implicit function,
which is—just as the proof of continuity—based on the quantitative version (7)
of uniqueness, but again requires involving the partial derivative of the given
equation. An additional ingredient is the following result, for whose validity in
Bishop-style constructive mathematics without choice we refer to [17, Theorem
5]:

Theorem 8. Let S be a complete metric space and H : S → R uniformly con-
tinuous. If inf H = 0 and H has uniformly at most one root, then there is yH ∈ S
with H (yH) = 0.

Note that inf H = 0 means that H > 0 and that H has approximate roots.

From now on we also assume that F (a, b) = 0. (An assumption that has not
been used so far.)

Theorem 9. There are compact neighbourhoods U0
λ ⊆ Uλ and V 0

λ ⊆ Vλ of a and
b, respectively, such that there is a function f : U0

λ → V 0
λ with F (x, f (x)) = 0

for all x ∈ U0
λ.

As a by-product of Corollary 6, there is exactly one f , which by Theorem 7 is
continuous.
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Proof. Using Corollary 6 and the principle of unique choice, we only need to find
compact neighbourhoods U0

λ and V 0
λ of a and b, respectively, with U0

λ × V 0
λ ⊆

Uλ × Vλ, such that for every x ∈ U0
λ there exists y ∈ V 0

λ with F (x, y) = 0. We
may also assume that (a, b) = (0, 0). Setting (x, y′) = (0, 0) in (7), we get

‖y‖ 6 λ · ν · ‖F (0, y)‖ (9)

for all y ∈ Uλ, since F (0, 0) = 0. We can now find r, s > 0, such that

U0
λ = [−r,+r]n , V 0

λ = [−s,+s]m

completely lie in Uλ and Vλ respectively. By choosing r, s small enough, we may
assume that ∥∥∥∥∂F∂y (x, y)

−1
∥∥∥∥ 6 ν + 1 (10)

for all (x, y) ∈ U0
λ × V 0

λ . Since F is uniformly continuous on the compact set
U0
λ × V 0

λ , by making r sufficiently small, we may further assume that

λ · ν · ‖F (x, y)− F (x′, y)‖ 6 s/3

for all (x, y) , (x′, y) ∈ U0
λ × V 0

λ . If we now substitute x′ = 0, we get

λ · ν · ‖F (x, y)− F (0, y)‖ 6 s/3 (11)

for all (x, y) ∈ U0
λ × V 0

λ ; if we also substitute y = 0, we get

λ · ν · ‖F (x, 0)‖ 6 s/3 (12)

for all x ∈ U0
λ . (If we were only interested in getting (12), it would suffice to

point out that F ( , 0) is continuous at 0 and that F (0, 0) = 0.) Equations (9)
and (11) imply that

2s/3 6 λ · ν · ‖F (x, y)‖ (13)

for all x ∈ U0
λ and y ∈ ∂V 0

λ , i.e. ‖y‖ = s. Now consider x ∈ U0
λ arbitrary, but

fixed. The function
h : V → R , y 7→ ‖F (x, y)‖2

is differentiable with continuous derivative

∇h (y) = 2 · F (x, y) · ∂F
∂y

(x, y) . (14)

By (12) and (13) we have

λ2 · ν2 · h (0) + s2/3 6 λ2 · ν2 · h (y)

for all y ∈ ∂V 0
λ ; whence by virtue of Lemma 4

inf
y∈V 0

λ

‖∇h (y)‖ = 0 .

In view of (10) and (14) this implies

inf
y∈V 0

λ

‖F (x, y)‖ = 0 .

By Corollary 6 and Theorem 8, we achieve y ∈ V 0
λ with F (x, y) = 0. ut
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Abstract. We consider the uniform BSS model of computation where
the machines can perform additions, multiplications, and tests of the
form x ≥ 0. The oracle machines can also check whether a tuple of real
numbers belongs to a given oracle set O or not. We construct oracles
such that the classes P and DNP relative to these oracles are equal or
not equal.

1 Introduction

The uniform BSS model of computation was introduced in [Blum et al. 1989].
The BSS machines can perform labelled instructions of the form Zi := Zj +Zk,
Zi := Zj − Zk, Zi := Zj · Zk, Zj := c, if Zj ≥ 0 then goto l1 else goto l2,
ZIj := ZIk , Ij := 1, Ij := Ij + 1, and if Ij = Ik then goto l1 else goto l2. Each

assignment of an input (x1, . . . , xn) ∈
⋃

i≥1 IRi to the registers of a machine
M is realized by Z1 := x1; . . . ;Zn := xn; I1 := n; . . . ; IkM := n. Moreover,
oracle machines can execute if (Z1, . . . , ZI1) ∈ O then goto l1 else goto l2 for
some oracle O ⊆ IR∞. The non-deterministic machines are able to guess an
arbitrary number of arbitrary elements y1, . . . , ym ∈ IR in one step after the input
and to assign the guesses to ZI1+1, . . . , ZI1+m. A (digital) non-deterministic
BSS machine M accepts an input (x1, . . . , xn) ∈ IR∞ if there is some guessed
sequence (y1, . . . , ym) ∈ IR∞ and (y1, . . . , ym) ∈ {0, 1}∞, respectively, such that
M outputs 1 on input (x1, . . . , xn) for the guesses y1, . . . , ym. Let PIR, DNPIR,
and NPIR be the classes of problems recognized by deterministic, digital non-
deterministic, and non-deterministic machines, respectively, in polynomial time.
Let POIR, DNPOIR, and NPOIR are the corresponding classes for one given oracle O.
We have PIR ⊆ DNPIR ⊆ NPIR and POIR ⊆ DNPOIR ⊆ NPOIR.

In [Baker et al. 1975] and [Emerson 1994] for Turing machines and the BSS
model, respectively, oracles were defined in order to get the equality of relativized
versions of P(IR) and NP(IR). Such a universal oracle O can be defined by O =⋃

i≥1Wi where W0 = ∅ and

Wi = {(1, . . . , 1︸ ︷︷ ︸
t×

,x, Code(M)) ∈ IRi |

M is a non-deterministic machine using
⋃

j<iWj as oracle & M(x) ↓t}.

Thus, we get the following.

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 141-148 
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Proposition 1. There is an oracle O such that POIR = DNPOIR = NPOIR.

In [Emerson 1994] Emerson presented also an oracle Q such that PQIR 6= NPQIR.
Emerson’s proof technique also allows to separate relativized versions of DNPIR

and NPIR by a diagonalization procedure in the following way. Let U ⊆ IR∞

be a set of codes u representing all pairs that contain a polynomial pu and the
program Pu of a digital non-deterministic oracle BSS machine. Let NBu be the
machine using an oracle B ⊆ IR∞ and performing only pu(n) instructions of
Pu on inputs of size n. Let the oracle Q1 =

⋃
i≥1Wi be defined in stages. Let

V0 = ∅.
Stage i ≥ 1:

Let
Ki = {u ∈ U | (∀B ⊆ IR∞)

(NBu does not use any r > i in a query on input u)},
Wi =

⋃
k<i Vk,

Vi = {(i+ 1,u) | u ∈ Ki & NWi
u does not accept u}.

The defined sequence of codes, K1,K2, . . ., covers the set of all digital non-
deterministic oracle machines recognizing problems in DNPBIR for some B. Con-
sequently we get L1 = {y | (∃n ∈ IN+)((n,y) ∈ Q1)} 6∈ DNPQ1

IR . On the other

hand, we have L1 ∈ NPQ1

IR since a non-deterministic BSS machine can guess each
integer in one step.

Proposition 2. There is an oracle Q such that DNPQIR 6= NPQIR.

Moreover, by analogy with [Gaßner 2009] it is also possible to show DNPZZIR 6=
NPZZIR and DNPQ

IR 6= NPQ
IR.

It remains to show that there are also oracles such that the classes PIR and
DNPIR relative to these oracles are not equal. For the computation over struc-
tures of enumerable signature, a method to separate relativized classes of prob-
lems recognized by deterministic and digital non-deterministic machines, respec-
tively, goes back to T. Baker, J. Gill, and R. Solovay [Baker et al. 1975]. In order
to obtain the inequality between relativized versions of PR and DNPR for oracle
machines over the ordered ring R = (IR; 0, 1; +,−, ·;≥), we can use the enumer-
ability of all polynomials p : IN → IN and all programs of deterministic oracle
machines and diagonalization techniques by analogy with [Baker et al. 1975].
Let i ∈ IN+ be the code of the pair containing the ith polynomial pi and the ith

program Pi of a deterministic oracle machine using only the machine constants
0 and 1. If NBi is the machine which uses an oracle B ⊆ IR∞ and performs only
pi(n) instructions of Pi on inputs of size n, then the definition of the oracle
Q2 =

⋃
i≥1Wi is possible in stages as in [Baker et al. 1975]. Let V0 = ∅ and

m0 = 0.
Stage i ≥ 1: Let ni be any integer such that ni > mi−1 and pi(ni) + ni < 2ni .
Moreover, let

Wi =
⋃

j<i Vj ,

Vi = {x ∈ {0, 1}ni | NWi
i rejects (0, . . . , 0) ∈ IRni

& x is not queried by NWi
i on input (0, . . . , 0) ∈ IRni},
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mi = 2ni .

For L2 = {y | (∃i ∈ IN+)(y ∈ IRni & Vi 6= ∅)}, we get L2 ∈ DNPQ2

R \ PQ2

R .

Proposition 3. For BSS machines using only the constants 0 and 1, there is
an oracle Q such that PQR 6= DNPQR .

This method as well as Emerson’s method fail if we want to construct an ora-
cle such that the relativized versions of PIR and DNPIR are not equal. We cannot
enumerate the programs of all deterministic BSS machines, and the digital non-
deterministic machines cannot guess any integer in one step. A discussion about
the possibilities to transfer the ideas of [Baker et al. 1975] and [Emerson 1994]
was done in [Gaßner 2008] for several types of groups. This discussion gives also
insights which constructions can be used for which types of rings. In the next
section we want to show that it is still possible to use diagonalization techniques
for separating the classes PIR and DNPIR relative to an oracle. Our construction
requires to consider a sequence of sequences of sets of machines and consequently
a new recursive definition in every stage of a recursive definition. Techniques of
this kind are often used if more natural decision problems having special prop-
erties are not known. For models of computation over algebraic structures, a
summary of papers where these techniques have been applied is given, for in-
stance, in [Bürgisser 1999]. In the last section we derive a suitable oracle from
the Real Knapsack Problem such that the resulting relativized versions of PIR

and DNPIR are also not equal. This construction is possible without using the
powerful diagonalization techniques.

2 The Separation of Relativized Versions of PIR and
DNPIR by Diagonalization Techniques

Now let us consider again the BSS machines over (IR; IR; +,−, ·;≥) where any
real number can be a machine constant. Since we also want to define an oracle

Q3 ⊆
⋃

i≥1 INni

recursively, we will at first define a suitable sequence ((Ki,j)j≥1)i≥1 of sequences
containing all deterministic oracle BSS machines working in polynomial time.
For any oracle B ⊆ IR∞, any deterministic oracle BSS machine NB,c1,...,ck is
determined by its machine constants c1, . . . , ck and a program P which is encoded
by a tuple in {0, 1}∞. Let every character of the program P , including the indices
j ∈ {1, . . . , k} of the constants cj , be unambiguously translated into a finite
sequence in {0, 1}∞ and let the oracle queries be encoded independently of the
used oracle B by taking the same sequence of characters 0 and 1 as code for all
oracle queries. Consequently, the set Prog of all programs of oracle machines and
the set poly of all polynomial functions of IN into IN are enumerable. We will
take the positive integers in order

– to enumerate all (p1, P1), (p2, P2), (p3, P3), . . . ∈ poly × Prog,
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– to characterize the behavior of all oracle machines on special inputs of size
n1, n2, . . . by additional numbers Nchar(i, c1, . . . , cki) which are dependent
only on the following properties:
• The machines perform pi(ni) instructions on inputs of size ni.
• The machines use only the reals c1, . . . , cki as machine constants.
• The inputs belong to {0}ni−1 × {N ∈ IN | N ≥ Nchar(i, c1, . . . , cki)}.

The Definition of the Machine NB,c1,...,ckii . Any i ∈ IN+ is the number of
a pair (pi, Pi) ∈ poly × Prog which determines a class of deterministic oracle

machines {NB,c1,...,ckii | B ⊆ IR∞ & c1, . . . , cki ∈ IR} by the following.

(a) The BSS machine NB,c1,...,ckii performs the instructions of the program Pi.

(b) If NB,c1,...,ckii queries an oracle, then NB,c1,...,ckii uses the oracle B.

(c) The only constants of NB,c1,...,ckii are c1, . . . , cki encoded by 1, . . . , ki in the
code of Pi.

(d) The number of the instructions of Pi carried out by NB,c1,...,ckii is simulta-

neously counted by NB,c1,...,ckii by means of an additional index register.

(e) For any input in IRn, the machine NB,c1,...,ckii halts after at most pi(n)
steps of the execution of Pi. (The bound pi(n) can be computed by using
index registers.)

(f) If the output of Pi is reached in this time, then NB,c1,...,ckii outputs the value
determined by Pi, B, and c1, . . . , cki . If the output instruction of Pi is not

reached in this time, then NB,c1,...,ckii rejects the input.

Then, for any oracle B ⊆ IR∞ and any problem P ∈ PBIR there are an i ≥ 1 and

constants c1, . . . , cki such that the machine NB,c1,...,ckii decides P.

Let us now characterize the behavior of NB,c1,...,ckii on inputs of the form

(0, . . . , 0, x) ∈ INni . The value of any register computed by NB,c1,...,ckii on these
inputs can be described by some term of the form (1). We are especially interested
in oracles B ⊆ IN∞.

The Definition of the Number Nchar(i, c1, . . . , cki). We consider the sequence
(f1, f2, . . . , fs) containing all polynomials fk ∈ IR[x] whose values fk(x) can be
described by the terms of the following form

2pi(ni)∑
j=0

(

2pi(ni)∑
j1,...,jki=0

αj1,...,jki ,j
cj11 · · · c

jki
ki

)xj (1)

where any αj1,...,jki ,j
∈ ZZ ∩ [−2pi(ni), 2pi(ni)]. Let Nchar(i, c1, . . . , cki) be the

Cantor number of (µ1, . . . , µs, ν1, . . . , νs, µ, µ
′, ν) given by

µk = code(fk) ∈ IN+ if fk ∈ Q[x], (2)

µk = 0 if fk 6∈ Q[x], (3)
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νk = lim
x→∞

sgn(fk(x)), (4)

µ = min
⋂

k=1,...,s
degree(fk)≥1

{n ∈ IN | ∀x(fk(x) = 0 ∨ fk(x) = 1⇒ n > x)}, (5)

µ′ = min
⋂

k=1,...,s
µk=0

{n ∈ IN | (∀x ∈ IN)(fk(x) ∈ IN⇒ n > x)}, (6)

ν = min
⋂

k=1,...,s

{n ∈ IN | fk(n) < 2n}. (7)

Remark 1. Here, sgn(x) = 1 iff x > 0, sgn(x) = −1 iff x < 0, and sgn(0) = 0.
Because of the following lemma (cp. [Gaßner 2009]), the minimum of the set in
(6) exists.

Lemma 1. For any polynomial p ∈ IR[x] \Q[x], there is only a finite number of
rational numbers q ∈ Q satisfying p(q) ∈ Q.

The Definition of Ki,j and the Constants Ci,1, Ci,2, . . .. For i ≥ 1, let
Ni,1, Ni,2, . . . be an enumeration of the set

{Nchar(i, c1, . . . , cki) | c1, . . . , cki ∈ IR}

such that Ni,j+1 > Ni,j. For i, j ≥ 1, let

Ki,j = {NB,c1,...,ckii | B ⊆ IR∞ & Ni,j = Nchar(i, c1, . . . , cki)}.

Moreover, let Ci,1 = Ni,1 and, for j ≥ 2, let Ci,j = max{2Ci,j−1 , Ni,j}.
Since Ci,j ≥ Ni,j > max{µ, µ′, ν}, we have the following properties.

(i) By (5), Ni,j is greater than any zero of the corresponding function fk if
degree(fk) ≥ 1. Therefore, by (4) we have

νk = sgn(fk(Ni,j)) = sgn(fk(Ci,j)).

(ii) If an oracle machine M ∈ Ki,j computes a positive integer N on input
x ∈ {0}ni−1 × {Ci,j}, then, by (6) there is a k ≤ s such that µk 6= 0 and
N = fk(Ci,j). In this case, fk ∈ Q[x] follows from (3). That means because
of (2) that N is uniquely determined by µk and, consequently, by Ni,j .

(iii) A consequence of (7) is thatM∈ Ki,j cannot compute the positive integers
Ci,j+1, Ci,j+2, . . . on input x ∈ {0}ni−1 × {Ci,j} within pi(ni) steps since
these numbers are greater than 2Ci,j .

(iv) Property (5) implies also thatM∈ Ki,j computes an integer N ∈ {0, 1} on
input x ∈ {0}ni−1×{Ci,j} only if there is a k ≤ s such that degree(fk) = 0
and consequently fk(x) = 0 for all x ∈ IR or fk(x) = 1 for all x ∈ IR.
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In the following construction, for any B and any i, j ≥ 1, let KBi,j be the subset
of Ki,j given by

KBi,j = {NB,c1,...,ckii | Ni,j = Nchar(i, c1, . . . , cki)}.

The Construction of Q3. Let m0 = 0. We construct the set Q3 in stages.
Stage i ≥ 1: Let ni be an integer such that ni > mi−1, pi(ni) < 2ni−1, and
pi(ni) + ni < 2ni . Let Vi,0 = ∅. Stage j ≥ 1:

Wi,j =
⋃

i′<i, Vi′ ∪
⋃

j′<j, Vi,j′ ,

Vi,j = {x ∈ {0, 1}ni−1 × {Ci,j} | (∃M ∈ K
Wi,j

i,j )(M rejects (0, . . . , 0, Ci,j)

& x is not queried by M on input (0, . . . , 0, Ci,j) ∈ INni)}.

Moreover, let Vi =
⋃

j≥1 Vi,j and mi = 2ni .
Finally, let Q3 =

⋃
i≥1 Vi and

L3 =
⋃
i≥1

{(y1, . . . , yni−1, N) ∈ {0, 1}ni−1 × IN | Vi ∩ ({0, 1}ni−1 × {N}) 6= ∅)}.

The contents of the registers of any NB,c1,...,ckii can be described by (1) if the
input has the form (0, . . . , 0, x) ∈ IRni . For any B ⊆ IN∞, the value Ni,j and

the oracle B determine the computation path of any machine NB,c1,...,ckii ∈
KBi,j traversed by the input (0, . . . , 0, Ci,j) ∈ INni uniquely since (i) and (ii)
hold. By (i), the result of a test of the form fk(Ci,j) ≥ 0 follows from sgn(vk).
The question (fi1(Ci,j), . . . , fit(Ci,j)) ∈ B? is answered no if one of the values
fi1(Ci,j), . . . , fit(Ci,j) is not in IN. If the values are in IN, then, by (ii), the answer
results from the values µi1 , . . . , µit which are given by Ni,j .

Thus, the computation paths covered by NWi,j ,c1,...,cki
i ∈ KWi,j

i,j and by

NQ3,c1,...,cki
i ∈ KQ3

i,j

on (0, . . . , 0, Ci,j) ∈ INni are even the same since we have also the following
properties.

– By (iii), any x ∈ {0, 1}ni−1 × {Ci,j+1, Ci,j+2, . . .} is not queried.
– The length of the tuples in the oracle queries is less than 2ni and consequently

less than ni+1 by definition of ni+1.

– The machines NWi,j ,c1,...,cki
i and NQ3,c1,...,cki

i do not query the tuples in Vi,j .

Moreover, for all i, j ≥ 1, pi(ni) < 2ni−1 and (iv) imply that Vi,j contains

a tuple in {0, 1}ni−1 × {Ci,j} if a machine in KWi,j

i,j and, hence, any machine

NWi,j ,c1,...,cki
i ∈ KWi,j

i,j and, consequently, any machineNQ3,c1,...,cki
i ∈ KQ3

i,j reject

(0, . . . , 0, Ci,j) ∈ IRni . That implies L3 6∈ PQ3

IR and therefore the following.

Lemma 2. L3 ∈ DNPQ3

IR \ PQ3

IR .

Proposition 4. There is an oracle Q such that PQIR 6= DNPQIR.
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3 An Oracle Derived from the Knapsack Problem

The Real Knapsack Problem

KPIR =

∞⋃
n=1

{(x1, . . . , xn) ∈ IRn | (∃(α1, . . . , αn) ∈ {0, 1}n)(

n∑
i=1

αixi = 1)}

was introduced in [Blum et al. 1989] and studied, for instance, in [Koiran 1994]
and [Meer 1992]. KPIR belongs to DNPIR since, for an input (x1, . . . , xn) ∈ IR∞, a
digital non-deterministic machine can guess any sequence (α1, . . . , αn) ∈ {0, 1}n
and compute α1x1 + · · ·+ αnxn. It is not known whether KPIR ∈ PIR holds.

Let E0 = Q, let τ1, τ2, . . . be a sequence of transcendental numbers such
that τi+1 is transcendental over Ei =df Ei−1(τi), and let the oracle Q4 and the
decision problem L4 be given.

An = {(v1, . . . , v2n) ∈ {0, v}2n | v ∈ ZZ \ {0} &
∑2n

i=1 vi = nv}.

Q4 =
⋃∞

n=1{(sgn(|v1|), . . . , sgn(|v2n|),
∑2n

i=1 viτi) ∈ IR2n+1 |(v1, . . . , v2n) ∈ An}.

L4 =
⋃∞

n=1{(0, . . . , 0, r) ∈ IR2n+1 | (∃(v1, . . . , v2n) ∈ An)(r =
∑2n

i=1 viτi)}.

Let us assume that the BSS machine M decides L4 by using the oracle Q4

within a time bounded by a polynomial p and that M has only the constants
c1, . . . , ck. Let F0 =

⋃∞
i=0Ei. For i = 1, . . . , k, let Fi = Fi−1 and di = 1 if ci ∈

Fi−1, let Fi = Fi−1(ci) and di =∞ if ci is not algebraic over Fi−1, and let Fi =
Fi−1[ci] if there is an irreducible polynomial pi ∈ Fi−1[x] of degree di ≥ 2 with
pi(ci) = 0. The value of any register computed byM on input (0, . . . , 0, x) ∈ IRm

can be described by some term of the form
∑

j1,...,jk,j≤2p(m) αj1,...,jk,jc
j1
1 · · · c

jk
k x

j

where αj1,...,jk,j ∈ ZZ and, consequently, by a polynomial of the form

qj(x) = 1
r0

∑2p(m)

j=0 rj+1x
j where

rj =
∑

m1,...,mi0
≤m0

js<min{ds,j0}

zm1,...,mi0
,j1,...,jk,jτ

m1
1 · · · τmi0

i0
cj11 · · · c

jk
k

for some i0, m0, j0, and zm1,...,mi0 ,j1,...,jk,j
∈ ZZ and zm′1,...,m′i0 ,j

′
1,...,j

′
k
,0 6= 0 for

certain m′1, . . . ,m
′
i0
, j′1, . . . , j

′
k. Thus, for the inputs of the form (0, . . . , 0, x) ∈

IRm, a non-trivial oracle query (z1, . . . , zs, qj(x)) ∈ Q4? (where degree(qj) ≥ 1)

can only be answered yes if qj(x) =
∑2n′

i=1 v
′
iτi is satisfied for some (v′1, . . . , v

′
2n′) ∈

An′ . Thus, we get the following.

Lemma 3. Let n > i0, (0, . . . , 0, vi0+1, . . . , v2n) ∈ An, and x =
∑2n

i=i0+1 viτi.
For vl 6= 0, vl+1 = · · · = v2n = 0, a non-trivial oracle query (z1, . . . , zs, qj(x)) ∈
Q4? can be answered yes on inputs of the form (0, . . . , 0, x) only if s ≥ 2n and

(zi0+1, . . . , zs) = (sgn(|vi0+1|), . . . , sgn(|vl|), 0, . . . , 0).
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Let n0 be an even positive integer such that n0 > 2i0 and p(2n0 + 1) < 2
n0
2 .

Let P be the computation path of M described for inputs (0, . . . , 0, x) of size
2n0 + 1 uniquely by conditions of the form

(gj,1(x), . . . , gj,sj (x)) 6∈ Q4 (j ≤ t′) and f1(x) > 0, . . . , ft(x) > 0

where gj,1, . . . , gj,sj are polynomials, degree(gj,sj ) > 0, and each fj is defined by
some equation of the form fj(x) = xnj + anj−1x

nj−1 + · · ·+ a1x+ a0.
Let τ > 0 be transcendental over Fk and greater than all zeros of f1, . . . , ft.

Then, (0, . . . , 0, τ) ∈ IR2n0+1\L4 traverses the path P . If gj,1(τ), . . . , gj,sj−1(τ) ∈
{0, 1}, then the polynomials gj,1, . . . , gj,sj−1 are constant. Since we have |G| <
2
n0
2 for

G =
⋃

j<p(2n0+1) {(gj,i0+1(x), . . . , gj,2n0(x)) |
gj,i0+1, . . . , gj,2n0 are constant functions},

there is some (0, . . . , 0, x0) ∈ IR2n0+1 with x0 =
∑2n0

i=i0+1 wiτi satisfying

a) (0, . . . , 0, wi0+1, . . . , w2n0
) ∈ An0

and w2n0
6= 0,

b) x0 > max({τ} ∪
⋃

j<p(2n0+1)

s≤sj−1

{x | gj,s(x) ∈ {0, 1} & degree(gj,s) ≥ 1}),
c) (sgn(|wi0+1|), . . . , sgn(|w2n0

|)) 6∈ G.

a) implies that (0, . . . , 0, x0) ∈ L4. Moreover, we have fj(x0) > 0 by b). There-
fore, by Lemma 3 and c), P is also traversed by (0, . . . , 0, x0) ∈ IR2n0+1. Hence,
we get the following.

Lemma 4. L4 ∈ DNPQ4

IR \ PQ4

IR .

Proposition 5. There is an oracle Q which can be derived from KPIR such that
PQIR 6= DNPQIR.
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Abstract. We exhibit a polynomial time computable plane curve Γ
that has finite length, does not intersect itself, and is smooth except
at one endpoint, but has the following property. For every computable
parametrization f of Γ and every positive integer m, there is some
positive-length subcurve of Γ that f retraces at least m times. In con-
trast, every computable curve of finite length that does not intersect
itself has a constant-speed (hence non-retracing) parametrization that is
computable relative to the halting problem.

1 Introduction

A curve is a mathematical model of the path of a particle undergoing contin-
uous motion. Specifically, in a Euclidean space Rn, a curve is the range Γ of
a continuous function f : [a, b] → Rn for some a < b. The function f , called
a parametrization of Γ , clearly contains more information than the pointset Γ ,
namely, the precise manner in which the particle “traces” the points f(t) ∈ Γ
as t, which is often considered a time parameter, varies from a to b. When the
particle’s motion is algorithmically governed, the parametrization must be com-
putable (as a function on the reals; see below).

This paper shows that the geometry of a curve Γ may force every computable
parametrization f of Γ to retrace various parts of its path (i.e., “go back and
forth along Γ”) many times, even when Γ is an efficiently computable, smooth,
finite-length curve that does not intersect itself. In fact, our main theorem ex-
hibits a plane curve Γ ⊆ R2 with the following properties.

1. Γ is simple, i.e., it does not intersect itself.
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2. Γ is rectifiable, i.e., it has finite length.
3. Γ is smooth except at one endpoint, i.e., Γ has a tangent at every interior

point and a 1-sided tangent at one endpoint, and these tangents vary con-
tinuously along Γ.

4. Γ is polynomial time computable in the strong sense that there is a polynomial
time computable position function ~s : [0, 1] → R2 such that the velocity
function ~v = ~s′ and the acceleration function ~a = ~v′ are polynomial time
computable; the total distance traversed by ~s is finite; and ~s parametrizes
Γ, i.e., range(~s) = Γ.

5. Γ must be retraced in the sense that every parametrization f : [a, b]→ R2 of
Γ that is computable in any amount of time has the following property. For
every positive integer m, there exist disjoint, closed subintervals I0, . . . , Im
of [a, b] such that the curve Γ0 = f(I0) has positive length and f(Ii) = Γ0

for all 1 ≤ i ≤ m. (Hence f retraces Γ0 at least m times.)

The terms “computable” and “polynomial time computable” in properties
4 and 5 above refer to the “bit-computability” model of computation on re-
als formulated in the 1950s by Grzegorczyk [9] and Lacombe [17], extended to
feasible computability in the 1980s by Ko and Friedman [13] and Kreitz and
Weihrauch [16], and exposited in the recent paper by Braverman and Cook [4]
and the monographs [20,14,22,5]. As will be shown here, condition 4 also implies
that the pointset Γ is polynomial time computable in the sense of Brattka and
Weihrauch [2]. (See also [22,3,4].)

A fundamental and useful theorem of classical analysis states that every sim-
ple, rectifiable curve Γ has a normalized constant-speed parametrization, which
is a one-to-one parametrization f : [0, 1] → Rn of Γ with the property that
f([0, t]) has arclength tL for all 0 ≤ t ≤ 1, where L is the length of Γ . (A simple,
rectifiable curve Γ has exactly two such parametrizations, one in each direction,
and standard terminology calls either of these the normalized constant-speed
parametrization f : [0, 1] → Rn of Γ . The constant-speed parametrization is
also called the parametrization by arclength when it is reformulated as a func-
tion f : [0, L] → Rn that moves with constant speed 1 along Γ .) Since the
constant-speed parametrization does not retrace any part of the curve, our main
theorem implies that this classical theorem is not entirely constructive. Even
when a simple, rectifiable curve has an efficiently computable parametrization,
the constant-speed parametrization need not be computable.

In addition to our main theorem, we prove that every simple, rectifiable curve
Γ in Rn with a computable parametrization has the following two properties.

I. The length of Γ is lower semicomputable.
II. The constant-speed parametrization of Γ is computable relative to the

length of Γ .

These two things are not hard to prove if the computable parametrization
is one-to-one, (in fact, they follow from results of Müller and Zhao [19] in this
case) but our results hold even when the computable parametrization retraces
portions of the curve many times.

Taken together, I and II have the following two consequences.
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1. The curve Γ of our main theorem has a finite length that is lower semi-
computable but not computable. (The existence of polynomial-time com-
putable curves with this property was first proven by Ko [15].)

2. Every simple, rectifiable curve Γ in Rn with a computable parametriza-
tion has a constant-speed parametrization that is ∆0

2-computable, i.e., com-
putable relative to the halting problem. Hence, the existence of a constant-
speed parametrization, while not entirely constructive, is constructive rela-
tive to the halting problem.

2 Length, Computability, and Complexity of Curves

In this section we summarize basic terminology and facts about curves. As we use
the terms here, a curve is the range Γ of a continuous function f : [a, b]→ Rn for
some a < b. The function f is called a parametrization of Γ . Each curve clearly
has infinitely many parametrizations.

A curve is simple if it has a parametrization that is one-to-one, i.e., the curve
“does not intersect itself”. The length of a simple curve Γ is defined as follows.

Let f : [a, b]
1−1→ Rn be a one-to-one parametrization of Γ . For each disection ~t

of [a, b], i.e., each tuple ~t = (t0, . . . , tm) with a = t0 < t1 < . . . < tm = b, define
the f -~t-approximate length of Γ to be

Lf~t (Γ ) =

m−1∑
i=0

|f(ti+1)− f(ti)|.

Then the length of Γ is
L(Γ ) = sup

~t

Lf~t (Γ ),

where the supremum is taken over all dissections ~t of [a, b]. It is easy to show
that L(Γ ) does not depend on the choice of the one-to-one parametrization f ,
i.e. that the length is an intrinsic property of the pointset Γ .

In sections 4 and 5 of this paper we use a more general notion of length,
namely, the 1-dimensional Hausdorff measure H1(Γ ), which is defined for every
set Γ ⊆ Rn. We refer the reader to [7] for the definition of H1(Γ ). It is well
known that H1(Γ ) = L(Γ ) holds for every simple curve Γ .

A curve Γ is rectifiable, or has finite length if L(Γ ) < ∞. In sections 4 and
5 we use the notation RC for the set of all rectifiable simple curves.
Definition. Let f : [a, b]→ Rn be continuous.

1. For m ∈ Z+, f has m-fold retracing if there exist disjoint, closed subintervals
I0, . . . , Im of [a, b] such that the curve Γ0 = f(I0) has positive length and
f(Ii) = Γ0 for all 1 ≤ i ≤ m.

2. f is non-retracing if f does not have 1-fold retracing.
3. f has bounded retracing if there exists m ∈ Z+ such that f does not have
m-fold retracing.

4. f has unbounded retracing if f does not have bounded retracing, i.e., if f has
m-fold retracing for all m ∈ Z+.
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We now review the notions of computability and complexity of a real-valued
function. An oracle for a real number t is any function Ot : N → Q with the
property that |Ot(s)− t| ≤ 2−s holds for all s ∈ N. A function f : [a, b]→ Rn is
computable if there is an oracle Turing machine M with the following property.
For every t ∈ [a, b] and every precision parameter r ∈ N, if M is given r as
input and any oracle Ot for t as its oracle, then M outputs a rational point
MOt(r) ∈ Qn such that |MOt(r) − f(t)| ≤ 2−r. A function f : [a, b] → Rn is
computable in polynomial time if there is an oracle machine M that does this in
time polynomial in r+ l, where l is the maximum length of the query responses
provided by the oracle.

An oracle for a function f : [a, b]→ Rn is any function Of : ([a, b]∩Q)×N→
Qn with the property that |Of (q, r)− f(q)| ≤ 2−r holds for all q ∈ [a, b]∩Q and
r ∈ N. A decision problem A is Turing reducible to a function f : [a, b] → Rn,
and we write A ≤T f , if there is an oracle Turing machine M such that, for
every oracle Of for f , MOf decides A. It is easy to see that, if f is computable,
then A ≤T f if and only if A is decidable.

A curve is computable if it has a parametrization f : [a, b] → Rn, where
a, b ∈ Q and f is computable. A curve is computable in polynomial time if it
has a parametrization that is computable in polynomial time.

3 An Efficiently Computable Curve That Must Be
Retraced

This section presents our main theorem, which is the existence of a smooth, rec-
tifiable, simple plane curve Γ that is parametrizable in polynomial time but not
computably parametrizable in any amount of time without unbounded retrac-
ing. Intuitively, our curve Γ has, for each n ∈ N, a section of the form illustrated
in Figure 3.1. The height h(n) is positive, and the halting problem K is encoded
into the width w(n). Oversimplifying a bit, w(n) is 2−(n+τ(n)), where τ(n) is the
number of steps executed by the nth Turing machine on input n. Thus w(n) is 0
if n ∈ K, and w(n) is so small as to be “indistinguishable” from 0 if n /∈ K. The
smallness of w(n) implies that we can efficiently compute a parametrization that
is retracing when w(n) is 0. However, as we show in Lemma 3.12, a nonretrac-
ing parametrization must have a vertical component that distinguishes the case
w(n) = 0 from the case w(n) > 0, and hence must solve the halting problem. It
follows that no nonretracing parametrization is computable.

We now give a precise construction of the curve Γ, followed by a brief discus-
sion of how the construction achieves the intuition that we have just described.
The rest of the section is devoted to proving that Γ has the desired properties.

Construction 3.1 (1) For each a, b ∈ R with a < b, define the functions
ϕa,b, ξa,b : [a, b]→ R by

ϕa,b(t) =
b− a

4
sin

2π(t− a)

b− a
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(n oscillations)

Fig. 3.1. Schematic view of the nth section of Γ
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and

ξa,b(t) =

{
−ϕa, a+b

2
(t) if a ≤ t ≤ a+b

2

ϕ a+b
2 ,b(t) if a+b

2 ≤ t ≤ b.

(2) For each a, b ∈ R with a < b and each positive integer n, define the function
ψa,b,n : [a, b]→ R by

ψa,b,n(t) =

{
ϕa,d0(t) if a ≤ t ≤ d0
ξdi−1,di(t) if di−1 ≤ t ≤ di,

where

di =
a+ 5b

6
+ i

b− a
6n

for 0 ≤ i ≤ n. (See Figure 3.2.)
(3) Fix a standard enumeration M1,M2, . . . of (deterministic) Turing machines

that take positive integer inputs. For each positive integer n, let τ(n) denote
the number of steps executed by Mn on input n. It is well known that the
diagonal halting problem

K =
{
n ∈ Z+ | τ(n) <∞

}
is undecidable.

(4) Define the horizontal and vertical acceleration functions ax, ay : [0, 1] → R
as follows. For each n ∈ N, let

tn =

∫ n

0

e−xdx = 1− e−n,

noting that t0 = 0 and that tn converges monotonically to 1 as n→∞. Also,
for each n ∈ Z+, let

t−n =
tn−1 + 4tn

5
, t+n =

6tn − tn−1
5

,

noting that these are symmetric about tn and that t+n ≤ t−n+1.

(i) For 0 ≤ t ≤ 1, let

ax(t) =

{
−2−(n+τ(n))ξt−n ,t+n (t) if t−n ≤ t < t+n
0 if no such n exists,

where 2−∞ = 0.
(ii) For 0 ≤ t < 1, let

ay(t) = ψtn−1,tn,n(t),

where n is the unique positive integer such that tn−1 ≤ t < tn.
(iii) Let ay(1) = 0.
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(5) Define the horizontal and vertical velocity and position functions vx, vy, sx, sy :
[0, 1]→ R by

vx(t) =

∫ t

0

ax(θ)dθ, vy(t) =

∫ t

0

ay(θ)dθ,

sx(t) =

∫ t

0

vx(θ)dθ, sy(t) =

∫ t

0

vy(θ)dθ.

(6) Define the vector acceleration, velocity, and position functions ~a,~v,~s : [0, 1]→
R2 by

~a(t) = (ax(t), ay(t)),

~v(t) = (vx(t), vy(t)),

~s(t) = (sx(t), sy(t)).

(7) Let Γ = range(~s).

Intuitively, a particle at rest at time t = a and moving with acceleration given
by the function ϕa,b moves forward, with velocity increasing to a maximum
at time t = a+b

2 and then decreasing back to 0 at time t = b. The vertical
acceleration function ay, together with the initial conditions vy(0) = sy(0) = 0
implied by (5), thus causes a particle to move generally upward (i.e., sy(t0) <
sy(t1) < · · · ), coming to momentary rests at times t1, t2, t3, . . . . Between two
consecutive such stopping times tn−1 and tn, the particle’s vertical acceleration
is controlled by the function ψtn−1,tn,n. This function causes the particle’s vertical
motion to do the following between times tn−1 and tn.

(i) From time tn−1 to time tn−1+5tn
6 , move upward from elevation sy(tn−1) to

elevation sy(tn).

(ii) From time tn−1+5tn
6 to time tn, make n round trips to a lower elevation

s ∈ (sy(tn−1), sy(tn)).

In the meantime, the horizontal acceleration function ax, together with the initial
conditions vx(0) = sx(0) = 0 implied by (5), ensure that the particle remains
on or near the y-axis. The deviations from the y-axis are simply described: The
particle moves to the right from time tn−1+4tn

5 through the completion of the n
round trips described in (ii) above and then moves to the y-axis between times tn
and 6tn−tn−1

5 . The amount of lateral motion here is regulated by the coefficient

2−(n+τ(n)). If τ(n) = ∞, then there is no lateral motion, and the n round trips
in (ii) are retracings of the particle’s path. If τ(n) < ∞, then these n round
trips are “forward” motion along a curvy part of Γ. In fact, Γ contains points
of arbitrarily high curvature, but the particle’s motion is kinematically realistic
in the sense that the acceleration vector ~a(t) is polynomial time computable,
hence continuous and bounded on the interval [0, 1]. Figure 3.3 illustrates the
path of the particle from time tn−1 to tn+1 with n = 1 and hypothetical (model
dependent!) values τ(1) = 1 and τ(2) = 2.

The rest of this section is devoted to proving the following theorem concerning
the curve Γ.
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y

x

Fig. 3.3. Example of ~s(t) from t0 to t2

Theorem 3.2. (main theorem). Let ~a,~v,~s, and Γ be as in Construction 3.1.

1. The functions ~a,~v, and ~s are Lipschitz and computable in polynomial time,
hence continuous and bounded.

2. The total length, including retracings, of the parametrization ~s of Γ is finite
and computable in polynomial time.

3. The curve Γ is simple, rectifiable, and smooth except at one endpoint.
4. Every computable parametrization f : [a, b] → R2 of Γ has unbounded re-

tracing.

For the remainder of this section, we use the notation of Construction 3.1.
The following two observations facilitate our analysis of the curve Γ. The

proofs are routine calculations.

