
10th Workshop on
Algorithmic Approaches for
Transportation Modelling,
Optimization, and Systems

ATMOS’10, September 9, 2010, Liverpool, United Kingdom

Edited by

Thomas Erlebach
Marco Lübbecke

OASIcs – Vo l . 14 – ATMOS ’10 www.dagstuh l .de/oas i c s

Editors
Thomas Erlebach Marco Lübbecke
Department of Computer Science FB Mathematik, AG Optimierung
University of Leicester Technische Universität Darmstadt
Leicester, UK Darmstadt, Germany
t.erlebach@mcs.le.ac.uk luebbecke@mathematik.tu-darmstadt.de

ACM Classification 1998
F.2 Analysis of Algorithms and Problem Complexity, G.1.6 Optimization, G.2.2 Graph Theory, G.2.3
Applications

ISBN 978-3-939897-20-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Center for Informatics gGmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works license:
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.
Noncommercial: The work may not be used for commercial purposes.
No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ATMOS.2010.i

ISBN 978-3-939897-20-0 ISSN 2190-6807 http://www.dagstuhl.de/oasics

iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Dorothea Wagner (Editor-in-Chief, Karlsruhe Institute of Technology)

ISSN 2190-6807

www.dagstuhl.de/oasics

ATMOS’10

Contents

Preface
Thomas Erlebach and Marco Lübbecke . vii

Invited Paper

Almost 20 Years of Combinatorial Optimization for Railway Planning: from Lagrangian
Relaxation to Column Generation

Alberto Caprara . 1

Regular Papers

Railway Track Allocation by Rapid Branching
Ralf Borndörfer, Thomas Schlechte, and Steffen Weider . 13

Robust Train Routing and Online Re-scheduling
Alberto Caprara, Laura Galli, Leo Kroon, Gábor Maróti, and Paolo Toth 24

Heuristics for the Traveling Repairman Problem with Profits
T. Dewilde, D. Cattrysse, S. Coene, F.C.R. Spieksma, and P. Vansteenwegen 34

Dynamic Graph Generation and Dynamic Rolling Horizon Techniques in Large Scale
Train Timetabling

Frank Fischer and Christoph Helmberg . 45

Vertex Disjoint Paths for Dispatching in Railways
Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych . . . 61

Engineering Time-Dependent Many-to-Many Shortest Paths Computation
Robert Geisberger and Peter Sanders . 74

Fast Detour Computation for Ride Sharing
Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders, and Lars Volker 88

An Empirical Analysis of Robustness Concepts for Timetabling
Marc Goerigk and Anita Schöbel . 100

Traffic Signal Optimization Using Cyclically Expanded Networks
Ekkehard Köhler and Martin Strehler . 114

Column Generation Heuristic for a Rich Arc Routing Problem
Sébastien Lannez, Christian Artigues, Jean Damay, and Michel Gendreau 130

The Team Orienteering Problem: Formulations and Branch-Cut and Price
Marcus Poggi, Henrique Viana, and Eduardo Uchoa . 142

The Complexity of Integrating Routing Decisions in Public Transportation Models
Marie Schmidt and Anita Schöbel . 156

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: T. Erlebach, M. Lübbecke; pp. v–vi

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Preface

Transportation networks give rise to very complex and large-scale network optimization
problems requiring innovative solution techniques and ideas from mathematical optimization,
theoretical computer science, and operations research. Applicable tools and concepts include
those from graph and network algorithms, combinatorial optimization, approximation and
online algorithms, stochastic and robust optimization. Since 2000, the series of ATMOS
workshops brings together researchers and practitioners who are interested in all aspects
of algorithmic methods and models for transportation optimization and provides a forum
for the exchange and dissemination of new ideas and techniques. The scope of ATMOS
comprises all modes of transportation.

The 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optim-
ization, and Systems (ATMOS ’10) was held in connection with ALGO 2010, hosted by
University of Liverpool, United Kingdom, on September 9, 2010. Topics of interest for
ATMOS ’10 were all optimization problems for passenger and freight transport, includ-
ing – but not limited to – Infrastructure Planning, Vehicle Scheduling, Crew and Duty
Scheduling, Rostering, Routing in Road Networks, Novel Applications of Route Planning
Techniques, Demand Forecasting, Design of Tariff Systems, Delay Management, Mobile Ap-
plications, Humanitarian Logistics, Simulation Tools, Line Planning, Timetable Generation,
and Routing and Platform Assignment. Of particular interest were: the successful integration
of several (sub)problems or planning stages, algorithms operating in an online/realtime
or stochastic setting, and heuristic approaches (including approximation algorithms) for
real-world instances.

In response to the call for papers we received 30 submissions, all of which were reviewed
by at least three referees. The submissions were judged on originality, technical quality, and
relevance to the topics of the conference. Based on the reviews, the program committee
selected the 12 papers which appear in this volume. Together, they quite impressively
demonstrate the range of applicability of algorithmic optimization to transportation problems
in a wide sense. In addition, Alberto Caprara kindly agreed to complement the program
with an invited talk entitled Almost 20 Years of Combinatorial Optimization for Railway
Planning: from Lagrangian Relaxation to Column Generation.

We would like to thank all the authors who submitted papers to ATMOS ’10, Alberto
Caprara for accepting our invitation to present an invited talk, and the local organizers for
hosting the workshop as part of ALGO 2010.

September 2010 Thomas Erlebach
Marco Lübbecke

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: T. Erlebach, M. Lübbecke; pp. vii–viii

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Organization

Program Committee

Gabriele Di Stefano University of L’Aquila
Thomas Erlebach (co-chair) University of Leicester
Andrea Lodi University of Bologna
Marco Lübbecke (co-chair) TU Darmstadt
Matúš Mihalák ETH Zürich
Petra Mutzel TU Dortmund
Louis-Martin Rousseau Polytechnique Montreal
Heiko Schilling TomTom NV
Peter Sanders Karlsruher Institut für Technologie
Maria Grazia Speranza University of Brescia
Frits Spieksma KU Leuven

Additional Reviewers
Nitin Ahuja Diego Klabjan
Ralf Borndörfer Christian Liebchen
Valentina Cacchiani Dennis Luxen
Serafino Cicerone Jannick Matuschke
Sofie Coene Jens Maue
Gianlorenzo D’Angelo Alfredo Navarra
Daniel Delling Thomas Pajor
Matteo Fischetti Maria Grazia Scutellà
Holger Flier Andrea Tramontani
Laura Galli Daniele Vigo
Robert Geisberger Renato Werneck
Clemens Gröpl Bernd Zey
Carsten Gutwenger Anna Zych

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: T. Erlebach, M. Lübbecke; pp. ix–ix

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Almost 20 Years of Combinatorial Optimization
for Railway Planning: from Lagrangian Relaxation
to Column Generation
Alberto Caprara

DEIS, University of Bologna
Viale Risorgimento 2
40136 Bologna, Italy
alberto.caprara@unibo.it

Abstract
We summarize our experience in solving combinatorial optimization problems arising in railway
planning, illustrating all of these problems as integer multicommodity flow ones and discussing
the main features of the mathematical programming models that were successfully used in the
1990s and in recent years to solve them.

1998 ACM Subject Classification G.2.2 Graph Theory, Network problems; G.2.2 Graph Theory,
Path and circuit problems; G.2.3 Applications

Keywords and phrases Railway Planning, Integer Multicommodity Flow, Integer Linear Pro-
gramming Formulations, Lagrangian Relaxation, Column Generation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.1

1 Introduction

In this work we summarize our experience in solving combinatorial optimization problems
arising in railway planning. Everything started in the early 1990s and has kept on going
until today (and hopefully it will continue also later!) with various projects, some of which
funded by the EC. The specific subjects of these projects, that we will briefly overview
throughout the paper anyhow, are of limited interest here.

What we think may be interesting to a general audience, and so the real contribution
of this work, are three things. First, we make an attempt to classify all of these problems
within a common framework, in particular identifying two main categories under which these
problems seem to fall. Second, besides noting that the best thing to be done to tackle these
problems was to model them as (Mixed-)Integer Linear Programs (ILPs), which is what we
tell our students a few minutes after the beginning of our introductory courses, we point out
the big methodological change that we observed in the way these ILPs were approached,
essentially related with the concurrent improvements in computing power and algorithmic
technology for the solution of Linear Programs (LPs). Third, after having widely stressed
the fact that the best way to approach these problems at present seems to be the use of
very large ILP relaxations tackled with the combined use of general-purpose LP solvers and
column generation (or pricing), we illustrate in a general context the main successful features
of our approaches of this type.

All these problems have in common that they arise at the planning level, i.e., they have
to be solved every once in a while (for instance twice a year, when a new passenger timetable
is published) with plenty of computing power and time available. By planning horizon we
mean the period to which the solution of the problems above applies (e.g., six months). On

© Alberto Caprara;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 1–12

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Almost 20 Years of Combinatorial Optimization for Railway Planning

the other hand, the associated instances are generally of large size, so the models and solution
approaches have to be defined with some care. Historically, these problems used to be solved
(and in some cases are still solved) by hand by human experts. The associated solutions
were generally of good quality (though “slightly infeasible in a tolerable way”, a concept that
has always been very hard to formalize), and often optimization-based approaches could not
do any better. On the other hand, getting the hand-designed solution generally took all of
the available time to the experts, and any what-if analysis varying some of the parameters
was completely out of the question.

This work is organized as follows. In Section 2 we present the problems considered
under a unique framework, limiting ourselves to considering their essential characteristics
and leaving the details of the real-world cases to the surveys [6, 13, 16, 18, 21], and of course
also to the specific papers considering each of them, listed in the references. In Section 3
we illustrate the changes in the most successful way to tackle these problems over the last
20 years, outlining the main features of the solution approaches. Finally, in Section 4 we
discuss the main modelling issues and their implications on the solution methods.

2 Problem Classification: “Assignment” vs. “Timetabling” Problems

Regardless of the fairly different nature of the problems mentioned in the previous section,
it seems to be possible to see each of them as the following Integer Multi-Commodity Flow
(IMCF) problem [2] on a suitable graph, with additional side constraints. IMCF is formally
defined by a set of commodities C and a directed multigraph G = (V,A), whose vertex set
V contains a dummy source s and a dummy sink t and whose arc set A is partitioned into
different sets Ac, one for each commodity c ∈ C. The problem calls for finding a collection
of paths from s to t, one for each commodity c ∈ C composed by arcs in Ac, so that a
suitable objective function is minimized and a suitable set of side constraints relating the
paths in the collection is met. For convenience, the dummy arc (s, t) may be in Ac for some
commodity c ∈ C, and the associated dummy path may be selected in the solution.

2.1 “Assignment” Problems
The first class of problems we addressed are Train Unit (TU) and Crew Assignment prob-
lems, see, e.g., [8, 12, 13]. In TU and Crew Assignment, the nodes in V \ {s, t} in the IMCF
graph correspond to services to be covered, referred to as trips, which are part of a train
timetable that must be performed by the same composition of TUs/crews without changes
(trips may be different for TUs and crews since changing a crew composition is generally
much easier than changing a TU composition). Each commodity c ∈ C is either a TU or a
crew, and a path P ⊆ Ac from s to t corresponds to the sequence of trips that the TU/crew
has to perform within the planning horizon. The dummy path for a commodity represents
the fact that the associated TU/crew is not used in the solution. Generally, each commodity
c ∈ C has a cost fc which is paid if the corresponding TU/crew is used, and the objective
function is the minimization of the total cost of the TUs/crews used. Finally, each arc
(u, v) ∈ Ac represents the fact that trip v can be performed right after trip u by TU/crew
c. This means that there is enough time between the end of trip u and the start of trip v,
and that either u ends at the same station at which v starts, or there are the possibility and
the time to move the TU/crew c between the two stations. In the latter case, the associated
deadhead cost for the movement between the two stations may be assigned to arc (u, v).

The side constraints require that each node is “covered” by the paths in the collection.
To this purpose, in some cases it suffices to have at least one path visiting the node, i.e., at

Alberto Caprara 3

least one TU/crew performing the trip, which may be called elementary composition. Note
that generally one does not require exactly one TU/crew since the trip, although already
covered, may be used to transfer other TUs/crews to the departing station of their next trip.
In some other cases, that may be referred to as proper composition, each node v ∈ V has a
demand dv, each path associated with a commodity c ∈ C has a capacity ac, and the total
capacity of the paths visiting v must be at least dv. This happens, e.g., for TU Assignment
to passenger trips, in which dv is the (estimated) number of passengers travelling on the trip
and ac is the capacity of TU c. Clearly, a special case of proper composition is the one in
which each trip must be covered by at least a given number of TU/crews.

2.2 “Timetabling” Problems
The second class of problems considered is the one of Train Timetabling and Train Plat-
forming problems, see, e.g., [5, 7, 14, 15, 24]. In Train Timetabling and Platforming, the
nodes in V \ {s, t} in the IMCF graph correspond to resources of limited capacity, referred
to as events, which are departures/arrivals of a train at a given point (a station track or a
platform) and at a given time instant. Each commodity c ∈ C is a train, and a path P ⊆ Ac
from s to t corresponds to the sequence of events associated with the itinerary followed by
the train and the associated timetable. Note that trains may also be cancelled, i.e., not
scheduled at all, in which case the dummy path is selected for the associated commodity.
Finally, each arc (u, v) ∈ Ac represents the fact that event v can follow event u for train
c. This means that the time elapsing between u and v is either appropriate for train c to
travel from the point of u to the point of v (in case u and v are associated with distinct
points, e.g., two consecutive stations along a railway corridor), or for train c to stand at
the point of u and v (if it is the same, e.g., u represents an arrival at a platform and v the
departure from the platform, in which case the time must be appropriate for the operations
to be performed for the train at the platform).

Each train should possibly be scheduled in a certain preferred way (e.g., using a given
path). However, due to the side constraints illustrated below, not all trains can be scheduled
in this way, and there are suitably-defined penalties for deviations (including cancellations).
The objective function is the minimization of the total penalties. Penalties for deviations of
a train c ∈ C are either modelled by assigning costs to nodes u ∈ V , in case the event for
the train does not take place at the preferred time instant, or to arcs (u, v) ∈ Ac, in case
the time elapsing between u and v is different with respect to the preferred schedule. This
is the way to model penalties as the cost of the path associated with a train, given by the
sum of the costs of its nodes and arcs.

The side constraints require each node not to be contained in more than one path in the
collection. More generally, for each node v ∈ V , there exists a set Iv ⊆ V (with v ∈ Iv) of
nodes that are incompatible with v, i.e., v can be visited by a path in the collection only
if no other node in Iv is visited by some other path in the collection. This models the
fact that trains cannot depart/arrive at the same point not only at the same time, but also
too close in time. For tracks, this is a natural safety requirement, whereas for platforms
this prevents the presence of more than one train simultaneously standing at the platform
(besides imposing a minimum time between platform occupations by distinct trains). Even
more generally, the incompatibility between two paths associated with different commodities
may not be simply related with the fact that they visit two incompatible nodes, but with
their overall structure, i.e., with the overall sequence of nodes visited by the two paths. In
this more general case, there may be simply an oracle indicating, given the two paths, if
they are incompatible or not.

ATMOS ’10

4 Almost 20 Years of Combinatorial Optimization for Railway Planning

2.3 A note on the objective function
Generally, speaking, for “assignment” problems the objective function tends to be well-
defined as it is the sum of the costs of the TUs/crews employed, which are generally fairly
high. So, although solutions that are robust towards disruptions are certainly very important
in practice, it is highly desirable not to increase the nominal cost by a too large amount in
order to achieve robustness. Viceversa, for “timetabling” problems, it tends to be less clear
what would be the preferred schedule for a train, and to quantify the associated penalties for
deviations with respect to this schedule. This makes the objective function mostly not well-
defined, so robustness issues tend to play a major role in this case. In any case, robustness
issues are out of the scope of this work.

3 Solution Methods

A common feature of all real-world applications addressed here is that pretending a priori
to find a provably optimal solution is generally hopeless, and one has to resort to heuris-
tics. Moreover (and fortunately) the best heuristic methods known for all these problems
are based on mathematical programming (mainly ILP) formulations, which are driven by
appropriate (mainly LP) relaxations of these formulations.

IMCF calls for a min-cost collection of paths of G, each associated with arcs of the same
commodity, with several constraints on the feasibility of single paths and on the compati-
bility between distinct paths. This can either be expressed by arc ILP models using binary
variables xc,(i,j) equal to 1 if arc (i, j) ∈ Ac is in the path for commodity c in the solution,
or by path ILP models considering the whole list Pc of paths for commodity c and binary
variables xc,P equal to 1 if P ∈ Pc is the path for commodity c in the solution. Side con-
straints can be written in a similar way in the two models (see below). Of course, path ILP
models have a number of variables that may be exponential in the size of G, and should be
solved by column generation (or sometimes simply by pricing, see below).

The LP relaxations of the arc and path ILP models are equivalent for IMCF, so the
decision on whether to use the former or the latter depends on the solution approach. Here
comes the main difference between the state-of-the-art approaches of today with respect to
those of the 1990s.

3.1 Old days: Lagrangian relaxation for arc ILPs
Twenty years ago, solving the LP relaxations of both arc and path ILP formulations was
sometimes possible but so much time consuming that it was advisable to avoid it. There-
fore, it was natural to use methods capable of solving these LP relaxations approximately,
both able to provide bounds on the integer optimum (though weaker than the LP optimum
itself) and to drive successfully a diving heuristic search. Among these, the most successful
appeared (and still appears) to be the combined use of Lagrangian relaxation (see, e.g., [19])
and subgradient optimization (see, e.g., [23]) applied to the arc ILP formulation. Compared
to other alternatives to LP relaxation, Lagrangian relaxation has the advantage over relax-
ation by elimination that all constraints are somehow taken into account, and over surrogate
relaxation that the relaxed problems are easier to solve. Moreover, the simplicity of the re-
laxed problem makes the easy-to-implement subgradient optimization a suitable solution
method, since its slow convergence (in terms of number of iterations) with respect to more
advanced variants such as bundle (see, e.g., [20]) is compensated by the very short time per
iteration. Moreover, many iterations are an advantage for a heuristic since they mean many

Alberto Caprara 5

slightly different near-optimal Lagrangian multipliers that can be used to produce many
slightly different candidate heuristic solutions out of which the best one is kept [1, 4, 10, 17].

In this work, for space reasons, we omit the description of specific successful features of
the Lagrangian approaches. These approaches remain however the ones we suggest when the
problem is so large that there seems to be no hope of solving the LP relaxation of whatever
reasonable ILP formulation. The interested reader is referred, e.g., to [19, 20, 23].

3.2 These days: Column generation/pricing for path ILPs
Nowadays, while the solution of the LP relaxation of the arc ILP formulations still appears to
be too time consuming (besides requiring a large amount of core memory), the LP relaxation
of the path ILP formulations can generally be found quickly by column generation or pricing
(see below). The huge advantage of path over arc ILP formulations was systematically
true in all the applications we considered. It does not seem to be shared by all analogous
applications, as testified by the surprised reaction we could note by many audiences and
referees in these years. (From our side, we could only note that path ILP formulations do
not seem to be suited to be used together with Lagrangian relaxation.)

In all cases, the number of variables in the path ILP formulations is generally too large to
consider all of them explicitly in the LP relaxation, so one has to work with a current LP that
is (much) smaller than the whole LP relaxation, iteratively adding variables to it. In some
cases column generation is required, solving at each LP iteration an optimization problem to
check if there is some variable with negative reduced cost (or positive reduced profit) to be
added to the current LP. In some other cases, column generation is not strictly necessary as
pricing suffices, corresponding to storing in memory the whole list of variables and explicitly
computing their reduced costs at each iteration, adding (some of) those variables for which
they are negative. Finally, there are cases in which the number of constraints to be considered
is also very large, and separation has to be used, in order to keep only a small subset of
constraints in the current LP, detecting and adding further violated constraints either by
solving an optimization problem or by considering all missing constraints and checking if
they are violated.

Fairly general issues concerning the definition of the path ILP formulations for the ap-
plications we considered and the solution of the associated LP relaxations are discussed in
Section 4. To follow that section, some familiarity with the notions of column generation,
pricing and separation is required. For a detailed discussion of these, we refer the interested
reader to [3, 22].

A big advantage of working with path ILPs and column generation/pricing with respect
to Lagrangian relaxation and subgradient optimization is that in the latter a few parameters
have to be tuned in a proper way (at the risk of not converging at all otherwise), whereas the
former appears to be a fairly robust method both with respect to the initial set of variables
inserted in the LP and with the policy used to add columns at each iteration (many versus
few, the most violated versus any violated). Moreover, also with column generation one has
many similar near-optimal LP solutions to drive a heuristic.

The main limitation of column generation is that it restricts the formulation of the side
constraints, since the structure of the column generation problem itself depends on the
form of these constraints, as we will discuss in Section 4. Therefore, in addition to the
classical compromise between the strength of the LP relaxation and the ability to handle
the associated constraints, possibly by separation, one has to take into account also the
ability to generate the columns.

Note that branching is not a real issue in this context, as one is limited to diving heuristics

ATMOS ’10

6 Almost 20 Years of Combinatorial Optimization for Railway Planning

(see Section 3.3) that fix to 1 variables that are fractional in the LP relaxation, imposing
a path in the solution. Such a fixing poses no problem to column generation. (Fixing
a variable to zero, instead, as a branching dichotomy would naturally do, gives a lot of
troubles to column generation, see, e.g., [3].)

3.3 Evergreen: diving heuristics

The most successful heuristics used in combination with whatever relaxations of the ILP
formulations above are diving heuristics, that solve a suitable relaxation, fix some of the
variables according to the relaxed solution, solve again the relaxation subject to the fixing
constraints, and so on, until a feasible solution is found. Besides outperforming metaheuris-
tics on all the applications we considered, these diving heuristics have the advantage of
certifying the quality of the solutions through bounds obtained by solving the initial re-
laxation. In fact, it may turn out that for some (or most of) the instances considered the
bounds certify a posteriori that the solution found is indeed optimal.

Plenty of details on possible heuristic implementations are given in the references for the
interested reader. In any case, the main theme is the diving scheme, that has to be properly
adapted to the specific application at hand.

4 Defining and Solving Path ILP Formulations of IMCF

As already mentioned, for all the applications we addressed we always found that the path
ILP formulation of IMCF was the best, if not the only viable, choice for approaches based
on solving the LP relaxation by general-purpose solvers. All these formulations deal with
binary variables xc,P for each commodity c ∈ C and path P ∈ Pc, with an associated cost
fc,P paid if xc,P = 1. This ILP calls for the minimization of the total cost:∑
c∈C

∑
P∈Pc

fc,P xc,P (1)

subject to the constraint that one path is selected for each commodity:∑
P∈Pc

xc,P = 1, c ∈ C. (2)

How to model the missing side constraints depends on the specific application. For each
commodity c ∈ C and vertex v ∈ V , let Pc,v denote the sublist of paths for commodity c
that visit vertex v. Moreover, for a path P ∈ Pc for some commodity c ∈ C, let VP denote
the set of nodes visited by P .

4.1 Assignment Problems

The side constraints in TU/crew assignment must ensure that all the trips are covered.
As we will see, this poses no problem to column generation, which is a great advantage
with respect to the timetabling case. The unique issue to be addressed, as for regular ILP
formulations (with a reasonable number of variables), is to have a strong LP relaxation,
yielding lower bounds close to the integer optimum and possibly integer solutions quickly in
a diving heuristic, after having fixed a relatively small number of binary variables to 1.

Alberto Caprara 7

Set Covering constraints
From an LP relaxation strength viewpoint, the best situation is the case of elementary
composition, since the side constraints are expressed in the classical form of Set Covering
constraints, and are already as strong as possible:∑
c∈C

∑
P∈Pc,v

xc,P ≥ 1, v ∈ V. (3)

In this case, there is no real modelling issue to be addressed, and the best way to proceed
is to combine the solution of the LP relaxation with column generation or pricing [11].

Knapsack constraints
For proper composition the situation is more complex. Recalling that dv is the demand
of each vertex v and ac the capacity of each commodity c, the natural way to write these
constraints is:∑
c∈C

∑
P∈Pc,v

ac xc,P ≥ dv, v ∈ V. (4)

Unfortunately, the constraints in this form tend to be fairly weak, as it is typically the case
for knapsack-type constraints with large coefficients. Weakness does not only mean poor
lower bounds obtained by solving the LP relaxations, but also bad quality solutions for
heuristics driven by these relaxations, as discussed in [8].

The easiest possibility to strengthen (4) is to re-compute the coefficients so that they
are minimal, i.e., for each commodity c there is always a combination of other commodities
such that the sum of the associated capacities is exactly dv. Formally, this amounts, for
each vertex v, to first redefine its demand dv so that it can be met exactly by a subset of
commodities, i.e., as:

min
S⊆C

{∑
c∈S

ac :
∑
c∈S

ac ≥ dv

}
,

Then, one may ensure that all coefficients are minimal (not only for the commodities be-
longing to subsets whose total capacity is exactly dv) by defining initially ac,v := ac for
c ∈ C and then, iteratively for c ∈ C, by redefining ac,v as:

max
S⊆C\{c}

{
dv −
∑
d∈S

ad,v : ac,v +
∑
d∈S

ad,v ≥ dv

}
,

iterating the replacement until the coefficient does not change for all commodities (note that
the final result depends on the order in which the coefficients have been considered). The
resulting improved inequalities read:∑
c∈C

∑
P∈Pc,v

ac,v xc,P ≥ dv, v ∈ V. (5)

However, having minimal coefficients often does not lead to a strong enough LP relaxation.
The only alternative to get stronger constraints is to add more than one constraint for

each vertex v, getting say m constraints of the form:∑
c∈C

∑
P∈Pc,v

bic,v xc,P ≥ dv, v ∈ V, i = 1, . . . ,m. (6)

ATMOS ’10

8 Almost 20 Years of Combinatorial Optimization for Railway Planning

The ideal case is when the associated inequalities∑
c∈C

bic,v yc ≥ dv, i = 1, . . . ,m, (7)

define the convex hull of the Knapsack polytope:

conv

{
y ∈ {0, 1}C :

∑
c∈C

ac yc ≥ dv

}
. (8)

This is unfortunately impractical unless the number of commodities is small, or there are
other side constraints that simplify the situation (e.g., in [8] the convex hull has an ele-
mentary structure since each vertex must be covered by at most two commodities). In any
case, it is much better if the inequalities are at least a subset of the facets of the Knapsack
polytope (8).

Column generation
The structure of the column generation problem is the same whatever the form of the
covering constraints. Namely, consider the most general form (5) and let βiv denote the dual
variables associated with these constraints. Letting αc be the dual variables associated with
constraints (2), the reduced cost of variable xc,P is given by fc,P −αc−

∑
v∈VP
∑m
i=1 b

i
c,v β

i
v,

so the column generation problem amounts to finding a minimum-cost path from s to t in
G with arcs in Ac and costs associated with the nodes in V (and possibly also with the arcs
in Ac, depending on the way cost fc,P is defined).

4.2 Timetabling Problems
The side constraints in train timetabling/platforming impose that no two incompatible nodes
are visited by some path. The easiest (but also essentially the weakest) way to force this is
to consider all pairs of incompatible nodes u, v ∈ V and state that at most one path visiting
one of these two nodes is selected:∑
c∈C

∑
P∈Pc,v

xc,P +
∑
c∈C

∑
P∈Pc,u

xc,P ≤ 1, v ∈ V, u ∈ Iv \ {v}. (9)

The number of these constraints is polynomial, so even if they are too many to be handled
explicitly by the LP solver at hand, they can be separated by simple enumeration.

Node incompatibility constraints
In order to formalize the incompatibility relation, which is extremely common in combi-
natorial optimization, one can represent it by an auxiliary undirected node incompatibility
graph I = (V,E), in which the neighbors of each node v ∈ V are precisely its incompatible
nodes Iv. The side constraints can then be imposed in a much stronger form by considering
maximal subsets of pairwise incompatible nodes and stating that at most one path visiting
one of the nodes in a subset is selected. Formally, let K denote the list of the maximal
cliques of I, i.e., K ∈ K if K is a maximal vertex subset so that (u, v) ∈ E for each pair
u, v ∈ K. The side constraints can be modelled as:∑
v∈K

∑
c∈C

∑
P∈Pc,v

xc,P ≤ 1, K ∈ K. (10)

Alberto Caprara 9

In general these constraints are exponential in number but can often be handled conveniently
by separation. In particular, the complexity of their separation is the same as the complexity
of finding a maximum-weight clique in I, where the weight of each vertex v ∈ V is given by∑
c∈C
∑
P∈Pc,v xc,P . Even if finding a maximum-weight clique in I is computationally too

heavy, one may resort to heuristics, making sure that the final violated constraint added
to the current LP relaxation is associated with a maximal clique of I by possibly adding
nodes if the clique found by a heuristic is not maximal. Moreover, the use of (10) can easily
be combined with column generation, as explained below. A discussion on various ways to
define and handle these constraints in the Train Timetabling case can be found in [7, 9].

Path incompatibility constraints
Constraints (10) can also be seen as associated with cliques of the following path incompat-
ibility graph J = (P, F), where P :=

⋃
c∈C Pc, which provides more information, but is also

much larger, than the node incompatibility graph I above. The path incompatibility graph
contains a node for each path P ∈ P, i.e., for each variable xc,P , and an edge in F joining
each pair of incompatible paths, corresponding to two variables that cannot both take the
value 1 due to constraints (10). Namely, two paths are incompatible if they either are asso-
ciated with the same commodity or visit a pair of incompatible nodes. Moreover, with the
path incompatibility graph one may represent incompatibilities that are not associated with
nodes, specified by an oracle as discussed at the end of Section 2.2.

Letting L denote the list of the maximal cliques of J , alternatively to (10) the side
constraints can be expressed by:∑
c∈C

∑
P∈Pc∩L

xc,P ≤ 1, L ∈ L. (11)

Even in case all incompatibilities are associated with nodes of G, constraints (11) may be
much stronger than (10), although this does not seem to happen in practice. The first
evident disadvantage of using (11) rather than (10) is that their separation may be much
more complex. Even worse, their use is generally not compatible with column generation, so
it is essentially limited to the cases in which all variables can be listed explicitly and pricing
can be used. In the latter case, the only issue to be addressed is separation, which becomes
easy in case one considers the relaxation of (11) involving paths associated with only two
commodities, as discussed below.

Column generation
The structure of the column generation problem heavily depends on the form of the in-
compatibility constraints. For the form (10) let βK denote the dual variables associated
with these constraints and, as before, αc the dual variables associated with constraints (2).
Moreover, let Kv be the sublist of the maximal cliques of I containing node v ∈ V . The
reduced cost of variable xc,P is given by fc,P−αc−

∑
v∈VP
∑
K∈Kv β

K , and again the column
generation problem amounts to finding a minimum-cost path from s to t in G with arcs in
Ac and costs associated with the nodes in V and the arcs in Ac. The case of constraints (9)
is analogous.

On the other hand, for constraints (11), the associated dual variables γL should be
associated with all paths belonging to clique L in J . Therefore, in the column generation
problem, one should charge the cost γL to the path being generated only if it belongs to L,
which is problematic in general since this condition depends on the path itself. Note that

ATMOS ’10

10 Almost 20 Years of Combinatorial Optimization for Railway Planning

the tempting trivial trick to consider all variables not belonging to the current LP as having
coefficient 0 in all inequalities (11), so as to forget about the γL values in the generation,
does not work! Indeed, one may end-up generating an already existing variable, having a
nonnegative reduced cost in the current LP, since this reduced cost was underestimated by
the (wrong) trick.

Oracle incompatibilities without column generation
As already mentioned, incompatibilities defined by an oracle and not associated with nodes
of G can generally be handled, by using constraints (11), only if column generation is not
required. The issue to be addressed in this case is the separation of (11), corresponding (in
optimization version) to the determination of a maximum-weight clique in J . This itself is
generally very complex, but can be greatly simplified if one considers the relaxation of (11)
in which only two commodities are involved:∑
P1∈Pc1∩L

xc1,P1 +
∑

P2∈Pc2∩L
xc2,P2 ≤ 1, L ∈ L, c1, c2 ∈ C. (12)

In this case, the separation calls for a maximum-weight clique in the subgraph of J induced
by the paths in Pc1 ∪ Pc2 . Given that all paths in Pc1 (or Pc2) are pairwise incompatible,
this subgraph is the complement of a bipartite graph. Complementing everything, the
separation problem calls for a maximum-weight stable set in a bipartite graph, which can
be found efficiently by flow techniques. For details, see [15].

4.3 Linearizing quadratic objective functions
In some cases the objective function happens to be quadratic in the variables (if not multi-
linear in general). This happens, e.g., for Timetabling Problems when two paths P1 ∈ Pc1
and P2 ∈ Pc2 are “slightly” incompatible and, rather than forbidding the selection of both
in the solution, one wants to penalize it with a penalty gc1,P1,c2,P2 . The resulting quadratic
objective function reads:∑
c∈C

∑
P∈Pc

fc,P xc,P +
∑
c1∈C

∑
P1∈Pc1

∑
c2∈C

∑
P2∈Pc2

gc1,P1,c2,P2 xc1,P1 xc2,P2 . (13)

The textbook approaches to linearize such an objective function, with the introduction
of additional variables yc1,P1,c2,P2 to model the product xc1,P1 · xc2,P2 , appear to be fairly
unsuccessful in this context, given that even the xc,P variables are so many to have to be
handled with care. On the other hand, taking into account constraints (2), rather than
these product variables one may simply introduce variables zc1,c2 to model the whole term∑
P1∈Pc1

∑
P2∈Pc2

gc1,P1,c2,P2 xc1,P1 xc2,P2 , knowing in advance that exactly one of the xc1,P1 ·
xc2,P2 products in the summation will take the value 1 in the optimal integer solution. The
number of these variables is only quadratic in the number of commodities, so they can
generally be all inserted explicitly in the current LP relaxation. The linearized objective
function reads:∑
c∈C

∑
P∈Pc

fc,P xc,P +
∑
c1∈C

∑
c2∈C

zc1,c2 , (14)

and the issue is to link the zc1,c2 and the xc,P variables appropriately. While it is not clear
how to do this in general when column generation is required for the xc,P variables, and

Alberto Caprara 11

we are not aware of successful applications of this, the task is fairly easy when column
generation is not necessary, as illustrated next.

For a given c1, c2 pair, consider the polytope defined by the convex hull H of the following
vectors with 1 + |Pc1 | + |Pc2 | components. The first component is associated with zc1,c2 .
The subsequent |Pc1 | components are associated with xc1,P1 , P1 ∈ Pc1 . The last |Pc2 |
components are associated with xc2,P2 , P2 ∈ Pc2 . There are |Pc1 | · |Pc2 | vectors defining
the convex hull H, namely those associated with a unique component xc1,P1 = 1, a unique
component xc2,P2 = 1, and the first component given by zc1,c2 = gc1,P1,c2,P2 . These vectors
correspond to all possible values of the associated variables in the solution. Accordingly, as
link inequalities one may impose all those valid (and facet-defining) for the convex hull H,
having the generic form:∑
P1∈Pc1

αc1,P1 xc1,P1 +
∑
P2∈Pc2

αc2,P2 xc2,P2 + βc1,c2 zc1,c2 ≤ γ. (15)

Even restricting attention to the facet-defining ones, not only the number of these constraints
is exponential, but also their structure is unknown (to the best of our knowledge). On the
other hand, these constraints may be separated in time polynomial in |Pc1 |·|Pc2 | by explicitly
setting up a separation LP to test if the current LP solution is a convex combination of the
|Pc1 | · |Pc2 | vectors defining the convex hull. If this is not the case, the dual of this separation
LP yields a violated inequality (15). The reader is referred to [15] for details.

5 Conclusions

In this work we have briefly illustrated the mathematical formulations and the solution
approaches that we found most successful for a few real-world optimization problems arising
in railway planning. In a forthcoming full version of this work, we plan to provide further
details and some theoretical foundations and justifications of the various qualitative and
vague notions of “good”, “bad”, “strong” and “weak” given here, that so far were only
motivated by computational evidence.

Acknowledgment
This work was partially supported by the Future and Emerging Technologies Unit of EC
(IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

References
1 E. Balas and M.C. Carrera, “A Dynamic Subgradient-Based Branch-and-Bound Procedure

for Set Covering”, Operations Research 44 (1996), 875–890.
2 C. Barnhart, C.A. Hane, P.H. Vance, “Integer Multicommodity Flow Problems”, in W.H.

Cunningham, T.S. McCormick, M. Queyranne (eds.), Proceedings of the Fifth Conference
on Integer Programming and Combinatorial Optimization (IPCO’96), Lecture Notes in
Computer Science 1084, Springer-Verlag (1996) 58–71.

3 C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh and P.H. Vance,
“Branch-and-Price: Column Generation for Solving Huge Integer Programs”, Operations
Research 46 (1998) 316–329.

4 J.E. Beasley, “A Lagrangian Heuristic for Set Covering Problems”, Naval Research Logistics
37 (1990), 151–164.

5 U. Brännlund, P.O. Lindberg, A. Nöu and J.E. Nilsson, “Railway Timetabling Using La-
grangian Relaxation”, Transportation Science 32 (1998), 358–369.

ATMOS ’10

12 Almost 20 Years of Combinatorial Optimization for Railway Planning

6 M. Bussieck, T. Winter, U. Zimmermann, “Discrete Optimization in Public Rail Trans-
port”, Mathematical Programming 79 (1997), 415–444.

7 V. Cacchiani, A. Caprara, P. Toth, “A Column Generation Approach to Train Timetabling
on a Corridor”, 4OR 6 (2008), 125–142.

8 V. Cacchiani, A. Caprara, P. Toth, “Solving a Real-World Train Unit Assignment Problem”,
Mathematical Programming 124 (2010), 207–232.

9 V. Cacchiani, A. Caprara, P. Toth, “Non-cyclic Train Timetabling and Comparability
Graphs”, Operations Research Letters 38 (2010), 179–184.

10 A. Caprara, M. Fischetti, P. Toth, “A Heuristic Method for the Set Covering Problem”,
Operations Research 47 (1999), 730–743.

11 A. Caprara, M. Fischetti, P. Toth, “Algorithms for the Set Covering Problem”, Annals of
Operations Research 98 (2000), 353–371.

12 A. Caprara, M. Fischetti, P. Toth, D. Vigo, “Modeling and Solving the Crew Rostering
Problem”, Operations Research 46 (1998), 820–830.

13 A. Caprara, M. Fischetti, P. Toth, D. Vigo, P. Guida, “Algorithms for Railway Crew
Management”, Mathematical Programming 79 (1997), 125–141.

14 A. Caprara, M. Fischetti, P. Toth, “Modeling and Solving the Train Timetabling Problem”,
Operations Research 50 (2002), 851–861.

15 A. Caprara, L. Galli, P. Toth, “Solution of the Train Platforming Problem”, C. Liebchen,
R.K. Ahuja, J.A. Mesa (eds.) Proceedings of the 7th Workshop on Algorithmic Ap-
proaches for Transportation Modeling, Optimization, and Systems (ATMOS), IBFI, Schloss
Dagstuhl, Germany (2007).

16 A. Caprara, L. Kroon, M. Monaci, M. Peeters, P. Toth, “Passenger Railway Optimization”,
in: C. Barnhart, G. Laporte (eds.), Transportation, Handbooks in Operations Research and
Management Science 14, Elsevier (2007), 129–187.

17 S. Ceria, P. Nobili and A. Sassano, “A Lagrangian-Based Heuristic for Large-Scale Set
Covering Problems”, Mathematical Programming 81 (1998), 215–228.

18 J. Desrosiers, Y. Dumas, M.M. Solomon and F. Soumis, “Time Constrained Routing and
Scheduling”, in M.O. Ball et al. (Eds.), Handbooks in OR & MS, Vol. 8, Elsevier Science,
1995, 35–139.

19 M.L. Fisher, “The Lagrangian Relaxation Method for Solving Integer Programming Prob-
lems”, Management Science 27 (1981), 1–18.

20 G. Gruber F. Rendl, “The Bundle Method for Hard Combinatorial Optimization Prob-
lems”, in M. Jünger, G. Reinelt, G. Rinaldi (eds.), Combinatorial Optimization – Eureka,
You Shrink!, Springer-Verlag (2003), 78–88.

21 D. Huisman, L. Kroon, R. Lentink, M. Vromans, “Operations Research in Passenger Rail-
way Transportation”, Statistica Neerlandica 59 (2005), 467–497.

22 G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, Wiley (1999).
23 H.D. Sherali, D.C. Myers, “Dual Formulations and Subgradient Optimization Strategies

for Linear Programming Relaxations of Mixed-Integer Programs”, Discrete Applied Math-
ematics 20 (1988), 51–68

24 P. Zwaneveld, L. Kroon, C. van Hoesel. “Routing Trains Through a Railway Station Based
on a Node Packing Model”, European Journal of Operational Research 128 (2001), 14–33.

Railway Track Allocation by Rapid Branching∗

Ralf Borndörfer1, Thomas Schlechte1, and Steffen Weider1

1 Zuse-Institute Berlin (ZIB), Takustr. 7, 14195 Berlin, Germany, Email
{borndoerfer, schlechte, weider}@zib.de

Abstract

The track allocation problem, also known as train routing problem or train timetabling problem, is
to find a conflict-free set of train routes of maximum value in a railway network. Although it can
be modeled as a standard path packing problem, instances of sizes relevant for real-world railway
applications could not be solved up to now. We propose a rapid branching column generation
approach that integrates the solution of the LP relaxation of a path coupling formulation of
the problem with a special rounding heuristic. The approach is based on and exploits special
properties of the bundle method for the approximate solution of convex piecewise linear functions.
Computational results for difficult instances of the benchmark library TTPlib are reported.

1998 ACM Subject Classification G.1.6 Optimization, G.2.3 Application

Keywords and phrases track allocation problem, integer programming, rapid branching heuris-
tic, proximal bundle method

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.13

1 Introduction

Routing a maximum number of trains in a conflict-free way through a track network is
one of the basic scheduling problems for a railway company. This optimal track allocation
problem, also known as train routing problem or train timetabling problem, has received
growing attention in the operations research literature, see [8, 2, 11, 6, 17] for some recent
references. A branch on the study of advanced models that incorporate, e.g., additional
robustness aspects, has already been started, see, e.g., [12]. However, the problem remains
that up to now the basic problem can hardly be solved even for small instances. Corridors
or single stations mark or are quickly beyond the limits of the current solution technology,
such that network optimization problems can not be addressed.

Finding a good track allocation model is a key prerequisite for progress towards the solution
of large-scale track allocation problems. The authors of [4] proposed a novel path coupling
formulation based on train path and track configuration variables. The model provides
a strong LP bound, is amenable to standard column generation techniques, and therefore
suited for large-scale computation. Indeed, it was shown that LP relaxations of large-scale
track allocation problems involving hundreds of potential trains could be solved to proven

∗This research was funded by the German Federal Ministry of Economics and Technology (BMWi),
project Trassenbörse, grant 19M4031A.

