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ATMOS 2009 Preface:

Algorithmic Approaches for Transportation

Modeling, Optimization, and Systems

Jens Clausen1, Gabriele Di Stefano2

1 Department of Mathematical Modelling, Technical University of Denmark
jc@imm.dtu.dk

2 Department of Electrical and Information Engineering, University of L’Aquila
gabriele.distefano@univaq.it

The 9th ATMOS workshop was held in Copenhagen, September 10, 2008,
within ALGO, an annual meeting combining European algorithms conferences
and workshops. The past workshops of ATMOS were held in Heraklion in 2001,
Malaga in 2002, Budapest in 2003, Bergen in 2004, Palma de Mallorca in 2005,
Zürich in 2006, Sevilla in 2007, and Karlsruhe in 2008.

The ALGO web page states: “An important area of algorithms, called com-
binatorial optimization, is concerned with finding solutions to solving problems
that arise in logistics and planning. ATMOS, one of the conferences hosted by
ALGO, focuses specifically on transportation: how to schedule trains so as to
minimize the number of trips with empty cars, or how to pack containers into a
ship. Such questions are solved with the aid of computers, and algorithms are re-
sponsible for computing the solution. Better algorithms solve the same problem
using fewer trains, pack more containers per trip, or find routes that consume
less fuel”.

ATMOS represents a well established series of meetings between algorithms
researchers and practitioners who are interested in all aspects of algorithmic
methods and models for transportation optimization and provides a forum for
the exchange and dissemination of new ideas and techniques. In the last years the
scope of the workshop has been broadened to comprise all modes of transporta-
tion. Scheduled transportation networks give rise to very complex and large-
scale network optimization problems requiring innovative solution techniques
and ideas from mathematical optimization and theoretical computer science.
Applicable tools and concepts include those from graph and network algorithms,
combinatorial optimization, approximation and online algorithms, stochastic and
robust optimization.

Of particular interest are the following areas:

- Infrastructure Planning
- Line Planning
- Timetable Generation
- Routing and Platform Assignment
- Vehicle Scheduling
- Crew and Duty Scheduling

J. Clausen, G. Di Stefano (Eds): ATMOS 2009 
9th Workshop on Algorithmic Approaches for Transportation Modeling, 
Optimization, and Systems  
http://drops.dagstuhl.de/opus/volltexte/2009/2294
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- Rostering
- Demand Forecasting
- Design of Tariff Systems
- Maintenance and Shunting of Rolling Stock
- Delay Management
- Rolling Stock Rescheduling
- Simulation Tools for Railway Operations
- Timetable Information

More generally, ATMOS aims at communicating the successful integration
of several of these subproblems or planning stages, algorithms operating in an
online/realtime or stochastic setting, and heuristic or approximate algorithms
for real-world instances.

Twelve paper were submitted for ATMOS 2009, and nine of them were se-
lected for presentation and inclusion in the current volume. The reviewing pro-
cess was guided by the program committee consisting of

- Serafino Cicerone, University of L’Aquila, Italy
- Jens Clausen, Technical University of Denmark, (Chair)
- Gabriele Di Stefano, University of L’Aquila, Italy (Chair)
- Michel Gendreau, Université de Montréal, Canada
- Riko Jacob, Technical University Mnchen, Germany
- Julie Jespersen Groth, DSB S-tog, Denmark
- Leo Kroon, RSM Erasmus University and Netherlands Railways, The Nether-

lands
- Gilbert Laporte, HEC Montral and GERAD, Canada
- Juan A. Mesa, University of Sevilla, Spain
- Anita Schöbel, University of Goettingen, Germany
- Martin Skutella, Technical University Berlin, Germany
- Paolo Toth, University of Bologna, Italy
- Gerhard J. Woeginger, Eindhoven University of Technology, The Nether-

lands
- Christos Zaroliagis, CTI and University of Patras, Greece

We wish to thank the program committee for the care in selecting the best
papers and all the external referees for their help.

Our special thanks goes to Dorothea Wagner for accepting to be the invited
speaker of ATMOS and for giving an inspiring talk on “Algorithm Engineering
for Route Planning in Realistic Scenarios ”, showing fundamental results of more
than ten years of researches in the field of shortest paths algorithms and route
planning.

Finally, we thank the organizer Thore Husfeldt, for his professional man-
agement, all the members of the ALGO organizing committee, the editors of
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the Dagstuhl Seminar Proceedings for accepting the publication of this volume
within DROPS, and all the participants for their lively interaction at the AT-
MOS sections.

Copenhagen and L’Aquila, November 2009

Jens Clausen and Gabriele Di Stefano
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A

elerating Time-Dependent Multi-CriteriaTimetable Information is Harder Than Expe
ted⋆Annabell Berger1, Daniel Delling2, Andreas Gebhardt1, andMatthias Müller-Hannemann1

1 Department of Computer S
ien
e, Martin-Luther-University Halle-Wittenberg,Von-Se
kendor�-Platz 1, 06120 Halle, Germany{berger,gebhardt,muellerh}�informatik.uni-halle.de
2 Department of Computer S
ien
e, University of Karlsruhe, P.O. Box 6980, 76128Karlsruhe, Germany. delling�informatik.uni-karlsruhe.deAbstra
t. Speeding up multi-
riteria sear
h in real timetable informa-tion systems remains a 
hallenge in spite of impressive progress a
hievedin re
ent years for related problems in road networks. Our goal is toperform multi-
riteria range queries, that is, to �nd all Pareto-optimal
onne
tions with respe
t to travel time and number of transfers withina given start time interval. This problem 
an be modeled as a pathsear
h problem in a time- and event-dependent graph. In this paper, weinvestigate two key speed-up te
hniques for a multi-
riteria variant ofDijkstra's algorithm � ar
 �ags and 
ontra
tion � whi
h seem to bestrong 
andidates for railway networks, too. We des
ribe in detail howthese two te
hniques have to be adapted for a multi-
riteria s
enario andexplain why we 
an expe
t only marginal speed-ups (
ompared to obser-vations in road networks) from a dire
t implementation. Based on theseinsights we extend traditional ar
-�ags to time-period �ags and introdu
eroute 
ontra
tion as a substitute for node 
ontra
tion. A 
omputationalstudy on real queries demonstrates that these te
hniques 
ombined withgoal-dire
ted sear
h lead to a speed-up of fa
tor 13.08 over the baselinevariant for range queries for a full day.Keywords: timetable information, multi-
riteria sear
h, time-dependentnetworks, ar
 �ags, 
ontra
tion1 Introdu
tionIn re
ent years there has been growing interest in high-performan
e timetableinformation systems [22℄. While exa
t single-
riterion sear
h is well understoodand already quite e�
ient, multi-
riteria timetable information remains a 
hal-lenge. Therefore, 
ommer
ial state-of-the-art systems still use only heuristi
s to

⋆ This work was partially supported by the DFG Fo
us Program Algorithm Engi-neering, grant Mu 1482/4-1. We wish to thank Deuts
he Bahn AG for providing ustimetable data for s
ienti�
 use.
J. Clausen, G. Di Stefano (Eds): ATMOS 2009 
9th Workshop on Algorithmic Approaches for Transportation Modeling, 
Optimization, and Systems  
http://drops.dagstuhl.de/opus/volltexte/2009/2148



2 A. Berger, D. Delling, A. Gebhardt, and M. Müller-Hannemanndetermine relevant 
onne
tions for their 
ustomers. Sin
e there has been impres-sive progress with speed-up te
hniques for related problems in road networks,it seems natural to start an attempt to transfer the underlying methods to arailway s
enario.In this paper, we report on a proje
t where we worked out the ne
essarydetails to augment standard sear
h te
hniques by additional information ob-tained in a prepro
essing phase. We investigate two key speed-up te
hniques fora multi-
riteria variant of Dijkstra's algorithm � ar
 �ags and 
ontra
tion.Related Work. Many speed-up te
hniques for single-
riteria s
enarios havebeen developed during the last years. Due to spa
e limitations, we dire
t theinterested reader to [8℄ and [10℄, whi
h give re
ent overviews over single-
riteriatime-independent and time-dependent route planning te
hniques, respe
tively.Basi
s. The straightforward approa
h to �nd all Pareto optimal paths is thegeneralization [15, 18, 20℄ of Dijkstra's algorithm: Ea
h node v ∈ V gets anumber of multi-dimensional labels assigned, representing all Pareto paths to
v. For the bi
riteria 
ase, Hansen [15℄ was the �rst presenting su
h a general-ization, while Theune [30℄ des
ribes multi-
riteria algorithms in detail. By thisgeneralization, Dijkstra loses the property that ea
h node is visited only on
e.It turns out that a 
ru
ial problem for multi-
riteria routing is the number oflabel entries assigned to the nodes. The more label entries are 
reated, the morenodes are reinserted in the priority queue yielding 
onsiderably slow-downs 
om-pared to the single-
riterion setup. In the worst 
ase, the number of labels 
an beexponential in |V | yielding impra
ti
al running times [15℄, and also memory 
on-sumption be
omes an issue. Hen
e, Hansen [15℄ and Warburtun [31℄ present anFPTAS (fully polynomial time approximation s
heme) for the bi
riteria shortestpath problem.Speed-up Te
hniques. Most of the work on speed-up te
hniques for multi-
riterias
enarios was done on networks derived from timetable information. In su
h net-works, Müller-Hannemann and Weihe [23℄ observed that the number of labelsis often limited su
h that the brute for
e approa
h for �nding all Pareto pathsis often feasible. Experimental studies �nding Pareto paths in timetable graphs
an be found in [25, 26, 29, 27, 21, 14, 11℄.We would like to point out that one hasto distinguish between �nding all Pareto paths and only �nding one representa-tive for ea
h equivalenve 
lass of paths with the same tuple of obje
tive values.Previous work usually guarantees only the weaker se
ond version.SHARC, a route planning algorithm developed by one of this work's 
o-authors, has been introdu
ed in [2, 3℄. Originally, SHARC only worked on time-independent networks. In [6, 7℄, it has su

essfully been adapted to time-depen-dent road and railway networks, and very re
ently, even to a (time-independent)multi-
riteria s
enario [9℄. However, experiments for the multi-
riteria variantwere only 
ondu
ted on time-independent road networks. So, to the best of ourknowledge, no advan
ed speed-up te
hnique has yet been adapted to a realisti
multi-
riteria timetable information system on time-dependent networks.



A

elerating Time-Dependent Multi-Criteria Timetable Information 3Our 
ontribution and overview. This paper is devoted to transfer advan
edspeed-up te
hniques to time-dependent railway networks. In 
ontrast to mostprevious s
ienti�
 work, we 
onsider a s
enario with the following features:� Our model is a fully realisti
 model, where tra�
 days, business rules onrequired transfer times between 
onne
ting trains, footpaths between neigh-boring stations, train attributes, and the like are respe
ted.� We aim at �nding all Pareto optimal paths for two 
riteria, travel time andnumber of transfers. We would like to emphasize that we here mean thestrong version whi
h really enumerates all Pareto paths, and not just onerepresentative path for ea
h non-dominated pair of obje
tive values. Sin
ethere are often several possibilities to 
hange between the same two trains,this leads to a mu
h larger set of paths. The motivation to sear
h for thesepaths 
omes from pra
ti
e: railway 
ompanies have preferen
es at whi
hstations their passengers should 
hange trains. Hen
e, they would like tosele
t from the 
omplete set of Pareto paths a subset whi
h they present to
ustomers.� We want to perform a range sear
h for an arbitrary user-spe
i�ed start-timeinterval (not only from a single desired start point). As a result, we are ableto 
ompute the 
omplete 
onne
tion table between two arbitrary stations fora full day.To model this s
enario we will introdu
e a station graph model with trainroutes whi
h is slightly more 
ompa
t than those used in Disser et al. [11℄. WhileDijkstra's algorithm 
an be easily generalized to time-dependent graphs in thesingle-
riterion 
ase [5℄, one has to be more 
areful in a multi-
riteria setting.The 
ru
ial operation in a multi-
riteria sear
h algorithm is to de
ide whi
hsubpaths 
an be safely dominated. To ensure 
orre
tness subpath optimality isrequired, and therefore Müller-Hannemann and Berger [4℄ extended the 
lassi
altime-dependent model to an event-dependent model.In this work, we mainly investigate two prominent speed-up te
hniques, ar
-�ags and 
ontra
tion, and their 
ombination. We� dis
uss how these te
hniques have to be adapted to work for the aboves
enario,� explain why they do not lead to as large speed-ups as one might have hopedfor, and� develop two new re�nements whi
h a
hieve at least some signi�
ant speed-upover previous work on range queries.Classi
al ar
 �ags turn out to be rather weak for arbitrary multi-
riteriarange queries: almost all ar
 �ags must be set to true to guarantee 
orre
tnessof the query algorithm sin
e for any ar
 there is almost surely one point in timewhere this ar
 is part of some Pareto-optimal path towards the target station.However, from our prepro
essing we do know exa
tly at whi
h points of time anyparti
ular ar
 might be ne
essary. By this observation we re�ne the 
lassi
al ar
�ags to time-period ar
 �ags. The idea is to divide the overall range for whi
h



4 A. Berger, D. Delling, A. Gebhardt, and M. Müller-Hannemannour prepro
essing is valid into short time intervals, for example into intervals oftwo hours. Then ea
h ar
 maintains a �ag for ea
h 
ombination of time interval(period) and region whi
h tells whether the ar
 might be �useful� for a parti
ularquery.Standard node 
ontra
tion su�ers from the dilemma that our station graphhas due to many parallel routes already a very high average degree of ≈ 43 (in
omparison, road networks have empiri
ally an average degree below 4). Thus,bypassing a node leads to the introdu
tion of many short
ut ar
s. While manyshort
ut ar
s 
an be pruned away in a single-
riterion sear
h in time-independentroad networks, domination 
riteria in a multi-
riteria s
enario are mu
h weakerin event-dependent railway networks, as we will explain in Se
tion 4. Therefore,we de
ided to develop and implement a di�erent 
on
ept whi
h 
an be 
ombinedwith ar
-�ags: route 
ontra
tion. The idea behind route 
ontra
tion is to insertfor a path 
omposed by ar
s on the same route a new short
ut ar
, providedthat all intermediate stations on this path are 
lassi�ed as bypassable. A stationis bypassable if (a) it is neither the beginning or end of some route, (b) it has atmost two di�erent neighbors, and (
) it is not a boundary node of some regionused in the node partition for the ar
-�ags. In Germany, about 60% of all stationsare bypassable with respe
t to this de�nition.In addition, we have realized a variant of goal-dire
ted sear
h whi
h for ea
hquery �rst 
omputes minimum travel times from ea
h node towards the targetstation and then uses these values as lower bounds during the sear
h. Extensive
omputational experiments indi
ate that the 
ombination of these methods to-gether with a greedy strategy allow range queries for a full day in about 0.53se
onds. This gives a speed-up of about 10.1 over our baseline variant.The remainder of the paper is organized as follows. In Se
tion 2, we brie�yreview the 
lassi
al ar
-�ag method and SHARC. Then, in Se
tion 3, we dis-
uss modeling issues for multi-
riteria time-table information. We introdu
e ourstation graph model and explain the baseline variant of a multi-
riteria gener-alization of Dijkstra's algorithm. Afterwards, we des
ribe how to adapt the pre-pro
essing phase for ar
-�ags and 
ontra
tion to a multi-
riteria time-dependentversion. In parti
ular, we introdu
e the new 
on
epts of time-period ar
-�ags androute 
ontra
tion. Results of an experimental study are presented in Se
tion 5.Finally, we 
on
lude with a short summary.2 PreliminariesA (dire
ted) graph G = (V, A) 
onsists of a �nite set V of nodes and a �nite set
A of ar
s. An ar
 is an ordered pair (u, v) of nodes u, v ∈ V , the node u is 
alledthe tail of the ar
, v the head. Throughout the whole work we restri
t ourselvesto dire
ted graphs whi
h are weighted by a length fun
tion len, whi
h we spe
ifyin Se
tion 3. A partition of V is a family C = {C0, C1, . . . , Ck} of sets Ci ⊆ Vsu
h that ea
h node v ∈ V is 
ontained in exa
tly one set Ci. An element of apartition is 
alled a region. The boundary nodes BC of a region C are all nodes
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u ∈ C for whi
h at least one node v ∈ V \C exists su
h that (v, u) ∈ A. We 
all
v a pre-boundary node of the region u is assigned to.SHARC. Introdu
ed in [2, 3℄, SHARC 
ombines ideas from ar
-�ags [17, 16℄ and
ontra
tion [28, 12℄. The original ar
-�ag approa
h �rst 
omputes a partition Cof the graph and then atta
hes a label to ea
h ar
 a. A label 
ontains, for ea
hregion C ∈ C, a �ag AFC(a) whi
h is true if a shortest path to at least one nodein C starts with a. A modi�ed Dijkstra then only 
onsiders those ar
s for whi
hthe �ag of the target node's region is true. The main downside of this approa
h isthe high prepro
essing e�ort. Hen
e, SHARC improves on this by the integrationof 
ontra
tion, i.e., a routine iteravely removing unimportant nodes and addingso-
alled short
uts in order to preserve distan
es between non-removed nodes.One key observation of SHARC is that we are able to assign ar
-�ags to allbypassed ar
s during 
ontra
tion. More pre
isely, any ar
 (u, v) outgoing from anon-removed node and heading to a removed one gets only one �ag set to true,namely, for the region v is assigned to. Any other bypassed ar
 gets all �ags setto true. By this pro
edure, unimportant ar
s are only relaxed at the beginningand end of a query.3 Modeling IssuesUp to now, two models have been introdu
ed for e�
ient timetable informationsystems: the time-expanded and time-dependent approa
h. See the survey pa-per [22℄ for details. In this se
tion we extend the time-dependent approa
h to anevent-dependent s
enario (see [4℄) and introdu
e a more 
ompa
t graph model.3.1 Elementary Conne
tions, Conne
tions and Conne
tion Tables.Before explaining our station graph model, we need the notion of 
onne
tionswithin a timetable. Let S be the set of stations. An elementary 
onne
tion
ce = (depv(time), arrw(time), T ) represents exa
tly one train T whi
h departsat time depv(time) in station v ∈ S and arrives at arrival time arrw(time)in station w ∈ S without stops. An elementary 
onne
tion-table Ce is a setof elementary 
onne
tions with identi
al origin v and destination w. Further-more, there exists a set of minimum transfer times transs(T, T ′) ∈ N betweentrains T, T ′ with respe
t to ea
h station s ∈ S. These transfer times ensurethe possibility to transfer between two trains with respe
t to di�erent situ-ations. We 
all two elementary 
onne
tions ce = (depv(time), arrw(time), T )and c′e = (depv′(time), arrw′(time), T ′) 
on
atinable if and only if w = v′ and
depv′(time)− arrw(time) ≥ transw(T, T ′). We denote a sequen
e of elementary
onne
tions ce1

, . . . , cek
as 
onne
tion c = (ce1

, cek
, transfer) if ea
h adja
entpair of elementary 
onne
tions (cei

, cei+1
) in the sequen
e is 
on
atinable. At-tribute transfer 
ounts the number of transfers using 
onne
tion c.Note, that thisde�nition allows to 
on
atenate 
onne
tions if there ending and starting elemen-tary 
onne
tions are 
on
atinable. We denote with c(depv(time)), c(depv(train))



6 A. Berger, D. Delling, A. Gebhardt, and M. Müller-Hannemannand c(arrw(time)), c(arrw(train)) the starting and ending departure and ar-rival times/trains of 
onne
tion c. Analogously to elementary 
onne
tion-tableswe de�ne a 
onne
tion-table C as a set of 
onne
tions with identi
al origin v anddestination w. Last, we de�ne an operator ⊕ on 
onne
tion tables C, C′ whi
hassigns to ea
h pair of 
onne
tion tables (C, C′) a new 
onne
tion table C′′.
C′′ 
ontains all 
onne
tions c′′ 
onsisting of 
on
atinable pairs of 
onne
tions
(c, c′) ∈ C ×C′. In the following, we assign elementary 
onne
tion-tables to ar
sbut also 
ompute 
onne
tion-tables between arbitrary pairs of stations.3.2 Station Graph ModelOur approa
h is based on a dire
ted graph G = (V, A) without loops but withparallel ar
s whi
h is 
alled station graph. Ea
h node v ∈ V models a station s ∈
S. Inserting ar
s is more sophisti
ated. In a �rst step we 
onne
t two stations ifand only if there exist at least one elementary 
onne
tion between these stations.Next, we identify trains with the following properties: they stop exa
tly at thesame sequen
e of stations, have the same train attributes and days of operation,and never violate the FIFO property, i.e., they always run in the same order onea
h ar
. We denote su
h sequen
es of stations as routes and get for ea
h ar
 aset of di�erent routes using this ar
. Now, we repla
e ea
h ar
 (v, w) by parallelroute ar
s (v, w)i, one for ea
h route on this ar
. We add the new attribute routenumber to ea
h elementary 
onne
tion. In a last step we assign to ea
h routear
 the 
orresponding elementary 
onne
tion-table.Foot-Ar
s. Our data also 
ontains foot paths modeling inter-station transfersrea
hable by foot. In our graph model, we simply 
onne
t the 
orrespondingstations v, w by a foot-ar
 with 
onstant length l 
orresponding to the timene
essary for traversing the ar
 (v, w) by foot F . Hen
e, we 
an asso
iate withea
h foot ar
 an elementary 
onne
tion table whi
h 
ontains for ea
h dis
retepoint of time an elementary 
onne
tion ce = (depv(time), arrw(time), F ) with
arrw(time) − depv(time) = l.3.3 Route Planning in the Station Graph ModelIn this work, we 
on
entrate on 
omputing optimal 
onne
tion tables betweentwo arbitrary stations s and t at a given start time interval [τstart, τend] for sta-tion s with respe
t to the travel time and number of transfers. We denote thetravel time of a 
onne
tion c with ttime(c) and the number of transfers with
transfer(c). Ea
h 
onne
tion 
an be seen as an event-dependent path in thestation graph. Müller-Hannemann and Berger introdu
ed event-dependent mod-els as an extension of time-dependent approa
hes in [4℄. The reason to introdu
ethis extension is that our se
ond optimization 
riterion �number of transfers�not only depends on time but additionally on train numbers. This leads to newde�nitions for time-dependent settings and their generalizations. First, we as-sign to ea
h ar
 a = (v, u) ∈ A and departure event depv at v an arrival event
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arru whi
h de�nes the arrival event at vertex u if we depart in v with depar-ture event depv and traverse ar
 a. This models our elementary 
onne
tions.For time-dependent models an event 
onsists only of the attribute time. There-fore, all departure events with the same departure time at a vertex v will be
onsidered as equal events. In our s
enario an event 
onsists of attributes depar-ture or arrival time, train number and route number. We de�ne for all v ∈ Va set of departure events Depv and arrival events Arrv . Consider all 
onne
-tions in a 
onne
tion table between station s and t. Then su
h a 
onne
tion
c = ((deps(time), arrw(time), T ), (depv(time), arrt(time), T ′), transfer) is analternating sequen
e (deps, arrw, . . . , depv, arrt) of departure and arrival eventswhi
h 
onsist of attributes (time, train, routenumber). For an (s, t)-query weignore all arrival events at s, but add an arti�
ial �arrival event� starts withan earliest start time starts(time) := τstart at the beginning of c. Furthermore,we de�ne one arti�
ial �departure event� endt whi
h is added to the end of c.We denote su
h an alternating sequen
e as event-dependent path Pstarts,endt

:=
(starts, c, endt). Furthermore, we 
all an alternating subsequen
e of an event-dependent path Pstarts,endt

starting at starts and ending in an arrival event arrvas event-dependent subpath Pstarts,arrv
. We de�ne the weight w(Pstarts ,arrv

) ∈
N

2 of an event-dependent path Pstarts,arrv
in the �rst 
omponent as the traveltime ttime(c) and in the se
ond 
omponent as the number of transfers transfer(c)of the underlying 
onne
tion c. Note that all events belonging to an event-dependent path are distin
t, but we do not rule out that 
orresponding stationsare repeated.If we want to use a generalized version of Dijkstra's algorithm to 
omputeall event-dependent Pareto-paths, we need for 
orre
tness subpath optimality.To de
ide the optimality of an event-dependent subpath we may only 
omparesubpaths whi
h possess on their ends identi
al departure events, see [4℄. Hen
e, inthe 
ase of a time-dependent s
enario we may 
ompare all subpaths whi
h possesson their ends only identi
al arrival times. A generalized version of Dijkstra'salgorithm, (see Algorithm 1), 
omputes all event-dependent Pareto-paths. Thisalgorithm uses a data stru
ture for a label L whi
h 
onsists of1. an arrival event arrv ,2. a list lw of weights w ∈ R

k
+ for event-dependent paths Pstarts,arrv

,3. a list lp of prede
essor arrival events arru for event-dependent paths Pstarts,arrv
.Note that in this version we 
onstru
t a label for ea
h route ar
 and thisnotion of a label in
ludes all partial 
onne
tions from the start station. Thus,we 
an identify su
h a label with a 
omputed 
onne
tion table representing allnon-dominated 
onne
tions from the start station up to the 
orresponding ar
found so far. Upon termination, ea
h label in
ludes all Pareto-optimal paths.To de
ide whether two alternatives dominate ea
h other or not, we are able to
ompare all event-dependent subpaths not only ending with identi
al departureevents but ending with di�erent departure events and an identi
al route number.Hen
e, we 
an give spe
ial rules to delete some of these subpaths. In the nextse
tion we explain these �rules of dominan
e�.



8 A. Berger, D. Delling, A. Gebhardt, and M. Müller-HannemannAlgorithm 1: Generalized Dijkstra Event-DependentInput: Origin s, destination t, earliest start time starts(time)Output: Set of all event-dependent Pareto-optimal (s, t)-paths.
reate empty priority pq;1 for arrival events arrv do2 if v 6= s then 
onstru
t label Larrv
with empty list lw;3 else4 
onstru
t label Lstarts

;5
pq. insert(Lstarts

);6 while ¬pq. empty() do7
Larrv

← pq. extract-min() /* key is the smallest arrival time8
arrv(time) */
ompute with respe
t to transv possible departure events depv at vertex v;9 /* ea
h departure event belongs to exa
tly one arrival event */determine the 
orresponding arrival event arru to Larru

;10 for these arrival events arru do11 if label Larru
6∈ pq then pq. insert(Larru

) and store a �ag that Larru
is12 in pq;for weights stored in Larrv

.lw do13
w(Pstarts, arru

)← w(Pstarts, arrv
) + w(arrv, depv) + w(depv, arru);14 if w(Pstarts, arru

) not dominated in Larru
.lw then15

Larru
.lw. insert (w (Pstarts, arru

));delete dominated weights in label Larru
.lw;16Rules of Dominan
e. Our station graph model allows additional rules to
ompare 
onne
tions within ea
h 
onne
tion table on a route ar
. In general,we may only 
ompare 
onne
tions with identi
al ending arrival times in one
onne
tion table. In our s
enario the rules of dominan
e with respe
t to subpath-optimality don't 
hange but in several 
ases we 
an de
ide the non-optimality ofsome subpaths in advan
e. Consider the 
omputed 
onne
tion table on route ar


r in Figure 1. The third 
onne
tion will be deleted be
ause there is no Pareto-optimal (s, t)-path whi
h 
an 
ontain this 
onne
tion as a subpath. Assume,this would be the 
ase. Then the �rst 
onne
tion in our time table 
an use thesame 
onne
tion from v to t as in this Pareto-path. Be
ause the �rst and third
onne
tion end on the same route ar
 either both have to transfer at v or both
ontinue on the same route. Hen
e, the (s, t)-path using 
onne
tion 1 possess asmaller travel time and a smaller number of transfers. In 
ontradi
tion to ourassumption the path using 
onne
tion 3 is dominated. Note, that we 
annotdelete 
onne
tion 2 in this 
onne
tion table. If the last train of 
onne
tion 2is the same as the only elementary 
onne
tion on (v, t), 
onne
tion 2 
an beextended to a Pareto-optimal path from (s, t). Similar but stronger arguments
an be found in 
omparing 
onne
tion tables of two di�erent route ar
s r, r′ending at station v. In Table 1 we give our spe
ial deletion rules. We 
all therules in line 1 and 2 route dominan
e and the rule in line 3 station dominan
e.
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c1, c2 
omparable if delete c2 ⇔1 c1(arrv(time)) ≤ c2(arrv(time))
c1(arrv(route)) = c2(arrv(route))

c1(arrv(time))− ttime(c1) ≥
c2(arrv(time))− ttime(c2)

transfer(c1) < transfer(c2)2 c1(arrv(time)) ≤ c2(arrv(time))
c1(arrv(route)) = c2(arrv(route))

c1(arrv(time))− ttime(c1) >

c2(arrv(time))− ttime(c2)
transfer(c1) ≤ transfer(c2)3 c1(arrv(time)) ≤ c2(arrv(time))
c1(arrv(time))− ttime(c1) >

c2(arrv(time))− ttime(c2)
transfer(c1) < transfer(c2)Table 1. Comparability and deletion 
riteria of two 
onne
tions on route ar
s endingin station v.

s t

r

v

ttime1h2h3h arrival7.008.009.00 112 11.0010.00
transfer

Fig. 1. Example: Route dominan
e at a 
onne
tion table for paths from s to ar
 r.Note that we 
annot delete 
onne
tion 2 in this table if the elementary 
onne
tion onar
 (v, t) uses the same train as 
onne
tion 2. However, 
onne
tion 3 
an be safelydeleted.4 Augmenting IngredientsIn this se
tion, we present how to adapt the basi
 
ontra
tion and ar
-�ags toour s
enario.4.1 Contra
tionOne of the main reasons of the su

ess of re
ent hierar
hi
al (single-
riteria)speed-up te
hniques is 
ontra
tion, a routine that iteratively removes unimpor-tant nodes from the graph and inserts so 
alled short
uts to preserve 
orre
tdistan
es between the remaining nodes. Hen
e, in order to use this te
hnique inour s
enario, we need to augment this 
on
ept. In general, 
ontra
tion works intwo phases: vertex- and ar
-redu
tion.Vertex-Redu
tion. Adaption of vertex-redu
tion is straightforward. We by-pass a node u by removing all its in
oming ar
s I(u) and all outgoing ar
s O(u).In order to preserve Pareto-paths between the remaining nodes, we introdu
e, forea
h 
ombination (v, u) ∈ I(u), (u, v′) ∈ O(u) and their 
onne
tion tables C(v,u)and C(u,v′), a new ar
 (v, v′) with 
onne
tion-table C(v,v′) = C(v,u) ⊕ C(u,v′).
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c1, c2 
omparable if delete c2 ⇔1 c1(depv(event)) = c2(depv(event))
c1(arrw(route)) = c2(arrw(route))

ttime(c1) ≤ ttime(c2)
transfer(c1) < transfer(c2)2 c1(arrw(event)) = c2(arrw(event))

c1(depv(route)) = c2(depv(route))
ttime(c1) ≤ ttime(c2)
transfer(c1) < transfer(c2)3 c1(depv(event)) = c2(depv(event))
ttime(c1) ≤ ttime(c2)
transfer(c1) + 1 < transfer(c2)4 c1(arrw(event)) = c2(arrw(event))
ttime(c1) ≤ ttime(c2)
transfer(c1) + 1 < transfer(c2)5 c1(depv(time)) > c2(depv(time))
ttime(c1) + c1(depv(time)) ≤

c2(depv(time)) + ttime(c2)
transfer(c1) + 2 < transfer(c2)Table 2. Comparability and deletion 
riteria of two 
onne
tions on parallel short
utar
s (u, v).From vertex-redu
tion in other s
enarios, we know that the order in whi
hwe remove verti
es from the graph 
hanges the resulting graph. Hen
e, weuse a priority queue to determine whi
h node to bypass next. The priorityof a node u within the queue is de�ned by the expansion ζ(u) := (degin(u) ·

degout(u))/(degin(u) + degout(u)). We stop the vertex-redu
tion as soon as wewould bypass a node with an expansion beyond a given threshold. All nodesremaining in the graph, we 
all 
ore-nodes. The 
ore of a graph 
ontains all
ore-nodes and all ar
s (in
luding short
uts) between 
ore-nodes.Theorem 1. Vertex-redu
tion preserves event-dependent Pareto-optimal pathsbetween 
ore-nodes.Ar
-Redu
tion. Our vertex-redu
tion 
reates a new 
onne
tion-table for ea
hadded short
ut yielding quite a high in
rease in the total number of 
onne
tionsin the graph. Fortunately, we 
an remove some 
onne
tions on the short
utsbe
ause they may be dominated by other 
onne
tions. In the best 
ase, all 
on-ne
tions on a short
ut are dominated. Then, we 
an safely remove the short
utfrom the graph. One might expe
t that it su�
ient to run a (v�v′)�query forea
h added short
ut (v, v′) and then remove all 
onne
tions from (v, v′) that aredominated. Unfortunately, this violates 
orre
tness sin
e (v, v′) 
an be a su�xand/or pre�x of a shortest path (
f. Se
tion 3). Still we 
an run a (v�v′)�queryfor ea
h short
ut but in order to preserve 
orre
tness, we have to use weaker(than those introdu
ed in Se
tion 3) rules of dominan
e during the query. Theseweaker rules are given in Table 2. The reason for these modi�ed rules is that wehave to 
ompare paths ending in possibly two di�erent events.Theorem 2. Ar
-Redu
tion preserves event-dependent Pareto-optimal paths be-tween 
ore-nodes.The proof of Theorem 2 
an be found in Appendix A. In Figures 2-4, wegive an example how Vertex-Redu
tion and Ar
-Redu
tion work in our s
enario.
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dep 0.5httime route27.30x wvu

dep 1.0httime0.5h route11dep8.009.00 0.5httime0.5h route11 10.009.00dep6.008.00 0.5httime0.5h route11
Fig. 2. Small ex
erpt of the station graph with elementary 
onne
tions.dep ttime routedep6.008.00 0.5httime0.5h route11 transfer1,18.00 2.0h

x wu

9.00 1.5h 1,1 008.00 1,1 12.5h
dep ttime route transfer117.307.30 3.0h2.5h 2,12,1Fig. 3. Vertex-redu
tion at vertex v.

wdep ttime route transfer226.006.00 4.5h4.0h 1,2,11,2,1x

dep ttime route transfer1,1,16.00 4.0h 08.00 3.5h 1,1,1 0
Fig. 4. After vertex-redu
tion at u, anar
-redu
tion of the lower ar
 between
x and w is possible.Figure 2 represents a small ex
erpt of a station graph with elementary 
onne
tiontables on ea
h route ar
. In Figure 3, we delete vertex v and determine new
onne
tion tables on short 
ut ar
s. Note, that none of the new 
onne
tion tables
an be deleted. In Figure 4, vertex u is deleted and the new 
onne
tion table onthe lower ar
 (x, w) is dominated and 
an be deleted.Route Contra
tion. As mentioned in the Introdu
tion, this standard node
ontra
tion su�ers from the dilemma that our station graph has already a veryhigh average degree of ≈ 43 due to the many parallel routes (in 
omparison,road networks have empiri
ally an average degree below 4). Thus, bypassing anode leads to the introdu
tion of many short
ut ar
s whi
h 
annot be deleted.Therefore, we de
ided to develop and implement a di�erent 
on
ept: route 
on-tra
tion. In a �rst step we partition the set of stations S in k several subsets

Ci with i ∈ {1, . . . , k} whi
h we 
all regions. The idea behind route 
ontra
-tion is to insert for a path 
omposed by ar
s on the same route a new short
utar
, provided that all intermediate stations on this path are 
lassi�ed as bypass-able. Re
all from the Introdu
tion that a station is bypassable if (a) it is neitherthe beginning or end of some route, (b) it has at most two di�erent neighbors,and (
) is not boundary node of some region Ci. Thus our notion of bypassablenodes models in some sense �unimportant stations�, for whi
h we assume thatat them no transfer makes sense. In Germany, about 60% of all stations are by-passable with respe
t to this de�nition. After determining all bypassable verti
esin station graph G we 
an identify in
lusion-maximal paths Pv,w from v to w
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ontaining only ar
s of the same route and only bypassable verti
es u 6= v, w inits interior. Ea
h su
h path Pv,w is 
ontra
ted to a short
ut ar
 (v, w). Ar
 (v, w)gets a new elementary 
onne
tion table Ce only 
ontaining elementary 
onne
-tions ce. Ea
h su
h 
onne
tion ce represents exa
tly one train T whi
h departsat time depv(time) in station v ∈ S and arrives at arrival time arrw(time) instation w ∈ S without stops.4.2 Ar
-FlagsIn a time-dependent single-
riteria s
enario, a set ar
-�agAFC(a) denotes wheth-er e is important for region C. Similar to the augmentations given in [6, 9℄, we usethe following intuition to set an ar
-�ags in our event-dependent multi-
riterias
enario. Set AFC = true as soon as e is important for at least one Pareto-pathfor all possible departure times. In the following, we show how to in
orporatethis intuition 
orre
tly.Augmentation. A 
ommon approa
h to 
ompute ar
-�ags in the time-indepen-dent single-
riteria s
enario is based on running Dijkstra-queries on the ba
k-ward graph from ea
h boundary node of the graph. Similarly, we 
ompute event-dependent multi-
riteria ar
-�ags by running our version of Dijkstra's algo-rithm on the ba
kward graph from all departure events of ea
h pre-boundarynode b′ of boundary node b. Let C be the asso
iated region of b. Note thatwe run the queries from the pre-boundary nodes. The reason for this is that itsimpli�es 
ase distin
tions 
onsiderably. Using boundary nodes instead wouldrequire to distinguish between paths ending at the boundary node and pathsending somewhere else within the target region C. Again, like for ar
-redu
tion,we have to use weaker rules of dominan
e during our queries, given in Table 4of the Appendix. For all ar
s a of the graph, we end up in 
onne
tion tablesrepresenting Pareto paths starting with ar
 a towards the boundary node b. Ifthe 
omputed 
onne
tion table of ar
 a is not empty, then a is used for at leastone Pareto-path towards C. Hen
e, we set AFC(a) to true.Theorem 3. Event-dependent multi-
riteria ar
-�ags are 
orre
t.Unfortunately, 
lassi
al ar
 �ags turn out to be rather weak: almost all ar
�ags must be set to true to guarantee 
orre
tness of the query algorithm sin
efor any ar
 there is almost surely one point in time where this ar
 is part of somePareto-optimal path towards the target station. However, from our prepro
essingwe do know exa
tly at whi
h points of time any parti
ular ar
 might be ne
essary.Therefore, we re�ne the 
lassi
al ar
 �ags to time-period ar
 �ags. The idea isto divide the overall range for whi
h our prepro
essing is valid into short timeintervals. A good 
ompromise between size of the ne
essary �ags and the desiredre�nement is to divide a full day into 12 intervals of two hours. Then ea
h ar
maintains a �ag for ea
h 
ombination of time interval (period) and region whi
htells whether the ar
 might be �useful� for a parti
ular query within a 
ertainperiod.
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ed variant of SHARC. We only use a 1-levelsetup (due to the limited size of the graphs deriving from our model) and do notuse re�nement of ar
-�ags (
f. Se
tion 2). By this, prepro
essing is split into threephases. First, we partition the graph into k regions. Then, we perform a route-
ontra
tion step a

ording to the above des
ription. Any ar
 (u, v) bypassedduring 
ontra
tion dire
tly gets its �nal ar
-�ags assigned, depending on its tail
u. If u has been bypassed, (u, v) gets all �ags assigned to true, while if u is part ofthe 
ore, (u, v) gets all �ags assigned to false, ex
ept for the region v is assignedto, this �ag is set to true. Note that in order to guarantee 
orre
tness, our route-
ontra
tion needs to be region-aware, i.e., a boundary node is never bypassed.After route 
ontra
tion, we perform an ar
-�ags prepro
essing as stated aboveon the resulting 
ore. Sin
e we use a setup with one level, our query algorithmis our standard one with a small modi�
ation: we only relax ar
s whi
h have atime-period ar
-�ag for the target's region assigned true. However, there is onesubtle detail: we have to explore �ags for all time periods whi
h 
an still lead toa Pareto-optimal solution at the target. We use lower bounds on the minimumtravel time towards the target to determine whi
h �ags we have to 
onsider.5 Experiments5.1 Computational SetupTest data. Our 
omputational study is based on the German train s
hedule of2008. This s
hedule 
onsists of 8817 stations, 40034 trains on 15428 routes, 392foot paths, and 1,135,479 elementary 
onne
tions. In our station graph modelwe obtain a graph with 189,214 ar
s. For our tests, we used di�erent types ofqueries (randomly 
hosen start stations and destinations, real 
ustomer queries,and handmade). The query start interval has been varied between a full day(denoted by [0-24℄) and typi
al two-hour intervals (for example, rush hour [8-10℄, lun
h time [12-14℄, and late evening [20-22℄), as well as one hour [7-8℄, sixhour [6-12℄, and twelve hour [6-18℄ intervals.Environment. All experiments were run on a standard PC (Intel R©CoreTM2Quad CPU Q6600, 2.4GHz, 4MB 
a
he, 8GB main memory under Ubuntu linuxversion 9.04. Only one 
ore has been used by our program. Our 
ode is writtenin C++ and has been 
ompiled with g++ 4.3.3 and 
ompile option -O3.Prepro
essing. Using the graph partitioning library SCOTCH [24℄ and addi-tional postpro
essing by a lo
al optimization routine, we have partitioned thegiven set of stations into 16 regions. This number of regions seems to be a reason-able 
ompromise between the average region size and the 
omputational e�ortfor the ar
 �ags. The time to 
ompute the partitioning into regions and the time



