9th Workshop on
Algorithmic Approaches for
Transportation Modeling,
Optimization, and Systems

ATMOS 2009, September 10, 2009, Copenhagen, Denmark

Edited by
Jens Clausen

Gabriele Di Stefano

\\v OASICS

OASlcs — Vol. 12 - ATMOS 2009

www.dagstuhl.de/oasics

ooeo

Editors

Jens Clausen Gabriele Di Stefano

Department of Mathematical Modelling Department of Electrical and Information Engineering
Technical University of Denmark University of L'Aquila

2800 Kgs. Lyngby, Denmark 67100, Monteluco di Roio, L'Aquila, Italy
jc@imm.dtu.dk gabriele.distefano@univaq.it

ACM Classification 1998
F.2 Analysis of Algorithms and Problem Complexity, G.1.6 Optimization, G.2.2 Graph Theory, G.2.3
Applications

ISBN 978-3-939897-11-8

Published online and open access by
Schloss Dagstuhl — Leibniz-Center for Informatics GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany.

Publication date
November, 2009.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works license:
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.

In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the author’'s moral rights:

Attribution: The work must be attributed to its authors.
Noncommercial: The work may not be used for commercial purposes.

No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASlcs.ATMOS.2009.i

ISBN 978-3-939897-11-8 ISSN 2190-6807 http://www.dagstuhl.de/oasics

OASlcs — OpenAccess Series in Informatics

OASilcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASlIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

ISSN 2190-6807

www.dagstuhl.de/oasics

ATMOS 2009 Preface:
Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems

Jens Clausen!, Gabriele Di Stefano?

! Department of Mathematical Modelling, Technical University of Denmark
jc@imm.dtu.dk
2 Department of Electrical and Information Engineering, University of L’ Aquila
gabriele.distefano@univaq.it

The 9th ATMOS workshop was held in Copenhagen, September 10, 2008,
within ALGO, an annual meeting combining European algorithms conferences
and workshops. The past workshops of ATMOS were held in Heraklion in 2001,
Malaga in 2002, Budapest in 2003, Bergen in 2004, Palma de Mallorca in 2005,
Ziirich in 2006, Sevilla in 2007, and Karlsruhe in 2008.

The ALGO web page states: “An important area of algorithms, called com-
binatorial optimization, is concerned with finding solutions to solving problems
that arise in logistics and planning. ATMOS, one of the conferences hosted by
ALGO, focuses specifically on transportation: how to schedule trains so as to
minimize the number of trips with empty cars, or how to pack containers into a
ship. Such questions are solved with the aid of computers, and algorithms are re-
sponsible for computing the solution. Better algorithms solve the same problem
using fewer trains, pack more containers per trip, or find routes that consume
less fuel”.

ATMOS represents a well established series of meetings between algorithms
researchers and practitioners who are interested in all aspects of algorithmic
methods and models for transportation optimization and provides a forum for
the exchange and dissemination of new ideas and techniques. In the last years the
scope of the workshop has been broadened to comprise all modes of transporta-
tion. Scheduled transportation networks give rise to very complex and large-
scale network optimization problems requiring innovative solution techniques
and ideas from mathematical optimization and theoretical computer science.
Applicable tools and concepts include those from graph and network algorithms,
combinatorial optimization, approximation and online algorithms, stochastic and
robust optimization.

Of particular interest are the following areas:

Infrastructure Planning

Line Planning

- Timetable Generation

Routing and Platform Assignment
- Vehicle Scheduling

- Crew and Duty Scheduling

J. Clausen, G. Di Stefano (Eds): ATMOS 2009

9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2009/2294

- Rostering

- Demand Forecasting

- Design of Tariff Systems

- Maintenance and Shunting of Rolling Stock
- Delay Management

- Rolling Stock Rescheduling

- Simulation Tools for Railway Operations

- Timetable Information

More generally, ATMOS aims at communicating the successful integration
of several of these subproblems or planning stages, algorithms operating in an
online/realtime or stochastic setting, and heuristic or approximate algorithms
for real-world instances.

Twelve paper were submitted for ATMOS 2009, and nine of them were se-
lected for presentation and inclusion in the current volume. The reviewing pro-
cess was guided by the program committee consisting of

- Serafino Cicerone, University of L’Aquila, Italy

- Jens Clausen, Technical University of Denmark, (Chair)

- Gabriele Di Stefano, University of L’Aquila, Italy (Chair)

- Michel Gendreau, Université de Montréal, Canada

- Riko Jacob, Technical University Mnchen, Germany

- Julie Jespersen Groth, DSB S-tog, Denmark

- Leo Kroon, RSM Erasmus University and Netherlands Railways, The Nether-
lands

- Gilbert Laporte, HEC Montral and GERAD, Canada

- Juan A. Mesa, University of Sevilla, Spain

- Anita Schébel, University of Goettingen, Germany

- Martin Skutella, Technical University Berlin, Germany

- Paolo Toth, University of Bologna, Italy

- Gerhard J. Woeginger, Eindhoven University of Technology, The Nether-
lands

- Christos Zaroliagis, CTI and University of Patras, Greece

We wish to thank the program committee for the care in selecting the best
papers and all the external referees for their help.

Our special thanks goes to Dorothea Wagner for accepting to be the invited
speaker of ATMOS and for giving an inspiring talk on “Algorithm Engineering
for Route Planning in Realistic Scenarios ”, showing fundamental results of more
than ten years of researches in the field of shortest paths algorithms and route
planning.

Finally, we thank the organizer Thore Husfeldt, for his professional man-
agement, all the members of the ALGO organizing committee, the editors of

the Dagstuhl Seminar Proceedings for accepting the publication of this volume
within DROPS, and all the participants for their lively interaction at the AT-
MOS sections.

Copenhagen and L’Aquila, November 2009

Jens Clausen and Gabriele Di Stefano

Accelerating Time-Dependent Multi-Criteria
Timetable Information is Harder Than Expected*

Annabell Berger!, Daniel Delling?, Andreas Gebhardt!, and
Matthias Miiller-Hannemann'

! Department of Computer Science, Martin-Luther-University Halle-Wittenberg,
Von-Seckendorff-Platz 1, 06120 Halle, Germany
{berger,gebhardt,muellerh}@informatik.uni-halle.de
2 Department of Computer Science, University of Karlsruhe, P.O. Box 6980, 76128
Karlsruhe, Germany. delling@informatik.uni-karlsruhe.de

Abstract. Speeding up multi-criteria search in real timetable informa-
tion systems remains a challenge in spite of impressive progress achieved
in recent years for related problems in road networks. Our goal is to
perform multi-criteria range queries, that is, to find all Pareto-optimal
connections with respect to travel time and number of transfers within
a given start time interval. This problem can be modeled as a path
search problem in a time- and event-dependent graph. In this paper, we
investigate two key speed-up techniques for a multi-criteria variant of
DuksTRA’s algorithm — arc flags and contraction — which seem to be
strong candidates for railway networks, too. We describe in detail how
these two techniques have to be adapted for a multi-criteria scenario and
explain why we can expect only marginal speed-ups (compared to obser-
vations in road networks) from a direct implementation. Based on these
insights we extend traditional arc-flags to time-period flags and introduce
route contraction as a substitute for node contraction. A computational
study on real queries demonstrates that these techniques combined with
goal-directed search lead to a speed-up of factor 13.08 over the baseline
variant for range queries for a full day.

Keywords: timetable information, multi-criteria search, time-dependent
networks, arc flags, contraction

1 Introduction

In recent years there has been growing interest in high-performance timetable
information systems [22]. While exact single-criterion search is well understood
and already quite efficient, multi-criteria timetable information remains a chal-
lenge. Therefore, commercial state-of-the-art systems still use only heuristics to

* This work was partially supported by the DFG Focus Program Algorithm Engi-
neering, grant Mu 1482/4-1. We wish to thank Deutsche Bahn AG for providing us
timetable data for scientific use.

J. Clausen, G. Di Stefano (Eds): ATMOS 2009

9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems

http://drops.dagstuhl.de/opus/vol ltexte/2009/2148

2 A. Berger, D. Delling, A. Gebhardt, and M. Miiller-Hannemann

determine relevant connections for their customers. Since there has been impres-
sive progress with speed-up techniques for related problems in road networks,
it seems natural to start an attempt to transfer the underlying methods to a
railway scenario.

In this paper, we report on a project where we worked out the necessary
details to augment standard search techniques by additional information ob-
tained in a preprocessing phase. We investigate two key speed-up techniques for
a multi-criteria variant of DIJKSTRA’s algorithm — arc flags and contraction.

Related Work. Many speed-up techniques for single-criteria scenarios have
been developed during the last years. Due to space limitations, we direct the
interested reader to [8] and [10], which give recent overviews over single-criteria
time-independent and time-dependent route planning techniques, respectively.

Basics. The straightforward approach to find all Pareto optimal paths is the
generalization [15,18,20] of DIJKSTRA’s algorithm: Each node v € V gets a
number of multi-dimensional labels assigned, representing all Pareto paths to
v. For the bicriteria case, Hansen [15] was the first presenting such a general-
ization, while Theune [30] describes multi-criteria algorithms in detail. By this
generalization, DIJKSTRA loses the property that each node is visited only once.
It turns out that a crucial problem for multi-criteria routing is the number of
label entries assigned to the nodes. The more label entries are created, the more
nodes are reinserted in the priority queue yielding considerably slow-downs com-
pared to the single-criterion setup. In the worst case, the number of labels can be
exponential in |V| yielding impractical running times [15], and also memory con-
sumption becomes an issue. Hence, Hansen [15] and Warburtun [31] present an
FPTAS (fully polynomial time approximation scheme) for the bicriteria shortest
path problem.

Speed-up Techniques. Most of the work on speed-up techniques for multi-criteria,
scenarios was done on networks derived from timetable information. In such net-
works, Miiller-Hannemann and Weihe [23] observed that the number of labels
is often limited such that the brute force approach for finding all Pareto paths
is often feasible. Experimental studies finding Pareto paths in timetable graphs
can be found in [25, 26,29, 27,21, 14, 11]. We would like to point out that one has
to distinguish between finding all Pareto paths and only finding one representa-
tive for each equivalenve class of paths with the same tuple of objective values.
Previous work usually guarantees only the weaker second version.

SHARC, a route planning algorithm developed by one of this work’s co-
authors, has been introduced in [2, 3]. Originally, SHARC only worked on time-
independent networks. In [6, 7], it has successfully been adapted to time-depen-
dent road and railway networks, and very recently, even to a (time-independent)
multi-criteria scenario [9]. However, experiments for the multi-criteria variant
were only conducted on time-independent road networks. So, to the best of our
knowledge, no advanced speed-up technique has yet been adapted to a realistic
multi-criteria timetable information system on time-dependent networks.

Accelerating Time-Dependent Multi-Criteria Timetable Information 3

Our contribution and overview. This paper is devoted to transfer advanced
speed-up techniques to time-dependent railway networks. In contrast to most
previous scientific work, we consider a scenario with the following features:

— Our model is a fully realistic model, where traffic days, business rules on
required transfer times between connecting trains, footpaths between neigh-
boring stations, train attributes, and the like are respected.

— We aim at finding all Pareto optimal paths for two criteria, travel time and
number of transfers. We would like to emphasize that we here mean the
strong version which really enumerates all Pareto paths, and not just one
representative path for each non-dominated pair of objective values. Since
there are often several possibilities to change between the same two trains,
this leads to a much larger set of paths. The motivation to search for these
paths comes from practice: railway companies have preferences at which
stations their passengers should change trains. Hence, they would like to
select from the complete set of Pareto paths a subset which they present to
customers.

— We want to perform a range search for an arbitrary user-specified start-time
interval (not only from a single desired start point). As a result, we are able
to compute the complete connection table between two arbitrary stations for
a full day.

To model this scenario we will introduce a station graph model with train
routes which is slightly more compact than those used in Disser et al. [11]. While
Dijkstra’s algorithm can be easily generalized to time-dependent graphs in the
single-criterion case [5], one has to be more careful in a multi-criteria setting.
The crucial operation in a multi-criteria search algorithm is to decide which
subpaths can be safely dominated. To ensure correctness subpath optimality is
required, and therefore Miiller-Hannemann and Berger [4] extended the classical
time-dependent model to an event-dependent model.

In this work, we mainly investigate two prominent speed-up techniques, arc-
flags and contraction, and their combination. We

— discuss how these techniques have to be adapted to work for the above
scenario,

— explain why they do not lead to as large speed-ups as one might have hoped
for, and

— develop two new refinements which achieve at least some significant speed-up
over previous work on range queries.

Classical arc flags turn out to be rather weak for arbitrary multi-criteria
range queries: almost all arc flags must be set to true to guarantee correctness
of the query algorithm since for any arc there is almost surely one point in time
where this arc is part of some Pareto-optimal path towards the target station.
However, from our preprocessing we do know exactly at which points of time any
particular arc might be necessary. By this observation we refine the classical arc
flags to time-period arc flags. The idea is to divide the overall range for which

4 A. Berger, D. Delling, A. Gebhardt, and M. Miiller-Hannemann

our preprocessing is valid into short time intervals, for example into intervals of
two hours. Then each arc maintains a flag for each combination of time interval
(period) and region which tells whether the arc might be “useful” for a particular
query.

Standard node contraction suffers from the dilemma that our station graph
has due to many parallel routes already a very high average degree of ~ 43 (in
comparison, road networks have empirically an average degree below 4). Thus,
bypassing a node leads to the introduction of many shortcut arcs. While many
shortcut arcs can be pruned away in a single-criterion search in time-independent
road networks, domination criteria in a multi-criteria scenario are much weaker
in event-dependent railway networks, as we will explain in Section 4. Therefore,
we decided to develop and implement a different concept which can be combined
with arc-flags: route contraction. The idea behind route contraction is to insert
for a path composed by arcs on the same route a new shortcut arc, provided
that all intermediate stations on this path are classified as bypassable. A station
is bypassable if (a) it is neither the beginning or end of some route, (b) it has at
most two different neighbors, and (c) it is not a boundary node of some region
used in the node partition for the arc-flags. In Germany, about 60% of all stations
are bypassable with respect to this definition.

In addition, we have realized a variant of goal-directed search which for each
query first computes minimum travel times from each node towards the target
station and then uses these values as lower bounds during the search. Extensive
computational experiments indicate that the combination of these methods to-
gether with a greedy strategy allow range queries for a full day in about 0.53
seconds. This gives a speed-up of about 10.1 over our baseline variant.

The remainder of the paper is organized as follows. In Section 2, we briefly
review the classical arc-flag method and SHARC. Then, in Section 3, we dis-
cuss modeling issues for multi-criteria time-table information. We introduce our
station graph model and explain the baseline variant of a multi-criteria gener-
alization of Dijkstra’s algorithm. Afterwards, we describe how to adapt the pre-
processing phase for arc-flags and contraction to a multi-criteria time-dependent
version. In particular, we introduce the new concepts of time-period arc-flags and
route contraction. Results of an experimental study are presented in Section 5.
Finally, we conclude with a short summary.

2 Preliminaries

A (directed) graph G = (V, A) consists of a finite set V' of nodes and a finite set
A of ares. An arc is an ordered pair (u,v) of nodes u,v € V, the node u is called
the tail of the arc, v the head. Throughout the whole work we restrict ourselves
to directed graphs which are weighted by a length function len, which we specify
in Section 3. A partition of V is a family C = {Cy,C1,...,Cx} of sets C; CV
such that each node v € V is contained in exactly one set C;. An element of a
partition is called a region. The boundary nodes B¢ of a region C are all nodes

Accelerating Time-Dependent Multi-Criteria Timetable Information 5

u € C for which at least one node v € V'\ C exists such that (v,u) € A. We call
v a pre-boundary node of the region u is assigned to.

SHARC. Introduced in |2, 3], SHARC combines ideas from arc-flags [17, 16] and
contraction [28,12]. The original arc-flag approach first computes a partition C
of the graph and then attaches a label to each arc a. A label contains, for each
region C' € C, a flag AF (a) which is true if a shortest path to at least one node
in C starts with a. A modified DIJKSTRA then only considers those arcs for which
the flag of the target node’s region is true. The main downside of this approach is
the high preprocessing effort. Hence, SHARC improves on this by the integration
of contraction, i.e., a routine iteravely removing unimportant nodes and adding
so-called shortcuts in order to preserve distances between non-removed nodes.
One key observation of SHARC is that we are able to assign arc-flags to all
bypassed arcs during contraction. More precisely, any arc (u, v) outgoing from a
non-removed node and heading to a removed one gets only one flag set to true,
namely, for the region v is assigned to. Any other bypassed arc gets all flags set
to true. By this procedure, unimportant arcs are only relaxed at the beginning
and end of a query.

3 Modeling Issues

Up to now, two models have been introduced for efficient timetable information
systems: the time-expanded and time-dependent approach. See the survey pa-
per [22] for details. In this section we extend the time-dependent approach to an
event-dependent scenario (see [4]) and introduce a more compact graph model.

3.1 Elementary Connections, Connections and Connection Tables.

Before explaining our station graph model, we need the notion of connections
within a timetable. Let S be the set of stations. An elementary connection
ce = (depy(time), arry, (time), T) represents exactly one train T which departs
at time dep,(time) in station v € S and arrives at arrival time arr, (time)
in station w € S without stops. An elementary connection-table C. is a set
of elementary connections with identical origin v and destination w. Further-
more, there exists a set of minimum transfer times transs(T,T’) € N between
trains 7,7’ with respect to each station s € S. These transfer times ensure
the possibility to transfer between two trains with respect to different situ-
ations. We call two elementary connections ¢, = (dep,(time), arry,(time), T)
and ¢, = (dep, (time), arry (time), T') concatinable if and only if w = v' and
dep, (time) — arry, (time) > trans, (T, T’). We denote a sequence of elementary
connections ce,,...,Ce, as connection ¢ = (Cey,Ce,,transfer) if each adjacent
pair of elementary connections (c,,ce, ,) in the sequence is concatinable. At-
tribute transfer counts the number of transfers using connection c¢. Note, that this
definition allows to concatenate connections if there ending and starting elemen-
tary connections are concatinable. We denote with c(dep,, (time)), c(dep,(train))

6 A. Berger, D. Delling, A. Gebhardt, and M. Miiller-Hannemann

and c(arry, (time)), clarry(train)) the starting and ending departure and ar-
rival times/trains of connection c. Analogously to elementary connection-tables
we define a connection-table C' as a set of connections with identical origin v and
destination w. Last, we define an operator & on connection tables C,C’ which
assigns to each pair of connection tables (C,C’) a new connection table C”.
C" contains all connections ¢” consisting of concatinable pairs of connections
(c,¢') € C'x C'. In the following, we assign elementary connection-tables to arcs
but also compute connection-tables between arbitrary pairs of stations.

3.2 Station Graph Model

Our approach is based on a directed graph G = (V, A) without loops but with
parallel arcs which is called station graph. Each node v € V models a station s €
S. Inserting arcs is more sophisticated. In a first step we connect two stations if
and only if there exist at least one elementary connection between these stations.
Next, we identify trains with the following properties: they stop exactly at the
same sequence of stations, have the same train attributes and days of operation,
and never violate the FIFO property, i.e., they always run in the same order on
each arc. We denote such sequences of stations as routes and get for each arc a
set of different routes using this arc. Now, we replace each arc (v, w) by parallel
route arcs (v, w);, one for each route on this arc. We add the new attribute route
number to each elementary connection. In a last step we assign to each route
arc the corresponding elementary connection-table.

Foot-Arcs. Our data also contains foot paths modeling inter-station transfers
reachable by foot. In our graph model, we simply connect the corresponding
stations v,w by a foot-arc with constant length [corresponding to the time
necessary for traversing the arc (v, w) by foot F. Hence, we can associate with
each foot arc an elementary connection table which contains for each discrete
point of time an elementary connection c. = (dep,(time), arry, (time), F') with
arry, (time) — dep, (time) = .

3.3 Route Planning in the Station Graph Model

In this work, we concentrate on computing optimal connection tables between
two arbitrary stations s and ¢ at a given start time interval [Ts¢qrt, Tend] for sta-
tion s with respect to the travel time and number of transfers. We denote the
travel time of a connection ¢ with ttime(c) and the number of transfers with
transfer(c). Each connection can be seen as an event-dependent path in the
station graph. Miiller-Hannemann and Berger introduced event-dependent mod-
els as an extension of time-dependent approaches in [4]. The reason to introduce
this extension is that our second optimization criterion “number of transfers”
not only depends on time but additionally on train numbers. This leads to new
definitions for time-dependent settings and their generalizations. First, we as-
sign to each arc a = (v,u) € A and departure event dep,, at v an arrival event

Accelerating Time-Dependent Multi-Criteria Timetable Information 7

arr, which defines the arrival event at vertex u if we depart in v with depar-
ture event dep, and traverse arc a. This models our elementary connections.
For time-dependent models an event consists only of the attribute time. There-
fore, all departure events with the same departure time at a vertex v will be
considered as equal events. In our scenario an event consists of attributes depar-
ture or arrival time, train number and route number. We define for all v € V
a set of departure events Dep, and arrival events Arr,. Consider all connec-
tions in a connection table between station s and ¢. Then such a connection
¢ = ((deps(time), arry, (time), T), (depy (time), arry(time), T'), trans fer) is an
alternating sequence (deps, arr., ..., dep,, arry) of departure and arrival events
which consist of attributes (time, train, routenumber). For an (s,t)-query we
ignore all arrival events at s, but add an artificial “arrival event” starts with
an earliest start time starts(time) := Tgtqrt at the beginning of c. Furthermore,
we define one artificial “departure event” end; which is added to the end of c.
We denote such an alternating sequence as event-dependent path Pgiart, end, =
(starts, ¢, end;). Furthermore, we call an alternating subsequence of an event-
dependent path Pgiqrt, end, Starting at starts; and ending in an arrival event arr,
as event-dependent subpath Pygrt, arr,. We define the weight w(Psiart, arr,) €
N? of an event-dependent path Pstart, arr, in the first component as the travel
time ttime(c) and in the second component as the number of transfers transfer(c)
of the underlying connection c. Note that all events belonging to an event-
dependent path are distinct, but we do not rule out that corresponding stations
are repeated.

If we want to use a generalized version of DIJKSTRA’s algorithm to compute
all event-dependent Pareto-paths, we need for correctness subpath optimality.
To decide the optimality of an event-dependent subpath we may only compare
subpaths which possess on their ends identical departure events, see [4]. Hence, in
the case of a time-dependent scenario we may compare all subpaths which possess
on their ends only identical arrival times. A generalized version of DIJKSTRA’s
algorithm, (see Algorithm 1), computes all event-dependent Pareto-paths. This
algorithm uses a data structure for a label L which consists of

1. an arrival event arr,,
2. a list [, of weights w € Ri for event-dependent paths Psiore, arr,
3. alist [, of predecessor arrival events arr,, for event-dependent paths Psiort, arr, -

Note that in this version we construct a label for each route arc and this
notion of a label includes all partial connections from the start station. Thus,
we can identify such a label with a computed connection table representing all
non-dominated connections from the start station up to the corresponding arc
found so far. Upon termination, each label includes all Pareto-optimal paths.

To decide whether two alternatives dominate each other or not, we are able to
compare all event-dependent subpaths not only ending with identical departure
events but ending with different departure events and an identical route number.
Hence, we can give special rules to delete some of these subpaths. In the next
section we explain these “rules of dominance”.

8 A. Berger, D. Delling, A. Gebhardt, and M. Miiller-Hannemann

Algorithm 1: Generalized Dijkstra Event-Dependent

Input: Origin s, destination ¢, earliest start time starts(time)
Output: Set of all event-dependent Pareto-optimal (s, t)-paths.
1 create empty priority pgq;

2 for arrival events arr, do

3 if v # s then construct label Lq,r, with empty list l,,;
4 else

5 construct label Lstare,;

6 L pq. insert(Lstart,);

7 while —pq. empty() do

8 Larr, < pq.extract-min() /* key is the smallest arrival time
arry (time) */
9 compute with respect to trans, possible departure events dep, at vertex v;
/* each departure event belongs to exactly one arrival event */
10 determine the corresponding arrival event arr, to Larr,;
11 for these arrival events arr, do
12 if label Larr, € pq then pq.insert(Lqrr,) and store a flag that Layr, is
in pg;
13 for weights stored in Lorr, .l do
14 w(Pstarts,a'm"u) — w(Pstarts,a'rrv) + U}(a’f‘ﬁ” depv) + w(depm aT""u);
15 if w(Pstarts, arr,) not dominated in Larr, .lw then

Larr, lw. insert (w (Pstart,, arry));

16 delete dominated weights in label Layr, lw;

Rules of Dominance. Our station graph model allows additional rules to
compare connections within each connection table on a route arc. In general,
we may only compare connections with identical ending arrival times in one
connection table. In our scenario the rules of dominance with respect to subpath-
optimality don’t change but in several cases we can decide the non-optimality of
some subpaths in advance. Consider the computed connection table on route arc
r in Figure 1. The third connection will be deleted because there is no Pareto-
optimal (s,t)-path which can contain this connection as a subpath. Assume,
this would be the case. Then the first connection in our time table can use the
same connection from v to t as in this Pareto-path. Because the first and third
connection end on the same route arc either both have to transfer at v or both
continue on the same route. Hence, the (s, t)-path using connection 1 possess a
smaller travel time and a smaller number of transfers. In contradiction to our
assumption the path using connection 3 is dominated. Note, that we cannot
delete connection 2 in this connection table. If the last train of connection 2
is the same as the only elementary connection on (v,t), connection 2 can be
extended to a Pareto-optimal path from (s,¢). Similar but stronger arguments
can be found in comparing connection tables of two different route arcs r,r’
ending at station v. In Table 1 we give our special deletion rules. We call the
rules in line 1 and 2 route dominance and the rule in line 3 station dominance.

Accelerating Time-Dependent Multi-Criteria Timetable Information 9

c1,ce comparable if delete co &
c1(arry(time)) — ttime(cy) >
cz(arry(time)) — ttime(cz)
transfer(c1) < transfer(cz)
c1(arry (time)) — ttime(c1) >
ca(arry(time)) — ttime(cz)
transfer(c1) < transfer(ca)
c1(arry(time)) — ttime(c1) >
3| c1(arry(time)) < ca(arr,(time)) ca(arry(time)) — ttime(cz)
transfer(ci) < transfer(cz)
Table 1. Comparability and deletion criteria of two connections on route arcs ending
in station v.

c1(arry(time)) < ca(arry(time))
ci1(arry(route)) = ca(arry(route))

c1(arry(time)) < ca(arry(time))
c1(arry(route)) = ca(arr,(route))

ttime arrival transfer

1h 7.00 1

2h 8.00 1

3h 9.00 2
S v t
— -0 @

r

10.00 11.00

Fig. 1. Example: Route dominance at a connection table for paths from s to arc r.
Note that we cannot delete connection 2 in this table if the elementary connection on
arc (v,t) uses the same train as connection 2. However, connection 3 can be safely
deleted.

4 Augmenting Ingredients

In this section, we present how to adapt the basic contraction and arc-flags to
our scenario.

4.1 Contraction

One of the main reasons of the success of recent hierarchical (single-criteria)
speed-up techniques is contraction, a routine that iteratively removes unimpor-
tant nodes from the graph and inserts so called shortcuts to preserve correct
distances between the remaining nodes. Hence, in order to use this technique in
our scenario, we need to augment this concept. In general, contraction works in
two phases: vertex- and arc-reduction.

Vertex-Reduction. Adaption of vertex-reduction is straightforward. We by-
pass a node u by removing all its incoming arcs I(u) and all outgoing arcs O(u).
In order to preserve Pareto-paths between the remaining nodes, we introduce, for
each combination (v,u) € I(u), (u,v") € O(u) and their connection tables C(,)
and C(y,), a new arc (v,v") with connection-table C, vy = C(y,u) ® Cu,vr)-

10 A. Berger, D. Delling, A. Gebhardt, and M. Miiller-Hannemann

c1,ce comparable if delete co &
e (depo(event)) = ca(depy(event)) |ttime(cr) < ttime(cz)
ci(arry(route)) = ca(arry(route)) |transfer(ci) < transfer(cz)
ol C1 (arrw(event)) = ca(arrw(event)) | ttime(c1) < ttime(cz)
ci1(depy(route)) = ca(depy(route)) |transfer(ci) < transfer(cz)
3| c1(depy(event)) = cz(dep,(event)) time(cr) < ttime(cz)

transfer(c1) +1 < transfer(cz)
ttime(c1) < ttime(cz)
transfer(c1) +1 < transfer(cz)
c1(depy(time)) > ca(depy(time))
ttime(c1) + c1(depy (time)) <

c2(depy (time)) + ttime(cz)
transfer(c1) +2 < transfer(cz)
Table 2. Comparability and deletion criteria of two connections on parallel shortcut
arcs (u,v).

4| c1(arry (event)) = ca(arry(event))

From vertex-reduction in other scenarios, we know that the order in which
we remove vertices from the graph changes the resulting graph. Hence, we
use a priority queue to determine which node to bypass next. The priority
of a node u within the queue is defined by the expansion ((u) := (deg;, (u) -
deg ¢ (w))/(deg;, (u) + deg,,+(u)). We stop the vertex-reduction as soon as we
would bypass a node with an expansion beyond a given threshold. All nodes
remaining in the graph, we call core-nodes. The core of a graph contains all
core-nodes and all arcs (including shortcuts) between core-nodes.

Theorem 1. Vertex-reduction preserves event-dependent Pareto-optimal paths
between core-nodes.

Arc-Reduction. Our vertex-reduction creates a new connection-table for each
added shortcut yielding quite a high increase in the total number of connections
in the graph. Fortunately, we can remove some connections on the shortcuts
because they may be dominated by other connections. In the best case, all con-
nections on a shortcut are dominated. Then, we can safely remove the shortcut
from the graph. One might expect that it sufficient to run a (v—v')—query for
each added shortcut (v,v’) and then remove all connections from (v,v’) that are
dominated. Unfortunately, this violates correctness since (v,v’) can be a suffix
and/or prefix of a shortest path (cf. Section 3). Still we can run a (v—v’")—query
for each shortcut but in order to preserve correctness, we have to use weaker
(than those introduced in Section 3) rules of dominance during the query. These
weaker rules are given in Table 2. The reason for these modified rules is that we
have to compare paths ending in possibly two different events.

Theorem 2. Arc-Reduction preserves event-dependent Pareto-optimal paths be-
tween core-nodes.

The proof of Theorem 2 can be found in Appendix A. In Figures 2-4, we
give an example how Vertex-Reduction and Arc-Reduction work in our scenario.

Accelerating Time-Dependent Multi-Criteria Timetable Information 11

dep ttime route||dep ttime route||dep ttime route

6.00 0.5h 1| 8.00 0.5h 1| 9.00 1.0h 1
8.00 0.5h 1]/ 9.00 0.5h 1/[10.00 0.5h 1

T u v w
®

dep ttime route
7.30 0.5h 2

Fig. 2. Small excerpt of the station graph with elementary connections.

dep ttime route transfer

dep ttime route||dep ttime route transfer

6.00 4.0n 1,1,1 0
6.00 0.5h 1]/ 8.00 20n 1,1 0 8.00 3.5h 111 0
8.00 0.5h 1||-806—2 i
9.00 1.5h 1.1 0 O
x u w

dep ttime route transfer

6:00—40h—12,1+— 2
dep ttime route transfer 600 Loh 1212
730 25h 21 1
7.30 3.0h 2,1 1

Fig. 4. After vertex-reduction at u, an
arc-reduction of the lower arc between

Fig. 3. Vertex-reduction at vertex v. . .
z and w is possible.

Figure 2 represents a small excerpt of a station graph with elementary connection
tables on each route arc. In Figure 3, we delete vertex v and determine new
connection tables on short cut arcs. Note, that none of the new connection tables
can be deleted. In Figure 4, vertex u is deleted and the new connection table on
the lower arc (z,w) is dominated and can be deleted.

Route Contraction. As mentioned in the Introduction, this standard node
contraction suffers from the dilemma that our station graph has already a very
high average degree of ~ 43 due to the many parallel routes (in comparison,
road networks have empirically an average degree below 4). Thus, bypassing a
node leads to the introduction of many shortcut arcs which cannot be deleted.
Therefore, we decided to develop and implement a different concept: route con-
traction. In a first step we partition the set of stations S in k several subsets
C; with ¢ € {1,...,k} which we call regions. The idea behind route contrac-
tion is to insert for a path composed by arcs on the same route a new shortcut
arc, provided that all intermediate stations on this path are classified as bypass-
able. Recall from the Introduction that a station is bypassable if (a) it is neither
the beginning or end of some route, (b) it has at most two different neighbors,
and (c) is not boundary node of some region C;. Thus our notion of bypassable
nodes models in some sense “unimportant stations”, for which we assume that
at them no transfer makes sense. In Germany, about 60% of all stations are by-
passable with respect to this definition. After determining all bypassable vertices
in station graph G we can identify inclusion-maximal paths P, ., from v to w

12 A. Berger, D. Delling, A. Gebhardt, and M. Miiller-Hannemann

containing only arcs of the same route and only bypassable vertices u # v, w in
its interior. Each such path P, ,, is contracted to a shortcut arc (v, w). Arc (v, w)
gets a new elementary connection table C, only containing elementary connec-
tions c.. Each such connection c. represents exactly one train 7" which departs
at time dep,(time) in station v € S and arrives at arrival time arr,,(time) in
station w € S without stops.

4.2 Arc-Flags

In a time-dependent single-criteria scenario, a set arc-flag AF (a) denotes wheth-
er e is important for region C. Similar to the augmentations given in [6, 9], we use
the following intuition to set an arc-flags in our event-dependent multi-criteria
scenario. Set AF ¢« = true as soon as e is important for at least one Pareto-path
for all possible departure times. In the following, we show how to incorporate
this intuition correctly.

Augmentation. A common approach to compute arc-flags in the time-indepen-
dent single-criteria scenario is based on running DIJKSTRA-queries on the back-
ward graph from each boundary node of the graph. Similarly, we compute event-
dependent multi-criteria arc-flags by running our version of DIJKSTRA’s algo-
rithm on the backward graph from all departure events of each pre-boundary
node b’ of boundary node b. Let C' be the associated region of b. Note that
we run the queries from the pre-boundary nodes. The reason for this is that it
simplifies case distinctions considerably. Using boundary nodes instead would
require to distinguish between paths ending at the boundary node and paths
ending somewhere else within the target region C. Again, like for arc-reduction,
we have to use weaker rules of dominance during our queries, given in Table 4
of the Appendix. For all arcs a of the graph, we end up in connection tables
representing Pareto paths starting with arc a towards the boundary node b. If
the computed connection table of arc a is not empty, then a is used for at least
one Pareto-path towards C. Hence, we set AF ¢ (a) to true.

Theorem 3. FEvent-dependent multi-criteria arc-flags are correct.

Unfortunately, classical arc flags turn out to be rather weak: almost all arc
flags must be set to true to guarantee correctness of the query algorithm since
for any arc there is almost surely one point in time where this arc is part of some
Pareto-optimal path towards the target station. However, from our preprocessing
we do know exactly at which points of time any particular arc might be necessary.
Therefore, we refine the classical arc flags to time-period arc flags. The idea is
to divide the overall range for which our preprocessing is valid into short time
intervals. A good compromise between size of the necessary flags and the desired
refinement is to divide a full day into 12 intervals of two hours. Then each arc
maintains a flag for each combination of time interval (period) and region which
tells whether the arc might be “useful” for a particular query within a certain
period.

Accelerating Time-Dependent Multi-Criteria Timetable Information 13

4.3 SHARC

In this work, we use a slightly reduced variant of SHARC. We only use a 1-level
setup (due to the limited size of the graphs deriving from our model) and do not
use refinement of arc-flags (cf. Section 2). By this, preprocessing is split into three
phases. First, we partition the graph into k regions. Then, we perform a route-
contraction step according to the above description. Any arc (u,v) bypassed
during contraction directly gets its final arc-flags assigned, depending on its tail
u. If u has been bypassed, (u,v) gets all flags assigned to true, while if u is part of
the core, (u,v) gets all flags assigned to false, except for the region v is assigned
to, this flag is set to true. Note that in order to guarantee correctness, our route-
contraction needs to be region-aware, i.e., a boundary node is never bypassed.
After route contraction, we perform an arc-flags preprocessing as stated above
on the resulting core. Since we use a setup with one level, our query algorithm
is our standard one with a small modification: we only relax arcs which have a
time-period arc-flag for the target’s region assigned true. However, there is one
subtle detail: we have to explore flags for all time periods which can still lead to
a Pareto-optimal solution at the target. We use lower bounds on the minimum
travel time towards the target to determine which flags we have to consider.

5 Experiments

5.1 Computational Setup

Test data. Our computational study is based on the German train schedule of
2008. This schedule consists of 8817 stations, 40034 trains on 15428 routes, 392
foot paths, and 1,135,479 elementary connections. In our station graph model
we obtain a graph with 189,214 arcs. For our tests, we used different types of
queries (randomly chosen start stations and destinations, real customer queries,
and handmade). The query start interval has been varied between a full day
(denoted by [0-24]) and typical two-hour intervals (for example, rush hour [8-
10], lunch time [12-14], and late evening [20-22]), as well as one hour [7-8], six
hour [6-12], and twelve hour [6-18] intervals.

Environment. All experiments were run on a standard PC (Intel®Core™2
Quad CPU Q6600, 2.4GHz, 4MB cache, 8GB main memory under Ubuntu linux
version 9.04. Only one core has been used by our program. Our code is written
in C++ and has been compiled with g++ 4.3.3 and compile option -O3.

Preprocessing. Using the graph partitioning library SCOTCH [24] and addi-
tional postprocessing by a local optimization routine, we have partitioned the
given set of stations into 16 regions. This number of regions seems to be a reason-
able compromise between the average region size and the computational effort
for the arc flags. The time to compute the partitioning into regions and the time

14 A. Berger, D. Delling, A. Gebhardt, and M. Miiller-Hannemann

to compute shortcut arcs is negligible (less than a minute CPU time). The over-
all arc flag computation, however, is really expensive: it requires 33h 37min but
can easily be parallelized. Using all four cores it can be reduced to 8h 40min.
We can bypass 5,248 out of 8,817 stations, and 55,742 out of 189,214 original
arcs. This leads to the insertion of 19,929 additional shortcut arcs. Flag vectors
are quite full, on average 41.4% of their bits are set to 1. This clearly limits the
effect which we can expect from arc-flags.

Route vs. station dominance. A crucial point for the efficiency of the query
algorithm is the appropriate choice of dominance rules. The stronger the domi-
nance rules, the less priority queue operations have to be performed. However,
the application of stronger rules is computationally more expensive. In particu-
lar, applying station and route dominance turned out to be actually a slow-down
in comparison with only using route dominance. Although the combined appli-
cation of rules saves about 30% of priority queue operations, it almost doubles
the computation time. Therefore, we use only route dominance in the following.

Query variants. We compare CPU times and operation counts for the number
of priority queue delete-min operations for the following algorithmic variants:

— base: the pure multi-dimensional Dijkstra algorithm without any speed-up
technique.

— base+1b: base plus lower bounds for the domination at the terminal.

— arc-flags: base+1b combined with time period arc flags but no shortcuts.

— greedy arc-flags: arc-flags with a greedy strategy explained below.

— SHARCGC: arc-flags with shortcuts based on route contraction.

— SHARC+goal: SHARC combined with goal direction.

— greedy SHARC: SHARC with a greedy strategy explained below.

— greedy SHARC-goal: the previous variant combined with goal direction.

The “greedy strategy” does the following: whenever we arrive at some station
and consider the next arc, we choose only the very first reachable connection
on this arc. In general, this strategy will fail to find all Pareto-optimal paths,
but except for somewhat pathological situations we will find for each equivalence
class of paths with the same pair of objective values at least one representative.

5.2 Computational Results

Experiment 1: Full day scenario. One primary goal of this project is to
provide an efficient range query for a complete day of operation between two
arbitrary stations. Table 3 shows the results for this scenario. While our baseline
variant base requires an average CPU time of 7.85s, already turning on our lower
bound domination reduces the average CPU time to 4.54s. Arc-flags achieve a
speed-up of 3.15 over base, and SHARC increases the speed-up further to 4.01
over base. Turning on the greedy strategy yields a speed-up of 7.41 over base
for greedy SHARC. The fastest variant is the combination of greedy SHARC
with goal-directed search. It reduces the average query time to 0.6s and yields a
speed-up factor of 13.08.

Accelerating Time-Dependent Multi-Criteria Timetable Information 15

average | average speed-up factor
Query CPU time|# pg-min over base
variant in s operations| CPU time|pg-min operations
base 7.85 233,203 1.00 1.00
base+1b 4.54 144,325 1.73 1.62
arc-flags 2.49 130,569 3.15 1.79
SHARC 1.96 95,685 4.01 3.91
SHARC+goal 1.00 52,663 7.85 4.43
greedy arc-flags 1.38 84,444 5.69 2.76
greedy SHARC 1.06 59,589 7.41 3.91
greedy SHARC+goal| 0.60 37,867 13.08 6.16

Table 3. Experimental results for a complete day, i.e., the start range interval [0-24].

Experiment 2: Two-hour range queries. In our next experiment we are
interested in range queries for two-hour periods in the “morning rush hour” [8-
10], at “lunch time” [12-14], and in the “late evening” [20-22]. Detailed results
are given in the Appendix, see Tables 5-7. As expected, two-hour range queries
are faster than full day queries. While queries for the “morning rush hour” [8-10]
and for “lunch time” [12-14] behave very similar — the fastest variant requires
0.27s and 0.29s on average, the “late evening” period is much easier and yields
average computation times of 0.13s for greedy SHARC+goal.

Experiment 3: Variation of the range width. We compare the speed-up
for different widths of the start interval: 1h, 2h, 6h, 12h, and 24h. Figure 5 shows
that the speed-up factors increase with the width of the interval, i.e., the larger
the search space the better is the speed-up.