© Ralf Borndörfer, Thomas Schlechte and Steffen Weider;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 13–23

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

14 Railway Track Allocation by Rapid Branching

or near optimality in this way. However, similar results for integer solutions could not be
provided at that time.

This topic is addressed in this paper. Extending the work in [4], we present a sophisti-
cated solution approach that is able to compute high-quality integer solutions for large-scale
railway track allocation problems. Our algorithm is an adaptation of the rapid branching
method introduced in [3] (see also the thesis [20]) for integrated vehicle and duty scheduling
in public transport. The method solves a Lagrangean relaxation of the track allocation
problem as a basis for a branch-and-generate procedure that is guided by approximate LP
solutions computed by the bundle method. This successful second application provides ev-
idence that rapid branching is a general solution method for large-scale path packing and
covering problems.

The paper is structured as follows. Section 2 recapitulates the track allocation problem and
the path configuration model. Section 3 discusses the solution of an associated Lagrangean
relaxation by the bundle method. In Section 4 we adapt the rapid branching heuristic
to deal with track allocation (maximization) problems. Section 5 reports computational
results. We demonstrate that rapid branching can be used to produce high quality solutions
for large-scale track allocation problems.

2 The Track Allocation Problem

We briefly recall in this section a formal description of the track allocation problem; more
details can be found in the articles [5, 8, 2]. Consider an acyclic digraph D = (V,A)
that represents a time-expanded railway network. Its nodes represent arrival and departure
events of trains at a set S of stations at discrete times T ⊆ Z, its arcs model activities of
running a train over a track, parking, or turning around. Let I be a set of requests to route
trains through D. More precisely, train i ∈ I can be routed on a path through some suitably
defined subdigraph Di = (Vi, Ai) ⊆ D from a starting point si ∈ Vi to a terminal point
ti ∈ Vi. Denote by Pi the set of all routes for train i ∈ I, and by P =

⋃
i∈I Pi the set of all

train routes (taking the disjoint union).

Let s(v) ∈ S be the station associated with departure or arrival event v ∈ V , t(v) the time,
and J = {s(u)s(v) : (u, v) ∈ A} the set of all railway tracks. An arc (u, v) ∈ A blocks
the underlying track s(u)s(v) for the time interval [t(u), t(v)[, and two arcs a, b ∈ A are in
conflict if their respective blocking time intervals overlap. Two train routes p, q ∈ P are
in conflict if any of their arcs are in conflict. A track allocation or timetable is a set of
conflict-free train routes, at most one for each request set. Given arc weights wa, a ∈ A,
the weight of route p ∈ P is wp =

∑
a∈p wa, and the weight of a track allocation X ⊆ P is

w(X) =
∑
p∈X wp. The track allocation problem is to find a conflict-free track allocation of

maximum weight.

The track allocation problem can be modeled as a multi-commodity flow problem with
additional packing constraints, see [8, 2, 11]. This model is computationally difficult. We
consider in this article an alternative formulation as a path coupling problem based on ‘track
configurations’ as proposed by the authors of [4]. A valid configuration is a set of arcs on
some track j ∈ J that are mutually not in conflict. Denote by Qj the set of configurations
for track j ∈ J , and by Q =

⋃
j∈J Qj the set of all configurations. Introducing 0/1-variables

xp, p ∈ P , and yq, q ∈ Q, for train paths and track configurations, the track allocation

Ralf Borndörfer, Thomas Schlechte, and Steffen Weider 15

problem can be stated as the following integer program:

(PCP) max
∑
p∈P

wpxp (i)

s.t.
∑
p∈Pi

xp ≤ 1, ∀ i ∈ I (ii)∑
q∈Qj

yq ≤ 1, ∀ j ∈ J (iii)∑
a∈p∈P

xp −
∑

a∈q∈Q
yq ≤ 0, ∀ a ∈ A (iv)

xp, yq ≥ 0, ∀ p ∈ P, q ∈ Q (v)
xp, yq ∈ {0, 1}, ∀ p ∈ P, q ∈ Q. (vi)

The objective PCP (i) maximizes the weight of the track allocation. Constraints (ii) state
that a train can run on at most one route, constraints (iii) allow at most one configuration
for each track. Inequalities (iv) link train routes and track configurations to guarantee a
conflict-free allocation, (v) and (vi) are the non-negativity and integrality constraints. Note
that the upper bounds xp ≤ 1, p ∈ P , and yq ≤ 1, q ∈ Q, are redundant.

Introducing appropriately defined matrices A ∈ QI×P , B ∈ QJ×Q, C ∈ QI×A, D ∈ QJ×A,
and a weight vector w ∈ QP , program (PCP) can be stated in matrix form as follows:

(PCP) max wTx, Ax = 1, By = 1, Cx−Dy ≤ 0, (x, y) ∈ {0, 1}P×Q.

The authors of [4] have shown that train path and track configuration variables can be
priced by solving shortest path problems in suitably defined acyclic digraphs, such that the
LP relaxation of program (PCP) can be solved in polynomial time.

3 A Bundle Approach

The PCP consists of a train routing and a track configuration sub-model that are linked
by coupling constraints. The sub-models are easy, but time consuming to solve using a
column generation procedure based on acyclic shortest path computations, the coupling
constraints are simple but numerous. This combinatorial structure can be exploited using a
Lagrangean relaxation approach in which, of course, precision and speed of convergence are
critical issues. It turns out that the bundle method fits perfectly with such a scheme.

A Lagrangean dual of model PCP arises from a Lagrangean relaxation of the coupling
constraints PCP (iv) and a relaxation of the integrality constraints PCP (vi) and (vii):

(LD) min
λ≥0

 max
Ax=1,
x∈[0,1]P

(wT − λTC)x+ max
By=1,
y∈[0,1]Q

(λTD)y

 .
LD is equivalent to the dual of the LP relaxation of PCP, and hence provides upper bounds
for PCP. Introducing functions

fP : RA → R, λ 7→ max(wT − λTC)x, Ax = 1, x ∈ [0, 1]P

fQ : RA → R, λ 7→ max(λTD)y, By = 1, y ∈ [0, 1]Q

fP,Q := fP + fQ,

ATMOS ’10

16 Railway Track Allocation by Rapid Branching

LD can be stated more shortly as follows:

(LD) min
λ≥0

fP,Q(λ) = min
λ≥0

[fP (λ) + fQ(λ)] .

The functions fP and fQ are convex and piecewise linear. Their sum fP,Q is therefore a
decomposable, convex, and piecewise linear function; fP,Q is, in particular, non-smooth.
This is precisely the setting for an application of the proximal bundle method (PBM) to a
maximization problem, see [14, 15, 13, 3, 20] for details.

When applied to LD, the PBM constructs cutting plane models of the functions fP and
fQ in terms of subgradient bundles J iP and J iQ that are used to produce two sequences of
iterates λi, µi ∈ RA, i = 0, 1, The points µi are called stability centers; they converge to
a solution of LD. The points λi are trial points calculated by solving a quadratic program
over a trust region around the current stability center, whose size is controlled by some
positive weight u:

(QP iP,Q) λi+1 := argmin
λ

fP,Q(λ)− u
2
∥∥µi − λ∥∥2

. (1)

A function evaluation at a trial points results either in a shift of the stability center, or
in an improvement of the cutting plane model. A key point is that the high-dimensional
quadratic program (QP iP,Q) (the dimension is equal to the number of coupling constraints)
has a dual whose dimension coincides with the number subgradients in the current bundle.
The method converges for a bundle size of two, typical sizes in practice are around 10 or 15.
This dimension reduction makes the problem computationally tractable.

Another key point is that the PBM produces a sequence not only of approximate dual,
but also of approximate primal solutions, that converge, in contrast to, e.g., subgradient
methods or the volume method, both to optimal LP solutions:

The series (µi) converges to an optimal solution of LD, i.e., an optimal dual solution of
the LP relaxation of PCP.

The series (xiP (λi), yiQ(λi)) defined as

(xiP (λi), yiQ(λi)) =

 ∑
λj∈JiP

αiP,jxP (λj),
∑
λj∈JiQ

αiQ,jyQ(λj)

converges to an optimal primal solution of the LP relaxation of PCP.

Here, αiQ,j are optimal solutions of the dual of the quadratic program (QP iP,Q), and xP (λj) =
argmaxx∈[0,1]P fP (λj) and yQ(λj) = argmaxy∈[0,1]Q fQ(λj) are optimal primal solutions of
fP and fQ. Note that in our application, determining xP and yQ amounts to computing
optimal train paths and track configurations; this can be done by acyclic shortest path
calculations. The primal approximation is useful to guide branching decisions, see next
section.

4 Rapid Branching

We propose in this section a branch-and-generate (BANG) approach (i.e., a branch-and-
price algorithm with partial branching, see [18]) for the construction of high-quality integer
solutions of the PCP.

Ralf Borndörfer, Thomas Schlechte, and Steffen Weider 17

The main idea of this rapid branching heuristic is that a fix of a single variable to zero or
one has almost no effect on the value of the LP relaxation of a problem such as the PCP, see
[16]. The authors of [3], see also the thesis [20], proposed in the context of integrated vehicle
and duty scheduling a heuristic that tries to overcome this problem by a combination of
cost perturbation to “make the LP more integer”, partial pricing to generate variables that
are needed to complete an integer solution down in the tree, a selective branching scheme
to fix large sets of variables, and an associated backtracking mechanism to correct wrong
decisions. Our setting is of obvious similarity, and it will turn out that rapid branching can
indeed be successfully applied to solve large-scale track allocation problems.

We use the following notation. Recall the PCP

(PCP) max
0≤x,y≤1

wTx, Ax = 1, By = 1, Cx−Dy ≤ 0, (x, y) ∈ {0, 1}P×Q.

Let l, u ∈ {0, 1}P×Q, l ≤ u, be vectors of bounds that model fixings of variables to 0 and 1.
Denote by L := {j ∈ P ×Q : uj = 0} and U := {j ∈ P ×Q : lj = 1} the set of variables
fixed to 0 and 1, respectively, and by

(PCP)(l, u) max
l≤x,y≤u

wTx, Ax = 1, By = 1, Cx−Dy ≤ 0, (x, y) ∈ {0, 1}P×Q

the IP derived from PCP by such fixings. Denote further by N ⊆ P × Q some set of
variables which have, at some point in time, already been generated by a column generation
algorithm for the solution of PCP. Let RPCP and RPCP(l, u) be the restrictions of the
respective IPs to the variables in N (we assume that L,U ⊆ N holds at any time when
such a program is considered, i.e., variables that have not yet been generated are not fixed).
Finally, denote by MLP, MLP(w, l, u), RMLP, and RMLP(w, l, u) the LP relaxations of
the integer programs under consideration; MLP and MLP(w, l, u) are called master LPs,
RMLP and RMLP(w, l, u) restricted master LPs (the objective w is included in the notation
for MLP(w, l, u) and RMLP(w, l, u) for reasons that will become clear in the following
Section 4.1).

Rapid branching tries to compute a solution of PCP by means of a search tree with nodes
PCP(l, u). Starting from the root PCP = PCP(0,1), nodes are spawned by additional
variable fixes using a strategy that we call perturbation branching. The tree is depth-first
searched, i.e., rapid branching is a plunging (or diving) heuristic. The nodes are ana-
lyzed heuristically using restricted master LPs RMLP(w, l, u). The generation of additional
columns and node pruning are guided by so-called target values as in the branch-and-generate
method. To escape unfavorable branches, a special backtracking mechanism is used that per-
forms a kind of partial binary search on variable fixings. The idea of the method is as follows:
we try to make rapid progress towards a feasible integer solution by fixing large numbers of
variables by perturbation branching (Section 4.1) in each iteration, repairing infeasibilities
or deteriorations of the objective by regeneration of columns if possible and by controlled
backtracking otherwise (Section 4.2).

4.1 Perturbation Branching

The idea of perturbation branching is to solve a series of MLPs with objectives wi, i =
0, 1, 2, . . . that are perturbed in such a way that the associated LP solutions xi are likely
to become more and more integral. In this way, we hope to construct an almost integer

ATMOS ’10

18 Railway Track Allocation by Rapid Branching

solution at little cost. The perturbation is done by increasing the utility of variables with
LP values close to one according to the formula:

w0
j := wj , j ∈ N

wi+1
j := wij + wjαx

2
j , j ∈ N, i = 0, 1, 2,

The idea behind this quadratic perturbation is that variables with values close to 1 are driven
towards 1. The progress of this procedure is measured in terms of the potential function

v(xi) := wTx+ δ|B(xi)|,

where ε and δ are parameters for measuring near-integrality and the relative importance of
near-integrality (we use ε = 0.1 and δ = 1), and B(xi) := {j ∈ N : xij > 1 − ε} is the set
of variables that are set or almost set to one. The perturbation is continued as long as the
potential function increases; if the potential does not increase for some time, a spacer step is
taken in an attempt to continue. On termination, the variables in the set B(xi) associated
with the highest potential are fixed to one. If no variables at all are fixed, we choose a single
candidate by strong branching, see [1]. Objective perturbation has also been used in [19]
for the solution of large-scale set partitioning problems, and, e.g., in [9] in the context of
general mixed integer programming.

Algorithm 1 gives a pseudocode listing of the complete perturbation branching procedure.
The main work is in solving the perturbed reduced master LP (line 3), generating new vari-
ables if necessary. Fixing candidates are determined (line 4) and the potential is evaluated
(line 5). If the potential increases (lines 15–17), the perturbation is continued (line 18). If
no progress was made for ks steps (line 10), the objective is heavily perturbed by a spacer
step in an attempt to continue (lines 10–13). However, even this perturbation does not
guarantee that any variable will get a value above 1− ε, if ε < 1/2. If this happens and the
iteration limit is reached, a single variable is fixed by strong branching (line 24).

4.2 Binary Search Branching

The fixing candidate sets B∗ produced by the perturbation branching algorithm are used to
define nodes in a branch-and-generate search tree by imposing bounds xi = 1 for all i ∈ B∗.
This typically fixes many variables to one, which is what we wanted to achieve. However,
sometimes too much is fixed and some of the fixings turn out to be disadvantageous. In such
a case we must backtrack. We propose to do this in a binary search manner by successively
undoing half of the fixes until either the fixings work well or only a single fix is left. This
procedure is called binary search branching.

Here are the details. Let B∗ be a set of potential variable fixes and K = |B∗|. Order the
variables in B∗ by some criterion as i1, i2, . . . , iK and define sets

B∗k := {i1, . . . , ik}, k = 1, . . . ,K.

Consider search tree nodes defined by fixing

xj = lj = 1, j ∈ B∗k , k = K, dK/2e, dK/4e, . . . , 2, 1.

These nodes are examined in the above order. Namely, we first try to fix all variables in B∗K
to one, since this raises hopes for maximal progress. If this branch comes out worse than

Ralf Borndörfer, Thomas Schlechte, and Steffen Weider 19

Algorithm 1: Perturbation Branching.
Data: RMLP(w, l, u), integrality tolerance ε ∈ [0, 0.5), integrality weight δ > 0,

perturbation factor α > 0, bonus weight M > 0, spacer step interval ks, iteration
limit kmax

Result: set of variables B∗ that can be fixed to one

1 init i← k ← 0; w0 ← w; B∗ ← ∅; v∗ ←∞;
2 while k < kmax do /* maximum number of iterations not reached */
3 compute xi ← argmax RMLP(wi, l, u);
4 set Bi ← {j : xij ≥ 1− ε, lj = 0};
5 set v(xi)← wTxi + δ|Bi|;
6 if xi is integer then
7 set B∗ ← Bi ; /* candidates found */
8 break;
9 else

10 if k ≡ 0 mod ks and k > 0 then
11 set j∗ ← argmaxlj=0 x

i
j ;

12 set wij ←M ;
13 set B∗ ← Bi ∪ {j∗} ; /* spacer step */
14 else
15 if v(xi) > v∗ then
16 set B∗ ← Bi; v∗ ← v(xi); k ← −1; /* progress */
17 end
18 set wi+1

j ← wij + αwj(xij)2 ∀j; /* perturb */
19 end
20 end
21 set i← i+ 1; k ← k + 1;
22 end
23 if B∗ = ∅ then
24 set B∗ ← {j∗} ← strongBranching() ; /* strong branching */
25 end
26 return B∗;

expected, it is pruned, and we backtrack to examine B∗dK/2e and so on until possibly B∗1 is
reached. In this situation, the single fix is applied imperatively. The resulting search tree
is a path with some pruned branches, i.e., binary search branching is a plunging heuristic.
In our implementation, we order the variables by increasing reduced cost of the restricted
root LP, i.e., we unfix half of the variables of smallest reduced cost. This sorting is inspired
by the scoring technique of [7]. The decision whether a branch is pruned or not is done
by means of a target value as introduced in [18]. Such a target value is a guess about the
development of the LP bound if a set of fixes is applied; we use a linear function of the integer
infeasibility. If the LP bound stays below the target value, the branch develops according
to our expectations, if not, the branch “looks worse than expected” and we backtrack.

5 Computational Results

We test our approach on a selection of three large instances that are freely available from
the benchmark library TTPlib, see [10]. They are associated with a macroscopic railway
network model of the area spanned by the cities of Hannover, Kassel, and Fulda in Germany.

ATMOS ’10

20 Railway Track Allocation by Rapid Branching

0 10,000 20,000 30,000

0

100

200

300

400

LP Stage IP Stage

time in seconds

upper bound on objective function value
objective function value of integral solution

number of columns fixed to one
objective function value of fixed variables
number of active columns (in thousands)

IP target value

Figure 1 Solving a track allocation problem with TS-OPT; dual (LP) and primal (IP) stage.

scenario trains (|I|) tracks (|J|) |A| |VI | |AI | |VJ | |AJ |

req_31 1062 79 6006 11397 16493 12162 26694
req_32 1140 101 11187 22980 34852 22568 59037
req_33 570 101 5845 11490 17426 11884 31095

Table 1 Track allocation test instances.

This HaKaFu network consists of 37 stations and 120 tracks (hakafu_simple_37_120_6),
giving rise to 4320 different headway times for 6 standard train types. The test instances
differ with respect to requests for trains, i.e., by traffic demand, and we remark that simple
greedy or rounding procedures fail to construct satisfactory solutions for them.

Table 1 gives some statistics on the number of requested trains (|I|), the number of tracks
(|J |), the number of coupling arcs (|A|), and the total sizes of the train routing and the
track configuration digraphs (|VI |, |AI |, |VJ |, |AJ |) associated with the test instances. The
coupling arcs are those arcs that correspond to train movements along a track; they are in
one-to-one correspondence with the coupling constraints (PCP) (iv). The remaining arcs
corresponding to pull-ins and pull-outs, and to movements and parkings in stations do not
give rise to conflicts (the instances do not involve station capacities) and do therefore not
give rise to coupling constraints.

All our computations were performed on computers with an Intel Core 2 Extreme CPU
X9650 with 3GHz, 6MB cache, and 8GB of RAM. Figure 1 shows a typical run of our code
TS-OPT. In the initial LP stage (red or dark), a global upper bound is computed by solving
the Lagrangean dual using column generation and the bundle method. The bundle method
converges after approximately 9 hours and pricing 50.000 variables. In the succeeding IP
stage (green or light) an integer solution is constructed by the rapid branching heuristic. It
can be seen that the upper bound does almost not move, i.e., the final integer solution has
virtually the same objective value as the LP relaxation, and that indeed often large numbers
of variables are fixed to one throughout the course of the rapid branching heuristic.

5.1 Bundle Calibration

Figure 2 compares the effect of different choices for the size of the bundle (2, 5, 10, 15,
20, 25) on the solution of the root LP relaxation of our test instances. It can be seen that
larger bundles lead in general to a reduction in the number of iterations to a certain limit.
However, larger bundles also produce larger and more difficult quadratic programs, such
that the total solution time increases after a certain point. A bundle size of 10 or 15 seems

Ralf Borndörfer, Thomas Schlechte, and Steffen Weider 21

to be a good choice.

2 5 10 15 20 25

2,000

2,500

3,000

bundle size

req32

iterations
time in seconds

2 5 10 15 20 25

500

1,000

1,500

2,000

2,500

bundle size

req31

iterations
time in seconds

2 5 10 15 20 25

500

1,000

1,500

bundle size

req33

iterations
time in seconds

Figure 2 Testing different bundle sizes.

5.2 Rapid Branching

Tables 2 and 3 show results for solving the test instances by our code TS-OPT. The tables list
the number of scheduled trains in the best solution found, the upper bound, the optimality
gap, the total running time in CPU seconds, and the number of (rapid) branching nodes.
The computations in Table 2 have been performed with an aggressive choice of the rapid
branching integrality tolerance of ε = 0.4, Table 3 shows the results for a cautious choice of
ε = 0.2. It can be seen that the aggressive choice tends to be faster, because more variables
are fixed at once to explore fewer nodes, but the solution quality is lower. By choosing
ε = 0.2, high quality solutions for large-scale track allocation problems involving hundreds
of train requests can be computed.

scenario |I| trains upper objective of gap time branching
in solution bound solution in % nodes

req31 1062 356 464.40 457.79 1.44 45min 53
req32 1140 288 240.71 231.19 4.12 1h52min 56
req33 570 154 126.38 122.03 3.57 18min 47

Table 2 Solving track allocation problems by rapid branching (int. tolerance ε = 0.4)

scenario |I| trains upper objective of gap time branching
in solution bound solution in % nodes

req31 1062 356 464.41 457.54 1.50 5h 59
req32 1140 298 240.71 239.61 0.46 11h 67
req33 570 154 126.38 122.03 3.57 1h23min 51

Table 3 Solving track allocation problems by rapid branching (int. tolerance ε = 0.2)

References

1 D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding cuts in the TSP (a preliminary
report). Technical report, Center for Discrete Mathematics and Theoretical Computer
Science (DIMACS), March 1995. DIMACS Technical Report 95-05.

2 Ralf Borndörfer, Martin Grötschel, Sascha Lukac, Kay Mitusch, Thomas Schlechte, Sören
Schultz, and Andreas Tanner. An auctioning approach to railway slot allocation. Com-

ATMOS ’10

22 Railway Track Allocation by Rapid Branching

petition and Regulation in Network Industries, 1(2):163–196, 2006. ZIB Report 05-45 at
http://opus.kobv.de/zib/volltexte/2005/878/.

3 Ralf Borndörfer, Andreas Löbel, and Steffen Weider. A bundle method for integrated multi-
depot vehicle and duty scheduling in public transit. In Mark Hickman, Pitu Mirchandani,
and Stefan Voß, editors, Computer-aided Systems in Public Transport, volume 600 of Lec-
ture Notes in Economics and Mathematical Systems, pages 3–24. Springer-Verlag, 2008.
ZIB Report 04-14 at http://opus.kobv.de/zib/volltexte/2004/790/.

4 Ralf Borndörfer and Thomas Schlechte. Models for railway track allocation. In Christian
Liebchen, Ravindra K. Ahuja, and Juan A. Mesa, editors, ATMOS 2007 - 7th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Dagstuhl
Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, 2007. http://drops.dagstuhl.de/opus/volltexte/
2007/1170.

5 U. Brännlund, P.O. Lindberg, A. Nou, and J.-E. Nilsson. Railway timetabling using La-
grangian relaxation. Transportation Science, 32(4):358–369, 1998.

6 Gabrio Caimi. Algorithmic decision support for train scheduling in a large and highly utilised
railway network. PhD thesis, ETH Zurich, 2009.

7 Alberto Caprara, Matteo Fischetti, and Paolo Toth. Algorithms for the set covering prob-
lem. Annals of Operations Research, 98:2000, 1998.

8 Alberto Caprara, Michele Monaci, Paolo Toth, and Pier Luigi Guida. A Lagrangian heuris-
tic algorithm for a real-world train timetabling problem. Discrete Appl. Math., 154(5):738–
753, 2006.

9 Jonathan Eckstein and Mikhail Nediak. Pivot, cut, and dive: a heuristic for 0-1 mixed
integer programming. J. Heuristics, 13(5):471–503, 2007.

10 Berkan Erol, Marc Klemenz, Thomas Schlechte, Sören Schultz, and Andreas Tanner.
TTPlib 2008 - A library for train timetabling problems. In A. Tomii, J. Allan, E. Arias,
C.A. Brebbia, C. Goodman, A.F. Rumsey, and G. Sciutto, editors, Computers in Railways
XI. WIT Press, 2008.

11 Frank Fischer, Christoph Helmberg, Jürgen Janßen, and Boris Krostitz. Towards solving
very large scale train timetabling problems by Lagrangian relaxation. In Matteo Fischetti
and Peter Widmayer, editors, ATMOS 2008 - 8th Workshop on Algorithmic Approaches
for Transportation Modeling, Optimization, and Systems, Dagstuhl, Germany, 2008. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Germany.

12 Matteo Fischetti, Domenico Salvagnin, and Arrigo Zanette. Fast approaches to improve
the robustness of a railway timetable. Transportation Science, 43(3):321–335, 2009.

13 C. Helmberg. Semidefinite Programming for Combinatorial Optimization. Habilitation
Thesis, Technische Universität Berlin, October 2000.

14 K. C. Kiwiel. Proximal bundle methods. Mathematical Programming, 46(123):105–122,
1990.

15 K. C. Kiwiel. Approximation in proximal bundle methods and decomposition of convex
programs. Journal of Optimization Theory and applications, 84(3):529–548, 1995.

16 M.E. Lübbecke and J. Desrosiers. Selected topics in column generation. Oper. Res.,
53(6):1007–1023, 2005.

http://opus.kobv.de/zib/volltexte/2005/878/
http://opus.kobv.de/zib/volltexte/2004/790/
http://drops.dagstuhl.de/opus/volltexte/2007/1170
http://drops.dagstuhl.de/opus/volltexte/2007/1170

Ralf Borndörfer, Thomas Schlechte, and Steffen Weider 23

17 Richard Lusby, Jesper Larsen, Matthias Ehrgott, and David Ryan. Railway track allocation:
models and methods. OR Spectrum, December 2009.

18 R. Subramanian, R.P. Sheff, J.D. Quillinan, D.S. Wiper, and R.E. Marsten. Coldstart:
Fleet assignment at delta air lines. Interfaces, 24(1):104–120, 1994.

19 D. Wedelin. An algorithm for a large scale 0-1 integer programming with application to
airline crew scheduling. Annals of Operations Research, 57:283–301, 1995.

20 Steffen Weider. Integration of Vehicle and Duty Scheduling in Public Transport. PhD thesis,
TU Berlin, 2007. http://opus.kobv.de/tuberlin/volltexte/2007/1624/.

ATMOS ’10

http://opus.kobv.de/tuberlin/volltexte/2007/1624/

Robust Train Routing and Online Re-scheduling
Alberto Caprara1, Laura Galli1, Leo Kroon2, Gábor Maróti2, and
Paolo Toth1

1 DEIS, University of Bologna,
Viale Risorgimento 2,
40136 Bologna, Italy.

2 Rotterdam School of Management,
Erasmus University Rotterdam,
P.O. Box 1738, NL-3000 DR,
Rotterdam, The Netherlands.

Abstract
Train Routing is a problem that arises in the early phase of the passenger railway planning
process, usually several months before operating the trains. The main goal is to assign each train
a stopping platform and the corresponding arrival/departure paths through a railway station.
It is also called Train Platforming when referring to the platform assignment task. Railway
stations often represent bottlenecks and train delays can easily disrupt the routing schedule.
Thereby railway stations are responsible for a large part of the delay propagation in the whole
network. In this research we present different models to compute robust routing schedules and
we study their power in an online context together with different re-scheduling strategies. We
also design a simulation framework and use it to evaluate and compare the effectiveness of the
proposed robust models and re-scheduling algorithms using real-world data from Rete Ferroviaria
Italiana, the main Italian Railway Infrastructure Manager.

1998 ACM Subject Classification G.1.6 Integer Programming; G.2.3 Applications

Keywords and phrases Railway optimisation, Train platforming, Robust planning, Online re-
scheduling, Simulation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.24

1 Introduction

The Train Routing problem arises in the early phase of the passenger railway timetabling
process, after the departure and arrival times have been defined. The main goal is to route
the trains through a railway station, for example a busy station, and assign them a stopping
platform. Thus it is also known as Train Platforming. This problem represents a major issue
for medium and large sized stations. Such stations are rather common throughout Europe,
have complex topologies and can severely impact on the train schedule operation. More
precisely, solving a train routing problem for a given railway station means considering all
the trains (in the timetable) passing through it and assigning each of them (i) a stopping
platform and (ii) a pair of arrival and departure paths to reach and leave the platform,
respectively.

Unfortunately even an optimal plan can be rather useless in a real-life context when the
inevitable disturbances affecting the system modify the conditions we have optimised for.
For this reason the latest research projects have been focusing on dynamic aspects. These
approaches can be divided into two main branches: robust planning and online re-scheduling.
Robust planning, on one hand, is meant to reduce delay propagation in a railway system, i.e.,

© Alberto Caprara, Laura Galli, Leo Kroon, Gábor Maróti and Paolo Toth;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 24–33

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Alberto Caprara, Laura Galli, Leo Kroon, Gábor Maróti, and Paolo Toth 25

train conflicts, thus limiting the effect of disturbances on the system. Online re-scheduling, on
the other hand, deals with recovery strategies that can be used to react real-time, whenever
the disturbances of the system hinder the nominal plan and a new one is needed according
to the current conditions. Our goal is to use a simulation framework to investigate the
effectiveness of different combinations of robust plans and re-scheduling strategies for train
routing.

2 Motivation and Outline

Substantial research has been conducted on the train routing problem. For example, [1], [5],
[6], [9] [10], [13], and [14] presented optimisation models and algorithms for train routing,
whereas [8] proposed a theoretical study of the track assignment problem and show how
some variations can be solved as special classes of graph colouring problems. More recently,
[2] developed a model to find delay-tolerant train routes, while [7] considered a re-scheduling
setting. Both [3] and [12] described models to minimise the number of crossing train routes
(and the time overlap thereof). Finally [4] presented an exact (delay-)robust optimisation
framework for train routing. There is, however, very little literature available on robustness
and re-scheduling together. Our paper sets itself in this context.

The goal of this work is threefold. The first goal is to extend the routing model of
[3] to robustness considerations, describing some variations where robustness is enhanced
either by increasing the delay absorption capacity or by explicitly providing potential
recovery possibilities. The second goal is to design different exact re-scheduling algorithms
according to different recovery strategies. In particular, we consider three different recovery
strategies, implemented as Mixed Integer Programs (MIPs). The first strategy consists in
simply propagating the delay, the second strategy relies on robust extra-resources (backup
platforms), and the third strategy allows unlimited changes to the nominal plan. The
third goal is to assess the performance of the robust plans and re-scheduling strategies in
a simulation framework. In fact, robustness and recoverability are intriguingly difficult
notions to quantify. In this research we propose a simulation framework to compare different
combinations of routing plans and recovery strategies. More specifically, given a timetable
of an entire day, a routing plan and some randomly-generated delays, the re-scheduling
algorithms are applied to resolve the routing conflicts. In this way, the simulation allows us
to compare the robustness of different plans together with different recovery strategies, the
main criterion in the comparison being the global train delay.

This paper is organised as follows. In Section 3 we describe the Italian train routing
problem, that represents our real-world case study, and we also sketch the model of [3] that
represents the basis for our research. In Section 4 we describe some variants of the original
model and in Section 5 we introduce three different re-scheduling strategies, implemented
via MIPs. Finally we propose a simulation framework in Section 6. Section 7 is devoted to
computational results. In Section 8 we draw some conclusions and observations for future
research.

3 The Train Routing Problem

In this section we recollect the train routing problem presented in [3]. The problem, as
described by the main Italian Railway Infrastructure Manager (Rete Ferroviaria Italiana),
aims at defining a routing plan for a given railway station, after the corresponding timetable
has been defined. We are given a timetable containing a set T of trains that will either stop

ATMOS ’10

26 Robust Train Routing and Online Re-scheduling

or travel through the railway station. The timetable defines arrival and departure times
and directions for every train t ∈ T . Information on the railway station topology is also
given. A railway station can be represented as a mesh of tracks connecting the railway
line directions to stopping platforms. A path is a sequence of tracks connecting a direction
to a stopping platform or vice versa. Different paths can share the same track or other
physical resources along their lines, and in this case they are considered incompatible. Hard
constraints forbid the assignment of incompatible resources at the same time or within a
safety limit (few minutes) one after another. The goal of the train routing problem is to
define for every train t ∈ T a stopping platform and two paths, connecting the platform to
the arrival and departure directions of train t. It is also possible to apply small changes to
the timetable, called shifts. Hence, the routing plan can define new arrival and departure
times for every train. In this way, the routing phase feeds back to the previous timetabling
phase. The model presented in [3] is based on the concept of patterns. A pattern encapsulates
all the information about the resources assigned to a train: stopping platform, arrival and
departure paths, arrival and departure shifts. Clearly, each train t ∈ T defines its own set of
feasible patterns Pt according to its arrival and departure directions. Incompatibilities are
represented using a graph whose nodes correspond to train patterns, and hard constraints are
expressed via a set K of cliques of incompatible patterns. Time is discretised in minutes. As
explained in [3] the model is solved using pricing and separation techniques due to the large
number of variables and constraints. This solution method is applied to all the three variants
that we will present in the next section. Thus, for details on how to solve the corresponding
MIP models, the reader can refer to [3].

4 Robust Planning

In this section we present three different variants of the model of [3]. Binary variables xt,P
represent the assignment of pattern P ∈ Pt to train t ∈ T , and st are binary variables used
to cancel (i.e., not assign) train t ∈ T . A large penalty Mt is associated with variable st in
the objective function to minimise such occasions. The cost ct,P of a pattern P for train t
represents the quality of the corresponding assignment for the given train (i.e., preference
platforms, changes with respect to the nominal scheduled times, etc.).

4.1 Basic Platforming
In the first (non-robust) variant of the routing model, called basic, we simplify the original
model of [3] by considering exclusively the cost of the patterns, without any additional fixed
cost for the platforms used. In fact, in a robust model it may be desirable for the trains to
spread platform occupation among different resources.

min
∑
t∈T

∑
P∈Pt

ct,P xt,P +
∑
t∈T

Mtst (1)

subject to

st +
∑
P∈Pt

xt,P = 1, t ∈ T, (2)

∑
(t,P)∈K

xt,P ≤ 1, K ∈ K, (3)

xt,P , st ∈ {0, 1}, t ∈ T, P ∈ Pt. (4)

Alberto Caprara, Laura Galli, Leo Kroon, Gábor Maróti, and Paolo Toth 27

Constraints (2) either assign a pattern or cancel a train. Constraints (3) forbid resource
conflicts and use cliques K ∈ K in order to strengthen the formulation.

4.2 Increasing the Absorption Capacity
The most straightforward way to cope with small delays without any particular re-routing
strategy is to simply propagate the delay. This means resolving the given scenario by
preserving the nominal scheduled train order. If a train is delayed then all its resources
are locked and the subsequent trains, if allocated to one or more of these, are pushed-back,
waiting for the corresponding resource to be freed up. For this reason, it is important to
increase the delay absorption capacity of the routing plan. In fact, in the second variant,
robustness is captured by penalising the cases in which incompatible resources are utilised
by two trains in a short succession. These situations may give rise to conflicts in case of
delays and thereby lead to propagation of such delays. So the aim is to spread the load on
the infrastructure in time and space. A routing plan optimised for this criterion is expected
to cope with small delays, without substantial recovery actions. The MIP formulation that
we use has the following objective function:

min
∑
t∈T

∑
P∈Pt

ct,P xt,P +
∑
t∈T

Mtst +
∑

(t1,t2)∈T 2

∑
P1∈Pt1

∑
P2∈Pt2

ct1,P1,t2,P2 xt1,P1 xt2,P2 (5)

This objective function is subject to constraints (2)-(4). The cross-penalty ct1,P1,t2,P2

in the objective function depends on the distance (in time) among the utilisations of the
incompatible resources (platforms and paths) associated with the two patterns P1 and P2
assigned to trains t1 and t2 respectively: the closer in time, the higher the penalty. A detailed
discussion on how to linearise (5) in an effective way can be found in [3].

Even though the quadratic component can express a wide array of optimisation criteria,
each of them would require a fine-tuning of the coefficients in the objective function. A
common way to perform such a tuning is to apply scenario-based models such as stochastic
programming. Still, the performance of the overall method would strongly rely on the chosen
distribution. In this paper, we limit ourselves to a naive definition of these quadratic costs,
see [11] for details.

4.3 Backup Platforms
In this third version, we intend to fight delay propagation by allowing each train to use a
backup (i.e., recovery) platform for a given time period, whose length coincides with the
maximum delay we intend to prevent. In this model, each train is assigned a primary and a
backup platform. A platform can only be backup for a train if no other train simultaneously
uses it as primary at the same time. The primary platform is intended to be used whenever
possible, while the backup platform provides re-scheduling possibilities when the train is
delayed. Suppose that train t has arrival time a and departure time d, and let ` be a limit
on the delays that we are dealing with. Then train t occupies its backup platform during the
time interval [a; d+ `]. Note that the occupation of the backup platform does not depend
on the shift applied to the train, since this is generally small with respect to `. Platforms
that have nearly identical approach paths are called neighbouring platforms. Note that the
precise definition depends on the infrastructure of the studied railway station. We suggest to
choose neighbouring primary and backup platforms for each train. The reason for this choice
is that, if a train is moved to a neighbouring platform, it is very likely to use paths with
the same structure as the primary one, thus it will not introduce many additional conflicts

ATMOS ’10

28 Robust Train Routing and Online Re-scheduling

with other paths already assigned. Moreover, passengers will be less disappointed if asked to
move to a close-by platform.

Backup platforms could be incorporated into the basic model (1)-(4) simply by extending
the notion of pattern. However, such an extension would significantly increase the complexity
of the pricing phase. This motivates a different approach. For each train t ∈ T , we define an
interval It corresponding to the time window during which the backup platform for train t
must be available, and we use binary variables uπ,t that take value 1 if train t can use backup
platform π in its corresponding time interval It. With this in mind we require for each train
t the assignment of a primary platform and of a backup platform in the neighbourhood of
the primary one:∑

π∈N(b)

uπ,t ≥
∑

P∈Pt(b)

xt,P , t ∈ T, b ∈ B, (6)

uπ,t ∈ {0, 1}, π ∈ B, t ∈ T. (7)

Here B is the set of platforms in the railway station, N(b) is the set of neighbouring platforms
of b and Pt(b) is the set of all the patterns associated with train t that use b as primary
platform. Of course, we also require the backup platform to be free from any primary
assignment for each possible arrival instant (minute) m ∈ It:∑

t′∈T−{t},P∈P
t
′ :πP
t
′=π,m∈[aP

t
′ ,d
P

t
′]

xt′ ,P ≤ 1− uπ,t, π ∈ B, t ∈ T,m ∈ It. (8)

Here the left-hand side considers all the patterns associated with trains t′ ∈ T −{t}, such that
π is their primary platform (πP

t′
= π) and their occupation time interval [aP

t′
, dP
t′
] contains

instant m ∈ It. Note that there is no cost associated to backup platforms. Moreover a backup
platform can be assigned simultaneously (as backup, not as primary) to several trains.

Hence, the overall model has objective function (1) and constraints (2)-(4) and (6), (7),
(8).

5 Online Re-scheduling

Once a (robust) routing plan is given, one has to test its effectiveness against delays by
applying to it a recovery strategy which may be a general one or may be tailored according
to the type of plan.

5.1 Recovery strategies
In this paper we consider three different recovery strategies.

Delay Propagation This is a general strategy in which each train keeps its nominally-assigned
resources and the order of the trains on the resources (paths and platforms) is not modified.
Thus conflicts are resolved by adjusting the arrival and departure times (i.e., by possibly
propagating the delay). This strategy can be applied to any of the plans described in the
previous section.

Backup Platform This strategy assigns trains either to their primary platform or to their
backup platform, whichever leads to less delays. The associated re-scheduling algorithm
tries to exploit the recovery resources provided by the plan in order to minimise the delay
propagation. This strategy is only applicable for the backup robust type of plan, since
we need specific information on the recovery resources.

Alberto Caprara, Laura Galli, Leo Kroon, Gábor Maróti, and Paolo Toth 29

Full This general recovery rule is the most powerful one. It allows any kind of re-scheduling
action. Hence, trains may be assigned to completely different patterns with respect to
the nominal plan. Being a general strategy, it can be applied to all types of plans.

5.2 Re-scheduling algorithms
For each of these strategies, we implemented an optimisation-based re-scheduling algorithm
obtained by expressing mathematically the corresponding rules. This can be done by
extending model (1)-(4). The re-scheduling process is performed by solving the associated
mathematical program.

5.2.1 The objective function
The simulation process provides each train t ∈ T with the estimated arrival time ETA(t)
which is defined as the nominal arrival time plus the external delay. In our evaluation
framework, the values ETA(t) are provided by the simulation engine (as will be explained in
the next section). The objective function of all re-scheduling algorithms aims at minimising
the total propagated delay. We define the propagated delay for train t, ∆t, as the realised
departure time of t minus the nominal departure time of t. In other words, the propagated
delay is the delay upon departure, i.e., the delay with respect to the nominal release time of
the departure path. The reason for doing this is that the delay upon departure will affect
subsequent railway stations in the train schedule and represents the delay exported by the
railway station. Note that by minimising the delay upon departure we often also minimise
the delay upon arrival, i.e., the delay with respect to the nominal release time of the arrival
path, especially for tight train schedules. Clearly, the realised departure time of t depends
upon the pattern P assigned to t. ∆t,P represents the delay propagated by train t if assigned
to pattern P .

5.2.2 Shift constraints
The MIP models for the re-scheduling algorithms extend the original structure of (1)-(4).
Still, the re-scheduling models allow rather large additional arrival/departure shifts in order
to be able to deal with train delays. Hence, the number of admissible patterns is much
higher than in the planning models. Further, the queues of trains on the in-bound tracks
require additional constraints. In fact, trains that are delayed on arrival must wait outside
the railway station on some in-bound tracks, since overtaking among trains on arrival is
not possible. We model the in-bound queues by forbidding shift values that correspond
to a train overtaking another. In other words if δat is the shift on arrival for train t, then
ETA(t1) < ETA(t2) implies ETA(t1) + δat1 < ETA(t2) + δat2 for trains t1 and t2 entering
the station from the same direction. We can express this with constraints of the form:∑

(t,P)∈S

xt,P ≤ 1 S ∈ S (9)

These constraints forbid the simultaneous occurrence of a given set S of patterns, if these
together indicate that a train joins the queue of waiting trains earlier but leaves it later;
S denotes a family of all such sets. For illustration, consider an example with three
different trains (t1, t2, t3), whose estimated arrival times are respectively ETA(t1) =10:00,
ETA(t2) =10:02, ETA(t3) =10:05. For simplicity, suppose the maximum allowed shift
forward on arrival (max δat) to be 5 minutes for all trains. Whenever we apply some shifts

ATMOS ’10

30 Robust Train Routing and Online Re-scheduling

s=0

s=4

s=2

s=3

s=1

s=5

10:00

10:01

10:02

10:03

10:04

10:05

10:02

10:03

10:04

10:05

10:06

10:07

10:05

10:06

10:07

10:08

10:09

10:10

t1 t2 t3

Figure 1 Shift incompatibility graph.

on these trains, we want to keep the original order corresponding to the ETA instants, i.e.,
in this case,: t1 ≺ t2 ≺ t3.