14 A. Berger, D. Delling, A. Gebhardt, and M. Müller-Hannemannto 
ompute short
ut ar
s is negligible (less than a minute CPU time). The over-all ar
 �ag 
omputation, however, is really expensive: it requires 33h 37min but
an easily be parallelized. Using all four 
ores it 
an be redu
ed to 8h 40min.We 
an bypass 5,248 out of 8,817 stations, and 55,742 out of 189,214 originalar
s. This leads to the insertion of 19,929 additional short
ut ar
s. Flag ve
torsare quite full, on average 41.4% of their bits are set to 1. This 
learly limits thee�e
t whi
h we 
an expe
t from ar
-�ags.Route vs. station dominan
e. A 
ru
ial point for the e�
ien
y of the queryalgorithm is the appropriate 
hoi
e of dominan
e rules. The stronger the domi-nan
e rules, the less priority queue operations have to be performed. However,the appli
ation of stronger rules is 
omputationally more expensive. In parti
u-lar, applying station and route dominan
e turned out to be a
tually a slow-downin 
omparison with only using route dominan
e. Although the 
ombined appli-
ation of rules saves about 30% of priority queue operations, it almost doublesthe 
omputation time. Therefore, we use only route dominan
e in the following.Query variants. We 
ompare CPU times and operation 
ounts for the numberof priority queue delete-min operations for the following algorithmi
 variants:� base: the pure multi-dimensional Dijkstra algorithm without any speed-upte
hnique.� base+lb: base plus lower bounds for the domination at the terminal.� ar
-�ags: base+lb 
ombined with time period ar
 �ags but no short
uts.� greedy ar
-�ags: ar
-�ags with a greedy strategy explained below.� SHARC: ar
-�ags with short
uts based on route 
ontra
tion.� SHARC+goal: SHARC 
ombined with goal dire
tion.� greedy SHARC: SHARC with a greedy strategy explained below.� greedy SHARC+goal: the previous variant 
ombined with goal dire
tion.The �greedy strategy� does the following: whenever we arrive at some stationand 
onsider the next ar
, we 
hoose only the very �rst rea
hable 
onne
tionon this ar
. In general, this strategy will fail to �nd all Pareto-optimal paths,but ex
ept for somewhat pathologi
al situations we will �nd for ea
h equivalen
e
lass of paths with the same pair of obje
tive values at least one representative.5.2 Computational ResultsExperiment 1: Full day s
enario. One primary goal of this proje
t is toprovide an e�
ient range query for a 
omplete day of operation between twoarbitrary stations. Table 3 shows the results for this s
enario. While our baselinevariant base requires an average CPU time of 7.85s, already turning on our lowerbound domination redu
es the average CPU time to 4.54s. Ar
-�ags a
hieve aspeed-up of 3.15 over base, and SHARC in
reases the speed-up further to 4.01over base. Turning on the greedy strategy yields a speed-up of 7.41 over basefor greedy SHARC. The fastest variant is the 
ombination of greedy SHARCwith goal-dire
ted sear
h. It redu
es the average query time to 0.6s and yields aspeed-up fa
tor of 13.08.
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torQuery CPU time # pq-min over basevariant in s operations CPU time pq-min operationsbase 7.85 233,203 1.00 1.00base+lb 4.54 144,325 1.73 1.62ar
-�ags 2.49 130,569 3.15 1.79SHARC 1.96 95,685 4.01 3.91SHARC+goal 1.00 52,663 7.85 4.43greedy ar
-�ags 1.38 84,444 5.69 2.76greedy SHARC 1.06 59,589 7.41 3.91greedy SHARC+goal 0.60 37,867 13.08 6.16Table 3. Experimental results for a 
omplete day, i.e., the start range interval [0-24℄.Experiment 2: Two-hour range queries. In our next experiment we areinterested in range queries for two-hour periods in the �morning rush hour� [8-10℄, at �lun
h time� [12-14℄, and in the �late evening� [20-22℄. Detailed resultsare given in the Appendix, see Tables 5-7. As expe
ted, two-hour range queriesare faster than full day queries. While queries for the �morning rush hour� [8-10℄and for �lun
h time� [12-14℄ behave very similar � the fastest variant requires0.27s and 0.29s on average, the �late evening� period is mu
h easier and yieldsaverage 
omputation times of 0.13s for greedy SHARC+goal.Experiment 3: Variation of the range width. We 
ompare the speed-upfor di�erent widths of the start interval: 1h, 2h, 6h, 12h, and 24h. Figure 5 showsthat the speed-up fa
tors in
rease with the width of the interval, i.e., the largerthe sear
h spa
e the better is the speed-up.
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16 A. Berger, D. Delling, A. Gebhardt, and M. Müller-HannemannNumber of Pareto-optimal paths. For a query range interval of 24h (fullday range) we obtain about 7 Pareto-optimal paths on average. Figure 6 showsa histogram for the size of Pareto-optimal paths for the time period of a full day.The maximum number of Pareto-optimal paths whi
h we observe in these testsis 81. An interesting question is whether versions using the greedy strategy orversions using short
ut edges lose any Pareto optima. The good news is that inboth 
ases we have always found the identi
al set of equivalen
e 
lasses of Pareto-optimal paths with the same obje
tive values. Di�eren
es o

ur, however, in thetotal number of alternatives whi
h are identi�ed by these methods. For a full dayrange, the number of alternatives drops by about 1%. For shorter time periods,the di�eren
e is somewhat larger, about 5%.
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y of Pareto-optimal paths for a full day range.6 Con
lusionWe presented the �rst study on advan
ed speed-up te
hniques like ar
-�ags and
ontra
tion in a multi-
riteria time- and event-dependent s
enario whi
h allowus to answer arbitrary range queries. An important lesson we learned from thisproje
t is that the 
lassi
al extension of ar
-�ags and 
ontra
tion does not workwell. However, with two new 
on
epts, time-period ar
 �ags and route 
ontra
-tion, we 
an a
hieve speed-ups of about 13 over the baseline variant for a fullday.It remains an open 
hallenge to develop more powerful speed-up te
hniquesfor a multi-
riteria time-dependent s
enario without s
arifying exa
tness. Sin
eprepro
essing for ar
 �ags is very time-
onsuming, there is also need for te
h-
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h 
an also be applied in an online s
enario where dynami
 
hangesof the s
hedule are taken into a
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-Redu
tion preserves event-dependent Pareto-optimal paths be-tween 
ore-nodes.Proof. We only prove the 
orre
tness for Line 2 of table 2. The other 
ases 
anbe shown very similarly. We 
onsider two 
onne
tions c1 and c2 on short 
ut ar
s
(u, v) whi
h ful�ll the 
onditions in line 2 and 
olumn 1. Let P2 be an event-dependent s, t-path starting at s with earliest start time starts and ends in twith an arti�
ial departure event endt at t. Furthermore P2 
ontains 
onne
tion
c2. Let Pstarts,arru

be the event-dependent (s, u)-subpath from P2 and Pdepv ,endtbe the event-dependent (u, t)-subpath from P2. We denote with arru(route) theroute number of the arrival event at u and with depv(route) the route numberof departure event depv. We distinguish between four 
ases.1. s = u and v = t. Then Pstarts,arru
and Pdepu,endt

are empty paths. We
onstru
t the event-dependent path P1 whi
h starts with the earliest starttime starts and ends with the arti�
ial departure event endt. This is pos-sible be
ause deptime(c1) > deptime(c2) is valid. P1 and P2 are 
ompara-ble event-dependent paths and with the 
onditions in 
olumn 2 it followsthat ttime(P1) < ttime(P2) and transfer(P1) < transfer(P2). This im-plies P1 <dom P2.2. s 6= u and s 6= t. We distinguish between four di�erent 
ases.(a) arru(route) 6= depc2
(route) and arrc2

(route) 6= depv(route). We 
on-stru
t the event-dependent path P1 whi
h 
onsists of Pstarts,arru
, 
onne
-tion c1 and Pdepu,endt

. This is possible be
ause it is ful�lled deptime(c1) >
deptime(c2) and arrtime(c1) = arrtime(c2). P1 and P2 are 
omparableevent-dependent paths and with the 
onditions in 
olumn 2 it followsthat ttime(P1) ≤ ttime(P2) and transfer(P1) < transfer(P2). Thisimplies P1 <dom P2.(b) arru(route) = depc2

(route) and arrc2
(route) 6= depu(route). We 
on-stru
t the event-dependent path P1 whi
h 
onsists of the maximumevent-dependent s, s′-subpath of Pstarts,arru

using routes whi
h are notidenti
al with route depc2
, then takes the event-dependent s′, u-pathwhi
h uses route depc2

(route) without transfers and 
ontains 
onne
tion
c1 and Pdepu,endt

. This is possible be
ause it is ful�lled deptime(c1) >
deptime(c2), arrtime(c1) = arrtime(c2) and depc2

(route) = depc1
(route).This implies at s′ a later departure time for P1. P1 and P2 are 
om-parable event-dependent paths and with the 
onditions in 
olumn 2 itfollows that ttime(P1) = ttime(P2) and transfer(P1) < transfer(P2).This implies P1 <dom P2.(
) arru(route) 6= depc2

(route) and arrc2
(route) = depu(route). Analo-gously to 
ase b).



20 A. Berger, D. Delling, A. Gebhardt, and M. Müller-Hannemann(d) arru(route) = depc2
(route) and arrc2

(route) = depu(route). Analo-gously to 
ase b).
P1 and P2 are 
omparable event-dependent paths and with the 
onditionsin 
olumn 2 it follows that ttime(P1) = ttime(P2). and transfer(P1) <
transfer(P2). This implies P1 <dom P2.3: s 6= u and v = t. Analogously to 
ase 2.4: s = u and v 6= t. Analogously to 
ase 2.In all four 
ases we 
an 
onstru
t an event-dependent path P1 whi
h is 
ompa-rable with P2, dominates P2 and does not 
ontain 
onne
tion c2. It follows thatwe 
an delete 
onne
tion c2.A.1 Dominan
e Rules for Ar
 Flag Prepro
essingTable 4 presents the dominan
e rules whi
h have to be used in the prepro
essingphase. Let c1, c2 be two 
onne
tions starting at station v and ea
h ending in adeparture event at pre-boundary vertex w.

c1, c2 
omparable if delete c2 ⇔1 c1(depv(route)) = c2(depv(route))
c1(depw(route)) = c2(depw(route))
c1(depw(time)) ≤ c2(depw(time))

ttime(c1) ≤ ttime(c2)
transfer(c1) < transfer(c2)2 c1(depw(time)) ≤ c2(depw(time))

c1(depv(route)) = c2(depv(route))
ttime(c1) ≤ ttime(c2)
transfer(c1)+ < transfer(c2)3 c1(depw(route)) = c2(depw(route))

c1(depw(time)) ≤ c2(depw(time))
ttime(c1) ≤ ttime(c2)
transfer(c1) + 1 < transfer(c2)4 c1(depw(time)) ≤ c2(depw(time))
ttime(c1) ≤ ttime(c2)
transfers(c1) + 2 < transfers(c2)Table 4. Dominan
e rules for the prepro
essing phase.

B Additional Computational ResultsTables 5-7 show the results of our Experiment 2.
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average average speed-up fa
torQuery CPU time # pq-min over basevariant in s operations CPU time pq-min operationsbase 2.26 71,422 1.00 1.00base+lb 2.15 68,263 1.05 1.05ar
-�ags 1.20 62,291 1.88 1.15SHARC 0.92 44,060 2.46 1.62SHARC+goal 0.49 21,645 4.61 3.30greedy ar
-�ags 0.65 38,696 3.48 1.85greedy SHARC 0.51 26,704 4.43 2.67greedy SHARC+goal 0.27 12,646 8.37 5.65Table 5. Experimental results for the start range interval [08-10℄ (�morning rush hour�).average average speed-up fa
torQuery CPU time # pq-min over basevariant in s operations CPU time pq-min operationsbase 2.17 67,517 1.00 1.00base+lb 2.07 64,534 1.05 1.04ar
-�ags 1.13 57,931 1.92 1.17SHARC 0.86 40,692 2.52 1.66SHARC+goal 0.47 20,549 4.62 3.29greedy ar
-�ags 0.68 39,052 3.19 1.73greedy SHARC 0.53 26,905 4.09 2.51greedy SHARC+goal 0.29 13,583 7.48 4.97Table 6. Experimental results for the start range interval [12-14℄ (�lun
h time�).average average speed-up fa
torQuery CPU time # pq-min over basevariant in s operations CPU time pq-min operationsbase 0.41 15,915 1.00 1.00base+lb 0.39 15,098 1.05 1.05ar
-�ags 0.24 14,058 1.71 1.13SHARC 0.19 9,823 2.16 1.62SHARC+goal 0.16 7,192 2.56 2.21greedy ar
-�ags 0.19 10,893 2.17 1.46greedy SHARC 0.15 7,586 2.73 2.10greedy SHARC+goal 0.13 5,472 3.15 2.91Table 7. Experimental results for the start range interval [20-22℄ (�late evening�).
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Abstract. In this paper we combine an integer programming approach
and a computer simulation tool to successfully develop and verify an
improved classification schedule for a real-world train classification in-
stance. First, we derive an integer program for computing train classifi-
cation schedules based on an earlier developed bitstring representation of
such schedules. We show how to incorporate various practical restrictions
in this model. Secondly, we apply the model to one day of traffic data
of the Swiss classification yard Lausanne Triage. We incorporate all the
operational and infrastructural restrictions of this yard instance in our
integer program. Even with this high number of restrictions, we are able
to compute a schedule that saves a full sorting step and one track com-
pared to the currently applied procedure. We finally show this improved
schedule is applicable in practice by a thorough computer simulation.

Keywords. train classification, shunting of rolling stock, simulation tools for
transport operations, infrastructure planning, freight trains

1 Introduction

Classification yards are an important unit of freight train systems, and several
technical and methodological innovations have improved their operation since
their first construction in the 19th century. Many improvements concerning train
classification methods were developed in the 1950s and 1960s, and the result-
ing methods can be divided in single-stage and multistage sorting. Single-stage
sorting is applied to large-volume traffic with only basic sorting requirements,
while multistage sorting is used for traffic with lower volume but finer sorting
requirements. In this paper we focus on multistage sorting.

Even though there are recent theoretical considerations that guarantee good
classification procedures, it is still common practice to apply the traditional mul-
tistage methods of the 1950s and 1960s today. In order to support transforming
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the mentioned theoretical results from the academic environment to the applica-
tion in practice, we introduce a framework for computing classification schedules
for real-world problem instances according to the recent theoretical findings. This
approach is mainly based on the knowledge of the input for the classification in-
stance. As soon as the order of incoming cars is known, we are able to compute
classification schedules that are superior to the established methods with regard
to the number of required sorting steps. This number essentially determines the
time required to accomplish a classification task. In contrast to the traditional
methods, this method considers ordered subsequences of cars in inbound trains
when computing schedules. Since in practice trains show a high degree of pre-
sortedness, this approach has a high potential to yield shorter schedules than
the established methods in many cases. Conversely, our integer programming
approach never yields a longer schedule than the established methods; for in-
stances for which an established method does provide an optimal schedule, our
method will find a schedule of the same length.

Outline In Sect. 2 we explain the basics of classification yards and multistage
sorting, followed by the related work in this field in Sect. 3. Section 4 revises an
encoding of classification schedules from [1], which is used in Sect. 5 to introduce
an integer programming model for deriving classification schedules. We then
apply our model to effectively derive an improved schedule for the classification
yard Lausanne Triage in Sect. 6, which we prove to be applicable in practice by
a successful computer simulation. Some final remarks follow in Sect. 7.

2 Hump Yards, Multistage Sorting, and Terminology

receiving
yard

departure
yard

classification
bowlhump

Fig. 1: Typical yard with receiving and departure yard, hump, and classification bowl.

The typical layout of a hump yard, shown in Fig. 1, consists of a receiving

yard, where incoming trains arrive, a classification bowl, where they are sorted,
and a departure yard, where outgoing trains are formed. The yard features a
hump, a rise in the ground, with a hump track from which cars roll in to the tracks
of the classification bowl. A typical classification bowl is shown in Fig. 2b. Not all
yards have receiving and departure tracks, some have a single end classification
bowl as in Fig. 2a, while others have a secondary hump at their opposite end as in
Fig. 2c or two parallel hump tracks on one side. Our example of Lausanne Triage
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is a double-ended hump yard with two parallel hump tracks and no departure
yard. Further details are given in Sect. 5 and 6.1. Almost all modern yards built
after the 1960s contain the layout of Fig. 2a as a core substructure, in which
multistage sorting can be performed as explained in the following paragraph.

classification tracks

hump

track
hump

(a) single-ended yard

to receiv-

ing yard

(b) double-ended yard

secondary

hump

additional

exit

(c) advanced layout

Fig. 2: Common variants of classification bowl layouts.

The following abstract model is a simplification of the actual classification
process. Note that this simplification does not impair our results. Every multi-
stage sorting method consists of a sequence of alternating roll-in and pull-out

operations. In a roll-in operation a shunting engine slowly pushes the decoupled
cars from the hump track over the hump. The cars roll through a tree of switches,
and every car is guided separately to a preassigned classification track. To fully
specify a roll-in operation, it suffices to specify the target track for each car.
In a pull-out operation an engine drives to some classification track, is coupled
to the cars on that track, and pulls back the cars over the hump so that the
next roll-in can be performed. A single pull-out can be sufficiently specified by
the classification track to pull out cars from. A pull-out followed by a roll-in is
called sorting step or simply step, and an initial roll-in followed by a sequence of
h sorting steps is called a classification schedule of length h. There is a number
of inbound trains in the order implied by their arrival times at the yard. This
order yields an inbound train sequence. Furthermore, there are m order speci-
fications for outbound trains. The inbound train sequence has to be sorted on
the classification tracks accordingly in order to obtain each of the m outbound
trains on a separate track. A classification schedule is called valid if applying it
accomplishes this sorting task, i.e., if applied to an inbound train sequence, it
yields the correctly ordered outbound trains, each on a separate track.

Pulling out a track roughly takes a constant amount of time cpull depending
on the distance for the engineer to drive. The time to roll-in the cars in a single
hump step is proportional to the number of cars and depends on the time cpush

required for decoupling and pushing one car, which is roughly constant. Together,
a classification process of h steps and a total of r cars rolled in approximately
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requires a time of hcpull + rcpush. Our main objective is to minimize the number
of steps, i.e., the length h of the schedule, which is the approach also taken
in [1]. The total number of roll-ins r presents our secondary objective. A more
detailed overview of classification yards and their technical implementation is
given in [2].

3 Related Work

Multistage classification methods are presented in a number of publications from
the 1950s and 1960s in the field of railway engineering [3–10]. Krell [8] com-
pares the two multistage classification methods of sorting by train and the often
superior simultaneous method, as well as two variants: triangular sorting and
geometric sorting. Some of these methods appear in earlier publications of Flan-
dorffer [3] and Pentinga [7]. Boot [4] describes the operational constraints of the
simultaneous method in France, Belgium, and The Netherlands. The real-world
implementation of the methods with respect to different yard layouts and arrival
and departure times of trains is discussed in [9] and [10]. For the Swiss classifica-
tion yard Zürich Limmattal, Baumann [6] explains the design aspects that make
the simultaneous method applicable there. There are more recent descriptions of
multistage methods in the papers of Siddiquee [11] and Daganzo et al. [12, 13].

In the 2000s Dahlhaus et al. study a variant of multistage sorting [14] from a
more theoretical point of view. They also give a systematic framework for order
requirements of outbound trains. These sorting requirements are summarized in
[15], which provides a framework for classifying a wide range of single- and multi-
stage methods. There are various shunting problems related to multistage train
classification, such as single-stage sorting [12, 14, 16], train matching [16], and
blocking and block-to-train assignment [17]. In practice these problems interact
with multistage sorting as the practical solution of one problem yields restric-
tions and simplifications for the other. Further overviews of shunting problems
with theoretical focus are given by DiStefano et al. [16] and Gatto et al. [18].

The theoretical concept of recoverable robustness [19] is applied by Cicerone
et al. [20, 21] to multistage sorting. They regard small deviations in the inbound
train and yard infrastructure and three basic recovery strategies, which is an
interesting first step towards robustness in train classification.

Computer simulations are a useful tool for evaluating and refining classifi-
cation methods before applying them in practice. Several such simulations have
been performed recently to verify planned modifications of yards or changes in
operation for yards in Germany [22], Slovakia [23], and Switzerland [24]. For
our computer simulation presented in Sect. 6.3, we used the simulation system
“Villon” [25] to verify our schedule.
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4 Encoding Classification Schedules

In this section we present the encoding for classification schedules that was
derived in [1]. Based on this encoding, we introduce a new integer programming
model in Sect. 5, which we apply to a practical classification problem in Sect. 6.

4.1 Model and Notation

We consider the yard layout of a single-ended classification bowl with a single
hump as depicted in Fig. 2a. (The same classification procedure can also be
applied on double-ended yards such as Lausanne Triage. Moreover, Lausanne
Triage has two parallel hump tracks, a setting to which the encoding is adapted
in Sect. 5.2.) The number of classification tracks is called the width of the yard
and denoted by W , the classification tracks are referred to by θ0, . . . , θW−1. The
maximum number of cars C that fit on any classification track is called the
capacity of the tracks.

Every car τ is represented by some positive integer τ ∈ N, and a train T is
defined as an ordered sequence T = (τ1, . . . , τk) of cars τi ∈ N, i = 1, . . . , k. The
number k of cars of T is referred to by the length of T . There is an ordered se-
quence of inbound trains, the concatenation of which (according to their arrival
at the yard) yields an ordered sequence of cars, called the inbound sequence of

cars. The order of cars in the inbound sequence is a permutation T = (τ1, . . . , τn)
of (1, . . . , n), where n is the total volume of cars. Moreover, there are m order
specifications for the m outbound trains. If ni denotes the length of the ith out-
bound train, i = 1, . . . ,m, then

∑m

i=1 ni = n. We further assume, w.l.o.g., that
the specification of the first outbound train is given by (1, . . . , n1), the second by
(n1 + 1, . . . , n1 + n2), etc., and the last by (n − nm + 1, . . . , n). During the clas-
sification process the cars of different outbound trains are sorted simultaneously
on the same set of tracks, called sorting tracks, whereas each outbound train is
finally formed on an individual track. Those tracks are called destination tracks.
Our optimization problem can now be defined as follows: Given an inbound se-
quence of cars T = (τ1, . . . , τn) and m outbound trains defined by their lengths
(n1, . . . , nm), find a valid classification schedule of minimum length.

4.2 Bitstring Representation of Classification Schedules

A track may be filled several times during a classification procedure by sending
cars to it after it has been pulled out. We call the track pulled out in the ith
step the ith logical track. For a classification schedule of length h, we map the h

logical tracks to the W physical tracks, obtaining a sequence (θi0 , . . . , θih−1
) of

h tracks, where θik
, k = 0, . . . , h − 1, is the physical track pulled out in the kth

sorting step. As shown in [1], for tracks of unbounded capacity, there always is an
optimal schedule whose track sequence (θi0 , . . . , θih−1

) satisfies k ≡ ik (mod W )
for every k = 0, . . . , h− 1; in other words, there is an optimal schedule in which
the tracks are pulled out in a round robin order. The proof given in [1] still holds
for tracks of limited but uniform capacity C, which we consider in this paper.
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Fig. 3: A classification procedure for h = 4 and n = 6, using track θ6 for the only
outbound train. The encoding is shown in (a), the inbound sequence of cars in (b).
(c)–(j) show the consecutive situations during the procedure, always pulling out the
cars of the rightmost occupied track.

For any classification schedule of h steps, the course of any car j can be
represented by a binary string bj = b

j
h−1 . . . b

j
0 with b

j
k = 1 iff the jth car visits

track θik
pulled out in the kth sorting step, k = 0, . . . , h−1. After the kth pull-out

operation, this car is rolled in to track θiℓ
with ℓ = min{k < i ≤ h − 1 | b

j
i = 1}.

If there is no bit b
j
i = 1, k < i ≤ h − 1, the car is rolled in to the destination

track of its outbound train. In this way, every classification schedule of length h

can be represented by an assignment of cars to bitstrings of length h. Figure 3
illustrates this representation in an example with a single outbound train.

Conversely, the bitstring encoding can be applied in order to derive a feasible
schedule. First, if two cars with consecutive indices j and j +1 of the same
outbound train appear correctly ordered already in the inbound train sequence,
they may be assigned the same bitstring; then, both cars take exactly the same
journey over the tracks during the classification, so they never change their
relative order and end up in their correct relative order in the outbound train.
Second, assume two consecutive cars j and j +1 of the same outbound train
occur in reversed relative order in the inbound sequence. Then, the bitstring bj+1

assigned to j+1, regarded as the binary representation of the integer
∑h−1

i=0 2ib
j+1
i ,
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must be strictly greater than the bitstring bj assigned to j. To see this, let
bj+1 > bj and k be the most significant (i.e. largest) index with b

j
k = 0 and

b
j+1
k = 1. After being pulled out from track θik

, car j+1 is sent to some track
θiℓ

, ℓ > k, which car j has been sent to in some earlier step. (Note that θiℓ

might be the destination track.) Thus, the two cars appear correctly ordered
on this track. Since they never swap their relative order at any later stage of
the classification, they arrive correctly ordered on the destination track of their
outbound train. By the same argument, if two consecutive cars j and j+1 occurs
in correct relative order in the inbound sequence, assigning bj+1 to j+1 and bj

to j is fine if bj < bj+1.
This insight yields a necessary ordering condition for a feasible assignment

of cars to bitstrings, which is independent of the number or capacity of classi-
fication tracks. This condition presents the most basic constraint of our integer
programming model introduced in the following section.

5 Deriving Schedules by Integer Programming

In this section, we present the integer programming model we apply in Sect. 6 to
successfully derive an improved schedule for a day of traffic in Lausanne Triage.
(Part of this model can be found in the ARRIVAL technical report [26].) We
start with the most basic version of this model in Sect. 5.1 and refine the model
successively from Sect. 5.2 to Sect. 5.4, incorporating all the required practical
constraints. Some constraints are specific for Lausanne Triage only, some apply
to other classification yards too.

5.1 Basic IP Model

The integer programming model applies the binary encoding of classification
schedules introduced in [1] and explained in Sect. 4. In the basic model below, we
enforce an assignment that yields the correctly ordered outbound trains. Note
this is the only constraint for completely unrestricted schedules, particularly
without any restriction on the number and capacity of tracks. Secondly, the
basic model implements limited track capacities.

We introduce binary variables b
j
i , j = 1, . . . , n, i = 0, . . . , h−1, corresponding

to the jth car in the ith sorting step. (We repeatedly introduce binary variables
in the following sections without repeating the binary constraint in the actual
formulation for space requirements.) The set of indices of cars that are the first
of their respective outgoing trains is denoted by F ⊆ {1, . . . , n}. Let further
rev(i, j) be an indicator function with rev(i, j) = 1 iff the ith and jth car appear
in reversed order in the incoming train sequence. Recall that C denotes the
maximum number of cars fitting on a track.

base: min
∑

1≤j≤n

0≤i<h

b
j
i
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s.t.
∑

0≤i<h

2ib
j
i ≥ rev(j, j−1) +

∑

0≤i<h

2ib
j−1
i ∀j ∈ {1, . . . , n} \ F (1)

∑

1≤j≤n

b
j
i ≤C ∀i ∈ {0, . . . , h−1} (2)

The objective function in this model minimizes the total number of cars rolled
in during the classification process, which presents our secondary objective as
mentioned in Sect. 2. In order to minimize our primary objective, i.e. the number
of sorting steps, we solve a short sequence of integer programs with increasing
length values h. Constraints (1) enforce a valid schedule w.r.t. the ordering of
cars in the outbound trains: If two consecutive cars j−1 and j of an outbound
train are in correct order, they may be assigned the same bitstring; otherwise,
rev(j−1, j) = 1, so j will get a strictly larger bitstring than j−1 as required
according to Sect. 4.2. Constraints 2 implements the restricted capacity of the
classification tracks.

5.2 Parallel Classification Procedures

As mentioned before, the classification yard Lausanne Triage features two paral-
lel hump tracks. For the simultaneous method, this means that we can apply two
classification procedures in parallel. The two procedures work as two indepen-
dent systems: there is one shunting engine in either system, and each available
classification track is used by only one procedure; furthermore, every outbound
train is assigned to exactly one of the systems and remains in that system from
its first roll-in until its outbound train is formed. We refer to the two systems of
Lausanne Triage by north partition and south partition.

The assignment of trains to partitions is part of the optimization process.
We add binary variables si, i = 1, . . . ,m, with si = 1 iff the ith outbound
train is a member of the north partition. For the sake of comparability, however,
we fixed eight out of 24 variables si in our test instance as further explained
in Sect. 6.2. We further double the binary variables b

j
i into two sets: b̂

j
i for

the schedule corresponding to the north and b̌
j
i for that of the south partition.

In the resulting model, we perform h sorting steps in each partition. Let t(j),
j ∈ {1, . . . , n}, denote the outbound train of the jth car.

min
∑

1≤j≤n

0≤i<h

(

b̂
j
i + b̌

j
i

)

s.t.
∑

0≤i<h

2ib̂
j
i ≥ rev (j, j−1) −

(

1−st(j)

)

+
∑

0≤i<h

2ib̂
j−1
i ∀j ∈ {1, . . . , n} \ F (3)

∑

0≤i<h

2ib̌
j
i ≥ rev (j, j−1) − st(j) +

∑

0≤i<h

2ib̌
j−1
i ∀j ∈ {1, . . . , n} \ F (4)

∑

1≤j≤n

b̂
j
i ≤C,

∑

1≤j≤n

b̌
j
i ≤ C ∀i ∈ {0, . . . , h−1} (5)
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Note that with this approach the jth car has two bitstrings b̂j and b̌j , one for each
partition. Consider two consecutive cars j and j−1 of the same outbound train
x that appear in reversed order in the inbound sequence of cars. If x is assigned
to the north partition, i.e. s(x) = 1, then 1 − st(j) = 0 and Constraints (3)

corresponds to Constraints (1). In this case, the values of b̌j and b̌j−1 have no
meaning. Note that Constraints (4) are satisfied if both b̌j = 0 and b̌j−1 = 0
independently of the value of rev(j, j−1). By the objective function, an optimal
solution will satisfy b̌j = 0 and b̌j−1 = 0 and its objective value actually equals
the total number of cars rolled in. A similar argument applies for s(x) = 0.

5.3 Available Classification Tracks

In the classification yard Lausanne Triage, the multistage method for classifying
multidestination freight trains is carried out in two stages. First, the trains are
collected on a number W of reserved classification tracks, while all other tracks
are used for other shunting activities such as single-stage sorting. This first stage
corresponds to the initial roll-in of every car (see Sect. 4.1). This constraint is
modeled as follows, where W = Ŵ + W̌ with Ŵ and W̌ being the numbers of
tracks corresponding to the north and south system, respectively:

initial roll-in:

∑

0≤i<Ŵ

b̂
j
i ≥st(j) ∀j ∈ {1, . . . , n} (6)

∑

0≤i<W̌

b̌
j
i ≥1−st(j) ∀j ∈ {1, . . . , n} (7)

Note that for the special case of h = Ŵ = W̌ , which holds for our solution for
the sample instance of Sect. 6, this simply means that the all-zero bitstring is
disallowed for every car; in other words, cars may not be sent to destination
tracks initially. Note that Constraints (6) and (7) do not implement the limited
number of tracks mentioned in Sect. 4.1 in full generality. In the improved sched-
ule of Sect. 6, we do not pull out any track twice, so Constraints (6) and (7)
suffice here.

In the second stage, these tracks are pulled out to build outgoing trains,
which is usually performed during the night when more than the W reserved
tracks are available for multistage sorting. There might be more and more tracks
available after every sorting step, so forming more and more outgoing trains can
be started. In the integer program, we introduce binary variables ûx,t and ǔx,t,
x = 1, . . . ,m, t = 0, . . . , h, that indicate whether forming the xth outgoing train
has started yet at time step t in the north or south partition, respectively.

train formation:

∑

j∈F

ût(j),t ≤ N̂t ∀t ∈ {0, . . . , h−1} (8)

∑

j∈F

ǔt(j),t ≤ Ňt ∀t ∈ {0, . . . , h−1} (9)
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ûj,t ≥st(j) −
∑

t≤i<h

b̂
j
i ∀j ∈ F, t ∈ {0, . . . , h} (10)

ǔj,t ≥1−st(j) −
∑

t≤i<h

b̌
j
i ∀j ∈ F, t ∈ {0, . . . , h} (11)

After every step t, the number of outgoing trains that have started to be formed
must not exceed the available number N̂t or Ňt of tracks, respectively, at this
time. This is implemented by Constraints (8) and (9). Constraints (10) and (11)
make sure each variable uj,t is actually set if forming the train of the jth car has
been started at the tth step.

5.4 Train Departure Times

If an outbound train is finished, it will not wait until the whole classification
process is finished but leaves the yard if the traffic on the railway line allows.
Some outbound trains even have to depart early to meet the point of time they
are expected to arrive at their destinations, and we have to consider these latest-
possible departure times in the classification process. We introduce an upper
bound on the time it takes to perform one sorting step, which we chose to be
30 minutes for our example of Lausanne Triage. In this way, we obtain the latest
sorting step accx in which a train x can still receive cars.

accumulation finish:

∑

acct(j)≤i<h

(

b̂
j
i + b̌

j
i

)

=0 ∀j ∈ {1, . . . , n} (12)

In the following section, we use this model to derive a schedule for a real-world
classification task, to which we have to apply all the Constraints (3) to (12).

6 Case Study: Lausanne Triage

We apply the model of the previous section to real-world traffic data in this sec-
tion. The problem instance is illustrated in Sect. 6.1, the schedule computation
is described in Sect. 6.2, and its successful simulation in Sect. 6.3.

6.1 Classification Yard Lausanne Triage

The train classification yard of Lausanne features a receiving yard, a classifi-
cation bowl (see Fig. 4) of 38 tracks with two parallel hump tracks, and no
departure yard. Regarding the operation, there are ten tracks reserved for form-
ing multidestination freight trains, on which all cars for the multistage method
are initially collected. As mentioned in Sect. 5.3, the remaining tracks are needed
for other shunting activities. These activities are stopped at some point in the
early morning, from which time the humps are exclusively used for multistage
sorting. Still, not all multidestination freight trains can start to be formed right
after the first pull-out since there are still not enough tracks, but more and more
tracks are available after each step as mentioned in Sect. 5.3.
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Fig. 4: The classification bowl of Lausanne Triage with ten tracks for multistage sorting.

Our problem instance comprises all the cars of a complete day in 2005, which
amount to 1’346. For the multistage method there are 452 cars for 22 outbound
trains with between two and seven destinations and two outbound trains with
one destination. We extracted 331 cars for which we computed the schedule. The
remaining 121 cars of the multistage method were not included in the schedule
computation since they receive a special treatment as explained in Sect. 6.2
below.

6.2 Schedule Computation

All IP computations were done with ILOG OPL Studio 3.7 featuring CPLEX 9.0
on an Intel Xeon CPU with 2.80 GHz and 2 GB main memory running Linux.