T T T T T
14 base+lb —— Bl
arc-flags &
13 greedy arc-flag
SHAR!

12 greedy SHARC i
SHARC+GOAL -
11 -greedy SHARC+GOAL &

speed-up factor

Fig. 5. The speed-up increases with the width of the query interval.

16 A. Berger, D. Delling, A. Gebhardt, and M. Miiller-Hannemann

Number of Pareto-optimal paths. For a query range interval of 24h (full
day range) we obtain about 7 Pareto-optimal paths on average. Figure 6 shows
a histogram for the size of Pareto-optimal paths for the time period of a full day.
The maximum number of Pareto-optimal paths which we observe in these tests
is 81. An interesting question is whether versions using the greedy strategy or
versions using shortcut edges lose any Pareto optima. The good news is that in
both cases we have always found the identical set of equivalence classes of Pareto-
optimal paths with the same objective values. Differences occur, however, in the
total number of alternatives which are identified by these methods. For a full day
range, the number of alternatives drops by about 1%. For shorter time periods,
the difference is somewhat larger, about 5%.

80

70 A

60

50

frequency

40 A

30 A

20 A

10 4

o Il o 00 0 poooplol B o0 o .

LR N RN RN R R R RRREERREERRR RN

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
number of Pareto optimal paths

Fig. 6. Frequency of Pareto-optimal paths for a full day range.

6 Conclusion

We presented the first study on advanced speed-up techniques like arc-flags and
contraction in a multi-criteria time- and event-dependent scenario which allow
us to answer arbitrary range queries. An important lesson we learned from this
project is that the classical extension of arc-flags and contraction does not work
well. However, with two new concepts, time-period arc flags and route contrac-
tion, we can achieve speed-ups of about 13 over the baseline variant for a full
day.

It remains an open challenge to develop more powerful speed-up techniques
for a multi-criteria time-dependent scenario without scarifying exactness. Since
preprocessing for arc flags is very time-consuming, there is also need for tech-

Accelerating Time-Dependent Multi-Criteria Timetable Information 17

niques which can also be applied in an online scenario where dynamic changes
of the schedule are taken into account.

References

1.

Proceedings of ATMOS Workshop 2003, 2004.

2. R. Bauer and D. Delling. SHARC: Fast and Robust Unidirectional Routing. In

10.

11.

12.

13.

14.

I. Munro and D. Wagner, editors, Proceedings of the 10th Workshop on Algorithm
Engineering and Ezperiments (ALENEX’08), pages 13-26. STAM, April 2008.

R. Bauer and D. Delling. SHARC: Fast and robust unidirectional routing. ACM
Journal of Ezperimental Algorithmics, 14:2.4-2.29, May 2009. Special Section on
Selected Papers from ALENEX 2008.

A. Berger and M. Miiller-Hannemann. Subpath-optimality of multi-criteria short-
est paths in time-dependent and event-dependent networks. Technical report,
Martin-Luther-Universitit Halle-Wittenberg, Department of Computer Science,
2009.

G. Brodal and R. Jacob. Time-dependent Networks as Models to Achieve Fast
Exact Time-table Queries. In ATMOS’03 [1], pages 3-15.

D. Delling. Time-Dependent SHARC-Routing. In Proceedings of the 16th Annual
European Symposium on Algorithms (ESA’08), volume 5193 of Lecture Notes in
Computer Science, pages 332—343. Springer, September 2008. Best Student Paper
Award - ESA Track B.

D. Delling. Time-Dependent SHARC-Routing. Algorithmica, July 2009. Special
Issue: European Symposium on Algorithms 2008.

D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering Route Planning
Algorithms. In J. Lerner, D. Wagner, and K. A. Zweig, editors, Algorithmics of
Large and Compler Networks, volume 5515 of Lecture Notes in Computer Science,
pages 117-139. Springer, 2009.

D. Delling and D. Wagner. Pareto Paths with SHARC. In J. Vahrenhold, edi-
tor, Proceedings of the 8th International Symposium on Ezperimental Algorithms
(SEA’09), volume 5526 of Lecture Notes in Computer Science, pages 125-136.
Springer, June 2009.

D. Delling and D. Wagner. Time-Dependent Route Planning. In R. K. Ahuja, R. H.
Mohring, and C. Zaroliagis, editors, Robust and Online Large-Scale Optimization,
Lecture Notes in Computer Science. Springer, 2009. Accepted for publication, to
appear.

Y. Disser, M. Miiller-Hannemann, and M. Schnee. Multi-Criteria Shortest Paths
in Time-Dependent Train Networks. In McGeoch [19], pages 347-361.

R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction Hierarchies:
Faster and Simpler Hierarchical Routing in Road Networks. In McGeoch [19],
pages 319-333.

F. Geraets, L. G. Kroon, A. Schébel, D. Wagner, and C. Zaroliagis. Algorithmic
Methods for Railway Optimization, volume 4359 of Lecture Notes in Computer
Science. Springer, 2007.

T. Gunkel, M. Miiller-Hannemann, and M. Schnee. Improved Search for Night
Train Connections. In C. Liebchen, R. K. Ahuja, and J. A. Mesa, editors, Pro-
ceedings of the Tth Workshop on Algorithmic Approaches for Transportation Mod-
eling, Optimization, and Systems (ATMOS’07), pages 243-258. Internationales
Begegnungs- und Forschungszentrum fiir Informatik (IBFI), Schloss Dagstuhl, Ger-
many, 2007.

18

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

A. Berger, D. Delling, A. Gebhardt, and M. Miiller-Hannemann

P. Hansen. Bricriteria Path Problems. In G. Fandel and T. Gal, editors, Multiple
Criteria Decision Making — Theory and Application —, pages 109-127. Springer,
1979.

E. Kohler, R. H. Mohring, and H. Schilling. Acceleration of Shortest Path and
Constrained Shortest Path Computation. In Proceedings of the 4th Workshop on
Ezxperimental Algorithms (WEA’05), Lecture Notes in Computer Science, pages
126-138. Springer, 2005.

U. Lauther. An Extremely Fast, Exact Algorithm for Finding Shortest Paths in
Static Networks with Geographical Background. In Geoinformation und Mobilitdt
- von der Forschung zur praktischen Anwendung, volume 22, pages 219-230. IfGI
prints, 2004.

E. Q. Martins. On a Multicriteria Shortest Path Problem. Furopean Journal of
Operational Research, 26(3):236-245, 1984.

C. C. McGeoch, editor. Proceedings of the 7th Workshop on Ezperimental Algo-
rithms (WEA’08), volume 5038 of Lecture Notes in Computer Science. Springer,
June 2008.

R. H. Mohring. Verteilte Verbindungssuche im 6ffentlichen Personenverkehr —
Graphentheoretische Modelle und Algorithmen. In P. Horster, editor, Angewandte
Mathematik insbesondere Informatik, Beispiele erfolgreicher Wege zwischen Math-
ematik und Informatik, pages 192-220. Vieweg, 1999.

M. Miiller-Hannemann and M. Schnee. Finding All Attractive Train Connections
by Multi-Criteria Pareto Search. In Algorithmic Methods for Railway Optimization
[13], pages 246-263.

M. Miiller-Hannemann, F. Schulz, D. Wagner, and C. Zaroliagis. Timetable Infor-
mation: Models and Algorithms. In Algorithmic Methods for Railway Optimization
[13], pages 67-90.

M. Miiller-Hannemann and K. Weihe. Pareto Shortest Paths is Often Feasible in
Practice. In Proceedings of the 5th International Workshop on Algorithm Engineer-
ing (WAE’01), volume 2141 of Lecture Notes in Computer Science, pages 185-197.
Springer, 2001.

F. Pellegrini. SCOTCH: Static Mapping, Graph, Mesh and Hypergraph Partition-
ing, and Parallel and Sequential Sparse Matrix Ordering Package, 2007.

E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Experimental Comparison of
Shortest Path Approaches for Timetable Information. In Proceedings of the 6th
Workshop on Algorithm Engineering and Ezperiments (ALENEX04), pages 88—99.
SIAM, 2004.

E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Towards Realistic Modeling of
Time-Table Information through the Time-Dependent Approach. In ATMOS’03
[1], pages 85-103.

E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Efficient Models for Timetable
Information in Public Transportation Systems. ACM Journal of Ezperimental
Algorithmics, 12:Article 2.4, 2007.

P. Sanders and D. Schultes. Engineering Highway Hierarchies. In Proceedings of
the 14th Annual European Symposium on Algorithms (ESA’06), volume 4168 of
Lecture Notes in Computer Science, pages 804-816. Springer, 2006.

F. Schulz. Timetable Information and Shortest Paths. PhD thesis, Universitit
Karlsruhe (TH), Fakultit fiir Informatik, 2005.

D. Theune. Robuste und effiziente Methoden zur Lésung von Wegproblemen. PhD
thesis, 1995.

A. Warburton. Approximation of Pareto Optima in Multiple-Objective Shortest-
Path Problems. Operations Research, 35(1):70-79, 1987.

Accelerating Time-Dependent Multi-Criteria Timetable Information 19

Appendix

A Proof of Theorem 2

Theorem 2. Arc-Reduction preserves event-dependent Pareto-optimal paths be-
tween core-nodes.

Proof. We only prove the correctness for Line 2 of table 2. The other cases can
be shown very similarly. We consider two connections ¢; and ¢, on short cut arcs
(u,v) which fulfill the conditions in line 2 and column 1. Let P, be an event-
dependent s, t-path starting at s with earliest start time starts; and ends in ¢
with an artificial departure event end; at t. Furthermore P, contains connection
2. Let Psiart, arr, be the event-dependent (s, u)-subpath from Py and Pyep, end,
be the event-dependent (u,t)-subpath from P». We denote with arr, (route) the
route number of the arrival event at w and with dep, (route) the route number
of departure event dep,. We distinguish between four cases.

1. s = wand v = t. Then Psart, arr, and Pyep, end, are empty paths. We
construct the event-dependent path P; which starts with the earliest start
time starts and ends with the artificial departure event end;. This is pos-
sible because depiime(c1) > depiime(c2) is valid. Py and P, are compara-
ble event-dependent paths and with the conditions in column 2 it follows
that ttime(Py) < ttime(P2) and transfer(P;) < transfer(P). This im-
plies Pi <gom Ps.

2. s # u and s # t. We distinguish between four different cases.

(a) arry(route) # depc,(route) and arre,(route) # dep,(route). We con-
struct the event-dependent path P, which consists of Pstart, arr, , CONnec-
tion ¢1 and Pyep,, end, - This is possible because it is fulfilled depiime(c1) >
depiime(c2) and arriyme(c1) = arriime(c2). P and P, are comparable
event-dependent paths and with the conditions in column 2 it follows
that ttime(Py) < ttime(P2) and transfer(P1) < transfer(Pz). This
implies P; <gom Ps.

(b) arry(route) = depe,(route) and arrc,(route) # dep,(route). We con-
struct the event-dependent path P; which consists of the maximum
event-dependent s, s’-subpath of Pgigrt, arr, using routes which are not
identical with route dep.,, then takes the event-dependent s’,u-path
which uses route dep., (route) without transfers and contains connection
c1 and Pyep, end,- This is possible because it is fulfilled depiime(c1) >
depiime(c2), arriime(c1) = arriime(c2) and dep., (route) = dep,, (route).
This implies at s’ a later departure time for P;. P; and P, are com-
parable event-dependent paths and with the conditions in column 2 it
follows that ttime(Py) = ttime(Pz) and transfer(Py) < transfer(P).
This implies Py <gom Ps.

(¢) arry(route) # dep.,(route) and arre,(route) = dep,(route). Analo-
gously to case b).

20 A. Berger, D. Delling, A. Gebhardt, and M. Miiller-Hannemann

(d) arry(route) = depe,(route) and arr,(route) = dep,(route). Analo-
gously to case b).
P; and P, are comparable event-dependent paths and with the conditions
in column 2 it follows that ttime(Py) = ttime(Ps). and transfer(P;) <
transfer(Py). This implies Pi <gom Po.
3: s #u and v = t. Analogously to case 2.
4: s = wu and v # t. Analogously to case 2.

In all four cases we can construct an event-dependent path P; which is compa-
rable with P, dominates P, and does not contain connection cs. It follows that
we can delete connection cs.

A.1 Dominance Rules for Arc Flag Preprocessing

Table 4 presents the dominance rules which have to be used in the preprocessing
phase. Let c¢1,co be two connections starting at station v and each ending in a
departure event at pre-boundary vertex w.

c1, c2 comparable if delete co &
c1(depy(route)) = ca(depy(route)) ttime(cy) < ttime(cs)
1| c1(depw(route)) = ca(depw(route)) y fer(er) < t Fer(ca)
c1(depu(time)) < ca(depo(time)) | TOmsTer(e ransfer(cz
! (depw(time)) < ca(depw(time)) |ttime(c1) < ttime(cz)
c1(depy(route)) = ca(depy(route)) |transfer(ci)+ < transfer(c2)
e (depw(route)) = ca(depw(route)) | ttime(c1) < ttime(cz)
c1(depw (time)) < ca(depw(time)) |transfer(ci) +1 < transfer(cz)
)) ttime(c1) < ttime(cz)
4| er(depu(time)) < ex(depy(time)) transfers(c1) + 2 < transfers(cz)

Table 4. Dominance rules for the preprocessing phase.

B Additional Computational Results

Tables 5-7 show the results of our Experiment 2.

Accelerating Time-Dependent Multi-Criteria Timetable Information 21

average | average speed-up factor
Query CPU time|# pg-min over base
variant in s operations| CPU time|pg-min operations
base 2.26 71,422 1.00 1.00
base+1b 2.15 68,263 1.05 1.05
arc-flags 1.20 62,291 1.88 1.15
SHARC 0.92 44,060 2.46 1.62
SHARC+goal 0.49 21,645 4.61 3.30
greedy arc-flags 0.65 38,696 3.48 1.85
greedy SHARC 0.51 26,704 4.43 2.67
greedy SHARC+goal| 0.27 12,646 8.37 5.65

Table 5. Experimental results for the start range interval [08-10] (“morning rush hour”).

average | average speed-up factor
Query CPU time|# pg-min over base
variant in s operations| CPU time|pg-min operations
base 2.17 67,517 1.00 1.00
base+1b 2.07 64,534 1.05 1.04
arc-flags 1.13 57,931 1.92 1.17
SHARC 0.86 40,692 2.52 1.66
SHARC+goal 0.47 20,549 4.62 3.29
greedy arc-flags 0.68 39,052 3.19 1.73
greedy SHARC 0.53 26,905 4.09 2.51
greedy SHARC+goal| 0.29 13,583 7.48 4.97

Table 6. Experimental results for the start range interval [12-14] (“lunch time”).

average | average speed-up factor
Query CPU time|# pg-min over base
variant in s operations| CPU time|pg-min operations
base 0.41 15,915 1.00 1.00
base+1b 0.39 15,098 1.05 1.05
arc-flags 0.24 14,058 1.71 1.13
SHARC 0.19 9,823 2.16 1.62
SHARC+goal 0.16 7,192 2.56 2.21
greedy arc-flags 0.19 10,893 2.17 1.46
greedy SHARC 0.15 7,586 2.73 2.10
greedy SHARC+goal| 0.13 5,472 3.15 2.91

Table 7. Experimental results for the start range interval [20-22] (“late evening”).

An Improved Train Classification Procedure for
the Hump Yard Lausanne Triage*

Peter Mérton!, Jens Maue2, and Marc Nunkesser?
) b

Department of Transportation Networks, University of Zilina, Slovakia
marton@frdsa.fri.uniza.sk
Institute of Theoretical Computer Science, ETH Ziirich, Switzerland
{jens.maue|marc.nunkesser}@inf.ethz.ch

Abstract. In this paper we combine an integer programming approach
and a computer simulation tool to successfully develop and verify an
improved classification schedule for a real-world train classification in-
stance. First, we derive an integer program for computing train classifi-
cation schedules based on an earlier developed bitstring representation of
such schedules. We show how to incorporate various practical restrictions
in this model. Secondly, we apply the model to one day of traffic data
of the Swiss classification yard Lausanne Triage. We incorporate all the
operational and infrastructural restrictions of this yard instance in our
integer program. Even with this high number of restrictions, we are able
to compute a schedule that saves a full sorting step and one track com-
pared to the currently applied procedure. We finally show this improved
schedule is applicable in practice by a thorough computer simulation.

Keywords. train classification, shunting of rolling stock, simulation tools for
transport operations, infrastructure planning, freight trains

1 Introduction

Classification yards are an important unit of freight train systems, and several
technical and methodological innovations have improved their operation since
their first construction in the 19th century. Many improvements concerning train
classification methods were developed in the 1950s and 1960s, and the result-
ing methods can be divided in single-stage and multistage sorting. Single-stage
sorting is applied to large-volume traffic with only basic sorting requirements,
while multistage sorting is used for traffic with lower volume but finer sorting
requirements. In this paper we focus on multistage sorting.

Even though there are recent theoretical considerations that guarantee good
classification procedures, it is still common practice to apply the traditional mul-
tistage methods of the 1950s and 1960s today. In order to support transforming

* Partially supported by the Future and Emerging Technologies Unit of EC (IST
priority - 6th FP) under contract no. FP6-021235-2 (project ARRIVAL) and by the
Slovak grant foundation under grant no. 1-4057-07 (project “Agent Oriented Models
of Service Systems”).

J. Clausen, G. Di Stefano (Eds): ATMOS 2009

9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2009 /2142

the mentioned theoretical results from the academic environment to the applica-
tion in practice, we introduce a framework for computing classification schedules
for real-world problem instances according to the recent theoretical findings. This
approach is mainly based on the knowledge of the input for the classification in-
stance. As soon as the order of incoming cars is known, we are able to compute
classification schedules that are superior to the established methods with regard
to the number of required sorting steps. This number essentially determines the
time required to accomplish a classification task. In contrast to the traditional
methods, this method considers ordered subsequences of cars in inbound trains
when computing schedules. Since in practice trains show a high degree of pre-
sortedness, this approach has a high potential to yield shorter schedules than
the established methods in many cases. Conversely, our integer programming
approach never yields a longer schedule than the established methods; for in-
stances for which an established method does provide an optimal schedule, our
method will find a schedule of the same length.

Outline In Sect. 2 we explain the basics of classification yards and multistage
sorting, followed by the related work in this field in Sect. 3. Section 4 revises an
encoding of classification schedules from [1], which is used in Sect. 5 to introduce
an integer programming model for deriving classification schedules. We then
apply our model to effectively derive an improved schedule for the classification
yard Lausanne Triage in Sect. 6, which we prove to be applicable in practice by
a successful computer simulation. Some final remarks follow in Sect. 7.

2 Hump Yards, Multistage Sorting, and Terminology

classification
bowl

receiving departure
yard hump yard

Fig. 1: Typical yard with receiving and departure yard, hump, and classification bowl.

The typical layout of a hump yard, shown in Fig. 1, consists of a receiving
yard, where incoming trains arrive, a classification bowl, where they are sorted,
and a departure yard, where outgoing trains are formed. The yard features a
hump, a rise in the ground, with a hump track from which cars roll in to the tracks
of the classification bowl. A typical classification bowl is shown in Fig. 2b. Not all
yards have receiving and departure tracks, some have a single end classification
bowl as in Fig. 2a, while others have a secondary hump at their opposite end as in
Fig. 2c or two parallel hump tracks on one side. Our example of Lausanne Triage

is a double-ended hump yard with two parallel hump tracks and no departure
yard. Further details are given in Sect. 5 and 6.1. Almost all modern yards built
after the 1960s contain the layout of Fig. 2a as a core substructure, in which
multistage sorting can be performed as explained in the following paragraph.

additional
exit T

hump
track

classification tracks

l to receiv- l
ing yard

secondary
hump

(a) single-ended yard (b) double-ended yard (¢) advanced layout

Fig. 2: Common variants of classification bowl layouts.

The following abstract model is a simplification of the actual classification
process. Note that this simplification does not impair our results. Every multi-
stage sorting method consists of a sequence of alternating roll-in and pull-out
operations. In a roll-in operation a shunting engine slowly pushes the decoupled
cars from the hump track over the hump. The cars roll through a tree of switches,
and every car is guided separately to a preassigned classification track. To fully
specify a roll-in operation, it suffices to specify the target track for each car.
In a pull-out operation an engine drives to some classification track, is coupled
to the cars on that track, and pulls back the cars over the hump so that the
next roll-in can be performed. A single pull-out can be sufficiently specified by
the classification track to pull out cars from. A pull-out followed by a roll-in is
called sorting step or simply step, and an initial roll-in followed by a sequence of
h sorting steps is called a classification schedule of length h. There is a number
of inbound trains in the order implied by their arrival times at the yard. This
order yields an inbound train sequence. Furthermore, there are m order speci-
fications for outbound trains. The inbound train sequence has to be sorted on
the classification tracks accordingly in order to obtain each of the m outbound
trains on a separate track. A classification schedule is called wvalid if applying it
accomplishes this sorting task, i.e., if applied to an inbound train sequence, it
yields the correctly ordered outbound trains, each on a separate track.

Pulling out a track roughly takes a constant amount of time ¢y depending
on the distance for the engineer to drive. The time to roll-in the cars in a single
hump step is proportional to the number of cars and depends on the time cpysh
required for decoupling and pushing one car, which is roughly constant. Together,
a classification process of h steps and a total of r cars rolled in approximately

requires a time of hcpuil + rcpush. Our main objective is to minimize the number
of steps, i.e., the length h of the schedule, which is the approach also taken
in [1]. The total number of roll-ins r presents our secondary objective. A more
detailed overview of classification yards and their technical implementation is
given in [2].

3 Related Work

Multistage classification methods are presented in a number of publications from
the 1950s and 1960s in the field of railway engineering [3-10]. Krell [8] com-
pares the two multistage classification methods of sorting by train and the often
superior simultaneous method, as well as two variants: triangular sorting and
geometric sorting. Some of these methods appear in earlier publications of Flan-
dorffer [3] and Pentinga [7]. Boot [4] describes the operational constraints of the
simultaneous method in France, Belgium, and The Netherlands. The real-world
implementation of the methods with respect to different yard layouts and arrival
and departure times of trains is discussed in [9] and [10]. For the Swiss classifica-
tion yard Ziirich Limmattal, Baumann [6] explains the design aspects that make
the simultaneous method applicable there. There are more recent descriptions of
multistage methods in the papers of Siddiquee [11] and Daganzo et al. [12,13].

In the 2000s Dahlhaus et al. study a variant of multistage sorting [14] from a
more theoretical point of view. They also give a systematic framework for order
requirements of outbound trains. These sorting requirements are summarized in
[15], which provides a framework for classifying a wide range of single- and multi-
stage methods. There are various shunting problems related to multistage train
classification, such as single-stage sorting [12,14,16], train matching [16], and
blocking and block-to-train assignment [17]. In practice these problems interact
with multistage sorting as the practical solution of one problem yields restric-
tions and simplifications for the other. Further overviews of shunting problems
with theoretical focus are given by DiStefano et al. [16] and Gatto et al. [18].

The theoretical concept of recoverable robustness [19] is applied by Cicerone
et al. [20, 21] to multistage sorting. They regard small deviations in the inbound
train and yard infrastructure and three basic recovery strategies, which is an
interesting first step towards robustness in train classification.

Computer simulations are a useful tool for evaluating and refining classifi-
cation methods before applying them in practice. Several such simulations have
been performed recently to verify planned modifications of yards or changes in
operation for yards in Germany [22], Slovakia [23], and Switzerland [24]. For
our computer simulation presented in Sect. 6.3, we used the simulation system
“Villon” [25] to verify our schedule.

4 Encoding Classification Schedules

In this section we present the encoding for classification schedules that was
derived in [1]. Based on this encoding, we introduce a new integer programming
model in Sect. 5, which we apply to a practical classification problem in Sect. 6.

4.1 Model and Notation

We consider the yard layout of a single-ended classification bowl with a single
hump as depicted in Fig. 2a. (The same classification procedure can also be
applied on double-ended yards such as Lausanne Triage. Moreover, Lausanne
Triage has two parallel hump tracks, a setting to which the encoding is adapted
in Sect. 5.2.) The number of classification tracks is called the width of the yard
and denoted by W, the classification tracks are referred to by 6y,...,0w_1. The
maximum number of cars C' that fit on any classification track is called the
capacity of the tracks.

Every car 7 is represented by some positive integer 7 € N, and a train T is
defined as an ordered sequence T' = (71,...,7;) of cars 7, € N, i =1,... k. The
number k of cars of T is referred to by the length of T'. There is an ordered se-
quence of inbound trains, the concatenation of which (according to their arrival
at the yard) yields an ordered sequence of cars, called the inbound sequence of
cars. The order of cars in the inbound sequence is a permutation T' = (71, ..., 7,)
of (1,...,n), where n is the total volume of cars. Moreover, there are m order
specifications for the m outbound trains. If n; denotes the length of the ith out-
bound train, ¢ = 1,...,m, then 2211 n; = n. We further assume, w.l.o.g., that
the specification of the first outbound train is given by (1,...,n1), the second by
(n1 +1,...,n1 + ng), etc., and the last by (n — n,, + 1,...,n). During the clas-
sification process the cars of different outbound trains are sorted simultaneously
on the same set of tracks, called sorting tracks, whereas each outbound train is
finally formed on an individual track. Those tracks are called destination tracks.
Our optimization problem can now be defined as follows: Given an inbound se-
quence of cars T = (7,...,7,) and m outbound trains defined by their lengths
(n1,...,nm), find a valid classification schedule of minimum length.

4.2 Bitstring Representation of Classification Schedules

A track may be filled several times during a classification procedure by sending
cars to it after it has been pulled out. We call the track pulled out in the ith
step the ith logical track. For a classification schedule of length h, we map the h
logical tracks to the W physical tracks, obtaining a sequence (6;,,...,6;,_,) of
h tracks, where 6;,, k =0,...,h — 1, is the physical track pulled out in the kth
sorting step. As shown in [1], for tracks of unbounded capacity, there always is an
optimal schedule whose track sequence (6;,,...,0;, _,) satisfies k =i, (mod W)
for every kK =0,...,h — 1; in other words, there is an optimal schedule in which
the tracks are pulled out in a round robin order. The proof given in [1] still holds
for tracks of limited but uniform capacity C, which we consider in this paper.

100 B 7
010 3] 7
001 [2n
011 [4n
000 [n
1 01 67 2

(d)

Fig.3: A classification procedure for h = 4 and n = 6, using track g for the only
outbound train. The encoding is shown in (a), the inbound sequence of cars in (b).
(¢)—(j) show the consecutive situations during the procedure, always pulling out the
cars of the rightmost occupied track.

For any classification schedule of h steps, the course of any car j can be
represented by a binary string b/ = b],_,...b) with b) = 1 iff the jth car visits
track 6;, pulled out in the kth sorting step, k = 0, ..., h—1. After the kth pull-out
operation, this car is rolled in to track 6;, with ¢ = min{k <i<h—1]b] =1}.
If there is no bit bg =1,k <t < h—1, the car is rolled in to the destination
track of its outbound train. In this way, every classification schedule of length h
can be represented by an assignment of cars to bitstrings of length h. Figure 3
illustrates this representation in an example with a single outbound train.

Conversely, the bitstring encoding can be applied in order to derive a feasible
schedule. First, if two cars with consecutive indices j and j+1 of the same
outbound train appear correctly ordered already in the inbound train sequence,
they may be assigned the same bitstring; then, both cars take exactly the same
journey over the tracks during the classification, so they never change their
relative order and end up in their correct relative order in the outbound train.
Second, assume two consecutive cars j and j+1 of the same outbound train
occur in reversed relative order in the inbound sequence. Then, the bitstring b/
assigned to j+1, regarded as the binary representation of the integer 2?701 2ib§+1,

must be strictly greater than the bitstring &/ assigned to j. To see this, let
¥ > b and k be the most significant (i.e. largest) index with b, = 0 and
bﬂl = 1. After being pulled out from track #;,, car j+1 is sent to some track
0;,, £ > k, which car j has been sent to in some earlier step. (Note that 6;,
might be the destination track.) Thus, the two cars appear correctly ordered
on this track. Since they never swap their relative order at any later stage of
the classification, they arrive correctly ordered on the destination track of their
outbound train. By the same argument, if two consecutive cars j and j+1 occurs
in correct relative order in the inbound sequence, assigning 5! to j+1 and b
to j is fine if b/ < b,

This insight yields a necessary ordering condition for a feasible assignment
of cars to bitstrings, which is independent of the number or capacity of classi-
fication tracks. This condition presents the most basic constraint of our integer
programming model introduced in the following section.

ik

5 Deriving Schedules by Integer Programming

In this section, we present the integer programming model we apply in Sect. 6 to
successfully derive an improved schedule for a day of traffic in Lausanne Triage.
(Part of this model can be found in the ARRIVAL technical report [26].) We
start with the most basic version of this model in Sect. 5.1 and refine the model
successively from Sect. 5.2 to Sect. 5.4, incorporating all the required practical
constraints. Some constraints are specific for Lausanne Triage only, some apply
to other classification yards too.

5.1 Basic IP Model

The integer programming model applies the binary encoding of classification
schedules introduced in [1] and explained in Sect. 4. In the basic model below, we
enforce an assignment that yields the correctly ordered outbound trains. Note
this is the only constraint for completely unrestricted schedules, particularly
without any restriction on the number and capacity of tracks. Secondly, the
basic model implements limited track capacities.

We introduce binary variables b, j = 1,...,n,7=0,...,h—1, corresponding
to the jth car in the ith sorting step. (We repeatedly introduce binary variables
in the following sections without repeating the binary constraint in the actual
formulation for space requirements.) The set of indices of cars that are the first
of their respective outgoing trains is denoted by F C {1,...,n}. Let further
rev(i, 7) be an indicator function with rev (4, j) = 1 iff the ith and jth car appear
in reversed order in the incoming train sequence. Recall that C denotes the
maximum number of cars fitting on a track.

base: min E b!
1<j<n
0<i<h

st Y 2 >rev(i i1+ Y 2% Vie{l,...,n}\F (1)
0<i<h 0<i<h
> ¥ <c Vie{0,...,h—1} (2)

1<j<n

The objective function in this model minimizes the total number of cars rolled
in during the classification process, which presents our secondary objective as
mentioned in Sect. 2. In order to minimize our primary objective, i.e. the number
of sorting steps, we solve a short sequence of integer programs with increasing
length values h. Constraints (1) enforce a valid schedule w.r.t. the ordering of
cars in the outbound trains: If two consecutive cars j—1 and j of an outbound
train are in correct order, they may be assigned the same bitstring; otherwise,
rev(j—1,7) = 1, so j will get a strictly larger bitstring than j—1 as required
according to Sect. 4.2. Constraints 2 implements the restricted capacity of the
classification tracks.

5.2 Parallel Classification Procedures

As mentioned before, the classification yard Lausanne Triage features two paral-
lel hump tracks. For the simultaneous method, this means that we can apply two
classification procedures in parallel. The two procedures work as two indepen-
dent systems: there is one shunting engine in either system, and each available
classification track is used by only one procedure; furthermore, every outbound
train is assigned to exactly one of the systems and remains in that system from
its first roll-in until its outbound train is formed. We refer to the two systems of
Lausanne Triage by north partition and south partition.

The assignment of trains to partitions is part of the optimization process.
We add binary variables s;, i = 1,...,m, with s; = 1 iff the ith outbound
train is a member of the north partition. For the sake of comparability, however,
we fixed eight out of 24 variables s; in our test instance as further explained
in Sect. 6.2. We further double the binary variables b} into two sets: I;f for
the schedule corresponding to the north and Bz for that of the south partition.
In the resulting model, we perform h sorting steps in each partition. Let ¢(j),
j €{1,...,n}, denote the outbound train of the jth car.

min Z (Bf—i—l}f)

1<j<n
0<i<h

st Y 20 >rev(j,j—1) — (L=sy) + Y 20 Vi€ {l,....n}\ F (3)
0<i<h 0<i<h
D2 zrev (j,i—1) — sy + Y 20 Vie{l,...,n}\ F (4)
0<i<h 0<i<h
b o<c Y b<c Vie{0,...,h—1} (5)
1<j<n 1<j<n

Note that with this approach the jth car has two bitstrings Ej and Bj, one for each
partition. Consider two consecutive cars j and j—1 of the same outbound train
x that appear in reversed order in the inbound sequence of cars. If x is assigned
to the north partition, i.e. s(z) = 1, then 1 — s4;) = 0 and Constraints (3)
corresponds to Constraints (1). In this case, the values of Bj and Bj_l have no
meaning. Note that Constraints (4) are satisfied if both b; = 0 and b; 4 = 0
independently of the value of rev(j, j—1). By the objective function, an optimal
solution will satisfy Bj =0 and lv)j,l = 0 and its objective value actually equals
the total number of cars rolled in. A similar argument applies for s(z) = 0.

5.3 Available Classification Tracks

In the classification yard Lausanne Triage, the multistage method for classifying
multidestination freight trains is carried out in two stages. First, the trains are
collected on a number W of reserved classification tracks, while all other tracks
are used for other shunting activities such as single-stage sorting. This first stage
corresponds to the initial roll-in of every car (see Sect. 4.1). This constraint is
modeled as follows, where W = W + W with W and W being the numbers of
tracks corresponding to the north and south system, respectively:

initial roll-in: >~ b/ >s,;) Vi€ {l,...,n} (6)
0<i<W

Z B{Zl—st(j) VjE{l,...,n} (7
0<i<W

Note that for the special case of h = W= W, which holds for our solution for
the sample instance of Sect. 6, this simply means that the all-zero bitstring is
disallowed for every car; in other words, cars may not be sent to destination
tracks initially. Note that Constraints (6) and (7) do not implement the limited
number of tracks mentioned in Sect. 4.1 in full generality. In the improved sched-
ule of Sect. 6, we do not pull out any track twice, so Constraints (6) and (7)
suffice here.

In the second stage, these tracks are pulled out to build outgoing trains,
which is usually performed during the night when more than the W reserved
tracks are available for multistage sorting. There might be more and more tracks
available after every sorting step, so forming more and more outgoing trains can
be started. In the integer program, we introduce binary variables 4, ; and ¢,
x=1,...,m,t=0,...,h, that indicate whether forming the xth outgoing train
has started yet at time step ¢ in the north or south partition, respectively.

train formation: Z Uy ()0 < N, vt e {0,...,h—1} (8)
jEF
> e < Ny vt e {0,...,h—1} 9)
JEF

Y >s1() — Db Vje Fte{0,...,h} (10)
t<i<h
Uj g >1=sy — Y b Vi€ Fte{0,...,h} (11)

t<i<h

After every step ¢, the number of outgoing trains that have started to be formed
must not exceed the available number N, or N; of tracks, respectively, at this
time. This is implemented by Constraints (8) and (9). Constraints (10) and (11)
make sure each variable u; ; is actually set if forming the train of the jth car has
been started at the tth step.

5.4 Train Departure Times

If an outbound train is finished, it will not wait until the whole classification
process is finished but leaves the yard if the traffic on the railway line allows.
Some outbound trains even have to depart early to meet the point of time they
are expected to arrive at their destinations, and we have to consider these latest-
possible departure times in the classification process. We introduce an upper
bound on the time it takes to perform one sorting step, which we chose to be
30 minutes for our example of Lausanne Triage. In this way, we obtain the latest
sorting step acc, in which a train x can still receive cars.

accumulation finish: Z (b{ + b{) =0 Vje{l,...,n} (12)

accy(j) <i<h

In the following section, we use this model to derive a schedule for a real-world
classification task, to which we have to apply all the Constraints (3) to (12).

6 Case Study: Lausanne Triage

We apply the model of the previous section to real-world traffic data in this sec-
tion. The problem instance is illustrated in Sect. 6.1, the schedule computation
is described in Sect. 6.2, and its successful simulation in Sect. 6.3.

6.1 Classification Yard Lausanne Triage

The train classification yard of Lausanne features a receiving yard, a classifi-
cation bowl (see Fig. 4) of 38 tracks with two parallel hump tracks, and no
departure yard. Regarding the operation, there are ten tracks reserved for form-
ing multidestination freight trains, on which all cars for the multistage method
are initially collected. As mentioned in Sect. 5.3, the remaining tracks are needed
for other shunting activities. These activities are stopped at some point in the
early morning, from which time the humps are exclusively used for multistage
sorting. Still, not all multidestination freight trains can start to be formed right
after the first pull-out since there are still not enough tracks, but more and more
tracks are available after each step as mentioned in Sect. 5.3.

10

rd Simeon

gﬁ%
C
&
=
L
TP
W‘)m -
ﬁ.&!
B
‘5o
-—
Lausanne

Neuchétel

Fig. 4: The classification bowl of Lausanne Triage with ten tracks for multistage sorting.

Our problem instance comprises all the cars of a complete day in 2005, which
amount to 1’346. For the multistage method there are 452 cars for 22 outbound
trains with between two and seven destinations and two outbound trains with
one destination. We extracted 331 cars for which we computed the schedule. The
remaining 121 cars of the multistage method were not included in the schedule
computation since they receive a special treatment as explained in Sect. 6.2
below.

6.2 Schedule Computation

All TP computations were done with ILOG OPL Studio 3.7 featuring CPLEX 9.0
on an Intel Xeon CPU with 2.80 GHz and 2 GB main memory running Linux.

The schedule originally applied to the above described classification instance
in 2005 comprised five steps in each partition, which corresponds to h = 5 in
the model of Sect. 5.2. Setting the values for C, N;, Ny, and acc, according to
the practical requirements, the problem turns out to be infeasible for putting
h = 4. However, with five steps in the north and only four steps in the south
partition, we obtain a feasible schedule. This is implemented by putting A = 5
and additionally requiring Bg =0fori=4andallcars j € {1,...,n}. Computing
this schedule took 5.75 hours including the proof of optimality.

As mentioned above, there are 121 cars which we did not consider in the
schedule computation. These cars belong to destinations for which there is a very
big number of cars. In the original schedule, these cars were not rolled in to the
ten classification tracks for multistage sorting but directly sent to their respective
destination tracks. Except for one case, for which some extra shunting must be
done, these destinations are at the very front of their respective outbound trains,
so the classification process is not impaired by this practice. In this way, the
cars of the huge destinations did not have to be sent over the hump a second

11

time. For the sake of an easier comparison, we took the same approach: in order
not to interfere with the operation of shunting activities other than multistage
sorting, we chose the same tracks for the large destinations; this includes a fixed
assignment to the north or south partition for the affected outbound trains by
forcing s; = 0 or s; = 1, respectively. Our improvement was achieved with this
additional constraint.

We also tried to compute a schedule with h = 5 steps in each partition
and W = W = 4, i.e. a schedule in which the first track of either partition is
pulled twice. This would save even two classification tracks by revoking the saved
sorting step from above, but there is no feasible solution for this combination.

6.3 Simulation and Results

Fig. 5: Situation of the cars on the classification tracks after the initial roll-in for the
improved schedule. North is at the bottom of the picture.

We simulated the above described schedule using the simulation system “Vil-
lon” [25]. First of all, the above described schedule did not produce any conflicts
when our computer simulation was run on it, which basically means, with regard
to the technical implementation, that the schedule works in practice.

The total number of cars rolled in during the complete improved classification
procedure amounts to 1’700, compared to 1’706 in the original schedule, which is
only a marginal saving. Nevertheless, the theoretical considerations on multistage
sorting in [1] shows that increasing the number h of steps in the multistage
method over the optimum value generally allows decreasing the total number
r of cars rolled in and vice versa. Even though the experiments of [26] suggest
only a mild rise of r for decrementing h, our schedule does not yield any increase

12

at all. Therefore, the marginal reduction of r by six is a great success since we
do not have to pay for the reduced number of sorting steps with more roll-ins
compared to the original schedule. This finding also underlines the suboptimality
of the schedule originally applied.

The number of settings of switches for our schedule amounts to 789 com-
pared to 914 for the old schedule, which is a considerable saving of 125 settings
or 13.7 %. This significantly reduces the wear of the switches and saves main-
tenance, which is further contributed to by only 1’481 movements of cuts over
switches. (A cut is a small set of coupled cars—if consecutive cars on the hump
track are about to be rolled in to the same track, they will not be decoupled.)
Compared to 1’691 for the original schedule, this is a saving of 210 cuts or 12.4 %.

The main improvement, however, consists in saving one full sorting step: in
the original procedure the track labeled “F28” in Fig. 5 contained the cars that
were pulled out in the fifth sorting step of the south partition. In the improved
procedure this track is empty after the initial roll-in, and is now available to be
used for various purposes. the original procedure comprised five sorting steps in
the south partition, whereas our improved procedure only performs four steps.
The track made available by saving the fifth step can be used, for example, for
multistage sorting in order to increase the upper limit of traffic with a higher
attractiveness for this method through an increased potential traffic volume. The
track may also be used for other shunting activities, such as building very long
trains with no order restriction by collecting their cars on several classification
tracks before coupling them into one train.

7 Conclusion and Future Work

The results of this paper demonstrate the power of the classification schedule
encoding established in [1]. We have effectively applied this encoding to obtain
a highly flexible integer programming model for train classification that allows
incorporating various practical restrictions, which underlines the applicability
in practice. As the main result, we are able to derive a schedule for real-world
traffic data of the example classification yard Lausanne Triage that outperforms
the current schedule by one sorting step. Implementing this schedule in practice
would yield a more efficient sorting process with less engine movement and a
significantly reduced wear of switches. Most importantly, the improved schedule
makes an additional classification track available. This raises a potential for
more traffic for the multistage method itself or other shunting methods applied
in parallel, such as single-stage sorting.

For Lausanne Triage dropping the fixed assignment of some trains to par-
titions mentioned in Sect. 6.2 may yield an even better schedule with higher
savings. Beyond that, it would also be interesting to derive and simulate more
schedules for further real-world data. In particular, there are larger classification
yards than Lausanne Triage with higher volumes of traffic for multistage sorting.
For such yards an even higher improvement can be expected, so an application

13

to yards with a higher traffic volume and more sorting steps and tracks appears
promising.