In Figure 1 each big oval represents a train, with all the possible arrival times (represented
by the associated nodes) according to the different shift values. An edge from one node to
another means that the corresponding two shift values are incompatible. This happens either
when the shifts make the two arrival times equal or change the order. Note an important
characteristic of this shift incompatibility graph: edges go from one train to the following one,
but because of the transitive property, we do not need to specify the edges connecting non
consecutive trains.

Each shift-node within a big oval represents all the patterns for the associated train that
use a particular shift value s. The weight of a node is defined as the sum of all pattern variables
associated with patterns that belong to the given node. Thus, separation of constraints (9)
can be done by looking for maximum weight cliques on this shift incompatibility graph. This
turns out to be easy by dynamic programming as explained in [11].

The overall re-scheduling model reads as follows:

min
∑
t∈T

∑
P∈Pt

∆t,P xt,P +
∑
t∈T

Mtst (10)

subject to (2)-(4) and (9).

6 Simulation Framework

In the previous section we presented several ways to create robust routing plans as well as
several re-scheduling strategies. In order to analyse the performance of these approaches,
we designed a simulation framework. Its input consists of (i) a nominal routing plan, (ii)
a re-scheduling strategy and (iii) a probability distribution for the train delays. Generally
speaking, the framework computes, using a rolling horizon, the outcome of the re-scheduling
process when the nominal plan is executed subject to the selected external delays. Then
the robustness of the nominal plan and the effectiveness of the re-scheduling strategy are
measured by the cumulative arrival and departure delays. In this section we discuss the
simulator in detail.

The simulator first generates the external delay for each train t ∈ T according to a given
probability distribution (discussed in the next section). The estimated arrival time ETA(t)

Alberto Caprara, Laura Galli, Leo Kroon, Gábor Maróti, and Paolo Toth 31

equals the nominal arrival time of t plus the external delay of t. That is, ETA(t) is the
earliest time instant when train t can enter the station.

Once all the ETA values have been defined, the framework simulates a day, starting
at 0:00 and advancing the simulated time by 1 minute in each iteration. In one iteration,
the simulator collects the trains that are to arrive in the forthcoming 1 hour and passes
these trains to the re-scheduler algorithm. That is, the simulator works with a 1-hour
rolling horizon. The simulator also maintains the current schedule which is the train-pattern
assignment of the already re-scheduled trains. In particular, the simulator provides for each
train the ETA, the planned patterns as well as the pattern assigned by the current schedule
(if any). From this input, the re-scheduler assigns a pattern to each train, and the simulator
updates the current schedule accordingly. This process is repeated until the simulated time
reaches the end of the day. Since this requires the solution of the rescheduling model for
each simulated minute, in order to have reasonable computing times we stop as soon as the
first integer solution is found. This is essentially a diving heuristic as explained in [3].

The simulator framework addresses two issues that are important for realistic train routing
applications. The first issue is that some formerly taken decisions (such as those on the
platform of a certain train) may not be altered any more because the decision has already
been announced or because the train has already arrived. Therefore the simulator restricts
the re-scheduling possibilities as follows.

The platform assigned to a train can be modified (with respect to the current schedule)
only if more than 10 minutes are left till the train’s arrival.
The arrival shift (i.e., the additional delay added by the re-scheduler upon arrival) can
be changed only if the train has not arrived yet.
The departure shift can be changed only if the train has not departed yet.

The second issue concerns the accuracy of the delay estimates. In real-life applications,
the actual external delay is not known exactly till few minutes before the realised train arrival.
Instead, a gradually improving estimate is available. The simulator may incorporate this
uncertainty by providing distorted ETA values to the re-scheduler for trains that have more
than few minutes till their arrival. We note that our preliminary computational results do
not address this issue yet.

The quality of the re-scheduling process is measured by the cumulative departure (or
arrival) delay, defined as the difference between the realised and nominal departure (or
arrival) times, summed over all trains. We compare these values to the cumulative external
delay defined as the sum of all external delays. By this comparison, one can analyse the effect
of a combination of a nominal plan and a re-scheduling strategy have on the punctuality at
the considered railway station, and on the propagation of delays through the network.

7 Preliminary Computational Results

We performed our preliminary computations on a real-world instance of Rete Ferroviaria
Italiana associated with the station of Genova Porta Principe together with the corresponding
tentative timetable. The station has 10 platforms and the timetable concerns a 12 hour
period, contains 119 trains, and has an average dwell time of 5.4 minutes. The computations
have been carried out on a standard PC with an Intel Duo Core 3.33GHz processor and with
3GB of internal memory under Windows XP. The algorithms are implemented in C/C++
using CPLEX 11.1. First we compute the three nominal plans: Basic, using the basic
model of Section 4.1; AC, according to Section 4.2; and Backup, according to Section 4.3.
This is done using a branch-and-cut-and-price heuristic approach. Basic and Backup

ATMOS ’10

32 Robust Train Routing and Online Re-scheduling

can be solved in less than 10 minutes. In particular backup constraints do not seem to
complicate the structure of the model. AC turns out to be more demanding (about 20
minutes of computation) since it requires many additional and complicating constraints for
the linearisation of the objective function (see [3]).

In order to investigate the online re-scheduling problem, we consider the three strategies
described in Section 5; we refer to the strategies as Prop, Backup and Full, respectively.
While the Full strategy lends itself to be applied to every nominal plan, the Backup
strategy can be used only for the Backup plan, whereas it does not make sense to apply the
Prop strategy to a Backup plan as it would not use backup platforms at all.

The external delays are generated using a truncated exponential distribution, that is, an
exponential distribution where large values are cut off and whose mean is 4 minutes. For the
sake of simplicity we assume that all the external delays follow the same distribution.

For each nominal plan and re-scheduling strategy, we consider 15 random realisations of
the random external delay values. Note that the number of trains varies a little as well as the
cumulated external delays. This is because a few trains are cancelled by the robust planners.
This may slightly affect the comparison of the delay propagation, but only marginally since
the number of cancelled trains is small, so in these preliminary computations we did not
consider this aspect. Table 1 presents the outcome of the simulation, showing the average of
the cumulative external, arrival and departure delays. Further, the last two columns indicate
the increment of the arrival and departure delays compared to the external delays.

Table 1 Preliminary computational results for Genova.

Plan Strategy Number of Cum. Cum. Cum. Incr. Incr.
trains external arr. dep. arr. dep.

AC Full 119 313 316 280 1% −11%
Backup Full 109 281 282 249 1% −11%
Basic Full 119 313 315 277 1% −11%
AC Prop 119 313 337 301 8% −4%
Backup Backup 109 281 293 270 4% −4%
Basic Prop 119 313 359 335 15% 7%

From the results, it turns out that the Full strategy is rather insensitive to the nominal
plan. On the other hand, for the Prop strategy the AC plan appears to be much better
than the Basic one with an increment of the cumulative arrival delay of 8% rather than
15% and a decrement of the cumulative departure delay of 4% rather than an increment of
7%. Finally, the Backup strategy (applied to the Backup plan) does better than the Prop
one applied to the AC plan, since the increment of the cumulative arrival delay is only 4%
(the decrement of the cumulative departure delay being approximately the same). Given
that the Full strategy appears to be mainly of theoretical interest in practice and the Prop
and Backup ones look closer to practice, these results suggest that the definition of backup
platforms may be fairly helpful.

The only significant computation times for the simulation are spent on the re-scheduler
and amount to 1-15 seconds for each call to the Prop-Backup re-schedulers and a couple
of minutes for the Full re-scheduler. This indicates that, after further fine-tuning, the
proposed method is suitable for real-time applications.

Alberto Caprara, Laura Galli, Leo Kroon, Gábor Maróti, and Paolo Toth 33

8 Conclusions

In this paper we proposed robust routing models and re-scheduling algorithms for the train
routing problem. Further we designed a simulation framework to compare the robustness of
the nominal plans and the effectiveness of the re-scheduling algorithms.

We carried out preliminary computational results on a realistic instance of the main
Italian railway infrastructure manager. The results indicate that incorporating our robustness
considerations in the train routing problem, together with appropriately chosen online re-
scheduling algorithms, can indeed lead to better punctuality of the trains, with respect to
basic nominal planning. Further, the computation times are suitable both for robust nominal
planning (in early planning stages) and for online re-scheduling (in real-time operations).

In our future research we will fine-tune the proposed methods, extend our test-bed to
other instances, and we will consider novel heuristic recovery algorithms.

References
1 Billionnet A.: Using Integer Programming to Solve the Train Platforming Problem. Trans-

portation Science, 37 (2003) 213-222.
2 Caimi G., Burkolter D., Herrmann T.: Finding Delay-Tolerant Train Routings through

Stations. Operations Research Proceedings 2004, Fleuren H., (2007), 136-143, Springer.
3 Caprara A., Galli L., Toth P.: Solution to the Train Platforming Problem. Proceedings of

the 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems 2007. http://drops.dagstuhl.de/portals/ATMOS07/

4 Caprara A., Galli L., Stiller S., Toth P.: Recovery-Robust Train Platforming via Network
buffering. Proceedings of RailZurich 2009.

5 Carey M., Carville S.: Scheduling and Platforming Trains at Busy Complex Stations. Trans-
portation Research A, 37 (2003) 195-224.

6 Carey M., Crawford I.: Scheduling Trains on a Network of Busy Complex Stations. Trans-
portation Research B, 41(2) (2007) 159-178.

7 Chakroborty P., Vikram D.: Optimum Assignment of Trains to Platforms under Partial
Schedule Compliance. Transportation Research B, 42(2) (2008) 169-184.

8 Cornelsen S., Di Stefano G.: Track Assignment. Journal of Discrete Algorithms, 5 (2007)
250-261.

9 De Luca Cardillo D., Mione N.: k L-List T Colouring of Graphs. European Journal of
Operational Research, 106 (1999) 160-164.

10 Fuchsberger M.: Solving the Train Scheduling Problem in a Main Station Area via a Re-
source Constrained Space-Time Integer Multicommodity Flow. Master Thesis, Institute for
Operations Research, ETH Zürich, Switzerland, (2007).

11 Galli L.: Combinatorial and Robust Optimisation Models and Algorithms for Rail-
way Applications, PhD Thesis, DEIS, University of Bologna, Italy, (2009).
http://www.or.deis.unibo.it/

12 Kroon L.G., Maróti G.: Robust Train Routing. Technical Report 0123, EU ARRIVAL
project.

13 Zwaneveld P.J., Kroon L.G., Romeĳn H.E., Salomon M., Dauzere-Peres S., van Hoesel
C.P.M., Ambergen H.W.: Routing Trains Through Railway Stations: Model Formulation
and Algorithm, Transportation Science, 30 (1996) 181-194.

14 Zwaneveld P.J., Kroon L.G., van Hoesel C.P.M.: Routing Trains through a Railway Station
based on a Node Packing Model. European Journal of Operations Research, 128 (2001)
14-33.

ATMOS ’10

Heuristics for the Traveling Repairman Problem
with Profits
Thĳs Dewilde1, Dirk Cattrysse1, Sofie Coene2, Frits C.R.
Spieksma2, and Pieter Vansteenwegen1

1 Centre for Industrial Management/Traffic & Infrastructure (CIB)
Katholieke Universiteit Leuven, Belgium
Thijs.Dewilde@cib.kuleuven.be

2 Research group Operations Research and Business Statistics (ORSTAT)
Katholieke Universiteit Leuven, Belgium
Sofie.Coene@econ.kuleuven.be

Abstract
In the traveling repairman problem with profits, a repairman (also known as the server) visits a
subset of nodes in order to collect time-dependent profits. The objective consists of maximizing
the total collected revenue. We restrict our study to the case of a single server with nodes located
in the Euclidean plane. We investigate properties of this problem, and we derive a mathematical
model assuming that the number of visited nodes is known in advance. We describe a tabu search
algorithm with multiple neighborhoods, and we test its performance by running it on instances
based on TSPLIB. We conclude that the tabu search algorithm finds good-quality solutions fast,
even for large instances.

1998 ACM Subject Classification I.2.8 Heuristic Methods

Keywords and phrases Traveling Repairman, Profits, Latency, Tabu Search, Relief Efforts

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.34

1 Introduction

Imagine a single server, traveling at unit speed. There are n locations given, each with a
profit pi, 1 ≤ i ≤ n. At t = 0, the server starts traveling and collects revenue pi − ti at each
visited location, where ti denotes the server’s arrival time at location i. Not all locations
need to be visited. The problem is to find a travel plan for the server that maximizes total
revenue. This problem is known as the traveling repairman problem with profits (TRPP)
and forms the subject of this paper. In particular, we perform a computational study of the
TRPP in the Euclidean plane.

Motivation
The TRPP occurs as a routing problem in relief efforts. For example, consider the following
situation. In the aftermath of a disaster like an earthquake, there are a number of villages
that experience an urgent need for medicine. The sooner the medicine gets to a village, the
more people can be rescued. Since the cost of transport is negligible compared to the value
of a human life, rescue teams are only concerned with the total number of people that can
be saved. Assume that at location i there are pi people in need of the medicine, and that
every instance of time, there is one of them dying. Suppose also that we have one truck
available. With ti denoting the arrival time of the truck at location i, the number of people
that will survive equals pi − ti. Thus, the goal of the rescue team is to maximize

∑
i(pi − ti),

© Thĳs Dewilde, Dirk Cattrysse, Sofie Coene, Frits C.R. Spieksma and Pieter Vansteenwegen;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 34–44

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

T. Dewilde et al. 35

where the sum runs over all the visited locations. This situation is described in [6] and is
equivalent to the TRPP.
Another, more theoretical, motivation concerns the k-traveling repairman problem (k-TRP).
The k-TRP is the problem with multiple servers that need to visit all clients such that the
latency, i.e., the average arrival time, is minimized. Observe that no profits are considered in
this problem. One potential way of solving such a problem is a set-partitioning approach
where an integer programming model is built, using a variable for each set of clients [7].
Next, a branch-and-price approach can be applied to the resulting integer program. Without
going into further details, we observe here that the so-called pricing problem in such a
branch-and-price approach is exactly the TRPP, where the dual variables play the role of
profits.
Other applications of routing problems with time-dependent revenues are described in [7, 9, 13]
and [14], which deals with a problem occurring in “multi-robot routing”.

Literature
Several problems are closely related to the traveling repairman problem with profits (TRPP).
The TRPP has similarities with the traveling salesman problem (TSP) [3]. However, con-
trary to the TSP, in the TRPP not all the nodes need to be visited. Further, an optimal
TRPP-solution is a path which course is influenced by the depot location and may contain
intersections. Notice that the latter is always sub-optimal for the Euclidean TSP.
Also the TSP with profits (TSPP) [10] and the orienteering problem (OP) [20], have some
similarities with the TRPP. In the OP a subset of nodes should be selected in order to
maximize the profit under a time-constraint. As for the TRPP, a solution for the TSPP
may leave some nodes unvisited. Both the total profit and the distance traveled are inserted
in the objective function of both problems; only in the TRPP, however, the revenues are
time-dependent.
Problems with time-dependent revenues are relevant in many cases. See [13] for the time-
dependent traveling salesman problem (TDTSP). In TDTSP, the travel time between two
vertices depends on the arrival time of the server. In the objective function of the TDTSP
only the used travel time is included. This is different from the TRPP where the travel time
between vertices is constant. A related problem that uses latency in the objective function is
the traveling repairman problem (TRP) [5], also known as the minimum latency problem
or the delivery man problem. Here, a single server needs to visit all nodes such that total
latency is minimized. In a classical paper [2], it is shown that the TRP on the line can be
solved in polynomial time by dynamic programming. This result was generalized to the
TRPP on the line by [7]. Since the TRP is NP-hard for more general metric spaces (see the
argument given in [5]), and since the TRPP is a generalization of the TRP, we conclude that
the TRPP for these general metric spaces, among which the Euclidian plane, is NP-hard.
As far as we know, no computational studies have been performed for the TRPP. So far, the
TRPP is only tackled in one paper. In [7] the TRPP on the line is being solved in polynomial
time by a dynamic programming algorithm. No other results are known.
Exact algorithms and approximation algorithms for the TRP have been described in [4, 12,
18, 21]; metaheuristics for the TRP are described in recent contributions [15] and [17]. As
far as we are aware, these are the only studies that present metaheuristics for the TRP. For a
review of the metaheuristics for other related problems we refer to [10, 20] and the references
contained therein. A general description of some metaheuristics, including the ones that are
used in this paper is given in [11, 19].

ATMOS ’10

36 Heuristics for the Traveling Repairman Problem with Profits

This paper is structured as follows. In the next section, the TRPP is described in de-
tail, and a mathematical model is given. A tabu search algorithm is presented in Section 3.
The data sets are introduced in Section 4 and the computational results are discussed in
Section 5. The conclusions of this paper are summarized in Section 6.

2 Mathematical model

Given is a complete undirected graph G = (V,E), where V = {0, 1, . . . , n} is the node set,
and E is the set of edges. Each node i 6= 0 has an associated profit pi. There is a single
server located at node 0, the depot. The time it takes the server to travel from node i to
node j is defined by di,j . We assume that the time to serve a node is negligible. If the server
arrives at node i at time ti, a revenue of pi − ti is collected. As a consequence, an optimal
tour will not contain a node i with pi ≤ ti. The goal of the TRPP is to select an ordered
subset of nodes such that visiting them one by one maximizes the sum of all the revenues.
This should be achieved under the conditions that each node can only be visited once, and
that at the end, the server does not need to return to the depot.
We now derive a mathematical model for this problem in which the number of visited nodes
is assumed to be given. Define k as this number, i.e., k is the number of nodes whose revenue
is collected. For the ease of notation, we write the set of integers {1, 2, . . . , k} as K.

For each i ∈ V, j ∈ V0 = V \ {0}, and ` ∈ K, we define the variable y as follows,

yi,j,` =
{

1 if edge (i, j) is used as `th edge,
0 else.

This definition says that if yi,j,` = 1 then (i, j) is the `th edge of the path. Hence i is the
(`− 1)th and j is the `th node that is visited. The depot is node 0 of the solution. Observe
that if yi,j,` = 1, di,j is counted k + 1− ` times in the total latency. Hence∑
i:visited

ti =
∑

{(i,j,`) | yi,j,`=1}

(k + 1− `) di,j .

Now the mathematical model can be constructed.

Given the number of visited nodes, k, the mathematical model is the following

max
∑
i∈V

∑
j∈V0

∑
`∈K

(pj − (k + 1− `) di,j) yi,j,` (1)

subject to∑
i∈V

∑
`∈K

yi,j,` ≤ 1 ∀j ∈ V0, (2)

∑
i∈V

∑
j∈V0

yi,j,` = 1 ∀` ∈ K, (3)

∑
i∈V
yi,j,` −

∑
i∈V0

yj,i,`+1 = 0 ∀j ∈ V0, ∀` ∈ K \ {k}, (4)

∑
j∈V0

y0,j,1 = 1, (5)

yi,j,` ∈ {0, 1} ∀i ∈ V, ∀j ∈ V0, ∀` ∈ K. (6)

T. Dewilde et al. 37

The objective function (1) sums the difference between the profit of a node and the number of
times the edge preceding that node is counted in the total latency. The first set of restrictions
makes sure that each node can only be visited once (2). The second set dictates that k
nodes different from the depot must be visited (3); for each ` = 1, 2, . . . , k the server has
to travel from a node i ∈ V to a node j ∈ V0. Constraints (4) ensure the connectivity, and
the departure from the depot is arranged by (5). Finally, all yi,j,` must be binary (6). This
model is used in Section 5 for obtaining the optimal solution or the LP-relaxation of the
considered instances using CPLEX.

Notice that in this model we assume that the value of k and hence the set of integers
K is given. However, in the TRPP, k is a decision variable and should be determined by the
model itself. It is not difficult to introduce k as a variable in the model, see [8]. However,
preliminary results in [8] showed that this leads to a much weaker LP-relaxation and hence to
a much worse computational performance compared to solving the LP-relaxation of (1)-(6).
On the other hand, it will be shown next that it is not easy to determine the optimal value
of k apart from solving the above model for each value of k ≤ n.

Before doing so, let us first introduce some notation. Define k∗ as the optimal number of
visited nodes and f∗ = f(k∗) as the global optimal objective value. Define f(k) as the
optimal objective value for which the solution visits exactly k nodes, hence f∗ = f(k∗).
As mentioned above, we will now show that the mathematical model needs to be solved
for each value of k ≤ n in order to find k∗ and hence the global optimum. Therefore we
will demonstrate that (1) f(k) in function of k is not unimodal and (2) an increase in the
number of nodes may result in a decreasing value for k∗. Let us first go into (1). It holds
that when the server is forced to visit one node extra than the k∗ nodes which lead to f∗,
this results in an inferior solution. Intuitively one may think that the further k lies from the
optimal number of visited nodes, k∗, the worse the objective value will be. In other words,

5r
(-50, 54)

r1
(-1, 10)

r0
(0, 0)

r2
(5, 8)

r3
(10, 13)

r4
(20, 23)

-

Figure 1 Network with 6 collinear points

#
#
#
#aaaa

B
B
B
B
B
B
B
B
B
B
BB

6

f(k)

- kq q q q q
1

9

13

11

12

-26
2 3

(a)

4 5

q
q

5

10 q
q q q

q

6

k∗(Im)

q1

q2

q3

q4

- mq
1

q
2

q
3

(b)

q
4

q
5

q q q q
q

�
�
�
�
�
�
�
��S

S
S
S

Figure 2 Solution results for the network with 6 collinear points

ATMOS ’10

38 Heuristics for the Traveling Repairman Problem with Profits

our intuition may tell us that for any k ≥ k∗ we have that f(k∗) ≥ f(k) ≥ f(k + 1), and
analogue for any k ≤ k∗. However, this is not always true. To show this, consider the network
with 6 collinear points given in Figure 1. The numbers between brackets are respectively the
location along the axis and the profit. So the leftmost node, node 5, has as coordinate -50
and its profit equals 54.
When we solve this instance to optimality for k = 1, . . . , 5, i.e., when we force the solution
to visit exactly k nodes, we find the results depicted in Figure 2(a). It can be seen that
when solving the mathematical model for k = 2, the resulting path is 〈0, 1, 5〉 with total
revenue 13, for k = 3 the optimal path has revenue f(k) = 11, whereas forcing k to be 4, the
solution is 〈0, 1, 2, 3, 4〉 with objective value 12. You can see that k∗ = 2. More importantly,
the non-unimodality of this graph shows that f(k) can have multiple local optima, which
suggests that, in order to find k∗ for a particular instance, model (1)-(6) has to be solved for
each k = 1, . . . , n.
The second property (2) that can be conducted from this example deals with adding a node
to an instance. If an extra node is added to a data set, our intuition may tell us that the
optimal number of visited nodes will be the same or larger than before adding that node.
However, this is not always true. Clearly, by adding a new node to an instance, the optimal
value cannot decrease. But nothing can be said about the optimal number of visited nodes
of this new instance as witnessed by the given example. Define Im : m ≤ n, as the instance
consisting of the first m nodes of the network. The number of nodes in the optimal solution
for instance Im is k∗(Im). The results for the value of k∗(Im) for the network of Figure 1
are given in Figure 2(b). This example indicates that knowing k∗(Im) for a certain value of
m does not give any information about k∗(Im′) with m′ > m. Again, we can only conclude
that, to find k∗, the model (1)-(6) has to be solved for each k = 1, . . . , n. Notice that the
observations above already hold in the case of a line metric.

3 Metaheuristic methods

In this section a metaheuristic for the TRPP is presented. First, we discuss a way to build a
non-trivial solution which will then be systematically improved by a tabu search algorithm.
We define the trivial solution as the path 〈0〉, i.e., the situation in which the server does not
leave the depot. By starting from the trivial solution and adding a node in each step we can
obtain a new solution. This process is called the construction phase and is the subject of the
next section. In Section 3.2 some local search methods are discussed. These methods are
integrated in the second step of the solution procedure, a tabu search metaheuristic.

3.1 Construction phase
Consider a partial path P , and define the set V̄ as the set of all non-visited nodes, V̄ ⊆ V0. In
order to improve the partial path P , a node from V̄ should be added. This process requires
two decisions: which node to insert and where to place it in the path. Naturally two factors
influence these choices: the profit of the nodes and the extra latency incurred by inserting
that node.
We use the following ratio to determine which node to add to our partial path. Let di,j and
pj be as before. Then, for each i ∈ V \ V̄ and j ∈ V̄ we define ratiomi,j as follows:

ratiomi,j =

{ 1
di,j

if m = 0,

pj ·
(

1
di,j

)m
if m = 1, . . . , 10.

(7)

T. Dewilde et al. 39

In this way, the parameter m determines the impact of di,j on the ratio.
The construction method that is used in this paper is based on insertion. In each step the
node j∗ = arg maxj∈V̄ ratiomi,j , for an i and m, is selected to insert. The place of insertion is
then determined based on the improvement in score by adding this node. For a more detailed
description and a pseudo-code, we refer to [8].
In preliminary tests, the insertion based method is compared with other construction methods
such as a greedy method, and the use of (7) to select nodes is evaluated [8]. Regarding
objective function value and computation time, the insertion method using (7) turned out to
perform the best on average.

3.2 Improvement phase

This section describes a tabu search metaheuristic for the TRPP. The insertion based
algorithm from the previous section is used as input. A tabu search metaheuristic starts
from a given solution. By searching neighboring solutions, it tries to improve the current
solution. Our algorithm works with multiple neighborhoods. We next define the moves and
corresponding neighborhoods. Then, the tabu search procedure is explained in section 3.2.2.

3.2.1 Neighborhoods

The objective of the TRPP is to maximize total collected revenue, which is based on profits
that decrease over time. Hence, improving a solution can be done by altering the collection
of visited nodes, or by decreasing the total latency by changing the visiting sequence. The
moves that alter the subset of selected nodes are straightforward: deletion, insertion, and
replacement. The other set of moves consists of seven moves, among which the well-known
swap(-adjacent), 2-opt, and or-opt [1]. The choice for or-opt is justified by the fact that the
visiting order of the nodes is not reversed, while the change is large enough to circumvent
local optima where other moves might end up. The last three moves are explained next.
Move-up (down) consists of shifting a node up (down) the path. A special type of a move-up
is the remove-insert. In this move the node with the largest between-distance of a given node
is removed and back inserted at the end of the path.
Although swap-adjacent and remove-insert are special cases of swap and move-up, respectively,
they are used separately. This is because they have linear complexity, while move-up (down)
and swap have a neighborhood of size O(n2). Hence separating these moves can speed up
the algorithm. Note that the same can be said about move-up (down) and or-opt which has
a neighborhood of cubic size.
The hierarchy in which these ten moves are used is shown in Figure 3. First the neighborhoods
that alter the sequence of the path are considered, then those that alter the set of nodes,
and finally or-opt is used to perturb the solution to escape from a local optimum. The
choice for this sequence is justified by the fact that altering the set of selected nodes without
re-optimizing the sequence is useless.

In each iteration of the tabu search algorithm (see below), a move will be selected ac-
cording the principles of a variable neighborhood descend heuristic (VND) [11, 19]. This
means that the neighborhoods will be searched through one by one, in the sequence of
Figure 3. Whenever an improving move is detected, the best solution from the corresponding
neighborhood is chosen as next solution. In the case that there is no better solution in a
neighborhood, the next move will be investigated.

ATMOS ’10

40 Heuristics for the Traveling Repairman Problem with Profits

3.2.2 Tabu search

The metaheuristic used to improve the construction phase solution is tabu search (TS).
The basic idea of tabu search is to avoid repetition of solutions and to use steepest ascend
combined with mildest descend to escape from local optima. Next to the standard extensions
as aspiration and intensification followed by a diversification phase, see [11, 19] for more
details, some specific features are added. For example, the use of multiple neighborhoods
requires several tabu lists, and restricted candidate lists are used for the largest neighborhoods.

In the remaining of this section the main components of the tabu search algorithm are
explained. For a more detailed description, we refer to [8].
First of all, as explained at the end of the previous section, our tabu search uses the principles
of variable neighborhood descend (VND). The neighborhoods are ordered as in Figure 3. In
order to speed up the algorithm some restrictions are used to limit the size of the neighbor-
hoods. For move-up (down), swap, 2-opt, and or-opt the maximum number of visited nodes
in the path between the move-determining attributes is limited to n/2, with n the number of
available nodes. If no improving solution is found in any of the restricted neighborhoods, the
best possible neighbor over all the neighborhoods is chosen as next solution.
When a number of local optima have been reached, the intensification phase starts. It begins
with updating the attribute matrix M . [M]i,j is the number of times that the edge (i, j) was
part of the current local optimum. Next, the current solution is used as start solution for a
full neighborhood VND without tabu moves.
After the intensification phase, the diversification phase starts. First, the tabu lists are cleared.
Then the attribute matrix is used to penalize frequently used attributes; by subtracting from
the score, a given penalty times [M]i,j for each edge (i, j) in the intensification phase solution,
we favor non-used attributes. In order to find a new and diverse solution, we re-initialize the
algorithm, including these penalties for 100 iterations. During this process, the tabu lists are
built up again to prevent a quick return towards the previous solutions. The path that is
returned from the diversification phase is used as input for the main part of the tabu search
algorithm.
After some diversification phases, the current solution may lay in an area of the solution
space far away from the first solutions. By allowing that the penalties become bonuses,
frequently used attributes will be favored. Hence intermediate solutions or new promising
solutions will be used as current path. This enforces the search since it results in paths
that are combinations of very promising solutions. Without this extra feature, the penalties
prevent this, and very good solutions can be missed.
The next component of the tabu search is the use and the composition of the tabu lists.
Due to the use of different neighborhood structures, more than one tabu list is required.
In general, each move is added to exactly one list, but moves of more than one type, for

remove-insert swap-adjacent move-down move-up

swap 2-opt deletion insertion

replacement or-opt

- - -

- - - -

- -

Figure 3 Sequence of the moves

T. Dewilde et al. 41

example insertion and deletion, can belong to the same tabu list.
After each move only the corresponding tabu list is updated, since otherwise after a deletion
and a short re-optimizing, the insertion of that node might already be allowed. By forbidding
this, repetition in the long run is prevented.
The last aspect of the tabu search algorithm for the TRPP to discuss is the stop criterium. A
balance must be made between computation time and efficiency. The number of consecutive
non-improving steps and a maximum computation time determine the stop criterium.

3.3 Upper bound
Since the TRPP in the Euclidian plane is NP-hard, see Section 1, the mathematical model
can only be solved for small instances. However, to assess the quality of the solutions found
by tabu search, an upper bound is required. We informally sketch here a simple bound.
Assume that the number of visited nodes, k, is known. In order to get a lower bound for the
latency in case k nodes are visited, we need the k-minimal spanning tree (k-MST). Since
solving a k-MST is again an NP-hard problem, we use the minimal k-forest to approximate
this. The minimal k-forest of a graph is the subgraph containing the k−1 shortest edges that
do not form a circuit. Each edge of the k-forest is assigned a multiplicity. The longest edge
gets 1, the second longest 2, . . . , until the shortest edge gets k. The sum of the distances
weighted with the corresponding multiplicities is then a lower bound for an optimal solution
to the k-MST.
Next, by summing the k largest profits, we get an upper bound for the collected profits. The
difference of this upper bound and the lower bound for the k-MST gives an upper bound for
the TRPP, under the assumption that k is known. Taking the maximum over k = 1, . . . , n,
leads us to an upper bound for the TRPP.

4 Instances

Two types of data sets are used. The first type is based on data sets obtained from
TSPLIB [16]. To obtain a data set with exactly n nodes and a depot, we selected the first
n + 1 nodes of an instance containing enough nodes. The first node is chosen as depot
and gets a profit of 0. The remaining ones are allocated a profit that is randomly selected
according the uniform distribution in the interval [L,U] with L < U . The values of L and U
are chosen in such a way that in the construction phase solution an acceptable amount of
nodes is visited, i.e., k ≥ 0.60 · n. This is done to obtain interesting data sets.
The data sets of the second type are randomly generated according the uniform distribution.
The nodes are spread out over the Euclidean plane and have integer valued coordinates. As
for the data sets of the first type, the profits are randomly generated and satisfy the following
inequality: d0,i ≤ L < pi < U for each node i 6= 0.
For each data set, the number of nodes different from the depot (n) is 10, 20, 50, 75, 100,
150, 200, or 500, and for each value of n there are 10 random instances and 5 instances from
TSPLIB. The data sets are available on the following website:
http://www.mech.kuleuven.be/en/cib/trpp.

5 Results

In this section we will discuss the computational results. First, a comparison between the
exact results, the tabu search results and the upper bound from Section 3.3 is given for small
datasets. Second, the latter two are used to measure the performance of tabu search on

ATMOS ’10

42 Heuristics for the Traveling Repairman Problem with Profits

larger instances.

The first results are presented in Table 1. The first column shows the computation time
for the exact solutions, found by solving the mathematical model from Section 2 using
Cplex. The other columns present the average gap with the exact solution and the required
computation time of the LP-relaxation, the construction phase, the tabu search algorithm,
and the upper bound, respectively. The gap is computed as follows:

gapX(%) =
∣∣∣∣X− (exact solution)

(exact solution)

∣∣∣∣ .
In the case of n = 50, we were not able to compute exact results since solving the mathemat-
ical model for some k ≤ n requested too much computation time. In this case the gap is
computed with respect to the LP-relaxation. When n gets larger, Cplex is not able to find a
solution anymore due to memory restrictions.
From this table it is clear that TS was able to find the optimal solution for all instances
when n = 10 or 20. When n = 50, we see that on average, the gap with the LP-relaxation
is 13.99%. Next, we can see that TS needs much less time than Cplex1. Finally, the upper
bound gives worse results than the LP-relaxation, but it needs much less time.

In Table 2, the improvement that tabu search makes compared to the solution of the
construction phase is presented. This is then compared with the upper bound. In the
first column the computation time for the construction phase is given. Columns 2 and 3
contain, respectively, the improvement of tabu search compared to the construction phase
and the computation time of the tabu search algorithm. The results for the upper bound are
summarized in the last two columns. First the average gap between the tabu search solution
and the upper bound is given, and second, the time, in seconds, needed for computing the
upper bound is presented. We define improv and gap as

improv(%) = (TS-solution)− (construction solution)
(construction solution)

,

gap(%) = (upper bound)− (TS-solution)
upper bound

.

We see that tabu search improves the solution from the construction phase considerable.
Also, the gap with the upper bound is only slowly increasing.

6 Conclusion

We have studied the traveling repairman problem with profits (TRPP). In this problem a
server has to visit a subset of nodes in order to maximize the total collected revenues which
are declining in time. After motivating this problem and reviewing the related literature,
we develop a mathematical model in which we make the assumption that the number of
visited nodes is known in advance. Using an example, we find that it is not straightforward
to determine this number optimally. As our main contribution, we propose a tabu search
algorithm with multiple neighborhoods. We have implemented this method, and we tested

1 The tabu search algorithm is programmed in C++, the exact solutions are found with Cplex 10.1. Both
were run on a DELL Optiplex 760, Intel(R) Core(TM) 2 Duo 3.00GHz, 4.00GB RAM, 64-bit Operating
System.

T. Dewilde et al. 43

model (Cplex) LP-relaxation construction phase tabu search upper bound
time gap time gap time gap time gap time

n (s) (%) (s) (%) (s) (%) (s) (%) (s)
10 1 4.91 0 1.26 0 0 2 21.91 0
20 89 6.42 1 2.1 0 0 2 17.15 0
50 154 16.7 0 13.99 14 7.18 0

Table 1 Comparison of the results of the mathematical model (1)-(6)

construction tabu search upper bound
time improv time gap time

n (s) (%) (s) (%) (s)
10 0 1.31 2 16.05 0
20 0 2.21 2 14.20 0
50 0 3.29 14 19.39 0
75 0 4.71 45 19.02 0
100 0 4.33 208 14.09 0
150 0 7.83 545 18.89 0
200 0 6.59 580 20.44 0
500 2 16.02 500 24.81 0

Table 2 Comparison of the results of the metaheuristic

the performance of this metaheuristic, comparing it to a quite crude upper bound. The
computational results show that the tabu search algorithm is able to find optimal solutions
for small instances in a reasonable amount of time. For larger instances the optimal solution
is not known, but the metaheuristic obtains a considerable improvement compared to the
initial solution; even up to an average of 16% compared to the insertion-based construction
phase solution.

Acknowledgements Dr. P. Vansteenwegen is a post-doctoral research fellow of the “Fonds
Wetenschappelĳk Onderzoek - Vlaanderen (FWO)”.

References
1 E. Aarts, J.K. Lenstra (eds), Local search in combinatorial optimization, Wiley-interscience

series in discrete mathematics and optimization, 1997.
2 F. Afrati, S. Cosmadakis, C.H. Papadimitriou, G. Papageorgiou, N. Papakostantinou, The

complexity of the travelling repairman problem, Informatique Théorique et Applications 20
(1986) pp. 79-87.

3 D.L. Applegate, R.E. Bixby, V. Chvátal, W.J. Cook, The traveling salesman problem: a
computational study, Princeton University Press, 2006.

4 G. Ausiello, V. Bonifaci, S. Leonardi, A. Marchetti-Spaccamela, Prize-collecting traveling
salesman and related problems, in: T.F. Gonzalez (eds), Handbook of Approximation Al-
gorithms and Metaheuristics, CRC Press (2007) pp. 40.1-40.13.

5 A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, M. Sudan, The
minimum latency problem, in: Proceedings of the twenty-sixth annual ACM symposium on
the theory of computing (1994) pp. 163-171.

ATMOS ’10

44 Heuristics for the Traveling Repairman Problem with Profits

6 A.M. Campbell, D. Vandenbussche, W. Hermann, Routing for relief efforts, Transportation
Science 42 (1994) pp. 127-145.

7 S. Coene, F.C.R. Spieksma, Profit-based latency problems on the line, Operations Research
Letters 36 (2008) pp. 333-337.

8 T. Dewilde, Het profit-based latency probleem, Master’s thesis, Katholieke Universiteit
Leuven, 2009 (in Dutch).

9 E. Erkut, J. Zhang, The maximum collection problem with time-dependent rewards, Naval
Research Logistics 43 (1996) pp. 749-763.

10 D. Feillet, P. Dejax, M. Gendreau, Traveling salesman problems with profits, Transportation
Science 39 (2005) pp. 188-205.

11 F. Glover, G.A. Kochenberger (eds), Handbook of metaheuristics, Kluwer Academic Pub-
lishers (2003).

12 M. Goemans, J. Kleinberg, An improved approximation ratio for the minimum latency
problem, Mathematical Programming 82 (1998) pp. 111-124.

13 A. Lucena, Time-dependent traveling salesman problem - The deliveryman case, Networks
20 (1990) pp. 753-763.

14 J. Melvin, P. Keskinocak, S. Koenig, C. Tovey and B.Y. Ozkaya, Multi-robot routing with
rewards and disjoint time windows, in: Proceedings of the IEEE International Conference
on Intelligent Robots and Systems (2007) pp. 2332-2337.

15 S.U. Ngueveu, C. Prins, R. Wolfler-Calvo, An effective memetic algorithm for the cumula-
tive capacitated vehicle routing problem, Computers & Operations Research 37 (2010) pp.
1877-1885.

16 G. Reinelt, TSPLIB, Institut für angewandte Mathematik, Universität Heidelberg (2001).
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

17 A. Salehipour, K. Sörensen, P. Goos, O. Bräysy, An efficient GRASP+VND metaheuristic
for the traveling repairman problem, Working paper, University of Antwerp, Faculty of
Applied Economics (2008).

18 J.F.M Sarubbi, H.P.L. Luna, A new flow formulation for the minimum latency problem,
in: International Network Optimization Conference, Spa (2007).

19 E.G. Talbi, MetaHeuristics: From design to implementation, Wiley, 2009.
20 P. Vansteenwegen, W. Souffriau, D. Van oudheusden, The orienteering problem: A survey,

European Journal of Operational Research (in press) doi:10.1016/j.ejor.2010.03.045.
21 B.Y. Wu, Z.-N. Huang, F.-J. Zhan, Exact algorithms for the minimum latency problem,

Information Processing Letters 92 (2004) pp. 303-309.

Dynamic Graph Generation and Dynamic Rolling
Horizon Techniques in Large Scale Train
Timetabling∗

Frank Fischer1 and Christoph Helmberg1

1 Technical University of Chemnitz, Department of Mathematics, 09107
Chemnitz

Abstract
The aim of the train timetabling problem is to find a conflict free timetable for a set of passenger
and freight trains along their routes in an infrastructure network. Several constraints like station
capacities and train dependent running and headway times have to be satisfied.

In this work we deal with large scale instances of the aperiodic train timetabling problem for
the German railway network. The problem is modelled in a classical way via time discretised net-
works, its Lagrange-dual is solved by a bundle method. In order to handle the enormous number
of variables and constraints dynamic graph generation and dynamic rolling horizon techniques
are employed.

1998 ACM Subject Classification G.1.6 [Numerical Analysis]: Optimization

Keywords and phrases combinatorial optimization, train-timetabling

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.45

1 Introduction

Railway planning problems have been in the focus of interest of applied mathematics for
a long time. Many problems from this field have been tackled with methods from discrete
optimization. In this work we deal with the well known train timetabling problem (TTP),
which tries to find conflict free timetables for given set of trains in some railway network.

For the TTP there exist periodic and aperiodic variants. For the periodic case most
well known models are based on the Periodic Event Scheduling Problem introduced in [19],
which is well suited for the description of subway or fast-train networks, see [13] for a detailed
survey on this topic.

The aperiodic TTP is usually modelled in one of two ways. The first approach is to
use event-based models similar to PESP, see [16, 17]. Although quite successful on several
instances, these models have the disadvantage that station capacities cannot easily be incor-
porated into the model. PESP models have also been adapted to non-periodic cases where
periodic corridors are used by different trains [6, 5]. Nevertheless, this model requires that
most trains follow some periodic schedule.

The second approach is based on Integer Programming formulations using time discre-
tised networks for the train routes, see [8, 7, 1, 3]. The main advantage of these formulations
is the ability to deal with headway restrictions, but also other constraints like station ca-
pacities and prescribed timetables can be handled, e. g., [4]. The solution methods include

∗ This work was supported by the Bundesministerium für Bildung und Forschung under grant
03HEPAG4. Responsibility for the content rests with the authors.

© Frank Fischer and Christoph Helmberg;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 45–60

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

46 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

heuristic and exact branch-and-bound based methods using LP relaxation and Lagrangian
Relaxations [3, 9].

