
Annual Doctoral Workshop on
Mathematical and Engineering
Methods in Computer Science

MEMICS 2009, November 13–15, 2009, Znojmo, Czech Republic

Edited by

Petr Hlinený
Václav Matyáš
Tomáš Vojnar

OASIcs – Vo l . 13 – MEMICS 2009 www.dagstuh l .de/oas i c s

Editors
Petr Hlinený Václav Matyáš Tomáš Vojnar
Faculty of Informatics MU Faculty of Informatics Faculty of Information Technology
Masaryk University Masaryk University Brno University of Technology
Botanicka 68a Botanicka 68a Božetěchova 2
602 00 Brno, Czech Republic 602 00 Brno, Czech Republic 612 66 Brno, Czech Republic
hlineny@fi.muni.cz Matyas@fi.muni.cz vojnar@fit.vutbr.cz

ACM Classification 1998
G. Mathematics of Computing, J.2 Physical Sciences and Engineering

ISBN 978-3-939897-15-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Center for Informatics GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany.

Publication date
December, 2009.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works license:
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the author’s moral rights:

Attribution: The work must be attributed to its authors.
Noncommercial: The work may not be used for commercial purposes.
No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.MEMICS.2009.2342

ISBN 978-3-939897-15-6 ISSN 2190-6807 http://www.dagstuhl.de/oasics

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

ISSN 2190-6807

www.dagstuhl.de/oasics

Preface

The 2009 edition of the International Doctoral Workshop on Mathematical
and Engineering Methods in Computer Science (MEMICS’09) is the fifth in
a row of three-day workshops organized in South Moravia by Faculty of Infor-
mation Technology of Brno University of Technology and Faculty of Informatics
of Masaryk University.

MEMICS’09 was held in Znojmo, Czech Republic, on November 13–15, 2009.

The MEMICS workshops are intended to provide an opportunity for PhD
students to present and discuss their work in an international environment. An
important feature of MEMICS is its cross-discipline orientation allowing for an
exchange of ideas among several different fields of computer science and engineer-
ing. The workshop series is run by the two aforementioned schools within the
project Mathematical and Engineering Approaches to Developing Reliable and
Secure Concurrent and Distributed Computer Systems, financially supported by
the Czech Science Foundation.

The workshop topics include the following (though not exclusive) areas: soft-
ware and hardware dependability, computer security, parallel and distributed
computing, formal analysis and verification, simulation, testing and diagnostics,
GRID computing, computer networks, modern hardware and its design, non-
traditional computing architectures, quantum computing, and all related areas
of computer science.

While mainly focusing on works primarily authored by PhD students, the
MEMICS workshops also include invited lectures given by internationally rec-
ognized researchers. In particular, the MEMICS’09 workshop has enjoyed four
invited lectures, covering different fields of interest of MEMICS participants and
providing both theoretical and more applied results. The invited speakers this
year have been Mikolaj Bojanczyk from University of Warsaw in Poland with
a talk Automata for XML, Rūsiņš Freivalds from University of Latvia in Riga
talking about Randomization and Other Ways to Overcome Determinism in Al-
gorithms, Peter Habermehl from University Paris 7 in France presenting Angluin-
style Learning of Non-deterministic Finite-state Automata, and Günther Raidl
from Vienna University of Technology in Austria with a talk on Combining
Metaheuristics with Mathematical Programming Techniques for Solving Difficult
Network Design Problems. Thanks go to all these invited lecturers who found
time to participate at the workshop and demonstrate how a top quality presen-
tation could look like.

MEMICS workshops invite PhD students to come and present their research
results in front of their peers and to receive immediate advice and feedback from
participating senior faculty members, including the invited lecturers. Participat-
ing students are encouraged to express their opinions, to discuss the presenta-
tions, and to exchange ideas, compare methods, traditions, and approaches of
groups and institutions whose representatives are participating at the workshop.
These discussions and social networking are expected to contribute to the further
research collaboration among participants and their institutions. All the time,

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hlin ný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum f r Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2342

various issues of achieving reliability and security of computer systems (with a
special, though not exclusive emphasis on concurrent and distributed systems)
lie in the foundations, making sure the participants have a common ground on
which to build such a collaboration. This focus corresponds tightly to the need to
build as reliable and secure computer systems as possible, which is increasingly
stressed worldwide.

The cornerstone of any scientific workshop is its programme. This year, the
scientific programme has contained 26 contributed papers selected by the Pro-
gramme Committee from 45 submissions. Each submitted paper was evaluated
by at least three reviewers who provided an extensive feedback to the authors.
This hard and time consuming task is highly appreciated as without it, MEMICS
could never be a successful event. Apart from regular papers, MEMICS also in-
vites PhD students to present work that has already been peer reviewed and pre-
sented on some well known international conference. This workshop programme
has included 21 presentations chosen out of 27 submissions. The full programme
listing can be found on http://www.memics.cz/2009. Altogether, the regular
papers and presentations have come from authors from 15 different countries (10
for the regular papers).

After another round of evaluation and negotiation with the authors, five
best regular papers of MEMICS’09 have been invited to a special issue of the
Computing and Informatics journal, and 14 other high quality contributions are
presented in this DROPS volume, making it a really strong issue covering diverse
parts of computer science from pure theory to practical applications. We thank
all of them for their effort put into the preparation of their papers.

Lastly to say, the organization aspects of the workshop have been taken
care by the local Organizing Committee which has worked hard to guarantee
a smooth realization of MEMICS’09 and has contributed significantly to the
success of the workshop. We would like to explicitly thank to the Organizing
Committee members and its chair, Jan Staudek, for all their efforts. More than
100 participants have registered for the workshop, with around one fourth from
abroad, demonstrating the interest in this event.

The MEMICS’09 workshop was financially supported by the Doctoral Grant
102/09/H042 from the Czech Science Foundation. Our thanks go also to the
companies CEPIA Technologies, Y Soft, and Red Hat Czech for providing funds
for the best paper awards of MEMICS’09, given at the workshop. Together with
other direct and indirect support and help from the organizing faculties these
contributions are highly appreciated.

Brno, December 2009 Tomáš Vojnar, Petr Hliněný, and Vashek Matyáš
PC chairs of MEMICS’09

A Privacy-Aware Protocol for Sociometric
Questionnaires?

Marián Novotný

Institute of Computer Science, Pavol Jozef Šafárik University, Jesenná 5,
041 54 Košice, Slovakia

marian.novotny@upjs.sk

Abstract. In the paper we design a protocol for sociometric question-
naires, which serves the privacy of responders. We propose a represen-
tation of a sociogram by a weighted digraph and interpret individual
and collective phenomena of sociometry in terms of graph theory. We
discuss security requirements for a privacy-aware protocol for sociomet-
ric questionnaires. In the scheme we use additively homomorphic public
key cryptosystem [2], which allows single multiplication. We present the
threshold version of the public key system and define individual phases
of the scheme. The proposed protocol ensures desired security require-
ments and can compute sociometric indices without revealing private
information about choices of responders.

1 Introduction

Sociometry is a quantitative method for measuring social relationships. It was
developed by the psychotherapist Jacob L. Moreno in his studies of the relation-
ship between social structures and psychological well-being [9].

This method is based on choices of individuals from a certain social group.
Responders are asked to choose one or more persons from the group according
to specific criteria known in the whole group. The choices of responders are
collected by a questionnaire. Relations between individuals can be represented
by a sociogram – a graphic representation of social links that persons have.

Sociometric techniques can be used for effective management of a school class
by a teacher or in team-building in organizations by managers. They can help
to discover information about the group or individuals. On the other hand, it
is desirable to protect the privacy of responders and shield them from misusing
delicate information. Our aim is to develop a cryptographic protocol for col-
lection and evaluation of sociometric questionnaires which ensures the desired
security requirements, placing emphasis on the privacy of responders.

This paper is organized as follows. The next section introduces a represen-
tation of the sociogram in terms of graph theory. The section following next
describes the proposed scheme for anonymous sociometric questionnaires. In the
last section, we present our conclusions and suggestions for the future work.
? This work was supported in part by Slovak VEGA grant number 1/0035/09.

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2355

2 Representation of a Sociogram by Graph Theory

A sociogram can be represented by a weighted digraph [7] G = (V,E), where
nodes from V represent individuals from the social group. Each social link is
represented by a weighted arc from the set E ⊆ V × V . A weight function
w : E → {−s, . . . ,−1, 1, . . . , s} expresses rates of social links. Common values of
the parameter scale s include 1, 3, or 5. We say that an arc is positive (negative)
if and only if the weight of the arc is positive (negative).

2.1 Characteristics of a Node

The number of tail endpoints adjacent to a node v is called indegree of the
node v, i.e., degIn(v) = |{u ∈ V ; 〈u, v〉 ∈ E}|. It stands for the number of social
links to the corresponding person. We distinguish between the positive indegree
degIn+

(v) and the negative indegree degIn−(v) of a node v, where degIn(v) =
degIn+

(v) + degIn−(v). The positive (negative) indegree expresses the number
of positive (negative) arcs incident to the node.

The number of head endpoints adjacent from a node v is called outdegree of
the node v, i. e., degOut(v) = |{u ∈ V ; 〈v, u〉 ∈ E}|. It stands for the number of
social links from the person. Analogically, we define positive (negative) outdegree
of a node v degOut+(v) (degOut−(v)).

We also distinguish between positive and negative weighted indegree (out-
degree). The sum of weights of all positive arcs incident to a node v is called
positive weighted indegree, i. e., In+(v) =

∑
u∈V,〈u,v〉∈E,w(u,v)>0

w(u, v). The sum

of weights of all negative arcs incident from a node v is called negative weighted
outdegree, i. e., Out−(v) =

∑
u∈V,〈v,u〉∈E,w(v,u)<0

w(v, u). Similarly, we define for

a node v negative weighted indegree In−(v) and positive weighted outdegree
Out+(v).

2.2 Sociometric Indices and Objects

There exist two approaches to a sociogram – individual and collective phenom-
ena. Individual phenomena include individual sociometric indices and objects
such as stars, isolates, ghosts. In the latter case, collective phenomena include
group sociometric indices and structures such as dyads and mutual choices.

Individual sociometric indices can be computed from the above defined char-
acteristics of a node. For example, positive social status of a node p is defined as
In+(p)
|V |−1 . In similar way, objects such as stars, outsiders, ghosts and isolates can
be recognized from individual characteristics of nodes.

A star q is a node with the maximal positive weighted indegree, i. e., In+(q) =
max{In+(v); v ∈ V }. An outsider o is a node with the minimal negative weighted
indegree, i. e., In−(o) = min{In−(v); v ∈ V }. A ghost g is a node with zero

indegree and outdegree, i. e., degIn(g) + degOut(g) = 0. Finally, an isolate i

is a node with zero positive indegree, which is not a ghost, i. e., degIn+
(i) =

0 ∧ degOut(i) > 0.
A dyad is the smallest and the most elementary social unit, i. e., a group of

two members with a mutual choice. We distinguish between positive, negative
and combined mutual choices. In the positive (negative) mutual choice the mem-
bers positively (negatively) choose each other. In the combined mutual choice,
one member chooses positively, but the other one chooses negatively.

A set of positive mutual choices M+ is defined as M+ = {{u, v} ⊆ V,
{〈u, v〉 , 〈v, u〉} ⊆ E,w(u, v) > 0, w(v, u) > 0}. Similarly, we define a set of
negative mutual choices M− and a set of combined mutual choices M±. A set
of all mutual choices M is defined as M = M+ ∪M− ∪M±.

Using above mentioned definitions, we define a group sociometric index – a
coherence of the group. A positive coherence of a group is defined as coh+ =
|M+|
(|V |

2) . Similarly, we define a negative (combined) coherence coh− (coh±).

3 The Proposed Scheme

3.1 The Homomorphic Public-Key System

For encryption of responders’ choices we use the homomorphic public-key system
from the paper [2], which is additively homomorphic. Moreover, it allows us to
use a single multiplication. Inter alia, this property is used for computing the
cardinality of the set of mutual choices. The encryption system is semantically
secure assuming the subgroup decision assumption [2].

The Key Generation. The construction of the homomorphic scheme from the
paper [2] requires to use certain finite groups of composite order that support a
bilinear map. Let G and G1 be two multiplicative cyclic groups of finite order
n, where g is a generator of G. Let e denote a bilinear map e : G × G → G1. It
holds, that for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab. Moreover,
e(g, g) is a generator of G1.

The key setup works as follows:

– Generate two random primes q1, q2 and set n = q1 · q2 ∈ Z.
– Generate a bilinear group G of order n following the paper [2]. Let g, u be

random generators of G and e : G × G → G1 be the bilinear map. Then
h = uq2 is a random generator of the subgroup G of order q1.

– The public key is Pk = (n, G, G1, e, g, h). The private key is Sk = q1.

Encryption and Decryption. To encrypt a message m ∈ {0, . . . , q2 − 1},
a sender chooses a random number r ∈ Zn−1 and computes the ciphertext C =
gmhr ∈ G. To decrypt the ciphertext C using the private key Sk = q1, observe
that Cq1 = (gmhr)q1 = (gq1)m. It is sufficient to compute the discrete logarithm

of Cq1 base gq1 in order to recover the plaintext m. For our purposes, the message
space is bounded by the value b = max{s(|V | − 1),

(|V |
2

)
}1, where s is the scale

and |V | is the number of nodes in a sociogram. This way it is sufficient to pre-
compute the table of powers (gq1)0, . . . , (gq1)b. Using binary-search, one can find
an appropriate m in the logarithmic time according to the number of nodes.

Homomorphic Properties. The encryption system is clearly additively ho-
momorphic. Given ciphertexts C1, C2 ∈ G which are encryptions of plaintexts
m1,m2, anyone can create an encryption of m1 + m2 mod n by computing the
product C1C2 = gm1hr1gm2hr2 = gm1+m2hr1+r2 . Note that we can multiply an
encrypted message m by an integer z ∈ Z+. Given the ciphertext C = gmhr,
anyone can create an encryption of zm mod n by computing the exponentiation
Cz = gzmhzr.

Anyone can once multiply two encrypted messages m1,m2 using the bilinear
map e. Set g1 = e(g, g) ∈ G1 and h1 = e(g, h) ∈ G1. Then, g1 is of order n
and h1 is of order q1. For given ciphertexts C1 = gm1hr1 , C2 = gm2hr2 ∈ G we
build an encryption of m1 · m2 as C1 ∗ C2 = e(C1, C2) = e(gm1hr1 , gm2hr2) =
e(gm1+αq2r1 , gm2+αq2r2) = gm1m2

1 hm1r2+r2m1+αq2r1r2
1 ∈ G1, where h = gαq2 .

Note that the system is still additively homomorphic in G1.

The Robust Threshold Version. The goal of the threshold version (t, l)
of the cryptosystem is to share the private key q1 among l authorities by a
threshold secret sharing scheme. A ciphertext can be decrypted when at least
t + 1 shareholders cooperate on decryption in the group G1. Note that it is
sufficient to decrypt only in the group G1 since we can use the bilinear map to
move the ciphertext from G to the group G1 without changing the plaintext.

For simplicity, we assume that a trusted dealer first generates the public key
including n = q1 · q2 and the private key q1. The dealer distributes shares of the
private key between l authorities. The shares are created following the technique
[13, 5], which is a modification of the Shamir secret sharing scheme [12] over Zn.
The dealer sets a0 = q1 and chooses ai at random from {0, . . . , n − 1} for i ∈
{1, . . . , t}. The numbers a0, . . . , at define the polynomial f(X) =

∑t
i=0 aiX

i ∈
Z[X]. For each shareholder i ∈ {1, . . . , l} the dealer computes si = f(i) mod n.
Let ∆ = l! and ∆? = ∆−1 mod n. For any subset P of t+1 indices from {1, . . . , l}
the modified Lagrange coefficients are defined as λi,P = ∆

Q
i′∈P/{i}−i′

Q
i′∈P/{i} i−i′ mod n.

From the Lagrange interpolation we have ∆ · f(0) =
∑

i∈P λi,P f(i) mod n, i. e.,
∆ · q1 =

∑
i∈P λi,P si mod n.

Moreover, a shareholder i which possesses the secret si publishes yi = gsi
1

in order to make a process of decryption verifiable. To decrypt a ciphertext
C = gm

1 hr
1 ∈ G1 without reconstructing the secret q1 each shareholder i pub-

lishes ui = Csi and following the Chaum-Pedersen protocol [3] proves that
logg1

yi = logC ui. From any subset of t+1 participants P who passed the proof

1 The value s(|V | − 1) is the maximal possible absolute value of weighted degrees and�|V |
2

�
is the maximum cardinality of the set of mutual choices.

the value g∆q1m
1 is computed as as

∏
i∈P u

λi,P

i =
∏

i∈P Cλi,P si = C
P

i∈P λi,P si =
(gm

1 hr
1)

∆·q1 = g∆q1m
1 . After computing (g∆q1m

1)∆?

= gq1m
1 , the plaintext m

can be recovered by comparing with pre-computed tables of powers of gq1
1 as

mentioned above.
The zero-knowledge proofs of correct partial decryption [3] from each share-

holder can be performed interactively between shareholders and transcripts of
such interactions are made public for verification. In order to make these proofs
non-interactive, the verifier could be implemented using either a trusted source
of random bits [10] or using the Fiat-Shamir heuristic [4] which requires a hash
function. In the latter case security is obtained from the random oracle model
[8].

3.2 Security Requirements for a Scheme

The scheme is expected to satisfy certain security requirements which are rel-
evant for a privacy-aware protocol for sociometric questionnaires. The social
group which consists of responders is defined in the questionnaire. It also con-
tains a selection criterion and other parameters such as the deadline for filling.
We enumerate and informally discuss security requirements in the following list.

– Eligibility. Only valid responders who are defined as members of the group
are eligible to correctly fill in the questionnaire.

– Privacy. In the evaluation process, choices of a responder must not identify
the responder and any traceability between the responder and his choices
must be removed.

– Verifiability. Any responder should be able to individually verify whether
his choices were correctly recorded and accounted. Moreover, anyone can
universally verify that in the evaluation process only valid choices of eligible
responders were recorded and the counting process was accurate.

– Accuracy. The scheme must be error-free. The final computations of socio-
metric indices must correspond with all choices of all responders.

Note that these requirements are similar to security requirements for e-voting
protocols [11]. However, the submission of choices and computations of the re-
sults differ from usual e-voting protocols. On the other hand, a scheme does
not need to ensure requirements such as receipt-freeness or incoercibility [11],
because we do not expect “choice-buying” of responder’s choices.

3.3 The Proposed Scheme

The realization of the scheme consists of various phases. First, the questioner cre-
ates a questionnaire in which he defines a social group of responders R1, . . . , RN

and sociometric indices which have to be computed. He also sets the deadline
for filling and the sociometric parameters such as the scale s for the weights of
the arcs. Then, he registers the questionnaire by the collector. The collector col-
lects submissions of responders, checks signatures, leads the computations and

publishes results. The registration of responders R1, . . . , RN is based on digi-
tal signatures. Therefore, we assume a pre-established Public Key Infrastructure
with registered conceivable responders and other participants with relevant cer-
tificates of public keys for digital signature [8].

For encryption of choices, we use the above mentioned robust threshold (t, l)
version of the public-key scheme [2], where the private key Sk = q1 is shared
between l authorities. For simplicity, we assume that a trusted dealer first gen-
erates the public key Pk and the private key Sk = q1. Then, the dealer creates
and distributes shares of the private key between l authorities and finally deletes
the private key.

The process of decryption is realized by cooperation of at least t+1 authorities
and is universally verifiable as mentioned above. Note that we do not specify who
should be shareholders, since it depends on the usage of the protocol. However,
the robust threshold version of the cryptosystem ensures the robustness of the
protocol.

Submitting Choices. A responder Ri fills in the questionnaire, i. e., defines
all relations from the node Ri in the sociogram. To represent a relation from
the node Ri to node Rj we use s + 2 bits b+

ij , b
−
ij , b

w1
ij , . . . , bws

ij , where s is the
scale as defined in Section 2. The bits b+

ij , b
−
ij indicate whether the weight of the

arc is positive, negative, or there is missing arc. The bit b
w|wij |

ij = 1 defines the
absolute value of the weight of the arc |wij |. We consider three possible relations
from the node Ri to the node Rj :

– The arc 〈Ri, Rj〉 has a positive weight wij > 0, then b+
ij = 1, b

wwij

ij = 1, and
other bits are 0;

– The arc 〈Ri, Rj〉 has a negative weight wij < 0, then b−ij = 1, b
w|wij |

ij = 1,
and other bits are 0;

– There is missing arc 〈Ri, Rj〉, then an arbitrary bit bwa
ij = 1, where a ∈

{1, . . . , s} and other bits are 0.

Note that, when the parameter scale s = 1, it is sufficient to represent a relation
from the node Ri to the node Rj with just two bits b+

ij , b
−
ij .

For each responder Rj , j 6= i each bit b♦ij ,♦ ∈ {+,−, w1, . . . , ws} is encrypted
by responder Ri using the public key Pk as c♦ij = EPk(b♦ij). All these encrypted
bits are sent along with the signature of the encrypted bits by the responder Ri

to the collector.

Verification of Submissions. The collector checks the validity of signatures
of all submissions of responders R1, . . . , RN . If the responder Ri does not submit
his choices in time, or his signature is incorrect, then he is disqualified from the
set of responders. The encrypted relations to the node Ri are excluded as well.
Finally, the collector publishes submissions with correct signatures in order to
verification.

In the e-voting protocols based on homomorphic encryption, are usually used
zero-knowledge proofs for verification of validity of ballots [11]. These proofs are
used in the non-interactive version using Fiat-Shamir heuristic [4]. As a bonus of
the public key system, we do not need to use these proofs according to verification
of validity of submissions.

The submissions of responders in the bit representation are valid, if the fol-
lowing conditions hold:

1. b♦ij ∈ {0, 1}, which is equivalent to the formula b♦ij · (b♦ij − 1) = 0, where
i 6= j,♦ ∈ {+,−, w1, . . . , ws};

2. b+
ij · b

−
ij = 0, where i 6= j;

3.
∑s

k=1 bwk
ij = 1, which is equivalent to the formula

∑s
k=1 bwk

ij − 1 = 0, where
i 6= j.

We need to verify all these equations of the form – left side le is equal to
zero. We can use the homomorphic properties for preparing ciphertexts of le for
(s+2)N(N−1) equations of the first type, N(N−1) of the second and N(N−1)
of the third type. We have to check v = (s + 4)N(N − 1) equations total.

To prepare ciphertexts of equations of first and third type the collector pub-
lishes a deterministic encryption of −1 mod n. The equations can be checked
by shareholders by v cooperatively-made decryptions. To decrease the compu-
tation complexity, the shareholders check simultaneously a batch of equations∑v

i=1 ri · lei = 0, where ri are chosen cooperatively by shareholders. They can
run a binary search to identify the invalid submissions following the technique
from [1]. This way, in the optimistic scenario (when all submissions are valid) is
used just one decryption of shareholders.

Computations of the Sociometric Indices. We define computations in the
bit representation of a sociogram as shown in Table 1. Let Ji denote the set
{1, . . . , N}/{i}. A relation from a node Ri to a node Rj is represented by bits
b+
ij , b

−
ij , b

w1
ij , . . . , bws

ij . If there exists an arc 〈Ri, Rj〉, the value |wij | =
∑s

k=1 k ·bwk
ij

represents the absolute value of the weight of the arc 〈Ri, Rj〉. If there is no arc
〈Ri, Rj〉, the value |wij | =

∑s
k=1 k · bwk

ij = a, since exactly one arbitrary chosen
bit bwa

ij = 1 as defined above. Note that it is easy to show that the definitions of

Table 1. Computations in the bit representation of a sociogram

degIn+
(Ri) =

P
j∈Ji

b+ji degIn− (Ri) =
P

j∈Ji
b−ji degOut+ (Ri) =

P
j∈Ji

b+ij

degOut− (Ri) =
P

j∈Ji
b−ij degIn(Ri) =

P
j∈Ji

b+ji + b−ji degOut(Ri) =
P

j∈Ji
b+ij + b−ij

In+(Ri) =
P

j∈Ji
b+ji · |wji| In−(Ri) = −

P
j∈Ji

b−ji · |wji|

|M+| =
PN

i=1
P

j>i b+ij · b+ji |M±| =
PN

i=1
P

j>i(b
−
ij · b+ji) + (b+ij · b−ji)

|M−| =
PN

i=1
P

j>i b−ij · b−ji |M | =
PN

i=1
P

j>i(b
−
ij · b+ji) + (b+ij · b−ji) + (b+ij · b+ji) + (b−ij · b−ji)

computations from Table 1 correspond with the definitions from Section 2.

Computations on Encrypted Sociogram. The collector computes the value cw
ij

from encrypted values cw1
ij , . . . , cws

ij , i. e., cw
ij =

∏s
k=1(c

wk
ij)k =

∏s
k=1 EPk(bwk

ij)k =∏s
k=1 EPk(k · bwk

ij) = EPk(
∑s

k=1 k · bwk
ij) = EPk(|wij |). For an encrypted repre-

sentation of a relation from the node Ri to Rj we use values c+
ij , c

−
ij , c

w
ij in the

encrypted sociogram.
The ciphertext of the positive indegree of a node Ri is computed as∏

j∈Ji
c+
ji =

∏
j∈Ji

EPk(b+
ji) = EPk(

∑
j∈Ji

b+
ji) = EPk(degIn+

(Ri)). Similarly,

we can compute the ciphertext of the negative indegree EPk(degIn−(Ri)). Finally
the ciphertext of the indegree of the node Ri is EPk(degIn(Ri)) =

∏
j∈Ji

c+
jic

−
ji.

Analogously, we can compute ciphertexts of outdegrees, for example the encryp-
tion of the positive outdegree EPk(degOut+(Ri)) =

∏
j∈Ji

c+
ij .

To compute encryptions of weighted degrees, we use also the multiplicative
property of the homomorphic system. The ciphertext of positive weighted inde-
gree of the node Ri can be computed as

∏
j∈Ji

c+
ji ∗ cw

ji =
∏

j∈Ji
EPk(b+

ji|wji|) =
EPk(

∑
j∈Ji

b+
ji|wji|) = EPk(In+(Ri)). Similarly, we can compute other weighted

degrees.
Anyone can compute the encrypted value of the cardinality of the set of

positive mutual choices as
∏N

i=1

∏
j>i c+

ij ∗ c+
ji =

∏N
i=1

∏
j>i EPk(b+

ijb
+
ji) =∏N

i=1 EPk(
∑

j>i b+
ijb

+
ji) = EPk(

∑N
i=1

∑
j>i b+

ijb
+
ji) = EPk(|M+|). The set of neg-

ative and the set of combined mutual choices are defined similarly. The ci-
phertext of the cardinality of the set of all mutual choices one can count as∏N

i=1

∏
j>i(c

+
ij ∗ c+

ji)(c
+
ij ∗ c−ji)(c

−
ij ∗ c+

ji)(c
−
ij ∗ c−ji).

This way we derived encrypted values of individual and collective phenomena
with respect to definitions from Section 2 only by using homomorphic proper-
ties of the encryption system. Note that the process of computations is uni-
versally verifiable by anyone. After computing and publishing encrypted socio-
metric indices, the shareholders of the private key Sk = q1 individually verify
the correctness of computation and cooperate to decrypt the desired sociometric
indices. The process of decryption is universally verifiable by anyone including
the responders, the collector and the questioner. Finally, the collector publishes
obtained sociometric indices which express quantitative information about indi-
viduals or the group.

4 Conclusions

In this paper we designed the protocol for anonymous sociometric question-
naires. In the protocol each responder sends only one message. To prepare the
submission costs (N − 1)(s + 2) encryptions of the cryptosystem [2] and one
digital signature, where N is the number of responders and s is the parameter
scale. The protocol guarantees the security requirements from Section 3. 2. The
eligibility property is ensured by digital signatures of the submissions by respon-
ders and checking of the validity of submissions. The signatures are checked by
the collector and verified by anyone. The validity of submissions is checked by
shareholders and verified by anyone. The privacy of responders is provided by

the public key cryptosystem [2], which is semantically secure and homomorphic
operations are also commutative. The process of computation and decryption
of sociometric indices is universally verifiable according to universal verifiability
of the threshold version of the cryptosystem and the defined computations on
encrypted sociogram.

In the future work we are planning to formal model and analyze the scheme
in the applied pi-calculus. For a future design of the protocol, recently announced
fully homomorphic public key encryption scheme [6] looks promisingly. The re-
sults from the paper were presented as a talk on Primelife/IFIP Summer School
2009 – Privacy and Identity Management for Life

References

1. Bellare, M., Garay, J., Rabin, T.: Fast batch verification for modular exponentiation
and digital signatures. EUROCRYPT’98, LNCS, vol. 1403. Springer (1998)

2. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. TCC
’05. LNCS, vol. 3378. Springer (2005)

3. Chaum, D., Pedersen, T.: Wallet databases with observers. CRYPTO ’92. LNCS,
vol. 740. Springer (1993)

4. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. Advances in cryptology—CRYPTO ’86. LNCS, vol. 263.
Springer (1987)

5. Gang, Q., et al.: Information-theoretic secure verifiable secret sharing over RSA
modulus. Wuhan University Journal of Natural Sciences, vol. 11. Springer (2006)

6. Gentry, C.: Fully homomorphic encryption using ideal lattices. STOC ’09. ACM
(2009)

7. Hanneman, R. A., Riddle, M.: Introduction to social network methods. Riverside,
University of California (2005)

8. Mao, W.: Modern Cryptography: Theory and Practice. Prentice Hall Professional
Technical Reference (2003)

9. Moreno, J. L.: Who Shall Survive? Foundations of Sociometry, Group Psychotherapy
and Sociodrama. Beacon House, Inc. (1953)

10. Rabin, M. O.: Transaction Protection by Beacons. Journal of Computer and Sys-
tem Sciences, vol. 27(2). Elsevier (1983)

11. Sampigethaya, R., Poovendran, R.: A Framework and Taxonomy for Comparison
of Electronic Voting Schemes. Elsevier Computers & Security, vol. 25 (2006)

12. Shamir, A.: How to share a secret, Commun. ACM 22, vol. 11 (1979)
13. Shoup, V.: Practical Threshold Signatures. EUROCRYPT 2000. LNCS, vol. 1807.

Springer (2000)

A Quantitative Characterization of Weighted
Kripke Structures in Temporal Logic

Uli Fahrenberg, Kim G. Larsen, and Claus Thrane

Dept. of Computer Science, Aalborg University, Denmark
{uli,kgl,crt}@cs.aau.dk

Abstract. We extend the usual notion of Kripke Structures with a
weighted transition relation, and generalize the usual Boolean satisfac-
tion relation of CTL to a map which assigns to states and temporal
formulae a real-valued distance describing the degree of satisfaction. We
describe a general approach to obtaining quantitative interpretations for
a generic extension of the CTL syntax, and show that, for one such in-
terpretation, the logic is both adequate and expressive with respect to
quantitative bisimulation.

1 Introduction

We present a general approach to quantitative analysis and approximate charac-
terizations of weighted Kripke strucures (WKS) using formulae expressed using a
weighted extension of CTL (WCTL). The theory presented here is an extension
of a general framwork for quantitative analysis of reactive systems presented in
[5].

The goal of [5] was to set the scene for a generic approach to simulation-based
analysis, measuring the degree with which one system may simulate another.
Developing this paradigm, the current objective is to extend the analysis to ver-
ification of specifications in temporal logic. Thus we introduce here a quantitative
semantics for WCTL which lifts the usual Boolean satisfaction relation of the
logic to a function mapping formulae and states into R≥0 ∪ {∞}, and we show
that with this semantics, WCTL is both adequate and expressive with respect
to one of the quantitative bisimulation relations introduced in [5].

Using logics for analysis of concurrent and reactive systems is a well-esta-
blished approach [1], but the standard qualitative techniques are arguably in-
sufficient when reasoning about quantitative aspects. Indeed, it can be argued
that in a setting where system models and properties include both discrete and
continuous, i.e. quantitative, information, e.g. real-time or probabilistic systems,
a quantitative approach is necessary.

The notion of quantitative analysis is closely related to robustness, i.e. the
tolerance for estimation errors and imprecision in order to provide more realistic
analysis for real-world applications. Existing work on quantitative logics compa-
rable to ours includes [3] which presents an interpretation with relaxed timing
constraints for timed CTL and a discounted notion of quantitative CTL where
discounting is applied according to the depth of a subformula.

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2345

Another related work is [2], which presents an alternative approach to quanti-
fying versions of LTL and µ-calculus, giving a mapping from states and formulae
to the interval [0, 1], where formulae are interpreted over a notion of quantitative
transition systems.

In both [2] and [3], quantitative information is only evaluated for atomic
propositions, where as path operators are only used to propagate the values
obtained at subformulae. Moreover, the semantic interpretations measure only a
point-wise property similar to one also discussed in [5], whereas the semantics in
the present work accumulates quantitative information based on the paths used
to evaluate formulae.

2 Weighted Kripke Structures and Bisimulation

We present a notion of weighted Kripke structures (WKS) and bisimulation based
measurements for these. The following definition represents a straight forward
extension of Kripke structures with weight functions labelling each transition,
which may be interpreted as the cost of taking transitions in the structure. This
extension is similar to the one presented in [5] for labelled transition systems,
thus the results presented in this paper are transferable to our setting.

Definition 1. For a finite set AP of atomic propositions, a weighted Kripke
structure is a quadruple M = (S, T,L, w) where

– S is a finite set of states,
– T ⊆ S × S is a transition relation
– L : S → 2AP is the proposition labelling, and
– w : T → R≥0 assigns weights to transitions.

We write s→ s′ instead of (s, s′) ∈ R and s w−→ s′ to indicate w(s, s′) = w.

A (weighted) path in a M = (S, T,L, w) is a (possibly infinite) sequence σ =
((s0, w0), (s1, w1), (s2, w2) · · ·) with (si, wi) ∈ S ×R≥0 and such that si → si+1

and wi = w(si, si+1) for all i. We denote by P(s) the set of paths in M starting
at state s. Given path σ, we write σ(i) = (σ(i)s, σ(i)w) for its i-th state-weight
pair, and σi for the suffix starting at σ(i).

Notice that we have restricted ourselves to finite weighted Kripke struc-
tures here, i.e. structures with a finite set of states and finitely many atomic
propositions. Our characterization results in Section 4 only hold for such finite
structures.

2.1 Quantitative Bisimulation

We extend the standard notion of strong bisimulation [4] to distances (formally
pseudometrics, see below) over WKS, thereby filling the gap between unweighted
and weighted strong bisimulation defined for WKS as follows:

2

Definition 2. Let (S, T,L, w) be a WKS on a set AP of atomic propositions.
A relation B ⊆ S × S is

– an unweighted bisimulation provided that for all (s, t) ∈ B, L(s) = L(t) and
if s→ s′, then also t→ t′ where (s′, t′) ∈ B for some t′ ∈ S′,
if t→ t′, also also s→ s′ where (s′, t′) ∈ B for some s′ ∈ S;

– a (weighted) bisimulation provided that for all (s, t) ∈ B, L(s) = L(t) and
if s c−→ s′, then also t c−→ t′ and (s′, t′) ∈ B for some t′ ∈ S′,
if t c−→ t′, then also s c−→ s′ and (s′, t′) ∈ B for some s′ ∈ S.

We write s u∼ t if (s, t) ∈ B for some unweighted bisimulation B, and s ∼ t if
(s, t) ∈ B for some weighted bisimulation B.

The idea is that, in order to relate structures, we do not always need perfect
matching of transition weights, rather it is relevant to know how close weights
are matched. Similar to the simulation distances of [5], we call a bisimulation
distance any pseudometric on the states of a WKS which mediates between
unweighted and weighted bisimilarity:

Definition 3. A bisimulation distance on a WKS (S, T,L, w) is a function d :
S × S → R≥0 ∪ {∞} which satisfies the following for all s1, s2, s3 ∈ S:

– d(s1, s1) = 0,
– d(s1, s2) + d(s2, s3) ≥ d(s1, s3),
– d(s1, s2) = d(s2, s1),
– s1 ∼ s2 implies d(s1, s2) = 0 and
– d(s1, s2) 6=∞ implies s1

u∼ s2

The distance which we shall consider here corresponds to the accumulated
simulation distance from [5], but we expect that results similar to the ones of this
paper also are available for the other distances considered in [5]. Our distance is
based on a distance of (infinite) sequences of real numbers, which is appropriate
as for (s, t) in u∼ (or ∼), any path (s, a, s1, a1s2, . . .) ∈ P(s) must be matched
by an equal-length path (t, b, t1, b1, t2, . . .) ∈ P(t) with (si, ti) in

u∼ (respectively
∼).

If a = (ai) and b = (bi) are sequences representing the weights of such paths,
then the following distance measures the discounted accumulated sum (in terms
of absolute values) of the entries’ differences:

d+(a, b) =
∑
i

λi|ai − bi| (1)

Discounting, with a factor λ ∈]0, 1[, ensures finiteness of such (possibly in-
finite) sums, by reducing the contribution from each step (difference) exponen-
tially over time. For the remainder of this paper we fix a discounting factor
λ ∈]0, 1[.

By extending bisimulation with the d+ distance, we collect a family of rela-
tions {Rε ⊆ S×S} (i.e. a map R≥0 → 2S×S) since, due to discounting, for each
step the distance between each successor pair may grow:

3

Definition 4. A family of relations R = {Rε ⊆ S × S | ε > 0} on a WKS
(S, T,L, w) is an accumulating bisimulation family provided that for all (s, t) ∈
Rε ∈ R, L(s) = L(t) and

– for all s c−→ s′, also t d−→ t′ with |c − d| ≤ ε for some d ∈ R≥0 and (s′, t′) ∈
Rε′ ∈ R with ε′ ≤ ε−|c−d|

λ ,

– for all t c−→ t′, also s d−→ s′ with |c − d| ≤ ε for some d ∈ R≥0 and (s′, t′) ∈
Rε′ ∈ R with ε′ ≤ ε−|c−d|

λ .