The commonly applied classification methods triangular and geometric sort-
ing yield correctly ordered outbound trains regardless of the order of inbound
trains [18]. Such methods are called strictly robust. However, only a fraction
of trains is actually delayed in practice, so providing strict robustness wastes
a lot of potential as the results of this paper show. As mentioned before, our
improvement is based on complete knowledge of the order of inbound cars. Since
trains may be delayed, the actual order may differ from the scheduled order,
and the optimal classification schedule for the expected order cannot be applied
anymore. This dilemma can be tackled by regarding realistic scenarios of delay
and providing optimal robust solutions w.r.t. a limited amount of recovery in
case of disturbance [19, 20]. This approach balances between strictly robust and
optimal non-robust solutions and may thus yield robust classification methods
that still improve on the current practice.

Acknowledgments We would like to thank Michael Gmiir and Sigmund Riitzler
(Rangierbahnhof Limmattal) for their interesting information on yard operation.
Thank you very much also to Michael Gatto and Matus Mihalak for the helpful
discussions about mathematical programming. Last but not least, many thanks
to Stephan Leber and SBB Infrastruktur for making available their valuable
traffic data to us.

References

1. Jacob, R., Marton, P., Maue, J., Nunkesser, M.: Multistage methods for freight
train classification. NETWORKS—Special Issue: Optimization in Scheduled
Transportation Networks (2009)
2. Kumar, S. In: Improvement of Railroad Yard Operations. McGraw-Hill (2004)
25.1-25.28
3. Flandorffer, H.: Vereinfachte Giiterzugbildung. ETR RT 13 (1953) 114-118
4. Boot, B.C.M.: Zugbildung in Holland. ETR RT 17 (1957) 28-32
5. Keckeisen, W.: Bau und Betrieb der Stuttgarter Hafenbahn. ETR 7(10) (1958)
408-420
6. Baumann, O.: Die Planung der Simultanformation von Nahgiiterziigen fiir den
Rangierbahnhof Ziirich-Limmattal. ETR RT 19 (1959) 25-35
7. Pentinga, K.J.: Teaching simultaneous marshalling. The Railway Gazette (1959)
Krell, K.: Grundgedanken des Simultanverfahrens. ETR RT 22 (1962) 15-23
9. Krell, K.: Ein Beitrag zur gemeinsamen Nutzung von Nahgiiterziigen. ETR RT
23 (1963) 1625

10. Endmann, K.: Untersuchungen iiber die Simultanzugbildung bei der Deutschen
Bundesbahn. Bundesbahn 37 (1963) 593-600

11. Siddigee, M.W.: Investigation of sorting and train formation schemes for a railroad
hump yard. In: Proc. of the 5th Int. Symposium on the Theory of Traffic Flow
and Transportation. (1972) 377-387

12. Daganzo, C.F., Dowling, R.G., Hall, R.W.: Railroad classification yard throughput:
The case of multistage triangular sorting. Transp. Res., Part A 17(2) (1983) 95-106

®

14

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Daganzo, C.F.: Static blocking at railyards: Sorting implications and track require-
ments. Transp. Science 20(3) (1986) 189-199

Dahlhaus, E., Hordk, P., Miller, M., Ryan, J.F.: The train marshalling problem.
Discrete Applied Mathematics 103(1-3) (2000) 41-54

Hansmann, R.S., Zimmermann, U.T.: Optimal sorting of rolling stock at hump
yards. In: Mathematics - Key Technology for the Future: Joint Projects Between
Universities and Industry. Springer (2007)

Di Stefano, G., Maue, J., Modelski, M., Navarra, A., Nunkesser, M., van den Broek,
J.: Models for rearranging train cars. Technical Report TR-0089, ARRIVAL (2007)
Jha, K.C., Ahuja, R.K., Sahin, G.: New approaches for solving the block-to-train
assignment problem. NETWORKS 51 (2008) 48-62

Gatto, M., Maue, J., Mihalak, M., Widmayer, P.: Shunting for dummies: An
introductory algorithmic survey. In: Robust and Online Large-Scale Optimization.
LNCS State-of-the-Art. Springer (2009)

Liebchen, C., Liibbecke, M., Moéhring, R.H., Stiller, S.: Recoverable robustness.
Technical Report TR-0066, ARRIVAL (2007)

Cicerone, S., D’Angelo, G., Stefano, G.D., Frigioni, D., Navarra, A.: Robust al-
gorithms and price of robustness in shunting problems. In: ATMOS-07, Wadern,
Germany, IBFI Schloss Dagstuhl (2007) 175-190

Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A., Schachtebeck,
M., Schobel, A.: Recoverable robustness in shunting and timetabling. Technical
Report TR-0190, ARRIVAL (2009)

Edinger, M., Koénig, R., Marton, P., Zat’ko, M.: Die rechnergestiitzte Simulation
des Betriebs in Werkbahn BASF Ludwigshafen. In: Railways on the Edge of the
3rd Millennium (ZEL-04). (2004) 161-165

Miérton, P.: Experimental evaluation of selected methods for multigroup trains
formation. Communications 2 (2005) 5-8

Zat’ko, M., Leber, S.: Simulation komplexer Betriebsprozesse in einem Rangier-
bahnhof am Beispiel von Lausanne Triage. Schweizer Eisenbahn-Revue 11 (2006)
9500-9503

Adamko, N., Kavicka, A., Klima, V.: Villon - Agent based generic simulation model
of transportation logistic terminals. In: Proc. of the 2007 European Simulation and
Modelling Conference (ESM-07). (2007) 364-368

Maue, J., Nunkesser, M.: Evaluation of computational methods for freight train
classification schedules. Technical Report TR-0184, ARRIVAL (2009)

Jacob, R., Marton, P., Maue, J., Nunkesser, M.: Multistage methods for freight
train classification. In: ATMOS-07, IBFI Schloss Dagstuhl (2007) 158-174

15

Arc-Flags in Dynamic Graphs*

Emanuele Berrettini®, Gianlorenzo D’Angelo', and Daniel Delling?

! Department of Electrical and Information Engineering, University of L’Aquila,
Italy. surreale@gmail.com gianlorenzo.dangelo@univaq.it
2 Faculty of Informatics, Universitit Karlsruhe (TH),
delling@informatik.uni-karlsruhe.de

Abstract. Computation of quickest paths has undergoing a rapid devel-
opment in recent years. It turns out that many high-performance route
planning algorithms are made up of several basic ingredients. However,
not all of those ingredients have been analyzed in a dynamic scenario
where edge weights change after preprocessing. In this work, we present
how one of those ingredients, i.e., Arc-Flags can be applied in dynamic
scenarios.

Keywords: Shortest Path, Speed-Up Technique, Dynamic Graph Al-
gorithm

1 Introduction

Finding best connections in transportation networks is a problem familiar
to everybody who ever travelled. In general, Dijkstra’s algorithm can find
the quickest path between two points s and ¢ if a proper model is applied.
For transportation networks, this can be achieved by assigning travel
times to the edges of the graph representing the transportation network.
Unfortunately, transportation networks deriving from real-world appli-
cations tend to be huge yielding query times of several seconds. Hence,
over the last decade, research focused on accelerating Dijkstra’s algorithm
on typical instances, e.g., road or railway networks (cf. [3] for a recent
overview). Such so called speed-up techniques compute additional data
during a preprocessing phase in order to accelerate the queries during the
online phase. As we observed in [1], most of recent high-performance rely
on basic ingredients.

Unfortunately, not all of those ingredients are proven to work in dy-
namic scenarios, i.e., edge weights change due to traffic jams or delays
of trains. In other words, correctness of the techniques relies on the fact

* Work partially supported by the Future and Emerging Technologies Unit of EC (IST
priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

J. Clausen, G. Di Stefano (Eds): ATMOS 2009

9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2009/2149

that the graph does not change between two queries. Unfortunately, such
situations arise frequently in practice. In this work, we show how to use
one of those ingredients, called Arc-Flags, in such scenarios.

Related Work. As already mentioned, a lot of speed-up techniques have
been introduced over the last years. Due to space limitations, we direct
the interested reader to [3], which gives a recent overview on static route
planning algorithms. For the rest of related work, we focus on published
results on dynamic speed-up techniques.

Geometric containers [15], which can be interpreted as a predecessor
of Arc-Flags, also attach a label to each edge that represents all nodes
to which a shortest path starts with this particular edge. A dynamiza-
tion has been published in [16] yielding suboptimal containers if edge
weights decrease. In [13], ideas from highway hierarchies [12] and over-
lay graphs [14] are combined yielding very good query times in dynamic
road networks. Moreover, the ALT algorithm, introduced in [8] works
considerably well in dynamic scenarios as well [4]. A combination of ALT
with contraction, called Core-ALT, even works in time-dependent dy-
namic road networks [2]. However, to the best of our knowledge, there
are no published results on Arc-Flags in dynamic scenarios.

Our Contribution. In this paper, we propose a first approach to cope with
Arc-Flags in dynamic graphs. In particular, we propose an algorithm that
is able to update Arc-Flags in graphs subject to weight increase opera-
tions. Each time that a weight increasing occurs, the algorithm is able
to efficiently update all relevant Arc-Flags without recomputation from
scratch. In comparison to a from-scratch approach, our algorithm yields a
faster update of the arc-flags for the price of a loss in query performance.
However, our experimental evalutions (on real world road networks) shows
that the decrease in query performance is minor compared to the speed-up
gained in the update phase.

The methods developed here are related to [16] since Geometric Con-
tainers can be interpreted as predecessor of Arc-Flags. Like for Arc-Flags,
preprocessing of Geoemtric Containers is time-consuming. Hence, in [16],
the authors present methods how to update the containers in case of
weight changes without recomputating all containers from scratch. Like
the methods presented here, the main idea is to settle for suboptimal
containers in case of delays. By this, query performance decreases after
a certain number of updates. However, it turns out that this decrease is
acceptable as long as the number of updates stays little.

Outline. In Section 2 we introduce the notation used in the paper; in
Section 3 we present the dynamic algorithm for updating Arc-Flags; in
Section 4 we experimentally analyze the performances of the algorithm;
and in Section 5 we outline the conclusion of the paper.

2 Preliminaries

In this paper, a road network is modeled by directed weighted graphs G =
(V, E,w), where nodes in V represent road crossings, edges in F represent
road segments between two crossings and the weight function w : £ —
R* represents an estimate of the travel time needed for traversing road
segments.

A minimal travel time route between two crossings S and T in a road
network corresponds to a shortest path from the node s representing S and
the node t representing 7. The total weight of a shortest path between
nodes s and ¢ is called distance from s to ¢ and it is denoted as d(s, t).

A partition of the node set V' is a family R = {R;, Ra,..., R} of
subsets of V', such that each node v € V' is contained in exactly one set
Ry € R. An element of a partition is called a region. Given a node v in
a region Ry, v is a boundary node of region Ry if there exists an edge
(u,v) € E or (v,u) € E such that u € Ry. The set of boundary nodes of
a region Ry is denoted as B(Ry)

Given a graph G, the reverse graph G = (V,E) of G is the graph
where E = {(v,u) | (u,v) € E}.

Bidirectional Dijkstra’s Algorithm for Shortest Paths. Minimal routes in
road networks can be computed by shortest paths algorithm such as Dijk-
stra’s algorithm [6]. In order to perform an s-t query, the algorithm grows
a shortest path tree starting from the source node s and greedily visiting
the graph. The algorithm stops as soon as it visits the target node t.
A simple variation of Dijkstra’s algorithm is the bidirectional Dijkstra’s
algorithm which grows two shortest path trees starting from both nodes
s and t. In detail, the algorithm starts a visit of G starting from s and a
visit of the reverse graph G starting from ¢. The algorithm stops as soon
the two visits meet at some node in the graph.

Static Arc-Flags. The classic Are-Flags approach, introduced in [10, 11],
divides the computation of shortest paths into two phases: a preprocessing
phase which is performed off-line and a query phase which is performed
on-line. The aim of the preprocessing phase is to compute in advance

some information about shortest paths. This information is used to speed
up the shortest path computation which is performed in the query phase.

The preprocessing phase first computes a partition R =
{R1,Ra,...,R;} of V and then associates a label to each edge e in E.
A label contains, for each region Ry € R, a flag Ar(e) which is true if
and only if a shortest path in G towards a node in Ry starts with e.
The set of flags of an edge e is called Arc-Flags label of e. Furthermore,
the preprocessing phase associates (backward) Arc-Flags labels to edges
in the reverse graph G. The query phase consists in a modified version
of bidirectional Dijkstra’s algorithm: the forward search only considers
those edges for which the flag of the target node’s region is true, while
the backward search only follows those edges that have a set flag for the
source node’s region.

The main advantage of Arc-Flags is its easy query algorithm combined
with an excellent query performance. However, preprocessing is very time-
consuming. This is due to the fact that the preprocessing phase grows a
full shortest path tree from all boundary nodes of each region yielding
preprocessing times of several weeks for instances like the Western Eu-
ropean road network. This results in practical inapplicability in dynamic
scenarios where, in order to keep correctness of queries, the preprocessing
phase has to be performed after each edge weight modification. Note that
by investing much more memory consumption during preprocessing, the
preprocessing time can be decreased to approximately one day [9]. Due
to the high memory consumption, we settle for the boundary approach in
this work. Still, all insights gained here can also applied to the centralized
approach due to [9].

3 Dynamic Algorithm

In this section, we present an algorithm which is able to update the Arc-
Flags of a graph G in order to correctly answer to shortest path queries
when weight-increase operations occur on G.

The goal is to update arc labels without recomputation from scratch.
Arc-Flags are set considering all shortest path trees rooted at each bound-
ary node, hence a possible approach is to maintain shortest path trees for
all the boundary nodes of the graph by using the dynamic algorithm in [7].
Given the huge number of boundary nodes in large graphs, this approach
is impractical due to its memory overhead and time complexity. However,
this method would guarantee optimal query performance (compared to a

full recomputation) since it maintains exact shortest paths and changes
flags only where needed.

Our goal is to update Arc-Flags without storing too much additional
data. Therefore, we accept a small efficiency loss in the query phase.
The main idea is to define a threshold for each edge of the graph and
compare it with the edge weight increase when it occurs. In this way, we
can determine whether an edge becomes the starting edge of a shortest
path to some boundary nodes after a weight-increase operation. However,
we cannot determine whether an edge belonging to a shortest path before
a weight-increase operation is still on a shortest path after the operation.
Thus, we can keep correctness of Arc-Flags in dynamic scenarios without
maintaining shortest path trees. On the other hand, we keep unnecessarily
true flags which leads to an efficiency loss in the query phase.

In the remainder of the section, we consider only Arc-Flags on graph
the G as the inferred properties do not change for the reverse graph G.
In the next section, the following results will be used on both G and G.

Given a weighted graph G = (V,E,w), and a partition R =
{R1,Ra,..., R} of V let us suppose that G is subject to a set of weight-
increase operations C' = (¢1,c2,...,¢c). Let us denote as G; = (V, E, w;)
the graph obtained after ¢ weight increase operations, 0 < i < ¢, Gy = G.
Each operation ¢; increases the weight of one edge e¢; in E of an amount
~vi > 0, ie. wi(e;) = wi—i(e;) + v and w;(e) = w;_1(e), for each edge
e#e;in E.

Given an edge e = (u,v) and a region Ry, the minimum threshold
Ok,i(e) of e in G; with respect to Ry, is defined as w; (u, v) plus the minimum
difference between the distance from v to b and the distance from u to be
b among all boundary nodes b of Ry, formally,

Ok,i(e) = min {w;(u,v) + d;(v,b) — d;(u,b) | b € B(Ry)} .

In other words, Jj,;(e) is the minimum weight increase which has to occur
to edge e; in order to make e lie on a shortest path towards region Ry.

Note that, for 0 < i < ¢, for each region Ry, and for each edge e,
Ok,i(e) > 0. In fact, if by contradiction we suppose that J;;(e) < 0, then
it follows that for a boundary node b of Ry, w;(u,v) + d;(v,b) < d;(u,b),
which contradicts the minimality of d;(u,b). Moreover 6 (e) = 0 if and
only if Ax(e) = TRUE. In fact, by definition of Arc-Flags, Ax(e) =
TRUE if and only if wo(e) = do(u,b’) — do(v,b’) for some boundary
nodes b’ of Ry. It follows that

0k,0(€) = min {wo(u,v) + do(v,b) — do(u,b) | b € B(Ry)} <

< wO(ua U) + dO(uv b,) - dO(Ua b/) = 0.

The following lemma gives us a necessary condition to check whether
the Arc-Flags of an edge needs to be set to TRUE.

Lemma 1. Given a region Ry, then an edge e is on a shortest path to-
wards Ry, in G; only if ~; > 0 -1(e).

Proof. If e = (u,v) is on a shortest path towards Ry already in G;_1,
then d;,—1(e) = 0 as dj—1(u,b) = wi—1(u,v) + di—1(v,b) for a boundary
node b in Rj. Thus the statement holds. Otherwise, edge e = (u,v) is
on a shortest path towards region Ry in G; and it is not on a shortest
path towards region Ry in G;_1, which means that the weight increase
operation occurred on an edge (u,w) outgoing from node u, that is u = u;
and w = v;. In this case, we prove the statement by contradiction, that
is, we show that if v; < 6 ;_1(e) then edge e in not on a shortest path
towards Ry in G;. Let b be the boundary node of Ry such that

Ok i—1(e) = wi—1(u,v) + di—1(v,b) — d;i—_1(u,b),
then ~; < 0y ;—1(e) implies that
vi < wi—1(u,v) + di—1(v,b) — d;—1(u,b).
It follows that
wi—1(u,v) + di—1(v,b) > d;j—1(u,b) + ;.

The last inequality implies that edge (u,v) is not on a shortest path
towards b. |

Minimum thresholds can be computed in the preprocessing phase,
during the Arc-Flags computation. Hence, the computation of minimum
thresholds does not increase the computational complexity of the pre-
processing. For each region Ry, we store the minimum threshold of an
edge e with respect to Ry, in a data structure dx(e) which is updated each
time that an edge weight modification occurs. Hence, storing minimum
thresholds requires O(m -) instead of O(m-logr) required by Arc-Flags.

When a weight increase operation ¢; occurs, we update Arc-Flags
and minimum thresholds by using Algorithm UPDATE-ARC-FLAGS
in Figure 1.

In detail, Algorithm UPDATE-ARC-FLAGS performs a breadth-
first search for each region R in R. For each visited edge e it checks

1 Algorithm: UPDATE-ARC-FLAGS

input : Graph G;_1, weight increase operation ¢;, 1 <i < ¢
output: Arc-Flags A and minimum thresholds §

foreach region Ry do
visit G;—1 by performing a breadth-first search
foreach visited edge e do
if Ax(e) == FALSE then
if v; > 0r(e) then
Ar(e) =TRUE
5k(6) =0
else
bk (e) = dr(e) — i

Fig. 1. Algorithm UPDATE-ARC-FLAGS

© © 000N Ok N

[y

whether it is not on a shortest path towards region k, that is Ag(e) ==
FALSE (Line 5). In the affirmative case, it applies Lemma 1 by setting
Ag(e) to TRUE and 6i(e) to 0 if v; > di(e) or by updating dx(e) to
0 (€e) — ~y; otherwise (Lines 6-10).

It is easy to see that Algorithm UPDATE-ARC-FLAGS requires
O((n 4+ m) - r) computational time as it performs r times a breadth-first
search of graph G;_1.

The next theorem shows the correctness of algorithm
UPDATE-ARC-FLAGS and it follows from Lemma 1 and from
the discussion above.

Theorem 1. After weight increase operation c;, for each region Ry and
for each edge e, if e is on a shortest path towards region Ry in G; then

Ay(e) = TRUE.

4 Experimental study

In this section, we experimentally analyze the algorithm presented.
We first report the computational time of the preprocessing phase
of Arc-Flags in order to compare it with the computational time of
UPDATE-ARC-FLAGS. Then, we present query performances by
comparing query time after the execution of UPDATE-ARC-FLAGS
against the one obtained after the from scratch recomputation. We also
compare the two algorithms by performing mixed sequences of prepro-
cessing and query phases. Finally, we compare our approach with the
traditional use of bidirectional Dijkstra to evaluate the speed-up gained
by our technique.

Our experiments are performed with a Dual-Core AMD opteron Pro-
cessor 2218 clocked at 2.6 GHz with 32 GB of main memory. The program
was compiled with GNU g++ compiler 4.2 under SuSE Linux 10.3 (Ker-
nel 2.6.22.17).

We consider three graphs that represent the Luxembourg, Dutch and
German road networks. In each graph, nodes represent crossings, edges
represent links between two crossings and the weights correspond to an
estimate of the travel times needed to traverse links. Edges are classified
into four categories according to their speed limits: motorways, national
roads, regional roads and urban streets. The main characteristics of the
graphs are reported in Table 1.

graph n. of nodes|n. of edges|%mot|%nat|%reg|%urb
road network of Luxembourg 30647 75576 0.6 1.9 | 14.8 | 82.7
road network of Netherlands 892027 2278824 0.4 06 | 5.1 | 939
road network of Germany 4375381 10967664 | 0.3 1.5 | 15.5 | 82.7

Table 1. Tested road graphs. The first column indicates the graph; the second and
the third columns show the number of nodes and edges in the graph, respectively; the
last four columns show the percentage distribution of edges into categories: motorways
(mot), national roads (nat), regional roads (reg), and urban streets (urb).

Preprocessing. Regarding the preprocessing phase, in Table 2 we report
the computational time and the average percentage of TRUE flags of each
edge obtained by partitioning the graph into 64 or 128 regions.

graph n. of regions|preprocessing time|% TRUE flags
(sec.)
road network of Luxembourg 64 27 46.2
road network of Netherlands 128 6369 42.7
road network of Germany 128 80981 42.8

Table 2. Preprocessing time. The first column shows the graph; the second one shows
the number of regions; the third one shows the preprocessing time; and the last one
shows the average percentage of TRUE flags.

To evaluate the performances of UPDATE-ARC-FLAGS, we exe-
cute, for each considered graphs and for each road category, random se-
quences made of a different number ¢ of update operations ranging from
1 to 30. The edge-increase amount for each of them is chosen at random

in [600, 1200], i.e., between 10 and 20 minutes. As performance indicator,
we chose the average time (in seconds) used by the algorithm to com-
plete a single update during the execution of a sequence. Experimental
results for the Luxembourg, Dutch and German road networks are given
in Figures 2, 3 and 4, respectively. In particular, each figure shows four
diagrams related to the four road categories considered. Each diagram
shows the average time needed by UPDATE-ARC-FLAGS to perform
a single update operation, as a function of the number ¢ of weight increase
operations occurred in the sequence.

1.1 | | I I I
1 motorways |
national roads —
os | regiODaerads 77777777777 //////// _
on | urban streets o -
0.7 + |
time(s) 0.6 /////////NNMMMW _
04 V ,,,,, _
02 L - | | |
0.1 | _
O | | I) 1
0 5 10 15 = . |

Number of updates ¢

Fig. 2. Average time in seconds (y-axis) needed by UPDATE-ARC-FLAGS to com-
plete a single operation during the execution of a different number of updates per se-
quence (x-axis) on the road network of Luxembourg. The weight increase is randomly
selected in the interval [600, 1200].

As one can see, the UPDATE-ARC-FLAGS is considerably faster
than the preprocessing in all the tested graphs. As an example, performing
30 updates on motorways of the German network, using a from-scratch
recomputation, would last 80980.8 seconds per update, which means that
it would require 28 days, 2 hours, 50 minutes and 24 seconds overall time
to perform 30 updates. Algorithm UPDATE-ARC-FLAGS needs only
215.8 seconds per update yielding 1 hour, 47 minutes and 55 seconds
overall time. Thus, the speed-up achieved by UPDATE-ARC-FLAGS
in this case is about 375. Table 3 shows the speed-up gained by

55
50
45
40
35
30
25
20
15
10

time(s)

T T T
motorways

national roads
regionalroads -----------
urban streets

5 10 15

Number of updates ¢

20

25

30

Fig. 3. Average time in seconds (y-axis) needed by UPDATE-ARC-FLAGS to com-
plete a single operation during the execution of a different number of updates per
sequence (x-axis) on the road network of Netherlands. The weight increase is randomly
selected in the interval [600, 1200].

250

200

150
time(s)

100

50

IrnotorwaysI
national roads
regionalroads - b
urban streets —
1 1 1 1 1
5 10 15 20 25

Number of updates ¢

30

Fig. 4. Average time in seconds (y-axis) needed by UPDATE-ARC-FLAGS to com-
plete a single operation during the execution of a different number of updates per
sequence (x-axis) on the road network of Germany. The weight increase is randomly
selected in the interval [600, 1200].

UPDATE-ARC-FLAGS in the case of a sequence made of 30 weight
increase operations.

Graph Road category|/speed-up

mot 26.89

nat 26.62

road network of Luxembourg reg 34.01
urb 50.19

mot 123.01

nat 140.86

road network of Netherlands reg 211.43
urb 305.58

mot 375.17

nat 427.31

road network of Germany reg 496.06
urb 882.87

Table 3. Speed-up gained by UPDATE-ARC-FLAGS in the case of a sequence
made of 30 weight increase operations. The first column shows the graph; the sec-
ond one shows the road category: motorways (mot), national roads (nat), regional
roads (reg), and urban streets (urb); and the third one shows the speed-up gained by
UPDATE-ARC-FLAGS with respect to a from-scratch approach.

Query Performance. In order to evaluate query performances,
we run queries using source-target pairs that are picked uniformly
at random. For each update sequence, first we update flags using
UPDATE-ARC-FLAGS and then we run queries to evaluate the av-
erage query time. To measure the performance loss, we execute the same
queries by using Arc-Flags updated by a from-scratch approach. Hence,
we execute the preprocessing from-scratch on the modified graph, we
perform the same sequence of queries and we compute the average query
time. The parameter chosen to evaluate performances is the ratio between
the average query time after the execution of UPDATE-ARC-FLAGS
and the one obtained with the from-scratch recomputation. This value is
referred at as query performance loss (gpl). In our experiments, we pick
sequences of 10000 random source-target pairs. Figures 5, 6 and 7 show
results about query performance loss on the three considered graphs. Each
figure shows four diagrams which represents the query performance loss
related to the four road categories considered.

As Figures 5, 6 and 7 show, using UPDATE-ARC-FLAGS to update
flags after a weight-increase operation leads to a decrease of query per-

qpl

20

18

16
14
12
10

S N B O

Imotorways
national roads
regionalroads
urban streets

10 15 20 25 30

Number of updates ¢

Fig. 5. Query performances after the execution of UPDATE-ARC-FLAGS on the
road network of Luxembourg. The x-axis represents the number ¢ of updates in the
sequence, the y-axis represents the query performance loss (gpl).

qpl

80
70
60
50
40
30
20
10

Imotorways
national roads
regionalroads
urban streets

10 15 20 25 30

Number of updates ¢

Fig. 6. Query performances after the execution of UPDATE-ARC-FLAGS on the
road network of Netherlands. The x-axis represents the number ¢ of updates in the
sequence, the y-axis represents the query performance loss (gpl).

80

Imotorways I I ' '

70 national roads P
regionalroads ----------- _—
60 r urban streets // b
50 — —
gpl 40 | i
30 i
20 7// i
10 + i |
///

0 T L I 1 L L

0 5 10 15 20 25 30

Number of updates ¢

Fig. 7. Query performances after the execution of UPDATE-ARC-FLAGS on the
road network of Germany. The x-axis represents the number ¢ of updates in the se-
quence, the y-axis represents the query performance loss (gpl).

formances. Moreover, the query performance loss grows linearly with the
number of updates. This is obvious, because UPDATE-ARC-FLAGS
only changes flags from FALSE to TRUE. In this way, an Arc-Flag search
would consider more edges as the number of updates become bigger lead-
ing to an increase of query time. It is also important to consider the
information provided by Table 1: urban edges represents more than 80%
in the road network of Luxembourg and in the German road network and
more than 90% in the road network of Netherlands. For this category of
edges, the use of UPDATE-ARC-FLAGS leads to a very small query
performance loss. As an example, in the German network, after twenty
updates on urban edges, queries are twenty times slower than after a from-
scratch recomputation. This is due to the fact that urban streets mainly
represent starting or ending edges of shortest paths and hence updates
on these edges do not influences many Arc-Flags. Thus, if we consider a
small number of updates, the use of UPDATE-ARC-FLAGS leads to
query times that are comparable with those of pure Arc-Flags.

In conclusion, UPDATE-ARC-FLAGS is able to rapidly up-
date Arc-Flags with a speed-up between 26 and 882 with respect
to a from-scratch recomputation (see Table 3), and to achieve still
good performances in the query phase with a performance loss of at
most 73. Table 4 shows the relation between the speed-up gained by

UPDATE-ARC-FLAGS in the update phase and the query performance
loss in the case of a sequence made of 30 weight increase operations. As
one can see, the query performance loss is always much smaller than the
speed-up.

Graph Road category||speed-up| gpl

mot 26.89 18.2

nat 26.62 19.6

road network of Luxembourg reg 3401 16.0
urb 50.19 |10.3

mot 123.01 |71.39

nat 140.86 |69.18

road network of Netherlands reg 91143 |41.13
urb 305.58 [28.11

mot 375.17 |73.15

nat 427.31 [55.71

road network of Germany reg 196.06 | 50.9
urb 882.87 |28.78

Table 4. Relation between the speed-up gained by UPDATE-ARC-FLAGS in the
update phase and the query performance loss in the case of a sequence made of 30
weight increase operations. The first column shows the graph; the second one shows the
road category: motorways (mot), national roads (nat), regional roads (reg), and urban
streets (urb); the third one shows the speed-up gained by UPDATE-ARC-FLAGS;
and the last one shows the query performance loss (gpl).

Comparison. In order to evaluate the speed-up gained by our approach
against the simple use of bidirectional Dijkstra, we perform mixed se-
quences of edge weight update and query operations. Each sequence is
made of 1000 operations. In particular, we run a different number ¢ of
update operations ranging from 1 to 30, with a random edge-increase
amount in [600, 1200], and 1000—c queries using source-target pairs picked
uniformly at random.

When the current operation in the sequence is an edge weight up-
date, our approach performs UPDATE-ARC-FLAGS in order to run
Arc-Flags when a subsequent query operation occurs. A traditional ap-
proach just stores the edge weight changes in O(1) and runs bidirectional
Dijkstra for all the subsequent query operations. As a performance meter,
we choose the ratio rs.q between the overall time required by the tradi-
tional approach to perform the entire sequence of operations and that
required by our approach. Results for the considered graphs and road
categories are reported in Figures 8, 9 and 10.

—_
—_

Imo‘corways
national roads
regionalroads ----------- |
i urban streets |

=
jen)
T

T'seq

SO N Wk O 3 00 ©
T
o

Number of updates ¢

Fig. 8. Performances of our approach to perform mixed sequences of updates and
queries on the road network of Luxembourg. The x-axis represents the number ¢ of
edge weight updates in the sequence, the y-axis represents the ratio rs.q between the

time required by the traditional approach (bidirectional Dijkstra) and that required by
our approach.

35 . : . . .
motorways
30 national roads - 1
regionalroads -----------
25 urban streets 1
20 | . |
Tseq
15 F |
\,
0F |
5 \ i
[T B
0 L 1 e e]
0 5 10 15 20 25 30

Number of updates ¢

Fig. 9. Performances of our approach to perform mixed sequences of updates and
queries on the road network of Netherlands. The x-axis represents the number ¢ of
edge weight updates in the sequence, the y-axis represents the ratio rseq between the

time required by the traditional approach (bidirectional Dijkstra) and that required by
our approach.

45

Imotorways
40 - national roads]
35 | regionalroads ----------- i
. urban streets
30 + E
25 L i
Tse
T2 f 1
15F L 1
10 | \]
5t S~ 1
O) 77** *777|¥¥L;;’;,7;i; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S
0 5 10 15 20 25 30

Number of updates ¢

Fig. 10. Performances of our approach to perform mixed sequences of updates and
queries on the road network of Germany. The x-axis represents the number ¢ of edge
weight updates in the sequence, the y-axis represents the ratio rs.q between the time
required by the traditional approach (bidirectional Dijkstra) and that required by our
approach.

As expected, 754 tends to decrease with c. In particular it is bigger
than 1 only when ¢ < 20. This is due to the fact that the traditional ap-
proach does not perform any update phase while our approach performs
UPDATE-ARC-FLAGS. This is slower than a simple bidirectional Di-
jkstra’s query algorithm, even if it is faster than any other preprocessing
algorithms as shown above. When the number ¢ of weight increase op-
erations in the sequence is high, this time overhead becomes evident,
yielding to a value of 74, which is smaller than 1. In addition to that,
query performances decrease with the increase of c¢. This is due to the
query performance loss induced by UPDATE-ARC-FLAGS. However,
when c is less than 20 we can see that our approach leads to a significant
speed-up especially in the bigger graph.

5 Conclusion

Despite the great interest dedicated during the last years to speed-up
techniques for shortest paths, there are only few published algorithms
which are proven to work in dynamic graphs. In this paper, we proposed
a first approach to cope with Arc-Flags in dynamic graphs subject to
weight increase operations.

The main idea is to define a threshold for each edge of the graph and

compare it with the edge weight increase when it occurs. In this way,
we are able to determine whether an edge label should be set to TRUE
but we are not able to determine whether an it should be set to FALSE.
Thus, we can keep correctness of Arc-Flags in dynamic scenarios in linear
time without maintaining shortest path trees. On the other hand, we keep
unnecessarily true flags which leads to efficiency loss in the query phase.
Nevertheless, we experimentally show that such an efficiency loss is very
small compared to the speed-up gained in the update phase.

References

1.

2.

10.

11.

12.

13.

D. Delling. Engineering and Augmenting Route Planning Algorithms. PhD thesis,
Universitat Karlsruhe (TH), Fakultét fir Informatik, 2009.

D. Delling and G. Nannicini. Bidirectional Core-Based Routing in Dynamic Time-
Dependent Road Networks. In S.-H. Hong, H. Nagamochi, and T. Fukunaga,
editors, Proceedings of the 19th International Symposium on Algorithms and Com-
putation (ISAAC’08), volume 5369 of Lecture Notes in Computer Science, pages
813-824. Springer, December 2008.

D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering Route Planning
Algorithms. In J. Lerner, D. Wagner, and K. A. Zweig, editors, Algorithmics of
Large and Complex Networks, volume 5515 of Lecture Notes in Computer Science,
pages 117—139. Springer, 2009.

D. Delling and D. Wagner. Landmark-Based Routing in Dynamic Graphs. In
Demetrescu [5], pages 52—65.

C. Demetrescu, editor. Proceedings of the 6th Workshop on Ezxperimental Algo-
rithms (WEA’07), volume 4525 of Lecture Notes in Computer Science. Springer,
June 2007.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269-271, 1959.

D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic algorithms
for maintaining shortest paths trees. Journal of Algorithms, 34(2):251-281, 2000.
A. V. Goldberg and C. Harrelson. Computing the Shortest Path: A* Search Meets
Graph Theory. In Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’05), pages 156-165, 2005.

M. Hilger, E. Kéhler, R. H. M6hring, and H. Schilling. Fast Point-to-Point Short-
est Path Computations with Arc-Flags. In C. Demetrescu, A. V. Goldberg, and
D. S. Johnson, editors, Shortest Path Computations: Ninth DIMACS Challenge,
volume 24 of DIMACS Book. American Mathematical Society, 2009. To appear.
U. Lauther. Slow preprocessing of graphs for extremely fast shortest path calcu-
lations. In Workshop on Computational Integer Programming at ZIB, 1997.

U. Lauther. An extremely fast, exact algorithm for finding shortest paths. Static
Networks with Geographical Background, 22:219-230, 2004.

P. Sanders and D. Schultes. Engineering Highway Hierarchies. In Proceedings of
the 14th Annual FEuropean Symposium on Algorithms (ESA’06), volume 4168 of
Lecture Notes in Computer Science, pages 804-816. Springer, 2006.

D. Schultes and P. Sanders. Dynamic Highway-Node Routing. In Demetrescu [5],
pages 66-79.

14. F. Schulz, D. Wagner, and C. Zaroliagis. Using Multi-Level Graphs for Timetable

15.

16.

Information in Railway Systems. In Proceedings of the 4th Workshop on Algorithm
Engineering and Ezperiments (ALENEX’02), volume 2409 of Lecture Notes in
Computer Science, pages 43—-59. Springer, 2002.

D. Wagner and T. Willhalm. Geometric Speed-Up Techniques for Finding Short-
est Paths in Large Sparse Graphs. In Proceedings of the 11th Annual FEuropean
Symposium on Algorithms (ESA’03), volume 2832 of Lecture Notes in Computer
Science, pages 776-787. Springer, 2003.

D. Wagner, T. Willhalm, and C. Zaroliagis. Geometric Containers for Efficient
Shortest-Path Computation. ACM Journal of Experimental Algorithmics, 10:1.3,
2005.

Delay Management with Re-Routing of Passengers

Twan Dollevoet!2, Dennis Huisman!?, Marie Schmidt®, and Anita Schobel®

! Econometric Institute and ECOPT, Erasmus University Rotterdam
P.O. Box 1738, NL-3000 DR Rotterdam, the Netherlands.
{dollevoet,huisman}@ese.eur.nl

2 Department of Logistics, Netherlands Railways
P.O. Box 2025, NL-3500 HA Utrecht, the Netherlands

3 Institute for Numerical and Applied Mathematics,
Georg-August University, Gottingen, Germany.
{m.schmidt,schoebel}@math.uni-goettingen.de

Abstract. Trains often arrive delayed at stations where passengers have to change to other
trains. The question of delay management is whether these trains should wait for the origi-
nal train or depart on time. In traditional delay management models passengers always take
their originally planned route. This means, they are in case of a missed connection always
delayed with the cycle time of the timetable. In this paper, we propose a model where re-
routing of passengers is incorporated.

To describe the problem we represent it as an event-activity network similar to the one used
in traditional delay management, with some additional events to incorporate origin and des-
tination of the passengers. We prove NP-hardness of this problem, and we present an integer
programming formulation for which we report the first numerical results. Furthermore, we
discuss the variant in which we assume fixed costs for maintaining transfers and we present
a polynomial algorithm for the special case of only one origin-destination pair.

Key words: Public Transportation, Delay Management, Re-Routing, OD-pairs

1 Introduction and Motivation

Delay management is an important issue in the daily operations of railway companies. It deals
with (small) source delays of a railway system as they occur in the daily operational business of
any public transportation company. In case of such delays, the scheduled timetable is not feasible
any more and has to be updated to a disposition timetable. Since delays can also be transferred
if a connecting train waits for a delayed feeder train such connections are often not maintained
in case of delays. These wait-depart decisions are important decisions for the passengers. In order
to ensure safe operations and to take the limited capacity of the track system into account, also
priority decisions are necessary. They determine the order in which trains are allowed to pass a
specific piece of track.

There exist various models and solution approaches for delay management. The main question
which has been treated in the literature so far is to decide which trains should wait for delayed
feeder trains and which trains better depart on time (wait-depart decisions). It neglects the limited
capacity of the tracks. A first integer programming formulation for this problem has been given
in [Sch01] and has been further developed in [GHLO08,Sch07], see also [Sch06] for an overview
about various models. The complexity of the problem has been investigated in [GJPS05,GGJ104]
where it turns out that the problem is NP-hard even in very special cases. The online version of the
problem has been studied in [GJPWO07,Gat07]. In [BHLSO07], it was shown that the online version of
the uncapacitated delay management problem is PSPACE-hard. Further publications about delay
management include a model in the context of max-plus-algebra [RAVM98,Gov98], a formulation
as discrete time-cost tradeoff problem [GS07] and simulation approaches [SM99,SMBGO1].

J. Clausen, G. Di Stefano (Eds): ATMOS 2009

9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2009/2143

Recently, the limited capacity of the track system is taken into account. This has been done
heuristically in a real-world application studied within the project DisKon supported by Deutsche
Bahn (see [BGJ105]). Some first ideas on how to model these constraints in the context of delay
management have been presented in [Sch09], heuristics and properties of the models including the
never-meet property of uncapacitated delay management are presented in [SS08,SS09].

What has been neglected so far are the aspects of re-routing. In the available models it is assumed
that passengers take exactly the lines they planned, i.e. if they miss a connection they have to wait
a complete period of time until the same connection takes place again. This assumption is usually
not valid in practice. Often there is an earlier connection using another line or even changing the
path of the trip. A real-world example of a situation where re-routing passengers in case of delays
is beneficial is given next.

Zwolle

Hilversum

Amersfoort

Utrecht

Fig. 1. A small part of the railway network in the Netherlands. A regional train runs from Amersfoort
to Hilversum and further to Amsterdam. An intercity service runs from Zwolle to Utrecht and stops at
station Amersfoort. All other trains are intercities as well.

Consider the network in Figure 1. An intercity service runs from Zwolle to Utrecht via Amersfoort.
There are also intercities from Utrecht to Amsterdam and from Amersfoort to Amsterdam. Finally,
a regional train runs via Hilversum from Amersfoort to Amsterdam. A large number of passengers
want to travel from Zwolle to Amsterdam, and thus have a transfer at Amersfoort. In the current
timetable, the intercity to Amsterdam departs from Amersfoort 5 minutes after the intercity from
Zwolle has arrived. Therefore, if the intercity from Zwolle has a small delay, these passengers will
miss the connecting intercity to Amsterdam. If the possibility of re-routing the passengers is not
taken into account, the decision to delay the intercity from Amersfoort to Amsterdam assumes
that the passengers that miss the connection at Amersfoort have to wait for one hour for the
next intercity. However, these passengers will probably take the regional train via Hilversum, that
departs a few minutes after the intercity has left. As the regional train stops at more locations,
the travel time of the regional train is larger than that of the intercity, but the difference is only
several minutes. The delay of the passengers will then be far less than one hour. If the delay is so
large that the regional train has left as well, the passengers could stay in the delayed train and
travel via Utrecht instead. The transfer time in Utrecht is much larger than in Amersfoort. This
small example shows that the delay of passengers that miss a connection is often much smaller
than one hour. To find the optimal wait-depart decisions, re-routing passengers should therefore
be taken into account.