Building on [11] in this paper we describe the advances achieved by applying the new
techniques of dynamic graph generation and load balancing in handling the very large scale
TTP instances of the German railway company Deutsche Bahn (DB), stemming from a
common project with “Verkehrsnetzentwicklung und Verkehrsmodelle (GSV)” of DB. The
instances comprise about 10% of the whole German railway network with about 3000 pas-
senger and freight trains in a time period of about six hours. Different train-type dependent
running-times and headway-times as well as station capacities have to be considered.

The paper is structured as follows. In section 2.1 we introduce the TTP in a formal way
and in section 2.2 we formulate the base model. Section 3 describes the solution methods
applied and, finally, some numerical results are given in section 4.

2 The train timetabling problem

2.1 Problem description
The train timetabling problem can be described as follows. We are given an infrastructure
network GI = (V I , AI) with V I the set of nodes representing stations and track switches
and AI a set of directed arcs representing tracks. In a typical network there are two kinds
of tracks, those that may be used in exactly one direction (double line arcs) and those that
may be used in both directions (single line arcs). The set of double line arcs is denoted by
AI,2 and the single line arcs by AI,1 respectively, and we have AI = AI,1∪̇AI,2. Note, for
(u, v), (v, u) ∈ AI we have (u, v) ∈ AI,1 ⇔ (v, u) ∈ AI,1, both representing the same physical
track. Each node u ∈ V I has an absolute capacity cu ∈ N ∪ {∞} denoting the maximal
number of trains to be at that node simultaneously and each arc a = (u, v) ∈ AI has a
directional capacity ca ∈ N ∪ {∞} denoting the maximal number of trains to be at node v
approaching over a.

In the network a set of trains R has to be scheduled. For each train r ∈ R its predefined
route is given by the sequence of nodes U(r) = (ur1, . . . , urnr) the train has to visit in order.
Since the trains differ in size and speed, we assign each train a train-type m(r) ∈ M =
MP ∪̇MF , whereMP is the set of passenger train types andMF the set of freight train types.
For each arc we have type and behaviour-dependent running-times tR : AI × M × B2 →
R+, B = {stop, run}, where tR((u, v),m, bu, bv) denotes the running time of a train of type
m over arc (u, v) with stopping behaviours bu, bv on the incident nodes.

Important restrictions are the safety distances on tracks between successive trains. If
two trains enter a track in the same direction or a single-line track in opposite directions
there must be a minimal difference between the two entering times, the so called headway-
time. Like running-times, headway-times depend on the types and stopping-behaviours of
both trains. The mapping tH : AI ×M ×B2 ×M ×B2 → R+ describes the headway times
with tH((u, v),m1, b1,u, b1,v,m2, b2,u, b2,v) the headway-time if a train with type m1 and
behaviours b1,u, b1,v uses the track (u, v) followed by a train with type m2 and behaviours
b2,u, b2,v. Analogously, the mapping tHS : AI ×M × B2 ×M × B2 → R+ describes the
headway-time on a single line track if the second train follows in opposite direction.

A special requirement in our case is a predefined timetable for passenger trains. For each
passenger train r ∈ R,m(r) ∈ MP , and each of its stations u = uri we have a stopping
interval Iru = [tS,ru , tE,ru] ⊆ Z ∪ {±∞} and a minimal stopping time dru ∈ Z+. Train r has
to arrive at station u before the end of its stopping interval tE,ru , must stop and wait at the
station for at least dru minutes and is not allowed to leave before tS,ru +dru. For freight trains

Frank Fischer and Christoph Helmberg 47

only the starting time of the train at its first station is given by tS,rur1 , for convenience we
define Iru = [0,∞] and dru = 0 for all r ∈ R, i = 2, . . . , nr with m(r) ∈MF .

The aim is to find a feasible timetable for all trains, observe the predefined time windows
for all passenger trains or violate them as little as possible, and let all (freight) trains reach
their final station as early as possible.

2.2 Model
We model the TTP in a rather classical way via time discretised networks for each single
train, see, e. g., [11, 2, 3]. Let T = {1, . . . , N} be the discretised time steps, where N is
large enough to guarantee the existence of a feasible solution, and [t] denote the time-step
to which some time t is rounded.

For each train r ∈ R let Gr = (V r, Ar) be the graph representing the predefined train-
route with V r ⊆ (U(r) ∪ {σr = ur0, τ

r = urnr+1}) × B with the interpretation (u, b) ∈
V r ⇔ train r visits station u with stopping behaviour b (note, a train may be forced
to stop or is not allowed to stop at some stations) where σr is an artificial start node
and τ r is an artificial end node at which the train must stop. The set of arcs is Ar =
{((uri , b), (uri+1, b

′)) : (uri , b), (uri+1, b
′) ∈ V r}∪{((uri , stop), (uri , stop)) : (uri , stop) ∈ V r}. Each

arc ((u, b), (u′, b′)) ∈ Ar is assigned a rounded running time

trR(((u, b), (u′, b′)))

=

1 if u = u′,

0 if u 6= u′, {u, u′} ∩ {σr, τ r} 6= ∅,
[tR((u, u′),m(r), b, b′)] if b′ = run, |{u, u′, σr, τ r}| = 4,
[tR((u, u′),m(r), b, b′) + dru′] if b′ = stop, |{u, u′, σr, τ r}| = 4.

Note that each arc (((u, b), t), ((u′, b′), t′) ∈ Ar, u 6= u′ between two successive stations
incorporates the minimal stopping time dru′ at its destination. Now the time-expanded
network GrT = (V rT , ArT) is defined as V rT = V r × T and ArT = {((u, t), (u′, t′)) : (u, u′) ∈
Ar, t′ = t+ trR((u, u′))}. As usual we introduce binary variables for each arc

xre ∈ {0, 1}, r ∈ R, e ∈ ArT , (1)

and the stopping-intervals are enforced by the simple constraints

xr((u,t),(u′,t′)) = 0, u 6= u′, t < [tS,ru + dru]. (2)

There are two classes of constraints to be considered. First the capacity constraints in
the nodes are modelled via coupling inequalities. Let t ∈ T be a time step and u ∈ V I be
an infrastructure node. Then

A(u, t) ={e = (((u′, b′), t′), ((u, stop), t̄)) : e ∈ ArT , r ∈ R, u 6= u′, t− dru ≤ t̄ ≤ t}
∪{e = (((u′, b′), t′), ((u, run), t)) : e ∈ ArT , r ∈ R}
∪{e = (((u, stop), t− 1), ((u, stop), t)) : e ∈ ArT , r ∈ R},

denotes the set of all arcs that represent some train arriving (or waiting) at station u at
time step t. Analogously, for a = (u′, u) ∈ AI we define

A((u′, u), t) ={e = (((u′, b′), t′), ((u, stop), t̄)) : e ∈ ArT , r ∈ R, u 6= u′, t− dru ≤ t̄ ≤ t}
∪{e = (((u′, b′), t′), ((u, run), t)) : e ∈ ArT , r ∈ R}
∪{e = (((u, stop), t− 1), ((u, stop), t)) : e ∈ ArT , r ∈ R, (u, u′) ∈ Ar},

ATMOS ’10

48 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

the set of all arcs representing some train arriving (or waiting) at station u at time t coming
over arc a. The absolute and directional capacities are then enforced by constraints∑

e∈A(p,t)

xre ≤ cp, p ∈ V I ∪AI , t ∈ T. (3)

The second class of constraints are the headway constraints. Because headway times
depend on train-types and stopping-behaviour which leads to complex conflict-graphs on
the arcs, we used the idea of Borndoerfer und Schlechte [2] of configuration networks, which
model feasible track allocations of an infrastructure arc instead of excluding conflicting
arcs by cutting-planes. Let a = (u, u′) ∈ AI be an infrastructure arc. For simplicity, we
assume a is a double-line track. The configuration network Ga = (V a, Aa) of a is defined
as follows. The set of nodes is V a = {(e, p) : e = ((u, b), (u′, b′)) ∈ Ar, u 6= u′, r ∈ R, p ∈
{1, 2}} ∪ {σa, τa} and the set of arcs is Aa =

⋃4
i=1A

a,i with

Aa,1 ={((e, 1), (e, 2)) : (e, 1), (e, 2) ∈ V a}, . . . configuration arcs,
Aa,2 ={((e, 2), (e′, 1)) : (e, 2), (e′, 1) ∈ V a, e 6= e′}, . . . headway arcs,
Aa,3 ={((e, 1), (e, 1)) : (e, 1) ∈ V a} ∪ {(σa, σa), (τa, τa)}, . . . holdover arcs,
Aa,4 ={(σa, (e, 1)) : (e, 1) ∈ V a}

∪ {((e, 2), τa) : (e, 2) ∈ V a} . . . artificial start/stop-arcs.

As for train-graphs, we time-expand this graphs w.r.t. headway times,

taH(g) =

1 if g ∈ Aa,3,
0 if g ∈ Aa,1 ∪Aa,4,

[tH(a,m(r1), b1, b′1,m(r2), b2, b′2)] if

g = ((e1, 2), (e2, 1)),
ei = ((u, bi), (u′, b′i)) ∈ Ari ,
i = 1, 2,

and GaT (V aT = V a × T,AaT) is the time-expanded configuration graph with

AaT = {((u, t), (u′, t′)) : (u, u′) ∈ Aa, t′ = t+ taH((u, u′))}.

Note, if a = (u, u′) is a single line arc the network is defined analogously but w.r.t. to tH
and tHS and we have G(u,u′) ≡ G(u′,u). A feasible configuration of infrastructure arc a ∈ AI
corresponds to a path from (σa, 1) to (τa, N) and in the graphs Gr an arc e ∈ ArT , r ∈ R
may be used only if its corresponding configuration arc ((e, 1), t), ((e, 2), t)) is contained in
that path. Again, we introduce binary variables

xae ∈ {0, 1}, a ∈ AI , e ∈ Aa, (4)

and coupling configuration constraints

xre = xae′ , e
′ = (((e, 1), t), ((e, 2), t)), ((e, 1), (e, 2)) ∈ Aa,1, a ∈ AI . (5)

For both graph types, a feasible solution corresponds to a path from the start to the end
nodes. It will be convenient to collect the characteristic vectors of all feasible solutions in
one of these graphs in the sets X p, p ∈ R ∪AI ,

X p = {xp is a feasible solution in GpT },

Frank Fischer and Christoph Helmberg 49

where xp = (xpe)e∈ApT , p ∈ A
I ∪R.

The objective function is designed so that delays of passenger trains are minimized and
freight trains tend to run as fast as possible. Furthermore one has to take care of the different
lengths of the train-routes. Let trmin(u) ∈ T be the earliest possible time when train r may
leave from station u. For each time-step of delay the train is penalized by putting increasing
costs on the outgoing run-arcs. We define the cost-function w :

⋃
r∈RA

r
T → R+ as follows.

Let e = (((u, b), t), ((u′, b′), t′)) ∈
⋃
r∈RA

r
T be an arc then

wre = αm(r) · le ·

{∑t
t̂=trmin(u) t̂, e = ((u, t), (u′, t′)), u 6= u′,

0, otherwise.

where αm(r) is a train-type-dependent scaling factor and le is the relative running-time over
this arc w.r.t. the minimal running time of the train over its complete route.

The ILP formulation reads

maximize
subject to

∑
r∈R

∑
e∈Ar

−wrexre

xp ∈ X p, p ∈ R ∪AI ,
(3), (5), [coupling constraints].

Note that we formulate this problem as a maximization problem so the dual becomes a
minimization problem. Furthermore, since we have artificial arcs ((σr, t), (σr, t+ 1)) which
are not contained in any constraint, there is always a feasible solution of the model (each
train can just start “late enough”). Because this may be unintentional, we usually assign
high costs to those arcs.

3 Solution Methods

In this section we describe the methods used to solve the TTP. As the instances we regard
have a very large number of stations, tracks and trains, standard solvers are not sufficient
to handle those problems.

3.1 Bundle Method
The solution method is based on the Lagrangian dual of the model above obtained by
relaxing the coupling constraints (3) and (5). Let C̄1x̄ ≤ c̄1 denote the capacity constraints
(3) and C̄2x̄ = c̄2 denote the configuration constraints (5). The Lagrangian dual problem
reads

min
y1≥0
y2 free

ϕ(y1, y2)

where

ϕ(y1, y2) :=
2∑
i=1

c̄Ti yi +
∑

p∈R∪AI
ϕp(y1, y2),

with

ϕr(y1, y2) := max
xr∈X r

∑
e∈Ar

−wexre − (
2∑
i=1

yTi C̄
r
i)xr, r ∈ R,

ϕa(y1, y2) := max
xa∈Xa

−(yT2 C̄a2)xa, a ∈ AI .

ATMOS ’10

50 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

Obviously, the ϕp are convex functions as maxima over affine functions. For each y1, y2 the
evaluation of ϕ(y1, y2) requires the solution of |R ∪AI | simple shortest path problems. Let
x(y1, y2) be an optimal solution of all subproblems for given y1, y2. Then

g(y1, y2) =
(
c̄1 − C̄1x(y1, y2)
c̄2 − C̄2x(y1, y2)

)
is a subgradient of ϕ at (y1, y2).

The ConicBundle [12] library implements a bundle method to solve problems of type

min
y1≥0
y2 free

f(y)

where f(y) is a convex function given by a first-order oracle, i. e., for given y the oracle
returns f(y) and a subgradient g(y) of f at y. The method generates a sequence (xk)k∈N
of primal aggregates that are convex combinations of the solutions returned by the oracle.
For an appropriate subsequence L ⊆ N, (xk)k∈L converges to an optimal solution of the LP
relaxation of the primal problem. Note that in general the xk violate the coupling constraints
C̄1x ≤ c̄1 and C̄2x = c̄2 but nonetheless can be used as a good approximation to the optimal
relaxed solution.

3.2 Dynamic Graph Generation
Because of the large number of arcs and nodes and the possibly large number of time steps
N , it is not possible to keep the complete problem in memory. Therefore the concept of
dynamic graph generation has been developed in order to reduce the memory requirements
without losing any information of the model. Dynamic techniques for solving shortest-path
problems on large networks attained significant attention in the last years, usually focused
on road networks for route planning problems, see, e. g., [18, 15, 14, 10]. In contrast to
those problems, the cost functions in our case may change arbitrarily (i. e., the weights may
increase and decrease) at every iteration.

The key observation is that although a single train-graph may be huge due to time-
expansion over many time steps, most trains only use a small portion of their graphs.
Indeed, because the objective encourages trains to use “early” arcs, most paths tend to be
near the first time-steps covered by the graphs. Therefore it seems worthwhile to keep only
the necessary subgraphs in memory so that all shortest-path problems still can be solved
correctly.

In this section we describe the concept of dynamic graph generation and how it fits into
the bundle framework. Let G = (V,A) be an acyclic graph, we allow loops, and let � denote
the induced partial order (for generality in this section G is not restructured to the special
structure of section 2). We assume that there are a unique minimal element u ∈ V and a
unique maximal element u ∈ V (i. e., each node is contained in some path from u to u) and
(u, u), (u, u) ∈ A.

Let T = {1, 2, . . . } be the set of time steps.
I Definition 1. Let d : A → {X ⊆ N0 : |X| < ∞} be a function with d((u, u)) = {1} for all
(u, u) ∈ A. Then the graph GT = (VT , AT) with

VT := V × T,
AT := {((u, tu), (v, tv)) ∈ VT × VT : (u, v) ∈ A, tv − tu ∈ d((u, v))}

is called time-expansion of G.

Frank Fischer and Christoph Helmberg 51

Let c0 : AT → R+ be a cost-function on the arcs of GT . We partition the set AT in two
parts AT = A1∪̇A2 where A1 is closed in the sense that (u, t) ∈ V (A1)⇒ ∀ t′ ≤ t : (u, t′) ∈
V (A1), A1 = AT (V (A1)) is induced and (u, 1) ∈ V (A1). Let c : AT → R be another cost-
function with c|A2 ≥ c0|A2 . Now we define a subnetwork of GT that is sufficiently large to
solve the shortest-path problem on GT w.r.t. c or detecting that this may not be possible.
c0 is a cost function with a well-known structure on the arcs AT . The subset A1 contains
those arcs a ∈ AT whose actual costs c(a) may differ from their original costs c0(a) due
to the Lagrange multipliers, in fact, no information of the structure of c on A1 is known.
Because of this it is clear that the whole set A1 must be kept in memory in order to solve the
shortest-path problem w.r.t. c on GT . In contrast, since we have some information about
the structure of c on A2 (see (C1) below for the precise requirement), not all arcs of A2 must
be kept in memory. The aim is now to characterize an appropriate subset A′2 ⊆ A2 that is
large enough to solve the shortest path problem on GT or provides a certificate wherever it
needs to be updated for this purpose.

We denote by ∂A1 := {u ∈ V (A1) : ∃ (u, v) ∈ A2} ∪ ({u} × T) the set of “boundary”
nodes of A1.

I Definition 2. Let GT be a network and c be a cost-function as above. Then G′T = (V ′T , A′T)
with A′T = A1∪̇A′2, A′2 ⊆ A2, is a valid subnetwork of GT w.r.t. c if

(S1) ∀w,w′ ∈ ∂A1,∀w-w′-paths P ⊆ A2 there is a w-w′-path P ′ ⊆ A′2 with c0(P ′) ≤ c0(P).

I Observation 3. Let G′T be a valid subnetwork of GT , u ∈ V (A1), v ∈ V (A1) ∪ ∂A1 and
P be a shortest u-v-path in G′T w.r.t. c′, where c′ : A′T → R, c′|A1

= c|A1 , c
′
|A′2

= c0|A′2 . If
A(P) ∩A′2 = ∅ then P is a shortest u-v-path in GT w.r.t. c.

Proof. Let P be a shortest u-v-path in G′T w.r.t. c′ with P ⊆ A1 and assume there exists
a u-v-path P̃ in GT such that c(P̃) < c(P). Then P̃ * A1 ∪ A′2 since otherwise c′(P̃) ≤
c(P̃) < c(P) = c′(P).

Because u ∈ V (A1) and v ∈ V (A1) ∪ ∂A1 there must be a first arc (w1, w2) ∈ P̃ , w1 ∈
∂A1, w2 /∈ ∂A1 and a first reentering arc (w′1, w′2) ∈ P̃ with w′1 /∈ ∂A1, w

′
2 ∈ ∂A1. By (S1)

there is a w1-w′2-path Q ⊆ A′2 with c′(Q) = c0(Q) ≤ c0(w1P̃w
′
2) ≤ c′(w1P̃w

′
2), where w1P̃w

′
2

denotes the subpath of P̃ connecting w1 and w′2, and therefore c′(uP̃w1Qw̄2P̃ v) ≤ c′(P).
Continuing like this exchanging all subpaths of P̃ not part of A′T we obtain a u-v-path
P̂ ⊆ A′T with c′(P) ≤ c′(P̂) ≤ c′(P̃) ≤ c(P̃) < c(P) = c′(P), a contradiction. J

Observation 3 gives a sufficient condition on the size of the subnet to solve a shortest
path problem in GT . If the shortest-path in the subnet contains at least one arc in A′2, the
subnet is not large enough and must be expanded by increasing A1 and then a new set A′2
has to be computed.

In order to be efficient, the computation of the arc set A′2 must be possible without using
the values of the cost functions on arcs currently not in memory. The construction below
requires the computation of some data structures a priori and is independent of the concrete
cost-function c.

For our construction we assume that there is a partition of the nodes V , the subset
containing u ∈ V being denoted by [u], which has the following properties:

(K1) u, v ∈ [w], u 6= v ⇒ (u, v) /∈ A,
(K2) (u, v) ∈ A⇒ [u]× [v] ⊆ A,
(K3) [u] = {u}, [u] = {u}.

ATMOS ’10

52 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

The nodes in some subset [u] may be interpreted as representing the same station for different
modes in which the train uses this station, e. g., the run-node and the stop-node at the same
station of a train-graph may form such a subset. For any subset W ⊆ V we denote by
[W] := {[u] : u ∈ W} the set of all subsets induced by W and, similarly, for E ⊆ A we
denote [E] := {([u], [v]) : (u, v) ∈ E}. If P = u1 . . . un is a path in G then [P] = [ui1] . . . [uik]
denotes the induced path where i1 = 1, un ∈ [uik], [uij−1] 6= [uij], j = 2, . . . , k and ul−1 /∈
[ul] ⇒ ∃ j ∈ {2, . . . , k} : ul−1 ∈ [uij−1], ul ∈ [uij] (i. e., [P] is the sequence of node subsets
[ui] without multiple copies of the same subset).

Next we assume that the cost function c0 satisfies the following condition:

(C1) Let P = (u1, t1) . . . (un, tn) ⊆ AT and P ′ = (u′1, t′1) . . . (u′m, t′m) ⊆ AT be two paths
with [P] = [P ′] and so that for all [ui][ui+1] = [u′j][u′j+1] with [ui] 6= [ui+1] there holds
ti ≤ t′j ∧ ti+1 ≤ t′j+1. Then c(P) ≤ c(P ′).

This property means that the costs of two paths along the same route can be compared
if one visits every moving arc earlier than the other.

In constructing the arc set A′2 we want to ensure that any ∂A1-path leaving A′2 can be
interrupted at some arc in A′2 so that it can be extended to a compatible path in A′2. For
this, we define the following sets
I Definition 4. Let u ∈ V be a node. Then

(i) for each ([u], [v]) ∈ [A], the minimal traversal time is

d(([u], [v])) := min{d((u′, v′)) : u′ ∈ [u], v′ ∈ [v]},

(ii) for all u ∈ V, [v] ∈ [V], (u, v) ∈ A, u 6= v, we choose

N(u, [v]) ∈ Argmin{min d((u, v′)) : v′ ∈ [v]},

the canonical successor of u in [v],
(iii) for all [v] ∈ [V],

N([v]) :={v′ ∈ [v] : ∃u ∈ V,N(u, [v]) = v′},

(iv) starting with V [u]
t := {(u, t)} we recursively construct generic anchor sets V [v]

t ⊂ [v]×T
for all t ∈ T large enough as follows: For all ([u], [v]) ∈ [A], denote d = d(([u], [v])),
and put

Ṽ
[v]
t :=[v]× {t},

t
[u][v]
t := max{t′ + min d((u′, [v])) : u′ ∈ [u], (u′, t′) ∈ V [u]

t−d},

V
[u][v]
t :=N([v])×

{
t, . . . , t

[u][v]
t

}
,

V
[u][v]
t :=

{
(v′, tu + min d((u′, v′))) ∈ VT : u′ ∈ [u], v′ = N(u′, [v]),∃ tu ≤ t− d,

∃ ((u′, tu), (v′′, tv)) ∈ AT , tv > t
}
,

V
[u][v]
t :=Ṽ [v]

t ∪ V
[u][v]
t ∪ V [u][v]

t ,

V
[v]
t :=

⋃
{V [u][v]

t : (u, v) ∈ A, u 6= v}.

Note that the sets V [v]
t , v ∈ V, t ∈ T, can be computed a priori because the time-expanded

graph GT has the same structure for all t ∈ T . Now the aim is to select sets V [v]
t ⊆ V (A2)

for appropriate time steps t ∈ T such that the subset A′2 ⊆ A2 with V [v]
t ⊆ V (A′2) can be

easily constructed. For this we define the following sequences of time steps.

Frank Fischer and Christoph Helmberg 53

I Definition 5. Let t ∈ T and [w] ∈ [V]. Then T [w],t = (τ ([w],t)
[u])[u]�[w] is defined by

τ
([w],t)
[w] := t,

τ
([w],t)
[u] := min

{
τ

([w],t)
[v] − d(([u], [v])) : (u, v) ∈ A, u ≺ v � w

}
.

For each node w ∈ V we define

t[w] := min
{
t : ∀ v � w, V [v]

τ
([w],t)
[v]

⊆ V (A2) \ V (A1)
}
.

One can think of T ([w],t) as time steps such that the V [u]
τ

([w],t)
[u]

, u � w, contain the nodes of

the fastest paths from some v � w to w ending in V
[w]
t and t[w] is the smallest possible

time index such that all those paths are contained in A2. Again, these sequences can be
computed a priori because they do not depend on the concrete partition A1∪̇A2 and are
identically up to a shift of the last time-index t. The minimal possible time step t[w] has to
be computed for each concrete A2 which can be done efficiently with the sequences known
in advance. Note, the sequence T ([u],t) would be sufficient to construct a set A′2 but this set
can be quite large. In order to improve this, we combine several of the sequences above as
follows.

I Definition 6.

∆([u], [v]) :=
{
δ ∈ N : δ ≥ d(([u], [v])),∀ (u, tu) ∈ V [u]

t ,∃ ((u, tu), (v, tv)) ∈ AT ,[(
(v, tv) ∈ V [u][v]

t+δ

)
∨ ((v, v) ∈ A, tv ≤ t+ δ)

]
,∀ t ∈ T large enough

}
.

Note, by construction we have d(([u], [v])) = min ∆([u], [v]). Each δ ∈ ∆([u], [v]) is a shift
such that any path ending in V [u]

t for some t ∈ T can be extended to some node in V [u]
t+δ and

can also be computed in advance.
1. T [u] := {t[u]}.

2. T [u] :=
{

min
{
tw − δ : tw − δ ≥ t[u], δ ∈ ∆([u], [w]),∀ (u, tu) ∈ V [u]

tw−δ,∃ (v, tv) ∈ V [w]
tw ,

∃ (u, tu)(v, t′v) . . . (v, tv) ⊂ A2

}
: tw ∈ T [w], (u,w) ∈ A, u ≺ w

}
.

In particular, δ = d(([u], [v])) ∈ ∆([u], [v]) is feasible. Using these sets we define

Ṽ :=
⋃
u∈V

⋃
t∈T [u]

V
[u]
t and Ã := {((u, tu), (v, tv)) ∈ A2 : (u, tu), (v, tv) ∈ Ṽ }.

Once ∆([u], [v]) is available, it is not hard to compute the sets T [u], u ∈ V, and therefore Ṽ
and Ã. The set Ã is already large enough so that for any sequence [u1] . . . [un], ([ui], [ui+1]) ∈
[A]), i = 1, . . . , n− 1, there is a path P = v1 . . . vm such that V (P) ∩ [ui] 6= ∅. In a last step
we need to enlarge Ã by some further arcs.

I Definition 7.

V̂ [u] :=V [u]
t[u]

ATMOS ’10

54 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

and, for u ≺ u,

V̂ [u] :=
{

(u, t) ∈ V (A2) : ∃ (u′, t′) ∈
⋃

u′′∈[u]

Bu′′ ∪
⋃

t̄∈T [u]

V
[u]
t̄
, t ≤ t′

}
with

Bu :={(u, tu) : ∃ ((u, tu), (v, tv)) ∈ A2, (v, tv) ∈ V̂ [v], ((v, v) ∈ A ∨ (v, tv) ∈ ∂A1),

∃ t ∈ T [u],∃ (u′, t′u) ∈ V
[u]
t ,

@ (u′, t′u)(v, t′v) . . . (v, t′v + k) ⊂ A2, t
′
v + k = tv}

∪{(u, tu) : ∃ ((u, tu), (v, tv)) ∈ A2, (v, tv) ∈ V̂ [v],

∃ ((v, tv), (w, tw)) ∈ A2, v 6= w,∃ t ∈ T [u],∃ (u′, t′u) ∈ V
[u]
t ,

@ (u′, t′u)(v′, t′v) . . . (v′, t′v + k)(w, tw) ⊆ A2, v
′ ∈ [v], t′v + k ≤ tv},

and finally collecting all nodes together

V ′ :=
⋃
u∈V

V̂ [u],

A′2 := {((u, tu), (v, tv)) ∈ A2 : (u, tu), (v, tv) ∈ V ′}.

The sets V̂ [u], u ∈ V, and Bu, u ∈ V, can be computed efficiently, starting from u and then
going back along the partial ordering. The sets Bu ensure that we can reroute all paths
reentering into V ′.

I Theorem 8. The graph G′T = (V ′T , A′T) with A′T = A1∪̇A′2 and V ′T = V (A′2) is a valid
subnetwork of GT w.r.t. c0 satisfying (C1).

The proof of the theorem is technically involved and deferred to the appendix.
The train-graphs Gr, t ∈ R, have the structure required for the construction above. The

configuration graphs Ga, a ∈ AI , however, have not, but since their cost function is zero, it
is trivial to extend valid subnetworks.

3.3 Rounding Heuristic
In order to obtain integer solutions, we use rounding heuristics based on the approximated
relaxed solution generated by the bundle method. The main goal of the heuristic is to
preserve the main characteristics of the relaxed solution while generating integral train paths.
Therefore an incremental rounding is applied to generate integer flows for some trains as long
as these flows do not deviate too much from the fractional flow. If further rounding produces
solutions too far off the relaxation, we resolve the relaxation with partially fixed train paths.
In particular, we used the following general framework for our rounding heuristics.

First we identify some conflicts in the relaxed solution. Two trains r1, r2 ∈ R are
in conflict on some infrastructure arc a ∈ AI if their average flow-times are too close
to each other, i. e., |t̄(r2, a) − t̄(r1, a)| ≤ CH(r1, r2, a) where CH(r1, r2, a) is some con-
stant, which usually depends on the headway-times between r1, r2 on a. Let C = {C =
(r1, r2, a, t) : r1, r2 are in conflict on a at time t} be the set of conflicts. The heuristic chooses
some conflict C = (r1, r2, a, t) ∈ C and tries some variants of runs for r1, r2 up to a (keeping
the trains as close to the relaxed solution as possible) while no other train moves. The best
variant w.r.t. some value-function is then fixed. When a variant is fixed, all arcs that are
blocked by the fixed arcs due to some constraints are removed from the fractional solution.
This may lead to the case in which some train does not have any flow left in the relaxed
solution over some infrastructure arc. In this situation we mark this train as “killed” from
this arc on. The algorithm is outlined as follows.

Frank Fischer and Christoph Helmberg 55

1. Solve the relaxation, determine all conflicts C.
2. While C 6= ∅

a. get C = (r1, r2, a, t) ∈ C with t minimal, set C := C \ {C},
b. if r1 or r2 is killed before a, kill both trains and go to 2,
c. try several possible variants of running r1, r2 until C,
d. rate the variants and select the best one,
e. fix the variant, remove all blocked arcs from the relaxed solution, kill trains if neces-

sary,
f. go to 2,

3. if not all trains are finished go to 1.

Usually the relaxation is not solved on the complete interval but only until some time
horizon. The horizon is moved further in time as more and more time steps are fixed by the
heuristic. Because the step sizes by which the horizon is moved are not fixed a priori but
determined during the solution process, we call this approach dynamic rolling horizon.

3.4 Load Balancing Functions
A main flaw of approximated solutions obtained via Lagrange-relaxation is that they tend to
use too much capacity on arcs and nodes. Especially the configuration constraints xre = xae′
are often violated by the approximate solution since a single constraint with small fractional
flow on xre, say xre < 0.1, is regarded as “almost feasible”. These contribute only a small
value to the subgradient. Therefore the relaxed solution often splits the train-flows into
many small fractional paths violating configuration constraints by a tiny amount. High
precision solutions are required to counter this effect, these entail rather long computation
times for bundle methods.

This motivates the introduction of load balancing functions on arcs, which can be seen
as a soft variant of headway constraints. For each train arc e = ((u, b), (u′, b′)) ∈ Ar, u 6=
u′, corresponding to some infrastructure arc a = (u, u′) ∈ AI we assign a value βe > 0
representing the amount of capacity in time steps the usage of e would block. E. g., if all
headway-times of e would be two time-steps, then βe = 3 since the usage of e would not
only block the arc a at the time step of e but also one time step before and one after.

The usage-level of an arc a = (u, u′) ∈ AI in the interval [t0, t0 + ∆] may be represented
by a weighted sum of the form

∑
r∈R

∑
e=((u,b),(u′,b))∈

⋃
Ar

t+∆∑
t=t0

βex
r
(((u,b),t),((u′,b′),t′)).

The purpose of the load-balancing function is to distribute capacity consumption on an arc
equally over time. Therefore we introduce a convex function fa,tb : R+ → R+ with

0 ∈ Argmin{fa,tb (z) : z ∈ R+}, (6)

add −
∑
a∈AI

∑
t∈T f

a,t
b (za,t) to the objective function and add coupling constraints

∑
r∈R

∑
e=((u,b),(u′,b))∈

⋃
Ar

t+∆∑
t=t0

βex
r
(((u,b),t),((u′,b′),t′)) ≤ z

a,t, a = (u, u′) ∈ AI , u 6= u′. (7)

Note, condition (6) allows to formulate the constraint (7) as an inequality. With this the
global cost function satisfies c|A2

d
≥ c0|A2

d
during the execution of the bundle method which

ATMOS ’10

56 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

is required by the dynamic graph generation. In our implementation we choose piecewise
linear convex functions fa,tb that balance free minutes in a certain time-interval against
train-minutes.

4 Numerical Results

For our tests we considered real-world instances of the German railway network, one which
consists of the main long-distance and freight route along the river Rhine (a.k.a. Rhein-Main-
Schiene) and another one which comprises roughly Baden-Wuerttemberg, for a time-period
of about 6 hours with a discretisation of one minute. Table 1 shows the sizes of those
instances.

Instance nodes arcs ld1)

trains
sd1)

trains
freight
trains

1 445 744 25 30 82
2 1776 3852 116 2640 632

1) ld = long distance trains, sd = short distance trains.
Table 1 Instances

We tested the algorithm with and without load-balancing and different horizon step sizes
on both instances, the different configurations are listed in Table 2. The results can be seen
in Table 3, all computations have been done on an Intel Core i7 CPU with 2.67 GHz and
12GB RAM.

run 1 2 3 4 5 6 7 8 9 10
load-distribution yes yes yes yes no no no no yes no

horizon-size1) 30 30 60 30 30 30 60 30 60 60
look-ahead size2) 30 60 30 60 30 60 30 60 120 120

1) maximal number of minutes to be fixed in one iteration,
2) additional number of minutes after horizon-size, in which the relaxation and

heuristic solutions will be computed but not fixed before the next iteration.
Table 2 Test parameters

Table 3 indicates that the generated solutions have few delays and exhibit large savings
in time compared with the original timetable of the trains. The main short-coming of the
solutions is the violation of a few capacity constraints. The main motivation for introducing
load-balancing functions was to get a better distribution of the single train runs in the relaxed
solution. Because the rounding heuristic is guided by the relaxation, a good distribution
leaves more room for the rounding heuristic to find feasible integer routes. As Table 3
shows, the introduction of load-balancing functions reduced the number of conflicts as well
as the number and size of delayed passenger trains whereas the saved time for freight trains
decreases, as expected.

In order to demonstrate the benefits of dynamic graph generation, Table 4 compares the
number of all arcs in the train-networks with and without dynamic graph generation (for
the dynamic case, the numbers are taken at the end of the relaxation).

Note that this table does only count the arcs of the train-graphs not the arcs of the con-
figuration networks. This is because configuration networks grow very fast: A configuration

Frank Fischer and Christoph Helmberg 57

instance run late
ld1)

avg.
delay2)

ld

max.
delay3)

ld

late
sd

avg.
delay

sd

max.
delay

sd

avg.
sav.

freight4)

#conf.5) solu-
tion
time

1 1 0 0 0 3 334 552 3904 8 784s
1 2 0 0 78 4 723 1482 3992 13 1242s
1 3 2 882 1386 6 571 1212 3950 13 841s
1 4 2 342 486 4 768 864 4150 4 1076s
1 5 0 0 78 5 828 2262 4594 12 516s
1 6 1 378 378 6 513 1386 4524 19 867s
1 7 3 578 1038 4 595 798 4297 20 569s
1 8 2 312 366 5 420 852 4232 14 778s
2 9 4 358 798 309 532 2700 972 44 7.5h
2 10 6 526 618 334 503 5196 1045 85 3h
2 4 3 353 912 307 476 1644 942 70 4.3h
2 8 8 692 1254 336 492 2400 1056 75 1.5h

1) number of trains with ≥ 3 minutes delay w.r.t. predefined timetable,
2) average maximal delay in seconds of trains with ≥ 3 minutes delay w.r.t. predefined

timetable,
3) maximal delay in seconds of late trains w.r.t. predefined timetable, original timetable,
4) average savings of freight trains in seconds compared with the original timetable,
5) number of unresolved capacity conflicts.

Table 3 Solution quality

inst. maximal
number of
time-steps

static dynamic inst. maximal
number of
time-steps

static dynamic

1 3600s 876162 275265 2 3600s 3654905 579152
1 7200s 1777667 312326 2 7200s 9476644 830430
1 10800s 3008239 476651 2 10800s 17573262 1195572

Table 4 Arc count for static and dynamic graphs

network on an arc with five trains where each train has all 4 possible running behaviours
contains for a period of 60 time steps about

60 · (4 · 5 · 4 · (5− 1)︸ ︷︷ ︸
headway arcs

+ 2 · 4 · 5︸ ︷︷ ︸
holdover and configuration arcs

) ≥ 20000

arcs. Because each infrastructure arc has a corresponding configuration network and there
are several hundred arcs in the infrastructure network, this leads to a huge number of
variables which cannot be handled without dynamic generation, especially since most arcs
carry more than only five trains per hour.

A Proofs

I Observation 9. Assume t ∈ T and (v, tv) ∈ V [u][v]
t . Then tv ≤ t

[u][v]
t .

Proof. For (v, tv) ∈ Ṽ [v]
t or (v, tv) ∈ V

[u][v]
t the assertion is clear. If (v, tv) ∈ V [u][v]

t there
must be a (u, tu) ∈ VT with tu = tv − min d((u, v)) ≤ t − d and v = N(u, [v]). Because

ATMOS ’10

58 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

(u, t− d) ∈ V [u]
t−d we have t[u][v]

t ≥ t− d+ min d((u, v)) ≥ tu + min d((u, v)) = tv. J

I Observation 10. Let ((u, tu), (v, tv)) ∈ AT be an arc, u ≺ v and let t ∈ T with tv ≥ t > d

where d := d(([u], [v])).

(i) If tu ≤ t−d then there is an arc ((u, tu), (v′, t′v)) ∈ AT with t′v ≤ tv and (v′, t′v) ∈ V
[u][v]
t .

(ii) If ∃ ṽ ∈ [v], (ṽ, tv) ∈ V [u][v]
t , then there is an arc ((u, tu), (v′, t′v)) ∈ AT with t′v ≤ tv

and (v′, t′v) ∈ V
[u][v]
t ⊆ V [v]

t .

Proof.

(i) If tv = t we know (v, tv) ∈ Ṽ [v]
t ⊆ V

[u][v]
t . So assume tv > t. Then by definition we

have (N(u, [v]), tu + min d((u, [v]))) ∈ V [u][v]
t ⊆ V [u][v]

t .
(ii) If tu ≤ t − d we are in case (i), so assume tu > t − d. We set v′ := N(u, [v]) and

t′v := tu+min d((u, v)). On the one hand we have t′v > t−d+min d((u, v)) ≥ t and on
the other hand we know t′v ≤ tv ≤ t

[u][v]
t by assumption. It follows (v′, t′v) ∈ V

[u][v]
t ⊆

V
[u][v]
t .

J

I Proposition 11. The arc set Ã has the following properties.

(i) Let [u1] . . . [un] ⊆ [A] be a path. Then there are time-steps ti ∈ T [ui], i = 1, . . . , n,
such that ti + δi = ti+1, i = 1, . . . , n− 1, for some δi ∈ ∆([ui], [ui+1]).

(ii) Let [u1] . . . [um] ⊆ [A] be a path with ti ∈ T [ui], i = 1, . . . ,m, and δi ∈ ∆([ui], [ui+1]),
ti + δi = ti+1, i = 1, . . . ,m− 1. For any (v1, tv1) ∈ V

[v1]
t1 there is a path

P := (v1, tv1)(v2, t1v2
) . . . (v2, tn2

v2
)(v3, t1v3

) . . . (vm, tnmvm)

with [P] = [u1] . . . [um] and (vi, tnivi) ∈ V
[ui−1][ui]
ti , i = 2, . . . ,m.

(iii) Let P = (u1, tu1) . . . (un, tun) ⊆ A2 be a path and let ti ∈ T [ui], i = 1, . . . ,m, and
δi ∈ ∆([ui], [ui+1]), ti + δi = ti+1, i = 1, . . . ,m− 1, be defined as in (i) for [u1] . . . [un].
If tui ≤ ti for some i = 1, . . . , n and tui+1 > ti+1 then there is a (v, t) ∈ V [ui][ui+1]

ti+1
such

that t ≤ tui+1 and ((ui, tui), (v, t)) ∈ AT .

Proof.

(i) For n = 1 we know by definition there exists a t1 ∈ T [u1].
For n > 1 we know by induction there are time steps ti ∈ T [ui], i = 2, . . . , n, and
δi ∈ ∆([ui], [ui+1]), i = 2, . . . , n− 1, with ti + δi = ti+1, i = 2, . . . , n− 1. By definition
of T [u1] we have a δ1 ∈ ∆([u1], [u2]) such that t1 := t2 − δ1 ∈ T [v1].

(ii) Form = 1 the statement is clear. So letm > 1 and assume we have already constructed
the path (v1, t1v1

) . . . (vm−1, t
nm−1
vm−1). By definition of ∆([um−1], [um]) we know there

are a vm ∈ [um] and a t1vm ∈ T with ((vm−1, t
nm−1
vm−1), (vm, t1vm)) ∈ AT and (vm, t1vm) ∈

V
[um−1][um]
tm or ((vm, vm) ∈ A ∧ t1vm ≤ tm). In the first case we set nm := 1 and

the path (v1, t1v1
) . . . (vm−1, t

nm−1
vm−1)(vm, t1vm) has the desired property. Otherwise we

may insert wait-arcs (vm, t1vm)(vm, t1vm + 1) . . . (vm, tm) and appending those arcs is
sufficient because (vm, tm) ∈ Ṽ [um]

tm ⊆ V [um−1][um]
tm .

(iii) Because δi ≥ d := d(([ui][ui+1])) we know tui+1 > ti+1 = ti + δi ≥ ti + d and therefore
tui ≤ ti ≤ ti+1 − d. By Observation 10, (i) there is a (v, t) ∈ V

[ui][ui+1]
ti+1

such that
t ≤ tui+1 and ((ui, tui), (v, t)) ∈ AT .

J

Frank Fischer and Christoph Helmberg 59

I Proposition 12. Let P := (u, tu) . . . (v, tv) ⊆ A2 be a path with tu ≤ minT [u].

(i) If (v, tv) /∈ V ′, then there is a path P ′ := (u, tu) . . . (v′, t′v) with (v′, t′v) ∈ V
[v]
t , t ∈ T [v],

c(P ′) ≤ c(P) and |A(P ′) \A′2| < |A(P) \A′2|.
(ii) If (v, tv) ∈ ∂A1 and |A(P) \ A′2| > 0 then there is a path P ′ := (u, tu) . . . (v, tv) with

c(P ′) ≤ c(P) and |A(P ′) \A′2| < |A(P) \A′2|.