We write s +∼ε t if (s, t) ∈ Rε ∈ R for an accumulating bisimulation family R.

An accumulating bisimulation family R gives raise to a bisimulation distance
in the sense of Definition 3 by d(s, t) = inf{ε | s +∼ε t}. Observe the following
easy facts:

Lemma 1.

1. For ε ≤ ε′ and members Rε,Rε′ ∈ R of an accumulating bisimulation family,
Rε ⊆ Rε′ .

2. Given s +∼ε t, then every path σ = (s0, w0, s1, w1s2, . . .) ∈ P(s) has a corre-
sponding path σ′ = (t0, w′0, t1, w

′
1t2, . . .) ∈ P(t) such that ε = ε0 and si

+∼εi ti

for all i, where εi+1 = εi−|wi−w′
i|

λ .

Note that as we only consider finite WKS, all Rε relations are finite. Also, we
shall use the term correspondence between paths to denote the second property
of the above lemma.

3 Weighted CTL

We now consider a generalization of the well-known CTL formalism to quanti-
ties. Our notion of weighted CTL (WCTL) is as usual defined in terms of state
and path formulae. Notice that our syntactic extensions are restricted to path
formulae, which are annotated with real numbers (weights). Satisfaction of a for-
mula by a system is no longer interpreted as a true or false statement, but rather
in terms of a real-valued distance. A smaller distance is to mean a closer (better)
match of the specified weights in the formula, and 0 denotes the exact match,
whereas ∞ indicates an incompatibility between the system and the specified
atomic propositions of a formula. Hence in some sense, 0 corresponds to truth
and ∞ to falsehood. We will use JϕK(s) = ε to denote the value ε ∈ R≥0 ∪ {∞}
obtained by evaluating ϕ at state s.

For the remainder of this paper we fix a set AP of atomic propositions and
a WKS (S, T,L, w). All definitions and results below will be given for the states
of one single WKS, but we note that to relate states of different WKS, one can
simply form the disjoint union.

4

Definition 5. For p ∈ AP, Φ generates the set of state formulae, and Ψ , the
set of path formulae, annotated by weights c ∈ R≥0, according to the following
abstract syntax:

Φ ::= p | ¬p | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | EΨ | AΨ
Ψ ::= XcΦ | GcΦ | FcΦ | [Φ1UcΦ2]

The logic WCTL is the set of state formulae, which we denote Lw(AP) or simply
Lw.

The annotated modalities in the above syntax specify requirements on weights
in a WKS. Before discussing these exact requirements, let us consider the usual
meaning of the CTL modalities, as well as how these may be generalized to
adhere to the type of quantitative analysis considered in the previous section:

Given CTL propositions on the form M, s |= Eψ and M, s |= Aψ, we may
interpret these as infinite existential, respectively universal, quantifications over
paths in M from s satisfying ψ. Similarly, M,σ |= Fϕ and M,σ |= Gϕ may be
interpreted as an infinite disjunction, respectively conjunction, over propositions
on the form: M, si |= ϕ for i ≥ 0, where si is a state on σ.

Using this observation, we expect that a generic approach to defining quanti-
tative semantics, i.e. a function Lw ×S → R≥0 ∪ {∞} for WCTL is obtainable.
To this end, the standard sup and inf operators are reasonable generalization
of E,A,F and G (interpreted as disjunction and conjunction over the standard
Boolean domain) to the (complete) lattice R≥0 ∪ {∞}.

Furthermore, this approach requires only modification to the evaluation (i.e.
semantics) of path formulae. Observe that our semantics below specializes to the
usual one in two ways: by mapping a distance ε <∞ to true and ∞ to false, or
by mapping 0 to true and ε > 0 to false.

In the following we present a discounted accumulating semantics, designed
to match the d+ distance (1), where weights of transition are accumulated (and
discounted). Formally, the semantics of ϕ ∈ Lw defines a map from the set
of states S to the set R≥0 ∪ {∞}. Given a state formula ϕ and a state s, an
evaluation JϕK(s) = ε means that s satisfies ϕ with distance ε. Also, given a path
formulae ψ and a path σ, an evaluation JψK(σ) = ε means that ψ holds along σ
with distance ε. Conversely, ε describes how close s (or σ) satisfies the specified
weights in the formula.

Definition 6. Let ϕ,ϕ1, ϕ2 be state formulae and ψ a path formula. The valu-
ation J·K : S → R≥0 ∪ {∞} is defined inductively. For state formulae:

JpK(s) =

{
0 if p ∈ L(s)
∞ otherwise

J¬pK(s) =

{
0 if p ∈ AP \ L(s)
∞ otherwise

Jϕ1 ∨ ϕ2K(s) = inf
{
Jϕ1K(s), Jϕ2K(s)

}
Jϕ1 ∧ ϕ2K(s) = sup

{
Jϕ1K(s), Jϕ2K(s)

}
JEψK(s) = inf

{
JψK(σ) | σ ∈ P(s)

}
JAψK(s) = sup

{
JψK(σ) | σ ∈ P(s)

}

5

For path formulae:

JϕK(σ) = JϕK(σ(0)s)

JXcϕK(σ) = |c− σ(0)w|+ λJϕK(σ1)

JFcϕK(σ) = inf
k

(∣∣∣k−1∑
j=0

λjσ(j)w − c
∣∣∣+ λkJϕK(σk)

)

JGcϕK(σ) = sup
k

(∣∣∣k−1∑
j=0

λjσ(j)w − c
∣∣∣+ λkJϕK(σk)

)

Jϕ1Ucϕ2K(σ) = inf
k

(∣∣∣k−1∑
j=0

λjJϕ1K(σj)− c
∣∣∣+ λkJϕ2K(σk)

)

Note again that this interpretation matches the d+ equation (1). To measure
other types of quantitative properties of systems, one may define an alternative
semantic valuation for paths.

4 Characterization

In this section we show that WCTL with accumulating semantics is adequate
and expressive with respect to accumulating bisimilarity.

4.1 Adequacy

The link between accumulating bisimilarity and our accumulating semantics for
WCTL is as follows:

Theorem 1. For states s, t ∈ S, s +∼ε t if and only if
∣∣JϕK(s)− JϕK(t)

∣∣ ≤ ε for
all ϕ ∈ Lw.

The proof follows from Lemmas 2 and 3 below.

Corollary 1. For states s, t ∈ S, s +∼0 t if and only if JϕK(s) = JϕK(t) for all
ϕ ∈ Lw.

Lemma 2. Let s, t ∈ S with s
+∼ε t, and let σs = (s, u, s1, u1, . . .) ∈ P(s),

σt = (t, v, t1, v1, . . .) ∈ P(t) be corresponding paths. Then
∣∣JϕK(s) − JϕK(t)

∣∣ ≤ ε

for all state formulae ϕ, and
∣∣JϕK(σs)− JϕK(σt)

∣∣ ≤ ε for all path formulae ϕ.

Proof. We prove the lemma by structural induction in ϕ. The induction base is
clear, as s +∼ε t implies that p ∈ L(s) if and only if p ∈ L(t), hence JϕK(s) =
JϕK(t) for ϕ = p or ϕ = ¬p. For the inductive step, we examine each syntactic
construction in turn:

6

1. ϕ = ϕ1 ∨ ϕ2

There are four cases to consider, corresponding to whether Jϕ1K(s) ≤ Jϕ2K(s)
or Jϕ1K(s) > Jϕ2K(s), and whether Jϕ1K(t) ≤ Jϕ2K(t) or Jϕ1K(t) > Jϕ2K(t).
We show the proof for one of the “mixed” cases; the other three are similar
or easier:
Assume Jϕ1K(s) ≤ Jϕ2K(s) and Jϕ1K(t) > Jϕ2K(t). Then Jϕ1 ∨ϕ2K(s)− Jϕ1 ∨
ϕ2K(t) = Jϕ1K(s) − Jϕ2K(t), and Jϕ1K(s) − Jϕ1K(t) ≤ Jϕ1K(s) − Jϕ2K(t) ≤
Jϕ2K(s)− Jϕ2K(t), and by induction hypothesis, −ε ≤ Jϕ1K(s)− Jϕ1K(t) and
Jϕ2K(s)− Jϕ2K(t) ≤ ε.

2. ϕ = ϕ1 ∧ ϕ2. This is similar to the previous case.
3. ϕ = Eϕ1

By definition of JEϕ1K there is a path σ ∈ P(s) for which Jϕ1K(σ) = JϕK(s).
By Lemma 1 there is a corresponding path σ′ ∈ P(t), and from the induction
hypothesis we know that |Jϕ1K(σ)−Jϕ1K(σ′)| ≤ ε. Thus |JϕK(s)−JϕK(t)| ≤ ε.

4. ϕ = Aϕ1. This is similar to the previous case.
5. ϕ = Xcϕ1

By definition, JϕK(σs) = λJϕ1K(σ1
s)+ |c−u| and JϕK(σt) = λJϕ1K(σ1

t)+ |c−v|
where σs = s

u−→ σ1
s and σt = t

v−→ σ1
t . Since s

+∼ε t and σs and σt correspond,
we have σs(1) +∼ε′ σt(1) with ε′ ≤ ε−|u−v|

λ , and by induction hypothesis
|Jϕ1K(σ1

t)− Jϕ1K(σ1
s)| ≤ ε′. Hence

∣∣JϕK(σs)− JϕK(σt)
∣∣ ≤ ∣∣|c− u| − |c− v|∣∣+

λ
∣∣Jϕ1K(σ1

s)− Jϕ2K(σ1
t)
∣∣ ≤ |u− v|+ ε− |u− v| = ε.

6. ϕ = Fcϕ1

By definition, JϕK(σs) = infk
(∣∣∑k−1

j=0 λ
jσ(j)w− c

∣∣+λkJϕK(σk)
)
, hence there

is a k for which the infimum is obtained. Now as σs and σt correspond, the
infimum for JϕK(σt) is obtained for the same k. Repeated use of the definition
of +∼ε yields σs(k)

+∼ε′ σt(k) with ε′ ≤ λ−k
(
ε −

∑k−1
j=0 λ

j
∣∣σs(j)w − σt(j)w∣∣),

and
∣∣JϕK(σs) − JϕK(σt)

∣∣ ≤ ε follows by the triangle inequality as in the
previous case.

7. ϕ = Gcϕ1. This is similar to the previous case.
8. ϕ = ϕ1Ucϕ2

Assume JϕK(σs) = δ, then by definition there is a k such that λJϕ2K(σks) = δ′

and δ = δ′+
∣∣∑k−1

j=0 λJϕ1K(σjs)− c
∣∣. Since σs and σt correspond, so do σjs and

σjt for any j. Therefore by induction hypothesis,
∣∣Jϕ2K(σks) − Jϕ2K(σkt)

∣∣ ≤ ε

and
∣∣Jϕ1K(σjs) − Jϕ1K(σ

j
t)
∣∣ ≤ ε for all 0 ≤ j ≤ k. Again we can apply the

triangle inequality to arrive at
∣∣JϕK(σs)− JϕK(σt)

∣∣ ≤ ε.
Lemma 3. Let s, t ∈ S and assume that

∣∣JϕK(s) − JϕK(t)
∣∣ ≤ ε for all state

formulae ϕ ∈ Lw. Then s
+∼ε t.

Proof. This follows directly from Theorem 2, but one can also observe that the
family R = {Rε} defined by

Rε =
{
(s, t) | s, t ∈ S, ∀ϕ ∈ Lw :

∣∣JϕK(s)− JϕK(t)
∣∣ ≤ ε}

is indeed an accumulating bisimulation in terms of Definition 4.

7

4.2 Expressivity

We show that WCTL with accumulating semantics is expressive with respect to
accumulating bisimulation in the following sense:

Theorem 2. For each s ∈ S and every γ ∈ R+, there exists a state formula
ϕsγ ∈ Lw which characterizes s up to accumulating bisimulation and up to γ, i.e.

such that for all s′ ∈ S, s +∼ε s′ if and only if JϕsγK(s′) ∈ [ε− γ, ε+ γ] for all γ.

Proof. We define characteristic formulae of unfoldings, as follows: For each s ∈ S
and n ∈ N, denote L(s) = {p1, . . . , pk} and AP \ L(s) = {q1, . . . , q`} and let
ϕ(s, n) be the WCTL formula defined inductively as follows:

ϕ(s, 0) = (p1 ∧ · · · ∧ pk) ∧ (¬q1 ∧ · · · ∧ ¬q`)

ϕ(s, n+ 1) =
∧

s
w−→s′

EXwϕ(s′, n) ∧
∧

w:s
w−→s′

AXw
(∨
s

w−→s′

ϕ(s′, n)
)
∧ ϕ(s, 0)

It is easy to see that Jϕ(s, n)K(s) = 0 for all n.
To complete the proof, one observes that for each γ > 0, there is n(γ) ∈ N

such that ϕ(s, n(γ)) can play the role of ϕsγ in the theorem. Intuitively this is due
to discounting: The further the unfolding in ϕ(s, n), the higher are the weights
discounted, hence from some n(γ) on, maximum weight difference is below γ.

References

1. Luca Aceto, Anna Ingólfsdóttir, Kim G. Larsen, and Jiři Srba. Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press, 2007.

2. Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear and branching metrics
for quantitative transition systems. In Josep Díaz, Juhani Karhumäki, Arto Lepistö,
and Donald Sannella, editors, ICALP, volume 3142 of Lecture Notes in Computer
Science, pages 97–109. Springer, 2004.

3. Thomas A. Henzinger, Rupak Majumdar, and Vinayak Prabhu. Quantifying sim-
ilarities between timed systems. In Proc. FORMATS’05, volume 3829 of Lecture
Notes in Computer Science, pages 226–241. Springer-Verlag, 2005.

4. Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
5. Claus Thrane, Uli Fahrenberg, and Kim G. Larsen. Quantitative analysis of

weighted transition systems. Journal of Logic and Algebraic Programming, 2009.
To Appear.

8

Comparison of Algorithms for Checking
Emptiness on Büchi Automata

Andreas Gaiser1? and Stefan Schwoon2

1 Institut für Informatik, Technische Universität München, Germany
2 LSV, CNRS, ENS de Cachan, INRIA Saclay, France

gaiser@model.in.tum.de, schwoon@lsv.ens-cachan.fr

Abstract. We re-investigate the problem of LTL model-checking for
finite-state systems. Typical solutions, like in Spin, work on the fly, re-
ducing the problem to Büchi emptiness. This can be done in linear time,
and a variety of algorithms with this property exist. Nonetheless, subtle
design decisions can make a great difference to their actual performance
in practice, especially when used on-the-fly. We compare a number of
algorithms experimentally on a large benchmark suite, measure their ac-
tual run-time performance, and propose improvements. Compared with
the algorithm implemented in Spin, our best algorithm is faster by about
33 % on average. We therefore recommend that, for on-the-fly explicit-
state model checking, nested DFS should be replaced by better solutions.

1 Introduction

Model checking is the problem of determining whether a given hardware or
software system meets its specification. In the automata-theoretic approach, the
system may have finitely many states, and the specification is an LTL formula,
which is translated into a Büchi automaton, intersected with the system, and
checked for emptiness. Thus, model checking becomes a graph-theoretic problem.

Because of its importance, the problem has been intensively investigated.
For instance, symbolic algorithms use efficient data structures such as BDDs to
work on sets of states; a survey of them can be found in [5]. Moreover, parallel
model-checking algorithms have been developed [1]. The best known symbolic
or parallel solutions have suboptimal asymptotic complexity (O(n log n), where
n is the number of states), but are often faster than that in practice.

Büchi emptiness can also be solved in O(n) time. All known linear algorithms
are explicit, i.e. they construct and explore states one by one, by depth-first
search (DFS). Typically, they compute some data about each state: its unique
state descriptor and some auxiliary data needed for the emptiness check. Since
the state descriptor is usually much larger than the auxiliary data, approxima-
tive techniques such as bitstate hashing have been developed that avoid them,
storing just the auxiliary information in a hash table [13]. This entails the risk
of undetectable hash collisions; however the probability of a wrong result can be
? The author was supported by the DFG Graduiertenkolleg 1480 (PUMA).

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2349

reduced below a chosen threshold by repeating the emptiness test with differ-
ent hash functions. Thus they represent a trade-off between time and memory
requirements. Henceforth, we shall refer to non-approximative methods that do
use state descriptors as exact methods.

We further identify two subgroups of explicit algorithms: Nested-DFS meth-
ods directly look for acceptings cycle in a Büchi automaton; they need very little
auxiliary memory and work well with bitstate hashing. SCC-based algorithms
identify strongly connected components containing accepting cycles; they require
more auxiliary memory but can find counterexamples more quickly.

All explicit algorithms can work “on-the-fly”, i.e. the (intersected) Büchi au-
tomaton is not known at the outset. Rather, one begins with a Büchi automaton
for the formula (typically small) and a compact system description and extracts
the initial state from these. Successor states are computed during exploration as
needed. If non-emptiness is detected, the algorithms terminate before construct-
ing the entire intersection. Moreover, in this approach the transition relation
need not be stored in memory. As we shall see, the on-the-fly nature of explicit
algorithms is very significant when evaluating their performance properly.

In this paper, we investigate performance aspects of explicit, exact, on-the-
fly algorithms for Büchi emptiness. The best-known example for such a tool is
Spin [12], which uses the nested-DFS algorithm proposed by Holzmann et al [13],
henceforth called HPY. The reasons for this choice are partly historic; the faster
detection capabilities of SCC-based algorithm were not known when Spin was
designed, having first been pointed out by Couvreur in 1999 [3]. Thus, the status
of HPY as the best choice is questionable, all the more so since the memory
advantages of nested DFS are comparatively scant in our setting. Moreover,
improved nested DFS algorithms have been proposed in the meantime.

We therefore evaluate several algorithms based on their actual running time
and memory usage on a large suite of benchmarks. Previous papers, especially
those on SCC-based algorithms [10, 15, 4, 11], provided similar experimental re-
sults, however, experiments were few or random and unsatisfying in one impor-
tant aspect: they worked from pre-computed Büchi automata, rather than truly
on-the-fly. This aspect will play a significant role in our evaluation.

To summarize, this paper contains the following contributions and findings:

– We provide improvements in both subgroups, nested DFS and SCC-based.
These concern the algorithms of Couvreur [3] and Schwoon/Esparza [15].
For new, self-contained proofs, see [7].

– One of the algorithms we study can be extended to generalized Büchi au-
tomata, and we investigate this aspect.

– We implemented existing and new algorithms and compare them on a large
benchmark suite. We analyze the structural properties of Büchi automata
that cause performance differences.

We make the following observations: The overall memory consumption of
all algorithms is dominated by the state descriptors, the differences in auxil-
iary memory play virtually no role. The running times depend practically ex-
clusively on the number of successor computations. When experimenting with

2

pre-computed automata – as done in some other papers – this operation be-
comes cheap, which causes misleading results. Our results allow to derive de-
tailed recommendations which algorithms to use in which circumstances. These
recommendations revise those from [15]; Couvreur’s algorithm which was rec-
ommended there, is shown to have weak performance; however, the modification
mentioned above amends it. Moreover, our modification of Schwoon/Esparza
improves the previous best nested-DFS algorithm.

We proceed as follows: Section 2 establishes preliminaries, Sections 3 and 4
present nested-DFS and SCC-based algorithms, including our modifications. Sec-
tion 5 details our experimental results and concludes.

2 Preliminaries

A Büchi automaton (BA) is a tuple B = (S, sI ,post, A), where S is a finite set
of states, sI ∈ S is the initial state, post : S → 2S is the successor function, and
A ⊆ S are the accepting states. A path of B is a sequence of states s1 · · · sm for
some m ≥ 1 such that si+1 ∈ post(si) for all 1 ≤ i < m. If a path from s to
t exists, we write s →∗ t. When m > 1, we write s →+ t, and if additionally
s = t, we call the path a loop. A run of B is an infinite sequence (si)i≥0 such that
s0 = sI and si+1 ∈ post(si) for all i ≥ 0. A run is called accepting if si ∈ A for
infinitely many different i. The emptiness problem is to determine whether no
accepting run exists. If an accepting run exists, it is also called a counterexample.
From now on, we assume a fixed Büchi automaton B.

Note that we omit the usual input alphabet because we are just interested in
emptiness checks. Moreover, the transition relation is given as a mapping from
each state to its successors, which is suitable for on-the-fly algorithms.

A strongly connected component (SCC) of B is a subset C ⊂ S such that for
each pair s, t ∈ C, we have s →∗ t, and moreover, no other state can be added
to C without violating this property. An SCC C is called trivial if |C| = 1 and
for the singleton s ∈ C, s /∈ post(s). The following two facts are well-known:

(1) A counterexample exists iff there exists some s ∈ A such that sI →∗ s and
s →+ s. This fact is exploited by nested-DFS algorithms.

(2) A counterexample exists iff there exists a non-trivial SCC C reachable from
sI such that C ∩A 6= ∅. This fact is exploited by SCC-based algorithms.

A Büchi automaton is called weak if each of its SCCs is either contained in
A or in S \A. This implies the following fact:

(3) Each loop in a weak BA is entirely contained in A or in S \A.

A generalized Büchi automaton (GBA) is a tuple G = (S, sI ,post,A), where
S, sI , and post are as before, and A = (A1, . . . , Ak) is a set of acceptance
conditions, i.e. Aj ⊆ S for all j = 1, . . . , k. Paths and runs are defined as
for normal Büchi automata; a run (si)i≥0 of G is called accepting iff for each
j = 1, . . . , k there exist infinitely many different i such that si ∈ Aj .

3

GBA are generally more concise than BA: a GBA with k acceptance con-
ditions and n states can be transformed into a BA with nk states. There is
no known nested-DFS algorithm that avoids this k-fold blowup for checking
emptiness of a GBA, although Tauriainen’s algorithm mitigates it [17]. Some
SCC-based algorithms, however, can exploit the following fact:

(4) A counterexample exists in G iff there exists a non-trivial SCC C reachable
from sI such that C ∩Aj 6= ∅ for all j = 1, . . . , k.

3 Nested depth-first search

Nested DFS was first proposed by Courcoubetis et al [2], and all other algorithms
in this subgroup still follow the same pattern. There are two DFS iterations: the
“blue” DFS is the main loop and marks every newly discovered state as blue.
Upon backtracing from an accepting state s, it initiates a “red” DFS that tries
to find a loop back to s, marking every encountered state as red. If a loop is
found, a counterexample is reported, otherwise the blue DFS continues, but the
established red markings remain. Thus, both blue and red DFS visit each state
at most once each. Only two bits of auxiliary data are required per state.

This pattern of searching for accepting loops in post-order ensures that mul-
tiple red searches do not interfere; states in “deep” SCCs are coloured red first,
and when a red DFS terminates, red states are guaranteed not to be part of
any counterexample. While being memory-efficient and simple, this has two dis-
advantages. First, nested DFS prefers long counterexamples over shorter ones;
secondly, the blue DFS never notices that a complete counterexample has al-
ready been explored and continues exploring potentially many more states than
necessary before eventually noticing the counterexample during backtracking.
Also, nested DFS computes the successors of many states twice.

Several improvements have been suggested in the past, e.g. the HPY al-
gorithm [13], implemented in Spin, and the SE algorithm [15]. We present an
improvement of SE, shown in Figure 1. A self-contained presentation and proof
is provided in [7]; here, we just describe the differences w.r.t. SE.

The additions to SE are in lines 4 and from 12 to 15. These exploit the fact
that red states cannot be part of any counterexample; therefore a state that has
only red successors cannot be either. This avoids certain initiations of the red
search. The improvement is similar in spirit to [8], but avoids some unnecessary
invocations of post. Like in [2], only two bits per state are used. Our experiments
shall show that it performs best among the known nested DFS algorithms.

Finally, we remark that for weak automata a much simpler algorithm suffices,
as observed by Černá and Pelánek [18]. Exploiting Fact (3), one can simply omit
the red search because all counterexamples are bound to be reported by line 9
in Figure 1. In that case, post is only invoked once per state.

4

1 procedure new dfs ()
2 call dfs blue(sI)

3 procedure dfs blue (s)
4 allred := true;
5 s.colour := cyan;
6 for all t ∈ post(s) do
7 if t.colour = cyan
8 ∧ (s ∈ A ∨ t ∈ A) then
9 report cycle

10 else if t.colour = white then
11 call dfs blue(t);
12 if t.colour 6= red then
13 allred := false;

14 if allred then
15 s.colour := red
16 else if s ∈ A then
17 call dfs red(s);
18 s.colour := red
19 else
20 s.colour := blue

21 procedure dfs red (s)
22 for all t ∈ post(s) do
23 if t.colour = cyan then
24 report cycle
25 else if t.colour = blue then
26 t.colour := red ;
27 call dfs red(t)

Fig. 1. New Nested-DFS algorithm.

4 SCC-based algorithms

An efficient algorithm for determining SCCs that works on-the-fly was first pro-
posed by Tarjan [16]. However, for model-checking purposes Tarjan’s algorithm
was deemed unsuitable because it used more memory than nested DFS while of-
fering no advantages. More recent innovations by Geldenhuys/Valmari [10] and
Couvreur [3] change the picture, however: their modifications allow SCC-based
analysis to report a counterexample as soon as all its states and transitions were
discovered, no matter in which order. In other words, if the order in which suc-
cessors are explored by the DFS is fixed, both can find a counterexample in
optimal time (w.r.t. to the exploration order).

Space constraints prevent us from presenting the algorithms in detail. How-
ever, we mention a few salient points. Tarjan places all newly discovered states
onto a stack (henceforth called Tarjan stack) and numbers them in pre-order.
Certain properties of the DFS ensure that at any time during the algorithm,
states belonging to the same SCC are stored consecutively on the stack and
therefore also numbered consecutively. The root of an SCC is the state explored
first during DFS, having the lowest number and being deepest on the Tarjan
stack. For each state s, Tarjan computes a so-called “lowlink” number, which is
identical to the number of s iff s is a root, and less than that otherwise. An SCC
is completely explored when backtracking from its root, and at that point it can
be identified as a complete SCC and removed from the Tarjan stack.

Geldenhuys/Valmari (GV) exploit properties of lowlinks; they remember the
number of the deepest accepting state on the current search path, say k, and
when a state with lowlink ≤ k is found, a counterexample is reported. They
also propose some memory savings that are of minor importance in our context.

Couvreur (C99) omits both Tarjan stack and lowlinks but introduces a roots
stack that stores the roots of all partially explored SCCs on the current search
path. When one finds a transition to a state with number k, properties of the

5

1 procedure couv ()
2 count := 0;
3 Roots := ∅; Active := ∅;
4 call couv dfs(sI)

5 procedure couv dfs(s):
6 count := count + 1;
7 s.dfsnum := count;
8 s.current := true;
9 push(Roots, (s, A(s)));

10 push(Active,s);
11 for all t ∈ post(s) do
12 if t.dfsnum = 0 then
13 call couv dfs(t)

14 else if t.current then
15 B := ∅;
16 repeat
17 (u, C) := pop(Roots);
18 B := B ∪ C;
19 if B = K then report cycle
20 until u.dfsnum ≤ t.dfsnum;
21 push(Roots, (u, B));
22 if top(Roots) = (s, ?) then
23 pop(Roots);
24 repeat
25 u:=pop(Active);
26 u.current := false
27 until u = s

Fig. 2. Amendment of Couvreur’s algorithm.

numbering imply that no state with number larger than k can be a root, prompt-
ing their removal from the roots stack. This effectively merges some SCCs, and
one checks whether the merger creates an SCC with the conditions from Fact (2).

Both algorithms report a counterexample after seeing the same states and
transitions, provided they work with the same exploration order. However, it
turns out that the removal of the Tarjan stack in C99, while more memory
efficient, was a crucial oversight: when backtracking from a root, another DFS
is necessary to mark these states as “removed”. These extra post computations
severely impede its performance. This makes GV superior to C99 in practice.

We propose to amend C99 by re-inserting the Tarjan stack.3 This amendment
makes it competitive with GV while using slightly less memory; more crucially,
C99 can deal directly with GBAs, which GV cannot. Since GBAs tend to be
smaller than BAs for the same LTL formula, the amended algorithm can hope
to explore fewer states and be faster.

The amended algorithm, working with GBAs, is shown in Figure 2. A more
detailed presentation and a proof are given in [7]. Note that in C99 accceptance
conditions are annotated on the transitions, whereas here we place them on the
states, which is only a minor difference. Figure 2 assumes k acceptance sets,
denoting A(s) := { j | s ∈ Aj } and K := {1, . . . , k}. Note that if k is “small”,
the union operation in line 18 can be implemented with bit parallelism.

5 Experiments

We implemented a framework for testing and comparing the actual performance
of all the known Büchi emptiness algorithms. For practical relevance, the best
framework for such an implementation would have been Spin. However, Spin
3 The problem with C99 was first hinted at in [15]. After creating this improvement

independently, we learned that similar changes were already proposed in [4] and [11].

6

turned out too difficult to modify for this purpose. Instead, we based our testbed
on NIPS [19], a reverse-engineered Promela engine. Essentially, NIPS allows to
process a Promela model, provides the initial state descriptor and a function
for computing its successors. It is thus ideally suited for testing on-the-fly algo-
rithms, and we believe that the conditions are as close to Spin as possible.

We used 266 test cases from the BEEM database [14], including many differ-
ent algorithms, e.g., the Sliding Window protocol, Lamport’s Bakery algorithm,
Leader Election, and many others, together with various LTL properties.

Among the algorithms tested and implemented were HPY [13], GV [10],
C99 [3], SE [15], and the amended algorithms presented in Sections 3 and 4,
henceforth called AND and ASCC. For weak automata, we report on simple DFS
(SD, see Section 3). We also implemented and tested other algorithms, notably
those from [2] and [8]. However, these were always dominated by others, and we
omit them in the following. Naturally, our concrete running times and memory
consumptions are subject to certain implementation-specific issues. Nonetheless,
we believe that the tendencies exhibited by our experiments are transferrable.

In the following, we give a summary of our results. A more detailed descrip-
tion of our framework, the benchmarks, and the experimental results is given
in [6]; here, we just summarize the most important findings.

We first found that, in the context of exact model checking, the differences in
auxiliary memory usage was basically irrelevant. Certainly, the auxiliary memory
used by the various algorithms ranged from 2 bits to 12 bytes, a comparatively
large difference. However, this was dwarved by the memory consumption of state
descriptors, which ranged from 20 to 380 bytes, averaging at 130.

The only practical difference therefore was in the running time. Here, we
found that, no matter which auxiliary data structures were employed, the run-
ning time was practically proportional to the number of post invocations (more
precisely: the number of individual successor states generated by post), by far
the most costly operation. In retrospect, these two observations may seem obvi-
ous; however, we find that they were consistently under-represented in previous
papers, therefore it is worth re-emphasizing their relevance. The two main fac-
tors contributing to the running time were fast counterexample detection and
whether an algorithm had to compute each transition at most once or twice.

Discussing individual test cases would not be very meaningful: for instance,
the early-detection properties of some algorithms can cause arbitrarily large
differences. Instead, we exhibit certain structural properties that occurred in
many test cases and caused those differences. We first discuss algorithms working
on “normal” Büchi automata, followed by a discussion of ASCC with GBAs.

First, we observe that most test cases constitute weak Büchi automata. Note
that the intersection BA is weak if the BA arising from the formula is weak.
Černá and Pelánek [18] estimate the proportion of weak formulae in practice
to 90–95 %; indeed, we found that only 8 % of our test cases were non-weak.
For weak test cases, five out of six tested algorithms (GV, C99, SE, AND, SD)
detect counterexamples with minimal exploration. The three main structural
effects causing performance differences (which may overlap) were as follows:

7

– In 86 test cases, we observed many trivial SCCs consisting of one accepting
state. A typical example is the LTL property GFp, which (when negated)
yields a weak automaton with a looping accepting state. Then, any non-
looping part of the system necessarily yields such trivial SCCs. In these
cases, GV and SD dominate, sometimes with a factor of two, whereas C99,
SE, and HPY fall behind because they explore the accepting trivial SCCs
twice. In our test cases, the AND algorithm had the same performance as
GV and SD, although this is not guaranteed in general.

– In 98 cases, we observed non-accepting SCCs not preceded by accepting
SCCs. In this case, C99 falls behind all the others.

– HPY reports counterexamples only during the red DFS, whereas SE and
AND discovers some during the blue DFS. This accounts for 101 test cases
in which HPY fared worst, whereas all others showed the same performance.

Non-weak automata also had these effects, af-
algorithm run-time
ASCC 67.0 %
GV 69.2 %
AND 69.7 %
SE 96.3 %
HPY 100.0 %
C99 128.3 %

Fig. 3. Performances

fecting 18, 17, and 7 out of 21 test cases. In 7 cases,
GV and C99 found counterexamples more quickly
than the others, being faster by a factor of up to
six. Since we used the same exploration order in all
algorithms, these results are directly comparable.

We then tested the ASCC algorithm with GBA,
generated by the LTL2BA tool [9]. Most formulae
yielded GBA with only one acceptance condition,
meaning that the GBA had the same size as the
corresponding BA. Notice that the running times
of GBA with multiple conditions are not directly comparable with those of the
corresponding BA. This is because using a different automaton changes the order
of exploration, therefore in some “lucky” cases the BA-based algorithms may still
find a counterexample more quickly.

The running times summed up over all 266 test cases are given in Figure 3,
expressed as percentages of each other. Additionally, SD had the same perfor-
mance as GV for the weak cases. Note that every set of benchmarks would lead
to the same order among the algorithms because it reflects their different quali-
tative properties (e.g., quick counterexample detection or number of post calls).
The concrete numbers in Figure 3 tell their quantitative effect in what we believe
to be a representative set of benchmarks. We draw the following conclusions:

– Because of the dominance of weak test cases and GBAs with only one ac-
ceptance condition, the sum of running times yields small differences; only
SE, HPY, and C99 clearly fall behind. The performance differences in the
comparatively few other cases is very pronounced however.

– Overall, ASCC is the best algorithm if GBAs can be used. Due to the tech-
nical reasons explained above, it did not perform best in all examples.

– Among the BA-based algorithms, GV is the best for general formulae; it
is never outperformed on any test case by any other BA-based algorithm.
ASCC performs equally well when used with simple BAs.

– For weak formulae, SD is the best algorithm for bitstate hashing.

8

– For general formulae, AND is the best algorithm for bitstate hashing, im-
proving the previous best algorithm for this setting (SE) by 28 %.

– There remains no reason to use either SE, HPY, or C99.

Acknowledgements: The authors would like to thank Michael Weber for cre-
ating and helping us use the NIPS framework.

References

1. Jǐŕı Barnat, Luboš Brim, and Petr Ročkai. DiVinE multi-core - a parallel LTL
model-checker. In Proc. ATVA, LNCS 5311, pages 234–239, 2008.

2. Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis Yannakakis.
Memory-efficient algorithms for the verification of temporal properties. Formal
Methods in System Design, 1(2/3):275–288, 1992.

3. Jean-Michel Couvreur. On-the-fly verification of linear temporal logic. In Proc.
Formal Methods, LNCS 1708, pages 253–271, 1999.

4. Jean-Michel Couvreur, Alexandre Duret-Lutz, and Denis Poitrenaud. On-the-fly
emptiness checks for generalized Büchi automata. In Proc. SPIN, LNCS 3639,
pages 169–184, 2005.

5. Kathi Fisler, Ranan Fraer, Gila Kamhi, Moshe Y. Vardi, and Zijiang Yang. Is
there a best symbolic cycle-detection algorithm? In Proc. TACAS, LNCS 2031,
pages 420–434, 2001.

6. Andreas Gaiser. Vergleich von Algorithmen für den Leerheitstest von
Büchiautomaten. Studienarbeit, Universität Stuttgart, 2007. In German.

7. Andreas Gaiser and Stefan Schwoon. Comparison of algorithms for checking empti-
ness on Büchi automata. Technical report, arxiv.org (arXiv:0910.3766), 2009.

8. Paul Gastin, Pierre Moro, and Marc Zeitoun. Minimization of counterexamples in
SPIN. In Proc. 11th SPIN Workshop, LNCS 2989, pages 92–108, 2004.

9. Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation. In Proc.
CAV, LNCS 2102, pages 53–65, 2001.

10. Jaco Geldenhuys and Antti Valmari. Tarjan’s algorithm makes on-the-fly LTL
verification more efficient. In Proc. TACAS, LNCS 2988, pages 205–219, 2004.

11. Jaco Geldenhuys and Antti Valmari. More efficient on-the-fly LTL verification
with Tarjan’s algorithm. Theoretical Computer Science, 345(1):60–82, 2005.

12. Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, 2003.

13. Gerard J. Holzmann, Doron A. Peled, and Mihalis Yannakakis. On nested depth
first search. In Proc. 2nd SPIN Workshop, pages 23–32, 1996.

14. Radek Pelánek. Beem: Benchmarks for explicit model checkers. In Proc. SPIN,
LNCS 4595, pages 263–267, 2007.

15. Stefan Schwoon and Javier Esparza. A note on on-the-fly verification algorithms.
In Proc. TACAS, LNCS 3440, pages 174–190, 2005.

16. Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

17. Heikki Tauriainen. Nested emptiness search for generalized Büchi automata. Fun-
damenta Informaticae, 70(1–2):127–154, 2006.

18. Ivana Černá and Radek Pelánek. Relating hierarchy of linear temporal properties
to model checking. In Proc. MFCS, LNCS 2747, pages 318–327, 2003.

19. Michael Weber. An embeddable virtual machine for state space generation. In
Proc. SPIN, LNCS 4595, pages 168–186, 2007.

9

Derivation in Scattered Context Grammar via
Lazy Function Evaluation

Ota Jirák1 and Dušan Kolář2

1 FIT BUT, Brno, Czech Republic,
ijirak@fit.vutbr.cz,

WWW home page: http://www.fit.vutbr.cz/~ijirak/
2 FIT BUT, Brno, Czech Republic,

kolar@fit.vutbr.cz,
WWW home page: http://www.fit.vutbr.cz/~kolar/

Abstract. This paper discusses scattered context grammars (SCG) and
considers the application of scattered context grammar production rules.
We use function that represents single derivation step over the given sen-
tential form. Moreover, we define this function in such a way, so that it
represents the delayed execution of scattered context grammar produc-
tion rules using the same principles as a lazy evaluation in functional
programming. Finally, we prove equivalence of the usual and the delayed
execution of SCG production rules.