In our paper we will investigate how such a re-routing of passengers can be incorporated into the
delay management problem. We denote the resulting model by delay management with re-routing
decisions (DMwRR). To the best of our knowledge a re-routing of passengers has never been
treated before.

The remainder of the paper is structured as follows. In Section 2 we show how the re-routing
of passengers can be modeled in the event-activity network and that delay management with
re-routing is NP-hard. An integer program based on the event-activity network is formulated in
Section 3. In Section 4 we present a polynomially solvable case in which we show how optimal wait-
depart decisions can be made if only one origin-destination pair is present. We furthermore discuss
another simplified variant in which we assume fixed delay costs for each maintained changing
activity. We finally conclude the paper mentioning ideas for further research.

2 Model

We will make use of an event-activity network to model the delay management problem with
re-routing. Event-activity networks were first introduced by [Nac98] for timetabling problems and
were used for the classical delay management problems by [Sch06]. The event-activity network will
be extended to take re-routing of passengers into account.
We assume that the number of passengers that want to travel from a given origin to a destination
at a certain time is known. For example, 200 passengers want to travel from Zwolle to Amsterdam
at 8 o’clock in the morning. We denote such an origin-destination pair by p = {u, v, sy, }, where u
is the origin, v is the destination and s, is the planned starting time of the trip. P denotes the
set of all such origin-destination pairs. From now on, we will abbreviate an origin-destination pair
as an OD-pair. We denote w,, for the number of passengers associated to an OD-pair p € P.
The event-activity network N' = (€, A) is a directed graph, where £ denotes the set of events and
the set A consists of the activities. The departure or the arrival of a train g at a station v, denoted
by (9 — v — Dep) or (g — v — Arr) respectively, are the most important events in the network. To
incorporate the routes of the passengers, we introduce for every OD-pair p = {u, v, sy} € P an
origin event (p — Org) and a destination event (p — Dest). Note that besides the origin and the
destination, the OD-pairs also contain the time at which passengers want to start their journey.
In summary, the set of events in the network, denoted by &£, consists of the departure events of
the trains, the arrival events of the trains and the origin and destination events for the passengers
for a given OD-pair.

&= gdep U garr U gorg U gdest~

The activities are the arcs in the directed graph N. Similar to the event-activity network used by
[Sch06] for the delay management problem without re-routing, there are driving arcs, waiting arcs
and changing arcs. The driving and waiting arcs represent driving from one station to the next
and waiting at a station to let the passengers get on and off the train. The changing activities are
used by the passengers. They represent the possibility for passengers to transfer from a train that
arrives at a certain station to a train that departs at the same station some time later. It should
be noted that the driving and waiting arcs impose operational restrictions on the vehicles. On the
contrary, a changing arc does not imply that a train has to wait in case of a delay of another train,
although it would be convenient for the transferring passengers.

To take the rerouting of passengers into account, we also introduce origin and destination arcs. Let
an origin event e = (p— Org) € Eqgg be given, where p = {u, v, s, } represents the passengers that
want to travel from station u to station v at time s,,,,. This event e is connected to all the departure
events that depart from u not earlier than the time s,,. It remains to connect the arrival events
to the destination events. Consider therefore a destination event (p — Dest) € Eqest, where again
p = {u, v, Sy, }. Denote SP, for the arrival time of the passengers if there are no delays and denote
n,p for the number of transfers needed for this trip. SP, is clearly a lower bound for the arrival time
of the passengers. To derive an upper bound on the arrival time, note that in the worst case all
n, connections are missed. We conclude that an arrival event e should be connected to (p — Dest)
if e is an arrival event at station v and if the planned time 7. satisfies 7. € [SP,, SP, + n,T],
where T is the cycle time of the original timetable. This concludes the description of the arcs in
the event activity network. Summarizing,

A= -Adrive U -Await U Achange U Aorg U -Adest-

' |
(61— 21— D }—]g — Amf — A g1 — Amf — D |>f g — Ut — A | :
/1 |

- I

¥
]gz—Ut—Dng—Asd—A}_,
\\\
NERES
\ \\
A
\ 7
\\ A
/<\ \

Fig. 2. The event activity network for the situation depicted in Figure 1. The square nodes are the
departure and arrival events where “D” stands for departure and “A” stands for arrival. The origin and
destination events are represented by ovals omitting the add-ons “Org” or ‘Dest” as this is obvious in
the picture. As we only consider one possible departure time for each origin-destination pair, we did not
include the starting time in the origin and destination nodes. The dashed arcs are the origin and destination
arcs, that are introduced to be able to state the shortest path problem for the passengers. The solid lines
represent driving, waiting and changing activities.

An example of an event-activity network is given in Figure 2. This event-activity network corre-
sponds to the railway network in Figure 1. The oval nodes represent the origin and destination
events, that are introduced to model the behavior of passengers when delays occur. The dashed
arcs, that depict the origin and destination arcs, are needed only to take re-routing of passengers
into account. Recall that transfer arcs do not impose any operational constraints. It is therefore
possible not to maintain a connection in case of delays, which would imply that passengers cannot
use such a connection.

For every activity a € Adrive U Await U Achange @ length L, is given that represents the technically
minimal time that is needed to perform the activity. As the origin and destination activities are
not activities in the original sense and thus they are not time consuming, their lengths can be set
to 0 or they can just be omitted.

For every event e € &,,:UE4ep, the planned time is denoted by 7., i.e. m corresponds to the timetable
as it is planned to be operated. For an origin event e = (p — Org) € Eug with p = {u, v, sy, }
we set m, = Sy, (which can be interpreted as the time at which a passenger of OD-pair p arrives
at his or her departure station). For destination events we have to determine the time when the
passengers reach their last station, hence 7, is not known beforehand.

Given a timetable, for every OD-pair a route through the network has to be found, so that the
travel time is minimized. To this end, let P be a directed path from e; to ey in the network N.

— First, assume that es € Eqep UEarr. We define [(P) = m,, — ¢, to be the travel time or distance
between eq, e in N.

— We now extend this definition to nodes ez € Egest- Let pre(eq, P) be the predecessor of ey in
path P. Then we define I(P) = Tpye(cy,p) — Te, -

For a path P connecting an OD-pair p = {u, v, Sy, } we hence obtain [(P) = Tpre(es,P) — Suv- AS We

assume that passengers take the fastest paths to arrive at their destinations, we set [(p) = I(Pyps,.)
where P,ys,, is a shortest path from the origin event e = (p — Org) to the destination event

e = (p — Dest).

Given a set of source delays d. associated to some events e € &, U Egep the problem is to
decide which trains should wait for passengers to arrive from delayed trains and which should
depart without waiting. Thus we have to determine which of the connections a € Achange Will be
maintained and which will be removed. We denote the set of maintained connections by Agy. For
the resulting network

N(Afix) = (87 Adrive U Await U Afix U Aorg U -Adest)

in which the set of changing arcs has been replaced by Agx a new timetable can be constructed
using the critical path method (see [Sch07]). The event times for the events e € Eqep U Earr in this
new timetable will be denoted by .. For an OD-pair p we define t 4, (p) = x. where e is the
predecessor of the destination event (p — Dest) on a shortest path from the origin event (p — Org)
to the destination event (p — Dest) in the network N (Afiy).

In NV (Asix) the travel time of an OD-pair p = {u,v, Sy, } is analogously defined as

l-Af'ix (p) = lAg, (p) — Suv-

In the delay management problem we want to minimize the sum of all delays of the OD-pairs. The
delay of an OD-pair p = {u, v, Sy, } is given as

L, (p) = 1(p) = tag. (P) = Suwv — U(p)-

Since sy, and I(p) are constants we can equivalently minimize ¢ 4,_(p), hence the objective of delay
management with re-routing is to find a subset Agix C Achange S0 that we minimize:

min E Wy -t (D)-
Atix CAchange P fix ()
peEP

Our first result is to clarify the the complexity status of delay management problem with re-routing
and show that it is NP-hard. This is not surprising, because the delay management without re-
routing is NP-hard as well ([GJPSO05]).

Theorem 1. Delay management with re-routing is NP-hard.

Proof. The proof will be done by reduction to the "Uncapacitated Facility Location” (UFL) prob-
lem. An instance of UFL consists of a set of potential facilities J = {1,...,n} and a set of
customers I = {1,...,m} which have to be served by the facilities. A customer can only be served
by a facility if it is opened. Let f; be the cost for opening facility j and c;; be the transportation
cost for serving customer i from facility j. The objective of UFL is to find a subset @ C J and an
assignment of the customers to the facilities so that the total cost consisting of the opening cost
of the facilities and the transportation cost is minimized. The objective function is:

f(Q) := min Z%igcij + Z fi
iel jeQ

For a given instance of UFL we define the following instance of delay management with re-routing
(see Figure 3).

— We consider a transportation system with 2+ m + n stations, namely two fixed stations u and
@ and stations v; for all 7 € I and v; for all j € J.

— As trains we consider one train g running from v to @, trains h; running from @ to the stations
0; and trains k;; linking each pair of stations (0;,v;). Altogether we hence have 1+ n + mn
trains each of them driving between one pair of stations only.

— We use the event-activity network based on this transportation system with a departure event,
a driving activity of length 1 and an arrival event for each of the 1 +m + nm trains. There are
no waiting activities. We have the following set C; U C5 of changing activities consisting of

o transfers from the train g to each of the trains hj;, j = 1,...,n. These are the changing
activites ¢; = {(g — @ — Arr,h; — @ — Dep)},j =1,...,n with length 1. We define

Ci={cj:jeJ}
e transfers from a train h; to a train k;;, j=1,...,n,9=1,...,m, i.e.
Cy ={(hj —v; — Arr,k;; — 0; — Dep) : j € J,i € I}.
— Furthermore, we need OD-pairs P given as
P ={p; ={u,v;,0}Vi e I} U{p; = {a,v;,2}Vj € J}.

We set the number of passengers wanting to travel between the corresponding origin and
destination events as w,, = 1 for every p; = {u,v;,0} and w;;, = f; for every p; = {1, v;,2}.

— Finally, as source delay we assume that the departure event of train g is delayed by d = 1
minute.

First we note that maintaining the connection between the trains h; and k;; does not cause addi-
tional delay for any OD-pair. So we can assume that all changing activitities in Co are maintained
and will in the following only consider such solutions.

Now let () C J be a subset of opened facilities. We define a relation between such opened facilities
and maintained connections which is only based on the maintained connections in C4:

A ={c;eC1:j€QIUC,.

fix
Vice versa for a given subset Ag, € C1 U Cy we set
Q'Aﬁx = {] cJ: cj € Aﬁx}.

Thus we have a bijection between subsets () C J and subsets Agx C Achange- It holds:
Q

1. Q is feasible for (UFL) if and only if all passengers reach their destinations if Ag,_is chosen as
set of maintained connections.
2. The objective values of (UFL) and delay management with passenger re-routing coincide up
to an additive constant, i.e. f(.Agx) = f(Q) + const.
ad 1: A solution @ to an instance of UFL is feasible if and only if there is at least one opened facility.
Similarly, all passengers will reach their final destinations if and only if the set of maintained
connections within Cy is not empty.

ad 2: For a given feasible solution @ to an instance of UFL the objective value is

f(@) = Zg%igcij +Y fi

i€l JEQ
In the associated solution network N (Agx) for every OD-pair p; = {u,v;,0} the arrival time

t A (i) can be calculated depending on the chosen train k;; by adding the lengths L, of the
activities on the path in the event-activity network and the delay d = 1. Furthermore, for
every OD-pair p; = {1, 7;,2} the arrival time t 4, (D)) is ta,, (Pj) = sas, + 1 +d = 4 if the
connection (g — @ — Arr, hj, 4, Dep) is kept alive and ¢4, (pj) = sas; + 1 = 3 otherwise. Thus
the associated solution has solution value:

/ c /)i¢
/ [= - 21 7\
v lhz—Vz—Al’l’}—”k12*V2*Deka12—V1—AI‘I" // \
/ I
/ | ///
// ! 4
7 \ s
— C22
////
C23 -

’k327\727Dep}—>{k32—V3—Arr‘

Fig. 3. The event activity network for the instance of the delay management problem with re-routing constructed from an instance of UFL with m = 3 customers
and n = 2 facilities. The square nodes are the departure and arrival events. The origin and destination events are represented by ovals omitting the add-ons
“Org” or ‘Dest” as this is obvious in the picture. The dashed arcs are the origin and destination arcs, the solid lines represent driving and changing activities.

Z Wp + T Agy (p) = Z Wp, * L Ag, (pi) + Z Wp; - LA (ﬁ])

pEP iel jed
= Zt-Afix (pl) + Z fj A (ﬁj)
el jeJ
:le_léiél(‘l‘f'cij“"d)“‘z,fj -4+ij'3
i€l JEQ JgQ
:Z <5+§%igcij) +ij'4+2fj'3
iel JjEQ i¢Q
:Z%igcij+5'|l|+2fj+2fj'3
i€l JEQ jeJ

=@+ |51+ _fi-3
JjeJ
O
We remark that NP hardness of a similar model also dealing with delay management with re-
routing of passengers has been shown in [GGJT04].

3 Integer Programming Formulation

In this section we will give an integer programming formulation that takes the routing decisions
for the passengers into account explicitly. The model is based on the classical delay management
model as it was introduced in [Sch01]. We will refer to this classical delay management model as
the original model.

The event activity network is a directed graph. We denote 6 (e) and §°"*(e) for the set of arcs
into e and out of e, respectively, for every event e € £.

3.1 Variables

The most important decision is which connections need to be kept alive. For each changing activity
a € Achange We thus introduce a binary decision variable z,, which is defined as follows.

L 1 if connection a is maintained,
@ 0 otherwise.

The times that the arrival and departure events take place are the next set of decision variables.
For each event e € Earr U Eqep, we define . € N as the rescheduled time that event e takes place.
The variables = (z.) therefore define the disposition timetable. These decision variables are the
same as in the original model.

The new aspect that we have to model are the routes that the passengers take. First note that a
route has to be determined for every origin-destination pair. Recall that the set P is defined as
the set of all origin-destination pairs. To model the routing decisions for a given pair p € P, we
introduce binary decision variables qqp, which indicate whether arc a € A is used in the path that
is chosen for origin-destination pair p € P. Formally, the variables g4, are defined as follows.

_J 1 if connection a is used by passengers in p,
9ar =10 otherwise.

The arrival time for p now depends both on the path that is chosen, and on the disposition
timetable x. To be able to incorporate the arrival time of these passengers in a linear model, we
introduce a variable ¢, € N, which will represent the arrival time for pair p € P.

3.2 Integer programming formulation

We first present our integer programming formulation for (DMwRR) and then discuss its meaning,.

min Z Wply (1)

peP
such that
Te > Te +de Ve € Earr U Edep, (2)
Te > Ter + Lo Va = (¢, ¢e) € Aqrive U Avwait, (3)
ZTe > Zer + Lo — Mi(1 — 24) Va = (6,7 e) € AChange7 (4)
Qap < Za Vp € P,a € Achange, (5)
S =1 Ve = (p— Org) € o, (6)
a€sout(e)

Z Qap = Z Gap Vp € P,e € Earr U Edep, (7)

a€sout(e) agdin(e)
1= Z Gap Ve = (p — Dest) € Egest, (8)

agdin(e)
tp > xe — Ma(1 — gpa) Ve = (p — Dest) € Eqest, a € 6™ (e), 9)
2o € {0,1} Va € Achanges (10)
dap € {0,1} VpeP,aec A, (11)
2. €N Ve € Earr U Edep, (12)
t, €N Vp € P. (13)

The objective function (1) minimizes the arrival times of all passengers. This is equivalent to
minimizing the overall or average delay of the passengers. Constraints (2) imply that events cannot
take place earlier than in the original timetable and that source delays are taken into account.
To make sure that delays are propagated through the network correctly, constraints (3) transfer
the delay from the start of activity a to its end. For maintained connections, that is connections
for which z, = 1, constraints (4) transfer delays from the feeder train to the connecting train.
The value of My should be chosen large enough for these constraints to be correct. In [Sch06] it
has been shown that M; = max.c¢ d. is large enough. Constraints (2 - 4) are also present in the
original model.

Constraints (5 - 9) take the routing decisions into account. First of all, constraints (5) make sure
that changing activities can only be used if the connection is kept alive. Constraints (6 - 8) define
a shortest path problem for each origin-destination pair p. For every pair, a path is selected from
the origin to the destination. The last constraint defines the arrival time for trip p, where M is
again a large number. For the arrival event e that is selected and the driving activity a into this
event, gp, = 1, showing that ¢, > z. for this particular event. All other path variables gy, are
equal to zero, therefore putting no restriction on the value of t,.

To find the minimal value of My for which (9) is correct, consider an arbitrary OD-pair p € P.
It was shown in Section 2 that only arrival events that arrive within n, periods after the planned
arrival of the passengers should be connected to the destination event (p, destination), where n,, is
the number of transfers for these passengers if the timetable is operated as planned. The maximal
delay for the OD-pair p is therefore equal to n,T + max, d.. Assuming that no passenger has more
than two transfers, it follows that My = 2T + max.c¢ d. is large enough. Indeed, as

— My <m, —|—ma€Xde — M < S'Pp—|—2T—|—rnagxde — My = SP,,
ec ec

where SP, is the planned arrival time, ¢, > . — M> does not pose a restriction.

We remark that the variables z, are not needed in the above model, since constraints (4) and (5)
can be replaced by the constraint

Te > Ter + Lo — M(1—qop) Va=(e,e) € AchangeVp € P

leading to an equivalent model. Nevertheless, we have chosen to leave these variables in the model
to show the similarity with earlier models. Furthermore, the variables z, could be used to guide
the solution process.

3.3 Some preliminary numerical results

We have implemented the integer program for a small part of the railway network in the Nether-
lands. This small sample consists of 10 stations in the center of the Netherlands, including the
stations in Figure 1. The timetable and the passenger figures are obtained from Netherlands Rail-
ways. We consider 184 trips and 141 OD-pairs during a planning period of 5 hours in the evening.
The sample under consideration contains many OD-pairs for which different routes are possible,
especially near Amsterdam.

The resulting event-activity network contains 502 nodes and 1475 arcs. The number of changing
activities is equal to 542. The integer program was solved using CPLEX 10.1 on an Intel Core
2 Duo PC (2.33 GHz) with 3 GB of memory. For randomly selected delays, the problem can be
solved to optimality within 30 seconds. If only the train from Zwolle to Amersfoort is delayed, as
in our motivating example in Section 1, we indeed see that passengers are re-routed via Utrecht. It
should be noted that in all our tests, the optimal solution is found in less than 5 seconds, although
it takes about 30 seconds to prove optimality of the solution.

4 Special Cases of Delay Management with Re-Routing

In the precedent section we gave an integer programming formulation for the general problem
(DMwRR). Now we will identify simplifications and special cases of (DMwRR) in order to under-
stand the border between still polynomial solvable and already NP-hard variants. The knowledge
about the reasons for the NP-hardness as well as polynomial approaches for special cases can later
serve to construct good heuristics for the general case.

In this section we will hence examine two special cases of (DMwRR). We first present a polynomial
algorithm for the case of delay management with re-routing where the demand is given by only one
OD-pair. Then we will consider another variant in which the costs for maintaining a connection
are fixed. Although this is a strong simplification of delay management with re-routing, it will turn
out to be NP-hard as well.

4.1 Delay management with re-routing for one single OD-pair

This subsection deals with a simplification of delay management with re-routing (DMwRR): We
assume that we are given just one OD-pair p = {u, v, S, }. To simplify the notation in the following
chapter we will identify (p—Org) and v and (p— Dest) and v, so u and v will be regarded as events
in the network. In this case the problem is solvable by a modified version of Dijkstra’s algorithm
for finding a shortest path (see [VC79]). The part of the algorithm that has to be modified is the
calculation of the node labels that in Dijkstra’s algorithm represent the shortest-path distance to
the origin and in the modified algorithm will represent the earliest possible arrival time at a node.
In order to calculate the transfer of delays efficiently we define T'r[e] as the train belonging to an
event e € Egep U Earr

Let A be a network with feasible timetable 7, p = {u, v, sy, } an OD-pair and D a set of source
delays. Like in the original Dijkstra’s algorithm we solve in every step the problem of determining
an optimal path for a pair of events {u,i} where u = (p — Org) is the origin node of the OD-pair
p = {u, v, Sy} under consideration and ¢ € £. In order to do this formally, we need the following
slight extension of (DMwRR):

10

Having in mind the practical application in train re-routing we defined in Section 2 the problem
(DMwRR) for a network A and a set of OD-pairs P consisting of elements of the form p =
{u, v, $ur } where u is the origin, v the destination and s, is the starting time. Now we also want
to deal with OD-pairs as elements of the type p* = {u, i, s, } where i € £ is an arbitrary successor
of w in V. From a mathematical point of view we can do this easily by just defining ¢ 4,. (p*) := x;
as the (artificial) arrival time of such an OD-pair p*. We hence extend the problem (DMwRR) to
instances consisting of a network A" and a set of OD-pairs P of type p*.

Let u be the origin node of the considered OD-pair. Determining an optimal path for a pair of
events {u,i} can hence be seen as solving (DMwRR) for N and P = {{u,i, 84} : 7 € E}. If the
problem (DMwRR) is solved for {u, 1, s,,} we store:

— Ti]: Minimal arrival time for passengers traveling from u to ¢ with starting time sy,,.

— Apgix[i]: Changing activities that have to be maintained in the optimal solution of (DMwRR)
with OD-pair {u, i, Sy}

— TD[i] ={j: (e,7) € Asxl[i] for some e € E}: Set of (departure) events that transfer a delay to
a new train if the optimal path for OD-pair {u, %, Sy, } is realized.

Let PERM be the set of events for which (DMwRR) has been solved and the above values have
been determined. For every e with a direct predecessor ¢ € PERM we determine the optimal path
by first calculating the time plus the delay transferred to e if the connections that belong to the
optimal path to ¢ are fixed:

2ile] = max{7e, T[j] + > ,cp,, La} if there is an event j € T'D[i] such that Tr[j] = Trle]
! Te otherwise

where P is the path from j to e containing only events of the same train Tr[j] = T'r[e]. Then
the delay of e when taking a path via i is max{z;[e], T'[i] + L(;)}. We consequently choose i so
that this expression is minimal and obtain T'[e] = mincpgrar,(ie)calzilel, T[] + Lie). As in
Dijkstra’s algorithm we fix the event é with smallest T7[e].

In order to calculate Ag[é] and T'D[é] we distinguish two cases. Let iz be the predecessor of é in
the solution of (DMwRR) for {u, €, syv}-

— If a = (ig,) is a changing activity and T'[é] > z;,[é] we obtain Agy[é] = Agix[ie] U {(is, €)} and
TD[é] = TDis] U {é}.
— Otherwise we simply set Agix[é] = Asix[ie] and T D[é] = T Dig].

The algorithm is summarized below.

Algorithm: Modified Dijkstra for delay management with re-routing with one OD-pair

Input: Instance of (DMwRR) with network N, feasible timetable 7, delays D and one OD-pair
p={u,v,8us}.
Step 1. Generate the timetable 7 where 7. = MaX(; ¢)e A4iveUAwar 1Te> Ti + Liie) } by the critical
path method.
Step 2. Set PERM = {u}, TEMP = E\ {u}, T[u] = $u,, Tle] = oo for every e € TEMP,
TDlu] =0, Agxlu] = 0.
Step 3. For every e € TEMP and every i € PERM so that (i,e) € A set
] = {max{fre,T[j] + Zaere L,} if there is an event j € T'D[i] such that Tr[j] = Tr[e]
! Te otherwise
where Pj. is the path from j to e containing only nodes of Tr[j] = Tr[e].
— Tle] = minie ppra, (i,e)e.a max{zi[e], T'[i] + L ey}
Step 4. Set é = argminTe], s = argmine ppras,i,e)e Al L1+ Liie)}, PERM = PERM U{é},
TEMP =TEMP\ {¢}, T[é] = T[é].
Step 5. If € = v go to Step 7.

11

Step 6. If (ic, €) € Achange and T'[é] > z;,[¢]

set Agix[€] = Agx[ie) U {(i¢,é)} and TD[é] = {T'D[ic) U{é}} \ {j € Eaep : Tr[j] = Tr[é]}.
Otherwise set TD[é] = T'D[ig], Asix|€] = Asix[ie]-
Go to step 3.

Step 7. Set Agix = Afix[’l)}
Output: Optimal set Agy for the given instance of (DMwRR).

Theorem 2. The algorithm is correct and finds the optimal solution Ay, to (DMwRR) with one
OD-pair in time O(n*) where n is the number of nodes in the network N .

Proof. (a). Using induction we see that for a directed path P, from i to e with Tr[e] = Tr[i] that

(e).

(f).

contains only nodes of the train Tr[e] = Tr[i] where event j precedes event e

T[]+ Y Lo < T+ Lije)-
a€ Pie

. For a given set A C Achange let z[e] for e € €\ {v} denote the minimal possible arrival

times calculated by the critical path method in NV'(A) where 24[u] = s,,. Note that for A =0
xm[e] =7 for all e € Eapy U Edep-

. For any solution Agy[e] C Achange regarding an OD-pair {u, e, sy, } for an e € £ if we construct

Afix[e] from Afix[e] by removing the edges that are not on a shortest path from u to e in
N (Agyle]) it holds that zsxll[e] = zAsx[€l[e]. So we will assume that in the optimal solution
to the problem of finding a shortest path from u to e only the connections on the shortest path
from u to e are maintained.

. For the set Ay [€] that is constructed in the algorihm in step 6 as solution for the path between

u and é because of (c) we get

pAx[e] [6] = maX{ﬁ'e, {J:Aﬁx €] [’L] + L(i,e)}}

max
(i,e)€dm (e)N(AdriveUAwait UAfix)
for all e € £y U Eqep-

Adding changing activities to a set A; does not influence the time for events e that happen
before the added activities take place. That means for two sets Ay C Ay C Achange if for all
a = (e1,e2) € Ay \ Ay 242(e1) > x42(e), it holds that 241 [e] = 242[e].

Furthermore we observe that if for a set Agy[é] for all ¢ such that (i,€) € Agix U Adrive U Await
TD[i] N Trle] = 0, it holds that zmx€l[e] = 7.

First we will show inductively that for every node e with an incoming arc (f,e) it holds that

max{zge], T[f] + L(f,e)} = a4}] (14)

if (f,e) is a changing arc and

max{zs[e], T[f] + L(s.e)} = x5 [e] (15)

otherwise.

1.

2.

First we regard the edges (u,e) € Agg. As Agix[u] = 0 and sy, < 7. because of (b) it holds
that

max{zy[e], T[u] + L(ye)} = max{fc, Suy + 0} = 7o = pAnx] [e]-

Let e be a node such that its predecessor f in P,, lies on the same train T[f] = Te]. As in
N (Agix[f]) it holds that 6™[e] = {(f,e)} (see (c)) and because of (a):

max{zsle], T[f] + Ls.ey} =max{7e, T[f] + Ls.e)}
=max{f, s V[f] + L(; o)}
=g Anxlf] [e].

12

3. Let e be a node such that its predecessor f in P,, does not lie on the same train, T'[f] # Te].

Then (f,e) € Achange-
— Suppose that there is no waiting arc terminating in e. Then because of (c¢) and (e):

max{zyle], T[f] 4+ L)} =max{7e, T[f] + L¢s.e)}
= max{7,, 2= f] + Life)}
= max{7,, gAnx[f1UA(fe)} [f] + L(fve)}
AU),

— Suppose that there is a waiting arc (e, e) terminating in e and that Tr[e] U TD[f] = 0.
Thus 7., = z*5x1[e,] because of (f) and considering (e) it follows

maX{Zf [6], T[f] =+ L(f,e)} = max{ﬁ'e, T[.ﬂ + L(f,e)}
= ma’X{ﬁ-ea T[.ﬂ + L(f,e)a ﬁ.ew + L(ew,e)}
= max{fre, ZAﬁX[f] [.ﬂ + L(f,e)a xAﬁX[f] [ew} + L(ew,e)}
= max{ﬁ'e, A FIU{(f.e)} [f] + L(f’e), A [fIU{(f.e)} [ew] + L(ew,e)}’
A0]

— Suppose that there is (ey,e) € Awair and Tr[e] U TD[f] = {eq}. Let P, be the path on
Trleq] = Trlew] = Trle] from eq4 to e and P, ., be the path on Trleq] = Trle,] = Trle]
from eg4 to e,. We see inductively that z4wx[/1[e,,] = max{7,, , 245x1[e] + Zaeﬁede L.}
Together with (e) follows:

max{zy[e], T[f] + Ls,e)}
=max{7., T[eq] + Z Lo, TIf1 + Lge)}
Cbepede
=max{fe, fe, + Liey.ep, Tleal + D La+ Lieye) T+ Lge)}

aeﬁ’edew

= maX{ﬁ'e’ (max{ﬁ-eva[ed] + Z La} + L(ew,e))> T[f] + L(f,e)}
acP

egew

= max{ﬁ—ea (max{ﬁew) xAﬁX[f] [ed] + Z La} + L(ew,e))v xAﬁX[f] [f] + L(f,e)}

a€P, e,
=max{7e, v Ne,]| + Lic, o) 2™ [f] + L5 o)}
= max{7,, 2= 1HAE} e] 4 L(ew)e),mA“x[f]U{(f*e)}[f] +Ls o)}
=g Anl 10} g).
Thus the assumption given by equations (14) and (15) holds.

If follows that the calculation of

g iePERDJ[\lﬁi,e)eAmaX{z [e], Tl + Liie) }
= mi i (A0} . Al
1611}%%]\/[(i’e)gilhange{x [e]}7 (iae)evril\lﬁchange{m [e]}}

leads to the optimal path from u to e among the set of paths where an element i from the actual
set PERM precedes e.

It remains to show that the set Agy[é] and the label T[¢] = x45x[¢[¢] are optimal for the node é
chosen in step 4 of the algorithm, that means that there is no A C Achange such that there is a
path from u to e in N'(A) and

zAle] < zAn<l]e].

13

This assumption will be proven inductively, too. For the origin node u setting Agsy[u] = () leads to
T'[u] = Sy which is optimal.

Suppose that in the iterations 1 to k — 1 of the algorithm the choice of Agy[e] and the labels T'[e]
are optimal for the regarded nodes e.

Now let & be the node such that in the k-th iteration T[¢] = T[¢] < Tle] for every e € TEMP.
Suppose that there is a set A C Achange such that there is a path from u to e in N'(A) and

zAe] < o<l (16)
Let P“ be the optimal path from u to é in N'(A).

(A). If the predecessor eg of é in Pqﬁg is in PERM, because of the assumption that the labels T'[e]
and chosen sets Agsy[e] are optimal for all e € PERM

IA[é] :z.Afix[eo]U{(eg,é)}[é}

— min min LA IU{(f.8)} 16 , min A ([f] [é]}
1€ PERM (ivé)eAchange (ivé)EA\Achange
— pAnx[€] €]

if (eo, €) € Achange and
zA[e] =z Anxleol [g]

min { min g6 [Fu{(£.e)} e, min pAuxlf] [€]}
i€EPERM " (i,6)€ Achange (3,8) €A\ Achange

=gAnx[e[g)

otherwise, which is a contradiction to (16).
(B). If the predecessor eg of é in P2 is in TEM P let e, denote the last node in PERM on the path
P% (e; exists because u € PERM) and ex € TEM P its successor. So as T[é] = T[¢] < Te]

fore e TEMP
z4[e] > ates] = max{ze, [ea], Tler] + Liey o)} = Tlea] = T(e] = T[e] = a=[¢]
which contradicts (16).

Now it remains to show that Agx[v] is the optimal solution to (DMwRR) for the OD-pair p =
{u,v, 84 }. As defined in Section 2, Agy[v] is optimal if it minimizes t,, (p) = x*tx[e] for the
predecessor e of v on a shortest path from u to v in the network N (Agy). Suppose that the set
Asix[v] and the predecessor e calculated by the algorithm are not optimal with regard to an optimal
path from u to v. The same considerations as above in (A) and (B) lead to a contradiction. So the
set Agix[v] as it is set in step 7 of the algorithm indeed is the optimal solution to (DMwRR) for
the OD-pair p = {u, v, Sy }-
The generation of the timetable in step 1 is done in time O(n?) by the procedure given in [Sch07]
as well as step 7. The initialization of the algorithm in step 2 can be done in time O(n). As in each
repetition of the steps 3-6 one element is removed from T EM P, the number of times the steps
3-6 are repeated is bounded by n — 1, the number of elements initially contained in TEM P. We
observe that for given e € TEM P and i € PERM with (i,¢) € A the calculation of z;[e] and T/[e]
can be done in time O(n) if for each node k € &,y U Egep a pointer to the (unique) successor of k
on an arc @ € Ayait U Adrive 18 stored. So step 3 can be executed in time O(n?). As the steps 4-6
are done in time O(n) the running time of the modified Dijkstra algorithm is in O(n?).

O

4.2 Re-routing with fixed costs

The delays that arise in delay management with re-routing for the passengers by the wait-depart
decisions for the connections can be divided into two types:

14

1. A connection is maintained: The waiting train and the passengers on the waiting train are
delayed.

2. A connection is not maintained: The passengers that wanted to take this connection have to
travel along another, probably longer path.

Calculating the delay of the first type by a heuristic approach motivates the following simplified
re-routing problem with fixed costs:

Let N' = {&, A} be a directed network with edge lengths L, for all a € A. Let Achange C A be a
set of connections that can be maintained or removed. We assume that maintaining a connection
a € Achange yields a fixed delay of d, for the passengers. Let P = {{u,v}} be a set of OD-pairs,
given as a subset of £ x £ with demand w,, for each p € P. The objective of this variant is to
minimize the costs arising as fixed delays for maintaining connections plus the travel costs of the
OD-pairs. Hence, the objective function is

p rr;iln E wp - D, (u,v) + g dq
ix CAchange
£ hang peP a€Agix

where D 4, (u,v) is the optimal path distance from u to v in the network in which all connections
a € Achange \ Arix are removed.

Like in delay management with re-routing this problem can be solved in polynomial time if there
is only one OD-pair (by adding the fixed costs d, divided by the demand of the OD-pair w, for a
connection a to its length L, and applying Dijkstra’s algorithm) but even this simplified variant
is NP-hard in general.

Theorem 3. Re-routing with fized costs is NP-hard.

Proof. Analogously to the proof of NP-hardness for (DMwRR) we can prove this theorem by
constructing an equivalent re-routing with fixed costs problem for each instance of UFL. The
network N we construct here differs from the network A considered in the proof of Theorem 1 only
in the absence of the OD-pairs {@, 9;} and the associated origin and destination nodes (p—Org) and
(p— Dest) and origin and destination arcs (p—Org, h;, —i— Dep) and (h; —0; — Arr, p— Dest). The
fixed costs for a € Achange are given by d(g_a—Arr,n,—a—Dep) = fj and d(n; 5, Arr ki;—5;— Dep) = 0-
Similar to the proof of Theorem 1 we observe that we can assume the connections (h; — v; —
Arr, k;; —9; — Dep) to be maintained because their fixed costs are 0. Like in that proof for a given
set of facilities) we define

AG = {(9—a—Arr,hj—t—Dep) :j € Q,i € I}U{(h; —0; — Arr,k;j —0; —Dep) : j € J,i € I}.

fix
and for a given subset Agyx D {(h; — 0; — Arr,k;j —0; — Dep) : j € J,i € I} we set
QA ={jeJ:(g—1u— Arr,hj — @ — Dep) € Agy}. (17)

Now a subset @@ C J and the associated subset Ay are both feasible or infeasible and the difference
between their objective values is 5 - |I| as can be seen analogously to the proof of Theorem 1.
O

5 Conclusion and Further Research

In this paper, we introduced a model that allows to react to delayed trains not only by wait-depart
decisions for the following trains but also by re-routing of passengers. For this purpose we intro-
duced the origin and destination of the passengers as events in the event-activity network used
in delay management and connected the wait-depart decisions to a shortest path problem in the
resulting network. We proved that this problem is NP-hard. Furthermore, we developed an integer
programming formulation for the delay management problem with re-routing.

15

Two main directions for further research on delay management with re-routing can be distin-
guished. First, special cases of the problem should be considered. For these special cases, faster
solution procedures can be developed. For example, if the event-activity network has a special
structure, this structure can be exploited to solve the delay management problem more efficiently.
The methods to solve these easier problems can be used in the second direction of research:
solving the delay management problem. In the paper we have reported some initial computational
results on a small instance of the Dutch railway network. However, more experiments are required.
In practice, the delay management problem should be solved on a very short notice. Therefore,
heuristics should be developed that find a reasonable solution within a short computation time.
To evaluate the quality of the solutions found by the heuristics, it is also interesting to investigate
exact solution methods. Decomposing the problem in the wait-depart decisions on one hand and
the re-routing of the passengers on the other hand could improve the running times of the exact
solution methods.

In practice, the limited capacity of the infrastructure has a large impact on the real-time perfor-
mance of a railway operator. Therefore, the capacity constraints should be integrated in the delay
management models. Considering other routing or network location problems under the aspect of
demand given as OD-pairs may also lead to interesting problems.

References

[BGJ'05] N. Bissantz, S. Giittler, J. Jacobs, S. Kurby, T. Schaer, A. Schébel, and S. Scholl. DisKon - Dis-
position und Konfliktlosungs-management fiir die beste Bahn. Eisenbahntechnische Rundschau
(ETR), 45(12):809-821, 2005. (in German).

[BHLS07] A. Berger, R. Hoffmann, U. Lorenz, and S. Stiller. Online delay management: Pspace hardness
and simulation. Technical Report ARRIVAL-TR-0097, ARRIVAL Project, 2007.

[Gat07] M. Gatto. On the Impact of Uncertainty on Some Optimization Problems: Combinatorial
Aspects of Delay Management and Robust Online Scheduling. PhD thesis, ETH Ziirich, 2007.

[GGJ104] M. Gatto, B. Glaus, R. Jacob, L. Peeters, and P. Widmayer. Railway delay management:
Exploring its algorithmic complexity. In Proc. 9th Scandinavian Workshop on Algorithm Theory
(SWAT), volume 3111 of LNCS, pages 199-211, 2004.

[GHLO8] L. De Giovanni, G. Heilporn, and M. Labbé. Optimization models for the single delay manage-
ment problem in public transportation. European Journal of Operational Research, 189(3):762—
774, 2008.

[GJPS05] M. Gatto, R. Jacob, L. Peeters, and A. Schébel. The computational complexity of delay
management. In D. Kratsch, editor, Graph-Theoretic Concepts in Computer Science: 31st
International Workshop (WG 2005), volume 3787 of Lecture Notes in Computer Science, 2005.

[GIJPWO07] M. Gatto, R. Jacob, L. Peeters, and P. Widmayer. On-line delay management on a single
train line. In Algorithmic Methods for Railway Optimization, number 4359 in Lecture Notes in
Computer Science, pages 306-320. Springer, 2007.

[Gov98] R.M.P. Goverde. The max-plus algebra approach to railway timetable design. In Computers
in Railways VI: Proceedings of the 6th international conference on computer aided design,
manufacture and operations in the railway and other advanced mass transit systems, Lisbon,
1998, pages 339-350, 1998.

[GSO07] A. Ginkel and A. Schébel. To wait or not to wait? The bicriteria delay management problem
in public transportation. Transportation Science, 41(4):527-538, 2007.

[Nac98] K. Nachtigall. Periodic Network Optimization and Fized Interval Timetables. Deutsches Zen-
trum fiir Luft— und Raumfahrt, Institut fiir Flugfiihrung, Braunschweig, 1998. Habilitationss-
chrift.

[RAVM98] B. De Schutter R. de Vries and B. De Moor. On max-algebraic models for transportation
networks. In Proceedings of the International Workshop on Discrete Event Systems, pages
457-462, Cagliari, Italy, 1998.

[SchO1] A. Schobel. A model for the delay management problem based on mixed-integer programming.
Electronic Notes in Theoretical Computer Science, 50(1), 2001.
[Sch06] A. Schobel. Customer-oriented optimization in public transportation. Optimization and Its

Applications. Springer, New York, 2006.

16

[Sch07]

[Sch09]
[SM99]

A. Schobel. Integer programming approaches for solving the delay management problem. In
Algorithmic Methods for Railway Optimization, number 4359 in Lecture Notes in Computer
Science, pages 145—170. Springer, 2007.

A. Schobel. Capacity constraints in delay management. Public Transport, 2009. to appear.

L. Suhl and T. Mellouli. Requirements for, and design of, an operations control system for
railways. In Computer-Aided Transit Scheduling. Springer, 1999.

[SMBGO1] L. Suhl, T. Mellouli, C. Biederbick, and J. Goecke. Managing and preventing delays in railway

[SS08]

[$S09)

[VCT9]

traffic by simulation and optimization. In Mathematical methods on Optimization in Trans-
portation Systems, pages 3—16. Kluwer, 2001.

M. Schachtebeck and A. Schébel. IP-based techniques for delay management with priority
decisions. In Matteo Fischetti and Peter Widmayer, editors, ATMOS 2008 - 8th Workshop
on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Dagstuhl
Seminar proceedings, 2008.

M. Schachtebeck and A. Schébel. To wait or not to wait and who goes first? Delay management
with priority decisions. Technical report, Institut fiir Numerische und Angewandte Mathematik,
Georg-August Universitdt Gottingen, 2009. NAM Report.

J.M. Moore V. Chachra, P.M. Ghare. Applications of Graph Theory Algorithms. FElsevier
North-Holland, New York, 1979.