The schedule originally applied to the above described classification instance
in 2005 comprised five steps in each partition, which corresponds to h = 5 in
the model of Sect. 5.2. Setting the values for C, N̂t, Ňt, and accx according to
the practical requirements, the problem turns out to be infeasible for putting
h = 4. However, with five steps in the north and only four steps in the south
partition, we obtain a feasible schedule. This is implemented by putting h = 5
and additionally requiring b̌

j
i = 0 for i = 4 and all cars j ∈ {1, . . . , n}. Computing

this schedule took 5.75 hours including the proof of optimality.
As mentioned above, there are 121 cars which we did not consider in the

schedule computation. These cars belong to destinations for which there is a very
big number of cars. In the original schedule, these cars were not rolled in to the
ten classification tracks for multistage sorting but directly sent to their respective
destination tracks. Except for one case, for which some extra shunting must be
done, these destinations are at the very front of their respective outbound trains,
so the classification process is not impaired by this practice. In this way, the
cars of the huge destinations did not have to be sent over the hump a second
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time. For the sake of an easier comparison, we took the same approach: in order
not to interfere with the operation of shunting activities other than multistage
sorting, we chose the same tracks for the large destinations; this includes a fixed
assignment to the north or south partition for the affected outbound trains by
forcing si = 0 or si = 1, respectively. Our improvement was achieved with this
additional constraint.

We also tried to compute a schedule with h = 5 steps in each partition
and Ŵ = W̌ = 4, i.e. a schedule in which the first track of either partition is
pulled twice. This would save even two classification tracks by revoking the saved
sorting step from above, but there is no feasible solution for this combination.

6.3 Simulation and Results

Fig. 5: Situation of the cars on the classification tracks after the initial roll-in for the
improved schedule. North is at the bottom of the picture.

We simulated the above described schedule using the simulation system “Vil-
lon” [25]. First of all, the above described schedule did not produce any conflicts
when our computer simulation was run on it, which basically means, with regard
to the technical implementation, that the schedule works in practice.

The total number of cars rolled in during the complete improved classification
procedure amounts to 1’700, compared to 1’706 in the original schedule, which is
only a marginal saving. Nevertheless, the theoretical considerations on multistage
sorting in [1] shows that increasing the number h of steps in the multistage
method over the optimum value generally allows decreasing the total number
r of cars rolled in and vice versa. Even though the experiments of [26] suggest
only a mild rise of r for decrementing h, our schedule does not yield any increase
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at all. Therefore, the marginal reduction of r by six is a great success since we
do not have to pay for the reduced number of sorting steps with more roll-ins
compared to the original schedule. This finding also underlines the suboptimality
of the schedule originally applied.

The number of settings of switches for our schedule amounts to 789 com-
pared to 914 for the old schedule, which is a considerable saving of 125 settings
or 13.7 %. This significantly reduces the wear of the switches and saves main-
tenance, which is further contributed to by only 1’481 movements of cuts over
switches. (A cut is a small set of coupled cars—if consecutive cars on the hump
track are about to be rolled in to the same track, they will not be decoupled.)
Compared to 1’691 for the original schedule, this is a saving of 210 cuts or 12.4 %.

The main improvement, however, consists in saving one full sorting step: in
the original procedure the track labeled “F28” in Fig. 5 contained the cars that
were pulled out in the fifth sorting step of the south partition. In the improved
procedure this track is empty after the initial roll-in, and is now available to be
used for various purposes. the original procedure comprised five sorting steps in
the south partition, whereas our improved procedure only performs four steps.
The track made available by saving the fifth step can be used, for example, for
multistage sorting in order to increase the upper limit of traffic with a higher
attractiveness for this method through an increased potential traffic volume. The
track may also be used for other shunting activities, such as building very long
trains with no order restriction by collecting their cars on several classification
tracks before coupling them into one train.

7 Conclusion and Future Work

The results of this paper demonstrate the power of the classification schedule
encoding established in [1]. We have effectively applied this encoding to obtain
a highly flexible integer programming model for train classification that allows
incorporating various practical restrictions, which underlines the applicability
in practice. As the main result, we are able to derive a schedule for real-world
traffic data of the example classification yard Lausanne Triage that outperforms
the current schedule by one sorting step. Implementing this schedule in practice
would yield a more efficient sorting process with less engine movement and a
significantly reduced wear of switches. Most importantly, the improved schedule
makes an additional classification track available. This raises a potential for
more traffic for the multistage method itself or other shunting methods applied
in parallel, such as single-stage sorting.

For Lausanne Triage dropping the fixed assignment of some trains to par-
titions mentioned in Sect. 6.2 may yield an even better schedule with higher
savings. Beyond that, it would also be interesting to derive and simulate more
schedules for further real-world data. In particular, there are larger classification
yards than Lausanne Triage with higher volumes of traffic for multistage sorting.
For such yards an even higher improvement can be expected, so an application
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to yards with a higher traffic volume and more sorting steps and tracks appears
promising.

The commonly applied classification methods triangular and geometric sort-
ing yield correctly ordered outbound trains regardless of the order of inbound
trains [18]. Such methods are called strictly robust. However, only a fraction
of trains is actually delayed in practice, so providing strict robustness wastes
a lot of potential as the results of this paper show. As mentioned before, our
improvement is based on complete knowledge of the order of inbound cars. Since
trains may be delayed, the actual order may differ from the scheduled order,
and the optimal classification schedule for the expected order cannot be applied
anymore. This dilemma can be tackled by regarding realistic scenarios of delay
and providing optimal robust solutions w.r.t. a limited amount of recovery in
case of disturbance [19, 20]. This approach balances between strictly robust and
optimal non-robust solutions and may thus yield robust classification methods
that still improve on the current practice.
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Abstract. Computation of quickest paths has undergoing a rapid devel-
opment in recent years. It turns out that many high-performance route
planning algorithms are made up of several basic ingredients. However,
not all of those ingredients have been analyzed in a dynamic scenario
where edge weights change after preprocessing. In this work, we present
how one of those ingredients, i.e., Arc-Flags can be applied in dynamic
scenarios.

Keywords: Shortest Path, Speed-Up Technique, Dynamic Graph Al-
gorithm

1 Introduction

Finding best connections in transportation networks is a problem familiar
to everybody who ever travelled. In general, Dijkstra’s algorithm can find
the quickest path between two points s and t if a proper model is applied.
For transportation networks, this can be achieved by assigning travel
times to the edges of the graph representing the transportation network.
Unfortunately, transportation networks deriving from real-world appli-
cations tend to be huge yielding query times of several seconds. Hence,
over the last decade, research focused on accelerating Dijkstra’s algorithm
on typical instances, e.g., road or railway networks (cf. [3] for a recent
overview). Such so called speed-up techniques compute additional data
during a preprocessing phase in order to accelerate the queries during the
online phase. As we observed in [1], most of recent high-performance rely
on basic ingredients.

Unfortunately, not all of those ingredients are proven to work in dy-
namic scenarios, i.e., edge weights change due to traffic jams or delays
of trains. In other words, correctness of the techniques relies on the fact
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that the graph does not change between two queries. Unfortunately, such
situations arise frequently in practice. In this work, we show how to use
one of those ingredients, called Arc-Flags, in such scenarios.

Related Work. As already mentioned, a lot of speed-up techniques have
been introduced over the last years. Due to space limitations, we direct
the interested reader to [3], which gives a recent overview on static route
planning algorithms. For the rest of related work, we focus on published
results on dynamic speed-up techniques.

Geometric containers [15], which can be interpreted as a predecessor
of Arc-Flags, also attach a label to each edge that represents all nodes
to which a shortest path starts with this particular edge. A dynamiza-
tion has been published in [16] yielding suboptimal containers if edge
weights decrease. In [13], ideas from highway hierarchies [12] and over-
lay graphs [14] are combined yielding very good query times in dynamic
road networks. Moreover, the ALT algorithm, introduced in [8] works
considerably well in dynamic scenarios as well [4]. A combination of ALT
with contraction, called Core-ALT, even works in time-dependent dy-
namic road networks [2]. However, to the best of our knowledge, there
are no published results on Arc-Flags in dynamic scenarios.

Our Contribution. In this paper, we propose a first approach to cope with
Arc-Flags in dynamic graphs. In particular, we propose an algorithm that
is able to update Arc-Flags in graphs subject to weight increase opera-
tions. Each time that a weight increasing occurs, the algorithm is able
to efficiently update all relevant Arc-Flags without recomputation from
scratch. In comparison to a from-scratch approach, our algorithm yields a
faster update of the arc-flags for the price of a loss in query performance.
However, our experimental evalutions (on real world road networks) shows
that the decrease in query performance is minor compared to the speed-up
gained in the update phase.

The methods developed here are related to [16] since Geometric Con-
tainers can be interpreted as predecessor of Arc-Flags. Like for Arc-Flags,
preprocessing of Geoemtric Containers is time-consuming. Hence, in [16],
the authors present methods how to update the containers in case of
weight changes without recomputating all containers from scratch. Like
the methods presented here, the main idea is to settle for suboptimal
containers in case of delays. By this, query performance decreases after
a certain number of updates. However, it turns out that this decrease is
acceptable as long as the number of updates stays little.



Outline. In Section 2 we introduce the notation used in the paper; in
Section 3 we present the dynamic algorithm for updating Arc-Flags; in
Section 4 we experimentally analyze the performances of the algorithm;
and in Section 5 we outline the conclusion of the paper.

2 Preliminaries

In this paper, a road network is modeled by directed weighted graphs G =
(V, E, w), where nodes in V represent road crossings, edges in E represent
road segments between two crossings and the weight function w : E →
R

+ represents an estimate of the travel time needed for traversing road
segments.

A minimal travel time route between two crossings S and T in a road
network corresponds to a shortest path from the node s representing S and
the node t representing T . The total weight of a shortest path between
nodes s and t is called distance from s to t and it is denoted as d(s, t).

A partition of the node set V is a family R = {R1, R2, . . . , Rr} of
subsets of V , such that each node v ∈ V is contained in exactly one set
Rk ∈ R. An element of a partition is called a region. Given a node v in
a region Rk, v is a boundary node of region Rk if there exists an edge
(u, v) ∈ E or (v, u) ∈ E such that u 6∈ Rk. The set of boundary nodes of
a region Rk is denoted as B(Rk)

Given a graph G, the reverse graph Ḡ = (V, Ē) of G is the graph
where Ē = {(v, u) | (u, v) ∈ E}.

Bidirectional Dijkstra’s Algorithm for Shortest Paths. Minimal routes in
road networks can be computed by shortest paths algorithm such as Dijk-

stra’s algorithm [6]. In order to perform an s-t query, the algorithm grows
a shortest path tree starting from the source node s and greedily visiting
the graph. The algorithm stops as soon as it visits the target node t.
A simple variation of Dijkstra’s algorithm is the bidirectional Dijkstra’s

algorithm which grows two shortest path trees starting from both nodes
s and t. In detail, the algorithm starts a visit of G starting from s and a
visit of the reverse graph Ḡ starting from t. The algorithm stops as soon
the two visits meet at some node in the graph.

Static Arc-Flags. The classic Arc-Flags approach, introduced in [10, 11],
divides the computation of shortest paths into two phases: a preprocessing
phase which is performed off-line and a query phase which is performed
on-line. The aim of the preprocessing phase is to compute in advance



some information about shortest paths. This information is used to speed
up the shortest path computation which is performed in the query phase.

The preprocessing phase first computes a partition R =
{R1, R2, . . . , Rr} of V and then associates a label to each edge e in E.
A label contains, for each region Rk ∈ R, a flag Ak(e) which is true if
and only if a shortest path in G towards a node in Rk starts with e.
The set of flags of an edge e is called Arc-Flags label of e. Furthermore,
the preprocessing phase associates (backward) Arc-Flags labels to edges
in the reverse graph Ḡ. The query phase consists in a modified version
of bidirectional Dijkstra’s algorithm: the forward search only considers
those edges for which the flag of the target node’s region is true, while
the backward search only follows those edges that have a set flag for the
source node’s region.

The main advantage of Arc-Flags is its easy query algorithm combined
with an excellent query performance. However, preprocessing is very time-
consuming. This is due to the fact that the preprocessing phase grows a
full shortest path tree from all boundary nodes of each region yielding
preprocessing times of several weeks for instances like the Western Eu-
ropean road network. This results in practical inapplicability in dynamic
scenarios where, in order to keep correctness of queries, the preprocessing
phase has to be performed after each edge weight modification. Note that
by investing much more memory consumption during preprocessing, the
preprocessing time can be decreased to approximately one day [9]. Due
to the high memory consumption, we settle for the boundary approach in
this work. Still, all insights gained here can also applied to the centralized
approach due to [9].

3 Dynamic Algorithm

In this section, we present an algorithm which is able to update the Arc-
Flags of a graph G in order to correctly answer to shortest path queries
when weight-increase operations occur on G.

The goal is to update arc labels without recomputation from scratch.
Arc-Flags are set considering all shortest path trees rooted at each bound-
ary node, hence a possible approach is to maintain shortest path trees for
all the boundary nodes of the graph by using the dynamic algorithm in [7].
Given the huge number of boundary nodes in large graphs, this approach
is impractical due to its memory overhead and time complexity. However,
this method would guarantee optimal query performance (compared to a



full recomputation) since it maintains exact shortest paths and changes
flags only where needed.

Our goal is to update Arc-Flags without storing too much additional
data. Therefore, we accept a small efficiency loss in the query phase.
The main idea is to define a threshold for each edge of the graph and
compare it with the edge weight increase when it occurs. In this way, we
can determine whether an edge becomes the starting edge of a shortest
path to some boundary nodes after a weight-increase operation. However,
we cannot determine whether an edge belonging to a shortest path before
a weight-increase operation is still on a shortest path after the operation.
Thus, we can keep correctness of Arc-Flags in dynamic scenarios without
maintaining shortest path trees. On the other hand, we keep unnecessarily
true flags which leads to an efficiency loss in the query phase.

In the remainder of the section, we consider only Arc-Flags on graph
the G as the inferred properties do not change for the reverse graph Ḡ.
In the next section, the following results will be used on both G and Ḡ.

Given a weighted graph G = (V, E, w), and a partition R =
{R1, R2, . . . , Rr} of V , let us suppose that G is subject to a set of weight-
increase operations C = (c1, c2, . . . , cc). Let us denote as Gi = (V, E, wi)
the graph obtained after i weight increase operations, 0 ≤ i ≤ c, G0 ≡ G.
Each operation ci increases the weight of one edge ei in E of an amount
γi > 0, i.e. wi(ei) = wi−1(ei) + γi and wi(e) = wi−1(e), for each edge
e 6= ei in E.

Given an edge e = (u, v) and a region Rk, the minimum threshold

δk,i(e) of e in Gi with respect to Rk is defined as wi(u, v) plus the minimum
difference between the distance from v to b and the distance from u to be
b among all boundary nodes b of Rk, formally,

δk,i(e) = min {wi(u, v) + di(v, b) − di(u, b) | b ∈ B(Rk)} .

In other words, δk,i(e) is the minimum weight increase which has to occur
to edge ei in order to make e lie on a shortest path towards region Rk.

Note that, for 0 ≤ i ≤ c, for each region Rk, and for each edge e,
δk,i(e) ≥ 0. In fact, if by contradiction we suppose that δk,i(e) < 0, then
it follows that for a boundary node b of Rk, wi(u, v) + di(v, b) < di(u, b),
which contradicts the minimality of di(u, b). Moreover δk,0(e) = 0 if and
only if Ak(e) = TRUE. In fact, by definition of Arc-Flags, Ak(e) =
TRUE if and only if w0(e) = d0(u, b′) − d0(v, b′) for some boundary
nodes b′ of Rk. It follows that

δk,0(e) = min {w0(u, v) + d0(v, b) − d0(u, b) | b ∈ B(Rk)} ≤



≤ w0(u, v) + d0(u, b′) − d0(v, b′) = 0.

The following lemma gives us a necessary condition to check whether
the Arc-Flags of an edge needs to be set to TRUE.

Lemma 1. Given a region Rk, then an edge e is on a shortest path to-

wards Rk in Gi only if γi ≥ δk,i−1(e).

Proof. If e = (u, v) is on a shortest path towards Rk already in Gi−1,
then δk,i−1(e) = 0 as di−1(u, b) = wi−1(u, v) + di−1(v, b) for a boundary
node b in Rk. Thus the statement holds. Otherwise, edge e = (u, v) is
on a shortest path towards region Rk in Gi and it is not on a shortest
path towards region Rk in Gi−1, which means that the weight increase
operation occurred on an edge (u, w) outgoing from node u, that is u ≡ ui

and w ≡ vi. In this case, we prove the statement by contradiction, that
is, we show that if γi < δk,i−1(e) then edge e in not on a shortest path
towards Rk in Gi. Let b be the boundary node of Rk such that

δk,i−1(e) = wi−1(u, v) + di−1(v, b) − di−1(u, b),

then γi < δk,i−1(e) implies that

γi < wi−1(u, v) + di−1(v, b) − di−1(u, b).

It follows that

wi−1(u, v) + di−1(v, b) > di−1(u, b) + γi.

The last inequality implies that edge (u, v) is not on a shortest path
towards b. �

Minimum thresholds can be computed in the preprocessing phase,
during the Arc-Flags computation. Hence, the computation of minimum
thresholds does not increase the computational complexity of the pre-
processing. For each region Rk, we store the minimum threshold of an
edge e with respect to Rk in a data structure δk(e) which is updated each
time that an edge weight modification occurs. Hence, storing minimum
thresholds requires O(m · r) instead of O(m · log r) required by Arc-Flags.

When a weight increase operation ci occurs, we update Arc-Flags
and minimum thresholds by using Algorithm UPDATE-ARC-FLAGS

in Figure 1.
In detail, Algorithm UPDATE-ARC-FLAGS performs a breadth-

first search for each region Rk in R. For each visited edge e it checks



Algorithm: UPDATE-ARC-FLAGS1

input : Graph Gi−1, weight increase operation ci, 1 ≤ i ≤ c

output: Arc-Flags A and minimum thresholds δ

foreach region Rk do2

visit Gi−1 by performing a breadth-first search3

foreach visited edge e do4

if Ak(e) == FALSE then5

if γi ≥ δk(e) then6

Ak(e) = TRUE7

δk(e) = 08

else9

δk(e) = δk(e) − γi10

Fig. 1. Algorithm UPDATE-ARC-FLAGS

whether it is not on a shortest path towards region k, that is Ak(e) ==
FALSE (Line 5). In the affirmative case, it applies Lemma 1 by setting
Ak(e) to TRUE and δk(e) to 0 if γi ≥ δk(e) or by updating δk(e) to
δk(e) − γi otherwise (Lines 6–10).

It is easy to see that Algorithm UPDATE-ARC-FLAGS requires
O((n + m) · r) computational time as it performs r times a breadth-first
search of graph Gi−1.

The next theorem shows the correctness of algorithm
UPDATE-ARC-FLAGS and it follows from Lemma 1 and from
the discussion above.

Theorem 1. After weight increase operation ci, for each region Rk and

for each edge e, if e is on a shortest path towards region Rk in Gi then

Ak(e) = TRUE.

4 Experimental study

In this section, we experimentally analyze the algorithm presented.
We first report the computational time of the preprocessing phase
of Arc-Flags in order to compare it with the computational time of
UPDATE-ARC-FLAGS. Then, we present query performances by
comparing query time after the execution of UPDATE-ARC-FLAGS

against the one obtained after the from scratch recomputation. We also
compare the two algorithms by performing mixed sequences of prepro-
cessing and query phases. Finally, we compare our approach with the
traditional use of bidirectional Dijkstra to evaluate the speed-up gained
by our technique.



Our experiments are performed with a Dual-Core AMD opteron Pro-
cessor 2218 clocked at 2.6 GHz with 32 GB of main memory. The program
was compiled with GNU g++ compiler 4.2 under SuSE Linux 10.3 (Ker-
nel 2.6.22.17).

We consider three graphs that represent the Luxembourg, Dutch and
German road networks. In each graph, nodes represent crossings, edges
represent links between two crossings and the weights correspond to an
estimate of the travel times needed to traverse links. Edges are classified
into four categories according to their speed limits: motorways, national
roads, regional roads and urban streets. The main characteristics of the
graphs are reported in Table 1.

graph n. of nodes n. of edges %mot %nat %reg %urb

road network of Luxembourg 30 647 75 576 0.6 1.9 14.8 82.7
road network of Netherlands 892 027 2 278 824 0.4 0.6 5.1 93.9
road network of Germany 4 375 381 10 967 664 0.3 1.5 15.5 82.7

Table 1. Tested road graphs. The first column indicates the graph; the second and
the third columns show the number of nodes and edges in the graph, respectively; the
last four columns show the percentage distribution of edges into categories: motorways
(mot), national roads (nat), regional roads (reg), and urban streets (urb).

Preprocessing. Regarding the preprocessing phase, in Table 2 we report
the computational time and the average percentage of TRUE flags of each
edge obtained by partitioning the graph into 64 or 128 regions.

graph n. of regions preprocessing time % TRUE flags
(sec.)

road network of Luxembourg 64 27 46.2
road network of Netherlands 128 6369 42.7
road network of Germany 128 80981 42.8

Table 2. Preprocessing time. The first column shows the graph; the second one shows
the number of regions; the third one shows the preprocessing time; and the last one
shows the average percentage of TRUE flags.

To evaluate the performances of UPDATE-ARC-FLAGS, we exe-
cute, for each considered graphs and for each road category, random se-
quences made of a different number c of update operations ranging from
1 to 30. The edge-increase amount for each of them is chosen at random



in [600, 1200], i.e., between 10 and 20 minutes. As performance indicator,
we chose the average time (in seconds) used by the algorithm to com-
plete a single update during the execution of a sequence. Experimental
results for the Luxembourg, Dutch and German road networks are given
in Figures 2, 3 and 4, respectively. In particular, each figure shows four
diagrams related to the four road categories considered. Each diagram
shows the average time needed by UPDATE-ARC-FLAGS to perform
a single update operation, as a function of the number c of weight increase
operations occurred in the sequence.
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Fig. 2. Average time in seconds (y-axis) needed by UPDATE-ARC-FLAGS to com-
plete a single operation during the execution of a different number of updates per se-
quence (x-axis) on the road network of Luxembourg. The weight increase is randomly
selected in the interval [600, 1200].

As one can see, the UPDATE-ARC-FLAGS is considerably faster
than the preprocessing in all the tested graphs. As an example, performing
30 updates on motorways of the German network, using a from-scratch
recomputation, would last 80980.8 seconds per update, which means that
it would require 28 days, 2 hours, 50 minutes and 24 seconds overall time
to perform 30 updates. Algorithm UPDATE-ARC-FLAGS needs only
215.8 seconds per update yielding 1 hour, 47 minutes and 55 seconds
overall time. Thus, the speed-up achieved by UPDATE-ARC-FLAGS

in this case is about 375. Table 3 shows the speed-up gained by
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Fig. 3. Average time in seconds (y-axis) needed by UPDATE-ARC-FLAGS to com-
plete a single operation during the execution of a different number of updates per
sequence (x-axis) on the road network of Netherlands. The weight increase is randomly
selected in the interval [600, 1200].
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Fig. 4. Average time in seconds (y-axis) needed by UPDATE-ARC-FLAGS to com-
plete a single operation during the execution of a different number of updates per
sequence (x-axis) on the road network of Germany. The weight increase is randomly
selected in the interval [600, 1200].



UPDATE-ARC-FLAGS in the case of a sequence made of 30 weight
increase operations.

Graph Road category speed-up

road network of Luxembourg

mot 26.89
nat 26.62
reg 34.01
urb 50.19

road network of Netherlands

mot 123.01
nat 140.86
reg 211.43
urb 305.58

road network of Germany

mot 375.17
nat 427.31
reg 496.06
urb 882.87

Table 3. Speed-up gained by UPDATE-ARC-FLAGS in the case of a sequence
made of 30 weight increase operations. The first column shows the graph; the sec-
ond one shows the road category: motorways (mot), national roads (nat), regional
roads (reg), and urban streets (urb); and the third one shows the speed-up gained by
UPDATE-ARC-FLAGS with respect to a from-scratch approach.

Query Performance. In order to evaluate query performances,
we run queries using source-target pairs that are picked uniformly
at random. For each update sequence, first we update flags using
UPDATE-ARC-FLAGS and then we run queries to evaluate the av-
erage query time. To measure the performance loss, we execute the same
queries by using Arc-Flags updated by a from-scratch approach. Hence,
we execute the preprocessing from-scratch on the modified graph, we
perform the same sequence of queries and we compute the average query
time. The parameter chosen to evaluate performances is the ratio between
the average query time after the execution of UPDATE-ARC-FLAGS

and the one obtained with the from-scratch recomputation. This value is
referred at as query performance loss (qpl). In our experiments, we pick
sequences of 10000 random source-target pairs. Figures 5, 6 and 7 show
results about query performance loss on the three considered graphs. Each
figure shows four diagrams which represents the query performance loss
related to the four road categories considered.

As Figures 5, 6 and 7 show, using UPDATE-ARC-FLAGS to update
flags after a weight-increase operation leads to a decrease of query per-
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Fig. 5. Query performances after the execution of UPDATE-ARC-FLAGS on the
road network of Luxembourg. The x-axis represents the number c of updates in the
sequence, the y-axis represents the query performance loss (qpl).

urban streets
regionalroads

national roads
motorways

Number of updates c

qpl

302520151050

80

70

60

50

40

30

20

10

0

Fig. 6. Query performances after the execution of UPDATE-ARC-FLAGS on the
road network of Netherlands. The x-axis represents the number c of updates in the
sequence, the y-axis represents the query performance loss (qpl).
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Fig. 7. Query performances after the execution of UPDATE-ARC-FLAGS on the
road network of Germany. The x-axis represents the number c of updates in the se-
quence, the y-axis represents the query performance loss (qpl).

formances. Moreover, the query performance loss grows linearly with the
number of updates. This is obvious, because UPDATE-ARC-FLAGS

only changes flags from FALSE to TRUE. In this way, an Arc-Flag search
would consider more edges as the number of updates become bigger lead-
ing to an increase of query time. It is also important to consider the
information provided by Table 1: urban edges represents more than 80%
in the road network of Luxembourg and in the German road network and
more than 90% in the road network of Netherlands. For this category of
edges, the use of UPDATE-ARC-FLAGS leads to a very small query
performance loss. As an example, in the German network, after twenty
updates on urban edges, queries are twenty times slower than after a from-
scratch recomputation. This is due to the fact that urban streets mainly
represent starting or ending edges of shortest paths and hence updates
on these edges do not influences many Arc-Flags. Thus, if we consider a
small number of updates, the use of UPDATE-ARC-FLAGS leads to
query times that are comparable with those of pure Arc-Flags.

In conclusion, UPDATE-ARC-FLAGS is able to rapidly up-
date Arc-Flags with a speed-up between 26 and 882 with respect
to a from-scratch recomputation (see Table 3), and to achieve still
good performances in the query phase with a performance loss of at
most 73. Table 4 shows the relation between the speed-up gained by



UPDATE-ARC-FLAGS in the update phase and the query performance
loss in the case of a sequence made of 30 weight increase operations. As
one can see, the query performance loss is always much smaller than the
speed-up.

Graph Road category speed-up qpl

road network of Luxembourg

mot 26.89 18.2
nat 26.62 19.6
reg 34.01 16.0
urb 50.19 10.3

road network of Netherlands

mot 123.01 71.39
nat 140.86 69.18
reg 211.43 41.13
urb 305.58 28.11

road network of Germany

mot 375.17 73.15
nat 427.31 55.71
reg 496.06 50.9
urb 882.87 28.78

Table 4. Relation between the speed-up gained by UPDATE-ARC-FLAGS in the
update phase and the query performance loss in the case of a sequence made of 30
weight increase operations. The first column shows the graph; the second one shows the
road category: motorways (mot), national roads (nat), regional roads (reg), and urban
streets (urb); the third one shows the speed-up gained by UPDATE-ARC-FLAGS;
and the last one shows the query performance loss (qpl).

Comparison. In order to evaluate the speed-up gained by our approach
against the simple use of bidirectional Dijkstra, we perform mixed se-
quences of edge weight update and query operations. Each sequence is
made of 1000 operations. In particular, we run a different number c of
update operations ranging from 1 to 30, with a random edge-increase
amount in [600, 1200], and 1000−c queries using source-target pairs picked
uniformly at random.

When the current operation in the sequence is an edge weight up-
date, our approach performs UPDATE-ARC-FLAGS in order to run
Arc-Flags when a subsequent query operation occurs. A traditional ap-
proach just stores the edge weight changes in O(1) and runs bidirectional
Dijkstra for all the subsequent query operations. As a performance meter,
we choose the ratio rseq between the overall time required by the tradi-
tional approach to perform the entire sequence of operations and that
required by our approach. Results for the considered graphs and road
categories are reported in Figures 8, 9 and 10.
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Fig. 8. Performances of our approach to perform mixed sequences of updates and
queries on the road network of Luxembourg. The x-axis represents the number c of
edge weight updates in the sequence, the y-axis represents the ratio rseq between the
time required by the traditional approach (bidirectional Dijkstra) and that required by
our approach.

urban streets
regionalroads

national roads
motorways

Number of updates c

rseq

302520151050

35

30

25

20

15

10

5

0

Fig. 9. Performances of our approach to perform mixed sequences of updates and
queries on the road network of Netherlands. The x-axis represents the number c of
edge weight updates in the sequence, the y-axis represents the ratio rseq between the
time required by the traditional approach (bidirectional Dijkstra) and that required by
our approach.
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Fig. 10. Performances of our approach to perform mixed sequences of updates and
queries on the road network of Germany. The x-axis represents the number c of edge
weight updates in the sequence, the y-axis represents the ratio rseq between the time
required by the traditional approach (bidirectional Dijkstra) and that required by our
approach.

As expected, rseq tends to decrease with c. In particular it is bigger
than 1 only when c < 20. This is due to the fact that the traditional ap-
proach does not perform any update phase while our approach performs
UPDATE-ARC-FLAGS. This is slower than a simple bidirectional Di-
jkstra’s query algorithm, even if it is faster than any other preprocessing
algorithms as shown above. When the number c of weight increase op-
erations in the sequence is high, this time overhead becomes evident,
yielding to a value of rseq which is smaller than 1. In addition to that,
query performances decrease with the increase of c. This is due to the
query performance loss induced by UPDATE-ARC-FLAGS. However,
when c is less than 20 we can see that our approach leads to a significant
speed-up especially in the bigger graph.

5 Conclusion

Despite the great interest dedicated during the last years to speed-up
techniques for shortest paths, there are only few published algorithms
which are proven to work in dynamic graphs. In this paper, we proposed
a first approach to cope with Arc-Flags in dynamic graphs subject to
weight increase operations.



The main idea is to define a threshold for each edge of the graph and
compare it with the edge weight increase when it occurs. In this way,
we are able to determine whether an edge label should be set to TRUE
but we are not able to determine whether an it should be set to FALSE.
Thus, we can keep correctness of Arc-Flags in dynamic scenarios in linear
time without maintaining shortest path trees. On the other hand, we keep
unnecessarily true flags which leads to efficiency loss in the query phase.
Nevertheless, we experimentally show that such an efficiency loss is very
small compared to the speed-up gained in the update phase.
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Abstract. Trains often arrive delayed at stations where passengers have to change to other
trains. The question of delay management is whether these trains should wait for the origi-
nal train or depart on time. In traditional delay management models passengers always take
their originally planned route. This means, they are in case of a missed connection always
delayed with the cycle time of the timetable. In this paper, we propose a model where re-
routing of passengers is incorporated.
To describe the problem we represent it as an event-activity network similar to the one used
in traditional delay management, with some additional events to incorporate origin and des-
tination of the passengers. We prove NP-hardness of this problem, and we present an integer
programming formulation for which we report the first numerical results. Furthermore, we
discuss the variant in which we assume fixed costs for maintaining transfers and we present
a polynomial algorithm for the special case of only one origin-destination pair.

Key words: Public Transportation, Delay Management, Re-Routing, OD-pairs

1 Introduction and Motivation

Delay management is an important issue in the daily operations of railway companies. It deals
with (small) source delays of a railway system as they occur in the daily operational business of
any public transportation company. In case of such delays, the scheduled timetable is not feasible
any more and has to be updated to a disposition timetable. Since delays can also be transferred
if a connecting train waits for a delayed feeder train such connections are often not maintained
in case of delays. These wait-depart decisions are important decisions for the passengers. In order
to ensure safe operations and to take the limited capacity of the track system into account, also
priority decisions are necessary. They determine the order in which trains are allowed to pass a
specific piece of track.

There exist various models and solution approaches for delay management. The main question
which has been treated in the literature so far is to decide which trains should wait for delayed
feeder trains and which trains better depart on time (wait-depart decisions). It neglects the limited
capacity of the tracks. A first integer programming formulation for this problem has been given
in [Sch01] and has been further developed in [GHL08,Sch07], see also [Sch06] for an overview
about various models. The complexity of the problem has been investigated in [GJPS05,GGJ+04]
where it turns out that the problem is NP-hard even in very special cases. The online version of the
problem has been studied in [GJPW07,Gat07]. In [BHLS07], it was shown that the online version of
the uncapacitated delay management problem is PSPACE-hard. Further publications about delay
management include a model in the context of max-plus-algebra [RdVM98,Gov98], a formulation
as discrete time-cost tradeoff problem [GS07] and simulation approaches [SM99,SMBG01].
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Recently, the limited capacity of the track system is taken into account. This has been done
heuristically in a real-world application studied within the project DisKon supported by Deutsche
Bahn (see [BGJ+05]). Some first ideas on how to model these constraints in the context of delay
management have been presented in [Sch09], heuristics and properties of the models including the
never-meet property of uncapacitated delay management are presented in [SS08,SS09].

What has been neglected so far are the aspects of re-routing. In the available models it is assumed
that passengers take exactly the lines they planned, i.e. if they miss a connection they have to wait
a complete period of time until the same connection takes place again. This assumption is usually
not valid in practice. Often there is an earlier connection using another line or even changing the
path of the trip. A real-world example of a situation where re-routing passengers in case of delays
is beneficial is given next.
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Fig. 1. A small part of the railway network in the Netherlands. A regional train runs from Amersfoort
to Hilversum and further to Amsterdam. An intercity service runs from Zwolle to Utrecht and stops at
station Amersfoort. All other trains are intercities as well.

Consider the network in Figure 1. An intercity service runs from Zwolle to Utrecht via Amersfoort.
There are also intercities from Utrecht to Amsterdam and from Amersfoort to Amsterdam. Finally,
a regional train runs via Hilversum from Amersfoort to Amsterdam. A large number of passengers
want to travel from Zwolle to Amsterdam, and thus have a transfer at Amersfoort. In the current
timetable, the intercity to Amsterdam departs from Amersfoort 5 minutes after the intercity from
Zwolle has arrived. Therefore, if the intercity from Zwolle has a small delay, these passengers will
miss the connecting intercity to Amsterdam. If the possibility of re-routing the passengers is not
taken into account, the decision to delay the intercity from Amersfoort to Amsterdam assumes
that the passengers that miss the connection at Amersfoort have to wait for one hour for the
next intercity. However, these passengers will probably take the regional train via Hilversum, that
departs a few minutes after the intercity has left. As the regional train stops at more locations,
the travel time of the regional train is larger than that of the intercity, but the difference is only
several minutes. The delay of the passengers will then be far less than one hour. If the delay is so
large that the regional train has left as well, the passengers could stay in the delayed train and
travel via Utrecht instead. The transfer time in Utrecht is much larger than in Amersfoort. This
small example shows that the delay of passengers that miss a connection is often much smaller
than one hour. To find the optimal wait-depart decisions, re-routing passengers should therefore
be taken into account.

In our paper we will investigate how such a re-routing of passengers can be incorporated into the
delay management problem. We denote the resulting model by delay management with re-routing
decisions (DMwRR). To the best of our knowledge a re-routing of passengers has never been
treated before.
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The remainder of the paper is structured as follows. In Section 2 we show how the re-routing
of passengers can be modeled in the event-activity network and that delay management with
re-routing is NP-hard. An integer program based on the event-activity network is formulated in
Section 3. In Section 4 we present a polynomially solvable case in which we show how optimal wait-
depart decisions can be made if only one origin-destination pair is present. We furthermore discuss
another simplified variant in which we assume fixed delay costs for each maintained changing
activity. We finally conclude the paper mentioning ideas for further research.

2 Model

We will make use of an event-activity network to model the delay management problem with
re-routing. Event-activity networks were first introduced by [Nac98] for timetabling problems and
were used for the classical delay management problems by [Sch06]. The event-activity network will
be extended to take re-routing of passengers into account.
We assume that the number of passengers that want to travel from a given origin to a destination
at a certain time is known. For example, 200 passengers want to travel from Zwolle to Amsterdam
at 8 o’clock in the morning. We denote such an origin-destination pair by p = {u, v, suv}, where u

is the origin, v is the destination and suv is the planned starting time of the trip. P denotes the
set of all such origin-destination pairs. From now on, we will abbreviate an origin-destination pair
as an OD-pair. We denote wp for the number of passengers associated to an OD-pair p ∈ P.
The event-activity network N = (E ,A) is a directed graph, where E denotes the set of events and
the set A consists of the activities. The departure or the arrival of a train g at a station v, denoted
by (g − v − Dep) or (g − v − Arr) respectively, are the most important events in the network. To
incorporate the routes of the passengers, we introduce for every OD-pair p = {u, v, suv} ∈ P an
origin event (p − Org) and a destination event (p − Dest). Note that besides the origin and the
destination, the OD-pairs also contain the time at which passengers want to start their journey.
In summary, the set of events in the network, denoted by E , consists of the departure events of
the trains, the arrival events of the trains and the origin and destination events for the passengers
for a given OD-pair.

E = Edep ∪ Earr ∪ Eorg ∪ Edest.