1 Introduction

Family of languages that is described by scattered context grammars is very
important due to their generative power. This paper discusses usage of functions
over sentential forms to simulate derivation steps. Function representing delayed
execution of scattered context grammar rules is introduced. Next, we discuss
lazy evaluation of this recursively defined function.

The main goal of this article is to prove that this function is equivalent to
commonly known derivation step.

The proof is divided into several parts:

– we use example to demonstrate that sentential form completely processed
and the same sentential form partially processed are equivalent when pro-
cessed by the delayed execution function,

– we demonstrate that introduced function can handle any SCG rules on any
sentential form,

– we demonstrate that application of nested calling of delayed function is
equivalent with nested calling of regular derivation function,

– we demonstrate that application of nested delayed derivation, lazy evaluated,
is equivalent to nested regular derivation function.

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2351

2 Motivation

We have several principles for implementation of compilers for SCG: deep push-
down [8] (with a certain limitation), and regulated pushdown automata [4–6]
(RPDA).

The first approach uses nonterminal expansion not only on the pushdown top,
but even deeper. Implementation of this pushdown is inefficient (linked list).

The RPDA usually uses auxiliary pushdown to restore the main pushdown.
This data shuffling from one pushdown to another is also inefficient.

We are interested in deterministic compilers. Thus, we have to use leftmost
derivation principles and LL SCGs to make the parser work deterministically [5,
6]. We need to work only with the pushdown top.

(a) Before Applying the Rule (b) After Applying the Rule

Fig. 1. Normal Derivation Using RPDA

Productions of SCG are defined as an n-tupple of CFG productions (see
Section 3 - Preliminaries and Definitions). This is origin of basic idea. We would
like to use parsing principles from CFG parsers to parse context-free parts of
SCG productions in the right time.

We rely on principles of deterministic context-free parsers. We use leftmost
derivation. We have to use some kind of LL/LR grammars to choose productions
in a deterministic way.

We use one CFG production of particular SCG production. The others are
delayed and used in the right time. The unprocessed part of sentential form is
marked to be processed later with this delayed part of SCG production.

We can see difference between regular derivation and delayed derivation on
Figures 1 and 2. Applying one production in regular way means rewrite several
nonterminals in one step. One regular derivation step is shown on Figure 1(a)
and 1(b). Nonterminals A and C are rewritten in one derivation step.

Example of delayed execution is shown on Figure 2. Production p2 should be
used in Figure 2(a). We apply A→ a and we delay C → c. Then, pop is applied
on symbol a on the top of pushdown and a under the reading head.

Production p3 should be used in Figure 2(b). We apply B → b and we delay
D → d. Then, pop is applied on symbol b on the top of pushdown and b under
the reading head.

2

(a) A → a (b) B → b

(c) C → c (d) D → d

(e) Acceptation

Fig. 2. Delayed Derivation

In Figure 2(c), there is no other option than to use delayed production C → c.
If there are more delayed productions that could be used then we use the oldest
one. So we applied delayed production C → c and then removed it from delayed
production list. Then, pop is applied on symbol c on the top of pushdown and
c under the reading head.

In Figure 2(d), there we used delayed production D → d and then removed
it from the delayed production list. Then, pop is applied on symbol d on the top
of pushdown and d under the reading head.

In Figure 2(e), there we can see accepted sentential form by given scattered
context grammar. Sentence is accepted with empty pushdown and zero delayed
productions.

3 Preliminaries and Definitions

It is expected that a reader is familiar with formal language theory [7].
Let V ∗ be a free monoid over alphabet V , w ∈ V ∗, w is called string of

symbols from V , |w| denotes the length of w. Let ε be an empty string, |ε| = 0.

3

A context-free grammar (CFG, see [7]) is a quadruple G = (V, T, P, S), where
V is a finite set of symbols, T ⊂ V is a terminal alphabet, S ∈ V \T is the starting
nonterminal, and P is a finite set of rules of the form A → w, where A ∈ V \T
and w ∈ V ∗.

Now, we introduce definition of sentential form indexing. Besides common
concepts from the formal languages, we define for a string, X, X[n] and X[n:] to
denote one symbol from string and a substring of the string.

Definition 1. Let X = a1a2 . . . an, ai ∈ V, i ∈ {1, . . . , n}, n ∈ N.

X[k] = ak, k ∈ N, 1 ≤ k ≤ n,
X[k :] = ak . . . an, k ∈ N, 1 ≤ k ≤ n,

X[k] = X[k :] = ε, k ∈ N, k > n.

A scattered context grammar (see [1]) is a quadruple G = (V, T, P, S), where
V is a finite set of symbols, T ⊂ V is a terminal alphabet, S ∈ V \T is the
starting nonterminal, and P is a finite set of production rules of the form
(A1, A2, . . . , An) → (w1, w2, . . . , wn), for some n ≥ 1, where Ai ∈ V \T and
wi ∈ V ∗. Let u = x1A1x2A2 . . . xnAnxn+1, v = x1w1x2w2 . . . xnwnxn+1, xi ∈
V ∗, Ai ∈ V \T, 1 ≤ i ≤ n, for some n ≥ 1. u ⇒ v, x1A1x2A2 . . . xnAnxn+1 ⇒
x1w1x2w2 . . . xnwnxn+1 is a derivation. If x1 ∈ T ∗, xi ∈ (V \{Ai})∗, it is a left-
most derivation. Let u0, . . . , un ∈ V ∗, p1, . . . , pn ∈ P , u0 ⇒1 u1 ⇒2 · · · ⇒i

ui ⇒ · · · ⇒n un is a sequence of leftmost derivations. Number of the derivation
step, i, is a position in the sequence of derivations. ⇒i represents usage of pi —
production of the i-th derivation step.

Definition 2. Let X = x1A1x2A2 . . . xnAnxn+1 be a sentential form, Ai ∈
V \T, xi ∈ (V \{Ai})∗, xn+1 ∈ V ∗, for some n ≥ 1, j is a number of derivation
step and pj : (A1, A2, . . . , An) → (w1, w2, . . . , wn) ∈ P is an SCG rule used in
the j-th derivation step. Function hj(X) stands for leftmost application of the
SCG rule used in the j-th derivation step that is:

hj(X) = hj(x1A1x2A2 . . . xnAnxn+1)

= x1w1x2w2 . . . xnwnxn+1 (1)

Note 1. We say, this is a regular derivation step.

Definition 3. Let X = x1A1x2A2 . . . xnAnxn+1 be a sentential form, Ai ∈
V \T, xi ∈ (V \{Ai})∗, xn+1 ∈ V ∗, for some n ≥ 1, j is a number of derivation
step and pj : (A1, A2, . . . , An) → (w1, w2, . . . , wn) ∈ P is an SCG rule used in
the j-th derivation step, m ∈ {1, . . . , n+ 1}.

gj(m,X) =


X[1]gj(m,X[2 :]) for m ≤ n,X[1] 6= Am,
wmgj(m+ 1, X[2 :]) for m ≤ n,X[1] = Am,
ε for m > n, |X| = 0,
X[1]gj(m,X[2 :]) for m > n, |X| > 1,
X[1] for m > n, |X| = 1.

(2)

4

Note 2. We say, this is a delayed derivation step.

Let x be some sentential form. x
′

is sentential form processed by function g
or h — added apostroph to x.

Let nxb is an index into SCG rule, which is used in the b-th derivation step.
Symbol x is a counter of symbols processed by function, which is used in b-th
derivation step.

Example 1. Now, we demonstrate that sentential form completely processed and
the same sentential form partially processed are equivalent when processed by
the delayed execution function.
g(n0

1, x1x2 . . . xixi+1 . . . xk) = x
′

1 . . . x
′

ig(ni1, xi+1 . . . xk), i ∈ {1, . . . , k}, xi ∈ V
for some k ∈ N

g(n0
1, x1x2 . . . xk) = ∣∣ x

′

1g(n1
1, x2 . . . xk)

based on definition 3

(3)

= ∣∣ x
′

1x
′

2g(n2
1, x3 . . . xk)

based on definition 3

(4)

· · ·
= ∣∣ x

′

1x2
′ . . . x

′

k−1g(nk−1
1 , xk)

based on definition 3

(5)

= ∣∣ x
′

1x
′

2 . . . x
′

k
based on definition 3

(6)

⇒ g(n0
1, x1x2 . . . xixi+1 . . . xk) = x

′

1 . . . x
′

ig(ni1, xi+1 . . . xk) for some i ∈ {1,
. . . , k}

Lazy evaluation [9] based on call-by-need strategy is a scheduling policy that
does not evaluate an expression (or invoke a procedure) until the results of the
evaluation are needed. Lazy evaluation may avoid some unnecessary work. It
may allows a computation to terminate in some situations that otherwise would
not.

Lazy evaluation is often used in functional and logic programming, e.g.
Haskell[2].

Lazy evaluation of delayed derivation is application of delayed derivation
in a lazy way. It means that the leftmost symbols of sentential form are pro-
cessed by several derivation steps while the rest of the sentential form is still
unchanged. In other words, we make recursive step (see definition 2) only on the
leftmost outermost symbol being unprocessed by particular function for delayed
derivation.

4 Basic Idea

Each scattered context grammar derivation step can be described as an appli-
cation of some function over given sentential form. In our case, this function
represents leftmost application of an SCG rule.

5

We go through the sentential form and test each symbol. If the tested symbol
is a particular nonterminal from the appropriate (context-free) part of the SCG
rule we replace it with the right-hand side of the part of the SCG rule. And so
on until the whole string is processed.

5 Results

At first, we show that delayed function can process sentential forms of any length
and any number of context-free parts of an SCG rule.

Lemma 1. g(1, uA1α1 . . . αkAk+1αk+1) = h(uA1α1 . . . αkAk+1αk+1), i ∈
{1, . . . , k} for some k ∈ N, u ∈ T ∗, xi ∈ (V \{Ai+1})∗, (A1, . . . , Ak+1) →
(β1, . . . , βk+1) ∈ P

Proof. k — number of parts of SCG rule.

Basis. g(1, uA1α1) = h(uA1α1), k = 1

g(1, uA1α1) =∣∣ ug(1, A1α1)
based on definition 3

(7)

=∣∣ uβ1g(2, α1)
based on definition 3

(8)

=∣∣ uβ1α1
based on definition 3

(9)

=∣∣ h(uA1α1)
based on definition 2

(10)

⇒ g(1, uA1α1) = h(uA1α1) ut

g(1, uA1α1A2α2) = h(uA1α1A2α2), k=2

g(1, uA1α1A2α2) =∣∣ ug(1, A1α1A2α2)
based on definition 3

(11)

=∣∣ uβ1g(2, α1A2α2)
based on definition 3

(12)

=∣∣ uβ1α1g(2, A2α2)
based on definition 3

(13)

=∣∣ uβ1α1β2g(3, α2)
based on definition 3

(14)

=∣∣ uβ1α1β2α2
based on definition 3

(15)

=∣∣ h(uA1α1A2α2)
based on definition 2

(16)

⇒ g(1, uA1α1A2α2) = h(uA1α1A2α2) ut

Induction Hypothesis. We suppose that the statement holds for all k, 1 ≤ k ≤ n,
for some n ≥ 1.

6

Induction Step. g(1, uA1α1 . . . Ak+1αk+1) = h(uA1α1 . . . Ak+1αk+1), n = k + 1

g(1, uA1α1 . . . Ak+1αk+1) (17)

=∣∣ g(1, uA1α1 . . . Ak−1αk−1Akγ)
γ=αkAk+1αk+1

(18)

=∣∣ uβ1α1 . . . βk−1αk−1βkg(k + 1, γ)
based on induction hypothesis and equation 14

(19)

=∣∣ uβ1α1 . . . βk−1αk−1βkg(k + 1, αkAk+1αk+1)
γ=αkAk+1αk+1

(20)

=∣∣ uβ1α1 . . . βk−1αk−1βkαkg(k + 1, Ak+1αk+1)
based on definition 3

(21)

=∣∣ uβ1α1 . . . βk−1αk−1βkαkβk+1g(k + 2, αk+1)
based on definition 3

(22)

=∣∣ uβ1α1 . . . βk−1αk−1βkαkβk+1αk+1
based on definition 3

(23)

=∣∣ h(uA1α1 . . . αk−1AkαkAk+1αk+1)
based on induction hypothesis and definition 2

(24)

Therefore, g(1, uA1α1 . . . Ak+1αk+1) = h(uA1α1 . . . Ak+1αk+1), so the lemma
holds.

Next, we show that we can use any number of rules.

Lemma 2. gk(1, . . . g2(1, g1(1, α))) = hk(. . . h2(h1(α))), α ∈ V ∗ for some k ∈ N

Proof. k — number of nested functions.
Basis. g1(1, α) = h1(α), k = 1. Proof in Lemma 1.
g2(1, g1(1, α)) = h2(h1(α)), k = 2

g2(1, g1(1, α)) =∣∣ g2(1, h1(α))
apply lemma1 on g1

(25)

=∣∣ h2(h1(α))
apply lemma1 on g2

(26)

⇒ g2(1, g1(1, α)) = h2(h1(α)) ut
Induction Hypothesis. We suppose that the statement holds for all k, 1 ≤ k ≤ n
for some n ≥ 1.
Induction Step. gk+1(1, gk(1, . . . g1(1, α))) = hk+1(hk(. . . h1(α)))

gk+1(1, gk(1, . . . g1(1, α))) =∣∣ gk+1(1, β)
based on induction and β=hk(hk−1...h1(α))

(27)

=∣∣ hk+1(β)
apply lemma1 on hk+1

(28)

=∣∣ hk+1(hk(. . . g1(α))
based on induction and β=hk(hk−1...h1(α))

(29)

Therefore, gk+1(1, gk(1, . . . g1(1, α))) = hk+1(hk(. . . h1(α1))), so the lemma
holds.

The following Lemma 3 shows that delayed derivation steps (lazy evaluated)
return the same values as regular derivation steps.

7

Lemma 3. Lazy evaluation of gk+1(1, . . . g1(1, ω1 . . . ωm)) = hk+1(. . . h1(ω1 . . .
ωm)), ωi ∈ V, i ∈ {1, . . . ,m} for some m ≥ 1 and k ≥ 1.

Proof. Basis. For k = 1 holds from definition 3. For k = 2, lazy evaluation of
g2(n0

2, g1(n0
1, ω1 . . . ωm)) = h2(h1(ω1 . . . ωm)), n0

1 = n0
2 = 1

g2(n0
2, g1(n0

1, ω1 . . . ωm)) (30)

=∣∣ g2(n0
2, ω

′

1g1(n1
1, ω2 . . . ωm))

apply one step from definition3 on g1

(31)

=∣∣ ω
′′

1 g2(n1
2, g1(n1

1, ω2 . . . ωm))
apply one step from definition3 on g2

(32)

. . .

=∣∣ ω
′′

1 . . . ω
′′

m−1g2(nm−1
2 , g1(nm−1

1 , ωm)) (33)

=∣∣ ω
′′

1 . . . ω
′′

m−1g2(nm−1
2 , ω

′

m)
apply one step from definition3 on g1

(34)

=∣∣ ω
′′

1 . . . ω
′′

m
apply one step from definition3 on g2

(35)

=∣∣ h2(h1(ω1 . . . ωm))
based on definition 2

(36)

⇒ lazy evaluation of g2(n0
2, g1(n0

1, ω1 . . . ωk)) = h2(h1(ω1 . . . ωk)) ut
Induction Hypothesis. Suppose that the statement holds for all k, 1 ≤ k ≤ n, for
some n ∈ N.

Induction Step. gk+1(n0
k+1, . . . g1(n0

1, ω1 . . . ωm)) = hk+1(. . . h1(ω1 . . . ωm)), ωi ∈
V, i ∈ {1, . . . ,m} for some m ∈ N and n0

j = 1, j ∈ {1, . . . , k+1}. We can say with-
out loss of generality that it returns one processed symbol in each step. To sim-
plify the proof, we write gk(n0

k, ω1 . . . ωm) instead of gk(n0
k, . . . g1(n0

1, ω1 . . . ωm)).

gk+1(n0
k+1, gk(n0

k, ω1ω2 . . . ωm)) (37)

=∣∣ gk+1(n0
k+1, ω

′

1gk(n1
k, ω2 . . . ωm))

apply one step from definition3 on gk

(38)

=∣∣ ω
′′

1 gk+1(n1
k+1, gk(n1

k, ω2 . . . ωm))
apply one step from definition3 on gk+1

(39)

. . .

=ω
′′

1 . . . ω
′′

m−1gk+1(nm−1
k+1 , gj(n

m−1
j , ωm)) (40)

=∣∣ ω
′′

1 . . . ω
′′

m−1gk+1(nm−1
k+1 , ωm)

apply one step from definition3 on gk

(41)

=∣∣ ω
′′

1 . . . ω
′′

m
apply one step from definition3 on gk+1

(42)

=∣∣ hk+1(hk(ω1 . . . ωm))
based on definition 2

(43)

Therefore, lazy evaluation of gk+1(n0
k+1, . . . g1(n0

1, ω1ω2 . . . ωm)) = hk+1(
. . . h1(ω1 . . . ωm)), so the lemma holds.

8

The following theorem and its proof, which represents the main result of this
paper, demonstrates that delayed execution of SCG rules is equivalent with SCG
derivation.

Theorem 1. Lazy evaluation of gm(1, gm−1(1, . . . g1(1, ω1 . . . ωj))) =
hm(hm−1(. . . h1(ω1 . . . ωj))) = w ≡ ω1 . . . ωj ⇒m w,ωi ∈ V, i ∈ {1, . . . , j} for
some j,m ∈ N.

Proof. α ∈ V ∗

1. Using function g or h is equivalent for sentential forms of any length and for
any SCG rules. It has been proved in Lemma 1.

2. Using any number of functions, gn(. . . g1(α)), is equivalent to hn(. . . h1(α)),
for any n. It has been proved in Lemma 2.

3. Lazy evaluated g returns the same result as h. It has been proved in Lemma 3.
4. hm(. . . h1(ω1 . . . ωj)) = w ≡ ω1 . . . ωj ⇒m w holds by definition 2.

From 1, 2, 3, and 4 follows:
gm(1, gm−1(1, . . . g1(1, ω1 . . . ωj))) = hm(hm−1(. . . h1(ω1 . . . ωj))) = w ≡
ω1 . . . ωj ⇒m w. ut

6 Conclusion

In this paper, we have shown usage of functions instead of derivation steps.
Lazy evaluation of delayed execution of scattered context grammar rules has
been presented.

The main result of this article is equivalence of lazy evaluated delayed ex-
ecuted function and the function representing regular leftmost derivation over
a string. This approach allows us to work only with the pushdown top during
compilation time.

7 Open Questions and Future Work

Scattered context grammar was introduced by Greibach and Hopcroft in 1969
(see [1]). Since these days, several implementation methods of compilers for
scattered context grammars has been discovered [4–6, 8].

Next research will lead to study compilers that use delayed execution of SCG
rules and to compare with compilers using regulated pushdown automata.

Intuitively, it should be faster, because we expand only topmost symbol on
the stack. Basic principle of using delayed executed SCG rules in compilers is in
[3].

Nevertheless, exploitation of lazy evaluation in implementation of an SCG
parser traditional way [6] may be an option. That is why; we want to compare
both approaches.

The work has been supported by Research Plan No. MSM 0021630528 -
Security-Oriented Research in Information Technology and by the Czech Min-
istry of Education, Youth and Sports grant MŠMT 2C06008 ”Virtual Laboratory
of Microprocessor Technology Application”.

9

References

1. Greibach, S., Hopcroft, J.: Scattered context grammars. J. Comput. Syst. Sci. 3,
233-247(1969)

2. Haskell, http://www.haskell.org/haskellwiki/Haskell/Lazy evaluation, cited Sep.
2009

3. Jirák, O.: Delayed Execution of Scattered Context Grammar Rules, In: Proceedings
of the 15th Conference and Competition STUDENT EEICT 2009 Volume 4, Brno,
CZ, FIT VUT, 2009, p. 405-409, ISBN 978-80-214-3870-5

4. Kolář, D., Meduna, A.: Regulated Pushdown Automata, In: Acta Cybernetica, Vol.
2000, No. 4, US, p. 653–664, ISSN 0324-721X

5. Kolář, D.:Pushdown Automata: Another Extensions and Transformations, Brno,
CZ, FIT BUT, 2005, p. 76

6. Kolář, D.: Scattered Context Grammar Parsers, In: Proceedings of the 14th Interna-
tional Congress of Cybernetics and Systems of WOSC, Wroclaw, PL,PWR WROC,
2008, p. 491–500, ISBN 978-83-7493-400-8

7. Meduna, A.: Automata and Languages: Theory and Applications. Springer-Verlag,
London, 2000

8. Meduna, A.: Deep Pushdown Automata, In: Acta Informatica, Vol. 2006, No. 98,
DE, p. 114–124, ISSN 0001-5903

9. University of Florida, http://www.cise.ufl.edu/research/ParallelPatterns/glossary.htm,
cit. Sep 07 2009

10

Embedded Process Functional Language

Marek Běhálek1 and Petr Šaloun2

1 Department of Computer Science, Faculty of Electrical Engineering
and Computer Science, VŠB Technical University of Ostrava,

17. listopadu 15, Ostrava, Czech Republic
marek.behalek@vsb.cz

2 Department of Informatics and Computers, Faculty of Science,
University of Ostrava,

30. dubna 22, Ostrava, Czech Republic
petr.saloun@osu.cz

Abstract. Embedded systems represent an important area of computer
engineering. Demands on embedded applications are increasing. To ad-
dress these issues, different agile methodologies are used in traditional
desktop applications today. These agile methodologies often try to elim-
inate development risks in early design phases. Possible solution is to
create a working model or a prototype of critical system parts. Then we
can use this prototype in negotiation with customer and also to prove
technological aspects of our solution. From this perspective functional
languages are very attractive. They have excellent abstraction mecha-
nism and they can be used as a tool producing a kind of executable de-
sign. In this paper we present our work on a domain specific functional
language targeted to embedded systems — Embedded process functional
language (e-PFL). Created language works on a high level of abstraction
and it uses other technologies (even other functional languages) created
for embedded systems development on lower levels. It can be used like a
modeling or a prototyping language in early development phases.

1 Introduction

Embedded systems represent an important area of computer engineering. Most
of these systems are programmed in low level languages due to strict performance
or memory constrains. On the other hand, demands on embedded applications
are increasing. For example we want to decrease time to market, improve main-
tenance or make development process cheaper.

Different approaches are used to solve such problems. For example different
agile methodologies [1] are more and more popular in the area of traditional
desktop applications today. These agile methodologies try to eliminate develop-
ment risks. Development risks are mainly related to: business risks (confusion
in communication with customer, created product cannot be used in practice)
and technological risks (inability to use developed application in practice due to
technological issues). Possible solution that eliminates these risks is to develop
working model or prototype of critical system parts in early development phases.

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2353

2 Marek Běhálek, Petr Šaloun

We can use this prototype for communication with customer and also to prove
technological aspects of the solution.

To address these issues we need a better tool (or tools). From this point
of view, functional languages are very attractive. They have several interesting
properties [2]. Among others they have excellent abstraction mechanism (rep-
resented by functions composition and high-order functions) and that is why
they can be used as a tool producing a kind of executable design. To conclude
functional languages definitely have a place in specification, prototyping and
simulation in early design phases.

In our work we are developing domain specific functional language targeted to
embedded systems development. Developed language can be used like a modeling
or a prototyping language in early development phases. Created language is
called Embedded process functional language (e-PFL).

2 Related Works

There are other tools able to model embedded systems. For example we can
use Unified Modeling Language – UML. Or we can use simulation tools like
Simulink3. We can address business risks using such tools. We are able to create
concrete model and use it during negotiations with customer. On the other hand
we may not be able to solve technological issues.

Embedded systems differ in many ways from common desktop applications
[3]. For example a development platform is separated from a target platform, de-
bugging is possible only with emulator, or there is no operating system present.
Really try some application on a real device can be the only possibility to elimi-
nate technological risks. Create language is still programming language. It can be
straightforwardly transformed into a target code and used on concrete embedded
systems.

Usage of functional paradigm of programming for development of embedded
applications was suggested in [4]. Also there exist several different functional
languages for implementation of embedded systems. Those languages cover wide
range of abstraction levels (from hardware description to high-level application
logic).

Erlang [5] is probably the most widely known language in this area. It has
its origin in Ericsson, so unlike most declarative languages it did not come from
academic development. It is a combination of logic and functional programming.
Typical Erlang program consists of many light-weighted processes communicat-
ing trough asynchronous messages. It is primarily used in heavily concurrent
and distributed applications. Other programming languages that can be used
in this area are in fact languages designed mainly for reactive systems like:
Concurrent Haskell [6] or Eden [7]. Other examples of languages for embedded
systems development are: Embedded Gofer [4] (strongly typed purely functional
language), Lava (Haskell library with ability to generate VHDL code) or Lustre

3 Description available at: http://www.mathworks.com/products/simulink/

Embedded Process Functional Language 3

(synchronous data-flow language used for reactive systems and hardware de-
scription). Hume [8] represents different approach. Unlike presented languages
(they often come from some general purpose language) it was specially developed
for (especially real-time) embedded systems implementation. It tries to address
performance issues, time and space constrains and controllability. The compiler
can calculate for instance how much heap and stack each part of program will
ever require at most.

Also different case studies comparing usage of functional languages for em-
bedded systems development with traditional approaches were performed [9, 10].

3 Coordination Layer

Embedded systems are often described as a set of communicating functional
units, no matter if multiple processing units are present on target machine or
not [4]. Also our model is a set of communicating devices on the highest level.

Most of functional languages used for implementation of embedded applica-
tions take two-level approach to language design. Purely functional expression
layer is often embedded into a coordination layer. Coordination layer describes
communicating processes (or communicating functional units in context of em-
bedded systems). Presented languages are often extended with side-effecting
constructs to address issues on coordination layer. These constructs often en-
able creation of functional units and maintain their synchronization. There are
two extremes. First can be represented by language Embedded Gofer [4]. It uses
monads to encapsulate processes and language is extended with message pass-
ing primitives to maintain their communication. Such side-effecting constructs
make reasoning about program properties hard or impossible. Another extreme
is Hume [8]. Coordination layer in Hume must be strictly defined on a static
level inside a source code. Communication is then implicit and we are able to
compute necessary system properties at a compile time.

When creating new language, we must decide about language aspects on co-
ordination layer. We use dynamic coordination mechanism in e-PFL . There are
language constructions that allow functional units creation and define functional
units’ connections. On the other hand, static model on coordination layer have
certain advantages.

Primary purpose of e-PFL is to create working model of an embedded system
in early design phases. We want to be able to use created language on real
devices to eliminate technological risks. In our approach, we want to use other
technologies even other functional languages on lower levels. Static model of the
coordination simplifies usage of other technologies on lower levels.

As a compromise we use following model.

– Coordination layer is dynamic on language level in EPFL. This feature sim-
plifies embedded systems modeling.

– Then we use partial evaluation and concrete system configuration is pro-
duced as a result of computation. This configuration represents static model

4 Marek Běhálek, Petr Šaloun

of future system on coordination layer. Created configuration is stored in
XML file.

This approach has several advantages. For example to eliminate technological
risks we can produce several concrete models of future system using the same
program logic on higher level. Then we can produce different target codes for
different architectures using these configurations.

4 Embedded Process Functional Language

In our work we are developing domain specific functional programming language
(Embedded process functional language – e-PFL) targeted to embedded systems
development. Developed language can be used like a modeling or a prototyping
language in early development phases. Presented language come from Process
Functional Language – PFL [11] on language level. On implementation level it
extends Parallel Process Functional Language [12] (that we have created before).
Created language was introduced in [13].

Process Functional Language improves state representation by introducing
variables while trying not to compromise its declarative nature. Usage of vari-
ables is bound to processes and is maintained by a compiler. That is why we
are able to determine program parts manipulating with state at a compile time.
Process application is the only place where we can access or update variables.
The scope of variables is defined by the scope of processes that use them. Access
and update of variable environment is uniform. We must use processes from the
same scope. For instance programmer cannot directly access or update variables.
Similar language constructions were used for e-PFL .

Created language is shortly described in this section. It uses eager evaluation.
Syntax and semantics come from PFL (it is close to pure functional subset of
Haskell). This set of constructions was extended to support embedded systems
development.

Embedded systems are often described as a set of functional units. Also in
e-PFL embedded system is a set of communicating devices. These devices are
modeled using data type Device for default module Prelude.

data Device = Process EmbProcess
| Fair [Device]
| Unfa i r [Device]

Devices are strictly built from embedded processes. Embedded processes can-
not be used directly. Embedded processes are described by data type EmbProcess
(this data type was used in Device definition). Embedded processes encapsulate
issues related to communication on coordination layer. Syntax of embedded pro-
cesses is close to common functions. Embedded process definition is extended by
variables (like in processes in PFL). Variables are bounded to parameters and
also to return value (it can be a tupple and then variables are bounded to every
tupple element). Following example shows embedded process definition.

Embedded Process Functional Language 5

work : : a Integer −> b Integer −>(c Integer , d Integer)
work x y = (x , x+y)

Used variables represent communication channels. Embedded processes de-
fine operations with known input (variables bounded to parameters: a and b in
our example) and output (variables bounded to return value: c and d in our
example). Input or output of created devices is defined by used embedded pro-
cesses. Each of variables can be used like an input maximally by one device and
like an output also maximally by one device.

Devices can be started using native function startDevice.

s t a r tDev i c e : : Device −> EmbSystem −> [Annotation] −> ()

Each Device is an autonomous system working independently on other devices.
Devices are working asynchronously4. When a device is started, it tries to execute
embedded processes that it encapsulates. Processes compete for execution time
within a single device. Only one process can be running at given time. When
there is no process running new candidate for execution is selected according to
available input and fairness (according to data constructors Fair and Unfair).

These devices can be divided into distant parts — embedded system com-
ponents. Embedded system components are defined using data type EmbSystem
(first argument is component name, the second is mediator). Data type Mediator
defines concrete mediator. Both are from basic module Prelude.

data Mediator = Hume | MicroNET

data EmbSystem = EmbComponent [Character] Mediator | Emulator

In our approach we do not produce one target code. Programmer can divide
embedded system into parts. Each of these parts is associated with exactly one
mediator. Each component can use different mediator and thus can have differ-
ent features and properties. For every component is generated target code with
respect to used mediator. We have integrated two mediators into e-PFL now.
Programmer can use Hume like an intermediate language or created run-time
environment for .NET Micro Framework.

For example when Hume is used as a mediator then source codes in Hume
are produced by e-PFL compiler. These codes can be then ported using tools
created by Hume developers or we can use developed tool to compute runtime
constrains.

Using this technique we are able to address technological risks of embedded
systems development. Also we are able to implement even distributed embedded
systems as a single application in e-PFL and divide it into distant parts during
application porting. Using this technique we are able to integrate several different
languages or platforms into one solution. This solution then composes different
approaches to embedded systems development and benefits from their properties.

4 A timer can be implemented using library functions if needed. Form this point of
view the timer is a device periodically generating output necessary for other devices
to continue.

6 Marek Běhálek, Petr Šaloun

Finally we are able to change certain device features when the device is
started. We are able to add annotations to started devices. Annotations are
related to created configuration. They are stored into generated configuration
XML file and they affect produced target code. Using annotation we are able to
change coordination, initial values or target code optimization level. Annotations
are defined using data type Annotation. Programmer must not use annotations
directly. He can use standard functions from module Prelude. For example func-
tion rename. Using this function programmer can rename inputs or outputs for
a device to change devices connections.

data Attr ibute = CAttribute [Character] [Character]
data Annotation = CAnnotation [Character] [Att r ibute]

rename : : [Character] −> [Character] −> Annotation
rename x y = CAnnotation ”rename”

[(CAttribute ” o ld ” y) , (CAttribute ”new” x)]

Communication is implicit in e-PFL . Related issues are solved during a
configuration run. Each of variables used in started devices represents a com-
munication channel. Type of this communication channel is known at a compile
time and we are able to compute all necessary information related to usage of
these channels (for example initial values or underlying device architecture). Po-
tential communication issues simplify that there is maximally one input device
and one output device to each of these channels and each of them can hold up
to one value only. Main issues are thus related to data synchronization. A sort of
default communication is computed during the configuration run and computed
information is stored in a resulted configuration. Programmer can modify this
configuration in the future and thus he can control communication.

5 Example

This section shows simple application written in e-PFL .

produce : : a Integer −> (a Integer , b Integer , c Integer)
produce x = (x+1, x , x)
work : : Device
work = Process produce

showB : : b Integer −> ()
showB x = wr i t eL ine (show x)
p r i n t e r : : Device
p r i n t e r = Process showB

annotat ion : : Annotation
annotat ion = rename ”b” ”c”

component1 : : EmbSystem
component1 = EmbComponent ”worker component” Hume

Embedded Process Functional Language 7

component2 : : EmbSystem
component2 = EmbComponent ” pr inter component ” MicroNET

main= (s ta r tDev i c e work component1 []) ‘ bl ‘
(s t a r tDev i c e p r i n t e r component2 []) ‘ bl ‘
(s t a r tDev i c e p r i n t e r component2 [annotat ion])

Listing 1.1: Simple example in e-PFL

Previous example use process bl. This process comes from PFL . It forms a
sequence of process. Its functionality is similar to construction do from Haskell.

Example composes from two components (first is using Hume, second is using
.NET Micro Framework). Fist component contains one device based on Device
named work. Second component contains two devices based on Device named
printer. Example also shows how default connections of devices can be changed
by a programmer (using annotations).

6 Conclusion and Future Work

We are developing a domain specific language called Embedded Process Func-
tional Language (e-PFL) targeted to embedded systems development. Created
language works on a high level of abstraction. It uses other technologies (even
other functional languages) created for embedded systems development on lower
levels. It can be used like a modeling or a prototyping language in early devel-
opment phases.

The contribution is that we are able to eliminate development risks using e-
PFL . In e-PFL we are able to create working prototype of future system (or its
critical parts). Then we can use this prototype in negotiation with customer to
eliminate business risks. Applications created in e-PFL can be simulated using
implemented simulator. Using partial evaluation we are able to extract static
model (or models) of future system. This model can be for example visualized
and we can use it in communication with customer. Still created e-PFL is a
programming language and we can straightforwardly produce target codes. We
are using other technologies on lower level (now we are using Hume and .NET
Micro Framework) and we can benefit from their features. Produced codes can be
directly used on real devices. Using this technique we can eliminate technological
risks during the development process.

For practical experiments we have implemented e-PFL simulator using .NET
platform and a distributing cross-platform compiler. This compiler use Hume and
.NET Micro Framework on a lower levels. Also we have created GUI containing
tool that simplifies configuration of the applications.

Proposed e-PFL is under active development now. We are considering other
language constructs that may improve its capabilities. For example we are con-
sidering different language constructions changing devices connections. We are
also improving implemented tools. For example compiler implements only ba-
sic language constructions now. Constructions like list generators (common in

8 Marek Běhálek, Petr Šaloun

Haskell) are not supported yet. Also we want to extend basic libraries. Another
area is practical applications of presented ideas. We want to use e-PFL for de-
velopment of real embedded systems.

On the other hand presented approaches and principles are actively devel-
oped and used mainly in academic circles. There is still a long way ahead to
see if presented usage of functional paradigm can truly compete with current
methodologies.

Work is partially supported by Czech-Slovak fund KONTAKT MEB 080878:
Cooperation in area of design and implementation of language systems.

References

1. Highsmith, J., Fowler, M.: The agile manifesto. Software Development Magazine
9(8) (2001) 29–30

2. Hughes, R.: Why functional programming matter. The Computer Journal 32(2)
(1989) 98–107

3. Vahid, F., Givargis, T.: Embedded System Design: A Unified Hardware/Software
Introduction. John Wiley & Sons, Inc., New York, NY, USA (2001)

4. Wallace, M., Runciman, C.: Extending a functional programming system for em-
bedded applications. Softw. Pract. Exper. 25(1) (1995) 73–96

5. Armstrong, J.: A history of erlang. In: HOPL III: Proceedings of the third ACM
SIGPLAN conference on History of programming languages, New York, NY, USA,
ACM (2007) 6–1–6–26

6. Peyton Jones, S., Gordon, A., Finne, S.: Concurrent haskell. In: POPL ’96: Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, New York, NY, USA, ACM (1996) 295–308

7. Loogen, R., Ortega-mallén, Y., Peńamaŕı, R.: Parallel functional programming in
eden. J. Funct. Program. 15(3) (2005) 431–475

8. Hammond, K., Michaelson, G.: Hume: A domain-specific language for real-time
embedded systems. In Pfenning, F., Smaragdakis, Y., eds.: Generative Program-
ming and Component Engineering, Second International Conference, GPCE 2003,
Erfurt, Germany, September 22-25, 2003, Proceedings. Volume 2830 of Lecture
Notes in Computer Science., Springer (2003) 37–56

9. Nyström, J.H., Trinder, P.W., King, D.J.: Evaluating distributed functional lan-
guages for telecommunications software. In: ERLANG ’03: Proceedings of the 2003
ACM SIGPLAN workshop on Erlang, New York, NY, USA, ACM (2003) 1–7

10. Specht, E., Redin, R.M., Carro, L., Lamb, L.d.C., Cota, E.F., Wagner, F.R.: Anal-
ysis of the use of declarative languages for enhanced embedded system software
development. In: SBCCI ’07: Proceedings of the 20th annual conference on Inte-
grated circuits and systems design, New York, NY, USA, ACM (2007) 324–329

11. Kollár, J., Porubän, J., Václav́ık, P.: From eager pfl to lazy haskell. Computers
and Artificial Intelligence 25(1) (2006)

12. Běhálek, M., Šaloun, P.: Parallel process functional language. In: SOFSEM 2007:
Theory and Practice of Computer Science, 33rd Conference on Current Trends in
Theory and Practice of Computer Science, Harrachov, Czech Republic, January
20-26, Proceedings Volume II. (2007) 1–12

13. Běhálek, M., Šaloun, P.: Simulation of embedded applications implemented in em-
bedded process functional language. In: First International Conference on Com-
putational Intelligence, Modelling, and Simulation, Brno, Czech Republic, IEEE
Computer Society (7-9 September 2009) 253–258

Exact Quantum Query Algorithm for Error

Detection Code Verification

Alina Vasilieva

Faculty of Computing, University of Latvia
Raina bulv. 29, LV-1459, Riga, Latvia

alina.vasilieva@gmail.com

Abstract. Quantum algorithms can be analyzed in a query model to
compute Boolean functions. Function input is provided in a black box,
and the aim is to compute the function value using as few queries to the
black box as possible. A repetition code is an error detection scheme that
repeats each bit of the original message r times. After a message with
redundant bits is transmitted via a communication channel, it must be
verified. If the received message consists of r -size blocks of equal bits,
the conclusion is that there were no errors. The verification procedure
can be interpreted as an application of a query algorithm, where input is
a message to be checked. Classically, for N -bit message, values of all N

variables must be queried. We demonstrate an exact quantum algorithm
that uses only N /2 queries. 1

1 Introduction

Quantum computing is an exciting alternative way of computation, which is
based on the laws of quantum mechanics. This branch of computer science is
developing rapidly; various computational models exist, and this is a study of
one of them.