17

Edges as Nodes -
a New Approach to Timetable Information

Olaf Beyersdorff and Yevgen Nebesov

Institut fiir Theoretische Informatik, Leibniz-Universitat Hannover, Germany
beyersdorff@thi.uni-hannover.de, yevgen.nebesov@stud.uni-hannover.de

Abstract. In this paper we suggest a new approach to timetable information
by introducing the “edge-converted graph” of a timetable. Using this model we
present simple algorithms that solve the earliest arrival problem (EAP) and the
minimum number of transfers problem (MNTP). For constant-degree graphs
this yields linear-time algorithms for EAP and MNTP which improves upon
the known DIJKSTRA-based approaches. We also test the performance of our
algorithms against the classical algorithms for EAP and MNTP in the time-
expanded model.

Key words: timetable infomation, earliest arrival problem, minimum number
of transfers problem, time-expanded model

1 Introduction

Algorithms for timetable information play an important role in public trans-
portation systems and related applications [8]. A number of important algorith-
mic problems connecting to timetable information is studied in the literature.
One of the most basic of these is the earliest arrival problem (EAP) asking for
a route between two stations s and ¢ that assures the earliest possible arrival
at t and obeys the specified departure time at s.

While the systems used in practice typically employ heuristics to solve these
problems (cf. [8]), there is also a number of exact methods. The two most
common approaches are the time-expanded and the time-dependent approach
which transform the initial network into a weighted digraph such that classical
algorithms for path search such as DIJKSTRA become applicable [1,9,11,12].

In this paper we propose a novel approach to timetable information which
we call the edge-converted approach. Similarly as in the time-expanded and
time-dependent model, we also convert the initial network into a digraph, but
such that elementary connections are represented as nodes. Thus, in some sense,
the role of edges and nodes is switched in our model. Based on this model we
present two algorithms that solve the earliest arrival problem as well as the min-
imum number of transfers problem (MNTP). Both algorithms are conceptually
simple as they are variants of depth-first and breadth-first search, respectively.
Moreover, these algorithms are very efficient—they only use linear time in the
size of their input, i.e., in terms of the size of the edge-converted network.

To compare the performance of these algorithms to the DIJKSTRA-based ap-
proaches in the time-expanded model [12], we need to compare the sizes of the
time-expanded and edge-converted graphs. It turns out, that our model has the
advantage to introduce less nodes but uses far more edges (up to O(n?) in the

J. Clausen, G. Di Stefano (Eds): ATMOS 2009

9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2009/2147

general case). However, we argue that for practical networks only a linear num-
ber of edges is needed which leads to linear-time algorithms for EAP and MNTP.
In particular, for the class of constant-degree graphs our approach yields linear-
time algorithms for EAP and MNTP where the running time is measured in
the size of the initial network. This improves upon the known DIJKSTRA-based
solutions which consume O(nlogn) running time. We also implemented our al-
gorithms and performed an experimental study which confirms our theoretical
results.

This paper is organized as follows. In Sect. 2 we review basic definitions
from timetable information including the definition of EAP and MNTP. Sec-
tion 3 discusses the two main approaches towards these problems. In Sect. 4
we introduce our new model and compare it to the time-expanded approach.
The following Sect. 5 contains our algorithmic solutions for EAP and MNTP
which are then tested experimentally in Sect. 6. Finally, Sect. 7 concludes with
a discussion of our results and directions for future research.

2 Itinerary Problems

A timetable is a network composed of nodes (station, bus stops, etc.) and some
elementary connections between them. Each elementary connection is a train (or
bus, etc.) which starts and arrives at certain nodes and has a certain departure
and arrival time. So it can be interpreted as a 4-tuple e = (s,t,d, a), where s
and ¢ are nodes, d is the departure time at s and «a is the arrival time at . We
will also call s and ¢ the source node and the target node of e, respectively. A
transfer between two connections e; = (s1,t1,d1,a1) and ey = (s9,t2,da, ag) is
possible if t1 = s9 and a1 < do. A route or an itinerary between two nodes s
and t is a sequence of elementary connections (eq, ..., ey,), where s is the source
node of ey, t is the target node of e,, and a transfer between each e; and e;
is possible.

The time values are elements of a totally ordered set T with a defined
addition operation. As a rule, T' consists of integer numbers between 0 and 1439
and represents the time in minutes after midnight. The time may denote one
or several successive days which can be integrated into one model by counting
the time modulo 1440 and keeping track of the days [5]. In this paper, however,
only one day is used as a time horizon.

A number of important problems on timetable information is described in
[2,4,6,8,10,11]. The earliest arrival problem (EAP) is the most basic and
fundamental of them. Instances of EAP are 3-tuples (s, ¢, d), where s is a source
node, t is a target node, and d is the earliest departure time at s. The task
consists in finding a route from s to ¢t which departs from s not earlier than the
given earliest departure time and minimizes the difference between the arrival
time at ¢ and the earliest given departure time. EAP has a realistic and a
simplified version. The realistic version considers the minimum transfer time at
a station. The transfer time in the simplified version is assumed to be 0. In this
paper we will only consider the simplified version of EAP.

Another problem in timetable information is the minimum number of trans-
fers problem (MNTP). In this case, a query consists of a departure station s

and an arrival station ¢ only. The task is to find an itinerary that minimizes the
number of train transfers.

3 Related Work

The existing algorithms for path searches on static networks are not suitable
for timetables, since the edges are available only temporarily within a given
time window. The most common approaches for solving EAP and MNTP are
based on time-expanded [11,12] and time-dependent [1,9] models. The defini-
tion and detailed analysis of both algorithms are described in [10]. The idea
of time-expanded and time-dependent models is to transform or to extend the
initial graph in such a way that the known algorithms for static graphs may
be applied. Pyrga, Schulz, Wagner, and Zaroliagis [11] showed in an experi-
mental comparison of the time-expanded and time-depended models that the
time-dependent approach can be faster than the time-expanded up to factor 40.
However, it is not considerably faster in the case of realistic models and has
some drawbacks touching the extensions towards realistic models [10], for in-
stance when modelling minimum transfer times at stations. Therefore, only the
time-expanded model applied to EAP and MNTP will be considered and then
compared to our approach. A comparison with the time-dependent approach is
planned to be done in future research.

3.1 The Time-Expanded Model

The time-expanded model is based on the following transformation. Each ele-
mentary connection e = (s,t,d,a) induces a copy of the source node s tagged
with the departure time stamp d and a copy of the target node ¢ tagged respec-
tively with the arrival time stamp a. Thus, the initial connections become the
connections between a pair of copies according to their time stamps.

Next, for each station s of the initial network all its copies will be captured
and ordered ascending their time stamps. Let v1, ..., v; be the copies of s in that
order. Then, there is a set of stay-edges (v, vit1), @ = 1,...,k — 1, connecting
the two subsequent copies within a station and representing waiting time at that
station between two time events. Thus, given a graph (S, E), where S is a set of
stations and E is a set of edges or elementary connections, the time-expanded
model will include as many as 2|E| — |S| stay-edges.

The example in Fig. 1 illustrates the transformation of an initial network
to the time-expanded model. The timetable consists of five stations and seven
elementary connections between these stations. The time stamps at the edges
represent the departure and arrival time of the given connection.

Observation 1 The route between two nodes consists not only of the elemen-
tary comnections, but also of some stay-edge comnections. It can also happen
that there are many stay-edges belonging to only one station. For example, the
dashed line in Fig. 1 shows, that the route between stations 1 and 5 includes
two stay-edges at station 3. Hence the number of the edges on a route depends
on the number of the transfers and on the number of initial events as a whole.

11-13

Fig. 1. An initial network and the transformed time-expanded network

The number of nodes in the time-expanded model is equal to the double
number of elementary connections of the initial graph, since each connection
produces a copy of its source and its target nodes. The number of edges in the
time-expanded model includes the elementary connections and the stay-edge
connections (cf. Table 1).

Table 1. The size of the time-expanded graph

l [Initial graph (S, E) [Time-expanded graph ‘
Number of nodes |S| 2|E]|
Number of edges |E| < 3|E| —|S| < 3|E|

3.2 EAP with the Time-Expanded Model

The original approach for solving the shortest-path problem is the DIJKSTRA
algorithm [3]. Every edge in the time-expanded model has departure and arrival
time stamps. The time difference between these time stamps can be attached
as the weight to the given edge. Starting at the first copy of the source node,
but, not earlier than allowed by the earliest departure time, we find a shortest
path by reaching any copy of the target node [11]. Given a network G = (S, E),
the complexity of the DIJKSTRA algorithm is O(|E| 4 |S|log|S]). According to
Table 1, for the timetable with |S| stations and |F| elementary connections,
the run-time of the DIJKSTRA algorithm applied on the time-expanded model
is equal to c¢(3|E| — |S| + 2|E|log2|E|), where c is a constant stemming from
the DIJKSTRA algorithm.

3.3 MNTP with the Time-Expanded Model

The D1JKSTRA algorithm can be also used for solving MNTP with the time-
expanded model. The edges between copies of different stations are assigned
a weight of 1, and stay-edges are assigned a weight of 0. Starting at the first
possible copy of a source station, the shortest path to a copy of a target station
yields a solution of MNTP. The complexity of MNTP with the time-expanded
model coincides with the complexity of EAP, since it uses the same algorithm.

We remark that the above described applications of the time-expanded
model refer to the earliest ideas of the time-expanded approach. Recently, many
speed-up techniques for EAP and MNTP have been developed. The extensions
and improvements of the time-expanded approach and shortest-path algorithms
are described in [2,5,7,11,12]. In this paper our approach for solving EAP and
MNTP is only compared to the original formulations of the time-expanded
model and the shortest-path algorithms. The comparison to the newest im-
provements of the time-expanded and time-dependent model should be made
in future research.

4 Owur Approach: The Edge-Converted Model

In this section we will describe a new model for timetable information. Similar to
the time-expanded approach, we use a transformation of the initial network to
obtain a static structure supporting well known algorithms, such as DIJKSTRA
or breadth-first search. The core idea of our approach is to convert the initial
elementary connections to nodes. Therefore we call it edge-converted approach.
The whole transformation routine is listed below:

Step 1. At first we take all the stations of the initial network as new nodes.
We call these nodes type A nodes.

Step 2. Then for every elementary connection e = (s,t,d,a), a new node
that gets all four parameters of the edge e will be created. We call these nodes
type B nodes (see Fig. 2).

Step 3. Now we connect type A nodes to type B nodes according to the
next two rules.

a) There is an outgoing edge from a type A node u to a type B node v =
(s,t,a,d) if u=s.

b) There is an outgoing edge from a type B node v = (s,t,a,d) to a type A
node u if t = u (see Fig. 2).

Step 4. Next, we add several edges connecting type B nodes with each other.
There are four conditions for the existence of an edge between two type B nodes
u = (SU7 L, duy, au) and v = (3v7 ty, dy, av):

a) ty = Sy

b) a, < d,

c¢) For all type B nodes w = (Sw, tw, dy, @), if S = Su, tw = ty, and ay,, < dy,
then d, > d,,.

Type B

® ®

Fig. 2. Generation of nodes in the edge-converted model (left) and the complete edge-
converted graph for the initial network from Fig. 1 (right)

d) For all type B nodes w = (Sy, tw, dw,), if Su = Sy, tw = ty, and a, < dy,
then a,, > a,.

The complete edge-converted graph from the example in Fig. 1 is depicted
in Fig. 2.

A route between two nodes (independent of their type) is defined as a usual
path in the edge-converted graph. We start with some initial observations on
the edge-converted graph.

Observation 2

1. The connections between two type B modes represent a transfer possibility
between two elementary connections in the initial timetable.

2. If there exists a route between two type A nodes u and v, then there exists a
route which only contains type B nodes as intermediate nodes, i.e., the only
type A nodes are the source u and the target v. Thus, the length of a route is
not dependent on the network size, but only on the number of the necessary
transfers (compare with Observation 1).

3. The edge-converted graph has no cycles consisting only of type B nodes.

We will use these observations in the applications below where we search
some path between two type A nodes only via type B nodes.

Now we want to estimate the size of the new edge-converted model. Each
node has been induced either by an initial station (type A) or by an initial
elementary connection (type B). So the number of new nodes can be calculated
as the sum of the initial nodes and edges. The number of new edges cannot be
provided in an explicit form and does not only depend on the number of the
initial edges or nodes but also on the connections’ time stamps. Rules ¢) and d)
from Step 4 in our construction filter out the “bad” transfer possibilities from
the set of all possible transfers. The remaining edges between type B nodes
represent the “good” transfer possibilities. Thus, the total number of edges in
the edge-converted graph equals 2 - #initial edges + #good transfers.

Let us calculate an estimate for this number. Given a timetable with n
stations, each station can be connected at most to n — 1 stations in the original
network. If we assume that there are at most k elementary connections between
each pair of the initial stations, then, in the worst case, the edge-converted
model contains O(kn?) edges connecting type B nodes with each other.

This, however, does not happen in realistic networks. Towards a better anal-
ysis, let us assume that the original network is of constant degree of at most d,
i.e., every station has at most d ingoing and d outgoing connections to other
stations. In this case we get < d?n edges for connecting type B nodes and < 2dn
edges for connecting type A nodes to the type B nodes. Thus, the total size of
the edge-converted graph is linear in the size of the original network. This is
depicted in Table 2. As the table shows, regarding realistic networks, our model
contains fewer nodes, but more edges than in the time-expanded model.

Table 2. A comparison of the size of the time-expanded and edge-converted models

l Initial graph Time-expanded model [Edge-converted model ‘
Very dense networks
F#stations = n < 2kn? < n+kn?
#elementary connections < kn? < 3kn?—n < kn® 4 2kn?
Constant-degree networks
#stations = n < 2dn <(d+1)n
#elementary connections < dn < Bd—1)n < (d® +2d)n

A possible drawback of our construction is that, unlike in the time-expanded
approach, we can only incorporate a fixed time horizon into the edge-converted
model. Thus for practical purposes, one has to define a fixed maximal travel
time and adjust the time horizon accordingly to one or several days.

5 EAP and MNTP with the Edge-Converted Model

The common approach to solve EAP or MNTP in the time-expanded approach
is to use the DIJKSTRA algorithm which consumes more than linear running
time. For the edge-converted model we will describe below two algorithms for
EAP and MNTP with only linear run-time. Moreover, our algorithms have the
advantage of great simplicity as they implement variants of depth-first search
and breadth-first search, respectively.

Our algorithms include a pre-processing step that has to be done only once.
Let (s,t,d) be an EAP query. We need to find a route connecting the stations
s and t, starting not earlier than at the given time d and providing the earliest
arrival time at ¢. The main idea of our algorithm below is to use a usual depth-
first search but starting from the target node ¢ and moving backwards to the
source s. This algorithm solves the EAP if we execute the next pre-processing
routine on the edge-converted model:

1. First we delete all the edges constructed in step 3.a) in the section above.
They are redundant for solving the EAP using the next algorithm.

2. Next, given some node v of type A or type B in an edge-converted graph,
it has a set of ingoing edges {ey,...,ex}. Every edge e; = (u;,v) in this list
has a start node u; of type B, because there are no edges starting in type A
nodes according to the previous step. We sort the set of ingoing edges for
each node v in descending order by the arrival time stamps of their start
nodes u;.

5.1 EAP with the Edge-Converted Model

Algorithm 1 implements an inverse depth-first search on an edge-converted net-
work constructed and pre-processed according to the above rules. The algorithm
uses a stack S supporting the operations push(S,u) and pop(S,u) which push
and pop a node u from the top of S. During the computation the algorithm
maintains an array route[u] which for each type B node w points towards a
subsequent connection. At the end, the fastest route from s to ¢ can be read off
by following the pointers in the array, starting with route[s].

Algorithm 1 EAP in the edge-converted model

Require: an EAP query (G, s, t,do)
where G = (V, E) is an edge-converted network, s,t € V are the start and target node,
and dp is the earliest departure time

1: for all v € V do

2: route[v] < nil

3: visited[v] < false

4: end for

5: push(S,t)

6: while S is not empty do

7. u < pop(9)

8: visited[u] < true

9: if u is a type A node then {this only happens if u = ¢}
10: Su — U

11: else

12: U = (Su, tu, du, ay) is a type B node
13: end if
14: if s, = s then

15: route[s] « u
16: return route
17: end if

18: for all edges e = (v,u) (in descending order according to the arrival time a of v) do
19: v = (Sv, tv,dv, ay) is a type B node
20: if visited[v] = false and d, > dy then
21: route[v] < u
22: push(S, v)
23: end if
24: end for

25: end while
26: return there is no connection between s and ¢ starting after time do

We state the correctness of the algorithm in the following theorem.

Theorem 3. Algorithm 1 solves the EAP in the edge-converted model in linear
time.

Proof. Let G be an edge-converted network and let (s, t,dy) be an EAP query.
Let uq,...,ur be the set of predecessors of ¢, ordered according to the arrival
time stamps of the type B nodes u; (in ascending order). Each node u; is the
root of a depth-first search tree T; consisting of all nodes which are visited from
u; in Algorithm 1. If the EAP instance (s, t, dp) has a solution, then there exists
a type B node vs = (s,v,d,a) such that d > dy and vy is contained in one of
the trees T; for some 1 < ¢ < k.

We prove the correctness of Algorithm 1 by induction on the number . First
note that if s is reached in line 14, then

(vs = route[s], route[route[s]], . .., u;, t)

describes the unique path from wvs to t in 7;. In the base case i = 1, we have
vs € T7. But then we have found a route from s to ¢ which arrives at ¢ by the
earliest possible connection in the network, and hence this route is optimal.

Let now vs; € T; with ¢ > 2. Aiming towards a contradiction, we assume that
Algorithm 1 returns the route via the connections (vs,...,u;), but this is not
the optimal solution. This means that there exists some node v}, = (s,v',d’,d’)
such that @’ > dy and there exists a route (s, v}, ..., u;,t) which leads to an
earlier arrival at ¢. As the connections uy,...,u; have been ordered according
to their arrival times, we have j < i. But then v € T; and Algorithm 1 would
have returned the route (s,v,...,u;,t) by the induction hypothesis.

Therefore, Algorithm 1 is correct. It runs in linear time, because every type B
node is visited at most once. O

In Theorem 3 the time is measured in terms of the input, i.e., in terms of
the edge-converted network. As the size of the edge-converted graph is linear
for constant-degree graphs (cf. Table 2), we immediately get:

Corollary 4. For constant-degree graphs, Algorithm 1 solves the EAP in linear
time measured in the size of the initial network.

In comparison, using DIJKSTRA on constant-degree graphs only yields algo-
rithms with running time O(nlogn). In real networks, each station only has a
limited number of connections per time interval. Therefore, real networks will
usually be close to regular graphs.

5.2 MNTP with the Edge-Converted Model

To solve MNTP with the edge-converted model we can use breadth-first search
(see Algorithm 2). Starting at the source node s, we find the minimum number
of transfers route by reaching the target node t. Instead of a stack, Algorithm 2
uses a queue (). The correctness of the algorithm can be shown by induction
on the number of transfers in the optimal route from s to ¢. Thus we get:

Theorem 5. Algorithm 2 solves the MNTP in the edge-converted model in
linear time.

Again, for regular networks we obtain a linear-time bound in terms of the
original network:

Corollary 6. For constant-degree graphs, Algorithm 2 solves the MNTP in
linear time measured in the size of the initial network.

Algorithm 2 MNTP in the edge-converted model
Require: an MNTP query (G, s, t)
where G = (V, F) is an edge-converted network and s,t € V are the start and target node

1: for allv € V do
2 route[v] < nil
3: visited[v] + false
4: end for

5: if s =t then
6.

7

8

: return route
: end if
: enqueue(Q, s)
9: while @ is not empty do
10: u <+ dequeue(Q)
11: visited[u] « true
12: for all edges e = (u,v) do

13: if visited[v] = false and v = (sv, tv,d,a) is a type B node then
14: route[v] < u

15: if t, =t then

16: route[t] « v

17: return route

18: end if

19: enqueue(Q, v)

20: end if

21: end for

22: end while
23: return there is no connection between s and ¢

6 Experiments

To test the performance of the algorithms for EAP and MNTP in our model we
implemented the time-expanded and edge-converted model. To solve EAP and
MNTP in the time-expanded model we used DIJKSTRA with a priority queue,
yielding time complexity O(nlogn). These algorithms were tested against Al-
gorithms 1 and 2 in the edge-converted model on randomly generated data.

The experiments were run on a PC with an Intel Core2Duo processor at
1.6 GHz and 2 GB RAM running Windows Vista. The algorithms were imple-
mented in C++ compiled with a VC8 compiler on the maximum optimization
level. We used the Boost Graph Library [14] for all the graph, node, edge, and
iterator classes.

6.1 Test Data Generation

We use a rectangle area to distribute a set of stations. The stations are randomly
chosen in the area by assigning some x and y coordinates. Each station u gets
some priority p(u) in the interval [0, 1]. The priorities are uniformly distributed
among all nodes. The distance d(u,v) between two stations u and v is defined
as the Euclidean distance between u and v in the plane.

For each pair of stations (u, v) we introduce elementary connections between

E (du)ﬁ)(;}) is greater than some chosen threshold. We choose the number

of these elementary connections proportional to ﬁ. The time horizon is

w and v if

defined as [0, 1439]. For an elementary connection between u and v, we define

10

the travel time proportional to d(u,v). The departure time at w is uniformly
distributed over the time horizon taking into account that the arrival time must
also fall within the time horizon.

6.2 Performance Analysis

We ran experiments with 20, 30, 40, 50, 60, and 70 stations. As the pre-
processing time increases rapidly with the number of nodes, we could not per-
form experiments with many stations, for lack of hardware. For each experiment
we generated the test data and counted the number of nodes and elementary
connections in the initial network as well as in the time-expanded and edge-
converted models. Then we solved EAP and MNTP by both approaches and
measured the time. The results are shown in Table 3.

Table 3. Experimental comparison of EAP and MNTP in the time-expanded model (using
DIJKSTRA with priority queue) and in the edge-converted model (Algorithms 1 and 2)

Initial graph Time-expanded model Edge-converted model

#nodes | #edges | #nodes | #edges .EAP MNTP #nodes | #edges .EAP MNTP
in sec. | in sec. in sec. | in sec.

20 1048 2019 7020 11 15 1068 | 11434 4 34
30 2854 5336 | 18743 20 28 2884 | 52763 9 140
40 4141 7676 | 27016 48 64 4186 | 89643 15 213
50 7332 | 13035 | 46241 | 126 162 7382 | 221402 | 27 250
60 9140 | 16179 | 57438 | 143 180 9200 |295835| 36 321
70 10296 | 18108 | 64346 | 325 421 10366 | 351010 | 67 325

The results clearly show that Algorithm 1 solves EAP considerably faster
than using DIJKSTRA in the time-expanded model, wheras for MNTP we ob-
tain similar running times. Comparing the size of the two models it is apparent
that the edge-converted approach reduces the number of nodes by a factor of
2 whereas the number of edges drastically increases. Instead of using an ex-
plicit stack, we implemented Algorithm 1 recursively which explains the better
running time in comparison to Algorithm 2 which uses a queue.

7 Conclusion and Future Work

Our theoretical results as well as our practical evaluations show that using
the edge-converted model might be an interesting alternative to the known al-
gorithmic techniques for timetable information. This is mainly due to the very
easy algorithms based on depth-first and breadth-first search. Particularly Algo-
rithm 1 for EAP allows for a very simple and efficient recursive implementation.

However, our results here only provide a first basic study of this model
and further investigation seems to be necessary. In particular, we would like
to compare the edge-converted model with more sophisticated versions of the
time-expanded approach which use a range of speed-up techniques for DIJKSTRA
[12,13,15,16]. An interesting question for further research is whether similar

11

speed-up techniques are applicable in the edge-converted model. It also appears
interesting to compare our model with the time-dependent approach (cf. [11]
for an extensive comparison of the time-dependent and time-expanded models).
Finally, in future work we would like to test the edge-converted model on larger
and preferably real networks.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

G. S. Brodal and R. Jacob. Time-dependent networks as models to achieve fast exact
time-table queries. Electr. Notes Theor. Comput. Sci., 92:3-15, 2004.

D. Delling, T. Pajor, and D. Wagner. Engineering time-expanded graphs for faster
timetable information. In Proc. 8th Workshop on Algorithmic Approaches for Trans-
portation Modeling, Optimization, and Systems (ATMOS), 2008.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1:269-271, 1959.

L. Fleischer and M. Skutella. The quickest multicommodity flow problem. In Proc.
9th International Conference on Integer Programming and Combinatorial Optimization
(IPCO), pages 36-53, 2002.

. R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies: Faster

and simpler hierarchical routing in road networks. In Proc. 7th International Workshop
on Experimental and Efficient Algorithms (WEA), pages 319-333, 2008.

E. Koéhler, K. Langkau, and M. Skutella. Time-expanded graphs for flow-dependent transit
times. In Proc. 10th Annual European Symposium on Algorithms (ESA), pages 599611,
2002.

E. Kohler, R. H. Méhring, and H. Schilling. Acceleration of shortest path and constrained
shortest path computation. In Proc. 4th International Workshop on Experimental and
Efficient Algorithms (WEA), pages 126-138, 2005.

. M. Miiller-Hannemann, F. Schulz, D. Wagner, and C. D. Zaroliagis. Timetable infor-

mation: Models and algorithms. In Proc. 4th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS), pages 67-90, 2004.

A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in networks with
time-dependent edge-length. Journal of the ACM, 37(3):607-625, 1990.

E. Pyrga, F. Schulz, D. Wagner, and C. D. Zaroliagis. Experimental comparison of shortest
path approaches for timetable information. In Proc. 6th Workshop on Algorithm Engi-
neering and Experiments and 1st Workshop on Analytic Algorithmics and Combinatorics
(ALENEX/ANALC), pages 88-99, 2004.

E. Pyrga, F. Schulz, D. Wagner, and C. D. Zaroliagis. Efficient models for timetable
information in public transportation systems. ACM Journal of Experimental Algorithmics,
12:1-39, 2008.

F. Schulz, D. Wagner, and K. Weihe. Dijkstra’s algorithm on-line: An empirical case
study from public railroad transport. ACM Journal of Experimental Algorithmics, 5:12,
2000.

F. Schulz, D. Wagner, and C. D. Zaroliagis. Using multi-level graphs for timetable infor-
mation in railway systems. In 4th International Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 43-59, 2002.

The Boost Graph Library. Available from http://www.boost.org.

D. Wagner and T. Willhalm. Speed-up techniques for shortest-path computations. In
Proc. 24th Symposium on Theoretical Aspects of Computer Science, pages 23-36, 2007.
D. Wagner, T. Willhalm, and C. D. Zaroliagis. Geometric containers for efficient shortest-
path computation. ACM Journal of Experimental Algorithmics, 10:1-30, 2006.

12

Efficient Route Planning in Flight Networks*

Daniel Delling', Thomas Pajor!, Dorothea Wagner', and Christos Zaroliagis®?>

! Department of Computer Science, Universitit Karlsruhe (TH), P.O. Box 6980,
76128 Karlsruhe, Germany.
{delling,pajor,wagner}@informatik.uni-karlsruhe.de
2 R.A. Computer Technology Institute, N. Kazantzaki Str., Patras University
Campus, 26504 Patras, Greece
3 Department of Computer Engineering and Informatics, University of Patras, 26500
Patras, Greece. zaro@ceid.upatras.gr

Abstract. We present a set of three new time-dependent models with
increasing flexibility for realistic route planning in flight networks. By
these means, we obtain small graph sizes while modeling airport pro-
cedures in a realistic way. With these graphs, we are able to efficiently
compute a set of best connections with multiple criteria over a full day.
It even turns out that due to the very limited graph sizes it is feasible
to precompute full distance tables between all airports. As a result, best
connections can be retrieved in a few microseconds on real world data.

Keywords: timetable information, flight modeling, shortest paths, multi cri-
teria, table lookups

1 Introduction

Computing best connections in transportation networks is a showpiece applica-
tion of algorithm engineering. The problem can be solved by modeling a trans-
portation network as a graph where edge weights depict travel times on the
corresponding connection. In general, DIJKSTRA’s algorithm [11] can now solve
the problem of finding the quickest path between two nodes s and t. One cru-
cial challenge in the success of such an approach is the appropriate modeling
of the transportation network as a graph. While road networks can be modeled
in a straightforward manner (junctions are nodes, streets are edges), realistic
modeling of public transportation networks is more complex [18, 22, 9].

A practical extension of the shortest path problem is route planning in a
multi-modal context [15,2,1], where you switch—under certain constraints—
the type of transportation during your journey. In this work, we deal with a
subproblem of multi-modal route planning: Efficient computation of routes in
flight networks. Our work is motivated from [10], where most of the time for

* Partially supported by the Future and Emerging Technologies Unit of EC, under
contracts no. FP6-021235-2 (FP6 IST/FET Open/Project ARRIVAL) and no. ICT-
215270 (FP7 ICT/FET Proactive/Project FRONTS), and the DFG (project WA
654/16-1).

J. Clausen, G. Di Stefano (Eds): ATMOS 2009

9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2009/2145

retrieving best multi-modal connections is spent in a flight network, although
the flight network makes up only a very small part of the whole (multi-modal)
transportation network.

Related Work. Timetable information in flight networks is similar to railway
networks, both inputs rely on some kind of periodic timetable. In addition, the
best connection depends on the time of departure. Efficient models for route
planning (or timetable information) in railway networks can be found in [18, 22,
9]. However, it turns out that simply using these models for flight networks yield
unnecessary big graphs. To our best knowledge, no efficient model tailored to
flight networks has been introduced yet.

In public transportation networks, we are not only interested in the best con-
nection for a given departure time: we might be willing to alter our departure
time in order to minimize the overall travel time. Such routes can be retrieved by
profile-queries, where we compute all best connections for a full time period. Such
profiles can be computed by a generalized variant of DIJKSTRA’s algorithm [7]
that propagates functions instead of scalars through the graph. An efficient al-
gorithm for accelerating such queries in time-dependent road networks has been
introduced in [8].

Moreover, the quickest connection is often not the best one: we also want
to reduce the number of transfers and/or the costs of a journey. A possible
approach to this is to compute a Pareto-set of routes [17,12]. A route belongs
to the Pareto-set if no other route is better or equal in all metrics (travel time,
costs, transfers, etc.) under consideration. Pareto-routes can also be computed
by a generalization of DIJKSTRA’s algorithm [13, 14].

Our Contributions. In this work, we show how to plan routes in flight net-
works efficiently. Therefore, we first settle basic definitions on graphs and timeta-
bles in Section 2. Section 3 includes one of the main contributions of our work:
flexible and yet compact time-dependent models tailored to route planning in
flight networks. The key observation here is that in contrast to railway networks,
flight networks contain (almost) only direct connections between airports. Un-
like trains, planes do not stop at many airports on a route. Hence, we may use
a different model yielding very small graphs.

In Section 4, we show how to retrieve best connections in flight networks.
On the one hand, we deal with retrieving all quickest connections during the
given time period, while on the other hand, we introduce two other metrics, i.e.,
transfers and travel costs, worth optimizing. We end up in a multi-criteria setup
where the best connections form a Pareto-set. A key observation here is that
the graphs deriving from our compact model are so small that we may afford
to compute full Pareto-route distance tables between all pairs of airports in a
preprocessing step. Then, queries are reduced to table-lookups yielding query
times of a few microseconds.

In an extensive experimental study (Section 5), we show that our approach
is indeed feasible for a real-world network consisting of roughly 1000 airports.

Our constructed graphs are small, and computation of a Pareto distance table
can be done in less than six minutes yielding a reasonable space consumption.
With these tables at hand, queries can be accelerated by 5 orders of magnitude
compared to a classic approach based on a multi-criteria DIJKSTRA. We conclude
our work in Section 6 by a summary and possible future research.

2 Preliminaries

A graph is a tuple G = (V, E) consisting of a finite set V of nodes and a set
E CV x V of edges which are ordered pairs (u,v) if the graph is directed. The

node wu is called the tail of the edge, v the head. The reverse graph <(_? = (V, (E)
is the graph obtained from G by substituting each (u,v) € E by (v, u).
Routing in public transportation networks requires an underlying timetable.
In this work we restrict ourselves to periodic timetables with a fixed time period
II € IN. Periodic timetables have been studied in the context of railway networks
extensively [18,22]. In the following we give a brief introduction of timetables
that form the basis of our flight networks. A flight timetable is a tuple T :=
(C, A, F,(,IT) where C is a set of elementary connections, A a set of airports,
F a set of flights and II the time period. Additionally, ¢ : A — Z is a function
which maps each airport to the timezone it belongs to. In our data, timezones
are represented as UTC (Universal Time, Coordinated) offset from UTC+0 with
the same resolution as time points in general. An elementary connection ¢ € C is
a tuple ¢ = (F, Ay, Aa, 71, 72) which is interpreted as flight F' € F departing at
airport A; € A at time 7, and arriving at airport As € A at time 75. Note that
71 and 79 are time points relative to the timezone of the airports A; and As.
The length len(c) of an elementary connection ¢ € C is then derived by stripping
off the timezone offset 7/ := 7; — ((A4;) mod II for both ¢ = 1,2 and computing
the length between the time points 71 and 75 with respect to the time period IT.

3 Modeling Issues

In basic, flight timetables are very similar to railway timetables as introduced
in [18,22]. In order to obtain a graph, two approaches exist for railway timetable
information. The time-expanded approach rolls out the time-dependencies of the
timetable and yields a time-independent graph where each node represents an
event of the timetable and edges connect consecutive events. Their constant edge
weight is depicted as the time duration (e.g., the length of one specific elemen-
tary connection) of its respective events. On the other hand, the time-dependent
approach carries the time-dependencies of the timetable over to the graph. This
results in time-dependent connection-edges where edge weights correspond to
travel time functions of several trains sharing the same edge. While the for-
mer approach allows for more flexible modeling, the latter yields much smaller
graph sizes which is important in the context of multi-modal route planning
where overall graphs can become huge. For that reason, in this work we focus
on engineering the time-dependent approach for modeling flight timetables.

3.1 Applying Railway Models

Several time-dependent railway models exist for efficient and realistic railway

timetable information. The condensed model as introduced in [6] represents the

adjacencies of the underlying network. Since this model does not account for

transfer costs at stations, it has been extended to the realistic time-dependent
model in [21].

Briefly summarized, in a first step, the set

of trains (in our case the set of flights F) is di-

vided into a set of routes R. By these means,

Z1, 22 two trains (flights Fy, F5 € F) are considered
equivalent if they both share the exact same se-
quence of stations (airports [A1,. .., Ag]). The
graph is constructed by introducing a station

= node for every station (airport) and a route
3

node for every route that runs through the
specific station (airport). Edges from station
Fig. 1: Hllustration of the time- to route nodes depict the constant transfer
dependent railway model when time while edges from route nodes to station
assuming a constant transfer nodes are modeled with zero cost. Connec-
time for each station with two tion edges are inserted between route nodes
stations served by two routes ©Of the same route and are weighted by time-
(with trains Zy, Z» and Zs, re- dependent travel-time functions depicting the
spectively). travel time of trains running along the specific
route. See Figure 1 for a small example.

The model can be extended further to account for variable transfer times
between trains of different routes. This is achieved by introducing edges between
each pair of route nodes 71,72 at one station weighted by the time required to
change from a train of route r; to a train of route rs.

Drawbacks. Using the realistic time-dependent railway model on flight timeta-
bles yields several drawbacks which eventually lead to both inaccurate modeling
regarding realism as well as unnecessarily large graphs, and thus, higher query
times.

Routes. In flight timetables all routes have length 1, since almost all flights
have no intermediate stops. In the rare case of flights serving a sequence S =
[A1, ..., Ag] of airports, our flight timetables account for direct flights for each
pair (A;, A;) with ¢ < j of airports (each possible subsequence of airports is
modeled by a direct flight). As a conclusion, all routes are of length 1.
Regarding the number of nodes per airport in the graph, for each airport
A € A there is one route node per airport where at least one flight reaches
to and also one route node per airport where at least one flight arrives from.
Basically, the number of route nodes per airport can be bounded by 2 times the
number of neighbors of A. This immediately leads to another drawback.

(a) Network structure (b) Resulting graph using the railway model

Fig. 2: Illustrating the high number of nodes and edges generated by the time-dependent
railway model using a small example of two airports. Since all routes have length 1,
for each neighbor in the network structure, a dedicated route node is inserted in the
graph.

High Number of Neighbors. Whereas in railway networks the number of neigh-
bors in the station graph for each station is relatively small (less than 5 for most
of the stations [9]), airports tend to have lots more neighbors (cf. Section 5) due
to the many direct flights. Combining this observation with the previous issue,
we end up having unnecessarily many route nodes per airport. See also Figure 2
for an illustration of the high node and edge count when using route nodes for
each flight at an airport.

Procedures at Airports. Most importantly, procedures at airports differ from
procedures in train stations making the realistic railway model somewhat unre-
alistic. For example, boarding a flight at the departure airport including check-in
involves more time than switching flights which may only require us to walk from
one gate to another. Thus, at least two different types of times per airport are
desirable: Check-in time and transfer time.

Another issue that should be reflected by the model is a third type of time for
getting off at the destination airport. This Check-out time should cope for cus-
toms and baggage claim and is usually smaller than the Check-in time. While
in principle the railway model could account for that by adjusting the edge
weights of edges connecting route nodes to station nodes, incorporating a ded-
icated transfer time can only be achieved by inserting ‘transfer edges’ between
all route nodes, yielding ©(N(A)?) many edges where N'(A) depicts the num-
ber of neighbors of an airport A € A. Because of the high number of neighbors
this approach is infeasible. These problems lead us to proposing a family of new
models for flight timetables with incrementing flexibility.

3.2 Tailored Models for Flight Timetables

The basis of our flight models is a flight timetable T = (C, A, F, ¢, IT). Further-
more, we introduce three different time functions to model the various procedures
in an airport as depicted above.

— Check-in time 7 : A — R{.
This accounts for the whole process from arriving at the airport until the
departure of the plane composed of checking-in, passing security checks and
also the accounted waiting time at the gate plus the boarding time of the
plane.

— Check-out time 7 : A — R .
This accounts for the reverse process: Leaving the plane, passing customs
while leaving the gate area and finally the time required to claim baggage.

— Transfer time 7% : A — R{.
This time accounts for the time transferring between two planes. Usually,
this only involves leaving the plane, walking to another gate and boarding
the new plane.

Note that we assume that all three time functions do not depend on the specific
flights. In favor of more flexibility, this assumption is weakened in the second
and third versions of our model.

Level I: Constant-Time Model.
The Level I Model uses the time func-
tions exactly as defined above. For
each airport A € A we insert a super
node into the graph called terminal
node. Since all flights either begin or
end at the airport, we insert two more
nodes per airport: A departure node
which resembles flight departures, and
an arrial node to model arrivals.

Edges are created in the follow-
ing way. There are three edges within Fig.3: Level I Model. Terminal nodes
each airport. A check-in edge is in-
serted from the terminal node to the
departure node and its weight is set
to T(A). A check-out edge from the
arrival node to the terminal node with
weight 7°°(A) is inserted and finally
a transfer edge from the arrival node
to the departure node with weight
T (A) is created.

The actual flights are modeled as flight edges from the departure node of
airport A; to the arrival node of airport A, if and only if there is at least one

are purple, departure nodes green and
arrival nodes yellow. Bold edges are
time-dependent and model flights be-
tween the airports while the thin time-
independent edges allow for check-in,
check-out and transfers within the air-
ports.

elementary connection from A; to As in the timetable. The edge weight is time-
dependent and interpolation points are created for each elementary connection
c=(F, Ay, As, 1, 72) with departure time 7{ and travel time len(c).

An example of the Level I Model is shown in Figure 3. While this model yields
very small graph sizes its drawback is the assumption that check-in, check-out,
and transfer times are constant for all flights. This is addressed by the Level 11
Model.

Level II: Flight-Class Model. To account for more flexible check-in, check-
out, and transfers within airports, we augment the definitions of 7¢, 7 and
T' to cope with different flight classes.

Similarly to the concept of routes in the realistic time-dependent railway
model, we partition the set of flights F into different flight classes. The set of
flight classes is denoted by €. The equivalence relation ~ on the set of flights
according to which two flights are put into the same class is arbitrary. An example
might be I} ~ I, < F; and Fy are operated by the same airline alliance.

With flight classes defined, the time functions are extended as follows. The
check-in and check-out time functions are extended to 7¢ : A x ¢ — Rar, and
T : Ax € — RY. The transfer-time function is extended to operate on pairs of
classes 7% : Ax € x € — R{ to account for transfers between flights of arbitrary
pairs of flight-classes.

The Level I Model is mod-
ified as follows. Let A € A
denote an airport. We insert
k := |€| departure resp. ar-
rival nodes—one for each flight
class ¢; € €. The departure and
arrival nodes are connected to
the terminal node by check-in
and check-out edges like in the
Level I Model. As edge weights
we use 7(A, ¢;) and T(A, ¢;)
for each of the classes. To incor-

porate transfers, for each pair
Fig. 4: The Level IT Model with 3 airports and ¢i,¢; of flight-classes we insert

2 classes o and 3. The bottom airport has no , transfer edge from the arrival
incident flights of class a, thus, the respective 15de of class ¢; to the depar-
nodes and (gray) edges can be omitted ture node of class ¢; weighted

with 7% (A, ¢;,c;j). By this, we
generate O(k?) edges. Finally, the time-dependent flight edges between two air-
ports A; and A, are inserted with respect to the correct classes, i.e., if the flight
is of class ¢, the departure node belonging to ¢ at A; is used as tail while the
arrival node of the same class at As is used as head of the edge. Interpolation

points on the functions of the flight edges are created the same way as in the
Level I Model.

In order to avoid the creation of unnecessary nodes, at each airport A we
can omit the creation of departure and arrival nodes (and their incident edges)
which belong to flight classes that do not contain any outgoing resp. incoming
connections from/to the airport A. Figure 4 shows a small example consisting
of two flight classes « and (3.