The activities are the arcs in the directed graph N . Similar to the event-activity network used by
[Sch06] for the delay management problem without re-routing, there are driving arcs, waiting arcs
and changing arcs. The driving and waiting arcs represent driving from one station to the next
and waiting at a station to let the passengers get on and off the train. The changing activities are
used by the passengers. They represent the possibility for passengers to transfer from a train that
arrives at a certain station to a train that departs at the same station some time later. It should
be noted that the driving and waiting arcs impose operational restrictions on the vehicles. On the
contrary, a changing arc does not imply that a train has to wait in case of a delay of another train,
although it would be convenient for the transferring passengers.
To take the rerouting of passengers into account, we also introduce origin and destination arcs. Let
an origin event e = (p−Org) ∈ Eorg be given, where p = {u, v, suv} represents the passengers that
want to travel from station u to station v at time suv. This event e is connected to all the departure
events that depart from u not earlier than the time suv. It remains to connect the arrival events
to the destination events. Consider therefore a destination event (p − Dest) ∈ Edest, where again
p = {u, v, suv}. Denote SPp for the arrival time of the passengers if there are no delays and denote
np for the number of transfers needed for this trip. SPp is clearly a lower bound for the arrival time
of the passengers. To derive an upper bound on the arrival time, note that in the worst case all
np connections are missed. We conclude that an arrival event e should be connected to (p−Dest)
if e is an arrival event at station v and if the planned time πe satisfies πe ∈ [SPp, SPp + npT ],
where T is the cycle time of the original timetable. This concludes the description of the arcs in
the event activity network. Summarizing,

A = Adrive ∪ Await ∪ Achange ∪ Aorg ∪ Adest.
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{Zl, Asd} {Ut, Asd}

g1 − Zl − D g1 − Amf − A g1 − Amf − D g1 − Ut − A

g2 − Ut − D g2 − Asd − A {Ut, Asd}

{Amf, Asd} g3 − Amf − D g3 − Asd − A {Zl, Asd}

g4 − Amf − D g4 − Hvs − A g4 − Hvs − D g4 − Asd − A {Amf, Asd}

Fig. 2. The event activity network for the situation depicted in Figure 1. The square nodes are the
departure and arrival events where “D” stands for departure and “A” stands for arrival. The origin and
destination events are represented by ovals omitting the add-ons “Org” or ‘Dest” as this is obvious in
the picture. As we only consider one possible departure time for each origin-destination pair, we did not
include the starting time in the origin and destination nodes. The dashed arcs are the origin and destination
arcs, that are introduced to be able to state the shortest path problem for the passengers. The solid lines
represent driving, waiting and changing activities.

An example of an event-activity network is given in Figure 2. This event-activity network corre-
sponds to the railway network in Figure 1. The oval nodes represent the origin and destination
events, that are introduced to model the behavior of passengers when delays occur. The dashed
arcs, that depict the origin and destination arcs, are needed only to take re-routing of passengers
into account. Recall that transfer arcs do not impose any operational constraints. It is therefore
possible not to maintain a connection in case of delays, which would imply that passengers cannot
use such a connection.
For every activity a ∈ Adrive ∪Await ∪Achange a length La is given that represents the technically
minimal time that is needed to perform the activity. As the origin and destination activities are
not activities in the original sense and thus they are not time consuming, their lengths can be set
to 0 or they can just be omitted.
For every event e ∈ Earr∪Edep, the planned time is denoted by πe, i.e. π corresponds to the timetable
as it is planned to be operated. For an origin event e = (p − Org) ∈ Eorg with p = {u, v, suv}
we set πe = suv (which can be interpreted as the time at which a passenger of OD-pair p arrives
at his or her departure station). For destination events we have to determine the time when the
passengers reach their last station, hence πe is not known beforehand.
Given a timetable, for every OD-pair a route through the network has to be found, so that the
travel time is minimized. To this end, let P be a directed path from e1 to e2 in the network N .

– First, assume that e2 ∈ Edep∪Earr. We define l(P ) = πe2
−πe1

to be the travel time or distance
between e1, e2 in N .

– We now extend this definition to nodes e2 ∈ Edest. Let pre(e2, P ) be the predecessor of e2 in
path P . Then we define l(P ) = πpre(e2,P ) − πe1

.

For a path P connecting an OD-pair p = {u, v, suv} we hence obtain l(P ) = πpre(e2,P )−suv. As we

assume that passengers take the fastest paths to arrive at their destinations, we set l(p) = l(P̂uvsuv
)

where P̂uvsuv
is a shortest path from the origin event e = (p − Org) to the destination event

e = (p − Dest).
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Given a set of source delays de associated to some events e ∈ Earr ∪ Edep the problem is to
decide which trains should wait for passengers to arrive from delayed trains and which should
depart without waiting. Thus we have to determine which of the connections a ∈ Achange will be
maintained and which will be removed. We denote the set of maintained connections by Afix. For
the resulting network

N (Afix) := (E ,Adrive ∪ Await ∪ Afix ∪ Aorg ∪ Adest)

in which the set of changing arcs has been replaced by Afix a new timetable can be constructed
using the critical path method (see [Sch07]). The event times for the events e ∈ Edep ∪ Earr in this
new timetable will be denoted by xe. For an OD-pair p we define tAfix

(p) = xe where e is the
predecessor of the destination event (p−Dest) on a shortest path from the origin event (p−Org)
to the destination event (p − Dest) in the network N (Afix).
In N (Afix) the travel time of an OD-pair p = {u, v, suv} is analogously defined as

lAfix
(p) = tAfix

(p) − suv.

In the delay management problem we want to minimize the sum of all delays of the OD-pairs. The
delay of an OD-pair p = {u, v, suv} is given as

lAfix
(p) − l(p) = tAfix

(p) − suv − l(p).

Since suv and l(p) are constants we can equivalently minimize tAfix
(p), hence the objective of delay

management with re-routing is to find a subset Afix ⊂ Achange so that we minimize:

min
Afix⊂Achange

∑

p∈P

wp · tAfix
(p).

Our first result is to clarify the the complexity status of delay management problem with re-routing
and show that it is NP-hard. This is not surprising, because the delay management without re-
routing is NP-hard as well ([GJPS05]).

Theorem 1. Delay management with re-routing is NP-hard.

Proof. The proof will be done by reduction to the ”Uncapacitated Facility Location” (UFL) prob-
lem. An instance of UFL consists of a set of potential facilities J = {1, . . . , n} and a set of
customers I = {1, . . . ,m} which have to be served by the facilities. A customer can only be served
by a facility if it is opened. Let fj be the cost for opening facility j and cij be the transportation
cost for serving customer i from facility j. The objective of UFL is to find a subset Q ⊆ J and an
assignment of the customers to the facilities so that the total cost consisting of the opening cost
of the facilities and the transportation cost is minimized. The objective function is:

f̃(Q) := min





∑

i∈I

min
j∈Q

cij +
∑

j∈Q

fj



 .

For a given instance of UFL we define the following instance of delay management with re-routing
(see Figure 3).

– We consider a transportation system with 2+m+n stations, namely two fixed stations u and
ũ and stations vi for all i ∈ I and ṽj for all j ∈ J .

– As trains we consider one train g running from u to ũ, trains hj running from ũ to the stations
ṽj and trains kij linking each pair of stations (ṽj , vi). Altogether we hence have 1 + n + mn

trains each of them driving between one pair of stations only.
– We use the event-activity network based on this transportation system with a departure event,

a driving activity of length 1 and an arrival event for each of the 1+m+nm trains. There are
no waiting activities. We have the following set C1 ∪ C2 of changing activities consisting of
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• transfers from the train g to each of the trains hj , j = 1, . . . , n. These are the changing
activites cj = {(g − ũ − Arr, hj − ũ − Dep)}, j = 1, . . . , n with length 1. We define

C1 = {cj : j ∈ J}

• transfers from a train hj to a train kij , j = 1, . . . , n, i = 1, . . . ,m, i.e.

C2 = {(hj − vj − Arr, kij − ṽj − Dep) : j ∈ J, i ∈ I}.

– Furthermore, we need OD-pairs P given as

P = {pi = {u, vi, 0}∀i ∈ I} ∪ {p̃j = {ũ, ṽj , 2}∀j ∈ J}.

We set the number of passengers wanting to travel between the corresponding origin and
destination events as wpi

= 1 for every pi = {u, vi, 0} and wp̃j
= fj for every p̃j = {ũ, ṽj , 2}.

– Finally, as source delay we assume that the departure event of train g is delayed by d = 1
minute.

First we note that maintaining the connection between the trains hj and kij does not cause addi-
tional delay for any OD-pair. So we can assume that all changing activitities in C2 are maintained
and will in the following only consider such solutions.
Now let Q ⊆ J be a subset of opened facilities. We define a relation between such opened facilities
and maintained connections which is only based on the maintained connections in C1:

AQ
fix := {cj ∈ C1 : j ∈ Q} ∪ C2.

Vice versa for a given subset Afix ⊆ C1 ∪ C2 we set

QAfix = {j ∈ J : cj ∈ Afix}.

Thus we have a bijection between subsets Q ⊂ J and subsets Afix ⊂ Achange. It holds:

1. Q is feasible for (UFL) if and only if all passengers reach their destinations if AQ
fix is chosen as

set of maintained connections.
2. The objective values of (UFL) and delay management with passenger re-routing coincide up

to an additive constant, i.e. f(AQ
fix) = f̃(Q) + const.

ad 1: A solution Q to an instance of UFL is feasible if and only if there is at least one opened facility.
Similarly, all passengers will reach their final destinations if and only if the set of maintained
connections within C1 is not empty.

ad 2: For a given feasible solution Q to an instance of UFL the objective value is

f̃(Q) =
∑

i∈I

min
j∈Q

cij +
∑

j∈Q

fj .

In the associated solution network N (AQ
fix) for every OD-pair pi = {u, vi, 0} the arrival time

tAfix
(pi) can be calculated depending on the chosen train kij by adding the lengths La of the

activities on the path in the event-activity network and the delay d = 1. Furthermore, for
every OD-pair p̃j = {ũ, ṽj , 2} the arrival time tAfix

(p̃j) is tAfix
(p̃j) = sũṽj

+ 1 + d = 4 if the
connection (g − ũ−Arr, hj , ũ,Dep) is kept alive and tAfix

(p̃j) = sũṽj
+ 1 = 3 otherwise. Thus

the associated solution has solution value:
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k11 − ṽ1 − Dep k11 − v1 − Arr

{u, v1, 0} {ũ, ṽ1, 2} k21 − ṽ1 − Dep k21 − v2 − Arr {u, v1, 0}

h1 − ũ − Dep h1 − ṽ1 − Arr k31 − ṽ1 − Dep k31 − v3 − Arr

{u, v2, 0} g − u − Dep g − ũ − Arr {ũ, ṽ1, 2} {ũ, ṽ2, 2} {u, v2, 0}

h2 − ũ − Dep h2 − ṽ2 − Arr k12 − ṽ2 − Dep k12 − v1 − Arr

{u, v3, 0} {ũ, ṽ2, 2} k22 − ṽ2 − Dep k22 − v2 − Arr {u, v3, 0}

k32 − ṽ2 − Dep k32 − v3 − Arr

c11

c12

c13

c21

c22

c23

Fig. 3. The event activity network for the instance of the delay management problem with re-routing constructed from an instance of UFL with m = 3 customers
and n = 2 facilities. The square nodes are the departure and arrival events. The origin and destination events are represented by ovals omitting the add-ons
“Org” or ‘Dest” as this is obvious in the picture. The dashed arcs are the origin and destination arcs, the solid lines represent driving and changing activities.
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∑

p∈P

wp · tAfix
(p) =

∑

i∈I

wpi
· tAfix

(pi) +
∑

j∈J

wp̃j
· tAfix

(p̃j)

=
∑

i∈I

tAfix
(pi) +

∑

j∈J

fj · tAfix
(p̃j)

=
∑

i∈I

min
j∈Q

(4 + cij + d) +
∑

j∈Q

fj · 4 +
∑

j /∈Q

fj · 3

=
∑

i∈I

(

5 + min
j∈Q

cij

)

+
∑

j∈Q

fj · 4 +
∑

j /∈Q

fj · 3

=
∑

i∈I

min
j∈Q

cij + 5 · |I| +
∑

j∈Q

fj +
∑

j∈J

fj · 3

=f(Q) +



5 · |I| +
∑

j∈J

fj · 3





⊓⊔

We remark that NP hardness of a similar model also dealing with delay management with re-
routing of passengers has been shown in [GGJ+04].

3 Integer Programming Formulation

In this section we will give an integer programming formulation that takes the routing decisions
for the passengers into account explicitly. The model is based on the classical delay management
model as it was introduced in [Sch01]. We will refer to this classical delay management model as
the original model.
The event activity network is a directed graph. We denote δin(e) and δout(e) for the set of arcs
into e and out of e, respectively, for every event e ∈ E .

3.1 Variables

The most important decision is which connections need to be kept alive. For each changing activity
a ∈ Achange we thus introduce a binary decision variable za, which is defined as follows.

za =

{

1 if connection a is maintained,

0 otherwise.

The times that the arrival and departure events take place are the next set of decision variables.
For each event e ∈ Earr ∪ Edep, we define xe ∈ N as the rescheduled time that event e takes place.
The variables x = (xe) therefore define the disposition timetable. These decision variables are the
same as in the original model.
The new aspect that we have to model are the routes that the passengers take. First note that a
route has to be determined for every origin-destination pair. Recall that the set P is defined as
the set of all origin-destination pairs. To model the routing decisions for a given pair p ∈ P, we
introduce binary decision variables qap, which indicate whether arc a ∈ A is used in the path that
is chosen for origin-destination pair p ∈ P. Formally, the variables qap are defined as follows.

qap =

{

1 if connection a is used by passengers in p,

0 otherwise.

The arrival time for p now depends both on the path that is chosen, and on the disposition
timetable x. To be able to incorporate the arrival time of these passengers in a linear model, we
introduce a variable tp ∈ N, which will represent the arrival time for pair p ∈ P.
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3.2 Integer programming formulation

We first present our integer programming formulation for (DMwRR) and then discuss its meaning.

min
∑

p∈P

wptp (1)

such that

xe ≥ πe + de ∀e ∈ Earr ∪ Edep, (2)

xe ≥ xe′ + La ∀a = (e′, e) ∈ Adrive ∪ Await, (3)

xe ≥ xe′ + La − M1(1 − za) ∀a = (e′, e) ∈ Achange, (4)

qap ≤ za ∀p ∈ P, a ∈ Achange, (5)
∑

a∈δout(e)

qap = 1 ∀e = (p − Org) ∈ Eorg, (6)

∑

a∈δout(e)

qap =
∑

a∈δin(e)

qap ∀p ∈ P, e ∈ Earr ∪ Edep, (7)

1 =
∑

a∈δin(e)

qap ∀e = (p − Dest) ∈ Edest, (8)

tp ≥ xe − M2(1 − qpa) ∀e = (p − Dest) ∈ Edest, a ∈ δin(e), (9)

za ∈ {0, 1} ∀a ∈ Achange, (10)

qap ∈ {0, 1} ∀p ∈ P, a ∈ A, (11)

xe ∈ N ∀e ∈ Earr ∪ Edep, (12)

tp ∈ N ∀p ∈ P. (13)

The objective function (1) minimizes the arrival times of all passengers. This is equivalent to
minimizing the overall or average delay of the passengers. Constraints (2) imply that events cannot
take place earlier than in the original timetable and that source delays are taken into account.
To make sure that delays are propagated through the network correctly, constraints (3) transfer
the delay from the start of activity a to its end. For maintained connections, that is connections
for which za = 1, constraints (4) transfer delays from the feeder train to the connecting train.
The value of M1 should be chosen large enough for these constraints to be correct. In [Sch06] it
has been shown that M1 = maxe∈E de is large enough. Constraints (2 - 4) are also present in the
original model.
Constraints (5 - 9) take the routing decisions into account. First of all, constraints (5) make sure
that changing activities can only be used if the connection is kept alive. Constraints (6 - 8) define
a shortest path problem for each origin-destination pair p. For every pair, a path is selected from
the origin to the destination. The last constraint defines the arrival time for trip p, where M2 is
again a large number. For the arrival event e that is selected and the driving activity a into this
event, qpa = 1, showing that tp ≥ xe for this particular event. All other path variables qpa are
equal to zero, therefore putting no restriction on the value of tp.
To find the minimal value of M2 for which (9) is correct, consider an arbitrary OD-pair p ∈ P.
It was shown in Section 2 that only arrival events that arrive within np periods after the planned
arrival of the passengers should be connected to the destination event (p,destination), where np is
the number of transfers for these passengers if the timetable is operated as planned. The maximal
delay for the OD-pair p is therefore equal to npT +maxe de. Assuming that no passenger has more
than two transfers, it follows that M2 = 2T + maxe∈E de is large enough. Indeed, as

xe − M2 ≤ πe + max
e∈E

de − M2 ≤ SPp + 2T + max
e∈E

de − M2 = SPp,

where SPp is the planned arrival time, tp ≥ xe − M2 does not pose a restriction.
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We remark that the variables za are not needed in the above model, since constraints (4) and (5)
can be replaced by the constraint

xe ≥ xe′ + La − M(1 − qap) ∀a = (e′, e) ∈ Achange∀p ∈ P

leading to an equivalent model. Nevertheless, we have chosen to leave these variables in the model
to show the similarity with earlier models. Furthermore, the variables za could be used to guide
the solution process.

3.3 Some preliminary numerical results

We have implemented the integer program for a small part of the railway network in the Nether-
lands. This small sample consists of 10 stations in the center of the Netherlands, including the
stations in Figure 1. The timetable and the passenger figures are obtained from Netherlands Rail-
ways. We consider 184 trips and 141 OD-pairs during a planning period of 5 hours in the evening.
The sample under consideration contains many OD-pairs for which different routes are possible,
especially near Amsterdam.
The resulting event-activity network contains 502 nodes and 1475 arcs. The number of changing
activities is equal to 542. The integer program was solved using CPlex 10.1 on an Intel Core
2 Duo PC (2.33 GHz) with 3 GB of memory. For randomly selected delays, the problem can be
solved to optimality within 30 seconds. If only the train from Zwolle to Amersfoort is delayed, as
in our motivating example in Section 1, we indeed see that passengers are re-routed via Utrecht. It
should be noted that in all our tests, the optimal solution is found in less than 5 seconds, although
it takes about 30 seconds to prove optimality of the solution.

4 Special Cases of Delay Management with Re-Routing

In the precedent section we gave an integer programming formulation for the general problem
(DMwRR). Now we will identify simplifications and special cases of (DMwRR) in order to under-
stand the border between still polynomial solvable and already NP-hard variants. The knowledge
about the reasons for the NP-hardness as well as polynomial approaches for special cases can later
serve to construct good heuristics for the general case.
In this section we will hence examine two special cases of (DMwRR). We first present a polynomial
algorithm for the case of delay management with re-routing where the demand is given by only one
OD-pair. Then we will consider another variant in which the costs for maintaining a connection
are fixed. Although this is a strong simplification of delay management with re-routing, it will turn
out to be NP-hard as well.

4.1 Delay management with re-routing for one single OD-pair

This subsection deals with a simplification of delay management with re-routing (DMwRR): We
assume that we are given just one OD-pair p = {u, v, suv}. To simplify the notation in the following
chapter we will identify (p−Org) and u and (p−Dest) and v, so u and v will be regarded as events
in the network. In this case the problem is solvable by a modified version of Dijkstra’s algorithm
for finding a shortest path (see [VC79]). The part of the algorithm that has to be modified is the
calculation of the node labels that in Dijkstra’s algorithm represent the shortest-path distance to
the origin and in the modified algorithm will represent the earliest possible arrival time at a node.
In order to calculate the transfer of delays efficiently we define Tr[e] as the train belonging to an
event e ∈ Edep ∪ Earr.
Let N be a network with feasible timetable π, p = {u, v, suv} an OD-pair and D a set of source
delays. Like in the original Dijkstra’s algorithm we solve in every step the problem of determining
an optimal path for a pair of events {u, i} where u = (p − Org) is the origin node of the OD-pair
p = {u, v, suv} under consideration and i ∈ E . In order to do this formally, we need the following
slight extension of (DMwRR):
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Having in mind the practical application in train re-routing we defined in Section 2 the problem
(DMwRR) for a network N and a set of OD-pairs P consisting of elements of the form p =
{u, v, suv} where u is the origin, v the destination and suv is the starting time. Now we also want
to deal with OD-pairs as elements of the type p∗ = {u, i, suv} where i ∈ E is an arbitrary successor
of u in N . From a mathematical point of view we can do this easily by just defining tAfix

(p∗) := xi

as the (artificial) arrival time of such an OD-pair p∗. We hence extend the problem (DMwRR) to
instances consisting of a network N and a set of OD-pairs P of type p∗.
Let u be the origin node of the considered OD-pair. Determining an optimal path for a pair of
events {u, i} can hence be seen as solving (DMwRR) for N and P = {{u, i, suv} : i ∈ E}. If the
problem (DMwRR) is solved for {u, i, suv} we store:

– T [i]: Minimal arrival time for passengers traveling from u to i with starting time suv.
– Afix[i]: Changing activities that have to be maintained in the optimal solution of (DMwRR)

with OD-pair {u, i, suv}.
– TD[i] = {j : (e, j) ∈ Afix[i] for some e ∈ E}: Set of (departure) events that transfer a delay to

a new train if the optimal path for OD-pair {u, i, suv} is realized.

Let PERM be the set of events for which (DMwRR) has been solved and the above values have
been determined. For every e with a direct predecessor i ∈ PERM we determine the optimal path
by first calculating the time plus the delay transferred to e if the connections that belong to the
optimal path to i are fixed:

zi[e] =

{

max{π̃e, T [j] +
∑

a∈Pje
La} if there is an event j ∈ TD[i] such that Tr[j] = Tr[e]

π̃e otherwise

where Pje is the path from j to e containing only events of the same train Tr[j] = Tr[e]. Then
the delay of e when taking a path via i is max{zi[e], T [i] + L(i,e)}. We consequently choose i so

that this expression is minimal and obtain T̃ [e] = mini∈PERM,(i,e)∈A{zi[e], T [i] + L(i,e)}. As in

Dijkstra’s algorithm we fix the event ê with smallest T̃ [e].
In order to calculate Afix[ê] and TD[ê] we distinguish two cases. Let iê be the predecessor of ê in
the solution of (DMwRR) for {u, ê, suv}.

– If â = (iê, ê) is a changing activity and T [ê] > ziê
[ê] we obtain Afix[ê] = Afix[iê]∪{(iê, ê)} and

TD[ê] = TD[iê] ∪ {ê}.
– Otherwise we simply set Afix[ê] = Afix[iê] and TD[ê] = TD[iê].

The algorithm is summarized below.

Algorithm: Modified Dijkstra for delay management with re-routing with one OD-pair

Input: Instance of (DMwRR) with network N , feasible timetable π, delays D and one OD-pair
p = {u, v, suv}.

Step 1. Generate the timetable π̃ where π̃e = max(i,e)∈Adrive∪Await
{πe, π̃i + L(i,e)} by the critical

path method.
Step 2. Set PERM = {u}, TEMP = E \ {u}, T [u] = suv, T̃ [e] = ∞ for every e ∈ TEMP ,

TD[u] = ∅, Afix[u] = ∅.
Step 3. For every e ∈ TEMP and every i ∈ PERM so that (i, e) ∈ A set

– zi[e] =

{

max{π̃e, T [j] +
∑

a∈Pje
La} if there is an event j ∈ TD[i] such that Tr[j] = Tr[e]

π̃e otherwise
where Pje is the path from j to e containing only nodes of Tr[j] = Tr[e].

– T̃ [e] = mini∈PERM,(i,e)∈A max{zi[e], T [i] + L(i,e)}.

Step 4. Set ê = argmin T̃ [e], iê = argmini∈PERM,(i,ê)∈A{T [i]+L(i,ê)}, PERM = PERM ∪{ê},

TEMP = TEMP \ {ê}, T [ê] = T̃ [ê].
Step 5. If ê = v go to Step 7.
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Step 6. If (iê, ê) ∈ Achange and T [ê] > ziê
[ê]

set Afix[ê] = Afix[iê] ∪ {(iê, ê)} and TD[ê] = {TD[iê] ∪ {ê}} \ {j ∈ Edep : Tr[j] = Tr[ê]}.
Otherwise set TD[ê] = TD[iê], Afix[ê] = Afix[iê].
Go to step 3.

Step 7. Set Afix = Afix[v]
Output: Optimal set Afix for the given instance of (DMwRR).

Theorem 2. The algorithm is correct and finds the optimal solution Afix to (DMwRR) with one
OD-pair in time O(n4) where n is the number of nodes in the network N .

Proof. (a). Using induction we see that for a directed path Pie from i to e with Tr[e] = Tr[i] that
contains only nodes of the train Tr[e] = Tr[i] where event j precedes event e

T [i] +
∑

a∈Pie

La ≤ T [j] + L(j,e).

(b). For a given set A ⊂ Achange let xA[e] for e ∈ E \ {v} denote the minimal possible arrival
times calculated by the critical path method in N (A) where xA[u] = suv. Note that for A = ∅
x∅[e] = π̃e for all e ∈ Earr ∪ Edep.

(c). For any solution Afix[e] ⊂ Achange regarding an OD-pair {u, e, suv} for an e ∈ E if we construct

Ãfix[e] from Afix[e] by removing the edges that are not on a shortest path from u to e in

N (Afix[e]) it holds that xÃfix[e][e] = xAfix[e][e]. So we will assume that in the optimal solution
to the problem of finding a shortest path from u to e only the connections on the shortest path
from u to e are maintained.

(d). For the set Afix[ê] that is constructed in the algorihm in step 6 as solution for the path between
u and ê because of (c) we get

xAfix[ê][e] = max{π̃e, max
(i,e)∈δin(e)∩(Adrive∪Await∪Afix)

{xAfix[ê][i] + L(i,e)}}

for all e ∈ Earr ∪ Edep.
(e). Adding changing activities to a set A1 does not influence the time for events e that happen

before the added activities take place. That means for two sets A1 ⊂ A2 ⊂ Achange if for all
a = (e1, e2) ∈ A2 \ A1 xA2(e1) ≥ xA2(e), it holds that xA1 [e] = xA2 [e].

(f). Furthermore we observe that if for a set Afix[ê] for all i such that (i, e) ∈ Afix ∪Adrive ∪Await

TD[i] ∩ Tr[e] = ∅, it holds that xAfix[ê][e] = π̃e.

First we will show inductively that for every node e with an incoming arc (f, e) it holds that

max{zf [e], T [f ] + L(f,e)} = xAfix[f ]∪{(f,e)}[e] (14)

if (f, e) is a changing arc and

max{zf [e], T [f ] + L(f,e)} = xAfix[f ][e] (15)

otherwise.

1. First we regard the edges (u, e) ∈ Aorg. As Afix[u] = ∅ and suv ≤ π̃e because of (b) it holds
that

max{zu[e], T [u] + L(u,e)} = max{π̃e, suv + 0} = π̃e = xAfix[u][e].

2. Let e be a node such that its predecessor f in Puv lies on the same train T [f ] = T [e]. As in
N (Afix[f ]) it holds that δin[e] = {(f, e)} (see (c)) and because of (a):

max{zf [e], T [f ] + L(f,e)} =max{π̃e, T [f ] + L(f,e)}

=max{π̃e, x
Afix[f ][f ] + L(f,e)}

=xAfix[f ][e].
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3. Let e be a node such that its predecessor f in Puv does not lie on the same train, T [f ] 6= T [e].
Then (f, e) ∈ Achange.
– Suppose that there is no waiting arc terminating in e. Then because of (c) and (e):

max{zf [e], T [f ] + L(f,e)} =max{π̃e, T [f ] + L(f,e)}

=max{π̃e, x
Afix[f ][f ] + L(f,e)}

=max{π̃e, x
Afix[f ]∪{(f,e)}[f ] + L(f,e)}

=xAfix[f ]∪{(f,e)}[e].

– Suppose that there is a waiting arc (ew, e) terminating in e and that Tr[e] ∪ TD[f ] = ∅.
Thus π̃ew

= xAfix[f ][ew] because of (f) and considering (e) it follows

max{zf [e], T [f ] + L(f,e)} = max{π̃e, T [f ] + L(f,e)}

= max{π̃e, T [f ] + L(f,e), π̃ew
+ L(ew,e)}

= max{π̃e, x
Afix[f ][f ] + L(f,e), x

Afix[f ][ew] + L(ew,e)}

= max{π̃e, x
Afix[f ]∪{(f,e)}[f ] + L(f,e), x

Afix[f ]∪{(f,e)}[ew] + L(ew,e)}

=xAfix[f ]∪{(f,e)}[e].

– Suppose that there is (ew, e) ∈ Await and Tr[e] ∪ TD[f ] = {ed}. Let P̃ede be the path on
Tr[ed] = Tr[ew] = Tr[e] from ed to e and P̃edew

be the path on Tr[ed] = Tr[ew] = Tr[e]
from ed to ew. We see inductively that xAfix[f ][ew] = max{π̃ew

, xAfix[f ][ed]+
∑

a∈P̃edew
La}.

Together with (e) follows:

max{zf [e], T [f ] + L(f,e)}

=max{π̃e, T [ed] +
∑

a∈P̃ede

La, T [f ] + L(f,e)}

=max{π̃e, π̃ew
+ L(ew,e), T [ed] +

∑

a∈P̃edew

La + L(ew,e), T [f ] + L(f,e)}

=max{π̃e, (max{π̃ew
, T [ed] +

∑

a∈P̃edew

La} + L(ew,e)), T [f ] + L(f,e)}

=max{π̃e, (max{π̃ew
, xAfix[f ][ed] +

∑

a∈P̃edew

La} + L(ew,e)), x
Afix[f ][f ] + L(f,e)}

=max{π̃e, x
Afix[f ][ew] + L(ew,e), x

Afix[f ][f ] + L(f,e)}

=max{π̃e, x
Afix[f ]∪{(f,e)}[ew] + L(ew,e), x

Afix[f ]∪{(f,e)}[f ] + L(f,e)}

=xAfix[f ]∪{(f,e)}[e].

Thus the assumption given by equations (14) and (15) holds.

If follows that the calculation of

T̃ [e] = min
i∈PERM,(i,e)∈A

max{zi[e], T [i] + L(i,e)}

= min
i∈PERM

{ min
(i,e)∈Achange

{xAfix[f ]∪{(f,e)}[e]}, min
(i,e)∈A\Achange

{xAfix[f ][e]}}

leads to the optimal path from u to e among the set of paths where an element i from the actual
set PERM precedes e.
It remains to show that the set Afix[ê] and the label T [ê] = xAfix[ê][ê] are optimal for the node ê

chosen in step 4 of the algorithm, that means that there is no A ⊂ Achange such that there is a
path from u to e in N (A) and

xA[ê] < xAfix[ê][ê].
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This assumption will be proven inductively, too. For the origin node u setting Afix[u] = ∅ leads to
T [u] = suv which is optimal.
Suppose that in the iterations 1 to k − 1 of the algorithm the choice of Afix[e] and the labels T [e]
are optimal for the regarded nodes e.
Now let ê be the node such that in the k-th iteration T [ê] = T̃ [ê] ≤ T̃ [e] for every e ∈ TEMP .
Suppose that there is a set A ⊂ Achange such that there is a path from u to e in N (A) and

xA[ê] < xAfix[ê][ê]. (16)

Let PA
uê be the optimal path from u to ê in N (A).

(A). If the predecessor e0 of ê in PA
uê is in PERM , because of the assumption that the labels T [e]

and chosen sets Afix[e] are optimal for all e ∈ PERM

xA[ê] =xAfix[e0]∪{(e0,ê)}[ê]

= min
i∈PERM

{ min
(i,ê)∈Achange

xAfix[f ]∪{(f,ê)}[ê], min
(i,ê)∈A\Achange

xAfix[f ][ê]}

=xAfix[ê][ê]

if (e0, ê) ∈ Achange and

xA[ê] =xAfix[e0][ê]

= min
i∈PERM

{ min
(i,ê)∈Achange

xAfix[f ]∪{(f,ê)}[ê], min
(i,ê)∈A\Achange

xAfix[f ][ê]}

=xAfix[ê][ê]

otherwise, which is a contradiction to (16).
(B). If the predecessor e0 of ê in PA

uê is in TEMP let e1 denote the last node in PERM on the path

PA
uê (e1 exists because u ∈ PERM) and e2 ∈ TEMP its successor. So as T [ê] = T̃ [ê] ≤ T̃ [e]

for e ∈ TEMP

xA[ê] > xA[e2] = max{ze1
[e2], T [e1] + L(e1,e2)} ≥ T̃ [e2] ≥ T̃ [ê] = T [ê] = xAfix[ê][ê]

which contradicts (16).

Now it remains to show that Afix[v] is the optimal solution to (DMwRR) for the OD-pair p =
{u, v, suv}. As defined in Section 2, Afix[v] is optimal if it minimizes tAfix

(p) = xAfix [e] for the
predecessor e of v on a shortest path from u to v in the network N (Afix). Suppose that the set
Afix[v] and the predecessor e calculated by the algorithm are not optimal with regard to an optimal
path from u to v. The same considerations as above in (A) and (B) lead to a contradiction. So the
set Afix[v] as it is set in step 7 of the algorithm indeed is the optimal solution to (DMwRR) for
the OD-pair p = {u, v, suv}.
The generation of the timetable in step 1 is done in time O(n2) by the procedure given in [Sch07]
as well as step 7. The initialization of the algorithm in step 2 can be done in time O(n). As in each
repetition of the steps 3-6 one element is removed from TEMP , the number of times the steps
3-6 are repeated is bounded by n − 1, the number of elements initially contained in TEMP . We
observe that for given e ∈ TEMP and i ∈ PERM with (i, e) ∈ A the calculation of zi[e] and T̃ [e]
can be done in time O(n) if for each node k ∈ Earr ∪ Edep a pointer to the (unique) successor of k

on an arc a ∈ Await ∪ Adrive is stored. So step 3 can be executed in time O(n3). As the steps 4-6
are done in time O(n) the running time of the modified Dijkstra algorithm is in O(n4).

⊓⊔

4.2 Re-routing with fixed costs

The delays that arise in delay management with re-routing for the passengers by the wait-depart
decisions for the connections can be divided into two types:
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1. A connection is maintained: The waiting train and the passengers on the waiting train are
delayed.

2. A connection is not maintained: The passengers that wanted to take this connection have to
travel along another, probably longer path.

Calculating the delay of the first type by a heuristic approach motivates the following simplified
re-routing problem with fixed costs:
Let N = {E ,A} be a directed network with edge lengths La for all a ∈ A. Let Achange ⊂ A be a
set of connections that can be maintained or removed. We assume that maintaining a connection
a ∈ Achange yields a fixed delay of da for the passengers. Let P = {{u, v}} be a set of OD-pairs,
given as a subset of E × E with demand wp for each p ∈ P. The objective of this variant is to
minimize the costs arising as fixed delays for maintaining connections plus the travel costs of the
OD-pairs. Hence, the objective function is

min
Afix⊂Achange

∑

p∈P

wp · DAfix
(u, v) +

∑

a∈Afix

da

where DAfix
(u, v) is the optimal path distance from u to v in the network in which all connections

a ∈ Achange \ Afix are removed.

Like in delay management with re-routing this problem can be solved in polynomial time if there
is only one OD-pair (by adding the fixed costs da divided by the demand of the OD-pair wp for a
connection a to its length La and applying Dijkstra’s algorithm) but even this simplified variant
is NP-hard in general.

Theorem 3. Re-routing with fixed costs is NP-hard.

Proof. Analogously to the proof of NP-hardness for (DMwRR) we can prove this theorem by
constructing an equivalent re-routing with fixed costs problem for each instance of UFL. The
network Ñ we construct here differs from the network N considered in the proof of Theorem 1 only
in the absence of the OD-pairs {ũ, ṽj} and the associated origin and destination nodes (p̃−Org) and
(p̃−Dest) and origin and destination arcs (p̃−Org, hj2−ũ−Dep) and (hj−ṽj−Arr, p̃−Dest). The
fixed costs for a ∈ Achange are given by d(g−ũ−Arr,hj−ũ−Dep) = fj and d(hj−ṽj−Arr,kij−ṽj−Dep) = 0.
Similar to the proof of Theorem 1 we observe that we can assume the connections (hj − ṽj −
Arr, kij − ṽj −Dep) to be maintained because their fixed costs are 0. Like in that proof for a given
set of facilities Q we define

AQ
fix := {(g− ũ−Arr, hj − ũ−Dep) : j ∈ Q, i ∈ I}∪{(hj − ṽj −Arr, kij − ṽj −Dep) : j ∈ J, i ∈ I}.

and for a given subset Afix ⊃ {(hj − ṽj − Arr, kij − ṽj − Dep) : j ∈ J, i ∈ I} we set

QAfix = {j ∈ J : (g − ũ − Arr, hj − ũ − Dep) ∈ Afix}. (17)

Now a subset Q ⊂ J and the associated subset Afix are both feasible or infeasible and the difference
between their objective values is 5 · |I| as can be seen analogously to the proof of Theorem 1.

⊓⊔

5 Conclusion and Further Research

In this paper, we introduced a model that allows to react to delayed trains not only by wait-depart
decisions for the following trains but also by re-routing of passengers. For this purpose we intro-
duced the origin and destination of the passengers as events in the event-activity network used
in delay management and connected the wait-depart decisions to a shortest path problem in the
resulting network. We proved that this problem is NP-hard. Furthermore, we developed an integer
programming formulation for the delay management problem with re-routing.
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Two main directions for further research on delay management with re-routing can be distin-
guished. First, special cases of the problem should be considered. For these special cases, faster
solution procedures can be developed. For example, if the event-activity network has a special
structure, this structure can be exploited to solve the delay management problem more efficiently.
The methods to solve these easier problems can be used in the second direction of research:
solving the delay management problem. In the paper we have reported some initial computational
results on a small instance of the Dutch railway network. However, more experiments are required.
In practice, the delay management problem should be solved on a very short notice. Therefore,
heuristics should be developed that find a reasonable solution within a short computation time.
To evaluate the quality of the solutions found by the heuristics, it is also interesting to investigate
exact solution methods. Decomposing the problem in the wait-depart decisions on one hand and
the re-routing of the passengers on the other hand could improve the running times of the exact
solution methods.
In practice, the limited capacity of the infrastructure has a large impact on the real-time perfor-
mance of a railway operator. Therefore, the capacity constraints should be integrated in the delay
management models. Considering other routing or network location problems under the aspect of
demand given as OD-pairs may also lead to interesting problems.
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Abstract. In this paper we suggest a new approach to timetable information
by introducing the “edge-converted graph” of a timetable. Using this model we
present simple algorithms that solve the earliest arrival problem (EAP) and the
minimum number of transfers problem (MNTP). For constant-degree graphs
this yields linear-time algorithms for EAP and MNTP which improves upon
the known Dijkstra-based approaches. We also test the performance of our
algorithms against the classical algorithms for EAP and MNTP in the time-
expanded model.

Key words: timetable infomation, earliest arrival problem, minimum number
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1 Introduction

Algorithms for timetable information play an important role in public trans-
portation systems and related applications [8]. A number of important algorith-
mic problems connecting to timetable information is studied in the literature.
One of the most basic of these is the earliest arrival problem (EAP) asking for
a route between two stations s and t that assures the earliest possible arrival
at t and obeys the specified departure time at s.

While the systems used in practice typically employ heuristics to solve these
problems (cf. [8]), there is also a number of exact methods. The two most
common approaches are the time-expanded and the time-dependent approach
which transform the initial network into a weighted digraph such that classical
algorithms for path search such as Dijkstra become applicable [1, 9, 11,12].