Proof.
(i) Assume [P] = [u1] . . . [un] and let ti ∈ T [ui], i = 1, . . . , n, be the time-steps as defined

in Proposition 11. Because (v, tv) /∈ V ′ ⊇ V
[v]
tn we have tu ≤ t1 and tv > tn there

must be some arc ((x, tx), (y, ty)) ∈ P with x ∈ [ui] and y ∈ [uj] for some i, j ∈
{1, . . . , n} so that tx ≤ ti and ty > tj . By Proposition 11, (iii) there is some arc
((x, tx), (y′, t′y)) ∈ AT with (y′, t′y) ∈ V

[uj]
tj = V

[y]
tj and t′y ≤ ty. So we may choose a

latest arc ((x̂, tx̂), (ŷ, tŷ)) ∈ P, x̂ ∈ [uk], such that there is an arc ((x̂, tx̂), (ŷ′, t′ŷ)) ∈ AT ,
(ŷ′, t′ŷ) ∈ V

[ŷ]
tl

, tl ∈ T [y], and t′ŷ ≤ tŷ. By Proposition 11, (ii) we find arcs

P1 := (ŷ′, t′ŷ)(vl+1, t
1
vl+1

) . . . (vl+1, t
nl+1
vl+1

) . . . (vn, tnnvn)

with (vi, tnivi) ∈ V
[ui−1][ui]
ti , i = l+1, . . . , n, and by Observation 9 we get tnivi ≤ t

[ui−1][ui]
tj .

Furthermore we know by Observation 10, (ii) for each arc ((p, tp), (q, tq)) ∈ P, q ∈
[ui], i = l+ 1, . . . , n, that tq > t

[ui−1][ui]
ti since otherwise we had a contradiction to the

choice of (x̂, tx̂). By (C1) the path

P ′ := (u, tu) . . . (x̂, tx̂)(ŷ′, t′ŷ)(vl+1, t
1
vl+1

) . . . (vn, tnnvn)

fulfills c(P ′) ≤ c(P) and |A(P ′) \A′2| < |A(P) \A′2|.
(ii) Let (w, tw) ∈ V (P) \ V ′ be a node. By (i) there is a path P1 = (u, tu) . . . (w′, t′w)

with (w′, t′w) ∈ V
[w]
tj , tj ∈ T [w] and c(P1) ≤ c((u, tu) . . . (w, tw)) and |A(P1) \ A′2| <

|A((u, tu) . . . (w, tw)) \ A′2|. Choose the first ((x, tx), (y, ty)) ∈ P with (x, tx) /∈ V ′,
(y, ty) ∈ V ′, (w, tw) ≺ (y, ty). Using Proposition 11, (ii) we may extend P1 by a
path P2 = (w′, t′w) . . . (x′, t′x), x′ ∈ [x], which satisfies by choice of (x, tx) : c(P2) ≤
c((w, tw) . . . (x, tx)). Because (x, tx) /∈ Bx ⊆ V ′ we are in one of two cases:
1. If (y, y) ∈ A or (y, ty) ∈ ∂A1 then by definition of Bx there is a path P3 =

(x′, t′x) . . . (y, ty) ⊂ A′2 or
2. if (y, y) /∈ A and (y, ty) /∈ ∂A1, then by definition of Bx there is a ((y, ty), (z, tz)) ∈

P and a path P3 = (x′, t′x) . . . (z, tz) ⊂ A2 that is also in A′2 except possibly the
last arc if (z, tz) /∈ V ′.

Then the path P ′ = P1P2P3 . . . (v, tv) satisfies c(P ′) ≤ c(P) and |A(P ′) \ A′2| <
|A(P) \A′2|.

J

Proof. (of Theorem 8): The path P fulfills the conditions of Proposition 12 and by applying
this proposition repeatedly we get a path P ′ ⊆ A2 with c0(P ′) ≤ c0(P). J

References
1 Ralf Borndörfer and Thomas Schlechte. Models for railway track allocation. In Chris-

tian Liebchen, Ravindra K. Ahuja, and Juan A. Mesa, editors, ATMOS 2007, Dagstuhl,
Germany, 2007. IBFI, Schloss Dagstuhl, Germany.

2 Ralf Borndörfer and Thomas Schlechte. A suitable model for a bi-criteria optimization
approach to railway track allocation. ZIB-Report 08-22, ZIB, 2008.

ATMOS ’10

60 Dyn. Graph Generation and Dyn. Rolling Horizon Techniques in Large Scale TTP

3 U. Brännlund, P. O. Lindberg, A. Nou, and J. E. Nilsson. Railway timetabling using
lagrangian relaxation. Transportation Science, 32(4):358–369, 1998.

4 Valentina Cacchiani, Alberto Caprara, and Paolo Toth. A column generation approach
to train timetabling on a corridor. 4OR: A Quarterly Journal of Operations Research,
6(2):125–142, June 2008.

5 Gabrio Curzio Caimi, Martin Fuchsberger, Marco Laumanns, and Kaspar Schüpbach. 09.
periodic railway timetabling with event flexibility. In Christian Liebchen, Ravindra K.
Ahuja, and Juan A. Mesa, editors, ATMOS 2007, Dagstuhl, Germany, 2007. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

6 Gabrio Curzio Caimi, Martin Fuchsberger, Marco Laumanns, Kaspar Schüpbach, and Ste-
fan Wörner. The periodic service intention as a conceptual framework for generating timeta-
bles with partial periodicity. In ISROR Proceedings, 2009, 2009.

7 A. Caprara, M. Fischetti, P. Guida, M. Monaci, G. Sacco, and P. Toth. Solution of real-
world train timetabling problems. In HICSS ’01: Proceedings of the 34th Annual Hawaii
International Conference on System Sciences (HICSS-34)-Volume 3, page 3030, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

8 Alberto Caprara, Matteo Fischetti, and Paolo Toth. Modeling and solving the train
timetabling problem. Oper. Res., 50(5):851–861, 2002.

9 Alberto Caprara, Michele Monaci, Paolo Toth, and Pier Luigi Guida. A lagrangian heuristic
algorithm for a real-world train timetabling problem. Discrete Appl. Math., 154(5):738–753,
2006.

10 Daniel Delling and Giacomo Nannicini. Core routing on dynamic time-
dependent road-networks. Technical report, Ecole Polytechnique, 2008.
http://www.optimization-online.org/DB_HTML/2008/12/2164.html.

11 Frank Fischer, Christoph Helmberg, Jürgen Janßen, and Boris Krostitz. Towards solving
very large scale train timetabling problems by lagrangian relaxation. In Matteo Fischetti
and Peter Widmayer, editors, ATMOS 2008, Dagstuhl, Germany, 2008. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany.

12 Christoph Helmberg. ConicBundle 0.3.6. Fakultät für Mathematik, Technische Universität
Chemnitz, 2010. http://www.tu-chemnitz.de/∼helmberg/ConicBundle.

13 Christian Liebchen. Periodic Timetable Optimization in Public Transport. PhD thesis,
Technical University Berlin, 2006.

14 Giacomo Nannicini, Philippe Baptiste, Gilles Barbier, Daniel Krob, and Leo Liberti. Fast
paths in large-scale dynamic road networks. Comput. Optim. Appl., 45(1):143–158, 2010.

15 Peter Sanders and Dominik Schultes. Engineering highway hierarchies. In ESA’06: Pro-
ceedings of the 14th conference on Annual European Symposium, pages 804–816, London,
UK, 2006. Springer-Verlag.

16 Michael Schachtebeck and Anita Schöbel. IP-based techniques for delay management with
priority decisions. In Matteo Fischetti and Peter Widmayer, editors, ATMOS, volume 08002
of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer
Informatik (IBFI), Schloss Dagstuhl, Germany, 2008.

17 Anita Schöbel. Integer programming approaches for solving the delay management prob-
lem. In Frank Geraets, Leo G. Kroon, Anita Schöbel, Dorothea Wagner, and Christos D.
Zaroliagis, editors, ATMOS, volume 4359 of Lecture Notes in Computer Science, pages
145–170. Springer, 2004.

18 Dominik Schultes and Peter Sanders. Dynamic highway-node routing. InWEA’07: Proceed-
ings of the 6th international conference on Experimental algorithms, pages 66–79, Berlin,
Heidelberg, 2007. Springer-Verlag.

19 P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems. SIAM
J. Discret. Math., 2(4):550–581, 1989.

Vertex Disjoint Paths for Dispatching in Railways∗

Holger Flier1, Matúš Mihalák1, Anita Schöbel2, Peter Widmayer1,
and Anna Zych1

1 ETH Zürich, Institute of Theoretical Computer Science, Switzerland
{firstname.lastname}@inf.ethz.ch

2 Georg-August Universität Göttingen, Germany
Institut für Numerische und Angewandte Mathematik
schoebel@math.uni-goettingen.de

Abstract
We study variants of the vertex disjoint paths problem in planar graphs where paths have to be
selected from a given set of paths. We study the problem as a decision, maximization, and routing-
in-rounds problem. Although all considered variants are NP-hard in planar graphs, restrictions
on the location of the terminals, motivated by railway applications, lead to polynomially solvable
cases for the decision and maximization versions of the problem, and to a p-approximation
algorithm for the routing-in-rounds problem, where p is the maximum number of alternative
paths for a terminal pair.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems—Routing and
layout, G.2.2 Graph Theory—Path and circuit problems, G.2.3 Applications

Keywords and phrases algorithms, approximation, complexity, graph theory, railways, routing,
transportation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.61

1 Introduction

We study variants of the vertex disjoint paths problem in planar graphs where for each
terminal pair a set of alternative paths is given. Our motivation to study these problems
arises from railway applications. During operations, railway dispatchers face the challenging
problem of rerouting and rescheduling trains in the presence of delays. Once a train is
delayed, it might be in conflict with other trains that are planned to use the same track
resources. The dispatcher then has to find a new feasible plan in a very short amount of time.
Interestingly enough, these complicated decisions are carried out mostly by humans today,
with only basic computer support such as graphical monitoring tools. Nevertheless, the
dispatching decisions have a considerable impact on reliability and punctuality as experienced
by passengers. Motivated by the importance of the problem and by the lack of methods that
can cope with both practical problem sizes and the real-time setting, we study special vertex
disjoint paths problems which are abstractions of the dispatching problem.

Typically, a railway station is modeled as a graph with nodes representing points on the
tracks, and edges representing track segments that connect such points. We study the case
where the resulting graphs are planar, which is the case for many junctions and stations.
Considering only the aspect of routing, two trains are in conflict if their routes share a point

∗ This work was partially funded by the Swiss National Science Foundation (SNF grant no. 200021-
125033/1).

© Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer and Anna Zych;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 61–73

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

62 Vertex Disjoint Paths for Dispatching in Railways

on the tracks. Hence, conflict free routes correspond to vertex disjoint paths. Not every
route which is physically feasible is desirable in practice, though. Therefore, railway planners
allow for each train only a small set of alternative paths for each train. This leads us to
various vertex disjoint paths problems where for each terminal pair, corresponding to a train
with a given start and target in the railway network, a path has to be chosen from a given
set of paths, i.e., the possible set of routes for the train.

1.1 Related Work
We give a brief overview both over literature related to dispatching and results on disjoint
paths problems. For a recent survey on railway track allocation problems, see [17]. As noted
therein, most of the approaches known so far are impractical in a real time environment.

One line of research aiming at real-time solutions is based on the alternative graph
formulation [19], originally used to model job shop variants. The formulation allows to model
many constraints, e.g. scheduled stops, rolling stock connections and passenger connections,
but does not allow for alternative routes or train speed adaptation [3]. A branch-and-bound
algorithm for finding a conflict-free train schedule, minimizing the largest delay, is developed
in [4]. In order to solve the compound problem of train sequencing and train routing, where a
set of possible routes is given as input, a tabu search is suggested in [2]. For given routes and
fixed train speeds, the branch and bound algorithm of [4] is used as a sub-procedure to solve
the train sequencing problem. A procedure for handling train speed dynamics that respect
signal aspects is presented in [3]. Assuming fixed routes, the coordination of train speeds is
performed by iteratively solving the scheduling problem with fixed speeds and updating the
train speed profiles if these are not physically realizable.

A complexity study on routing trains through railway stations is given in [15]. There,
trains are given a fixed set of inbound and outbound routes to choose from. For each route,
all track sections are reserved at once but released section-wise. The problem of deciding
whether a feasible schedule exists in which all trains can be scheduled is NP-complete already
for 3 possible routes per train, but reduces to 2-SAT for at most 2 possible routes per train.
For a fixed number of track sections, a fixed parameter algorithm is provided.

Finally, we give a few pointers to literature on vertex disjoint paths problems where the
paths can be chosen arbitrarily. The problem of finding k vertex disjoint paths between k
pairs of terminals is NP-complete already for k = 2 in directed non-planar graphs [8], and if
k is not fixed, even in planar graphs [18]. The vertex disjoint paths problem is solvable in
polynomial time in undirected graphs for any fixed k [21], and in directed planar graphs for
any fixed k [22]. Shortest disjoint paths are treated in [13]. Practically efficient algorithms
for special cases of the disjoint paths problem are surveyed in [20].

1.2 Problem Definition
Throughout the paper we study a variety of optimization problems. They share a common
input, but differ in objectives and additional assumptions on the input. In what follows, first
we define the input, and then we categorize the studied problems.

An input instance for the problems we study is a triple (G,T,P), defined as follows:
G = (V,E) is an undirected plane graph, i.e., a planar embedding of a planar graph G. T ⊆ V
is a set of k terminal pairs {si, ti}, i = 1, 2, . . . , k. Vertices in T are called terminals. A path
from si to ti is called an si-ti-path. P = {Pi}i=1...k is a collection of sets of paths, where Pi
is a set of si-ti-paths for every i = 1, . . . , k. We denote by p the maximum cardinality of a
set in P, so p := max1≤i≤k |Pi|. We denote by

⋃
P the union of all sets of the collection,

Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych 63

thus
⋃
P :=

⋃
i=1...k Pi is the set of all given paths. The plane embedding of G separates

the plane into distinct regions, called faces, bordered by graph edges. The unbounded region
outside the graph’s embedding is called the outer face. We study the following algorithmic
problems:

Decision Problem: Decide whether there are k vertex disjoint paths P1, P2, . . . , Pk, where
for each i = 1, 2, . . . , k path Pi is from Pi.

Maximization Problem: Find a maximum number of vertex disjoint paths Pi1 , Pi2 , . . . , Pim
where every Pij , j = 1, . . . ,m, is from Pij

Routing-in-Rounds Problem: Find a labeled set of paths S = {Pi}i=1...k, Pi ∈ Pi, where
each path Pi is assigned a label (often called round) ri ∈ N, such that for any Pi, Pj ∈ S
if Pi ∩ Pj 6= ∅ then ri 6= rj . The objective is to minimize the number of different labels
(rounds) that were assigned.

Clearly, the decision problem can be seen both as the maximization problem, where we
are to decide whether m equals k, and as the routing-in-rounds problem, where we are to
decide whether one round suffices.

We study the problem for the following special cases of the positions of the terminals in
input graph G. Besides the general case where the terminals can be any nodes of G, we also
study the case where the terminals lie on the outer face of G. For the latter case, we also
consider two special sub-cases.

First, we consider the case where the terminals appear in a counterclockwise traversal on
the boundary as a sequence s1, s2, . . . , sk, tπ(1), tπ(2), . . . , tπ(k) for some permutation π. We
say that such an instance has a separating cut, or that the terminals can be separated. See
Figure 3 for an example.

Second, we consider a special case of a separating cut, where the terminals appear on the
boundary of the outer face in the order s1, s2, . . . , sk, tk, tk−1, . . . , t2, t1, in which case we say
that the terminals are sorted.

Depending on the considered optimization goal and assumptions made about the terminals,
we obtain a particular computational problem which we refer to as Goal-VDP-Terminals
using the following naming convention: Goal is D, M or R if the problem is a decision
problem (D), maximization problem (M), or routing-in-rounds problem (R), respectively;
VDP stands for vertex disjoint paths (and appears in every name); Terminals is either
Any, Out, Sep, or Sort, if we assume nothing about the positions of the terminals (Any),
the terminals appear on the outer face (Out), the terminals can be separated (Sep), or the
terminals are sorted (Sor) respectively. Thus, for example, M-VDP-Out is a computational
problem which asks, for a given plane graph G with terminals on the outer face of G, to find
a maximum number of vertex disjoint paths.

1.3 Overview of the paper
This paper is structured as follows: We discuss variants of the decision problem in Section 2,
of the maximization problem in Section 3, and of the routing-in-rounds problem in Section 4.
An overview of our most important complexity results is given in Table 1.

2 D-VDP: Decision Problems

In this section we consider the problem of deciding whether all trains can be dispatched
in the same round. An input instance is a triple (G,T,P), where G is a plane graph, T is
a set of k terminal pairs {si, ti}, i = 1, 2, · · · , k, and P = {Pi}i=1...k, where Pi is a set of

ATMOS ’10

64 Vertex Disjoint Paths for Dispatching in Railways

D-VDP M-VDP R-VDP

Any NP-complete for p ≥ 3 NP-hard for p ≥ 1
APX-hard

Out open, trivial for p = 1 open

Sep
polynomial

p-approximable,
APX-complete for p ≥ 2,
polynomial for p = 1Sort

Table 1 Summary of complexity results

si-ti-paths. The problem is to decide whether there are k vertex disjoint si-ti-paths Pi ∈ Pi,
i = 1, 2, · · · , k.

We show that for planar graphs the general problem D-VDP-Any is NP-complete
whenever p ≥ 3, and solvable in polynomial time otherwise. The special case D-VDP-Sep,
where the terminals can be separated, can be solved in polynomial time by reduction to
M-VDP-Sep, for which we give a polynomial time algorithm in Section 3.3.

The complexity of D-VDP-Out remains open for p ≥ 3. We remark that a necessary
condition for the existence of k vertex disjoint paths is that they may not cross each other.
Therefore, to study the complexity of D-VDP-Out, it suffices to consider instances as
follows. We say that the terminals are nested, if for no two terminal pairs si, ti and sj , tj ,
i 6= j, the terminals occur in the sequence si, sj , ti, tj when traversing the boundary of the
graph in counterclockwise order. Note that if terminals occur in the sequence si, sj , ti, tj ,
any two paths Pi ∈ Pi and Pj ∈ Pj intersect.
I Remark. If there exists a solution for an instance of D-VDP-Out, then the terminals
must be nested.

Next, we prove NP-completeness of D-VDP-Any for p ≥ 3 by reduction from Pla-
nar3SAT, which is defined as follows. Let φ = (X,C) be an instance of 3SAT, with variable
set X = {x1, . . . xn} and clauses C = {C1 . . . Cm} such that each clause consists of exactly
3 literals. Define a formula graph Gφ = (V,E) with vertex set V = X ∪ C, and edges
E = {(xk, Ci) : xk ∈ Ci or xk ∈ Ci}. Planar3SAT is 3SAT restricted to instances φ for
which Gφ is planar, and was proved NP-complete in [16].

I Theorem 1. D-VDP-Any is NP-Complete for p ≥ 3.

Proof. Let φ be an instance of Planar3SAT. To construct an instance of a graph Gp =
(Vp, Ep) for D-VDP-Any, we start with Gφ = (V,E). We substitute each node Ci ∈ V
by a corresponding clause gadget, and each node xi by a corresponding variable gadget, as
described in the following.

A clause gadget as shown in Figure a is created for each clause Ci ∈ φ. It consists of
6 nodes. Let Ci = {li1, li2, li3}, where lij are the literals of Ci. Three nodes of the gadget
correspond to these literals. They are connected to a path (si,mi, ti) in a way that depends on
a plane drawing ofGφ. Let e1, e2, e3 be the edges in a counterclockwise order connecting vertex
Ci ∈ V in Gφ with vertices x1, x2, x3 ∈ V , where li1 ∈ {x1, x1}, li2 ∈ {x2, x2}, li3 ∈ {x3, x3}.
We add (li1, si), (li1,mi), (li2,mi), (li2, ti), (li3, si), (li3, ti) to Ep, as shown in Figure a. This
gadget is planar. Moreover, if we substitute node Ci ∈ Gφ with its clause gadget, literal
nodes of the gadget can be connected with corresponding variable nodes preserving the
planarity of Gφ. We set {si, ti} as a terminal pair in Gp. We let Pi be the following set of
fixed paths: {(si, li1,mi, ti), (si,mi, l

i
2, ti), (si, li3, ti)}.

Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych 65

x1

x2

x3

si ti
mi

Ci

x1 x2 x3

(a) Clause gadget with terminal pair.

sm+k tm+k

Ci

Cq

Cj

Cr

Cl

xk xk

xk xk xk

xk

(b) Variable gadget with terminal pair.

Figure 1 Transformation from Planar3SAT to D-VDP-Any.

Now we construct a gadget for each vertex xk ∈ Gφ. It consists of two terminal vertices
{sm+k, tm+k} and two fixed paths between them: Pm+k, Pm+k ∈ Pm+k. Path Pm+k contains
all the literals xk in the clause gadgets. We want to enforce, that if the solution contains
path Pm+k, then no other path containing literal xk can be chosen. Intuitively, choosing
Pm+k corresponds to setting xk to true, and choosing a path with xk on it for a terminal pair
of a clause gadget corresponds to satisfying the clause with literal xk. Similarly, path Pm+k
contains all the literals xk in the clause gadgets. In order to draw path Pm+k, we substitute
the edges that connect xk with clause gadgets containing xk by peaks on the path from sm+k
to tm+k. Thus, each peak reaches the corresponding clause gadget. We proceed analogically
to draw Pm+k. Obviously, Pm+k can intersect Pm+k, but in that case we add a vertex at the
spot of intersection to make Gp planar. The variable gadget is shown in Figure b.

We are asking for a choice of paths that would select one of the paths for each terminal
pair such that all selected paths are vertex disjoint. It remains to show that the initial
formula has a satisfying assignment if and only if such a choice exists.

Assume that m+ n disjoint paths, one for each terminal pair, can be chosen. To obtain a
satisfying assignment for φ, set xk to true if and only if Pm+k was chosen for terminal pair
{sm+k, tm+k}. To see that each clause Ci is satisfied by that assignment, let P ∈ Pi be the
path chosen for a terminal pair of the corresponding clause gadget, and let lij be a literal
of Ci lying on P . Assume w.l.o.g. that lij is a non-negated variable xj . In that case Pm+j
could not have been chosen, and therefore xj must have been set to true. Thus, clause Ci is
satisfied by xj .

Now assume there is a satisfying assignment for φ. For each xj , choose path Pm+j if xj
is set to true, and Pm+j otherwise. For each clause Ci, choose a path containing a literal
that is set to true. J

In the following, we prove that we can solve instances having at most two paths per train
in polynomial time by reduction to 2-SAT, which is solvable in polynomial time, see e.g. [9].

I Lemma 2. D-VDP-Any can be solved in polynomial time if p ≤ 2.

Proof. For an instance I of D-VDP-Any we create a 2-SAT formula φ(I) which admits
a satisfying assignment if and only if I has a solution. For each set Pi = {P 1

i , P
2
i } ∈ P we

create variables x1
i , x

2
i , and add a clause {x1

i , x
2
i } to φ(I). In order to satisfy these clauses,

one of the paths for each terminal pair has to be chosen, i.e., the corresponding variable has
to be set to true. Whenever two paths P kj and P li intersect, we add a clause {xkj , xli}. These
clauses forbid to choose two intersecting paths, i.e., rule out any assignment in which both
corresponding variables are set to true. J

ATMOS ’10

66 Vertex Disjoint Paths for Dispatching in Railways

v1 v2

v5

v4

v3

Cv4

w1

w2

v{v4,v3}

(a) Planar independent set instance.

s1 t1
t2

s2

t4

s4

s3 t3

s5 t5

w1

w2

(b) Transformation to M-VDP-Any

Figure 2 Transformation from PlanarIndependentSet to M-VDP-Any. Every vertex vi is
transformed into a terminal pair {si, ti}, and every edge e into an additional vertex ve. For each
terminal pair {si, ti}, create an si-ti-path (using auxiliary vertices and edges) that traverses (besides
the auxiliary vertices) exactly every vertex ve corresponding to an edge e adjacent to vi. Part of
the transformation is depicted in gray. (a) The maximum independent set is {v1, v3, v5}. (b) The
corresponding vertex disjoint paths are shown in bold.

3 M-VDP: Maximization Problems

In this section we consider variants of the maximization problem. An input instance is a triple
(G,T,P), where G is a plane graph, T is a set of k terminal pairs {si, ti}, i = 1, 2, · · · , k,
and P = {Pi}i=1...k, where Pi is a set of si-ti-paths. An output solution is a set S ⊆

⋃
P of

maximum cardinality, such that the paths of S are vertex disjoint (thus S ∩ Pi ≤ 1 for all
i = 1, . . . , k).

We first show that M-VDP-Any is NP-complete. We leave the complexity of M-VDP-
Out open but show polynomial time solvability for the special case where p = 1 and paths
in
⋃
P have a certain monotonicity property. Finally, we consider M-VDP-Sep and show

that it can be solved in polynomial time.

3.1 M-VDP-Any: Terminals anywhere
We show that M-VDP-Any is NP-hard already for the case p = 1 (i.e., when there is one
fixed path per terminal pair) by a reduction from the NP-complete problem PlanarInde-
pendentSet which is the problem of deciding whether a given planar graph contains, for a
given `, an independent set of size ` [9, GT20, p.194].

I Theorem 3. M-VDP-Any is NP-hard already for p = 1.

Proof. The reduction is illustrated in Fig. 2. Consider an instance of PlanarIndepen-
dentSet given by a planar graph G and an integer `. For every node v of G we construct a
terminal pair {sv, tv}. We further create for every edge e = {u, v} in G a vertex ve. We now
construct an sv − tv-path Pv for every vertex v in G such that two nodes u and v from G

are adjacent if and only if the paths Pu and Pv intersect. Our construction will result into
a planar graph which shows that the decision variant of M-VDP-any is an NP-complete
problem (and thus M-VDP-any is NP-hard). To explain how the paths Pv, v ∈ V , look
like, consider a planar embedding of G. Thus, vertices of G are points of the plane, and

Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych 67

edges of G are lines connecting the corresponding points. Place sv and tv close to each
other on the position of v. Place vertex ve into the middle of the line corresponding to edge
e. Let d denote the degree of vertex v in G. Consider the neighbors of v in a cyclic order
induced naturally by the cyclic order of the lines connecting v with its neighbors (the lines
correspond to the edges in G). If vertex v is adjacent to vertices v1, · · · , vd (in that order)
we construct a path from sv to tv that goes via vertices ve1 , ve2 , · · · , ved , where ei = {v, vi},
i = 1, · · · , d. For vertex v we introduce auxiliary vertices w1, · · · , wd−1 and let the path Pv
be sv, ve1 , w1, ve2 , w2, · · · , wd−1, ved , tv, and we also create the necessary edges for the path
Pv. We note that there are no other edges in the construction than that from the paths
Pv, v ∈ V (G). It is easy to see that the resulting graph is planar (if G does not contain a
minor of K5 or K3,3, then neither our modified instance does). Figure 2 suggests a planar
embedding of our construction that resembles in shape the embedding of G. Consider a
small-enough circle Cv centered in v that intersects only the lines corresponding to edges
adjacent to v, and every such line exactly once. Place sv and tv inside Cv. We place the
vertices wi on the circle Cv (i.e., close enough to v) and between the intersections of Cv with
the two lines connecting v with vi and vi+1, and draw the two lines connecting wi, vei+1 and
wi+1 very closely to the original line between v and vei+1 . It is also easy to see that two
vertices u, v from G are adjacent if and only if the two paths Pu and Pv intersect (at vertex
ve, e = {u, v}). J

We note that PlanarIndependentSet admits a PTAS [1] and thus our reduction,
although approximation-preserving, does not show any hardness of approximation. This
remains an interesting open problem. We also note that in contrary to the maximization
problem, D-VDP-Any with p = 1 is trivial to solve.

3.2 M-VDP-Out: Terminals on the outer face
We do not know the complexity of M-VDP-Out in general, but point to a similar open
problem in graph theory, namely the complexity of finding a maximum independent set in
outerstring graphs, e.g., see [14]. It is easy to see that the class of outerstring graphs and
the class of graphs considered in M-VDP-Out with p = 1 are equivalent: strings can be
represented by paths and vice versa.

There is, however, a polynomially solvable special case of M-VDP-Out. Consider the
special case of M-VDP-Out with p = 1 where any two paths intersect in at most one vertex,
and if they intersect, they cross each other. We call such paths monotone.
I Remark. M-VDP-Out with monotone paths and p = 1 can be solved in polynomial time.

Proof. By reduction to maximum independent set in circle graphs, for which a polynomial
time algorithm is given in [10]. A circle graph is the intersection graph of a family of chords
in a circle. Considering that the paths of the instance of M-VDP-Out are monotone and
have their ends on the outer face of the graph, it is easy to see that there is a family of chords
in a circle where two chords cross iff their corresponding paths cross. Further, because p = 1,
a maximum independent set in the corresponding circle graph corresponds to an optimal
solution of the considered instance of M-VDP-Out. J

3.3 M-VDP-Sep: Separating cut
In this section we consider instances with a separating cut, i.e., where the terminals appear in a
counterclockwise traversal of the outer face in the sequence s1, s2, . . . , sk, tπ(1), tπ(2), . . . , tπ(k)
for some permutation π of the numbers 1, 2, . . . , k. See Figure 3 for an example.

ATMOS ’10

68 Vertex Disjoint Paths for Dispatching in Railways

s1

s2

s3

t2

t1

t3

(a)

s1

s2

t1

s3

t2

t3

above p
p below p

(b)

Figure 3 An instance of M-VDP-Sep, i.e., all terminals lie on the outer face of G and there is
a separating cut in G. (a) The outer face is depicted in bold. (b) An s3 − t3 path p (dashed bold
line), the part above p (dark shaded area), and the part below p (light shaded area).

The setting has the following important property. Every path P ∈ Pi separates the plane
embedding of the graph into two parts. The part above P is the set in the plane enclosed by
the curve formed by the boundary of the outer face between ti and si (in counterclockwise
order) and by path P (from si to ti). The part below P is the set in the plane enclosed by the
curve formed by the boundary of the outer face between si and ti (in counterclockwise order)
and by path P (from ti to si). In the following we say that a point/path/vertex/etc. lies
above P if it lies in the part above P . We similarly define to lie below P . Observe that both
sets are compact and closed. They share only path P and otherwise are disjoint. Therefore
any path P ′ that lies above P and is disjoint to P is also disjoint to any path P ′′ that lies
below P . Observe also that if for some j the terminal sj lies above P and terminal tj lies
below P then there is no sj − tj path in G disjoint to P .

In the following, we show that the problem for such instances can be solved in polynomial
time. Precisely, we present an algorithm based on dynamic programming, that computes an
optimum solution and runs in time in O(k2 · p2). Thus, if p is polynomial in k, our algorithm
is also polynomial in k. In any case our algorithm is polynomial in the input size (as the
input for the problem lists explicitly all si-ti-paths).

The algorithm computes a table T [i, P] for every i = 1, . . . , k and every P ∈ Pi. The
entry T [i, P] is the size of an optimum solution of the subproblem in which path P ∈ Pi is
chosen, and all other paths can only be chosen from sets P1, . . . ,Pi−1. Initially, T [1, P] = 1
for all P ∈ P1. We now show how to inductively compute the whole table. Assume that the
table has been filled for all values of i smaller than j. We now show how to compute the
table entry T [j, P] for any P ∈ Pj . We set

T [j, P] = 1 + max
1≤l<j

P ′∈Pl;P∩P ′=∅

T [l, P ′].

The actual solutions (sets of paths) can be found using standard bookkeeping techniques.
The algorithm outputs

max
1≤i≤k
P∈Pi

T [i, P]

as the maximum number of disjoint paths.

I Theorem 4. M-VDP-Sep is solvable in time in O(k2 · p2), where k is the number of
terminal pairs and p is maximum number of paths per terminal pair.

Proof. The number of entries in T that the algorithm has to fill is
∑k
i=1 |Pi|, which is at

most k · p, where p := max1≤i≤k |Pi|. Computing an entry T [i, P] requires time linear in

Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych 69

the number of existing (i.e., so far computed) entries, i.e., at most O(k · p). Thus, the total
running time of the algorithm is O(k2 · p2).

To finish the proof of the theorem, we are left to prove that: (∗) the value stored in
T [i, P] indeed represents the size of an optimum solution of the subproblem in which path
P ∈ Pi is chosen, and all other paths can only be chosen from sets P1, . . . ,Pi−1. Once we
have this, it is then easy to see that the algorithm returns the maximum number of disjoint
paths.

To prove (∗) we proceed inductively on i. Trivially, the claim holds for all entries T [1, P],
P ∈ P1. Assume now that the claim holds for i < j. Let P ∈ Pj . We show that the
claim holds for T [j, P]. Let OPT be an optimum solution for the subproblem in which
path P ∈ Pj is chosen, and all other paths can only be chosen from sets P1, . . . ,Pj−1.
Consider the set OPT ′ := OPT \ {P}. Let a be the largest index such that there is a path
Pa from Pa in OPT ′. Thus, in OPT ′ there are only paths from P1, . . . ,Pa. By induction
hypothesis, T [a, Pa] ≥ |OPT ′|. Clearly, P and Pa are disjoint. Let us denote the set of
paths corresponding to T [a, P] by P (T [a, P]). In order to see that P is also disjoint to every
path in P (T [a, Pa]), consider the fact that every path P ′ ∈ P (T [a, Pa]) different from Pa
lies above Pa, and the path P lies below Pa. Thus the paths P (T [a, Pa]) plus the path P
are disjoint and we have |{P} ∪ P (T [a, Pa]) | = 1 + T [a, Pa] ≥ 1 + |OPT ′| = |OPT |, which
shows the claim. J

4 R-VDP : Routing in rounds

In this section we consider variants of the routing-in-rounds problem. An input instance is a
triple (G,T,P), where G is a plane graph, T is a set of k terminal pairs {si, ti}, i = 1, 2, · · · , k,
and P = {Pi}i=1...k, where Pi is a set of si-ti-paths. The solution S is a labeled set of paths
S = {Pi}i=1...k, Pi ∈ Pi. Each path Pi ∈ S is assigned a label ri ∈ N, such that for any
Pi, Pj ∈ S if Pi ∩ Pj 6= ∅ then ri 6= rj . Intuitively, the labels correspond to rounds, which
represent a rudimentary notion of time. If paths Pi and Pj are disjoint, the corresponding
trains can run at the same time (in the same round). Otherwise, to avoid collisions, we
need to schedule them in different rounds. We show that already R-VDP-Sor (terminals
sorted on the outer face) is APX-complete for any p ≥ 2. Further we show that R-VDP-Sep
(there is a separating cut) with p = 1 can be solved efficiently, and present a p-approximation
algorithm for the case of p ≥ 2.

4.1 R-VDP-Sor: Terminals sorted on the outer face
I Theorem 5. R-VDP-Sor for any p ≥ 2 is APX-complete.

Proof. By reduction from SetCover, which defined as follows. Given a collection C of
subsets of a ground set U , the SetCover problem asks for a collection C′ ⊆ C, such that
each ui ∈ U belong to at least one member of C′ and |C′| is minimized, see [9, SP5].

In the reduction, as illustrated in Figure 4, we transform any instance of SetCover
as follows. Every element ui ∈ U corresponds to one terminal pair {si, ti}. We let these
terminal pairs be drawn one below another in the plane graph we construct, the order is
arbitrary. Each occurrence of ui in a set Cj ∈ C corresponds to one si-ti-path. An si-ti-path
follows a straight line from si to ti, however contains one peak up. The position of the
peak denotes the set Cj in which ui occurs for that particular occurrence. For two different
occurrences in the same set ui, uj ∈ Cl, we let the corresponding paths be non-intersecting,
by aligning their peaks together in Cl position. If two elements occur in two different sets,

ATMOS ’10

70 Vertex Disjoint Paths for Dispatching in Railways

s1

s2

s3

s4

t1

t2

t3

t4

{1, 2} {1, 3} {1, 4} {2, 3, 4}

Figure 4 Reduction from set cover. Every element ai ∈ S is transformed into a terminal
pair {si, ti}. Each occurrence of an element ai in a subset Cj ∈ C is transformed into an si-ti-path,
such that two paths are disjoint if and only if they represent elements of the same set. Example
with S = {1, 2, 3, 4}, and C = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}. The chosen paths are drawn bold and
correspond to sets {1, 2} and {2, 3, 4}. Note that the terminal pair {s2, t2} is covered twice.

the corresponding paths intersect because their peaks are not aligned. The peaks follow the
shape shown in Figure 4. By this construction, two paths of different terminal pairs can be
scheduled in the same round if and only if the corresponding elements belong to the same
set in C. The minimum number of rounds needed to schedule all terminal pairs equals |C ′|.

It is easy to notice that the above reduction is approximation preserving. The SetCover
problem is APX-complete when the number of occurrences of an element in sets of C is
bounded by any constant b ≥ 2 [6]. Hence, the claim of the theorem follows. J

4.2 R-VDP-Sep: Separating cut
In this section we consider instances with a separating cut, i.e., where the terminals appear in a
counterclockwise traversal of the outer face in the sequence s1, s2, . . . , sk, tπ(1), tπ(2), . . . , tπ(k)
for some permutation π. The separating cut imposes an order structure on the set of all
fixed paths

⋃
P =

⋃
i=1...k Pi. For any two paths Pi ∈ Pi, Pj ∈ Pj we say that Pi < Pj

if Pi does not intersect with Pj and i < j. Let us denote this order by (
⋃
P, <⋃P). It is

easy to see that <⋃P is transitive due to the separating cut, and that (
⋃
P, <⋃P) is a

partially ordered set, in short poset. We define the compatibility graph H for an instance of
R-VDP-Sep as follows. There is a vertex in H for each path P ∈

⋃
P and an edge between

two vertices if and only if the corresponding paths are disjoint.

I Theorem 6. The compatibility graph H of any instance of R-VDP-Sep is a comparability
graph.

Proof. Since the edges of H correspond to the order relation of the poset (
⋃
P, <⋃P), H is

a comparability graph. J

It is well known that comparability graphs and their complements, called co-comparability
graphs, are perfect graphs. Many NP-hard problems are polynomial for perfect graphs,
among others the coloring problem and the problem of finding a clique of maximum weight in
a graph with weights on nodes, see e.g. [11]. Also, for a perfect graph, the size of a maximum
clique is equal to the chromatic number of the graph.

A consequence of Theorem 6 is that once a path is selected for each terminal pair, the
assignment of paths to a minimum number of rounds is solvable in polynomial time, as the

Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych 71

problem is equivalent to the coloring problem of the co-comparability graph H. It follows
that R-VDP-Sep with p = 1 is solvable in polynomial time (as in this setting there is no
choice for selecting a path for each terminal). Alternatively, we can see R-VDP-Sep with
p = 1 as the problem of covering a poset with a minimum number of chains, for which
efficient polynomial time algorithms are known. A chain of a poset (

⋃
P, <⋃P) is a subset

of
⋃
P of totally ordered elements. A chain cover of the poset is a set of chains such that

every element of
⋃
P is in (at least) one chain. Thus, a chain of the poset (

⋃
P, <⋃P)

corresponds to paths that can be scheduled in the same round. Since p = 1, all paths need to
be scheduled, and a chain cover of minimum cardinality corresponds to routing of the paths
in minimum number of rounds. The problem of covering a poset with a minimum number of
chains has been well studied (see for example the characterization of solutions known as the
Dilworth’s theorem [5]), and can be solved in polynomial time by computing a maximum
matching in a related bipartite graph [7].

I Corollary 7. R-VDP-Sep with p = 1 can be solved in polynomial time.

4.3 R-VDP-Sep: Separating cut, p ≥ 2
Since R-VDP-Sep is APX-complete, the question arises how well one can approximate
variants of the routing-in-rounds problem. SetCover cannot be approximated within
O(1 − ε) ln |S|, see [6]. There is, however, a B-approximation algorithm for SetCover
if each element is covered by at most B ≥ 2 sets, see [12]. In the following, we give a
p-approximation algorithm for R-VDP-Sep. Let H be the compatibility graph of an input
instance of R-VDP-Sep as defined in Section 4.2. Let H be the complement graph of H.
Theorem 6 implies that H is a co-comparability graph, and thus a perfect graph. Consider
the following integer program to calculate the minimum number of rounds r needed to
schedule all terminal pairs of R-VDP-Sep instance:

(IP) min r (1a)
s.t. ∑

Pj∈Pi

xij = 1 ∀ {si, ti} ∈ T (1b)

∑
xij∈C

xij ≤ r ∀ clique C ∈ H (1c)

xij ∈ {0, 1} (1d)

The binary variables xij denote whether the j’th path from set Pi is selected. Con-
straints (1b) require that for each terminal pair {si, ti}, i = 1, . . . , k, exactly one path in the
corresponding set Pi is chosen. Further, there are exponentially many Constraints (1c) that
require that no more than r paths from each (maximal) clique C in H are chosen.

I Lemma 8. The value r∗ of an optimal solution to (IP) equals the minimum number of
rounds R needed to schedule a corresponding instance of R-VDP-Sep.

Proof. Consider an optimal solution of (IP). Variables xij represent the choice of paths.
Consider the subgraph I of H induced by the nodes corresponding to the chosen paths.
Graph I is a conflict graph for an instance, where there is just one path given per terminal
pair (the chosen path). Recall, that when there is just one path per terminal pair, assigning
the minimum number of rounds is equivalent to coloring I with minimum number of colors.

ATMOS ’10

72 Vertex Disjoint Paths for Dispatching in Railways

The minimum number of colors needed to color I is in turn equal to the size of maximum
clique in I, because I is a perfect graph (as it is a subgraph of a perfect graph and in perfect
graphs the chromatic number is equal to the clique number). In an optimal solution of (IP),
the paths are chosen in a way such that the clique number r∗ in I is minimal. Thus, the
minimal number of rounds needed in I is equal to R = r∗. Hence, the lemma follows. J

We note that I in the proof above corresponds to an instance of R-VDP-Sep with p = 1,
so the actual labels ri for each chosen path Pi ∈ Pi can be found in polynomial time by
Corollary 7.

Denote by (LP) the linear relaxation of (IP), and by (LP’) the linear program (1a)-(1b).
Note that constraints (1c) can be separated in polynomial time. That is, given a feasible
solution to (LP’), we can find a violated constraint of (1c), if there is one, by finding a
maximum weighted clique in H, with node weights given by the values of the variables xij .
If this clique does not violate (1c), no other clique does. By the polynomial equivalence of
optimization and separation, see [11], (LP) can be solved in polynomial time. We obtain the
desired approximation by rounding any fractional values of the xij . For each {si, ti} pair,
we choose an xij with maximum value, denoted by xi, and round it to 1. We round the
remaining xik, k 6= i to 0.

I Theorem 9. R-VDP-Sep with at most p fixed paths per terminal pair can be approximated
within a factor of p.