Level III: Variable-Time Model. This is the most flexible model, however,
some of the drawbacks worked out for railway models recur. The Level IT Model
is generalized further by assuming that each flight F' € F belongs to a distinct
flight class. Thus, the set € of flight classes consists of singleton sets and it
holds that |€| = |F|. By these means, we are able to model individual check-in,
check-out, and transfer times for each (pair of) flight(s).

On the downside, the size of the graph becomes very large. For an airport
A € Alet C(A) denote the set of elementary connections either departing or
arriving at A. Then this model yields ©(|C(A)|) nodes and O(|C(A)|?) edges per
airport. Since in general it holds that |[C(A)| > |N(A)|, graphs generated by
this model turn out even larger than using the realistic time-dependent railway
model.

Level I and III Models as a Special-Case. We like to point out, that both the
Level I and Level III Models can be seen as special cases of the Level II Model.
In the case of |€] = 1, i.e., we only have one flight class, we obtain the Level I
Model, while in the case of |€| = |F| we obtain the Level IIT Model as described
above. Thus, by adjusting the number of flight classes we are able to control the
flexibility of the resulting model in a continuous way. However, for real world
scenarios a very limited number of flight classes seems sufficient (for example,
using each major flight alliance as a dedicated class, since transfers within flights
of the same airline alliance can be usually processed faster).

4 Route Planning in Flight Networks

In this section, we show how to compute best connections with the models in-
troduced in Section 3.

4.1 Quickest Connections (Earliest Arrival Problem)

In the EARLIEST ARRIVAL PROBLEM, given source and destination airports S
and T as well as a departure time 7¢ < II, we ask for an itinerary from S to
T arriving at T as early as possible and departing at S no earlier than 7g. The
straightforward approach to compute the earliest arrival for a given departure
time is to run plain DIJKSTRA on any of the above proposed model. We simply
insert the terminal node of the desired departure airport S into a priority queue
and run DIJKSTRA’s algorithm until we settle the terminal node of the requested
arrival airport T'. However, especially in flight networks, we are often interested
for all ‘optimal’ connections during a whole day (resp. time period). This can

be done by a so-called profile query [8]. Such queries determine the travel time
function between two airports for the full time period II. This can be achieved
by a label-correcting variant of DIJKSTRA’s algorithm. The main difference to
plain DIJKSTRA is that we propagate functions instead of constants through the
network (cf. [7,8] for details). Note that by this procedure, the algorithm loses
its label-setting property, i.e., a node may be settled more than once during one
run of the algorithm. The departure times of the optimal connections are then
exactly the local minimums of the computed travel time function between S and
T.

4.2 Multi-Criteria Connections

Up to now, we only showed how to compute quickest connections in flight net-
works. However, we might be willing to accept slightly longer routes if the costs
are less or the number of transfers is smaller. A common approach to obtain such
better routes is to compute Pareto routes. In this work, we run multi-criteria
profile searches, i.e., we obtain Pareto connections between two stations for the
full time period. Besides travel time, we use the number of transfers and costs
as additional optimization criteria.

The Pareto connections between two airports can be obtained by a gener-
alized version of DIJKSTRA’s algorithm, similar to as introduced in [13,14]. At
each node u, we maintain a list of labels 1ist(u). In our case, a label contains
a travel time function, the number of transfers, and the costs of the tentative
journey. The list at the source node s is initialized with a label L := (0, ...,0).
We insert Ly into the priority queue. Then, in each iteration, we extract the
label with the smallest lower bound of its respective travel time function. Let
u be the associated node of the label. Then for all outgoing edges (u,v) € E a
temporary label L, is generated depicting the journey to v via w. If L, is not
dominated by any of the labels in 1ist(v), we add L, to list(v), add L, to the
priority queue, and remove all labels from list(v) that are dominated by L,.
We may stop the query as soon as the priority runs empty or all labels in the
priority queue are dominated by all labels in 1ist(¢).

Rules of Dominance. In order to be able to run the algorithm described above,
we require to compare labels. We say that one label (consisting of several com-
ponents) dominates another label if it is better with respect to at least one
component and not worse respect to the remaining components. Note that in
our case, one component of our labels is a function. A travel time function f is
better than a function g if f(z) < g(x) holds for all < IT. For more details on
dominance, we refer the interested reader to [12].

Generating Costs. Unfortunately, real-world pricing information was not avail-
able to us. Moreover, using arbitrary flight-costs per flight in time-dependent
graphs may result in non-FIFO networks making the computation of shortest
paths A'P-hard [20]. Thus, we restrict ourselves to generated constant costs per

edge. We generate pricing information as follows. For each flight edge (u,v) € E
we compute price £ — RT according to

price(e) := fee(u) + fee(v) + fuel(e) + charge(e), (1)

where fee(-) depicts an airport fee, fuel(e) costs for fuel along the edge e and
charge(e) the amount of money charged by the flight operator. The airport fee
is computed by

fee(A) = (ay + B F(A)]) - p(A), (2)

where a4 is a general base fee, F(A) the number of flights departing/arriving
at A, and 84 a constant coefficient. Furthermore, we perturb the costs by 25%
by choosing p(A) € [0.75,1.25] uniformly at random for each airport. Fuel costs
are computed by

fuel(e) :=y - 1/distgeo(€), (3)

where 7 is a coefficient and distgeo(€) is the geodesic length of the flight edge
(we use the GRS80-ellipsoid [16] with geographic coordinates for computing
distances). Finally, charge(e) is computed by

charge(e) := \/ac + B distgeo(€) - p(e). (4)

Again, «a, is a base charge, . a constant coefficient. However, to model more
varying charges we perturb the costs by 50% by choosing p(e) € [0.5,1.5] uni-
formely at random.

Our final prices are generated by instantiating ay := 15, By := 0.1, v := 0.2,
a. = 30, B, := 0.5 resulting in flight costs between € 60 for very short and up
to €1500 for long distance (intercontinental) flights.

4.3 Storing Distance Tables

During our experimental studies, it turned out that the resulting graphs deriving
from our level II Model are so small, that it is feasible to do a all-pair-shortest-
path preprocessing. This even holds for multi-criteria route planning. In the
following, we shortly explain how to preprocess the distance table in a multi-
criteria scenario, in case of single-criteria, we proceed analogously.

The preprocessing can be done in a straightforward manner. We maintain
a distance table with size |A| x |A|. For each airport A;, we run a full Pareto-
D1JKSTRA as described above. This results in a set of labels for each airport A;
depicting the Pareto-connections from A; to A;, which we store at the corre-
sponding place in the distance table. After having performed this step for any
airport, the distance table contains the Pareto connections for any pair of air-
ports. Hence, running a query is then reduced to a table-lookup in the distance
table.

5 Experiments

We conducted our experiments on one core of an AMD Opteron 2218 running
SUSE Linux 10.3. The machine is clocked at 2.6 GHz, has 32 GB of RAM
and 2 x 1 MB of L2 cache. The program was compiled with GCC 4.2, using
optimization level 3. Our implementation is written in C++ using solely the
STL and Boost at some points. As priority queue we use a binary heap.

Inputs. Our inputs derive from (publicly available) timetables of two major
flight alliances, which we crawled from the companies webpages. The first is
of StarAlliance [24] from November 2008 containing 20 888 flights between 965
airports. The latter is of Oneworld [19] (also November 2008) and contains 8 602
flights between 621 different airports. To make use of the Level 1T Model, we
also use a combined timetable which contains flights of both, StarAlliance and
Oneworld. The resulting timetable contains 29490 flights and 1172 airports.

Table 1 reports figures of the parameters of our input data. Besides the
number of airports and flights we show the average degree on the condensed
network (nodes equal airports and an edge (u,v) is inserted, iff. there is at least
one flight going from u to v). For comparison, we also provide figures for a typical
railway timetable (Ger-Rail) consisting of all trains in Germany operated by the
Deutsche Bahn in the winter period 2000/2001. We observe that the average
degree is significantly higher in flight timetables, while the maximum degree
is even up to 5 times larger. Moreover, in Figure 5 we show a straight line
visualization of our combined timetable. Blue spots depict airports (light spots
are not served by the timetable and are only drawn for orientation). The size
of the nodes reflects the number of flights departing and arriving at the specific
airports.

Methodology. In the following, we report query performance on each of our
models regarding both profile search and multi-criteria search using travel-time,
number of transfers and pricing as criteria (cf. Section 4). We evaluate the query
performance by running 1000 random queries, picking source and destination
airports uniformly at random. We report the number of settled nodes, relaxed
edges and the average time per query.

Table 1: Figures for our input data. We use timetables of StarAlliance and Oneworld
as well as a combined timetable of both alliances. As comparison, we also provide data
for a railway timetable consisting of all German trains operated by Deutsche Bahn.

Timetable # Airports | # Flights | Avg. Deg. Max. Deg.

StarAlliance 965 20 888 13.35|175 (FRA)
Oneworld 621 8602 8.86|152 (DWF)
Combined 1172 29490 14.52]192 (ORD)

Stations| # Conns
Ger-Rail 6822 554996 5.41| 37 (Leipzig Hbf)

Fig. 5: Flight network composed of timetables from StarAlliance and Oneworld.

Regarding our table-lookup algorithm, we report preprocessing effort as the
amount of additional required space in Megabytes as well as preprocessing time.
Since table-lookups do not involve settled nodes and relaxed edges, we restrict
ourselves to query time together with the speed-up compared to the default
algorithm. Moreover, we increase the number of random queries to 10 000 0000
and report the query time by measuring the whole execution time of all queries
divided by the number of queries.

5.1 Size of the Models

Table 2 reports figures on the graph parameters of the different models intro-
duced in Section 3. For each of our inputs we apply the Level I, Level II and
Level III flight models, whereas regarding the Level IT Model we use each flight
alliance as a separate flight class. Moreover, for comparison, we also apply the
time-dependent railway model with constant transfer times [22]. Besides report-
ing the total number of nodes and edges of the resulting graphs, we also present
the average number of flights per edge (only taking flight edges into account).
Applying the railway model to our flight timetables yields graphs of 13 849
nodes with 32210 edges regarding the StarAlliance timetable, 6 123 nodes with
13755 edges regarding the Oneworld timetable, and 18184 nodes with 42530

Table 2: Comparison of the sizes in number of nodes, edges and flights per edge. The
latter only refers to flight edges (not intra-airport edges)

STARALLIANCE ONEWORLD COMBINED

Model |[Nodes Edges FY/Edge|Nodes Edges Fl/Edge | nodes Edges Fl/Edge
Level 1 2719 8986 2.52| 1834 4557 2.25| 3397 11785 2.68
Level 11 2719 8 986 2.52| 1834 4557 2.25] 4139 14 286 2.36
Railway || 13 849 32210 1.43| 6123 13755 1.41|18184 42530 1.46
Level TI1{[42741 3085752 1.00 17825 1234362 1.00 60152 6072836 1.00

edges on the combined timetable. On all three instances graph sizes decrease
significantly when we use the Level I and II Models: in each timetable the number
of nodes and edges is between 3 and 5.4 times lower while incorporating more
realistic airport procedures (cf. Section 3). Note that the Level I and II Model
graphs are of equal size on the StarAlliance and Oneworld instances since they
only contain one flight class. However, on the combined instance switching from
the Level I to the more flexible Level IT Model yields only a small increase
regarding graph size (4 139 compared to 3397 nodes and 14 286 edges compared
to 11785 edges).

Concerning the Level III Model, graph sizes increase dramatically. While
the increase in number of nodes compared to the Level II Model is between 10
and 15 times, the number of edges increases up to 6072836 on our combined
timetable. This is due to the fact that for each elementary connection on each
airport one dedicated node is created, and these departure respective arrival
nodes become fully interconnected yielding a quadratic number of edges in the
number of incident flights at each airport. The fact that for each flight a separate
(time-dependent) flight-edge is created, is also reflected by the number of flights
per edge, which is exactly 1 in the Level III Model.

5.2 Query Performance

Label Correcting Algorithms. Regarding profile and multi-criteria queries,
we use a label correcting algorithm (cf. Section 4) which may settle nodes multi-
ple times during one run. Moreover, we use travel-time, number of transfers and
pricing information as optimization criteria. In Table 3 we report the number
of settled nodes, relaxed edges and the average time per query on each of our
models.

As expected, figures roughly concur with the graph sizes from Table 2. Using
the railway model yields query times of 264.86 ms settling 71673 nodes. On
the Level I Model we are able to reduce the query time to 47.5ms while only
settling 8426 nodes. Applying the Level II Model only yields a mild decrease
in performances to 68.68 ms settling 11110 nodes which is still almost 4 times
faster than the time-dependent railway model.

Table 3: Query performance of our models using label correcting algorithms for both
profile- and multi-criteria searches. Query performance is evaluated by running 1000
queries with source and destination airports picked uniformely at random.

PROFILE MUuLTI-CRITERIA
Settled Relaxed Time | Settled Relaxed Time
Model Nodes Edges [ms]| Nodes Edges [ms]

Level I 8426 41462 47.55| 23825 104213 215.74
Level II 11110 53477 68.68| 31491 137068 305.31
Railway || 71673 171924 264.86|184516 435062 1126.50
Level IIT || 133083 5739353 4805.60| 673295 32180968 109 666.66

Regarding multi-criteria search, we are able to enumerate all Pareto optimal
solutions in under a second’s time on both the Level I and Level IT Models (215 ms
and 305 ms, respectively). However, both algorithms perform significantly worse
on the much larger Level III Model resulting in query times of 4.8 seconds for
profile queries and almost 2 minutes for multi-criteria queries.

Table-Lookups. The very small graph sizes of our flight networks allow pre-
computation of full distance tables between all airports. Regarding profile search,
we store travel-time functions for each pair of airports, while we store all Pareto
solutions when using multi-criteria search.

Table 4: Accelerating queries by table-lookups. We report the additional space required
as well as preprocessing time. On the query side we report the query time as well as
the speed-up compared to our label correcting algorithm from Table 3.

PROFILE TABLE-LOOKUP MurTi-CRIT. TABLE-LOOKUP
Space Prepro | Time Speed- || Space Prepro|Time Speed-
Model [MiB] [mus]| [us] Up|| [MiB] [m:s] | [ps] Up

Level I 45.65 0:58| 0.41 115973 (/282.91 4:35| 2.85 75697
Level IT || 45.65 1:21] 0.40 171710 (|297.01 6:14| 2.97 102799
Railway || 45.65 5:01| 0.37 715841({288.58 21:37| 2.83 398056
Level IIT || 45.65 60:28| 0.41 11720969 ||433.28 2618:23| 4.37 25095 345

Profile Search. Table 4 reports both preprocessing effort and query performance
on the combined timetable network for each of our models. For profile queries
the additional space required for each model is 45.65 MiB (note that we compute
distances between pairs of airports, thus, the required space is independent of the
number of nodes). Compared to the small size of our networks, 45.65 MiB may
seem fairly much. However, from the perspective of multi-modal route planning,
this additional effort is almost negligible, since the space consumption of all data
is dominated by the significantly larger road network and also by additional data
required for multi-modal speed-up techniques [10].

Regarding the preprocessing time, we are able to compute the full distance
table of travel-time functions between 1 minute on the Level I Model and 1 hour
on the Level III Model. As a result, we are able to execute random profile queries
in approximately 0.4 us time yielding a speed-up of over 11 Million on the Level
IIT Model. Note, that the query times are independent of the graph size, since
the graph is not used in the query algorithm.

Multi-Criteria Search. For multi-criteria search the required space for storing
the distance table increases with the complexity of the model and requires from
282.91 MiB (Level I Model) to 433.28 MiB (Level III Model) space. In contrast to
profile-search distance tables, here the number of entries in the table for each pair

of airports depends on the model for the following reason. Since we do not store
flight costs per actual flight, but a combined price per flight edge (cf. Section 4),
having less flights per edge (cf. Table 2) allows us to assign a greater variety of
different costs for flights between the same two airports. As a consequence, the
number of Pareto optimal solutions increases, hence, requiring more space. The
extreme case is the Level III Model, where each flight has its own designated
flight edge, and thus, allows the most realistic cost assignments (we are actually
able to assign a different price for each flight). Preprocessing time for distance
tables increases with the complexity of the models and is between 4.5 minutes
on the Level I Model and almost two days on the Level III Model. Again, we like
to point out the insignificant deterioration in preprocessing performance of the
Level IT Model compared to the Level I Model. Query times are in the scale of
a few microseconds on all models: Enumerating all Pareto solutions for random
queries requires 2.85 us on the Level I Model, 2.97 us on the Level IT Model and
4.37 ps on the Level IIT Model. Again, the increase in query time is explained by
the bigger number of Pareto solutions with increasing model complexity.

6 Conclusion

In this work, we introduced how to model flight networks as graphs such that we
are able to compute best connections efficiently. By showing that known models
for railways yield a significant performance penalty, we justify our new model.
Moreover, we showed how to generate flight costs if data is missing. It turns out
that our model yields such small graphs making it feasible to compute full Pareto
distance tables making multi-criteria route planning in flight networks a matter
of microseconds. More precisely, we are able to perform point-to-point profile
and multi-criteria queries within a few microseconds with space requirements of
43.65 MiB (profile-search) and up to 433.28 MiB (multi-criteria search). While
the Level III Model is the most flexible, it turns out that in the case of using
flight alliances as flight classes, the Level II Model is sufficiently realistic while
yielding significantly smaller graphs, and thus, faster query times. However, we
like to point out, that in the case of our table-lookup algorithm the graph is no
longer required as input. Hence, it becomes feasible to apply a two step approach
for flight timetable information: Use a high detailed model (i.e., the Level III
Model) for modeling the timetable in the most flexible way, and obtain the
distance table in a second step. Queries can then be answered solely using the
distance table, thus, no longer requiring the large flight graphs as input data.

Regarding future work, it would be interesting to integrate traffic days into
our model. Moreover, we would like to add low-cost carriers to our data. However,
such companies tend to serve only very small airports which are far away from
the main hubs. Hence, we expect the network to be disconnected such that
multi-modal route planning becomes even more important in such a scenario.
On the technical side, we are optimistic that with the insights gained in this
work, we may extend our recent work on multi-modal route planning [10] to a
full multi-modal variant of Transit-Node Routing [3, 23, 4, 5].

References

1.

10.

11.

12.

13.

14.

C. Barrett, K. Bisset, R. Jacob, G. Konjevod, and M. V. Marathe. Classical and
Contemporary Shortest Path Problems in Road Networks: Implementation and
Experimental Analysis of the TRANSIMS Router. In R. H. Mohring and R. Ra-
man, editors, Proceedings of the 10th Annual European Symposium on Algorithms
(ESA’02), volume 2461 of Lecture Notes in Computer Science, pages 126-138.
Springer, 2002.

. C. Barrett, R. Jacob, and M. V. Marathe. Formal-Language-Constrained Path

Problems. SIAM Journal on Computing, 30(3):809-837, 2000.

H. Bast, S. Funke, and D. Matijevic. TRANSIT Ultrafast Shortest-Path Queries
with Linear-Time Preprocessing. In C. Demetrescu, A. V. Goldberg, and D. S.
Johnson, editors, Shortest Paths: Ninth DIMACS Implementation Challenge, DI-
MACS Book. American Mathematical Society, 2009. Accepted for publication, to
appear.

H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. In Transit to Constant
Shortest-Path Queries in Road Networks. In Proceedings of the 9th Workshop on
Algorithm Engineering and Ezperiments (ALENEX’07), pages 46-59. STAM, 2007.
H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast Routing in Road Networks
with Transit Nodes. Science, 316(5824):566, 2007.

G. Brodal and R. Jacob. Time-dependent Networks as Models to Achieve Fast
Exact Time-table Queries. In Proceedings of ATMOS Workshop 2003, pages 3—15,
2004.

B. C. Dean. Continuous-Time Dynamic Shortest Path Algorithms. Master’s thesis,
Massachusetts Institute of Technology, 1999.

D. Delling. Time-Dependent SHARC-Routing. In Proceedings of the 16th Annual
European Symposium on Algorithms (ESA’08), volume 5193 of Lecture Notes in
Computer Science, pages 332—-343. Springer, September 2008. Best Student Paper
Award - ESA Track B.

D. Delling, T. Pajor, and D. Wagner. Engineering Time-Expanded Graphs for
Faster Timetable Information. In Proceedings of the 8th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08),
Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszen-
trum fiir Informatik (IBFI), Schloss Dagstuhl, Germany, September 2008.

D. Delling, T. Pajor, and D. Wagner. Accelerating Multi-Modal Route Planning
by Access-Nodes. In A. Fiat and P. Sanders, editors, Proceedings of the 17th
Annual European Symposium on Algorithms (ESA’09), Lecture Notes in Computer
Science. Springer, September 2009. Accepted for publication, to appear.

E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269-271, 1959.

Y. Disser, M. Miiller-Hannemann, and M. Schnee. Multi-Criteria Shortest Paths
in Time-Dependent Train Networks. In C. C. McGeoch, editor, Proceedings of
the 7th Workshop on Experimental Algorithms (WEA’08), volume 5038 of Lecture
Notes in Computer Science, pages 347-361. Springer, June 2008.

P. Hansen. Bricriteria Path Problems. In G. Fandel and T. Gal, editors, Multiple
Criteria Decision Making — Theory and Application —, pages 109-127. Springer,
1979.

E. Q. Martins. On a Multicriteria Shortest Path Problem. Furopean Journal of
Operational Research, 26(3):236-245, 1984.

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

A. O. Mendelzon and P. T. Wood. Finding Regular Simple Paths in Graph
Databases. SIAM Journal on Computing, 24(6):1235-1258, 1995.

H. Moritz. Geodetic Reference System 1980. Journal of Geodesy, 66(2):187-192,
June 1992.

M. Miiller-Hannemann and M. Schnee. Finding All Attractive Train Connections
by Multi-Criteria Pareto Search. In Algorithmic Methods for Railway Optimization,
volume 4359 of Lecture Notes in Computer Science, pages 246-263. Springer, 2007.
M. Miiller-Hannemann, F. Schulz, D. Wagner, and C. Zaroliagis. Timetable Infor-
mation: Models and Algorithms. In Algorithmic Methods for Railway Optimization,
volume 4359 of Lecture Notes in Computer Science, pages 67-90. Springer, 2007.
Oneworld Management Ltd. http://www.oneworld.com, 1999.

A. Orda and R. Rom. Shortest-Path and Minimum Delay Algorithms in Networks
with Time-Dependent Edge-Length. Journal of the ACM, 37(3):607-625, 1990.
E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Towards Realistic Modeling of
Time-Table Information through the Time-Dependent Approach. In Proceedings
of ATMOS Workshop 2003, pages 85-103, 2004.

E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Efficient Models for Timetable
Information in Public Transportation Systems. ACM Journal of Experimental
Algorithmics, 12:Article 2.4, 2007.

P. Sanders and D. Schultes. Robust, Almost Constant Time Shortest-Path Queries
in Road Networks. In C. Demetrescu, A. V. Goldberg, and D. S. Johnson, edi-
tors, Shortest Paths: Ninth DIMACS Implementation Challenge, DIMACS Book.
American Mathematical Society, 2009. Accepted for publication, to appear.

Star Alliance. http://www.staralliance.com, 1997.

MILP formulations of cumulative constraints for
railway scheduling — A comparative study

Martin Aronsson', Markus Bohlin' and Per Kreuger!

Swedish Institute of Computer Science,
Box 1263, SE-164 29 Kista, Sweden

Martin.Aronsson@sics.se, Markus.Bohlin@sics.se, Per.Kreuger@sics.se

Abstract This paper introduces two Mixed Integer Linear Programming (MILP) models
for railway traffic planning using a cumulative scheduling constraint and associated pre-
processing filters. We compare standard solver performance for these models on three
sets of problems from the railway domain and for two of them, where tasks have unitary
resource consumption, we also compare them with two more conventional models. In the
experiments, the solver performance of one of the cumulative models is clearly the best
and is also shown to scale very well for a large scale practical railway scheduling problem.

Keywords. Railway transport scheduling, Cumulative scheduling, Mixed Integer Linear
Programming (MILP) modelling and pre-processing

1 Introduction

Railway scheduling is a rich source of challenging optimisation and combinatorial decision prob-
lems. Along with vehicle routing problems with some unique properties [1,2,3], track resource
scheduling [4,5] is at the core of timetable construction for modern rail traffic planning. The
methods described in this paper may be used to verify feasibility of proposed timetables, search
(or optimise) for timetables with certain properties, or reduce conflicts between disparate re-
quirements originating from e.g. customers, business areas or transport political priorities within
the infrastructure manager. The presentation of the methods is rather technical but most of the
problems used in the empirical sections are derived from real fixed timetables and early stage
timetable proposals. The results clearly indicate one of the described methods as superior for
this important practical railway scheduling problem.

Constraint programming (CP) techniques have been quite successful in solving both academic
[6,7,8,9,10] and real-world scheduling problems [11,12,13,14,15]. One of the main benefits of CP
for such problems is the presence, in most modern solvers, of very efficient filtering mechanisms
in the form of constraint abstractions for both classical job shop and generalisations such as the
cumulative resource scheduling problem. Using demand-driven filtering during search for inte-
ger solutions constitutes a powerful decision mechanism that have also been used successfully for
optimisation [16,8]. However, to optimise classical job shop problems and their cumulative gener-
alisations efficiently it is generally also necessary to employ quite sophisticated search heuristics.

Mixed Integer Linear Programming (MILP) is another technique for combinatorial problem
solving which have been applied to a wide variety of industrial-level problems. For scheduling
problems with unitary resources, standard linear boolean formulations also scale very well, es-
pecially for problems with a lot of linear side conditions that can be exploited by modern MILP
solvers.

J. Clausen, G. Di Stefano (Eds): ATMOS 2009

9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2009/2141

2 M. Aronsson, M. Bohlin, P. Kreuger

For cumulative scheduling problems, however, there do not seem to exist any standard MILP
formulations. For certain classes of problems, e.g. where all tasks have unitary resource consump-
tion, formulations based on geometric placement can be used [5]. These can, as we will see, be
quite efficient for the problems they can encode.

Cumulative constraints [17] are well known in the CP community where efficient algorithms
based on sweep [18] and/or task-intervals [19] are used to prune the search space, both as a
pre-processing mechanism and on demand for variable domain reduction during search. Several
variants of the constraint have been described e.g. in [20].

These constraints normally restrict the cumulative capacity utilisation of tasks executing
simultaneously not to exceed an upper bound. Capacities and capacity utilisation are normally
fixed integers while the start times and durations are decision variables. Variants where the
resource consumption of each task is also variable and possibly constrained by the start time
and duration occur as well. In this paper we focus on the case where the capacity and the
resource consumption are constant integers. We have not found this to be restrictive in practice
for practical problems in the railway domain.

Geometric placement constraints are related to cumulative constraints. The most common
form is probably that of filtering for non-overlap of rectangles in the plane [21] which, in the
context of scheduling, corresponds to allocation of unit capacity resources to tasks with unit re-
source consumption combined with a multi-resource scheduling problem. The resource allocation
is represented as the placement of a a unit height rectangle in the y-dimension and the start time
as the placement of its left edge and the duration as its length in the z-dimension.

In classical cumulative scheduling, there is no concept corresponding to the placement of
the lower edge on the y-axis, and the resource consumption is arbitrary. Still, the special case
of unit resource consumption is of considerable practical interest, and for these, the placement
formulation can be used by considering the number of resources as a cumulative capacity and
just ignoring the values of the y-placement variables. Any solution to the placement problem is
clearly feasible for the cumulative as well.

We will describe four different models, two for the placement formulation and two for the
cumulative constraint, define filtering methods for each, note some of their complexity properties
and investigate solving performance for them on three separate sets of problems. The first two
sets of problems are derived from a practical case in rail traffic scheduling where all the tasks
have unit resource consumption. In the third, a set of random problems with a more general
structure and of varying sizes and difficulties are studied.

In addition, in a fourth, empirical section, we briefly describe the results of using a selection
of the described methods in an industrial scale rail transport scheduling problem. This problem
was what originally motivated our research, and even though the problem has a quite special
structure it is of great practical importance. We conclude with a summary of our findings.

2 Preliminaries and notation

2.1 Notation for model parameters and variables

Let n denote the number of tasks (individual trains using a track or station resource) in the
problem and use 0 < i,j < n as task indices. Let, furthermore, ¢ denote the resource (station)
capacity limit and h; the resource consumption for task 7. Let s; denote the start time variable
for task 7, bounded by an interval s; < s; <57 and d; the duration variable for task 4, bounded
by an interval d; < d; < d;.

MILP formulations of cumulative constraints for railway scheduling 3

2.2 Maximal clique construction

In cumulative scheduling it is often useful to do an analysis of the parameters and bounds of
the problem. One of the most obvious ways to do this is to construct subsets of tasks that can
overlap in time. In CP, this type of computation is performed iteratively during search to filter
the domains or bounds of the decision variables, but it can also be used for pre-processing in
MILP formulations to filter equations and booleans that need not be maintained by the solver.

Formally, this is achieved by considering the tasks of the problem as nodes in a graph and
letting two tasks ¢ and j be connected by a link if and only if they can overlap in time. Then,
all mazimal cliques (completely connected sub-graphs) of this graph will have the property that,
unless a task is already in the clique, it cannot overlap all the others.

This is a very useful property in cumulative scheduling since when we wish to limit the number
of simultaneously overlapping task, it is sufficient to consider each maximal clique separately and
the complexity of enforcing cumulative conditions on the set of all tasks is often bounded by some
function of the sizes of the maximal cliques, rather than the size of the task set itself. In practical
problems this is often of great value, since the majority of tasks cannot be arbitrarily placed in
time. This makes the maximal cliques small compared to the total number of tasks.

To construct the set of all maximal cliques used in the models below, we use a straightforward
sweep algorithm which has linear time complexity in the size of the set of tasks. In the model
description below we will often generate a set of equations for each maximal clique Clg; and
where 1 < nj < n is the size of the k’th clique.

3 Model descriptions

The first two models described below are restricted to handle tasks with unitary resource require-
ments. The reason for this is that these are based on a rectangle placement approach which does
not capture the general cumulative constraint which may be satisfied even though no rectangle
placement exists. They are, in fact, more close to models for placing non-overlapping rectangles
of unit height onto the plane. In practice however, these are quite useful models since in many
situations where the cumulative constraint is used, there is an underlying problem structure of
this type. E.g. in train scheduling, a station may be modelled as a cumulative resource that
allows a maximum number of trains to occupy the station at any one time. The type of model
proposed here allows us to also exclude the use of certain tracks for a particular train, depending
on track lengths or other capacity restrictions, which is not straightforward in a pure cumulative
model.

The next two models capture the semantics of a general cumulative constraint with a fixed
upper bound on resource consumption and arbitrary but fixed resource consumption for all tasks.

3.1 Explicit unitary resource allocation (integer formulation)

This model treats each cumulative resource as a collection of unitary sub-resources and explicitly
allocate these to tasks with unit resource consumption. This is achieved through the use of an
integer decision variable y; for each task ¢ to denote the individual sub-resource allocated to the
task. If two tasks 7 and j use the same sub-resource, they must be non-overlapping in time. The
model uses two boolean variables p;; and w;; for each pair of transports ¢ and j. p;; = 1 is used
to encode that the task i completely precedes task j and w;; = 1 that they do overlap in time,
and thus must use different sub-resources.

First, let us express a non-overlap constraint: Either the end time of task 7 is less than or
equal to the start time of task j: s; +d; — s; < 0 or the same is true for task j in relation to task
it sy —s; —d; > 0. We reflect this disjunction in the boolean p;;:

4 M. Aronsson, M. Bohlin, P. Kreuger

Si—l—di—Sj—M(].—pij)SO
Si—Sj—dj+Mp¢jZO

where M is any constant large enough to dominate the equation in which it occurs. This is, of
course, a standard formulation that occurs everywhere in the literature (see e.g. [22,23]) but how
do we proceed if we want to count and limit the number of overlapping tasks?

In the case where we do want to allow an overlap we need an additional boolean that cancels
the effect of the above equations. We want to do this in a way so that whenever this variable
takes the value 0, our equations will be equivalent to the ones above, and cancel them completely
otherwise:

Si-i-di—Sj—M(l—pij)—M’wijSO
Si—Sj—dj-f—Mpij-i-M’wijZO

When the two tasks do overlap, and the variable w;; thus takes the value 1, we need to ensure
that the two tasks are allocated different sub-resources. We can do this by ensuring that the
difference between y; and y; is nonzero:

yi—yj+Muij+M(l—wij)>0
yj_yi+M(1_uij)+M(1_ w;j) > 0

where y;, y; are integers and the booleans u;; encodes if y; < y; or the other way around, in the
case where w;; is 0.

As noted above, it is sufficient to enforce these conditions for each pair of tasks in the maximal
cliques, so that for each clique Clg, with nj tasks, the number of integer variables will be ny,
the number of booleans 3:0%=Y and the number of equations will be 2nk(nk — 1). Note that,
by sharing variables between the cliques, the total numbers are significantly less than the sum
over all cliques and is, for the integer variables, bounded by n and for the booleans, by 3%.

In summary, the temporal non-overlap condition for tasks allocated the same sub-resource
can (since y-variables are integers) thus be stated in linear form as:

si—sj+di + Mpijj — Mw;; <M
si —8j —dj + Mpij + Mwy; >0
yi—yj—f—Muij—Mwij >1-M
yj—yi—Muij—Mwij ZI—ZM
for all pairs i < j € Clgy of tasks and each maximal clique Clg;, where p;;, w;;, u;; are booleans

and 1 < y;,y; < c are integers. Note that we need to enforce the equations in the solver only
when the size of the clique is strictly larger then the resource capacity.

3.2 Explicit unitary resource allocation (boolean formulation)

This model is very similar to the one above but uses, instead of each integer variable y;, ¢ number
of booleans myy, each being one, denoting that the task ¢ is allocated sub-resource k. We want to
enforce the overlap condition between two tasks ¢ and j if and only if m;, = mj, = 1 for some &
ie. if (1 —my,) = (1 —mjx) = 0. The equations stating the non-overlap can then be formulated:

Si-f—di—Sj—M(l—pij)—M(l—mik)—M(l—mjk)SO
si—sj—dj—i—Mpij—l—M(l—mik)—i—M(l—mjk)20

MILP formulations of cumulative constraints for railway scheduling 5

which in linear form becomes

Si+di —sj+Mpi; +Mmg +Mmy, <3M
s;—8; —dj + Mpy; — Mmy, — Mmj, >2M

for all pairs of tasks i < j € Clgy, for each maximal clique Clgy, and each 0 < k < ¢ and where,
in addition, the resource condition is stated:

for all tasks i, i.e. essentially a set partitioning formulation.

Note that the number of booleans and overlap equations now increase by a factor of 2c¢ to
become cny(ng — 1) where ny, is the size of the clique and ¢ the resource capacity. The number of
resource conditions, on the other hand, now depends linearly on the product of cng. We would
expect this model to be reasonably efficient when ¢ is small in comparison to the clique size ny. If,
on the other hand these parameters are of comparable size, the number of booleans is effectively
cubic. The advantage of this type of model is that the modern MILP-solvers tend to treat pure
boolean formulations more efficiently than general MILP formulations.

A similar model for a traffic (re)scheduling problem was presented in [5] as part of a larger
model capturing several more aspects of a train (re)scheduling problem but this type of model
is probably more or less a standard formulation.

3.3 Min conflicting sub-clique model

This model captures the classical cumulative constraint more exactly than the ones proposed
above in the sense that tasks may have arbitrary resource consumption and that there is no
notion of sub-resources.

The idea behind this model is that for each maximal clique with tasks of sufficient cumulative
resource consumption, there exists a (possibly large) number of minimal sub-cliques such that
the sum of the resource consumptions of the involved tasks exceeds the resource capacity c. They
need to be minimal in the sense that removing any single element would make the sum of resource
consumptions of the remaining tasks less than or equal to the resource capacity. This means that
we can limit the number of actual overlaps in the sub-clique to be strictly less than the number
of pairs in the (minimal) clique itself.

Since each larger sub-clique that can contribute to a violation of the constraint can do so
only by violating a minimal sub-clique of itself, it is sufficient to state the resource conditions
for the minimal sub-cliques. We will use the same formulation for the non-overlap condition as
before, i.e.

Si-f—di—Sj—l—Mpij—MwijSM
si —8j —dj + Mpy; + Mw; >0

for all i < j € Clg and each maximal clique Clgi. We may now count and limit the number of
overlaps in each minimal sub-clique as follows

| Mn|
VMn C Clgy (.Z hi>c> A <VSbCMnZhi§c> ad Z wij < ()
i€Mn i€Sb i<jeEMn

for each maximal clique Clgy in the problem where the first conjunct in the precondition of the
implication requires that the sub-clique can in fact contribute to a resource conflict, the second

6 M. Aronsson, M. Bohlin, P. Kreuger

states the minimality condition and the conclusion limits the number of overlap variables that
can take the value one to be strictly less than the number of pairs in the minimal sub-clique.
Note that the tests for each potential sub-clique can be done when generating the equations and
only the linear sum expression Y,y wij < (IAg”I) — 1 needs to be enforced by the solver.

In this model, for each clique Clgy with ny tasks, both the number of booleans and number
of overlap equations will be ng(n, — 1). The number of minimal sub-cliques and corresponding
clique equations, for a given max clique, however, depends both on the clique size |Clgy|, the
resource capacity ¢ and the distribution of resource consumption for the involved tasks, and may
in the worst case be exponential in the first two parameters. E.g. if the resource consumption of
all tasks is one, the number of minimal sub-cliques will be the number of sub-cliques of a given
size ¢, i.e. (‘fff'). Even though modern IP-solvers are much more sensitive to the number of
booleans than to the number of equations, this is clearly a disadvantage of this model.

Even worse, the number of sub-cliques to be tested for minimality is always exponential in the
clique size. This means that the algorithm generating the equations should be very sensitive to
increase in clique size. Still, for a typical randomly generated problem consisting of 300 tasks on
a single resource, arbitrary resource consumptions up to a resource capacity of 5, max/average
clique size of 26/18 and 139 separate cliques, all 9752 equations are generated in about 170
seconds on a 1.6 GHz 1686 laptop, so the filtering does scale to practical problem sizes and, for
many large scale practical problems, the method performs, as we will see in section 4, very well.

3.4 Start point clique height sum model

This model is based on the observation that for each start point of a task, it suffices to measure
and limit the resource consumptions of the other tasks that are possibly active at that point.

For each task ¢ of a maximal clique with elements of sufficient size to generate a conflict,
consider each other task j in the clique that has an earliest start point less than or equal to the
latest start point of task 7 and a latest end point greater than the earliest start of . Since only
these can overlap task ¢ we construct for each such task a boolean variable w;; which will take the
value 1 if and only if the start of task 7 falls within the duration of task j, i.e. if s; < s; < s;+d;.
In order to do this, consider first the situation where this is not the case, i.e. where either s; > s;
or s; > s; +dj;. Encode this disjunction with a boolean p;; such that:

si—s;—M(1—-p;) <0
Si—Sj—dj-i-MpijZO

and use w;; = 1 to encode the cancellation of these equations as follows:

Si—Sj+Mpij—Mwij<M
Si—Sj—dj—FMpij—f—M’wijZO.

where p;;,w;; are booleans and the strict inequality in the first equation would in a pure MILP
formulation be handled by the addition of a suitably small ¢ on the RHS.

Now, for each element i in each clique Clg, constrain the scalar products: >~ c g, iy 1 wij
to be less than or equal to the resource capacity ¢ minus the resource consumption h; of the task
i

Vi € Clqk Z hjwij <c—h;
J€CIqp\{i}
for all maximal cliques Clg; where w;; are booleans. The number of clique equations is linear in
the (maximal) clique size, but since the overlap equations are no longer symmetric, these must

MILP formulations of cumulative constraints for railway scheduling 7

be stated for each ordered pair of tasks in the clique. This means that the number of booleans
and overlap equations will both be 2ny(ny — 1), which is twice as many as in the model of section
3.3.

4 Empirical findings

This section reports trial runs of the proposed methods on a number of different problems.
Most of the problems are derived from an application in train scheduling, but since these only
have tasks with unitary resource consumption, we have also evaluated the methods on a set of
randomly generated problems where the resource consumption varies up to the resource capacity.
Two sets of examples are single resource problems while the other two are more realistic examples
consisting of trains using several resources in fixed sequences, job shop style.

4.1 Single resource unitary resource consumption examples

We have evaluated all four models on a set of problems derived from the domain of train timetable
generation. More results on the full problem is presented in section 4.4 below. In this section, we
consider a single resource at the time and present results for a number of representative station
resources of varying size.

In table 1 the problem parameters and properties are summarised. We note that all problems

Table 1. Problem statistics for a selections of stations in the train problem

| station |kst| FA | TL [Ly | wm | 68 | LAD [opd [sk | mpeG |
Capacity 1 2 2 2 3 3 3 4 5 10
Tasks 471(711{1000(1000|684|907{1000(717|804| 1391
Cliques 246|319 520 | 591 [194(356| 489 |120| 63 | 43

Max/Avr clq size 7/3 7/4 8/5 9/5 7/4 8/5 9/5 7/5 8/6 14/11

are fairly large in terms of number of tasks but since the problems were generated by introducing
a fixed amount of slack (£15 minutes) in a given feasible solution, the number of potential
conflicts and hence clique sizes is relatively small. We would argue that this is a quite common
situation in many large scale practical problems, and as shown in section 4.4, methods to solve
such problems can certainly be put to very good use. Here we try to show that the methods
we have described are in fact very good at exploiting this type of problem structure and scale
surprisingly well considering that only default settings of the CPLEX solver were used to produce
the solutions.

Table 2 gives the number of equations, booleans and integers for each of the four models and
run-times for CPLEX 9.0 on a single core 2.6 GHz 1686 Xenon processor. In addition, the time
taken to generate the equation sets for each of the models is given in the last four rows. The
short names of models used in the table are “MC” for the “Min conflicting sub-clique model”
of section 3.3, “SC” for the “Start point height sum model” of section 3.4, “RB” for the boolean
formulation of the “Explicit resource allocation model” of section 3.2 and “RI” for the integer
version presented in section 3.1.