Let f(x1, x2, ..., xN) : {0, 1}
N

→ {0, 1} be a Boolean function. We consider
the black box model (also known as the query model), where a black box contains
the input X = (x1, x2, ..., xN) and can be accessed by querying xi values. The
goal is to compute the value of the function. The complexity of a query algorithm
is measured by the number of questions it asks. The classical version of this model
is known as decision trees [1]. This computational model is widely applicable in
software engineering. For instance, a database can be considered a black box,
and, to speed up application performance, the goal is to reduce the number of
database queries.

Quantum query algorithms can solve certain problems faster than classical
algorithms. The quantum query model differs from the quantum circuit model [2–
4], and algorithm construction techniques for this model are less developed. The
problem of quantum query algorithm construction is very non-trivial. Although

1 This research is supported by the European Social Fund project Nr.
2009/0138/1DP/1.1.2.1.2/09/IPIA/VIAA/004, Nr. ESS2009/77

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2343

there are many lower bound and upper bound estimations of quantum query
algorithm complexity [2, 5–7], there are very few examples of original quantum
query algorithms.

In this paper, we demonstrate an exact quantum query algorithm for resolv-
ing a specific problem. The task is to verify a codeword message that has been
encoded using repetition code for detecting errors [8] and has been transmitted
across a communication channel. Considered repetition code duplicates each bit
of the message. The verification procedure can be considered as an application
of a query algorithm, where the codeword to be checked is contained in a black
box. To verify the message in the classical way, we would need to access all bits.
That is, for a codeword of length N, all N queries to the black box would be
required. We will demonstrate an exact quantum query algorithm that requires
N /2 queries only.

An exact algorithm always produces a correct answer with 100% probability.
Another variation is to use a bounded-error model, where an error margin of 1/3
is allowed. It is well known that in the bounded-error model, a large difference
between classical and quantum computation is possible. The complexity gap
can be exponential as, for instance, in the case of Shor’s algorithm [9]. Another
famous example is Grover’s search algorithm that achieves a quadratic speed up
[10]. However, in certain types of computer software, we cannot allow even a small
probability of error, for example, in spacecraft, aircraft, or medical software. For
this reason, the development of exact algorithms is extremely important.

Regarding exact quantum algorithms, the maximum speedup achieved as of
now is half the number of queries compared with a classical deterministic case
[11]. The major open question is: is it possible to reduce the number of queries by
more than 50%? In this paper, we present an algorithm that achieves a borderline
gap of N /2 versus N.

2 Preliminaries

This section contains definitions and provides theoretical background on the
subject.

2.1 2.1 Error Detection and Repetition Codes

In this article, we investigate a problem related to information transmission
across a communication channel. The bit message is transmitted from a sender
to a receiver. During that transfer, information may be corrupted. Because of
the noise in a channel or adversary intervention some bits may disappear, or
may be reverted, or even added. Various schemes exist to detect errors during
transmission. In any case, a verification step is required after transmission. The
received codeword is checked using defined rules and, as a result, a conclusion is
made as to whether errors are present.

We consider a repetition error detection scheme known as repetition codes.
A repetition code is a (r, n) coding scheme that repeats each n-bit block r times

2

[8]. Verification procedure for repetition code is the following - we need to check
if in each group of r consecutive blocks of size n all blocks are equal.

In this article, we examine verification of the (2,1) repetition code. The ver-
ification process can be expressed naturally as a computing Boolean function in
a query model. We assume that the codeword to be checked is located in a black
box. We define the Boolean function to be computed by the query algorithm as
follows.

Definition 1. The Boolean function V ERIFYN (X), where N = 2k, X =
(x1, x2, ..., x2k) is defined to have a value of ”1” Iff variables are equal by pairs:

V ERIFY2k(X) =

{

1, if x1 = x2 & x3 = x4 & x5 = x6 & ... & x2k−1 = x2k

0, otherwise

2.2 Classical Decision Trees

The classical version of the query model is known as decision trees [1]. A black
box contains the input X = (x1, x2, ..., xN) and can be accessed by querying xi

values. The algorithm must be able to determine the value of a function correctly
for arbitrary input. The complexity of the algorithm is measured by the number
of queries on the worst-case input. For more details, see the survey by Buhrman
and de Wolf [1].

Definition 2. [1] The deterministic complexity of a function f, denoted by D(f),
is the maximum number of questions that must be asked on any input by a
deterministic algorithm for f.

Definition 3. [1] The sensitivity sx(f) of f on input X = (x1, x2, ..., xN) is
the number of variables xi with the following property: f(x1, .., xi, .., xN) 6=
f(x1, .., 1 − xi, .., xN). The sensitivity of f is s(f) = maxxsx(f) .

It has been proved that D(f) ≥ s(f) [1].

Theorem 1. D(V ERIFYN) = N .

Proof. Check function sensitivity on any accepting input, for instance, on X =
1111..11. Inversion of any bit will invert the function value, because a pair of bits
with different values will appear. s(V ERIFYN) = N ⇒ D(V ERIFYN) = N .

2.3 Quantum Computing

This section briefly outlines the basic notions of quantum computing that are
necessary to define the computational model used in this paper. For more details,
see the textbooks by Nielsen and Chuang [3] and Kaye et al. [4].

An n-dimensional quantum pure state is a unit vector in a Hilbert space.
Let |0〉 , |1〉 , ..., |n − 1〉 be an orthonormal basis for Cn. Then, any state can be

expressed as |ψ〉 =
∑n−1

i=0
ai |i〉 for some ai ∈ C. Since the norm of |ψ〉 is 1, we

3

have
∑n−1

i=0
|ai|

2
= 1. States |0〉 , |1〉 , ..., |n − 1〉 are called basis states. Any state

of the form
∑n−1

i=0
ai |i〉 is called a superposition of basis states. The coefficient ai

is called an amplitude of |i〉. The state of a system can be changed by applying
unitary transformation. Unitary transformation U is a linear transformation on
Cn that maps vector of unit norm to vector of unit norm. The transpose of a
m × n matrix A is the n ×m matrix AT

i,j = Aj,i for 1 ≤ i ≤ n, 1 ≤ j ≤ n. We
denote the tensor product of two matrices by A⊗B.

The simplest case of quantum measurement is used in our model. It is the
full measurement in the computation basis. Performing this measurement on a
state |ψ〉 = a0 |0〉 + ...+ an−1 |n − 1〉 gives the outcome i with probability |ai|

2.
The measurement changes the state of the system to |i〉 and destroys the original
state.

2.4 Quantum Query Model

The quantum query model is the quantum counterpart of decision trees and
is intended for computing Boolean functions. For a detailed description, see
the survey by Ambainis [6] and textbooks by Kaye, Laflamme, Mosca [4] and
de Wolf [2]. A quantum computation with T queries is a sequence of unitary
transformations:

U0 → Q0 → U1 → Q1 → ...→ UT−1 → QT−1 → UT .

U ′
is can be arbitrary unitary transformations that do not depend on the

input bits. Q′
is are query transformations. A computation starts in the initial

state
∣

∣

∣

→
0
〉

. Then we apply U0, Q0, ..., QT−1, UT and measure the final state.

We use the following definition of query transformation: if an input is a
state |ψ〉 =

∑

i ai |i〉 , then an output is |φ〉 =
∑

i(−1)xkiai |i〉 , where we can
arbitrarily choose a variable assignment xki

for each basis state |i〉.
Each quantum basis state corresponds to the algorithm’s output. We assign a

value of a function to each output. The probability of obtaining result j ∈ {0, 1}
after executing an algorithm on an input X equals the sum of squared modulus
of all amplitudes, which correspond to outputs with value j.

Definition 4. [1] A quantum query algorithm computes f exactly if the output
equals f(x) with a probability p=1, for all x ∈ {0, 1}. The complexity is denoted
by QE(f).

3 Computing V ERIFYN in a Quantum Query Model

In this section, we present the results of designing an exact quantum query al-
gorithm for Boolean function V ERIFYN (X). We start from the case of four
variables and then show how to extend the algorithm to verify N -bit codewords.
We have used a combinatorial approach to determine the structure of the algo-
rithm, and have used Mathematica [14] software to verify its correctness. In our
approach, we have tried to employ the full power of quantum parallelism, also
known as computing in a superposition.

4

3.1 Exact Quantum Query Algorithm for V ERIFY4

To familiarize the reader with the quantum query model and to build a base for
extension, we demonstrate an algorithm for verification of 4-bit codewords. The
algorithm flow is presented in Fig. 1.

Theorem 2. There exists an exact quantum query algorithm Q1 that computes
the Boolean function V ERIFY4(X) using two queries: QE(Q1) = 2 .

Fig. 1. Exact quantum query algorithm Q1 for computing V ERIFY4

The algorithm uses a 2-qubit quantum system. Each horizontal line corresponds
to the amplitude of the basis state. Computation starts with amplitude distri-
bution |START 〉 = (1, 0, 0, 0)

T
. Three large rectangles correspond to the 4 × 4

unitary matrices U0, U1 and U2. Two vertical layers of circles specify the queried
variable order for queries Q0 and Q1. Finally, four small squares at the end of
each horizontal line define the assigned function value for each basis state.

We demonstrate an example of computational flow for accepting input X=1100:

|final〉 = U2Q1U1Q0U0 (1, 0, 0, 0)
T

= U2Q1U1Q0

(

1√
2
, 0, 1√

2
, 0

)T

=

= U2Q1U1

(

− 1√
2
, 0,− 1√

2
, 0

)T

= U2Q1

(

− 1

2
,− 1

2
,− 1

2
,− 1

2

)T
=

= U2

(

− 1

2
,− 1

2
,− 1

2
,− 1

2

)T
= (-1, 0, 0, 0)

Measure
⇒ [ACCEPT : f(1100) = 1]

3.2 Exact Quantum Query Algorithm for V ERIFYN

This section describes a generalized algorithm for computing the Boolean func-
tion V ERIFYN . In the previous section, we demonstrated in detail the first
algorithm in the sequence. Now, we will show how to extend this approach to
verify codewords of length N.

Theorem 3. The Boolean function V ERIFYN (X) can be computed by an exact
quantum query algorithm using N/2 queries: QE(V ERIFYN) = N/2.

We introduce an algorithm that will construct all required transformation
matrices for a specified N. Then obtained transformations must be applied to
the initial state in a specified order.

5

The algorithm is described in Table 1. The algorithm was implemented using
Mathematica software, and its correctness was verified by a computer program.

Table 1. Exact quantum query algorithm for computing V ERIFYN

1. Setup

Boolean function to be computed: V ERIFYN = (x1, x2, ..., xN).
Number of queries: T = N/2. Number of qubits: T.

Number of amplitudes (dimension of Hilbert space): K = 2T = 2N/2.

2. Algorithm structure construction

FOR (i=1 to T) {
STEP 1: Calculate a set of indices:

|IND| = 2i; IND = {ind1, ind2, ..., ind2i} ;

IND =
{

j · K
2i + 1|j ∈

{

0, 1, ..., (2i − 1)
}}

STEP 2: Construct matrices Ui and Qi :

Initialize Ui with the identity matrix Ui = IK

Initialize Qi with the identity matrix Qi = IK

index=1;

WHILE(index < 2i) {

t1=IND[index] // indexth element from the set IND

t2=IND[index+1]

Replace elements of Ui and Qi:

Ut1,t1 = Ut1,t2 = Ut2,t1 = 1√
2

Ut2,t2 = − 1√
2

Qt1,t1 = (−1)X2i−1

Qt2,t2 = (−1)X2i

index = index + 2;

}
}

STEP 3: Final transformation - UFINAL = H⊗T , where H = 1√
2

(

1 1
1 −1

)

.

STEP 4: Initial state - |START 〉 = (1, 0, 0, ..., 0)T

STEP 5: Measurement - the only accepting state is

∣

∣

∣

→
0

〉

= |000...0〉.

3. Algorithm application

Execute the algorithm on input X by applying a constructed unitary and query
transformations in the following order:
|START 〉→U1 → Q1 → ... → QT → UT→UFINAL→[Measure].

3.3 Algorithm Analysis

To improve intuition and understanding, general algorithm for verification of
N -bit codeword can be visualized as an abstract tree (see Fig. 2). We start at
the top with state vector that has exactly one amplitude initialized to a=1 .

Queries and unitary transformations are formed and combined in such a
way, that if values of function variables are equal by pairs, then in the final state

6

Fig. 2. Visualization of the quantum query algorithm as an abstract tree

vector signs of all amplitudes will be identical. At the same time, the first row
of matrix UFINAL consists of equal elements + 1

2T/2
. It means that application

of UFINAL will join together all amplitudes and results in the state vector with

a = 1 in the first position. So, the measurement will output the state
∣

∣

∣

→
0
〉

with

100% probability. This is the accepting state ⇒ V ERIFYN (X) = 1.
If algorithm is executed on rejecting input, i.e., there is at least one pair

of variables with different values, then after all T queries number of + 1

2T/2
and

− 1

2T/2
amplitudes in state vector will be equal. This is provided by the algorithm

structure. After multiplication with UFINAL the value of the first amplitude will

be zero, so there is no probability to obtain
∣

∣

∣

→
0
〉

state after the measurement.

4 Application for a String Equality Problem

Described quantum algorithm can be adapted for solving such computational
problem as testing if two binary strings are equal. This is a well-known task,
which can be used as a subroutine in various algorithms.

Quantum algorithm for the Boolean function V ERIFYN checks whether
variables are equal by pairs, i.e., x1 = x2 & x3 = x4 & x5 = x6 & ... & x2k−1 =
x2k. On the other hand, we can consider that our algorithm is checking whether
two binary strings, Y = x1x3x5...x2k−1 and Z = x2x4x6...x2k , are equal. There-
fore, presented quantum algorithm can be easily used not only to verify repetition
codes, but also for checking the equality of binary strings.

7

5 Conclusion

In this paper, we investigated the verification of error detection codes. We have
represented the verification procedure as an application of a query algorithm to
an input codeword contained in a black box. We have presented an exact quan-
tum query algorithm, which allows verifying a codeword of length N using only
N /2 queries to the black box. This algorithm saves exactly half the number of
queries comparing to the classical case. This result repeats the largest difference
between classical deterministic and quantum exact algorithm complexity for a
total Boolean function known today in this model.

We see many possibilities for future research in the area of quantum query
algorithm design. The most significant open question still remains: is it possible
to increase exact algorithm performance more than two times using quantum
tools? We believe that it may be possible. Next, there are many computational
tasks waiting for efficient solution in a quantum setting. Regarding the veri-
fication of repetition codes, we would like to be able to verify not only (2,1)
code, but also an arbitrary (r, n) code. Another fundamental goal is to develop a
framework for building efficient ad-hoc quantum query algorithms for arbitrary
Boolean functions.

References

1. H. Buhrman and R. de Wolf: Complexity Measures and Decision Tree Complexity:
A Survey. Theoretical Computer Science, v. 288(1): 21-43 (2002).

2. R. de Wolf: Quantum Computing and Communication Complexity. University of
Amsterdam (2001).

3. M. Nielsen, I. Chuang: Quantum Computation and Quantum Information. Cam-
bridge University Press (2000).

4. P.Kaye, R.Laflamme, M.Mosca: An Introduction to Quantum Computing. Oxford
(2007).

5. A.Ambainis: Quantum query algorithms and lower bounds (survey article). In Pro-
ceedings of FOTFS III, Trends on Logic, vol. 23 (2004), pp. 15-32.

6. A.Ambainis and R. de Wolf: Average-case quantum query complexity. Journal of
Physics A 34, pp. 6741-6754 (2001).

7. A.Ambainis: Polynomial degree vs. quantum query complexity. Journal of Com-
puter and System Sciences 72, pp. 220-238 (2006).

8. T. M. Cover and J. A. Thomas: Elements of Information Theory. pp. 209-212,
Wiley-Interscience, (1991).

9. P. W. Shor: Polynomial time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing, 26(5):1484-1509
(1997).

10. L. Grover: A fast quantum mechanical algorithm for database search. In Proceed-
ings of 28th STOC’96, pp. 212. -219 (1996).

11. A.Ambainis. Personal communication, April 2009.
12. D. Deutsch and R. Jozsa: Rapid solutions of problems by quantum computation.

In Proceedings of the Royal Society of London, volume A 439, pp. 553-558 (1992).
13. R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca: Quantum algorithms revisited.

In Proceedings of the Royal Society of London, volume A 454, pp. 339-354 (1998).
14. Wolfram Research, Mathematica, http://www.wolfram.com/

8

Faster Algorithm for Mean-Payoff Games⋆

Jakub Chaloupka and Luboš Brim

Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno, Czech Republic

{xchalou1,brim}@fi.muni.cz

Abstract. We study some existing techniques for solving mean-payoff
games (MPGs), improve them, and design a randomized algorithm for
solving MPGs with currently the best expected complexity.

Key words: mean-payoff games, randomized algorithms, complexity

Introduction

A Mean-Payoff Game (MPG) [7, 8, 14] is a two-player infinite game on a finite
weighted directed graph. The game is given by a graph G = (V, E, w) with integer
edge-weights and a partition of the set of vertices V into the sets VMax and VMin.
The two players, named Max and Min, move a token along the edges of G ad
infinitum. If the token is on a vertex v ∈ VMax, Max chooses an edge (v, u) ∈ E
and the token goes to u. If the token is on a vertex v ∈ VMin, it is Min’s turn
to choose an outgoing edge. This way an infinite path is formed. Max wants to
maximize the average edge weight of the path and Min wants to minimize it. It
was proved [7] that each vertex v ∈ V has a value, denoted by ν(v), which each
player can secure by a positional strategy, i.e. strategy that always chooses the
same outgoing edge in the same vertex. To solve a MPG is to find the values of
all vertices and, optionally, also optimal strategies for both players, i.e. strategies
that secure the values.

MPGs have many applications, especially in the synthesis, analysis and ver-
ification of reactive (non-terminating) systems. Many natural models of such
systems include quantitative information, and the corresponding question re-
quires the solution of quantitative games, like MPGs. Quantities may represent,
for example, the power usage of an embedded component, or the buffer size of a
networking element [4].

Examples of applications include various kinds of scheduling, finite-window
online string matching, or more generally, analysis of online problems and al-
gorithms, and selection with limited storage [14]. Moreover, µ-calculus model-
checking is polynomial-time reducible to MPGs via parity games [9]. MPGs can
even be used for solving the max-plus algebra Ax = Bx problem, which in turn
has further applications [6].

⋆ This work has been partially supported by the Grant Agency of the Czech Republic
grant No. 201/09/1389.

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2348

2 J. Chaloupka, L. Brim

MPGs are also important from a theoretical point of view. The problem
whether the value of a certain vertex is greater or less than a certain threshold
is in the complexity class NP∩ co–NP and it is not known whether the problem
is in P.

Because of their importance, MPGs have attracted many researchers, espe-
cially in the last decade, and several algorithms for solving MPGs have been
proposed. They can be roughly divided into two categories. In the first cat-
egory are algorithms based on linear programming [2, 13]. This category also
includes algorithms based on reduction to discounted payoff games [11] and sim-
ple stochastic games [5]. In the second category are pure combinatorial graph
algorithms [14, 3, 10, 6, 8, 12].

The best complexity attained by a deterministic algorithm for solving MPGs
is pseudo-polynomial, namely O(|V |3 · |E| · W), where |V | and |E| are numbers
of vertices and edges, respectively, and W is the maximal absolute edge-weight.
It is the complexity of the algorithm of Zwick and Paterson [14] (ZP).

In this paper, we design a deterministic combinatorial algorithm with the
complexity O(|V |2 · |E| · W · log(|V | · W)), which is better for W up to 2O(|V |).
To get an algorithm which is better for all values of W , we combine our al-
gorithm with the randomized algorithm of Andersson and Vorobyov [1], and
get an algorithm with currently the best expected complexity. We note that in
typical applications, where the edge-weights represent, for example, the energy
consumption of a physical device, W is usually small in comparison with |V |, in
which case our deterministic algorithm is significantly better than ZP without
the need to combine it with any other algorithm.

1 Preliminaries

A Mean-Payoff Game (MPG) [7, 8, 14] is given by a triple (G, VMax, VMin), where
G = (V, E, w) is a finite weighted directed graph such that V is a disjoint union
of the sets VMax and VMin, w : E → Z is the weight function, and each v ∈ V
has out-degree at least one. The game is played by two opposing players, named
Max and Min. A play starts by placing a token on some given vertex and the
players then move the token along the edges of G ad infinitum. If the token is
on vertex v ∈ VMax, Max moves it. If the token is on vertex v ∈ VMin, Min
moves it. This way an infinite path p = (v0, v1, v2, . . .) is formed. Max’s aim is to

maximize his gain: lim infn→∞
1
n

∑n−1
i=0 w(vi, vi+1), and Min’s aim is to minimize

her loss: lim supn→∞
1
n

∑n−1
i=0 w(vi, vi+1). For each vertex v ∈ V , we define its

value, denoted by ν(v), as the maximum gain that Max can ensure if the play
starts at vertex v. It was proved that it is equal to the minimum loss that Min
can ensure. Moreover, both players can ensure ν(v) by using positional strategies
defined below [7]. A strategy that ensures ν(v), for all v ∈ V is called an optimal
strategy. To solve an MPG is to find the values of all vertices and, optionally,
also optimal positional strategies for both players.

A positional strategy for Max is a function σ : VMax → V such that (v, σ(v)) ∈
E, for each v ∈ VMax (Recall that each vertex has out-degree at least one).

Faster Algorithm for MPGs 3

A positional strategy for Min is defined analogously, except that it is usually
denoted by π. We define Gσ, the restriction of G to σ, as the graph (V, Eσ , wσ),
where Eσ = {(u, v) ∈ E | u ∈ VMin ∨ σ(u) = v}, and wσ = w|Eσ

. That is, we
get Gσ from G by deleting all the edges emanating from Max’s vertices that do
not follow σ. Let now σ be a strategy of Max and let π be a strategy of Min.
Gσ has just been defined, Gπ is defined analogously, and Gσ∪π is the intersection
of Gσ and Gπ, i.e., Gσ∪π = (V, Eσ∪π, wσ∪π), where Eσ∪π = {(u, v) ∈ E | (u ∈
VMin ∧ π(u) = v) ∨ (u ∈ VMax ∧ σ(u) = v)}, and wσ∪π = w|Eσ∪π

.

From the existence of optimal positional strategies it follows that ν(v) for
each v ∈ V is a a fraction with denominator at most |V |. It is because the ν
values are the mean-weights of certain cycles, namely the cycles in Gσ∪π, where
σ and π are optimal positional strategies for Max and Min, respectively. In Gσ∪π ,
each vertex has out-degree exactly one, and so for each v ∈ V , there is a unique
cycle reachable from v, and ν(v) is equal to the mean-weight of that cycle. The
fact that the ν values of vertices are mean-weights of cycles also implies that
ν(v) ∈ [−W, W], for each v ∈ V , where W = maxe∈E |w(e)|.

2 Algorithm

Our algorithm solves only the 0-mean partition problem. That is, it divides the
vertices of the graph into those with ν ≥ 0 and those with ν < 0. How to use the
algorithm to compute the exact ν values will be described later in this section.

Our algorithm computes, for each vertex v ∈ V , the value d≥0(v) – the
minimum value such that Max can ensure that the sum of traversed edges in a
play starting from v, plus d≥0(v), never goes below 0. The d≥0 value is finite only
for vertices with ν ≥ 0, because for plays starting from vertices with negative
ν value, Min has a strategy that ensures that all traversed cycles are negative,
and so Max is unable to keep the sum of traversed edges nonnegative forever,
no matter how high his starting “energy” is. Therefore, for each vertex v ∈ V
such that ν(v) < 0, the algorithm sets d≥0(v) = ∞.

Chakrabarti et al. [4] proposed a simple algorithm based on value iteration
that solves a similar problem. The difference is that the weights are on vertices,
not edges. The complexity of their algorithm is O(|V |2 · |E| ·W). We adjusted the
algorithm so that it works with weights on edges and improved its complexity
to O(|V | · |E| · W).

Our algorithm proceeds in iterations. It starts with d0(v) = 0, for each v ∈ V ,
and then computes d1, d2, . . . according to the following rules.

di+1(v) =

{

min(v,u)∈E max(0, di(u) − w(v, u)) if v ∈ VMax

max(v,u)∈E max(0, di(u) − w(v, u)) if v ∈ VMin
(1)

It is easy to see that for each v ∈ V and k ∈ N0, dk(v) is the minimum
amount of Max’s starting energy, that enables him to keep the sum of traversed
edges, plus dk(v), greater or equal to zero in a k-step play. The computation
continues until two consecutive d vectors are equal. The last d vector is then the

4 J. Chaloupka, L. Brim

desired vector d≥0. Please note that the d value of each vertex is non-decreasing,
that is, for each v ∈ V , d0(v) ≤ d1(v) ≤ d2(v) ≤ · · ·.

This works well if all vertices have ν ≥ 0. If some vertex has ν < 0, then
its d value never stops increasing and the value iteration does not terminate.
Fortunately, there is an upper bound on the d values of vertices with ν ≥ 0 and
if for some vertex v, d(v) goes past that bound, we know that ν(v) < 0. The
said bound is (|V | − 1) · W . The reason is the following.

Max has a positional strategy σ such that for each vertex v ∈ V such that
ν(v) ≥ 0, all cycles reachable from v in Gσ are non-negative. For the sake of
contradiction, let’s suppose that Min has a strategy π, not necessarily positional,
that for a play starting from some vertex v0 such that ν(v0) ≥ 0 guarantees that
at some point the traversed path has weight less than −(|V |−1)·W . Let Max use
the strategy σ against π and let p = (v0, . . . , vk) be a path agreeing with σ and
π such that w(p) < −(|V |−1) ·W . Recall that since Max uses the strategy σ, all
traversed cycles must be non-negative. Since w(p) < −(|V |− 1) ·W , the number
of vertices in p must be greater than |V |. Therefore, we can apply the following
transformation on p. Start from v0 and go along the path until an already visited
vertex is encountered, then remove the found cycle from p. Since the cycle is non-
negative, we get a shorter path p′ such that w(p′) ≤ w(p) < −(|V | − 1) ·W . We
can continue in this fashion until the path has less than |V | vertices and get a
contradiction with the fact than no path with less than |V | vertices can have
weight less than −(|V | − 1) · W . Therefore, if ν(v) ≥ 0, then (|V | − 1) · W is
a sufficient amount of starting energy to keep the energy level non-negative ad
infinitum.

Based on the facts above, we complete the algorithm by adding a test, for
each vertex v ∈ V , whether d(v) is greater than (|V | − 1) ·W or not. If it is, we
set d(v) to ∞, which is then handled in the usual way: ∞−a = ∞, where a ∈ Z.
This guarantees the termination of the algorithm. It follows that the d value of
each vertex can be improved at most O(|V | · W) times, so the algorithm makes
at most O(|V |2 · W) iterations. Since the complexity of one iteration is O(|E|),
we get the overall complexity O(|V |2 · |E| ·W). However, this can be improved to
O(|V | · |E| ·W). The key ingredients are the following. The first is to keep track
of the vertices that increase their d values, so that vertices that cannot bring
any improvement are not explored. The second is, for each vertex v ∈ VMax, to
keep track of the number of successors of v that give it the minimum from (1)
to be able to quickly determine whether the d value of v has to be improved.

In Figure 1 is a pseudo-code of our improved algorithm. It works with three
vectors of size |V |, dpre, d, d′ ∈ N

V
0 . The vector d contains the current iteration d

values of vertices, while dpre and d′ contain the previous and the next iteration
d values, respectively. The initialization is on lines 2–14. It initializes all the
vectors to vectors of zeros, except for the elements of d′ that correspond to
Max’s vertices. For these elements, the algorithm already computes the next
iteration d values using (1). For each Max’s vertex, it also computes the number
of “optimal” edges, the edges which give the vertex the minimum. These numbers
are stored in the vector nopt. There are also two queues maintained by the

Faster Algorithm for MPGs 5

algorithm. The queue q contains the vertices with improved (increased) d value.
Initially, the queue contains all vertices of the graph. The other queue is q′ and
it accumulates the vertices with improved d value for the next iteration.

The main loop of the algorithm is on lines 15–43. The termination criterion
of the loop is the queue of vertices with improved d values being empty. Each
iteration performs the following steps. It loops over the vertices with improved
distance on lines 16–35 and for each improved vertex v, it explores all of its
predecessors. The following steps depend on whether the predecessor u is Max’s
or Min’s vertex. For u ∈ VMin, we check if the improvement of the d value of v
yields also an improvement of the d value of u. If yes, we update d′(u) and if it
is the first improvement of u’s d value in this iteration of the main loop, we also
put u into the queue of improved vertices for the next iteration, q′. If u is Max’s
vertex, things are a little bit more complicated.

Since according to (1), minima are computed at Max’s vertices, it isn’t that
easy to determine whether the improvement of v’s d value yields an improvement
of u’s value. This is where the vector nopt helps. The d value of u is improved
only if all the successors giving it the current minimum increase their d value.
The vector nopt holds, for each Max’s vertex, the number of successors that give
the vertex the current minimum. Therefore, if v is one of the vertices that give u
its current minimum (condition on line 20), we decrease nopt(u) by one, but only
if it no longer gives u the current minimum (condition on line 21). If nopt(u)
drops to zero, we recompute the minimum at u, compute the value of nopt(u)
for the new minimum, and put u to the queue of improved vertices for the next
iteration (lines 22–26). When all vertices from q are explored, we prepare the
algorithm for the next iteration of the main loop.

On lines 36–41, we move all the elements from q′ to q and update the vectors
dpre and d. The current d values of the improved vertices become their previous
d values (line 39) and the new d values of these vertices become their current
d values (line 40). If a new value is greater than the bound, it becomes infinity.
After the queue q′ is processed, we increase i and start another iteration, but
only if there are some improved vertices.

The complexity analysis of the algorithm is quite simple. The d value of each
vertex can be improved at most O(|V | · W) times, so let’s determine what is
the complexity of one improvement of one vertex. For definiteness, let’s de-
note the vertex by v. If v is improved, we explore it’s predecessors in the
next iteration and that’s O(indegree(v)) operations. For v ∈ VMax, we also
have to compute the actual value of the improvement if we detect that v’s
d value has to be improved. The computation explores all of the successors of v
which takes O(outdegree(v)) time. So the overall complexity of the algorithm is
O(|V | · |W | ·

∑

v∈V (indegree(v)+outdegree(v))), and since
∑

v∈V (indegree(v)+
outdegree(v)) = 2 · |E|, the overall complexity is O(|V | · |E| · W).

Our algorithm solves only the 0-mean partition problem. It divides the ver-
tices of G into those with ν ≥ 0 (the vertices with finite d values after the
termination of the algorithm) and those with ν < 0 (the vertices with infinite d
values after the termination). The algorithm can also be used to solve the p-mean

6 J. Chaloupka, L. Brim

1 proc VI(G = (V, E, w), VMax, VMin)
2 foreach v ∈ V do

3 dpre(v) := 0
4 d(v) := 0
5 if v ∈ VMax then

6 d′(v) := max(0, min(v,z)∈E(0 − w(v, z)))
7 nopt(v) :=| {(v, z) ∈ E | d′(v) = max(0, 0 − w(v, z))} |
8 if d′(v) > 0 then q′.enqueue(v) fi

9 else

10 d′(v) := 0
11 fi

12 q.enqueue(v)
13 od

14 i := 0
15 while ¬q.empty() do

16 while ¬q.empty() do

17 v := q.dequeue()
18 foreach (u, v) ∈ E do

19 if u ∈ VMax then

20 if i > 0 ∧ d(u) ≥ dpre(v) − w(u, v) then

21 if d(v) − w(u, v) > 0 then nopt(u) := nopt(u) − 1 fi

22 if nopt(u) = 0 then

23 d′(u) := min(u,z)∈E(d(z) − w(u, z))
24 nopt(u) :=| {(u, z) ∈ E | d′(u) = d(z) − w(u, z)} |
25 q′.enqueue(u)
26 fi

27 fi

28 else

29 if d′(u) < d(v) − w(u, v) then

30 if d′(u) = d(u) then q′.enqueue(u) fi

31 d′(u) := d(v) − w(u, v)
32 fi

33 fi

34 od

35 od

36 while ¬q′.empty() do

37 v := q′.dequeue()
38 q.enqueue(v)
39 dpre(v) := d(v)
40 if d′(v) > (|V |−1) · W then d′(v) := ∞ fi; d(v) := d′(v)
41 od

42 i := i + 1
43 od

44 return ({v ∈ V | d(v) < ∞}, {v ∈ V | d(v) = ∞})
45 end

Fig. 1. Improved value iteration for solving the zero-mean partition problem

Faster Algorithm for MPGs 7

partition problem for arbitrary rational number p, because if we subtract p from
all edge-weights, then the ν values of all vertices also decrease by p. The exact
ν values of all vertices can then be computed by binary search. The complexity
analysis of the resulting algorithm follows.

Since the ν values are fractions with denominators at most |V |, we have to
solve the p-mean partition problems only for ps with denominators at most |V |.
This increases the complexity of the 0-mean partitioning algorithm to O(|V |2 ·
|E| · W), because the smallest possible increase of a d value of a vertex is not
1 but 1/|V |. To be able to determine the ν values exactly, we run each branch
of the binary search until the size of the search interval is at most 1/|V |2. In
such a small interval there can be only one rational number with denominator
at most |V |, and this is the ν value of the vertices in that branch of the binary
search. Since the ν value of each vertex is in the interval [−W, W], the depth of
the binary search is in O(log(|V |2 · W)) = O(log(|V | · W)), and so the overall
complexity of the algorithm is O(|V |2 · |E| · W · log(|V | · W)).

To obtain an algorithm with currently the best complexity we combine our
algorithm with the randomized algorithm of Andersson and Vorobyov [1]. It

has the complexity |V |2 · |E| · e2·
q

|V |·ln(|E|/
√

|V |)+O(
√

|V |+ln |E|), which is bet-
ter than the complexity of our algorithm for large W . If we interleave the
two algorithms and add a stopping criterion which terminates the computa-
tion when either of the two algorithms finishes, we get a randomized algorithm
with the expected complexity min(O(|V |2 · |E| · W · log(|V | · W)), |V |2 · |E| ·
e2·

q

|V |·ln(|E|/
√

|V |)+O(
√

|V |+ln |E|)), which is currently the best expected com-
plexity of an algorithm for solving mean-payoff games. This deserves a little
more comments, which the following subsection is dedicated to.

2.1 Comparison with other algorithms

The algorithm of Zwick and Paterson [14] (ZP) has the complexity O(|V |3 · |E| ·
W), which is better than the first term of the complexity of our algorithm for
very large W . However, it is not better for W up to 2O(|V |), and for W in 2O(|V |),
the second term of our algorithm is already better. Therefore, our algorithm has
better complexity than ZP.

We must also compare our algorithm with the algorithm of Björklund and
Vorobyov [3] (BV), which has the complexity min(O(|V |3 · |E| · W · log(|V | ·
W)), (log W)·2O(

√
|V |·log |V |)). This can be improved to min(O(|V |·(|V |·log |V |+

|E|) ·W · log(|V | ·W)), (log W) ·2O(
√

|V |·log |V |)) by the following modifications to
the algorithm. The first is to use Dijkstra’s algorithm instead of Bellman-Ford’s
algorithm, which is one of the subroutines of BV. This is made possible by a
potential transformation of the edge-weights as described by Schewe [12]. The
second modification is to use a technique similar to the key technique of our
algorithm that improves its complexity by a factor of |V |. However, the first
term of the complexity of BV exceeds the first term of the complexity of our
algorithm, and the second term of the complexity of BV exceeds the second term

8 J. Chaloupka, L. Brim

of the complexity of our algorithm, even for small W . Therefore, BV is worse.
We stress that the improvement of BV outlined above is not straightforward and
it is an interesting result per se, but since we achieved better complexity with
our algorithm, and also for space reasons, we decided not to give the details of
the improvement here.

The algorithm of Svensson and Vorobyov [13] based on linear programming
has the complexity O(|V | · |E| ·W). However, it solves only the 0-mean partition
problem for bipartite games with no zero cycles. The 0-mean partition problem
for general games can be reduced to the special case, but the reduction increases
edge-weights by a factor of |V |. The exact ν values of all vertices can be computed
by binary search, but, as already mentioned, it requires solving p-mean partition
problems for rational ps, which increases the complexity by another factor of |V |.
All in all, computation of the exact ν values using the algorithm of Svensson and
Vorobyov and binary search has the complexity O(|V |3 · |E| · W · log(|V | · W)),
which exceeds the complexity of our algorithm.