Observation 3.3 For all n ∈ Z+, if we write

d
(n)
i =

tn−1 + 5tn
6

+ i
tn − tn−1

6n

and

e
(n)
i = d

(n)
i +

tn − tn−1
12n

for all 0 ≤ i < n, then

tn−1 < t−n < d
(n)
0 < e

(n)
0 < d

(n)
1 < e

(n)
1 < · · · < d

(n)
n−1 < e

(n)
n−1 < tn < t+n < t−n+1.

Observation 3.4 For all a, b ∈ R with a < b,∫ b

a

∫ t

a

ϕa,b(θ)dθdt =
(b− a)3

8π
.
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We now proceed with a quantitative analysis of the geometry of Γ. We begin
with the horizontal component of ~s.

Lemma 3.5 1. For all t ∈ [0, 1]−
⋃
n∈K(t−n , t

+
n ), vx(t) = sx(t) = 0.

2. For all n ∈ K and t ∈ (t−n , tn) , vx(t) > 0.

3. For all n ∈ K and t ∈ (tn, t
+
n ), vx(t) < 0.

4. For all n ∈ Z+, sx(tn) = (e−1)3
1000πe3n 2−(n+τ(n)).

5. sx(1) = 0.

The following lemma analyzes the vertical component of ~s. We use the nota-

tion of Observation 3.3, with the additional proviso that d
(n)
n = tn.

Lemma 3.6 1. For all n ∈ Z+ and t ∈ (tn−1, d
(n)
0 ), vy(t) > 0.

2. For all n ∈ Z+, 0 ≤ i < n, and t ∈ (d
(n)
i , e

(n)
i ), vy(t) < 0.

3. For all n ∈ Z+, 0 ≤ i < n, and t ∈ (e
(n)
i , d

(n)
i+1), vy(t) > 0.

4. For all n ∈ Z+, 0 ≤ i < n, and t ∈ {e(n)i , d
(n)
i , tn}, vy(t) = 0.

5. For all n ∈ Z+ and 0 ≤ i ≤ n, sy(d
(n)
i ) = sy(d

(n)
0 ).

6. For all n ∈ Z+ and 0 ≤ i < n, sy(e
(n)
i ) = sy(e

(n)
0 ).

7. For all n ∈ N, sy(tn) = 53(e−1)3
63·8π

∑n
i=1

1
e3i .

8. For all n ∈ Z+, sy(e
(n)
0 ) = sy(tn)− (e−1)3

123n38πe3n .

9. sy(1) = 53(e−1)3
63·8π(e3−1) .

By Lemmas 3.5 and 3.6, we see that ~s parametrizes a curve from ~s(0) = (0, 0)

to ~s(1) = (0, 53(e−1)3
638π(e3−1) ).

It is clear from Observation 3.3 and Lemmas 3.5 and 3.6 that the curve Γ
does not intersect itself. We thus have the following.

Corollary 3.7 Γ is a simple curve from ~s(0) = (0, 0) to ~s(1) = (0, 53(e−1)3
638π(e3−1) ).

Lemma 3.8 The functions ~a,~v, and ~s are Lipschitz, hence continuous, on [0, 1].

Since every Lipschitz parametrization has finite total length [1], and since the
length of a curve cannot exceed the total length of any of its parametrizations,
we immediately have the following.

Corollary 3.9 The total length, including retracings, of the parametrization ~s
is finite. Hence the curve Γ is rectifiable.

Lemma 3.10 The curve Γ is smooth except at the endpoint ~s(1).

Lemma 3.11 The functions ~a,~v, and ~s are computable in polynomial time. The
total length including retracings, of ~s is computable in polynomial time.
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Definition. A modulus of uniform continuity for a function f : [a, b]→ Rn is a
function h : N× N such that, for all s, t ∈ [a, b] and r ∈ N,

|s− t| ≤ 2−h(r) =⇒ |f(s)− f(t)| ≤ 2−r.

It is well known (e.g., see [14]) that every computable function f : [a, b] → Rn
has a modulus of uniform continuity that is computable.

Lemma 3.12 Let f : [a, b] → R2 be a parametrization of Γ. If f has bounded
retracing and a computable modulus of uniform continuity, then K ≤T fy, where
fy is the vertical component of f .

4 Lower Semicomputability of Length

In this section we prove that every computable curve Γ has a lower semicom-
putable length. Our proof is somewhat involved, because our result holds even
if every computable parametrization of Γ is retracing.

Construction 4.1 Let f : [0, 1] → Rn be a computable function. Given an
oracle Turing machine M that computes f and a computable modulus m : N→
N of the uniform continuity of f , the (M,m)-cautious polygonal approximator
of range(f) is the function πM,m : N → {polygonal paths} computed by the
following algorithm.

input r ∈ N;
S := {}; // S may be a multi-set
for i:=0 to 2m(r) do

ai := i2−m(r);
use M to compute xi with
|xi − f(ai)| ≤ 2−(r+m(r)+1);

add xi to S;
output a longest path inside a minimum spanning tree of S.

Definition. Let (X, d) be a metric space. Let Γ ⊆ X and ε > 0. Let

Γ (ε) =

{
p ∈ X

∣∣∣∣ inf
p′∈Γ

d(p, p′) ≤ ε
}

be the Minkowski sausage of Γ with radius ε.
Let dH : P(X)× P(X)→ R be such that for all Γ1, Γ2 ∈ P(X)

dH(Γ1, Γ2) = inf {ε | Γ1 ⊆ Γ2(ε) and Γ2 ⊆ Γ1(ε)} .

Note that dH is the Hausdorff distance function.
Let K(X) be the set of nonempty compact subsets of X. Then (K(X), dH) is

a metric space [6].
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Theorem 4.2. (Frink [8], Michael [18]). Let (X, d) be a compact metric space.
Then (K(X), dH) is a compact metric space.

Definition. Let RC be the set of all simple rectifiable curves in Rn.

Theorem 4.3. ([21] page 55). Let Γ ∈ RC. Let {Γn}n∈N ⊆ RC be a sequence of
rectifiable curves such that lim

n→∞
dH(Γn, Γ ) = 0. Then H1(Γ ) ≤ lim inf

n→∞
H1(Γn).

This theorem has the following consequence.

Theorem 4.4. Let Γ ∈ RC. For all ε > 0, there exists δ > 0 such that for all
Γ ′ ∈ RC, if dH(Γ, Γ ′) < δ, then H1(Γ ′) > H1(Γ )− ε.

Theorem 4.5. Let Γ ∈ RC such that Γ = γ([0, 1]), where γ is a continuous
function. (Note that γ may not be one-one.) Let S(a) = {γ(ai) | ai ∈ a} for all
dissection a. Let {an}n∈N be a sequence of dissections of Γ such that

lim
n→∞

mesh(an) = 0.

Then
lim
n→∞

H1(LMST (an)) = H1(Γ ),

where LMST (a) is the longest path inside the Minimum Euclidean Spanning
Tree of S(a).

This result implies that when the sampling density is high, the number of
leaves in the minimum spanning tree is asymptotically smaller than the total
number of nodes.

We now have the machinery to prove the main result of this section.

Theorem 4.6. Let γ : [0, 1]→ Rn be computable such that Γ = γ([0, 1]) ∈ RC.
Then H1(Γ ) is lower semicomputable.

5 ∆0
2-Computability of the Constant-Speed

Parametrization

In this section we prove that every computable curve Γ has a constant speed
parametrization that is ∆0

2-computable.

Theorem 5.1. Let Γ = γ∗([0, 1]) ∈ RC. (γ∗ may not be one-one.) Let l =
H1(Γ ) and Ol be an oracle such that for all n ∈ N, |Ol(n)− l| ≤ 2−n. Let f be a
computation of γ∗ with modulus m. Let γ be the constant speed parametrization
of Γ . Then γ is computable with oracle Ol.

Corollary 5.2 Let Γ be a curve with the property described in property 5 of
Theorem 3.2. Then the length of Γ – H1(Γ ) is not computable.

Acknowledgment. We thank anonymous referees for their valuable com-
ments.
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Effective Dispersion in Computable Metric
Spaces

Zvonko Iljazović

University of Zagreb, Croatia

Abstract. We investigate the relationship between computable metric
spaces (X, d, α) and (X, d, β), where (X, d) is a given metric space. In the
case of Euclidean space, α and β are equivalent up to isometry, which
does not hold in general. We introduce the notion of effectively dispersed
metric space. This notion is essential in the proof of the main result of
this paper: (X, d, α) is effectively totally bounded if and only if (X, d, β)
is effectively totally bounded, i.e. the property that a computable metric
space is effectively totally bounded (and in particular effectively com-
pact) depends only on the underlying metric space.

1 Introduction

Let k ∈ IN, k ≥ 1. We say that a function f : INk → Q is recursive if there exist

recursive functions a, b, c : INk → IN such that f(x) = (−1)c(x) a(x)
b(x)+1 , ∀x ∈ INk.

A function f : INk → IR is said to be recursive if there exists a recursive
function F : INk+1 → Q such that |f(x)− F (x, i)| < 2−i, ∀x ∈ INk, ∀i ∈ IN.

A tuple (X, d, α) is said to be a computable metric space if (X, d) is a
metric space and α : IN→ X is a sequence dense in (X, d) such that the function
IN2 → IR, (i, j) 7→ d(α(i), α(j)) is recursive. We say that α is an effective
separating sequence in (X, d) (cf. [3]). If (X, d, α) is a computable metric
space, then a sequence (xi) in X is said to be recursive in (X, d, α) if there
exists a recursive function F : IN2 → IN such that d(xi, αF (i,k)) < 2−k, ∀i, k ∈ IN
and a point a ∈ X is said to be recursive in (X, d, α) if the constant sequence
a, a, . . . is recursive. For example, if q : IN → Q is a recursive surjection, then
(IR, d, q) is a computable metric space, where d is the Euclidean metric on IR. A
sequence (xi) is recursive in this computable metric space if and only if (xi) is a
recursive sequence of real numbers and a ∈ IR is a recursive point in this space
if and only if a is a recursive number.

Let (X, d) be a metric space and let S be a nonempty set whose elements
are sequences in X. We say that S is a computability structure on (X, d) (cf.
[3]) if the following three properties hold:

(i) if (xi), (yj) ∈ S, then the function IN2 → IR, (i, j) 7→ d(xi, yj) is recursive;
(ii) if (xi)i∈IN ∈ S, then (xf(i))i∈IN ∈ S for any recursive function f : IN→ IN;

(iii) if (yi) is a sequence in X such that d(yi, xF (i,k)) < 2−k, ∀i, k ∈ IN, where

F : IN2 → IN is a recursive function and (xi) ∈ S, then (yi) ∈ S.

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 161-172 
http://drops.dagstuhl.de/opus/volltexte/2009/2268
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Let (X, d) be a metric space. If α is an effective separating sequence in (X, d),
then the set Sα of all recursive sequences in (X, d, α) is an example of a com-
putability structure on (X, d). Suppose now that α and β are effective separating
sequences in (X, d). We say that α is equivalent to β, α ∼ β, if α is a recursive
sequence in (X, d, β). It follows easily that α ∼ β if and only if Sα = Sβ .

A closed subset S of a computable metric space (X, d, α) is said to be recur-
sively enumerable if {i ∈ IN | Ii∩S 6= ∅} is an r.e. set, where (Ii) is some effective
enumeration of all open rational balls in (X, d, α), co-recursively enumerable if
X \ S = ∪i∈INIf(i), where f : IN → IN is a recursive function and recursive if it
is both r.e. and co-r.e. ([1]). It is not hard to see that if α ∼ β, then S is r.e.
(co-r.e.) in (X, d, α) if and only if S is r.e. (co-r.e.) in (X, d, β) and consequently
S is recursive in (X, d, α) if and only if S is recursive in (X, d, β). Hence the
notions of recursive enumerability, co-recursive enumerability and recursiveness
of a set are examples of notions which depend only on the induced computability
structure and not on particular α which induces that structure.

If α and β are effective separating sequences in a metric space (X, d), then
α and β need not be equivalent. For example, if c ∈ IR is a nonrecursive number
and (αi) a recursive sequence of real numbers dense in (IR, d), where d is the
Euclidean metric, then (αi + c) is an effective separating sequence in (IR, d), c is
a recursive point in (IR, d, (αi + c)) and c is not recursive in (IR, d, (αi)). Hence
(αi) and (αi + c) are not equivalent.

Let (X, d, (αi)) be a computable metric space and f an isometry of (X, d).
By an isometry of (X, d) we mean a surjective map f : X → X such that
d(f(x), f(y)) = d(x, y), ∀x, y ∈ X. Then (X, d, (f(αi))) is also a computable
metric space and in general the sequences (αi) and (f(αi)) are not equivalent by
the previous example. Note that f “maps” the computability structure induced
by (αi) on the computability structure induced by (f(αi)), i.e.

S(f(αi)) = {(f(xi)) | (xi) ∈ S(αi)}.

In particular, if A is the set of all recursive points in (X, d, (αi)) and B the set
of all recursive points in (X, d, (f(αi))), then f(A) = B.

We say that effective separating sequences (αi) and (βi) in a metric space
(X, d) are equivalent up to isometry if (αi) ∼ (f(βi)) for some isometry f of
(X, d). It is easy to see that this relation is an equivalence relation on the set of
all effective separating sequences in (X, d).

If (X, d, α) is a computable metric space, then clearly the metric space (X, d)
is totally bounded if and only if for each k ∈ IN there exists m ∈ IN such that
X = ∪0≤i≤mB(αi, 2

−k). Here B(x, r) for x ∈ X and r > 0 denotes the open
ball of radius r centered at x. We say that a computable metric space (X, d, α)
is effectively totally bounded if there exists a recursive function f : IN→ IN
such that

X =

f(k)⋃
i=0

B(αi, 2
−k),

∀k ∈ IN ([3]).
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Example 1. If S is a recursive nonempty compact subset of IRn, then there exists
a recursive sequence (xi) in S and a recursive function f : IN → IN such that
S ⊆ ∪0≤i≤f(k)B(xi, 2

−k), ∀k ∈ IN ([4]) and therefore (S, d, (xi)) is an effectively
totally bounded computable metric space, where d is the Euclidean metric on S.

Example 2. Let ω : IN → Q be a recursive sequence which converges to a non-
recursive number γ ∈ IR and such that ω(0) = 0, ω(i) < ω(i + 1), ∀i ∈ IN. It
is easy to construct a recursive sequence of rational numbers α which is dense
in [0, γ]. Then the tuple ([0, γ], d, α) is a computable metric space, where d is
the Euclidean metric on [0, γ]. Suppose that ([0, γ], d, α) is effectively totally
bounded. Then [0, γ] = ∪0≤i≤f(k)B(αi, 2

−k), ∀k ∈ IN, for some recursive func-
tion f : IN → IN. If h : IN → Q is defined by h(k) = max{αi | 0 ≤ i ≤ f(k)},
k ∈ IN, then h is a recursive function and |γ − h(k)| < 2−k, ∀k ∈ IN which con-
tradicts the fact that γ is a nonrecursive number. Hence the computable metric
space ([0, γ], d, α) is not effectively totally bounded, although the metric space
([0, γ], d) is totally bounded.

It is not hard to check that if α and β are equivalent effective separating
sequences in a metric space (X, d), then (X, d, α) is effectively totally bounded
if and only if (X, d, β) is effectively totally bounded. Furthermore, if f is an
isometry of (X, d) and (αi) an effective separating sequence, then (X, d, (αi))
is effectively totally bounded if and only if (X, d, (f(αi))) is effectively totally
bounded. This follows immediately from the fact that f(B(x, r)) = B(f(x), r),
∀x ∈ X, ∀r > 0. Therefore, if α and β are effective separating sequences equiv-
alent up to isometry, then (X, d, α) is effectively totally bounded if and only if
(X, d, β) is effectively totally bounded.

There exist totally bounded metric spaces with effective separating sequences
nonequivalent up to isometry (Section 2). Nevertheless, the equivalence

(X, d, α) effectively totally bounded ⇔ (X, d, β) effectively totally bounded
(1)

holds in general and that is the main result of this paper which will be proved in
Section 3 where we introduce the notion of effectively dispersed metric space. In
Section 2 we also prove that each two effective separating sequence in Euclidean
space IRn are equivalent up to isometry.

2 Isometries and computability structures

Let n ≥ 1 and let d be the Euclidean metric on IRn. The main step in proving
that every two effective separating sequences in (IRn, d) are equivalent up to
isometry is the following proposition.

Proposition 1. Let a0, . . . , an be recursive points in IRn which are geometrically
independent (i.e. a1 − a0, . . . , an − a0 are linearly independent vectors) and let
(xi) be a sequence in IRn such that (d(xi, ak))i∈IN is a recursive sequence of real
numbers for each k ∈ {0, . . . , n}. Then (xi) is a recursive sequence.
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Proposition 1 is essentially a consequence of the fact that we can compute each
component of xi by certain formula which involves addition, subtraction, mul-
tiplication and division of numbers d(xi, a0), . . . , d(xi, an) and components of
the points a0, . . . , an. It follows from Proposition 1 that for geometrically inde-
pendent recursive points a0, . . . , an in IRn and x ∈ IN the following implication
holds:

the numbers d(x, a0), . . . , d(x, an) are recursive ⇒ the point x is recursive.
(2)

However, in a general computable metric space it is not possible to find n ∈ N
and recursive points a0, . . . , an such that the implication (2) holds. This shows
the following example.

Example 3. Let p be the metric on IR2 given by p((x1, y1), (x2, y2)) = max{|x2−
x1|, |y2 − y1|}. If (αi) is a recursive dense sequence in IR2, then (IR2, p, (αi)) is
a computable metric space and the induced computability structure coincides
with the usual computability structure on IR2. Suppose (x0, y0), . . . , (xk, yk)
are any recursive points in IR2. Let M > 0 be some upper bound of the set
{|x0|, |y0|, . . . , |xk|, |yk|}. Let a, b ∈ IR be such that a > 3M, |b| < M and such
that a is a recursive, and b a nonrecursive number. Then p((a, b), (x0, y0)), . . .
p((a, b), (xk, yk)) are recursive numbers, but (a, b) is a nonrecursive point.

The following corollary is an immediate consequence of Proposition 1.

Corollary 1. Suppose (IRn, d, α) is a computable metric space, f : IRn → IRn

an isometry and a0, . . . , an recursive points in (IRn, d, α) which are geometrically
independent and such that f(a0), . . . , f(an) are recursive points in IRn in the
usual sense. Then f ◦ α is a recursive sequence in the usual sense.

The next step in proving that every two effective separating sequences in
(IRn, d) are equivalent up to isometry is the following lemma.

Lemma 1. Let a0, . . . , an be geometrically independent points in IRn such that
d(ai, aj) is a recursive number for all i, j ∈ {0, . . . , n}. Then there exists an
isometry f : IRn → IRn such that f(a0), . . . , f(an) are recursive points.

The idea in the proof of Lemma 1 is to find an isometry f : IRn → IRn such
that f(a0) = (0, . . . , 0), f(ai) ∈ {(t1, . . . , ti, 0, . . . , 0) | t1, . . . , ti ∈ IR, ti 6= 0},
∀i ∈ {1, . . . , n} and then to show that the points f(a0), . . . , f(an) are recursive.

Proposition 2. Let (αi) be an effective separating sequence in IRn. Then there
exists an isometry f : IRn → IRn such that (f(αi)) is a recursive sequence in
IRn.

Proof. Let i0, . . . , in ∈ IN be such that αi0 , . . . , αin are geometrically indepen-
dent points. By Lemma 1 there exists an isometry f : IRn → IRn such that
f(ai0), . . . , f(ain) are recursive points. The claim of the theorem now follows
from Corollary 1. ut
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Note the following: if (xi) and (yi) are recursive dense sequences in IRn,
then (xi) and (yi) are equivalent as effective separating sequences. This and
Proposition 2 imply the following.

Theorem 1. If α and β are effective separating sequences in (IRn, d), then α
and β are equivalent up to isometry.

Euclidean space IRn is not totally bounded, but each open (or closed) ball
in IRn is totally bounded. We say that a computable metric space (X, d, α) can
be exhausted effectively by totally bounded balls if there exists x̃ ∈ X
and a recursive function F : IN2 → IN such that

B(x̃,m) ⊆
F (k,m)⋃
i=0

B(αi, 2
−k),

∀k,m ∈ IN. It is clear that if such a function F exists for one x̃ ∈ X, then
it exists for each x̃ ∈ X. It is obvious that each effectively totally bounded
computable metric space can be exhausted effectively by totally bounded balls.
Furthermore, if α is some recursive dense sequence in IRn, then (IRn, d, α) can be
exhausted effectively by totally bounded balls. It is easy to conclude from this
and Theorem 1 that any computable metric space of the form (IRn, d, α) can be
exhausted effectively by totally bounded balls.

In the contrast to the fact that the equivalence (1) holds in general, which
will be proved later, the equivalence

(X, d, α) can be exhausted effectively by totally bounded balls

m

(X, d, β) can be exhausted effectively by totally bounded balls

does not hold in general, as the following example shows.

Example 4. Let the number γ be as in Example 2. It is easy to construct a
recursive sequence of rational numbers α′ which is dense in 〈−∞, γ]. Let d be
the Euclidean metric on 〈−∞, 0] and let (xi) be some recursive sequence of
real numbers which is dense in 〈−∞, 0]. Then the computable metric space
(〈−∞, 0], d, (xi)) can be exhausted effectively by totally bounded balls. On the
other hand, if α : IN → 〈−∞, 0] is defined by α(i) = α′(i) − γ, then α is an
effective separating sequence in (〈−∞, 0], d) and the computable metric space
(〈−∞, 0], d, α) cannot be exhausted effectively by totally bounded balls which
can be deduced from the fact that 0 is not a recursive point in this space.

The previous example also shows that effective separating sequences in a
metric space (X, d) need not be equivalent up to isometry. The following two ex-
amples show that effective separating sequences in (X, d) need not be equivalent
up to isometry even when (X, d) is totally bounded.
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Example 5. Let ([0, γ], d, α) be the computable metric space of Example 2. Let

α′ : IN → IR be defined by α′(2i) = α(i)
2 , α′(2i + 1) = −α(i)2 , i ∈ IN and

let α′′ : IN → [0, γ] be defined by α′′(i) = α′(i) + γ
2 . Then α′′ is an effective

separating sequence in ([0, γ], d). Since the point γ
2 is recursive in ([0, γ], d, α′′),

but not in ([0, γ], d, α), and since γ
2 is a fixed point of each isometry of ([0, γ], d)

(namely the only isometries are the identity and the map t 7→ γ − t, t ∈ [0, γ]),
we conclude that effective separating sequences α and α′′ are not equivalent.

Example 6. Let S be the unit circle in IR2 and let d be the Euclidean metric
on S. Since S is a recursive set, there exists a recursive sequence (xi) in S
such that (S, d, (xi)) is an effectively totally bounded computable metric space
(Example 1). Let f : IR2 → IR2 be a rotation with the center (0, 0) such that
f(1, 0) is a nonrecursive point. Then (f(xi)) is an effective separating sequence
in (S, d) nonequivalent to (xi). Let A = {xi | i ∈ IN} ∪ {f(xi) | i ∈ IN}, let
T = {(x, y) ∈ S | x ≤ 0 or (x, y) ∈ A} and let d′ be the Euclidean metric on
T. Then (xi) and (yi) are effective separating sequences in (T, d′) and it follows
easily that they are not equivalent up to isometry in this metric space.

3 Effective dispersion

Let (X, d) be a metric space. A nonempty subset S of X is said to be r−dense
in (X, d), where r ∈ IR, r > 0, if X = ∪s∈SB(s, r). Note that a set S is dense
in (X, d) if and only if S is r−dense in (X, d) for all r > 0. We say that a finite
sequence x0, . . . , xn of points in X is r−dense in (X, d) if the set {x0, . . . , xn} is
r−dense in (X, d). Hence (X, d) is totally bounded if and only if for each ε > 0
there exists a finite sequence of points in X which is ε−dense in (X, d).

Let s ∈ IR. A nonempty subset S of X is said to be s−dispersed in (X, d)
if d(x, y) > s, ∀x, y ∈ S, x 6= y. A finite sequence x0, . . . , xn of points in X
is said to be s−dispersed in (X, d) if d(xi, xj) > s, ∀i, j ∈ {0, . . . , n}, i 6= j.
Note that if x0, . . . , xn is an s-dispersed finite sequence, then {x0, . . . , xn} is an
s−dispersed set, while converse does not hold in general.

Proposition 3. Let (X, d) be a totally bounded metric space and let s > 0.
Then the set A = {k ∈ IN | there exists a finite sequence x1, . . . , xk which is
s−dispersed in (X, d)} is finite.

Proof. Let y0, . . . , yp be an s
2−dense finite sequence in (X, d). Suppose that

a finite sequence x1, . . . , xk is s−dispersed. For each i ∈ {1, . . . , k} let ji ∈
{0, . . . , p} be such that xi ∈ B(yji ,

s
2 ). If i, i′ ∈ {1, . . . , k}, i 6= i′, then ji 6= ji′

since d(xi, xi′) > s. Therefore we have an injection {1, . . . , k} → {0, . . . , p},
hence k < p. This shows that A is finite. ut

Let (X, d) be a totally bounded metric space. If S ⊆ X, S 6= ∅, and s > 0,
then, by Proposition 3, the set {k ∈ IN | there exists a finite sequence x1, . . . , xk
of points in S which is s−dispersed in (X, d)} is finite. We denote the maximum
of this set by ρ(S, s). If x0, . . . , xn is a finite sequence in X, then we will write
ρ(x0, . . . , xn; s) instead of ρ({x0, . . . , xn}, s).
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Example 7. With the Euclidean metric on [0, 3] we have ρ([0, 1], s) = 1 if s ≥ 1,

ρ([0, 1], s) = 2 if s ∈
[
1
2 , 1
〉

and ρ(0, 1, 3; s) =

1, 3 ≤ s,
2, 1 ≤ s < 3,
3, 0 < s < 1.

Suppose (X, d) is a totally bounded metric space, s > 0 and n = ρ(X, s2 ).
Then there exists a finite sequence x0, . . . , xn−1 which is s

2−dispersed in (X, d)
and such that the finite sequence a, x0, . . . , xn−1 is not s

2−dispersed for each
a ∈ X. Therefore for each a ∈ X there exists i ∈ {0, . . . , n − 1} such that
d(a, xi) < s. Hence the finite sequence x0, . . . , xn−1 is s−dense.

Now, let α and β be effective separating sequences in (X, d) such that the
computable metric space (X, d, α) is effectively totally bounded. In order to prove
that (X, d, β) is also effectively totally bounded, it would be enough to prove that
for each k ∈ IN we can effectively find the number ρ(X, 2−k). Namely, in that case
for any k ∈ IN we can effectively find i1, . . . , in ∈ IN such that the finite sequence
βi1 , . . . , βin is 2−(k+1)−dispersed, where n = ρ(X, 2−(k+1)) and then this finite
sequence of points (and consequently the finite sequence β0, . . . , βmax{i1,...,in})

must be 2−k−dense. However, the number ρ(X, 2−k) cannot be found effectively
in general, as the following example shows.

Example 8. Let (λi) be a recursive sequence of real numbers such that λi ≥ 0,
∀i ∈ IN and such that the set {i ∈ IN | λi = 0} is not recursive ([2]). We may
assume λi < 4−i, ∀i ∈ IN. Let ti = 4−i + λi, i ∈ IN, X = {ti | i ∈ IN} ∪ {0}
and let d be the Euclidean metric on X. Then (X, d, (ti)) is an effectively totally
bounded computable metric space. Let i ∈ IN. It is straightforward to check that
ρ(X, 4−i) = i+1 if λi = 0 and ρ(X, 4−i) = i+2 if λi > 0. Therefore the function
IN→ IN, i 7→ ρ(X, 2−i) is not recursive.

Although ρ(X, 2−k) cannot be found effectively in general, we are going to prove
that for k ∈ IN we can effectively find numbers ak ∈ 〈0, 2−k〉 ∩ Q and ρ(X, ak)
and this will imply that (X, d, β) if effectively totally bounded.

Suppose (X, d) is a totally bounded metric space, S ⊆ X, S 6= ∅ and s > 0.
It is immediate from the definition of the number ρ(S, s) that there exists r > 0
such that ρ(S, s) = ρ(S, s + 2r). Here, of course, r depends on S and s. In the
following lemma we claim that s and r can be chosen so that ρ(S, s) = ρ(S, s+2r)
holds whenever S is in certain family of subsets of X.

Lemma 2. Let (X, d) be a totally bounded metric space and let s0 > 0. Then
there exists r0 > 0 such that for each r ∈ 〈0, r0〉 and each finite sequence
x0, . . . , xp which is r−dense in (X, d) there exists s ∈ [s0, s0 + r〉 ∩ Q and
m1, . . . ,mn ∈ {0, . . . , p} such that the finite sequence xm1

, . . . , xmn
is (s+ 2r)−

dispersed, d(xi, xj) 6= s, ∀i, j ∈ {0, . . . , p} and ρ(x0, . . . , xp; s) = n.

Proof. Let n = ρ(X, s0) and y1, . . . , yn be a finite sequence which is s0−dispersed
in (X, d). Since d(yi, yj) > s0, ∀i, j ∈ {1, . . . , n}, i 6= j, there exists r0 > 0 such
that

d(yi, yj) > s0 + 5r0, ∀i, j ∈ {1, . . . , n}, i 6= j.
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Let r ∈ 〈0, r0〉 and let x0, . . . , xp be an r−dense sequence in (X, d). For i ∈
{1, . . . , n} let mi ∈ {0, . . . , p} be such that yi ∈ B(xmi

, r). If i, j ∈ {1, . . . , n},
i 6= j, then

d(yi, yj) ≤ d(yi, xmi) + d(xmi , xmj ) + d(xmj , yj) < 2r + d(xmi , xmj )

and therefore
d(xmi

, xmj
) > s0 + 3r, (3)

∀i, j ∈ {1, . . . , n}, i 6= j. Let s ∈ [s0, s0 + r〉 ∩ Q be such that d(xi, xj) 6= s,
∀i, j ∈ {0, . . . , p}. From (3) we get that d(xmi , xmj ) > s+ 2r, ∀i, j ∈ {1, . . . , n},
i 6= j, hence the finite sequence xm1

, . . . , xmn
is s + 2r−dispersed. This implies

ρ(x0, . . . , xp; s) ≥ n. On the other hand

ρ(x0, . . . , xp; s) ≤ ρ(X, s) ≤ ρ(X, s0) = n.

Therefore ρ(x0, . . . , xp; s) = n. ut

The next lemma provides conditions under which equality ρ(X, s+2r) = card(T )
holds, where T ⊆ X and s, r > 0.

Lemma 3. Let (X, d) be a totally bounded metric space, r, s > 0 and let S be an
r−dense subset of X such that there exists a finite nonempty subset T of S which
is s+2r dispersed and such that ρ(S, s) = card(T ). Then ρ(X, s+2r) = card(T ).

Proof. Certainly ρ(X, s + 2r) ≥ card(T ). On the other hand, let x1, . . . , xn be
an (s + 2r)−dispersed sequence in (X, d). For each i ∈ {1, . . . , n} let yi ∈ S be
such that d(xi, yi) < r. For all i, j ∈ {1, . . . , n}, i 6= j, we have

s+ 2r < d(xi, xj) ≤ d(xi, yi) + d(yi, yj) + d(yj , xj) < d(yi, yj) + 2r

which implies s < d(yi, yj). Hence y1, . . . , yn is an s−dispersed sequence and
therefore ρ(S, s) ≥ n, i.e. card(T ) ≥ n. We conclude that card(T ) ≥ ρ(X, s+ 2r)
and it follows ρ(X, s+ 2r) = card(T ). ut

Lemma 3, together with Lemma 2, gives the idea how to compute the number
ρ(X, s+2r), s, r > 0. The next step is to include effectiveness into consideration.
We first state the following lemma.

Lemma 4. Let F : IN4 → IR be a recursive function. Let S be the set of all
(k, n, l, p) ∈ IN4 such that F (i, j, n, l) 6= 0, ∀i, j ∈ {0, . . . , k} and such that

card{(i, j) ∈ {0, . . . , k} × {0, . . . , k} | F (i, j, n, l) > 0} = p.

Then S is a recursively enumerable set.

Let σ : IN2 → IN and η : IN → IN be some fixed recursive functions with
the following property: {(σ(j, 0), . . . , σ(j, η(j))) | j ∈ IN} is the set of all finite
sequences in IN, i.e. the set {(a0, . . . , an) | n ∈ IN, a0, . . . , an ∈ IN}. Such
functions, for instance, can be defined using the Cantor pairing function. We are
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going to use the following notation: (j)i instead of σ(j, i) and j instead of η(j).
Hence

{((j)0, . . . , (j)j) | j ∈ IN}

is the set of all finite sequences in IN.
Suppose (X, d) is a metric space, (γi) a sequence in X such that the func-

tion IN2 → IR, (i, j) 7→ d(γi, γj) is recursive and (sn) a recursive sequence of
real numbers. Then the function IN2 → IN, (k, n) 7→ ρ(γ0, . . . , γk; sn) need not
be recursive and we see this similarly as in Example 8. However, we have the
following lemma.

Lemma 5. Let (X, d) be a metric space, (γi) a sequence in X such that the
function IN2 → IR, (i, j) 7→ d(γi, γj) is recursive and (sn) a recursive sequence
of real numbers.

(i) The set

S = {(k, n, p) ∈ IN3 | d(γi, γj) 6= sn, ∀i, j ∈ {0, . . . , k}, ρ(γ0, . . . , γk; sn) = p}

is recursively enumerable.
(ii) The set

T = {(l, n) ∈ IN2 | the finite sequence γ(l)0 , . . . , γ(l)l is sn − dispersed}

is recursively enumerable.

Proof. (i) We apply Lemma 4 to the function F : IN4 → IR defined by

F (i, j, n, l) = d(γi, γj)− sn,

i, j, n, l ∈ IN and we get that the set

{(k, n, l, p) ∈ IN4 | d(γi, γj) 6= sn, ∀i, j ∈ {0, . . . , k}, ρ(γ0, . . . , γk; sn) = p}

is r.e. which implies that S is r.e.
(ii) Let F : IN4 → IR be given by F (i, j, n, l) = d(γ(l)i , γ(l)j )−sn. Let T ′ be the

set associated to F as in Lemma 4, hence T ′ = {(k, n, l, p) ∈ IN4 | d(γ(l)i , γ(l)j ) 6=
sn, ∀i, j ∈ {0, . . . , k} and ρ(γ(l)0 , . . . , γ(l)k ; sn) = p}. Then for all l, n ∈ IN we
have (l, n) ∈ T if and only if

d(γ(l)i , γ(l)j ) 6= sn,∀i, j ∈ {0, . . . , l}, ρ(γ(l)0 , . . . , γ(l)l ; sn) = l + 1

and this holds if and only if (l, n, l, l + 1) ∈ T ′. Therefore T is r.e. ut

A totally bounded metric space (X, d) is said to be effectively dispersed
if there exists a recursive function a : IN → Q such that a(i) ∈ 〈0, 2−i〉, ∀i ∈ IN
and such that the function IN→ IN, i 7→ ρ(X, a(i)) is recursive.

Theorem 2. Let (X, d, α) be an effectively totally bounded computable metric
space. Then (X, d) is effectively dispersed.
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Proof (Sketch). Let f : IN → IN be a recursive function such that α0, . . . , αf(k)
is a 2−k−dense sequence for each k ∈ IN. Let q : IN→ Q be some fixed recursive
function whose image is Q ∩ 〈0,∞〉.

Let i ∈ IN. Let s0 be some positive number such that s0 < 2−i. By Lemma 2
there exist k, n, l ∈ IN such that s0 + 3 · 2−k < 2−i, qn ∈ [s0, s0 + 2−k〉 and such
that the following holds:

α(l)0 , . . . , α(l)
l

is (qn + 2 · 2−k)− dispersed finite sequence, (4)

d(αi, αj) 6= qn,∀i, j ∈ {0, . . . , f(k)}, ρ(α0, . . . , αf(k); qn) = l + 1, (5)

and
{(l)0, . . . , (l)l} ⊆ {0, . . . , f(k)}. (6)

Since (4) and (5) are r.e. relations (Lemma 5) and (6) is recursive, we can express
n, k and l recursively in i. The claim of the theorem follows from

ρ(X, qn + 2 · 2−k) = l + 1,

and this equality can be deduced from Lemma 3. ut

Theorem 3. Let (X, d, α) be a computable metric space such that (X, d) is ef-
fectively dispersed. Then (X, d, α) is effectively totally bounded.

The idea in the proof of Theorem 3 is that for a given i ∈ IN we effectively
find i1, . . . , in ∈ IN such that the finite sequence αi1 , . . . , αin is s−dispersed,
where s ∈ 〈0, 2−(i+1)〉 ∩ Q and n = ρ(X, s). Then the finite sequence of points
αi1 , . . . , αin must be 2−i−dense which shows that (X, d, α) is effectively totally
bounded.

Let (X, d, α) be a computable metric space. Theorem 2 and Theorem 3 give
the following equivalence:

(X, d, α) is effectively totally bounded ⇔ (X, d) is effectively dispersed .

Corollary 2. Let α and β be effective separating sequences in a metric space
(X, d). Then (X, d, α) is effectively totally bounded if and only if (X, d, β) is
effectively totally bounded.

A computable metric space (X, d, α) is said to be effectively compact if
(X, d, α) is effectively totally bounded and (X, d) is compact (cf. [3]). If α and
β are effective separating sequences in a metric space (X, d), then, by Corollary
2, (X, d, α) is effectively compact if and only if (X, d, β) is effectively compact.
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On Oscillation-free ε-random Sequences II
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Abstract. It has been shown (see [10]), that there are strongly Martin-
Löf-ε-random ω-words that behave in terms of complexity like random
ω-words. That is, in particular, the a priori complexity of these ε-random
ω-words is bounded from below and above by linear functions with the
same slope ε. In this paper we will study the set of these ω-words in
terms of Hausdorff measure and dimension.
Additionally we find upper bounds on a priori complexity, monotone
and simple complexity for a certain class of ω-power languages.

1 Introduction

The present paper is a continuation of [10] where it has been shown that
oscillation-free ε-random sequences exist, for every computable ε, 0 < ε < 1.
To this end two methods were developed. The first one, by diluting random
sequences, led to a method for a general “construction” of ε-random sequences
from random sequences whereas the second one exhibited ε-random sequences as
maximally complex sequences in certain computably definable sets of sequences
(ω-languages).

Here we address mainly two questions. The first one is about the Hausdorff
dimension and the Hausdorff measure of the set of oscillation-free ε-random
sequences. As every random sequence is also ε-random the set of ε-random se-
quences has Hausdorff dimension 1. We prove a result analogous to Ryabko’s
estimate of the dimension of the set of sequences of a certain asymptotic rel-
ative complexity (cf. [6, 9]). We show that the set of oscillation-free ε-random
sequences has Hausdorff dimension ε and infinite ε-dimensional Hausdorff mea-
sure.

The second problem we address is the one of obtaining oscillation-free
ε-random sequences in so-called ω-power languages. Here we generalise the re-
sults for ω-powers of regular languages obtained in [10] to more general classes
of ω-powers of computably enumerable languages.

2 Notation and Preliminary Results

In this section we briefly recall the concepts of Hausdorff measure and com-
plexity of finite and infinite words used in this paper. For more detailed infor-
mation the reader is referred to the textbooks [2] and [4]. In the following X is
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a finite alphabet with cardinality |X| = r. By X∗ we denote the set (monoid)
of words on X, including the empty word e, and Xω is the set of infinite words
(ω-words) over X. For w ∈ X∗ and η ∈ X∗ ∪Xω let w · η be their concatena-
tion. We extend this concatenation in the obvious way to subsets W ⊆ X∗ and
B ⊆ X∗ ∪Xω. For a language W let W ∗ :=

⋃
n∈INW

n be the submonoid of X∗

generated by W , and by Wω := {w1 · · ·wn · · · | wn ∈W \{e}} we denote the sub-
set of Xω formed by concatenating words of W . We call V/w := {v | w · v ∈ V }
the left derivative of V by w. Furthermore |w| is the length of the word w ∈ X∗
and l(V ) := min{|v| | v ∈ V } denotes the length of the shortest word contained
in V . For a set B ⊆ X∗ ∪ Xω the set of all finite prefixes of strings in B is
pref(B), we abbreviate w ∈ pref({η}) by w v η. By ξ[0..n] we denote the
prefix of ξ ∈ X∗ ∪Xω of length n.

A real number α is right-computable (left-computable) if and only if there
is a computable sequence αi, i ∈ IN, of rational numbers with αi ≥ αi+1 (αi ≤
αi+1) for all i ∈ IN and limi→∞ αi = α. A number α is called computable if
and only if α is left- and right-computable. A function f : X∗ → IR is called
right-computable (left-computable) if and only if there is a computable function
h : X∗ × IN → IR such that limt→∞ h(w, t) = f(w), for every w ∈ X∗, and h is
decreasing (increasing) with respect to t.

A language V ⊆ X∗ is called a code provided every w ∈ V ∗ has a unique
factorisation w = v1 . . . vn with vi ∈ V (1 ≤ i ≤ n). If e /∈ V and for all v, w ∈ V
the relation v v w implies v = w then V is called prefix code.