Proof. Let x∗ be an optimal solution to (LP) with objective value r∗. Denote by R the value
of an optimal solution to R-VDP-Sep. Clearly, R ≥ r∗. The rounded values are feasible
with respect to equations (1b). Given that there are at most p paths per terminal pair, we
have xi ≥ 1/p for all terminal pairs {si, ti} ∈ T . Hence, each xij is rounded up by a factor
at most p. Therefore, equations (1c) are satisfied for a right hand side of r∗ · p. Hence, the
objective value of the returned solution is at most p ·R. J

References
1 Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs.

Journal of the ACM, 41(1):153–180, 1994.
2 Francesco Corman, Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. A tabu search

algorithm for rerouting trains during rail operations. Transportation Research Part B:
Methodological, 44(1):175–192, 2010.

3 Andrea D’Ariano. Improving Real-Time Dispatching: Models, Algorithms and Applications.
PhD thesis, TRAIL Research School, The Netherlands, 2008.

4 Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. A branch and bound algorithm
for scheduling trains in a railway network. European Journal of Operational Research,
183(2):643–657, 2007.

5 Robert P. Dilworth. A decomposition theorem for partially ordered sets. The Annals of
Mathematics, 51(1):161–166, 1950.

6 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
7 Lester R. Ford and Delbert R. Fulkerson. Flows in Networks. Princeton Univ. Press,

Princeton, N.J., 1962.
8 Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph homeomor-

phism problem. Theor. Comput. Sci., 10:111–121, 1980.
9 Michael R. Garey and David S.Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, 1979.

Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych 73

10 Fanica Gavril. Algorithms for a maximum clique and a maximum independent set of a
circle graph. Networks, 3(3):261–273, 1973.

11 Martin Grötschel, László Lovász, and Alexander Schrĳver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1993.

12 Dorit S. Hochbaum. Approximation algorithms for the set covering and vertex cover prob-
lems. SIAM Journal on Computing, 11(3):555–556, 1982.

13 Yusuke Kobayashi and Christian Sommer. On shortest disjoint paths in planar graphs.
Discrete Optimization, 7:234–245, 2010. Announced at ISAAC 2009.

14 Jan Kratochvíl. String graphs. II. Recognizing string graphs is NP-hard. Journal of Com-
binatorial Theory, Series B, 52(1):67–78, 1991.

15 Leo G. Kroon, H. Edwin Romeĳn, and Peter J. Zwaneveld. Routing trains through railway
stations: complexity issues. European Journal of Operational Research, 98(3):485–498,
1997.

16 David Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing,
11(2):329–343, 1982.

17 Richard Lusby, Jesper Larsen, Matthias Ehrgott, and David Ryan. Railway track allocation:
models and methods. OR Spectrum. To appear.

18 James F. Lynch. The equivalence of theorem proving and the interconnection problem.
SIGDA Newsl., 5(3):31–36, 1975.

19 Alessandro Mascis and Dario Pacciarelli. Job-shop scheduling with blocking and no-wait
constraints. European Journal of Operational Research, 143(3):498–517, December 2002.

20 Heike Ripphausen-Lipa, Dorothea Wagner, and Karsten Weihe. Combinatorial optimiza-
tion : papers from the DIMACS Special Year, volume 20 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, chapter Efficient Algorithms for Disjoint
Paths in Planar Graphs, pages 295–354. 1995.

21 Neil Robertson and Paul D. Seymour. Graph minors XIII. The disjoint paths problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995.

22 Alexander Schrĳver. Finding k disjoint paths in a directed planar graph. SIAM Journal
on Computing, 23(4):780–788, 1994.

ATMOS ’10

Engineering Time-Dependent Many-to-Many
Shortest Paths Computation ∗

Robert Geisberger and Peter Sanders

Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
{geisberger,sanders}@kit.edu

Abstract
Computing distance tables is important for many logistics problems like the vehicle routing
problem (VRP). While shortest distances from all source nodes in S to all target nodes in T

are time-independent, travel times are not. We present the first efficient algorithms to compute
time-dependent travel time tables in large time-dependent road networks. Our algorithms are
based on time-dependent contraction hierarchies (TCH), currently the fastest time-dependent
speed-up technique. The computation of a table is inherently in Θ(|S| · |T |), and therefore
inefficient for large tables. We provide one particular algorithm using only Θ(|S|+ |T |) time
and space, being able to answer queries two orders of magnitude faster than the basic TCH
implementation. If small errors are acceptable, approximate versions of our algorithms are further
orders of magnitude faster.

1998 ACM Subject Classification G.2.2, J.1

Keywords and phrases time-dependent, travel time table, algorithm engineering, vrp

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.74

1 Introduction

Computing travel times between all locations in a predefined set is a known problem arising
in many operations research problems, e.g. vehicle routing. More formally, given a graph
G = (V,E), and a set of source nodes S ⊆ V and target nodes T ⊆ V , we want to know the
travel time between each source and target node (many-to-many shortest paths problem).
The common approach is to compute a travel time table of size |S| · |T |, reducing subsequent
travel time computations to a simple table look-up. Due to the knowledge of historical traffic
data and traffic prediction models, it is possible to forecast travel times in dependence to the
departure time. These time-dependent travel times allow to compute more realistic routes,
especially important for routing within cities with time windows. In this time-dependent
scenario, each cell in the travel time table corresponds to a travel time function over the
departure time.

In contrast to the static scenario without time-dependency, such a time-dependent table
takes a lot longer to compute and occupies a lot more space. We refine the problem of
computing a table to the problem of implementing a query interface: Given s ∈ S and t ∈ T ,
we want to know the earliest arrival time when we depart at time τ (or the travel time profile
for all τ). So any algorithm that previously used a table now just needs to replace its table
lookups with calls to this interface. An algorithm behind this interface uses a precomputed
data structure with the knowledge of G, S and T to answer these queries fast. Especially
in the common case where |S| , |T | � |V |, such an algorithm is able to answer a query

∗ Partially supported by DFG grant SA 933/5-1.

© Robert Geisberger and Peter Sanders;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 74–87

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

mailto:geisberger@kit.edu
mailto:sanders@kit.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Robert Geisberger and Peter Sanders 75

several orders of magnitude faster than a common fast time-dependent query algorithm. We
contribute five such algorithms that allow different tradeoffs between precomputation time,
space and query time. Furthermore, we provide heuristic versions of these algorithms that
are substantially faster and more space-efficient. For these, we are able to guarantee quite
tight error bounds for queries.

1.1 Related Work

To the best of our knowledge, there is currently no work on the time-dependent many-to-
many shortest paths problem. The related work can be divided into work on the static
(time-independent) many-to-many shortest paths problem and work on the time-dependent
point-to-point shortest path problem. To compute an |S|× |T | table on a static road network,
the most simple method is to perform |S| single source shortest path computations using
Dĳkstra’s algorithm. But this is more than three orders of magnitude slower than [12]. This
algorithm [12] can be adapted to any speed-up technique for shortest paths that is bidirected,
i.e. using a small forward search from the source node and a small backward search from
the target node to find the shortest path, and non-goaldirected, i.e. the small forward search
does not depend on the target node and vice versa. [12] gains its speedup by computing
each forward/backward search space only once and combining them. This combination
amounts to cheap operations (add, min on integers) in the static scenario. However, in the
time-dependent scenario, they map to expensive operations on travel time functions. Our
contributions are more sophisticated algorithms to perform the combination, being several
times faster than [12].

We are not able to use the previous simple approach of |S| single source computations in
the time-dependent scenario, as even one such computation requires too much main memory.
However, many new algorithms for the time-dependent point-to-point shortest path problem
have been developed recently. We refer to [5] for an overview. Similar to [12], our algorithms
require a time-dependent speed-up technique that is bidirected and non-goaldirected. These
requirements stem from from the similar problem of many-to-many shortest paths but our
algorithms are significantly more advanced than [12]. We use time-dependent contraction
hierarchies (TCH) [3, 4] for our algorithms since it is currently the only one that provides
small enough forward and backward search spaces.

The time-dependent vehicle routing problem (TDVRP) is a known problem in operations
research and there exist many algorithms to solve it [13, 11, 9, 6, 8]. The goal is to find
routes for a fleet of vehicles such that all customers (locations) are satisfied and the total
(time-dependent) cost is minimized. Solving this problem is important for logistics, supply
chain management and similar industries. Our algorithms provide currently the most efficient
way to compute the time-dependent travel times between the distinct locations of the TDVRP.
Industrial applications often compute travel times for a discrete set of departure times, e.g.
every hour. This approach is very problematic as it is expensive to compute, requires a lot
of space (a table for every hour), and provides absolutely no approximation guarantee. Our
heuristic variants do not have these disadvantages. We require less precomputation time
and space, a very important aspect for companies as they can run the algorithm on smaller
and cheaper machines. And, even more important, we provide approximation guarantees
potentially resulting in better routes in practice that further reduce the operational costs of
their transportation business.

ATMOS ’10

76 Engineering Time-Dependent Many-to-Many Shortest Paths Computation

2 Preliminaries

2.1 Time-Dependent Road Networks
Let G = (V,E) be a directed graph representing a road network.1 Each edge (u, v) ∈ E has
a function f : R → R≥0 assigned as edge weight. This function f specifies the time f(τ)
needed to reach v from u via edge (u, v) when starting at departure time τ . So the edge
weights are called travel time functions (TTFs).

In road networks we usually do not arrive earlier when we start later. So all TTFs f fulfill
the FIFO-property: ∀τ ′ > τ : τ ′ + f(τ ′) ≥ τ + f(τ). In this work all TTFs are sequences of
points representing piecewise linear functions.2 With |f | we denote the complexity (i.e., the
number of points) of f . We define f ∼ g :⇔ ∀τ : f(τ) ∼ g(τ) for ∼∈ {<,>,≤,≥}.

For TTFs we need the following three operations:
Evaluation. Given a TTF f and a departure time τ we want to compute f(τ). Using a
bucket structure this runs in constant average time.
Linking. Given two adjacent edges (u, v), (v, w) with TTFs f, g we want to compute the
TTF of the whole path 〈u→f v →g w〉. This is the TTF g ∗ f : τ 7→ g(f(τ) + τ) + f(τ)
(meaning g “after” f). It can be computed in O(|f |+ |g|) time and |g ∗ f | ∈ O(|f |+ |g|)
holds. Linking is an associative operation, i.e., f ∗ (g ∗ h) = (f ∗ g) ∗ h for TTFs f, g, h.
Minimum. Given two parallel edges e, e′ from u to v with TTFs f, f ′, we want to merge
these edges into one while preserving all shortest paths. The resulting single edge e′′ from
u to v gets the TTF min(f, f ′) defined by τ 7→ min{f(τ), f ′(τ)}. It can be computed in
O(|f |+ |f ′|) time and |min(f, f ′)| ∈ O(|f |+ |f ′|) holds.

In a time-dependent road network, shortest paths depend on the departure time. For
given start node s and destination node t there might be different shortest paths for different
departure times. The minimal travel times from s to t for all departure times τ are called
the travel time profile from s to t and are represented by a TTF.

2.2 Algorithmic Ingredients

Profile Search. To compute the travel time profile from a source node s to all other nodes,
we use a label correcting modification of Dĳkstra’s algorithm [14]. The modifications are as
follows:

Node labels. Each node v has a tentative TTF from s to v.
Priority queue (PQ). The keys used are the global minima of the labels. Reinserts into
the PQ are possible and happen (label correcting).
Edge Relaxation. Consider the relaxation of an edge (u, v) with TTF fuv. Let the label of
node u be the TTF fu. The label fv of the node v is updated by computing the minimum
TTF of fv and fuv ∗ fu.

Min-Max Search. Profile search is a very expensive algorithm. Min-max search [3] is a
roughly approximating modification of profile search and runs much faster. Essentially it is
two searches based on Dĳkstra’s algorithm, one based on the global minima and one on the

1 Nodes represent junctions and edges represent road segments.
2 Here, all TTFs have period Π = 24h. However, using non-periodic TTFs makes no real difference. Of

course, covering more than 24h will increase the memory usage.

Robert Geisberger and Peter Sanders 77

maxima of the edge TTFs. The results are a lower and an upper bound on the travel time
profile.

Approximations. Give a TTF f . A lower bound is a TTF f↓ with f↓ ≤ f and a lower
ε-bound if further (1− ε)f ≤ f↓. An upper bound is a TTF f↑ with f ≤ f↑ and an upper ε-
bound if further f↑ ≤ (1+ε)f . An ε-approximation is a TTF fl with (1−ε)f ≤ fl ≤ (1+ε)f .
Approximate TTFs usually have fewer points and are therefore faster to process and require
less memory. To compute ε-bounds and ε-approximations from an exact TTF f we use the
efficient geometric algorithm described by Imai and Iri [10]. It yields a TTF with minimal
number of points for ε in time O(|f |).

2.3 Time-Dependent Contraction Hierarchies

Hierarchies. In a time-dependent contraction hierarchy [3] all nodes of G are ordered by
increasing ‘importance’ [7]. In order to simplify matters, we identify each node with its
importance level, i.e. V = 1..n.

Now, the TCH is constructed by contracting the nodes in the above order. Contracting a
node v means removing v from the graph without changing shortest path distances between
the remaining (more important) nodes. This way we construct the next higher level of the
hierarchy from the current one. A trivial way to contract a node v is to introduce a shortcut
edge (u,w) with TTF g ∗ f for every path u →f v →g w with v < u,w. But in order to
keep the graph sparse, we can try to avoid a shortcut (u,w) by finding a witness – a travel
time profile W from u to v fulfilling W ≤ g ∗ f . Such a witness proves that the shortcut is
never needed. The node ordering and the construction of the TCH are performed offline in a
precomputation and are only required once per graph independent of S and T .

Queries. In the point-to-point scenario, we compute the travel time profile between source
s and target t by performing a two-phase bidirectional time-dependent profile search in the
TCH. The special restriction on a TCH search is that it only goes upward, i.e. we only relax
edges where the other node is more important. We first perform a bidirectional min-max
search. Both search scopes meet at candidate nodes u giving lower/upper bounds on the
travel time between source and target, allowing us to prune the following profile search. The
bidirectional profile search computes forward TTF fu and backward TTF gu representing a
TTF gu ∗ fu from source to target (though not necessarily an optimal one). The travel time
profile is min {gu ∗ fu | u candidate}.

During the min-max search search we perform stall-on-demand (see [7, 3]): A node u is
stalled when we find that a maximum to u coming from a higher level is better than the
minimum. The edges of stalled nodes are not relaxed.

3 Five Algorithms

We engineer five algorithms with different precomputation time, space and query time. They
support two types of queries: time and profile queries. A time query computes the earliest
arrival time at a node t when departing from node s at time τ resulting in a query interface
(s, t, τ), and a profile query computes the travel time profile between s and t resulting in a
query interface (s, t).

Our algorithms have in common that they need to precompute ∀s ∈ S the target-
independent forward search spaces

Fs := {(u, fu) | fu is TTF from s to u in forward upward search}

ATMOS ’10

78 Engineering Time-Dependent Many-to-Many Shortest Paths Computation

and ∀t ∈ T the symmetric source-independent backward search spaces

Bt := {(u, gu) | gu is TTF from u to t in backward upward search} .

We compute these search spaces using unidirectional upward profile searches. To reduce
the computational effort, we initially perform a min-max search using the stall-on-demand
technique and use it to prune the following profile search. This technique stalls nodes that
are reached suboptimally. Note that a node can be reached suboptimally, as our upward
search does not relax downward edges of a settled node. These stalled nodes will never be a
candidate to a shortest path, as they are reached suboptimally. Therefore, we do not store
them in the search spaces Fs, Bt. Naturally, we cannot use further pruning techniques from
[4] that are applied after an upper bound on the shortest paths distance is obtained.

Algorithm Intersect computes and stores Fs and Bt. The other four algorithms are based
on it, we ordered them by decreasing query time. Algorithm 1 shows the implementation of
the time query. The main part is to evaluate all paths via the candidate nodes. We order
the search space entries by node-ids, so that a single scan of both search spaces finds all
candidates. At most 2·#candidates TTF evaluations are required for a query. However, the
TTF evaluations are the most expensive part, so we prune them using the (precomputed)
minima of fu, gu.
Algorithm 1: IntersectTimeQuery(s,t,τ)
1 δ :=∞; // tentative arrival time
2 foreach (u, fu) ∈ Fs, (u, gu) ∈ Bt do // loop over all candidate nodes
3 if τ + min fu + min gu < δ then // prune using minima
4 δ′ := fu(τ) + τ ; // evaluate TTFs
5 δ′ := gu(δ′) + δ′;
6 δ := min(δ, δ′); // update tentative arrival time

7 return δ

Algorithm 2: IntersectProfileQuery(s,t)
1 δ := minu candidate {max fu + max gu}; // upper bound based on maxima
2 v := argminu candidate {min fu + min gu}; // minimum candidate
3 δ↑ := g↑v ∗ f↑v ; // upper bound based on approximate TTFs
4 δ := min(δ,max δ↑); // tighten upper bound
5 foreach (u, ·) ∈ Fs, (u, ·) ∈ Bt do // loop over all candidate nodes
6 if min fu + min gu ≤ δ then // prune using minima
7 δ↑ := min

(
δ↑, g↑u ∗ f↑u

)
; // update upper bound

8 δ := gv ∗ fv; // tentative travel time profile
9 foreach (u, fu) ∈ Fs, (u, gu) ∈ Bt do // loop over all candidate nodes

10 if ¬(g↓u ∗ f↓u > δ↑) then // prune using lower bounds
11 δ := min (δ, gu ∗ fu); // update travel time profile

12 return δ

The profile query is similar to the time query, but links the two TTFs at the candidate
instead of evaluating them. But as the link operation is even more expensive than the
evaluation operation, we implement more sophisticated pruning steps, see Algorithm 2.
For each (u, fu) ∈ Fs we compute and store lower/upper ε-bounds f↓u / f↑u and for each
(u, gu) ∈ Bt we compute and store lower/upper ε-bounds g↓u / g↑u. Then we pass three times

Robert Geisberger and Peter Sanders 79

through the search spaces Fs, Bt:
1. In Line 1 we compute an upper bound δ based on the maxima of the search space TTFs.

Also, in Line 2 we compute a candidate with minimum sum of the minima of the search
space TTFs. This candidate is usually very important and a good starting point to obtain
an tight lower bound.

2. In Lines 3–7 we compute an upper bound δ↑ based on the upper ε-bounds. This bound
is tighter than the one based on the maxima.

3. In Lines 8–11 we compute the travel time profile and use the upper bound δ↑ for pruning.
So we only execute the very expensive link and minimum operations on fu and gu at
Line 11.

The profile query is arguably the more important of both query types, as it allows to
precompute all earliest arrival times independent of a specific departure time. Also, on the
profile query we see the difference to the previous time-independent algorithm [12] that only
required one pass. Here, we intentionally perform three passes as this allows to save some
expensive TTF operations. Therefore, we store a TTF not at the candidate node u (as [12]
did), but at the source or target node. This is necessary to perform the intersection, which
allows us to keep only one set of upper bounds (δ, δ↑) in main memory at the same time,
and not one set for each pair in S × T .

An important observation is that the computation time and space of a single search
space depend only on the graph and the edge weights, and are independent of |S| and |T |.
Intersect requires therefore Θ(|S|+ |T |) preprocessing time and space, and Θ(1) query
time, if only |S| and |T | are considered as changing variables.

Algorithm MinCandidate additionally precomputes and stores the minimum candidate
(Algorithm 2, Line 2) in a table cmin(s, t).

cmin(s, t) := argmin
u candidate

{min fu + min gu}

By that, we can use it to obtain a good initial upper bound for a time query, by initializing
δ in Line 1 of Algorithm 1 with the travel time via cmin(s, t). This allows to prune more
candidates and results in faster query times. However, preprocessing time and space are now
in Θ(|S| · |T |), but with a very small constant factor.

Algorithm RelevantCandidates precomputes a set of candidate nodes crel(s, t) for each
s-t-pair by using lower and upper bounds on the TTFs in Fs and Bt.

crel(s, t) :=
{
u
∣∣∣ ¬(g↓u ∗ f↓u > min

v candidate

{
g↑v ∗ f↑v

})}
This is exactly the set of nodes that are evaluated in Line 11 of Algorithm 2. So it is sufficient
to evaluate the candidates in crel(s, t) to answer a query correctly. In practice, crel(s, t) is
stored as an array with cmin(s, t) on the first position. Additionally, we can save space by not
storing (u, fu) in Fs if ∀t ∈ T : u 6∈ crel(s, t), and symmetrically for Ft. The precomputation
time depends on the used lower and upper bounds: Using only min-max-values is fast but
results in larger sets, using ε-bounds is slower but reduces the size of the sets.

Algorithm OptCandidate precomputes for every departure time τ an optimal candidate
copt(s, t, τ), so a time query only needs to evaluate one candidate.

copt(s, t, τ) := argmin
u candidate

{(gu ∗ fu)(τ)}

ATMOS ’10

80 Engineering Time-Dependent Many-to-Many Shortest Paths Computation

A candidate is usually optimal for a whole period of time, we store these periods as consecutive,
non-overlapping, intervals [τ1, τ2). In practice, there are only very few intervals per pair (s, t)
so that we can find the optimal candidate very fast. The downside of this algorithm is its
very high precomputation time since it requires the computation of the travel time profile
for any pair (s, t) ∈ S × T with the Intersect algorithm. Still, storing only the optimal
candidates requires usually less space than the travel time profile.

Algorithm Table computes and stores all travel time profiles in a table.

table(s, t) := min
u candidate

{gu ∗ fu}

It provides the fastest query times, but the space requirements in Θ(|S| · |T |) have a large
constant factor. The table cells are computed with the Intersect algorithm.

4 Approximate Travel Time Functions

Approximate TTFs reduce preprocessing time, space and query time of the algorithms in
the previous section by several orders of magnitude by sacrificing exactness. While used
before for point-to-point queries [4], we are the first to present approximation guarantees for
queries.

There are three places to approximate TTFs: on the edges of the TCH, the node label
TTFs after the forward/backward searches and finally the Table entries. Approximating
the latter two can be applied straightforwardly. But performing a TCH profile query on
approximate edge TTFs requires a change of the stall-on-demand technique since we must
not stall an optimal path. We ensure this by performing the initial min-max query on exact
values with stall-on-demand, the latter profile query without.

The query algorithms stay the same, except that Intersect profile queries no longer use
ε-bounds for pruning, as the overhead does no longer pay off.

Lemmas 1–3 enable us to compute theoretical error bounds. With Lemma 3 we have an
error bound when we approximate the edge TTFs with εe:

ε1 := εe(1 + α)/(1− αεe)

The error bound for approximating the search space TTFs with εs follows directly from the
definition of an εs-approximation:

ε2 := (1 + εs)(1 + ε1)− 1

Lemma 1 gives an error bound when we link the forward and backward search TTF on a
candidate node:

ε3 := ε2(1 + (1 + ε2)α)

With Lemma 2 we know that ε3 is an error bound on the approximate travel time profile,
the minimum over all candidate TTFs. When we additionally approximate the resulting
profile TTF for the table with εt, the error bound follows directly from the definition of an
εt-approximation:

ε4 := (1 + εt)(1 + ε3)− 1

In Table 6 we compute the resulting error bounds for our test instance.

I Lemma 1. Let fl be an εf -approximation of TTF f and gl be an εg-approximation of
TTF g. Let α be the maximum slope of g, i.e. ∀τ ′ > τ : g(τ ′) − g(τ) ≤ α |τ ′ − τ |. Then
gl ∗ fl is a max {εg, εf (1 + (1 + εg)α)}-approximation of g ∗ f .

Robert Geisberger and Peter Sanders 81

Proof. Let τ be a time.
(gl ∗ fl)(τ) = gl(fl(τ) + τ) + fl(τ)

≤ (1 + εg)(g(fl(τ) + τ)) + (1 + εf)f(τ)
≤ (1 + εg)(g(f(τ) + τ) + α

∣∣(fl(τ) + τ)− (f(τ) + τ)
∣∣) + (1 + εf)f(τ)

≤ (1 + εg)(g(f(τ) + τ) + αεff(τ)) + (1 + εf)f(τ)
= (1 + εg)g(f(τ) + τ) + (1 + εf (1 + (1 + εg)α))f(τ)

By applying the symmetric transformations, we also obtain (gl ∗fl)(τ) ≥ (1−εg)g(f(τ)+
τ) + (1− εf (1 + (1− εg)α))f(τ). J

I Lemma 2. Let fl be an εf -approximation of TTF f and gl be an εg-approximation of
TTF g. Then min

{
fl, gl

}
is a max {εf , εg}-approximation of min {f, g}.

Proof. Let τ be a time, WLOG we assume that min
{
fl, gl

}
(τ) = fl(τ) and min {f, g} (τ) =

g(τ). Then min
{
fl, gl

}
(τ) = fl(τ) ≤ gl(τ) ≤ (1 + εg)g(τ) and min

{
fl, gl

}
(τ) = fl(τ) ≥

(1− εf)f(τ) ≥ (1− εf)g(τ). J

I Lemma 3. Let Fs and Bt be the forward/backward search spaces computed on a TCH
and F ls and Blt on the same TCH with ε-approximated edge TTFs. In both cases, stall-
on-demand was only used with exact min-max values. Let α be the maximum slope of all
TTFs in Fs, Bt, and αε < 1. Then {u | (u, fu) ∈ Fs} = {u | (u, flu) ∈ F ls } and flu is an
ε(1 + α)/(1− αε)-approximation of fu, and the same holds for the backward search spaces.

Proof. {u | (u, fu) ∈ Fs} = {u | (u, flu) ∈ F ls } holds trivially since exact and approximate
search both use the same min-max values, the same for the backward search spaces. For the
forward search, we will prove via induction over s (starting with the most important node
n) that for each flu in Fs there exists a k ∈ N so that fu is a ((1 + ε)

(∑k−1
i=0 (αε)i

)
− 1)-

approximation of fu.
The base case holds trivially since for s = n, Fn = {(n, 0)} = F

l
n .

Inductive step: Let (u, fu) ∈ Fs, (u, flu) ∈ F
l
s . Let N = {v | (s, v) ∈ E, s < v}, hsv

be the exact TTF on the edge (s, v) and h
l
sv its ε-approximation. By definition of N ,

fu = min
{
f̃u ∗ hsv | v ∈ N, (u, f̃u) ∈ Fv

}
and f

l
u = min{f̃lu ∗ hlsv | v ∈ N, (u, f̃lu) ∈ F

l
v }.

By induction hypothesis there exists k ∈ N so that f̃lu is an ((1 + ε)
(∑k−1

i=0 (αε)i
)
−

1)-approximation of f̃u. Also f̃u has maximum slope α and the edge TTF h
l
sv is an ε-

approximation of hsv. So by Lemma 1, f̃lu ∗hlsv is a ((1+ε)
(∑k

i=0 (αε)i
)
−1)-approximation

of f̃u ∗ hsv (k k + 1). Lemma 2 finally shows that the induction hypothesis holds for flu .
So for any TTF in any F ls there exists this k ∈ N, and with αε < 1 we follow limk→∞((1 +
ε)
(∑k−1

i=0 (αε)i
)
−1) = ε(1+α)/(1−αε). This concludes the proof for the forward case. The

backward case is similar to the forward case except that we use N = {v | (u, v) ∈ E, v < u},
gu = min {gv ∗ huv | v ∈ N, (v, gv) ∈ Bt} and glu = min{glv ∗ hluv | v ∈ N, (v, glv) ∈ Blt }. J

5 On Demand Precomputation

We discussed five algorithms with different precomputation times in Section 3. Only the
first algorithm Intersect provides precomputation in Θ(|S|+ |T |). All further algorithms
are in Θ(|S| · |T |) as they precompute some data for each pair in S × T . To provide a
linear algorithm that benefits from the ideas of the further algorithms, we can compute the
additional data (cmin(s, t), crel(s, t), copt(s, t) or table(s, t)) on demand only for those pairs
(s, t) that occur in queries. By that, our algorithm is in Θ(|S|+ |T |+ #queries).

ATMOS ’10

82 Engineering Time-Dependent Many-to-Many Shortest Paths Computation

While it takes negligible time for an on demand profile query to compute the additional
data at the first occurrence of (s, t), the situation is different for a time query. Depending on
the additional precomputation time, we should only compute it after a certain number of
queries for that pair occurred. This way, we improve the competitive ratio. This ratio is the
largest possible ratio between the runtime of an algorithm that knows all queries in advance
and our algorithm that does not (online algorithm). For just two different algorithms, e.g.
Intersect and Table, this problem is similar to the ski-rental problem. For example, let it
‘cost’ ti to answer a query using Intersect and tt using Table, and tc to compute the table
cell. Then computing the table cell on the query number b = btc/(ti − tt)c to this cell has a
competitive ratio < 2. In practice, we can predict the cost of ti and tt from the number of
necessary TTF evaluations, and the cost tc from the sum of the points of the TTFs fu and
gu of all (relevant) candidates u. When we want to use more than two of the five algorithms
online, Azar et al. [1] propose an algorithm with competitive ratio 6.83.

6 Experiments

Input. We use a real-world time-dependent road network of Germany with 4.7 million
nodes and 10.8 million edges, provided by PTV AG for scientific use. It reflects the midweek
(Tuesday till Thursday) traffic collected from historical data, i.e., a high traffic scenario with
about 8 % time dependent edges.

Hardware/Software. The experiments were done on a machine with two Intel Xeon X5550
processors (Quad-Core) clocked at 2.67 GHz with 48 GiB of RAM and 2x8 MiB of Cache
running SUSE Linux 11.1. We used the GCC 4.3.2 compiler with optimization level 3.

Basic setup. We use a preprocessed TCH as input file [3]. However, we do not account for
its preprocessing time (37 min [3]), as it is independent of S and T . We choose S, T ⊆ V

uniformly at random for a size |S| = |T |. We approximated the TTFs in the graph with
εe, the TTFs of the search spaces with εs and the TTFs in the table with εt. We use lower
and upper εp-bounds for pruning profile queries, or just min-max-values if no εp is specified.
The precomputation uses all 8 cores of our machine since it can be trivially parallelized and
multi-core CPUs are standard these days. We report the preprocessing time to compute the
forward and backward search spaces as search and the time to compute additional data (cmin,
crel, copt or table) as link. We also give the used RAM reported by the Linux kernel. The
time (profile) query performances are averages over 100 000 (1 000) queries selected uniformly
at random and performed on a single core. Depending on the algorithm, we also report some
more detailed time query statistics. Scan is the number of nodes in the search spaces we
scanned during a time query. Meet is the number of candidate nodes where forward and
backward search space met. Eval is the number of TTF evaluations. Succ is the number of
successful reductions of the tentative earliest arrival time due to another evaluated candidate.

Preprocessing time and search space size of the Intersect algorithm are in Θ(|S|+ |T |)
as expected, see Table 1. Note that the RAM requirements include the input TCH:

εe [%] - 0.1 1.0 10.0
graph [MiB] 4 497 1 324 1 002 551

The exact time query is two orders of magnitude faster than a standard TCH3 time query
(720µs [3]). However, the TCH profile query (32.75ms [3]) is just 22 times slower since most

3 We compare ourselves to TCH as it is currently the fastest exact speed-up technique.

Robert Geisberger and Peter Sanders 83

Table 1 Performance of the Intersect algorithm.

preprocessing search spaces query
size εe εs εp search RAM [MiB] TTF point time scan meet eval succ profile

[%] [%] [%] [s] [MiB] # # [µs] # # # # [µs]
100 - - 0.1 7.5 6 506 1 639 172 2 757 5.17 310 19.6 9.97 3.92 1 329
500 - - 0.1 33.8 13 115 8 228 172 2 768 7.43 312 20.0 10.38 4.08 1 494

1 000 - - 0.1 68.0 21 358 16 454 173 2 754 7.97 313 19.9 10.28 4.04 1 412
1 000 - - - 53.1 20 830 15 897 173 2 754 7.99 313 19.9 10.28 4.04 7 633
1 000 1.0 - - 1.5 1 579 349 173 54.4 6.13 313 19.9 10.27 4.05 108.2
1 000 - 1.0 - 64.9 5 302 72 173 6.3 6.46 313 19.9 10.60 4.05 18.4
1 000 0.1 0.1 - 4.7 1 749 189 173 26.7 6.29 313 19.9 10.32 4.04 52.8
1 000 1.0 1.0 - 1.8 1 303 65 173 5.1 5.48 313 19.9 10.36 4.05 15.1
1 000 10.0 10.0 - 0.7 854 47 173 1.9 6.34 313 19.9 15.79 4.05 22.0

10 000 1.0 1.0 - 18.2 2 015 650 174 5.1 6.80 315 19.9 10.34 4.01 16.3

Table 2 Performance of the MinCandidate algorithm.

preprocessing search query
size εe εs search link RAM cmin space time scan meet eval succ profile

[%] [%] [s] [s] [MiB] [MiB] [MiB] [µs] # # # # [µs]
100 - - 6.0 0.0 6 481 1 1 583 3.11 310 19.6 3.65 1.04 6 941

1 000 - - 53.1 0.4 20 849 7 15 897 4.97 313 19.9 3.72 1.05 7 087
1 000 1.0 1.0 1.8 0.4 1 310 7 65 4.09 313 19.9 3.77 1.07 13.8

10 000 1.0 1.0 18.2 49.0 2 777 649 650 4.94 315 19.9 3.81 1.07 14.4

time is spent on computing the large resulting TTFs. Approximating the edge TTFs (εe > 0)
reduces preprocessing time and RAM, approximating search spaces (εs > 0) reduces search
space sizes. When we combine both to εe = εs = 1%, we reduce preprocessing time by a
factor of 30 and search space size by 240. We can only compare with TCH for approximated
edge TTFs, as TCH computes the search spaces at query time and does not approximate
any intermediate result. For εe = 1%, we are 27 times faster than TCH (2.94ms [3]). But it
pays off to approximate the search space TTFs, for εe = εs = 0.1%, we are 56 times faster
than TCH and even have smaller error (Table 6). Usually we would expect that the query
time is independent of the table size, however, due to cache effects, we see an increase with
increasing table size and a decrease with increasing ε’s. Still the number of TTF evaluations
is around 10 and thus 5 times large than the optimal (just 2).

By storing the minimal candidate (MinCandidate, Table 2), we can reduce the number
of evaluations to 3.7, which also reduces the query time. Although the precomputation is in
Θ(|S| · |T |), this only becomes significant for size 10 000 (or larger). The time query is only
about one third faster, as we still scan on average about 310 nodes in the forward/backward
search spaces. For exact profile queries, there is no advantage to Intersect as we can afford
εp-bound pruning at query time there.

Algorithm RelevantCandidate (Table 3) makes scanning obsolete. It stores 1.2–3.4
candidates per source/target-pair, depending on used approximations. This is significantly
smaller than the 20 meeting nodes we had before, accelerating the time query by a factor of
2–4. But being in Θ(|S| · |T |) becomes already noticeable for size 1 000. Again, the exact
profile query does not benefit. Due to the knowledge of all relevant candidates, we only

ATMOS ’10

84 Engineering Time-Dependent Many-to-Many Shortest Paths Computation

Table 3 Performance of the RelevantCandidate algorithm.

preprocessing search spaces query
size εe εs εp search link RAM crel [MiB] TTF point time eval profile

[%] [%] [%] [s] [s] [MiB] [MiB] # # [%] # [µs] # [µs]
100 - - 0.1 7.5 0.3 6 517 1 1.2 246 21 12 3 453 0.72 2.26 1 202

1 000 - - 0.1 68.0 59.7 35 550 32 1.2 3 565 40 23 2 690 1.29 2.27 1 412
1 000 - - 1.0 67.4 14.2 23 931 34 1.4 4 195 46 27 2 737 1.36 2.55 2 032
1 000 - - 10.0 65.9 8.8 22 369 49 3.3 8 965 82 47 3 277 2.00 3.71 7 484
1 000 - - - 53.1 6.1 20 879 49 3.4 9 343 86 50 3 264 2.00 3.72 7 651
1 000 1.0 1.0 - 1.8 5.0 1 400 46 3.0 31 82 47 5.5 1.02 3.76 10.5
10 000 1.0 1.0 - 18.2 651.3 9 310 4 605 3.0 415 110 63 5.6 1.71 3.80 11.7

Table 4 Performance of the OptCandidate algorithm.

preprocessing search spaces query
size εe εs εp search link RAM copt [MiB] TTF point time profile

[%] [%] [%] [s] [s] [MiB] [MiB] # # [%] # [µs] [µs]
100 - - 0.1 7.5 2.1 6 494 1 1.5 241 21 12 3 456 0.49 1 168
500 - - 0.1 33.8 53.7 13 101 10 1.5 1 608 33 19 2 946 0.73 1 391

1 000 - - 0.1 68.0 213.8 21 443 39 1.5 3 489 39 22 2 704 0.81 1 332
1 000 - - - 53.1 1 032.2 20 908 39 1.5 3 489 39 22 2 704 0.84 1 339
1 000 1.0 - - 1.5 19.4 1 666 37 1.4 72 39 23 49.5 0.56 21.6
1 000 - 1.0 - 64.9 7.1 5 318 39 1.5 17 41 23 6.0 0.51 3.5
1 000 0.1 0.1 - 4.7 11.5 1 822 39 1.5 42 39 22 25.9 0.54 9.8
1 000 1.0 1.0 - 1.8 6.3 1 385 38 1.5 15 41 24 4.9 0.48 3.0
1 000 10.0 10.0 - 0.7 7.6 963 62 3.1 19 68 39 2.0 0.49 5.7

10 000 1.0 1.0 - 18.2 788.3 7 741 3 775 1.5 226 63 36 5.0 0.90 3.5

need to store 12% of all computed search space TTFs for size 100. This percentage increases
naturally when the table size increases, or when we use worse bounds for pruning (larger εp),
allowing a flexible tradeoff between preprocessing time and space. Note that this algorithm
can be used to make the Intersect algorithm more space-efficient by storing only the
required TTFs and dropping crel.

We reduce the time query below 1µs for any tested configuration with the OptCandidate
algorithm (Table 4),4 as we always just need two TTF evaluations. Exact precomputation
time becomes very expensive due to the high number of TTF points, pruning with εp-bounds
has a big impact by almost a factor 4. However, in the heuristic scenario, precomputation is
just around 25% slower than RelevantCandidate (εp-pruning brings no speed-up), but
provides more than 80% smaller search spaces and 3 times faster profile queries.

Naturally the best query times are achieved with the Table algorithm (Table 5). They
are around a factor two smaller than OptCandidate, and up to 3 000 times faster than
a TCH time query, and 4 000 000 times faster than a time-dependent Dĳkstra [3]. Note
that we do not report profile query timings as they are a simple table look-up. The larger
precomputation time compared to OptCandidate comes from the additional overhead to
store the table. We cannot compute exact tables larger than size 500. But practical cases of

4 #copt > #crel is possible when candidates are optimal for several periods of time.

Robert Geisberger and Peter Sanders 85

Table 5 Performance of the Table algorithm.

preprocessing table query
size εe εs εp εt search link RAM [MiB] points time

[%] [%] [%] [%] [s] [s] [MiB] # [µs]
100 - - 0.1 - 7.5 1.9 7 638 1 086 7 672 0.25
500 - - 0.1 - 33.8 58.5 45 659 27 697 7 829 0.42
500 - - - - 26.6 266.7 45 532 27 697 7 829 0.42
500 1.0 - - - 0.8 4.8 1 924 427 117.6 0.26

1 000 1.0 - - - 1.5 19.0 3 625 1 689 116.3 0.32
1 000 1.0 1.0 - - 1.8 6.3 1 577 180 9.6 0.25
1 000 - - 0.1 1.0 68.0 298.2 21 489 110 4.6 0.25
1 000 0.1 0.1 - 0.1 4.7 12.3 2 112 270 16.0 0.26
1 000 1.0 1.0 - 1.0 1.8 6.7 1 484 94 3.4 0.23
1 000 10.0 10.0 - 10.0 0.7 7.1 1 017 76 2.1 0.22

10 000 1.0 1.0 - - 18.2 772.1 27 118 18 109 9.7 0.39
10 000 1.0 1.0 - 1.0 18.2 815.2 17 788 9 342 3.4 0.38

Table 6 Observed errors from 100 000 queries together with the theoretical error bounds.

graph εe [%] 1.0 - 0.1 1.0 10 - 0.1 1.0 10
search space εs [%] - 1.0 0.1 1.0 10 - 0.1 1.0 10

table εt [%] - - - - - 1.0 0.1 1.0 10
avg. error [%] 0.08 0.12 0.014 0.18 2.1 0.17 0.023 0.30 3.1
max. error [%] 0.89 0.98 0.169 1.75 16.9 1.00 0.266 2.66 24.9

theo. bound [%] 2.07 1.44 0.350 3.55 41.0 1.00 0.450 4.58 55.1

size 1 000 can be computed with less than 2GiB of RAM when we use approximations (table
TTFs are εt-approximations).

Compared to |S| · |T | = 500 · 500 exact TCH profile queries, taking 1023 s on 8 threads,
our algorithm achieves a speed-up of 11. This speed-up increases for εe = 1% to 16 since
there the duplicate work of the TCH queries has a larger share. And it increases further for
table size 1 000, our speed-up is then 18, as our search increases linearly and only linking is
quadratic in size. We were not able to compare ourselves to a plain single source Dĳkstra
profile query, as our implementation of it runs out of RAM (48 GiB) after around 30 minutes.

A visual comparison of all five algorithms is Figure 1. We see that the decrease for time
and profile query are almost independent of the size. However, the quadratic part (upper
part of bar) for preprocessing time and space is very dominant for size = 10 000. Also, the
OptCandidate algorithm requires less space than the RelevantCandidate algorithm, as
we need to store less candidates and can drop more entries from the stored search spaces.

We analyze the observed errors and theoretical error bounds5 for size 1 000 in Table 6.
Note that these error bounds are independent of the used algorithm. The maximum slope6
is α = 0.433872. The average observed error is always below the used ε’s, however, we
still see the stacking effect. Our bound is about a factor of two larger than the maximum

5 Note that εp > 0 used for pruning does not cause errors.
6 To compute the maximum slope, we compute the forward and backward search space for every node in
the graph. But this is only required for the theoretical error bounds, and not used in our algorithms.

ATMOS ’10

86 Engineering Time-Dependent Many-to-Many Shortest Paths Computation

0
m

ax

preproc. time preproc. space time query profile query

size 1000

I M R O T I M R O T I M R O T I M R O T

0
m

ax

size 10000

Figure 1 Comparison of the Intersect, MinCandiate, RelevantCandidate, OptCandidate
and Table algorithm with εe = εs = 1%, εp = εt = 0%. Preprocessing time is split into search
(lower) and link (upper) and space is split into TTFs (lower) and additional data (upper). The
vertical axis is relative to the maximum compared value in each group. Exact values are in Tables 1–5.

observed error for the edge approximations (εe). This is because our bound assumes that
any error stacks during the linking of the TTFs, however, in practice TTFs do not often
significantly change. The same explanation holds for the search space approximations (εs),
although our bound is better since we only need to link two TTFs. When we combine edge
and search space approximations, the errors roughly add up, this is because approximating
an already approximated TTF introduces new errors. Approximating the TTFs in the table
(εt) gives the straight εt-approximation unless it is based on already approximated TTFs.
The provided theoretical bounds are pretty tight for the tested TCH instance, just around a
factor of two larger than the maximum observed bounds.