The algorithm of Lifshits and Pavlov [10] has the complexity O(|V | · |E| ·
2|V | · log(W)), which is worse than the second term of the complexity of our
algorithm.

All the other algorithms for solving MPGs we know of have either the same or
worse complexity than the algorithms we have already compared our algorithm
with.

3 Conclusion

We designed a deterministic algorithm for solving mean-payoff games with the
complexity O(|V |2 · |E| ·W · log(|V | ·W)). In combination with the randomized
algorithm of Andersson and Vorobyov [1], it is a randomized algorithm with
currently the best expected complexity, namely:

min(O(|V |2 · |E| ·W · log(|V | ·W)), |V |2 · |E| · e2·
q

|V |·ln(|E|/
√

|V |)+O(
√

|V |+ln |E|))

References

1. D. Andersson and S. Vorobyov. Fast algorithms for monotonic discounted linear
programs with two variables per inequality. Technical Report Preprint NI06019-
LAA, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, 2006.

2. H. Björklund, O. Svensson, and S. Vorobyov. Linear complementarity algorithms
for mean payoff games. Technical Report DIMACS-2005-13, DIMACS, New Jersey,
USA, 2005.

3. H. Björklund and S. Vorobyov. A combinatorial strongly subexponential strat-
egy improvement algorithm for mean payoff games. Discrete Applied Math.,
155(2):210–229, 2007.

4. A. Chakrabarti, L. de Alfaro, T. Henzinger, and M. Stoelinga. Resource interfaces.
In Proc. Embedded Software, volume 2855 of LNCS, pages 117–133. Springer, 2003.

Faster Algorithm for MPGs 9

5. A. Condon. On algorithms for simple stochastic games. In Advances in Computa-

tional Complexity Theory, volume 13 of DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, pages 51–73. American Mathematical Society,
1993.

6. V. Dhingra and S. Gaubert. How to solve large scale deterministic games with
mean payoff by policy iteration. In Proc. Performance evaluation methodolgies

and tools, article no. 12. ACM, 2006.
7. A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games.

International Journal of Game Theory, 8(2):109–113, 1979.
8. V. A. Gurvich, A. V. Karzanov, and L. G. Khachivan. Cyclic games and an

algorithm to find minimax cycle means in directed graphs. USSR Comput. Math.

and Math. Phys., 28(5):85–91, 1988.
9. M. Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.

Lett., 68(3):119–124, 1998.
10. Y. Lifshits and D. Pavlov. Fast exponential deterministic algorithm for mean payoff

games. Zapiski Nauchnyh Seminarov POMI, 340:61–75, 2006.
11. A. Puri. Theory of hybrid systems and discrete event systems. Phd thesis, EECS

University of Berkeley, Berkeley, CA, USA, 1995.
12. S. Schewe. An optimal strategy improvement algorithm for solving parity and

payoff games. In Proc. Computer Science Logic, volume 5213 of LNCS, pages
369–384. Springer, 2008.

13. O. Svensson and S. Vorobyov. Linear programming polytope and algorithm for
mean payoff games. In Proc. Algorithmic Aspects in Information and Management,
volume 4041 of LNCS, pages 64–78. Springer, 2006.

14. U. Zwick and M. S. Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158(1–2):343–359, 1996.

One Size Does Not Fit All – How to Approach
Intrusion Detection in Wireless Sensor Networks

Andriy Stetsko and Václav Matyáš

Department of Computer Systems and Communications
Faculty of Informatics, Masaryk University

{xstetsko, matyas}@fi.muni.cz

Abstract. A wireless sensor network (WSN) is a highly distributed net-
work of resource constrained and wireless devices called sensor nodes. In
the work we consider intrusion detection systems as they are proper
mechanisms to defend internal attacks on WSNs. A wide diversity of
WSN applications on one side and limited resources on other side implies
that “one-fit-all” intrusion detection system is not optimal. We present
a conceptual proposal for a suite of tools that enable an automatic de-
sign of intrusion detection system that will be (near) optimal for a given
network topology, capabilities of sensor nodes and anticipated attacks.

1 Introduction

A wireless sensor network (WSN) consists of sensor nodes – devices that are
equipped with sensor(s), microcontroller, wireless transceiver and battery. Each
sensor node monitors some physical phenomenons (e.g., humidity, temperature,
pressure, light, etc.) inside an area of deployment. The collected measurements
are then sent to a base station – a gateway between a WSN and external world
(in most cases the Internet).

In the work we consider WSNs that contain hundreds of thousands of nodes
distributed over an area of hundreds square kilometers. Communication range of
sensor nodes is limited to tens of meters and hence not all of them can directly
communicate with a base station. Therefore, data are sent hop-by-hop from one
sensor node to another until they reach a base station (see Figure 1).

Sensor nodes are constrained in processing power and energy, whereas a base
station is assumed to have laptop capabilities and unlimited energy resources.
Crossbow MICAz1 is an example of average sensor node. It contains Atmel
Atmega128L microcontroller, 802.15.4 compliant (250kbps) Texas Instruments
CC2420 transceiver and two AA batteries. The microcontroller features 8b pro-
cessor (operating at 8MHz), 128kB FLASH, 4kB EEPROM and 4kB SRAM.
Currently the sensor node is available at price of e110. That eliminates de-
ployment of a large number of sensor nodes. However, it is believed that recent
advances in micro-electro-mechanical systems will decrease the cost significantly.

1 See manufacturer’s website http://www.xbow.com/.

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2347

It is expected that WSNs will have many applications in military, ecology, build-
ing and industrial automation, energy management, agriculture and even wildlife
monitoring. Security becomes an important issue for WSNs and brings new chal-
lenges for security engineers.

Fig. 1: Wireless sensor network. A base station is depicted as the black filled
circle and sensor nodes are depicted as gray ones. We assume that communication
ranges (represented by dotted circles) of neighboring sensor nodes are symmetric.

Cryptographic techniques can be used to prevent an external attacker (out-
sider) [9] from eavesdropping or altering the ongoing communication2. Encryp-
tion does not solve the problem of jamming attacks, where a malicious node
(or other device) purposefully tries to interfere with physical transmission and
reception of wireless communication.

An area of deployment is most often not physically protected and an attacker
can easily access the area and capture some nodes3. Being a legitimate partici-
pant of the network the attacker (insider) can launch a variety of internal attacks.
In the work we consider: a selective forwarding attack in which an attacker se-
lectively drops packets [5]; a sinkhole attack in which an attacker attracts all
traffic from a particular area towards itself, typically by making a compromised
node look attractive to neighboring nodes with respect to routing algorithm [5];
a packet alternation attack in which a malicious node modifies packets that it
forwards for the neighbors.

Sensor nodes are not tamper-resistant and an attacker can extract crypto-
graphic keys from captured nodes. The attacker can replicate (also known as
clone attack) [6] the nodes, deploy them into a network and then launch attacks
described above. The attacker can also create nodes with several identities, also
known as Sybil nodes [5]. These nodes may have an impact on multipath routing,
voting, data aggregation, fair-resource allocation and misbehavior detection.

In this work we consider intrusion detection systems (IDSs) since they are,
in comparison to cryptographic techniques, better mechanisms to defend against
internal attacks on WSNs. In Section 2 we describe basics of intrusion detection
systems for wireless sensor networks – what kinds of audit data can be gathered

2 A survey on performance of symmetric/asymmetric cryptographic primitives and
hash functions implemented for WSNs is available in [8].

3 We assume that a number of such nodes is significantly smaller than a total number
of sensor nodes in the network.

2

and for detection of what types of attack they can be used. “One-fit-all” IDS is
not optimal because of the wide range of WSN applications and limited resources
of sensor nodes. In Section 3 we propose a conceptual architecture of a suite of
tools that will provide administrators with an IDS that fits best its purposes.

2 Intrusion detection in wireless sensor networks

In the work we consider a distributed IDS that consists of IDS agents.We assume
that every sensor node runs an IDS agent which monitors its neighbors using both
local and watchdog monitoring techniques [1]. In the local monitoring technique
sensor nodes collect and analyze only data forwarded by themselves (see Figure
2a). In the watchdog technique, sensor nodes collect an analyze data overheard
in their neighborhood (see Figure 2b). We assume that sensor nodes employ
single-channel transceivers. However, if the multi-channel transceivers are used,
it might happen (the worst scenario) that the watchdog technique will be useless
and an IDS will have to rely only on the local monitoring technique.

A B C

(a) The sensor node B monitors traffic
that it forwards from the node A to the
node C

A

B

C

(b) The sensor node B monitors in
promiscuous mode traffic from the node
A to the node C

Fig. 2: Traffic monitoring techniques

A conceptual model of an IDS agent is presented in [10]. Audit data gath-
ered by a local audit data collection module are subsequently analyzed by a local
detection module(s). A cooperative detection module is used to propagate intru-
sion detection state information or/and audit data among neighboring nodes. In
case a local detection evidence is weak or inconclusive the cooperative detection
module can use information (e.g., audit data) received from other IDS agents to
detect an ongoing attack. After the attack is detected local response and global
response modules trigger reactions. We assume that the local response mod-
ule will stop any communication with the malicious node. The global response
module will notify an administrator and he/she will remove or reprogram the
malicious node. A secure communication module should provide cooperating
nodes with a secure communication channel.

3

We assume that IDS agents will be implemented for TinyOS – the most
widely used operating system for wireless sensor networks. It is important to
understand what kind of network audit information we can gather. In TinyOS,
the basic network abstraction is an active message that includes source and desti-
nation addresses [3]. Also it provides synchronous acknowledgements. Hardware
independent components (e.g., active message) are built on top of hardware de-
pendent components. Crossbow Imote2, MICAz and TELOSB sensor nodes as
well as Sentilla Tmote Sky sensor nodes use TI CC2420 transceiver4. The corre-
sponding CC2420 Radio Stack [4] supplies each outgoing message with a unique
data sequence number and also provides possibility to read RSSI (received signal
strength indication) of each received packet.

The audit data collection module logs source and destination addresses of
received, overheard and sent packets. Also it logs: RSSI of received packets as
well as information whether a packet passed CRC check or not; information
whether an attempt to send a packet was successful or not, whether a packet
was received by recipient (acknowledged) and how much time was spent waiting
for the channel (carrier sensing time). All this information is gathered for a
period of time of duration T and we call it temporal information. Having this
information, different temporal statistics can be calculated. Examples of such
statistics are presented below.

1. Packet delivery ratio – a ratio of packets that are successfully delivered to a
destination compared to a number of packets that were sent by the sender.

2. Packet sending rate – a number of packets sent by a neighboring sensor node.

3. Packet receiving rate – a number of packets received by a neighboring sensor
node.

4. Packet dropping rate – a ratio of packets sent by a neighboring sensor node
with respect to a number of packets received by that node.

5. Number of neighbors.

6. A function of RSSI (e.g., average, maximum).

7. A function of carrier sensing time (e.g., average, maximum).

Packet delivery ratio can be calculated either at the sender or at the receiver.
At the receiver it is calculated as a ratio of a number of packets that passed the
CRC check with respect to a number of packets received. At the sender it is
calculated as a ratio of a number of ACK received with respect to a number of
packets sent.

The calculated statistics can be used to detect different attacks. For example,
carrier sensing time, packet delivery ratio and RSSI are used to detect jamming
attacks [2]. Selective forwarding attacks can be detected by monitoring packet
dropping rate [1]. Packet receiving ratio can be used to detect sinkhole attacks.

4 We consider these radio chips since they are 802.11.4 compliant and provide hardware
support of AES.

4

3 Intrusion detection system fits to purpose

Density of a network, capabilities of involved sensor nodes, anticipated types of
attack and other critical parameters may vary from one application to another.
Due to a wide range of WSN applications on one side and limited resources on
other side a “one-fit-all” IDS is not optimal. Therefore, we propose to make a
two-level optimization.

1. In order to detect different attacks a variety of local detection modules
can be implemented. An administrator will specify anticipated attacks and we
propose to include only such detection modules in the IDS agent that detect
the specified attacks. This approach will save memory and energy that are very
important for WSNs. To our best knowledge nobody has yet applied such idea
to WSNs.

2. Parameters of detection modules (included in the IDS agent configuration)
might not be optimal for a given application. We propose to optimize them for
a network topology, sensor nodes capabilities and anticipated types of attack,
which all will be specified by a network administrator. In conventional networks,
in majority of cases, a trade-off between a number of false positives, a number
of false negatives and memory usage is found. However, for WSNs this is not
enough. Sensor nodes are energy constrained and if ever depleted they will stop
fulfilling their main goal – monitoring of area of deployment. Therefore, for WSNs
a trade-off between detection accuracy, memory usage and energy usage should
be found. For example, if IDS agents cooperate between themselves it involves
communication, which in comparison with computation, consumes significantly
more energy [7]. On other side cooperation increases a detection accuracy since
a single monitoring node may not have enough information to detect an attack,
e.g., due to collisions [1].

We propose a suite of tools that should provide an administrator of a network
with a (near) optimal IDS. The suite includes Framework and Simulator (see
Figure 3). A network administrator provides descriptions of network topology,
sensor node characteristics and anticipated attacks to the Framework. It contains
a database of available components which will be used to compose an IDS agent.
To make automatic design of an IDS agent possible we should specify types
of component that can be used and interfaces between them. The first step
is to design a local audit collection module that will gather audit data that
might be “ever” required by any detection module. We have undertaken the
analysis of state-of-the-art IDSs for WSNs and possible audit data ever met
in the studied literature have been described in Section 2. In the worst case, if
some detection module needs audit data that are not gathered by the local audit
collection module, the collection module should be designed in such way that an
administrator will be able to add the required functionality easily.

There are different detection modules among the components in the database.
Based on the specified attacks the Framework generates a possible configuration
of the IDS agent. The configuration will be optimized using the Simulator in
the following way. The Framework sets initial values of parameters and evaluates
effectiveness of the configuration using metrics, examples of which we describe

5

further in the section. Based on the evaluation the Framework “improves” the
values of parameters and repeats the procedure until they become (near) op-
timal for given network topology, capabilities of sensor nodes and anticipated
attacks. Should there are more than one possible configuration each of them is
optimized separately. Evaluations of optimized configurations can be used by an
administrator to choose the one that fits best its purposes.

Fig. 3: An architecture of the proposed suite of tools. The arrow with number
“1” depicts inputs provided by an administrator. The arrow “2” depicts a con-
figuration that is passed to the Simulator. The arrow “3” depicts a feedback
on effectiveness of the configuration based on evaluating metrics. The arrow “4”
depicts an optimized configuration and its evaluation of effectiveness.

In order to understand how to evaluate an IDS we will firstly analyze attacks
and their impacts on a network. Sinkhole attacks result in data receiving delays
and additional energy usage because data do not travel along the shortest path.
Let us assume that each node shares a cryptographic key with a base station as
well as each node sends packet and waits for its acknowledgement. If a packet
is modified along the path a base station may drop the packet and request to
resend it again. That will cause a packet delay and additional usage of energy.
If the packet is modified again and again it will not be ever delivered to the
base station. Selective forwarding attack may result in sending the dropped
packet again and again. Similarly as in the packet alternation attack, that can
cause delays and additional energy usage. If a jamming attack lasts too long a
packet will be dropped if a new packet arrives and buffer is full. To sum up, the
considered attacks may cause losses of packets, modifications of packets, delivery
delays and additional energy usage.

The main goal of IDS is to detect ongoing attacks and respond in such a way
that the impact of the attacks will be minimal. The presented examples of metrics
evaluate the impact of the sinkhole, selective forwarding, packet alternation and
jamming attacks as well as an effectiveness of a given IDS. The smaller the
measured impact is, the more effective IDS is. We assume that all of the metrics
will be measured during a period of time of duration Q (Q ∈ R+). The parameter
Q will be chosen by an administrator.

6

1. We propose to count the number of lost packets as a difference between
a number of packets sent by sensor nodes and a number of packets successfully
received by a base station. The packets may get lost due to collisions, buffer
overflows and environment changes. We assume that a number of packets lost in
such way is constant for each time interval of duration Q if Q is long enough.
It is noteworthy to mention that an increase of number of detected malicious
nodes does not necessary mean that a number of successfully received packets
will increase as well. Having a smaller number of nodes an attacker can change
the strategy and drop/modify/jam more packets than before.

2. We propose to count the number of modified packets received at the base
station. Packets that had been modified and hence were subsequently dropped
are not counted as they are considered as lost. We can extend the metric by
introducing a function that will determine how much the original packet differs
from the modified one. An administrator will specify the function and thereby
specify what packet fields are more critical than others.

3. We propose to evaluate the total amount of energy used by the network by
summing up energy used by each sensor node. However, the metric does not take
into account a distribution of energy usage – some sensor nodes may be depleted
soon whereas others may remain fully charged. That may cause partition of
a network and measurements from isolated regions of the network will never
reach a base station. Such packets will be considered as lost. In order to avoid
such situations we propose to use a metric that prioritizes IDSs which detect and
respond to attacks in such way that energy consumption is distributed uniformly
as much as possible. As an example of the metric we consider Θ =

∑n
i=1 c

ei ,
where n is a number of sensor nodes in a network, ei is an amount of energy
consumed by sensor node i, (1 ≤ i ≤ n) and c (c ∈ R, c > 1) is a constant that
should be specified by an administrator.

4 Conclusions and further work

IDSs are useful for different networks since there are no guaranties that an at-
tacker remains outside a perimeter secured by a firewall. In WSNs risks of being
attacked by an insider are higher than in conventional networks since the area
of their deployment is most often not physically protected. Due to a distributed
nature of WSNs and severe limitations of sensor nodes on energy, memory and
computation power, traditional IDSs are not applicable to the WSNs. Moreover,
“one-fit-all” IDS is far away from being optimal for a given network topology,
capabilities of sensor nodes and set of anticipated attacks in terms of detection
accuracy and resources consumption. Therefore, the aim of our work was to pro-
pose a conceptual architecture of a suite of tools that will provide a network
operator with a (near) optimal IDS for a given application. The optimalization
process was divided into two steps. The first will save memory and energy by
including into an IDS agent only modules that are used for detection of antici-
pated attacks. The second will find a trade-off between detection accuracy and
resources consumption by setting parameters of detection modules and evalu-

7

ating the configuration according to the defined metrics using a simulator. The
proposed metrics evaluate impact of sinkhole, selective forwarding, packet al-
ternation and jamming attacks by counting a number of lost/modified packets
and energy consumed by a network. The smaller the measured impact is, the
more effective an IDS is. The list of metrics is not complete and we currently
extend it as well as add a classification of types of components that can be used
to construct an IDS agent and define interfaces between them. We also plan to
work on the selection of a proper optimization algorithm and a proper simulator.
Since the space of possible solutions might be too large for exhaustive search,
approximation algorithms might be used. Evaluation of the implemented suite
of tools will be based on the time needed to find (near) optimal solution and on
how close the obtained solution is to the optimal one.

5 Acknowledgement

This work was supported by the project 102/09/H042 “Mathematical and En-
gineering Approaches to Developing Reliable and Secure Concurrent and Dis-
tributed Computer Systems” of the Czech Science Foundation.

Also we would like to thank Petr Švenda for the fruitful discussions.

References

1. Krontiris, I., Dimitriou, T., Freiling, F. C.: Towards Intrusion Detection in Wireless
Sensor Networks. In: 13th EuropeanWireless Conference. (2007)

2. Xu, W., Trappe, W., Zhang, Y., Wood, T.: The feasibility of launching and detecting
jamming attacks in wireless networks. In: Proceedings of the 6th ACM international
symposium on Mobile ad hoc networking and computing. (2005) 46–57

3. Levis, P.: Packet Protocols. (http://www.tinyos.net/)
4. Levis, P.: CC2420 Radio Stack. (http://www.tinyos.net/, 2007)
5. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: Attacks and

countermeasures. In: First IEEE International Workshop on Sensor Network Pro-
tocols and Applications. (2003) 113–127

6. Parno, B., Perrig, A., Gligor, V.: Distributed detection of node replication attacks
in sensor networks. In: IEEE Symposium on Security and Privacy. (2005) 49–63

7. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture
directions for networked sensors. In: Proceedings of the ninth international confer-
ence on Architectural support for programming languages and operating systems.
(2000) 93–104

8. Roman, R., Alcaraz, C., Lopez, J.: A survey of cryptographic primitives and im-
plementations for hardware-constrained sensor network nodes. In: Mobile Networks
and Applications Journal, Vol. 12, Num. 4. (2007) 231–244

9. Roosta, T., Pai, S., Chen, P., Sastry, S., Wicker, S.: Inherent Security of Routing
Protocols in Ad-Hoc and Sensor Networks. In: IEEE Global Telecommunications
Conference. (2007) 1273–1278

10. Zhang, Y., Lee, W.: Intrusion detection in wireless ad-hoc networks. In: Proceed-
ings of the 6th annual international conference on Mobile computing and networking.
(2000) 275–283

8

Rewriting Systems over Nested Data Words
Invariance checking for systems with dynamic control and

data structures

A. Bouajjani C. Drăgoi Y. Jurski M. Sighireanu
{abou,cezarad,jurski,sighirea}@liafa.jussieu.fr

LIAFA, University of Paris Diderot and CNRS, 75205 Paris 13, France

Abstract. We propose a generic framework for reasoning about infinite
state systems handling data like integers, booleans etc. and having com-
plex control structures. We consider that configurations of such systems
are represented by nested data words, i.e., words of ... words over a po-
tentially infinite data domain. We define a logic called NDWL allowing to
reason about nested data words, and we define rewriting systems called
NDW-RS over these nested structures. The rewriting systems are con-
strained by formulas in the logic specifying the rewriting positions as well
as structure/data transformations. We define a fragment Σ∗

2 of NDWL
with a decidable satisfiability problem. Moreover, we show that the tran-
sition relation defined by rewriting systems with Σ∗

2 constraints can be
effectively defined in the same fragment. These results can be used in
the automatization of verification problems such as inductive invariance
checking and bounded reachability analysis. Our framework allows to rea-
son about a wide range of concurrent systems including multithreaded
programs (with procedure calls, thread creation, global/local variables
over infinite data domains, locks, monitors, etc.), dynamic networks of
timed systems, cache coherence/mutex/communication protocols, etc.

1 Introduction

Automated verification of modern software systems require reasoning about sev-
eral complex features such as dynamic creation of concurrent threads, data
manipulation, procedure calls, timing constraints, etc. For that, infinite-state
models must be considered allowing to capture these features, and algorithmic
techniques must be designed allowing to cope with these multiple sources of
infinity in the state space.

We introduce in this paper a logic-based framework for reasoning about
systems with composite (or nested) data structures such as multi-sets of inte-
gers, multi-dimensional arrays of integers, arrays of stacks or queues of integers.
Nested data structures are also relevant when reasoning about systems with a
complex control structure. For instance, the configuration of a program with dy-
namic thread creation and procedure calls can be naturally modeled as multi-sets
of stacks over some potentially infinite domain of data (which can be themselves
composite data structures).

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2356

We consider nested data words (NDW for short1) as formal objects for the
representation of configurations of such systems with complex control and data.
The domain of NDW is parameterized by the domain of (scalar) data used in
these objects. We propose a logic, NDWL, for reasoning about such objects.
The logic NDWL is parametrized by a data logic (a first order logic over the
chosen data domain). NDWL allows to constrain the values of the data located
at different nesting levels and at different positions in these nested data words.
We consider a fragment of NDWL, called Σ∗2 , which consists of all formulas of the
form ∃≤k∀k∃≤k−1∀k−1 . . . ∃≤1∀1. ϕ where the quantifiers are on variables ranging
over positions at different nesting levels of the structures, and ϕ is a formula (in
the considered data logic) constraining the data attached to these positions.
The satisfiability problem is decidable for Σ∗2 whenever the underlying logic on
scalar data is. We show that this result can be used for checking automatically the
invariance of assertions w.r.t. relations on NDW which are effectively represented
in Σ∗2 .

Then, we introduce a class of rewriting systems over NDW, called NDW-RS.
Each rewriting rule in a NDW-RS is constrained by formulas in NDWL spec-
ifying the rewriting positions and the structure/data transformation at these
positions. We associate with each rewriting rule a NDWL formula characterizing
the relation on NDWs induced by this rule. Therefore, we obtain a procedure for
checking automatically invariance properties w.r.t. this class of models.

Finally, we show that our framework allows to deal with a large class of sys-
tems including distributed mutual exclusion protocols, cache coherence proto-
cols, timed networks. In particular, we provide a systematic modeling for multi-
threaded programs with procedure calls and synchronization by monitors.
Related work. The verification of dynamic/parametrized networks of infinite-
state processes has been addressed in several papers such as [2, 13, 10, 4, 11, 9, 8,
14]. All these works consider only one level nesting of data structures, i.e., collec-
tions (multisets, arrays, words) over infinite scalar data. Recently, [1, 15] propose
a framework allowing two levels of nesting with a special form: N processes may
have local arrays of integers of size exactly N . The verification approach used in
these works is upper-approximate backward reachability analysis for a particular
class of data constraints (gap order constraints on integers). Our work offers a
larger framework for modeling and specification. On the other hand, while our
framework allows for automatic inductive invariance checking, [13, 1, 4] allow for
more automated verification of safety properties based on abstract analysis.

In comparison with [9, 8], this paper presents several significant and nontriv-
ial extensions. First, we consider a more general framework where composite
(nested) data structures can be handled. This allows to deal with classes of sys-
tems (such as multithreaded programs with infinite data and unbounded number
of monitors/locks, etc.) which cannot be handled in the previous frameworks.
Second, we consider here a more general class of rewriting systems (with mixed
existential and universal rewriting strategies) allowing to model a larger class of
communication and synchronization primitives. For instance, broadcast commu-

1 NDW are not related with “nested words” in [3]

2

nication cannot be considered in the frameworks defined in our previous work,
and the same holds for timing constraints (which require a global synchronization
of the clocks).

Let us finally mention that logics on data words/trees have been proposed
for reasoning about XML documents [6, 5, 12]. The considered logics and the
obtained results in these works are not comparable with ours.

2 Motivation

We are interested in verifying automatically concurrent recursive programs with
dynamic process creation, where the processes use data from infinite domains.
The processes synchronize by monitors. The control is changed using sequential
composition, conditionals, “while” loops, and procedures calls2. In the following
we give an example of such a program.

Example The program, given in Fig. 1, is written in a Java-like syntax. An array
M of monitors is accessed concurrently by threads created during the execution
of the program. (The size of M changes by creating threads therefore monitors;
the code for thread creation is omitted). Each thread has a unique identifier
id≥ 0 and has the task of creating a monitor and putting it in M at index id.

1 Vector<Moni> M = new Vector<Moni >() ;

2 monitor Moni {//Monitors d e f i n i t i on

3 int id ;

4 procedure p () {
5 int j = value in [0 , id) ;

6 i f (M. get (j)!= null)

7 M. get (j) . p () ;

8 }
9 thread T {//Threads d e f i n i t i on

10 int id ;

11 procedure run () {
12 M. s e t (id , new Moni (id)) ;

13 M. get (id) . p () ;

14 }
15 }

Fig. 1. Example of program.

All monitors have the same type,
Moni, which has one procedure p, i.e.,
p shall be executed in mutual exclu-
sion. The procedure chooses a number
j strictly smaller than the identifier of
its owning monitor and, if the monitor
M[j] has been created, it calls its pro-
cedure. The property to check on such
programs is the absence of deadlock
due to the mutual waiting on the moni-
tors. The inter-blocking of threads may
appear if a thread i1 has locked the
monitor M[j1] and it is waiting now to
lock the monitor M[j2], while, in par-

allel, a thread i2 has locked the monitor M[j2] and it is waiting now to lock
the monitor M[j1]. The absence of deadlock can be established by checking the
invariance property that the call stacks of all threads are always sorted w.r.t.
their integer values.

Representing program configurations by nested data words The configurations of
the program are given by the configuration of the vector M and the configuration
of threads, where each of these threads has an attached unbounded call stack,
and each of these stacks contains values over the infinite domain of integers
(corresponding to the values of variables id and j). We represent the threads
configuration as words where each position denotes a thread. Therefore, each

2 We do not allow pointer manipulation.

3

position has attached an integer data and a subword over integers, denoting the
identity of the process and its call stack. The vector elements are distinguished
positions in this nested data word, that have attached only the identity of the
monitor and an empty subword. This structure of word of words of ... words
we called it nested data words (NDW) over a potentially infinite data domain.
Let Σ be a finite alphabet, and let D be a (infinite) data domain. The nested
data words domain NDW is the union of the family {NDWk}k≥0 where (i) for
k ≥ 1, NDWk contains all sequences indexed by subsets of N with values in
Σ × D × NDWk−1, i.e., NDWk = {w | w : N ⇀ Σ × D × NDWk−1}, (ii) NDW0

contains only the empty word, denoted ε, ε(i) is undefined for all i ∈ N.
The elements of NDWk are called nested data words of level k. Since any

w ∈ NDW is a partial function we denote by dom(w) the subset of N where w is
defined. We call indexes the natural numbers in the domain of w ∈ NDW; their
level is given by the level of the word they index.

Given a word w in NDWk (k > 1) and p ∈ dom(w), then label(w[p]) (resp.
data(w[p]), ndw(w[p])) denotes the first (resp. second, third) member of the tu-
ple w[p]. These notations extend to sequences of indexes, e.g., label(w[p1, . . . , pj])
(1 < j ≤ k) denotes the label attached to index pj of the inner subword
ndw(w[p1, . . . , pj−1]) (label(w[p1, . . . , pj]) = label(ndw(w[p1, . . . , pj−1])[pj])).

7

R 2 R 7 R 5

A 7

C 5

A 2

R 3

A 3

R 1

0 1 2 3 4 5 6

Fig. 2. Element of NDW2.

Fig. 2 provides an example of a nested data
word w ∈ NDW2 built on the finite alpha-
bet Σ = {R,A,B,C,D} and the data domain
D = N. This word is a simplified representa-
tion for the configurations of the program in

Section 1 (the value of j is omitted and also the elements of the array M are omit-
ted). The domain of w is {2, 3, 5, 6, 7}, i.e., there are five created threads. The
labels A,B,C, and D denote the control points at line 14, 8, 7, 4 respectively.
These control points are important because they correspond to calls of /re-
turns from the procedure p. Notice that, label(w[6, 0]) = A, data(w[6]) = 7 and
ndw(w[6]) = [0 7→ (A, 7), 1 7→ (C, 5)] (the integer numbers in ndw(w[6]) are the
identities of the monitors locked by the thread with the identity data(w[6]) = 7).

Reasoning about programs To prove safety properties (e.g., the absence of dead-
lock) we use invariant checking. Given a set of initial configurations Init, a set
of safe configurations Safe and a set of configurations Inv, we have to check
that Inv is an inductive invariant and that Inv ⊆ Safe. Inv is an inductive
invariant if (1) Init ⊆ Inv, and (2) for every statement st of the program,
post(st, Inv) ⊆ Inv, where post(st, Inv) denotes the set of configurations ob-
tained by executing st on Inv.

We give a logical framework to specify properties of program configura-
tions and transformations between configurations. We define a multi-sorted sec-
ond order logic called nested data word logic, NDWL. Sets of configurations,
like Init, Inv, and Safe are modeled by formulas in NDWL, ϕInit, ϕInv, resp.
ϕSafe and the relation between configurations defined by post(st, •) is a formula
ϕpost(st)(γ, γ′) where γ and γ′ represent the configuration before resp. after the
execution of statement st. Then, a formula ϕInv is an inductive invariant if

4

(1) ϕInit(γ) ∧ ¬ϕInv(γ) is unsatisfiable and (2) for each program statement st,
ϕInv(γ) ∧ ϕpost(st)(γ, γ′) ∧ ¬ϕInv(γ′) is unsatisfiable.

Formulas in NDWL can specify, properties of the global variables and con-
figurations of processes. For example, using NDWL one can specify properties
on the call stack of some process, relations between two call stacks, or relations
between global and local variables.

3 Nested data word logic NDWL

The logic NDWL is parameterized by a (first-order) logic FO(D,O,P) on the
considered data domain D, i.e., by the set of operations O and by the set of
basic predicates (relations) P allowed on elements of D.

Syntax Consider the following pairwise disjoint sets of variables: (1) D (of ele-
ments denoted by b, c, d, . . .) is the set of data variables taking values in D, (2)
Γ (of elements denoted by γ, γ′, γ1, . . .) is the set of nested data word variables
taking values in NDW, (3) I (of elements denoted by x, y, . . .) is the set of index
variables taking values in N, and (4) I (of elements denoted by X,Y, . . .) is the
set of index-set variables taking values in 2N.

Additionally, each variable, which is not a data variable, is indexed by a
number from 1 to N called the level of the variable. These levels define a partition
on Γ, I, I : Γ =

⋃
1≤k≤N Γk, resp. I =

⋃
1≤k≤N Ik, I =

⋃
1≤k≤N Ik where Γk

(resp. Ik, Ik) is the set of nested data word (resp. index, index-set) variables of
level k. The syntax of terms and formulas in NDWL is given by the following
grammars:

t ::= d | o(t1, . . . , tm) | υ(tt[x0, . . . , xp]) tt ::= γ | δ(tt[x0, . . . , xp])
ϕ ::= true | r(t1, . . . , tm) | A(tt[x0, . . . , xp]) | 0 < x | x < x′ | x ∈ X | idx(x, tt)

| ∃x. ϕ | ∃d. ϕ | ¬ϕ | ϕ ∨ ϕ

where o is an operation in O of arity m ≥ 0, t is a data term and tt is a nested
data word term (ndw-term for short), x, x′, x0, . . . , xp,(p ≥ 0) are in I, r is a
predicate in P of arity m, A ∈ Σ, 0 is a constant index, X ∈ I, d ∈ D, and γ ∈ Γ .
The elements generated by this grammar respect the following level constraints:
(1) x and x′ have the same level in x < x′ (2) x and tt have the same level in
idx(x, tt) (3) x and X have the same level in x ∈ X (4) if tt is a ndw-term of level
k then δ(tt[x0, . . . , xp]) (resp. υ(tt[x0, . . . , xp])) is a ndw-term of level k − p − 1
(resp. a data term) and then x0, x1, . . . , xp have levels k, k− 1, . . . , k− p and
k − p ≥ 1; (5) t1, . . . , tm are data terms, i.e., they have level 0, in r(t1, . . . , tm)
and in o(t1, . . . , tm); (6) if tt is a ndw-term of level k in A(tt[x0, . . . , xp]) then
k − p ≥ 1 and x0, x1, . . . , xp have levels k, k − 1, . . . , k − p.

As usual, conjunction (∧), implication (⇒), and universal quantification (∀)
can be defined in terms of ¬, ∨, and ∃. We also define equality (=), disequality
(6=) and inequality (≤) in terms of < and boolean connectives. To emphasize
the level of some quantified variable, we use notations ∃k (resp. ∀k) instead of ∃
(resp. ∀).

Notice that the variables in Γ and I are free in any NDWL formula. We
assume w.l.o.g. that in every formula, each variable is quantified at most once.

5

Semantics Formally, a model of a NDWL formula is a mapping M : N∗ → 2N

which gives for each level k the set of positions defined within the model (notation
Mk=M(k)) and valuations of free variables. A valuation of index variables is
a partial mapping ρ ∈ [I ⇀ N] s.t. variables in Ik take values in Mk. We
extend ρ by ρ(0) = 0. A valuation of index-set variables is a partial mapping
ν ∈ [I ⇀ 2N] s.t. for any variable X ∈ Ik, ν(X) ⊆ Mk. A valuation of data
variables is a partial mapping β ∈ [D ⇀ D]. A valuation of NDW variables is
a partial mapping θ ∈ [Γ ⇀ NDW] s.t. variables in Γk take values in NDWk.
Moreover, for all variables γ ∈ Γk, dom(θ(γ)) ⊆Mk, and so on recursively, i.e.,
for any subword of θ(γ), w ∈ NDW` with 1 ≤ ` < k, dom(w) ⊆M`.

The data terms t are interpreted into values in D; they denote the values
stored at different positions of some (inner) word. The ndw-terms tt are inter-
preted into nested data words of the corresponding level. Formulas in NDWL can
express ordering relations between indexes (x < x′) and the membership rela-
tion between an index and an index-set (x ∈ X) or an index and the definition
domain of a nested data word (idx(x, tt)). Intuitively, A(tt[x0, . . . , xp]) says that
tt is interpreted into some word w and the indexes x0, . . . , xp form a valid path
to an inner word of w s.t. label(w[x0, . . . , xp]) = A. The concept of valid path
refers to the fact the x0 must be defined in w, x1 ∈ dom(ndw(w[x0])) and so
forth xp must be defined in ndw(w[x0, . . . , xp−1]).

In general, a term δ(tt[x0, . . . , xp]) or υ(tt[x0, . . . , xp]) is well defined if
x0, . . . , xp forms a valid path to an inner word of the word tt interprets into.
In the following we consider that γ interprets into w the nested data word pic-
tured in Fig. 2. Then, when x = 6 the term δ(γ[x]) denotes ndw(w[6]) and
υ(γ[x]) interprets into 7. The atomic formulas built over non well defined terms
are false. This fact might induce some difficulties when reasoning about nested
structures. E.g., the formula ∀2y∃1x. ¬A(γ[y, x]) saying that any subword of γ
shall have an index not labeled by A, has a model in which γ is interpreted to
w. This happens even if all defined positions in ndw(w[2]) are labeled by A; in
this case, a value for x that satisfies the property is an index ofM1 not defined
in ndw(w[2]), e.g., 1 ∈ M1 since 1 ∈ dom(ndw(w[6])) but 1 6∈ ndw(w[2]). To
obtain the intuition and reject this model, we must specify that only indexes y in
the domain of w are considered: ∀2y∃1x. idx(y, γ) =⇒ idx(x, γ[y]) ∧ ¬A(γ[y, x]).