In this paper we propose a novel approach to timetable information which
we call the edge-converted approach. Similarly as in the time-expanded and
time-dependent model, we also convert the initial network into a digraph, but
such that elementary connections are represented as nodes. Thus, in some sense,
the role of edges and nodes is switched in our model. Based on this model we
present two algorithms that solve the earliest arrival problem as well as the min-
imum number of transfers problem (MNTP). Both algorithms are conceptually
simple as they are variants of depth-first and breadth-first search, respectively.
Moreover, these algorithms are very efficient—they only use linear time in the
size of their input, i.e., in terms of the size of the edge-converted network.

To compare the performance of these algorithms to the Dijkstra-based ap-
proaches in the time-expanded model [12], we need to compare the sizes of the
time-expanded and edge-converted graphs. It turns out, that our model has the
advantage to introduce less nodes but uses far more edges (up to O(n3) in the

J. Clausen, G. Di Stefano (Eds): ATMOS 2009 
9th Workshop on Algorithmic Approaches for Transportation Modeling, 
Optimization, and Systems  
http://drops.dagstuhl.de/opus/volltexte/2009/2147



general case). However, we argue that for practical networks only a linear num-
ber of edges is needed which leads to linear-time algorithms for EAP and MNTP.
In particular, for the class of constant-degree graphs our approach yields linear-
time algorithms for EAP and MNTP where the running time is measured in
the size of the initial network. This improves upon the known Dijkstra-based
solutions which consume O(n log n) running time. We also implemented our al-
gorithms and performed an experimental study which confirms our theoretical
results.

This paper is organized as follows. In Sect. 2 we review basic definitions
from timetable information including the definition of EAP and MNTP. Sec-
tion 3 discusses the two main approaches towards these problems. In Sect. 4
we introduce our new model and compare it to the time-expanded approach.
The following Sect. 5 contains our algorithmic solutions for EAP and MNTP
which are then tested experimentally in Sect. 6. Finally, Sect. 7 concludes with
a discussion of our results and directions for future research.

2 Itinerary Problems

A timetable is a network composed of nodes (station, bus stops, etc.) and some
elementary connections between them. Each elementary connection is a train (or
bus, etc.) which starts and arrives at certain nodes and has a certain departure
and arrival time. So it can be interpreted as a 4-tuple e = (s, t, d, a), where s
and t are nodes, d is the departure time at s and a is the arrival time at t. We
will also call s and t the source node and the target node of e, respectively. A
transfer between two connections e1 = (s1, t1, d1, a1) and e2 = (s2, t2, d2, a2) is
possible if t1 = s2 and a1 ≤ d2. A route or an itinerary between two nodes s
and t is a sequence of elementary connections (e1, . . . , en), where s is the source
node of e1, t is the target node of en, and a transfer between each ei and ei+1

is possible.
The time values are elements of a totally ordered set T with a defined

addition operation. As a rule, T consists of integer numbers between 0 and 1439
and represents the time in minutes after midnight. The time may denote one
or several successive days which can be integrated into one model by counting
the time modulo 1440 and keeping track of the days [5]. In this paper, however,
only one day is used as a time horizon.

A number of important problems on timetable information is described in
[2, 4, 6, 8, 10, 11]. The earliest arrival problem (EAP) is the most basic and
fundamental of them. Instances of EAP are 3-tuples (s, t, d), where s is a source
node, t is a target node, and d is the earliest departure time at s. The task
consists in finding a route from s to t which departs from s not earlier than the
given earliest departure time and minimizes the difference between the arrival
time at t and the earliest given departure time. EAP has a realistic and a
simplified version. The realistic version considers the minimum transfer time at
a station. The transfer time in the simplified version is assumed to be 0. In this
paper we will only consider the simplified version of EAP.

Another problem in timetable information is the minimum number of trans-
fers problem (MNTP). In this case, a query consists of a departure station s
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and an arrival station t only. The task is to find an itinerary that minimizes the
number of train transfers.

3 Related Work

The existing algorithms for path searches on static networks are not suitable
for timetables, since the edges are available only temporarily within a given
time window. The most common approaches for solving EAP and MNTP are
based on time-expanded [11, 12] and time-dependent [1, 9] models. The defini-
tion and detailed analysis of both algorithms are described in [10]. The idea
of time-expanded and time-dependent models is to transform or to extend the
initial graph in such a way that the known algorithms for static graphs may
be applied. Pyrga, Schulz, Wagner, and Zaroliagis [11] showed in an experi-
mental comparison of the time-expanded and time-depended models that the
time-dependent approach can be faster than the time-expanded up to factor 40.
However, it is not considerably faster in the case of realistic models and has
some drawbacks touching the extensions towards realistic models [10], for in-
stance when modelling minimum transfer times at stations. Therefore, only the
time-expanded model applied to EAP and MNTP will be considered and then
compared to our approach. A comparison with the time-dependent approach is
planned to be done in future research.

3.1 The Time-Expanded Model

The time-expanded model is based on the following transformation. Each ele-
mentary connection e = (s, t, d, a) induces a copy of the source node s tagged
with the departure time stamp d and a copy of the target node t tagged respec-
tively with the arrival time stamp a. Thus, the initial connections become the
connections between a pair of copies according to their time stamps.

Next, for each station s of the initial network all its copies will be captured
and ordered ascending their time stamps. Let v1, . . . , vk be the copies of s in that
order. Then, there is a set of stay-edges (vi, vi+1), i = 1, . . . , k − 1, connecting
the two subsequent copies within a station and representing waiting time at that
station between two time events. Thus, given a graph (S,E), where S is a set of
stations and E is a set of edges or elementary connections, the time-expanded
model will include as many as 2∣E∣ − ∣S∣ stay-edges.

The example in Fig. 1 illustrates the transformation of an initial network
to the time-expanded model. The timetable consists of five stations and seven
elementary connections between these stations. The time stamps at the edges
represent the departure and arrival time of the given connection.

Observation 1 The route between two nodes consists not only of the elemen-
tary connections, but also of some stay-edge connections. It can also happen
that there are many stay-edges belonging to only one station. For example, the
dashed line in Fig. 1 shows, that the route between stations 1 and 5 includes
two stay-edges at station 3. Hence the number of the edges on a route depends
on the number of the transfers and on the number of initial events as a whole.
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Fig. 1. An initial network and the transformed time-expanded network

The number of nodes in the time-expanded model is equal to the double
number of elementary connections of the initial graph, since each connection
produces a copy of its source and its target nodes. The number of edges in the
time-expanded model includes the elementary connections and the stay-edge
connections (cf. Table 1).

Table 1. The size of the time-expanded graph

Initial graph (S,E) Time-expanded graph

Number of nodes ∣S∣ 2∣E∣
Number of edges ∣E∣ ≤ 3∣E∣ − ∣S∣ ≤ 3∣E∣

3.2 EAP with the Time-Expanded Model

The original approach for solving the shortest-path problem is the Dijkstra
algorithm [3]. Every edge in the time-expanded model has departure and arrival
time stamps. The time difference between these time stamps can be attached
as the weight to the given edge. Starting at the first copy of the source node,
but, not earlier than allowed by the earliest departure time, we find a shortest
path by reaching any copy of the target node [11]. Given a network G = (S,E),
the complexity of the Dijkstra algorithm is O(∣E∣+ ∣S∣ log ∣S∣). According to
Table 1, for the timetable with ∣S∣ stations and ∣E∣ elementary connections,
the run-time of the Dijkstra algorithm applied on the time-expanded model
is equal to c(3∣E∣ − ∣S∣ + 2∣E∣ log 2∣E∣), where c is a constant stemming from
the Dijkstra algorithm.
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3.3 MNTP with the Time-Expanded Model

The Dijkstra algorithm can be also used for solving MNTP with the time-
expanded model. The edges between copies of different stations are assigned
a weight of 1, and stay-edges are assigned a weight of 0. Starting at the first
possible copy of a source station, the shortest path to a copy of a target station
yields a solution of MNTP. The complexity of MNTP with the time-expanded
model coincides with the complexity of EAP, since it uses the same algorithm.

We remark that the above described applications of the time-expanded
model refer to the earliest ideas of the time-expanded approach. Recently, many
speed-up techniques for EAP and MNTP have been developed. The extensions
and improvements of the time-expanded approach and shortest-path algorithms
are described in [2,5,7,11,12]. In this paper our approach for solving EAP and
MNTP is only compared to the original formulations of the time-expanded
model and the shortest-path algorithms. The comparison to the newest im-
provements of the time-expanded and time-dependent model should be made
in future research.

4 Our Approach: The Edge-Converted Model

In this section we will describe a new model for timetable information. Similar to
the time-expanded approach, we use a transformation of the initial network to
obtain a static structure supporting well known algorithms, such as Dijkstra
or breadth-first search. The core idea of our approach is to convert the initial
elementary connections to nodes. Therefore we call it edge-converted approach.
The whole transformation routine is listed below:

Step 1. At first we take all the stations of the initial network as new nodes.
We call these nodes type A nodes.

Step 2. Then for every elementary connection e = (s, t, d, a), a new node
that gets all four parameters of the edge e will be created. We call these nodes
type B nodes (see Fig. 2).

Step 3. Now we connect type A nodes to type B nodes according to the
next two rules.

a) There is an outgoing edge from a type A node u to a type B node v =
(s, t, a, d) if u = s.

b) There is an outgoing edge from a type B node v = (s, t, a, d) to a type A
node u if t = u (see Fig. 2).

Step 4. Next, we add several edges connecting type B nodes with each other.
There are four conditions for the existence of an edge between two type B nodes
u = (su, tu, du, au) and v = (sv, tv, dv, av):

a) tu = sv
b) au ≤ dv
c) For all type B nodes w = (sw, tw, dw, aw), if sw = su, tw = tu, and aw ≤ dv,

then du ≥ dw.
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Fig. 2. Generation of nodes in the edge-converted model (left) and the complete edge-
converted graph for the initial network from Fig. 1 (right)

d) For all type B nodes w = (sw, tw, dw, aw), if sw = sv, tw = tv, and au ≤ dw,
then aw ≥ au.

The complete edge-converted graph from the example in Fig. 1 is depicted
in Fig. 2.

A route between two nodes (independent of their type) is defined as a usual
path in the edge-converted graph. We start with some initial observations on
the edge-converted graph.

Observation 2

1. The connections between two type B nodes represent a transfer possibility
between two elementary connections in the initial timetable.

2. If there exists a route between two type A nodes u and v, then there exists a
route which only contains type B nodes as intermediate nodes, i.e., the only
type A nodes are the source u and the target v. Thus, the length of a route is
not dependent on the network size, but only on the number of the necessary
transfers (compare with Observation 1).

3. The edge-converted graph has no cycles consisting only of type B nodes.

We will use these observations in the applications below where we search
some path between two type A nodes only via type B nodes.

Now we want to estimate the size of the new edge-converted model. Each
node has been induced either by an initial station (type A) or by an initial
elementary connection (type B). So the number of new nodes can be calculated
as the sum of the initial nodes and edges. The number of new edges cannot be
provided in an explicit form and does not only depend on the number of the
initial edges or nodes but also on the connections’ time stamps. Rules c) and d)
from Step 4 in our construction filter out the “bad” transfer possibilities from
the set of all possible transfers. The remaining edges between type B nodes
represent the “good” transfer possibilities. Thus, the total number of edges in
the edge-converted graph equals 2 ⋅#initial edges + #good transfers.

6



Let us calculate an estimate for this number. Given a timetable with n
stations, each station can be connected at most to n− 1 stations in the original
network. If we assume that there are at most k elementary connections between
each pair of the initial stations, then, in the worst case, the edge-converted
model contains O(kn3) edges connecting type B nodes with each other.

This, however, does not happen in realistic networks. Towards a better anal-
ysis, let us assume that the original network is of constant degree of at most d,
i.e., every station has at most d ingoing and d outgoing connections to other
stations. In this case we get ≤ d2n edges for connecting type B nodes and ≤ 2dn
edges for connecting type A nodes to the type B nodes. Thus, the total size of
the edge-converted graph is linear in the size of the original network. This is
depicted in Table 2. As the table shows, regarding realistic networks, our model
contains fewer nodes, but more edges than in the time-expanded model.

Table 2. A comparison of the size of the time-expanded and edge-converted models

Initial graph Time-expanded model Edge-converted model

Very dense networks
#stations = n ≤ 2kn2 ≤ n + kn2

#elementary connections ≤ kn2 ≤ 3kn2 − n ≤ kn3 + 2kn2

Constant-degree networks
#stations = n ≤ 2dn ≤ (d + 1)n
#elementary connections ≤ dn ≤ (3d− 1)n ≤ (d2 + 2d)n

A possible drawback of our construction is that, unlike in the time-expanded
approach, we can only incorporate a fixed time horizon into the edge-converted
model. Thus for practical purposes, one has to define a fixed maximal travel
time and adjust the time horizon accordingly to one or several days.

5 EAP and MNTP with the Edge-Converted Model

The common approach to solve EAP or MNTP in the time-expanded approach
is to use the Dijkstra algorithm which consumes more than linear running
time. For the edge-converted model we will describe below two algorithms for
EAP and MNTP with only linear run-time. Moreover, our algorithms have the
advantage of great simplicity as they implement variants of depth-first search
and breadth-first search, respectively.

Our algorithms include a pre-processing step that has to be done only once.
Let (s, t, d) be an EAP query. We need to find a route connecting the stations
s and t, starting not earlier than at the given time d and providing the earliest
arrival time at t. The main idea of our algorithm below is to use a usual depth-
first search but starting from the target node t and moving backwards to the
source s. This algorithm solves the EAP if we execute the next pre-processing
routine on the edge-converted model:

1. First we delete all the edges constructed in step 3.a) in the section above.
They are redundant for solving the EAP using the next algorithm.
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2. Next, given some node v of type A or type B in an edge-converted graph,
it has a set of ingoing edges {e1, . . . , ek}. Every edge ei = (ui, v) in this list
has a start node ui of type B, because there are no edges starting in type A
nodes according to the previous step. We sort the set of ingoing edges for
each node v in descending order by the arrival time stamps of their start
nodes ui.

5.1 EAP with the Edge-Converted Model

Algorithm 1 implements an inverse depth-first search on an edge-converted net-
work constructed and pre-processed according to the above rules. The algorithm
uses a stack S supporting the operations push(S, u) and pop(S, u) which push
and pop a node u from the top of S. During the computation the algorithm
maintains an array route[u] which for each type B node u points towards a
subsequent connection. At the end, the fastest route from s to t can be read off
by following the pointers in the array, starting with route[s].

Algorithm 1 EAP in the edge-converted model
Require: an EAP query (G, s, t, d0)

where G = (V,E) is an edge-converted network, s, t ∈ V are the start and target node,
and d0 is the earliest departure time

1: for all v ∈ V do
2: route[v]← nil
3: visited[v]← false
4: end for
5: push(S, t)
6: while S is not empty do
7: u← pop(S)
8: visited[u]← true
9: if u is a type A node then {this only happens if u = t}

10: su ← u
11: else
12: u = (su, tu, du, au) is a type B node
13: end if
14: if su = s then
15: route[s]← u
16: return route
17: end if
18: for all edges e = (v, u) (in descending order according to the arrival time a of v) do
19: v = (sv, tv, dv, av) is a type B node
20: if visited[v] = false and dv ≥ d0 then
21: route[v]← u
22: push(S, v)
23: end if
24: end for
25: end while
26: return there is no connection between s and t starting after time d0

We state the correctness of the algorithm in the following theorem.

Theorem 3. Algorithm 1 solves the EAP in the edge-converted model in linear
time.
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Proof. Let G be an edge-converted network and let (s, t, d0) be an EAP query.
Let u1, . . . , uk be the set of predecessors of t, ordered according to the arrival
time stamps of the type B nodes ui (in ascending order). Each node ui is the
root of a depth-first search tree Ti consisting of all nodes which are visited from
ui in Algorithm 1. If the EAP instance (s, t, d0) has a solution, then there exists
a type B node vs = (s, v, d, a) such that d ≥ d0 and vs is contained in one of
the trees Ti for some 1 ≤ i ≤ k.

We prove the correctness of Algorithm 1 by induction on the number i. First
note that if s is reached in line 14, then

(vs = route[s], route[route[s]], . . . , ui, t)

describes the unique path from vs to t in Ti. In the base case i = 1, we have
vs ∈ T1. But then we have found a route from s to t which arrives at t by the
earliest possible connection in the network, and hence this route is optimal.

Let now vs ∈ Ti with i ≥ 2. Aiming towards a contradiction, we assume that
Algorithm 1 returns the route via the connections (vs, . . . , ui), but this is not
the optimal solution. This means that there exists some node v′s = (s, v′, d′, a′)
such that d′ ≥ d0 and there exists a route (s, v′s, . . . , uj , t) which leads to an
earlier arrival at t. As the connections u1, . . . , uk have been ordered according
to their arrival times, we have j < i. But then v′s ∈ Tj and Algorithm 1 would
have returned the route (s, v′s, . . . , uj , t) by the induction hypothesis.

Therefore, Algorithm 1 is correct. It runs in linear time, because every type B
node is visited at most once. ⊓⊔

In Theorem 3 the time is measured in terms of the input, i.e., in terms of
the edge-converted network. As the size of the edge-converted graph is linear
for constant-degree graphs (cf. Table 2), we immediately get:

Corollary 4. For constant-degree graphs, Algorithm 1 solves the EAP in linear
time measured in the size of the initial network.

In comparison, using Dijkstra on constant-degree graphs only yields algo-
rithms with running time O(n log n). In real networks, each station only has a
limited number of connections per time interval. Therefore, real networks will
usually be close to regular graphs.

5.2 MNTP with the Edge-Converted Model

To solve MNTP with the edge-converted model we can use breadth-first search
(see Algorithm 2). Starting at the source node s, we find the minimum number
of transfers route by reaching the target node t. Instead of a stack, Algorithm 2
uses a queue Q. The correctness of the algorithm can be shown by induction
on the number of transfers in the optimal route from s to t. Thus we get:

Theorem 5. Algorithm 2 solves the MNTP in the edge-converted model in
linear time.

Again, for regular networks we obtain a linear-time bound in terms of the
original network:

Corollary 6. For constant-degree graphs, Algorithm 2 solves the MNTP in
linear time measured in the size of the initial network.
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Algorithm 2 MNTP in the edge-converted model
Require: an MNTP query (G, s, t)

where G = (V,E) is an edge-converted network and s, t ∈ V are the start and target node
1: for all v ∈ V do
2: route[v]← nil
3: visited[v]← false
4: end for
5: if s = t then
6: return route
7: end if
8: enqueue(Q, s)
9: while Q is not empty do

10: u← dequeue(Q)
11: visited[u]← true
12: for all edges e = (u, v) do
13: if visited[v] = false and v = (sv, tv, d, a) is a type B node then
14: route[v]← u
15: if tv = t then
16: route[t]← v
17: return route
18: end if
19: enqueue(Q, v)
20: end if
21: end for
22: end while
23: return there is no connection between s and t

6 Experiments

To test the performance of the algorithms for EAP and MNTP in our model we
implemented the time-expanded and edge-converted model. To solve EAP and
MNTP in the time-expanded model we used Dijkstra with a priority queue,
yielding time complexity O(n log n). These algorithms were tested against Al-
gorithms 1 and 2 in the edge-converted model on randomly generated data.

The experiments were run on a PC with an Intel Core2Duo processor at
1.6 GHz and 2 GB RAM running Windows Vista. The algorithms were imple-
mented in C++ compiled with a VC8 compiler on the maximum optimization
level. We used the Boost Graph Library [14] for all the graph, node, edge, and
iterator classes.

6.1 Test Data Generation

We use a rectangle area to distribute a set of stations. The stations are randomly
chosen in the area by assigning some x and y coordinates. Each station u gets
some priority p(u) in the interval [0, 1]. The priorities are uniformly distributed
among all nodes. The distance d(u, v) between two stations u and v is defined
as the Euclidean distance between u and v in the plane.

For each pair of stations (u, v) we introduce elementary connections between

u and v if p(u)⋅p(v)
d(u,v) is greater than some chosen threshold. We choose the number

of these elementary connections proportional to 1
d(u,v) . The time horizon is

defined as [0, 1439]. For an elementary connection between u and v, we define
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the travel time proportional to d(u, v). The departure time at u is uniformly
distributed over the time horizon taking into account that the arrival time must
also fall within the time horizon.

6.2 Performance Analysis

We ran experiments with 20, 30, 40, 50, 60, and 70 stations. As the pre-
processing time increases rapidly with the number of nodes, we could not per-
form experiments with many stations, for lack of hardware. For each experiment
we generated the test data and counted the number of nodes and elementary
connections in the initial network as well as in the time-expanded and edge-
converted models. Then we solved EAP and MNTP by both approaches and
measured the time. The results are shown in Table 3.

Table 3. Experimental comparison of EAP and MNTP in the time-expanded model (using
Dijkstra with priority queue) and in the edge-converted model (Algorithms 1 and 2)

Initial graph Time-expanded model Edge-converted model

EAP MNTP EAP MNTP
#nodes #edges #nodes #edges

in sec. in sec.
#nodes #edges

in sec. in sec.

20 1048 2019 7020 11 15 1068 11434 4 34

30 2854 5336 18743 20 28 2884 52763 9 140

40 4141 7676 27016 48 64 4186 89643 15 213

50 7332 13035 46241 126 162 7382 221402 27 250

60 9140 16179 57438 143 180 9200 295835 36 321

70 10296 18108 64346 325 421 10366 351010 67 325

The results clearly show that Algorithm 1 solves EAP considerably faster
than using Dijkstra in the time-expanded model, wheras for MNTP we ob-
tain similar running times. Comparing the size of the two models it is apparent
that the edge-converted approach reduces the number of nodes by a factor of
2 whereas the number of edges drastically increases. Instead of using an ex-
plicit stack, we implemented Algorithm 1 recursively which explains the better
running time in comparison to Algorithm 2 which uses a queue.

7 Conclusion and Future Work

Our theoretical results as well as our practical evaluations show that using
the edge-converted model might be an interesting alternative to the known al-
gorithmic techniques for timetable information. This is mainly due to the very
easy algorithms based on depth-first and breadth-first search. Particularly Algo-
rithm 1 for EAP allows for a very simple and efficient recursive implementation.

However, our results here only provide a first basic study of this model
and further investigation seems to be necessary. In particular, we would like
to compare the edge-converted model with more sophisticated versions of the
time-expanded approach which use a range of speed-up techniques for Dijkstra
[12, 13, 15, 16]. An interesting question for further research is whether similar
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speed-up techniques are applicable in the edge-converted model. It also appears
interesting to compare our model with the time-dependent approach (cf. [11]
for an extensive comparison of the time-dependent and time-expanded models).
Finally, in future work we would like to test the edge-converted model on larger
and preferably real networks.
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7. E. Köhler, R. H. Möhring, and H. Schilling. Acceleration of shortest path and constrained
shortest path computation. In Proc. 4th International Workshop on Experimental and
Efficient Algorithms (WEA), pages 126–138, 2005.

8. M. Müller-Hannemann, F. Schulz, D. Wagner, and C. D. Zaroliagis. Timetable infor-
mation: Models and algorithms. In Proc. 4th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS), pages 67–90, 2004.

9. A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in networks with
time-dependent edge-length. Journal of the ACM, 37(3):607–625, 1990.

10. E. Pyrga, F. Schulz, D. Wagner, and C. D. Zaroliagis. Experimental comparison of shortest
path approaches for timetable information. In Proc. 6th Workshop on Algorithm Engi-
neering and Experiments and 1st Workshop on Analytic Algorithmics and Combinatorics
(ALENEX/ANALC), pages 88–99, 2004.

11. E. Pyrga, F. Schulz, D. Wagner, and C. D. Zaroliagis. Efficient models for timetable
information in public transportation systems. ACM Journal of Experimental Algorithmics,
12:1–39, 2008.

12. F. Schulz, D. Wagner, and K. Weihe. Dijkstra’s algorithm on-line: An empirical case
study from public railroad transport. ACM Journal of Experimental Algorithmics, 5:12,
2000.

13. F. Schulz, D. Wagner, and C. D. Zaroliagis. Using multi-level graphs for timetable infor-
mation in railway systems. In 4th International Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 43–59, 2002.

14. The Boost Graph Library. Available from http://www.boost.org.
15. D. Wagner and T. Willhalm. Speed-up techniques for shortest-path computations. In

Proc. 24th Symposium on Theoretical Aspects of Computer Science, pages 23–36, 2007.
16. D. Wagner, T. Willhalm, and C. D. Zaroliagis. Geometric containers for efficient shortest-

path computation. ACM Journal of Experimental Algorithmics, 10:1–30, 2006.

12



Efficient Route Planning in Flight Networks?

Daniel Delling1, Thomas Pajor1, Dorothea Wagner1, and Christos Zaroliagis2,3

1 Department of Computer Science, Universität Karlsruhe (TH), P.O. Box 6980,
76128 Karlsruhe, Germany.

{delling,pajor,wagner}@informatik.uni-karlsruhe.de
2 R.A. Computer Technology Institute, N. Kazantzaki Str., Patras University

Campus, 26504 Patras, Greece
3 Department of Computer Engineering and Informatics, University of Patras, 26500

Patras, Greece. zaro@ceid.upatras.gr

Abstract. We present a set of three new time-dependent models with
increasing flexibility for realistic route planning in flight networks. By
these means, we obtain small graph sizes while modeling airport pro-
cedures in a realistic way. With these graphs, we are able to efficiently
compute a set of best connections with multiple criteria over a full day.
It even turns out that due to the very limited graph sizes it is feasible
to precompute full distance tables between all airports. As a result, best
connections can be retrieved in a few microseconds on real world data.

Keywords: timetable information, flight modeling, shortest paths, multi cri-
teria, table lookups

1 Introduction

Computing best connections in transportation networks is a showpiece applica-
tion of algorithm engineering. The problem can be solved by modeling a trans-
portation network as a graph where edge weights depict travel times on the
corresponding connection. In general, Dijkstra’s algorithm [11] can now solve
the problem of finding the quickest path between two nodes s and t. One cru-
cial challenge in the success of such an approach is the appropriate modeling
of the transportation network as a graph. While road networks can be modeled
in a straightforward manner (junctions are nodes, streets are edges), realistic
modeling of public transportation networks is more complex [18, 22, 9].

A practical extension of the shortest path problem is route planning in a
multi-modal context [15, 2, 1], where you switch—under certain constraints—
the type of transportation during your journey. In this work, we deal with a
subproblem of multi-modal route planning: Efficient computation of routes in
flight networks. Our work is motivated from [10], where most of the time for
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retrieving best multi-modal connections is spent in a flight network, although
the flight network makes up only a very small part of the whole (multi-modal)
transportation network.

Related Work. Timetable information in flight networks is similar to railway
networks, both inputs rely on some kind of periodic timetable. In addition, the
best connection depends on the time of departure. Efficient models for route
planning (or timetable information) in railway networks can be found in [18, 22,
9]. However, it turns out that simply using these models for flight networks yield
unnecessary big graphs. To our best knowledge, no efficient model tailored to
flight networks has been introduced yet.

In public transportation networks, we are not only interested in the best con-
nection for a given departure time: we might be willing to alter our departure
time in order to minimize the overall travel time. Such routes can be retrieved by
profile-queries, where we compute all best connections for a full time period. Such
profiles can be computed by a generalized variant of Dijkstra’s algorithm [7]
that propagates functions instead of scalars through the graph. An efficient al-
gorithm for accelerating such queries in time-dependent road networks has been
introduced in [8].

Moreover, the quickest connection is often not the best one: we also want
to reduce the number of transfers and/or the costs of a journey. A possible
approach to this is to compute a Pareto-set of routes [17, 12]. A route belongs
to the Pareto-set if no other route is better or equal in all metrics (travel time,
costs, transfers, etc.) under consideration. Pareto-routes can also be computed
by a generalization of Dijkstra’s algorithm [13, 14].

Our Contributions. In this work, we show how to plan routes in flight net-
works efficiently. Therefore, we first settle basic definitions on graphs and timeta-
bles in Section 2. Section 3 includes one of the main contributions of our work:
flexible and yet compact time-dependent models tailored to route planning in
flight networks. The key observation here is that in contrast to railway networks,
flight networks contain (almost) only direct connections between airports. Un-
like trains, planes do not stop at many airports on a route. Hence, we may use
a different model yielding very small graphs.

In Section 4, we show how to retrieve best connections in flight networks.
On the one hand, we deal with retrieving all quickest connections during the
given time period, while on the other hand, we introduce two other metrics, i.e.,
transfers and travel costs, worth optimizing. We end up in a multi-criteria setup
where the best connections form a Pareto-set. A key observation here is that
the graphs deriving from our compact model are so small that we may afford
to compute full Pareto-route distance tables between all pairs of airports in a
preprocessing step. Then, queries are reduced to table-lookups yielding query
times of a few microseconds.

In an extensive experimental study (Section 5), we show that our approach
is indeed feasible for a real-world network consisting of roughly 1 000 airports.



Our constructed graphs are small, and computation of a Pareto distance table
can be done in less than six minutes yielding a reasonable space consumption.
With these tables at hand, queries can be accelerated by 5 orders of magnitude
compared to a classic approach based on a multi-criteria Dijkstra. We conclude
our work in Section 6 by a summary and possible future research.

2 Preliminaries

A graph is a tuple G = (V,E) consisting of a finite set V of nodes and a set
E ⊆ V × V of edges which are ordered pairs (u, v) if the graph is directed. The
node u is called the tail of the edge, v the head. The reverse graph

←−
G = (V,

←−
E )

is the graph obtained from G by substituting each (u, v) ∈ E by (v, u).
Routing in public transportation networks requires an underlying timetable.

In this work we restrict ourselves to periodic timetables with a fixed time period
Π ∈ IN. Periodic timetables have been studied in the context of railway networks
extensively [18, 22]. In the following we give a brief introduction of timetables
that form the basis of our flight networks. A flight timetable is a tuple T :=
(C,A,F , ζ,Π) where C is a set of elementary connections, A a set of airports,
F a set of flights and Π the time period. Additionally, ζ : A → Z is a function
which maps each airport to the timezone it belongs to. In our data, timezones
are represented as UTC (Universal Time, Coordinated) offset from UTC+0 with
the same resolution as time points in general. An elementary connection c ∈ C is
a tuple c = (F,A1, A2, τ1, τ2) which is interpreted as flight F ∈ F departing at
airport A1 ∈ A at time τ1 and arriving at airport A2 ∈ A at time τ2. Note that
τ1 and τ2 are time points relative to the timezone of the airports A1 and A2.
The length len(c) of an elementary connection c ∈ C is then derived by stripping
off the timezone offset τ ′

i := τi − ζ(Ai) mod Π for both i = 1, 2 and computing
the length between the time points τ ′

1 and τ ′
2 with respect to the time period Π.

3 Modeling Issues

In basic, flight timetables are very similar to railway timetables as introduced
in [18, 22]. In order to obtain a graph, two approaches exist for railway timetable
information. The time-expanded approach rolls out the time-dependencies of the
timetable and yields a time-independent graph where each node represents an
event of the timetable and edges connect consecutive events. Their constant edge
weight is depicted as the time duration (e.g., the length of one specific elemen-
tary connection) of its respective events. On the other hand, the time-dependent
approach carries the time-dependencies of the timetable over to the graph. This
results in time-dependent connection-edges where edge weights correspond to
travel time functions of several trains sharing the same edge. While the for-
mer approach allows for more flexible modeling, the latter yields much smaller
graph sizes which is important in the context of multi-modal route planning
where overall graphs can become huge. For that reason, in this work we focus
on engineering the time-dependent approach for modeling flight timetables.



3.1 Applying Railway Models

Several time-dependent railway models exist for efficient and realistic railway
timetable information. The condensed model as introduced in [6] represents the
adjacencies of the underlying network. Since this model does not account for
transfer costs at stations, it has been extended to the realistic time-dependent
model in [21].

S1 S2

Z3

Z1, Z2

Fig. 1: Illustration of the time-
dependent railway model when
assuming a constant transfer
time for each station with two
stations served by two routes
(with trains Z1, Z2 and Z3, re-
spectively).

Briefly summarized, in a first step, the set
of trains (in our case the set of flights F) is di-
vided into a set of routes R. By these means,
two trains (flights F1, F2 ∈ F) are considered
equivalent if they both share the exact same se-
quence of stations (airports [A1, . . . , Ak]). The
graph is constructed by introducing a station
node for every station (airport) and a route
node for every route that runs through the
specific station (airport). Edges from station
to route nodes depict the constant transfer
time while edges from route nodes to station
nodes are modeled with zero cost. Connec-
tion edges are inserted between route nodes
of the same route and are weighted by time-
dependent travel-time functions depicting the
travel time of trains running along the specific
route. See Figure 1 for a small example.

The model can be extended further to account for variable transfer times
between trains of different routes. This is achieved by introducing edges between
each pair of route nodes r1, r2 at one station weighted by the time required to
change from a train of route r1 to a train of route r2.

Drawbacks. Using the realistic time-dependent railway model on flight timeta-
bles yields several drawbacks which eventually lead to both inaccurate modeling
regarding realism as well as unnecessarily large graphs, and thus, higher query
times.

Routes. In flight timetables all routes have length 1, since almost all flights
have no intermediate stops. In the rare case of flights serving a sequence S =
[A1, . . . , Ak] of airports, our flight timetables account for direct flights for each
pair (Ai, Aj) with i < j of airports (each possible subsequence of airports is
modeled by a direct flight). As a conclusion, all routes are of length 1.

Regarding the number of nodes per airport in the graph, for each airport
A ∈ A there is one route node per airport where at least one flight reaches
to and also one route node per airport where at least one flight arrives from.
Basically, the number of route nodes per airport can be bounded by 2 times the
number of neighbors of A. This immediately leads to another drawback.



(a) Network structure (b) Resulting graph using the railway model

Fig. 2: Illustrating the high number of nodes and edges generated by the time-dependent
railway model using a small example of two airports. Since all routes have length 1,
for each neighbor in the network structure, a dedicated route node is inserted in the
graph.

High Number of Neighbors. Whereas in railway networks the number of neigh-
bors in the station graph for each station is relatively small (less than 5 for most
of the stations [9]), airports tend to have lots more neighbors (cf. Section 5) due
to the many direct flights. Combining this observation with the previous issue,
we end up having unnecessarily many route nodes per airport. See also Figure 2
for an illustration of the high node and edge count when using route nodes for
each flight at an airport.

Procedures at Airports. Most importantly, procedures at airports differ from
procedures in train stations making the realistic railway model somewhat unre-
alistic. For example, boarding a flight at the departure airport including check-in
involves more time than switching flights which may only require us to walk from
one gate to another. Thus, at least two different types of times per airport are
desirable: Check-in time and transfer time.

Another issue that should be reflected by the model is a third type of time for
getting off at the destination airport. This Check-out time should cope for cus-
toms and baggage claim and is usually smaller than the Check-in time. While
in principle the railway model could account for that by adjusting the edge
weights of edges connecting route nodes to station nodes, incorporating a ded-
icated transfer time can only be achieved by inserting ‘transfer edges’ between
all route nodes, yielding Θ(N (A)2) many edges where N (A) depicts the num-
ber of neighbors of an airport A ∈ A. Because of the high number of neighbors
this approach is infeasible. These problems lead us to proposing a family of new
models for flight timetables with incrementing flexibility.



3.2 Tailored Models for Flight Timetables

The basis of our flight models is a flight timetable T = (C,A,F , ζ,Π). Further-
more, we introduce three different time functions to model the various procedures
in an airport as depicted above.

– Check-in time T ci : A → R+
0 .

This accounts for the whole process from arriving at the airport until the
departure of the plane composed of checking-in, passing security checks and
also the accounted waiting time at the gate plus the boarding time of the
plane.

– Check-out time T co : A → R+
0 .

This accounts for the reverse process: Leaving the plane, passing customs
while leaving the gate area and finally the time required to claim baggage.

– Transfer time T tr : A → R+
0 .

This time accounts for the time transferring between two planes. Usually,
this only involves leaving the plane, walking to another gate and boarding
the new plane.

Note that we assume that all three time functions do not depend on the specific
flights. In favor of more flexibility, this assumption is weakened in the second
and third versions of our model.

Fig. 3: Level I Model. Terminal nodes
are purple, departure nodes green and
arrival nodes yellow. Bold edges are
time-dependent and model flights be-
tween the airports while the thin time-
independent edges allow for check-in,
check-out and transfers within the air-
ports.

Level I: Constant-Time Model.
The Level I Model uses the time func-
tions exactly as defined above. For
each airport A ∈ A we insert a super
node into the graph called terminal
node. Since all flights either begin or
end at the airport, we insert two more
nodes per airport: A departure node
which resembles flight departures, and
an arrival node to model arrivals.

Edges are created in the follow-
ing way. There are three edges within
each airport. A check-in edge is in-
serted from the terminal node to the
departure node and its weight is set
to T ci(A). A check-out edge from the
arrival node to the terminal node with
weight T co(A) is inserted and finally
a transfer edge from the arrival node
to the departure node with weight
T tr(A) is created.

The actual flights are modeled as flight edges from the departure node of
airport A1 to the arrival node of airport A2 if and only if there is at least one



elementary connection from A1 to A2 in the timetable. The edge weight is time-
dependent and interpolation points are created for each elementary connection
c = (F,A1, A2, τ1, τ2) with departure time τ ′

1 and travel time len(c).
An example of the Level I Model is shown in Figure 3. While this model yields

very small graph sizes its drawback is the assumption that check-in, check-out,
and transfer times are constant for all flights. This is addressed by the Level II
Model.

Level II: Flight-Class Model. To account for more flexible check-in, check-
out, and transfers within airports, we augment the definitions of T ci, T co and
T tr to cope with different flight classes.

Similarly to the concept of routes in the realistic time-dependent railway
model, we partition the set of flights F into different flight classes. The set of
flight classes is denoted by C. The equivalence relation ∼ on the set of flights
according to which two flights are put into the same class is arbitrary. An example
might be F1 ∼ F2 ⇔ F1 and F2 are operated by the same airline alliance.

With flight classes defined, the time functions are extended as follows. The
check-in and check-out time functions are extended to T ci : A × C → R+

0 , and
T co : A×C→ R+

0 . The transfer-time function is extended to operate on pairs of
classes T tr : A×C×C→ R+

0 to account for transfers between flights of arbitrary
pairs of flight-classes.