7 Conclusions and Future Work

The computation of forward and backward search spaces in the TCH only once for each
source and target node speeds up travel time table computations and subsequent queries
by intersecting these search spaces. For exact profile queries, only a table can significantly
improve the runtime. For exact time queries, and all approximate queries, further algorithms
precompute additional data to speed up the queries with different tradeoffs in precomputation
time and space. A large impact on the precomputation time and space has the use of
approximate TTFs. We are able to reduce time by more than one and space by more than
two orders of magnitude with an average error of less than 1%.

Robert Geisberger and Peter Sanders 87

Our algorithms are also an important step to a time-dependent transit node routing
algorithm [2]. Transit node routing is currently the fastest speedup technique for time-
independent road networks and essentially reduces the shortest path search to a few table
lookups. Our algorithms can either compute or completely replace such tables.

Acknowledgments. We thank G. Veit Batz for his great implementation of TCH that
made developing our extensions very comfortable.

References
1 Yossi Azar, Y. Bartal, E. Feuerstein, Amos Fiat, Stefano Leonardi, and A. Rosen. On

Capital Investment. Algorithmica, 25(1):22–36, 1999.
2 Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes. Fast Routing in Road

Networks with Transit Nodes. Science, 316(5824):566, 2007.
3 Gernot Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter. Time-Dependent

Contraction Hierarchies. In Proceedings of the 11th Workshop on Algorithm Engineering
and Experiments (ALENEX’09), pages 97–105. SIAM, April 2009.

4 Gernot Veit Batz, Robert Geisberger, Sabine Neubauer, and Peter Sanders. Time-
Dependent Contraction Hierarchies and Approximation. In Paola Festa, editor, Proceedings
of the 9th International Symposium on Experimental Algorithms (SEA’10), volume 6049 of
Lecture Notes in Computer Science. Springer, May 2010.

5 Daniel Delling and Dorothea Wagner. Time-Dependent Route Planning. In Ravindra K.
Ahuja, Rolf H. Möhring, and Christos Zaroliagis, editors, Robust and Online Large-Scale
Optimization, volume 5868 of Lecture Notes in Computer Science, pages 207–230. Springer,
2009.

6 Alberto V. Donati, Roberto Montemanni, Norman Casagrande, Andrea E. Rizzoli, and
Luca M. Gambardella. Time dependent vehicle routing problem with a multi ant colony
system. European Journal of Operational Research, 185:1174–1191, 2008.

7 Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction
Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In Catherine C.
McGeoch, editor, Proceedings of the 7th Workshop on Experimental Algorithms (WEA’08),
volume 5038 of Lecture Notes in Computer Science, pages 319–333. Springer, June 2008.

8 Hideki Hashimoto, Mutsunori Yagiura, and Toshihide Ibaraki. An Iterated Local Search
Algorithm for the Time-Dependent Vehicle Routing Problem with Time Windows. Discrete
Optimization, 5:434–456, 2008.

9 Soumia Ichoua, Michel Gendreau, and Jean-Yves Potvin. Vehicle Dispatching with Time-
Dependent Travel Times. European Journal of Operational Research, 144:379–396, 2003.

10 H. Imai and Masao Iri. An optimal algorithm for approximating a piecewise linear function.
Journal of Information Processing, 9(3):159–162, 1987.

11 Soojung Jung and Ali Haghani. Genetic Algorithm for the Time-Dependent Vehicle Routing
Problem . Journal of the Transportation Research Board, 1771:164–171, 2001.

12 Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea Wagner.
Computing Many-to-Many Shortest Paths Using Highway Hierarchies. In Proceedings of
the 9th Workshop on Algorithm Engineering and Experiments (ALENEX’07), pages 36–45.
SIAM, 2007.

13 Chryssi Malandraki and Mark S. Daskin. Time Dependent Vehicle Routing Problems:
Formulations, Properties and Heuristic Algorithms. Transportation Science, 26(3):185–200,
1992.

14 Ariel Orda and Raphael Rom. Shortest-Path and Minimum Delay Algorithms in Networks
with Time-Dependent Edge-Length. Journal of the ACM, 37(3):607–625, 1990.

ATMOS ’10

Fast Detour Computation for Ride Sharing∗

Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter
Sanders, and Lars Volker

Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
{geisberger,luxen,sanders}@kit.edu; bine.ka@gmx.de; lv@lekv.de

Abstract
Ride sharing becomes more and more popular not least because internet services help matching
offers and request. However, current systems use a rather simple-minded functionality allowing
to search for the origin and destination city, sometimes enriched with radial search around the
cities. We show that theses services can be substantially improved using innovative route planning
algorithms. More concretely, we generalize previous static algorithms for many-to-many routing
to a dynamic setting and develop an additional pruning strategy. With these measures it becomes
possible to match each request to n offers using 2n+ 1 exact travel time computations in a large
road network in a fraction of a microsecond per offer. For requests spread over Germany according
to population density, we are able to reduce the number of failing entries substantially. We are
able to find a reasonable match for more than 60% of the failing entries left by contemporary
matching strategies. Additionally, we halve the average waste of resources in the matches found
compared to radial search.

1998 ACM Subject Classification G.2.2

Keywords and phrases ride sharing, algorithm engineering, carpool

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.88

1 Introduction

The concept of ride sharing can be described by the following observation: Two people, who
we call driver and passenger, wish to travel from individual starting locations to destinations.
These independent journeys have starting and ending locations that are relatively close to
each other in the current setting. So, for economic reasons the travelers team up for some
part of their journeys. They share the same vehicle for some time. Ride sharing creates a
trade-off situation for the participants. Namely, cost of driving and owning a vehicle versus
the time, money and resources needed to organize a shared ride and then split the overall
cost among the participants.

Improving the matching mechanism has many beneficiaries. For example, ride sharers
may use special carpool lanes or companies that live off brokerage fees can offer a more
valuable service to their customers. Also, saved resources contribute to climate and envi-
ronmental protection. Also, another possible benefit is reduced overall congestion, which is
especially important in metropolitan areas.

There exist a number of web sites that offer ride sharing matching services to their
customers. Unfortunately, as far as we know, all of them suffer from limitations in their
method of matching.

Only a very small and limited subset of all the possible locations is actually modeled. This
rather limited modeling has several shortcomings. For customers from sparsely populated

∗ Partially supported by DFG grant SA 933/5-1

© Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders and Lars Volker;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 88–99

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders and Lars Volker 89

areas, it can be quite difficult to decide on one of the possible origin and destination places
as their location offered by the ride sharing service. Radial search around large cities has
been introduced to help selecting approximate start and end points of a trip, but still it only
helps the selection of a larger city nearby. The selection has to be done more or less manually
because sometimes circumcircles intersect each other, which makes it even harder for the
user to choose a valid starting point that leads to good matches. Also, from a technical
point of view, a trip changes its start and end points when it is mapped into a predefined set
of only a few locations. As a consequence, a correct ranking of possible matches by detour
is too much to expect from such a ride sharing matching system.

Another downside is that matching services do not support what we call lazy pickup. The
systems ignore any possible intermediate stop, if they are not given explicitly beforehand.
Note that equally short routes for same pairs of origin and destination nodes can take
arbitrarily different paths. Consider the following example to visualize the problem. Anne
and Bob both live in Germany. Anne, the driver, is from Karlsruhe and wants to go to
Berlin. Bob on the other side lives in Frankfurt and would like to travel to Leipzig. Taking
the fastest route in our example, Anne drives from Karlsruhe via Nürnberg to Berlin and is
never getting close enough to team up with Bob. However, there is a path from Karlsruhe
to Berlin via Frankfurt, which also passes by the city of Leipzig and is only about one
percent longer than the shortest path. In today’s services it is mandatory to predetermine
any possible stops artificially by hand, if they would like to pick up any passengers along
a single predetermined route. Obviously, this reduces the possibility of flexible matching a
lot. Matches that would have been perfect from a practical point of view, as in our example,
are impossible to make since the route of the trip had to be fixed before it even started.

1.1 Related Work
Previous research on ride sharing focused on multiple areas. Several authors [5, 13, 8]
investigated the socio-economic prerequisites of wide-spread customer adoption and overall
economic potential of ride sharing. For example, Hartwig and Buchmann [8] analyze the ride
sharing business case given that there exists a central service platform that can be accessed
by mobile devices.

Other authors [15, 14] identified the missing spatial resolution of concurrent ride sharing
services and examined a sensor network approach to metropolitan-local ride sharing offerings.
Hand-held mobile devices function as nodes of the sensor network and communicate locally
over short distances. Unfortunately, the work focuses on heuristic communication strategies.
Likewise, no performance guarantees are possible and rides are only matched heuristically.
Matching is done greedily and the first ride to go geometrically closer to the destination is
taken. Note that geometric routing might lead to arbitrarily bad routes on a road network
in the worst case.

Xing et al. [15] give an approach to ad-hoc ride sharing in a metropolitan area that is
based on a multi-agent model and show the validity of their approach by simulation on a
rather small metropolitan network. But in its current form the concept does not scale. As
the authors point out it is only usable by a few hundred participants and not by several
thousands or more participants that a real world ride sharing service would have.

To the best of our knowledge, there exists no previous work on fast detour computation,
which would enable drivers and riders to meet somewhere in between. (Slow) detour com-
putation is simple, it breaks down to several shortest paths computations and is therefore
solvable by Dĳkstra’s algorithm [4] out of the box. In practice, however, these computations
take too much time. There exist speed-up techniques for the shortest path computation, see

ATMOS ’10

90 Fast Detour Computation for Ride Sharing

[3] for an overview. Transit Node Routing [1, 2] is the fastest technique whereas Contraction
Hierarchies (CH) [7, 6] has the best trade-off between preprocessing and query time. The
detour computation is similar to a distance table computation. The locations of offers in the
database are fixed and lots of matching requests are performed so that preprocessing pays
off. Currently the fastest algorithm to compute distance tables is [10] in combination with
CH. The remaining parts of this paper are as follows. Section 2 gives an introduction into
the technical model of ride sharing. Section 3 explains the algorithmic details while Section
4 gives an experimental evaluation on real-life data and an analysis of the results that we
achieved. Section 5 draws conclusions and identifies future work.

2 Our Approach to Ride Sharing

We assume two types of users that we call riders and drivers. Drivers have a car and place
offers, while riders place a request to be matched to an offer. A service is a more or less
automated procedure to make those matchings.

For many services an offer only fits a request iff origin and destination locations and the
possibly prefixed route of driver and rider are identical. We call such a situation a perfect
fit. Some services offer an additional radial search around origin and destination and fixed
way-points along the route. Usually, only the driver is able to prefix the route. The existence
of these additions shows the demand for better route matching techniques that allow a small
detour and intermediate stops. We call that kind of matching a reasonable fit. These fits
are reasonable in the sense that the benefit of the match is much larger than the cost of the
detour. However, previous approaches obviously used only features of the database systems
they had available to compute the perfect fits. And we showed in the previous section that
the previous approaches are not flexible, miss possibly interesting matches or require a lot
of manual intervention.

We present an algorithmic solution to the situation at hand that leads to better results
independent of the user’s level of cooperation or available database systems. For that, we
lift the restriction of a limited set of origin and destination points. Unfortunately, the
probability of perfect fits is close to zero in this setting. But since we want to compute
reasonable fits, our approach considers intermediate stops where driver and passenger might
meet and depart later on. More precisely, we adjust the drivers route to pick up the passenger
by allowing an acceptable detour.

We model the road network as a weighted graph G = (V,E). A path P is a series of
nodes P = 〈v1, . . . , v2〉 ∈ V with edges (vi, vi+1) ∈ E between the nodes. The length c(P) of
a Path P is the sum of the weights, for example travel time, of all edges in P . Furthermore,
µ(u, v) denotes the length of a shortest path in G for the origin destination pair u, v ∈ V .
Consider the length of a not necessarily shortest path c(P), P = 〈u, . . . , v〉 and the length
of a shortest path µ(u, v). The detour factorε is defined as the ratio of µ(u, v) and c(P).

I Definition 1. Let ε > 0. We say that an offer o = (s, t) and a request g = (s′, t′)
form a reasonable fit iff there exists a path P = 〈s, . . . , s′, . . . , t′, . . . , t〉 in G with c(P) ≤
µ(s, t) + ε · µ(s′, t′).

If we model riders’ detour having the same cost as drivers detour, then the situation is
completely symmetrical. The ε in Definition 1 depicts the maximal detour that is reasonable.
Applying the ε to the riders path gives the driver an incentive to pick up the rider. A natural
choice for the detour factor is ε ≤ 0.5. For further explanation see Section 3.3.

Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders and Lars Volker 91

3 Algorithmic Details

This section covers the algorithm to find all reasonable fits to an offer. We even solve the
more general problem of computing all detours.

For a dataset of k offers oi = (si, ti), i=1..k, and a single request g = (s′, t′), we need
to compute the 2k + 1 shortest path distances µ(s′, t′), µ(si, s′) and µ(t′, ti). The detour
for offer oi is then µ(si, s′) + µ(s′, t′) + µ(t′, ti) − µ(si, ti). A naive algorithm would do a
backward one-to-all search from s′ using Dĳkstra’s algorithm and a forward one-to-all search
from t′ to compute µ(si, s′) and µ(t′, ti). Another search returns the distance µ(s′, t′). We
cannot prune the Dĳkstra search early, as the best offer need not depart/arrive near the
source/target of the request, so that each search takes several seconds on large road networks.
In Section 4 we show that the running time of our algorithm is faster by several orders of
magnitude.

To compute the distances, we adapt an algorithm for distance table computation [10].
This algorithm is based on non goal-directed, bidirectional search in a graph, preprocessed by
a suitable speedup technique. Contraction Hierarchies [7] is currently the fastest one. Given
a forward search space S↑(x) from a source node x and a backward search space S↓(y) from
target node y, we can compute µ(x, y) by intersecting both search spaces. More formally, a
forward search space S↑(x) is a set of node/distance pairs (u, d↑) such that there is a path
from x to u with distance d↑. And a backward search space S↓(y) is a set of node/distance
pairs (u, d↓) such that there is a path from u to y with distance d↓. The speedup technique
guarantees that

µ(x, y) = min
u∈V

{
d↑ + d↓ | (u, d↑) ∈ S↑(x), (u, d↓) ∈ S↓(y)

}
. (1)

Those nodes u that are in both search spaces are called meeting nodes. Note that S↑(x)
is independent of the target node y (non goal-directed) and can serve for any target node,
and the same holds for S↓(y). Both search spaces are small due to the preprocessing by
the speedup technique [10, 7]. Nevertheless, we always compute the exact shortest path
distance.

We solve our original problem by computing for each si the forward search space S↑(si)
in advance and store it. More precisely, we do not store each S↑(si) separately, but we store
forward buckets

B↑(u) :=
{

(i, d↑) | (u, d↑) ∈ S↑(si)
}

(2)

with each potential meeting node u. To compute all µ(si, s′) for the request, we compute
S↓(s′), then scan the bucket of each node in S↓(s′) and compute all µ(si, s′) simultaneously.
We have an array of tentative distances for each µ(si, s′). Initially, the distances are∞, and
we decrease them while scanning the buckets. The decrease happens following (3) that is
deduced from (1) and (2).

µ(si, s′) = min
u∈V

{
d↑ + d↓ | (i, d↑) ∈ B↑(u), (u, d↓) ∈ S↓(s′)

}
. (3)

Symmetrically, we compute backward buckets B↓(u) :=
{

(i, d↓) | (u, d↓) ∈ S↓(si)
}
to accel-

erate the computation of all µ(t′, ti). Computing distances is very space- and cache-efficient,
because it stores plain distances and scans consecutive pieces of memory. The single dis-
tance µ(s′, t′) is computed separately by computing the search spaces from s′ and t′ in the
opposite directions.

Backward and forward buckets are stored in main memory and accessed as our main
data structure and running queries on that data structure is easy.

ATMOS ’10

92 Fast Detour Computation for Ride Sharing

3.1 Adding and Removing Offers
To add or remove an offer o = (s, t), we only need to update the forward and backward
buckets. To add the offer, we first compute S↑(s) and S↓(t). We then add these entries to
their corresponding forward/backward buckets. To remove the offer, we need to remove its
entries from the forward/backward buckets.

We make no decision on the order in which to store the entries of a bucket. This makes
adding an offer very fast, but removing it requires scanning the buckets. Scanning all buckets
is prohibitive as there are too many entries. Instead, it is faster to compute S↑(s) and S↓(t)
again to obtain the set of meeting nodes whose buckets contain an entry about this offer.
We then just need to scan those buckets and remove the entries. Also, we can omit removing
offers by just having a separate bucket for each day, as described in the next section. We
mark obsolete offers so that they will be ignored for any follow-up requests.

3.2 Constraints
In reality, offers and requests have constraints. For example, they specify a departure
time window or they have restrictions on smoking, gender, etc. In this case, we need to
extend the definition of a reasonable fit to meet these constraints by introducing additional
indicator variables. As we already compute the detours of all offers, we can just filter the
ones that violate the constraints of the request. Furthermore, our algorithm can potentially
take advantage of these constraints, for example having buckets for each day separately.
This way, we reduce the number of bucket entries that are scanned during a request. This
significantly reduces the time to match a request as the bucket scans take the majority of
the time.

3.3 Algorithmic Optimizations
We accelerate the request matching time by pruning bucket scans. We can omit scanning
buckets when we limit the maximum detour to ε times the cost of the rider’s shortest route.
To do so, we look at a simple pricing scheme we know from algorithmic game theory. The
so-called fair sharing rule [12] simply states that players who share a ride split costs evenly
for the duration of the ride. Additionally, we define that drivers get compensated for their
detours directly by riders using the savings from the shared ride. Implicitly, we give the
driver an incentive to actually pick the passengers up at their start s′ and to drop them off
at their destination t′. Formally, we have that a match is economically worthwhile iff there
exists a detour factor ε for which

µ(s, s′) + µ(s′, t′) + µ(t′, t)− µ(s, t) ≤ ε · µ(s′, t′) .

The solid lines symbolize the distances that are driven, while the dashed one stands for
the shortest path of the driver that is actually not driven at all in a matched ride.

Let’s assume that ε is given, then we exploit the fact that we need to obtain S↑(s′) and
S↓(t′) for the computation of µ(s′, t′). For (u, d↑) in S↑(s′) holds d↑ ≥ µ(s′, u) and (u, d↓)
in S↓(t′) holds d↓ ≥ µ(u, t′). We compute the distance µ(s′, t′) before the bucket scanning,
and additionally keep S↑(s′) and S↓(t′) that we obtained during this search. Then we can
apply Lemma 2.

I Lemma 2. Let (u, d↓) ∈ S↓(s′) and (u, d↓) ∈ S↓(t′). We will not miss a reasonable fit
when we omit scanning bucket B↑(u) only if d↓ + µ(s′, t′) > d

↓ + ε · µ(s′, t′).

Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders and Lars Volker 93

s

s′

t

t′

Figure 1 Request (s′, t′) and matching offer (s, t) with detour.

Let (u, d↑) ∈ S↑(t′) and (u, d↑) ∈ S↑(s′). We will not miss a reasonable fit when we omit
scanning bucket B↓(u) only if d↑ + µ(s′, t′) > d

↑ + ε · µ(s′, t′).

Proof. Let (u, d↓) ∈ S↓(s′) and (u, d↓) ∈ S↓(t′), and d↓ + µ(s′, t′) > d
↓ + ε · µ(s′, t′). Let

(i, d↑) ∈ B↑(u) be a pruned offer. If the path from si to s′ via node u is not a shortest
path, another meeting node will have offer oi in its bucket, see (3). Therefore, WLOG we
assume that d↑ + d↓ = µ(si, s′). Let P be a path P = 〈si, . . . , s′, . . . , t′, . . . , ti〉 as visualised
in Figure 2, then

c(P) ≥ µ(si, s′) + µ(s′, t′) + µ(t′, ti)
= d↑ + d↓ + µ(s′, t′) + µ(t′, ti)
L.2
> d↑ + d

↓ + ε · µ(s′, t′) + µ(t′, ti)
d↑=µ(si,u), d↓≥µ(u,t′)

≥ (µ(si, u) + µ(u, t′) + µ(t′, ti)) + ε · µ(s′, t′)
4-inequality
≥ µ(si, ti) + ε · µ(s′, t′)

Therefore, P is not a reasonable fit. The proof is completely symmetric for omitting the
scan of B↓(u). J

Assume, that a passenger will not pay unreasonable high costs to share a ride, i.e. if it is
cheaper to travel on his or her own. It is easy to see that any reasonable passenger will not
pay more for the drivers detour than the gain for the shared ride which is at most 1

2 ·µ(s′, t′).
Therefore, we conclude ε ≤ 0.5. Of course, we acknowledge cultural differences and that an
ε > 0.5 may be perfectly alright in certain parts of the world. Figure 1 gives a sketch on the
line of argumentation.

u

s′ t′

si
ti

d↓

µ(s′, t′)

d
↓

d↑

Figure 2 The difference d↓ + µ(s′, t′)− d↓ is a lower bound on a detour via u.

ATMOS ’10

94 Fast Detour Computation for Ride Sharing

Figure 3 original node locations (left), perturbed node locations (middle), population density
(right).

4 Experimental Results

4.1 Environment
Experiments have been done on one core of a single AMD Opteron Processor 270 clocked at
2.0 GHz with 8 GiB main memory and 2 × 1 MiB L2 cache, running SuSE Linux 11.1 (kernel
2.6.27). The program was compiled by the GNU C++ compiler 4.3.2 using optimization
level 3.

4.2 Test Instances
Our graph of Germany is derived from the publicly available data of OpenStreetMap and
consists of 6 344 491 nodes and 13 513 085 directed edges. The edge weights are travel times
computed for the OpenRouteService car speed profile 1. To test our algorithm, we obtained a
dataset of real-world ride sharing offers from Germany available on the web. We matched the
data against a list of cities, islands, airports and the like, and ended up with about 450 unique
places. We tested the data and checked that the lengths of the journeys are exponentially
distributed. This validates assumptions from the field of transportation science. We assumed
that requests would follow the same distribution and chose our offers from that dataset as
well.

To extend the data set to our approach of arbitrary origin and destination locations,
we applied perturbation to the node locations of the data set. For each source node we
unpacked the node’s forward search space in the contraction hierarchy up to a distance of
3 000 seconds of travel time. From that unpacked search space we randomly selected a new
starting point. Likewise we unpacked the backward search space of each destination node
up to the distance and picked a new destination node. This approach applies to both offers
and requests. We observed that perturbation preserved the distribution of the original data
set.

Figure 3 compares the original node locations on the left to the result of the node
perturbation in the middle. The right side shows a population density plot of Germany2 to
support the validity of the perturbation.

1 See: http://wiki.openstreetmap.org/wiki/OpenRouteService
2 Picture is an extract of an image available at episcangis.hygiene.uni-wuerzburg.de

Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders and Lars Volker 95

●
●

●

●

●

●

●

●

●

0 0.05 0.1 0.2 0.3 0.4 0.5 1 ∞∞

0
10

20
30

40

Max. detour εε

M
at

ch
 r

eq
ue

st
 ti

m
e

[m
s]

●

random
unperturbed
perturbed

Figure 4 Match request performance for 100 000 offers.

We evaluated the performance of our algorithm for different numbers of offers where
source and target are picked at random or from our un-/perturbed real-world dataset, see
Table 1. We used CH (aggressive approach [6]) as bi-directed, non goal-directed speed-up
technique. The size required for the bucket entries is linear with the number of offers, as a
forward/backward search space have at most a few hundred nodes. The time to add an offer
o = (s, t) is independent of the number of offers, the main time is spent computing S↑(s) and
S↓(t). However, removing an offer requires scanning the buckets, and therefore the more
offers are in the database the more expensive it is. For our real-world offers, we have just 450
different source/target nodes, so that the bucket entries are clustered in only a few buckets,
this still holds when we perturb the data. Of course, the bucket entries are more evenly
distributed for completely random offers, the buckets are therefore smaller and removing an

Table 1 Performance of our algorithm for different types of offers/requests, numbers of offers
and max. detours ε.

#offers bucket add remove match request [ms]
size offer offer ε =

type [MiB] [ms] [ms] 0.0 0.05 0.1 0.2 0.3 0.4 0.5 1 ∞
perturbed 1 000 3 0.27 0.00 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.9
perturbed 10 000 28 0.24 0.29 0.9 1.0 1.1 1.3 1.5 1.6 1.8 2.7 4.1
perturbed 100 000 279 0.24 0.30 4.4 5.2 6.1 8.1 10.2 12.1 14.0 25.1 43.4
unperturbed 1 000 3 0.26 0.27 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 1.0
unperturbed 10 000 32 0.26 0.32 1.1 1.2 1.3 1.6 1.7 1.9 2.1 2.8 4.3
unperturbed 100 000 318 0.27 6.26 5.6 6.7 7.9 10.4 12.4 14.5 16.1 26.3 44.6
random 1 000 3 0.24 0.25 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.9 1.0
random 10 000 31 0.25 0.30 1.1 1.2 1.3 1.5 1.7 1.9 2.1 3.5 4.3
random 100 000 306 0.26 0.32 6.0 6.7 7.8 10.1 12.6 15.4 18.5 34.9 45.1

ATMOS ’10

96 Fast Detour Computation for Ride Sharing

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Max. detour ε

F
ra

ct
io

n
of

 m
at

ch
ed

 r
eq

ue
st

s

100000
10000
1000

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Max. detour ε

F
ra

ct
io

n
of

 m
at

ch
ed

 r
eq

ue
st

s

100000
10000
1000

Figure 5 Fraction of rides matched for a given detour (unperturbed left, perturbed right).

offer takes less time. We report the time for matching a request for different values of ε.
Even with no further optimization (ε =∞), we can handle large datasets with 100 000 offers
within 45ms. In comparison, the fastest speedup technique today, Transit Node Routing
(TNR) [2, 1] requires 1,9µs3 for each of the 2n+ 1 queries and would take about 380ms for
the largest dataset whereas our algorithm is 8.4 times faster. For a realistic ε = 0.5, we get
a further speed-up of about 3. Figure 4 visualizes the performance for different ε. It mainly
depends on ε and our algorithm is fairly robust against the different ways to pick source and
target nodes.

Our method is also faster than TNR when we look at preprocessing. Although TNR
does not need to add and store offers, our algorithm based on CH is still faster. The
preprocessing of CH is one order of magnitude faster and has no space overhead, whereas
TNR would require more than 1 GiB on our graph of Germany. This is more than enough
time to insert even 100 000 offers and more than enough space to store the bucket entries,
as Table 1 indicates.

We varied the allowed detour and investigated what influence it has on the number of
matches that can be made. A random but fixed sample of 1 000 requests was matched
against databases of various sizes. Figure 5 and Table 2 report on these experiments. The

3 This query time is on the European road network, but since the number of access nodes should be the
same on Germany, we can expect a similar query time there.

Table 2 Request matching rate for different values of maximum allowed detour.

unperturbed perturbed
ε = ε =

#offers 0 0.05 0.1 0.2 0.5 0 0.05 0.1 0.2 0.5
1000 0.248 0.281 0.370 0.558 0.865 0.003 0.028 0.096 0.271 0.715

10000 0.718 0.755 0.840 0.917 0.989 0.006 0.093 0.248 0.569 0.914
100000 0.946 0.963 0.981 0.993 1.000 0.029 0.289 0.537 0.793 0.988

Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders and Lars Volker 97

Table 3 Detour factors relative to the riders route length for the best answer achieved using
radial search and using our algorithm.

#offers radial search detour smallest detour
1 000 0.806 0.392

10 000 0.467 0.227
100 000 0.276 0.128

experiment with unperturbed data represents the algorithms currently in use, where any
user is allowed to do city-to-city queries only. For a realistic database size of 10 000 entries4
and maximum allowed detour of ε = 0.1 we improve the matching rate to 0.84. This is a
lot more than the 0.718 matching rate without detours. As expected, the matching rate
increases with the number of offers.

The more realistic scenario with the perturbed data, where offers and requests are not
only city-to-city, but point-to-point, becomes only practically possible with our new algo-
rithm. The probability to find a perfect match in this scenario is close to zero. It is necessary
to allow at least a small detour to find some matches. The ε required to find a match be-
comes larger, as we now also include intra-city detours and not only inter-city detours. Still,
with a detour factor of ε = 0.2 we achieve a matching rate of 0.569, and for the maximum
reasonable detour of ε = 0.5, we match 0.914 of all requests, that is 20% more than the
0.718 possible with a city-to-city perfect matching algorithm (unperturbed, ε = 0).

We also tested the quality of our algorithm against radial search. In the radial search
setting, each request is matched against the offer with the smallest sum of Euclidean dis-
tances w.r.t. to origin and destination location of the request. This mimics radial search
functions (with user supplied radii) offered in some current ride sharing systems. Table 3
reports the results. The average detour of all matches is less than half the detour that is
experienced with radial search, which shows the performance of our approach. On the other
hand, these numbers show the inferiority of radial search.

5 Conclusions and Future Work

We developed an algorithmic solution to efficiently compute detours to match ride sharing
offers and request. This improves the matching rate for the current city-to-city scenario.
In the new scenario for arbitrary starting and destination points, our algorithm is the first
one feasible in practice, even for large datasets. Our algorithm is perfectly suitable for
a large scale web service with potentially hundreds of thousands of users each day. This
new scenario can increase the quality of the matches and the user satisfaction, potentially
increasing the usage of ride sharing in the population.

Other cost functions are possible as well and perhaps not a single one, but several func-
tions are used. Ranking the functions to produce a pareto-optimal solution or computing
the skyline [11], i.e. the set of maxima, is an interesting problem in its own right.

We identify the adaption of our algorithm to time-dependent road networks and the
incorporation of shared memory parallelism as as well as a distributed implementation [9]

4 The database size of 10 000 entries is a realistic case and closely resembles the current daily
amount of matches made by a known German ride sharing service provider, see: http://www.ea-
media.net/geschaftsfelder/europealive/geschaftsfelder.html

ATMOS ’10

98 Fast Detour Computation for Ride Sharing

as fields of future work. Incorporating car switching and multiple passengers per car will
bring new and interesting algorithmic challenges. Although, the algorithm is sufficiently fast
when dealing with 100 000 entries, we’d like to further improve it to deal with even larger
input sizes of a magnitude of order and more. An adaption of the algorithm to the shared
taxi system of developing countries will be very interesting as well.

References

1 Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes. Fast Routing in Road
Networks with Transit Nodes. Science, 316(5824):566, 2007.

2 Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes,
and Dorothea Wagner. Combining Hierarchical and Goal-Directed Speed-Up Techniques
for Dĳkstra’s Algorithm. ACM Journal of Experimental Algorithmics, 15:2.3, January 2010.
Special Section devoted to WEA’08.

3 Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineering Route
Planning Algorithms. In Jürgen Lerner, Dorothea Wagner, and Katharina A. Zweig, edi-
tors, Algorithmics of Large and Complex Networks, volume 5515 of Lecture Notes in Com-
puter Science, pages 117–139. Springer, 2009.

4 Edsger W. Dĳkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271, 1959.

5 John F. Dillenburg, Ouri Wolfson, and Peter C. Nelson. The Intelligent Travel Assistant. In
ITSS 2002: Proceedings of the 5h International Conference on Intelligent Transportation
Systems, pages 691–696. IEEE Computer Society, September 2002.

6 Robert Geisberger. Contraction Hierarchies. Master’s thesis, Universität Karlsruhe
(TH), Fakultät für Informatik, 2008. http://algo2.iti.uni-karlsruhe.de/documents/
routeplanning/geisberger_dipl.pdf.

7 Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction
Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In Catherine C.
McGeoch, editor, Proceedings of the 7th Workshop on Experimental Algorithms (WEA’08),
volume 5038 of Lecture Notes in Computer Science, pages 319–333. Springer, June 2008.

8 Stephan Hartwig and Michael Buchmann. Empty Seats Travelling. Technical report, Nokia
Research Center, 2007.

9 Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. Distributed Time-
Dependent Contraction Hierarchies. In Paola Festa, editor, Proceedings of the 9th Interna-
tional Symposium on Experimental Algorithms (SEA’10), volume 6049 of Lecture Notes in
Computer Science. Springer, May 2010.

10 Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea Wagner.
Computing Many-to-Many Shortest Paths Using Highway Hierarchies. In Proceedings of
the 9th Workshop on Algorithm Engineering and Experiments (ALENEX’07), pages 36–45.
SIAM, 2007.

11 H. T. Kung, Fabrizio Luccio, and F. P. Preparata. On Finding the Maxima of a Set of
Vectors. Journal of the ACM, 22(4):469–476, 1975.

12 Noam Nisan, Tim Roughgarden, Éva Tardos, and Vĳay V. Vazirani, editors. Algorithmic
Game Theory. Cambridge University Press, 2007.

13 Masyuku Ohta, Kosuke Shinoda, Yoichiro Kumada, Hideyuki Nakashima, and Itsuki Noda.
Is Dial-a-Ride Bus Reasonable in Large Scale Towns? — Evaluation of Usability of Dial-a-
Ride Systems by Simulation —. In Multiagent for Mass User Support - First International
Workshop, volume 3012 of Lecture Notes in Computer Science, pages 105–119. Springer,
2004.

http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/geisberger_dipl.pdf
http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/geisberger_dipl.pdf

Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders and Lars Volker 99

14 Yun Hui Wu, Lin Jie Guan, and Stephan Winter. Peer-to-Peer Shared Ride Systems. In
GeoSensor Networks, volume 4540 of Lecture Notes in Computer Science, pages 252–270.
Springer, August 2006.

15 Xin Xing, Tobias Warden, Tom Nicolai, and Otthein Herzog. SMIZE: A spontaneous
Ride-Sharing System for Individual Urban Transit. In Proceedings of the 7th German
Conference on Multiagent System Technologies (MATES 2009), volume 5774 of Lecture
Notes in Computer Science, pages 165–176. Springer, September 2009.

ATMOS ’10

An Empirical Analysis of Robustness Concepts for
Timetabling∗

Marc Goerigk and Anita Schöbel

Institute for Numerical and Applied Mathematics
University of Göttingen
Lotzestr. 16-18
D-37083 Göttingen, Germany
{m.goerigk,schoebel}@math.uni-goettingen.de

Abstract
Calculating timetables that are insensitive to disturbances has drawn considerable research efforts
due to its practical importance on the one hand and its hard tractability by classical robustness
concepts on the other hand. Many different robustness concepts for timetabling have been
suggested in the literature, some of them very recently. In this paper we compare such concepts
on real-world instances. We also introduce a new approach that is generically applicable to any
robustness problem. Nevertheless it is able to adapt the special characteristics of the respective
problem structure and hence generates solutions that fit to the needs of the respective problem.

1998 ACM Subject Classification G.2.2 Graph Theory - Network problems

Keywords and phrases Timetabling, Robust Optimization, Algorithm Engineering

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.100

1 Introduction

The aperiodic timetabling problem has received considerable attention in recent robust op-
timization literature (see, e.g., [7, 9, 11]) as one of significant importance in real-world
applications where it is needed to create timetables that stay "good" under the unavoidable
small disturbances of daily railway operations. Robust solutions usually lead to high buffer
times, which in turn yield high traveling times and thus unattractive timetables. Newly
introduced concepts are all in between the extremes of the best nominal timetable, which is
least robust, and the strictly robust timetable, which tends to be too conservative.

In this paper we compare for the first time the most prominent robustness concepts for
timetabling numerically on a real-world instance. We furthermore present a new concept
for finding robust solutions with an easily applicable algorithm, yielding timetables that are
a good compromise between traveling time and robustness. In general, this algorithm can
be used whenever a solver for the nominal problem is at hand, which gives the possibility
to make use of existing, powerful methods with small effort of software rewriting.

We analyze two different types of uncertainty, one that allows small delays on all edges,
and one that allows heavy delays on a restricted set of edges, and show empirically that the
structure of these determine which robustness concept fits best.

The problem we consider is the following: Let an event-activity-network (EAN) be given,
that is, a directed graph G = (E ,A) consisting of departure and arrival events E = Earr∪Edep

∗ This work was partially supported by grant SCHO 1140/3-1 within the DFG programme Algorithm
Engineering.

© Marc Goerigk and Anita Schöbel;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 100–113

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Marc Goerigk and Anita Schöbel 101

and waiting, driving, changing and headway activities A = Await ∪Adrive ∪Achange ∪Ahead.
Driving activities Adrive ⊆ Edep×Earr represent traveling from one station to another, while
waiting activitiesAwait ⊆ Earr×Edep represent staying of a train at a station while passengers
board and deboard. Changing activities Achange ⊂ Earr×Edep model passengers who plan to
change from one train to another at the same station, while headways Ahead ⊂ Edep × Edep
are introduced to model safety distances between trains sharing the same infrastructure.
Assigned to each of these activities (i, j) ∈ A is a minimal duration l̂ij ∈ IN representing
the technically possible lower time bound for an activity to take place, and a number wij of
passengers using activity (i, j) ∈ A. The task is to find node potentials πi ∈ IR for all i ∈ E ,
such that the sum of passenger traveling times wij(πj − πi) over all activities (i, j) ∈ A is
minimized for given passenger weights wij under the time restrictions πj − πi ≥ l̂ij for each
activity (i, j) ∈ A. Its well-known mathematical formulation is

(TT) min
∑

(i,j)∈A

wij(πj − πi) (1)

s.t. πj − πi ≥ l̂ij ∀(i, j) ∈ A (2)
πi ≥ 0 ∀i ∈ E . (3)

We will sometimes simply write l̂ = (l̂ij)(i,j)∈A as the vector of all lower bounds, and similary
π = (πi)i∈E as the vector of node potentials, for any given edge- and node order. Note that
the time restrictions form a totally unimodular matrix, i.e. even though real node potentials
might be considered as unrealistic in railway operations, we will always find an integer
optimal solution. Furthermore, (TT) is feasible for all possible activity durations l̂ ≥ 0 if
the network does not contain any directed cycle with positive length, infeasible otherwise.

2 Robustness Concepts

In order to hedge (TT) against delays in operation, we have to model the possible distur-
bances first. Which (source) disturbances occur is in practice not known beforehand, since
this depends on exterior influences like weather conditions or technical failures. Hence the
activity durations are uncertain. In this paper we assume that the passenger distribution
w = (wij)(i,j)∈A, i.e., the number of passengers using each activity, is known.

The first type of uncertainty we consider is one of uniform deviation. Imagine, for
example, bad weather conditions that slightly delay all trains on track equally. We model
this behavior with the following set of scenarios depending on s ∈ IR+, where s controls the
level of uncertainty:

U1(s) := {l : l̂ij ≤ lij ≤ (1 + s)l̂ij ∀(i, j) ∈ Adrive ∪ Await,

lij = l̂ij ∀(i, j) ∈ Achange ∪ Ahead}

The second type of uncertainty we analyze models the situation that only a restricted number
of activities may be delayed at the same time, but heavier. E.g., this may be the case when
good weather conditions hold but single trains are delayed by blocked tracks or technical
failures. For k ≥ 1, we define

U2(k, s) := {l : l̂ij ≤ lij ≤ (1 + s)l̂ij ∀(i, j) ∈ D ⊆ Adrive ∪ Await, |D| = k,

lij = l̂ij ∀(i, j) ∈ A \D}

Using U2 we assume that not all, but at most k lower bounds change to their worst values
in the same scenario, which can be interpreted in the sense of Bertsimas and Sim [3] in the
dual problem.

ATMOS ’10

102 An Empirical Analysis of Robustness Concepts for Timetabling

We now survey recent robustness concepts and show how they can be applied to the
timetabling problem. To this end, let us consider a general optimization problem (P) min{f(x) :
F (x) ≤ 0} with an objective function f : IRn → IR and constraints F : IRn → IRm. Its
uncertain version is given as

(P(ξ)) min f(x, ξ) (4)
s.t. F (x, ξ) ≤ 0 (5)

x ∈ IRn, (6)

depending on the scenario parameter ξ from a given uncertainty set U ⊆ IRM . There may
be a specific element ξ̂ ∈ U that models the problem as it would be without the existence of
disturbances. This element is called the nominal scenario and (P (ξ̂)) is called the nominal
problem. We consider problem (TT) as an uncertain optimization problem w.r.t l, where the
objective function f(π) =

∑
(i,j)∈A wij(πj−πi) does not depend on l and the constraints are

given as F (π, l) = (l−Atπ), where A is the node-arc incident matrix of G, that is, aie = 1,
if e = (j, i) for a j ∈ E , aie = −1, if e = (i, j) for a j ∈ E , and aie = 0 else, and l ∈ IR|A|

contains the minimum activity durations. Note that for U1 and U2, we have M = m.

2.1 Strict Robustness
Strict robustness might be considered as the oldest and most conservative approach to
uncertainty. It was introduced by Soyster [13] and significantly extended by Ben-Tal, Ghaoui
and Nemirovski, see [2, 1] and references therein. The concept requires feasibility of a robust
solution under all possible scenarios, i.e. that F (x, ξ) ≤ 0 for all ξ ∈ U . For (TT) we obtain

(S-TT) min
∑

(i,j)∈A

wij(πj − πi) (7)

s.t. πj − πi ≥ lij ∀(i, j) ∈ A and ∀l ∈ U (8)
π ≥ 0. (9)

(S-TT) is called the strict robust counterpart of (TT). In general, this leads to infinitely many
constraints, depending on the choice of U . It is shown in [2] that if U = conv{ξ1, . . . , ξN},
where conv denotes the convex hull, and F (x, ·), f(x, ·) are quasiconvex in ξ, then the strict
robust counterpart is equivalent to a program where the constraints only have to be satisfied
for ξ1, . . . , ξN . This is evidently the case for (TT) with U1 as defined above. Omitting
redundant constraints we hence gain the following strict robust formulation for U1:

(S-TT) min
∑

(i,j)∈A

wij(πj − πi) (10)

s.t. πj − πi ≥ (1 + s)l̂ij ∀ (i, j) ∈ A (11)
π ≥ 0 (12)

In case of U2, the same result holds due to the fact that all but the listed constraints (11)
become dominated by other scenarios. Remark that the guaranteed feasibility comes at a
high price, as the maximum buffer is put on every edge even though only a few may become
delayed.

2.2 Light Robustness
Fischetti and Monaci introduced in [9] an approach that relaxes the constraints of the strict
robust counterpart to gain more flexibility. As before, let m be the number of constraints.