Examples In the following, we consider that γ is interpreted to w, the nested
data word w in Fig 2. Then, the following formula states that all threads
in the configuration γ are running and their identity is smaller than 10:
∀2y. idx(y, γ) =⇒ R(γ[y]) ∧ υ(γ[y]) ≤ 10. The formula ∀2y∃1x. idx(y, γ) =⇒
idx(x, γ[y]) ∧ υ(γ[y, x]) ≥ 2 says that all the inner words of w have an index
whose data is at least 2. Finally, the next formula says that all the threads
in the configuration denoted by γ have their call stack (represented by the in-
ner word) sorted w.r.t. the identity of the owned monitors: ∀2z∀1x, y. (x <
y ∧ idx(z, γ) ∧ idx(x, γ[z]) ∧ idx(y, γ[z])) =⇒ υ(γ[z, x]) > υ(γ[z, y]).

Syntactical forms and fragments A formula is in prenex normal form (PNF)
if it is of the form Q1z1Q2z2 . . . Qmzm. ϕ where (1) Q1, . . . , Qm ∈ {∃,∀}, (2)

6

z1, . . . , zm ∈ I ∪D, and (3) ϕ is a quantifier-free formula. It can be proved that
for every formula ϕ in NDWL, there exists an equivalent formula in PNF.

We consider {Σ`
2}`≥0 and {Θ`

1}`≥0 two fragments of NDWL defined by re-
stricting the quantifier alternation over index variables of the same level in PNF
formulas. We define Σ∗2 =

⋃
`≥0Σ

`
2 and Θ∗1 =

⋃
`≥0Θ

`
1 where

Σ`
2 = {Ql . . . Q2Q1. ϕ | Qi = ∃≤i−→x i∃

−→
d i∀i−→y i, 1 ≤ i ≤ l, and ϕ quantifies over D}

Θ`
1 = {Sl . . . S1. φ | Si = ∃i−→x or Si = ∀i−→x , 1 ≤ i ≤ l, and φ quantifies over D}

Notice that, Θ∗1 is a subset of Σ∗2 which is closed under all boolean operations
while Σ∗2 is closed only under disjunction and conjunction. All the formulas given
as example above are in the Θ∗1 fragment.

4 Application to verification

The satisfiability problem for the full NDWL is not decidable. E.g., [8] proves
the undecidability of this problem for a subfragment of NDWL, which allows
∀∗∃∗ quantification over variables of the same level. The next theorem provides
a positive result for a fragment of NDWL.

Theorem 1. Whenever the data logic FO(D,O,P) has a decidable satisfiability
problem, the satisfiability problem of the fragment Σ∗2 of NDWL is also decidable.

The proof of this theorem is similar to the decidability proof for CSL logic
in [7]. The proof gives a decision procedure whose complexity is NP when the
number of universally quantified variables is fixed. Moreover, the structure of the
nested data words is simpler than the one of the heap graphs in CSL which leads
to a more efficient implementation for the decision procedure. The decidability
result in Theorem 1 is used to automate invariant checking.

Theorem 2. Checking that a formula ϕInv ∈ Θ∗1 is an inductive invariant is
decidable for specifications with the transition relation ϕpost(st) in Σ∗2 for every
program statement st, when the underlying logic, FO(D,O,P), has a decidable
satisfiability problem.

In the next section, we introduce a formalism to specify the transition relation
of a system, i.e., ϕpost, with formulas in Σ∗2 . This formalism handles a large
class of complex systems with interesting control structures like rendez-vous,
broadcast, procedure call, process creation, locks.

5 Rewriting systems over nested data words

A nested data words rewriting system (NDW-RS for short) is a pair RS = (Σ,∆)
where Σ is a finite set of labels, and ∆ is a finite set of rewriting rules. Each rule
may be an existential rule, an universal rule, or a general (mixed existential and
universal) rule. In the following, we give the syntax and the intuitive semantics
of the rewriting rules.
The existential rules have the following syntax:

7

−→
A ↪→]

−→
B : ϕg / ϕa (1)

where
−→
A and

−→
B are labels in Σ,] is the rewriting policy that can be one of

multiset (] = m), factor (] = f), or suffix (] = s), and ϕg and ϕa are NDWL
formulas.

An existential rule selects the nested data word rewritten using the guard ϕg.
On this word, the rule rewrites according to the policy the indexes labeled by−→
A and constrained using ϕg into indexes labeled by

−→
B whose data are assigned

using ϕa. In ϕg and ϕa, the path to the rewritten word, the indexes labeled by
−→
A , and those labeled by

−→
B are denoted using variables

−→
ξ , −→x , resp. −→y . Also,

the initial (resp. resulting) nested data word is denoted by the NDW variable γ
(resp. γ′). Fig. 3 (1) gives an example of a thread creation in the configuration
given in Fig. 2 modeled by the existential rule R1 below:

R1 : R ↪→m R R : υ(γ[x1]) ≥ 2 / υ(γ′[y1]) = υ(γ[x1]) ∧ δ(γ′[y1]) = δ(γ[x1])∧
υ(γ′[y2]) = 2υ(γ[x1])

Intuitively, a thread with the identity not smaller than 2 spawns a new thread
with the identity doubled. Formally, the rule rewrites γ at an index x1 labeled
by R that stores a value υ(γ[x1]) ≥ 2. The rewriting introduces two positions
labeled by R: y1 is a copy of x1 and y2 has attached an integer with the data
twice the value of υ(γ[x1]) and an empty sub-word (in Fig. 3 (1) a thread with
the identity 4 is spawned).

0

R 2 R 5

A 7

B 5

(1) (2)

R 7

D 1

R 2 R 7 R 5

A 7

C 5

R 4

A 2 A 2

R 3

A 3

R 1

876543210

R 3R 1

A 3

0 1 2 3 4 5 6 7

R 3 R 8 R 6

A 7

C 5

(3)

A 2

R 4

A 3

R 1

7654321

Fig. 3. Applying R1, R2 resp. R3 on the word of Fig. 2.

Note that more than one choice is possible for the indexes that are rewrit-
ten, i.e., −→x and −→y . The rewriting policy refines the selection of these indexes.
For example, the multiset policy puts no ordering relation between indexes in
−→x (resp. −→y); it says that rewriting concerns (min(|−→x |, |−→y |)) positions from γ
satisfying ϕg plus some added (resp. removed) positions that were not defined
in the initial (resp. resulting) word. For example, in the rule R1 y2 6∈ dom(γ)
but it is defined in γ′, y2 ∈ dom(γ′).

The suffix rewriting policy says that −→x (and −→y) are the last |−→x |, (resp. |−→y |)
consecutive positions of the subword rewritten. The call of the procedure p at
line 7 in Fig.1 on a monitor with the identity 1 in a thread with the identity 7
is modeled by an existential rewriting rule with suffix rewriting policy:

R2 : C ↪→s B D : R(γ[ξ])∧υ(γ[ξ]) = 7/υ(γ[ξ, x1]) = υ(γ′[ξ, y1])∧υ(γ′[ξ, y2]) = 1

where C is the control point of the process at the call of p, B is the return point
after the call of p, and D is the entry control point of p; the process calling p is
selected using ϕg, the local data of the new position (labeled by D) is initialised

8

using ϕa. Existential rewriting rules can model communication by shared, global
variables or rendez-vous.
The universal rules have the following syntax:

−→
C 7→

−→
D : ψg / ψa (2)

where
−→
C and

−→
D are labels in Σ and ψg and ψa are NDWL formulas.

A universal rule rewrites all indexes labeled by
−→
C and satisfying the guard

ψg by replacing their label with the respective label in
−→
D and their data with the

data assigned in ψa. To refer the positions rewritten we use the set of variables
−→u (|−→u | = |

−→
C | = |

−→
D |). The formulas ψg and ψa contain as free variables

−→
ξ ,

γ, and γ′ with the same semantics as in existential rules. Fig. 3 (3) shows the
nested data word resulting by applying the universal rule below on the word of
Fig. 2: R3 : R 7→ R : υ(γ[u]) ≥ 2 / υ(γ′[u]) = υ(γ[u]) + 1
The rule increments the identity of all threads having the identity greater than
2. In this way it will be possible to create later a thread with the identity 2.
The mixed rules combine an existential and an universal rule as follows:

−→
A ↪→]

−→
B : ϕg / ϕa |

−→
C 7→

−→
D : ψg / ψa (3)

The subword of γ rewritten (given by
−→
ξ) is fixed in ϕg and ψg. The indexes

rewritten by the existential part (−→x and −→y) may be used in ψg and ψa to choose
the indexes −→u and their new data, i.e., all the four formulas ϕg, ϕa, ψg, ψa share
the same index variables in

−→
ξ , −→x , and −→y . These rules model statements like

notifyAll(), in synchronization by monitors, or time elapsing in networks where
processes manipulate clocks.

Formally, the semantics of rewriting any rule R is given by NDWL formulas
denoted reachR(γ, γ′), where γ denotes the word to be rewritten (it satisfies the
guard ϕg/ψg) and γ′ denotes the word after the rewriting.

We denote by NDW-RS[Σ∗2] the class of NDW-RS where any rewriting rule
has the constraints ϕg and ϕa in Σ∗2 , ψg and ψa in Θk

1 .

Proposition 1. For every mixted rule of a rewriting system in NDW-RS[Σ∗2],
the associated NDWL formula is in the fragment Σ∗2 .

Then, the following theorem is a consequence of the results given in Section 4.

Theorem 3. Checking that a formula ϕ ∈ Θ∗1 is an inductive invariant is de-
cidable for any system in NDW-RS[Σ∗2], if the underlying logic FO(D,O,P) has
a decidable satisfiability problem.

Notice that all the examples of rewriting rules given in this section belong to
a system in NDW-RS[Σ∗2].

6 Conclusion

We have defined a generic framework for reasoning about unbounded networks
of processes with complex data and control structures. Various instances of this
framework allow to deal in a uniform way with important classes of system

9

models such as dynamic networks of processes with counters, clocks, unbound-
ed/parametric structures (arrays, stacks, queues) over infinite data domains, etc.
This is based on generic decidability and closure results for a (useful fragment
of a) logic for specifying configurations of such networks as nested data words.
Several classes of actions in such networks can be modeled in this logical frame-
work. For example, the process creation, the procedure calls and the rendez-vous
are modeled by existential rewriting rules while global synchronization between
processes (or broadcast) is modeled using universal and mixed rewriting rules.

Future work includes extending our framework by developing techniques for
compositional verification of concurrent programs.

References

1. P.A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification of infinite-
state processes with global conditions. In Proc. of CAV, volume 4590 of LNCS,
pages 145–157, 2007.

2. P.A. Abdulla and B. Jonsson. Verifying networks of timed processes (extended
abstract). In Proc. of TACAS, volume 1384 of LNCS, pages 298–312, 1998.

3. R. Alur and P. Madhusudan. Adding nesting structure to words. J.ACM, 56(3),
2009.

4. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L.D. Zuck. Parameterized Verification
with Automatically Computed Inductive Assertions. In Proc. of CAV, volume 2102
of LNCS, pages 221–234, 2001.

5. M. Bojanczyk, C. David, A. Muscholl, Th. Schwentick, and L. Segoufin. Two-
variable logic on data trees and XML reasoning. In Proc. of PODS, pages 10–19.
ACM, 2006.

6. M. Bojanczyk, A. Muscholl, Th. Schwentick, L. Segoufin, and C. David. Two-
variable logic on words with data. In Proc. of LICS, pages 7–16. IEEE, 2006.

7. A. Bouajjani, C. Drăgoi, C. Enea, and M. Sighireanu. A logic-based framework for
reasoning about composite data structures. In Proc. of CONCUR, volume 5710 of
LNCS, pages 178–195, 2009.

8. A. Bouajjani, P. Habermehl, Y. Jurski, and M. Sighireanu. Rewriting Systems
with Data. In Proc. of FCT, volume 4639 of LNCS, pages 1–22, 2007.

9. A. Bouajjani, Y. Jurski, and M. Sighireanu. A generic framework for reasoning
about dynamic networks of infinite-state processes. In Proc. of TACAS, volume
4424 of LNCS, pages 690–705, 2007.

10. M. Bozzano and G. Delzanno. Beyond Parameterized Verification. In Proc. of
TACAS, volume 2280 of LNCS, pages 221–235, 2002.

11. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In
Proc. of VMCAI, volume 3855 of LNCS, pages 427–442, 2006.

12. C. David. Complexity of data tree patterns over xml documents. In Proc. of
MFCS, volume 5162 of LNCS, pages 278–289, 2008.

13. G. Delzanno. An assertional language for the verification of systems parametric in
several dimensions. Electr. Notes Theor. Comput. Sci., 50(4), 2001.

14. C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On local reasoning in veri-
fication. In Proc. of TACAS, volume 4963 of LNCS, pages 265–281, 2008.

15. A. Rezine. Parameterized Systems: Generalizing and Simplifying Automatic Veri-
fication. PhD thesis, University of Uppsala, 2008.

10

Space Effective Model Checking for
Component-Interaction Automata

Nikola Beneš?, Milan Křivánek??, and Filip Štefaňák??

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic
{xbenes3,xkrivan8,xstefan5}@fi.muni.cz

Abstract. The techniques of component-based development are becom-
ing a common practice in the area of software engineering. One of the
crucial issues in the correctness of such systems is the correct interac-
tion among the components. The formalism of component-interaction
automata was devised to model various aspects of such interaction, as
well as to allow automated verification in the form of model checking
with properties expressed in the component-interaction LTL, a variant
of the known linear temporal logic. As the state space of a component-
based system can grow exponentially with the number of components, it
is desirable to employ reduction techniques to make the verification task
more feasible. In our work, we describe the implementation of the ample
set partial order reduction method within the component-interaction au-
tomata verification framework. Due to the state and action-based nature
of both the modelling and specification formalisms, the implementation
differs from traditional state-based approaches. After describing the im-
plementation, we present some of the results obtained by employing the
enhanced verification framework on a case study.

1 Introduction

The demand to shorten the time necessary to develop complex software and to
lower its costs encourages employment of new software development techniques.
One of such techniques is the component-based development, which builds soft-
ware systems out of prefabricated autonomous components that are often devel-
oped without any knowledge of their deployment context. Therefore a great deal
of attention must be paid to their interaction, since correct interaction of the
components plays an important role in the correctness of the system as a whole.

Component-interaction automata [1] represent a formalism designed for spec-
ification of component-based systems. Such models can be used to verify desir-
able properties of the system expressed as formulae of a suitable logic. CoIn
verification environment [2] is based on DiVinE verification framework [3] and
allows model checking of these specifications. The properties are formalized us-
ing a variant of state/event LTL [4] that is better suited for component-based
? The author has been supported by Grant Agency project no. GD102/09/H042.

?? The authors have been supported by Academy of Sciences grant no. 1ET400300504.

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2354

2

systems than pure state-based logics, as we are interested in both the state of
the components and their communication.

The verification tool has to cope with exponential growth of the state space
that is commonly caused by interleaving of independent actions. Ample set
partial-order reduction [5] is one of the state space reduction techniques, which
tries to identify redundant states and omit their generation while preserving
verification properties of the model.

Traditionally, partial order reduction has been used in connection with state-
based models. In [6], we have shown how partial order reduction can be per-
formed on state/event-based models. The goal of this work is to implement this
reduction method into the CoIn verification environment, which is an example of
such formalism. In order to do that, we have to find effective heuristics to check
the conditions for ample sets different from those used in traditional state-based
approaches.

2 Foundations

Modelling and Specification Formalisms We start with describing the
component-interaction automata formalism [1]. Each component is modelled as
a finite labelled transition system equipped with an additional structure on labels
and a hierarchy of names representing the architectural structure.

A component-interaction automaton (CI automaton for short) is a 5-tuple
C = (Q,A, δ,Q0, H) where Q is a finite set of states, A is a finite set of actions,
Σ = ((SH ∪ {−}) × A × (SH ∪ {−})) \ ({−} × A × {−}) is a set of labels,
δ ⊆ Q × Σ × Q is a finite set of labelled transitions, Q0 ⊆ Q is a nonempty
set of initial states, and H is a hierarchy of component names where the set of
component names is denoted by SH .

The semantics of the labels is input, output, or internal, based on their struc-
ture. In the triple, the middle element represents an action name, the first el-
ement represents the name of the component that outputs the action, and the
third element represents the name of the component that inputs the action.

The CI automata can be composed together using a parametrized compo-
sition operator ⊗F . Given a set of feasible labels F and a set of CI automata,
the result of the operation is a product automaton with only labels from F al-
lowed. In the product, the components cooperate either by interleaving of their
original transitions, or by simultaneous execution of two complementary transi-
tions (with labels (n1, a,−), (−, a, n2)) which is represented by a new internal
transition (with label (n1, a, n2)).

As for the property specification logic, we use a variant of the state/event
LTL [4, 6], which is an extension of LTL for reasoning about both properties of
states and actions. Currently, the only state atomic propositions we consider are
the enabledness properties, Ap = {E(l) | l ∈ Σ}. We say that a state satisfies the
property E(l) if an outgoing transition with label l is enabled in that state. We
define a function L : Q→ 2Ap as L(q) = {E(l) | q satisfies E(l)}.

3

Partial Order Reduction Technique Our approach follows the ample set
partial order reduction technique as presented in [7]. The basic idea is to view
the verified system as a state transition system in which some of the transition are
invisible, and to reduce the system such that all original behaviour is preserved
with respect to the ordering of visible transitions.

A state transition system is a triple (S, T, S0) where S is a set of states, S0 is
a nonempty set of initial states and T is a set of transitions such that for each
α ∈ T , α ⊆ S × S. Furthermore, for each α ∈ T and for each state s ∈ S there
is at most one s′ ∈ S such that (s, s′) ∈ α. We also write α(s) = s′.

In the traditional state-based approach, the invisible transitions are those
that do not change the state atomic propositions. In the state/event-based ap-
proach [6], each transition is further equipped with an action. The property to be
verified is then supplied with a set of interesting actions Act ′, and the invisible
transitions are those with non-interesting actions that do not change the state
atomic propositions.

Two transitions α and β are said to be independent if whenever α and β are
enabled in s, then also α is enabled in β(s), and α(β(s)) = β(α(s)) for all s.

While exploring the state space of the system, the ample set method works by
selecting only a subset of outgoing transitions from each state. The original set
of outgoing transitions from state s is denoted by enabled(s), the selected subset
is denoted by ample(s). To ensure that the reduction is correct, the following
four conditions must hold.

C0 - nonemptiness ample(s) = ∅ if and only if enabled(s) = ∅.
C1 - dependency Along every path in the full state graph that starts at s,

a transition that is dependent on a transition in ample(s) cannot be executed
without a transition from ample(s) occurring first.

C2 - invisibility If enabled(s) 6= ample(s) then every α ∈ ample(s) is invisible.
C3 - cycle A cycle is not allowed if it contains a state in which some transition

α is enabled, but is never included in ample(s) for any state s on the cycle.

POR and CI automata In our setting, the system consists of a finite set of
simple CI automata (numbered 1, . . . , n) whose state space is described explic-
itly, composed in a hierarchical way. The hierarchical composition is represented
by a number of composite CI automata. The hierarchy can be thus represented
with a tree, the leaves being the simple automata and the root being the CI
automaton representing the whole system.

The (implicit) translation into a state transition systems then works as fol-
lows. The states are n-tuples (s1, . . . , sn) of the states of the simple automata.
The transitions are then of two kinds: those that represent the progression of only
one of the simple automata (simple transitions), and those that represent a syn-
chronization of two simple automata (sync transitions). The simple transitions
can be identified with tuples of the form 〈i, si, s

′
i, l〉 and the sync transitions

with tuples of the form 〈i, j, si, s
′
i, sj , s

′
j , l〉, where i, j are automata numbers,

si, s
′
i, sj , s

′
j their respective states and l is the transition label.

4

3 Heuristics and Implementation

Overapproximations of the ample set conditions Some of the original
ample set conditions are difficult to check, especially given that we want to check
them in each state as we build the composite transition system. Therefore we
use an overapproximation of these properties, using modified heuristics from [7].
We keep the condition for C3, but use modified versions for C1 and C2.

Firstly, we have to address the issue of selecting the candidates for ample
sets, as the result helps us to create more elegant overapproximations. Usually,
transitions of a single simple automaton are dependent on each other. Therefore
we use the obvious solution of considering ample sets, which for each automaton
consist of either all its transitions or none. This approach may not be feasible,
though, because the number of subsets of all automata is exponential.

Exploiting the hierarchical structure To further reduce the number of pos-
sible candidates, we take advantage of the tree structure of the composition and
for ample sets consider only the transitions of a single simple or composite au-
tomaton. The selected automaton is denoted by Aut and the set of all simple
automata of which it consists by I. The candidate selection starts with the leaves
(i.e. simple automata) and progresses towards the root of the hierarchy tree.

Dependency predicate The major problem with original heuristics for check-
ing ample sets [7] is that the overapproximation of the dependency condition
(C1) is too restrictive for a system with a lot of synchronization. In fact, only
a very small category of systems of CI automata could ever have ample sets that
are smaller than the full enabled sets, since it effectively says that an automaton
in I that has an enabled action can only ever synchronize with an automaton
in I, no matter whether the synchronization is enabled. We relax this condition
by allowing synchronizations, that could not be performed by automata in I
without them changing their state first.

Definition 1 (dependency condition C1′). Let current i(s) be the set of all
transitions that could be performed by simple automaton i from state si, where
s = (s1, . . . , sn). We define C1′ as ∀i ∈ I ∀α ∈ current i(s) (automata of α ⊆ I).

Lemma 1. Let ample(s) be the set of all enabled transitions that belong to sim-
ple automata in I. Then C1′ implies C1.

Proof. Suppose the opposite: C1′ holds, but C1 does not. Then there is a path
from s on which a transition β dependent on α ∈ ample(s) appears before all
transitions from ample(s). That β is dependent on α means that β and α share
at least one automaton. As C1′ holds, the automaton or automata of α are in I.
Therefore at least one automaton of β, say i, is in I. Clearly, β cannot be enabled
in s, as then it would have to be in ample(s).

Thus, if one automaton of β is not in I, the current state of i needs to change
before β becomes enabled; otherwise β would violate C1′. If all automata of β
are in I, at least one of them has to change its state. However, to change any

5

state of an automaton in I, a transition in ample(s) has to be performed first,
since all automata in I can currently synchronize only among themselves, which
leads to a contradiction. ut

Visibility predicate In order to check C2, we need a visibility predicate. As
mentioned in the previous section, all transitions with an interesting action and
all transitions that change the state atomic propositions have to be considered
visible. As usual in the partial order reduction method, we are only interested
in the change of those state atomic propositions that appear in the formula that
is to be verified. However, as we deal with enabledness propositions, which are
properties of the whole state space, we need to use an overapproximation.

Definition 2 (closure). Let the set of all state labels in the formula be denoted
by Ap′. Then an E-closure c of Ap′ is defined as:

c(Ap′) = Ap′ ∪ {E(m, a,−), E(−, a, n) | E(m, a, n) ∈ Ap′}

The visible predicate is then defined as follows.

Definition 3 (visible). Let the set of all state labels in the formula be denoted
by Ap′ and the set of interesting action labels by Act ′. Then, if α = 〈i, si, s

′
i, l〉

is a simple transition:

visible(α) ⇐⇒ l ∈ Act ′ ∨ (L(si) ∩ c(Ap′) 6= L(s′i) ∩ c(Ap′))

and if α = 〈i, j, si, s
′
i, sj , s

′
j , l〉 is a sync transition:

visible(α) ⇐⇒ l ∈ Act ′ ∨ ∃k ∈ {i, j} : (L(sk) ∩ c(Ap′) 6= L(s′k) ∩ c(Ap′))

Lemma 2 (visible is correct). If a transition (s, (m, a, n), s′) in the state space
is visible, the predicate visible(α) holds, where α is the corresponding transition
of the state transition system.

Proof. If a transition (s, (m, a, n), s′) is visible, then either (m, a, n) ∈ Act ′ or
L(s) ∩ Ap′ 6= L(s′) ∩ Ap′. In the first case, visible(α) clearly holds. For the
second case, suppose that there is some E(k, b, l) ∈ L(s)∩Ap′ \L(s′)∩Ap′. That

means that there is a transition s
(k,b,l)−−−−→ t, but there is no (k, b, l) transition

enabled in s′. This transition can be either simple or sync. If it is simple, then

there is some i such that si
(k,b,l)−−−−→ ti and clearly, s′i 6= si, otherwise transition

(k, b, l) would also be enabled in state s′. Thus E(k, b, l) ∈ L(si) ∩ c(Ap′), but
E(k, b, l) 6∈ L(s′i) ∩ c(Ap′) and since s′i 6= si, the transition α must be local for
automaton i and visible(α) holds.

If the (k, b, l) transition is sync, then there have to be i, j such that si
(k,b,−)−−−−→

ti and sj
(−,b,l)−−−−→ tj . As the (k, b, l) transition is not enabled in s′, that means that

either α changes the state of i and s′i has no (k, b,−) transition, or α changes
the state of j and s′j has no (−, b, l) transition. Suppose w.l.o.g. that it is the
case with i. Clearly E(k, b,−) ∈ c(Ap′) by the definition of the closure. But then
E(k, b,−) ∈ L(si)∩ c(Ap′) and E(k, b,−) 6∈ L(s′i)∩ c(Ap′), thus visible(α) holds.
The other cases and directions are similar. ut

6

Checking of C0, C2 and C3 We also slightly change the original approach
to checking the conditions C0, C2 and C3. The first one is trivial to check, since
we only have to determine whether I has any enabled transitions. The other
two are always invalidated by a counterexample transition, which means that
it is sufficient to check them for all enabled transitions once and propagate the
invalidation to all composite automata to which it belongs. These conditions are
checked for all automata before proceeding with the checking of C1, which is
more expensive and therefore only attempted on automata that have passed the
first test.

begin
C0 ← ∅;
C23 ← Set of all automata;
foreach α ∈ enabled(s) do

C0 ← C0 ∪ automata of α;
if visible(α) ∨ inStack(s′) then C23 ← C23 \ automata of α;

end
foreach i ∈ Set of all composite automata do

A← automata which compose i;
if A ∩ C0 6= ∅ then C0 ← C0 ∪ {i};
if not A ⊆ C23 then C23 ← C23 \ {i};

end
Candidate set← C0 ∩ C23;

end
Algorithm 1: Checking of C0, C2 and C3

Checking of C1 We want to determine whether there exists any action in⋃
i∈I current i(s) which is a synchronization with an automaton not in I. To do

so, we take names of all input (resp. output) actions from each si, i ∈ I and
then compare them with names of output (resp. input) actions from all states of
all simple automata not in I. Any matching couple is a counterexample for the
ample set.

When we find a set that satisfies all four conditions, we accept it as an ample
set and use it for the verification instead of the set of all enabled actions.

begin
Cin, Cout, Oin, Oout ← ∅;
foreach i ∈ simple automata in I do

Cin ← Cin ∪ names of input actions of i from si;
Cout ← Cout ∪ names of output actions of i from si;

end
foreach i ∈ simple automata not in I do

Oin ← Oin ∪ names of all input actions of i;
Oout ← Oout ∪ names of all output actions of i;

end
return (Cin ∩Oout = ∅) ∧ (Cout ∩Oin = ∅);

end
Algorithm 2: Checking of C1

7

4 Case Study

To provide some evidence for the effectiveness of the partial order method, we
have implemented the method within the CoIn verification environment and
applied it on a case study. Our previous experience with verification of this
model, which has uncovered the need of a partial order reduction method for
state/event systems, is reported upon in [8].

The modelled system, the Trading System, serves to handle sales in a chain
of supermarkets. Its functionality includes the interaction with the cashier at
the cash desk, as well as accounting the sale at the inventory. The system is
open, designed to interact with external components representing users of the
system (cashiers and managers) and a bank application. The model of the system
consists of 140 simple CI automata, composed hierarchically into 34 composite
automata up to 6 levels of depth. The behaviour of the model features a high
degree of independent interleaving of actions, it can be thus expected to achieve
a fair amount of state space reduction using the partial order reduction method.

The results obtained by using the method are summarized in Table 1. The
various models the verification was performed on were created by complementing
the Trading Systems with various components depicting the users of the system.

Table 1. Experimental results (the reduction ratio relates the number of states of the
model to the number of states obtained after applying partial order reduction)

Model
without POR with POR

reduction

states
RAM time

states
RAM time

ratio
(MB) (s) (MB) (s)

C 2 749 340 139 498 30 618 11 40 24 : 1

C 5 1 498 679 274 1 010 61 771 17 66 24 : 1

C 9 750 684 139 499 30 774 11 40 24 : 1

SC 2 29 341 9 19 2 959 5 4 10 : 1

SC 5 58 681 15 39 6 013 5 6 10 : 1

SC 9 29 629 9 20 2 995 5 4 10 : 1

SCM 2 22 745 391 4 045 21 656 2 016 210 494 2 619 11 : 1

SCM 5 — — — 4 084 764 987 4 367 —

SCM 9 22 915 023 4 076 21 864 2 037 002 499 2 640 11 : 1

SCR 2 2 994 016 570 2 119 28 633 11 39 105 : 1

SCR 5 5 988 032 1 128 4 631 58 078 17 67 103 : 1

SCR 9 3 034 336 578 2 150 29 006 10 40 105 : 1

SCSM 2 6 369 598 1 135 4 692 542 794 139 688 12 : 1

SCSM 5 12 739 195 2 263 10 434 1 098 699 273 1 144 12 : 1

SCSM 9 6 413 518 1 143 4 725 548 094 140 694 12 : 1

TSC 2 1 356 277 245 934 37 398 13 48 36 : 1

TSC 5 2 712 553 484 1 936 76 219 22 83 36 : 1

TSC 9 1 373 653 248 948 37 888 13 48 36 : 1

8

Here, C, SC, SCM, SCR, SCSM and TSC stand for the different user compo-
nents composed with the system. For each of this variants, three properties were
verified, those correspond with properties 2, 5 and 9 as described in [8].

The table shows the number of states of each model combined with each
property and the memory and time that was needed to generate the state space,
both with and without employing the partial order reduction. A dash (—) in
the table means that the information is not available, as the process of state
space generation exceeded the maximum of 4 GB of memory. Our experience
with applying the partial order reduction on this case study is very positive. In
all cases, the state space has been reduced to at least one tenth of the original
size and there have been cases where the reduction ratio surpassed one hundred.

5 Conclusion

In our work we present an implementation of the partial-order reduction for
state/event LTL in the framework of CI automata. We explain the necessity of
modification of the original heuristics for computing ample sets as well as our
method of choosing candidate sets, which takes advantage of the hierarchical
structure of CI automata. The case study shows how much time and space can
be saved using POR in particular cases.

References

1. Brim, L., Černá, I., Vařeková, P., Zimmerova, B.: Component-Interaction automata
as a verification-oriented component-based system specification. In: Proceedings of
SAVCBS’05, ACM (2005) 31–38

2. Beneš, N., Brim, L., Černá, I., Sochor, J., Vařeková, P., Zimmerova, B.: The CoIn
Tool: Modelling and Verification of Interactions in Component-Based Systems. In:
Proceedings of FACS’08. (2008) 221–225

3. Barnat, J., Brim, L., Černá, I., Moravec, P., Ročkai, P., Šimeček, P.: DiVinE – a
tool for distributed verification. In: Proceedings of CAV’06. Volume 4144 of LNCS.,
Springer-Verlag (2006) 278–281

4. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/event-
based software model checking. In: Proceedings of IFM’04. Volume 2999 of LNCS.,
Springer-Verlag (2004) 128–147

5. Peled, D.: All from one, one from all: on model checking using representatives. In:
Proceedings of CAV’93. Volume 697 of LNCS., Springer-Verlag (1993) 409–423

6. Beneš, N., Brim, L., Černá, I., Sochor, J., Vařeková, P., Zimmerova, B.: Partial
order reduction for state/event LTL. In: Proceedings of iFM’09. Volume 5423 of
LNCS., Springer (2009) 307–321

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. Cambridge, London,
MIT Press (1999)

8. Beneš, N., Černá, I., Sochor, J., Vařeková, P., Zimmerova, B.: A case study in
parallel verification of component-based systems. In: Proceedings of PDMC’08.
(2008) 35–51

The Parameterized Complexity of Oriented
Colouring

Robert Ganian★

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

ganian@mail.muni.cz

Abstract The oriented colouring problem is intuitive and related to
undirected colouring, yet remains NP-hard even on digraph classes with
bounded traditional directed width measures. Recently we have also
proved that it remains NP-hard in otherwise severely restricted digraph
classes. However, unlike most other problems on directed graphs, the ori-
ented colouring problem is not directly transferable to undirected graphs.
In the article we look at the parameterized complexity of computing the
oriented colouring of digraphs with bounded undirected width parame-
ters, whereas the parameters “forget” about the orientations of arcs and
treat them as edges. Specifically, we provide new complexity results for
computing oriented colouring on digraphs of bounded undirected rank-
width and a new algorithm for this problem on digraphs of bounded
undirected tree-width.

1 Introduction

The study of undirected colourings of graphs has become the focus of
many authors and lead to a number of interesting results. However, only
in the last decade has this been extended to directed graphs. The no-
tion of oriented colouring was first introduced by Courcelle [2]. Oriented
colouring has been studied by several authors, see e.g. the work of Nešetřil
and Raspaud [11] or the survey by Sopena [13].

Similarly to undirected colouring, computing the oriented chromatic
number (OCN in brief) and deciding oriented colourability of digraphs
are both NP-hard problems. However, while undirected colouring becomes
easy if we restrict the input to the graph class of trees, even deciding
oriented colourability by 4 colours (also referred to as OCN4) remains
NP-hard on directed acyclic graphs (further referred to as DAGs) [3].
And since the vast majority of digraph parameters have low, fixed values
on DAGs, this alone means that they would not be useful for computing
OCN .
★ supported by the research grants GAČR 201/09/J021 and MUNI/E/0059/2009

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2350

Bi-rank-width (first introduced by Kanté [9]), the digraph equivalent
to rank-width, is an exception since it can have high values for DAGs
– we have recently shown that deciding OCNk is in FPT on digraphs
of bounded bi-rank-width [7] (FPT stands for fixed parameter tractable,
meaning that the time complexity is not only polynomial for any fixed
value of the parameter, but also the degree of the polynomial does not
depend on the parameter). Unfortunately, the case of computing OCN
is worse than for OCNk: there is no known parameterized algorithm for
computing OCN utilizing a digraph parameter. But what about undi-
rected graph parameters?

Most hard problems on directed graphs can be directly translated to
undirected graphs. Consider c-Path, Hamiltonian Path, Hamiltonian Cy-
cle, Directed Steiner Tree, Directed Dominating Set, Directed Feedback
Vertex Set – all of these directed problems have also been extensively
studied on undirected graphs. OCN is different; its definition only makes
sense on digraphs. Nevertheless, we show that it is still possible to nat-
urally and intuitively use well-known undirected width parameters for
computing OCN on directed graphs. In the article we present new com-
plexity results and a new parameterized algorithm for OCN on digraphs
restricted by undirected width parameters.

2 Preliminariess

We assume that the reader is familiar with all basic definitions related
to undirected and directed graphs. Keep in mind that digraph stands for
directed graph and DAG stands for directed acyclic graph.

Let G,H be digraphs. A homomorphism of G to H is a mapping
f : V (G) → V (H) such that for all (a, b) ∈ E(G), it holds (f(a), f(b)) ∈
E(H). The k-oriented chromatic number (OCNk) problem is then defined
as follows: Given a digraph G, is there a homomorphism from G to H,
where H is some (irreflexive antisymmetric) orientation of edges of the
complete graph on k vertices? OCN is the optimization problem of finding
the minimum k for a given digraph such that OCNk is true.

For simplicity, we will sometimes say that a set of vertices of G have
the same colour – meaning that they all map into the same vertex of
H. Notice that such vertices with the same colour can never have an arc
between them, and that if there is an arc from a vertex coloured A to a
vertex coloured B, then there can never be an arc from a vertex coloured
B to a vertex coloured A. This is a useful and intuitive way of looking
at oriented colouring. Next, we will need the notions of tree-width and

2

rank-width – both being very successful width parameters of undirected
graphs.

Tree-width: A tree decomposition of an undirected graph G = (V,E) is
a tree T together with a collection of subsets Tx ⊆ V (called bags) labeled
by the vertices x of T such that

∪
x∈T Tx = V and (1) and (2) below hold:

(1): For every edge uv of G, there is some x such that {u, v} ⊆ Tx.

(2): (Interpolation Property) If y is a vertex on the unique path in T
from x to z, then Tx ∩ Tz ⊆ Ty.

The width of a tree decomposition is the maximum value of ∣Tx∣ − 1
taken over all the vertices x of the tree T of the decomposition. We then
say that a graph G has tree-width k if G has a tree-decomposition of
width k.

Branch-width and rank-width: A set function f : 2M → ℤ is called
symmetric if f(X) = f(M ∖X) for all X ⊆ M . A tree is subcubic if all
its nodes have degree at most 3. For a symmetric function f : 2M → ℤ
on a finite set M , the branch-width of f is defined as follows.

A branch-decomposition of f is a pair (T, �) of a subcubic tree T and
a bijective function � : M → {t : t is a leaf of T}. For an edge e of T ,
the connected components of T ∖ e induce a bipartition (X,Y) of the set
of leaves of T . The width of an edge e of a branch-decomposition (T, �)
is f(�−1(X)). The width of (T, �) is the maximum width over all edges
of T . The branch-width of f is the minimum of the width of all branch-
decompositions of f . (If ∣M ∣ ≤ 1, then we define the branch-width of f
as f(∅).)

Natural applications of this definition include not only rank-width
(introduced by Oum [10]) but also its directed counterpart bi-rank-width
(Kanté, [9]) and the branch-width of graphs (Robertson and Seymour,
[12]). In the case of rank-width we consider the vertex set V (G) = M of
a graph G as the ground set.