α

α

β

β

β

α

α

β

α β βα

Fig. 4: The Level II Model with 3 airports and
2 classes α and β. The bottom airport has no
incident flights of class α, thus, the respective
nodes and (gray) edges can be omitted

The Level I Model is mod-
ified as follows. Let A ∈ A
denote an airport. We insert
k := |C| departure resp. ar-
rival nodes—one for each flight
class ci ∈ C. The departure and
arrival nodes are connected to
the terminal node by check-in
and check-out edges like in the
Level I Model. As edge weights
we use T ci(A, ci) and T co(A, ci)
for each of the classes. To incor-
porate transfers, for each pair
ci, cj of flight-classes we insert
a transfer edge from the arrival
node of class ci to the depar-
ture node of class cj weighted
with T tr(A, ci, cj). By this, we

generate O(k2) edges. Finally, the time-dependent flight edges between two air-
ports A1 and A2 are inserted with respect to the correct classes, i.e., if the flight
is of class c, the departure node belonging to c at A1 is used as tail while the
arrival node of the same class at A2 is used as head of the edge. Interpolation
points on the functions of the flight edges are created the same way as in the
Level I Model.



In order to avoid the creation of unnecessary nodes, at each airport A we
can omit the creation of departure and arrival nodes (and their incident edges)
which belong to flight classes that do not contain any outgoing resp. incoming
connections from/to the airport A. Figure 4 shows a small example consisting
of two flight classes α and β.

Level III: Variable-Time Model. This is the most flexible model, however,
some of the drawbacks worked out for railway models recur. The Level II Model
is generalized further by assuming that each flight F ∈ F belongs to a distinct
flight class. Thus, the set C of flight classes consists of singleton sets and it
holds that |C| = |F|. By these means, we are able to model individual check-in,
check-out, and transfer times for each (pair of) flight(s).

On the downside, the size of the graph becomes very large. For an airport
A ∈ A let C(A) denote the set of elementary connections either departing or
arriving at A. Then this model yields Θ(|C(A)|) nodes and Θ(|C(A)|2) edges per
airport. Since in general it holds that |C(A)| > |N (A)|, graphs generated by
this model turn out even larger than using the realistic time-dependent railway
model.

Level I and III Models as a Special-Case. We like to point out, that both the
Level I and Level III Models can be seen as special cases of the Level II Model.
In the case of |C| = 1, i.e., we only have one flight class, we obtain the Level I
Model, while in the case of |C| = |F| we obtain the Level III Model as described
above. Thus, by adjusting the number of flight classes we are able to control the
flexibility of the resulting model in a continuous way. However, for real world
scenarios a very limited number of flight classes seems sufficient (for example,
using each major flight alliance as a dedicated class, since transfers within flights
of the same airline alliance can be usually processed faster).

4 Route Planning in Flight Networks

In this section, we show how to compute best connections with the models in-
troduced in Section 3.

4.1 Quickest Connections (Earliest Arrival Problem)

In the Earliest Arrival Problem, given source and destination airports S
and T as well as a departure time τS < Π, we ask for an itinerary from S to
T arriving at T as early as possible and departing at S no earlier than τS . The
straightforward approach to compute the earliest arrival for a given departure
time is to run plain Dijkstra on any of the above proposed model. We simply
insert the terminal node of the desired departure airport S into a priority queue
and run Dijkstra’s algorithm until we settle the terminal node of the requested
arrival airport T . However, especially in flight networks, we are often interested
for all ‘optimal’ connections during a whole day (resp. time period). This can



be done by a so-called profile query [8]. Such queries determine the travel time
function between two airports for the full time period Π. This can be achieved
by a label-correcting variant of Dijkstra’s algorithm. The main difference to
plain Dijkstra is that we propagate functions instead of constants through the
network (cf. [7, 8] for details). Note that by this procedure, the algorithm loses
its label-setting property, i.e., a node may be settled more than once during one
run of the algorithm. The departure times of the optimal connections are then
exactly the local minimums of the computed travel time function between S and
T .

4.2 Multi-Criteria Connections

Up to now, we only showed how to compute quickest connections in flight net-
works. However, we might be willing to accept slightly longer routes if the costs
are less or the number of transfers is smaller. A common approach to obtain such
better routes is to compute Pareto routes. In this work, we run multi-criteria
profile searches, i.e., we obtain Pareto connections between two stations for the
full time period. Besides travel time, we use the number of transfers and costs
as additional optimization criteria.

The Pareto connections between two airports can be obtained by a gener-
alized version of Dijkstra’s algorithm, similar to as introduced in [13, 14]. At
each node u, we maintain a list of labels list(u). In our case, a label contains
a travel time function, the number of transfers, and the costs of the tentative
journey. The list at the source node s is initialized with a label Ls := (0, . . . , 0).
We insert Ls into the priority queue. Then, in each iteration, we extract the
label with the smallest lower bound of its respective travel time function. Let
u be the associated node of the label. Then for all outgoing edges (u, v) ∈ E a
temporary label Lv is generated depicting the journey to v via u. If Lv is not
dominated by any of the labels in list(v), we add Lv to list(v), add Lv to the
priority queue, and remove all labels from list(v) that are dominated by Lv.
We may stop the query as soon as the priority runs empty or all labels in the
priority queue are dominated by all labels in list(t).

Rules of Dominance. In order to be able to run the algorithm described above,
we require to compare labels. We say that one label (consisting of several com-
ponents) dominates another label if it is better with respect to at least one
component and not worse respect to the remaining components. Note that in
our case, one component of our labels is a function. A travel time function f is
better than a function g if f(x) < g(x) holds for all x < Π. For more details on
dominance, we refer the interested reader to [12].

Generating Costs. Unfortunately, real-world pricing information was not avail-
able to us. Moreover, using arbitrary flight-costs per flight in time-dependent
graphs may result in non-FIFO networks making the computation of shortest
paths NP-hard [20]. Thus, we restrict ourselves to generated constant costs per



edge. We generate pricing information as follows. For each flight edge (u, v) ∈ E
we compute priceE → R+ according to

price(e) := fee(u) + fee(v) + fuel(e) + charge(e), (1)

where fee(·) depicts an airport fee, fuel(e) costs for fuel along the edge e and
charge(e) the amount of money charged by the flight operator. The airport fee
is computed by

fee(A) :=
(
αf + βf |F(A)|

)
· ρ(A), (2)

where αA is a general base fee, F(A) the number of flights departing/arriving
at A, and βA a constant coefficient. Furthermore, we perturb the costs by 25%
by choosing ρ(A) ∈ [0.75, 1.25] uniformly at random for each airport. Fuel costs
are computed by

fuel(e) := γ ·
√

distgeo(e), (3)

where γ is a coefficient and distgeo(e) is the geodesic length of the flight edge
(we use the GRS80-ellipsoid [16] with geographic coordinates for computing
distances). Finally, charge(e) is computed by

charge(e) :=
√
αc + βc distgeo(e) · ρ(e). (4)

Again, αc is a base charge, βc a constant coefficient. However, to model more
varying charges we perturb the costs by 50% by choosing ρ(e) ∈ [0.5, 1.5] uni-
formely at random.

Our final prices are generated by instantiating αf := 15, βf := 0.1, γ := 0.2,
αc := 30, βc := 0.5 resulting in flight costs between e 60 for very short and up
to e 1500 for long distance (intercontinental) flights.

4.3 Storing Distance Tables

During our experimental studies, it turned out that the resulting graphs deriving
from our level II Model are so small, that it is feasible to do a all-pair-shortest-
path preprocessing. This even holds for multi-criteria route planning. In the
following, we shortly explain how to preprocess the distance table in a multi-
criteria scenario, in case of single-criteria, we proceed analogously.

The preprocessing can be done in a straightforward manner. We maintain
a distance table with size |A| × |A|. For each airport Ai, we run a full Pareto-
Dijkstra as described above. This results in a set of labels for each airport Aj

depicting the Pareto-connections from Ai to Aj , which we store at the corre-
sponding place in the distance table. After having performed this step for any
airport, the distance table contains the Pareto connections for any pair of air-
ports. Hence, running a query is then reduced to a table-lookup in the distance
table.



5 Experiments

We conducted our experiments on one core of an AMD Opteron 2218 running
SUSE Linux 10.3. The machine is clocked at 2.6 GHz, has 32 GB of RAM
and 2 x 1 MB of L2 cache. The program was compiled with GCC 4.2, using
optimization level 3. Our implementation is written in C++ using solely the
STL and Boost at some points. As priority queue we use a binary heap.

Inputs. Our inputs derive from (publicly available) timetables of two major
flight alliances, which we crawled from the companies webpages. The first is
of StarAlliance [24] from November 2008 containing 20 888 flights between 965
airports. The latter is of Oneworld [19] (also November 2008) and contains 8 602
flights between 621 different airports. To make use of the Level II Model, we
also use a combined timetable which contains flights of both, StarAlliance and
Oneworld. The resulting timetable contains 29 490 flights and 1 172 airports.

Table 1 reports figures of the parameters of our input data. Besides the
number of airports and flights we show the average degree on the condensed
network (nodes equal airports and an edge (u, v) is inserted, iff. there is at least
one flight going from u to v). For comparison, we also provide figures for a typical
railway timetable (Ger-Rail) consisting of all trains in Germany operated by the
Deutsche Bahn in the winter period 2000/2001. We observe that the average
degree is significantly higher in flight timetables, while the maximum degree
is even up to 5 times larger. Moreover, in Figure 5 we show a straight line
visualization of our combined timetable. Blue spots depict airports (light spots
are not served by the timetable and are only drawn for orientation). The size
of the nodes reflects the number of flights departing and arriving at the specific
airports.

Methodology. In the following, we report query performance on each of our
models regarding both profile search and multi-criteria search using travel-time,
number of transfers and pricing as criteria (cf. Section 4). We evaluate the query
performance by running 1 000 random queries, picking source and destination
airports uniformly at random. We report the number of settled nodes, relaxed
edges and the average time per query.

Table 1: Figures for our input data. We use timetables of StarAlliance and Oneworld
as well as a combined timetable of both alliances. As comparison, we also provide data
for a railway timetable consisting of all German trains operated by Deutsche Bahn.

Timetable # Airports # Flights Avg. Deg. Max. Deg.

StarAlliance 965 20 888 13.35 175 (FRA)
Oneworld 621 8 602 8.86 152 (DWF)
Combined 1 172 29 490 14.52 192 (ORD)

# Stations # Conns
Ger-Rail 6 822 554 996 5.41 37 (Leipzig Hbf)



Fig. 5: Flight network composed of timetables from StarAlliance and Oneworld.

Regarding our table-lookup algorithm, we report preprocessing effort as the
amount of additional required space in Megabytes as well as preprocessing time.
Since table-lookups do not involve settled nodes and relaxed edges, we restrict
ourselves to query time together with the speed-up compared to the default
algorithm. Moreover, we increase the number of random queries to 10 000 0000
and report the query time by measuring the whole execution time of all queries
divided by the number of queries.

5.1 Size of the Models

Table 2 reports figures on the graph parameters of the different models intro-
duced in Section 3. For each of our inputs we apply the Level I, Level II and
Level III flight models, whereas regarding the Level II Model we use each flight
alliance as a separate flight class. Moreover, for comparison, we also apply the
time-dependent railway model with constant transfer times [22]. Besides report-
ing the total number of nodes and edges of the resulting graphs, we also present
the average number of flights per edge (only taking flight edges into account).

Applying the railway model to our flight timetables yields graphs of 13 849
nodes with 32 210 edges regarding the StarAlliance timetable, 6 123 nodes with
13 755 edges regarding the Oneworld timetable, and 18 184 nodes with 42 530

Table 2: Comparison of the sizes in number of nodes, edges and flights per edge. The
latter only refers to flight edges (not intra-airport edges)

StarAlliance Oneworld Combined
Model Nodes Edges Fl/Edge Nodes Edges Fl/Edge nodes Edges Fl/Edge

Level I 2 719 8 986 2.52 1 834 4 557 2.25 3 397 11 785 2.68
Level II 2 719 8 986 2.52 1 834 4 557 2.25 4 139 14 286 2.36
Railway 13 849 32 210 1.43 6 123 13 755 1.41 18 184 42 530 1.46
Level III 42 741 3 085 752 1.00 17 825 1 234 362 1.00 60 152 6 072 836 1.00



edges on the combined timetable. On all three instances graph sizes decrease
significantly when we use the Level I and II Models: in each timetable the number
of nodes and edges is between 3 and 5.4 times lower while incorporating more
realistic airport procedures (cf. Section 3). Note that the Level I and II Model
graphs are of equal size on the StarAlliance and Oneworld instances since they
only contain one flight class. However, on the combined instance switching from
the Level I to the more flexible Level II Model yields only a small increase
regarding graph size (4 139 compared to 3 397 nodes and 14 286 edges compared
to 11 785 edges).

Concerning the Level III Model, graph sizes increase dramatically. While
the increase in number of nodes compared to the Level II Model is between 10
and 15 times, the number of edges increases up to 6 072 836 on our combined
timetable. This is due to the fact that for each elementary connection on each
airport one dedicated node is created, and these departure respective arrival
nodes become fully interconnected yielding a quadratic number of edges in the
number of incident flights at each airport. The fact that for each flight a separate
(time-dependent) flight-edge is created, is also reflected by the number of flights
per edge, which is exactly 1 in the Level III Model.

5.2 Query Performance

Label Correcting Algorithms. Regarding profile and multi-criteria queries,
we use a label correcting algorithm (cf. Section 4) which may settle nodes multi-
ple times during one run. Moreover, we use travel-time, number of transfers and
pricing information as optimization criteria. In Table 3 we report the number
of settled nodes, relaxed edges and the average time per query on each of our
models.

As expected, figures roughly concur with the graph sizes from Table 2. Using
the railway model yields query times of 264.86 ms settling 71 673 nodes. On
the Level I Model we are able to reduce the query time to 47.5 ms while only
settling 8 426 nodes. Applying the Level II Model only yields a mild decrease
in performances to 68.68 ms settling 11 110 nodes which is still almost 4 times
faster than the time-dependent railway model.

Table 3: Query performance of our models using label correcting algorithms for both
profile- and multi-criteria searches. Query performance is evaluated by running 1 000
queries with source and destination airports picked uniformely at random.

Profile Multi-Criteria
Settled Relaxed Time Settled Relaxed Time

Model Nodes Edges [ms] Nodes Edges [ms]

Level I 8 426 41 462 47.55 23 825 104 213 215.74
Level II 11 110 53 477 68.68 31 491 137 068 305.31
Railway 71 673 171 924 264.86 184 516 435 062 1 126.50
Level III 133 083 5 739 353 4 805.60 673 295 32 180 968 109 666.66



Regarding multi-criteria search, we are able to enumerate all Pareto optimal
solutions in under a second’s time on both the Level I and Level II Models (215 ms
and 305 ms, respectively). However, both algorithms perform significantly worse
on the much larger Level III Model resulting in query times of 4.8 seconds for
profile queries and almost 2 minutes for multi-criteria queries.

Table-Lookups. The very small graph sizes of our flight networks allow pre-
computation of full distance tables between all airports. Regarding profile search,
we store travel-time functions for each pair of airports, while we store all Pareto
solutions when using multi-criteria search.

Table 4: Accelerating queries by table-lookups. We report the additional space required
as well as preprocessing time. On the query side we report the query time as well as
the speed-up compared to our label correcting algorithm from Table 3.

Profile Table-Lookup Multi-Crit. Table-Lookup
Space Prepro Time Speed- Space Prepro Time Speed-

Model [MiB] [m:s] [µs] Up [MiB] [m:s] [µs] Up

Level I 45.65 0:58 0.41 115 973 282.91 4:35 2.85 75 697
Level II 45.65 1:21 0.40 171 710 297.01 6:14 2.97 102 799
Railway 45.65 5:01 0.37 715 841 288.58 21:37 2.83 398 056
Level III 45.65 60:28 0.41 11 720 969 433.28 2618:23 4.37 25 095 345

Profile Search. Table 4 reports both preprocessing effort and query performance
on the combined timetable network for each of our models. For profile queries
the additional space required for each model is 45.65 MiB (note that we compute
distances between pairs of airports, thus, the required space is independent of the
number of nodes). Compared to the small size of our networks, 45.65 MiB may
seem fairly much. However, from the perspective of multi-modal route planning,
this additional effort is almost negligible, since the space consumption of all data
is dominated by the significantly larger road network and also by additional data
required for multi-modal speed-up techniques [10].

Regarding the preprocessing time, we are able to compute the full distance
table of travel-time functions between 1 minute on the Level I Model and 1 hour
on the Level III Model. As a result, we are able to execute random profile queries
in approximately 0.4µs time yielding a speed-up of over 11 Million on the Level
III Model. Note, that the query times are independent of the graph size, since
the graph is not used in the query algorithm.

Multi-Criteria Search. For multi-criteria search the required space for storing
the distance table increases with the complexity of the model and requires from
282.91 MiB (Level I Model) to 433.28 MiB (Level III Model) space. In contrast to
profile-search distance tables, here the number of entries in the table for each pair



of airports depends on the model for the following reason. Since we do not store
flight costs per actual flight, but a combined price per flight edge (cf. Section 4),
having less flights per edge (cf. Table 2) allows us to assign a greater variety of
different costs for flights between the same two airports. As a consequence, the
number of Pareto optimal solutions increases, hence, requiring more space. The
extreme case is the Level III Model, where each flight has its own designated
flight edge, and thus, allows the most realistic cost assignments (we are actually
able to assign a different price for each flight). Preprocessing time for distance
tables increases with the complexity of the models and is between 4.5 minutes
on the Level I Model and almost two days on the Level III Model. Again, we like
to point out the insignificant deterioration in preprocessing performance of the
Level II Model compared to the Level I Model. Query times are in the scale of
a few microseconds on all models: Enumerating all Pareto solutions for random
queries requires 2.85µs on the Level I Model, 2.97µs on the Level II Model and
4.37µs on the Level III Model. Again, the increase in query time is explained by
the bigger number of Pareto solutions with increasing model complexity.

6 Conclusion

In this work, we introduced how to model flight networks as graphs such that we
are able to compute best connections efficiently. By showing that known models
for railways yield a significant performance penalty, we justify our new model.
Moreover, we showed how to generate flight costs if data is missing. It turns out
that our model yields such small graphs making it feasible to compute full Pareto
distance tables making multi-criteria route planning in flight networks a matter
of microseconds. More precisely, we are able to perform point-to-point profile
and multi-criteria queries within a few microseconds with space requirements of
43.65 MiB (profile-search) and up to 433.28 MiB (multi-criteria search). While
the Level III Model is the most flexible, it turns out that in the case of using
flight alliances as flight classes, the Level II Model is sufficiently realistic while
yielding significantly smaller graphs, and thus, faster query times. However, we
like to point out, that in the case of our table-lookup algorithm the graph is no
longer required as input. Hence, it becomes feasible to apply a two step approach
for flight timetable information: Use a high detailed model (i.e., the Level III
Model) for modeling the timetable in the most flexible way, and obtain the
distance table in a second step. Queries can then be answered solely using the
distance table, thus, no longer requiring the large flight graphs as input data.

Regarding future work, it would be interesting to integrate traffic days into
our model. Moreover, we would like to add low-cost carriers to our data. However,
such companies tend to serve only very small airports which are far away from
the main hubs. Hence, we expect the network to be disconnected such that
multi-modal route planning becomes even more important in such a scenario.
On the technical side, we are optimistic that with the insights gained in this
work, we may extend our recent work on multi-modal route planning [10] to a
full multi-modal variant of Transit-Node Routing [3, 23, 4, 5].
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MILP formulations of 
umulative 
onstraints forrailway s
heduling � A 
omparative studyMartin Aronsson1, Markus Bohlin1 and Per Kreuger1Swedish Institute of Computer S
ien
e,Box 1263, SE-164 29 Kista, SwedenMartin.Aronsson�si
s.se, Markus.Bohlin�si
s.se, Per.Kreuger�si
s.seAbstra
t This paper introdu
es two Mixed Integer Linear Programming (MILP) modelsfor railway tra�
 planning using a 
umulative s
heduling 
onstraint and asso
iated pre-pro
essing �lters. We 
ompare standard solver performan
e for these models on threesets of problems from the railway domain and for two of them, where tasks have unitaryresour
e 
onsumption, we also 
ompare them with two more 
onventional models. In theexperiments, the solver performan
e of one of the 
umulative models is 
learly the bestand is also shown to s
ale very well for a large s
ale pra
ti
al railway s
heduling problem.Keywords. Railway transport s
heduling, Cumulative s
heduling, Mixed Integer LinearProgramming (MILP) modelling and pre-pro
essing1 Introdu
tionRailway s
heduling is a ri
h sour
e of 
hallenging optimisation and 
ombinatorial de
ision prob-lems. Along with vehi
le routing problems with some unique properties [1,2,3℄, tra
k resour
es
heduling [4,5℄ is at the 
ore of timetable 
onstru
tion for modern rail tra�
 planning. Themethods des
ribed in this paper may be used to verify feasibility of proposed timetables, sear
h(or optimise) for timetables with 
ertain properties, or redu
e 
on�i
ts between disparate re-quirements originating from e.g. 
ustomers, business areas or transport politi
al priorities withinthe infrastru
ture manager. The presentation of the methods is rather te
hni
al but most of theproblems used in the empiri
al se
tions are derived from real �xed timetables and early stagetimetable proposals. The results 
learly indi
ate one of the des
ribed methods as superior forthis important pra
ti
al railway s
heduling problem.Constraint programming (CP) te
hniques have been quite su

essful in solving both a
ademi
[6,7,8,9,10℄ and real-world s
heduling problems [11,12,13,14,15℄. One of the main bene�ts of CPfor su
h problems is the presen
e, in most modern solvers, of very e�
ient �ltering me
hanismsin the form of 
onstraint abstra
tions for both 
lassi
al job shop and generalisations su
h as the
umulative resour
e s
heduling problem. Using demand-driven �ltering during sear
h for inte-ger solutions 
onstitutes a powerful de
ision me
hanism that have also been used su

essfully foroptimisation [16,8℄. However, to optimise 
lassi
al job shop problems and their 
umulative gener-alisations e�
iently it is generally also ne
essary to employ quite sophisti
ated sear
h heuristi
s.Mixed Integer Linear Programming (MILP) is another te
hnique for 
ombinatorial problemsolving whi
h have been applied to a wide variety of industrial-level problems. For s
hedulingproblems with unitary resour
es, standard linear boolean formulations also s
ale very well, es-pe
ially for problems with a lot of linear side 
onditions that 
an be exploited by modern MILPsolvers.
J. Clausen, G. Di Stefano (Eds): ATMOS 2009 
9th Workshop on Algorithmic Approaches for Transportation Modeling, 
Optimization, and Systems  
http://drops.dagstuhl.de/opus/volltexte/2009/2141



2 M. Aronsson, M. Bohlin, P. KreugerFor 
umulative s
heduling problems, however, there do not seem to exist any standard MILPformulations. For 
ertain 
lasses of problems, e.g. where all tasks have unitary resour
e 
onsump-tion, formulations based on geometri
 pla
ement 
an be used [5℄. These 
an, as we will see, bequite e�
ient for the problems they 
an en
ode.Cumulative 
onstraints [17℄ are well known in the CP 
ommunity where e�
ient algorithmsbased on sweep [18℄ and/or task-intervals [19℄ are used to prune the sear
h spa
e, both as apre-pro
essing me
hanism and on demand for variable domain redu
tion during sear
h. Severalvariants of the 
onstraint have been des
ribed e.g. in [20℄.These 
onstraints normally restri
t the 
umulative 
apa
ity utilisation of tasks exe
utingsimultaneously not to ex
eed an upper bound. Capa
ities and 
apa
ity utilisation are normally�xed integers while the start times and durations are de
ision variables. Variants where theresour
e 
onsumption of ea
h task is also variable and possibly 
onstrained by the start timeand duration o

ur as well. In this paper we fo
us on the 
ase where the 
apa
ity and theresour
e 
onsumption are 
onstant integers. We have not found this to be restri
tive in pra
ti
efor pra
ti
al problems in the railway domain.Geometri
 pla
ement 
onstraints are related to 
umulative 
onstraints. The most 
ommonform is probably that of �ltering for non-overlap of re
tangles in the plane [21℄ whi
h, in the
ontext of s
heduling, 
orresponds to allo
ation of unit 
apa
ity resour
es to tasks with unit re-sour
e 
onsumption 
ombined with a multi-resour
e s
heduling problem. The resour
e allo
ationis represented as the pla
ement of a a unit height re
tangle in the y-dimension and the start timeas the pla
ement of its left edge and the duration as its length in the x-dimension.In 
lassi
al 
umulative s
heduling, there is no 
on
ept 
orresponding to the pla
ement ofthe lower edge on the y-axis, and the resour
e 
onsumption is arbitrary. Still, the spe
ial 
aseof unit resour
e 
onsumption is of 
onsiderable pra
ti
al interest, and for these, the pla
ementformulation 
an be used by 
onsidering the number of resour
es as a 
umulative 
apa
ity andjust ignoring the values of the y-pla
ement variables. Any solution to the pla
ement problem is
learly feasible for the 
umulative as well.We will des
ribe four di�erent models, two for the pla
ement formulation and two for the
umulative 
onstraint, de�ne �ltering methods for ea
h, note some of their 
omplexity propertiesand investigate solving performan
e for them on three separate sets of problems. The �rst twosets of problems are derived from a pra
ti
al 
ase in rail tra�
 s
heduling where all the taskshave unit resour
e 
onsumption. In the third, a set of random problems with a more generalstru
ture and of varying sizes and di�
ulties are studied.In addition, in a fourth, empiri
al se
tion, we brie�y des
ribe the results of using a sele
tionof the des
ribed methods in an industrial s
ale rail transport s
heduling problem. This problemwas what originally motivated our resear
h, and even though the problem has a quite spe
ialstru
ture it is of great pra
ti
al importan
e. We 
on
lude with a summary of our �ndings.2 Preliminaries and notation2.1 Notation for model parameters and variablesLet n denote the number of tasks (individual trains using a tra
k or station resour
e) in theproblem and use 0 < i, j ≤ n as task indi
es. Let, furthermore, c denote the resour
e (station)
apa
ity limit and hi the resour
e 
onsumption for task i. Let si denote the start time variablefor task i, bounded by an interval si ≤ si ≤ si and di the duration variable for task i, boundedby an interval di ≤ di ≤ di.



MILP formulations of 
umulative 
onstraints for railway s
heduling 32.2 Maximal 
lique 
onstru
tionIn 
umulative s
heduling it is often useful to do an analysis of the parameters and bounds ofthe problem. One of the most obvious ways to do this is to 
onstru
t subsets of tasks that 
anoverlap in time. In CP, this type of 
omputation is performed iteratively during sear
h to �lterthe domains or bounds of the de
ision variables, but it 
an also be used for pre-pro
essing inMILP formulations to �lter equations and booleans that need not be maintained by the solver.Formally, this is a
hieved by 
onsidering the tasks of the problem as nodes in a graph andletting two tasks i and j be 
onne
ted by a link if and only if they 
an overlap in time. Then,all maximal 
liques (
ompletely 
onne
ted sub-graphs) of this graph will have the property that,unless a task is already in the 
lique, it 
annot overlap all the others.This is a very useful property in 
umulative s
heduling sin
e when we wish to limit the numberof simultaneously overlapping task, it is su�
ient to 
onsider ea
h maximal 
lique separately andthe 
omplexity of enfor
ing 
umulative 
onditions on the set of all tasks is often bounded by somefun
tion of the sizes of the maximal 
liques, rather than the size of the task set itself. In pra
ti
alproblems this is often of great value, sin
e the majority of tasks 
annot be arbitrarily pla
ed intime. This makes the maximal 
liques small 
ompared to the total number of tasks.To 
onstru
t the set of all maximal 
liques used in the models below, we use a straightforwardsweep algorithm whi
h has linear time 
omplexity in the size of the set of tasks. In the modeldes
ription below we will often generate a set of equations for ea
h maximal 
lique Clqk andwhere 1 ≤ nk ≤ n is the size of the k'th 
lique.3 Model des
riptionsThe �rst two models des
ribed below are restri
ted to handle tasks with unitary resour
e require-ments. The reason for this is that these are based on a re
tangle pla
ement approa
h whi
h doesnot 
apture the general 
umulative 
onstraint whi
h may be satis�ed even though no re
tanglepla
ement exists. They are, in fa
t, more 
lose to models for pla
ing non-overlapping re
tanglesof unit height onto the plane. In pra
ti
e however, these are quite useful models sin
e in manysituations where the 
umulative 
onstraint is used, there is an underlying problem stru
ture ofthis type. E.g. in train s
heduling, a station may be modelled as a 
umulative resour
e thatallows a maximum number of trains to o

upy the station at any one time. The type of modelproposed here allows us to also ex
lude the use of 
ertain tra
ks for a parti
ular train, dependingon tra
k lengths or other 
apa
ity restri
tions, whi
h is not straightforward in a pure 
umulativemodel.The next two models 
apture the semanti
s of a general 
umulative 
onstraint with a �xedupper bound on resour
e 
onsumption and arbitrary but �xed resour
e 
onsumption for all tasks.3.1 Expli
it unitary resour
e allo
ation (integer formulation)This model treats ea
h 
umulative resour
e as a 
olle
tion of unitary sub-resour
es and expli
itlyallo
ate these to tasks with unit resour
e 
onsumption. This is a
hieved through the use of aninteger de
ision variable yi for ea
h task i to denote the individual sub-resour
e allo
ated to thetask. If two tasks i and j use the same sub-resour
e, they must be non-overlapping in time. Themodel uses two boolean variables pij and wij for ea
h pair of transports i and j. pij = 1 is usedto en
ode that the task i 
ompletely pre
edes task j and wij = 1 that they do overlap in time,and thus must use di�erent sub-resour
es.First, let us express a non-overlap 
onstraint: Either the end time of task i is less than orequal to the start time of task j: si + di − sj ≤ 0 or the same is true for task j in relation to task
i: si − sj − dj ≥ 0. We re�e
t this disjun
tion in the boolean pij :
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si + di − sj − M (1 − pij) ≤ 0

si − sj − dj + M pij ≥ 0where M is any 
onstant large enough to dominate the equation in whi
h it o

urs. This is, of
ourse, a standard formulation that o

urs everywhere in the literature (see e.g. [22,23℄) but howdo we pro
eed if we want to 
ount and limit the number of overlapping tasks?In the 
ase where we do want to allow an overlap we need an additional boolean that 
an
elsthe e�e
t of the above equations. We want to do this in a way so that whenever this variabletakes the value 0, our equations will be equivalent to the ones above, and 
an
el them 
ompletelyotherwise:
si + di − sj − M (1 − pij) − M wij ≤ 0

si − sj − dj + M pij + M wij ≥ 0When the two tasks do overlap, and the variable wij thus takes the value 1, we need to ensurethat the two tasks are allo
ated di�erent sub-resour
es. We 
an do this by ensuring that thedi�eren
e between yi and yj is nonzero:
yi − yj + M uij + M (1 − wij) > 0

yj − yi + M (1 − uij) + M (1 − wij) > 0where yi, yj are integers and the booleans uij en
odes if yi < yj or the other way around, in the
ase where wij is 0.As noted above, it is su�
ient to enfor
e these 
onditions for ea
h pair of tasks in the maximal
liques, so that for ea
h 
lique Clqk with nk tasks, the number of integer variables will be nk,the number of booleans 3nk(nk−1)
2 and the number of equations will be 2nk(nk − 1). Note that,by sharing variables between the 
liques, the total numbers are signi�
antly less than the sumover all 
liques and is, for the integer variables, bounded by n and for the booleans, by 3n(n−1)

2 .In summary, the temporal non-overlap 
ondition for tasks allo
ated the same sub-resour
e
an (sin
e y-variables are integers) thus be stated in linear form as:
si − sj + di + M pij − M wij ≤ M

si − sj − dj + M pij + M wij ≥ 0

yi − yj + M uij − M wij ≥ 1 − M

yj − yi − M uij − M wij ≥ 1 − 2 Mfor all pairs i < j ∈ Clqk of tasks and ea
h maximal 
lique Clqk, where pij , wij , uij are booleansand 1 ≤ yi, yj ≤ c are integers. Note that we need to enfor
e the equations in the solver onlywhen the size of the 
lique is stri
tly larger then the resour
e 
apa
ity.3.2 Expli
it unitary resour
e allo
ation (boolean formulation)This model is very similar to the one above but uses, instead of ea
h integer variable yi, c numberof booleans mik, ea
h being one, denoting that the task i is allo
ated sub-resour
e k. We want toenfor
e the overlap 
ondition between two tasks i and j if and only if mik = mjk = 1 for some ki.e. if (1−mik) = (1−mjk) = 0. The equations stating the non-overlap 
an then be formulated:
si + di − sj − M (1 − pij) − M (1 − mik) − M (1 − mjk) ≤ 0

si − sj − dj + M pij + M (1 − mik) + M (1 − mjk) ≥ 0
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h in linear form be
omes
si + di − sj + M pij + M mik + M mjk ≤ 3 M

si − sj − dj + M pij − M mik − M mjk ≥ 2 Mfor all pairs of tasks i < j ∈ Clqk, for ea
h maximal 
lique Clqk, and ea
h 0 < k < c and where,in addition, the resour
e 
ondition is stated:
∑

0<k≤c

mik = 1for all tasks i, i.e. essentially a set partitioning formulation.Note that the number of booleans and overlap equations now in
rease by a fa
tor of 2c tobe
ome cnk(nk −1) where nk is the size of the 
lique and c the resour
e 
apa
ity. The number ofresour
e 
onditions, on the other hand, now depends linearly on the produ
t of cnk. We wouldexpe
t this model to be reasonably e�
ient when c is small in 
omparison to the 
lique size nk. If,on the other hand these parameters are of 
omparable size, the number of booleans is e�e
tively
ubi
. The advantage of this type of model is that the modern MILP-solvers tend to treat pureboolean formulations more e�
iently than general MILP formulations.A similar model for a tra�
 (re)s
heduling problem was presented in [5℄ as part of a largermodel 
apturing several more aspe
ts of a train (re)s
heduling problem but this type of modelis probably more or less a standard formulation.3.3 Min 
on�i
ting sub-
lique modelThis model 
aptures the 
lassi
al 
umulative 
onstraint more exa
tly than the ones proposedabove in the sense that tasks may have arbitrary resour
e 
onsumption and that there is nonotion of sub-resour
es.The idea behind this model is that for ea
h maximal 
lique with tasks of su�
ient 
umulativeresour
e 
onsumption, there exists a (possibly large) number of minimal sub-
liques su
h thatthe sum of the resour
e 
onsumptions of the involved tasks ex
eeds the resour
e 
apa
ity c. Theyneed to be minimal in the sense that removing any single element would make the sum of resour
e
onsumptions of the remaining tasks less than or equal to the resour
e 
apa
ity. This means thatwe 
an limit the number of a
tual overlaps in the sub-
lique to be stri
tly less than the numberof pairs in the (minimal) 
lique itself.Sin
e ea
h larger sub-
lique that 
an 
ontribute to a violation of the 
onstraint 
an do soonly by violating a minimal sub-
lique of itself, it is su�
ient to state the resour
e 
onditionsfor the minimal sub-
liques. We will use the same formulation for the non-overlap 
ondition asbefore, i.e.
si + di − sj + M pij − M wij ≤ M

si − sj − dj + M pij + M wij ≥ 0for all i < j ∈ Clqk and ea
h maximal 
lique Clqk. We may now 
ount and limit the number ofoverlaps in ea
h minimal sub-
lique as follows
∀Mn ⊆ Clqk

0

@

 

X

i∈Mn

hi > c

!

∧

 

∀Sb ⊂ Mn
X

i∈Sb

hi ≤ c

!

→
X

i≤j∈Mn

wij <

 

|Mn|

2

!