It is useful to consider the set Xω as a metric space (Cantor space) (Xω, ρ)
of all ω-words over the alphabet X where the metric is ρ is defined as follows

ρ(ξ, η) := inf{r−|w| | w v ξ ∧ w v η}

The open (and simultaneously closed) balls in (Xω, ρ) are the sets of the form
w · Xω, where w ∈ X∗. The diameter of these balls is d(w · Xω) = r−|w|. The
closure of a set F ⊆ Xω in (Xω, ρ) is the set C(F ) := {ξ | pref(ξ) ⊆ pref(F )}.

We define Hausdorff measure and Hausdorff dimension for subsets of
(Xω, ρ). For every language F ⊆ Xω and every 0 ≤ ε ≤ 1 the equation

Lε(F ) := lim
n→∞

inf

{∑
v∈V

r−ε·|v| | F ⊆ V ·Xω ∧ l(V ) ≥ n

}
defines the ε-dimensional Hausdorff measure of F . The measure L1 is the
usual Lebesgue measure. The following property of the Hausdorff measure
is well-known.

Corollary 1. Let F ⊆ Xω. If Lε(F ) < ∞ then for every δ > 0 it holds
Lε+δ(F ) = 0 and if 0 < Lε(F ) then for every δ > 0 it holds Lε−δ(F ) =∞.

The Hausdorff dimension of F is defined as follows

dimF = sup{ε | Lε(F ) =∞∨ ε = 0} = inf{ε | Lε(F ) = 0}

Next we introduce the complexities used in this paper. Consider a semi-
measure m on X∗, that is, a function m : X∗ → IR which satisfies m(ε) ≤ 1 and



On Oscillation-free ε-random Sequences II 175

m(w) ≥
∑
x∈X m(wx), for w ∈ X∗. If m(w) =

∑
x∈X m(wx) the function m is

called a measure. In [13] Levin proved the existence of a universal left-computable
semi-measure M, that is, a left-computable semi-measure which satisfies

∃cm ∀w ∈ X∗ m(w) ≤ cm ·M(w), (1)

for all left-computable semi-measures m. Then the a priori complexity is defined
as KA(w) = b− logr M(w)c (cf. [4, 11]).

For the definition of the monotone complexity Km we refer the reader to [4,
12]. Here we need only the following property.

Corollary 2 ([4]). Let µ be a computable measure on X∗. Then there is a
constant cµ such that

Km(w) ≤ − logµ(w) + cµ

holds for all w ∈ X∗.

Plain (cf. [4]) or simple (cf. [11]) program size complexity defines the complexity
of a finite string to be the length of a shortest program which prints the string.
Let ϕ : X∗ → X∗ be a partial computable function. The complexity of a word
w ∈ X∗ with respect to ϕ is defined as

Kϕ(w) := inf{|π| | π ∈ X∗ ∧ ϕ(π) = w} . (2)

It is well-known that there is an optimal partial computable function U, that is,
a function satisfying

∃cϕ∀w(w ∈ X∗ → KU(w) ≤ Kϕ(w) + cϕ) (3)

for every partial computable function ϕ. In the sequel we fix an optimal function
U and denote the complexity with respect to this function by KS.

The complexity of an infinite word ξ is a function mapping natural numbers
n to the complexity of the n-length prefix of ξ.

Definition 1. Let ξ ∈ Xω.

1. The function KS(ξ[·]) : IN→ IN is called plain or simple complexity of ξ.
2. The function Km(ξ[·]) : IN→ IN is called monotone complexity of ξ.
3. The function KA(ξ[·]) : IN→ IN is called a priori complexity of ξ.

We follow here, except for the monotone complexity, the notation of Uspensky
and Shen in [11]. In [1] strongly Martin-Löf-ε-random ω-words were introduced
as follows.

Definition 2. A computably enumerable set V ⊆ X∗ × IN is referred to as a
strong Martin-Löf-ε-test provided

1. ∀i(Vi+1 ·Xω ⊆ Vi ·Xω), where Vi := {v | (v, i) ∈ V} and
2. ∀i∀C(C ⊆ Vi ∧ C is prefix code →

∑
v∈C r

−ε·|v| < r−i) .

An ω-word ξ ∈ Xω is called strongly Martin-Löf-ε-random if and only if
ξ /∈

⋂
i∈IN Vi ·Xω for all strong Martin-Löf-ε-tests.
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We mention the following equivalence between strong Martin-Löf-ε-tests and
a priori complexity.

Lemma 1 ([1]). Let 0 < ε ≤ 1 be a computable number. Then an
ω-word ξ ∈ Xω is strongly Martin-Löf-ε-random if and only if
KA(ξ[0..n]) ≥a.e. ε · n−O(1).

Ryabko showed in [6] the following result on the set of ω-words having a bounded
asymptotic lower complexity (see also [7]).

Theorem 1 ([6]).

dim

{
ξ | ξ ∈ Xω ∧ lim inf

n→∞

KA(ξ[0..n])

n
≤ ε
}

= ε

Depending on the ε-dimensional measure of an ω-language we obtain a lower
bound on the complexity of the most complex ω-words in that ω-language.

Theorem 2 ([5]). Let F ⊆ Xω and Lε(F ) > 0. Then for all c > − logLε(F )
there is a ξc ∈ F such that KA(ξc[0..n]) ≥a.e. ε · n− c.

ω-words which, analogously to random ω-words, satisfy also a linear upper bound
for a priori complexity are referred to as oscillation-free.

Definition 3 ([10]). An ω-word ξ is called oscillation-free strongly Martin-
Löf-ε-random if and only if ξ is strongly Martin-Löf-ε-random and there is
a constant c such that KA(ξ[0..n]) ≤ ε · n+ c holds.

3 The Measure of the Set of ε-random Sequences

We start with mappings that preserve some properties of the measure of a lan-
guage and the behaviour of the complexity-function of an ω-word.

Definition 4. A computable function ϕ : X∗ → X∗ is called dilution function
provided ϕ is prefix-monotone, one-to-one and |ϕ(w)| = |ϕ(w′)| for all w,w′ ∈
Xn. A function g : IN→ IN is called modulus-function for ϕ provided |ϕ(w)| =
g(|w|) for every w ∈ X∗.

Every dilution function ϕ defines a mapping ϕ : Xω → Xω in the following
way: pref(ϕ(ξ)) = pref(ϕ(pref(ξ))). The following is an example of a dilution
function.

Example 1. Dilution functions can be defined inductively by inserting a fixed
string in front of every letter. Let X = {0, 1}. Then ϕ(e) := e and ϕ(wx) :=
ϕ(w)0x for every w ∈ X∗ and x ∈ X defines a dilution function with 1

2 -modulus.

In this paper we are interested in the following dilution functions.

Definition 5. Let ε with 0 < ε < 1 be a computable real. A computable function
g is called ε-modulus if and only if there is a constant c such that |ε·g(n)−n| ≤ c,
for all n ∈ IN.
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The mapping g(n) := dnε e is an example for an ε-modulus. If ϕ is a dilution
function with ε-modulus then for every w ∈ X∗ holds

−c ≤ ε · |ϕ(w)| − |w| ≤ c .

We obtain our first result on the relation of the measure of a language and its
image.

Lemma 2. Let F ⊆ Xω, 0 < ε < 1 computable and ϕ : X∗ → X∗ a dilution
function with ε-modulus g : IN→ IN. There are constants c1, c2 > 0, such that

c1 · L(F ) ≤ Lε(ϕ(F )) ≤ c2 · L(F ) .

Proof. The first inequality is shown as follows. Let W ⊆ X∗ cover ϕ(F ), that is,
ϕ(F ) ⊆W ·Xω and let l(W ) ≥ n. For every w ∈W we define vw as the unique
word with ϕ(vw) v w @ ϕ(vwx), for some x ∈ X. Since ϕ has an ε-modulus, we
have the following:

|vw| − c ≤ ε · |w| ≤ |vwx|+ c = |vw|+ 1 + c

Then the set V = {vw | w ∈ W} covers F . Now we obtain a bound of the
ε-dimensional measure of ϕ(F ) by the 1-dimensional measure of F :∑

w∈W
r−ε·|w| ≥

∑
w∈W

r−|vw|−1−c ≥ r−1−c
∑
v∈V

r−|v|

≥ r−1−c · inf

{∑
v∈V

r−|v| | F ⊆ V ·Xω ∧ l(V ) ≥ ε · n− c− 1

}

Taking the limit n→∞ we get our intended inequality Lε(ϕ(F )) ≥ c1 · L(F ).
To prove the second inequality we consider a set V with minimum length

l(V ) ≥ n that covers F . Now the set W = {ϕ(v) | v ∈ V } covers ϕ(F ) and we
can estimate∑

v∈V
r−|v| ≥ r−c ·

∑
w∈W

r−ε·|w|

≥ r−c · inf

{∑
w∈W

r−ε·|w| | ϕ(F ) ⊆W ·Xω ∧ l(W ) ≥ g(n)− c

}

Again, the limit n→∞ yields the announced inequality.

Since the constants c1 and c2 in Lemma 2 are positive, the following equivalence
of the 1-dimensional measure of F and the ε-dimensional measure of ϕ(F ) holds
true.

Corollary 3. Let F ⊆ Xω, 0 < ε < 1 computable and ϕ : X∗ → X∗ a dilution
function with ε-modulus g : IN → IN. The measures L(F ) and Lε(ϕ(F )) are
simultaneously zero, positive or infinite, respectively.
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To derive our main theorem we still need the following result from [10]. It
states that the a priori complexity of the ε · n-length prefix of an ω-word and
the n-length prefix of its image differ not too much.

Corollary 4 ([10]). Let ε, 0 < ε < 1, be a computable number. Then there is
a dilution function ϕ : X∗ → X∗ with strictly increasing ε-modulus g such that

|KA(ϕ(ξ)[0..n])−KA(ξ[0..ε · n])| ≤ O(1) for all ξ ∈ Xω and all n ∈ IN.

If the ω-word ξ is chosen to be random then ϕ(ξ) is an oscillation-free Martin-
Löf-ε-random ω-word.

As every (1-)random ω-word is also strongly ML-ε-random the Hausdorff
dimension of the set of all strongly ML-ε-random ω-words is 1. Theorem 1 shows
that the Hausdorff dimension of the set of all oscillation-free strongly Martin-
Löf-ε-random ω-words is bounded from above by ε. The next theorem calculates
its Hausdorff dimension and the corresponding measure.

Theorem 3. Let 0 < ε < 1 computable. The set Fε of all oscillation-free
strongly Martin-Löf-ε-random sequences has Hausdorff dimension ε and
infinite ε-dimensional measure.

Proof. Theorem 1 implies dimFε ≤ ε, since KA(ξ[0..n]) ≤ ε · n + c for every
ξ ∈ Fε. On the other hand, let ϕ be a dilution function with ε-modulus and F1

the set of all (1-)random sequences. Then, according to Corollary 4, ϕ(F1) ⊆ Fε.
Since F1 has positive, finite 1-dimensional measure, ϕ(F1) has positive, finite
ε-dimensional measure. Thus ε = dimϕ(F1) ≤ dimFε.

To show that the ε-dimensional measure of Fε is infinite, we find an infinite
family of pairwise disjoint subsets of Fε for which the ε-dimensional measure of
every set of the family is bounded from below by the same positive constant.
Let a, b ∈ X, a 6= b and k : IN→ IN. For every w ∈ X∗ and x ∈ X the function
ϕi is defined as follows: ϕi(e) = e and

ϕi(wx) =

{
ϕi(w)ak(|w|)x , if |w| 6= i
ϕi(w)bk(|w|)x , if |w| = i

Here the function k is to be defined in a way that all ϕi become computable
functions with ε-modulus. Since ε < 1, the set K := {i | k(i) > 0} is infinite.
Moreover for all i, j ∈ K, i 6= j, the sets ϕi(X

ω) and ϕj(X
ω) are disjoint.

Lemma 2 shows that there is a constant c > 0 such that Lε(ϕi(F1)) > c for
every i ∈ IN. Now we obtain

Lε(Fε) ≥ Lε(
⋃
i∈K

ϕi(F1)) =
∑
i∈K

Lε(ϕi(F1)) =∞ .

4 Complexity Bounds for ω-power Languages

In [8] for certain ω-power languages a necessary and sufficient condition to be
of non-null α-dimensional Hausdorff measure was derived. In this respect, for a
language V ⊆ X∗, the α-residue of V derived by w, the value

∑
v∈V/w r

−α|v|,
plays a special rôle.
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Theorem 4 ([8]). Let V ⊆ X∗ be a prefix code and
∑
v∈V r

−α|v| = 1. Then
α = dimV ω, and, moreover ILα(V ω) > 0 if and only if the α-residues of V are
bounded from above.

Thus in view of Theorem 2 such V ω contain sequences ξ having a linear lower
complexity bound α ·n− c. It is interesting now to observe that bounding the α-
residues of V from below yields a linear upper bound of slope α on the complexity
of ω-words in the closure C(V ω).

Lemma 3. Let V ⊆ X∗ be a computably enumerable prefix code. Let α be right-
computable such that

∑
v∈V r

−α·|v| = a ≤ 1 and the α-residues of V derived by
w ∈ pref(V ) are bounded from below. Then there is a constant c such that for
every ξ ∈ C(V ω)

KA(ξ[0..n]) ≤ α · n+ c .

Proof. In the same way as in the proof of Lemma 3.9 of [10] we construct a
left-computable semi-measure µ such that µ(w) ≥ c · r−α·|w| and use Eq. (1).
We have only to ensure that the construction works also in the case a < 1. The
construction is as follows.

µ(w) =


0 , if w /∈ pref(V ∗)∑
wv∈V r

−α|wv| , if w ∈ pref(V )
r−α·|w| , if w ∈ V ∗
µ(u) · µ(v) , if w = u · v with u ∈ V · V ∗ ∧ v ∈ pref(V ) \ V

(4)

Since V is a prefix code, the decomposition in the last line of the construction
is unique. The equation µ(w) =

∑
x∈X µ(wx) for every w ∈ pref(V ) \ V fol-

lows directly from the second case of the construction. For w ∈ V we have the
inequality∑
x∈X

µ(wx) = µ(w) ·
∑
x∈X

∑
xv∈V

r−α|xv| = µ(w) ·
∑
v∈V

r−α|v| = µ(w) · a ≤ µ(w)(5)

The inductive construction in the last line yields the inequality in the remaining
cases. To show that µ is left-computable we successively approximate the value
µ(w) from below. Let Vi be the set of the first i elements in the enumeration of
V and αi the ith approximation of α from the right. We start with µ(0)(w) := 0
and µ(j)(e) = 1 for j > 0. Suppose that the jth approximation µ(j) for all words
shorter than w is already computed. If there is a v ∈ Vj with w = v ·w′, w′ 6= e,
then µ(j)(w) = µ(j)(v) · µ(j)(w′). Otherwise µ(j)(w) =

∑
v∈Vj∧wvv r

−αj ·|v|.

Let cinf := inf
{∑

v∈V/w r
−α·|v| | w ∈ pref(V )

}
. Since µ is a left-computable

semi-measure, the following inequality holds true.

M(w) · cµ ≥ µ(w) = r−α|w| ·
∑

v∈V/w

r−α|v| ≥ r−α|w| · cinf

Taking the negative logarithm on both sides of the inequality we obtain KA(w) ≤
α · |w|+ log

cµ
cinf

for every w ∈ pref(V ∗).
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The following example shows, that in Lemma 3 we cannot omit the condition
that the α-residues are bounded from below. To this end we use a computable
prefix code constructed in Example (6.4) of [7].

Example 2. Let X={0,1} and consider W :=
⋃
i∈IN 0i+1 · 1 · Xi+1 · 04·i+3.

The language W is a prefix code. Its ω-power, Wω, satisfies α = dimWω =
dim C(Wω) = 1

3 and Lα(Wω) = Lα(C(Wω)). For every w ∈
⋃
i∈IN 0i+1 · 1 ·Xi+1

we have W/w = {04·i+3}. Thus
∑
v∈W/w r

−α·|v| = r−α·(4·i+3) and, consequently,

inf{
∑
v∈W/w r

−α·|v| | w ∈ pref(W )} = 0.

Now, in Eq. (6.13) and Proposition 6.15 of [7] it is shown that

supξ∈Wω lim supn→∞
KA(ξ[0..n])

n ≥ 1
2 >

1
3 = dimWω.

In connection with Theorem 4 our Lemma 3 yields a sufficient condition for
ω-powers to contain oscillation-free α-random ω-words.

Corollary 5. Let V ⊆ X∗ be a computably enumerable prefix code and α right-
computable such that

∑
v∈V r

−α·|v| = 1 and the α-residues of V derived by w ∈
pref(V ) are bounded from above and below. Then there is an oscillation-free
ML-α-random ω-word in V ω.

The results of Section 3.2 of [10] show that Corollary 5 is valid for prefix codes
which are regular languages. The subsequent example verifies that there are also
non-regular prefix codes which satisfy the hypotheses of Corollary 5.

Example 3. Let X = {0, 1} and consider the  Lukasiewicz language L defined by
the identity L = 0 ∪ 1 · L2. This language is a prefix code and Kuich [3] showed
that

∑
w∈L 2−|w| = 1. Thus the language V defined by V = 00 ∪ 11 · V 2 is also

a prefix code and satisfies
∑
v∈V 2−

1
2 ·|w| = 1. By induction one shows that for

v ∈ pref(V ) we have V/v = w′ · V k for suitable k ∈ IN and |w′| ≤ 1. Therefore
the α-residues of V derived by v ∈ pref(V ) are bounded from above and below.

For the monotone complexity Km a result similar to Lemma 3 can be obtained
for a smaller class of ω-languages. We start with an auxiliary result.

Proposition 1. 1. If V is computably enumerable and
∑
v∈V r

−α|v| = 1 then
α is left-computable.

2. If V is computably enumerable, α is right-computable and
∑
v∈V r

−α|v| = 1
then V is computable.

Proof. The proof of part 1 is obvious. To prove part 2 we present an algorithm
to decide whether a word w is in V or not.

Let Vj be the set of the first j elements in the enumeration of V and αj the
jth approximation of α from the right.

Input w
j := 0

repeat

j := j + 1
if w ∈ Vj then accept and exit

until r−αj |w| +
∑
v∈Vj r

−αj |v| > 1

reject
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If w /∈ V then the repeat until loop terminates as soon as
∑
v∈Vj r

−αj |v| >

1− r−αj |w| ≥ 1− r−α|w| because
∑
v∈Vj r

−αj |v| → 1 for j →∞.

Now we can prove our result on monotone complexity.

Lemma 4. Let V ⊆ X∗ be a computably enumerable prefix code. If α is right-
computable such that

∑
v∈V r

−α·|v| = 1 and the α-residues of V derived by w ∈
pref(V ) are bounded from below then there is a constant c such that for every
ξ ∈ C(V ω)

Km(ξ[0..n]) ≤ α · n+ c .

Proof. Because of Proposition 1 we can assume that α is a computable real
number and V is computable. We use Eq. (4) to construct µ as in the proof of
Lemma 3. Since a = 1, equality holds in Eq. (5). Thus µ is a measure and for
every v ∈ V ∗ the number µ(v) is computable. Since V is a computable prefix
code, for every w ∈ X∗ we can compute the unique decomposition w = v · w′
with v ∈ V ∗ and w′ /∈ V ·X∗. Now

µ(w) = µ(v) ·

1−
∑

v′∈V ∧w 6vvv′
r−α|v

′|


shows that µ is right-computable. If w′ /∈ pref(V ) then the last factor is zero.

Again let cinf := inf
{∑

v∈V/w r
−α·|v| | w ∈ pref(V )

}
. In view of Corollary 2

we get the bound

Km(w) ≤ − logµ(w) + cµ ≤ α · |w|+ cµ − log cinf

for every w ∈ pref(V ∗).

5 Plain Complexity

In this section we prove results analogous to Lemma 3 for the complexity KS.
First we derive a preparatory result. A similar lemma, for length-conditional
plain description complexity, is known from [7, 13].

Lemma 5. Let W ⊆ X∗ be computably enumerable, ε, 0 < ε < 1, be a com-
putable real number and let |W ∩X l| ≤ c · rε·l for some constant c > 0 and all
l ∈ IN. Then

∃C
(
C ∈ IN ∧ ∀w(w ∈W → KS(w) ≤ ε · |w|+ C)

)
Proof. Let X = {0, 1, . . . , r − 1} consist of r letters. Since ε is computable,
g(n) := dnε e is a computable function. Define a partial computable function
ϕ : X∗ → X∗ as follows.

ϕ(0k1v) := the vth word of length g(|v|)− k in the enumeration of W . (6)
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Here we interpret a word v ∈ Xn as a number between 0 and rn − 1.
As W has at most rε·(lo+l) words of length l, this enumeration process yields

{ϕ(0k1v) : v ∈ Xn} ⊇W∩X l as soon as n ≥ ε·(l0+g(n)−k) = ε·g(n)−ε·(k−l0).
Hence, KS(w) ≤ ε · |w|+O(1) for all w ∈W .

In order to apply Lemma 5 to languages V satisfying the conditions of Lemma 3
we show that a positive lower bound to the α-residues of V implies the upper
bound |pref(V ∗) ∩X l| ≤ c · rα·l for some constant c > 0 and all l ∈ IN.

Lemma 6. Let V ⊆ X∗ be a code,
∑
v∈V r

−α|v| ≤ 1 and
∑
v∈V/w r

−α|v| ≥ c′ >
0 for all w ∈ pref(V ). Then |pref(V ∗) ∩X l| ≤ c · rα·l for some constant c > 0
and all l ∈ IN.

Proof. First observe that w ∈ V ∗ if and only if w ∈ V l for some l ≤ |w|. Thus
pref(V ∗) ∩X l = pref(V l) ∩X l.

Let a :=
∑
v∈V r

−α|v|. Since V is a code, we have al =
∑
v∈V l r

−α|v| =∑
|w|=l,w∈pref(V ∗)

(
r−α·l ·

∑
v∈V l/w r

−α|v|).
Now, V l/w ⊇ V l−iw+1/w′ ⊇ (V/w′ · V l−iw) where w = v1 · · · viw−1 · w′ with

vj ∈ V and w′ ∈ pref(V ).
Thus,

∑
v∈V l/w r

−α|v| ≥
∑
v∈V/w′ r

−α|v| · al−iw ≥ c′ · al−iw ≥ c′ · al and we

obtain al ≥ r−α·l · |pref(V ∗) ∩X l| · c′ · al what proves our assertion.

Now, the fact that pref(V ∗) is computably enumerable if only V is computably
enumerable yields our result.

Lemma 7. Let V ⊆ X∗ be a computably enumerable code, α be right-computable

and
∑
v∈V r

−α·|v| = a ≤ 1. If inf
{∑

v∈V/w r
−α·|v| | w ∈ pref(V )

}
> 0 then

there is a constant c such that

KS(ξ[0..n]) ≤ α · n+ c for every ξ ∈ C(V ω) .
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Computability of Probability Distributions
and Distribution Functions
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Abstract. We define the computability of probability distributions on
the real line as well as that of distribution functions. Mutual relation-
ships between the computability notion of a probability distribution and
that of the corresponding distribution function are discussed. It is car-
ried out through attempts to effectivize some classical fundamental the-
orems concerning probability distributions. We then define the effective
convergence of probability distributions as an effectivization of the clas-
sical vague convergence. For distribution functions, computability and
effective convergence are naturally defined as real functions. A weaker
effective convergence is also defined as an effectivization of pointwise
convergence.

1 Introduction

In this article, we investigate computability aspects of probability distributions
on the real line R in relation to their distribution functions. We will proceed as
follows.

In Section 2, we briefly review some elementary notions of computability
on the real line and some fundamentals of the classical theory of probability
distributions on the real line.

In Section 3, we define the computability of probability distributions as well
as that of distribution functions. Our central interest is the relation between
those two computabilities. Meanwhile, we prove that the “vague sequential com-
putability” is equivalent to the “weak sequential computability” for probability
distributions.

In Section 4, we consider mutual relationships between effective convergence
of probability distributions and that of distribution functions. If we restrict our-
selves to the case where a probability distribution has a bounded density func-
tion, then the corresponding distribution function becomes effectively uniformly
continuous, and we can prove the equivalence of the two effective convergences.
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In the general case, we need to define notions of computability and effective
convergence for bounded monotonically increasing right continuous functions.
Such a function may be discontinuous at most countably many points.

Computability of the probability distribution has been treated by many
authors. For example, Weihrauch ([10]) and Schröder and Simpson ([9]) have
treated computability of probability distributions on the unit interval from the
stand point of the representation theory. We develop a theory along the Pour-El
and Richards line.

2 Preliminaries

Here, we briefly review the introductory part of the computability theory on
the real line developed by Pour-El and Richards [6] as well as some basics of
probability distributions on the real line. A sequence of rational numbers {rn} is
said to be recursive if there exist recursive functions α, β and γ such that rn =

(−1)γ(n) β(n)α(n) . A sequence of real numbers {xm,n} is said to converge effectively

to {xm} if there exists a recursive function α(m, k) such that n > α(m.k) implies
|xm,n − xm| < 2−k. A sequence of real numbers {xm} is said to be computable
if there exists a recursive double sequence of rational numbers, which converges
effectively to {xm}.

We adopt the definition of computability of continuous real functions by
Pour-El and Richards in Chapter 0 of [6].

A sequence of (real) functions {fm} is said to be computable, if it is (i) sequen-
tially computable, that is, {fm(xn)} is computable for all computable sequences
of reals {xn}, and (ii) effectively continuous, that is, there exists a recursive
function α(m,n, k) such that x, y ∈ [−n, n] and |x − y| < 2−α(m,n,k) imply
|fm(x)− fm(y)| < 2−k. α(m,n, k) is called an effective modulus of continuity of
{fm}.

A sequence of (real) functions {fm} is said to be uniformly computable, if it
is (i) sequentially computable and (ii) effectively uniformly continuous, that is,
there exists a recursive function α(m, k) such that |x − y| < 2−α(m,k) implies
|fm(x)− fm(y)| < 2−k.

For a probability distribution µ on the real line R, its distribution function
F is defined by F (x) = µ((−∞, x]). Such a distribution function is characterized
by the following three properties: (i) monotonically increasing; (ii) right con-
tinuous; (iii) F (∞) = limx→∞ F (x) = 1 and F (−∞) = limx→−∞ F (x) = 0. A
distribution function may be discontinuous, but the set of discontinuous points
is at most countable.

It is well known that the above correspondence between probability distri-
butions and distribution functions is one to one and onto.

In the following we denote the integral with respect to a probability distri-
bution µ,

∫
R f(x)µ(dx), with µ(f).

Let {µn} be a sequence of probability distributions on R and let µ be a
probability distribution on R with corresponding distribution functions {Fn}
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and F respectively. Convergence of {µn} to µ is defined to be the convergence
of {µn(f)} to µ(f) for all continuous functions with compact support. This
convergence is called vague convergence and is equivalent to each of the following
convergences.

Weak convergence: {µn(f)} converges to µ(f) for all bounded continuous
functions f on R.

Convergence of distribution functions: {Fn(x)} converges to F (x) at every
continuous point x of F (x).

We refer the reader to [1], [3], [4] and [7] for details of fundamentals of
probability theory.

Since we adopt the notion of computability of functions by Pour-El and
Richards, we will plan to confine ourselves to continuous distribution functions.
A sufficient condition for continuity of a distribution function is the following.

Definition 1. (Absolute continuity of probability distributions) A probability
distribution µ is said to be absolutely continuous if there exists a nonnegative
integrable function ξ(x) which satisfies that µ(A) =

∫
A
ξ(x)dx for all measurable

set A ⊂ R.
The function ξ is called a density (function) of µ. We also say that the

corresponding distribution function F has a density ξ.

Remark 1. If µ is absolutely continuous, then the corresponding distribution
function F is continuous, and equalities µ([a, b]) = µ((a, b]) = µ([a, b)) = µ((a, b))
= F (b)− F (a) hold.

3 Computability of probability distributions

In this section, we define the computability of probability distributions on R and
discuss its relation to the computability of distribution function.

Let {fn} be a sequence of continuous functions with compact support. We
say that {fn} is a computable sequence of functions with compact support if
it is a computable sequence of functions in the sense of Pour-El and Richards
and furthermore there exists a recursive function K(n) such that fn(x) = 0 if
|x| > K(n).

We obtain the following lemma.

Lemma 1. A computable sequence of functions with compact support is uni-
formly computable.

Proof Let {fm} be a computable sequence of functions with compact support
with respect to recursive functions α(m,n, k) and K(m).

Define β(m, k) = α(m,K(m), k + 1) and assume that |x− y| < 2−β(m,k).
If both x and y are in [−K(m),K(m)], then it holds that |fm(x)− fm(y)| <

2−(k+1); otherwise, one of them, say, x is in [−K(m),K(m)] and the other, say,
y is not in [−K(m),K(m)]. Then y < −K(m) 6 x or y > K(m) > x and
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|x + K(m)| < 2−β(m,k) or |x − K(m)| < 2−β(m,k) accordingly. So, |fm(x) −
fm(y)| = |fm(x) − fm(±K(m))| < 2−k, since fm(y) = fm(±K(m)) = 0. This
proves that {fm} is effectively uniformly continuous with respect to β(m, k). ut

Definition 2. (Computability of probability distributions) We say that a se-
quence of probability distributions {µm} is computable if it satisfies the following
vague sequential computability: {µm(fn)} is computable for all computable se-
quence of functions with compact support {fn}.

Remark 2. If we regard the integral µ(f) as a function on the set of all bounded
continuous functions Cb(R) with sup-norm || ||, Definition 2 only asserts sequen-
tial computability. For a probability distribution µ, it holds that |µ(f)−µ(g)| 6
µ(|f − g|) 6 ||f − g||. This makes µ(f) effectively uniformly continuous as a
function on Cb(R).

Let a and b with a < b be computable numbers. For a computable function

f on the interval [a, b], its definite integral
∫ b
a
f(x)dx is a computable number

(cf. [6]). We can generalize this fact as follows.

Proposition 1. Let {am} and {bm} be computable sequences of reals with am <
bm for each m, and let {fn} be a computable sequence of functions on R. Then,

{
∫ bm
am

fn(x)dx} is a computable (double) sequence of real numbers.

This proposition yields that, if a sequence of distributions has a computable
sequence of density functions, then it is computable and the corresponding se-
quence of distribution functions is also computable.

We frequently use the following Lemma.

Lemma 2. (Monotone convergence [6]) Let {xn,k} be a computable sequence
of reals which converges monotonically to {xn} as k tends to infinity for each n.
Then {xn} is computable if and only if the convergence is effective.

We say that a sequence of functions {fn} is effectively bounded if there
exists a recursive function B(n) such that |fn(x)| 6 2B(n) for each n, x ∈ R.
We give some examples of probability distributions which have bounded density
(Example 1).

Proposition 2. If {µm} is vaguely sequentially computable, then it is weakly
sequentially computable, that is, {µm(fn)} is a computable sequence for all ef-
fectively bounded computable sequence of functions {fn}.

Proof. Let {fn} be an effectively bounded computable sequence of functions
with an effective bound B(n), and define g`(x) by:

g`(x) =


0 if x 6 −`− 1
(x+ `) + 1 −`− 1 6 x 6 −`
1 if − ` 6 x 6 `
−(x− `) + 1 if ` 6 x 6 `+ 1
0 if x > `+ 1.
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 J

J
JJ

1

0
−`− 1 −` ` ` + 1

g`

It is obvious that {g`} is a computable sequences of functions with compact
support.

Since g` ↑ 1 pointwise, µm(g`) ↑ 1 as ` tends to infinity by the bounded
convergence theorem for each m, where ↑ means monotonically increasing con-
vergence. Moreover, {µm(g`)} is a computable sequence of reals by vague se-
quential computability of {µm} and the limit 1 is a computable number. So,
the convergence of µm(g`) to 1 is effective by Monotone Convergence Lemma 2.
Therefore, we obtain a recursive functionN(m, k) such that µm([−`−1, `+1]C) 6
1− µm(g`) < 2−k if ` > N(m, k), where AC denotes the complement of the set
A.

On the other hand, {µm(fng`)} is a computable triple sequence of reals and

|µm(fn)− µm(fng`+1)| = |
∫
[−`−1,`+1]C

(1− g`+1) fn µm(dx)|

6 2B(n) µm([−`− 1, `+ 1]C) < 2−k

if ` > N(m,B(n) + k). This means that {µm(fng`)} converges effectively to
{µm(fn)}. Hence {µm(fn)} is a computable sequence of reals. ut

Proposition 3. For a sequentially computable sequence of distribution func-
tions {Fm}, effective continuity implies effective uniform continuity.

Proof. By sequential computability of {Fm}, {Fm(n)} and {Fm(−n)} are
computable sequences of reals. Since, Fm’s are distribution functions, Fm(n) ↑ 1
and Fm(−n) ↓ 0 as n tends to infinity for each m. By Lemma 2, there exists a
recursive function N(m, k) such that 1 − Fm(x) 6 1 − Fm(N(m, k)) < 2−k for
x > N(m, k) and Fm(x) 6 Fm(−N(m, k)) < 2−k for x < −N(m, k).

On the other hand, effective continuity of {Fm} implies that there exists a
recursive function α(m,n, k) such that x, y ∈ [−n, n] and |x − y| < 2−α(m,n,k)

imply |Fm(x)− Fm(y)| < 2−k.
If we put β(m, k) = α(m,N(m, k + 2), k + 2) and assume that |x − y| <

2−β(m,k), then the following four cases are possible.
The first case: Both x and y are in [−N(m, k+ 2), N(m, k+ 2)]. In this case,

|Fm(x)− Fm(y)| < 2−(k+2).
The second case: Both x and y are in (N(m, k+2),∞). In this case, |Fm(x)−

Fm(y)| 6 |1− Fm(x)|+ |1− Fm(y)| < 2−(k+1).
The third case: Both x and y are in (−∞,−N(m, k+2)). In this case, |Fm(x)−

Fm(y)| 6 |Fm(x)|+ |Fm(y)| < 2−(k+1).
The last case: One is in [−N(k+ 2), N(k+ 2)] and the other is not. Suppose

x < −N(k + 2) 6 y, then
|Fm(x)− Fm(y)| 6 |Fm(x)|+ |Fm(−N(k + 2))|+ |Fm(−N(k + 2))− Fm(y)|
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< 3 · 2−(k+2) < 2−k.
Therefore, we have shown that {Fm} is effectively uniformly continuous with

respect to β(m, k). ut

Theorem 1. If a sequence of distribution functions {Fm} is sequentially com-
putable, then the corresponding sequence of distributions {µm} is computable.

Proof. We prove that µ(f) is computable if f is a computable function with
compact support. For such a function f , there exists an integer m such that
f(x) = 0 if |x| > m.

Put
gp(x) = f(−m+ 2−p)χ[−m,−m+2−p](x)

+
∑m2p−1
`=−m2p+1 f((`+ 1)2−p)χ(`2−p,(`+1)2−p](x).

Then, µ(gp) =
∫
[−m,m]

gpµ(dx)

=
∑2m2p−1
`=0 f(−m+ (`+ 1)2−p)

(
F (−m+ (`+ 1)2−p)− F (−m+ `2−p)

)
form a computable sequence of reals by sequential computability of F .

By Lemma 1, f is uniformly computable. So, there exists a recursive function
α(k) such that |f(x)−f(y)| < 2−k if |x−y| < 2−α(k). We note that {gp} converges
effectively uniformly to f . More precisely, if p > α(k), then ||f − gp|| 6 2−k.

Therefore, for the above α, p > α(k + 1) implies
|µ(f)− µ(gp)| 6 ||f − gp|| 6 2−k.

This proves the effective convergence of {µ(gp)} to µ(f), and hence, µ(f) is
computable. The proof goes through for a sequence {Fm}. ut

If a probability distribution has a bounded density ξ with a bound M , then

the corresponding distribution function F satisfies |F (b)−F (a)| = |
∫ b
a
ξ(x)dx| 6

M |b− a|. So, we obtain the following lemma.

Lemma 3. If a sequence of densities of probability distributions is effectively
bounded, then the corresponding sequence of distribution functions is effectively
uniformly continuous.

From the lemma above follows that, if a sequence of probability distributions
has an effectively bounded sequence of densities, then uniform computability of
the corresponding sequence of distribution functions is equivalent to sequential
computability.

In the rest of this section, we assume the existence of bounded densities.

Proposition 4. Let {µm} be a computable sequence of probability distributions
which has effectively bounded densities. Then the corresponding sequence of dis-
tribution functions {Fm} is sequentially computable.

Proof. We prove that a single distribution function F is uniformly com-
putable if the corresponding probability distribution µ is computable and there
exists an integer M such that |ξ(x)| 6M for all x, where ξ is a density of µ.

By Lemma 3, F is effectively uniformly continuous.
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We prove that F (c) is computable if c is computable. First, we define the
functions {gn} by

gn(x) =

1 if x 6 c
−n(x− c) + 1 if c 6 x 6 c+ 1

n
0 if x > c+ 1

n

.

J
J
J
JJ

1

0
c c + 1

n

gn

Then, {gn} is a computable sequence and the following classical properties hold:
{gn} is monotonically decreasing, that is m < n implies gm(x) > gn(x) for

all x.
F (c) 6 µ(gn) 6 F (c+ 1

n ).
F (c) = limn→∞ µ(gn) holds by the bounded convergence theorem.
On the other hand, {µ(gn)} is a computable sequence of reals by the assump-

tion and Proposition 2.

We obtain 0 6 µ(gn)− F (c) =
∫ c+ 1

n

c
gn(x)ξ(x)dx 6 M

n .
Therefore, the convergence of µ(gn) to F (c) is effective, and hence F (c) is

computable.
This proof is also valid for a sequence {c`}. The entire argument can be

extended to a sequence {µm}. ut
We obtain the following theorem by Theorem 1, Lemma 3 and Proposition

4.

Theorem 2. If a sequence of distributions {µn} has effectively bounded den-
sities, then the computability of {µn} is equivalent to the uniform computability
of the corresponding sequence of distribution functions.

Example 1. In this example, µ denotes a probability distribution on R, F de-
notes the corresponding distribution function and ξ denotes the corresponding
density.

(1) Uniform distribution on [0, 1]:

ξ(x) = χ[0,1](x); F (x) =

0 if x 6 0
x if 0 6 x 6 1
1 if x > 1

.

ξ(x) is bounded, but not continuous. On the other hand, F (x) is continuous
and indeed uniformly computable.

(2) Gaussian distribution: ξ(x) = 1√
2π
e−

1
2x

2

, F (x) = 1√
2π

∫ x
−∞ e−

1
2y

2

dy.

(3) Exponential distribution: ξ(x) = e−x, F (x) = 1− e−x.

In (2) and (3), both ξ and F are computable. ut

Example 2. (Translated Unit Distribution) The translated unit distribution δc
is defined by

δc(A) =

{
1 if c ∈ A
0 otherwise

.

The corresponding distribution function is
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F (x) = χ[c,∞)(x) =

{
0 (x < c)
1 (x > c)

.

The translated unit distribution is computable if c is a computable number.
Its distribution function is not continuous. ut

4 Convergence of probability distributions and
distribution functions

We define effective convergence of probability distributions as an effectivization
of classical vague convergence of probability distributions.

Definition 3. (Effective convergence of a sequence of probability distribu-
tions)
A sequence of probability distributions {µm} is said to effectively converge to a
probability distribution µ if {µm(fn)} converges effectively to {µ(fn)} for any
computable sequence of functions with compact support {fn}.

It is well known that the set of all uniformly computable functions on a closed
interval [a, b] is dense in the set of all continuous functions on [a, b] for any pair of
computable numbers a and b with a < b. So, effective convergence of a sequence
of probability distributions implies classical vague convergence.

The following proposition follows immediately.

Proposition 5. If a computable sequence of probability distributions {µn} ef-
fectively converges to a probability distribution µ, then µ is computable.

Proposition 6. Let {µm} be a computable sequence of probability distributions
and let µ be a computable probability distribution. If {µm} converges effectively
to µ, then {µm} effectively weakly converges to µ, that is, {µm(fn)} converges
effectively to {µ(fn)} for all effectively bounded computable sequence of functions
{fn}.

Proof. We prove that {µm(f)} converges effectively to {µ(f)} for a bounded
computable function f . For such f , there exists an integer M which satisfies that
|f(x)| 6 2M for all x.

Let us take a computable sequence of functions {g`} with compact support
which is defined in the proof of Proposition 2. Then, we obtain a recursive
function N(k) which satisfies that µ([−`, `]C) 6 1 − µ(g`−1) < 2−k for ` >
N(k). Moreover, by effective convergence of {µm(g`)} to {µ(g`)}, there exists a
recursive function α(`, k) such that m > α(`, k) implies |µm(g`)− µ(g`)| < 2−k.