For a graph G, let AG[U,W] be the bipartite adjacency matrix of a
bipartition (U,W) of the vertex set V (G) defined over the two-element
field GF(2) as follows: the entry au,w, u ∈ U and w ∈W , of AG[U,W] is 1
if and only if uw is an edge of G. The cut-rank function �G(U) = �G(W)
then equals the rank of AG[U,W] over GF(2). A rank-decomposition and
rank-width of a graph G is the branch-decomposition and branch-width
of the cut-rank function �G of G on M = V (G), respectively.

Another notion we will need later on is bi-rank-width. For a digraph
G, let AG[U,W]+ (AG[U,W]−) be the bipartite adjacency matrix of a
bipartition (U,W) of the vertex set V (G) defined over the two-element

3

field GF(2) as follows: the entry au,w, u ∈ U and w ∈ W , of AG[U,W]+

(AG[U,W]−) is 1 if and only if (u,w) ∈ E(G) ((w, u) ∈ E(G)). The
bi-cutrank function of G is defined as the sum of the ranks of these two
matrices brkG(X) = rank(AG[U,W]+) + rank(AG[U,W]−) over the bi-
nary field GF (2). A bi-rank-decomposition and bi-rank-width of a graph
G is then the branch-decomposition and branch-width of this bi-cutrank
function brkG.

We have mentioned that for the purposes of this paper, we will apply
undirected width measures on directed graphs. So, unless otherwise spec-
ified, by tree-width and rank-width we will mean the undirected variants
of these measures, even when speaking of digraphs. Formally, given a di-
graph G = (V,E), we consider an undirected graph G′ = (V (G), E(G′))
where E(G′) = {{a, b} : (a, b) ∈ E(G)}, and by restricting G to bounded
tree-width or rank-width we actually restrict the values of these parame-
ters on G′. Informally this means that we “forget” about the orientations
of arcs when computing tree-width and rank-width.

3 OCN on digraphs of bounded rank-width

Although rank-width is not as restrictive as tree-width, in a certain sense
bounding rank-width means limiting the complexity of the structure of
the graph, and this can be exploited to design powerful parameterized
algorithms. For example, computing the “usual” undirected chromatic
number can be done in polynomial time (XP to be precise) on graphs
of bounded rank-width (see [6]), and deciding colourability can even be
done in FPT time ([5]). Unfortunately, despite its successes with undi-
rected colouring, it turns out that rank-width is not useful for computing
the more complicated OCN – even on digraphs of bounded rank-width
the problem is DET-hard, i.e. as hard as general graph isomorphism.
DET is the class of decision problems reducible in logarithmic space to
the problem of computing the determinant of an n-by-n matrix of n-bit
integers.

Theorem 3.1. Computing the oriented chromatic number of digraphs is
DET-hard even when restricted to digraphs of bounded undirected rank-
width.

Proof. We employ a reduction from a problem involving tournaments.
A tournament is, simply put, a complete graph with arbitrary orientation
of edges – more precisely, a digraph with precisely one arc between every

4

pair of distinct vertices. The isomorphism of two tournaments has recently
been proved to be DET-hard by Wagner [14].

The reduction works as follows: Given two tournaments G1, G2 with
n vertices each, we construct G as the disjoint union of G1 and G2. Note
that the rank-width of G is 1, yet we could still solve the problem of
isomorphism of G1 and G2 by solving OCN on G.

First, assume that the OCN of G is n. Notice that each of Gi contains
exactly n vertices and no colour can appear more than once in each Gi.
We know that there exists a colouring of G which uniquely identifies each
vertex of G1 with a vertex of G2 of the same colour. What remains is
to argue that such a bijection f : G1 7→ G2 is an isomorphism. Consider
any arc (a, b) ∈ E(G1). We need to show (f(a), f(b)) ∈ E(G2), but by
the definition of tournaments either (f(a), f(b)) or (f(b), f(a)) must be
present, and the latter would contradict the oriented colouring of G.

Now assume that G1 is isomorphic to G2 by an isomorphism f : G1 7→
G2. We need to show that G can be coloured by n colours. By definition
this means proving that there exists a homomorphism from G to some
tournament H on n vertices. Choose H ∼= G2, ℎ : G2 7→ H being the
isomorphism, and consider the following homomorphism: all v ∈ G2 map
to ℎ(v) and all v ∈ G1 map to ℎ(f(v)). Any arc (a, b) ∈ E(G) must now
be also present in E(H), proving that G is orientedly n-colourable. This
concludes our proof.

4 OCN on digraphs of bounded tree-width

The introduction of tree-width was a breakthrough in the field, and it
still remains the most popular graph parameter to this day. Tree-width
exploits the fact that almost every problem is easy on the class of trees,
and parameterizes the graph by how “tree-like” it is. Powerful tools now
exist for designing algorithms on graphs of bounded tree-width, however
these are not capable of handling OCN . Nevertheless it still turns out
that it is possible to compute OCN on digraphs of bounded tree-width
in FPT time. First, we will need a few known results:

Corollary 4.1 ([8], 6.45). Graphs with bounded degree, or tree-width,
or genus have bounded oriented chromatic number.

More precisely, the authors of [1] have proved that the “acyclic chro-
matic number” of graphs with tree-width t is at most 2t+1. Hell and

5

Nešetřil in [8] obtained a bound on the oriented chromatic number of at
most k ⋅ 2k−1, with k as the acyclic chromatic number of the graph. So
altogether we get a bound on OCN of b(t) = 2t+1 ⋅ 22t+1−1 on digraphs
of tree-width at most t.

Now, all that remains is to find an FPT algorithm on tree-width which
would decide OCNk. Unfortunately, no such direct algorithm is known,
but we have recently developed an FPT algorithm doing just that running
on the bi-rank-width of digraphs [7]. What we need to do now is prove
that tree-width also bounds bi-rank-width, allowing us to use the afore-
mentioned algorithm. This theorem is of independent interest – the proof
that tree-width bounds rank-width does not immediately translate to bi-
rank-width, and no result on the relationship of these two parameters has
been previously known.

Theorem 4.2. The bi-rank-width of a digraph G with tree-width t is at
most 2 ⋅ (t+ 1).

Proof. We start by normalizing the tree-decomposition of G in a similar
way as in [4, Theorem 6.72]:

1. First, we make the decomposition sub-cubic, i.e. bounding the degrees
of nodes to 3. This is accomplished by duplicating the nodes of higher
degree and inserting them as subdivisions of incident edges. Thus,
nodes with high degrees will be duplicated several times.

2. Next, we make all the sets in the tree decomposition uniform of size
t + 1 by adding new vertices to the node if necessary. This can be
accomplished by adding vertices from neighbours.

3. We ensure that neighbouring sets differ by at most one. This can be
achieved by adding interpolating nodes where necessary.

4. Now we make sure all sets of leaves have bags of size 1. This is done
by adding a path to each former leaf and reducing the size of each
consecutive bag on the path by one, omitting a random vertex. Notice
that this cannot break the interpolation property. The sets on these
paths will be smaller than t+ 1, and will be exempt from step 2.

5. Finally, for each node of degree 3 in the decomposition, we create an
attachment node with the same set by subdividing any of its incident
edges.

Now we will transform this tree-decomposition into a bi-rank-decom-
position, and argue that such a bi-rank-decomposition has bounded bi-
rank-width. First, we perform a Depth-first search starting from any leaf
of the tree-decomposition. Every time we come across a new, previously

6

unvisited vertex in a bag at some node, we add it as a pendant vertex
to the node if the node has degree at most 2. The decomposition must
remain subcubic, so if the degree is already 3, we add it to the node’s
attachment vertex. In this way, all the vertices previously in bags will be
added to the decomposition as leafs in the same order as they appeared
in bags.

What remains is to argue that such a bi-rank-decomposition truly
has bounded bi-rank-width. Consider any edge of the decomposition. The
edges incident to leaves of the decomposition can have a bi-rank-width of
at most 2, due to the matrices having a single row or column. All other
edges were already present in the tree-decomposition, and due to the
nature of tree-decompositions (particularly the interpolation property),
only at most t + 1 vertices could occur in bags on both “sides” of the
edge. This means that of all the vertices in the rows of A+

G (those on
one “side” of the edge), only at most t + 1 could have ever met with
the vertices in the columns of A+

G (i.e. those on the other “side” of the
edge) in a bag – and since every edge must be present in some bag, we
immediately get that all rows or columns other than those of these t+ 1
vertices will only contain zeros. The same of course holds for the other
matrix A−G. Thus rank(A+

G) + rank(A−G) ≤ 2 ⋅ (t+ 1).

Recall that on digraphs of tree-width at most t, OCN is bounded
by b(t) = 2t+1 ⋅ 22t+1−1. On the other hand, the algorithm for OCNk on
digraphs of bi-rank-width at most r runs in time O(2k

2 ⋅ (2kr(r+1)/2 ⋅ kr3 ⋅
∣V (G)∣)) – the runtime is not written explicitly in [7], however it is based
on first considering all orientations of arcs of the tournament on k vertices
(2k

2
possibilities), and for each it is possible to straightforwardly apply

our algorithm for deciding unoriented k-colourability on rank-width [6]
which runs in time (2kr(r+1)/2 ⋅ kr3 ⋅ ∣V (G)∣).

So, to compute OCN , it suffices to simply run through all b(t) ad-
missible colours and for each colour compute OCNk by the bi-rank-width
algorithm. The number of tested colours can be trivially improved to
log b(t) in the same way as one can find a number between 1 and k by
using only O(log k) greater/less-or-equal queries. Altogether, we get:

Corollary 4.3. OCN can be computed on digraphs of tree-width at most
t in time O

(
log b(t) ⋅ 2b(t)2 ⋅ 2b(t)⋅(t+1)(2t+3) ⋅ b(t)(2t+ 2)3 ⋅ ∣V (G)∣

)
.

7

5 Conclusion

In the article we have introduced new positive as well as negative results
for computing the oriented chromatic number of digraphs. The positive
result on tree-width is of particular interest. This is the first polynomial
parameterized algorithm for OCN . Future research should focus on uti-
lizing undirected width measures on other digraph problems, especially
those which do not translate directly to undirected graphs. Another direc-
tion for future research would be studying OCN on digraphs of bounded
bi-rank-width. If it indeed turns out to be hard, would it be possible to
find a new powerful directed measure capable of dealing with such hard
problems as OCN?

References

1. Michael O. Albertson, Glenn G. Chappell, H. A. Kierstead, Andr Kndgen, Radhika
Ramamurthi: Coloring with no 2-colored P4’s. Electron. J. Combin., 11: paper
R26, 2004.

2. B. Courcelle: The monadic second order-logic of graphs VI : on several repre-
sentations of graphs by relational structures. Discrete Appl. Math., 54:117-149,
1994.

3. J.-F. Culus and M. Demange: Oriented coloring: Complexity and approximation.
In SOFSEM’06, volume 3831 of LNCS, pages 226236. Springer, 2006.

4. Downey, R. and Fellows, M.: Parameterized complexity. Springer, 1999.
5. Ganian, R. and Hliněný, P.: On Parse Trees and Myhill–Nerode–type Tools for

handling Graphs of Bounded Rank-width. Manuscript, to appear. Extended ab-
stract in IWOCA08, LNCS. Springer, 2008.

6. R. Ganian and P. Hliněný: Better Polynomial Algorithms on Graphs of Bounded
Rank-width. Manuscript, to appear. Extended abstract in IWOCA09, LNCS.
Springer, 2009.

7. R. Ganian, P. Hliněný, J. Kneis, A. Langer, J. Obdržálek and P. Rossmanith:
On Digraph Width Measures in Parameterized Algorithmics. In IWPEC2009, to
appear.

8. P. Hell and J. Nešetřil: Graphs and Homomorphisms. Oxford University Press,
2004.

9. Kanté, M.: The rank-width of directed graphs. arXiv:0709.1433v3 (2008).
10. Oum, S.: Rank-width and vertex-minors. J. Combin. Theory Ser. B 95(1) (2005)

79–100.
11. J. Nešetřil and A. Raspaud: Colored Homomorphisms of colored mixed graphs.

Journal of Combinatorial Theory, Series B, 80(1):147-155, 2000.
12. Robertson, N. and Seymour, P.: Graph minors. X. Obstructions to tree-

decomposition. J. Combin. Theory Ser. B 52(2) (1991) 153–190.
13. É. Sopena: Oriented Graph Coloring. Discrete Math., 229:359-369, 2001.
14. Wagner, F.: Hardness Results for Tournament Isomorphism and Automorphism.

Mathematical foundations of computer science, 572-583, 2007.

8

Towards Comparing the Robustness of
Synchronous and Asynchronous Circuits by

Fault Injection

Marcus Jeitler and Jakob Lechner

Institute of Computer Engineering,
Vienna University of Technology,

Vienna, Austia
{jeitler, lechner}@ecs.tuwien.ac.at

http://ti.tuwien.ac.at

Abstract. As transient error rates are growing due to smaller feature
sizes, designing reliable synchronous circuits becomes increasingly chal-
lenging. Asynchronous logic design constitutes a promising alternative
with respect to robustness and stability. In particular, delay-insensitive
asynchronous circuits provide interesting properties, like an inherent re-
silience to delay-faults.
This paper presents a new approach for comparing the robustness of
synchronous and asynchronous logic. In order to ensure comparability
we have developed a tool to automatically transform synchronous de-
signs into their asynchronous counterparts while preserving structural
and functional equivalence. Using a saboteur-based fault injection tech-
nique, the robustness assessment of both synchronous and asynchronous
circuits can then be performed.
At the example of a small-sized test design, this paper demonstrates
the capabilities of the proposed approach and, based on these first re-
sults, briefly investigates the different behavior of synchronous and asyn-
chronous circuits in the presence of faults.

1 Introduction

The common principle of all asynchronous circuits is a request/acknowledge
handshaking protocol. This mechanism regulates the data flow based on the ac-
tual speed of the circuit rather than on pessimistic timing assumptions needed
in synchronous circuits. Asynchronous circuits can be distinguished by the de-
lay model they employ. In terms of robustness, delay-insensitive circuits are of
particular interest since they do not rely on any timing assumptions at all.

Delay-insensitivity in asynchronous circuits is typically implemented using
a dual-rail handshake protocol in combination with a certain encoding of data
words which allows a completion detection at the recipient. This mechanism

This work is partially funded by the FFG Bridge program: Project “RADIAL”
Project Nr: 815458

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2352

2 Marcus Jeitler et al.

not only masks delay-faults, the dual-rail encoding with its implicit redundancy
also helps in mitigating other fault types in the value domain. While the fault-
tolerance properties of asynchronous circuits have been investigated [1], little
attention has been paid to the direct comparison of delay-insensitive designs and
fault-tolerant synchronous logic so far. Therefore, the aim of the RADIAL project
is to compare a synchronous fault-tolerant processor (TMR) with its non-fault
tolerant asynchronous counterpart. In addition to a theoretical analysis of the
circuit’s structure, fault injection experiments will be conducted in the course of
the project. The experimental results are expected to provide a detailed insight
into the weaknesses and strengths of asynchronous logic wrt. robustness.

The first part of this paper introduces our framework for conducting fault
injection experiments in synchronous and asynchronous circuits. The tool-chain
consists of two key components: A software tool for automated transformation
of synchronous circuits into asynchronous counterparts as well as a powerful
fault injection framework that supports the insertion of saboteur units and exe-
cutes experiments by simulation or hardware emulation. The conversion process
for asynchronous circuits will be briefly presented in Section 2. Subsequently,
Section 3 gives an overview of the fault injection methodology.

In the second part of the paper a first robustness assessment using our fault
injection environment is conducted. In order to keep complexity low, the program
counter of a simple processor was used for performing fault injection experiments.
Section 4.4 presents the results of these experiments. The paper concludes with
Section 5 and provides an outlook on future work.

2 Tranformation of Synchronous Circuits

Since the aim of the RADIAL project is to assess the robustness of synchronous
and asynchronous circuits, a common design flow for both circuit types is nec-
essary. Therefore, we have recently developed a software tool for transforming
synchronous circuits into Four State Logic (FSL) counterparts [2]. FSL is a
delay-insensitive, dual-rail encoded implementation style for asynchronous cir-
cuits with 2-phase handshaking. The employed data encoding is based on the
Level-Encoded two-phase Dual-Rail (LEDR) scheme [3]. LEDR represents binary
data words in two alternating phases. Phase changes allow to safely separate suc-
cessive data words and enable the recipient to perform the necessary completion
detection. Table 1 shows the codewords for both phases, ϕ0 and ϕ1.

ϕ0 ϕ1

0 00 01

1 11 10

Table 1: LEDR encoding scheme.

Towards Comparing Robustness of Synchr. and Asynchr. Circuits 3

An important property of our FSL tool-chain is that the conversion pro-
cess not only preserves the logical function but also retains the structure of
the original circuit at gate-level. This behavior is essential for obtaining com-
parable results from fault injection experiments. The starting point of the FSL
design flow is a conventional synchronous synthesis tool, e.g., Synopsys, which
translates the clocked circuit description into a gate-level netlist. The latter can
subsequently be processed by the FSL conversion tool: Flip-flop components are
identified and grouped into registers. A directed graph which represents the data
dependencies among the registers is derived from the netlist. Tokens, placed on
the graph’s edges, can be used to illustrate the data flow. These tokens denote
a phase difference between a source and a sink register, which means that a
new data word is available for the sink register. Thus, a register may switch if
its input edges carry a token and the register’s own output tokens have been
consumed by all successor stages [4].

The initial token assignment plays a crucial role for the function of an FSL
circuit. If the behavior of the original synchronous circuit should be preserved,
this assignment is straightforward: In a synchronous system all registers pass
their inital value to the successor stages. Thus, all registers of the resulting
FSL circuit have to produce initial output tokens. However, in the presence
of feedback paths this token configuration causes deadlocks because all registers
hold tokens, which need to be consumed first. In order to resolve these deadlocks
empty buffer registers have to be inserted into the feedback path (see Figure 1).
This deadlock resolution is handled automatically by our FSL tool.

Fig. 1: Initial token assignment, deadlock removal.

Finally, an FSL netlist of the circuit is generated by replacing synchronous
flip-flop components with FSL latches and by adding the required acknowledge
signals between successive registers. Furthermore, all single-rail signals are con-
verted to dual-rail signals. The asynchronous netlist can then be processed by
conventional place & route tools (e.g., Altera QuartusII) for mapping the asyn-
chronous circuit onto FPGA platforms.

3 Fault Injection Framework

In this section we will introduce FuSE, a hardware accelerated HDL-based fault
injection environment which supports arbitrary synchronous or asynchronous
(with respect to FSL) VHDL circuits.

4 Marcus Jeitler et al.

In order to overcome the drawbacks of current simulation- and emulation-
based fault injection approaches [5], the FuSE concept integrates both methods
in a single tool and allows the user to switch between these modes as required: At
an early design stage the user can benefit from executing fault injection exper-
iments within the preferred simulation environment for maximum observation
capability. However, when some modules are completed, they can be synthesized
and moved to the FPGA, which considerably improves the simulation speed
while preserving the visibility of internal signals. This co-simulation support has
been achieved by integrating FuSE into the SEmulator R© engine – a hardware ac-
celerator for HDL simulations. The resulting environment consists of three core
components: The user front-end called Hpe desk, an HDL simulator (ModelSim
in our case) and a rather low cost hardware environment consisting of a proto-
typing FPGA board equipped with a proprietary PCI-express interface. A more
detailed description concerning the SEmulator R© and the FuSE integration can
be found in [6].

To facilitate fault injection, FuSE uses a source modification approach based
on saboteur devices, which currently supports stuck-at 0/1 and bit-flip faults. A
saboteur can be activated or deactivated at runtime so that permanent as well
as transient faults can be emulated. During the set-up phase the design under
test (DUT) is enhanced with the saboteurs and the corresponding control ports.
For observation and evaluation of the experiments, additional observation ports
can be added. The required modification can either be specified via stylized
comments, which are simply added to the source code, or via the Hpe desk
scripting interface. After the configuration the transformation of the source code
is automatically performed by the Hpe desk software.

4 Case Study

In order to demonstrate the unified fault injection platform for both synchronous
and asynchronous circuits, this section presents some basic experiments with a
rather simple test design. The program counter of our future design under test,
the SPEAR processor, was chosen as an example, because it is more transparent
with respect to the transformation process and the analysis of the conducted
experiments than a complex fault-tolerant synchronous processor.

A schematic representation of the program counter (PC) is presented in Fig-
ure 2. The circuit consists of the register storing the current address of the PC,
an adder and a multiplexer. The multiplexer selects the incremented counter ad-
dress provided by the adder or an external jump address input. Unless the jump
input is active, the program counter is incremented with every clock cycle in
the synchronous implementation (Figure 2a). The asynchronous PC, which has
been derived from the synchronous version, produces a new counter output with
every phase transition of the circuit. Figure 2b shows the corresponding FSL
implementation. In order to retain a correct and equivalent behavior the circuit
requires an additional buffer register (PCbuf) in its feedback path as explained
in Section 2.

Towards Comparing Robustness of Synchr. and Asynchr. Circuits 5

(a) Synchronous Implementation (b) Asynchronous Implementation

Fig. 2: Program Counter.

4.1 Experiment Setup

For the fault injection experiments saboteur devices have been inserted in both
versions of the program counter. The locations were determined in the syn-
chronous VDHL description and therefore automatically transferred by the FSL
transformation process1. The respective locations are marked in Figure 3.

Fig. 3: Injection Location.

Due to the characteristics of the VHDL code, no saboteurs could directly be
placed at the output of the adder and the multiplexer. However, faults at these
locations can be simulated with the available injection points. As the counter
only has one output that could transport an error to the rest of the circuit, the
evaluation of the experiments is based on a comparison between this output and
a reference output obtained from a fault free execution. The workload, a simple
testbench, was configured to increment the counter for 10 cycles, then jump to
address 4 and increment from there on.

4.2 Synchronous Fault Injection

In synchronous circuits one or multiple faults can be injected with every active
clock edge. Using the inserted saboteur devices each injection point can be con-
figured as a “stuck-at-0”, “stuck-at-1” or “bit-flip” fault during the execution
of the experiment. Due to the simple structure of our DUT, the outcome of
the experiments was not unexpected: Every injected fault has the potential to
1 Note, that the FSL implementation has a saboteur on each rail of a disturbed signal,

doubling the number of saboteur devices.

6 Marcus Jeitler et al.

manifest itself. While “stuck-at” faults can be masked by a matching current
state of the respective signal, “bit-flips” always lead to an error. Furthermore,
the duration of a fault usually has a different impact on the result. A special
case is the bit-flip in the feedback loop which can neutralize itself if the faulty
value is affected again in the subsequent clock cycle.

4.3 Asynchronous Fault Injection

As explained in Section 2 FSL uses a dual-rail coding scheme which encodes
every binary data value in two phases: ϕ0 and ϕ1. Due to this encoding, the
introduced fault types have different effects in an FSL circuit than in a syn-
chronous circuit. Table 2 lists all possible single-rail and dual-rail faults marked
with their observed characteristic.

FSL State ↑ ↓ l ↑↑ ↓↓ ll ↑↓ ↓↑

ϕ0
00 01P 10P 00M 00M 01P 10P 11V 00M 11V 10P 01P

11 11M 11M 10P 01P 10P 01P 11M 00V 00V 10P 01P

ϕ1
01 01M 11P 00P 01M 00P 11P 11P 00P 10V 10V 01M

10 11P 10M 10M 00P 11P 00P 11P 00P 01V 10M 01V

single-rail faults dual-rail faults

Fault Type: ↑. . . stuck-at-1, ↓. . . stuck-at-0, l. . . bit-flip
Characteristic: M . . .masked, P . . . phase change, V . . . value change

Table 2: FSL Fault Characteristics.

The FSL coding scheme describes a valid state transition as the change of
a single-rail. As a result, all single-rail faults are either masked or change the
phase of the signal. In theory, both outcomes should not lead to an error.

In contrast to single-rail faults, dual-rail faults can also change the value of
a signal, which can become an error in our circuit if it is stored in the register.
As shown in Table 2, not only fault constellations that are rather unlikely, e.g.
both rails of a signal are affected in different ways, but also ↑↑ and ↓↓ faults can
lead to a value change. However, this behavior only occurs in specific cases with
values encoded in ϕ0 (00, 11), otherwise the fault has no effect.

During our exhaustive experiments every proposed fault constellation was in-
jected in order to confirm the theoretical assumptions. The corresponding results
will be presented in the following section.

4.4 Experimental Results

Single-Rail Faults Although the experiments with single-rail faults did not
cause an error, the observed behavior complements the theoretical characteristics

Towards Comparing Robustness of Synchr. and Asynchr. Circuits 7

presented in the previous section. A fault which is masked in one phase can keep
a rail from switching, thereby delaying the execution of the subsequent phase. As
a result a masked fault is transformed into a delay fault. This behavior also offers
an easy way to generate and investigate delay faults in asynchronous circuits.

If a single-rail fault causes a phase shift the execution of the circuit is not
necessarily stopped at once. Depending on a specific fault activation window the
inconsistent phase either affects the current phase or the subsequent phase. In
the first case, the circuit is halted at once. In the latter case the phase shift
can either halt the circuit in the subsequent phase or become masked. However,
neither case did lead to an error.

Dual-Rail Faults The considered dual-rail faults either affect both rails the
same way or in different ways. As our experiments showed, if a dual-rail fault
is masked then it will definitely block the execution of the next phase until the
fault is removed again.

If a dual-rail fault results in a phase change, the execution is either blocked
or continues with the next phase where the original fault becomes masked or
introduces a value change and therefore an error. Nevertheless, if the fault is still
active, the further execution will be blocked until the fault is removed again.

The third fault characteristic is an instant value change. If it hits the fault
activation window it will cause an error first before the execution is halted. The
only exception to this rule is the dual-rail bit-flip fault: Execution will continue
and the introduced error will be removed every other cycle if the faulty value is
affected again.

4.5 Beyond Experimental Results

Due to the limited complexity of our test circuit certain temporal effects, as e.g.
the skew between the signal rails, were not distinctive enough to influence the
execution of our experiments. This section will therefore address possible results
which depend on a more intricate timing.

Skew-affected Single-Rail Faults As explained in Section 4.4 the investi-
gated program counter is resilient to single-rail faults, which is a direct result of
the implemented coding scheme. However, the assumption that single-rail faults
can be tolerated mainly depends on the the skew between the inputs of an FSL
register. If the skew is small, i.e., all signal rails almost switch simultaneously,
then a single-rail fault will either be masked or causes an inconsistent input vec-
tor (refer to Table 2). If the skew is sufficiently large, then even a single-rail fault
may introduce a value error due to a premature phase change. This behavior is
illustrated in Figure 4.

The presented example shows an FSL register with two inputs A,B and an
output C. Due to some delay at input A, B is always assigned a new value
(represented by a phase change) prior to A in the dataflow diagram. As the
inputs are inconsistent during this period, the FSL register has to retain its last

8 Marcus Jeitler et al.

Fig. 4: Skew-affected Single-Rail Fault.

valid output. This “hold” window makes the circuit susceptible for faults, as
the register only waits for the inputs to become consistent again. If a single-rail
fault causes a premature phase change at A within the “hold” window, possibly
wrong data is consumed and a value error might propagate.

By extending this consideration to an arbitrary number of inputs, we can
derive the following properties for a single-rail error:

– The fault activation window is determined by the skew of the two slowest
inputs.

– A single-rail fault has to hit the slowest rail pair in order to cause a premature
data consumption.

Considering the current theoretical analysis we conclude, that the skew, re-
spectively the fault activation window within the test circuit is too small so that
all injected single-rail faults become masked according to the coding scheme.
Future experiments should therefore be conducted on more complex circuits in
order to qualitatively assess the inherent robustness of asynchronous logic.

Metastability Effects While single-rail faults only produce premature phase
changes, dual-rail faults can additionally cause invalid transitions in the FSL
coding scheme. These may lead to timing issues within the storage elements
which are extensively used by FSL designs. Basically all FSL components, se-
quential registers as well as basic combinational gates, contain RS-latches for
holding a data value or preserving a stable state during ongoing input transi-
tions. Although this latch type is very convenient for building FSL gates, first
fault injection experiments have uncovered an unpleasant vulnerability: If a fault

Towards Comparing Robustness of Synchr. and Asynchr. Circuits 9

causes the Set and the Reset line to be active at the same time and subsequently
both signals are released almost simultaneously, the output of the latch starts to
oscillate. The RS-latch basically behaves like a JK-latch in toggle mode. Figure
5a shows a waveform of this behavior.

(a) Upset on Set signal (b) RS-latch

Fig. 5: Fault disrupting the function of an RS latch.

RS-latches can be built from two cross-coupled NOR-gates (see Figure 5b).
If the Set and the Reset input are active at the same time, Q and Qn are both
forced low, which violates the equation Q = not Qn. When the Set and the
Reset inputs are released again, the NOR-gates form a loop which may start to
oscillate.

5 Conclusion and Outlook

The fault injection experiments presented in this paper outline the inherent fault
tolerance capabilities of an FSL circuit with respect to arbitrary rail faults. While
simple, well-balanced designs are resilient to single-rail faults, more complex
architectures might yet be error-prone. In this context, the duration of the “hold”
window has been identified as a source for the propagation of single-rail faults.
A dual-rail fault, however, does not depend on a specific activation window.
Although it can cause a value error at any instant, it only affects the circuit
once during its occurrence because the execution will be blocked afterwards.
Therefore, the duration of such a fault has no additional effect on the amount
of possible errors which is a major difference compared to a synchronous circuit
where a fault can become activated periodically.

In future experiments we plan to investigate the propagation of single-rail
faults as well as the necessary requirements for the fault activation. In this con-
text, the temporal resolution for the injection will be improved in order to variate
the occurrence of a fault within this critical period. The gathered results should
then let us develop appropriate mitigation strategies. The improved architecture
will be used for the comparison of the synchronous fault-tolerant processor and
its non-fault tolerant asynchronous counterpart which has been recently devel-
oped [7].

10 Marcus Jeitler et al.

References

1. LaFrieda, C., Manohar, R.: Fault detection and isolation techniques for quasi delay-
insensitive circuits. In: DSN ’04: Proceedings of the 2004 International Conference
on Dependable Systems and Networks, Washington, DC, USA, IEEE Computer
Society (2004) 41

2. Lechner, J.: Implementation of a Design Tool for Generation of FSL Circuits.
Master’s thesis, Vienna University of Technology, Austria (2008)

3. McAuley, A.J.: Four State Asynchronous Architectures. IEEE Transactions on
Computers 41(2) (1992) 129–142

4. Sparsø, J., Furber, S., eds.: Principles of Asynchronous Circuit Design: A Systems
Perspective. Kluwer Academic Publishers (2001)

5. Benso, A., Prinetto, P.: Fault Injection Techniques and Tools for Embedded Sys-
tems. Kluwer Academic Publishers, Norwell, MA, USA (2003)

6. Jeitler, M., Delvai, M., Reichor, S.: FuSE - A Hardware Accelerated HDL Fault
Injection Tool. In: 5th Southern Conference on Programmable Logic, 2009. SPL.
(2009) 89–94

7. Jeitler, M., Lechner, J.: Speeding up Fault Injection for Asynchronous Logic by
FPGA-based Emulation. to be published at: International Conference on ReCon-
Figurable Computing and FPGAs, 2009. ReConFig. (2009)

Undecidability of Coverability and Boundedness
for Timed-Arc Petri Nets with Invariants

Lasse Jacobsen, Morten Jacobsen and Mikael H. Møller

Department of Computer Science, Aalborg University, Selma Lagerlöfs Vej 300,
9220 Aalborg Øst, Denmark

{lassejac,mortenja,mikaelhm}@cs.aau.dk

Abstract. Timed-Arc Petri Nets (TAPN) is a well studied extension
of the classical Petri net model where tokens are decorated with real
numbers that represent their age. Unlike reachability, which is known to
be undecidable for TAPN, boundedness and coverability remain decid-
able. The model is supported by a recent tool called TAPAAL which,
among others, further extends TAPN with invariants on places in order
to model urgency. The decidability of boundedness and coverability for
this extended model has not yet been considered. We present a reduc-
tion from two-counter Minsky machines to TAPN with invariants to show
that both the boundedness and coverability problems are undecidable.

1 Introduction

Time-dependent models have been extensively studied due to increasing de-
mands on the reliability and safety of embedded software systems. Timed au-
tomata [11] and various time-extensions of Petri nets (e.g. [4]) are among the
most studied time-dependent models. A recent paper by Srba [14] provides a
comparative overview of these models.

Timed-Arc Petri Nets (TAPN’s) [4] is a popular time-extension of Petri Nets
[10] in which each token is assigned an age (a real number), and time intervals
on arcs restrict the ages of tokens that can be used to fire a transition. The
reachability problem has been shown undecidable for TAPN [12]. In particular,
a TAPN cannot correctly simulate a test for zero on a counter [3]. However,
other problems, like boundedness and coverability remain decidable [2][1].

Recent work on the verification tool TAPAAL by Byg et al. [5] have, among
other things, introduced invariants on places into the TAPN model as a way to
represent urgency. However, urgency alone does not allow a TAPN to correctly
simulate a test for zero on a counter. Nevertheless, we show that invariants
on places makes the coverability and boundedness problem undecidable. We
adopt the main idea from [12] (see also [6] for a similar proof technique for
another time extension of Petri nets), in which a two-counter Minsky machine
(2-CM) is weakly simulated by a TAPN. In contrast to their reduction, the
extension of invariants allows us to detect when the net incorrectly simulates
the 2-CM. Further, our reduction allows us to prove the undecidability of both
the coverability and boundedness problems.

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2346

2 Basic Definitions

Many of the definitions in this section are following [13]. The set of all time
intervals I and the set of time intervals for invariants IInv are defined according
to the following abstract syntaxes where a ∈ N0, b ∈ N and a < b:

I ::= [a, a] | [a, b] | [a, b) | (a, b] | (a, b) | [a,∞) | (a,∞)
IInv ::= [0, 0] | [0, b] | [0, b) | [0,∞)

We define the predicate r ∈ I for r ∈ R+
0 in the expected way.

Definition 1 (Timed-Arc Petri Net with Invariants). A Timed-Arc Petri
Net with Invariants (ITAPN) is a 5-tuple N = (P, T, F, c, ι) where P is a finite
set of places, T is a finite set of transitions such that P ∩ T = ∅, F ⊆ (P ×
T) ∪ (T × P) is the flow relation, c : F |P×T → I is a function assigning time
intervals to arcs from places to transitions, and ι : P → IInv is a function
assigning invariants to places.

We let B(R+
0) denote the set of finite multisets over R+

0 . For a B ∈ B(R+
0) and

some d ∈ R+
0 , we let B + d = {b+ d | b ∈ B}. Notationally, we use multisets as

ordinary sets with the operations ∪, \,⊆,∈ implicitly interpreted over multisets.
Let us now define a marking on a ITAPN.

Definition 2 (Marking). A marking M on a ITAPN N = (P, T, F, c, ι) is a
function M : P → B(R+

0), such that for every place p ∈ P it holds that for every
token x ∈M(p), x ∈ ι(p). The set of all markings over N is denoted M(N).

A marked ITAPN is a pair (N,M0) where N is a ITAPN and M0 is the initial
marking. We only allow initial markings in which all tokens have age 0.

The preset of a transition t is •t = {p ∈ P | (p, t) ∈ F} and the postset of t is
t• = {p ∈ P | (t, p) ∈ F}.

Definition 3 (Firing rule). Let N = (P, T, F, c, ι) be a ITAPN, M some mark-
ing on it and t ∈ T be a transition of N .

We say that t is enabled if and only if ∀p ∈ •t. ∃x ∈ M(p). x ∈ c(p, t), i.e.
there is a token with an appropriate age at every place in the preset of t.

If t is enabled in M , it can be fired, whereby we reach a marking M ′ defined
by ∀p ∈ P. M ′(p) =

(
M(p) \ C−t (p)

)
∪ C+

t (p) (note that all operations are on
multisets and there may be multiple choices for the sets C−t (p) and C+

t (p) for
each p. We simply fix the sets before firing t), where

– C−t (p) =
{
{x} if p ∈ •t ∧ x ∈M(p) ∧ x ∈ c(p, t)
∅ otherwise

– C+
t (p) =

{
{0} if p ∈ t•
∅ otherwise

i.e. from each place p ∈ •t we remove a token with an appropriate age, and we
add a new token with age 0 to every p ∈ t•.

2

Definition 4 (Time delays). Let N = (P, T, F, c, ι) be a ITAPN and M some
marking on it. A time delay d ∈ R+

0 is allowed if and only if (x + d) ∈ ι(p)
for all p ∈ P and x ∈ M(p), i.e. by delaying d time units no token violates
the invariants. By delaying d time units we reach a marking M ′, defined as
M ′(p) = M(p) + d for all p ∈ P .

A marked ITAPN (N,M0) is said to be k-bounded if the number of tokens
in each place does not exceed k for any marking reachable from M0. A marked
ITAPN is bounded if it is k-bounded for some k ∈ N.

Problem 1 (Boundedness). Given a marked ITAPN is it bounded?

A marking M on a ITAPN (N,M0) is said to be coverable if there exists a
marking M ′, reachable from M0, s.t. M ′(p) ⊇M(p) for each place p in the net.

Problem 2 (Coverability). Given a marked ITAPN (N,M0) and some marking
M , is M coverable?

3 Undecidability of Boundedness and Coverability

In this section we will prove the undecidability of boundedness and coverability
by reduction from two-counter Minsky machines.

Definition 5. A Two-Counter Minsky Machine (2-CM) with two non-negative
registers r1 and r2 is a sequence of instructions (I1 : Ins1; I2 : Ins2; . . . Ie−1 :
Inse−1; Ie : HALT) where for every j, 1 ≤ j < e, Insj is one of the two types:

– ri := ri + 1; goto Ik; where i ∈ {1, 2} and k ∈ {1, 2, . . . , e} (Increment).
– if ri > 0 then ri := ri − 1; goto Ik; else goto I`; where i ∈ {1, 2} and k, ` ∈
{1, 2, . . . , e} (Test and decrement).