1

Afor ea
h maximal 
lique Clqk in the problem where the �rst 
onjun
t in the pre
ondition of theimpli
ation requires that the sub-
lique 
an in fa
t 
ontribute to a resour
e 
on�i
t, the se
ond
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ondition and the 
on
lusion limits the number of overlap variables that
an take the value one to be stri
tly less than the number of pairs in the minimal sub-
lique.Note that the tests for ea
h potential sub-
lique 
an be done when generating the equations andonly the linear sum expression ∑

i≤j∈Mn wij ≤
(

|Mn|
2

)

− 1 needs to be enfor
ed by the solver.In this model, for ea
h 
lique Clqk with nk tasks, both the number of booleans and numberof overlap equations will be nk(nk − 1). The number of minimal sub-
liques and 
orresponding
lique equations, for a given max 
lique, however, depends both on the 
lique size |Clqk|, theresour
e 
apa
ity c and the distribution of resour
e 
onsumption for the involved tasks, and mayin the worst 
ase be exponential in the �rst two parameters. E.g. if the resour
e 
onsumption ofall tasks is one, the number of minimal sub-
liques will be the number of sub-
liques of a givensize c, i.e. (

|Clqk|

c+1

). Even though modern IP-solvers are mu
h more sensitive to the number ofbooleans than to the number of equations, this is 
learly a disadvantage of this model.Even worse, the number of sub-
liques to be tested for minimality is always exponential in the
lique size. This means that the algorithm generating the equations should be very sensitive toin
rease in 
lique size. Still, for a typi
al randomly generated problem 
onsisting of 300 tasks ona single resour
e, arbitrary resour
e 
onsumptions up to a resour
e 
apa
ity of 5, max/average
lique size of 26/18 and 139 separate 
liques, all 9 752 equations are generated in about 170se
onds on a 1.6 GHz i686 laptop, so the �ltering does s
ale to pra
ti
al problem sizes and, formany large s
ale pra
ti
al problems, the method performs, as we will see in se
tion 4, very well.3.4 Start point 
lique height sum modelThis model is based on the observation that for ea
h start point of a task, it su�
es to measureand limit the resour
e 
onsumptions of the other tasks that are possibly a
tive at that point.For ea
h task i of a maximal 
lique with elements of su�
ient size to generate a 
on�i
t,
onsider ea
h other task j in the 
lique that has an earliest start point less than or equal to thelatest start point of task i and a latest end point greater than the earliest start of i. Sin
e onlythese 
an overlap task i we 
onstru
t for ea
h su
h task a boolean variable wij whi
h will take thevalue 1 if and only if the start of task i falls within the duration of task j, i.e. if sj ≤ si < sj +dj .In order to do this, 
onsider �rst the situation where this is not the 
ase, i.e. where either sj > sior si ≥ sj + dj . En
ode this disjun
tion with a boolean pij su
h that:
si − sj − M (1 − pij) < 0

si − sj − dj + M pij ≥ 0and use wij = 1 to en
ode the 
an
ellation of these equations as follows:
si − sj + M pij − M wij < M

si − sj − dj + M pij + M wij ≥ 0.where pij , wij are booleans and the stri
t inequality in the �rst equation would in a pure MILPformulation be handled by the addition of a suitably small ǫ on the RHS.Now, for ea
h element i in ea
h 
lique Clqk 
onstrain the s
alar produ
ts: ∑

j∈Clqk\{i} hjwijto be less than or equal to the resour
e 
apa
ity c minus the resour
e 
onsumption hi of the task
i:

∀i ∈ Clqk

∑

j∈Clqk\{i}

hjwij ≤ c − hifor all maximal 
liques Clqk where wij are booleans. The number of 
lique equations is linear inthe (maximal) 
lique size, but sin
e the overlap equations are no longer symmetri
, these must
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h ordered pair of tasks in the 
lique. This means that the number of booleansand overlap equations will both be 2nk(nk−1), whi
h is twi
e as many as in the model of se
tion3.3.4 Empiri
al �ndingsThis se
tion reports trial runs of the proposed methods on a number of di�erent problems.Most of the problems are derived from an appli
ation in train s
heduling, but sin
e these onlyhave tasks with unitary resour
e 
onsumption, we have also evaluated the methods on a set ofrandomly generated problems where the resour
e 
onsumption varies up to the resour
e 
apa
ity.Two sets of examples are single resour
e problems while the other two are more realisti
 examples
onsisting of trains using several resour
es in �xed sequen
es, job shop style.4.1 Single resour
e unitary resour
e 
onsumption examplesWe have evaluated all four models on a set of problems derived from the domain of train timetablegeneration. More results on the full problem is presented in se
tion 4.4 below. In this se
tion, we
onsider a single resour
e at the time and present results for a number of representative stationresour
es of varying size.In table 1 the problem parameters and properties are summarised. We note that all problemsTable 1. Problem statisti
s for a sele
tions of stations in the train problemStation KS1 FA TÄL LLN MH ÖB LÅÖ GDÖ SK HPBGCapa
ity 1 2 2 2 3 3 3 4 5 10Tasks 471 711 1000 1000 684 907 1000 717 804 1391Cliques 246 319 520 591 194 356 489 120 63 43Max/Avr 
lq size 7/3 7/4 8/5 9/5 7/4 8/5 9/5 7/5 8/6 14/11are fairly large in terms of number of tasks but sin
e the problems were generated by introdu
inga �xed amount of sla
k (±15 minutes) in a given feasible solution, the number of potential
on�i
ts and hen
e 
lique sizes is relatively small. We would argue that this is a quite 
ommonsituation in many large s
ale pra
ti
al problems, and as shown in se
tion 4.4, methods to solvesu
h problems 
an 
ertainly be put to very good use. Here we try to show that the methodswe have des
ribed are in fa
t very good at exploiting this type of problem stru
ture and s
alesurprisingly well 
onsidering that only default settings of the CPLEX solver were used to produ
ethe solutions.Table 2 gives the number of equations, booleans and integers for ea
h of the four models andrun-times for CPLEX 9.0 on a single 
ore 2.6 GHz i686 Xenon pro
essor. In addition, the timetaken to generate the equation sets for ea
h of the models is given in the last four rows. Theshort names of models used in the table are �MC� for the �Min 
on�i
ting sub-
lique model�of se
tion 3.3, �SC� for the �Start point height sum model� of se
tion 3.4, �RB� for the booleanformulation of the �Expli
it resour
e allo
ation model� of se
tion 3.2 and �RI� for the integerversion presented in se
tion 3.1.We note that the MC model is always best in terms of CPLEX exe
ution time but that forsome of the larger problems, the time to generate the equation set in
reases the total time tosolve the problem signi�
antly. Just adding the times together does not ne
essarily tell the whole
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s for a sele
tion of stations in the train s
heduling problemParam. Method(s) KS1 FA TÄL LLN MH ÖB LÅÖ GDÖ SK HPBGBools MC 1 588 3 108 6 532 6 666 2 416 4 820 6 448 2 040 1 644 2 780SC 3 175 6 216 13 054 13 319 4 810 9 580 12 882 4 080 3 249 5 403RB 1 231 2 832 5 166 5 239 2 663 4 717 5 906 2 516 2 227 3 680RI 2 382 4 662 9 798 9 999 3 624 7 230 9 672 3 060 2 466 4 170Integers MC, SC, RB 0 0 0 0 0 0 0 0 0 0RI 437 639 950 953 485 769 894 374 281 229Eqns. MC 2 382 4 800 11 842 12 067 3 204 8 146 11 660 2 432 1 863 4 185SC 3 964 7 532 15 711 16 342 5 700 11 451 15 486 4 727 3 632 5 801RB 2 025 6 858 14 014 14 285 7 733 15 229 20 238 8 534 8 501 28 029RI 3 176 6 216 13 064 13 332 4 832 9 640 12 896 4 080 3 288 5 560Solve (s) MC 0.03 0.29 1.23 1.54 0.09 0.34 0.64 0.06 0.06 0.25SC 0.14 11.16 45.07 38.04 0.73 6.42 14.00 0.20 0.18 0.39RB 0.03 1.06 3.18 11.26 1.22 5.04 13.23 1.90 0.73 5.08RI 0.04 3.08 23.89 22.66 0.58 1.78 17.93 0.51 0.39 1.70Gen. (s) MC 0.17 0.69 2.42 2.52 0.63 2.47 3.87 0.54 0.47 10.86SC 0.30 0.70 1.71 1.93 0.48 1.20 1.74 0.45 0.34 0.82RB 0.17 0.51 1.09 1.13 0.55 1.06 1.51 0.61 0.59 1.73RI 0.15 0.35 0.69 0.71 0.27 0.51 0.70 0.24 0.20 0.35story either, sin
e the time to generate the equations may still be small in 
omparison with thesolver time for e.g. problems with several distin
t resour
es. We will next 
onsider su
h a 
ase.4.2 Multiple resour
e unitary resour
e 
onsumption exampleIn this se
tion we explore the models on a more 
omplex s
heduling problem derived from thesame domain as those above. In this 
ase we extra
ted all the tra�
 through an area around thetown of Hässleholm in southern Sweden. The area 
onsists of 21 distin
t resour
es of whi
h 12 areunitary (tra
k) resour
es, 2 are large stations with 
apa
ities of 24 and 16 respe
tively and therest are smaller stations and tra
k segments with a 
apa
ity of either one or two. Starting from afeasible timetable 
onsisting of 5972 individual tasks, we re
onstru
ted the pre
eden
e relationsfor all the jobs (trains) and relaxed the start times of all tasks to sla
k sizes of 50, 70 and 90minutes respe
tively. The resulting problem properties and run time statisti
s is summarised intable 3. For ea
h problem, the resulting number of 
liques, the maximum and average 
lique sizeis given and then, for ea
h model, the number of booleans, integers and equations generated andrun time to produ
e an optimal solution is given. The last 
olumn gives the time to generate theequations for this experiment.For all problems the MC method is again 
learly the best, even if we in
lude the time takento generate the equations.4.3 Single resour
e arbitrary resour
e 
onsumption examplesTo test and 
ompare the two models that e�e
tively handle tasks with arbitrary resour
e 
on-sumption we generated a set of random problems with di�erent number of tasks, upper bounds onlatest 
ompletion and sla
k. For ea
h su
h problem size we generated 10 problems and attemptedto solve ea
h with the two methods with a time limit of 15 minutes.
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Table 3. Problem and solution statisti
s for the 21 resour
e problemSlk Clqs Mx Av Method Bools/Ints Eqtns Solv Tm Gen Tm50 2 538 10 2.64 MC 18 766/0 32 737 5.14 2.93SC 37 404/0 70 071 25.62 5.46RB 14 365/0 30 946 6.08 2.78RI 28 149/4 244 42 284 20.16 2.3570 2 652 13 3.41 MC 28 196/0 47 802 11.27 4.65SC 56 173/0 101 126 154.22 9.32RB 19 553/0 42 733 36.01 3.89RI 42 294/4 527 61 144 73.64 3.3090 2 672 15 4.06 MC 36 280/0 61 514 22.64 6.67SC 72 404/0 127 937 252.87 13.63RB 23 677/0 52 382 78.55 5.07RI 54 420/4 588 77 312 134.69 4.24

Table 4. Run times for a set of random problems with varying resour
e 
onsumptionClq Sz MC SCTasks Cp
t End Sla
k Mx Av Failed Avr rnTm Failed Avr rnTm20 3 50 10 7 3 0 0.01 0 0.0215 9 4 0 0.05 0 0.2320 10 5 0 4.41 1 71.0625 14 7 2 60.10 6 115.3330 14 7 2 101.01 6 44.2335 13 8 3 183.02 9 483.9840 13 9 4 136.71 7 379.6645 16 9 6 297.42 9 78.7150 17 11 5 152.75 10 -30 3 75 10 8 4 0 0.05 0 0.5615 10 4 0 28.73 2 4.8520 10 6 2 52.94 6 150.4125 12 7 1 233.90 7 268.8530 14 7 8 21.70 10 -35 16 8 9 277.75 10 -50 3 150 10 9 3 0 2.46 0 13.2515 8 4 0 11.68 1 37.0120 12 5 5 141.06 9 316.9225 12 6 7 210.24 10 -
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h row in table 4gives the number of tasks, the 
apa
ity of the resour
e, the latest end timeand the maximum sla
k size of the problem 
lass and reports the maximum and average 
liquesizes for the ten generated problems. For ea
h model MC and SC, we then give the number ofproblems (out of 10) we failed to solve in the allotted time (15 minutes) and the average solverrun time for the problems were we did manage to �nd and prove the optimal solution.All the problems were fairly tight, with the sum of task surfa
es generally 
overing between85 and 100% of the resour
e area. Sla
k sizes were also randomly generated from a given (non-optimal) solution but limited by a maximum time window. These properties make these examplesquite di�erent from those from the train domain that 
onsist of huge amounts of tasks but withsmall sla
k sizes.We 
an see again that the methods exploit the given problem stru
ture very well but thatperforman
e degrade qui
kly as the 
lique maximum sizes in
rease above around 10. The 
liquemaximum and average size are 
learly fun
tions of the sla
k in the start time of ea
h task.The larger the sla
k, the more tasks potentially overlap whi
h is pre
isely what the 
lique sizemeasures.On
e more, the MC model is 
learly the best in terms of run time of the solver and in thenumber of solutions proved optimal. The a

umulated time to generate the equations for ea
h
lass of problems was in this experiment small (< 4 se
onds) in 
omparison with the solver runtime and, somewhat surprisingly, very similar for the two models, even for the more di�
ultproblems.To explore the relative s
aling of the two methods with respe
t to equation generation/�lteringtime more 
losely, we also studied the e�e
t of in
reasing the sla
k for a set of larger randomlygenerated problems. We �xed the number of tasks to 200, the latest end time to 600 and theresour
e 
apa
ity to 5. Plotting only the time to generate the equations against the maximumsla
k for the two models, yielded the graph in �gure 1. Ea
h entry in the plot represents the

Figure 1. Time in se
onds to generate the equations for the two models (MC=squares,SC=diamonds) against in
reasing start time sla
k sizemean of 10 random problems of ea
h sla
k size, from 10 to 80.
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learly visible but already for a sla
kof 60, typi
al max/average 
lique sizes are around 20/15 and the number of booleans for SC isabout 9000. For problems of this size the solver time 
ompletely dominates the total time. Goingup to even larger 
liques, i.e. above max/average 30/20 , the generator (a Prolog program) runsout of memory for MC, so this method is no longer an option. The value of SC would still haveto be questioned for problems of this size sin
e the solver would most likely spend hours andprobably days, to �nd solutions in su
h 
ases. However, it may still be of value for other types ofproblems, though at this point we have not found a way to 
hara
terise su
h a 
lass of problems.4.4 Large s
ale real world appli
ationAll the models des
ribed in this in these papers were originally developed as alternatives toan earlier CP-based s
heduling system for train timetable generation [24,4,25℄ but for the fullsize version of this problem we have thoroughly investigated only the MC model of se
tion 3.3.The test runs were performed on a number of problems sele
ted from the real train timetablegeneration problem of the Swedish rail system for two 
onse
utive years, 2004 and 2005.One set of problems was extra
ted from the a
tual timetable for 2004 and then relaxed withrespe
t to departure times. Tra
ks are 
onsidered unitary resour
es ex
ept in the 
ase of singletra
k lines whi
h a

ommodate trains in both dire
tions (see [4℄ for details) while stations weremodelled as 
umulative resour
es a

ommodating from 2 up to some 20 simultaneous trains.In
luded in this set was a large area around the most important shunting yard in Sweden,Hallsberg. This problem 
onsists of 175 tra
ks and 146 stations, 2 821 trains and around 60 000tasks. The start time for ea
h task was relaxed ±15 minutes from a given solution and pre
eden
eand resour
e 
onstraints were generated, resulting in a very large problem but where the size ofea
h individual 
lique was fairly small. Finding a feasible solution to this problem with CPLEX9.0 took about 70 se
onds on IBM Thinkpad T42 with a single 
ore 1.8 GHz i686 pro
essor. Ase
ond smaller problem generated in the same way, 
onsisting of some 24 000 tasks, was solvedin 27 se
onds on the same ma
hine.A se
ond set of problems was extra
ted from the 
apa
ity requests from the various railtra�
 operators for the following year. Sin
e the 
apa
ity requests 
ome from several di�erentand unrelated sour
es we typi
ally have many unresolved resour
e 
on�i
ts at the start of theplanning pro
ess. For this problem we again introdu
ed a sla
k of ±15 minutes for the start timeof the stated requirement. For one sub-problem 
onsisting of some 15 000 tasks and with 149unresolved 
on�i
ts, a partial solution with only 2 remaining 
on�i
ts was generated in about
100 se
onds.For the problem in the area around Hallsberg in this set we also tried allowing the system tointrodu
e new low priority resour
e 
on�i
ts1 where it would help to eliminate the 137 originalhigh priority 
on�i
ts. In this 
ase we introdu
ed a smaller sla
k of ±5 minutes. All high priority
on�i
ts were eliminated in 40 se
onds of exe
ution time at the 
ost of introdu
ing only one newlow priority 
on�i
t.The largest single problem we approa
hed 
onsists of most of the tra�
 in the northern partof the 
ountry, with 3 643 trains, almost 199 620 tasks on 661 tra
ks and 611 stations. Initiallythe data 
ontained 1 030 high priority 
on�i
ts. Running CPLEX 9.0 on a faster 2.6GHz Xenonpro
essor for about 600 se
onds eliminated all high priority 
on�i
ts and introdu
ed 6 new lowpriority 
on�i
ts. Running the solver for several days on this problem we were able to prove thatno solution exists with less than 4 su
h low priority 
on�i
ts.1 i.e. between 
ertain 
argo trains for whi
h the un
ertainty in a
tual arrival times and toleran
e forsmaller delays was larger.
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lusionWe have introdu
ed two MILP models for the general 
umulative s
heduling 
onstraint and 
om-pared them to two for the spe
ial 
ase where resour
e 
onsumption is unitary based on geometri
pla
ement models. For ea
h of these, we have de�ned pre-pro
essing �lters and 
ompared solverperforman
e on up to three sets of problems.In all the experiments, the solver performan
e of one of the general 
umulative models, the�Minimum 
on�i
ting sub-
lique (MC) model�, is 
learly the best in terms of solver time. For thismodel, the �ltering me
hanism has exponential time 
omplexity in general but in pra
ti
e thishas little impa
t on total time to generate and solve the problem. This is so, at least, for thetype of problems 
onsidered, sin
e the �ltering time be
omes signi�
ant only for problems wherethe solver would struggle to �nd any integer solution.We also report brie�y on a full s
ale industrial s
heduling problem where theMCmodel is usedto produ
e feasible s
hedules for several hundred thousands of tasks on thousands of resour
es.These problems are solvable only be
ause the start time window of ea
h task is small and thepotential number of overlaps between tasks on ea
h resour
es are often orders of magnitudesmaller than the total number of tasks. For su
h problems the �ltering proposed methods arevery e�
ient.Referen
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Abstract. We consider a fundamental problem, called QoS-aware Mul-

ticommodity Flow, for assessing robustness in transportation planning.
It constitutes a natural generalization of the weighted multicommodity
�ow problem, where the demands and commodity values are elastic to
the Quality-of-Service (QoS) characteristics of the underlying network.
The problem is also fundamental in other domains beyond transportation
planning. In this work, we provide an extensive experimental study of
two FPTAS for the QoS-aware Multicommodity Flow Problem enhanced
with several heuristics, and show the superiority of a new heuristic we
introduce here.

Keywords: QoS-ware Multicommodity Flow, Robust Planning, Demand Elas-
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1 Introduction

One of the key issues that planners of transport operators in public transporta-
tion networks have to deal with concerns the routing of various commodities
(customers with common origin-destination pairs) to meet certain demands [13].
A customer, when provided with a non-optimal path (route) due to unavailable
capacity, s/he will most likely switch to another operator or even other means
of transport and the probability in doing so increases as the QoS (quality of
service) drops � actually, as a result of statistical measurements over several
years, major European railway companies know quite accurately the percentage
of customers they lose in such cases as a function of the path's QoS [8, 13]. To
minimize the loss of customers, the value charged for the requested service is
usually reduced to make the alternative (worse in QoS) path, o�ered for that
service, attractive. Alternatively, improvements in QoS may increase customer
demand and also incur an analogous increase in the pricing policy. Consequently,
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transportation planners would like to determine the robustness of their planning
models towards such �uctuation of customer demands.

In an earlier work [11, 12] we introduced and studied a combinatorial opti-
mization problem, called QoS-aware Multicommodity Flow (MCF), that is fun-
damental to address robustness issues in transportation planning, as those men-
tioned above. In the QoS-aware MFC problem, a capacitated directed network
G = (V,E) is given, in which we wish to route k commodities to meet certain ini-
tial demands. Each commodity i is associated with a speci�c origin-destination
pair (si, ti), a demand di and a value vi representing the pro�t of routing one unit
of �ow from that commodity. Also, for each commodity i, a weight wti : E → R+

0

is de�ned that quanti�es the provided quality of service (QoS), when this com-
modity is routed along an edge e or a path p, where wti(p) =

∑
e∈p wti(e).

Smaller weight means better QoS. When a commodity is not routed along its
shortest w.r.t. wti (optimal w.r.t. QoS) path due to capacity restrictions, then
(i) a portion of the demand di drops (the worse the QoS of the path, the larger
the portion di that is lost), and (ii) its value vi is reduced (the worse the QoS,
the larger the reduction). In other words, demands and values are elastic to the
provided QoS. The objective is to compute the maximum weighted multicom-
modity �ow (sum over all commodities and over all paths of the �ow routed from
every commodity on each path multiplied by the commodity's value) subject to
the QoS-elastic demands and values.

To determine the robustness of their models against �uctuations of customer
demands, transportation planners are typically confronted with the following
robustness issues in network and line planning:

(i) Which is the maximum pro�t obtained with the current capacity policy that
incurs certain QoS-elastic demands and values?

(ii) How much will this pro�t improve if the capacity is increased?
(iii) Which is the necessary capacity to achieve a pro�t above a certain threshold?

A fast algorithm for the QoS-aware MCF problem would allow transportation
planners to assess e�ectively the aforementioned robustness issues by identifying
capacity bottlenecks and proceed accordingly.

It is worth mentioning that the QoS-aware MCF problem is also fundamental
in applications beyond the transportation domain. For instance, in networking
(e.g., multimedia) applications over the internet, or in information dissemination
over various communication networks [3]. In such a setting, a �server� (owned
by some service provider) sends information to �clients�, which retrieve answers
to queries they have posed regarding various types of information. Common
queries are typically grouped together. Answering a query incurs a cost and
a data acquisition time that depends on the communication capacity. When a
�client� is provided with a non-optimal service (e.g., long data acquisition time
due to capacity constraints), s/he will most likely switch to another provider.
On the other hand, the provider may reduce the cost of such a service in order
to minimize the loss.

In [11, 12] it was shown that the QoS-aware MCF problem can be formulated
as a fractional packing linear program (LP) and a FPTAS for its approximate
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solution was provided. The algorithm builds upon the Garg & Könemann (GK)
Langrangian relaxation method for fractional packing LPs [5], combined with the
phases technique introduced by Fleischer [4], and a new approximation algorithm
for the non-additive shortest path (NASP) problem developed in [11, 12], which
constitutes the required oracle that identi�es the most violated constraint of the
dual LP.

In this paper, we present a comparative experimental study for the QoS-
aware MCF problem. In particular, we have implemented and compared the
following algorithms:

� The FPTAS described in [11, 12] for solving the QoS-MCF problem, using
as oracle the FPTAS for NASP developed in the same work.

� The GK approach [4, 5] enhanced with the heuristic methods presented in
[2], using as oracles the exact (pseudopolynomial) NASP algorithm in [10]
and the approximate NASP in [11, 12].

� The FPTAS in [11, 12] incorporating some of the heuristics in [2], as well as
the GK approach, and enhanced both with a new heuristic that we develop.

Our comparative experimental study on synthetic and real-world data shows
that the new heuristic method leads to a dramatic improvement in the running
time over the original algorithms in [4, 5, 11, 12]. Moreover, the use of the exact
NASP routine in the GK approach is considerably faster than the version of the
approximate NASP.

The rest of the paper is organized as follows. In Section 2, we de�ne the QoS-
aware MCF problem formally and formulate it as a packing linear program. In
addition, we present the method proposed by Garg & Könemann [5], its modi�-
cation by Fleischer [4], as well as an exact and an approximate algorithm for the
Non-Additive Shortest Path (NASP) problem that constitutes a fundamental
subroutine for solving the QoS-aware MCF problem. In Section 3, we present
the algorithms implemented for the QoS-aware MCF problem, and in Section 4
we present the experimental results obtained. We conclude in Section 5.

2 Preliminaries

2.1 The QoS-aware MCF Problem

To formally de�ne the QoS-aware Multicommodity Flow Problem, we have
adopted the exposition in [11, 12]. In particular, we are given an n-vertex, m-
edge digraph G = (V,E) along with a capacity function u : E → R+

0 on its
edges. We are also given a set of k commodities. A commodity i, 1 ≤ i ≤ k, is a
tuple (si, ti, di, wti(·), fi(·), vi(·)), where si and ti are the source and sink nodes
for the commodity i respectively, di ∈ R+

0 is the demand of the commodity and
wti : E → R+

0 is the weight function for commodity i. The weight function
quanti�es the Quality of Service for commodity i (smaller weight means better
QoS). For any si-ti path p, wti(p) =

∑
e∈p wti(e). Let δi(si, ti) be the length of

the shortest path for commodity i with respect to the weight function wti(·).
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The non-decreasing function fi : [1,+∞) → [0, 1] is the elasticity function that
determines the portion fi(x) of the commodity's demand di that is lost, if a
path that is x times worse than the shortest path with respect to the weight
function wti(·) is used; that is, if a units of di were supposed to be sent in case
the provided path was shortest (optimal), then only (1 − fi(x))a units will be
shipped through the actually provided (non-optimal) path, while fi(x)a units
will be lost. Commodity i is also associated with a non-increasing pro�t function
vi : [1,+∞)→ R+

0 , which gives the pro�t vi(x) from shipping one unit of �ow of
commodity i through a path that is x times worse than the shortest path with
respect to the weight function wti(·). The objective is to maximize the total
pro�t, i.e., the sum over all commodities and over all paths of the �ow routed
for every commodity on each path multiplied by the commodity's pro�t subject
to the capacity and demand constraints and with respect to the QoS-elasticity of
demands and pro�ts. The above is called the QoS-aware Multicommodity Flow
problem.

Let Pi = {p : p is a si-ti path} be the set of candidate paths along which �ow
of commodity i can be sent and let Xi(p) ∈ R+

0 denote the �ow of commodity i
sent along path p. The de�nition of the elasticity function implies that for each
unit of �ow of commodity i routed along p, there are 1

1−fi(x)
units consumed

from the demand of the commodity. Thus, we de�ne a consumption function
hi : [1,+∞)→ [1,+∞) with hi(x) = 1

1−fi(x)
. Since fi is non-decreasing, hi is also

non-decreasing. Accordingly, the consumption hi(p) ≥ 1 of a path p is de�ned
as the amount of demand consumed for each unit of �ow routed along p, i.e.,

hi(p) = hi

(
wti(p)
δi(si,ti)

)
. Similarly, the value vi(p) of a path p is de�ned as the pro�t

from routing one unit of �ow of commodity i through p, i.e., vi(p) = vi
(
wti(p)
δi(si,ti)

)
.

Consequently, the QoS-aware MCF problem can be described by the following
LP:

max
k∑
i=1

∑
p∈Pi

vi(p)Xi(p)

s.t.
k∑
i=1

∑
e∈p,p∈Pi

Xi(p) ≤ u(e), ∀e ∈ E

∑
p∈Pi

Xi(p)hi(p) ≤ di, ∀i = 1, . . . , k

Xi(p) ≥ 0, ∀i = 1, . . . , k,∀p ∈ Pi
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The dual LP is as follows:

min D =
∑
e∈E

l(e)u(e) +
k∑
i=1

φidi (1)

s.t. l(p) + φihi(p) ≥ vi(p), ∀i = 1, . . . , k,∀p ∈ Pi (2)

l(p) ≥ 0, ∀p ∈ Pi,∀i = 1, . . . , k,
φi ≥ 0, ∀i = 1, . . . , k

The above primal problem is a packing linear program; that is, an LP of the
form max{cTx|Ax ≤ b, x ≥ 0}, where A, b and c are (M × N), (M × 1) and
(N × 1) matrices, respectively, the entries of which are all positive.

2.2 The Garg-Könemann Method and its Modi�cation by Fleischer

Garg and Könemann in [5] present an e�cient algorithm for approximately solv-
ing packing linear programs, based on the assumption that A(i, j) ≤ b(i), ∀i, j
� which can be achieved by appropriate scaling. They use the dual problem
min{bTy|ATy ≥ c, y ≥ 0} to identify the most violated constraint. Then, they
increase the corresponding primal variable so as to decrease this violation. The
most violated constraint is identi�ed by using an exact oracle.

The algorithm works as follows. Let the length of a column j with respect to
the dual variables y be lengthy(j) =

∑
iA(i, j)y(i)/c(j) and let α(y) denote the

length of the column with the minimum length; i.e., α(y) = minj lengthy(j).
Additionally, let D(y) = bTy. Then, the dual problem is equivalent to �nding a
variable assignment y such thatD(y)/α(y) is minimized. Let β = minyD(y)/α(y)
as well.

The algorithm proceeds in iterations. Let yk−1 be the dual variables and
fk−1 be the primal solution at the beginning of the k-th iteration. Let q denote
the minimum length column of A (i.e., α(yk−1) = lengthyk−1

(q)) and p be the

�minimum capacity� row (i.e., p = arg mini
b(i)
A(i,q) ). Then, we increase the primal

variable x(q) by an amount b(p)
A(p,q) so that fk = fk−1 + c(q) b(p)

A(p,q) . The dual

variables are updated as

yk(i) = yk−1(i)
(

1 + ε
b(p)/A(p, q)
b(i)/A(i, q)

)
where ε > 0 is a constant, the value of which depends on the desired approxi-
mation ratio. The initial values of the dual variables are y0(i) = δ/b(i), where

δ = (1 + ε)
(

(1− ε)M
)−1/ε

. For brevity, we denote α(yk) and D(yk) by α(k) and
D(k) respectively. Thus, D(0) = Mδ. The algorithm stops at the �rst iteration
t such that D(t) ≥ 1.

In [4], Fleischer introduced the concept of phases (for the special case of the
Maximum Multicommodity Flow problem, but this technique can be extended
to all packing linear programs), where the commodities are considered in a round
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robin manner and �ow is routed for commodity j, until the length of the shortest
sj-tj path exceeds α(1 + ε). Then, the running time is reduced by a factor of k,
since it avoids the k shortest path computations required by [5] for every routing
of �ow.

2.3 NASP routines

The approximation algorithms for solving the QoS-aware MCF problem that
we study in this work identify the most violated constraint of the dual LP by
repeatedly calling a subroutine that solves the so-called Non-Additive Shortest
Path (NASP) problem. NASP is a generalization of the classical shortest path
problem, in which the additivity assumption of the edge costs along paths does
not hold. More formally, in NASP, we are given a digraph G = (V,E) and a
d-dimensional cost vector c : E → [IR+]d associating each edge e with a vector
of attributes c(e) and a path p with a vector of attributes c(p) =

∑
e∈p c(e).

We are also given a d-attribute non-decreasing and non-linear utility func-
tion U : [IR+]d → IR. The objective is to �nd a path p∗, from a speci�c
source node s to a destination t, that minimizes the objective function, i.e.,
p∗ = argminp∈P (s,t)U(c(p)), where P (s, t) denotes the set of all s-t paths. It is
easy to see that in the case where U is linear, NASP reduces to the classical
single-objective shortest path problem. For the general case of non-linear U , it is
not di�cult to see that NASP is NP-hard. For the case of the QoS-aware MCF
problem, it turns out that we need a biobjective (d = 2) version of NASP, for
which both exact and approximate algorithms are known.

Exact NASP. In [10], a pseudopolynomial algorithm for solving exactly the
biobjective version of NASP is presented. This algorithm handles the case where
every edge (and hence every path) is associated with two attributes (e.g., cost
and resource) and the objective function is of the form U([x1, x2]T ) = U1(x1) +
U2(x2), where U1, U2 are any two non-linear, convex and non-decreasing func-
tions.

The algorithm consists of three phases:

1. It computes upper and lower bounds of the optimal solution using the Ex-
tended Hull Algorithm [10]. The running time of the Extended Hull Algo-
rithm is O(log(nRC)(m + n log n)), where n is the number of nodes of the
graph, m the number of edges and R and C the maximum values of the
resource and cost respectively.

2. It prunes the graph by eliminating those nodes and edges that do not lie on
the optimal path.

3. It closes the gap between the upper and lower bounds and �nds the optimal
solution by enumeration.

Although this is a pseudopolynomial algorithm (due to the 3rd phase), the
experimental study in [10] revealed that, in the vast majority of instances (98%),
Phases 2 and 3 are seldomly executed and the optimal solution is found after
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the �rst phase. Hence, for the vast majority of input instances, the running time
of the exact algorithm is bounded by the running time of the Extended Hull
algorithm.

Approximate NASP. In [12] an algorithm for �nding an approximate solution
to the d-objective version of the NASP problem was given, for any d ≥ 2 and for
a very broad class of utility functions. For the biobjective case of NASP we are
interested in this work, the algorithm in [12] boils down to the following result,
which is an immediate consequence of [12, Theorem 4].

Theorem 1. [12] Let the utility function of NASP be of the form U([x1, x2]T ) =
x1U1(x2) +U2(x2), where U1, U2 are any non-negative and non-decreasing func-
tions. Then, for any ε > 0, there is an algorithm that computes an (1 + ε)-
approximation to the optimum of NASP in time O(n2m log(nC1)

ε ), where C1 =
maxe∈E c1(e)
mine∈E c1(e)

.

3 Implemented Algorithms

We have implemented a host of algorithms for the QoS-aware MCF problem.
In particular: (1) The FPTAS in [11, 12], using as oracle the FPTAS for NASP
developed in [11, 12]. (2) The original GK approach [5] and its modi�cation with
phases as suggested by Fleischer [4], using as oracles both the exact algorithm for
NASP in [10] and the FPTAS for NASP in [11, 12], enhanced with the heuristics
in [2] that were proposed for the classical MCF problem. (3) The FPTAS in
[11, 12] incorporating some of the heuristics in [2], as well as the GK approach
enhanced with the heuristics in [2], and enhanced both with a new heuristic
that we develop. In the rest of this section, we provide a description of these
algorithms.

3.1 The FPTAS

The FPTAS in [11, 12] requests that u(e) ≥ 1,∀e ∈ E and di ≥ hi(p), i =
1, . . . , k, p ∈ Pi. This is enforced by scaling the capacities of the edges and

the demands for the commodities by min
{

mine∈E u(e),min1≤i≤k
di

hmaxi

}
, where

hmaxi = hi

(
(n−1) maxe∈E wti(e)

δi(si,ti)

)
is an upper bound for the maximum value of the

function hi(·).
Given an assignment (l, φ) for the dual variables, we de�ne the length of

a dual constraint as length(l,φ)(i, p) = l(p)+φihi(p)
vi(p)

. Then, the most violated

constraint of the dual problem is the path of the shortest length. We de�ne
the length of this path as α(l, φ) = min1≤i≤k minp∈Pi length(l,φ)(i, p). Initially,

l(e) = δ
u(e) ,∀e ∈ E and φi = δ

di
, i = 1, . . . , k, where δ = (1+ε)

(
(1+ε)(m+k)

)− 1
ε

.

The algorithm is iterative. Initially, all �ows are equal to zero. In each iter-
ation the algorithm makes a call to an oracle that returns a commodity i′ and
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a path p ∈ Pi′ that approximately minimizes the function length(l,φ)(i, q) over
all 1 ≤ i ≤ k and q ∈ Pi; that is, length(l,φ)(i

′, p) ≤ (1 + ε)α(l, φ). Then, the

algorithm augments ∆ = min
{

di′
hi′ (p)

,mine∈p u(e)
}

units of �ow for the com-

modity i′ along path p and updates the corresponding dual variables l and φ by

setting l(e) = l(e)(1 + ε ∆
u(e) ),∀e ∈ p and φi′ = φi′(1 + ε∆hi′ (p)di′

). D is updated

accordingly.
The algorithm terminates at the �rst iteration in which D =

∑
e∈E l(e)u(e)+∑k

i=1 φidi > 1. During the course of algorithm it can happen that more �ow is
sent along an edge than its capacity. It can be proved [4, 5, 11, 12] that the �nal
�ow has to be scaled by a factor of log1+ε

1+ε
δ in order to be feasible. The ratio of

the �ow sent along an edge and its capacity, during the course of the algorithm,
is called the congestion of the edge.

The (approximate) oracle that has to be called by the algorithm, in order to
�nd the most violated constraint of the dual, has to (approximately) minimize
the function

l(q) + φihi(q)
vi(q)

=
l(q) + φihi

(
wti(q)
δi(si,ti)

)
vi
(
wti(q)
δi(si,ti)

) .

For a �xed i this requires the solution of a NASP instance with objective function

U([x1, x2]T) =
x1 + φih

(
x2

δi(si,ti)

)
vi
(

x2
δi(si,ti)

)
and cost vector c = [l, wti]T. Clearly, the utility function is of the form required
by Theorem 1 and hence the approximate algorithm for solving NASP instances
can be used.

The calls to this oracle proceed in phases, following the technique introduced
in [4]. A lower bound estimation on the current length of the shortest path ᾱ

is maintained. Initially, ᾱ = 1
1+ε min1≤i≤k

{
l(pi)+φihi(pi)

vi(pi)

}
, where pi is the path

returned from the NASP routine for the speci�c commodity i. In each phase,
the oracle examines the commodities one by one and for each commodity i it

returns a path p such that l(p)+φihi(p)vi(p)
< ᾱ(1+ε)2. As long as there is such a path

for commodity i, the oracle sticks to this commodity. When no such path can
be found, the algorithm proceeds to the next commodity. After all commodities
have been considered in the current phase, it holds that α(l, φ) ≥ (1 + ε)ᾱ and
the algorithm proceeds to the next phase by setting ᾱ = ᾱ(1 + ε).

We call the above algorithm TZ-aNASP. Its complexity is given by the
following theorem.

Theorem 2. [11, 12] There is an algorithm that computes a (1+ε)2

(1−ε)2 -approximation

to the QoS-aware Multicommodity Flow problem in time O(( 1
ε )3(m+ k) log(m+

k)mn2( 1
ε log(m+k)+log(nU))), where n is the number of nodes, m is the number

of edges, k is the number of commodities and U = maxe∈E u(e)
mine∈E u(e)



On Assessing Robustness in Transportation Planning 9

3.2 Approximate Algorithms using Heuristic Methods

The second algorithm follows the GK approach for approximately solving pack-
ing LPs [5] improved with a few other techniques and heuristic methods. Its main
di�erence with Algorithm TZ-aNASP is that now we can use an exact (and not
only an approximate) oracle by employing the exact NASP algorithm described
in Section 2.3. Moreover, the algorithm terminates as soon as the ratio of the
dual solution to the primal is smaller than 1+ω, ω < 1 (it can be proved that this
is a valid termination criterion). In addition, we adapt and use a few heuristic
methods that were originally proposed in [2] for the classical MCF problem. In

the following, let vmax = maxi
{

vi

(
(n−1) maxe∈E wti(e)

δi(si,ti)

)}
be the upper bound of

the maximum value of the functions vi, over all commodities 1 ≤ i ≤ k. We have
implemented three methods of updating the best so far dual solution β (recall
its de�nition from Section 2.2).

� We use the best D/α ratio obtained so far.
� We consider the union of all si-ti cuts to obtain an upper bound on the
capacity of the multicut (the cut separating all si from all ti), which, when
multiplied with vmax is in turn an upper bound on β.

� We keep track of the capacity and the si-ti pairs separated by all cuts en-
countered in the course of shortest path computations, and run the greedy
algorithm for the set cover problem on the collection of cuts. In this re-
duction, the sets are the cuts, their cost is the capacity of the cut and the
elements they cover are the si-ti pairs separated by the cut. The value re-
turned multiplied with vmax is a tighter upper bound for β.

At each time, the smallest value obtained by these three methods is used to
update β, if necessary. Furthermore, the amount of �ow augmented along a
path is equal to max{f1,min{f2, f3}}, where f1, f2, f3 are the amounts of �ow
which, when routed along this path, would cause the length of the path to exceed
α(1 + ε), the congestion to exceed the maximum congestion, and the length of
the path to exceed D/β, respectively. We call this algorithm GK-H.

Apart from the above heuristic methods, we can take advantage of the struc-
ture of the QoS-aware MCF problem to obtain another upper bound on the dual
solution β. In the QoS-aware MCF problem, we are interested in augmenting di
units of �ow for commodity i, i = 1, . . . , k. That is, we want to augment

∑k
i=1 di

units of �ow in total at most (in case every commodity can use its shortest path
w.r.t. wti(·), i = 1, . . . , k). Hence, we can use the sum of demands of each com-
modity multiplied by vmax as an upper bound of the best dual solution (because
this is the maximum �ow we are interested in sending). We extend the previous
algorithm with this method and call the resulted algorithm GK-HD.