Therefore, we obtain 1 − µ(gN(k)) < 2−k and m > α(N(k), k) implies |1 −
µm(gN(k))| 6 |µm(gN(k))− µ(gN(k))|+ |1− µ(gN(k))| < 2 · 2−k.

On the other hand, since {fg`} is a computable sequence of functions with
compact support, {µm(fg`)} converges effectively to {µ(fg`)}. So, there exists
a recursive function β(`, k) such that |µm(fg`)−µ(f g`)| < 2−k for m > β(`, k).

Therefore, m > β(N(k), k) implies |µm(fgN(k))− µ(fgN(k))| < 2−k.
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If we take j = k+M + 2 and assume m > max{α(N(j), j), β(N(j), j)}, then

|µm(f)− µ(f)|
6 |µm(f)− µm(fgN(j))|+ |µm(fgN(j))− µ(fgN(j))|

+|µ(f)− µ(fgN(j))|
6 2M (1− µm(gN(j))) + |µm(fgN(j))− µ(fgN(j))|+ 2M (1− µ(gN(j)))

< 2 · 2−(k+2) + 2−(k+2) + 2−(k+2) = 2
k

.

This proves the effective convergence of {µn(f)} to µ(f). ut

Definition 4. (Effective pointwise convergence of functions)
A sequence of functions {Fm} is said to converge effectively pointwise to

a function F if {Fm(xn)} converges effectively to {F (xn)} for all computable
sequence {xn}.

By definition, the following proposition holds.

Proposition 7. For a computable sequence of functions {Fm}, if it converge
effectively pointwise to a function F , then F is sequentially computable.

By Lemma 3, the existence of density of F implies the effective uniform
continuity of F . So, we obtain the following proposition.

Proposition 8. Let us consider a sequentially computable sequence of distribu-
tion functions {Fm} and a distribution function F . If {Fm} converges effectively
pointwise to F , then the sequence of corresponding probability distributions {µm}
converges effectively to µ.

Proof. We follow the classical proof and prove that µm(f) converges effec-
tively to µ(f) for a computable function with compact support f . By Lemma
1, f is uniformly computable. So, there exists a recursive function α(k), which
is an effective modulus of uniform continuity of f . We also obtain an integer N
such that f(x) = 0 if |x| > 2N and an integer B such that |f(x)| 6 2B for all x.

Define fn(x) =
∑2N2n

j=−2N2n+1 f(j2−n)χ((j−1)2−n,j2−n](x).

Then, µm(fn) =
∑2N2n

j=−2N2n+1 f(j2−n)(Fm(j2−n)− Fm((j − 1)2−n))

and µ(fn) =
∑2N2n

j=−2N2n+1 f(j2−n)(F (j2−n)− F ((j − 1)2−n)) hold.
We note that each of the right-hand sides of the last two equations forms a

computable sequence of reals.
By the definitions of fn and α, |f(x)− fα(k)(x)| = |f(x)− f(j2−α(k))| < 2−k

if x ∈ ((j − 1)2−α(k), j2−α(k)].
Hence, we obtain |µm(fα(k))− µm(f)| 6 2−k and |µ(fα(k))− µ(f)| 6 2−k.

By effective pointwise convergence of {Fm} to F , there exists a recursive
function β(k, n, j) such that m > β(k, n, j) implies
|Fm(j2−n)− F (j2−n)| < 2−k.
Define k̃ = N + 1 +B + α(k + 3) + k + 3 and
γ(k) = max{β(k̃, α(k + 3), 0), . . . , β(k̃, α(k + 3), 2N+12α(k+3))}.
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Assume m > γ(k). Then,

|µm(f)− µ(f)|
6 |µm(fα(k+3))− µ(fα(k+3))|+ |µ(fα(k+3))− µ(f)|

+|µm(fα(k+3))− µm(f)|

6
∑2N2α(k+3)

j=−2N2α(k+3)+1

{
|f(j2−α(k+3))| |Fm(j2−α(k+3))− F (j2−α(k+3))|

+|f(j2−α(k+3))| |Fm((j − 1)2−α(k+3))− F ((j − 1)2−α(k+3))|
}

+2 · 2−(k+3)

6 2(2N+12α(k+3))2B2−k̃ + 2 · 2−(k+3) < 2−k.

This proves the effective convergence of {µm(f)} to µ(f). ut

Proposition 9. Let us consider a computable sequence of probability distribu-
tions {µm} and a computable probability distribution µ with a bounded density.
If {µm} converges effectively to µ, then the sequence of the corresponding dis-
tribution functions {Fm} converges effectively pointwise to F , the distribution
function corresponding to µ.

Proof. We prove that {Fm(c)} converges effectively to F (c) if c is computable.

Let us define hn(x) by

hn(x) =

1 if x 6 c− 1
n

−n(x− c) if c− 1
n 6 x 6 c

0 if x > c
.

B
B
B
B
BB

B
B
B
B
BB

1

0
cc− 1

n
c + 1

n

gn
hn

�
�
�
�
��B
B
B
B
BB

1

0
cc− 1

n
c + 1

n

gn − hn

It holds that hn(x) 6 χ(−∞,c](x) 6 gn(x), where gn is the function defined
in the proof of Proposition 4. Hence, we obtain µ(hn) 6 F (c) 6 µ(gn) and
µm(hn) 6 Fm(c) 6 µm(gn).

Meanwhile, {gn} and {hn} are effectively bounded computable sequences
of functions if c is a computable real. Hence, by Proposition 6, {µm(hn)} and
{µm(gn)} converge effectively to µ(hn) and µ(gn) respectively as m tends to
infinity. So, there exists a recursive function α(n, k) such that m > α(n, k)
implies |µm(hn)− µ(hn)| < 2−k and |µm(gn)− µ(gn)| < 2−k.
Hence, m > α(n, k) implies µ(hn) − 2−k 6 µm(hn) 6 Fm(c) 6 µm(gn) <
µ(gn) + 2−k.

On the other hand,
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gn(x)− hn(x) =


0 if x 6 c− 1

n
n(x− c) + 1 if c− 1

n 6 x 6 c
−n(x− c) + 1 if c 6 x 6 c+ 1

n
0 if x > c+ 1

n

.

If we take an integer M such that 2M is a bound of a density of µ, then

µ(gn − hn) 6 2·2M
n . If we put N = 2k+M+2, then µ(gN − hN ) 6 2−(k+1). Hence,

we obtain µ(hN ) > F (c) − 2−(k+1) and µ(gN ) < F (c) + 2−(k+1). Therefore,
m > α(N, k + 1) implies |Fm(c)− F (c)| < 2−k.

This proves the effective convergence of {Fm(c)} to F (c).
The argument above can be modified to a computable sequence of real num-

bers {cn}. ut
In the case where µ has a bounded density and {µn} has effectively bounded

densities, we obtain the following theorem from Propositions 4, 8 and 9.

Theorem 3. Let us consider a computable sequence of probability distributions
{µm} with effectively bounded densities and a computable distribution µ with
a bounded density. We denote their distribution functions with {Fm} and F
respectively. Then, {µm} converges effectively to µ if and only if {Fm} converges
effectively pointwise to F .

In the following examples, µm and µ denote probability distributions, ξm and
ξ denote the corresponding densities (if they exist) and Fm and F denote the
corresponding distribution functions.

Example 3. Let µm be the Gaussian distribution with mean 1
m and variance

m
m+1 and µ be the Gaussian distribution with mean 0 and variance 1, that is,

ξm(x) =
√
m+1√
2πm

e−
m+1
2m (x− 1

m )2 and ξ(x) = 1√
2π
e−

1
2 x

2

.

{ξm} is computable and converges effectively to ξ. It also holds that |ξm(x)|,
|ξ(x)| 6 1. So, the assumption of Theorem 3 holds. By virtue of the properties of
the densities, the effective convergence of {µm} to µ and that of {Fm} to F are
the consequences of Effective Dominated Convergence Theorem (see [5]). ut

Example 4. Let ξm be defined as follows.

ξm(x) =


0 if x 6 − 1

m
m
2 x+ 1

2 if − 1
m < x < 1

m
1 if 1

m 6 x 6 1− 1
m

−m2 (x− 1) + 1
2 if 1− 1

m < x < 1 + 1
m

0 if x > 1 + 1
m

.

{ξm} is a computable sequence with compact support, and {µm} converges
effectively to the uniform distribution on [0, 1] (cf. Example 1(1)). Although the
density of the uniform distribution is not continuous, it is still bounded. So, the
assumption of Theorem 3 holds.

By the inequality |
∫
R f(x)ξm(x)dx−

∫
R f(x)ξ[0,1](x)dx| 6 ||f ||, we can prove

the effective convergence of {µm}, and hence of {Fm}. ut
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Example 5. Let ξn be defined as follows.

ξn(x) =


x 6 − 1

n
n2x+ n if − 1

n 6 x 6 0
−n2x+ n if 0 6 x 6 1

n
0 if x > 1

n

.

{µn} converges effectively to the unit distribution δ0, which does not have a
density. This is a case to which Theorem 3 cannot be applied. Indeed, Fn(0) = 1

2
but F (0) = 1. So, {Fn(0)} does not converge to F (0) = 1. ut
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Abstract. We investigate the degree of discontinuity of several solution
concepts from non-cooperative game theory. While the consideration of
Nash equilibria forms the core of our work, also pure and correlated
equilibria are dealt with. Formally, we restrict the treatment to two player
games, but results and proofs extend to the n-player case. As a side
result, the degree of discontinuity of solving systems of linear inequalities
is settled.

Keywords. Game Theory, Computable Analysis, Nash Equilibrium,
Discontinuity

1 Introduction

Both for applications and theoretical considerations, the algorithmic task of
computing Nash equilibria from certain representations of games is of immense
importance. A natural mathematical formulation of game theory uses the real
numbers for payoffs and for mixed strategies, while classical models for algo-
rithms require a restriction to countable sets. By imposing suitable restrictions
and modifications to obtain countable problems, the complexity of computing
a Nash equilibrium for a normal form game was proven to be PPAD-complete
([1], [2]).

Here we will use another approach: Instead of limiting the problem, we will
extend the theory of computation. While the TTE-framework ([3]) is perfectly
capable of formulating the task of computing Nash equilibria from normal form
games, we will see that even the most trivial cases are discontinuous, and hence
not computable.

To gain a deeper understanding of the problem, its degree of discontinuity will
be studied. Mirroring an approach in the study of game theory using classical
computational complexity, we will also examine other solution concepts such
as correlated equilibria. While correlated equilibria seem to be computationally
easier than Nash equilibria1, we will prove that both concepts share a degree

1 In [4] several decision problems regarding Nash equilibria and correlated equilibria
were compared, most of them turned out to be NP-hard for Nash equilibria and to
be in P for correlated equilibria.

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 197-208 
http://drops.dagstuhl.de/opus/volltexte/2009/2271
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of discontinuity. Limitation to pure strategies yields a strictly less discontinuous
problem, the classical problem can be solved by a cubic algorithm2.

Due to space restrictions, most of the proofs are omitted here. A more com-
prehensive version including proofs is [10].

2 Preliminaries

2.1 Game Theory

An n × m bi-matrix game is simply given by two n × m real valued matrices
A and B. Two players simultaneously pick an index, row player chooses an
i ∈ {1, 2, . . . , n} and column player chooses an j ∈ {1, 2, . . . ,m}. Row player gets
Aij as a reward, column player gets Bij . We consider several solution concepts
defined as equilibria, where no player has an incentive to change her strategy
unilaterally.

Definition 1. A pure equilibrium for a n×m bi-matrix game (A,B) is a pair
(i, j) ∈ {1, . . . , n} × {1, . . . ,m} satisfying Aij ≥ Akj for all k ∈ {1, . . . , n} and
Bij ≥ Bil for all l ∈ {1, . . . ,m}.

As pure equilibria do not exist for all games, a more general notion is intro-
duced. If both players can randomize independently over their actions, one is led
to the definition of an m-mixed strategy as an m-dimensional real valued vector

s with non-negative coefficients and
m∑
j=1

sj = 1. The set of m-mixed strategies

will be denoted by Sm.

Definition 2. A Nash equilibrium for an n×m bi-matrix game (A,B) is a pair
(x̂, ŷ) ∈ Sn × Sm satisfying x̂TAŷ ≥ xTAŷ for all x ∈ Sn and x̂TBŷ ≥ x̂TBy
for all y ∈ Sm.

If (x̂, ŷ) is a Nash equilibrium, again neither of the players can improve her
payoff by changing her mixed strategy unilaterally. A famous result by John
Nash ([7]) established that Nash equilibria in bi-matrix games always exist.
By identifying a pure strategy with the mixed strategy that puts weight 1 on
it, pure equilibria can be considered a special case of Nash equilibria. An even
more general solution concept can be obtained by allowing the individual player’s
randomization processes to be correlated ([8]).

Definition 3. A correlated equilibrium for a n × m bi-matrix game is a real

valued n×m matrix C with non-negative entries and
n∑
i=1

m∑
j=1

Cij = 1 so that

m∑
j=1

AijCij ≥
m∑
j=1

AljCij

2 There are, however, several interesting hardness results for finding pure equilibria in
games ([5], [6]), originating in other representations or requiring additional proper-
ties.
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holds for all i, l ∈ {1, 2, . . . , n} and

n∑
i=1

BijCij ≥
n∑
i=1

BikCij

holds for all j, k ∈ {1, 2, . . . ,m}.

Given a Nash equilibrium (x, y), a correlated equilibrium can be constructed
as Cij = xiyj , while each correlated equilibrium of this form can be obtained
from a Nash equilibrium, allowing us to consider Nash equilibria as special cases
of correlated equilibria. Thus, finding a correlated equilibrium has to be easier
than finding a Nash equilibrium, as we just presented a reduction.

Another way of creating an easier problem consists in a restriction of the
games used. A zero-sum game is a bi-matrix game of the form (A,−A).

2.2 Representing Games

In order to consider games as inputs to Type-2-Machines, they have to be coded
into infinite sequences. The choice of the countable alphabet used is irrelevant
for the theory, to simplify proofs we will use either {0, 1} or N, depending on
the context. The degrees of discontinuity we study are those of the realizations,
that is of functions turning names of instances into names of solutions. Since all
occurring representations will be admissible, topological properties carry over
between sets of games and sets of names for games, etc.

As games in normal form are pairs of real matrices, and (possible) equilibria
pairs of real vectors (or again real matrices), one can quickly derive suitable rep-
resentations by using product and coproduct representations ([3], [9]), starting
from any representation of the real numbers.

The standard representation ρ of the real numbers is chosen for various rea-
sons; it is admissible and provides a convincing class of computable functions, in
contrast to some of the alternatives ([3], [11]). Additionally, as demonstrated in
[12], the representation ρ is equivalent to the representation naturally arising for
the results of repeated physical measurements. For defining ρ, we fix a bijection
ν : N→ Q with ν(0) = 0, so that all the usual operations on Q are computable
w.r.t. ν.

Definition 4. Let ρ(w) = x ∈ R hold for w ∈ NN, if |ν(w(i)) − x| ≤ 2−i holds
for all i ∈ N.

Definition 5. Let w be a Γ -name for the bi-matrix game (A,B), if

1. w = 0n1m0w2, when (A,B) is an n×m game
2. w2 = 〈wa, wb〉, where 〈 〉 denotes the usual pairing function
3. wa = 〈wa11, . . . wan1, wa12, . . . , wanm〉
4. wb = 〈wb11, . . . wbn1, wb12, . . . , wbnm〉
5. ρ(waij) = Aij
6. ρ(wbij) = Bij

Representations for pure, Nash and correlated equilibria can be derived in
the same fashion. Detailed definitions are omitted here.
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2.3 Comparing Discontinuity

As games can have multiple equilibria, we do not consider a function assigning an
equilibrium to each game, but rather a multi-valued function. We will identify
a multi-valued functions with the set of its choice functions. To compare the
discontinuity of such sets, Type-2-Reducibility as studied in e.g. ([14], [15], [16],
[17], [25], [18], [9]) is used, as well as the Level of a function (or a set of functions),
introduced in [17].

We use the following definition of Type-2-Reducibility:

Definition 6. Let A,B be multi-valued functions. Then A ≤2 B holds, iff there
are continuous partial functions F , G with w 7→ F (w, g(G(w))) ∈ A for each
g ∈ B.

As demonstrated in [9] (for suprema) and [13] (for infima), ≤2 induces a com-
pletely distributive complete lattice. We use dPnen∈N to denote the supremum of
a countable family (Pn)n∈N. This allows to consider the degree of discontinuity
of finding equilibria in any game as the supremum of the degrees of discontinuity
of finding equilibria in games with fixed size.

As the Level will play only a minor role in our considerations, we refer to [9]
for definitions.

3 Single Player Games and Pure Equilibria

From the perspective of game theory, single player games are trivial: The acting
player chooses whatever action is best for her. As a discrete computation prob-
lem, this amounts to finding a maximum in a list of integers, a task that can be
solved in linear time or logarithmic space. As the problem posed over the reals
is discontinuous, we will study the problems 1Puren and 1Pure of finding pure
equilibria in single player games with n actions and without fixed game sizes. It
shall be noted that single player games can be identified with n × 1 bi-matrix
games, justifying their inclusion.

As every n × 1 bi-matrix game has a pure equilibrium, and Cij > 0 can
only hold in a correlated equilibrium C, if the entry Ai1 is maximal in A (and
thus (i, 1) is a pure equilibrium), finding pure, Nash and correlated equilibria is
equivalent for single player games, so the restriction to pure equilibria does not
invoke any loss of generality.

The degree of discontinuity of 1Puren turns out to be equivalent to an-
other family of problems, MLPOn, introduced in [14] as generalizations of the
lesser limited principle of omniscience (LPO) studied in constructive mathemat-
ics ([19]).

Definition 7. A function f : {(p1, . . . , pn) ∈ (NN)n | ∃i ≤ n pi = 0N} →
{1, 2, . . . , n} is in MLPOn, if it fulfills pf(p1,p2,...,pn) = 0N for all valid
(p1, p2, ..., pn).

Theorem 1. MLPOn ≡2 1Puren
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In the next step, we extend the scope of consideration to finding pure equilib-
ria in arbitrary bi-matrix games. The relevant problems are Purenm, where the
size of the game is restricted to n×m, and the general case denoted by Pure.
For obtaining results, reducibility to MLPOn shall be expressed by a partition
property:

Lemma 1. Let H be a multi-valued function defined on a strongly zero-
dimensional metrisable space3 X. Then H ≤2 MLPOn holds, iff there are n

closed sets Ai, i ≤ n with X =
n⋃
i=1

Ai, so that for each i ≤ n, there is an f i ∈ H

so that f i|Ai
is continuous.

Theorem 2. Purenm ≤2 MLPOn∗m.

Proof. Given an n ×m bi-matrix game (A,B), the condition for the pair (i, j)
to be a pure equilibrium is Aij ≥ Akj and Bij ≥ Bil for all k ≤ n, l ≤ m.
This implies that the set P ijnm = {(A,B) | (i, j) is an equilibrium of (A,B)} ⊆
Rnm × Rnm is closed. Due to the admissibility of Γ , the set of corresponding
names for the games is also closed. As the set of n ×m bi-matrix games which
have a pure strategy equilibrium is the union

⋃
i≤n,j≤m

P ijnm, an application of

Lemma 1 yields the claim.

Corollary 1. 1Pure ≡2 Pure.

Proof. As both problems are the respective limits, considering Theorems 1 and
2 is sufficient.

The same reasoning used to establish the equivalence of finding pure strate-
gies in 1 player games and in 2 player games can directly be extended to any
finite number of players. While Nash and correlated equilibria have the same
degree of discontinuity as pure equilibria in single player games, we will continue
to show that a higher degree of discontinuity emerges in the two player case.

4 Nash and correlated equilibria in bi-matrix games

We will now consider Nash and correlated equilibria in bi-matrix games. The
problems Corrnm and Nashnm are the fixed size versions, Corr and Nash the
general problems. An additional dimension of the problem is whether the games
are zero-sum, yielding the problems ZCorrnm, ZNashnm and the corresponding
general problems. Straight-forward reasoning yields the reductions:

ZCorrnm ≤2 Corrnm ≤2 Nashnm ZCorrnm ≤2 ZNashnm ≤2 Nashnm

3 Examples for such spaces are {0, 1}N and NN with their standard topologies. A brief
characterization of strongly zero-dimensional metrisable spaces can be found in [9],
for details we refer to [17] and [20].
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4.1 The discontinuity of robust division

Similar toMLPOn being representative of the kind of discontinuity we face when
searching for pure equilibria, we will start with considering division, which will
turn out to be typical for correlated and Nash equilibria. Computing a

b given
two real numbers a, b 6= 0 is continuous, of course. However, testing whether
b 6= 0 is not. A robust variant of division, which accepts division by zero and
returns an arbitrary value, is not continuous anymore:

Definition 8. Let rDiv be the set of functions d defined on

{(u, v) | 0 ≤ ρ(u) ≤ ρ(v)} satisfying ρ(d(u, v)) = ρ(u)
ρ(v) for ρ(v) > 0.

While Lev(rDiv) = 2 establishes robust division as an only slightly discon-
tinuous problem, the following result shows that robust division introduces a
new kind of discontinuity not present in finding pure equilibria.

Theorem 3. rDiv �2 Pure.

We will now use modifications of the game matching pennies as a gadget to
implement divisions in a game.

A =

(
a 0
0 b

)
B = −A MP (a, b) = (A,B)

If both a > 0 and b > 0, the unique correlated equilibrium is obtained from the
unique Nash equilibrium x = y = ( b

a+b ,
a
a+b ). If a = 0, b > 0, then (x, y) is an

equilibrium, iff y = (1, 0), and for a > 0, b = 0 we have y = (0, 1).

Theorem 4. rDiv ≤2 ZCorr22

Proof. Given a pair of ρ-names for real numbers a, b with 0 ≤ a ≤ b, a name
for the game MP (a, b − a) can be computed. A correlated equilibrium C of
MP (a, b− a) has the form:

C =

(
c11 c12
c21 c22

)
=

(
xy x(1− y)

(1− x)y (1− x)(1− y)

)
Thus, one can obtain c11 + c21 = y = a

b for b > 0.

Theorem 4 in conjunction with Theorem 3 implies ZCorr22 �2 Pure, so
even the simplest case of finding mixed strategies is not reducible to finding pure
strategies. The problem rDiv itself cannot capture the discontinuity of finding
Nash equilibria, due to Lev(ZNash22) = 4 (s. Subsection 5.2), compelling us to
derive a sequence of problems with increasing level from rDiv.
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4.2 Products of Problems and Products of Games

The product of functions can be considered as computing all of them in parallel.
This will allow us to specify exactly the degree of discontinuity of problems
solvable by multiple robust divisions, once we defined products for multi-valued
functions. The following definitions and results on the products of multi-valued
functions and their discontinuity extend corresponding results from [18].

Definition 9. For functions f : X → Y , g : U → V , define 〈f, g〉 : (X × U)→
(Y × V ) through 〈f, g〉(x, u) = (f(x), g(u)). Define 〈f〉1 = f and 〈f〉n+1 =
〈f, 〈f〉n〉.

Definition 10. For relations P , Q, define 〈P,Q〉 = {〈f, g〉 | f ∈ P, g ∈ Q}.
Define 〈P 〉 = P and 〈P 〉n+1 = 〈P, 〈P 〉n〉.

dP,Qe ≤2 〈P,Q〉 holds, but the converse is false in general. If f ≤2 g holds,
then also 〈f, h〉 ≤2 〈g, h〉. As 〈 〉 is associative, it can be extended to any finite
number of arguments in the standard way. There is a useful distributive law for
d e and 〈 〉 which we will state as 〈P, dQiei∈N〉 ≡2 d〈P,Qi〉ei∈N.

For games, our notion of a product will be inspired by the model of playing
two independent games at once. This will allow us to establish a link between
products of relations and products of games. We will use [ ] to denote a bijection
between {1, 2, . . . , n} × {1, 2, . . . ,m} and {1, 2, . . . , nm} for suitable n, m.

Definition 11. Given an n1 × m1 bi-matrix game (A1, B1) and an n2 × m2

bi-matrix game (A2, B2), we define the (n1n2) × (m1m2) product game (A,B)
through A[i1,i2][j1,j2] = A1

i1j1
+A2

i2j2
and B[i1,i2][j1,j2] = B1

i1j1
+B2

i2j2
.

The product of two games is a constant-sum game, iff both games are constant-
sum4. If (x1, y1) is an equilibrium (either pure or Nash) of (A1, B1), and (x2, y2)
is an equilibrium of (A2, B2), then (x, y) is an equilibrium (of the same type) of
the product game where x[i1i2] = x1i1x

2
i2

and y[m1m2] = y1m1
y2m2

. Conversely, if
(x, y) is an equilibrium of the product game, an equilibrium (x1, y1) for (A1, B1)

can be obtained through x1i =
n2∑
k=1

x[i,k] and y1j =
m2∑
l=1

y[j,l], analogously an equi-

librium (x2, y2) for (A2, B2) can be computed. Analogous statements hold for
correlated equilibria.

As the product game can be computed from the constituent games, we can use
the properties of the products of games to obtain the following results regarding
the problem of finding equilibria:

Theorem 5. Let Game ∈ {Pure,ZCorr,ZNash,Corr,Nash}. Then
〈Gamenm,Gamekl〉 ≤2 Game(nk),(ml).

Theorem 6. Let Game ∈ {Pure,ZCorr,ZNash,Corr,Nash}. Then
〈Game〉n ≡2 Game for all n ∈ N.

4 As equilibria finding for constant-sum games is trivially equivalent to equilibria find-
ing for zero-sum games, this is sufficient for our purposes.
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The present paper contains two results interpretable as counterparts to The-
orem 5, as they allow to reduce finding equilibria for a large game to finding equi-
libria in several smaller games; for mixed strategies, this will be a consequence
of the main result presented in Subsection 4.3, the corresponding statement for
pure strategies is given in the next theorem:

Theorem 7. 1Puren+1 ≤2 〈MLPO2〉n.

As we have identified MLPO2 (or 1Pure2) as the basic building stone in
the degree of discontinuity of finding pure strategies, the following theorem will
establish the missing link in the relationship between finding pure strategies and
multiple robust divisions:

Theorem 8. MLPO2 <2 rDiv.

To sum up the results established sofar, we have:

d〈1Pure2〉nen∈N ≡2 1Pure ≡2 Pure <2 d〈rDiv〉nen∈N ≤2 ZCorr

4.3 Problems reducible to d〈rDiv〉nen∈N

The goal of this subsection is to present a way of designing reductions to
d〈rDiv〉nen∈N, and, in particular, to present a reduction from Nash. This equiv-
alently can be considered as the task to design algorithms for a Type-2-Machine
capable of making a finite number of independent queries to an oracle for rDiv.
Due to Theorems 7, 8 also oracle calls to MLPOn are permitted.

We will start by providing a technical lemma similar to Lemma 1. Using the
lemma, we can prove that the Fourier-Motzkin-algorithm ([21]) for solving sys-
tems of linear inequalities can be executed using continuous (even computable)
operations and oracle calls to rDiv.

Lemma 2. Let F be a multi-valued function defined on a strongly zero-
dimensional metrisable space X. Then F ≤2 d〈rDiv〉nen∈N holds, iff there are

k closed sets Ai, i ≤ k with X =
k⋃
i=1

Ai, so that for each i ≤ k, there is a

multi-valued function Gi ≤2 d〈rDiv〉nen∈N with dom(Gi) = X, so that for each
gi ∈ Gi there is an f i ∈ F with f i|Ai

= gi|Ai
.

Definition 12. The problem BLinIneqnm asks for a ρm-name of a vector v
of reals, so that Av ≤ b holds in addition to 0 ≤ v ≤ 1, given a ρnm-name for
a matrix A and a ρn-name for a vector b, provided that a solution exists. For
simplicity, we assume that Av ≤ b always contains 0 ≤ v ≤ 1. BLinIneq is the
problem without fixed values n, m.

Theorem 9. BLinIneq ≤2 d〈rDiv〉zez∈N.
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Proof. As BLinIneq is expressible as a supremum, it suffices to prove
BLinIneqnm ≤2 d〈rDiv〉zez∈N for all n,m ∈ N. For this, we use induction over
m. The case m = 0 is trivial, so we assume BLinIneqn(m−1) ≤2 d〈rDiv〉zez∈N.

For each K ⊆ {1, . . . , n}, abbreviate KC := {1, . . . , n} \K. The set DK =
{(A, b) | ∀k ∈ K ak1 ≥ 0 ∧ ∀l ∈ KC al1 ≤ 0} is closed, and the union⋃
K⊆{1,...,n}

DK covers the domain of BLinIneqnm. So due to Lemma 2, it is suf-

ficient to show that BLinIneqnm restricted to DK is reducible to d〈rDiv〉zez∈N
for arbitrary K ⊆ {1, . . . , n}. In the next step we assume K to be fixed. With the
same argument we can assume |ak1| ≥ |a(k+1)1| by renumbering the inequalities
for each fixed sequence of increasing first coefficients.

Now we rewrite the given inequalities as ak1v1 ≤ bk −
m∑
i=2

akivi for k ∈ K

and −bj +
m∑
i=2

ajivi ≤ −aj1v1 for j ∈ KC . For each pair k ∈ K, j ∈ KC , the

corresponding inequalities can be multiplied by −aj1 respective ak1, and then
contracted to:

ak1(−bj +

m∑
i=2

ajivi) ≤ −aj1(bk −
m∑
i=2

akivi)

Every solution to the newly created system of linear inequalities can be extended
to a solution to the original system by choosing a suitable value for v1. Due to
the induction assumption, such a solution can be obtained by making oracle calls
to d〈rDiv〉zez∈N.

To obtain a solution for v1, we would like to call

v1 = max(0,min(1, op1(rDiv(|b1−
m∑
i=2

a1ivi|, |a11|), op2(|rDiv(b2−
m∑
i=2

a2ivi|, |a21|), . . .

with opi = min for i ∈ K and opi = max else. As the |ak1| are ordered as a
decreasing sequence, values that arise arbitrary as result of a division by zero
occur deeper inside the nested structure than significant values. While they can
influence the actual value for v1 that is chosen, it still satisfies all inequalities, if
this is possible. However, the expression above contains nested calls to rDiv in
form of the vi, 2 ≤ i ≤ n.

To solve the problem, one replaces v2 with the corresponding sequence used
to compute it, then v3, and so on. By moving the max and min operators outside,
and unifying all divisions, terms of the form rDiv(P,Q) remain, where P is a
polynomial in aij , bj whose degree does not exceed 2n, and Q is a polynomial in
aij whose degree does not exceed n. These can be evaluated by allowed oracle
calls, and the max and min operators are continuous.

As the problem BLinIneq is of considerable interest on its own, we shall
note that the converse statement to Theorem 9 is also true:

Theorem 10. d〈rDiv〉zez∈N ≤2 BLinIneq.
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By adapting [22, Algorithm 3.4] and applying Lemma 2 and Theorem 9 we
proceed to prove the main theorem of this subsection. Again, the reasoning
directly extends to more than two players.

Theorem 11. Nash ≤2 d〈rDiv〉zez∈N.

Proof. By the same reasoning as above, since Nash is the supremum
dNashnmen,m∈N, it suffices to show Nashnm ≤2 d〈rDiv〉zez∈N for arbitrary
n,m ∈ N.

By the best response condition ([22, Proposition 3.1]), a pair of mixed strate-
gies (x, y) is a Nash equilibrium of a game if each pure strategy played with
positive probability in x (in y) is a best response against y (against x). This
condition can be formalized by noting that the following set is the set of games
and their Nash equilibria with support in I, J :

ĜI,J =
{(A,B, x, y) | j, k ∈ J l /∈ J (xTB)j = (xTB)k ≥ (xTB)l yl = 0 i, p ∈ I

q /∈ I (Ay)i = (Ay)p ≥ (Ay)q xq = 0}

The set ĜI,J is closed, and so is its projectionGI,J = {(A,B) | ∃x, y (A,B, x, y) ∈
ĜI,J}.

As every game has a Nash equilibrium, the sets GI,J cover the domain of
Nash, so we can apply Lemma 2. To recover the Nash equilibrium (x, y) from
I, J the corresponding system of linear inequalities has to be solved, which is
reducible to d〈rDiv〉zez∈N as established in Theorem 9.

Corollary 2. ZCorr ≡2 Corr ≡2 ZNash ≡2 Nash ≡2 d〈rDiv〉nen∈N.

The same technique applied in the proof of Theorem 9 can also be used to
show that Gaussian Elimination can be reduced to d〈rDiv〉nen∈N. This shows
that the reduction of Gaussian Elimination to the rank of a matrix given in [23]
is strict, taking into consideration Corollary 4.

5 Additional Results

5.1 Nash and Sep

To shed further light on the degree of discontinuity of Nash, we will compare it
to the problem Sep studied in [24].

Definition 13. f ∈ Sep holds, iff f is a function from

{(p, q) ∈ NN × NN | ∀n,m ∈ N p(n) 6= q(m)}

to NN satisfying f(p(n)) = 0 and f(q(n)) = 1 for all n ∈ N.

The problem Sep was shown to be equivalent to finding an infinite path in an
infinite binary tree and extending a linear functional from a subspace of a Banach
space to the complete space following the Hahn-Banach Theorem. Sep can be
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reduced to {C1}, which is defined through C1(p)(n) = 1, iff there is an i ∈ N
with p(i) = n and C1(p)(n) = 0 else. The function C1 has been introduced in

[16]. In [25, Theorem 5.5], it was proven that a function is
∑0

2-measurable, iff it
is reducible to C1.

In [24], {cf} �2 Sep was shown, which can directly to extended to prove
{f} �2 Sep for all discontinuous functions f . In the following, we will prove
that Nash is strictly reducible to Sep, thereby obtaining a lower bound for Sep.
For this aim, we need the level of Sep.

Theorem 12. Lev2(Sep) does not exist.

Due to the behaviour of the level under formation of products ([18]) and
suprema ([9], [17]), we know Lev2(Nash) = ω, where ω is the smallest infinite
ordinal. This is sufficient to establish Sep �2 Nash by [9, Theorem 5.7].

Theorem 13. rDiv ≤2 Sep.

Theorem 14. 〈Sep, Sep〉 ≡2 Sep.

Corollary 3. Nash <2 Sep.

Corollary 4. {f} �2 Nash for all discontinuous functions f .

5.2 The Level of Nash22

The simplest non-trivial bi-matrix games, 2 × 2 games, have already been in-
vestigated from a constructive point of view in [26]. Among other results, [26]
contains the constructive analogue to the reduction MLPO2 ≤2 Nash22, and
the constructive analogue to determine a subset of L0(Nash22) \ L1(Nash22),
that is the set where Nash equilibria are continuous. We will produce the TTE-
counterpart by investigating the Level of Nash22.

Theorem 15. Lev(Nash22) = 4.
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Towards the Complexity of Riemann Mappings

(Extended Abstract)

Robert Rettinger1
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Abstract. We show that under reasonable assumptions there exist Rie-
mann mappings which are as hard as tally ]-P even in the non-uniform
case. More precisely, we show that under a widely accepted conjecture
from numerical mathematics there exist single domains with simple, i.e.
polynomial time computable, smooth boundary whose Riemann map-
ping is polynomial time computable if and only if tally ]-P equals P.
Additionally, we give similar results without any assumptions using tally
UP instead of ]-P and show that Riemann mappings of domains with
polynomial time computable analytic boundaries are polynomial time
computable.

1 Introduction

In this paper we will prove lower bounds on the complexity of Riemann map-
pings, i.e. conformal mappings of a simply connected domain onto D. Though
the existence of such mappings is well known, computability results or even com-
plexity results were unknown for a long time. Despite the fact that constructive
proof methods were known for the problem (see [Hen86])) before, a characteriza-
tion of those domains which have computable Riemann mappings was proven not
before [Her99]. In a recent paper, Binder, Braverman and Yampolsky [BBY07]
gave sharp bounds on the complexity of the corresponing functor, i.e. the func-
tor which maps domains to their Riemann mappings: This functor is ]-P com-
plete. (Actually the authors showed that this functor is ]-P hard and belongs to
PSPACE. Using similar techniques, however, even a sharp upper bound of ]-P
can be proven (see [Ret08a]).)

Using the proof techniques of [BBY07] it is not hard to show that this functor
remains ]-P complete even if we restrict the class of domains to those domains
which have analytic boundaries. On the other hand, the Riemann mapping of any
domain with polynomial time computable analytic boundary can be computed
in polynomial time as we will show in Section 4. This underlines that hardness
of the functor does not necessarily imply hardness of the mappings themselves
and raises the question on the complexity of Riemann mappings in general. In
Section 5 we will prove, however, that even the complexity of a single Riemann
mapping can be as hard as tally ]-P under reasonable assumptions. Furthermore
we will give a new proof on the (uniform) lower bound of Riemann mappings.

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 209-220 
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Our proofs in the non-uniform case will heavily depend on this proof. Besides,
this new proof might be of some interest itself as we will use only potential
theoretic techniques. Some basic notations of complex analysis, complexity and
Type-2 theory are given in the following section.

2 Preliminaries

We denote the set of natural, integer, rational, dyadic, real and complex numbers
by N, Z, Q, Y, R and C, respectively. Here, a dyadic number is a number of
the form i/2j with i and j integers. As we quite often use the symbol i as
an index, we denote the imaginary unit

√
−1 by ι̂ instead. The imaginary and

real part of a complex number z are denoted by =(z) and <(z), respectively.
We identify C and R × R in the usual sense and denote the distance between
two numbers z, z′ by d(z, z′) = |z − z′| and the (Hausdorff)-distance between
two sets M,N by d(M,N) = sup{d(z′, N), d(z′′,M)|z′ ∈ M, z′′ ∈ N}, where
d(z,M) = d(M, z) = inf{d(z, z′)|z′ ∈ M}. Furthermore let Dε(z0) denote the
open disc of radius ε with center z0. To simplify notation we use Dε := Dε(0)
and D = D1.

For an open subset G of C, a function f : G→ C is called holomorphic iff its
complex derivative f ′ exists throughout G. A holomorphic function f is called
conformal on A iff |f ′(z)| > 0 for all z ∈ A. If f is conformal throughout its
domain we simply say that f is conformal.

Beside functions we allow also multi-functions, denoted by f :⊆ M ⇒ N
and f : M ⇒ N for partial and total multi-function, respectively. We will use
both notations f(x) = y and f(x) 3 y to denote that y belongs to the image
of x under a multi-function f . Furthermore, for a function (or multi-function)
f :⊆ G→ G′ and H ⊆ G we denote the restriction of f to H by f |H .

Before turning to Type-2 objects, we will recall some notions of discrete
complexity theory. For more details see e.g. [DK00] or [Sip97]. We denote by
FP and P the class of polynomial time computable functions f : Σ∗ → Σ∗ and
polynomial time decidable languages L ⊆ Σ∗, respectively. (Σ denotes here and
later on a finite alphabet.) Restricting the alphabet Σ to a single symbol, say 0,
leads to tally functions and sets. The corresponding classes will be denoted by
the subscript 1, i.e. FP1, P1, etc.

Beside we will also need the classes ]P and UP. ]P denotes the class of
functions h : Σ∗ → Σ∗ so that there exists some L ∈ P and polynomial p
with h(u) = |{v ∈ Σ∗ | |v| = p(|u|) ∧ (u, v) ∈ L}| for all u ∈ Σ∗. UP denotes
the class of languages L so that there exist L̂ ∈ P and polynomials p with
L = {v ∈ Σ∗|∃!u.|u| ≤ p(|v|)∧ (u, v) ∈ L̂} and Σ∗ \L = {v ∈ Σ∗|∀u.(u, v) 6∈ L̂},
where ∃!u denotes as usual the fact that there exists exactly one u.

The usual notation of separating complexity classes (or classes in general) is
to simply ask for a language, which belongs to the first but not to the second
class. Another notion used in literature is separation almost everywhere which
can be expressed by the related notion of immune languages (see [DK00]). We will
need in this paper a stronger separation notion than the usual one provides. On
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the other hand we do not need the full power of almost everywhere separation.
We will therefore introduce next a kind of separation, which lies between the
usual separation and almost everywhere separation. We define this for function
classes over the alphabet {0} only.

Definition 1. Let Σ = {0}. Then a function f : Σ∗ → Σ∗ is called selectively
separable by a function s : N→ N from a class K iff for every g ∈ K, g : Σ∗ →
Σ∗ there exists some i ∈ N so that g(0s(i)) 6= f(0s(i)).

Furthermore we say that we can separate two classes K1 and K2 selectively
(K1 6=sel K2) iff for every strictly monotone time constructible function s : N→
N there exists a function f : Σ∗ → Σ∗ in K1 which is selectively separable by s
from K2 or vice versa.

Next, let Σ∗∗ denote the set (Σ∗)Σ
∗
, i.e. the set of total functions f : Σ∗ →

Σ∗. We fix some standard tuple function 〈·〉 on (Σ∗∗)
n

mapping products to
Σ∗∗.