The last instruction is always the HALT instruction. A configuration of a 2-CM
is a triple (j, v1, v2) where j ∈ {1, 2, . . . , e} is the index of instruction Ij to be
executed and v1 and v2 are the values of the registers r1 and r2, respectively.

The computational step relation of a 2-CM is defined as expected and we use
the notation (j, v1, v2) → (j′, v′1, v

′
2) to denote that we perform the current in-

struction Ij with values v1 and v2 in the registers, resulting in the configuration
(j′, v′1, v

′
2).

Definition 6 (The Halting Problem for 2-CM). Given a 2-CM, is it pos-
sible to reach the halt instruction from the initial configuration (1, 0, 0), i.e.
(1, 0, 0)→∗ (e, v1, v2) for some v1, v2 ∈ N0?

Theorem 1 (Minsky [9]). The halting problem for 2-CM is undecidable.

We will now describe the reduction from 2-CM to ITAPN. Given a 2-CM (I1 :
Ins1; I2 : Ins2; . . . Ie−1 : Inse−1; Ie : HALT) we construct a ITAPN
(P, T, F, c, ι) where

3

pri

≤ 1

preset
ritreset

ri

[1, 1] [0, 0]

(a) Simulation of a register.

pe

phalt

pcount

te

[1, 1]

(b) Simulation of Halt instruction.

pj

preset
r1

qj

preset
r2

pri

≤ 1

pk

pcount
tj

[1, 1]

tgoto
j

[0, 0]

[0, 0]

[0, 0]

(c) Simulation of Ij : ri := ri + 1; goto Ik.

pj

pri

≤ 1

qj

preset
r3−i

p`

pcount

pk

telse1
j

[1, 1]
telse2
j

[0, 0]

[0, 0]

tthen
j

[0, 0]

[0, 0]

(d) Simulation of Ij : if ri > 0 then ri := ri − 1; goto Ik; else goto I`.

Fig. 1: ITAPN models for 2-CM simulation.

– P = {pj , qj | 1 ≤ j < e} ∪
{
pr1 , p

reset
r1

, pr2 , p
reset
r2

}
∪ {pcount} ∪ {pe, phalt}

– T =
{
treset
r1

, treset
r2

}
∪
{
tj , t

goto
j | Insj is of type increment

}
∪{

telse1
j , telse2

j , tthen
j | Insj is of type test and decrement

}
∪ {te}

The number of tokens in pr1 and pr2 correspond to the values of r1 and r2, the
number of tokens in pcount remembers the number of computation steps which
have been simulated in the net and p1, . . . , pe corresponds to the instructions
Ins1, . . . , Inse such that the place pj contains one token if and only if the current
instruction is Insj . For the flow relation we will split it into 4 parts.

– F1 contains the arcs for the registers. For each register ri, i ∈ {1, 2}, we add
the following arcs to F1

(pri , t
reset
ri

), (treset
ri

, pri), (preset
ri

, treset
ri

), (treset
ri

, preset
ri

) where

c((pri , t
reset
ri

)) = [1, 1], c((preset
ri

, treset
ri

)) = [0, 0] and ι(pri) = [0, 1] .

This is illustrated in Figure 1a. The number of tokens on pri
indicates the

value of the register. Notice the invariant on the register which disallows
tokens with an age greater than 1. Placing a token on preset

ri
allows us to

reset the age of all tokens of age 1 in the register.

4

– F2 contains the arcs for the increment instructions. For each increment in-
struction Ij : ri := ri + 1; goto Ik;, we add the following arcs to F2

(pj , tj), (tj , preset
r2

), (tj , qj), (tj , preset
r1

), (preset
r2

, tgoto
j), (qj , t

goto
j),

(preset
r1

, tgoto
j), (tgoto

j , pcount), (tgoto
j , pk), (tgoto

j , pri) where c((pj , tj)) = [1, 1],

c((preset
r2

, tgoto
j)) = [0, 0], c((qj , t

goto
j)) = [0, 0] and c((preset

r1
, tgoto

j)) = [0, 0] .

This is illustrated in Figure 1c. Notice that we require a delay of one time
unit before firing tj . Because of this, we allow tokens in each register to be
reset (by placing tokens on preset

r1
and preset

r2
). Following this, by firing tgoto

j

a token is added to pcount, register ri is incremented by adding a token to
pri and control is given to the next instruction Ik by placing a token on pk.

– F3 contains the arcs for the test and decrement instructions. For each test and
decrement instruction Ij : if ri > 0 then ri := ri − 1; goto Ik; else goto I`;,
we add the following arcs to F3

(pj , t
else1
j), (pj , t

then
j), (pri

, tthen
j), (telse1

j , qj), (telse1
j , preset

r3−i
), (qj , telse2

j),

(preset
r3−i

, telse2
j), (telse2

j , p`), (telse2
j , pcount), (tthen

j , pcount), (tthen
j , pk) where

c((pj , t
else1
j)) = [1, 1], c((pj , t

then
j)) = [0, 0], c((pri , t

then
j)) = [0, 0],

c((preset
r3−i

, telse2
j)) = [0, 0] and c((qj , telse2

j)) = [0, 0] .

This is illustrated in Figure 1d. Notice that when we follow the else branch
(firing transition telse1

j), we can only reset the ages of tokens in the register
on which we are not testing for emptyness.

– F4 contains the arcs for the HALT instruction. Formally it is defined as

F4 = {(pe, te), (te, pcount), (te, phalt)} where c((pe, te)) = [1, 1] .

This is illustrated in Figure 1b. Again we require a time delay of one time
unit before te can be fired and a token placed at phalt.

– The flow relation F can then be defined as the union of the four parts, i.e.
F = F1 ∪ F2 ∪ F3 ∪ F4 and we let ι(p) = [0,∞) for all p ∈ P \ {pr1 , pr2} .

We define the initial marking M0 such that M0(p1) = {0} and M0(p) = ∅ for
all p ∈ P \ {p1}.

Let (N,M0) be the marked ITAPN simulating a given 2-CM. Notice that
every place in the net except for pr1 , pr2 , pcount is 1-safe (i.e. contains at most
one token). In a correct simulation of the 2-CM by our net, a configuration
(j, v1, v2) of the 2-CM corresponds to any marking M where

M(pj) = {0}, M(pri) = {0, 0, . . . , 0}︸ ︷︷ ︸
vi times

for i ∈ {1, 2}, (1)

|M(pcount)| = n where n ∈ N0 and M(p) = ∅ for all p ∈ P \ {pj , pr1 , pr2 , pcount} .

5

We will now describe how to simulate the three types of instructions of a 2-CM
in a correct way. Assume there is a token of age 0 in pj .

If Ij is an increment instruction, we need to delay for one time unit in order
to enable tj (see Figure 1c). Because we delayed one time unit, all tokens in the
registers are now of age 1. In a correct simulation, we fire repeatedly transitions
treset
r1

and treset
r2

until all tokens in pr1 and pr2 are of age 0. Note that it is possible
to cheat in the simulation, as it is possible to leave some tokens of age 1 in pr1

or pr2 when firing tgoto
j .

If Ij is a test and decrement instruction there are two possibilities (see Fig-
ure 1d). If there is a token of age 0 at pri

, we fire tthen
j in order to decrement

the number of tokens in register ri, and hand over the control to Ik by placing a
token on pk. Otherwise, in the correct simulation we delay one time unit before
firing telse1

j . Then we reset the age of all the tokens in the other register, pr3−i
to

0. We then proceed by firing telse2
j . This will hand over control to instruction I`

by placing a token on p`. Again note that it is possible to cheat in the simulation,
either by leaving tokens of age 1 at pr3−i when proceeding to the next instruction
or by taking the else-branch even though there is a token at pri

(because the
net does not force us to fire transition tthen

j when it is enabled).
If Ij is the halt instruction, we delay one time unit before we fire the last

transition te and add a token to phalt.
After every instruction one token is added to pcount. We will now prove a

lemma detailing what happens if we cheat.

Lemma 1. Let (j, v1, v2) be the current configuration of a 2-CM CM, (N,M0)
the associated ITAPN and M a marking corresponding to (j, v1, v2) (see Equation
1). If the net cheats then during the simulation of CM in the next computation
step it is not possible to simulate an increment instruction, go to the halt state,
nor to take the else-branch of a test and decrement instruction. Further, the net
can do at most v1 + v2 decrements before getting stuck.

Proof. We can perform an incorrect simulation in two ways:

– If all tokens in pr1 and pr2 are not reset to age 0 in an increment or test and
decrement instruction before going to the next instruction.

– In a test and decrement instruction, the net can fire the transition telse1
j even

if there is a token of age 0 in pri
. This is possible by delaying 1 time unit to

enable the transition. However, this will result in the tokens in pri
having

age 1 and these can not be reset before going to the next instruction.

In both cases we end up in a marking M ′ where there is at least one token of
non-zero age in either pr1 or pr2 . Observe that the simulation of increment, halt
and the else-branch of a test and decrement instruction all require a delay of
1 time unit (see Figure 1) which would violate the invariants ι(pr1) or ι(pr2).
Thus, the only possibility is to take the then-branch of a test and decrement
instruction. However, this is only possible as long as there are tokens of age 0 in
pr1 or pr2 . There are v1 and v2 tokens in pr1 and pr2 , repectively. Thus, the net
can do at most v1 + v2 decrements before getting stuck. ut

6

3.1 Undecidability Results

First we prove the undecidability of the boundedness problem.

Lemma 2. Given a 2-CM CM and the associated ITAPN (N,M0), CM halts if
and only if N is bounded.

Proof. We start by proving that if N is bounded then CM halts. Assume that
N is k-bounded. Further, assume by contradiction that CM does not halt. After
simulating k+1 computational steps of CM correctly, the net will be in a marking
M where |M(pcount)| = k+ 1. This is a contradiction to the assumption that N
is k-bounded.

Now we prove the implication in the other direction. Assume that CM halts
in n steps. We will show that N is 2n-bounded. If we simulate CM correctly,
there will be at most n tokens at the registers, and exactly n tokens at pcount.
Hence, the net must cheat in order to become unbounded. In the worst case, it
cheats at the last step, when there are at most n− 1 tokens in the registers and
n− 1 tokens at pcount. Then we have that the net is 2n-bounded since there will
be at most 2(n− 1) tokens at pcount by Lemma 1. ut

From Lemma 2 we conclude the following theorem.

Theorem 2. The boundedness problem is undecidable for ITAPN.

We now prove the undecidability of the coverability problem.

Lemma 3. Let M be a marking such that M(phalt) = {0} and M(p) = ∅ for all
p ∈ P \ {phalt}. Given a 2-CM CM and the associated marked ITAPN (N,M0),
as defined above, CM halts if and only if M is coverable from M0.

Proof. First we prove that if CM halts then M is coverable from M0. Assume
that the CM halts. By simulating CM correctly in N , we can easily see that we
reach a marking M ′, with a token in phalt, hence M ′(p) ⊇M(p) for all p ∈ P .

Now we prove that if M is coverable from M0 then CM halts. Assume that
M is coverable from M0. By assumption there exists a reachable marking M ′

such that M ′(p) ⊇M(p) for all p ∈ P . By definition of coverability, it holds that
0 ∈M ′(phalt) and by Lemma 1 this is only possible if we simulate CM correctly
in the net, hence CM halts. ut

From Lemma 3 we conclude the following theorem.

Theorem 3. The coverability problem is undecidable for ITAPN.

4 Conclusion

We proved that coverability and boundedness is undecidable for Time-Arcs Petri
Nets with Invariants by reduction from two-counter Minsky machines. The fol-
lowing table shows a summary of known results about Petri Nets (PN). Our
results are emphasized.

7

Reachability Boundedness Coverability
PN decidable [8] decidable [7] decidable [7]

TAPN undecidable [12] decidable [2] decidable [1]
ITAPN undecidable [12] undecidable undecidable

Acknowledgements

We would like to thank Jǐŕı Srba, Mads Chr. Olesen, Kenneth Y. Jørgensen and
the anonymous reviewers for their comments and suggestions.

References

[1] P. A. Abdulla and A. Nylén. Timed Petri Nets and BQOs. In Proc. of
ICATPN, volume 2075 of LNCS, pages 53–70. Springer, 2001.

[2] P. A. Abdulla, P. Mahata, and R. Mayr. Dense-Timed Petri Nets: Checking
Zenoness, Token liveness and Boundedness. Logical Methods in Computer
Science, 3(1):1–61, 2007.

[3] T. Bolognesi and P. Cremonese. The Weakness of some Timed Models for
Concurrent Systems. Technical Report CNUCE C89-29, CNUCE-C.N.R.,
Oct. 1989.

[4] T. Bolognesi, F. Lucidi, and S. Trigila. From Timed Petri Nets to Timed LO-
TOS. In Proc. of IFIP WG 6.1 PSVT X, pages 395–408, Ottawa, Canada,
1990. North-Holland Publishing.

[5] J. Byg, K. Y. Jørgensen, and J. Srba. An Efficient Translation of Timed-
Arc Petri Nets to Networks of Timed Automata. In Proc. of ICFEM ’09,
volume 5799 of LNCS. Springer, Dec 2009. To appear (available at author’s
website).

[6] Neil D. Jones, Lawrence H. Landweber, and Y. Edmund Lien. Complexity
of some problems in petri nets. Theor. Comput. Sci., 4(3):277–299, 1977.

[7] R. M. Karp and R. E. Miller. Parallel Program Schemata. Journal of
Computer and System Sciences, 3(2):147–195, 1969.

[8] E. W. Mayr. An Algorithm for the General Petri Net Reachability Problem.
In Proc. of STOC ’81, pages 238–246, Milwaukee, WI, USA, 1981. ACM.

[9] M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall,
1967.

[10] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Darmstadt, 1962.
[11] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer

Science, 126(2):183–235, 1994.
[12] V. V. Ruiz, F. C. Gomez, and D. de Frutos-Escrig. On Non-Decidability

of Reachability for Timed-Arc Petri Nets. In Proc. of PNPM ’99, pages
188–196, Washington DC, USA, 1999. IEEE Computer Society.

[13] J. Srba. Timed-Arc Petri Nets vs. Networks of Timed Automata. In Proc.
of ICATPN’05, volume 3536 of LNCS, pages 385–402. Springer, 2005.

[14] J. Srba. Comparing the Expressiveness of Timed Automata and Timed
Extensions of Petri Nets. In Proc. of FORMATS’08, volume 5215 of LNCS,
pages 15–32. Springer, 2008.

8

Weighted Dynamic Pushdown Networks

Alexander Wenner

Institut für Informatik, Fachbereich Mathematik und Informatik
Westfälische Wilhelms-Universität Münster

alexander.wenner@uni-muenster.de

Abstract. We develop a generic framework for the analysis of programs
with recursive procedures and dynamic process creation. To this end we
combine the approach of weighted pushdown systems (WPDS) with the
model of dynamic pushdown networks (DPN). Weighted dynamic push-
down networks (WDPN) describe processes running in parallel. Each
process may perform pushdown actions and spawn new processes. Tran-
sitions are labelled by weights to carry additional information. We derive
a method to determine meet-over-all-paths values for the paths from a
starting configuration to a regular set of configurations of a WDPN.

1 Introduction

The interest in writing parallel programs has increased in recent years. However
parallel programming is notoriously difficult and error-prone. Thus static analy-
sis of parallel programs has become more and more important. The goal of this
paper is to present a generic framework for the analysis of parallel programs, es-
pecially in the presence of recursive procedures and dynamic process creation. We
base our framework on DPN [1] and WPDS [2]. DPN precisely model procedures
and process creation and have been studied for reachability analyses. Since the
analysis of recursive procedures and synchronisation is undecidable [3], DPNs
do not model synchronisation between processes. However, through the addi-
tion of weights we will be able to analyse some interaction between processes.
WPDS extend pushdown systems (PDS) by labelling transitions with weights
and solving the generalised pushdown predecessor (GPP) problem, which is the
meet-over-all-paths solution for paths from a starting configuration into a reg-
ular set of target configurations. The weights can be used to formulate a wide
range of analysis problems. The GPP problem formulation allows for a specific
query depending on the shape of the entire call-stack, in contrast to standard
dataflow techniques, where typically all information at the topmost program
point is merged. Analogous to WPDS we extend DPN to WDPN by annotat-
ing weights to transitions and study the GPP problem. Even though a WPDS is
then simply a WDPN with one process, adapting the approach to solve the GPP
problem from WPDS to WDPN is problematic. In general a path of a DPN is
an interleaving of the transitions of arbitrary many parallel processes. Results
from [1] show, that such a set of paths can not be described using a constraint
system. We avoid these problems by introducing a branching semantics for DPN

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2344

similar to the tree semantics in [4]. Transitions of newly spawned processes are
no longer mixed with the transitions of the creating process, but contained in
their own branch. This results in executions which are tree shaped for single pro-
cesses and form hedges, which contain a tree for each process, for configurations
with multiple processes. We introduce an extended weight domain to abstract
these trees, and study the analogous branching GPP (BGPP) problem, which
is the meet-over-all-hedges solution, for these branching WDPN (BWDPN). We
show, that if the weight domain of a WDPN and the extended weight domain
of a BWDPN, based on the same DPN, are related, the solution for the GPP
problem of the WDPN can be derived from the solution of the corresponding
BGPP problem of the BWDPN. The BGPP problem can be solved using an
approach adapted from WPDS.

Up to this point our framework of WDPN and BWDPN can solve the bitvec-
tor problems for DPNs formulated in [1], the more general KILL/GEN analyses
described in [5] and the shortest path analysis from [2]. In [6] a different ap-
proach to generalize WPDS to parallel programs is presented, by introducing
a context bound. This leads to an underapproximation, whereas our approach
handles unbounded context switches precisely.

The remainder of the paper is organised as follows: Section 2 presents the
intuitive extension of WPDS to DPN called WDPN and defines the GPP. Section
3 introduces BWDPN. We formulate the BGPP problem and present the relation
to the GPP problem. Section 4 presents two applications and Section 5 presents
the approach to solve the BGPP problem for BWDPN.

2 Weighted Dynamic Pushdown Networks

A DPN [1] is a model for parallel programs with multiple processes and dynamic
process creation. Each process is modeled as a PDS, where the rules are extended
to allow creation of new processes. Formally a DPN is a tuple M = (P, Γ,∆),
where P is a finite set of control states, Γ is a finite set of stack symbols,
with P ∩ Γ = ∅, and ∆ is a finite set of transition rules of the form pγ ↪→ c
with p ∈ P , γ ∈ Γ and c ∈ (PΓ ∗)∗PΓ ∗. The right side of a rule consists
of the new control state and stacktop of the original process in the rightmost
position and the control states and stacks of all processes spawned by this rule
to the left. Configurations of the DPN are words from Conf = (PΓ ∗)∗. The
empty configuration is written as ε. For the rest of the paper we fix a DPN
M = (P, Γ,∆), a configuration c and a regular set C ⊆ Conf.

An execution of a DPN is represented by a path. A path is defined as a
sequence of rules ρ = r1 . . . rn with ri ∈ ∆. The empty path is denoted by ερ
and Paths is the set of all paths. The execution of a path is modeled by the
labelled transition relation −→ ⊆ Conf × Paths × Conf, where for c, c′ ∈ Conf,
p ∈ P , γ ∈ Γ , u ∈ (PΓ ∗)∗ and v ∈ Γ ∗(PΓ ∗)∗ :

[empty] c
ερ−→ c [rule] upγv

rρ−→ c if r = pγ ↪→ c′ and uc′v
ρ−→ c

2

Application of a rule replaces the control state and top symbol of one stack by
the new control state and stacktop specified by the rule and inserts the newly
created processes with their initial stacks to the left. We call this the interleaving
semantics of the DPN, since the rules of all processes are mixed together. We
are interested in the set Paths(c, C) = {ρ ∈ Paths | ∃c′ ∈ C with c

ρ−→ c′} of
connecting paths from c to C.

In order to abstract from the set of connecting paths to the aspects which
are relevant to the desired analysis, we assign a weight to each transition of the
DPN. The structure of the weight domain is captured by a complete idempotent
semiring, which supports the necessary operators � for concatenation of weights
along a path and ⊕ for combination of weights of different paths. A complete
idempotent semiring is a tuple S = (D,⊕,�, 0, 1), where D is a set of elements
with 0, 1 ∈ D and ⊕,� are binary operators on D with:

• (D,⊕) is a commutative monoid with neutral element 0 and ⊕ is idempotent
• (D,�) is a monoid with neutral element 1 and 0 annihilates �
• (D,v) is a complete lattice, where v, with d1 v d2 :⇔ d1 ⊕ d2 = d1

for d1, d2 ∈ D, is the partial order induced by ⊕
• � distributes over arbitrary ⊕, i.e.

⊕
D1 �

⊕
D2 =

⊕
{d1 � d2 | di ∈ Di}

for D1, D2 ⊆ D

Furthermore we assume, that a weight function f : ∆→ D is given. The weight
function assigns a weight to each transition of our DPN and depends on the
analysis, since it describes how the transitions of the DPN are connected to
the analysed information represented by the semiring. We fix the tuple W =
(M,S, f), with S = (D,⊕,�, 0, 1), called a WDPN, for the rest of the paper
and define an abstraction function α : Paths→ D for paths:

[empty] α(ερ) = 1 [rule] α(rρ) = f(r)� α(ρ)

Overloading it for sets of paths with α(M) =
⊕
{α(ρ) | ρ ∈M}, we can formu-

late the GPP problem for WDPN as computing δ(c, C) = α(Paths(c, C)).

3 Branching Weighted Dynamic Pushdown Networks

It follows from results in [1] that the set Paths(c, C) can not be characterised as
least solution of a constraint system. Therefore we can not compute the solution
for the GPP problem directly by an abstract interpretation [7] of such a con-
straint system. To avoid these problems we consider an alternative interpretation
of an execution of a DPN in form of a tree or hedge, first introduced in [4]. The
set of connecting hedges can then be described using a constraint system.

We recursively define the sets Trees and Hedges = Trees∗ of execution trees
and hedges. The empty hedge is written as εσ. The empty tree ετ consisting of a
single leaf node, representing a finished execution, is a tree. r(στ) is a tree with
a root node labelled with a rule r ∈ ∆, describing the first step of the execution,
and an ordered list of subtrees στ ∈ Hedges, representing the executions σ of

3

spawned processes and the rest of the execution τ of the spawning process. We
define the ; operator to concatenate a tree to the last tree of a hedge:

[hedge] (στ) ; τ ′ = σ(τ ; τ ′) [empty] ετ ; τ ′ = τ ′ [rule] r(σ) ; τ ′ = r(σ ; τ ′)

Appending a tree replaces the rightmost leaf of the hedge with that tree. Thus
concatenation of trees is concatenation of the rightmost branches. Since the
rightmost branch represents the execution of the initial process, this will later
be used to assemble execution trees from partial executions of an initial process.
The execution of a hedge is modeled by the labelled transition relation =⇒ ⊆
Conf × Hedges× Conf, where for c, c′, c̃ ∈ Conf, p ∈ P , γ ∈ Γ and w ∈ Γ ∗:

[none] ε
εσ=⇒ ε [tree] cpw στ=⇒ c′c̃ if c σ=⇒ c′ and pw

τ=⇒ c̃

[empty] pw ετ=⇒ pw [rule] pγw
r(σ)
=⇒ c if r = pγ ↪→ c′ and c′w

σ=⇒ c

We call this the branching semantics of the DPN, since each process has its
own branch in the execution. We are interested in the set Hedges(c, C) = {σ ∈
Hedges | ∃c′ ∈ C with c

σ=⇒ c′} of connecting hedges.
To abstract hedges we define an extended complete idempotent semiring,

which contains the additional ⊗̄ operator for parallel combination of weights.
An extended complete idempotent semiring E = (E, ⊕̄, �̄, ⊗̄, 0̄, 1̄) is a tuple,
where E is a set of values and ⊕̄, �̄, ⊗̄ are binary operators on E with:

• (E, ⊕̄, �̄, 0̄, 1̄) is a complete idempotent semiring
• (E, ⊗̄) is a semigroup, 1̄ ⊗̄ e = e for e ∈ E and 0̄ annihilates ⊗̄
• ⊗̄ distributes over arbitrary ⊕̄, i.e.

⊕̄
E1 ⊗̄

⊕̄
E2 =

⊕̄
{e1 ⊗̄ e2 | ei ∈ Ei}

for E1, E2 ⊆ E
• (e1 ⊗̄ e2) �̄ e3 = e1 ⊗̄(e2 �̄ e3), for e1, e2, e3 ∈ E

The fourth property ensures, that ; is abstracted by �̄, by always appending
weights to the rightmost weight of a parallel combination. In this regard the ⊗̄
operator differs from the interleaving operator ⊗ introduced in [8], since weights
that are concatenated after an interleaving need to be considered as well.

Furthermore we assume, as with WDPN, that a weight function f̄ : ∆→ E
is given. We fix the tuple B = (M, E , f̄), with E = (E, ⊕̄, �̄, ⊗̄, 0̄, 1̄), called
BWDPN, for the rest of the paper and define an abstraction function β :
Hedges→ E for hedges:

[none] β(εσ) = 1̄ [tree] β(στ) = β(σ) ⊗̄β(τ)
[empty] β(ετ) = 1̄ [rule] β(r(σ)) = f̄(r) �̄β(σ)

Overloading it for sets of hedges with β(M) =
⊕̄
{β(σ) | σ ∈M}, we define the

BGPP problem for BWDPN as computing θ(c, C) = β(Hedges(c, C)).
There is a strong connection between the interleaving and branching seman-

tics of a DPN. A hedge represents of a set of paths, which can be constructed
by interleaving the branches and trees of the hedge. In [4] it was shown, that if
we take a function ψ : Hedges→ 2Paths that computes the set of interleavings of
a hedge, and overload it for sets of hedges, we have:

4

Theorem 1. Paths(c, C) = ψ(Hedges(c, C))

A similar result can be shown for the solutions of the GPP and BGPP prob-
lems, if the semiring of the WDPN is related to the extended semiring of the
BWDPN. We describe the necessary relation by an extension. An extension is a
tuple (S, E , ι, η), containing embedding and projection functions ι : D → E and
η : E → D, where for d, di ∈ D, e, ei ∈ E the following conditions must hold:

• E is the smallest set with ι(D) ⊆ E, closed under �̄, ⊗̄ and arbitrary ⊕̄
• ι(0) = 0̄, ι(1) = 1̄ and η(ι(d)) = d
• η distributes over arbitrary ⊕̄, i.e. η(

⊕̄
M) =

⊕
{η(e) | e ∈M} for M ⊆ E

• η(ι(d) �̄ e) = d� η(e)
• η(e1 ⊗̄ . . . ⊗̄ en) = η(ei1 ⊗̄ . . . ⊗̄ eim) with ei = 1̄ for i /∈ {i1, . . . , im}
• η(e1 ⊗̄ . . . ⊗̄ en) =

⊕n
i=1 di � η(e1 ⊗̄ . . . ⊗̄ e′i ⊗̄ . . . ⊗̄ en) with ei = ι(di) �̄ e′i

The first three points ensure, that every weight of the original semiring has a
corresponding weight in the extended semiring. The fourth point guarantees,
that a simple concatenation of extended weights is mapped to the corresponding
concatenation of weights. The last two points ensure, that the parallel combi-
nation of extended weights is mapped to the meet over all interleavings of the
weights they are constructed from. For the rest of the paper, we assume that the
semiring and extended semiring are connected by the extension (S, E , ι, η).

If f̄(r) = ι(f(r)), for all r ∈ ∆, i.e. the analysis of the WDPN is embedded in
the BWDPN, we can proof α(ψ(σ)) = η(β(σ)) for all σ ∈ Hedges by induction
on σ. Consequently with Theorem 1 we have:

Theorem 2. δ(c, C) = η(θ(c, C)).

4 Applications

Since the existence of an extended semiring and a matching extension for a given
semiring is not self-evident, we first give two examples of semirings, for which
an extended semiring and a corresponding extension can be constructed, before
describing the approach to solve the BGPP problem in Section 5.

The shortest path analysis assigns a positive integer weight to all transitions.
The weight of a path is the sum of the weights of the transitions occurring on
the path. The goal is to find the weight of the path with the smallest weight.
We use the semiring S = (N ∪ {0,∞},min,+,∞, 0) introduced in [2]. Since
+ is commutative and associative, the order in which transitions occur and are
combined on a path is irrelevant. Thus + can be used as the interleaving operator
⊗̄ in an extended semiring. The semiring in combination with the interleaving
operator fulfills all necessary conditions for an extended semiring E = (N ∪
{0,∞},min,+,+,∞, 0) and the matching extension is simply (S, E , id, id).

Bitvector Analyses analyse a property represented by a single bit. For lack
of space, we consider only forward may bitvector analysis. Backward or must
analyses can be handled similarly. The transitions of the DPN are annotated
with transformers, that change the current state of the bit. We use the semiring

5

S = (D,⊕,�, zero, id), where D = {gen, id, kill, zero}. Here gen represents the
transformer setting the bit to 1, id is the identity and kill sets the bit to 0. The
artificial weight zero is introduced to represent the zero element of the ring. �
is reversed functional concatenation extended to include zero. ⊕ is a meet oper-
ator inducing the ordering gen v id v kill v zero. In [8] it was shown, that the
operator ⊗, defined as f ⊗ g = (f � g)⊕ (g � f), is an interleaving operator on
the path level. However the semiring in combination with the interleaving oper-
ator can not be used as extended semiring, since it does not fulfill the property
(f ⊗ g) � h = f ⊗ (g � h) for all f, g, h ∈ D. Especially for f = gen, g = id and
h = kill, the terms (f ⊗ g)� h = kill and f ⊗ (g � h) = gen evaluate differently.
This is caused by the fact, that a gen occurring in a parallel process can always
be executed last in an interleaving and reset the bit. However the operator ⊗
does only consider the gen to be parallel to g and not the later appended h. We
solve this problem by introducing a new weight gen, that stores the information,
that a gen weight was encountered in parallel. This leads to the extended semir-
ing ({gen, gen, id, kill, zero}, ⊕̄, �̄, ⊗̄, zero, id) and extension (S, E , ι, η), where ⊕̄
induces the ordering gen v gen v id v kill v zero and:

f �̄ g =
{
f � g if f, g 6= gen
gen if f = gen or g = gen

f ⊗̄ g =
{
f �̄ g if f /∈ {gen, gen}
gen if f ∈ {gen, gen}

η(f) =
{
f if f ∈ {gen, id, kill, zero}
gen if f = gen

ι(f) = f

5 Solving the BGPP Problem for BWDPN.

We use M- and M∗-automata, adapted from [1], as a compact representation
for the target set. AM∗-automaton is a finite automaton A∗ = (S, P ∪Γ, δ, ṡ, F)
that satisfies the following additional conditions:

• Sc, Sp ⊆ S, where for all s ∈ Sc, p ∈ P exists a unique and distinguished
state sp ∈ Sp
• δ = δP ∪δΓ where δP = {(s, p, sp) | s ∈ Sc, p ∈ P} and δΓ ⊆ S×(Γ ∪{ε})×S
• L(A∗) ⊆ Conf

A M-automaton A is a M∗-automaton, where ṡ ∈ S \ Sp and the transition
relation δ satisfies the stronger condition δΓ ⊆ S× (Γ ∪{ε})× (S \Sp). We write

s
λ−→δ s

′ for (s, λ, s′) ∈ δ and s c−→
∗
δ s
′ for the transitive closure. For the rest of

the paper we fix an M-automaton A = (S, P ∪ Γ, δ, ṡ, F) describing the set C.
Now consider an execution hedge in Hedges(c, C). Each tree of the hedge

transforms a stack in c into a configuration containing the transformed original
stack and stacks of spawned processes. Analogous to the approach in [2], we can
split each tree into several phases along the rightmost branch, each transform-
ing a stacksymbol of the corresponding initial stack. During these transformation
new processes may be spawned and transformed themselves. The idea is to com-
pute for each symbol of the starting configuration the set of trees, that transform
the stack symbol into a configuration, that is part of a configuration in C.

6

To this end we take a closer look at the saturation procedure used in [1]
to construct the set PRE∗(C) = {c | ∃c′ ∈ Conf, σ ∈ Hedges with c

σ=⇒ c′}
of all predecessor configurations. The saturation procedure works by adding
new transitions to the automaton A, thus allowing more configurations to be
accepted. The result is a M∗-automaton A∗ = (S, P ∪ Γ, δ′, ṡ, F), with δ′ =
δP ∪ δ′Γ , where δ′Γ is the smallest set fulfilling the conditions:

[init] t ∈ δ′Γ if t ∈ δΓ
[step] (sp, γ, s′) ∈ δ′Γ if r = pγ ↪→ c ∈ ∆, s ∈ Sc and s

c−→
∗
δ′ s
′

A transition is added, if there is a rule transforming the symbol into a configu-
ration which can be read by previously existing transitions. If these transitions
were also added by the saturation, they themselves have a rules, which trans-
form their symbols. If we follow this recursion and assemble the rules into a
tree, we have a tree that transform the symbol of the newly added transition
into a configuration that can be read using only transition of A and therefore
is part of a configuration in C. We extend the saturation procedure to keep
track of these trees by constructing a constraint system L over (2Trees,∪). The
variables of the constraint system L[t] with t ∈ δ′Γ can be seen as annotations
to the transitions of the saturated automaton. Additionally we define a function
πL : S × Conf × S → 2Hedges that constructs a set of hedges for a configuration
by reading the annotations from the automaton:

[empty] πL(s, ε, s′) =
{
{εσ} if s ε−→

∗
δ′ s
′

∅ else
[control] πL(s, cp, s′) =

⋃
{πL(s, c, s̃)ετ | s

c−→
∗
δ′ s̃

p−→δ′P
ŝ

ε−→
∗
δ′ s
′}

[stack] πL(s, cγ, s′) =
⋃
{πL(s, c, s̃) ; L[(s̃, γ, ŝ)] | s c−→

∗
δ′ s̃

γ−→δ′Γ
ŝ

ε−→
∗
δ′ s
′}

ε transitions do not contribute any information and are simply skipped. If a
control state is encountered a new empty tree is added to the current hedges
for the following new process stack. In case of a stack symbol, the trees which
transform the stack symbol are appended to the current hedges. By appending
the trees of the individual stack symbols, we get a single tree, that transforms
the whole stack.

We construct a set of constraints in a similar way the saturation procedure
adds transitions to the automaton. Here r(·) : 2Hedges → 2Trees are operators
generating new trees out of a root node labelled with r ∈ ∆ and lists of subtrees
from a given set:

[init] L[t] ⊇ {ετ} if t ∈ δΓ
[step] L[(sp, γ, s′)] ⊇ r(πL(s, c, s′)) if r = pγ ↪→ c ∈ ∆, s ∈ Sc and s

c−→
∗
δ′ s
′

If we annotate the transitions of A∗ with the least solution lfp(L) of L we can
proof, by induction on the length of c, that the solution of the constraint system
can be used to describe the set of all connecting hedges:

Theorem 3. Hedges(c, C) =
⋃
{πlfp(L)(ṡ, c, s) | s ∈ F}.

7

To compute the weight of the hedges, we construct a constraint system L#

and a function π#
L# over the weight domain by replacing the operators and con-

stants in the constraint system L and the function πL, with the correspond-
ing operators and constants according to the abstraction function β. By stan-
dard results from abstract interpretation [7], we get lfp(L#) = β(lfp(L)) and
π#

lfp(L#)
= β(πlfp(L)) and with Theorem 3 we have:

Theorem 4. θ(c, C) =
⊕̄
{π#

lfp(L#)
(ṡ, c, s) | s ∈ F}.

Thus we can solve the BGPP problem by solving for lfp(L#) using standard
techniques and evaluating π#

lfp(L#)
. Theorem 2 states, that we get the solution to

the GPP problem by applying η.

6 Conclusion

We presented the GPP problem for a WDPN, which is a model for parallel
programs with dynamic process creation and recursive procedures. The GPP
problem is a general problem formulation, which can, for example, be used to
capture basic dataflow analysis problems. Since the GPP problem can not be
solved directly, our approach is based on an alternative branching semantics
for DPN. The resulting tree shaped executions can be characterised using a
constraint system, which can then be solved over an abstract domain to get
a solution for the BGPP problem for BWDPN. If the weight domains for the
BWDPN and WDPN are connected through an extension, the solution for the
GPP problem can be derived from the corresponding BGPP problem. We have
shown how the results can be used to solve basic dataflow analysis problems like
bitvector analyses or shortest path problems.

References

1. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: CONCUR. LNCS 3653, Springer (2005)

2. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. Sci. Comp. Prog. 58(1-2) (2005)

3. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2) (2000)

4. Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dynamic pushdown
networks with tree-regular constraints. In: CAV. LNCS 5643, Springer (2009)

5. Lammich, P., Müller-Olm, M.: Precise fixpoint-based analysis of programs with
thread-creation and procedures. In: CONCUR. LNCS 4703 (2007)

6. Lal, A., Touili, T., Kidd, N., Reps, T.W.: Interprocedural analysis of concurrent
programs under a context bound. In: TACAS. LNCS 4963, Springer (2008)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, ACM
Press (1977)

8. Seidl, H., Steffen, B.: Constraint-based inter-procedural analysis of parallel pro-
grams. Nordic J. of Computing 7(4) (2000)

8

	09006.Preface.2342.pdf
	vol013-oasics-frontmatter
	09006.Preface.2342

	09006.NovotnyMarian.2355
	09006.FahrenberUli.2345
	09006.GaiserAndreas.2349
	09006.JirakOta.2351
	09006.BehalekMarek.2353
	09006.VasilievaAlina.2343
	09006.ChaloupkaJakub.2348
	09006.StetskoAndriy.2347
	09006.BoujjaniA.2356
	09006.BenesNikola.2354
	09006.GanianRobert.2350
	09006.JeitlerMarcus.2352
	09006.JacobsenLasse.2346
	09006.WennerAlexander.2344