Additionally, we added the heuristic methods of algorithm GK-HD (except
for the methods involving cut computations, due to the fact that these compu-
tations cannot be added to the approximate NASP routine without incurring
extra overhead) to algorithm TZ-aNASP, and call the resulting algorithm TZ-
aNASP-HD.
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All the aforementioned algorithms work for the case that the pro�t function
is constant (e.g., vi(x) = 1, i = 1, 2, . . . , k). In the general case, in which the
pro�t function is non-increasing, only algorithms TZ-aNASP and TZ-aNASP-
HD are applicable. This is due to the fact that the other algorithms use the
exact NASP routine, which works, only if the utility function is of the particular
form described in Section 2.3.

4 Experimental Results

All algorithms were implemented in C++ using g++ (version 3.4.6). Additionally,
the LEDA library (version 5.2) was used. The experiments were performed on
a computer with two hyper-threaded Intel Xeon processors clocked at 2.8GHz.
The total RAM was 4GB.

Two sets of experiments were conducted. In the �rst set, the pro�t function
was vi(x) = 1. All algorithms are compared for this �rst set of data and we want
to see, the way that using an approximate NASP routine a�ects the execution
of the algorithms. In the second set the pro�t function was vi(x) = 1

x and, so,
only algorithms TZ-aNASP and TZ-aNASP-HD are considered. With this set
of experiments, we evaluate the performance of the original algorithms as well as
those obtained by incorporating the heuristic methods already described. For all
experiments the elasticity function was fi(x) = 1− 1

x2 , and so the consumption
function was hi(x) = x2. The total approximation ratio was set to 10%.

4.1 Synthetic Data Sets and Constant Pro�t

In the �rst set of experiments, three types of graphs were used to test the above
algorithms:

GRID(n, k) These are n × n (i.e., n2 nodes) grid graphs with k commodi-
ties. These were generated by the corresponding grid generator provided by
LEDA. Results were taken for graphs of sizes from 10 × 10 to 20 × 20. For
the 10× 10 to 14× 14 graphs the number of commodities was 5. For the rest
of the graphs the number of commodities was 10. The capacities of the edges
were randomly selected in [20, 30] and the weights of the edges in [1, 10]. The
demand for each commodity was randomly selected from the range [1, 10].
The source nodes were randomly selected from the nodes in the top row and
leftmost column of the grid, while the target nodes were selected from the
nodes in the bottom row and rightmost column of the grid in such a way
that a path connecting the source with the corresponding target node always
existed.

GENRMF(α, β) These are graphs consisted of β grid graphs of size α × α.
The nodes of each grid graph are connected with nodes of another grid in a
random way. Experiments were performed for (5, 5) up to (15, 10) graphs and
for 10 commodities. The capacities of the edges were randomly selected in
the range [6, 16] and the weights in [1, 10]. The demand for each commodity
was in [1, 10]. Details for the particular graph generator can be found in [6].
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NETGEN(n, m, k) These are graphs produced by the netgen generator, which
is described in [7]. The generated graphs had n nodes and m edges. In ad-
dition, k commodities were used for the graph. The capacities of the edges,
the weights of the edges and the demand for each commodity were randomly
selected in [5, 14], [1, 10] and [1, 10], respectively.

An initial set of experiments revealed two interesting outcomes: (i) The dom-
inating factor with respect to the running time was the calls to the NASP rou-
tines. (ii) There is a huge di�erence in performance between the exact NASP
(Section 2.3) and the approximate NASP routine (Section 2.3), especially for
large sizes of graphs, in favor of the former. This di�erence is justi�ed by the
theoretical running times of the two algorithms in combination with the chosen
numerical values and the form of the utility function. Moreover, the implementa-
tion of the exact NASP algorithm uses a few heuristics methods that considerably
speed up its execution. However, the approximate algorithm handles a broader
selection of instances w.r.t. numerical values and utility functions.

In view of the above, we will report our experimental results with respect to
the number of NASP calls (exact or approximate) performed by the algorithms.

To investigate the in�uence of the phases technique in [4], we start by com-
paring the original algorithm of Garg and Könemann (using the exact NASP
routine), referred to as GK-orig, and the same algorithm enhanced with the
phases technique, referred to as GK-F. The results for the case of grid graphs
are shown in Table 1. Similar results were obtained with the other graph families
(GENRMF and NETGEN).

Graph(n, k) Algorithm GK-orig Algorithm GK-F

GRID(10, 5) 60450 78880
GRID(11, 5) 61770 82200
GRID(12, 5) 64380 85030
GRID(13, 5) 66170 85953
GRID(14, 5) 68110 89352
GRID(15, 10) 277690 181874
GRID(16, 10) 283920 185770
GRID(17, 10) 289950 190001
GRID(18, 10) 296340 192066
GRID(19, 10) 300360 195570
GRID(20, 10) 305730 200118

Table 1. Comparison of algorithms GK-orig and GK-F in GRID graphs with all pro�t
functions set to 1. The number of NASP calls is presented.

We observe that for small graphs GK-orig is faster than GK-F. This happens,
because, in order to achieve the same total approximation error, a smaller value of
ε is used for the second algorithm, since the use of the phases introduces another
factor of error. That is, the approximation ratio of the �rst algorithm is 1

(1−ε)2 ,
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while the approximation ratio of the second algorithm is 1+ε
(1−ε)2 . However, when

the size of the graph and the number of commodities increase, we can see that
the second algorithm is quite faster than the �rst one, because the improvement
gained from the technique of phases is more signi�cant than using a smaller
value for ε for the total running time, resulting in a decrease in the required
NASP calls. This is expected, as the number of NASP calls in the original GK
approach is O( 1

ε2 km log n) [5] and the use of the phases technique reduces the
number of NASP calls to O( 1

ε2m log n) [4].
In Table 2 the number of NASP calls is presented for algorithms GK-F, TZ-

aNASP, GK-H, GK-HD and TZ-aNASP-HD for graphs of type GRID for sizes
up to 14 × 14 and 5 commodities. Experiments were also performed for larger
grid graphs (up to 20×20) with 10 commodities and for graphs of type NETGEN
and GENRMF and we obtained similar results.

Graph(n, k) GK-F TZ-aNASP GK-H GK-HD TZ-aNASP-HD

GRID(10, 5) 78880 90023 3426 1036 1105
GRID(11, 5) 82200 93389 4018 1909 2130
GRID(12, 5) 85030 97000 3781 856 877
GRID(13, 5) 85953 99036 2813 360 489
GRID(14, 5) 89352 102090 3084 337 340

Table 2. Comparison of algorithms in GRID graphs with all pro�t functions set ot 1.
The number of NASP calls is presented.

One can see that TZ-aNASP is inferior to GK-F. This is due to the smaller
value of the constant ε that has to be selected for the �rst algorithm, in order for
the total error to be the same in the two algorithms (the approximation ratios

are (1+ε)2

(1−ε)2 and 1+ε
(1−ε)2 respectively). On the other hand, TZ-aNASP can handle

a broader range of problem instances.

A second crucial observation from Table 2 is that the algorithms GK-H, GK-
HD and TZ-aNASP-HD that use the heuristic methods described in Section 3.2
outperform dramatically algorithms GK-F and TZ-aNASP. Applying the heuris-
tic methods has a bene�cial e�ect on the number of NASP calls required to �nd
an approximate solution, since a path is used to send �ow for as long as possible,
approaching faster the optimal solution.

A third important observation concerns the impact of the new heuristic in-
troduced in Section 3.2 and is based on the demands. We do not only observe
a dramatic improvement in the performance of TZ-aNASP, but also in that of
GK-H. This is due to the fact that by taking advantage of the extra knowledge of
demands in the problem a better upper bound can be computed faster, resulting
in more �ow being sent along a path per NASP computation.

To further elaborate on the e�ect of using the heuristic based on the demands,
we report, in Tables 3, 4 and 5, the experimental results of algorithms GK-H and
GK-HD on all synthetic data used, when vi(x) = 1, i = 1, 2, . . . , k. We can see
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that in all cases, the heuristic based on the demands results in an improvement in
the number of NASP calls required. The improvement depends on the structure
of the graph (e.g., for grid graphs the improvement is greater than for graphs of
type netgen) as well as the numerical data used.

Graph(n, k) GK-H GK-HD

GRID(10, 5) 3426 1036
GRID(11, 5) 4018 1909
GRID(12, 5) 3781 856
GRID(13, 5) 2813 360
GRID(14, 5) 3084 337
GRID(15, 10) 7252 1549
GRID(16, 10) 6383 1388
GRID(17, 10) 6746 1345
GRID(18, 10) 6874 955
GRID(19, 10) 6850 1644
GRID(20, 10) 5880 1391

Table 3. Comparison of algorithms GK-H and GK-HD in GRID graphs with all pro�t
functions set to 1. The number of NASP calls is presented.

Graph(α, β) GK-H GK-HD

GENRMF(5, 5) 5937 1572
GENRMF(6, 5) 6445 4817
GENRMF(7, 5) 6367 2203
GENRMF(8, 5) 7057 5718
GENRMF(9, 5) 7963 4611
GENRMF(10, 10) 6403 1894
GENRMF(11, 10) 6841 3102
GENRMF(12, 10) 7183 2513
GENRMF(13, 10) 8095 4751
GENRMF(14, 10) 6998 3073
GENRMF(15, 10) 7878 3249

Table 4. Comparison of algorithms GK-H and GK-HD in GENRMF graphs with
k = 10 commodities and all pro�t functions set to 1. The number of NASP calls is
presented.

4.2 Synthetic and Real-world Data Sets with Non-increasing Pro�t

The second set of experiments was conducted on grid graphs of sizes 10× 10 to
14× 14 with 5 commodities, and on real-world data from the German railways
comparing algorithms TZ-aNASP and TZ-aNASP-HD, which are the only ones
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Graph(n, m, k) GK-H GK-HD

NETGEN(100, 1000, 10) 14272 13561
NETGEN(200, 1300, 15) 21892 21709
NETGEN(200, 1500, 15) 19621 18985
NETGEN(200, 2000, 20) 32024 30766
NETGEN(300, 4000, 15) 23246 21330
NETGEN(500, 3000, 30) 43104 41260
NETGEN(700, 30000, 50) 76092 70018

Table 5. Comparison of algorithms GK-H and GK-HD in NETGEN graphs with all
pro�t functions set to 1. The number of NASP calls is presented.

that apply to this case of pro�t functions. The underlying network in the �rst
set of real-world data (R1) has 280 nodes and 354 edges, in the second set (R2)
296 nodes and 393 edges and in the third set (R3) 319 nodes and 452 edges. The
data are taken from the software platform LinTim [9]. For all sets of real-world
data, demands were in [4000, 10000], the wt functions corresponded to the length
of the edges of the train network ranging from a few hundred meters to more
than 100 Km and the capacity of an edge was in [800, 1600] . All pro�t functions
were set to 1

x . The results are presented in Tables 6 and 7.

Again one notes the signi�cant drop in the number of NASP calls required,
when the heuristic methods are used. We observe that TZ-aNASP-HD is from
14 up to 54 times faster than TZ-aNASP. This is, because the heuristic methods
allow for a path to be used multiple consecutive times in order to send �ow,
resulting in considerably fewer NASP calls by the algorithm, and hence achieving
a huge speedup.

5 Conclusions

In this paper an experimental study for the QoS-aware MCF problem was pre-
sented. Algorithms for this problem that follow the Garg & Könemann method
have to rely on solving an instance of a NASP problem. Using the exact NASP
routine results in fewer NASP calls than by using an approximate one (in or-
der to obtain the same approximation ratio for the algorithms). However, the
algorithms that use the approximate NASP routine are more general and en-
force less restrictions on the form of the problem. The results show clearly that
incorporating the described heuristic methods, and especially the new heuristic
based on the demands, yields signi�cant improvements in the running time of
the algorithms. The di�erence in NASP calls of algorithms TZ-aNASP and TZ-
aNASP-HD, or GK-orig and GK-HD is dramatic and, since the bottleneck in the
running time is the computation of the non-additive shortest path, there was an
accordingly great decrease in the running time of the corresponding algorithms.
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Graph(n, k) TZ-aNASP TZ-aNASP-HD

GRID(10, 5) 90538 1630
GRID(11, 5) 93389 2128
GRID(12, 5) 97000 930
GRID(13, 5) 99036 624
GRID(14, 5) 101801 605
GRID(15, 10) 208412 2356
GRID(20, 10) 228131 9291

Table 6. Comparison of algorithms TZ-aNASP and TZ-aNASP-HD in GRID graphs
with all pro�t functions set to 1

x
. The number of NASP calls is presented.

Data Set Commodities TZ-aNASP TZ-aNASP-HD Speedup

R1

5 68336 2022 33
10 120500 3229 37
15 185171 6984 26
20 216902 12615 17

R2

5 61241 1598 38
10 119855 4059 29
15 162239 5354 30
20 235181 16832 14

R3

5 74563 1357 54
10 165782 3894 42
15 247540 6548 37
20 247540 5911 41

Table 7. Comparison of algorithms TA-aNASP and TZ-aNASP-HD on the available
sets of real-world data with all pro�t functions set to 1

x
. The number of NASP calls

and the speedup is presented.
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Abstract. We address a problem in air traffic management: scheduling
flights in order to minimize the maximum number of aircraft that si-
multaneously lie within a single air traffic control sector at any time t.
Since the problem is a generalization of the NP-hard no-wait job-shop
scheduling, we resort to heuristics. We report experimental results for
real-world flight data.

Keywords: Air Traffic Management, trajectory scheduling, flight plan scheduling,
no-wait job shop.

1 Introduction

In the air traffic control system, the volume of airspace in the altitude range
that aircraft utilize is partitioned into a set of sectors. We consider the set of all
trajectories flown between city pairs. Any one trajectory is modeled as a polyg-
onal path, with each vertex (way point) being specified by a point, (x, y, z, t), in
space-time. For a given set of sectors and a given set of trajectories, we can com-
pute the occupancy count, nσ(t), of a sector σ at any time t. For purposes of air
traffic control, it is important that nσ(t) not be “too large”; often the occupancy
count is compared with the Monitor Alert Parameter (MAP) value of the sector
σ, which is related to the “capacity” of the sector. Depending on the timing and
routing of the flights, though, the MAP values of certain congested sectors are
often predicted to be exceeded (if current flights remain on filed flight plans),
resulting in the rerouting of aircraft to avoid those sectors that are anticipated
to be at or near full capacity during some period of time.

We consider the following scheduling problem: For a given set of trajecto-
ries and a given sectorization of airspace, determine alternate departure times
“close” to the originally scheduled times so that the modified trajectories result
in minimizing maxσ,t nσ(t), the maximum occupancy count of a sector over a
time window of interest.

J. Clausen, G. Di Stefano (Eds): ATMOS 2009 
9th Workshop on Algorithmic Approaches for Transportation Modeling, 
Optimization, and Systems  
http://drops.dagstuhl.de/opus/volltexte/2009/2144
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2 Problem Statement

Formally, the Min-Max Sector Workload Problem (MMSWP) is defined as fol-
lows. We are given a set Σ of sectors and a set Θ of periodic flight plans. The
common period of all plans is T , e.g., T = 24 hours. Corresponding to each flight
plan θ is a sequence Σθ = (σθ,1, σθ,2, . . .) of the sectors it visits, where σθ,k ∈ Σ,
∀k. Flight plan θ also has an associated departure time dθ ∈ [0, T ), and for each
sector σθ,k it has an associated dwell time, tθ,k (length of time in sector).

Assuming a flight θ departs daily with a delay of ∆θ, it will therefore be in
sector σθ,k during the intervals

Iθ(σθ,k, ∆θ) :=





∑

ℓ<k

tθ,ℓ,
∑

ℓ≤k

tθ,ℓ



 + dθ + ∆θ + TZ. (1)

Therefore, at time t ∈ [0, T ) (and also t + zT for any z ∈ Z), a total of

nσ(t) := |{θ ∈ Θ : t ∈ Iθ(σ, ∆θ)}| (2)

flights will be in sector σ ∈ Σ.
Our goal is to find delays (∆θ)θ∈Θ to minimize the overall maximum occu-

pancy count, maxσ,t nσ(t). The delays are constrained to be within the range
[0, D] for parameter D. Note that additionally allowing flights to leave early,
i.e., ∆θ < 0, does not change the problem due to the periodicity of flight plans:
A delay range [−a, b] is equivalent to [0, a + b], for a, b > 0. Therefore, we just
consider the problem where ∆θ ≥ 0.

3 Job-Shop Scheduling and Related Work

No-wait job-shop scheduling is defined as follows (see [5]): We are given a set of
m machines and a set of n jobs that have to be processed on these machines. For
each job i, we are given a sequence rik indicating that job i has to be processed
on the kth machine. Additionally, we are given the matrix pij (1 ≤ i ≤ n, 1 ≤
j ≤ m), stating the processing time of job i on machine j. Furthermore, the
following constraints hold:

– Sequence: Each job must be processed in order of its operations and no
interruption (preemption) of an operation is allowed.

– Synchronicity : No job can be processed by two machines at the same time
and no machine can process two jobs at the same time.

– No-wait : There must be no waiting time between two consecutive operations
of the same job.

When there is no constraint on the maximum delay, i.e., D ≥ T , our problem
is equivalent to “no-wait job-shop scheduling”. We represent each flight plan as
a job and each sector as a machine. We seek to minimize makespan, i.e., the
smallest time in which all jobs can be processed, where no two jobs can be
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on the same machine at the same time. The no-wait constraint ensures that,
once started, a job can neither be delayed between machines nor suspended
while being processed on one. An optimal solution to the job-shop problem with
makespan M can be converted trivially to a flight plan solution with maximum
occupancy ⌈M/T ⌉. Vice versa, an algorithm for flight plan scheduling also solves
job-shop by finding the largest λ for which a flight plan with all processing times
scaled by λ can be scheduled with maximum occupancy 1. This can be achieved
using binary search.

Lemma 1. Minimizing makespan in the no-wait job-shop scheduling problem is
polynomially equivalent to the Min-Max Sector Workload Problem (MMSWP).

No-wait job-shop scheduling has been studied in several papers; see, e.g., [8,
10, 11, 9, 7]. Bansal et al. [1] give a PTAS for a special case of the problem and
show hardness of approximation for another case. Karger et al. [6] provide a
survey of scheduling algorithms, defining the various terms and known results
for some of the basic problems. Since the job-shop problem is NP-hard, so is the
MMSWP, by Lemma 1.

Ariano et al. [3] formulate train scheduling as a job shop problem with no-
store constraints. Bertsimas et. al [2] solve an optimal combination of flow man-
agement actions, including ground holding, rerouting, speed control and airborne
holding on a flight-by-flight basis.

4 Simplified Cases

In this section, we examine some special cases of the problem. In all the cases
here, we consider D = T , so that there are no maximum delay constraints.

4.1 One-Sector Problem

In the simplest of cases, there is only sector σ0 and hence all the flight plans just
define the time interval the flight remains in this sector. For all θ ∈ Θ, σθ,1 = σ0.

If we remove periodicity of flight plans, i.e. put a constraint dθ+∆θ+tθ,1 ≤ T
hours for each flight θ, the optimal re-scheduling problem of minimizing the max-
workload exactly maps to the bin-packing problem, which is known to be hard
(by a reduction from set partition) and and to have an asymptotic PTAS [4]4.

If we consider periodic flight, then the one-sector problem has a trivial so-
lution given by assigning delay to make flights back to back. This gives a max-
workload of ⌈

∑

θ∈Θ tθ,1/T ⌉.

4 An asymptotic PTAS is an algorithm that, given ǫ > 0, produces a (1 + ǫ)- ap-
proximate solution provided OPT > C(ǫ) for some function C, and runs in time
polynomial in n for every fixed ǫ.
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4.2 Two-Sector Problem

The extension of the problem to two sectors, with a periodic schedule of flights,
seems like an interesting special case to understand the complications associated
with the no-wait constraint and also the periodicity of the schedules. It is much
easier to understand the two-sector problem by considering its exact equivalent
below.

makespan

2

R1

B1

R2

B3

B4

R4

R1 R4 R2

B1 B3B4

Fig. 1. Left: 4 kinds of blocks. Right: The tight-fitting in the groove of size 2.

Consider Figure 1. Let A, B be the sectors. The red rectangles indicate the
time interval of flights in A and the blue rectangles indicate intervals in B. Red to
the left of blue indicates that flight starts in A and single red rectangle indicates
the flight is only in A. Thus, the MMSWP corresponds to packing these blocks
of rectangles as tightly as possible in the groove of width 2, constraining that
red rectangles strictly remain in the upper row, blue rectangles strictly remain
in the lower row and none of the rectangles overlap.

It turns out that periodicity does not really help for this case, as this version of
the problem also turns out to be NP-complete by reduction from 3-PARTITION
PROBLEM.

Theorem 1. The MMSWP within 2 sectors is NP-Complete.

Proof. 3m numbers a1, a2, . . . , a3m are given for a 3-PARTITION PROBLEM
instance P . All of these number are between B/4 and B/2, where mB is the
total sum of a1, . . . , a3m. We show the optimal solution of minimizing workload
overall sectors gives us the solution of this problem.

Let’s construct the MMSWP problem instance corresponding given input m,
B, and ai’s. There are two sectors σ1 and σ2. Let time horizon T be (mB + m).
For given numbers ai where i ∈ {1, . . . , 3m}, we generate flights θi which visits
only σ1 with staying time ai, i.e., Σθi

= (σ1) and tθi,1 = ai for i ∈ {1, 2, . . . , 3m}.
And we prepare additional m flights θ3m+1, . . . , θ3m+m which visit σ2 for time
(B + 1) and then σ1 for 1. i.e, Σθj

= (σ2, σ1) and tθj ,1 = (B + 1), tθj ,2 = 1 for
j ∈ {3m + 1, . . . , 3m + m}.

Then, we claim that if we minimize maximum workload over all sectors for
this problem as 1, then we are able to solve given P .

In order to make workload as 1 for σ2, we have to arrange θ3m+1, . . . , θ3m+3

back-to-back like dark-gray blocks in Figure 2. Then there are m intervals with
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length B in σ1. Now finding a placement of θ1, . . . , θ3m (light gray blocks in
Figure 2) to make workload of σ1 as 1 is finding a partition of {a1, . . . , a3m}
such that each sum is exactly B.

0 T

mB + m

B

1

θ3m+1 θ3m+2 θ3m+m

θ1 θ2 θ3m

σ1

σ2

B + 1

Fig. 2. 2 sectors workload problem construction for given 3-Partition problem instance

5 Algorithms

In this section, we present heuristics to solve the MMSWP.

5.1 Shifting

Starting with the original flight schedule, we pick the sector with worst max-
workload (in case of tie check each one of them), and look at the time interval
where the max-workload is worse. All the flights present in the sector in that
time interval are considered for re-scheduling (shifting) and the one which gives
the “best” improvement is selected greedily. The goodness of a shift is judged
by its effect on the workload vector which stores the workloads of all sectors in
the sorted order. The flight whose re-scheduling gives the best improvement in
lexicographic ordering of the workload vector is selected (in case of ties, we pick
the flight which has the least difference in the re-schedule time and the original
schedule). The process is repeated till all shifts at a given iteration worsen the
workload vector. (Note that shifts keep taking place even when the workload
vector remains same).
We constrain the greedy shifting to be of the following three kinds:

– Right Shift - The flights are only allowed to be postponed.

– Left Shift - The flight are only allowed to be preponed.

– Short Shift - The decision of postpone/prepone is decided by the amount of
shift, and the shorter one is picked.
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It is possible to get into loop if we allow shifts in both directions. In our
experiments, we only use right shifts to finish algorithm certainly. Since we al-
low shifts without strict workload vector improvement, all shifts after the last
workload vector change are restored when the algorithm is finished.

We also devise an incremental heuristic, in which flights are added one by one
(in a random order). With each new flight addition, we run complete experiment
of a shift heuristic considering all the flights previously added along with this
one.

5.2 Randomized Rounding

The randomized rounding algorithm solves a linear problem formulation whose
variables describe a probability distribution for each flight plan. Then, a solution
is generated by drawing delays from these distributions.

We evenly divide the interval [0, D] into a discrete set of delays {0 = d0, d1, . . . ,
dm = D}. Also we slice the 24h-period T into n pieces {0 = t0, t1, . . . , tn = T}.

For each flight θ, the linear formulation has a variable xθ(di) for each di, 0 ≤
i ≤ m. The interpretation (in terms of the finally assigned delay ∆θ) is

xθ(di) = Pr[∆θ ≥ di] .

So the xθ(·) define a probability function on [0, D] for every flight (the density is
constant within each interval [di, di+1), that is, the distribution is uniform within
each interval). To make sure the xθ(di) define a proper probability distribution,
we use the constraints

1 = xθ(d0) ≥ xθ(d1) ≥ · · · ≥ xθ(dm) = 0.

This means the probability that a flight delay is in the range [di, dj ] is xθ(di)−
xθ(dj), so the probabilities are nicely encoded in the formulation. Note that

Pr[flight θ is in sector σ at time t]

is a linear term in the xθ(·) variables. To see this, translate t into a range [∆θ,∆θ]
of delays where a flight would start to be in σ at t. The probabilities are then:

– Some of the first interval with di ≤ ∆θ ≤ di+1, that is,

Pr[θ is in σ at t , ∆θ ∈ [di, di+1)] =
di+1 −∆θ

di+1 − di
(xθ(di)− xθ(di+1)) .

– All of the intervals ∆θ ≤ di ≤ . . . di+1 ≤ ∆θ, in a similar fashion.
– Some interval part around ∆θ, again analogous to the first case.

By adding the cases, one can see how Pr[θ is in σ at t] is a linear term with up to
four coefficients. Obviously there are a number of special cases when [∆θ,∆θ] 6⊆
[0, D]; these are easy to resolve and left out in this presentation. So we can now
describe the expected load of sector σ at time t by the linear term

E[number of flights in σ at time t] =
∑

θ∈Θ

Pr[θ is in σ at t].
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Hence, we solve the following LP:

min C

s.t. E[number of flights in σ at time t] ≤ C ∀σ ∈ Σ, t ∈ {To, . . . , Tn}

1 = xθ(d0) ≥ xθ(d1) ≥ · · · ≥ xθ(dm) = 0 ∀θ ∈ Θ ,

which gives us a probability distribution for each ∆θ, so we now generate actual
∆θ values following these distributions.

An interesting variant arises when we add integrality constraints to the LP,
as this forbids smearing flights over many delay intervals. As the resulting IPs
are typically impossible to solve within reasonable time, we employ a different
strategy: First, the LP-based heuristic is run. We identify the most crowded
sectors, and add integrality constraints for tracks passing these sectors. At the
same time, we vary n and m for different sectors and tracks, such that the
crowded sectors get a more detailed formulation than the others.

6 Lower Bounds

6.1 A Simple Bound

The optimal one sector solution for a sector σ (refer to Section 4.1), for D =
T , independent of any other sector, is a naive lower bound to its max-workload
attained by any scheduling, for any D. Thus, we can optimize each sector indi-
vidually, and pick the maximum value over all sectors, to obtain a lower bound
on the workload attained by an optimal scheduling.

6.2 Linear Programming

The second lower bound algorithm is based on the randomized rounding al-
gorithm. Assume that all the xθ(·) are binary, i.e., 0 or 1 (see Section 5.2 for
details). If now xθ(di)− xθ(dj) = 1, then flight θ will have a delay ∆θ ∈ [di, dj ].

For a track θ ∈ Θ, a sector σ ∈ Σ and a time t, we again compute the interval
[∆θ,∆θ] of delays for θ under which θ will be in σ at t. Then we determine the
smallest di ≥ ∆θ and the largest dj ≤ ∆θ. Then, when xθ(di)− xθ(dj) = 1, the
flight will be in σ at t. So define gθ(σ, t) := xθ(di)− xθ(dj).

The following IP charges 1 towards the maximum capacity C when a track
is guaranteed to be in σ at t:

min C

s.t.
∑

θ∈Θ

gθ(σ, t) ≤ C ∀σ ∈ Σ, t ∈ {To, . . . , Tn}

1 = xθ(d0) ≥ xθ(d1) ≥ · · · ≥ xθ(dm) = 0 ∀θ ∈ Θ

xθ(di) ∈ {0, 1} ∀θ ∈ Θ, i = 0, . . . ,m

The optimal solution to this IP is a lower bound to the original problem. For
efficiency reasons, we do not solve this IP directly, but rather its LP relaxation,
which is obtained by dropping the integrality constraint.
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7 Results

We use real-world flight track data and sector data from the National Airspace
System (NAS). The data, as shown in Table 1, is divided into 5 sets depending
on the number of sectors. The alt-range defines the range of altitude for the air-
traffic in the sectors. The high-altitude sectors typically have alt-range 24, 000
feet and above. Set1, Set2 and Set3 consider flight tracks for the entire 24
hour time period while Set4 considers only the flights that overlap a 4 hour
time window. Note that the flight times may start or end outside the 4 hour
time window. Also, Set4 includes all the sectors spanned by these flights, thus
having high-altitude sectors, low-altitude sectors and some sectors from Canada
as well.

No. of Sectors Alt-Range Flights Time Window

Set1 5 ≥ 24k feet 1904 0− 24 hrs

Set2 18 ≥ 24k feet 3063 0− 24 hrs

Set3 57 ≥ 0 feet 12123 0− 24 hrs

Set4 1281 Different 11986 14− 18 hrs

Set5 16 ≥ 24k feet 4994 0− 24 hrs
Table 1. Summary of data sets used for experimentation.

Set5 (random data) consists of a 300 × 300 nautical miles square region
divided into 16 sectors in the form of a square grid. Then, 64 (uniform) random
cities were generated such that 10% of cities had weight 10, 15% had weight 5,
and the remaining had weight 1. In total, 4994 random flights were generated
between (weighted uniform) randomly chosen city pairs, with each city having
probability of selection proportional to its weight. The departure-time of a flight
was (uniform) randomly generated between 0− 24 hours. The (constant) speed
of an aircraft was modeled as a (uniform) random variable between 200 and
600 nautical miles per hour. The arrival-time of a flight was calculated from the
departure time, the speed of the aircraft, and the distance between the cities in
the pair. An additional constraint was added that no two aircraft depart from
(or arrive) at a city within 1 minute of each other. A visualization of data sets
Set1, Set2 and Set5 can be seen in Figure 3.

We implemented our algorithms and ran them on the five data sets. For
the LP-based algorithms, we used CPLEX 10.0 on a 3.0 GHz Linux machine.
We solved each instance using a few parameter sets, varying the number of
discretizations in delay (i.e., m) and daytime slices (i.e., n). The most often used
values of m = 30 and n = 720 correspond to having one variable per two minutes
of delay and one constraint for every other minute of the day. We imposed a
runtime limit of 60 minutes on the algorithm. Table 2 describes these runs and
lists the according algorithm runtimes. Runtimes for the other heuristics are not
listed, as they always finish within a few seconds.
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Fig. 3. Left: Set1 sectors and the underlying square grid (and shifted square grid)
cover (grid resolution: 0.1x0.1); Center: Set2 sectors and grid cover (1x1). Right: Set5
(randomly generated) flight tracks with the underlying sectors. The numbers in the
sectors indicate the max-workload counts for the used flight schedules.

Set1 Set2 Set3 Set4 Set5
m n Time m n Time m n Time m n Time m n Time

LP Lower 30 720 1:20 30 720 1:50 30 720 9:10 60 1440 17:19 30 720 10:26

MIP Lower 30 720 3:04 – – – 12 288 10:18 12 288 14:44 – – –

Rand. Rounding 30 720 22:24 12 288 1:05 12 288 30:07 30 720 57:11 12 288 10:18

MIP Rounding 12 288 0:28 12 288 0:33 12 288 56:17 12 288 17:30 12 288 5:13
Table 2. Details for LP-based heuristics, showing the discretization granularity and
total algorithm runtimes in minutes.

Set1 Set2 Set3 Set4 Set5
Max Mean Var Max Mean Var Max Mean Var Max Mean Var Max Mean Var

Original plan 22 18.00 6.80 18 12.83 12.25 38 21.56 36.70 58 7.67 37.88 24 13.00 46.13

Right Shift 18 16.40 1.04 14 11.11 3.99 31 20.77 26.27 47 7.61 36.35 19 11.75 29.01

Incr. Right Shift 15 13.80 0.96 12 10.17 2.25 26 18.75 16.40 39 7.51 34.50 17 10.81 20.66

Rand. Rounding 14 13.40 0.24 14 11.67 4.00 28 22.94 19.50 42 8.04 40.50 19 12.50 25.00

MIP 15 14.40 0.24 14 11.22 4.73 28 23.47 16.18 43 8.22 44.90 19 12.50 30.13

Naive LP IP Naive LP IP Naive LP IP Naive LP IP Naive LP IP

Lower Bound 6 9 9 5 8 – 16 20 14 12 31 22 13 11 –

Table 3. Workload statistics of algorithms. Max: Maximum Workload, Mean: Mean
of workload, Var: Variance of workload

Set1 (1904 flt) Set2 (3063 flt) Set3 (12123 flt) Set4 (11986 flt) Set5 (4994 flt)
Max Total Avg Max Total Avg Max Total Avg Max Total Avg Max Total Avg

Right Shift 6 46 1 9 5:25 1 17 5:18 1 53 12:53 4 7 3:8 1

Incr. Right Shift 49 2:00:46 4 52 3:16:21 6 60 18:21:7 6 60 14:22:54 17 54 4:18:5 4

Rand. Rounding 60 13:22:24 10 60 13:06:48 6 60 35:18:15 4 58 50:10:59 6 55 59:16:33 17

MIP 60 14:21:48 12 60 15:21:42 7 60 37:10:59 4 55 90:00:38 11 55 60:05:50 17

Table 4. Time shift statistics of various methods. Max: Max shift, Total: Sum of
absolute value of shift, Avg: Average of absolute value of non-zero shifts. (format
14:21:48 means 14 days 21 hours 48 minutes)
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Table 3 shows the comparison of max-workload statistics of the given flight
plans, the heuristic solutions and the LP based methods. The maximum allow-
able shift to any flight schedule was constrained to be 1 hour in all methods.
The discretization of time for LP/IP methods is 1 minute. The results show a
considerable improvement over the workloads of each sector arising due to the
original flight schedules. Even the variance values have gone down significantly,
indicating more balance of workload across sectors. In particular, the incremen-
tal shift heuristic seems to out-perform all the other methods. Note that the
shifting heuristics do not discretize the time like LP/MIP methods. The ‘-’ val-
ues in Table 3 refer to experiments for which no solution was found during more
than a week of running time.

Table 3 also shows the lower bound calculations for the 5 sets. The best
solutions are still not close to the computed lower bounds, but we believe they
are very close to optimal solutions. Future work will specifically aim to improve
the lower bounds.

Table 4 shows the statistics of the amount of time shifts from the original
schedule. Max indicates the maximum shift in any flight schedule, Total indicates
the sum of absolute values of shifts, and the Avg gives the average time shift of
all flights with non-zero shifts. The value of Total in the case of the right shift
heuristic is noticeably small compared to other methods, possibly because of
early termination due to reaching a local minimum. Also, the average time shift
is seen to be low for all the methods, suggesting that we can get considerable
improvements in workloads with reasonable modification to the schedules.

8 Other Workload Considerations

Apart from the max-workload of a sector, there are other workload issues which
are significant from the controller perspective. One of them, usually referred to
as coordination workload, deals with the hand-offs between controllers when an
aircraft moves from one sector to the other. Another critical issue is the conflict
resolution workload, which is related to monitoring the aircraft when they are
expected to be simultaneously present at (or near) the same geographic point (a
“conflict point”). Note that even if two aircraft are flying at different altitudes,
at the conflict point, they demand special attention of the controller.

While re-scheduling flights has no effect on the coordination workload, it
can favorably affect the conflict resolution workload, by reducing the number
of conflict points. It is easy to incorporate conflict resolution workload in the
model, as we now discuss.

We sub-divide the region (spanned by the sectors) into (reasonably) small
size cells and compute the max-workload in each cell separately. If the size of
the cell is small, a high max-workload cell corresponds to a conflict point, where
multiple aircraft are in close proximity simultaneously. We add these cells as
new (artificial) sectors to the data set and try to minimize their workload vector
separately, thereby (possibly) decreasing the number of conflict points.
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The shifting heuristic is now modified to be a two-step procedure. The first
step considers the overall maximum value of the max-workload across all cells to
be a constraint: The aircraft are re-scheduled to improve the workload vector of
the sectors, as before, while keeping the workloads in all cells below a specified
Wc. In the second step, the roles of sectors and cells are reversed: The optimized
maximum value of the workload of the sectors is treated as a constraint, and the
aircraft are re-scheduled with the objective of improving the workload vector of
the cells.

For experimentation, these cells come from a uniform (square) grid and a
shifted uniform grid as shown in Figure 3 covering the region spanned by the
sectors. Two different side lengths of square grid cells are used, 0.1 × 0.1 and
0.2 × 0.2 (unit latitude/longitude degrees). In Set1, Set2 and Set5, 1 degree
corresponds to somewhere in the range of 35−60 nautical miles. Table 5 shows the
results of the workload improvements with the cell constraints. We observe that
the max-workloads of the sectors still improve, compared with the original (18
v/s 22 for Set1), while the number of conflict points are considerably decreased
(see Figure 4). For Set1, after scheduling there are no grid cells with workload
4, while the number of cells with workload 3 has also decreased by more than
90%.

Set1 (Given SMax: 22) Set2 (Given SMax: 18) Set5 (Given SMax: 24)
Grid Size Given Shifted Given Shifted Given Shifted

GMax GMean SMax GMax GMean GMax GMean SMax GMax GMean GMax GMean SMax GMax GMean

0.1×0.1 4 1.670 18 3 1.604 4 1.467 14 4 1.478 11 1.609 19 8 1.598

0.2×0.2 5 2.446 18 4 2.356 5 2.105 14 4 2.083 14 2.271 19 10 2.243

Table 5. Results of Right-Shift heuristic with additional grid constraints. SMax: Sector
Max, SMean: Sector Mean, GMax: Grid Max, GMean: Grid Mean.

Fig. 4. Left: Set1 grid cell max-workloads; Right: Set2 grid cell max-workloads (before
and after scheduling, for grid size 0.1× 0.1)
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9 Conclusion

We presented a periodic flight plan scheduling problem, proved it to be NP-hard,
and proposed heuristics for which we reported experimental results on real-world
data. The results show a considerable workload improvement over the originally
scheduled flight times and come at low computational cost. The reduction in the
number of conflict points was also impressive. Future work will specifically aim to
improve the lower bound, as we believe that the heuristically produced solutions
are already almost optimal. Also, we are interested in combining re-routing with
re-scheduling to improve further the workloads.
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