To give a natural notion of complexity we extend the Type-2-Turing machine
model by allowing some kind of indirect access to the input tapes. Formally
we realize this by a new definition of representations and the usage of oracle
machines, where oracles are elements of Σ∗∗, i.e. functions rather than languages.
Queries to the oracle are here answered by the function value of the string on the
oracle tape. An oracle Turing machine M computes a function fM :⊆ Σ∗∗ → Σ∗∗

in the following sense: fM (α) is defined to be β iff for each w ∈ Σ∗ the machine
M together with the oracle α outputs β(w). For fixed α we can define the
time complexity as usually. We denote the class of such functions of polynomial
time complexity (independently of α) by FP∗. In a similar way even relative
computations with respect to some oracles can be defined. Details can be found
in [Ret08a].

To introduce complexity on more general Type-2 objects we fix a set of stan-
dard representations, i.e. surjective functions ν :⊆ Σ∗ → M or ν :⊆ Σ∗∗ → M
onto the represented set M , next. A (multi)function g :⊆M → N is then called
polynomially time computable if there exists a polynomially time computable re-
alization, i.e. a function f :⊆ A→ B for some A,B ∈ Σ∗∗ so that f ◦νM = νN ◦g
on dom(νM ) where νM and νN denote the standard representation of M , N , re-
spectively. We will denote the corresponding complexity class again by FP∗.

Dyadics will be given by their dual representation, denoting the decimal
point by ., i.e. νY(w.v) = νdual(w) + νdual(v) · 2−|v| and νY(−w.v) = −(νdual(w) +
νdual(v) · 2−|v|) for w, v ∈ {0, 1}∗, w[0] 6= 0, where νdual denotes the dual nota-
tion of natural numbers. Complex dyadics are represented by pairs of dyadics:
νY[ι̂](〈d0, d1〉) = νY(d0) + ι̂νY(d1) for all d0, d1 ∈ dom(νY).

A real number x is represented as a sequence of dyadics, which converges
fast to x, i.e. νR(f) = x ⇔ ∀w ∈ Σ∗.|νY(f(w)) − x| < 2−|w| for all f ∈ Σ∗∗.
Finally, by identifying C and R×R, we get our standard representation of C by
νC = νR×R.

Now let G, G′ be subsets of C. Then the standard representation νA :⊆
Σ∗∗ → A of a subclass A of Cont(G,G′) = {g : G → G′ | g continuous} is



212 Robert Rettinger

defined by

g ∈ νA(f)⇔ ∀z ∈ ν−1Y[ι̂](G).∀n ∈ dom(νN).|f(〈n, z〉)− g(νY(z))| < 2−n

for all g ∈ A, f ∈ Σ∗∗. The main point of this representation is that we can
evaluate functions. For domains there are several different representations. We
will use the following representation based on the distance to the boundary.

The representation ν<⊆C :⊆ Σ∗∗ ⇒ (2C\{C}) is defined via a modified distance

function. For f : dom(νN) × dom(νY[ι̂]) → dom(νR) let ν<⊆C(f) = A ⊆ C iff

3/4 · d(νY[ι̂](z)) − 2−νN(n) < |νR(f(n, z))| < d(νY[ι̂](z)) for all n ∈ dom(νN) and

all z ∈ ν−1Y[ι̂](A), where d(z) := infz′∈∂G |z − z′|.
Let A be a represented set. Then we say that a function f :⊆ A→ R+ belongs

to ]P∗, iff there exists a polynomial p and a polynomial time computable function
g :⊆ A × Σ∗ → R+, so that f(a) =

∑
w∈Σp(n) g(a,w) for all a ∈ dom(f) (as

usually n denotes the length of the input of finite length).

3 Riemann mappings

In this section we will summarize some central results on Riemann mappings.

Theorem 1. Let G be a bounded simply connected domain. Then for every z ∈
G and φ ∈ [0; 2π] there exists a unique conformal mapping fz,φG : G→ D so that

fz,φG (z) = 0 and the argument of (fz,φG )′(z) is φ.

We will denote these Riemann mappings usually in the way of the above
theorem where we omit φ and/or z if φ = 0 and/or z = 0, or if these parameters
are uniquely determined by the context. If G is a Jordan domain, the Riemann
mapping continues topologically onto the boundary (see [Pom92] for details).
If the boundary γ of G is even analytic, the Riemann mapping continues even
holomorphically, which can be easily seen by the reflection principle.

To simplify things, we will restrict ourselves in the sequel to the class of
simply connected domains which are contained in the disk D4/5 and contain the
disk D3/5. This class of simply connected domains will be denoted by G in the
sequel. For more general classes of simply connected domains the ideas given
below can be easily adapted as long as the domains are bounded. This can for
example be achieved by the usual square root transformation (see e.g. [Hen86]).
Alternatively, the osculation method can be used to reduce the domain. This
method converges fast as long as the domain is far away from the unit disc (with
respect to the Hausdorff distance). Furthermore we will compute the Riemann
mapping on a fixed compact subset of its domain. We can then get the full
Riemann mapping by continuation (see e.g. [Ret08b]).

Theorem 2 ([BBY07],see also [Ret08a]). There exists a function Fconf :⊆
G× D1/2 → D, F ∈ FP ]P∗∗ , mapping each simply connected domain G ∈ G and
point z ∈ D1/2 to fG(z).
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If we restrict the above function to boundaries, which can be computed in
time bounded by a fixed polynomial, then the Riemann mapping can be com-
puted by polynomially time bounded machines with access to a ]P -oracle.

The proof of the above theorem shows that slight changes in the shape of the
domain G will only slightly change the Riemann mapping. We will use this fact
e.g. to give a polynomial upper bound for the Riemann mapping for analytic
boundaries in Section 4 below.

Corollary 1. There exists a polynomial p so that for all G,G′ ∈ G we have:
The Riemann mappings f and g of G and G′, respectively, determined by f(0) =
g(0) = 0 and f ′(0) > 0, g′(0) > 0 differ by at most 2−n on z ∈ D1/2, i.e.

|f(z)− g(z)| ≤ 2−n, if the Hausdorff distance of G and G′ is at most 2−p(n).

4 Analytic Boundaries

In this section we will show that for any simply connected Jordan domain G with
analytic, polynomial time computable boundary, the Riemann mapping from G
is always computable in polynomial time. To prove this we will use a technique
based on the Bergman kernel function and orthonormal polynomials.

For given G ∈ G and i ∈ N let in the sequel pi denote the i-th orthonormal
polynomial, determined by the sequence 1, z, z2, ... and the Gram-Schmidt
algorithm, using the inner product 〈·, ·〉 defined by

〈f, g〉 =

∫ ∫
G

f(z)g(z)dxdy

for all f, g ∈ L2(G,C), where L2(G,C) denotes the space of square integrable
complex functions on G (see e.g. [Gai87]).

Lemma 1. Let G ∈ G be a Jordan domain with its boundary given by a polyno-
mial time computable conformal mapping δ : U → D of an open neighborhood U
of ∂D. Then the sequence p0, p1 ,... of orthonormal polynomials is computable
in polynomial time.

Notice that orthonormal polynomials can be computed efficiently even in
other cases, e.g. in the case of Schwarz-Christoffel mappings. However, it is not
known, if the polynomials in this case can be used to compute the Riemann
mapping efficiently.

Once we have these orthonormal polynomials for a domain G ∈ G, we can
build a fast algorithm to compute the Riemann mapping upon a well known
relation of the Riemann mapping and the Bergmann kernel K : G×G→ R (see
e.g. [Neh52]).

Theorem 3. Let G ∈ G be a Jordan domain with its boundary given by a poly-
nomial time computable conformal mapping δ : U → D of an open neighborhood
U of ∂D. Then fG is computable in polynomial time, where fG denotes the
uniquely determined Riemann mapping with fG(0) = 0 and f ′G(0) > 0.
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Proof: We have the well know relation between the Bergmann kernel
function and fG

f ′G(z) =

√
π

K(0, 0)
·K(z, 0).

Furthermore the Bergmann kernel function can be expressed by means of the
orthonormal polynomials p0, p1, ... of G via K(z, 0) =

∑∞
j=0 pj(0) · pj(z), where

the convergence is uniformly on any compact subset of G. Approximating the
Bergmann kernel function by Kn (n ∈ N), where Kn(z, 0) =

∑n−1
j=0 pj(0) · pj(z)

gives us the the Bieberach polynomials qi (i ∈ N), determined by qi(z) =∑n
j=0

∫ z
0
Ki−1(z,ζ)dζ√
Ki−1(0,0)

for i ∈ N.

By Lemma 1, the Bieberach polynomials can be computed in polynomial
time. Notice, as the sequence Ki(0, 0) converge to K(0, 0) 6= 0, the Ki(0, 0) are
bounded away from 0 by a constant for all but finitely many i’s. Furthermore
we know that for analytic boundaries there exists M > 0 and q ∈ (0; 1) so that
|fG(z) − qi(z)| < M · qi for all z in say D1/2 and all i ∈ N (see [Gai87]). Thus
we can compute fG in polynomial time on D1/2. As continuation of holomorphic
mappings can be done in polynomial time (see e.g. [Mül93]) and the fact that
fG can be continued to a whole neighborhood of G by the reflection principle,
proves that fG can be computed in polynomial time throughout G.

�

5 Towards lower bounds

In this section we will first give a new proof for the lower bound on Riemann
mappings in the uniform case first shown in [BBY07]. Afterwards we will turn
to the non-uniform case. Our proof of the following theorem will use only basic
ideas of potential theory.

Theorem 4 ([BBY07]). If F : G → D with F (G) = f ′G(0) is computable in
polynomial time, then every function in ]P∗ is computable in polynomial time.
Especially we have that if F is computable in polynomial time then ]P = FP .

Even for restrictions of F to those domains G ∈ G whose boundaries are
analytic or polygons, this result holds, i.e. if this restrictions are computable in
polynomial time then ]P∗ = FP∗.

Proof: The second statement follows from the first one by suitable ap-
proximations of general domains by the restricted ones using Corollary 1 above.

To prove the first statement, notice that f ′G(0) = e−u, where u is the solution
of the Dirichlet problem with boundary values z 7→ loge(|z|) for z ∈ ∂G. We will
thus code the behavior of a Turing machine M into such a boundary value
problem. In contrast to the construction in [BBY07] we will use the slit map
rather than the crescent map, which simplifies things further. Nevertheless, using
the ideas below, even the construction of the domains in [BBY07] could be used
to prove the above result with potential theoretic ideas only.
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Our construction will be based on the slit map (see [Hen86], Chapter 16). Let
therefore, for given ρ ∈ (0; 1), S(ρ) denote the straight line from −1 to −ρ and
furthermore, by Dρ the set Dρ. Then a conformal mapping hρ : Dρ → D with
hρ(0) = 0 is given by hρ(z) = (sρ(z)− 1 + z)/(sρ(z) + 1− z) for all z ∈ D \ Sρ,
where we use the abbreviation sρ(z) =

√
(1 + ρ(z))(1 + 1

ρz). Furthermore for

h′ρ(0) we have h′ρ(0) = (1+ρ)2

4ρ (see [Hen74]).
The main point of giving this map explicitly is that we can easily compute

|h′ρ(0)| and thus log |h′ρ(0)|.

Claim. There exists a mapping h : (1/2; 1) → R with h(ρ) = h′ρ(0) for all ρ ∈
(1/2; 1), which is computable in time O(n2). Furthermore there exist constants
c0, c1, c2 > 0, so that c0 · (1− ρ)2 < h′ρ(0)− 1 < c1 · (1− ρ)2 and | loge(h

′
ρ(0)| >

c2 · (1− ρ)2 for all ρ > 3/4.

We assume now that F is polynomial time computable and L ∈ ]P∗ \ FP∗,
L : A → R+ for some represented space A. In a first step we will reduce L to
a problem in ]P . Let M be a polynomial time computable Turing machine and
q be a polynomial, so that on every input a ∈ A, n ∈ N and w ∈ Σ∗ with
|w| = q(n), M stops in exactly q(n) steps, outputs oM (a, n, w) ∈ Y+ and fulfills

|L(a)−
∑

w∈Σq(n)

oM (a, n, w)| ≤ 2−n.

For given input a ∈ A and a precision 2−n, we are thus asked to compute L(a) up
to this precision. As we have to add up at most 2q(n) values, we have to compute
each of the elements of the above sum up to precision 2−(n+q(n)) only. This can
be done by an addition of 2q(n) integers of at most n + q(n) bits each with an
appropriate shift afterwards. As this shift is polynomial time computable, we can,
by a standard manipulation of M , give a Turing machine N and a polynomial p
with the following properties:

1. N stops on input a ∈ A, n ∈ N and every w ∈ Σp(n) in at most p(n) steps
with output oN (a, n, w) ∈ {0, 1} and

2. L(a) can be computed from L̂(a, n) =
∑
w∈Σp(n) oN (a, n, w) in polynomial

time for every a ∈ A and n ∈ N.

Let some a ∈ A, n ∈ N with n > 2 be given. We construct, using the slit map
above, some Ga,n ∈ G so that for fGa,n with fGa,n(z) = F (Ga,n, z) we have

L̂(a, n) = bloge(f
′
Ga,n(0))/ loge(h

′
1−2−m(0))c,

where m is polynomially bounded in n and will be chosen later on. Thus, if F is
polynomial time computable, clearly L is polynomial time computable too. We
will give here a slightly more general result than necessary by introducing an
additional parameter ε. We will need this general result in the proof of Theorems
5 and 6 later on. For given v ∈ Σp(n) and ε ∈ (0; 2π) let φεv := ε2−(p(n)) ·
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(νdual(1v) − 2p(n)). The values φεv of all such v are in the interval [0; ε] and for
different u, v ∈ Σp(n) we have |φv − φu| ≥ ε · 2−p(n). Now let

Gεa,n =
⋃

v∈Σp(n)

oN (a,n,v)=1

e−iφ
ε
v ·D1−2−mε .

Notice that for fixed ε ∈ Y∩ (0; 1), the function H : A×N→ G with H(a, n) =
Gεa,n for all a ∈ A, n ∈ N, is polynomial time computable. By the above discus-

sion it remains to show that we can compute L̂(a, n) efficiently from f ′Gεa,n(0),

because then L can be computed in polynomial time in contradiction to our
assumption.

Claim. Let ε ∈ (0; 2π), n ∈ N be given and mε(n) = d4 · p(n) + log(1/ε) +
log(c2)e+15. Then L̂(a, n) = bloge(f

′
Gεa,n

(0))/ loge(h
′
1−2−mε(n)(0))c for all n ∈ N.

As we consider a fixed n ∈ N in the sequel we will write mε instead of
mε(n), for short. The main work in showing the above equation is, to bound
the cross terms introduced to the Riemann mapping when combining the dif-
ferent slit maps. To this end we will use the relation between the Brownian
motion and potentials as already considered in the last section. Let therefore,
for given G ∈ G, z ∈ G and Z ⊆ ∂G, pG(Z|z) denote the probability to end
up in Z when we start in z. To be more precise, let for z ∈ G, BtG(z) denote
the Brownian motion process, which starts in z. Furthermore let T be the first
time BtG(z) hits the boundary ∂G. Then for given continuous or piecewise con-
stant and bounded values v(x) ∈ R (for boundary points x ∈ ∂G) we know that
f : G → R, f(z) = E(v(BTG(z))), is the unique solution to the corresponding
Dirichlet problem (where E(X) denotes the expectation of the random variable
X). Furthermore pG(Z|z) is the expectation pG(Z|z) = E(χZ(BTG(z))). To sim-
plify things we will in addition use the notation pG(Z|z  Z ′) meaning the
probability to end up in Z ⊆ ∂G, starting in z ∈ G and visiting at least once a
point in Z ′ ⊆ G.

A main tool in bounding the probabilities is the Poisson formula

u(z) =
1

2π
·
∫
∂D
v(y) · 1− |z|2

|z − y|2
dy

which gives an explicit solution to the Dirichlet problem if G = D. Unfortunately,
however, Gεw is likely to be not D (unless L̂(n, a) = 0). By the following result
we can nevertheless use Poissons formula, where we use the abbreviation ∂mε :=
∂D ∩ D2−mε (−1):

Claim. For all z ∈ S1−2−mε we have

pD(∂mε |z) =
1

2π
·
∫
∂D
χ∂mε (y) · 1− |z|2

|z − y|2
dy >

3

4
.
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Let u : Gεa,n → R be the solution of the Dirichlet problem with boundary

values v(x) = log(|x|) for x ∈ ∂Gεa,n, especially we have f ′Gεa,n(0) = e−u(0). We

will bound the difference of u(0) and L̂(n, a) · | loge(h
′
1−2−mε (0))| accordingly.

Notice that L̂(n, a) is the number of slits in Gεa,n. Each slit, say at angle φ = φεv,
taken alone, adds a value loge(h

′
1−2−mε (0)) to u0. However, not every path in

the Brownian motion, which ends at the slit eι̂φ ·S2−mε on (eι̂φ ·D2−mε ), will also
end there on Gεa,n, because it might hit another slit in between. (As loge(1) = 0
only the hits of slits are counted.) To simplify things we will use the abbreviation
Sφ := eι̂φ · S2−mε and Dφ = D \ Sφ in the sequel.

As pGεa,n(Z|z  Z ′) ≤ pGεa,n(Z ′|z) · supz′∈Z′ pGεw(Z|z′) for all z, z′ ∈ Gεa,n
and Z,Z ′ ⊆ Gεa,n, we can bound the difference |u(0)− L̂(n, a) · loge(h

′
1−2−mε (0))|

by the sum of the probabilities to miss a slit Sφεv in Gεa,n, because of hitting a
slit Sφεu first. For given z ∈ Sφεu we have

pGεa,n(Sφεv |z) ≤
4

3

1

2π
·
∫
∂D
χ∂mε (y) · 1− |z|2

|z − y|2
dy.

As 1− |z|2 ≤ 2−mε+1 − 2−2mε ≤ 2−mε+1 and |z − x|2 ≥ ((1/π) · (ε · 2−p(n) − 2 ·
2−mε))2 ≥ 2−2p(n)+3 for all z ∈ Sφεu and x ∈ ∂mε , we get

pGεa,n(Sφεv |z) ≤
4

3
· (2 · π · 2−mε+1) · (2−mε+1/(ε · 2−(2p(n)+3))).

Furthermore we have pGεw(Sφu |0) ≤ 4
3 · 2π · 2

−mε+1 thus giving

|u(0)− L̂(n,w) · loge(h
′
1−2−mε (0))| ≤ 22p(n) · 2−2(mε−5) · 2−mε+1

(ε · 2−2(p(n)+3))
.

Notice that by the above cross-terms the probability to hit a slit is decreased,
i.e. u(0) ≥ L̂(n, a) · loge(h

′
1−2−mε (0)). As | loge(h

′
1−2−mε (0))| > c2 · 2−2·mε we get

L̂(n, a) + 1/2 ≥ u(0)/ loge(h
′
1−2−mε (0)) ≥ L̂(n, a)

which proves the theorem. �

The previous theorem states that we cannot compute the Riemann mappings
for all G in a uniform way. As shown in Section 4, this does not mean that the
Riemann mapping for each G ∈ G cannot be computed in polynomial time. This
raises the question, wether there exists a single domain G in G, which is poly-
nomial time computable, but the Riemann mapping fG of G is not polynomial
time computable under reasonable assumptions. We restrict ourselves to com-
puting this map on a small neighborhood of 0 and we will answer this question
affirmative under the following conditions:

1. if UP1 6=sel FP1 or
2. if ]P1 6=sel FP1 and in addition Conjecture 1 on the existence of Schwarz-

Christoffel mappings holds.



218 Robert Rettinger

Notice that any such result is involved with tally classes, i.e. classes of languages
in {0}∗ rather than languages over alphabets with more symbols. This stems from
the fact that we can compute the Riemann mapping on any compact subset of
G, say to precision 2−n, by asking a single question to a ]P oracle. (Actually we
need a polynomial number of such queries. However, these can be coded into a
single query of a modified oracle.)

We will start to prove the existence of the domain G under the first condition.

Theorem 5. If UP1 6=sel FP1 then there exists a polynomial time computable
domain G ∈ G, so that fG is not polynomial time computable.

Proof: Let L be a function in UP1, which is selectively separated from
FP1. L is obviously a function in ]P with values in {0, 1}. Thus we can use all
the notations of the proof of Theorem 4 also here. Notice, however that we start
already with some function in ]P and thus we do not have to reduce to such
a function first. So we use L instead of L̂ here and furthermore the parameter
a used in the proof of Theorem 4 does not appear here. Especially, let N be a
Turing machine and p be a polynomial with the following properties:

1. N stops on input w and every v ∈ Σp(|w|) in at most p(|w|) steps with output
oN (w, v) ∈ {0, 1} and

2. L(w) =
∑
v∈Σp(|w|) oN (w, v)

for every w ∈ Σ∗.
The main idea of the proof is as follows. Using the techniques of the proof of

Theorem 4 above, we construct a domain G ∈ G in steps i, where we determine
in each step a domain Gi, a conformal mapping fi : Gi → D and a natural
number ni so that (1) we can compute L(0ni) from f ′Gi(0) in polynomial time
and (2) Gi differs from Gi+1 (in the Hausdorff metric) by at most 2−ni+1.

Thus, by defining the ni large enough, we can ensure that there exists aG ∈ G
with dH(Gi, G) ≤ 2−ni+2 and the difference of f ′G(0) and f ′Gi(0) is small enough,
so that we can still compute L(0ni) from f ′G(0) in polynomial time. To this end
we have simply to ensure that ni+1 > q(ni), where the polynomial is given
by Corollary 1. Once we have constructed Gi, fi and ni with this property we
proceed in step i+1 as follows: First we find some n′i+1 so that we can compute fi
in polynomial time for all inputs of length at least n′i+1. Then we choose ni+1 to
be the maximum of q(ni) and n′i+1. Following the idea of the proof of Theorem
4 we can compute a domain G1

ni+1
so that L(0ni+1) can be computed from

f ′G1
ni+1

(0) in polynomial time. If we finally fix Gi+1 to be Gi+1 = f−1i (G1
ni+1

)

and fi+1 = fG1
ni+1
◦ fi, we can still compute the value L(0ni+1 from f ′i+1(0) in

polynomial time: Simply divide f ′i+1(0) by f ′i(0) to get f ′G1
ni+1

(0). As f ′i(0) can

be computed in polynomial time by choice of n′i+1, we are done. Notice that
we can define n′i+1 because fi is a composition of Riemann mappings fG′ for
slit-maps G′ as L(0ni) ∈ {0, 1} for all i.

�
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Using the ideas of the previous proof, we can also show the existence of G in
the second case. Before giving this result we need to specify the conjecture on
the existence of efficient algorithms for Schwarz-Christoffel mappings.

We will consider polygons given by the list of their vertices, which we assume
to be complex dyadics. Furthermore we restrict ourselves to polygons which are
the boundary of some domain in G. Let Polygon be the set of the polygons
restricted in such a way. Furthermore we introduce a standard representation
νPolygon :⊆ Σ∗ → Polygon by simply taking 〈d1, ..., dn〉 to be a νPolygon-

name for a polygon γ, iff the di’s are names of the complex dyadic vertices of γ
in counter clockwise order. Finally we will not distinguish between polygons γ
and the corresponding domains with boundary γ, which we denote by I(γ).

By the well known Schwarz-Christoffel formula (see e.g. [DT02]), fγ is deter-
mined by

f−1γ (z) = C ·
∫ z

0

(1− x/zk)αk−1dx

where zk are the images fγ(wi) of the vertices wi of γ, αkπ are the interior angles
of γ and C is a positive real number. We can compute the integral above quite
efficiently once we know C and z1,...,zk. The determination of these parameters
is called the parameter problem of the Schwarz-Christoffel mapping. The usual
way to solve this problem in numerics is to consider the non-linear system com-
posed of the side-length conditions and a transformation to get an unconstrained
system, i.e. to get rid of the condition on the ordering of the vertices and images
of the vertices. Then this system of equations is solved by well known methods.
There exist however examples, where this leads to local solutions which are not
solutions for the Schwarz-Christoffel parameter problem. We do not know wether
these methods are applicable to our problem. Notice however that in contrast
to the general parameter problem, the polygons used in the proof below, can be
chosen up to some degree, thus probably simplifying the problem.

There are other methods to solve the parameter problem, for example by
deriving conditions on the so called cross ratios (see [DV98]). This seemingly
leads to equations, which might be solvable efficiently in general.

Unfortunately, however, there does not exist an analysis of these methods,
which can be translated to the rigorous definition of complexity we need. Thus
we will give here the result we need, and which is claimed in a much stronger
sense in numerical analysis, as a conjecture.

Conjecture 1. There exists a polynomial p and a computable function FSC :
Polygon × D → N × D so that for each γ ∈ Polygon there exist nγ so that
FSC(γ, z) = (nγ , f

−1
γ (z)) for all z ∈ D, and FSC is computable in time O(nγ ·p).

Here fγ denotes the Riemann mapping with fγ(0) = 0 and f ′γ(0) > 0.

Using a similar proof technique as in the first case we can show the existence
of the domain G also in the second case:

Theorem 6. There exists a polynomial time computable (Jordan) domain G ∈
G, so that fG is not polynomial time computable if ]P1 6=sel FP1 and Conjecture
1 holds.
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6 Remarks

We have proved lower bounds on the complexity of Riemann mappings even
in the computational case. As shown, a proof that the parameter problem of
Schwarz Christoffel mappings is polynomial time computable, which is undoubt-
edly interesting on its own, would improve upon the bound we have given. An-
other interesting question is, wether it is possible to prove such a result for more
general separation assumptions than the selective separation we have used.

Finally, a more general connection between orhtonormal polynomials and fG
for domains with non-analytic boundaries would be interesting. (Such results
exist, but the corresponding speed of convergence for the Bieberach polynomials
is too slow to be reasonable applicable, see e.g. [Gai87].)

For domains with analytic boundaries, a polynomial time algorithm for the
Riemann mapping can be also deduced differently, by different relation of the
Riemann mapping and orthonormal polynomials via a theorem by Carlemann
(see [Gai87] for more details).
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Abstract. In mathematics curves are defined as the images of continu-
ous real functions defined on closed intervals and these continuous func-
tions are called parameterizations of the corresponding curves. If only
simple curves of finite lengths are considered, then parameterizations can
be restricted to the injective continuous functions or even to the continu-
ous length-normalized parameterizations. In addition, a plane curve can
also be considered as a connected one-dimensional compact subset of
points. By corresponding effectivizations, we will introduce in this paper
four versions of computable curves and show that they are all different.
More interestingly, we show also that four classes of computable curves
cover even different sets of points.
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1 Introduction

In computable analysis, we are mainly interested in the computability over var-
ious continuous structures. One realistic approach to this kind of computability
is the Turing-machine-based bit model (see [7, 11, 2]). In this model, real num-
bers are represented by effectively convergent sequences of rational numbers and
these sequences are called names of the real numbers. Here a sequence (xn) con-
verges effectively means that |xn − xn+1| ≤ 2−n for all n. A real number x is
computable if it has a computable name. Furthermore, a real function f is com-
putable if there is a Turing machine which transfers each name of a real number
x in the domain of f into a name of f(x). By the same principle, computability
of other mathematical objects can be defined by introducing proper “naming
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systems”. For example, the computability of subsets of the Euclidean space [1],
of semi-continuous functions [12], of functional spaces [13] are all defined in this
way. All these computability of mathematical objects are achieved by a kind of
“effectivization” of the classic mathematic definitions.

Particularly, we can introduce the computability of curves in this way too. We
consider the plane curves in this paper only. The curves of higher dimensions
can be discussed in essentially the same way. Notice that, there are different
mathematical approaches to define curves. For example, a curve can be defined as
a connected and one-dimensional compact subset. Based on this approach we can
define the computable curves by means of the computability of compact subsets
of Euclidean space ([1]). Physically, a curve records the trace of a particle motion.
If the particle moves according to some algorithmically definable laws, its trace
should be regarded as computable. In mathematical terms, a curve is the range
of a continuous function defined on a closed interval and this function is called a
parametrization of the curve. If a curve has a computable parametrization, then
it should be naturally considered as a computable curve (see e.g., [4, 5]).

However, the parametrization of a curve may have various extra properties,
particulary if we consider the curves which do not intersect itself and have finite
length. Normally, a parameterization of a plane curve C is just a continuous
function f : [0, 1]→ R2. This paramaterization possibly traces some segment of
the curve several times. That is, the parameterization f retraces the curve, or it
is retraceable. If a curve does not intersect itself, then, by a classic theorem in
analysis, it has always an injective parameterization (with possibly exemption at
the endpoints of the interval). In addition, if C has a finite length, then it has even
an arc-length normalized parameterization. Here a parametrization f is called
arc-length normalized, if the curve-segment f([0, t]) has a length proportional to
the parameter t, for any t ∈ [0, 1].

In this paper we will introduce four versions of computable curves by ef-
fectivizing above four mathematical approaches to the curves. We will see that
these four versions of computability about curves are all different. The differ-
ence of the computability of curves introduced by computable parameterizations
and computable injective parameterizations was already shown by Gu, Lutz and
Mayordomo in a recent paper [5]. The separations of four versions of computable
curves shown in this paper hold actually in a more stronger sense. Namely, the
point sets covered by four classes of computable curves are also different. In
other words, different versions of computable curves can be separated by points
and then they are “point-separable” (see definition in Section 4).

Our paper is organized as follows. In Section 2 we will briefly recall some
basic notions related to curves, give the precise definition of computable curves
and then show some basic properties of computable curves. In Section 3, we
show a technical lemma which will be used in the proof of the main theorem.
In Section 4 we prove our main results that four classes of computable curves in
different sense are point-separable.
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2 Computable Curves

In mathematics, a plane curve is defined as a subset C ⊆ R2 which is the range
of a continuous function f : [0; 1] → R2, i.e., C = range(f). This continuous
function f is then called a parametrization of C. Here we use w.l.o.g. the unit
interval [0, 1] instead of more general closed intervals of the form [a, b]. Obvi-
ously, any curve has infinitely many parameterizations. Geometrically, a curve
records the path of a particle movement on the plane. If the particle never visit
one position more than once, in other words, if the curve does not intersect itself
(with possible exemption of end points), then the curve is called simple. A classi-
cal mathematical theorem asserts that, any simple curve has a parameterization
f : [0; 1] → R2 which is injective on [0; 1). If a curve C has an injective param-
eterization f (meaning injective on the interval [0; 1)) and fulfills in addition
f(0) = f(1), then the curve C is called closed.

For the simple curves, their lengths can be defined by approximation of the
lengths of polygons which converges to the curves according to Jordan [6]. More
precisely, Let C be a simple curve and let f : [0; 1]→ R2 be an injective contin-
uous parameterization of C. The length L of the curve C is then defined by

L := sup

n∑
i=0

|f(ai)− f(ai+1)|.

where |f(ai) − f(ai+1)| is the length of the straight line connecting the points
f(ai) and f(ai+1) and the supremum is taken over all possible partitions 0 =
a0 < a1 < ... < an = 1. The length of a curve C is denoted by l(C) := L. A
curve of a finite length is traditionally called rectifiable. Not every curve has a
finite length. Some curves can even fill whole space like Peano curves (see e.g.
[3]). In this paper we are mainly interested in the simple rectifiable curves.

It is well known in analysis that every simple, rectifiable curve has also a
length-normalized parameterization. Here a length-normalized (or simply nor-
malized) parameterization of a curve C is an injective continuous function f :
[0, 1] → R2 such that the curve segment f([0, t]) has the length t · l(C) for
all t ∈ [0, 1]. Thus, a simple rectifiable curve can have three different kind of
parameterizations—continuous, injective continuous and normalized. In addi-
tion, a curve can also be defined as a connected one-dimensional compact point
set. By effectivizing these approaches to curves, we can introduce four different
versions of computable curves.

Remember that a real function f : [0; 1] → R is computable if there is a
Turing machine M which transfers any name of x ∈ [0, 1] to a name of f(x).
Equivalently, f is computable iff there is a computable sequence (pn)n∈N of
computable rational polygon functions which converges uniformly and effectively
to f (see [10]). Naturally, a function f : [0; 1] → Rn is computable if all of its
component functions are computable, or equivalently, if there is a Turing machine
M which transfers any name of x ∈ [0, 1] into a tuple (α1, · · · , αn) of names of
f1(x), · · · , fn(x) respectively, where f(x) = (f1(x), · · · , fn(x)). In this case, we
simply say that M computes the function f .
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Now we call define the computable curves as follows.

Definition 1. Let C be a simple plane curve.

1. C is called K-computable if there is a computable sequence (Qn) of finite
sets of rational neighborhoods such that

C ⊆
⋃
Qn and dH

(⋃
Qn, C

)
< 2−n (1)

for all n ∈ N, where dH denotes the Hausdorff distance.
2. C is called R-computable if there is a computable function f : [0; 1] → R2

such that range(f) = C.
3. C is called M -computable if there is a computable function f : [0; 1] → R2

which is injective on [0; 1) such that range(f) = C.
4. C is called N -computable if C has a computable parameterization f : [0; 1]→

R2 such that the length of the curve segment f([0, t]) is equal to t · l(C) for
all t ∈ [0, 1].

In the item 1 of the definition, the finite sets Qn of rational neighborhoods
are also called compact covers of the curve C. The second part of the condition
(1) means that the maximal distance from C to bordering of the compact cover
Qn is bounded by 2−n. In this paper, an ε-neighborhood Vε(a, b) of a point with
Cartesian coordinates (a, b) means the rectangle bounded by the lines x = a± ε
and y = b ± ε. A neighborhood Vε(a, b) is called rational if a, b and ε are all
rational numbers. The letter K of the K-computability comes from the German
word Kompakt (compact) due to the compact coverings.

In the item 2, the letter R stands for Retracable because the parametrization
f of a R-computable curve C can retrace the curve C. Namely, there could be
some disjoint subintervals I1, I2 ⊂ [0, 1] such that f(I1) = f(I2). In this case, f
traces some pieces of C more than once, or f is retraceable.

If the paramaterization of a curve C is injective, then C records the move-
ment of a particle with a monotone direction. The letter M in M -computability
stands for Monotonically directed movement. Notice that, in this paper, we call
a parameterization f : [0, 1]→ R2 injective even if it is only injective on [0; 1) and
does not exclude the possible case f(0) = f(1). This should not cause essential
confusions.

Finally, if a parameterization f : [0, 1] → R2 satisfies the condition that
the length of the curve segment f([0, t]) is proportional to t, then it is called
arc-length normalized. Thus, N -computability stands for Normalized parame-
terization.

It is well know that not every curve has a finite length. For example, the
famous Peano curve can even fill the two-dimensional plan (see e.g., Peano [9])
and has an infinite length. From the definition 1, an N -computable curve has
always a finite length. However, the next theorem shows that an M -computable
curve does not necessarily have an finite length any more. This distinguishes the
N -computability from other three versions of computability immediately.
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Theorem 1. There is an M -computable curve C which has an infinite length.

Proof. (Sketch) We can construct firstly a computable sequence (pn) of rational
polygons such that distance between pn and pn+1 is bounded by 2−n and pn+1

has doubled length of pn by introducing many small zigzags, for all n. Then, the
limit p := lim pn is a curve of infinite length. Corresponding to each polygon pn
we can define a computable injective function fn : [0, 1] → R2 as a parameter-
ization of pn, and in addition, we can require that |fn(t) − fn+1(t)| ≤ 2−n is
satisfied for all n ∈ N and t ∈ [0, 1]. Therefore, the limit function f := lim fn
is an injective computable parameterization of the curve p and hence p is an
M -computable curve with an infinite length.

Although a computable curve may have an infinite length, computable rec-
tifiable curves seem more interesting and more important. In this paper we will
mainly focus only on the computable curves of finite length and we denote by
CK ,CR,CM and CN the classes of all K-, R-, M - and N -computable rectifi-
able curves, respectively. By definition, it is straightforward that we have the
following relationship between these four versions of computable curves.

Theorem 2. CN ⊆ CM ⊆ CR ⊆ CK .

Actually we will see that all these four versions of computability of curves
are different and hence all the subset relations above are proper.

In the paper [5], Gu, Lutz and Mayordomo have shown that any rectifiable
R-computable curve has a left computable length, where a real number x is left
computable or computably enumerable (c.e. for short) if there is an increasing
computable sequence (xn) of rational numbers which converges to x. This can
be strengthen further to the K-computable curves as follows.

Theorem 3. Any rectifiable K-computable curve has a left computable length.

Proof. (Sketch) If C is a rectifiable K-computable curve, then there is a com-
putable sequence (Qn) of rational compact covers of C such that dH (

⋃
Qn, C) <

2−n and Qn consists of rational neighborhoods. In each cover
⋃
Qn we can find

the shortest polygon which straight through the whole area. This polygon is
called a “diameter polygon” of the cover Qn. The length ln of this polygon is a
lower bound of the length of C (possible with the error ≤ 2−n+1 because of the
endpoints). Since C has a finite length l, the limit l = lim ln is left computable
because ln − 2−n+1 ≤ l for all n.

By Theorems 2 and 3, any rectifiable R-, M - and N -computable curve has left
computable length. Ko [8] constructed “monster curve” which is M -computable
(even in polynomial time) with a non-computable length. The fact that the
length of an M -computable curve is not necessarily computable follows also
from the next result.

Theorem 4. If C is a K-computable curve with a computable length, then C
must be N -computable.
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Proof. Suppose that C is K-computable whose length l is a computable real
number. Then there is a computable sequence (Qn) of rational compact covers
of C and a computable sequence (ln) of rational numbers which converges to l
effectively. Let qn be the length of the “diameter polygon” of the area

⋃
Qn.

For each n ∈ N, we can find a sufficiently large index sn such that |qsn−lsn | ≤
2−n. Such an index sn exists because both sequences (qs) and (ls) converge to
the same limit l(C). Suppose that pn is a rational “diameter polygon” of the
area

⋃
Qsn and let fn be the length-normalized parameterization of pn. Then

(fn) is a computable sequence of computable functions which converges effec-
tively to a computable function f . This limit function f is a length normalized
parameterization of C. Therefore, the curve C is N -computable.

Notice that, if we consider only the curves of computable length, then the
K-, R-, M - and N -computability of curves are equivalent. Now let C be an M -
computable rectifiable curve which is not N -computable (by Theorem 8). This
curve C is of course K-computable (Theorem 2). By the Theorem 4, C does not
have a computable length. In fact, by a direct construction, we can show that
even an N -computable curve may have a non-computable length.

Theorem 5. There is an N -computable curve with a non-computable length.

Proof. (Sketch) Let l be a left computable but not computable real number.
There is an increasing computable sequence (ln) of rational numbers which con-
verges to l. Construct a computable sequence (pn) of rational polygons such
that the distance between pn and pn+1 is bounded by 2(n+1) and ln = l(pn)
for all n. Then we can choose a normalize computable parameterization fn
of pn such that |fn(t) − fn+1(t)| ≤ 2−n for each n. Therefore the limit curve
p := lim pn has a computable normalized parameterization f := lim fn and
hence is N -computable. The length of the N -computable curve p is l which is
not computable.

3 A Technical Lemma

In this section we will show a technical lemma which will be used for the proofs
of our main results in section 4. Remember that our goal is to separate the
classes of curves by points covered by the curves. That is, we are interested in
the points which are covered by curves from one class of curves but cannot be
covered by any curves from another class of curves.

The next lemma shows a simple fact related to two curves which separates a
curve from another one by a small neighborhood as long as the first curve is not
a part of the second.

Lemma 1. Let C and C ′ be two rectifiable, non-closed simple curves and let
g : [0; 1] → R2 be a parametrization of C ′. If we have C ′ ∩ Uz 6= ∅ for all
points z ∈ C and all open neighborhoods Uz of z, then there exists an interval
[a; b] ⊆ [0; 1] such that g([a; b]) = C.
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Proof. Suppose that C,C ′ are rectifiable, non-closed simple curves. If C ′∩Uz 6= ∅
for any point z ∈ C and any open neighborhood Uz of z, then C must be a part
of C ′, i.e., C ⊆ C ′. Otherwise, by the compactness of C ′, we can find a point z in
C\C ′ which has a positive distance from C ′ and hence some open neighborhood
of z is disjointed from C which contradicts the hypothesis.

Because C ′ is a rectifiable simple curve, there exists an one-to-one param-
eterization f : [0; 1] → C ′. This parameterization f must be injective since C ′

is non-closed. Therefore the inverse function f−1 exists which is also continuous
and maps particularly two end points of C to u, v ∈ [0; 1]. Suppose w.l.o.g. that
u < v. Then we have f([u; v]) = C.

Let h : [0; 1]→ [0; 1] be a continuous function defined by h := f−1 ◦ g. Since
f([0; 1]) = C ⊆ C ′ = g([0; 1]), we have [u; v] ⊆ h([0; 1]). By the continuity of h,
there exist a ∈ h−1(u) and b ∈ h−1(v) such that h([a; b]) = [u; v] (we suppose
w.l.o.g that a < b). This implies immediately that g([a; b]) = C.