We note that the MC model is always best in terms of CPLEX execution time but that for
some of the larger problems, the time to generate the equation set increases the total time to
solve the problem significantly. Just adding the times together does not necessarily tell the whole

8 M. Aronsson, M. Bohlin, P. Kreuger

Table 2. Solution statistics for a selection of stations in the train scheduling problem

[Paran. || Method(s) | ksi] Fa[TL] Ln]] o8] rAG| opd| sk| EpBg|
Bools MC 1588[3108| 6532| 6666(2416| 4820| 6448(|2040|1644| 2780
SC 3175(6216/13054|13319(4 810 9580|{12882({4080|3249| 5403
RB 1231(2832| 5166| 5239|2663 4717 5906|2516|2227| 3680
RI 238214662 9798 9999(3624| 7230| 9672{3060|2466| 4170

Integers ||[MC, SC, RB 0 0 0 0 0 0 0 0 0 0
RI 437 639 950 953| 485 769 894| 374| 281 229

Eqns. MC 2382{4800{11842|12067(3204| 8146|11660|2432|1863| 4185
SC 3964|7532|15 711|116 342|5700({11 451|15486|4 727|3632| 5801
RB 2025|6858(14014|14285|7 733|15 229|20 238|8 534|8 501|28 029
RI 3176|6216{13064|13332({4832| 9640(12896|4 080|3 288| 5560

Solve (s) MC 0.03| 0.29| 1.23| 1.54/0.09| 0.34| 0.64|0.06|0.06| 0.25
SC 0.14]11.16| 45.07| 38.04| 0.73| 6.42| 14.00| 0.20| 0.18| 0.39
RB 0.03| 1.06| 3.18| 11.26| 1.22] 5.04| 13.23| 1.90| 0.73| 5.08
RI 0.04| 3.08| 23.89| 22.66| 0.58| 1.78] 17.93| 0.51| 0.39| 1.70
Gen. (s) MC 0.17] 0.69| 2.42| 2.52| 0.63| 2.47| 3.87| 0.54| 0.47| 10.86
SC 0.30] 0.70| 1.71| 1.93| 0.48| 1.20| 1.74| 0.45| 0.34| 0.82
RB 0.17] 0.51| 1.09| 1.13} 0.55| 1.06| 1.51| 0.61| 0.59| 1.73
RI 0.15] 0.35| 0.69| 0.71} 0.27| 0.51] 0.70| 0.24| 0.20| 0.35

story either, since the time to generate the equations may still be small in comparison with the
solver time for e.g. problems with several distinct resources. We will next consider such a case.

4.2 Multiple resource unitary resource consumption example

In this section we explore the models on a more complex scheduling problem derived from the
same domain as those above. In this case we extracted all the traffic through an area around the
town of Héssleholm in southern Sweden. The area consists of 21 distinct resources of which 12 are
unitary (track) resources, 2 are large stations with capacities of 24 and 16 respectively and the
rest are smaller stations and track segments with a capacity of either one or two. Starting from a
feasible timetable consisting of 5972 individual tasks, we reconstructed the precedence relations
for all the jobs (trains) and relaxed the start times of all tasks to slack sizes of 50, 70 and 90
minutes respectively. The resulting problem properties and run time statistics is summarised in
table 3. For each problem, the resulting number of cliques, the maximum and average clique size
is given and then, for each model, the number of booleans, integers and equations generated and
run time to produce an optimal solution is given. The last column gives the time to generate the
equations for this experiment.

For all problems the MC method is again clearly the best, even if we include the time taken
to generate the equations.

4.3 Single resource arbitrary resource consumption examples

To test and compare the two models that effectively handle tasks with arbitrary resource con-
sumption we generated a set of random problems with different number of tasks, upper bounds on
latest completion and slack. For each such problem size we generated 10 problems and attempted
to solve each with the two methods with a time limit of 15 minutes.

MILP formulations of cumulative constraints for railway scheduling

Table 3. Problem and solution statistics for the 21 resource problem

|sik[cigs [mx [av [[Method| Bools/Ints |

Eqtns | Solv Tm | Gen Tm|

50 |2538|10(2.64||MC 18766/0 | 32737 5.14| 2.93
SC 37404/0 70071 25.62| 5.46
RB 14365/0 | 30946| 6.08] 2.78
RI 28149/4 244| 42284| 20.16| 2.35
70 |2652|13(3.41||MC 28196/0 | 47802| 11.27| 4.65
SC 56173/0 |101126{154.22| 9.32
RB 19553/0 | 42733| 36.01| 3.89
RI 42294/4527| 61144| 73.64| 3.30
90 |2672|15(4.06 ||MC 36280/0 | 61514| 22.64| 6.67
SC 72404/0 |127937|252.87|13.63
RB 23677/0 | 52382| 78.55| 5.07
RI 54420/4588| 77312(134.69| 4.24

Table 4. Run times for a set of random problems with varying resource consumption

Clq Sz MC sc
Tasks|Cpct| End|Slack| Mx Av Failed|Avr rnTm Failed|Avr rnTm
20 3] 50| 10| 7 3 0 0.01 0 0.02
15| 9 4 0 0.05 0 0.23

20{10 5 0 4.41 1 71.06

2514 7 2 60.10 6| 115.33

30114 7 2| 101.01 6 44.23

35(13 8 3| 183.02 9| 483.98

40113 9 4| 136.71 7| 379.66

45116 9 6] 297.42 9 78.71

5017 11 5| 152.75 10 -

30 3] 75| 10| 8 4 0 0.05 0 0.56
1510 4 0 28.73 2 4.85

20110 6 2 52.94 6/ 150.41

2512 7 1| 233.90 7| 268.85

30{14 7 8 21.70 10 -

35|16 8 9| 277.75 10 -

50 3|150f 10/ 9 3 0 2.46 0 13.25
15| 8 4 0 11.68 1 37.01

20112 5 5/ 141.06 9| 316.92

25(12 6 7| 210.24 10 -

9

10 M. Aronsson, M. Bohlin, P. Kreuger

Each row in table 4gives the number of tasks, the capacity of the resource, the latest end time
and the maximum slack size of the problem class and reports the maximum and average clique
sizes for the ten generated problems. For each model MC and SC, we then give the number of
problems (out of 10) we failed to solve in the allotted time (15 minutes) and the average solver
run time for the problems were we did manage to find and prove the optimal solution.

All the problems were fairly tight, with the sum of task surfaces generally covering between
85 and 100% of the resource area. Slack sizes were also randomly generated from a given (non-
optimal) solution but limited by a maximum time window. These properties make these examples
quite different from those from the train domain that consist of huge amounts of tasks but with
small slack sizes.

We can see again that the methods exploit the given problem structure very well but that
performance degrade quickly as the clique maximum sizes increase above around 10. The clique
maximum and average size are clearly functions of the slack in the start time of each task.
The larger the slack, the more tasks potentially overlap which is precisely what the clique size
measures.

Once more, the MC model is clearly the best in terms of run time of the solver and in the
number of solutions proved optimal. The accumulated time to generate the equations for each
class of problems was in this experiment small (< 4 seconds) in comparison with the solver run
time and, somewhat surprisingly, very similar for the two models, even for the more difficult
problems.

To explore the relative scaling of the two methods with respect to equation generation /filtering
time more closely, we also studied the effect of increasing the slack for a set of larger randomly
generated problems. We fixed the number of tasks to 200, the latest end time to 600 and the
resource capacity to 5. Plotting only the time to generate the equations against the maximum
slack for the two models, yielded the graph in figure 1. Each entry in the plot represents the

80,0
70,0
60,0 /
50,0 /
40,0 of

30,0 /
20,0

10,0-

0,0- 1
0 10 20 30 40 50 60 70 80 90

Figurel. Time in seconds to generate the equations for the two models (MC=squares,
SC=diamonds) against increasing start time slack size

mean of 10 random problems of each slack size, from 10 to 80.

MILP formulations of cumulative constraints for railway scheduling 11

Here the exponential growth for the MC model is more clearly visible but already for a slack
of 60, typical max/average clique sizes are around 20/15 and the number of booleans for SC is
about 9000. For problems of this size the solver time completely dominates the total time. Going
up to even larger cliques, i.e. above max/average 30/20 , the generator (a Prolog program) runs
out of memory for MC, so this method is no longer an option. The value of SC would still have
to be questioned for problems of this size since the solver would most likely spend hours and
probably days, to find solutions in such cases. However, it may still be of value for other types of
problems, though at this point we have not found a way to characterise such a class of problems.

4.4 Large scale real world application

All the models described in this in these papers were originally developed as alternatives to
an earlier CP-based scheduling system for train timetable generation [24,4,25] but for the full
size version of this problem we have thoroughly investigated only the MC model of section 3.3.
The test runs were performed on a number of problems selected from the real train timetable
generation problem of the Swedish rail system for two consecutive years, 2004 and 2005.

One set of problems was extracted from the actual timetable for 2004 and then relaxed with
respect to departure times. Tracks are considered unitary resources except in the case of single
track lines which accommodate trains in both directions (see [4] for details) while stations were
modelled as cumulative resources accommodating from 2 up to some 20 simultaneous trains.

Included in this set was a large area around the most important shunting yard in Sweden,
Hallsberg. This problem consists of 175 tracks and 146 stations, 2 821 trains and around 60 000
tasks. The start time for each task was relaxed £15 minutes from a given solution and precedence
and resource constraints were generated, resulting in a very large problem but where the size of
each individual clique was fairly small. Finding a feasible solution to this problem with CPLEX
9.0 took about 70 seconds on IBM Thinkpad T42 with a single core 1.8 GHz 1686 processor. A
second smaller problem generated in the same way, consisting of some 24 000 tasks, was solved
in 27 seconds on the same machine.

A second set of problems was extracted from the capacity requests from the various rail
traffic operators for the following year. Since the capacity requests come from several different
and unrelated sources we typically have many unresolved resource conflicts at the start of the
planning process. For this problem we again introduced a slack of 15 minutes for the start time
of the stated requirement. For one sub-problem consisting of some 15000 tasks and with 149
unresolved conflicts, a partial solution with only 2 remaining conflicts was generated in about
100 seconds.

For the problem in the area around Hallsberg in this set we also tried allowing the system to
introduce new low priority resource conflicts! where it would help to eliminate the 137 original
high priority conflicts. In this case we introduced a smaller slack of +5 minutes. All high priority
conflicts were eliminated in 40 seconds of execution time at the cost of introducing only one new
low priority conflict.

The largest single problem we approached consists of most of the traffic in the northern part
of the country, with 3 643 trains, almost 199 620 tasks on 661 tracks and 611 stations. Initially
the data contained 1030 high priority conflicts. Running CPLEX 9.0 on a faster 2.6GHz Xenon
processor for about 600 seconds eliminated all high priority conflicts and introduced 6 new low
priority conflicts. Running the solver for several days on this problem we were able to prove that
no solution exists with less than 4 such low priority conflicts.

! i.e. between certain cargo trains for which the uncertainty in actual arrival times and tolerance for

smaller delays was larger.

12 M. Aronsson, M. Bohlin, P. Kreuger

5 Conclusion

We have introduced two MILP models for the general cumulative scheduling constraint and com-
pared them to two for the special case where resource consumption is unitary based on geometric
placement models. For each of these, we have defined pre-processing filters and compared solver
performance on up to three sets of problems.

In all the experiments, the solver performance of one of the general cumulative models, the
“Minimum conflicting sub-clique (MC) model”, is clearly the best in terms of solver time. For this
model, the filtering mechanism has exponential time complexity in general but in practice this
has little impact on total time to generate and solve the problem. This is so, at least, for the
type of problems considered, since the filtering time becomes significant only for problems where
the solver would struggle to find any integer solution.

We also report briefly on a full scale industrial scheduling problem where the MC model is used
to produce feasible schedules for several hundred thousands of tasks on thousands of resources.
These problems are solvable only because the start time window of each task is small and the
potential number of overlaps between tasks on each resources are often orders of magnitude
smaller than the total number of tasks. For such problems the filtering proposed methods are
very efficient,.

References

1. Ahuja, R.K., Liu, J.N., Orlin, James B.and Sharma, D., Shughart, L.A.: Solving real-life locomotive-
scheduling problems. Transportation Science 39(4) (November 2005)

2. Aromsson, M., Kreuger, P., Gjerdrum, J.: An efficient mip model for locomotive scheduling with time
windows. In Jacob, R., Miiller-Hannemann, M., eds.: ATMOS 2006 - 6th Workshop on Algorithmic
Methods and Models for Optimization of Railways. Number 06002 in Dagstuhl Seminar Proceedings,
DagstUhl, Germany, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany (2006) <http://drops.dagstuhl.de/opus/volltexte/2006/683> [date of
citation: 2006-01-01].

3. Vaidyanathan, B., Ahuja, R.R., Jian, L., Shughart, L.A.: Real-life locomotive planning: New fro-
mulations, algorithms and computational results. Technical report, Innovative Scheduling (2006)
Revised: January 3, 2006.

4. Kreuger, P., Carlsson, M., Sj6land, T., Astrém, E.: Sequence dependent task extensions for trip
scheduling. Technical Report T2001:14, SICS (2001)

5. Térnquist, J.: Railway Traffic Disturbance Management. PhD Thesis, Blekinge Institute of Tech-
nology (2006) Doctoral dissertation series No. 2006:03.

6. Caseau, Y., Laburthe, F.: Improved CLP scheduling with task intervals. In van Hentenryck, P., ed.:
Proceedings of the eleventh International Conference on Logic Programming ICLP’94. Volume 78.,
Santa Margherita Ligure, Italy, MIT Press (1994)

7. Baptiste, P., Le Pape, C.: A theoretical and experimental comparison of constraint propagation
techniques for disjunctive scheduling. In: Proceedings of the fourteenth international joint conference
on artificial intelligence, Montreal, Quebec (1995) 400-606

8. Caseau, Y., Laburthe, F.: Improving branch and bound for job shop scheduling with constraint
propagation. Technical report, Laboratoire d’Informatique de I'Ecole Normale Supérieure LIENS,
Département de Mathématiques ed d’Informatique, 45 rue d’Ulm, 75232 Paris Cedex 05, France
(1996)

9. Caseau, Y.: Using constraint propagation for complex scheduling problems: managing size, complex
resources and travel. In Smolka, G., ed.: CP’97 — Principles and Practise of Constraint Programming.
Volume 1330 of LNCS., Linz, Austria, Springer-Verlag (Oct/Nov 1997)

10. Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-Based Scheduling. Kluwer Academic Publishers,
Norwell, MA, USA (2001)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

MILP formulations of cumulative constraints for railway scheduling 13

Christodoulou, N., Stefanitsis, D., Kaltsas, E., Assimakopoulos, V.: A constraint logic programming
approach to the vehicle-fleet scheduling problem. In: Proceedings of Practical Applications of Prolog.
(1994)

Chiu, C., Chou, C., Lee, J., Leung, H., Leung, Y.: A constraint-based interactive train rescheduling
tool. In: 7 (1996) 104-118

Goltz, H.J., John, U.: Methods for solving practical problems of job-shop scheduling modeled in
clp(FD). In: Proceedings of Practical Applications of Constraint Technology (PACT’96), PA (Apr
1996)

Gosselin, V.: Train scheduling using constraint programming techniques. In: 13th conference on AI,
expert systems and natural language, Avignon (1993)

Carlsson, M., Kreuger, P., Astrom, E.: Constraint-based resource allocation and scheduling in steel
manufacturing. In: Practical Aspects of Declarative Languages. Volume 1551 of Lecture Notes in
Computer Science., San Antonio, Springer Verlag (Januari 1999) 335-349

Caseau, Y., Laburthe, F.: Cumulative scheduling with task intervals. Technical report, Labo-
ratoire d’Informatique de ’Ecole Normale Supérieure LIENS, Département de Mathématiques ed
d’Informatique, 45 rue d’Ulm, 75232 Paris Cedex 05, France (1995)

Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and placement
problems. Mathematical Computer Modelling 17(7) (1993) 57-73

Beldiceanu, N., Carlsson, M.: Sweep as a generic pruning technique applied to the non-overlapping
rectangles constraint. In: CP ’01: Proceedings of the 7th International Conference on Principles and
Practice of Constraint Programming, London, UK, Springer-Verlag (2001) 377-391

Caseau, Y., Laburthe, F.: Cumulative scheduling with task intervals. In: Joint InternationAl Con-
ference and Symposium on Logic Programming. (1996) 363-377

Beldiceanu, N.: Global constraints as graph properties on a structured network of elementary con-
straints of the same type. In: Principles and Practice of Constraint Programming. (2000) 52-66
Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathematical computer
modelling 20(12) (1994) 97-123

Blazewicz, J., Dror, M., Weglarz, J.: Mathematical programming formulations for machine schedul-
ing: A survey. European Journal of Operational Research 51(3) (April 1991) 283-300

Keha, A.B., Khowala, K., Fowler, J.W.: Mixed integer programming formulations for single machine
scheduling problems. Comput. Ind. Eng. 56(1) (2009) 357-367

Kreuger, P., Carlsson, M., Olsson, J., Sjéland, T., Astrém, E.: The TUFF train scheduler — Trip
scheduling on single track networks. In: The proceedings of the Workshop on Industrial Constraint-
Directed Scheduling at the Third International Conference on Principles and Practise of Constraint
Programming, Schloss Hagenberg, Linz, Austria, Ed. A. Davenport (1997)

Sjoland, T., Aronsson, M., Kreuger, P.: Heterogeneous scheduling and rotation. In Kakas, A., Sadri,
F., eds.: In Computational Logic: Logic Programming and Beyond, Part I. Lecture Notes in Artificial
Intelligence. Springer-Verlag (2003) 655-676

On Assessing Robustness
in Transportation Planning *

Apostolos Bessas and Christos Zaroliagis

! R.A. Computer Technology Institute, N. Kazantzaki Str., Patras University
Campus, 26504 Patras, Greece
2 Department of Computer Engineering and Informatics, University of Patras,
26500 Patras, Greece
Email: {mpessas,zaro}Qceid.upatras.gr

Abstract. We consider a fundamental problem, called QoS-aware Mul-
ticommodity Flow, for assessing robustness in transportation planning.
It constitutes a natural generalization of the weighted multicommodity
flow problem, where the demands and commodity values are elastic to
the Quality-of-Service (QoS) characteristics of the underlying network.
The problem is also fundamental in other domains beyond transportation
planning. In this work, we provide an extensive experimental study of
two FPTAS for the QoS-aware Multicommodity Flow Problem enhanced
with several heuristics, and show the superiority of a new heuristic we
introduce here.

Keywords: QoS-ware Multicommodity Flow, Robust Planning, Demand Elas-
ticity, Packing LP.

1 Introduction

One of the key issues that planners of transport operators in public transporta-
tion networks have to deal with concerns the routing of various commodities
(customers with common origin-destination pairs) to meet certain demands [13].
A customer, when provided with a non-optimal path (route) due to unavailable
capacity, s/he will most likely switch to another operator or even other means
of transport and the probability in doing so increases as the QoS (quality of
service) drops — actually, as a result of statistical measurements over several
years, major European railway companies know quite accurately the percentage
of customers they lose in such cases as a function of the path’s QoS [8,13]. To
minimize the loss of customers, the value charged for the requested service is
usually reduced to make the alternative (worse in QoS) path, offered for that
service, attractive. Alternatively, improvements in QoS may increase customer
demand and also incur an analogous increase in the pricing policy. Consequently,

* This work was partially supported by the Future and Emerging Technologies Unit of
EC, under contracts no. FP6-021235-2 (FP6 IST/FET Open/Project ARRIVAL),
and no. ICT-215270 (FP7 ICT/FET Proactive/Project FRONTS).

J. Clausen, G. Di Stefano (Eds): ATMOS 2009

9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems

http://drops.dagstuhl.de/opus/vol ltexte/2009/2146

2 A. Bessas and C. Zaroliagis

transportation planners would like to determine the robustness of their planning
models towards such fluctuation of customer demands.

In an earlier work [11,12] we introduced and studied a combinatorial opti-
mization problem, called QoS-aware Multicommodity Flow (MCF), that is fun-
damental to address robustness issues in transportation planning, as those men-
tioned above. In the QoS-aware MFC problem, a capacitated directed network
G = (V, E) is given, in which we wish to route k& commodities to meet certain ini-
tial demands. Each commodity i is associated with a specific origin-destination
pair (s;,t;), a demand d; and a value v; representing the profit of routing one unit
of flow from that commodity. Also, for each commodity i, a weight wt; : E — R
is defined that quantifies the provided quality of service (QoS), when this com-
modity is routed along an edge e or a path p, where wt;(p) = >_ ., wt;(e).
Smaller weight means better QoS. When a commodity is not routed along its
shortest w.r.t. wt; (optimal w.r.t. QoS) path due to capacity restrictions, then
(i) a portion of the demand d; drops (the worse the QoS of the path, the larger
the portion d; that is lost), and (ii) its value v; is reduced (the worse the QoS,
the larger the reduction). In other words, demands and values are elastic to the
provided QoS. The objective is to compute the maximum weighted multicom-
modity flow (sum over all commodities and over all paths of the flow routed from
every commodity on each path multiplied by the commodity’s value) subject to
the QoS-elastic demands and values.

To determine the robustness of their models against fluctuations of customer
demands, transportation planners are typically confronted with the following
robustness issues in network and line planning;:

(i) Which is the maximum profit obtained with the current capacity policy that
incurs certain QoS-elastic demands and values?
(i) How much will this profit improve if the capacity is increased?
(iii) Which is the necessary capacity to achieve a profit above a certain threshold?

A fast algorithm for the QoS-aware MCF problem would allow transportation
planners to assess effectively the aforementioned robustness issues by identifying
capacity bottlenecks and proceed accordingly.

It is worth mentioning that the QoS-aware MCF problem is also fundamental
in applications beyond the transportation domain. For instance, in networking
(e.g., multimedia) applications over the internet, or in information dissemination
over various communication networks [3]. In such a setting, a “server” (owned
by some service provider) sends information to “clients”, which retrieve answers
to queries they have posed regarding various types of information. Common
queries are typically grouped together. Answering a query incurs a cost and
a data acquisition time that depends on the communication capacity. When a
“client” is provided with a non-optimal service (e.g., long data acquisition time
due to capacity constraints), s/he will most likely switch to another provider.
On the other hand, the provider may reduce the cost of such a service in order
to minimize the loss.

In [11,12] it was shown that the QoS-aware MCF problem can be formulated
as a fractional packing linear program (LP) and a FPTAS for its approximate

On Assessing Robustness in Transportation Planning 3

solution was provided. The algorithm builds upon the Garg & Koénemann (GK)
Langrangian relaxation method for fractional packing LPs [5], combined with the
phases technique introduced by Fleischer [4], and a new approximation algorithm
for the non-additive shortest path (NASP) problem developed in [11,12], which
constitutes the required oracle that identifies the most violated constraint of the
dual LP.

In this paper, we present a comparative experimental study for the QoS-
aware MCF problem. In particular, we have implemented and compared the
following algorithms:

— The FPTAS described in [11,12] for solving the QoS-MCF problem, using
as oracle the FPTAS for NASP developed in the same work.

— The GK approach [4, 5] enhanced with the heuristic methods presented in
[2], using as oracles the exact (pseudopolynomial) NASP algorithm in [10]
and the approximate NASP in [11, 12].

— The FPTAS in [11,12] incorporating some of the heuristics in [2], as well as
the GK approach, and enhanced both with a new heuristic that we develop.

Our comparative experimental study on synthetic and real-world data shows
that the new heuristic method leads to a dramatic improvement in the running
time over the original algorithms in [4, 5,11, 12]. Moreover, the use of the exact
NASP routine in the GK approach is considerably faster than the version of the
approximate NASP.

The rest of the paper is organized as follows. In Section 2, we define the QoS-
aware MCF problem formally and formulate it as a packing linear program. In
addition, we present the method proposed by Garg & Kénemann [5], its modifi-
cation by Fleischer [4], as well as an exact and an approximate algorithm for the
Non-Additive Shortest Path (NASP) problem that constitutes a fundamental
subroutine for solving the QoS-aware MCF problem. In Section 3, we present
the algorithms implemented for the QoS-aware MCF problem, and in Section 4
we present the experimental results obtained. We conclude in Section 5.

2 Preliminaries

2.1 The QoS-aware MCF Problem

To formally define the QoS-aware Multicommodity Flow Problem, we have
adopted the exposition in [11,12]. In particular, we are given an n-vertex, m-
edge digraph G = (V, E) along with a capacity function v : E — R{ on its
edges. We are also given a set of k commodities. A commodity i, 1 <i <k, is a
tuple (s;,t;, di, wt; (), £;(+),v;i(+)), where s; and t; are the source and sink nodes
for the commodity 4 respectively, d; € Rar is the demand of the commodity and
wt; : E — RY is the weight function for commodity i. The weight function
quantifies the Quality of Service for commodity ¢ (smaller weight means better
QoS). For any s;-t; path p, wti(p) = >_.c, wti(e). Let §;(s;,t;) be the length of
the shortest path for commodity ¢ with respect to the weight function wt;(-).

4 A. Bessas and C. Zaroliagis

The non-decreasing function f; : [1,+00) — [0, 1] is the elasticity function that
determines the portion f;(x) of the commodity’s demand d; that is lost, if a
path that is x times worse than the shortest path with respect to the weight
function wt;(+) is used; that is, if @ units of d; were supposed to be sent in case
the provided path was shortest (optimal), then only (1 — fi(z))a units will be
shipped through the actually provided (non-optimal) path, while fj(z)a units
will be lost. Commodity ¢ is also associated with a non-increasing profit function
v; 1 [1,+00) — R{, which gives the profit v;(x) from shipping one unit of flow of
commodity ¢ through a path that is times worse than the shortest path with
respect to the weight function wt;(-). The objective is to maximize the total
profit, i.e., the sum over all commodities and over all paths of the flow routed
for every commodity on each path multiplied by the commodity’s profit subject
to the capacity and demand constraints and with respect to the QoS-elasticity of
demands and profits. The above is called the QoS-aware Multicommodity Flow
problem.

Let P; = {p: p is a s;-t; path} be the set of candidate paths along which flow
of commodity i can be sent and let X;(p) € Ra’ denote the flow of commodity i
sent along path p. The definition of the elasticity function implies that for each
unit of flow of commodity i routed along p, there are ﬁ(w) units consumed
from the demand of the commodity. Thus, we define a consumption function
h; : [1,400) — [1,+400) with h;(x) = % Since f; is non-decreasing, h; is also
non-decreasing. Accordingly, the consumption h;(p) > 1 of a path p is defined
as the amount of demand consumed for each unit of flow routed along p, i.e.,

hi(p) = hi(wti(p)) Similarly, the value v;(p) of a path p is defined as the profit

0i(8i,ts)
51v(t7:(p)))
i(siti))°

from routing one unit of flow of commodity ¢ through p, i.e., v;(p) = vi(

Consequently, the QoS-aware MCF problem can be described by the following
LP:

s.t. Z Z Xi(p) <ule), VeekFE

i=1 eep,pep;

ST Xip)hi(p) < diy Vi=1,...k
pEP;

X;(p)>0, Vi=1,...,kNpeP

On Assessing Robustness in Transportation Planning 5

The dual LP is as follows:

k
min D = Z l(e)u(e) + Z ¢id; (1)
eck =1
s.t. U(p) + ¢ihi(p) > vi(p), Vi=1,...,k,Vpe P, (2)
I(p) >0, VYpeP,Vi=1,...,k,
¢ >0, Vi=1,...,k

The above primal problem is a packing linear program; that is, an LP of the
form max{cTz|Ar < b,z > 0}, where A, b and c are (M x N), (M x 1) and
(N x 1) matrices, respectively, the entries of which are all positive.

2.2 The Garg-Kénemann Method and its Modification by Fleischer

Garg and K6nemann in [5] present an efficient algorithm for approximately solv-
ing packing linear programs, based on the assumption that A(i,7) < b(i), Vi, j
— which can be achieved by appropriate scaling. They use the dual problem
min{bTy|ATy > ¢,y > 0} to identify the most violated constraint. Then, they
increase the corresponding primal variable so as to decrease this violation. The
most violated constraint is identified by using an exact oracle.

The algorithm works as follows. Let the length of a column j with respect to
the dual variables y be length, () = >_; A(7,j)y(i)/c(j) and let a(y) denote the
length of the column with the minimum length; i.e., a(y) = min; length (j).
Additionally, let D(y) = bTy. Then, the dual problem is equivalent to finding a
variable assignment y such that D(y)/a(y) is minimized. Let 3 = min, D(y)/a(y)
as well.

The algorithm proceeds in iterations. Let yx_; be the dual variables and
fr—1 be the primal solution at the beginning of the k-th iteration. Let ¢ denote
the minimum length column of A (i.e., a(yx—1) = length, (g)) and p be the

“minimum capacity” row (i.e., p = argmin; %). Then, we increase the primal

variable x(g) by an amount Ab((;z]) so that fi = fi_1 + c(q) Ab((;)zl). The dual
variables are updated as

b(p)/Ap,q))
b(i)/A(i, q)

where € > 0 is a constant, the value of which depends on the desired approxi-
mation ratio. The initial values of the dual variables are yo(i) = 6/b(¢), where

—1/€
0= (1+¢) ((1 - e)M) / . For brevity, we denote a(yx) and D(yx) by a(k) and
D(k) respectively. Thus, D(0) = M¢. The algorithm stops at the first iteration
t such that D(t) > 1.
In [4], Fleischer introduced the concept of phases (for the special case of the
Maximum Multicommodity Flow problem, but this technique can be extended
to all packing linear programs), where the commodities are considered in a round

yr(i) = ye—1(4) <1 +e

6 A. Bessas and C. Zaroliagis

robin manner and flow is routed for commodity j, until the length of the shortest
s;j-t; path exceeds (1 + €). Then, the running time is reduced by a factor of k,
since it avoids the k shortest path computations required by [5] for every routing
of flow.

2.3 NASP routines

The approximation algorithms for solving the QoS-aware MCF problem that
we study in this work identify the most violated constraint of the dual LP by
repeatedly calling a subroutine that solves the so-called Non-Additive Shortest
Path (NASP) problem. NASP is a generalization of the classical shortest path
problem, in which the additivity assumption of the edge costs along paths does
not hold. More formally, in NASP, we are given a digraph G = (V,E) and a
d-dimensional cost vector ¢ : E — [IRT]? associating each edge e with a vector
of attributes c(e) and a path p with a vector of attributes c(p) = >_., c(e).
We are also given a d-attribute non-decreasing and non-linear utility func-
tion U : [IR*]? — IR. The objective is to find a path p*, from a specific
source node s to a destination ¢, that minimizes the objective function, i.e.,
p* = argmin, ¢ p(s nU(c(p)), where P(s,t) denotes the set of all s-t paths. It is
easy to see that in the case where U is linear, NASP reduces to the classical
single-objective shortest path problem. For the general case of non-linear U, it is
not difficult to see that NASP is NP-hard. For the case of the QoS-aware MCF
problem, it turns out that we need a biobjective (d = 2) version of NASP, for
which both exact and approximate algorithms are known.

Exact NASP. In [10], a pseudopolynomial algorithm for solving exactly the
biobjective version of NASP is presented. This algorithm handles the case where
every edge (and hence every path) is associated with two attributes (e.g., cost
and resource) and the objective function is of the form U([z1, x2]T) = Uy (z1) +
Us(x3), where Uy, Us are any two non-linear, convex and non-decreasing func-
tions.

The algorithm consists of three phases:

1. It computes upper and lower bounds of the optimal solution using the Ex-
tended Hull Algorithm [10]. The running time of the Extended Hull Algo-
rithm is O(log(nRC)(m + nlogn)), where n is the number of nodes of the
graph, m the number of edges and R and C' the maximum values of the
resource and cost respectively.

2. It prunes the graph by eliminating those nodes and edges that do not lie on
the optimal path.

3. It closes the gap between the upper and lower bounds and finds the optimal
solution by enumeration.

Although this is a pseudopolynomial algorithm (due to the 3rd phase), the
experimental study in [10] revealed that, in the vast majority of instances (98%),
Phases 2 and 3 are seldomly executed and the optimal solution is found after

On Assessing Robustness in Transportation Planning 7

the first phase. Hence, for the vast majority of input instances, the running time
of the exact algorithm is bounded by the running time of the Extended Hull
algorithm.

Approximate NASP. In [12] an algorithm for finding an approximate solution
to the d-objective version of the NASP problem was given, for any d > 2 and for
a very broad class of utility functions. For the biobjective case of NASP we are
interested in this work, the algorithm in [12] boils down to the following result,
which is an immediate consequence of [12, Theorem 4].

Theorem 1. [12] Let the utility function of NASP be of the form U([z1,x2]T) =
x1U1(x2) + Us(x2), where Uy, Us are any non-negative and non-decreasing func-
tions. Then, for any € > 0, there is an algorithm that computes an (1 + ¢€)-
approximation to the optimum of NASP in time O(an%)
maxecp c1(e)
mineep c1(e) *

, where C; =

3 Implemented Algorithms

We have implemented a host of algorithms for the QoS-aware MCF problem.
In particular: (1) The FPTAS in [11, 12], using as oracle the FPTAS for NASP
developed in [11,12]. (2) The original GK approach [5] and its modification with
phases as suggested by Fleischer [4], using as oracles both the exact algorithm for
NASP in [10] and the FPTAS for NASP in [11,12], enhanced with the heuristics
in [2] that were proposed for the classical MCF problem. (3) The FPTAS in
[11,12] incorporating some of the heuristics in [2], as well as the GK approach
enhanced with the heuristics in [2], and enhanced both with a new heuristic
that we develop. In the rest of this section, we provide a description of these
algorithms.

3.1 The FPTAS

The FPTAS in [11,12] requests that u(e) > 1,VYe € E and d; > hi(p),i =
1,...,k,p € P;. This is enforced by scaling the capacities of the edges and

the demands for the commodities by min { minee g u(e), miny<;<g h,‘flﬁ}, where

pmaz — hi<(”—1) gnl?(t;(ietf:) wt;(e)

) is an upper bound for the maximum value of the
function h;(+).
Given an assignment (I, ¢) for the dual variables, we define the length of

a dual constraint as length(l#))(z',p) = %. Then, the most violated
constraint of the dual problem is the path of the shortest length. We define
the length of this path as a(l, ¢) = min;<i<; minyep, length; 4 (i,p). Initially,

1

lle) = %,Ve € Fand ¢; = d%,i =1,...,k, where§ = (1+e)((1+e)(m+k))
The algorithm is iterative. Initially, all flows are equal to zero. In each iter-

ation the algorithm makes a call to an oracle that returns a commodity i’ and

8 A. Bessas and C. Zaroliagis

a path p € Py that approximately minimizes the function length) (i,q) over
all 1 <i < k and ¢ € P;; that is, 1ength(l7¢)(i’,p) < (1 +¢€)a(l,¢). Then, the

algorithm augments A = min{%,mineepu(e)} units of flow for the com-
modity ¢’ along path p and updates the corresponding dual variables [and ¢ by
setting I(e) = I(e)(1 + eﬁ),Ve € pand ¢y = ¢ (1 + GAZ%:(”)). D is updated
accordingly.

The algorithm terminates at the first iteration in which D =} __pl(e)u(e)+

Zi:l ¢id; > 1. During the course of algorithm it can happen that more flow is
sent along an edge than its capacity. It can be proved [4, 5,11, 12] that the final
flow has to be scaled by a factor of log; , . 1? in order to be feasible. The ratio of
the flow sent along an edge and its capacity, during the course of the algorithm,
is called the congestion of the edge.

The (approximate) oracle that has to be called by the algorithm, in order to

find the most violated constraint of the dual, has to (approximately) minimize

the function (
e [etia)
lq) + dihilq) _ 1@+ ol (&i(shm)
v;(q) Vi(wti(q))

0i(si,ts)
For a fixed i this requires the solution of a NASP instance with objective function

1+ ¢;h (ﬁ)

Vi (51'(8127750)

and cost vector ¢ = [I,wt;]T. Clearly, the utility function is of the form required
by Theorem 1 and hence the approximate algorithm for solving NASP instances
can be used.

The calls to this oracle proceed in phases, following the technique introduced
in [4]. A lower bound estimation on the current length of the shortest path &

U([z1,22)") =

is maintained. Initially, & = 1+ ming <j<p {W}, where p; is the path
returned from the NASP routine for the specific commodity i. In each phase,
the oracle examines the commodities one by one and for each commodity 7 it
returns a path p such that W < a(1+¢€)?%. As long as there is such a path
for commodity 4, the oracle sticks to this commodity. When no such path can
be found, the algorlthm proceeds to the next commodity. After all commodities
have been considered in the current phase, it holds that a(l, ¢) > (1 4)& and
the algorithm proceeds to the next phase by setting @ = &(1 + ¢).

We call the above algorithm TZ-aNASP. Its complexity is given by the
following theorem.

Theorem 2. [11,12] There is an algorithm that computes a ngz -approrimation

to the QoS-aware Multicommodity Flow problem in time O((2)3(m + k) log(m +
k)ymn?(Llog(m+k)+log(nU))), where n is the number of nodes, m is the number

max.cpg u(e)
mineeg u(e)

of edges, k is the number of commodities and U =

On Assessing Robustness in Transportation Planning 9

3.2 Approximate Algorithms using Heuristic Methods

The second algorithm follows the GK approach for approximately solving pack-
ing LPs [5] improved with a few other techniques and heuristic methods. Its main
difference with Algorithm TZ-aNASP is that now we can use an exact (and not
only an approximate) oracle by employing the exact NASP algorithm described
in Section 2.3. Moreover, the algorithm terminates as soon as the ratio of the
dual solution to the primal is smaller than 14+w,w < 1 (it can be proved that this
is a valid termination criterion). In addition, we adapt and use a few heuristic
methods that were originally proposed in [2] for the classical MCF problem. In

the following, let v™& = max; {vi<("71)§1?::§f) mi(e))} be the upper bound of
the maximum value of the functions v;, over all commodities 1 < i < k. We have
implemented three methods of updating the best so far dual solution g3 (recall

its definition from Section 2.2).

— We use the best D/« ratio obtained so far.

— We consider the union of all s;-¢; cuts to obtain an upper bound on the
capacity of the multicut (the cut separating all s; from all ¢;), which, when
multiplied with v™2* is in turn an upper bound on (.

— We keep track of the capacity and the s;-t; pairs separated by all cuts en-
countered in the course of shortest path computations, and run the greedy
algorithm for the set cover problem on the collection of cuts. In this re-
duction, the sets are the cuts, their cost is the capacity of the cut and the
elements they cover are the s;-t; pairs separated by the cut. The value re-
turned multiplied with v™* is a tighter upper bound for 5.

At each time, the smallest value obtained by these three methods is used to
update (3, if necessary. Furthermore, the amount of flow augmented along a
path is equal to max{ f1, min{fo, f3}}, where fi, fa2, f3 are the amounts of flow
which, when routed along this path, would cause the length of the path to exceed
a(l + €), the congestion to exceed the maximum congestion, and the length of
the path to exceed D/[3, respectively. We call this algorithm GK-H.

Apart from the above heuristic methods, we can take advantage of the struc-
ture of the QoS-aware MCF problem to obtain another upper bound on the dual
solution (. In the QoS-aware MCF problem, we are interested in augmenting d;
units of flow for commodity i, 7 =1, ..., k. That is, we want to augment Zle d;
units of flow in total at most (in case every commodity can use its shortest path
w.r.t. wt;(-),i =1,...,k). Hence, we can use the sum of demands of each com-
modity multiplied by v™#* as an upper bound of the best dual solution (because
this is the maximum flow we are interested in sending). We extend the previous
algorithm with this method and call the resulted algorithm GK-HD.

Additionally, we added the heuristic methods of algorithm GK-HD (except
for the methods involving cut computations, due to the fact that these compu-
tations cannot be added to the approximate NASP routine without incurring
extra overhead) to algorithm TZ-aNASP, and call the resulting algorithm TZ-
aNASP-HD.

10 A. Bessas and C. Zaroliagis

All the aforementioned algorithms work for the case that the profit function
is constant (e.g., vi(x) = 1,4 = 1,2,...,k). In the general case, in which the
profit function is non-increasing, only algorithms TZ-aNASP and TZ-aNASP-
HD are applicable. This is due to the fact that the other algorithms use the
exact NASP routine, which works, only if the utility function is of the particular
form described in Section 2.3.

4 Experimental Results

All algorithms were implemented in C++ using g++ (version 3.4.6). Additionally,
the LEDA library (version 5.2) was used. The experiments were performed on
a computer with two hyper-threaded Intel Xeon processors clocked at 2.8GHz.
The total RAM was 4GB.

Two sets of experiments were conducted. In the first set, the profit function
was vi(z) = 1. All algorithms are compared for this first set of data and we want
to see, the way that using an approximate NASP routine affects the execution
of the algorithms. In the second set the profit function was vi(z) = < and, so,
only algorithms TZ-aNASP and TZ-aNASP-HD are considered. With this set
of experiments, we evaluate the performance of the original algorithms as well as
those obtained by incorporating the heuristic methods already described. For all
experiments the elasticity function was f;(z) = 1 — Z;, and so the consumption
function was h;(x) = 22. The total approximation ratio was set to 10%.

4.1 Synthetic Data Sets and Constant Profit

In the first set of experiments, three types of graphs were used to test the above
algorithms:

GRID(n, k) These are n x n (i.e., n®> nodes) grid graphs with k commodi-
ties. These were generated by the corresponding grid generator provided by
LEDA. Results were taken for graphs of sizes from 10 x 10 to 20 x 20. For
the 10 x 10 to 14 x 14 graphs the number of commodities was 5. For the rest
of the graphs the number of commodities was 10. The capacities of the edges
were randomly selected in [20, 30] and the weights of the edges in [1, 10]. The
demand for each commodity was randomly selected from the range [1,10].
The source nodes were randomly selected from the nodes in the top row and
leftmost column of the grid, while the target nodes were selected from the
nodes in the bottom row and rightmost column of the grid in such a way
that a path connecting the source with the corresponding target node always
existed.