By Lemma 1, if a curve C is not contained completely in another curve C ′,
then there exist a point z in C and a small neighborhood Uz around z such
that U is totally disjoint from the curve C ′. Particularly, if C is longer than
C ′, then C cannot be completely contained in C ′. If in addition C is a rational
polygon and C ′ is a computable curve, then such a point z and the corresponding
neighborhood Uz can be effectively found. That is, we have the following lemma.

Lemma 2. Let C be a rational polygon and let C ′ be a computable curve. If the
curve C is not contained completely in the curve C ′, then we can effectively find a
rational point z on C and a rational neighborhood Uz of z such that C ′∩Uz = ∅.

4 Point-Separability

This section will prove our main results that the four versions of computable
curves introduced in the Definition 1 are different. More interestingly, we will
see that four classes of computable curves cover even different point sets in the
plane.

The difference between the R-computable curve and M -computable curve
follows from a recent result of Gu, Lutz and Mayordomo [5]. They actually show
that there is a polynomial time computable curve Γ which does not have any in-
jective computable parametrization. In other words, any computable parametriza-
tion f of Γ must be retraced in the sense that f(I1) = f(I2) for some disjoint
subintervals I1, I2 ⊆ [0; 1]. Thus, Γ is R-computable but not M -computable.

Our main theorem shows actually even more. Namely, the four classes CK ,
CR, CM and CN of computable curves are not only different, they cover also
different sets of points in the plane. More precisely, they are all “point-separable”
in the following sense.

Definition 2. Let C and C1 be classes of curves.

1. A point x is called a C-point if it is a point of some curve C in the class C.
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2. The classes C and C1 are called point-separable if the sets of C-points and
C1-points are different.

Remember that a function f : [0, 1]→ R2 is computable if there is a Turing
machine which computes f . Let (Mn) be an effective enumeration of all Turing
machines Mn which compute the (possibly partial) functions ϕn : [0, 1] → R2.
Then (ϕn) is an effective enumeration of functions including all total computable
functions from [0, 1] to R2.

Theorem 6. There exists a K-computable curve C and a point z on C such
that z does not belong to any R-computable curve C ′. In other words, the classes
CK and CR are point-separable.

Proof. (Sketch) We are going to construct a K-computable curve C and a point
z which satisfy the condition mention in the theorem. By Definition 1, the
K-computability of the curve C requires a computable sequence of finite sets
(compact covers) of rational neighborhoods which approximates the curve C ef-
fectively. Such kind of compact covers can be easily constructed from rational
polygons. Therefore, we need only to construct a computable sequence (pn) of
rational polygons which converges effectively to the curve C.

If C ′ is an R-computable curve, then C ′ has a computable parameterization
ϕi : [0, 1] → R2, for some i, which is computed by the Turing machine Mi. De-
note this curve simply by Ci. For the technical simplicity, let Ci be an empty
set (curve) if Mi does not compute a total computable function. Therefore (Ci)
is an effective enumeration of all R-computable curves. Thus, it suffices to con-
struct the K-computable curve C and a point z on C which satisfy the following
requirements:

Ri : If Ci has a finite length, then point z does not belong to Ci

To satisfy a single requirement Ri, we choose a straight line segment of the
constructed polygon C. For simplicity, consider just the line segment J which
connects the points (0, 0) and (1, 0). Simulate the computation of Mi to sufficient
precision. If Mi computes a parameterization of the curve Ci which is not very
close to J , then, by Lemma 1, we can find a point z on J and a neighborhood V
of z such that Ci ∩ V = ∅. If, on the other hand, Ci looks very close to J , then
we have to look at more closely how the function ϕi possibly traces the segment
J .

For any q ∈ [0, 1] and ε < l(J)/2, we say that ϕi has a (q, ε)-sweep if the
function ϕi approximately traces from (q, 0) to (q+ε, 0), back to (q, 0) and finally
passes (q + ε, 0) forwardly again. As a parameterization of the curve Ci, ϕi can
retrace some segment of Ci several times. However, it is impossible, for a fixed ε,
that it has (q, ε)-sweep for all q ∈ [0, 1]. If at some stage we find that ϕi cannot
have a (q, ε)-sweep, then replace the linear segment from (q, 0) to (q + 2ε, 0) by
the polygon which connects the points (q, 0), (q + ε, 0), (q, δ) and (q + 2ε, 0) in
the given order. Where δ > 0 is a rational number which should be small enough
to guarantee the K-computability of the constructed curve. After this change,
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the constructed new polygon C is different enough from Ci so that we can apply
the Lemma 1 again to find a point z on C and a neighborhood V such that
Ci ∩ V = ∅.

In both cases, we have a neighborhood V such that every point in this neigh-
borhood and in C satisfies the requirement Ri. Then, we can consider the seg-
ment of C in the neighborhood V to satisfy other requirements Rj for j > i.
Formally we need a finite injury priority construction

Theorem 6 separates the K-computability from R-computability. In [5] it is
shown that the R-computability and M -computability are different too, that is,
there is an R-computable curve which does not have any injective computable
parameterization at all. This can also be followed from our next more strong
result.

Theorem 7. There exists an R-computable curve C and a point z on C such
that z does not belong to any M -computable curves C ′. That is, the classes CR

and CM are point-separable.

Proof. (Sketch) We are going to construct an R-computable curve C and a point
z on C which satisfy all the requirements

Ri : If ϕi is an injective parameterization of Ci, then z is not on Ci.

where (ϕi) is a computable enumeration of all (possibly partial) computable
functions ϕi : [0, 1]→ R2. The construction uses again the finite injury priority
method. We explain the rough idea how to satisfy a single requirement Ri only.

Take a linear segment of the constructed polygon C. For simplicity, consider
just the line segment J from the point (0, 0) to (1, 0) with a parameterization
ϕ which sweeps between these points. That is, ϕ goes from (0, 0) to (1, 0) first,
then back to (0, 0) and finally goes through (1, 0) again. This is allowed because
we want to construct an R-computable curve C.

Simulate the computation of Mi which computes the function ϕi to sufficient
precision. If ϕi is an injective parameterization of Ci, then consider the following
cases:

Case 1. Ci is not close to J at all, then we are done by the Lemma 1.

Case 2. Ci closely passes the segment J only once. In this case, alter the
segment J by a Z-sweep of height δ which is a polygon connecting the points
(0, 0), (1, δ), (0,−δ) and (1, 0) in the given order. Where δ > 0 is a sufficiently
small rational number. Then the Lemma 1 can be applied.

Case 3. Ci is close to J and also has Z-sweeps near J . Suppose that the
minimal height of all these Z-sweeps is ε > 0. Then replace the segment J by a
Z-sweep of a height δ such that δ < ε/2. After that we can apply the Lemma 1.

In all three cases, according to Lemma 1, we can fine a z on C and a neighbor-
hood V of z such that Ci ∩ V = ∅. Thus, the segment of C in the neighborhood
V can be used to satisfy other requirements Rj for j > i. The priority technique
guarantees that all requirements can be satisfied simultaneously.
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Finally, we want show the difference between M - and N -computability of
curves.

Theorem 8. There exists an M -computable curve C and a point z on C such
that z does not belong to any N -computable curves C ′. That is, the classes CM

and CN are point-separable.

Proof. (Sketch) We use priority technique again to construct an M -computable
curve C and a point z on C such that the following requirements are satisfied

Ri : If ϕi is a length-normalized parameterization of Ci, then z is not on Ci.

Suppose that Ci is an N -computable curve and ϕi is a length-normalized
parameterization of Ci. Choose a linear segment J of already constructed curve
C. For simplicity, let J be the line segment connecting the points (0, 0) and (1, 0).
Compute ϕi to sufficient precision. If Ci is not close to the segment J , then we
can apply the Lemma 1 directly. Otherwise, suppose that Ci is very close to
the segment J . That is, there are t1, t2 ∈ [0, 1] such that the segment ϕi([t1, t2])
almost coincides with J . Then compute the middle point ϕi((t1 + t2)/2) of the
segment ϕi([t1, t2]) and check if it is close to the middle point of J . If it is not
the case, then ϕi is not length-normalized and we are done. Otherwise, double
the length of the first half of the segment J (i.e. the part from (0, 0) to (1/2, 0))
by introducing small zigzags. This makes the new segment different enough from
the curve Ci and hence we can apply the Lemma 1 to find a point on C and
a neighborhood V of z such that V ∩ Ci = ∅. Therefore, the standard priority
construction works.

Notice that anN -computable curve has a computable parameterization which
traces the curve in one direction and with a constant speed. Thus, Theorem 8
shows that some curve describes the computable particle motion in one direction
but the speed of the motion cannot be constant.

Remark: In the proofs of above three theorems, we always choose a linear
segment J which connects the points (0, 0) and (1, 0). This choice may help
reader to understand how a new polygon should be constructed. However, there
is a drawback for this choice of J that we cannot see how to guarantee that the
constructed curve has a finite length. So in more formal constructions, we should
choose the segment J with much short length so that the new curve increases
the length only in a very small portion. This guarantees that the constructed
curve is rectifiable.
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Abstract. We introduce the notion of quasi-zero-dimensionality as a
substitute for the notion of zero-dimensionality, motivated by the fact
that the latter behaves badly in the realm of qcb-spaces. We prove
that the category QZ of quasi-zero-dimensional qcb0-spaces is cartesian
closed. Prominent examples of spaces in QZ are the spaces in the sequen-
tial hierarchy of the Kleene-Kreisel continuous functionals. Moreover, we
characterise some types of closed subsets of QZ-spaces in terms of their
ability to allow extendability of continuous functions. These results are
related to an open problem in Computable Analysis.

Keywords: Computable Analysis, Qcb-spaces, Extendability

1 Introduction

The category QCB of quotients of countably based spaces [15] has excellent
closure properties. For example, it is cartesian closed, in contrast to the category
Top of all topological spaces (see [1, 12]). This means that QCB allows us to form
products and functions space with the usual transposing properties. Qcb-spaces
are known to form exactly the class of topological spaces which can be handled
appropriately by the representation based approach to Computable Analysis,
the Type Two Model of Effectivity, TTE ([16]).

Unfortunately, exponentiation in QCB behaves badly in terms of preservation
of classical topological notions like regularity, normality and zero-dimensionality.

For example, the function space N(NN) formed in QCB is neither zero-dimensional
nor normal (see [13]) despite the fact that both the exponent NN and the basis
N are even zero-dimensional Polish spaces. In [14] the notion of a quasi-normal
qcb-space is introduced as a substitute for normality in the realm of qcb-spaces
(see Section 2.7). This notion has the advantage of being preserved by expo-
nentiation in QCB. Moreover, quasi-normal qcb-spaces admit a Tietze-Urysohn
Extension Theorem for continuous real-valued functions defined on functionally
closed subspaces.

In an analogous way, we introduce the notion of a quasi-zero-dimensional
qcb-space (see Section 3). The category QZ of quasi-zero-dimensional qcb-spaces
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turns out to be an exponential ideal of QCB. In Section 4 we investigate ex-
tendability of continuous functions that have as codomain either a quasi-zero-
dimensional qcb-space or the real numbers. We prove that a subspace X of a
QZ-space Y admits continuous extendability of all continuous functions from X
to N if, and only if, X is in closed in the zero-dimensional reflection of Y. Analo-
gously, we characterise functionally closed subspaces of a quasi-normal qcb-space
as those subspaces that admit continuous extendability of all continuous real-
valued functions defined on them.

In Section 5 we discuss the relationship of our results with an open problem
in Computable Analysis. The problem is whether two hierarchies of functionals
over the reals coincide (see [2]).

Since this is an extended abstract, most proofs are omitted.

2 Preliminaries

We repeat some notions and basic facts about sequential spaces, qcb-spaces,
pseudobases, and quasi-normal spaces. Moreover, we remind the reader of the
definition of the completely regular reflection and of the zero-dimensional reflec-
tion of a sequential space.

2.1 Notations

We use sans-serif letters like X,Y etc. to denote topological spaces. We write
O(X) for the topology of a topological space X and A(X) for the family of closed
sets of X. In abuse of notation, we will denote the carrier set of a space X by the
same symbol X.

We use the following symbols for relevant topological spaces: R for the space
of real numbers endowed with the Euclidean topology, I for the unit interval [0, 1]
endowed with the Euclidean subspace topology, N for the discrete topological
space of natural numbers {0, 1, 2, . . . }, J for the one-point compactification of N
with carrier set N∪{∞}, and the the sans-serif letter 2 for the two-point discrete
space with points 0 and 1.

2.2 Sequential spaces, sequential coreflections

A subset A of a topological space X is called sequentially closed, if A contains
any limit of any convergent sequence of points in A. Complements of sequentially
closed sets are called sequentially open. For a given topology τ , we denote the
topology of sequentially open sets by seq(τ). Spaces such that every sequentially
open set is open are called sequential. The sequential coreflection (or sequential-
isation) seq(X) of X is the topological space that carries the topology seq(O(X))
consisting of all sequentially open sets of X. The operator seq is idempotent. Im-
portantly, a function between two sequential spaces is topologically continuous
if, and only if, it is sequentially continuous.

For more details about the theory of sequential spaces we refer to [3, 17].
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2.3 Qcb-spaces

A qcb-space [15] is a topological quotient of a countably-based topological space.
Qcb0-spaces, i.e. qcb-spaces that satisfy the T0-property, are well-established to
be exactly the class of sequential spaces which can be handled by the Type Two
Model of Effectivity.

Qcb-spaces are hereditarily Lindelöf (i.e. any open cover of any subset has a
countable subcover) and sequential. The category QCB of qcb-spaces as objects
and of continuous functions as morphisms is cartesian closed. Moreover, QCB
has all countable limits and all countable colimits. For two qcb-spaces A and B
we denote by A × B their product, by A + B their coproduct, and by BA their
function space formed in QCB.

More information can be found in [1, 11, 12, 15].

2.4 Pseudobases and pseudo-open decompositions

Given a topological space X, we say that a family A of subsets of X is a pseudo-
open decomposition of a subset M , if M =

⋃
A holds and for every sequence

(xn)n that converges to some element x∞ ∈ M there is some set B ∈ A and
some n0 ∈ N such that {xn, x∞ |n ≥ n0} ⊆ B ⊆ M holds. Clearly, a set has a
pseudo-open decomposition if, and only if, it is sequentially open.

A (sequential) pseudobase for X is a family B of subsets such that every
open set has a pseudo-open decomposition into members of B. Any base of
topological space is a pseudobase, but not vice versa. Pseudobases characterise
qcb-spaces: a sequential space is a qcb-space if, and only if, it has a countable
pseudobase. Any countably pseudobased space is hereditarily Lindelöf and its
sequential coreflection is a qcb-space. In this paper we will only deal with spaces
having a countable pseudobase. More information can be found in [4, 12, 15].

2.5 Completely regular reflections, functionally open sets

Let X be a sequential space. The completely regular reflection of X is defined to
carry the topology that is induced by the base

B :=
{
h−1(0, 1]

∣∣h : X→ I is continuous
}
.

We denote this topological space by R(X). It has the property that every real-
valued function f on X is continuous w.r.t. the original topology O(X) if, and
only if, f is continuous w.r.t. the topology O(R(X)). If R(X) is a T0-space then
R(X) is a Tychonoff space.

A subset U of X is called functionally open, if there is a continuous function h
from X to the unit interval I = [0, 1] such that h−1{0} = X \A. Complements of
functionally open sets are called functionally closed. A common term for “func-
tionally closed set” is zero-set, and for “functionally open set” is cozero-set. We
denote the family of functionally open sets of X by FO(X) and the family of func-
tionally closed sets by FA(X). If X is a hereditarily Lindelöf space then FO(X)
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forms the topology of the completely regular reflection R(X). Otherwise FO(X)
need not be a topology.

Regularity, normality and perfect normality1 are equivalent for hereditarily
Lindelöf spaces, thus for countably pseudobased spaces and for qcb-spaces.

2.6 Zero-dimensional spaces, zero-dimensional reflections

A zero-dimensional space is a topological space that has a base consisting of
clopen (= closed and open) sets. Any zero-dimensional T0-space is regular. Zero-
dimensional hereditarily Lindelöf spaces X are even strongly zero-dimensional,
meaning that any pair of disjoint closed setsA,B can be separated by a clopen set
C (i.e. A ⊆ C ⊆ X\B). Strongly zero-dimensional T0-spaces are zero-dimensional
and normal.

Let X be a sequential space. The zero-dimensional reflection of X is defined
to be the space that carries the topology induced by the base

B :=
{
h−1{1}

∣∣h : X→ 2 is continuous
}
.

We denote this space by Z(X). Clearly, Z(X) is zero-dimensional. If X is heredi-
tarily Lindelöf then the zero-dimensional reflection Z(X) is hereditarily Lindelöf
as well and thus strongly zero-dimensional (see [3]).

2.7 Quasi-normal spaces and the category QN

A quasi-normal space is defined to be the sequential coreflection of some normal
space [14]. The category of quasi-normal qcb-spaces, which is denoted by QN,
is cartesian closed and inherits finite products and exponentials from its super-
category QCB. This is not the case for the category of normal qcb-spaces. Any
continuous function f : X→ R from a functionally closed subspace X of a space
Y ∈ QN can be extended to a continuous function F : Y → R. Details can be
found in [14].

3 Quasi-zero-dimensional Qcb-Spaces

In this section we introduce and investigate the notion of a quasi-zero-
dimensional qcb-space.

The category QCB of qcb-spaces is known to be cartesian closed. However,
forming function spaces in QCB does not preserve classical topological notions
like regularity, normality and zero-dimensionality. For example, the function

space N(NN) formed in QCB is neither zero-dimensional nor normal (see [13]),

1 A normal space is a T1-space such that for a pair of disjoint closed sets (A,B) there
exists a pair of disjoint open sets (U, V ) such that A ⊆ U and B ⊆ V . A perfectly
normal space is a T1-space in which every closed sets is functionally closed. Note
that some authors omit the T1-condition.
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although both N and NN are zero-dimensional and normal. Hence the final topol-

ogy of the natural TTE-representation on N(NN), which is equal to the topology

of N(NN), is not zero-dimensional. By contrast, the compact-open topology on

N(NN) is even strongly zero-dimensional.
This fact motivates the introduction of an appropriate substitute for the

property of zero-dimensionality in the realm of qcb-spaces. We use the same
idea as in [14], where the notion of quasi-normality is defined as a replacement
for normality. The idea behind the following definition is the fact that finite
products and function spaces in the category QCB are constructed as the se-
quential coreflection of their counterparts in classical topology, which enjoy the
property of preserving zero-dimensionality.

Definition 1. A qcb-space X is called quasi-zero-dimensional, if X is the se-
quential coreflection of a zero-dimensional T0-space.

So a qcb-space is quasi-zero-dimensional if, and only if, its convergence rela-
tion is induced by some zero-dimensional T0-topology. Clearly, any quasi-zero-
dimensional space is hereditarily disconnected. Simple examples of quasi-zero-
dimensional spaces are zero-dimensional separable metrisable spaces, because
they are equal to their own sequentialisation. By QZ we denote the full subcat-
egory of QCB that are quasi-zero-dimensional spaces.

Recall that a quasi-normal space is defined to be the sequential coreflection of
a normal space (see [14]). Since zero-dimensional hereditarily Lindelöf T0-spaces
are normal, we have:

Lemma 1. Any QZ-space is a QN-space (and thus a Hausdorff space).

3.1 Characterisation of quasi-zero-dimensionality

We will give now several characterisations of QZ-spaces. They are analogous to
characterisations of quasi-normality given in [14, Section 3.2]. We begin with the
following observation.

Lemma 2. A qcb0-space X is quasi-zero-dimensional if, and only if, it is the
sequential coreflection of its zero-dimensional reflection Z(X).

For the second characterisation, we define two families of (respectively, closed
and open) subsets of a topological space X by

ZA(X) :=
{
h−1{∞}

∣∣h : X→ J continuous
}
, ZO(X) :=

{
X \A

∣∣A ∈ ZA(X)
}
.

Here J denotes the one-point compactification of N. Obviously, every set in
ZA(X) is closed in the zero-dimensional reflection of X. We will sometimes use
the term Z-closed for the members of ZA(X) and Z-open for members of ZO(X).
In general, ZO(X) is not a topology, unless X is hereditarily Lindelöf.

Lemma 3. Let X be a hereditarily Lindelöf space. Then ZO(X) is the family of
all open sets of Z(X). Dually, ZA(X) is the family of all closed sets of Z(X).
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Obviously, every Z-closed in a quasi-zero-dimensional space is functionally
closed, because J is homeomorphic to the closed subspace {0, 2−n |n ∈ N} of I.
It is not known for which QZ-spaces the converse is true as well.

Definition 2. We say that a qcb-space X has Normann’s property, if X ∈ QZ
and every functionally closed set of X is closed in the zero-dimensional reflection
Z(X) of X (i.e. FA(X) = ZA(X)).

Clearly, zero-dimensional spaces have Normann’s property.

Lemma 3 implies the following reformulation of Lemma 2.

Corollary 1. A qcb0-space X is quasi-zero-dimensional if, and only if, its con-
vergence relation is induced by the topology ZO(X).

We now work towards a characterisation of quasi-zero-dimensionality in terms
of pseudobases. Recall that qcb-spaces are known to be those sequential spaces
that have a countable pseudobase (see Section 2.4). We start with the following
separation lemma for disjoint Z-closed subsets.

Lemma 4. Let X be a hereditarily Lindelöf space, and let A,B be disjoint closed
subsets of Z(X). Then there is a continuous function h : X→ J with h−1{∞} = A
and B ⊆ h−1{0}.

This lemma is instrumental in proving the following lemma about sequen-
tially open sets that are Gδ-sets in the zero-dimensional reflection of a QZ-space.

Lemma 5. Let X be a qcb-space equipped with a countable pseudobase consisting
of sets in ZA(X). Then every sequentially open set V ∈ O(X) that is a Gδ-set in
Z(X) is open in Z(X). Dually, every sequentially closed set A ∈ A(X) that is an
Fσ-set in Z(X) is closed in Z(X).

Now we are ready to characterise quasi-zero-dimensional qcb-spaces in terms
of properties of pseudobases.

Proposition 1. A qcb0-space X is quasi-zero-dimensional if, and only if, it has
a countable pseudobase consisting of sets in ZA(X).

Note that quasi-normal qcb-spaces are characterised via countable pseu-
dobases consisting of functionally closed sets (see [14, Proposition 4]).

A continuous function e : X → Y between sequential spaces X,Y is said to
reflect convergent sequences, if, for any sequence (xn)n in X and any point x∞ ∈
X, (xn)n converges to x∞ in X whenever (e(xn))n converges to e(x∞) in Y.

Proposition 2. A qcb-space X is quasi-zero-dimensional if, and only if, there
are a qcb-space Z and a continuous injection e : X→ 2Z that reflects convergent
sequences.
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3.2 Constructing quasi-zero-dimensional spaces

The category QZ of quasi-zero-dimensional qcb-spaces enjoys excellent closure
properties. Like quasi-normality, quasi-zero-dimensionality is preserved by form-
ing (i) countable products, (ii) subspaces, (iii) countable coproducts, and (iv)
function spaces in the category QCB of qcb-spaces. So QZ inherits the cartesian-
closed structure of QCB. In fact QZ is an exponential ideal of QCB.

Theorem 1. The category QZ of quasi-zero-dimensional qcb-spaces is cartesian
closed. Moreover, it has all countable limits, all countable colimits and is an
exponential ideal of QCB.

Proof. Similar to the proof of Theorem 6 in [14]. Alternatively, one can apply
Proposition 2.

Obviously, all zero-dimensional metric spaces are in QZ. Theorem 1 implies
that all Kleene-Kreisel spaces [5] of the form NZ belong to QZ. Furthermore, for
all k ∈ N the space N〈k〉 of Kleene-Kreisel continuous functional of order k (see
[7, 8, 10]) is a quasi-zero-dimensional space. The hierarchy (N〈k〉)k is recursively
defined by the formula N〈0〉 := N and N〈k + 1〉 := NN〈k〉. On the other hand,
the Euclidean space R is not quasi-zero-dimensional by being connected.

Remark 1. One can show that there is a cartesian closed embedding of QZ into
the cartesian closed category k20dim considered by G. Lukács in [9]. This cate-
gory is itself equivalent to a full reflective sub-ccc of the category of Hausdorff
k-spaces.

4 Extendability of continuous functions

In this section we investigate extendability of continuous functions defined on
subspaces of quasi-zero-dimensional spaces. Moreover, we classify subspaces in
terms of their ability to admit extendability of continuous functions.

4.1 A transitivity property for Z-closed sets

It is well-known that the subspace operator on topological spaces has the fol-
lowing transitivity property: Any closed subset of a closed subspace is closed in
the original space, whereas the analogous statement for functionally closed sets
is false in general (see [3, 2.1.B]).

In [14], it is shown that functionally closed sets in quasi-normal qcb-spaces do
have the transitivity property. Recall that functionally closed sets of a QN-space
Y are exactly the closed sets of the completely regular reflection of Y.

In Proposition 1 and Lemma 3 we have seen that Z-closed sets play a sim-
ilar role for QZ-spaces as functionally closed sets do for QN-spaces. Validity of
the transitivity property for Z-closed sets is related to extendability of continu-
ous functions with zero-dimensional codomains as follows: Let X be a Z-closed
subspace of a sequential space Y. If any continuous function from X to J (the
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one-point compactification of N) is extendable onto Y, then any closed subset
A of Z(X) is also closed in Z(Y): Choose continuous functions f : X → J and
g : Y → J with f−1{∞} = A, g−1{∞} = X and extend f to a continuous func-
tion F : Y → J. Then the function h : Y → J defined by h(y) := min{F (y), g(y)}
is a continuous function witnessing that A is closed in ZA(Y).

Fortunately, the transitivity property for Z-closed sets is valid in the realm of
QZ-spaces (see Proposition 3). So the zero-dimensional reflection of any Z-closed
subspace is a subspace of the zero-dimensional reflection of its QZ-superspace.

Proposition 3. Let Y ∈ QZ. Let X be a subspace of Y with X ∈ ZA(Y). Then
every set that is closed in Z(X) is closed in Z(Y). Moreover, Z(X) is a topological
subspace of Z(Y).

4.2 Extendability of continuous functions into QZ-spaces

In this section we work towards showing that, for any zero-dimensional Polish
space B, any continuous B-valued function defined on a Z-closed subspace of a
QZ-space is continuously extendable. We start by showing that clopens of Z-
closed subspaces extend to clopens of the whole space, provided that the latter
is in QZ.

Lemma 6. Let Y ∈ QZ, and let X be a subspace of Y with X ∈ ZA(Y). Then
for every set D that is clopen in X there is a clopen C in Y with D = C ∩ X.

Proof. By Proposition 3, both D and X \D are closed sets in Z(Y). By strong
zero-dimensionality of Z(Y), there is a clopen set C in Y with D ⊆ C ⊆ X \D.
Clearly, C ∩ X = D. �

Lemma 6 can be reformulated by stating that any continuous function from
a Z-closed subset into the two-point discrete space 2 has a continuous extension.

We now investigate the full subcategory ZEXT of QCB consisting of those
quasi-zero-dimenional qcb-spaces Z ∈ QZ that have the following property: For
all spaces Y ∈ QZ, for all Z-closed subspaces X of Y and for all continuous
functions f : X → Z there exists a continuous function F : Y → Z extending f .
Lemma 6 states that 2 is an object of ZEXT.

Given two qcb-spaces Y,B, we say that a subspace X of Y admits a continuous
extension operator for B, if there exists a continuous function E : BX → BY

satisfying E(f)(x) = f(x) for all x ∈ X and all continuous functions f : X → B.
Cartesian closedness of QZ (see Theorem 1) yields the following characterisation
of the objects in ZEXT.

Proposition 4. A space Z ∈ QZ is an object of ZEXT if, and only if, any Z-
closed subspace X of any space Y ∈ QZ admits a continuous extension operator
E : ZX → ZY for Z.

The category ZEXT enjoys excellent closure properties.
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Proposition 5.
1. If A,B ∈ ZEXT, then A× B ∈ ZEXT.
2. If B ∈ ZEXT and A ∈ QCB, then BA ∈ ZEXT.
3. If A,B ∈ ZEXT, then A + B ∈ ZEXT.
4. If B ∈ ZEXT and A is a QCB-retract of B, then A ∈ ZEXT.
5. If B ∈ ZEXT and A is a Z-open subspace of B, then A ∈ ZEXT.

In the category of sequential spaces and hence in QCB the discrete space N is

homeomorphic to the function space 22
N

by [2, Proposition 3]. Moreover, by [6,
Theorem 7.8] every zero-dimensional Polish space is homeomorphic to a closed
subset of the Baire space NN. In turn, this closed subspace is a retract of NN by
[2, Proposition 2]. We obtain by Proposition 5 and Lemma 6:

Example 1. The following spaces are objects of ZEXT:

(a) the discrete space N,
(b) the Baire space NN,
(c) any zero-dimensional Polish space,
(d) the one-point compactification J of N,
(e) for any k ∈ N the space N〈k〉 of all Kleene-Kreisel continuous functionals of

order k (see Section 3.2).

4.3 Subspaces that admit continuous extendability

Now we study under which conditions a subspace admits continuous extendabil-
ity of continuous functions. We start with the following simple observation.

Lemma 7. Let Y ∈ QZ and let X be a subspace of Y such that for every subset
D ⊆ X that is clopen in X there exists a clopen C in Y with D = C ∩X. Then X
is sequentially closed.

We have already seen that the property of X being closed in ZA(Y) is suf-
ficient to guarantee extendability of all continuous N-valued functions defined
on X. We show that this condition is also necessary.

Lemma 8. Let X be a subspace of a Y ∈ QZ. If every continuous function
h : X→ N can be extended to a continuous function H : Y → N, then X ∈ ZA(Y).

We obtain as an easy consequence:

Corollary 2. Let A be a retract of a space Y ∈ QZ. Then A is homeomorphic
to a Z-closed subspace of Y.

Lemma 8 generalises to all non-compact QZ-spaces replacing N as codomain
space.

Proposition 6. Let Z ∈ QZ such that Z is not compact. Let X be a subspace of
a space Y ∈ QZ such that every continuous function f : X → Z can be extended
to a continuous function F : Y → Z. Then X ∈ ZA(Y).
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Proposition 6 is a consequence of Lemma 8 and the following equivalence.

Lemma 9. A space X ∈ QZ is not compact if, and only if, N is a retract of X.

We do not know whether Lemma 8 is valid for the two-point discrete space 2
replacing N. However, the (possibly) stronger condition on a subspace X to admit
a continuous extension operator for the continuous functions with codomain 2
is enough to ensure that X is Z-closed.

Proposition 7. Let Y ∈ QZ. Let X be a subspace of Y that admits a continuous
extension operator E : 2X → 2Y. Then X ∈ ZA(Y).

With the help of Propositions 2, 5 and 7 one can prove:

Proposition 8. A qcb-space X is an object of ZEXT if, and only if, there is a
qcb-space Z such that X is a retract of 2Z.

We summerise some of the above results in a characterisation theorem for
sets that are closed in the zero-dimensional reflection.

Theorem 2 (Characterisation of Z-closed subsets). Let Y be a quasi-zero-
dimensional qcb-space, and let X be a subspace of Y. Then the following state-
ments are equivalent:

(a) The set X is closed in the zero-dimensional reflection Z(Y) of Y.
(b) The set is Z-closed (i.e. X ∈ ZA(Y)).
(c) The subspace X admits a continuous extension operator E : 2X → 2Y.
(d) The subspace X admits a continuous extension operator E : NX → NY.
(e) Any continuous function f : X→ N can be extended to a continuous function

F : Y → N.
(f) There is a non-compact quasi-zero-dimensional qcb-space Z such that any

continuous function f : X → Z can be extended to a continuous function
F : Y → Z.

4.4 Characterisation of functionally closed subsets

In this section we present a characterisation of all functionally closed subsets of
quasi-normal spaces that is similar to Theorem 2.

In [14] it is shown that real-valued functions defined on a functionally closed
subspace can be extended to the whole space, provided the latter is a quasi-
normal qcb-space. We remark that cartesian closedness of QN implies the fol-
lowing uniform versions of this extendability result.

Proposition 9. Let X be a functionally closed subspace of a space Y ∈ QN.
Then X admits continuous extension operators EI : IX → IY and ER : RX → RY.

Now we investigate under which condition a subspace admits continuous
extendability of continuous real-valued functions. We begin with the following
simple observation which is analogous to Lemma 7.
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Lemma 10. Let Y ∈ QN. Let X be a QCB-subspace of Y such that every con-
tinuous function f : X → I can be extended to a continuous function F : Y → I.
Then X is sequentially closed.

The fact that every qcb-space is hereditarily Lindelöf implies the following
observation.

Lemma 11. Let Y ∈ QN. Let X be a QCB-subspace of Y such that every con-
tinuous function f : X→ R can be extended to a continuous function F : Y → R.
Then X ∈ FA(Y).

We obtain the following corollary which parallels Corollary 2.

Corollary 3. Let A be a retract of a space Y ∈ QN. Then A is homeomorphic
to a functionally closed subspace of Y.

We do not know whether non-uniform extendability of all continuous func-
tions on X into the unit interval I = [0, 1] implies that X is functionally closed.
However, if X admits a continuous extension operator for I as codomain, then X
must be functionally closed (cf. Proposition 7).

Proposition 10. Let Y be a quasi-normal qcb-space. Let X be a QCB-subspace
of Y that admits a continuous extension operator E : IX → IY. Then X ∈ FA(Y).

We summerise the above results in a characterisation theorem for subsets of
quasi-normal qcb-spaces that are closed in the completely regular reflection.

Theorem 3 (Characterisation of functionally closed subsets). Let Y be
a quasi-normal qcb-space, and let X be a QCB-subspace of Y. Then the following
statements are equivalent:

(a) The set X is functionally closed in Y (i.e. X ∈ FA(Y)).
(b) The set X is closed the completely regular reflection R(Y) of Y.
(c) The subspace X admits a continuous extension operator E : IX → IY.
(d) The subspace X admits a continuous extension operator E : RX → RY.
(e) Any continuous function f : X→ R can be extended to a continuous function

F : Y → R.

5 Discussion

We have seen that the category QZ of quasi-zero-dimensional qcb-spaces and the
category QN of quasi-normal qcb-spaces enjoy several similarities, for example
they are exponential ideals of QCB. Both classes of topological spaces possess a
distinguished family of closed subsets (Z-closed subsets in the case of QZ and
functionally closed subsets in the case of QN) with following property: either class
is characterised by the existence of a countable pseudobase consisting of sets in
the respective family of closed subsets. Functionally closed subspaces of QN-
spaces are characterised as those subspaces that admit continuous extendability
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of real-valued functions, while Z-closed subsets are exactly the class of sets which
allow to extend continuous functions that have a Kleene-Kreisel space of the form
NZ as codomain.

It is not known whether every QZ-space Y has Normann’s property (i.e. every
functionally closed set in Y is Z-closed). This question is related to an open
problem in Computable Analysis, namely whether or not two natural hierarchies
of continuous functionals over the reals (called the intensional hierarchy and the
extensional hierarchy, see [2]) coincide. D. Normann [10] proved that the two
hierarchies agree if, and only if, for all k ≥ 2 the space N〈k〉 of Kleene-Kreisel
continuous functionals of type k (see Section 3.2) has Normann’s property.
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Abstract. A random iteration algorithm for graph-directed sets is de-
fined and discussed. Similarly to the Barnsley-Elton’s theorem, it is
shown that almost all sequences obtained by this algorithm reflect a
probability measure which is invariant with respect to the system of
contractions with probabilities.

1 Introduction

The motif of this article is the random iteration algorithm for a family of graph-
directed sets. According to Barnsley [1], the random iteration algorithm can be
used to picture a fractal defined by a finite number of contractions. Our interest
is to extend this idea to graph-directed sets (cf. [7], [8], [9], [10]).

Our present interest was originally motivated by the work of Brattka [4], in
which Brattka presented an example of a “Fine-computable” function which is
not “locally uniformly Fine-computable.” The graph of Brattka’s function can
be characterized as a graph-directed set, and in [10] we have depicted graphs of
some graph-directed sets by using a deterministic algorithm.

The random iteration algorithm is an alternative for picturing some invariant
sets. Let us briefly explain this algorithm according to Barnsley and Elton (cf.
[1], [2], [6]).

Let {S1, S2, . . . , SK} be a family of contractions on Rd. Let (p1, p2, . . . , pK)
be a system of probabilities assigned to {S1, S2, . . . , SK}, where pi > 0 (i =

1, . . . ,K) and
∑K

i=1 pi = 1. Choose x(0) ∈ Rd and choose randomly, recur-
sively and independently x(t) ∈ {S1(x(t − 1)), S2(x(t − 1)), . . . , SK(x(t − 1))},
where the probability for the event x(t) = Si(x(t − 1)) is pi. The sequence
{x(0), x(1), . . . , x(n), . . . } “converges to” the invariant set with respect to {S1, S2,
. . . , SK}. Moreover, the density of points in this sequence reflects a measure
which is invariant with respect to {S1, S2, . . . , SK} and (p1, p2, . . . , pK) in the
sense of Theorem 2 (Barnsley and Elton). Let us give an example.

Example 1 (Koch Curve). The Koch curve is invariant for S1, S2, S3, S4, where
Si maps the whole triangle to a smaller triangle for i = 1, 2, 3, 4 (cf. Fig. 1).

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 245-256 
http://drops.dagstuhl.de/opus/volltexte/2009/2275
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Let (3/7, 1/7, 2/7, 1/7) be a system of probabilities assigned to {S1, S2, S3, S4}.
Starting with x(0) = (0, 0), we obtained the figure after 4000 times loop.
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Fig. 1. Koch curve drawn with the random iteration algorithm.

In Section 2, we review the theory of graph-directed sets, and then explain
the random iteration algorithm for graph-directed sets. In Section 3, we prove
the Barnsley-Elton theorem for graph-directed sets (Theorems 3-5 and Corollary
1). At the end, another random iteration algorithm is proposed and some results
thereof are previewed; details will be developed later.

We might note that I. Werner has investigated a random iteration algorithm
for a family of graph-directed sets in a different approach in [11].

2 Random iteration algorithm for graph-directed sets

Graph-directed sets are defined as follows ([3], [5] and [9]). Let K ≥ 2. Let
V = {1, . . . ,K} be a set of vertices, and let Ek,l be a set of edges from vertex
l to vertex k. Put E = {Ek,l}k,l∈V . Assume that ∪Kl=1Ek,l 6= ∅ for each k,
although some of Ek,l’s may be empty. Let Ek

i,j be the set of sequences of k
edges (e1, e2, . . . , ek) which is a directed path from vertex j to vertex i. We say
that the graph is transitive if, for any i, j, there is a positive integer p such that
Ep

i,j is non-empty.

Definition 1 (Graph-directed sets). Let (V,E) be a transitive directed graph.
For each e ∈ Ek,l, let Se be a contraction on a compact space. A K-tuple of non-
empty compact sets (F1, F2, . . . , FK) is called a family of graph-directed sets if it



Random Iteration Algorithm for Graph-Directed Sets 247

satisfies

Fk =

K⋃
l=1

⋃
e∈Ek,l

Se(Fl) (k = 1, . . . ,K).

If we put

{Se : e ∈ Ek,l} = {Skl
i : i = 1, . . . , nkl} (k, l = 1, . . . ,K),

the definition above can be stated in the following form.

Definition 2. Put

S =

 {S11
i }

n11
i=1 {S12

i }
n12
i=1 . . . {S1K

i }
n1K
i=1

. . . . . . . . . . . .
{SK1

i }
nK1
i=1 {SK2

i }
nK2
i=1 . . . {SKK

i }nKK
i=1

 ,

where each Skl
i is a contraction on a compact space, nkl ≥ 0 and

∑K
l=1 nkl >

0 (k = 1, . . . ,K). Assume that the matrix {nkl}k,l=1,...,K is irreducible. A K-
tuple of sets (F1, . . . , FK) is called a family of graph-directed sets for S if

Fk =
⋃nk1

i=1 S
k1
i (F1) ∪ · · · ∪

⋃nkK

i=1 S
kK
i (FK) (k = 1, . . . ,K).

We have the following theorem.

Theorem 1. ([3], [5], [7], [8], [9]) Let K ≥ 2 and let S be as above. Then there
is a unique K-tuple of non-empty compact graph-directed sets (F1, . . . , FK).

We explain the random iteration algorithm with an example.

Example 2. Let Ti (i = 1, 2, 3, 4) be a contraction, which is the similarity (dila-
tion) that maps the whole square X = [0, 1]× [0, 1] to the corresponding square
in Fig. 2. Consider a pair of graph-directed sets (A,B) defined by

A = S11
1 (A) ∪ S12

1 (B) ∪ S12
2 (B),

B = S21
1 (A) ∪ S21

2 (A) ∪ S22
1 (B).

Here, each Skl
i is defined as S11

1 = T2, S
12
1 = T1, S

12
2 = T4, S

21
1 = T1, S

21
2 = T4

and S22
1 = T3.