GENRMF (o,) These are graphs consisted of § grid graphs of size a x a.
The nodes of each grid graph are connected with nodes of another grid in a
random way. Experiments were performed for (5,5) up to (15, 10) graphs and
for 10 commodities. The capacities of the edges were randomly selected in
the range [6,16] and the weights in [1,10]. The demand for each commodity
was in [1,10]. Details for the particular graph generator can be found in [6].

On Assessing Robustness in Transportation Planning 11

NETGEN(n, m, k) These are graphs produced by the netgen generator, which
is described in [7]. The generated graphs had n nodes and m edges. In ad-
dition, & commodities were used for the graph. The capacities of the edges,
the weights of the edges and the demand for each commodity were randomly
selected in [5,14], [1,10] and [1, 10], respectively.

An initial set of experiments revealed two interesting outcomes: (i) The dom-
inating factor with respect to the running time was the calls to the NASP rou-
tines. (ii) There is a huge difference in performance between the exact NASP
(Section 2.3) and the approximate NASP routine (Section 2.3), especially for
large sizes of graphs, in favor of the former. This difference is justified by the
theoretical running times of the two algorithms in combination with the chosen
numerical values and the form of the utility function. Moreover, the implementa-
tion of the exact NASP algorithm uses a few heuristics methods that considerably
speed up its execution. However, the approximate algorithm handles a broader
selection of instances w.r.t. numerical values and utility functions.

In view of the above, we will report our experimental results with respect to
the number of NASP calls (exact or approximate) performed by the algorithms.

To investigate the influence of the phases technique in [4], we start by com-
paring the original algorithm of Garg and Kénemann (using the exact NASP
routine), referred to as GK-orig, and the same algorithm enhanced with the
phases technique, referred to as GK-F. The results for the case of grid graphs
are shown in Table 1. Similar results were obtained with the other graph families
(GENRMF and NETGEN).

Graph(n, k) |Algorithm GK-orig|Algorithm GK-F
GRID(10,5) 60450 78880
GRID(11,5) 61770 82200
GRID(12,5) 64380 85030
GRID(13,5) 66170 85953

GRID(14, 5) 68110 89352
GRID(15,10) 277690 181874
GRID(16,10) 283920 185770
GRID(17,10) 289950 190001
GRID(18,10) 296340 192066
GRID(19, 10) 300360 195570
GRID(20, 10) 305730 200118

Table 1. Comparison of algorithms GK-orig and GK-F in GRID graphs with all profit
functions set to 1. The number of NASP calls is presented.

We observe that for small graphs GK-orig is faster than GK-F. This happens,
because, in order to achieve the same total approximation error, a smaller value of
€ is used for the second algorithm, since the use of the phases introduces another
factor of error. That is, the approximation ratio of the first algorithm is ﬁ,

12 A. Bessas and C. Zaroliagis

while the approximation ratio of the second algorithm is (11f:)2. However, when
the size of the graph and the number of commodities increase, we can see that
the second algorithm is quite faster than the first one, because the improvement
gained from the technique of phases is more significant than using a smaller
value for e for the total running time, resulting in a decrease in the required
NASP calls. This is expected, as the number of NASP calls in the original GK
approach is O(E%km logn) [5] and the use of the phases technique reduces the
number of NASP calls to O(Fmlogn) [4].

In Table 2 the number of NASP calls is presented for algorithms GK-F, TZ-
aNASP, GK-H, GK-HD and TZ-aNASP-HD for graphs of type GRID for sizes
up to 14 x 14 and 5 commodities. Experiments were also performed for larger
grid graphs (up to 20 x 20) with 10 commodities and for graphs of type NETGEN
and GENRMF and we obtained similar results.

Graph(n, k)|GK-F|TZ-aNASP|GK-H|GK-HD|TZ-aNASP-HD
GRID(10, 5)|78880 90023| 3426 1036 1105
GRID(11, 5)|82200 93389| 4018 1909 2130
GRID(12,5)|85030 97000 3781 856 877
GRID(13,5)|85953 99036| 2813 360 489
GRID(14,5)|89352 102090 3084 337 340

Table 2. Comparison of algorithms in GRID graphs with all profit functions set ot 1.
The number of NASP calls is presented.

One can see that TZ-aNASP is inferior to GK-F. This is due to the smaller
value of the constant e that has to be selected for the first algorithm, in order for
the total error to be the same in the two algorithms (the approximation ratios

are 81’32 and (fj”:)z respectively). On the other hand, TZ-aNASP can handle
a broader range of problem instances.

A second crucial observation from Table 2 is that the algorithms GK-H, GK-
HD and TZ-aNASP-HD that use the heuristic methods described in Section 3.2
outperform dramatically algorithms GK-F and TZ-aNASP. Applying the heuris-
tic methods has a beneficial effect on the number of NASP calls required to find
an approximate solution, since a path is used to send flow for as long as possible,
approaching faster the optimal solution.

A third important observation concerns the impact of the new heuristic in-
troduced in Section 3.2 and is based on the demands. We do not only observe
a dramatic improvement in the performance of TZ-aNASP, but also in that of
GK-H. This is due to the fact that by taking advantage of the extra knowledge of
demands in the problem a better upper bound can be computed faster, resulting
in more flow being sent along a path per NASP computation.

To further elaborate on the effect of using the heuristic based on the demands,
we report, in Tables 3, 4 and 5, the experimental results of algorithms GK-H and
GK-HD on all synthetic data used, when vi(z) = 1,4 =1,2,..., k. We can see

On Assessing Robustness in Transportation Planning 13

that in all cases, the heuristic based on the demands results in an improvement in
the number of NASP calls required. The improvement depends on the structure
of the graph (e.g., for grid graphs the improvement is greater than for graphs of
type netgen) as well as the numerical data used.

Graph(n, k) |GK-H|GK-HD

GRID(10,5) | 3426] 1036
GRID(11,5) | 4018 1909
GRID(12,5) | 3781| 856
GRID(13,5) | 2813| 360
GRID(14,5) | 3084| 337
GRID(15,10)| 7252| 1549
GRID(16,10)| 6383 1388
GRID(17,10)| 6746 1345
GRID(18,10)| 6874| 955
GRID(19,10)| 6850 1644
GRID(20,10)| 5880 1391

Table 3. Comparison of algorithms GK-H and GK-HD in GRID graphs with all profit
functions set to 1. The number of NASP calls is presented.

Graph(a, 3) GK-H|GK-HD
GENRMF(5, 5) 5937 1572
GENRMF(6,5) | 6445| 4817
GENRMF(7,5) 6367 2203
GENRMF(8, 5) 7057 5718
GENRMF(9,5) | 7963| 4611
GENRMF(10,10)| 6403| 1894
GENRMF(11,10)| 6841 3102
GENRMF(12,10)| 7183| 2513
GENRMF(13,10)| 8095 4751
GENRMF(14,10)| 6998 3073
GENRMF(15,10)| 7878 3249

Table 4. Comparison of algorithms GK-H and GK-HD in GENRMF graphs with
k = 10 commodities and all profit functions set to 1. The number of NASP calls is
presented.

4.2 Synthetic and Real-world Data Sets with Non-increasing Profit

The second set of experiments was conducted on grid graphs of sizes 10 x 10 to
14 x 14 with 5 commodities, and on real-world data from the German railways
comparing algorithms TZ-aNASP and TZ-aNASP-HD, which are the only ones

14 A. Bessas and C. Zaroliagis

Graph(n, m, k) GK-H|GK-HD
NETGEN(100, 1000, 10) |14272| 13561
NETGEN(200,1300,15) [21892| 21709
NETGEN(200, 1500,15) (19621 18985
NETGEN(200,2000,20) |32024| 30766
()
(

NETGEN(300, 4000, 15) |23246| 21330
NETGEN(500,3000,30) [43104| 41260
NETGEN(700, 30000, 50)| 76092| 70018
Table 5. Comparison of algorithms GK-H and GK-HD in NETGEN graphs with all
profit functions set to 1. The number of NASP calls is presented.

that apply to this case of profit functions. The underlying network in the first
set of real-world data (R1) has 280 nodes and 354 edges, in the second set (R2)
296 nodes and 393 edges and in the third set (R3) 319 nodes and 452 edges. The
data are taken from the software platform LinTim [9]. For all sets of real-world
data, demands were in [4000, 10000], the wt functions corresponded to the length
of the edges of the train network ranging from a few hundred meters to more
than 100 Km and the capacity of an edge was in [800, 1600] . All profit functions
were set to % The results are presented in Tables 6 and 7.

Again one notes the significant drop in the number of NASP calls required,
when the heuristic methods are used. We observe that TZ-aNASP-HD is from
14 up to 54 times faster than TZ-aNASP. This is, because the heuristic methods
allow for a path to be used multiple consecutive times in order to send flow,
resulting in considerably fewer NASP calls by the algorithm, and hence achieving
a huge speedup.

5 Conclusions

In this paper an experimental study for the QoS-aware MCF problem was pre-
sented. Algorithms for this problem that follow the Garg & Kénemann method
have to rely on solving an instance of a NASP problem. Using the exact NASP
routine results in fewer NASP calls than by using an approximate one (in or-
der to obtain the same approximation ratio for the algorithms). However, the
algorithms that use the approximate NASP routine are more general and en-
force less restrictions on the form of the problem. The results show clearly that
incorporating the described heuristic methods, and especially the new heuristic
based on the demands, yields significant improvements in the running time of
the algorithms. The difference in NASP calls of algorithms TZ-aNASP and TZ-
aNASP-HD, or GK-orig and GK-HD is dramatic and, since the bottleneck in the
running time is the computation of the non-additive shortest path, there was an
accordingly great decrease in the running time of the corresponding algorithms.

On Assessing Robustness in Transportation Planning

15

Graph(n, k) |TZ-aNASP|TZ-aNASP-HD
GRID(10,5) | 90538 1630
GRID(11,5) | 93389 2128
GRID(12,5) 97000 930
GRID(13,5) | 99036 624
GRID(14,5) | 101801 605
GRID(15,10)| 208412 2356
GRID(20,10)| 228131 9291

Table 6. Comparison of algorithms TZ-aNASP and TZ-aNASP-HD in GRID graphs
with all profit functions set to % The number of NASP calls is presented.

Data Set|Commodities| TZ-aNASP|TZ-aNASP-HD |Speedup
5 68336 2022 33
Rl 10 120500 3229 37
15 185171 6984 26
20 216902 12615 17
5 61241 1598 38
R2 10 119855 4059 29
15 162239 5354 30
20 235181 16832 14
5 74563 1357 54
R3 10 165782 3894 42
15 247540 6548 37
20 247540 5911 41

Table 7. Comparison of algorithms TA-aNASP and TZ-aNASP-HD on the available

sets of real-world data with all profit functions set to -

and the speedup is presented.

1

The number of NASP calls

16 A. Bessas and C. Zaroliagis
References
1. Ravindra K. Ahuja, Thomas L. Magnati, and James B. Orlin. Network Flows:

10.

11.

12.

13.

Theory, Algorithms and Applications. Prentice Hall, 1993.

Garima Batra, Naveen Garg, and Garima Gupta. Heuristic improvement for com-
puting maximum multicommodity flow and minimum multicut. In Algorithms
— ESA 2005, volume 3669 of Lecture Notes in Computer Science, pages 35—46.
Springer Berlin / Heidelberg, 2005.

A. Datta, D. Vandermeer, A. Celik, and V. Kumar. Broadcast Protocols to Sup-
port Efficient Retrieval from Databases by Mobile Users. ACM Transactions on
Database Systems, 24(1):1-79, 1999.

. Lisa K. Fleischer. Approximating fractional multicommodity flow independent of

the number of commodities. volume 14, pages 505-520. Society for Industrial and
Applied Mathematics, 2000.

Naveen Garg and Jochen Kénemann. Faster and simpler algorithms for multicom-
modity flow and other fractional packing problems. In FOCS ’98: Proceedings of
the 39th Annual Symposium on Foundations of Computer Science, pages 300-309.
IEEE Computer Society, 1998.

Donald Goldfarb and Michael D. Grigoriadis. A computational comparison of
the dinic and network simplex methods for maximum flow. Annals of Operations
Research, 13(1):81-123, December 1988.

D. Klingman, A. Napier, and J. Stutz. NETGEN — A program for generating
large scale capacitated assignment, transportation, and minimum cost flow network
problems. Management Science, 20:814-821, 1974.

PIN project (Projekt Integrierte Netzoptimierung). Deutsche Bahn AG, 2000.
Michael Schachtebeck and Anita Schébel. Lintim — a toolbox for the experimental
evaluation of the interaction of different planning stages in public transportation.
Technical Report ARRIVAL-TR-0206, ARRIVAL Project, February 2009.

George Tsaggouris and Christos Zaroliagis. Non-additive shortest path. In Algo-
rithms — ESA 2004, volume 3221 of Lecture Notes in Computer Science, pages
822-234. Springer Berlin, 2004.

George Tsaggouris and Christos Zaroliagis. QoS-aware Multicommodity Flows
and Transportation Planning. In Proc. 6th Workshop on Algorithmic Methods and
Models for Optimization of Railway — ATMOS 2006, 2006.

George Tsaggouris and Christos Zaroliagis. Multiobjective optimization: Improved
FPTAS for shortest paths and non-linear objectives with applications. Theory of
Computing, 45(1):162-186, 2009.

F. Wagner. Challenging Optimization Problems at Deutsche Bahn. AMORE
Workshop (invited talk), 1999.

Scheduling Aircraft to Reduce Controller
Workload

Joondong Kim!, Alexander Kroller?, Joseph S. B. Mitchell' and
Girishkumar R. Sabhnani?

1 Applied Mathematics and Statistics, Stony Brook University
2 IBR, Algorithms Group, Braunschweig University of Technology
3 Computer Science, Stony Brook University

Abstract. We address a problem in air traffic management: scheduling
flights in order to minimize the maximum number of aircraft that si-
multaneously lie within a single air traffic control sector at any time ¢.
Since the problem is a generalization of the NP-hard no-wait job-shop
scheduling, we resort to heuristics. We report experimental results for
real-world flight data.

Keywords: Air Traffic Management, trajectory scheduling, flight plan scheduling,
no-wait job shop.

1 Introduction

In the air traffic control system, the volume of airspace in the altitude range
that aircraft utilize is partitioned into a set of sectors. We consider the set of all
trajectories flown between city pairs. Any one trajectory is modeled as a polyg-
onal path, with each vertex (way point) being specified by a point, (z,y, z,t), in
space-time. For a given set of sectors and a given set of trajectories, we can com-
pute the occupancy count, n,(t), of a sector o at any time ¢. For purposes of air
traffic control, it is important that n,(t) not be “too large”; often the occupancy
count is compared with the Monitor Alert Parameter (MAP) value of the sector
o, which is related to the “capacity” of the sector. Depending on the timing and
routing of the flights, though, the MAP values of certain congested sectors are
often predicted to be exceeded (if current flights remain on filed flight plans),
resulting in the rerouting of aircraft to avoid those sectors that are anticipated
to be at or near full capacity during some period of time.

We consider the following scheduling problem: For a given set of trajecto-
ries and a given sectorization of airspace, determine alternate departure times
“close” to the originally scheduled times so that the modified trajectories result
in minimizing maxg ¢ ne(t), the maximum occupancy count of a sector over a
time window of interest.

J. Clausen, G. Di Stefano (Eds): ATMOS 2009

9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2009 /2144

1

2 Problem Statement

Formally, the Min-Max Sector Workload Problem (MMSWP) is defined as fol-
lows. We are given a set X of sectors and a set © of periodic flight plans. The
common period of all plans is T, e.g., T' = 24 hours. Corresponding to each flight
plan 6 is a sequence Xy = (09,1,09.2, .. .) of the sectors it visits, where og € X,
Vk. Flight plan 6 also has an associated departure time dy € [0,T), and for each
sector oy i, it has an associated dwell time, tg (length of time in sector).

Assuming a flight 6 departs daily with a delay of Ay, it will therefore be in
sector oy during the intervals

Ie(og,lﬁﬂg) = Zte’z,zteﬁz +do+ Ay +T7Z. (1)
i<k <k

Therefore, at time ¢ € [0,T) (and also t + 2T for any z € Z), a total of
ny(t) :=1{6 € © : t € Iy(0o, Ap)}| (2)

flights will be in sector o € X.

Our goal is to find delays (Ap)gco to minimize the overall maximum occu-
pancy count, maxy; ns(t). The delays are constrained to be within the range
[0, D] for parameter D. Note that additionally allowing flights to leave early,
i.e., Ag < 0, does not change the problem due to the periodicity of flight plans:
A delay range [—a,b] is equivalent to [0,a + b], for a,b > 0. Therefore, we just
consider the problem where Ay > 0.

3 Job-Shop Scheduling and Related Work

No-wait job-shop scheduling is defined as follows (see [5]): We are given a set of
m machines and a set of n jobs that have to be processed on these machines. For
each job i, we are given a sequence r;; indicating that job ¢ has to be processed
on the kth machine. Additionally, we are given the matrix p;; (1<i<n 1<
Jj < m), stating the processing time of job ¢ on machine j. Furthermore, the
following constraints hold:

— Sequence: Each job must be processed in order of its operations and no
interruption (preemption) of an operation is allowed.

— Synchronicity: No job can be processed by two machines at the same time
and no machine can process two jobs at the same time.

— No-wait: There must be no waiting time between two consecutive operations
of the same job.

When there is no constraint on the maximum delay, i.e., D > T', our problem
is equivalent to “no-wait job-shop scheduling”. We represent each flight plan as
a job and each sector as a machine. We seek to minimize makespan, i.e., the
smallest time in which all jobs can be processed, where no two jobs can be

on the same machine at the same time. The no-wait constraint ensures that,
once started, a job can neither be delayed between machines nor suspended
while being processed on one. An optimal solution to the job-shop problem with
makespan M can be converted trivially to a flight plan solution with maximum
occupancy [M/T]. Vice versa, an algorithm for flight plan scheduling also solves
job-shop by finding the largest A for which a flight plan with all processing times
scaled by A can be scheduled with maximum occupancy 1. This can be achieved
using binary search.

Lemma 1. Minimizing makespan in the no-wait job-shop scheduling problem is
polynomially equivalent to the Min-Maz Sector Workload Problem (MMSWP).

No-wait job-shop scheduling has been studied in several papers; see, e.g., [8,
10,11,9,7]. Bansal et al. [1] give a PTAS for a special case of the problem and
show hardness of approximation for another case. Karger et al. [6] provide a
survey of scheduling algorithms, defining the various terms and known results
for some of the basic problems. Since the job-shop problem is NP-hard, so is the
MMSWP, by Lemma 1.

Ariano et al. [3] formulate train scheduling as a job shop problem with no-
store constraints. Bertsimas et. al [2] solve an optimal combination of flow man-
agement actions, including ground holding, rerouting, speed control and airborne
holding on a flight-by-flight basis.

4 Simplified Cases

In this section, we examine some special cases of the problem. In all the cases
here, we consider D = T, so that there are no maximum delay constraints.

4.1 Omne-Sector Problem

In the simplest of cases, there is only sector gy and hence all the flight plans just
define the time interval the flight remains in this sector. For all 8 € ©, 0¢,; = 0.

If we remove periodicity of flight plans, i.e. put a constraint dg+Ag+tg1 < T
hours for each flight 8, the optimal re-scheduling problem of minimizing the maz-
workload exactly maps to the bin-packing problem, which is known to be hard
(by a reduction from set partition) and and to have an asymptotic PTAS [4]%.

If we consider periodic flight, then the one-sector problem has a trivial so-
lution given by assigning delay to make flights back to back. This gives a max-
workload of [} .o te1/T].

4 An asymptotic PTAS is an algorithm that, given ¢ > 0, produces a (1 + ¢)- ap-
proximate solution provided OPT > C(e) for some function C, and runs in time
polynomial in n for every fixed e.

4.2 Two-Sector Problem

The extension of the problem to two sectors, with a periodic schedule of flights,
seems like an interesting special case to understand the complications associated
with the no-wait constraint and also the periodicity of the schedules. It is much
easier to understand the two-sector problem by considering its exact equivalent
below.

i o

makespan

W

Fig. 1. Left: 4 kinds of blocks. Right: The tight-fitting in the groove of size 2.

Consider Figure 1. Let A, B be the sectors. The red rectangles indicate the
time interval of flights in A and the blue rectangles indicate intervals in B. Red to
the left of blue indicates that flight starts in A and single red rectangle indicates
the flight is only in A. Thus, the MMSWP corresponds to packing these blocks
of rectangles as tightly as possible in the groove of width 2, constraining that
red rectangles strictly remain in the upper row, blue rectangles strictly remain
in the lower row and none of the rectangles overlap.

It turns out that periodicity does not really help for this case, as this version of
the problem also turns out to be NP-complete by reduction from 3-PARTITION
PROBLEM.

Theorem 1. The MMSWP within 2 sectors is NP-Complete.

Proof. 3m numbers aq, as, ..., as, are given for a 3-PARTITION PROBLEM
instance P. All of these number are between B/4 and B/2, where mB is the
total sum of aq, ..., asm,. We show the optimal solution of minimizing workload
overall sectors gives us the solution of this problem.

Let’s construct the MMSWP problem instance corresponding given input m,
B, and a;’s. There are two sectors o1 and o2. Let time horizon T be (mB + m).

For given numbers a; where i € {1,...,3m}, we generate flights 6; which visits
only o1 with staying time a;, i.e., Xy, = (01) and tg, 1 = a; fori € {1,2,...,3m}.
And we prepare additional m flights 63,41, .., 03m+m Which visit oo for time

(B4 1) and then oy for 1. i.e, Xy, = (02,01) and tg, 1 = (B +1),tp,2 = 1 for
je{3m+1,...,3m+m}.

Then, we claim that if we minimize maximum workload over all sectors for
this problem as 1, then we are able to solve given P.

In order to make workload as 1 for g9, we have to arrange 03,41, .., 03m+3
back-to-back like dark-gray blocks in Figure 2. Then there are m intervals with

length B in o1. Now finding a placement of 64, ...,0s,, (light gray blocks in
Figure 2) to make workload of o1 as 1 is finding a partition of {ay,...,asm}
such that each sum is exactly B.

0, 0 O3m

O 0O Ceeee[]

B

-

S B L,

T

O3m1 O3m+2 O3mtm
e o 0o o

B+1 1
mB+m

Fig. 2. 2 sectors workload problem construction for given 3-Partition problem instance

5 Algorithms

In this section, we present heuristics to solve the MMSWP.

5.1 Shifting

Starting with the original flight schedule, we pick the sector with worst max-
workload (in case of tie check each one of them), and look at the time interval
where the max-workload is worse. All the flights present in the sector in that
time interval are considered for re-scheduling (shifting) and the one which gives
the “best” improvement is selected greedily. The goodness of a shift is judged
by its effect on the workload vector which stores the workloads of all sectors in
the sorted order. The flight whose re-scheduling gives the best improvement in
lexicographic ordering of the workload vector is selected (in case of ties, we pick
the flight which has the least difference in the re-schedule time and the original
schedule). The process is repeated till all shifts at a given iteration worsen the
workload vector. (Note that shifts keep taking place even when the workload
vector remains same).

We constrain the greedy shifting to be of the following three kinds:

— Right Shift - The flights are only allowed to be postponed.

— Left Shift - The flight are only allowed to be preponed.

— Short Shift - The decision of postpone/prepone is decided by the amount of
shift, and the shorter one is picked.

It is possible to get into loop if we allow shifts in both directions. In our
experiments, we only use right shifts to finish algorithm certainly. Since we al-
low shifts without strict workload vector improvement, all shifts after the last
workload vector change are restored when the algorithm is finished.

We also devise an incremental heuristic, in which flights are added one by one
(in a random order). With each new flight addition, we run complete experiment
of a shift heuristic considering all the flights previously added along with this
one.

5.2 Randomized Rounding

The randomized rounding algorithm solves a linear problem formulation whose
variables describe a probability distribution for each flight plan. Then, a solution
is generated by drawing delays from these distributions.
We evenly divide the interval [0, D] into a discrete set of delays {0 = do, dy, .. .,
dm = D}. Also we slice the 24h-period T into n pieces {0 = tg,t1,...,t, = T}.
For each flight 6, the linear formulation has a variable x¢(d;) for each d;,0 <
i < m. The interpretation (in terms of the finally assigned delay Ay) is

Qja(di) = PI‘[A@ > dz] .

So the zg(-) define a probability function on [0, D] for every flight (the density is
constant within each interval [d;, d;11), that is, the distribution is uniform within
each interval). To make sure the x¢(d;) define a proper probability distribution,
we use the constraints

1 =x4(do) > xg(d1) > -+ > 29(dy,) = 0.

This means the probability that a flight delay is in the range [d;, d;] is zg(d;) —
zg(d;), so the probabilities are nicely encoded in the formulation. Note that

Pr[flight 6 is in sector o at time ¢]

is a linear term in the x4(-) variables. To see this, translate ¢ into a range [A,, Ag]
of delays where a flight would start to be in o at ¢t. The probabilities are then:

— Some of the first interval with d; < Ay < d;y1, that is,
dit1 — Ay

Prlfisin o at t, Ag € [d;,dir1)] = d d
i+l — Q4

(zo(di) — wo(div1)) -
— All of the intervals Ay < d; <...diy1 < Ay, in a similar fashion.
— Some interval part around Ay, again analogous to the first case.

By adding the cases, one can see how Pr[f is in ¢ at t] is a linear term with up to
four coefficients. Obviously there are a number of special cases when [4,, Ag] €
[0, D]; these are easy to resolve and left out in this presentation. So we can now
describe the expected load of sector o at time ¢ by the linear term

E[number of flights in o at time ¢] = Z Pr[f is in o at t].
fcO

Hence, we solve the following LP:

min C
s.t. E[number of flights in o at time t] < C Vo € Xt € {T,,..., Ty}
1:x9(d0)2x9(d1) 2--~2x9(dm):0 Vo e O,

which gives us a probability distribution for each Ay, so we now generate actual
Ay values following these distributions.

An interesting variant arises when we add integrality constraints to the LP,
as this forbids smearing flights over many delay intervals. As the resulting IPs
are typically impossible to solve within reasonable time, we employ a different
strategy: First, the LP-based heuristic is run. We identify the most crowded
sectors, and add integrality constraints for tracks passing these sectors. At the
same time, we vary n and m for different sectors and tracks, such that the
crowded sectors get a more detailed formulation than the others.

6 Lower Bounds

6.1 A Simple Bound

The optimal one sector solution for a sector o (refer to Section 4.1), for D =
T, independent of any other sector, is a naive lower bound to its max-workload
attained by any scheduling, for any D. Thus, we can optimize each sector indi-
vidually, and pick the maximum value over all sectors, to obtain a lower bound
on the workload attained by an optimal scheduling.

6.2 Linear Programming

The second lower bound algorithm is based on the randomized rounding al-
gorithm. Assume that all the z4(-) are binary, i.e., 0 or 1 (see Section 5.2 for
details). If now x¢(d;) — z¢(d;) = 1, then flight 6 will have a delay Ay € [d;, d;].

For a track 6 € O, a sector 0 € X' and a time ¢, we again compute the interval
[4,, Ay] of delays for § under which § will be in o at t. Then we determine the
smallest d; > A, and the largest d; < Ay. Then, when z¢(d;) — z¢(d;) = 1, the
flight will be in o at t. So define go(o,t) := xg(d;) — zg(d;).

The following IP charges 1 towards the maximum capacity C' when a track
is guaranteed to be in o at t:

min C

st. Y golot) <C Vo e Xt e{T,,...,Tn}
oco
1= .%‘g(d()) > .”L'g(dl) > >xp(dy,) =0 VO €O
xg(d;) € {0,1} V0 e€O,i=0,....,m

The optimal solution to this IP is a lower bound to the original problem. For
efficiency reasons, we do not solve this IP directly, but rather its LP relaxation,
which is obtained by dropping the integrality constraint.

7 Results

We use real-world flight track data and sector data from the National Airspace
System (NAS). The data, as shown in Table 1, is divided into 5 sets depending
on the number of sectors. The alt-range defines the range of altitude for the air-
traffic in the sectors. The high-altitude sectors typically have alt-range 24,000
feet and above. Setl, Set2 and Set3 consider flight tracks for the entire 24
hour time period while Set4 considers only the flights that overlap a 4 hour
time window. Note that the flight times may start or end outside the 4 hour
time window. Also, Set4 includes all the sectors spanned by these flights, thus
having high-altitude sectors, low-altitude sectors and some sectors from Canada
as well.

No. of Sectors|Alt-Range|Flights| Time Window
Setl 5 > 24k feet| 1904 0 — 24 hrs
Set2 18 > 24k feet| 3063 0 — 24 hrs
Set3 57 >0 feet | 12123 | 0 — 24 hrs
Set4 1281 Different | 11986 | 14 — 18 hrs
Setd 16 > 24k feet| 4994 0 — 24 hrs

Table 1. Summary of data sets used for experimentation.

Set5 (random data) consists of a 300 x 300 nautical miles square region
divided into 16 sectors in the form of a square grid. Then, 64 (uniform) random
cities were generated such that 10% of cities had weight 10, 15% had weight 5,
and the remaining had weight 1. In total, 4994 random flights were generated
between (weighted uniform) randomly chosen city pairs, with each city having
probability of selection proportional to its weight. The departure-time of a flight
was (uniform) randomly generated between 0 — 24 hours. The (constant) speed
of an aircraft was modeled as a (uniform) random variable between 200 and
600 nautical miles per hour. The arrival-time of a flight was calculated from the
departure time, the speed of the aircraft, and the distance between the cities in
the pair. An additional constraint was added that no two aircraft depart from
(or arrive) at a city within 1 minute of each other. A visualization of data sets
Set1, Set2 and Set5 can be seen in Figure 3.

We implemented our algorithms and ran them on the five data sets. For
the LP-based algorithms, we used CPLEX 10.0 on a 3.0 GHz Linux machine.
We solved each instance using a few parameter sets, varying the number of
discretizations in delay (i.e., m) and daytime slices (i.e., n). The most often used
values of m = 30 and n = 720 correspond to having one variable per two minutes
of delay and one constraint for every other minute of the day. We imposed a
runtime limit of 60 minutes on the algorithm. Table 2 describes these runs and
lists the according algorithm runtimes. Runtimes for the other heuristics are not
listed, as they always finish within a few seconds.

.3 20 21 12
7 23 k) L3
L3 13 0 5.

Fig. 3. Left: Setl sectors and the underlying square grid (and shifted square grid)
cover (grid resolution: 0.1x0.1); Center: Set2 sectors and grid cover (1x1). Right: Set5
(randomly generated) flight tracks with the underlying sectors. The numbers in the
sectors indicate the max-workload counts for the used flight schedules.

Setl Set2 Set3 Set4 Setb
m| n|Time||m| n|Time||m| n|Time||m n|Time||m| n|Time
LP Lower 30(720| 1:20{{30|720| 1:50([30|720| 9:10{|60{1440(17:19(|30{720{10:26
MIP Lower 30|720| 3:04| —| - —[112]|288(10:18(|12| 288|14:44|| —| - -

Rand. Rounding|[30|720(22:24|{12|288| 1:05||12|288|30:07{|30| 720(57:11{/12|288|10:18
MIP Rounding |[|12]288| 0:28]|12|288| 0:33|/12|288(56:17||12| 288|17:30(|12|288| 5:13
Table 2. Details for LP-based heuristics, showing the discretization granularity and
total algorithm runtimes in minutes.

Setl Set2 Set3 Setd Set5
Max [Mean| Var|| Max [Mean| Var || Max [Mean| Var || Max |Mean| Var || Max |[Mean| Var
Original plan 22 |18.00(6.80| 18 |12.83|12.25|| 38 |21.56|36.70|| 58 | 7.67 [37.88| 24 |13.00{46.13
Right Shift 18 [16.40|1.04| 14 |11.11}3.99 31 120.77|26.27|| 47 | 7.61(36.35|| 19 [11.75|29.01

Incr. Right Shift|| 15 |13.80/0.96| 12 |10.17|2.25| 26 |18.75|16.40|| 39 | 7.51 |34.50|| 17 |10.81|20.66
Rand. Rounding|| 14 |13.40|0.24| 14 |11.67|4.00 || 28 |22.94|19.50|| 42 | 8.04 [40.50|| 19 |12.50|25.00

MIP 15 |14.40{0.24| 14 [11.22|4.73 || 28 [23.47|16.18|| 43 | 8.22 [44.90|| 19 [12.50{30.13
‘ HNaive‘ LP ‘TP HNaive‘ LP ‘ 1P HNaive‘ LP ‘ 1P HNaive‘ LP ‘ 1P HNaive‘ LP ‘ 1P ‘
[Lower Bound || 6 | 9 |9 5 [8 | — [[16 [20 | 14 || 12 | 31 | 22 [[13 | 11 | — |

Table 3. Workload statistics of algorithms. Max: Maximum Workload, Mean: Mean
of workload, Var: Variance of workload

Setl (1004 fit) || Set2 (3063 fit) || Set3 (12123 fit) || Setd (11986 fit) || Set5 (4994 fit)
Max| Total [Avg|[|[Max| Total [Avg|[Max| Total [Avg|[Max| Total |Avg||Max| Total [Avg
Right Shift 6 46 1 9 5:25 1 17 5:18 1 53 | 12:53 4 7 3:8 1
Incr. Right Shift|| 49 |2:00:46 | 4 52 |3:16:21 | 6 60 | 18:21:7| 6 60 [14:22:54| 17 || 54 | 4:18:5 | 4
Rand. Rounding|| 60 |13:22:24]| 10 || 60 |13:06:48| 6 || 60 |35:18:15| 4 | 58 |50:10:59| 6 || 55 [59:16:33| 17
MIP 60 |14:21:48| 12 || 60 |15:21:42| 7 60 [37:10:59| 4 55 190:00:38| 11 || 55 [60:05:50| 17
Table 4. Time shift statistics of various methods. Max: Max shift, Total: Sum of
absolute value of shift, Avg: Average of absolute value of non-zero shifts. (format

14:21:48 means 14 days 21 hours 48 minutes)

Table 3 shows the comparison of max-workload statistics of the given flight
plans, the heuristic solutions and the LP based methods. The maximum allow-
able shift to any flight schedule was constrained to be 1 hour in all methods.
The discretization of time for LP/IP methods is 1 minute. The results show a
considerable improvement over the workloads of each sector arising due to the
original flight schedules. Even the variance values have gone down significantly,
indicating more balance of workload across sectors. In particular, the incremen-
tal shift heuristic seems to out-perform all the other methods. Note that the
shifting heuristics do not discretize the time like LP/MIP methods. The ‘-’ val-
ues in Table 3 refer to experiments for which no solution was found during more
than a week of running time.

Table 3 also shows the lower bound calculations for the 5 sets. The best
solutions are still not close to the computed lower bounds, but we believe they
are very close to optimal solutions. Future work will specifically aim to improve
the lower bounds.

Table 4 shows the statistics of the amount of time shifts from the original
schedule. Maz indicates the maximum shift in any flight schedule, Total indicates
the sum of absolute values of shifts, and the Avg gives the average time shift of
all flights with non-zero shifts. The value of Total in the case of the right shift
heuristic is noticeably small compared to other methods, possibly because of
early termination due to reaching a local minimum. Also, the average time shift
is seen to be low for all the methods, suggesting that we can get considerable
improvements in workloads with reasonable modification to the schedules.

8 Other Workload Considerations

Apart from the maz-workload of a sector, there are other workload issues which
are significant from the controller perspective. One of them, usually referred to
as coordination workload, deals with the hand-offs between controllers when an
aircraft moves from one sector to the other. Another critical issue is the conflict
resolution workload, which is related to monitoring the aircraft when they are
expected to be simultaneously present at (or near) the same geographic point (a
“conflict point”). Note that even if two aircraft are flying at different altitudes,
at the conflict point, they demand special attention of the controller.

While re-scheduling flights has no effect on the coordination workload, it
can favorably affect the conflict resolution workload, by reducing the number
of conflict points. It is easy to incorporate conflict resolution workload in the
model, as we now discuss.

We sub-divide the region (spanned by the sectors) into (reasonably) small
size cells and compute the max-workload in each cell separately. If the size of
the cell is small, a high max-workload cell corresponds to a conflict point, where
multiple aircraft are in close proximity simultaneously. We add these cells as
new (artificial) sectors to the data set and try to minimize their workload vector
separately, thereby (possibly) decreasing the number of conflict points.

10

The shifting heuristic is now modified to be a two-step procedure. The first
step considers the overall maximum value of the max-workload across all cells to
be a constraint: The aircraft are re-scheduled to improve the workload vector of
the sectors, as before, while keeping the workloads in all cells below a specified
W.. In the second step, the roles of sectors and cells are reversed: The optimized
maximum value of the workload of the sectors is treated as a constraint, and the
aircraft are re-scheduled with the objective of improving the workload vector of
the cells.

For experimentation, these cells come from a uniform (square) grid and a
shifted uniform grid as shown in Figure 3 covering the region spanned by the
sectors. Two different side lengths of square grid cells are used, 0.1 x 0.1 and
0.2 x 0.2 (unit latitude/longitude degrees). In Setl, Set2 and Set5, 1 degree
corresponds to somewhere in the range of 35—60 nautical miles. Table 5 shows the
results of the workload improvements with the cell constraints. We observe that
the max-workloads of the sectors still improve, compared with the original (18
v/s 22 for Setl), while the number of conflict points are considerably decreased
(see Figure 4). For Setl, after scheduling there are no grid cells with workload
4, while the number of cells with workload 3 has also decreased by more than
90%.

Setl (Given SMax: 22) Set2 (Given SMax: 18) Set5 (Given SMax: 24)

Grid Size Given Shifted Given Shifted Given Shifted
GMax|GMean|SMax|GMax|GMean||GMax|GMean|SMax|GMax|GMean||GMax|GMean|SMax|GMax|GMean
0.1x0.1 4 1.670 18 3 1.604 4 1.467 14 4 1.478 11 1.609 19 8 1.598
0.2x0.2 5 2.446 18 4 2.356 5 2.105 14 4 2.083 14 2.271 19 10 2.243

Table 5. Results of Right-Shift heuristic with additional grid constraints. SMax: Sector
Max, SMean: Sector Mean, GMax: Grid Max, GMean: Grid Mean.

10000 10000
g g I
3 1000 2 g
g g
= =
§ 100 § 100
g before g before
5 = after & m after
¥ W 5 10
g . g
= =

1 1

4 3 2 1 4 3 2 1
Grid Call Workload Grid Cell Workload

Fig. 4. Left: Setl grid cell max-workloads; Right: Set2 grid cell max-workloads (before
and after scheduling, for grid size 0.1 x 0.1)

11

9 Conclusion

We presented a periodic flight plan scheduling problem, proved it to be NP-hard,
and proposed heuristics for which we reported experimental results on real-world
data. The results show a considerable workload improvement over the originally
scheduled flight times and come at low computational cost. The reduction in the
number of conflict points was also impressive. Future work will specifically aim to
improve the lower bound, as we believe that the heuristically produced solutions
are already almost optimal. Also, we are interested in combining re-routing with
re-scheduling to improve further the workloads.

Acknowledgements. The data used for the experiments was provided by Metron
Aviation. We thank Michael Bender and Bob Hoffman for helpful discussions.
This work was partially supported by NSF (CCF-0528209, CCF-0729019), NASA
Ames, and Metron Aviation.

References

1. N. Bansal, M. Mahdian, and M. Sviridenko. Minimizing makespan in no-wait job
shops. Math. Oper. Res., 30(4):817-831, 2005.

2. D. Bertsimas, G. Lulli, and A. Odoni. The air traffic flow management problem: An
integer optimization approach. In 13th International Conference on Integer Pro-
gramming and Combinatorial Optimization, IPCO 2008 Bertinoro, volume 5035,
pages 34-46, May 2008.

3. A. D’Ariano, D. Pacciarelli, and M. Pranzo. A branch and bound algorithm for
scheduling trains in a railway network. Furopean Journal of Operational Research,
183(2):643-657, December 2007.

4. W. F. de la Vega and G. Lueker. Bin packing can be solved within 1 + ¢ in linear
time. Combinatorica, 1(4):349-355, 1981.

5. J. M. Framinan and C. Schuster. An enhanced timetabling procedure for the no-
wait job shop problem: a complete local search approach. Comput. Oper. Res.,
33(5):1200-1213, 2006.

6. D. Karger, C. Stein, and J. Wein. Scheduling algorithms. CRC Handbook of
Computer Science, 1997.

7. P. M. Lennartz. No-Wait Job Shop Scheduling, a Constraint Propagation Approach.
PhD thesis, UU Universiteit Utrecht, Netherlands, 2006.

8. A. Mascis and D. Pacciarelli. Job shop scheduling with blocking and no-wait
constraints. Fur J. Oper. Res., 142:498-517, 2002.

9. C. J. Schuster. No-wait job shop scheduling: Tabu search and complexity of sub-
problems. Mathematical Methods of Operations Research, 63(3):473-491, July 2006.

10. C. J. Schuster and J. Framinan. Approximative procedures for no-wait job shop
scheduling. Oper Res Lett, 31:308-318, 2003.

11. G. J. Woeginger. Inapproximability results for no-wait job shop scheduling. Oper.
Res. Lett., 32:320-325, 2004.

12

	ATMOSpreface.2294.pdf
	vol012-oasics-frontmatter
	ATMOSpreface.2294

	BergerAnnabell.2148
	JensMaue.Paper.2142
	BerrettiniEmanuele.Paper.2149
	DollevoetTwan.Paper.2143
	BeyersdorffOlaf.Paper.2147
	DellingDaniel.Paper.2145
	AaronsonMartin.Paper.2141
	MILP formulations of cumulative constraints for railway scheduling --- A comparative study
	Martin Aronsson, Markus Bohlin and Per Kreuger

	BessasApostolos.Paper.2146
	KimJoondong.Paper.2144