Let x1(0) and x2(0) be arbitrary points in X and choose randomly, recursively
and independently

x1(t+ 1) ∈ {S11
1 (x1(t)), S12

1 (x2(t)), S12
2 (x2(t))},

x2(t+ 1) ∈ {S21
1 (x1(t)), S21

2 (x1(t)), S22
1 (x2(t))}.

The probabilities for selecting {S11
1 (x1(t)), S12

1 (x2(t)), S12
2 (x2(t))} as x1(t+1)

and {S21
1 (x1(t)), S21

2 (x1(t)), S22
1 (x2(t))} as x2(t+1) are (p111 , p

12
1 , p

12
2 ) = (1/2, 1/4,

1/4) and (p211 , p
21
2 , p

22
1 ) = (1/4, 1/2, 1/4), respectively. Starting with x1(0) =

(0, 0) and x2(0) = (0, 0), we obtained the pair of figures (A′, B′) in Fig. 2 after
10000 times loop.
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T1 T2

T3 T4

(0,0)

(0,1)

(1,0) A′ B′

Fig. 2. An example of random iteration algorithm for graph-directed sets.

We will subsequently show that there is a unique pair of probability measures
(µ1, µ2) on the pair of graph-directed sets (A,B) in Example 2 which satisfies

µ1 = p111 µ1 ◦ (S11
1 )−1 +

2∑
i=1

p12i µ2 ◦ (S12
i )−1,

µ2 =

2∑
i=1

p21i µ1 ◦ (S21
i )−1 + p221 µ2 ◦ (S22

1 )−1.

For µ1 and µ2, it holds that for all (x1(0), x2(0)) ∈ X×X,

lim
n→∞

1

n

n−1∑
t=0

f(x1(t)) =

∫
X

f(x)dµ1(x),

lim
n→∞

1

n

n−1∑
t=0

f(x2(t)) =

∫
X

f(x)dµ2(x),

for almost all sequences {(x1(t), x2(t)) : t = 0, 1, . . . }, and for any continuous
real function f on X. In fact, for a unique probability measure µ̃ on X ×X, it
holds that for any (x1(0), x2(0)) ∈ X×X,

lim
n→∞

1

n

n−1∑
t=0

f(x1(t), x2(t)) =

∫
X×X

f(x1, x2)dµ̃(x1, x2) a.e.

for any continuous real function f on X ×X. The measures µ1 and µ2 are the
marginal distributions of the measure µ̃ on X×X.

Now, we state our random iteration algorithm for a family of graph-directed
sets. Let X be a non-empty compact set in Rd such that Skl

i (X) ⊂ X, for
k, l = 1, . . . ,K, i = 1, . . . , nkl. A closed sphere B(0, r) in Rd with a sufficiently
large r > 0 such that Skl

i (B(0, r)) ⊂ B(0, r) for any k, l, i is an example of X. For
k = 1, . . . ,K, let (pk11 , . . . , p

k1
nk1

, . . . , pkK1 , . . . , pkKnkK
) be a system of probabilities
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assigned to {Sk1
1 , . . . , Sk1

nk1
. . . , SkK

1 , . . . , SkK
nkK
}, where pkli ≥ 0 (i = 1, . . . , nk1)

for l = 1, . . . ,K and
∑K

l=1

∑nkl

i=1 p
kl
i = 1.

Choose (x1(0), . . . , xK(0)) ∈ XK , and choose randomly, recursively and in-
dependently

xk(t+ 1) ∈ {Skl
i (xl(t)) : l = 1, . . . ,K for which nkl > 0 and i = 1, . . . , nkl},

for k = 1, . . . ,K. The probability for the event xk(t+1) = Skl
i (xl(t)) is pkli . This

produces a sequence of K-tuples of points {(x1(t), . . . , xK(t)) : t = 0, 1, . . . }.

3 Invariant probability measure

Barnsley and Elton have shown the following.

Theorem 2. (Barnsley and Elton: [1], [2], [6]) Let Y be a complete metric
space. Let {T1, . . . , TN} be a family of Lipschitz maps on Y . Let (p1, . . . , pN ) be
a system of probabilities assigned to {T1, . . . , TN}, where pi > 0 (i = 1, . . . , N)

and
∑N

i=1 pi = 1. Suppose there exists 0 < r < 1 such that

N∏
i=1

d(Ti(y), Ti(z))
pi ≤ r d(y, z)

for y, z ∈ Y .
Choose y(0) ∈ Y and choose randomly, recursively and independently, y(t) ∈

{T1(y(t − 1)), . . . , TN (y(t − 1))}, where the probability for the event {y(t) =
Ti(y(t− 1))} is pi. Then the following hold.

(1) There is a unique invariant probability measure µ associated with transition

probability p(y,B) =
∑N

i=1 pi1B(Ti(y)), that is, µ(B) =
∫
p(y,B)dµ(y) for

all Borel set B.
(2) Let P be a probability

∏∞
i=1 Pi on

∏∞
i=1 Ji, where Pi = (p1, . . . , pN ) and

Ji = {1, . . . , N}. It holds that for any y(0) ∈ Y ,

lim
n→∞

1

n

n−1∑
t=0

f(y(t)) =

∫
Y

f(y)dµ(y) P−a.e.

for all continuous function f : Y → R.

Let us note that µ is an invariant probability measure if and only if µ = M(µ)
for the Markov operator

M(ν) =

N∑
i=1

pi ν ◦ T−1i .

By applying Barnsley and Elton’s theorem, we show the uniqueness of an
invariant probability measure of a random iteration algorithm for a family of
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graph-directed sets. Recall that X is a non-empty compact set in Rd such that
Skl
i (X) ⊂ X for k, l = 1, . . . ,K, i = 1, . . . , nkl. Put Xk = X for k = 1, . . . ,K,

and define XK = X1 × · · ·XK . Define a metric d on XK by

d((x1, . . . , xK), (y1, . . . , yK)) = Max{|xk − yk| : k = 1, . . . ,K},

where |xk − yk| denotes the d-dimensional Euclidean metric.
Put Ik = {(lk, ik) : nklk > 0, 1 ≤ ik ≤ nklk} ⊂ {1, . . . ,K} × N for k =

1, . . . ,K. Put further I = I1 × · · · × IK . For Skl
i : X → X, where k = 1, . . . ,K

and (l, i) ∈ Ik, let S̃kl
i : XK → Xk be defined by S̃kl

i (x1, . . . , xK) = Skl
i (xl).

For ((l1, i1), . . . , (lK , iK)) ∈ I, a transformation T((l1,i1),...,(lK ,iK)) : XK →
XK is defined by

T((l1,i1),...,(lK ,iK))(x1, . . . , xK) := (S̃1l1
i1

(x1, . . . , xK), . . . , S̃KlK
iK

(x1, . . . , xK))

= (S1l1
i1

(xl1), . . . , SKlK
iK

(xlK ))

with the associated probability

p((l1,i1),...,(lK ,iK)) = p1l1i1
· · · pKlK

iK
.

We apply Barnsley and Elton’s theorem to Y = XK and

T = {T((l1,i1),...,(lK ,iK)) : ((l1, i1), . . . , (lK , iK)) ∈ I}

with probabilities p1l1i1
· · · pKlK

iK
. Let L be the set of functions as defined below.

L = {f : XK → R :

|f(x1, . . . , xK)− f(y1, . . . , yK)| ≤ Max{|xk − yk| : k = 1, . . . ,K}},

where |xk − yk| denotes the d-dimensional Euclidean metric.
Let P(XK) be the space of normalized Borel measures on XK . The Hutchin-

son metric dH of P(XK) is defined by

dH(µ, ν) = Sup
{∫

fdµ−
∫
fdν : f ∈ L

}
.

It is well known that (P(XK), dH) is a compact space. (See Barnsley [1].)
Let us define a Markov operator M : P(XK)→ P(XK), and prove a theorem

which claims the existence of a certain measure.

Definition 3. The Markov operator associated with

T = {T((l1,i1),...,(l1,i1)) : ((l1, i1), . . . , (lK , iK)) ∈ I}

is a transformation M : P(XK)→ P(XK) defined by

M(ν) =
∑

((l1,i1),...,(lK ,iK))∈I

K∏
k=1

pklkik
ν ◦ (T((l1,i1),...,(lK ,iK)))

−1.
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Theorem 3. There exists a unique probability measure µ̃ on XK such that µ̃ =
M(µ̃).

Proof (Proof1: Application of Barnsley and Elton’s criterion). Recall that, for
((l1, i1), . . . , (lK , iK)) ∈ I,

T((l1,i1),...,(lK ,iK))(x1, . . . , xK) = (S1l1
i1

(xl1), . . . , SKlK
iK

(xlK )).

Let s be the maximum of the contraction ratios of {Skl
i }. Note that s < 1.

Recall that d((x1, . . . , xK), (y1, . . . , yK)) = Max{|xk − yk| : k = 1, . . . ,K},
where |xk − yk| denotes the d-dimensional Euclidean metric. Then it holds that

d(T((l1,i1),...,(lK ,iK))(x1, . . . , xK)), T((l1,i1),...,(lK ,iK))(y1, . . . , yK)))

= d((S1l1
i1

(xl1), . . . , SKlK
iK

(xlK )), (S1l1
i1

(yl1), . . . , SKlK
iK

(ylK )))

= Max{|S1l1
i1

(xl1)− S1l1
i1

(yl1)|, . . . , |SKlK
iK

(xlK )− SKlK
iK

(ylK )|}
≤ sMax{|xl1 − yl1 |, . . . , |xlK − ylK |}
≤ sMax{|x1 − y1|, . . . , |xK − yK |}. (1)

The Barnsley and Elton’s condition holds if d(Ti(x), Ti(y)) ≤ sd(x, y) for an
s < 1. From (1) above this criterion is satisfied, and so we can apply the Barnsley
and Elton’s theorem and obtain the desired measure. ut

Proof (Proof2: Direct proof). Notice that, for f ∈ L,∣∣∣f(T((l1,i1),...,(lK ,iK))(x1, . . . , xK))− f(T((l1,i1),...,(lK ,iK))(y1, . . . , yK))
∣∣∣

=
∣∣∣f(S1l1

i1
(xl1), . . . , SKlK

iK
(xlK ))− f(S1l1

i1
(yl1), . . . , SKlK

iK
(ylK ))

∣∣∣
≤ Max{|S1l1

i1
(xl1)− S1l1

i1
(yl1)|, . . . , |SKlK

iK
(xlK )− SKlK

iK
(ylK )|}

≤ sMax{|xl1 − yl1 |, . . . , |xlK − ylK |}
≤ sMax{|x1 − y1|, . . . , |xK − yK |}.

Define

f̂(x1, . . . , xK) = s−1
∑

((l1,i1),...,(lK ,iK))∈I

K∏
k=1

pklkik
f(T((l1,i1),...,(lK ,iK))(x1, . . . , xK)).

Then∣∣∣f̂(x1, . . . , xK)− f̂(y1, . . . , yK)
∣∣∣

≤ s−1
∑

((l1,i1),...,(lK ,iK))∈I

K∏
k=1

pklkik
s Max{|x1 − y1|, . . . , |xK − yK |}

≤ Max{|x1 − y1|, . . . , |xK − yK |},
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since
∑

((l1,i1),...,(lK ,iK))∈I
∏K

k=1 p
klk
ik

= 1. It therefore follows that f̂ ∈ L. If we

put L̂ = {f̂(x1, . . . , xK) : f ∈ L}, then L̂ ⊂ L holds.
By the definition,

dH(M(µ),M(ν)) = Sup
{∫

fdM(µ)−
∫
fdM(ν) : f ∈ L

}
= Sup

{∫ ∑
((l1,i1),...,(lK ,iK))∈I

K∏
k=1

pklkik

f(T((l1,i1),...,(lK ,iK))(x1, . . . , xK))dµ(x1, . . . , xK)

−
∫ ∑

((l1,i1),...,(lK ,iK))∈I

K∏
k=1

pklkik

f(T((l1,i1),...,(lK ,iK))(x1, . . . , xK)dν(x1, . . . , xK) : f ∈ L
}

= Sup
{
s
(∫

f̂(x1, . . . , xK)dµ(x1, . . . , xK)

−
∫
f̂(x1, . . . , xK)dν(x1, . . . , xK)

)
: f̂ ∈ L̂

}
≤ Sup

{
s
(∫

f(x1, . . . , xK)dµ(x1, . . . , xK)

−
∫
f(x1, . . . , xK)dν(x1, . . . , xK)

)
: f ∈ L

}
= s dH(µ, ν).

Therefore the Markov operator M is a contraction map on P(XK). This
implies that there is a unique invariant probability measure µ̃ in P(XK). ut

Barnsley and Elton’s theorem for random iterated algorithms can be ex-
tended to a family of graph-directed sets.

Theorem 4. Let µ̃ be the unique invariant probability measure claimed in The-
orem 3. Then for any (x1(0), . . . , xK(0)) ∈ XK ,

lim
n→∞

1

n

n−1∑
t=0

f(x1(t), . . . , xK(t)) =

∫
XK

f(x1, . . . , xK)dµ̃(x1, . . . , xK) a.e.

for all continuous function f : XK → R.

Proof. We apply (2) of Barnsley and Elton’s theorem to T((l1,i1),...,(lK ,iK)) on

XK with probabilities
∏K

k=1 p
klk
ik

. ut

Corollary 1. (1) For the marginal distributions µ̃1, . . . , µ̃K , it holds that

µ̃k =

K∑
l=1

nkl∑
i=1

pkli µ̃l ◦ (Skl
i )−1

for k = 1, . . . ,K.
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(2) For any (x1(0), . . . , xK(0)) ∈ XK ,

lim
n→∞

1

n

n−1∑
t=0

g(xk(t)) =

∫
X

g(x)dµ̃k(x) a.e.

for all continuous function g : X→ R and for k = 1, . . . ,K.

Proof. Proof of (1). Note that for a family of Borel sets A1, . . . , AK in X, it
holds that

(T((l1,i1),...,(lK ,iK)))
−1(A1 × · · · ×AK)

= {(x1, . . . , xK) : S̃klk
ik

(x1, . . . , xK) ∈ Ak, k = 1, . . . ,K}

=

K⋂
k=1

(S̃klk
ik

)−1(Ak).

So we have

(T((l1,i1),...,(lK ,iK)))
−1(X1 × · · · ×Xk−1 ×Ak ×Xk+1 · · · ×XK) = (S̃klk

ik
)−1(Ak),

because (S̃
jlj
ij

)−1(Xj) = XK . Recall that Xl = X for all l. Note that µ̃ = M(µ̃).
Then it holds that

µ̃k(A) = µ̃(X1 × · · · ×Xk−1 ×A×Xk+1 · · · ×XK)

= M(µ̃)(X1 × · · · ×Xk−1 ×A×Xk+1 · · · ×XK)

=
∑

((l1,i1),...,(lK ,iK))∈I

K∏
j=1

p
jlj
ij

µ̃((T((l1,i1),...,(lK ,iK)))
−1(X1 × · · · ×Xk−1 ×A×Xk+1 · · · ×XK))

=
∑

((l1,i1),...,(lK ,iK))∈I

K∏
j=1

p
jlj
ij
µ̃((S̃klk

ik
)−1(A))

=
∑

(lk,ik)∈Ik

pklkik
µ̃((S̃klk

ik
)−1(A))

∏
j 6=k

∑
(lj ,ij)∈Ij

p
jlj
ij

=
∑

(lk,ik)∈Ik

pklkik
µ̃((S̃klk

ik
)−1(A))

=
∑

(lk,ik)∈Ik

pklkik
µ̃lk((S̃klk

ik
)−1(A)).

This proves the assertion (1).

Proof of (2). Define f(x1, . . . , xK) = g(xk). Then by virtue of Theorem 4, it
holds that
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lim
n→∞

1

n

n−1∑
t=0

g(xk(t)) = lim
n→∞

1

n

n−1∑
t=0

f(x1(t), . . . , xK(t))

=

∫
XK

f(x1, . . . , xK)dµ̃(x1, . . . , xK) a.e.

=

∫
X

g(x)dµ̃k(x).

We thus have

limn→∞
1
n

∑n−1
t=0 g(xk(t)) =

∫
X
g(x)dµ̃k(x) a.e.

for all continuous function g : X→ R and k=1, . . . , K.
This proves the assertion (2).

ut

Theorem 5. Let µ̃ be the unique probability measure in Theorem 3, and let
µ̃1, . . . , µ̃K be the marginal distributions of µ̃. Then for m = 1, . . . ,K, the support
of µ̃m is Fm, where (F1, . . . , FK) is the family of graph-directed sets in Theorem
1.

Proof. The proof is analogous to that of Theorem 2 in Section 9.6 of [1].
Let A denote the support of µ̃. Notice that

T((l1,i1),...,(lK ,iK))(F1 × · · · × FK) ⊂ F1 × · · · × FK

for any ((l1, i1), . . . , (lK , iK)) ∈ I. It follows that {T((l1,i1),...,(lK ,iK))} restricted
on F1 × · · · × FK defines a random iteration algorithm with the probabilities∏K

k=1 p
klk
ik

. Let ν̃ be an invariant probability measure for the restricted random
iteration algorithm, and this ν̃ is an invariant probability measure for the random
iteration algorithm on XK . Since µ̃ is unique, µ̃ = ν̃. It follows that A ⊂ F1 ×
· · · × FK , and so the support of µ̃m is included in Fm.

For m = 1, . . . ,K, let Σm be the set of sequences {(l1, i1; . . . , ; ln, in; . . . ) :
nln−1 ln > 0, 1 ≤ in ≤ nln−1 ln for n = 1, . . . }, where l0 = m.

For each point a ∈ Fm, there is a (not necessarily unique) sequence in Σm

such that
a ∈ Sml1

i1
◦ Sl1l2

i2
◦ · · · ◦ Sln−1ln

in
(Xln)

holds for all n. Let O be an open set in X which contains a. By the fact that
Skl
i is a contraction, there is a positive integer n such that

Sml1
i1
◦ Sl1l2

i2
◦ · · · ◦ Sln−1ln

in
(Xln)) ⊂ O.

Note that µ̃m(Sml1
i1
◦ Sl1l2

i2
◦ · · · ◦ Sln−1ln

in
(Xln)) ≥

∏n
j=1 p

lj−1lj
ij

> 0. It holds that

µ̃m(O) > 0, and so Fm is included in the support of µ̃m. ut
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Remark 1. In the above proofs we have not used the independence of choosing
{S1l1

i1
, . . . , SKlK

iK
}, or the productivity of the probabilities

∏K
k=1 p

klk
ik

. So we can
formulate the random iteration algorithm so that the probability of choosing
{S1l1

i1
, . . . , SKlK

iK
} can be expressed as p(l1,i1;...,lK ,iK), which is not restricted to

the independent case of p1l1i1
. . . pKlK

iK
. Theorems 3, 4 and 5 hold for thus modified

random iteration algorithm.

Remark 2. We propose a variation of this algorithm which changes only one
coordinate Xk on each step. Let {q1, . . . , qK} be a probability, that is, qk > 0

for k = 1, . . . ,K and
∑K

k=1 qk = 1. For k = 1, . . . ,K, let (pk11 , . . . , p
k1
nk1

, . . . ,

pkK1 , . . . , pkKnkK
) be a system of probabilities defined in Section 2.

Choose (x1(0), . . . , xK(0)) ∈ XK . Next choose randomly k(1) ∈ {1, . . . ,K},
with probability qk(1), and then choose randomly S

k(1)l
i (xl(0)) for l = 1, . . . ,K

with nk(1)l > 0 and 1 ≤ i ≤ nk(1)l, with probability p
k(1)l
i . Let xk(1)(1) =

S
k(1)l
i (xl(0)) and xj(1) = xj(0) for j 6= k(1). Continue this procedure recursively

and independently.

So we have

xk(t+1)(t+ 1) = S
k(t+1)l
i (xl(t)),

xj(t+ 1) = xj(t) for j 6= k(t+ 1),

with probability qk(t+1)p
k(t+1)l
i , where k(t + 1) = 1, . . . ,K, l = 1, . . . ,K with

nk(t+1)l > 0 and 1 ≤ i ≤ nk(t+1)l.

This produces a sequence of K-tuples of points {(x1(t), . . . , xK(t)) : t =
0, 1, . . . }. We then have the following results.

(1) There exists a unique probability measure µ̂ on XK such that µ̂ = M̂(µ̂),
where M̂ is the associated Markov operator.

(2) Let µ̂1, . . . , µ̂K be the marginal distributions of µ̂. Then for m = 1, . . . ,K,
the support of µ̂m is Fm, where (F1, . . . , FK) is the family of graph-directed
sets in Theorem 1.

(3) For any (x1(0), . . . , xK(0)) ∈ XK ,

lim
n→∞

1

n

n−1∑
t=0

f(x1(t), . . . , xK(t)) =

∫
XK

f(x1, . . . , xK)dµ̂(x1, . . . , xK) a.e.

for all continuous function f : XK → R.

(4) (i) For the marginal distributions µ̂1, . . . , µ̂K , it holds that

µ̂k =

K∑
l=1

nkl∑
i=1

pkli µ̂l ◦ (Skl
i )−1

for k = 1, . . . ,K.
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(ii) For any (x1(0), . . . , xK(0)) ∈ XK ,

lim
n→∞

1

n

n−1∑
t=0

g(xk(t)) =

∫
X

g(x)dµ̂k(x) a.e.

for all continuous function g : X→ R and for k = 1, . . . ,K.
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Computable Separation in Topology,
from T0 to T3
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Abstract. This article continues the study of computable elementary
topology started in [7]. We introduce a number of computable versions
of the topological T0 to T3 separation axioms and solve their logical
relation completely. In particular, it turns out that computable T1 is
equivalent to computable T2. The strongest axiom SCT3 is used in [2] to
construct a computable metric.

1 Preliminaries

We use the representation approach to computable analysis [6] as the basis for
our investigation. In particular, we use the terminology and concepts introduced
in [7] (which can be considered as a revision and extension of parts from [6]).

Let Σ∗ and Σω be the sets of the finite and infinite sequences, respectively, of
symbols from a finite alphabet Σ. A function mapping finite or infinite sequences
of symbols from Σ is computable, if it can be computed by a Type-2 machine,
that is, a Turing machine with finite or infinite input and output tapes. On Σ∗

and Σω we use canonical tupling functions 〈 · 〉 that are computable and have
computable inverses. Computability on finite or infinite sequences of symbols is
transferred to other sets by representations, where elements of Σ∗ or Σω are used
as “concrete names” of abstract objects. For representations γi : ⊆Yi → Mi we
consider the product representation defined by [γ1, γ2]〈p, q〉 := (γ1(p1), γ2(p2)).
Let Y = Y1 × . . . × Yn, M = M1 × . . . ×Mn and γ : Y → M , γ(y1, . . . , yn) =
γ1(y1)× . . .×γn(yn). A partial function h : ⊆Y → Y0 realizes the multi-function
f : M ⇒M0 if γ0 ◦ h(y) ∈ f(x) whenever x = γ(y) and f(x) exists. This means
that h(y) is a name of some z ∈ f(x) if y is a name of x ∈ dom(f). The function
f is (γ, γ0)-computable, if it has a computable realization.

We will consider computable topological spaces as defined in [7]. Various
similar definitions have been used, see, for example, [4, 3, 5] and the refer-
ences in [7]. In particular, the definition in [6] is slightly different. A computable
topological space is a 4-tuple X = (X, τ, β, ν) such that (X, τ) is a topological
T0-space, ν : ⊆Σ∗ → β is a notation of a base β of τ , dom(ν) is recursive and
ν(u) ∩ ν(v) =

⋃
{ν(w) | (u, v, w) ∈ S} for all u, v ∈ dom(ν) for some r.e. set

S⊆(dom(ν))3.
For the points, the open sets and the closed sets we use the representations

δ, θ and ψ− that are defined as follows. For p ∈ Σω and x ∈ X, δ(p) = x iff p is

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.) 
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 257-268 
http://drops.dagstuhl.de/opus/volltexte/2009/2276
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a list of all u ∈ dom(ν) such that x ∈ ν(u), θ(p) is the union of all ν(u) where u
is listed by p, and ψ−(p) := X \ θ(p).

2 Axioms of Computable Separation

For a topological space X = (X, τ) with set A of closed sets we consider the
following classical separation properties:

Definition 1 (separation axioms).

T0 : (∀x, y ∈ X, x 6= y)(∃W ∈ τ)((x ∈W ∧ y 6∈W ) ∨ (x 6∈W ∧ y ∈W ))),

T1 : (∀x, y ∈ X, x 6= y)(∃W ∈ τ)(x ∈W ∧ y 6∈W ),

T2 : (∀x, y ∈ X, x 6= y)(∃U, V ∈ τ)(U ∩ V = ∅ ∧ x ∈ U ∧ y ∈ V ),

T3 : (∀x ∈ X,∀A ∈ A, x 6∈ A)(∃U, V ∈ τ)(U ∩ V = ∅ ∧ x ∈ U ∧A⊆V ),

T4 : (∀A,B ∈ A, A ∩B = ∅)(∃U, V ∈ τ)(U ∩ V = ∅ ∧A⊆U ∧B⊆V ).

For i = 0, 1, 2, 3, we call X = (X, τ) a Ti-space iff Ti is true.

For the four axioms, T2 =⇒ T1 =⇒ T0 and T0 + T3 =⇒ T2, where all the
implications are proper [1]. T2-spaces are called Hausdorff spaces and T3-spaces
are called regular. (Many authors, for example [1], call a space T3-space or regular
iff T1 + T3.) We mention that (X, τ) is a T1-space, iff all sets {x} (x ∈ X)
are closed [1]. For computable topological spaces X = (X, τ, β, ν), which are
countably based T0-spaces (also called second countable), T3 =⇒ T2.

We introduce computable versions CTi of the conditions Ti by requiring that
the existing open neighborhoods can be computed. For the points we compute
basic neighborhoods.

Definition 2 (axioms of computable separation). For i ∈ {0, 1, 2, 3} define
conditions CTi as follows.

CT0 : The multi-function t0 is (δ, δ, ν)-computable where t0 maps each
(x, y) ∈ X2 such that x 6= y to some U ∈ β such that

(x ∈ U and y 6∈ U) or (x 6∈ U and y ∈ U). (1)

CT1 : The multi-function t1 is (δ, δ, ν)-computable, where t1 maps each
(x, y) ∈ X2 such that x 6= y to some U ∈ β such that x ∈ U and y 6∈ U .

CT2 : The multi-function t2 is (δ, δ, [ν, ν])-computable, where t2 maps each
(x, y) ∈ X2 such that x 6= y to some (U, V ) ∈ β2 such that

U ∩ V = ∅, x ∈ U and y ∈ V .

CT3 : The multi-function t3 is (δ, ψ−, [ν, θ])-computable, where t3 maps each
(x,A) such that x ∈ X, A⊆X closed, and x 6∈ A to some
(U, V ) ∈ β × τ such that U ∩ V = ∅, x ∈ U and A⊆V .

Obviously, CTi implies Ti. We introduce some further computable Ti-conditions.
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Definition 3 (further axioms of computable separation).
WCT0 : There is an r.e. set H⊆dom(ν)× dom(ν) such that

(∀x, y, x 6= y)(∃(u, v) ∈ H)(x ∈ ν(u) ∧ y ∈ ν(v)) and (2)

(∀(u, v) ∈ H)

 ν(u) ∩ ν(v) = ∅
∨ (∃x) ν(u) = {x}⊆ν(v)
∨ (∃y) ν(v) = {y}⊆ν(u) .

(3)

SCT0 : The multi-function ts0 is (δ, δ, [νN, ν])-computable where ts0 maps
each (x, y) ∈ X2 such that x 6= y to some (k, U) ∈ N× β such that

(k = 1, x ∈ U and y 6∈ U) or (k = 2, x 6∈ U and y ∈ U).

CT′0 : There is an r.e. set H⊆dom(νN)× dom(ν)× dom(ν) such that

(∀x, y, x 6= y)(∃(w, u, v) ∈ H)(x ∈ ν(u) ∧ y ∈ ν(v)) and (4)

(∀(w, u, v) ∈ H)

 ν(u) ∩ ν(v) = ∅
∨ νN(w) = 1 ∧ (∃x) ν(u) = {x}⊆ν(v)
∨ νN(w) = 2 ∧ (∃y) ν(v) = {y}⊆ν(u) .

(5)

CT′1 : There is an r.e. set H ∈ Σ∗ ×Σ∗ such that

(∀x, y, x 6= y)(∃(u, v) ∈ H)(x ∈ ν(u) ∧ y ∈ ν(v)) and (6)

(∀(u, v) ∈ H)

{
ν(u) ∩ ν(v) = ∅

∨ (∃x) ν(u) = {x}⊆ν(v) .
(7)

CT′2 : There is an r.e. set H ∈ Σ∗ ×Σ∗ such that

(∀x, y, x 6= y)(∃(u, v) ∈ H)(x ∈ ν(u) ∧ y ∈ ν(v)) and (8)

(∀(u, v) ∈ H)

{
ν(u) ∩ ν(v) = ∅

∨ (∃x) ν(u) = {x} = ν(v) .
(9)

SCT2 : There is an r.e. set H ∈ Σ∗ ×Σ∗ such that

(∀x, y, x 6= y)(∃(u, v) ∈ H)(x ∈ ν(u) ∧ y ∈ ν(v)) and (10)

(∀(u, v) ∈ H) ν(u) ∩ ν(v) = ∅ . (11)

CT′3 : The multi-function t′3 is (δ, ν, [ν, ψ−])-computable where t′3 maps
each (x,W ) ∈ X × β such that x ∈W to some (U,B) such that

U ∈ β, B⊆X is closed and x ∈ U⊆B⊆W .

WCT3 : The multi-function tw3 is (δ, ν, ν)-computable where tw3 maps
each (x,W ) ∈ X × β such that x ∈W to some U such that

U ∈ β and x ∈ U⊆U⊆W .

SCT3: There are an r.e. set R⊆dom(ν) × dom(ν) and a computable function
r : ⊆Σ∗ ×Σ∗ → Σω such that for all u,w ∈ dom(ν),

ν(w) =
⋃
{ν(u) | (u,w) ∈ R} , (12)

(u,w) ∈ R =⇒ ν(u)⊆ψ− ◦ r(u,w)⊆ν(w) . (13)
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CT′0, CT′1 and CT′2 are versions of CT0, CT1 and CT2, respectively, where
base sets are used instead of points (see Theorem 1 below). Similarly, SCT3 is
a pointless version of CT ′3. In contrast to CT0, in SCT0 the separating function
gives immediate information about the direction of the separation. Also in CT′0
some information about the direction of the separation is included while no such
information is given in its weak version WCT0. The strong version SCT2 results
from CT′2 by excluding the case (∃x) ν(u) = {x} = ν(v). Notice that SCT2

results also from WCT0, CT′0 and CT′1 by excluding the corresponding cases.
The following examples illustrate the definitions. Further examples can be found
in Section 4.

Example 1. 1. Consider the computable real line R := (R, τR, β, ν) such that
τR is the real line topology and ν is a canonical notation of the set of all
open intervals with rational endpoints. R is SCT3 (easy proof).

2. (T0 but not WCT0) Consider the computable lower real line
R< := (R, τ<, β<, ν<), defined by ν<(w) := (νQ;∞), which is T0 but not
T1. Suppose R< is WCT0. Since for any two base elements U, V , U is not a
singleton and U ∩ V 6= ∅, H = ∅ by (3). But H 6= ∅ by (2).

3. (T1 but not T2 or WCT0) Let X = (N, τ, β, ν) such that τ = β is the
set of cofinite subsets of N and ν is a canonical notation of ν. Then X
is a computable topological space. It is T1 since singletons {x} are closed.
Suppose X is WCT0. Since the intersection of base elements cannot be empty
and singletons are not open the set H in (3) must be empty. But then (2)
cannot be true. The space is not T2 since the intersection of any two non-
empty open set is not empty.

By the next lemma the above computable separation axioms are robust,
that is, they do not depend on the notation ν of the base explicitly but only
on the computability concept on the points induced by it. Call the computable
topological spaces X = (X, τ, β, ν) and X̃ = (X, τ, β̃, ν̃) equivalent, iff δ ≡ δ̃ [7,
Definition 21 and Theorem 22].

Lemma 1. 1. For i ∈ {0, 1, 2, 3} let CTi be the condition obtained from CTi

and let SCT0 be the condition obtained from SCT0 by replacing β and ν by
τ and θ, respectively. Then CTi ⇐⇒ CTi and SCT0 ⇐⇒ SCT0.

2. Let X̃ = (X, τ, β̃, ν̃) be a computable topological space equivalent to X =
(X, τ, β, ν). Then each separation axiom from Definitions 2 and 3 for X is

equivalent to the corresponding axiom for X̃.

The proofs are straightforward. In particular, apply [7, Theorem 22] by which

“equivalence” is equivalent to (ν ≤ θ̃ and ν̃ ≤ θ).

3 Implications

In this section we prove the implications between the separation properties, in
the next section we give counterexamples for the proper ones.
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Theorem 1.

1. SCT3 =⇒ CT3 =⇒ SCT2 =⇒ CT2 =⇒ CT0 =⇒WCT0,
2. CT3 ⇐⇒ CT ′3 =⇒WCT3,
3. CT2 ⇐⇒ CT ′2 ⇐⇒ CT1 ⇐⇒ CT ′1,
4. CT0 ⇐⇒ SCT0 ⇐⇒ CT ′0,

The proofs of SCT0 =⇒ CT ′0 and CT′3 =⇒ SCT2 need some care. They
are based on the observation that a realizing machine needs only finitely many
steps for finding an appropriate base element for the result. We omit the details
(approximately 2 pages).

Surprisingly, computable T1-spaces are exactly computable T2. We add some
further interesting results. Let “D” be the axiom stating that the topological
space is discrete.

Theorem 2. For computable topological spaces,

1. if {x} is not open for all x ∈ X then WCT0 =⇒ SCT2,
2. SCT2 if T2 and {(u, v) | ν(u) ∩ ν(v) = ∅} is r.e.,
3. SCT2 ⇐⇒ (x 6= y is (δ, δ)-r.e.),
4. CT3 =⇒ SCT3 if the set {w ∈ Σ∗ | ν(w) 6= ∅} is r.e.
5. D =⇒WCT3

We include only the proof of 4. For the terminology see [7].
Proof: Since finite intersection is computable, there is a computable function g
such that

⋂
νfs(w) = θ ◦ g(w). Therefore, the set {w ∈ Σ∗ |

⋂
νfs(w) 6= ∅} is r.e.

There is a machine M such that fM realizes the multi-function t′3. If x = δ(p) ∈
ν(w) then for some u1 ∈ dom(ν) and q ∈ dom(ψ−), fM (p, w) = 〈u1, q〉 = ι(u1)q
such that

x ∈ ν(u1)⊆ψ−(q)⊆ν(w) . (14)

For computing ι(u1) some prefix u0 ∈ dom(νfs)∩Σ∗11 of p suffices. Since δ(p) ∈
ν(w) we may assume w � u0. Since x ∈ δ[u011Σω] =

⋂
νfs(u0),

⋂
νfs(u0) 6= ∅.

We will compute
⋂
νfs(u0) ∩ ν(u1) as a union

⋃
{ν(u) | u ∈ L} of base sets and

add all these (u,w) to R.
There is a machine N that works on input (u,w) as follows:

(S1) If u,w ∈ dom(ν), ν(u) 6= ∅ and ν(w) 6= ∅ then
(S2) N searches for words u0 ∈ dom(νfs)∩Σ∗11 and u1 ∈ dom(ν) such that w �
u0, M on input (u01ω, w) writes ι(u1) in at most |u0| steps and u� g(u0ι(u1)),
(S3) and then writes all words ι(v) for which there are words u2, u3 such that
u0u2 ∈ dom(νfs),

⋂
νfs(u0u2) 6= ∅, the machine M on input (u0u21ω, w) writes

ι(u1)u3 in at most |u0u2| steps and v � 11u3. (In order to guarantee an infinite
output, N writes 11 from time to time.)
(S4) If (1) is false or the search in (2) is not successful then N computes forever
without writing. Let r := fN and R := dom(fN ). Then R⊆dom(ν) × dom(ν)
and R is r.e. We must prove correctness.
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We show (12): Suppose x = δ(p) ∈ ν(w). Then for some u1, q, fM (p, w) =
ι(u1)q, hence for some prefix u0 v p such that w � u0 and u0 ∈ Σ∗11 (since we
my assume that p has the subword 11 infinitely often), M on input (u01ω, w)
writes ι(u1) in at most |u0| steps. Since x ∈

⋂
νfs(u0) and x ∈ ν(u1) by (14),

x ∈ θ ◦ g(u0ι(u1)), hence x ∈ ν(u) for some u � g(u0ι(u1)). Therefore, there is
some u such that x ∈ ν(u) and the machine N on input (u,w) will find some
words such that (S2) is true. Therefore x ∈ ν(u) for some (u,w) ∈ R, hence “⊇”
is true in (12).

On the other hand, suppose (u,w) ∈ R and x ∈ ν(u) for some x. Then on
input (u,w) the machine N finds words u0, u1 such that the conditions in (S2)
above are true. Since u � g(u0ι(u1)) and w � u0, x ∈ ν(u)⊆

⋂
νfs(u0)⊆ν(w).

Therefore, “⊆” is true in (12).

For showing (13) suppose (u,w) ∈ R and x ∈ ν(u) for some x again. Then
on input (u,w) the machine N finds words u0, u1 such that the conditions in
(S2) above are true. Since x ∈

⋂
νfs(u0), x = δ(u0p

′) for some p′ ∈ Σω. Since
x ∈ ν(w), fM (u0p

′, w) = 〈u1, q〉 = ι(u1)q for some q ∈ Σω such that (14).
Suppose v � q. Then for some u2, u3 such that u0u2 ∈ dom(

⋂
νfs), the machine

M on input (u0u21ω, w) writes ι(u1)u3 in at most |u0u2| steps and v � ι(u1)u3,
therefore, v � r(u,w). By (14),

ν(w)c⊆θ(q) =
⋃
{ν(v) | v � q}⊆

⋃
{ν(v) | v ∈ r(u,w)} = θ ◦ r(u,w).

This proves ψ− ◦ r(u,w)⊆ν(w) in(13).

Finally let v be some word such that ι(v) is listed by the machine N on input
(u,w), that is, v � r(u,w). Then there are words u2, u3 such that

⋂
νfs(u0u2) 6=

∅, the machine M on input (u0u21ω, w) writes ι(u1)u3 in at most |u0u2| steps
and v � 11u3. Since

⋂
νfs(u0u2) 6= ∅ and w � u0, there is some p′ such that

δ(u0u2p
′) ∈ ν(w) and fM (u0u2p

′, w) = ι(u1)u3q
′ for some q′. By (14) ν(u1) ∩

θ(u3q
′) = ∅. Since ν(u)⊆ν(u1) (by u � g(u0ι(u1)) in (S2)) and ν(v)⊆θ(u3q′)

(since v � u3), ν(u) ∩ ν(v) = ∅.
Since this is true for all v � r(u,w), ν(u)∩ θ ◦ r(u,w) = ∅, hence ν(u)⊆ψ− ◦

r(u,w).

Therefore, we have also proved (13). 2

4 Counterexamples

A topological space is discrete iff every singleton {x} is open iff every subset
B⊆X is open. A discrete space is Ti for i = 0, . . . , 4. Let “D” be the axiom
stating that the topological space is discrete. Counterexamples show that the
implications in Theorem 1.1 are proper. Since this is an extended abstract we
include only two of them.
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Theorem 3. For computable topological spaces,

T0 6=⇒WCT0 by Example 1.2;

T1 6=⇒WCT0 by Example 1.3;

D 6=⇒WCT0 by Example 2;

D + WCT0 6=⇒ CT0 by Example 3;

D + CT0 6=⇒ CT1 by Example 4;

D + CT2 6=⇒ SCT2 by Example 5;

WCT3 + CT2 6=⇒ SCT2 by Example 5;

T4 + SCT2 6=⇒WCT3 by Example 7;

SCT2 6=⇒ T3 by Example 6;

CT3 6=⇒ SCT3 by Example 8.

In the following examples let (ai)i∈N, (bi)i∈N, ..., (ei)i∈N be injective families
with pairwise disjoint ranges and let {0, 1, . . . , 7}⊆Σ.

Example 2. (D but not WCT0) Omitted. 2

Example 3. (D + WCT0 but not CT0) Let A⊆N be some non-r.e. set. Let X :=
{ai, bi | i ∈ N} and let τ be the discrete topology on X. Below we will define
sets B,C,D⊆N such that {A,B,C,D} is a partition of N. Define a notation ν
of a basis β of the topology as follows.

0i1 0i2 0i3 0i12 0i13 0i23

i ∈ A ∪D {ai} {bi} ∅ ∅ ∅ ∅
i ∈ B {ai} {ai, bi} {bi} {ai} ∅ {bi}
i ∈ C {ai, bi} {bi} {ai} {bi} {ai} ∅

Since ν(0ik)∩ν(0im) = ν(0ikm), ν(u)∩ν(v) = ν◦g(u, v) for some computable
function g. Therefore X := (X, τ, β, ν) is a computable topological space. Let
H := {(0ik, 0j l) | i, j ∈ N; k, l ∈ {1, 2}; (i 6= j ∨ k 6= l}. Then H satisfies (2) and
(3) for the space X. Therefore, X is a WCT0-space.

We show that X is not SCT0.
Let l, r ∈ Σ∗ such that νN(l) = 1 and νN(r) = 2. We assume w.l.o.g. that νN

is injective. For i ∈ N let

Si := {〈l, 0i1〉, 〈r, 0i3〉, 〈l, 0i12〉, 〈r, 0i23〉},
Ti := {〈r, 0i2〉, 〈l, 0i3〉, 〈r, 0i12〉, 〈l, 0i13〉}.

Suppose, the function f : ⊆Σω × Σω → Σ∗ realizes the separation function ts0
for X. If δ(p) = ai and δ(q) = bi then

f(p, q) ∈
{
Si if i ∈ B
Ti if i ∈ C (15)

since ν(u) must be either {ai} or {bi} if f(p, q) = 〈w, u〉. Notice that Si∩Ti = ∅.
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For all i ∈ N define pi, qi ∈ Σω by pi := ι(0i1)ι(0i1)ι(0i1) . . . and qi :=
ι(0i2)ι(0i2)ι(0i2) . . .. Let F be the set of all computable functions f : ⊆Σω ×
Σω → Σ∗ such that f(pi, qi) exists for all i ∈ A. Consider f ∈ F . Then f ′ : i 7→
f(pi, qi) is computable such that A⊆dom(f ′). Since A is not r.e. and dom(f ′)
is r.e., dom(f ′) \A is infinite. Since F is countable, there is a bijective function
g : E → F for some E⊆N such that i ∈ dom(g′i) \ A for all i ∈ E (gi := g(i)).
Then A ∩ E = ∅.

For each i ∈ E we put i to B or C in such a way that gi does not realize the
separating function ts0 for SCT0.

B := {i ∈ E | gi(pi, qi) 6∈ Si},
C := {i ∈ E | gi(pi, qi) ∈ Si},

and D := N \ (A ∪ B ∪ C). Since A ∩ E = ∅, E = B ∪ C and B ∩ C = ∅,
{A,B,C,D} is a partition of N.

Suppose some computable function f realizes ts0. Since for i ∈ A, δ(pi) = ai
and δ(qi) = bi, f(pi, qi) exists for all i ∈ A, hence f = gi for some i ∈ E.

If i ∈ B then gi(pi, qi) 6∈ Si, hence by (15) the function gi does not realize ts0.
If i ∈ C then gi(pi, qi) ∈ Si, hence not in Ti since Si ∩ Ti = ∅. By (15) the
function gi does not realize ts0.

From this contradiction we conclude that X is not SCT0. By Theorem 1 X
is not CT0. 2

Example 4. (D and CT0 but not CT1) Omitted. 2

Example 5. (D and CT2 but not SCT2) Let A⊆N be an r.e. set with non-r.e.
complement. Define a notation ν by
ν(0i1) := {ai}, ν(0i2) := {ai} for i ∈ A,
ν(0i1) := {ai}, ν(0i2) := {bi} for i 6∈ A

for all i ∈ N. Then ν is a notation of a base β of a topology (the discrete topology)
τ on a subset X⊆N such that X = (X, τ, β, ν) is a computable topological space.

The space X is Ti for i = 0, . . . , 4 since it is discrete. It is CT2 but not
SCT2: The set H := {(0ik, 0j l) | i, j ∈ N, k, l ∈ {1, 2}} satisfies CT′2. Therefore,
the space is CT2. Suppose SCT2. Let H be the r.e. set for SCT2. By (10),
i 6∈ A =⇒ (0i1, 0i2) ∈ H and by (11), i ∈ A =⇒ (0i1, 0i2) 6∈ H. Since H is
r.e., the complement of A must be r.e. (contradiction). Notice that x 6= y is not
(δ, δ)-r.e., see Theorem 2.3. It can be shown easily that X is WCT3. 2

Example 6. (SCT2 but not T3) Omitted. 2

Example 7. (T4 and SCT2 but not WCT3) Omitted. 2

Example 8. (CT3 but not SCT3) Define a notation I of the open rational inter-
vals by I〈u, v〉 := (νQ(u); νQ(v))⊆R. Let Rc⊆R be the set of (ρ-) computable real
numbers. There is a computable function g : Σ∗ → Σ∗ such that Rc⊆

⋃
i∈N I ◦

g(0i) and
∑

i∈N length(I ◦ g(0i)) < 1 [6, Theorem 4.2.8]. Let z := inf{a ∈
Q | [a; 1]⊆

⋃
i∈N I ◦ g(0i)}. Then 0 < z < 1, z is ρ>-computable and not ρ-

computable, hence not ρ<-computable [6]. Furthermore for all k, z 6∈ I ◦ g(0k).
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Let X := Rc ∪{z}. Define a notation ν of subsets of X by ν(0v) := I(v)∩X
and ν(1v) := I(v)∩ (−∞; z)∩X (v ∈ dom(I)).Then β := range(ν) is a base of a
topology τ such that X := (X, τ, β, ν) is a computable topological space. Notice
that for x < z, z ∈ clsX((x; z) ∩ X). Let δ be the inner representation for the
points of X.

Proposition 1: The multi-function h : x |⇒ a mapping each x ∈ X such that
x < z to some a ∈ Q such that x < a < z is (δ, νQ)-computable.

Proof 1: If x < z and x ∈ I◦g(0k), then sup I◦g(0k) < z, since z 6≤ inf I◦g(0k)
(since x < z), z 6∈ I◦g(0k) and z 6= sup I◦g(0k) (since z 6∈ Q). There is a machine
M that on input p searches for some k ∈ N such that 0g(0k) � p and writes
some u such that νQ(u) = sup I ◦ g(0k). Let δ(p) = x < z. Since x ∈ Rc, there is
some k such that x ∈ I ◦ g(0k), hence 0g(0k) � p. We obtain νQ ◦ fM (p) < z.
Therefore, the multi-function h is (δ, νQ)-computable.

Proposition 2: The multi-function f : (x, U) |⇒ V mapping each (x, (a; b)) ∈
X × range(I) such that x ∈ (a; b) to some (c; d) ∈ range(I) such that x ∈
(c; d)⊆[c; d]⊆(a; b) is (δ, I, I)-computable.

Proof 2: Every δ-name of x lists arbitrarily short rational intervals contain-
ing x. Search for a sufficiently short interval (c; d).

We show that t′3 from Definition 3 is computable. Suppose x ∈ W ∈ β.
If W = ν(0w) = I(w) ∩ X for some w then W ′ := I(w). If W = ν(1w) =
I(w) ∩ (−∞; z) ∩X for some w then by means of h find some e ∈ Q such that
x < e < z and let W ′ := I(w) ∩ (−∞; e). Then x ∈W ′ ∩X⊆W . By means of f
from x and (a; b) := W ′ find (c; d) ∈ range(I) such that x ∈ (c; d)⊆[c; d]⊆(a; b).
Then x ∈ (c; d) ∩X⊆[c; d] ∩ x⊆W .

From a, b, c and d some u and q can be computed such that ν(u) = (c; d)∩X
and ψ−(q) = [c; d]∩X. Then x ∈ ν(u)⊆ψ−(q)⊆W . Therefore, t′3 is (δ, ν, [ν, ψ−])-
computable.

Suppose, X is SCT3. Let R be the r.e. set for SCT3 from Definition 3. There is
some w such that ν(w) = (0; z)∩X. Suppose (u,w) ∈ R. Then ν(u)⊆ν(w), hence
for some a, b ∈ Q such that a < b < z, ν(u) = (a; b) ∩X or ν(u) = (a; z) ∩X. If
ν(u) = (a; z) ∩X, then z ∈ clsX(ν(u)), but clsX(ν(u))⊆ν(w) = (0; z) by SCT3,
hence z ∈ ν(w) = (0; z) (contradiction). Therefore, sup ν(u) = (a; b) for some
rational numbers a, b such that a < b < z.

The function U 7→ supU for all U = (a;x) ∈ β such that x < z is (ν, νQ)-
computable. Since R is r.e., the number y := sup{sup ν(u) | (u,w) ∈ R} is
ρ<-computable such that y ≤ z. Since (0; z) = ν(w) =

⋃
(u,w)∈R ν(u), for every

x < z there is some (u,w) ∈ R such that x < sup ν(u). Therefore, y = z, hence z
is ρ<-computable. Contradiction. Therefore, X is not SCT3. Notice that U 6= ∅
is not ν-r.e. 2

Further results can be obtained in combination with the positive results from
Theorem 1. Figure 1 visualizes the interplay between the computable versions of
Ti for i = 0, 1, 2, 3 from Definitions 2 and 3 we have proved. “A −→ B” means
A =⇒ B, “A 6−→ B” means that we have constructed a computable topological

space for which A ∧ ¬B, and A 6−→C B” means that we have constructed a
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computable topological space for which (A∧C)∧¬B. Remember that SCT0 ⇐⇒
CT0 ⇐⇒ CT′0, CT1 ⇐⇒ CT′1 ⇐⇒ CT2 ⇐⇒ CT′2 and CT3 ⇐⇒ CT′3.

SCT3
-� CT3

-�
T4

SCT2
-�

D
CT2

-�
D

CT0
-�

D
WCT0

WCT3 T3 T1 T0 D

?
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6
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@
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@
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Fig. 1. The relation between computable T0-, T1-, T2- and T3-separation.

5 Further Results

For a computable topological space X = (X, τ, β, ν) and B⊆X the subspace
XB = (B, τB , βB , νB) of X to B is the computable topological space defined by
dom(νB) := dom(ν), νB(w) := ν(w) ∩ B. The separation axioms from Defini-
tions 2 and 3 are invariant under restriction to subspaces.

Theorem 4. If a computable topological space satisfies some separation axiom
from Definitions 2 and 3 then each subspace satisfies this axiom.

Proof: Straightforward. 2

The product of two Ti-spaces is a Ti-space for i = 0, 1, 2, 3. This is no longer
true for some of the computable separation axioms. By definition for the product
X1 ×X2 = X = (X1 ×X2, τ , β, ν) of two computable topological spaces X1 =
(X1, τ1, β1, ν1) and X2 = (X2, τ2, β2, ν2), ν〈u1, u2〉 = ν1(u1)× ν2(u2).

Example 9. The space X from Example 5 is CT2 but not SCT2. Let R be the
computable real line from Example 1.1. We show that the product X×R is not
WCT0. Suppose, X ×R is WCT0. Since every base element of X ×R has the
form ν(u)× (a; b) (a, b ∈ Q, a < b) no singleton {(x, y)} (x ∈ X, y ∈ R) is open.
By Theorem 2.1, X×R is SCT2. By Theorem 1 the relation (x, x′) 6= (y, y′) is
([δ, ρ], [δ, ρ])-r.e. where δ is the inner representation of the points of X. There is a
machine M that halts on input (〈p, p′〉, 〈q, p′〉) for p, q ∈ dom(δ) and p′ ∈ dom(ρ)
iff δ(p) 6= δ(q). There is a computable element p′ ∈ dom(ρ). Therefore, there is
a machine N that halts on input (p, q) iff δ(p) 6= δ(q), hence x 6= y is (δ, δ)-r.e.
By Theorem 1, X must be SCT2. But X is not SCT2.

Theorem 5. 1. The SCT2-, WCT3-, CT3- and SCT3-spaces are closed under
product.

2. The WCT0-, CT0- and CT2-spaces are not closed under product.
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Proof: 1. Suppose, X1 and X2 are SCT2. By Theorem 1, xi 6= yi is (δi, δi)-
r.e. for i = 1, 2, hence (x1, x2) 6= (y1, y2) is ([δ1, δ2], [δ1, δ2])-r.e., hence again by
Theorem 1, X1 ×X2 is SCT2.

Suppose, X1 and X2 are WCT3. Let (x1, x2) ∈ W1 ×W2. From xi and Wi

we can find Ui ∈ βi such that xi ∈ Ui⊆U i⊆Wi (for i = 1, 2). Then (x1, x2) ∈
U1 × U2⊆U1 × U2 = U1 × U2⊆W1 ×W2.

Suppose, X1 and X2 are CT ′3. We consider computability w.r.t. νi, δi, ψ
−
i , ν,

δ and ψ
−

. Suppose (x1, x2) ∈ (W1,W2) ∈ β1 × β2. From ((x1, x2), (W1,W2)) we
can compute x1, x2,W1 andW2. Using t′3 for X1 and X2 we can compute (Ui, Bi)
such hat Ui ∈ βi Bi⊆Xi is closed and xi ∈ Ui⊆Bi⊆Wi (i = 1, 2). Observe that
(x1, x2) ∈ U1 × U2⊆B1 × B2⊆W1 × W2. Form (U1, B1) and (U2, B2) we can
compute ((u1, u2), (B1, B2)).

Suppose, X1 and X2 are SCT3. For Xi (i = 1, 2) let Ri be the r.e. set and let
ri be the computable function for SCT3 from Definition 3. There is a computable

function h such that ψ−1 (p1)× ψ−2 (p2) = ψ
−〈p1, p2〉. Let

R := {(〈u1, u1〉, 〈w1, w2〉) | (u1, w1) ∈ R1 ∧ (u2, w2) ∈ R2} ,
r(〈u1, u1〉, 〈w1, w2〉) := h(r1(u1, w1), r2(u2, w2)) .

A straightforward calculation shows thatR is the r.e. set and r be the computable
function for SCT3 from Definition 3 for the product X1 ×X2.

2. In Example 9, the spaces X and R are CT2, CT0 and WCT0. Their product
X×R, however, is not WCT0, hence not CT0 and not CT2. 2
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Real Computation with Least Discrete Advice:
A Complexity Theory of Nonuniform

Computability

Martin Ziegler?

Technische Universität Darmstadt

Abstract. It is folklore particularly in numerical and computer sciences
that, instead of solving some general problem f : A → B, additional
structural information about the input x ∈ A (that is any kind of promise
that x belongs to a certain subset A′ ⊆ A) should be taken advantage
of. Some examples from real number computation show that such dis-
crete advice can even make the difference between computability and
uncomputability. We turn this into a both topological and combinato-
rial complexity theory of information, investigating for several practical
problems how much advice is necessary and sufficient to render them
computable.
Specifically, finding a nontrivial solution to a homogeneous linear equa-
tion A · x = 0 for a given singular real n× n-matrix A is possible when
knowing rank(A) ∈ {0, 1, . . . , n−1}; and we show this to be best possible.
Similarly, diagonalizing (i.e. finding a basis of eigenvectors of) a given
real symmetric n× n-matrix A is possible when knowing the number of
distinct eigenvalues: an integer between 1 and n (the latter corresponding
to the nondegenerate case). And again we show that n–fold (i.e. roughly
logn bits of) additional information is indeed necessary in order to ren-
der this problem (continuous and) computable; whereas finding some
single eigenvector of A requires and suffices with Θ(logn)–fold advice.

1 Introduction

Recursive Analysis, that is Turing’s [Turi36] theory of rational approximations
with prescribable error bounds, is generally considered a very realistic model of
real number computation [BrCo06]. Much research has been spent in ‘effectiviz-
ing’ classical mathematical theorems, that is replacing mere existence claims

i) “for all x, there exists some y such that . . . ” with
ii) “for all computable x, there exists some computable y such that . . . ”

Cf. e.g. the Intermediate Value Theorem in classical analysis [Weih00, Theo-
rem 6.3.8.1] or the Krein-Milman Theorem from convex geometry [GeNe94].
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Note that Claim ii) is non-uniform: it asserts y to be computable whenever x is;
yet, there may be no way of converting a Turing machine M computing x into a
machine N computing y [Weih00, Section 9.6]. In fact, computing a function
f : x 7→ y is significantly limited by the sometimes so-called Main Theorem, re-
quiring that any such f be necessarily continuous: because finite approximations
to the argument x do not allow to determine the value f(x) up to absolute error
smaller than the ‘gap’ lim supt→x f(t) − lim inft→x f(t) in case x is a point of
discontinuity of f . In particular any non-constant discrete-valued function on
the reals is uncomputable—for information-theoretic (as opposed to recursion-
theoretic) reasons. Thus, Recursive Analysis is sometimes criticized as a purely
mathematical theory, rendering uncomputable even functions as simple as Gauß’
staircase [Koep01].

1.1 Motivating Examples

On the other hand many applications do provide, in addition to approximations
to the continuous argument x, also certain promise or discrete ‘advice’; e.g.
whether x is integral or not. And such additional information does render many
otherwise uncomputable problems computable:

Example 1. The Gauß staircase is discontinuous, hence uncomputable. Re-
stricted to integers, however, it is simply the identity, thus computable. And
restricted to non-integers, it is computable as well; cf. [Weih00, Exercise 4.3.2].
Thus, one bit of additional advice (“ integer or not”) suffices to make b · c : R→ Z
computable.

Also many problems in analysis involving compact (hence bounded) sets are
discontinuous unless provided with some integer bound; compare e.g. [Weih00,
Section 5.2]. For a more involved illustration from computational linear alge-
bra, we report from [ZiBr04, Section 3.5] the following

Example 2. Given a real symmetric d × d matrix A (in form of approxima-
tions An ∈ Qd×d with |A − An| ≤ 2−n), it is generally impossible, for lack of
continuity and even in the multivalued sense, to compute (approximations to)
any eigenvector of A.
However when providing, in addition to A itself, the number of distinct eigenval-
ues (i.e. not counting multiplicities) of A, finding the entire spectral resolution
(i.e. an orthogonal basis of eigenvectors) becomes computable.

1.2 Complexity Measure of Non-Uniform Computability

We are primarily interested in problems over real Euclidean spaces Rd, d ∈
N. Yet for reasons of general applicability to arbitrary spaces U of continuum
cardinality, we borrow from Weihrauch’s TTE framework [Weih00, Section 3]
the concept of so-called representations, that is, encodings of all elements u ∈ U
as infinite binary strings; and a realizer of a function f : U → V maps encodings
of u ∈ U to encodings of f(u) ∈ V . A notation is basically a representation of a
merely countable set.
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Definition 3. a) A function f :⊆ A→ B between topological spaces A and B
is k-wise continuous if there exists a covering (equivalently: a partition) ∆
of dom(f) =

⋃
D∈∆D with Card(∆) = k such that f |D is continuous for

each D ∈ ∆. Call Ct(f) := inf{k : f is k-wise continuous} the cardinal of
discontinuity of f .

b) A function f :⊆ A → B between represented spaces (A,α) and (B, β) is
(α, β)–computable with k-wise advice if there exists an at most countable
partition ∆ of Card(∆) = k and a notation δ of ∆ such that the mapping f∆ :
(a,D) 7→ f(a) is (α, δ, β)–computable on dom(f∆) := {(a,D) : a ∈ D ∈ ∆}.
Call Cc(f) = Cc(f, α, β) := min{k : f is (α, β)–computable with k-wise advise}
the complexity of non-uniform (α, β)–computability of f .

c) A function f :⊆ A → B is nonuniformly (α, β)–computable if, for every
α–computable a ∈ dom(f), f(a) is β-computable.

So continuous functions are exactly the 1-wise continuous ones; and computabil-
ity is equivalent to (weak or strong) computability with 1-wise advice. Also we
have, as an extension of the Main Theorem of Recursive Analysis, the following
immediate

Observation 4. If α, β are admissible representations in the sense of [Weih00,
Definition 3.2.7], then every k-wise (α, β)–computable function is k-wise con-
tinuous (but not vice versa); that is Ct(f) ≤ Cc(f) holds.
More precisely, every k-wise (α, β)–computable possibly multivalued function
f :⊆ A ⇒ B has a k-wise continuous (α, β)–realizer in the sense of [Weih00,
Definition 3.1.3.4].

The above examples illustrate some interesting discontinuous functions to be
computable with k-wise advice for some k ∈ N. Specifically Example 2, diagonal-
ization of real symmetric n×n–matrices is n–wise computable; and Theorem 20
below will show this value n to be optimal.

Remark 5. We advertise Computability with Finite Advice as a generalization
of classical Recursive Analysis:
a) It constitutes a hybrid approach to both discrete and continuous computation.
b) It complements Type-2 oracle computation: In the discrete realm, every func-
tion f : N → N becomes computable when employing an appropriate oracle;
whereas in the Type-2 case, exactly the continuous functions f : R → R are
computable relative to some oracle. On the other hand, 2-wise advice can make
a continuous function computable which without advice has unbounded degree of
uncomputability; see Proposition 6d).
c) Discrete advice avoids a common major point of criticism against Recursive
Analysis, namely that it denounces even simplest discontinuous functions as un-
computable;
d) and such kind of advice is very practical: In applications additional discrete
information about the input is often actually available and should be used. For
instance a given real matrix may be known to be non-degenerate (as is often ex-
ploited in numerics) or, slightly more generally, to have k eigenvalues coincide
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for some known k ∈ N.
e) The topology of the members of the collection ∆ from Definition 3 can usu-
ally be chosen not too wild: compare the examples considered below. In practice,
we consider the discrete advice to arise with the input itself. For instance the
band-width of a given matrix A may be known as 3 because A comes from a
finite element triangular grid approach. Hence the collection ∆ need not even be
explicit (since it is usually far from unique, anyway; compare Remark 11), nor
required effective in any sense.

1.3 Related Work, in particular Kolmogorov Complexity

Several approaches have been pursued in literature to make also discontinuous
functions accessible for computability investigations.

Exact Geometric Computation considers the arguments x as exact rational num-
bers [LPY05].

Special encodings of discontinuous functions motivated by spaces in Functional
Analysis, are treated e.g. in [ZhWe03]; however these do not admit eval-
uation.

Weakened notions of computability may refer to stronger models of computation
[ChHo99]; provide more information on (e.g. the binary encoding of, rather
than rational approximations with error bounds to) the argument x [Mori02,MTY05];
or expect less information on (e.g. no error bounds for approximations to)
the value f(x) [WeZh00].

A taxonomy of discontinuous functions, namely their degrees of Borel measura-
bility, is investigated in [Brat05,Zie07a,Zie07b]:
Specifically, a function f :⊆ A → B is continuous (=Σ1–measurable) iff,
for every closed T ⊆ B, its preimage f−1[T ] is closed in dom(f) ⊆ A; and
f is computable iff this mapping T 7→ f−1[T ] on closed sets is (ψd>, ψ

d
>)–

computable. A degree relaxation, f is called Σ2–measurable iff, for every
closed T ⊆ B, f−1[T ] is an Fδ-set.

Wadge degrees of discontinuity are an (immense) refinement of the above, namely
with respect to so-called Wadge reducibility ; cf. e.g. [Weih00, Section 8.2].

Levels of discontinuity are studied in [HeWe94,Her96a,Her96b]:
Take the set X0 ⊆ dom(f) of points of discontinuity of f ; then the set
X1 ⊆ X0 of points of discontinuity of f |X0

and so on: the least index k for
which Xk is empty is f ’s level of discontinuity.

Our approach superficially resembles the third and last ones above. A minor
difference, they correspond to ordinal measures whereas the size of the partition
considered in Definition 3 is a cardinal. As a major difference we now establish
these measures as logically largely independent:

Proposition 6. a) There exists a 2-wise computable function f : [0, 1] →
{0, 1} which is not measurable nor on any level of discontinuity.

b) There exists a ∆2–measurable function f : [0, 1] → [0, 1] with is not k-wise
continuous for any finite k.
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c) If f is on the k-th level of discontinuity, it is (k + 1)-wise continuous.
d) There exists a continuous, 2-wise computable function f :⊆ [0, 1] → [0, 1]

which is not computable, even relative to any prescribed oracle.
e) Every k-wise computable function is nonuniformly computable; whereas there

are nonuniformly computable functions not k-wise computable for any k ∈ N.

Conditions where nonuniform computability does imply (even) 1-wise computabil-
ity have been devised in [Brat99]. Further related research includes

Computational Complexity of real functions; see e.g. [Ko91] and [Weih00, Sec-
tion 7]. Note, however, that Definition 3 refers to a purely information-
theoretic notion of complexity of a function and is therefore more in the
spirit of

Information-based Complexity in the sense of [TWW88]. There, on the other
hand, inputs are considered as real number entities given exactly; whereas
we consider approximations to real inputs enhanced with discrete advice.

Finite Continuity is being studied for Darboux Functions in [MaPa02,Marc07]. It
amounts to d-wise continuity for some d ∈ N according to Definition 3a).

Kolmogorov Complexity has been investigated for finite strings and, asymptoti-
cally, for infinite ones; cf. e.g. [LiVi97, Section 2.5] and [Stai99]. Also a kind
of advice is part of that theory in form of conditional complexity [LiVi97,
Definition 2.1.2].

We quote from [LiVi97, Exercise 2.3.4abe] the following

Fact 7. An infinite string σ̄ = (σn)n∈ω ∈ Σω is computable (e.g. printed onto a
one-way output tape by some so-called Type-2 or monotone machine; cf. [Weih00,Schm02])

a) iff its initial segments σ̄1:n := (σ1, . . . σn) have Kolmogorov complexity O(1)
conditionally to n, i.e., iff C(σ̄1:n|n) is bounded by some c = c(σ̄) ∈ N
independent of n.

b) Equivalently: the uniform complexity Cu(σ̄1:n) := C(σ̄1:n;n) in the sense of
[LiVi97, Exercise 2.3.3] (that is the complexity of the function {1, . . . , n} 3
i 7→ σi from [LiVi97, Exercise 2.1.12] but additionally relativized to the size
n of the domain) is bounded by some c for infinitely many n.

Definition 8. a) For σ̄ ∈ Σω, write C(σ̄) := supn C
(
σ̄1:n|n

)
and C(σ̄|τ̄) :=

supn C
(
σ̄1:n|n, τ̄

)
, where the Kolmogorov complexity conditional to an infinite

string is defined literally as for a finite one [LiVi97, Definition 2.1.1].
b) Similarly, let Cu(σ̄|τ̄) := supn Cu

(
σ̄1:n|τ̄

)
.

c) For a represented space (A,α) and a ∈ A, write C(a) := inf{C(σ̄) : α(σ̄) =
a} and Cu(a) := inf{Cu(σ̄) : α(σ̄) = a}.

Note that we purposely do not consider some normalized form like C(σ̄1:n|n)/n/n/n
in order to establish the following

Proposition 9. A function F :⊆ Σω → Σω is computable with finite advice
iff the Kolmogorov complexity Cu

(
F (σ̄)|σ̄

)
is bounded by some c independent of

σ̄ ∈ dom(F ).
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2 Complexity of Nonuniform Computability

Lemma 10. a) Let f : A→ B be d-wise continuous (computable) and A′ ⊆ A.
Then the restriction f |A′ is again d-wise continuous (computable).

b) Let f : A → B be d-wise continuous (computable) and g : B → C be k-
wise continuous (computable). Then g ◦ f : A → C is d · k-wise continuous
(computable).

c) If f : A→ B is (α, β)–computable with d-wise advice and α′ � α and β � β′,
then f is also (α′, β′)–computable with d-wise advice.

A minimum size partition ∆ of dom(f) to make f computable on each D ∈ ∆
need not be unique: Alternative to Example 1, we

Remark 11. Given a ρ–name of x ∈ R and indicating whether bxc ∈ Z is even
or odd suffices to compute bxc:
Suppose bxc = 2k ∈ 2Z (the odd case proceeds analogously). Then x ∈ [2k, 2k +
1). Conversely, x ∈ [2k− 1, 2k+ 2), together with the promise bxc ∈ 2Z, implies
bxc = 2k. Hence, given (qn) ∈ Q with |x − qn| ≤ 2−n, k := 2 ·

⌊
q1/2 + 1

4

⌋
(calculated in exact rational arithmetic) will yield the answer. ut

2.1 Witness of k-wise Discontinuity

Recall that the partition ∆ in Definition 3 need not satisfy any (e.g. topological
regularity) conditions. The following notion turns out as useful in lower bounding
the cardinality of such a partition:

Definition 12. a) A d-dimensional flag F in a topological Hausdorff space X
is a collection

x, (xn)
n
, (xn,m)

n,m
, (xn,m,`)n,m,`

, . . . , (xn1,...,nd
)
n1,...,nd

of a point and of (multi-)sequences† in X such that, for each (possibly empty)
multi-index n̄ ∈ Nk (0 ≤ k < d), it holds xn̄ = lim

m→∞
xn̄,m.

b) F is uniform if furthermore, again for each n̄ ∈ Nk (0 ≤ k < d) and for each
1 ≤ ` ≤ d− k, it holds xn̄ = lim

m→∞
xn̄,m,...,m︸ ︷︷ ︸

` times

.

c) For f :⊆ X → Y and x ∈ dom(f) a witness of discontinuity of f at x is a
sequence xn ∈ dom(f) such that limn→∞ f(xn) exists but differs from f(x).

d) For f :⊆ X → Y , a witness of d-wise discontinuity of f is a uniform d-
dimensional flag F in dom(f) such that, for each k = 0, 1, . . . , d − 1 and
for each n̄ ∈ Nk and for each 1 ≤ ` ≤ d − k,

(
xn̄,m,...,m︸ ︷︷ ︸

` times

)
m

is a witness of

discontinuity of f at xn̄.

† The generally more appropriate concept is that of a Moore-Smith sequence or net.
However, being interested in second countable spaces, we may and shall restrict to
ordinary sequences. Similarly, the Hausdorff condition is invoked for mere conve-
nience.
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Observe that, since d is finite, we may always (although not effectively) proceed
from a flag to a uniform one by iteratively taking appropriate subsequences. In
fact, sub(multi)sequences of d-flags and of witnesses of discontinuity are again
d-flags and witnesses of discontinuity.

Lemma 13. Let X,Y be Hausdorff, f : X → Y a function, and suppose there
exists a witness of d-wise discontinuity of f . Then Ct(f) > d.

2.2 First Example: Matrix Rank

Observe that for an N×M -matrix A and d := min(N,M), rank(A) is an integer
between 0 and d; and knowing this number makes rank trivially computable.
Conversely, such (d+ 1)–fold information is necessary by Lemma 13 and

Example 14. Consider the space RN×M of rectangular matrices and let d :=
min(N,M). For i ∈ {0, 1, . . . , d} write

Ei :=

i∑
j=1

(
(0, · · · , 0, 1︸︷︷︸

j-th

, 0, · · · , 0︸︷︷︸
n-th

)† ⊗ (0, · · · , 0, 1︸︷︷︸
j-th

, 0, · · · , 0︸︷︷︸
m-th

)
)
.

X := 0, Xn1,...,ni
:= E1/n1 + E2/n2 + · · · + Ei/ni

has lim
m→∞

Xn1,...,ni,m,...,m = Xn1,...,ni
, hence constitutes a uniform d-dimensional

flag. Moreover, rank(Ei) = i = rank(Xn1,...,ni
) 6= i + ` = rank(Xn1,...,ni,m,...,m︸ ︷︷ ︸

` times

)

shows it is a witness of d-wise discontinuity of rank : RN×M → {0, 1, . . . , d}. ut

3 Multivalued Functions, i.e. Relations

Many applications involve functions which are ‘non-deterministic’ in the sense
that, for a given input argument x, several values y are acceptable as output;
recall e.g. Items i) and ii) in Section 1. Also in linear algebra, given a singular
matrix A, we want to find some (say normed) vector v such that A ·v = 0. This
is reflected by relaxing the mapping f : x→ y to be not a function but a relation
(also called multivalued function); writing f : X ⇒ Y instead of f : X → 2Y \{∅}
to indicate that for an input x ∈ X, any output y ∈ f(x) is acceptable. Many
practical problems have been shown computable as multivalued functions but
admit no computable single-valued so-called selection; cf. e.g. [Weih00, Exer-
cise 5.1.13], [ZiBr04, Lemma 12 or Proposition 17]. On the other hand, even
relations often lack computability merely for reasons of continuity—and appro-
priate additional discrete advice renders them computable, recall Example 2.

3.1 Dis-/Continuity for Multivalued Mappings

Like single-valued computable functions (recall the Main Theorem), also com-
putable relations satisfy certain topological conditions. However for such multi-
valued mappings, literature knows a variety of easily confusable notions [ScNe07].
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Hemicontinuity for instance is not necessary for real computability. It may be
tempting to regard computing a multivalued mapping f as the task of calculat-
ing, given x, the set-value f(x) [Spre08]. In our example applications, however,
one wants to capture that a machine is permitted, given x, to ‘nondeterminis-
tically’ choose and output some value y ∈ f(x). Note that this coincides with
[Weih00, Definition 3.1.3]. In particular we do not insist that, upon input x,
all y ∈ f(x) occur as output for some nondeterministic choice—as required in
[Brat03, Section 7]. Instead, let us generalize Definition 12 as follows:

Definition 15. Fix some possibly multivalued mapping f :⊆ X ⇒ Y and write
dom(f) := {x ∈ X : f(x) 6= ∅}. Call f continuous at x ∈ X if there is some y ∈
f(x) such that for every open neighbourhood V of y there exists a neighbourhood
U of x such that f(z) ∩ V 6= ∅ for all z ∈ U .

For ordinary (i.e. single-valued) functions f , dom(f) amounts to the usual no-
tion; and such f is obviously continuous (at x) iff it is continuous (at x) in
the original sense. Indeed, Lemma 18a) below is an immediate extension of the
Main Theorem of Recursive Analysis, showing that any computable multivalued
mapping is necessarily continuous.

Lemma 10a) literally applies also to multivalued mappings f : A ⇒ B. We
failed to similarly fully generalize Lemma 10b); but already the following partial
generalization turns out as useful:

Lemma 16. a) Let f : A→ B be single-valued and g : B ⇒ C multivalued. If f
is d-wise continuous (computable) and g is k-wise continuous (computable),
then g ◦ f : A⇒ C is d · k-wise continuous (computable).

b) Let f : A ⇒ B and g : B ⇒ C be multivalued. If f is d-wise continuous
(computable) and g is continuous (computable), then g ◦ f : A⇒ C is again
d-wise continuous (computable).

Definition 17. a) For x ∈ dom(f), a witness of discontinuity of f at x is a
sequence (xn) ∈ dom(f) converging to x such that, for every y ∈ f(x) there
is some open neighbourhood V of y disjoint from f(xn) for infinitely many
n ∈ N.

b) A uniform d-dimensional flag F in X is a witness of d-wise discontinuity of
f if, for each 0 ≤ k < d and for each n̄ ∈ Nk and for each 1 ≤ ` ≤ d− k and
for each y ∈ f(xn̄),

(
xn̄,m,...,m︸ ︷︷ ︸

` times

)
m

is a witness of discontinuity of f at xn̄.

If multivalued f admits a witness of discontinuity at x, then f is not continuous.
Conversely, if X is first-countable, discontinuity of f at x yields the existence of
a witness of discontinuity at x. Also, witnesses of 1-wise discontinuity coincide
with witnesses of discontinuity; and they generalize the definition from the single-
valued case. Lemma 18 below extends Lemma 13 in showing that a witness of
d-wise discontinuity of f inhibits d-wise computability.
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Lemma 18. Let (A,α) and (B, β) be effective metric spaces‡ with corresponding
Cauchy representations and f :⊆ A⇒ B a possibly multivalued mapping.

a) If f admits a witness of discontinuity, then it is not (α, β)–continuous.
b) If f admits a witness of d-wise discontinuity, f is not d-wise (α, β)–continuous.

4 Applications to Effective Linear Algebra

Based on Lemma 13b), we now determine the complexity of non-uniform com-
putability for several concrete standard problems in linear algebra and in par-
ticular of Example 2. But first consider the problem of solving a system of linear
equations; more precisely of finding a nonzero vector in the kernel of a given
singular matrix. It is for mere notational convenience that we formulate for the
case of real matrices: complex ones work just as well.

Theorem 19. Fix n,m ∈ N, d := min(n,m− 1), and consider the space Rn×m
of n × m matrices, considered as linear mappings from Rm to Rn. Then the
multivalued mapping

LinEq : A 7→ kernel(A)\{0}, dom(LinEq) := {A ∈ Rn×m : rank(A) ≤ d}

is well-defined and has complexity Ct(LinEq) = Cc(LinEq, ρn×m, ρm) = d+ 1.

Concerning diagonalization of symmetric real matrices, we can prove

Theorem 20. Fix d ∈ N and consider the space R(d
2) of real symmetric d × d

matrices. Then the multivalued mapping

Diag : R(d
2) 3 A 7→

{
(w1, . . . ,wd) basis of Rd of eigenvectors to A

}
has complexity Ct(Diag) = Cc

(
Diag, ρ(d

2), ρd×d
)

= d.

The lack of continuity of the mapping Diag is closely related to inputs with
degenerate eigenvalues [ZiBr04, Example 18]. In fact our below proof yields a
witness of d-wise discontinuity by constructing an iterated sequence of symmetry
breakings in the sense of Mathematical Physics. On the other hand even in the
non-degenerate case, Diag is inherently multivalued since any permutation of a
basis constitutes again a basis.

4.1 Finding Some Eigenvector

Instead of computing an entire basis of eigenvectors, we now turn to the problem
of determining just one arbitrary eigenvector to a given real symmetric matrix.
This turns out to be considerably less ‘complex’:

‡ Cf. [Weih00, Section 8.1] for a formal definition and imagine Euclidean spaces Rk

as major examples and focus of interest for our purpose.
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Theorem 21. For a real symmetric n× n-matrix A, consider the quantity

m := min
{

dim kernel(A− λ id) : λ ∈ σ(A)
}
∈ {1, . . . , n} .

Given d := blog2mc ∈ {0, 1, . . . , blog2 nc} and a ρ(n
2)–name of A, one can ρn–

compute (i.e. effectively find) some eigenvector of A.

The proof employs the following tool about computability of finite multi-sets.

Lemma 22. Let (x1, . . . , xn) denote an n-tuple of real numbers and consider
the induced partition I :=

{
{1 ≤ i ≤ n : xi = xj} : 1 ≤ j ≤ n

}
of the index

set {1, . . . , n} =: [n] according to the equivalence relation i ≡ j :⇔ xi = xj.
Furthermore let m := min

{
Card(I) : I ∈ I

}
.

a) Consider I ⊆ [n] with 1 ≤ Card(I) < 2m. Then the following implies I ∈ I:

xi 6= xj for all i ∈ I and all j ∈ [n] \ I . (1)

b) Suppose k ∈ N is such that k ≤ m < 2k. Then there exists I ∈ I with k ≤
Card(I) < 2k satisfying (1). Conversely every I ⊆ [n] with k ≤ Card(I) < 2k
satisfying (1) has I ∈ I.

c) Given a ρn–name of (x1, . . . , xn) and given k ∈ N with k ≤ m < 2k, one
can computably find some I ∈ I.

d) Given a ρn–name of (x1, . . . , xn) and given Card(I), one can compute I.

Claim c) can be considered a weakening of Claim d) which had been established
in [ZiBr04, Proposition 20].

Proof (Theorem 21). Compute according to [ZiBr04, Proposition 17] some
(ρn–name of an) n-tuple of eigenvalues (λ1, . . . , λn) of A, repeated according
to their multiplicities. Now due to [ZiBr04, Theorem 11], (some eigenvector
in) the eigenspace kernel(A − λi id) can be computably found when knowing
rank(A − λi id) (recall Theorem 19), that is the multiplicity of λi in the multi-
set (λ1, . . . , λn). To this end we apply Lemma 22c), observing k := 2d ≤ m < 2k
since d = blog2mc. ut

Theorem 23. The multivalued mapping

EVecn : R(n
2) 3 A 7→ {w eigenvector of A}

has complexity Ct(EVecn) = Cc

(
EVecn, ρ

(n
2), ρn

)
= blog2 nc+ 1.

5 Conclusion and Perspectives

We claim that a major source of criticism against Recursive Analysis misses
the point: Although computable functions f are necessarily continuous when
given approximations to the argument x only, most practical f ’s do become
computable when providing in addition some discrete information about x. Such
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‘advice’ usually consists of some very natural and mathematically explicit integer
value from a bounded range (e.g. the rank of the matrix under consideration)
and is readily available in practical applications.

We have then turned this observation into a complexity theory, investigat-
ing the minimum size (=cardinal) of the range this discrete information comes
from. And we have devised mathematical tools and used them to determine this
quantity for several simple and natural problems from linear algebra: calculat-
ing the rank of a given matrix, solving a system of linear equalities, diagonal-
izing a symmetric matrix, and finding some eigenvector to a given symmetric
matrix. The latter three are inherently multivalued. And they exhibit a con-
siderable difference in complexity: for input matrices of format n × n, usually
discrete advice of order Θ(n) is necessary and sufficient; whereas some single
eigenvector can be found using only Θ(log n)–fold advice: namely the quantity⌊

log2 min
{

dim kernel(A− λ id) : λ ∈ σ(A)
}⌋

. The algorithm exploits this data
based on some combinatorial considerations—which nicely complement the heav-
ily analytical and topological arguments usually dominant in proofs in Recursive
Analysis.
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