Marc Goerigk and Anita Schöbel 103

Variables γi are introduced for each constraint i = 1, . . . ,m of the nominal problem that
measure the degree of relaxation needed for strict robustness. The goal is to minimize the
sum of these γi while guaranteeing a certain quality of the solution. Let the nominal scenario
be denoted by ξ̂ ∈ U and let z∗ > 0 be the optimal objective of the nominal problem. Then,
for a given δ, the light robustness approach is

(LR) min
∑

γi (13)

s.t. F (x, ξ̂) ≤ 0 (14)

f(x, ξ̂) ≤ (1 + δ)z∗ (15)
Fi(x, ξ) ≤ γi ∀i = 1, . . . ,m, ∀ξ ∈ U (16)
γ ≥ 0 (17)

Constraint (14) ensures nominal feasibility, while (15) controls the nominal quality by
the parameter δ. Constraints (16) allow infeasibility for the other scenarios ξ ∈ U , which
will be minimized by the objective function.

Applying this scheme to the timetabling problem (TT) with uncertainty U1 and dropping
dominated constraints gives the following program:

(L-TT) min
∑

γij (18)

s.t.
∑

wij(πj − πi) ≤ (1 + δ)z∗ (19)

πj − πi ≥ l̂ij ∀(i, j) ∈ A (20)

πj − πi ≥ (1 + s)l̂ij − γij ∀(i, j) ∈ A (21)
γ, π ≥ 0 (22)

Note that l̂ is used as the nominal scenario. Constraint (16) simplifies to (21), as all
other scenarios l ∈ U become dominated. Also here U2 yields the same formulation as we
can again drop dominated constraints.

2.3 Recoverable Robustness
The concept of Recoverable Robustness was introduced by Liebchen et al. in [11] and by
Cicerone et al. in [4, 8, 5], both groups also proposing applications to timetabling. The
basic idea is to find a robust solution that can be "repaired" (i.e., made feasible by delaying
events) with low costs as soon as the real scenario becomes known. In both papers [11, 6], the
sum of all arrival delays of the passengers and the maximum delay of each arrival event are
restricted by budget parameters λ1 or λ2. As these budget parameters might be difficult to
estimate in advance, they are regarded as variables in [11] and become part of the objective
function with according weights, say g1 and g2. Denoting by w̃i, i ∈ Earr, the number of
passengers de-boarding at event i, and assuming a finite set of scenarios U , [11] suggest the
following program:

(R-TT) min
∑

(i,j)∈A

wij(πj − πi) + g1λ1 + g2λ2 (23)

s.t. πj − πi ≥ l̂ij ∀(i, j) ∈ A (24)
πlj − πli ≥ lij ∀l ∈ U , ∀ (i, j) ∈ A (25)
πli ≥ πi ∀l ∈ U , ∀i ∈ Edep (26)

ATMOS ’10

104 An Empirical Analysis of Robustness Concepts for Timetabling

∑
i∈Earr

w̃i(πli − πi) ≤ λ1 ∀l ∈ U (27)

πli − πi ≤ λ2 ∀l ∈ U , ∀i ∈ Earr (28)
λ1, λ2, π

l, π ≥ 0 (29)

Regarding the number of variables, note that for each scenario a timetabling problem has
to be solved. The concept was originally designed for an uncertainty of type U2, meaning
that

(|A|
k

)
+ |A|+2 variables need to be created. For k > 1 this becomes quickly intractable.

For k = 1 exactly one activity is delayed per scenario and we may write U ∼= Await ∪ Adrive

for short. The authors present a possibility to reformulate the recovery robust timetabling
problem in a more compact way by setting g2 = 0 and introducing a fixed recovery budget
D instead of using λ1. For every scenario e variables ye = πe − π ∈ IR|E| are needed. Using
slack variables f one obtains

(R2-TT) min
π,f

∑
(i,j)∈A

wij(πj − πi) (30)

s.t. πj − πi − fij = l̂ij ∀(i, j) ∈ A (31)
fij + yej − yei ≥ sχij(e) ∀(i, j) ∈ A, ∀e ∈ Await ∪ Adrive (32)
D ≥ ‖ye‖1 ∀e ∈ Await ∪ Adrive (33)
f, ye, π ≥ 0, (34)

where χij(e) = 1 if e = (i, j) and zero else. In this formulation we changed the weights w̃ to
be 1 for all nodes for better comparability with other models; however, also other weights
may be considered.

For the uncertainty U1 we obtain a different formulation. Here it is sufficient to find a
recovery solution πworst for only the worst-case scenario in which all activity durations take
their worst values. Hence, by setting w̃i = 1 for all i ∈ E again, (R-TT) simplifies to

(R1-TT) min
∑

(i,j)∈A

wij(πj − πi) + g1λ1 + g2λ2 (35)

s.t. πj − πi ≥ l̂ij ∀(i, j) ∈ A (36)

πworstj − πworsti ≥ (1 + s)l̂ij ∀(i, j) ∈ A (37)
πworsti ≥ πi ∀ i ∈ E (38)
‖πworst − π‖1 ≤ λ1 (39)
πworsti − πi ≤ λ2 ∀i ∈ E (40)
λ1, λ2, π̂, π ≥ 0. (41)

3 A New Approach: Recover to Optimality

In this section we consider a new type of robust approach that aims to minimize the expected
or the maximum repair costs to an optimal solution of a scenario, measured in terms of a
distance function. The robust counterpart of this setting is in general notation given as

(RecOpt) min
x

sup
ξ∈U

d(x, xξ)

s.t. xξ is an optimal solution to (P(ξ)),

where d(x, xξ) represents the recovery costs needed to update a timetable x to another
timetable xξ. Instead of the supremum also the average recovery costs may be considered.

Marc Goerigk and Anita Schöbel 105

Since we recover not to a feasible, but to an optimal solution xξ, a strictly robust solution
has no recovery costs in (R-TT), but especially in timetabling will usually have high recovery
costs in the sense of (RecOpt). Recovery to optimality may also mean to let events take
place earlier which is reasonable when a timetable needs not be adapted to the scenario
during the operational phase, but the scenario is known some time before (like in the case
of track maintenance or exceptional weather forecasts).

This concept therefore generalizes several well-known approaches of robust optimization
theory. As an example, in min max regret literature (see [10] for an overview, or [14] where
it is called deviation robustness), one considers the problem of minimizing the difference
between the objective value of the current solution and the one that would have been best
for the scenario, that is:

(MinMaxReg) min maxξ∈U f(x, ξ)− f∗(ξ),
where f∗(ξ) denotes the best possible solution for scenario ξ. In contrast to this, our

approach aims at minimizing the distance between the current solution x and the solution
that would have been best for the scenario. Minmax-regret robustness is hence a special
case of (RecOpt) by using the difference in the objectives as a distance measure. Also, the
problem of finding a strict robust solution can be considered as a (RecOpt) problem, where
the objective value is required to be zero. Compared to recoverable robustness, we recover
to optimality, not to feasibility, and allow any distance measure d.

Instead of solving (RecOpt) to optimality we suggest the following heuristic in which
we create a number of scenarios ξ, solve them separately, and find the robust solution by
solving a location problem in which the given facilities are the respective optimal solutions
of the instances (P(ξ)). Thus we apply the following algorithm to the timetabling problem:

Algorithm RecOpt-TT:
→ Input: A robust aperiodic timetabling instance (TT), a sample size ν ∈ IN and a

distance measure d : IR|E| × IR|E| → IR.
1. Choose a subset S ⊆ U of ν elements at random.
2. Create vectors πl ∈ IR|E| by solving TT(l) for each l ∈ S.
3. Find a vector π ∈ IR|E| by minimizing the sum/maximum of distances d(π, πl) for all

l ∈ S.
← Output: A robust solution π.

This algorithm is generically applicable to any other robust problem, but has to be
specified to its respective needs. In particular, we have to determine which distance measure
represents the recovery costs best, how many scenarios should be chosen, and how they
should be created.

Note that this heuristic is easily applicable whenever a method for solving the nominal
problem is available. Only a generic location problem solver has to be used, while existing
algorithms need not be changed.

For our numerical evaluation we used the same recovery costs as in (R1-TT) and (R2-
TT), which is the ‖ · ‖1-distance, either in combination with a sum or a maximum, and we
added the squared Euclidean distance as third alternative. The resulting combinations are
shown in Table 1.

Note that we are free to add further restrictions to the location of π. Since a nominal
infeasible timetable would not be of practical use, we additionally impose nominal feasibility
constraints and solve restricted location problems. We remark that there can be an optimal
d1 center or median for the timetabling problem, that is not feasible for the nominal scenario.
In contrast to this, the centroid is always feasible, as Lemma 1 shows.

ATMOS ’10

106 An Empirical Analysis of Robustness Concepts for Timetabling

Distance (recovery costs) sum/max Name Calculation
d1(x, y) = ‖x− y‖1 sum d1 median argminπ

∑
l∈S

∑
i∈E |πi − π

l
i|

d1(x, y) = ‖x− y‖1 max d1 center argminπ maxl∈S
∑

i∈E |πi − π
l
i|

d2
2(x, y) = ‖x− y‖2

2 sum centroid 1
|S|

∑
l∈S π

l

Table 1 Evaluated distance - sum/max combinations.

I Lemma 1. Let (P (b)) be an uncertain problem with constraints Ax ≥ b only depending on
the right-hand side. Let b̂ ∈ U be the nominal scenario with b̂ ≤ b for all b ∈ U . Let S ⊆ U
be a finite set and let xb be an optimal solution to (P(b)) for all b ∈ S. Then the centroid,
i.e. the solution to minx

∑
b∈S ‖x− xb‖2

2, is nominal feasible.

Proof. Let x ∈ IRn be the centroid. For the kth constraint, we obtain:

n∑
i=1

akixi =
n∑
i=1

aki
1
|S|
∑
b∈S

xbi = 1
|S|
∑
b∈S

n∑
i=1

akix
b
i ≥

1
|S|
∑
b∈S

bk ≥
1
|S|

|S|∑
j=1

b̂k = b̂k

J

I Corollary 2. Let a (TT) instance with an uncertainty set U1 or U2 be given, and let d = d2
2.

Then the robust solution calculated by the sum version of (RecOpt-TT) is nominal feasible
for any finite set S ⊆ U .

This result naturally extends to interval-based uncertainties of the form [b̂− ε, b̂+δ] with
δ > ε, i.e., the nominal scenario does not need to be the smallest one. By the law of large
numbers the centroid is nominal feasible for ν → ∞ and a uniformly distributed choice of
scenarios.

Concerning the amount of scenarios, we tested numerically how many scenarios were
needed for a convergence of solutions. This was already the case for less than 100 instances
on the instances described in Section 4.

Finally, we have to decide how to choose the subset S ⊆ U . For finite U , we may
simply choose the whole set, but this approach is not possible anymore for infinite sets. We
now present a sufficient condition under which the choice of a finite subset solves (RecOpt)
exactly.

I Theorem 3. Let U = conv{ξ1, . . . , ξN} ⊆ IRM and let d(x, ·) be convex in its second
argument. Let x : IRM → IRn assign an optimal solution x(ξ) to any scenario ξ, and
assume that x is affine linear. By writing xi := x(ξi) for short we have
1. For all ξ ∈ U : x(ξ) ∈ conv{x1, . . . , xN}.
2. The center of x1, . . . , xN with respect to the distance measure d solves (RecOpt).

Proof. Let ξ ∈ U , i.e. there exist λi, i = 1, . . . , N with 0 ≤ λi ≤ 1,
∑N
i=1 λi = 1 and

ξ =
∑N
i=1 λiξ

i. Then we obtain

x(ξ) = x

(
N∑
i=1

λiξ
i

)
=

N∑
i=1

λix(ξi) =
N∑
i=1

λix
i,

i.e. x(ξ) ∈ conv{x1, . . . , xN}. Concerning the second part of the theorem, define r∗ :=
maxi=1,...,N d(x∗, xi) as the radius of the center x∗ and let r̄ be the best possible objective
value for (RecOpt). Since r∗ ≤ r̄ it remains to show that the recovery radius of x∗ with
respect to U equals r∗, i.e. that d(x∗, x(ξ)) ≤ r∗ for all ξ ∈ U .

Marc Goerigk and Anita Schöbel 107

To this end, let ξ ∈ U . Then x(ξ) ∈ conv{x1, . . . , xN} and hence there are λi, i =
1, . . . , N , with 0 ≤ λi ≤ 1,

∑N
i=1 λi = 1 and

∑N
i=1 λix

i = x(ξ). Quasi-convexity of d(x∗, ·)
yields

d(x∗, x(ξ)) = d(x∗,
N∑
i=1

λix
i) ≤ Nmax

i=1
d(x∗, xi) = r∗,

hence x∗ is in fact optimal for (RecOpt). J

This raises the question, when the solution mapping x is indeed affine linear. We present
some results on general linear programs with uncertain right-hand side, i.e.

(P (b)) min{ctx : Ax = b, x ≥ 0, x ∈ IRn}, b ∈ U , (42)

where A ∈ IRm×n.

I Lemma 4. Consider (P(b)) with a convex uncertainty set U ⊆ IRM and assume that
int(U) 6= ∅, where int(U) denotes the interior of U . Then x : IRM → IRn as defined in
Theorem 3 is an affine linear function if and only if there exists a basis B ⊆ {1, . . . , n} with
non-negative reduced costs1 and A−1

B b ≥ 0 for all b ∈ U .

Proof. "if": Let B be such a basis. Since the reduced costs ctn − ctBA
−1
B An ≥ 0 are

independent of b and feasibility of the corresponding basic solution is ensured for all
b ∈ U we know from linear programming theory that x(b) := (A−1

B b, 0) is optimal for
(P(b)). Hence, x(b) is an affine linear function.
"only if": Choose any b0 ∈ int(U) and solve the linear program. This yields a basis B
with nonnegative reduced costs and A−1

B b0 ≥ 0, i.e. x(b0) = (A−1
B b0, 0) is an optimal

solution.
As b0 ∈ int(U) we can find for every unit vector ei ∈ IRM an εi and a direction di ∈
{−1,+1} such that

bi := b0 + εidiei ∈ U

and A−1
B bi ≥ 0. Hence, B is an optimal basis for b0, b1, . . . , bM , i.e. we have x(bi) =

(A−1
B bi, 0) for i = 0, 1, . . . ,M . Due to our assumption x(b) is affine linear; hence it is

uniquely determined on the set of {b0, b1, . . . , bM} of M + 1 affinely independent points.
This yields x(b) = (A−1

B b, 0) for all b ∈ U , in particular we have A−1
B b ≥ 0 for all b ∈ U .

J

Note that the uncertainty U1 is a polyhedral set with a finite number of extreme points,
while U2 is not convex for fixed k, s. By introducing slack variables f as in (R2-TT), we
may rewrite the constraints πj − πi ≥ lij of the timetabling problem to πj − πi − fij = bij .
We hence gain the following corollary to Lemma 4:

I Corollary 5. Let a (TT) instance with an uncertainty set U = conv{l1, . . . , lN} be given.
Assume that there is a basis B that is optimal for each scenario l ∈ U . Then the d1 center
with respect to the solutions xl1 , . . . xlN solves (RecOpt) applied to the timetabling problem
optimally, i.e. the choice S = {l1, . . . , lN} in step 1 of (RecOpt-TT) leads to an exact
optimal solution.

1 For the definition of reduced costs, see any introductory textbook on linear optimization, e.g., Linear
Optimization and Extensions: Theory and Algorithms, by Fang and Puthenpura, Prentice Hall, 1993.

ATMOS ’10

108 An Empirical Analysis of Robustness Concepts for Timetabling

In the following we will investigate again (P(b)) but with the additional assumption that
the uncertainty set U ⊆ IRm (in this case, M = m) is symmetric with respect to some
specified vector b∗ ∈ IRm, that is, for all b ∈ U there is a b̂ ∈ U , such that b − b∗ = b∗ − b̂.
We will show that in this case b∗ solves (RecOpt). To this end, we first need the following
lemma about the center of a symmetric location problem.

I Lemma 6. Let C ⊆ IRn be a compact set of points that is symmetric with respect to x∗ ∈
IRn. Let d be a distance measure that has been derived from a norm, i.e. d(x, y) = ‖y − x‖
for some norm ‖ · ‖. Then x∗ is a d-center of C.

Proof. Let maxx∈C d(x, x∗) = r and let y1, y2 ∈ C be a pair of symmetric points (i.e.
y1 − x∗ = x∗ − y2) that maximizes the distance to x∗. Let x′ be any point. Applying the
triangle inequality and using that y1, x

∗, y2 are collinear yields

2r = d(y1, x
∗) + d(x∗, y2) = d(y1, y2) ≤ d(y1, x

′) + d(x′, y2)

and therefore either r ≤ d(y1, x
′) or r ≤ d(x′, y2) holds. We conclude that

max
x∈C

d(x, x′) ≥ max{d(y1, x
′), d(y2, x

′)} ≥ r,

hence x′ cannot be better than x∗. J

I Theorem 7. Let (P(b)), b ∈ U be an uncertain linear program (42) and let U be symmetric
with respect to b∗ ∈ IRm. Let B be an optimal basis for (P(b∗)) and assume that A−1

B b ≥ 0
for all b ∈ U . Then x(b∗) solves (RecOpt).

Proof. B is an optimal basis for every b ∈ U , as A−1
B b ≥ 0. Thus x(b) = A−1

B b.
As U is a symmetric set with respect to b∗ and x an affine linear mapping, the set of optimal
solutions is symmetric with respect to x(b∗) and we can apply Lemma 6. J

This directly gives a result for all interval-based uncertainty sets.

I Corollary 8. Let (P(b)), b ∈ U = {b ∈ IRm : η ≤ b ≤ η} be an uncertain linear program
(42) and let η, η ∈ IRm. Let b ∈ U and let B be an optimal basis for (P(b)). If A−1

B η ≥ 0
and A−1

B η ≥ 0 both hold, then an optimal solution of (RecOpt) can be found by solving
(P (b∗)) with b∗ := η+η

2 .

Applied to the timetabling problem, we may conclude:

I Corollary 9. Let a (TT) instance with uncertainty set U1, be given. Let l∗ := (1 + s/2)l̂
and assume that there is a basis that is optimal for TT(l̂) and TT((1 + s)l). Then any
optimal solution to TT(l∗) solves (RecOpt) for the timetabling problem for every distance d
that stems from a norm.

4 Numerical Studies

4.1 Problem Instance and Parameters
The instance was created using the LinTim toolbox [12] for optimization in public trans-
portation based on an intercity train network with the size of the German IC/ICE railway
system. The time horizon under consideration consists of the eight-hour service period from
8 a.m. to 4 p.m., resulting in an EAN with 379 activities and 377 events. All computations

Marc Goerigk and Anita Schöbel 109

were carried out on a Quad-Core AMD Opteron Processor running at 2.2 GHz using the
C++ - interface of Gurobi v. 3.00.

We set for (R1-TT) g1 = 50, g2 = 10, 000 to gain a solution which is a good compromise
in robustness as well as in objective value. The budget D for (R2-TT) was set to 2000.
The budget δ for light robustness was set to 0.1, meaning that the objective value of the
light robust solution is allowed to deviate up to 10 percent with respect to the nominal
optimality. Furthermore, we tested a simple uniformly buffered solution by multiplying all
node potentials of the nominal optimum with 1.06, which increased all activity durations by
6 percent, a method which is often applied in practice.

Concerning the choice of S ⊆ U for (RecOpt-TT), we tested two versions. In the first, we
restricted the choice to extreme points of U , in the second we chose uniformly over the whole
uncertainty set. Our results showed a better performance of the latter approach regarding
recovery costs to feasibility and optimality for U1, but a slightly better performance for the
extreme points approach for U2. For the following evaluations we present the (RecOpt-TT)
solutions under this respective scenario choice: For U1, the scenarios were chosen uniformly
over the whole uncertainty set, for U2 only from the extreme points.

4.2 Setting
We tested the U1 algorithms for s = 0, . . . , 0.3 and the algorithms for U2 with s = 0, . . . , 1
and k = 1. For each algorithm and iteration the following values were measured:

Objective value:
∑

(i,j)∈A wij(πj − πi)
Average relative buffer: 1/|A|(

∑
(i,j)∈A(πj − πi)/lij)− 1

Average costs, when recovering to feasibility: A large number of scenarios lq, q = 1, . . . , Q,
(in that case Q = 1, 000) chosen randomly from U1 was created, and for each of these
scenarios the recovery costs were calculated by solving

min
∑
i∈E

πqi − πi

s.t. πqj − π
q
i ≥ l

q
ij ∀ (i, j) ∈ A

πqi ≥ πi ∀ i ∈ E ..

Afterwards, the average of these objective values was taken.
Worst-case costs when recovering to optimality: As for the calculation of the recovery
costs, scenarios lq for q = 1, . . . , Q were created. Then the respective timetable problem
TT(lq) was solved and the d1-distance to the given solution measured. The maximum
of these distances is the optimality distance, an approximation to the d1 radius.
Feasibility: A large number of scenarios is chosen at random by an exponential distribu-
tion of average 0.1. We did not choose uniform distribution, as solutions easily tend to
be infeasible and less insight is gained. For every scenario we tested if the robust solution
is feasible or not and averaged the feasibility.
Running times.

4.3 Evaluation
4.3.1 Objective value.
In Figure 1 the objective values of the robustness concepts for U1 and U2 are plotted against
the control parameter s, describing the increasing uncertainty of the input data. The values
of the nominal solution are as expected constant throughout s, just like the buffered and

ATMOS ’10

110 An Empirical Analysis of Robustness Concepts for Timetabling

the light robust solution. The fastest growing costs are those of the strictly robust solution.
They might be still acceptable for the small disturbances of U1, but they are clearly far
too high for U2. The costs of the recovery robust solutions are moderate in both cases.
Concerning the (RecOpt-TT) solutions, the costs grow moderately, though a bit faster than
those of the recovery robust solution, on U1, while they stay extremely low for U2.

 1.55e+09

 1.6e+09

 1.65e+09

 1.7e+09

 1.75e+09

 1.8e+09

 1.85e+09

 1.9e+09

 1.95e+09

 2e+09

 2.05e+09

 0 0.05 0.1 0.15 0.2 0.25 0.3

nominal
strict
light

buffer
recovery 1

l1 center
l1 median

centroid

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 2.2e+09

 2.4e+09

 2.6e+09

 2.8e+09

 3e+09

 3.2e+09

 0 0.2 0.4 0.6 0.8 1

nominal
strict
light

buffer
recovery 2

l1 center
l1 median

centroid

Figure 1 Objective function for U1 (left) and U2 (right) solutions against s.

4.3.2 Average buffer.
The average buffers are shown in Figure 2. Most strikingly, the recovery robust solution for
U1 has even larger buffers than the strictly robust solution, which is due to the fact that less
weighted edges are buffered more. The light robust solution shows an interesting behavior
by being not monotone. The centroid, d1 center and median show a much larger increase in
buffer times for U1 than for U2.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 0.05 0.1 0.15 0.2 0.25 0.3

nominal
strict
light

buffer
recovery 1

l1 center
l1 median

centroid

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 0.2 0.4 0.6 0.8 1

nominal
strict
light

buffer
recovery 2

l1 center
l1 median

centroid

Figure 2 Average buffer for U1 (left) and U2 (right) against s.

4.3.3 Average recovery costs when recovering to feasibility.
The recovery costs for U1 and U2 algorithms are depicted in Figure 3. Note the larger
scale of the right figure: Recovery costs are generally much higher for U2-type uncertainties.
The nominal solution performs worst for U1, being followed by the buffered solution with a
constant offset stemming from the added 6 percent to activity durations. The recovery costs

Marc Goerigk and Anita Schöbel 111

of the light robust solution stay slightly below those of the recovery robust solution, while
the (RecOpt-TT) solutions show the slightest increase. On the other hand, they perform
similar to the nominal solution for U2. Here the recovery robust solution has slightly lower
costs, being exceeded by the buffered and especially the light solutions still.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 0.05 0.1 0.15 0.2 0.25 0.3

nominal
strict
light

buffer
recovery 1

l1 center
l1 median

centroid

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 0.2 0.4 0.6 0.8 1

nominal
strict
light

buffer
recovery 2

l1 center
l1 median

centroid

Figure 3 Average recovery costs to feasibility for U1 (left) and U2 (right) against s.

4.3.4 Worst-case recovery costs when recovering to optimality.
Figure 4 shows the approximate maximum d1-distances to the optimal solutions of the
uncertainty set. The (RecOpt-TT) solutions perform very good in this category which
shows that our heuristic approach (RecOpt-TT) can be used to minimize this distance. For
U1 the solutions gained by (RecOpt-TT) clearly outperform the other robust solutions while
they are comparable with some others for U2. Note that the strict robust solution performs
poorly under this measure, as solutions are generally over-buffered.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 0.05 0.1 0.15 0.2 0.25 0.3

nominal
strict
light

buffer
recovery 1

l1 center
l1 median

centroid

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 0.2 0.4 0.6 0.8 1

nominal
strict
light

buffer
recovery 2

l1 center
l1 median

centroid

Figure 4 Worst-case recovery costs to optimality for U1 (left) and U2 (right) against s.

4.3.5 Feasibility.
Figure 5 shows the average feasibility under exponential scenario distribution. Note that all
solutions except of the strictly robust solution strongly decrease their feasibility for growing
s in U1. The light robust solution becomes infeasible as soon as its budget is completely used,
which is exactly when its objective value equals the strictly robust solution (see Fig. 1).

ATMOS ’10

112 An Empirical Analysis of Robustness Concepts for Timetabling

Only the centroid keeps a small probability of feasibility throughout all values of s. For the
U2 uncertainty, the situation changes completely. The buffered and the light robust solution
keep moderate feasibility even for high values of s, while all other solutions (except of the
strictly robust) stay low. This is exactly the intension of the recovery-robust approaches:
They improve their nominal quality by allowing a repair phase and hence not aiming at
feasibility for all scenarios.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

nominal
strict
light

buffer
recovery 1

l1 center
l1 median

centroid

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

nominal
strict
light

buffer
recovery 2

l1 center
l1 median

centroid

Figure 5 Feasibility exponentially distributed for U1 (left) and U2 (right) against s, µ = 0.1.

4.3.6 Running times.
Figure 6 shows the running times of the algorithms. Most time-consuming were the calcu-
lations of the d1 center followed by the d1 median and (R2-TT). The higher running times
for the d1-median and the centroid are due to the presolving phase in which the optimal
solutions of all scenarios in S needs to be calculated. Improving the running time of the
d1-center will be part of future research.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1

nominal
strict
light

buffer
recovery 1
recovery 2

l1 center
l1 median

centroid

Figure 6 Running times in seconds against s.

5 Conclusion

We applied the most prominent robustness to timetabling and compared them on a real-
world instance. Furthermore, we introduced a new approach, minimizing the recovery dis-
tances to a subset of scenarios, that is easily applicable to any robustness problem, whenever

Marc Goerigk and Anita Schöbel 113

a method for solving the original problem is at hand. We have shown that there are signif-
icant differences in the performance of the concepts depending on the type of uncertainty
under consideration. Strict robustness, as an example, is a considerable concept for U1 un-
certainty, but not an option for U2. Concerning the (RecOpt-TT) solutions, especially the
centroid approach gives good feasibility and recovery properties with average costs on U1,
while the same approach for U2 sticks too closely to the nominal solution for having good
robustness properties. We conclude that it is crucial to choose the robustness concept to
be applied to the specific problem structure and the uncertainty set. Future research will
include investigating improved ways of choosing the scenario subset S ⊆ U and theoretical
results on the quality of the gained solution, as well as applications to PESP models with
applications to periodic timetabling.

References
1 A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University

Press, Princeton and Oxford, 2009.
2 A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Operations

Research, 23(4):769–805, 1998.
3 D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53, 2004.
4 S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra. Recoverable robust

timetabling: Complexity results and algorithms. Technical Report ARRIVAL-TR-0172,
ARRIVAL project, 2008.

5 S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra. Recoverable Ro-
bustness for Train Shunting Problems. Algorithmic Operations Research, 2009.

6 S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schöbel. Dynamic algorithms for re-
coverable robustness problems. In Matteo Fischetti and Peter Widmayer, editors, ATMOS
2008 - 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimiza-
tion, and Systems, Dagstuhl Seminar proceedings, 2008.

7 G. D’Angelo, G. Di Stefano, and A. Navarra. Recoverable robust timetables on trees.
Technical Report ARRIVAL-TR-0163, ARRIVAL project, 2008.

8 G. D’Angelo, G. Di Stefano, A. Navarra, and C. M. Pinotti. Recoverable robust timetables:
An algorithmic approach on trees. IEEE Transactions on Computers, 2010. to appear.

9 M. Fischetti and M. Monaci. Light robustness. In R. K. Ahuja, R.H. Möhring, and C.D.
Zaroliagis, editors, Robust and online large-scale optimization, volume 5868 of Lecture Note
on Computer Science, pages 61–84. Springer, 2009.

10 P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications. Kluwer Aca-
demic Publishers, 1997.

11 C. Liebchen, M. Lüebbecke, R. H. Möhring, and S. Stiller. The concept of recoverable
robustness, linear programming recovery, and railway applications. In R. K. Ahuja, R.H.
Möhring, and C.D. Zaroliagis, editors, Robust and online large-scale optimization, volume
5868 of Lecture Note on Computer Science. Springer, 2009.

12 M. Schachtebeck and A. Schöbel. Lintim – a toolbox for the experimental evaluation
of the interaction of different planning stages in public transportation. Technical report,
ARRIVAL Report 206, 2009.

13 A.L. Soyster. Convex programming with set-inclusive constraints and applications to inex-
act linear programming. Operations Research, 21:1154–1157, 1973.

14 H. Yaman, O.E. Karasan, and M.C. Pinar. The robust spanning tree problem with interval
data. Operations Research Letters, 29:31–40, 2001.

ATMOS ’10

Traffic Signal Optimization Using Cyclically
Expanded Networks∗

Ekkehard Köhler1 and Martin Strehler2

1 Mathematisches Institut, BTU Cottbus
Postfach 10 13 44, 03013 Cottbus, Germany
ekoehler@math.tu-cottbus.de

2 strehler@math.tu-cottbus.de

Abstract
Traditionally, the coordination of multiple traffic signals and the traffic assignment problem in
an urban street network are considered as two separate optimization problems. However, it is
easy to see that the traffic assignment has an influence on the optimal signal coordination and,
vice versa, a change in the signal coordination changes the optimal traffic assignment. In this
paper we present a cyclically time-expanded network and a corresponding mixed integer linear
programming formulation for simultaneously optimizing both the coordination of traffic signals
and the traffic assignment in an urban street network. Although the new cyclically time-expanded
network provides a model of both traffic and signals close to reality, it still has the advantage of a
linear objective function. Using this model we compute optimized signal coordinations and traffic
assignment on real-world street networks. To evaluate the practical relevance of the computed
solutions we conduct extensive simulation experiments using two established traffic simulation
tools that reveal the advantages of our model.

1998 ACM Subject Classification G.2.2 [Discrete Mathematics]: Graph Theory — Network
Problems

Keywords and phrases dynamic flow, traffic optimization, traffic signals

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.114

1 Introduction

Urban traffic congestion is increasing day by day. Growing cities and increasing population
doubled the traffic volume in the last two decades in Europe and North America and an
even higher rise has to be expected for the urban regions in Asia or South America in the
next years. Traffic congestion causes delays which add up to huge costs for society and
business. The urban mobility report 2009 [17] states a total loss of 4.2 billion hours and
87.2 billion dollars for the 439 urban areas in the United States in only one year. Wasted
fuel of 2.8 billion gallons, noise, and pollution accumulate.

A reduction of congestion by simply expanding the infrastructure is often impossible
due to space limitations. Besides strengthening public transport an increase of network
performance seems to be a suitable way to cope with the boosting traffic. While the roads
itself do not allow much control of the traffic flow, signalized intersections provide a lot of
traffic signal parameters ready to be optimized. Especially the coordination of numerous
traffic signals at different intersections in a network seems worthwhile. The main concept
of a so-called ‘green wave’, i.e., the coordination of traffic signals along an arterial road,

∗ This work was supported by the German ministry of education and research (BMBF).

© Ekkehard Köhler and Martin Strehler;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 114–129

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

E. Köhler and M. Strehler 115

was already introduced by Adolph [1] in 1925. But it was not before 1964, when Morgan
and Little [15] started a broad analysis and presented a graphical solution for calculating
maximal time slots and bandwidths for a single road. By now there exist various approaches
to transform the concept of a ‘green wave’ to a whole network of roads.

Today’s research in traffic signal optimization can be considered to be split into two
main streams. On the one hand, big efforts have been made on developing highly adaptive
traffic signals which are able to react on changes in traffic volume immediately (see for
example [12]). On the other hand, assuming fairly stable demands within certain divisions
of time, the usage of pre-timed traffic signals appears reasonable [9, 13, 21]. Considering
rush hour situations with high demand at every road, adaptive coordinations will fall back
to fixed time coordinations. Furthermore, due to the high costs of sensor technologies and
a lacking acceptance of car-to-car or car-to-traffic-signal communication for data privacy
reasons, we believe fixed traffic signal coordination to be the choice for many cities.

Another distinction can be made between heuristic optimization methods and purely
mathematical programming approaches and their underlying models. The first class is based
on genetic algorithms, fuzzy logic, or neural network approaches. They often provide good
and fast solutions but do not give bounds or guarantees on the quality of the solution
compared to an optimal solution. The second class usually can not cover all features and
parameters of a real traffic network, but it provides provably good solutions that are of
interest of their own or can supply a good bound or starting solution for models of the first
class.

The aging of fixed-time traffic signal plans [4] is important but often unappreciated in
the optimization of traffic signals: It can be observed that some traffic signal coordinations,
once having been very efficient, become worse over time. Every change of fixed time signal
plans may influence the road choice of the users. Increasing traffic in general and road users
changing to optimized arterial roads lead to higher waiting times and may disturb the fine-
tuned coordination. Therefore traffic signal coordination and the traffic assignment should
be considered as one single optimization problem. Hereby, traffic signal coordination means
an optimal choice of the parameters of the traffic signals such that the road users reach
their destinations fast and congestion is avoided as much as possible. Traffic assignment
deals with route choices of the users and describes the distribution of traffic in the road
network. Traffic assignment can be seen from an administrative point of view, where a
central authority tries to reduce the overall travel time of the whole system. Or it can be
seen from a game theoretical point of view, where each road user decides locally to optimize
her/his experienced travel time. A precise definition will be given after the introduction of
the necessary parameters. Obviously there is a feedback between the problem to coordinate
the traffic signals and assigning traffic units to optimal paths in the network. For the
combined problem Allsop and Charlesworth [3] studied a first partially-unified approach
and presented an iterative method while Chiou [6] used a gradient projecting method for
calculating local optima within his traffic model. Recent results were made by Bell and
Ceylan [5] as well as Teklu et al. [20] using genetic programming.

In this paper we present a new approach for optimizing traffic signal coordination and
traffic assignment simultaneously. Our objective function here is the minimum of the overall
travel time of all road users. We denote this as traffic signal coordination and traffic as-
signment problem (TSCTAP). The model is based on a time-expanded network, that uses
the periodicity of traffic signals to limit the time horizon. More precisely we use a cyclic
time-expansion and provide a realistic implementation of traffic signals. Our model cap-
tures flow-dependent transit times on edges but omits nonlinear link-performance functions

ATMOS ’10

116 Traffic signal optimization using cyclically expanded networks

together with their complex analysis. Instead, the traffic assignment is based on separate
functions for travel and waiting times. Therefore, the traffic assignment problem can be
solved efficiently for fixed coordinations. The TSCTAP itself can be formulated as a mixed
integer program. This provides guarantees on the quality of the solution and a rather easy
concept of handling user equilibria.

Furthermore, with our new model we can capture some special properties of innercity
traffic, e.g. platoons of cars. Platoons naturally develop mainly due to the red and green
phases of the traffic signals. Our model can capture these changes in traffic density and
we can observe effects like splitting or merging of platoons. Also, the existence of several
different platoons on one road and realistic departure times at signals (usually at beginning
of the green phase, but not before the platoon arrives at this signal) are modeled.

The paper is organized as follows. Initially, basic definitions are presented. Then we
shortly discuss different measurements of performance and the complexity of the traffic signal
coordination problem in Section 2 and 3. In Section 4 we define the cyclically expanded
network model. To evaluate the practicability of the optimized signal coordination and
traffic assignment we use two traffic simulation tools. Section 5 gives the results of these
simulation experiments and some further computational results. Finally, in Section 6, we
summarize the findings and give an outlook on future work.

2 Preliminaries

In this section we sketch some basic facts and definitions on traffic networks that are prereq-
uisites for understanding the rest of the paper. Due to the numerous aspects of inner-city
traffic we concentrate on concepts for traffic signals and traffic assignment. Traffic signals
at intersections are characterized by various parameters: cycle time, red-green split, order
of the phases and the offset between traffic signals at adjacent intersections. Each single
traffic light has a characteristic sequence of red and green that appears periodically with
cycle time Γ. The proportion between red and green is called red-green split. All lights at
an intersection are grouped together to signal groups which again are grouped together to
a traffic signal. The (interior) offset of their sequences is fixed to avoid collisions.

If all traffic signals in a network have the same cycle time, one can also look at the offset
of the intersections with respect to a global system time. Let a car need t units of time to
bridge the distance between two consecutive intersections. If the green phase of the second
traffic signal group starts exactly t time units after the green phase of the first one, the car
experiences a green wave.

The most important parameters are depicted in the signal plans in Figure 1. All of them
can be used for traffic signal optimization. In this paper we will concentrate on optimizing
the offset between consecutive traffic signals and we assume all other parameters to be fixed.
Additionally, we assume a common cycle time at each traffic signal. Note that this is not
a hard restriction; if traffic signals in the network have different cycle times then the least
common multiple of all cycle times can be used as a unified cycle time instead.

Let the street network be represented as a directed graph G = (V,A) with node set V
and arc set A. We will use the notation in Table 1. We also refer to the sequence of red and
green lights as operating sequence of a traffic signal.

The performance of traffic signal optimization can be measured by different parameters.
The most common measure is the average delay or the number of stops. A weighted com-
bination of those has also been used. Sun et al. [19] show that the cycle time has great
influence on the objective function when using these parameters. Long cycle times minimize

E. Köhler and M. Strehler 117

Offset
(node)

ρ1

ρ2

Offset (edge)Ψ2
C

A
B
C

S
ig

n
al

 2

A
B
C S

ig
n

al
 1

cycle timeS
ig

n
al

 g
ro

u
p

s

Figure 1 Signal plans for two traffic signals. Signal 2 may belong to an intersection with two
crossing streets. Signal group B and C have an interior offset of Ψ2

B/C with respect to a fixed time
during the period. The green phase of C is extended, for example to enable left-turning. Signals
1 and 2 themselves have offsets ρ1 and ρ2. Therefore, the signal group A at signal 2 turns green
exactly ρ2 − ρ1 time units after the signal group A at signal 1 does.

n ∈ {1, . . . , N} intersection indexes
l ∈ {1, . . . ,M} link indexes
Γ cycle time
ρn (node) offset of intersection n
Φn set of signal plans of intersection n
A,B,C, . . . signal groups
ΨnA intra-node offset of signal A at intersection n
fl link flow
cl capacity of link l
tl free speed travel time on link l
Θ a set of commodities with source node, sink node, and demand

Table 1 Notation for traffic lights and signals in a network model.

stops while short cycle times lead to less delay.
As we will simultaneously compute the traffic assignment problem and an optimal traffic

signal coordination we will use the overall travel time of all road users as the measure of
quality of the solution. Traffic participants may choose arbitrary routes. Thus, taking only
stops and delay into account, a road user may choose a very long path through the network
just to avoid stopping or waiting in front of a red traffic light. This is rather unrealistic
as most road users are interested in the fastest way to their destination. Other measures
of performance, like preferences for public transport and pedestrians, are not considered in
this paper.

To define traffic assignment we need the notion of flow and multi-commodity flow. Due to
space constraints, we omit a detailed definition here and refer the reader to a standard text
book on network optimization like [2]. For short, a flow is a function f : A 7→ R≥0 that has to
fulfill capacity bounds and flow conservation constraints. We also require that the demands
of all the commodities are satisfied. In the multi-commodity case capacities are shared by
the different commodities. Furthermore, a travel time function is given for each link. A
traffic assignment problem is the distribution of traffic flow in a street network satisfying
demands of flow between origin and destination pairs of nodes. Assignment methods are

ATMOS ’10

118 Traffic signal optimization using cyclically expanded networks

looking for an optimal way to distribute the traffic flow in the network according to different
objective functions.

One option for this objective function is to minimize the overall transit time spent by
all road users in the network,

∑
e∈A f(e)t(f(e)). Here t(f(e)) : R 7→ R is the travel time

function describing the time a flow unit needs to traverse arc e in dependence on the amount
of flow f(e) on arc e. This solution is called the system optimum. While this solution is good
for the system as a whole, it might be unfair to single users that could improve their own
travel time by changing to a faster path. However, they will disturb traffic flow there. In
contrast to the system optimum, a flow where no road user can find a faster route for himself
is said to be satisfying Wardrop’s principle and is called user equilibrium. This equilibrium
is often used for modeling the behavior of traffic in street networks, where experienced users
choose the path that minimizes their own travel time. Obviously, there is a gap between the
value of the ‘selfish’ user equilibrium and the system optimum. This gap is often called the
price of anarchy. A detailed survey on selfish routing can be found in [16].

The problem of finding the user equilibrium is referred to as equilibrium traffic assignment
problem. For simplicity we will call this problem traffic assignment problem in the following.
To calculate travel time on a given road, common static traffic models use link performance
functions (or travel time functions) that depend on the load or flow on that particular road.
To model both the time to traverse the road and the waiting time at the end of the road
one uses appropriate monotone, convex functions, which are usually non-linear. Due to this
non-linearity, the traffic assignment problem cannot be solved by simply applying standard
network flow algorithms but requires more involved approaches.

Note that the described static traffic model does not capture any time-dependent be-
havior. For example (static) link performance functions can not handle platoons of traffic
arriving at different points in time. But these platoons are essential for modeling inner-city
traffic as they are formed naturally by all the traffic signals on a certain route. Furthermore,
these platoons significantly depend on the traffic signal coordination.

Our model of traffic.

In our traffic model we make the following assumption. The travel time on a link in the
network splits into two components: the free speed travel time that is needed to bridge
the distance of the link, and the waiting time in front of the intersection, i.e., in front of
a traffic signal. In particular, we assume the free speed travel time to be independent of
the load of the street. Although this assumption is not justified on highways or in rural
areas, it is appropriate in inner-cities, where the distance between consecutive intersections
is comparable small and a strict speed limit is present. The speed of a single car does
not differ much from the speed of a platoon of cars. The waiting time mainly depends
on the offsets of the subsequent traffic signals and it depends linearly on the traffic load.
Multiplying load and travel time yields a quadratic behavior of the overall travel time of all
road users on this link.

3 Complexity of offset optimization

In this section we discuss the complexity of the signal coordination problem. The formulation
and analysis essentially depends on the chosen model. In the literature various proofs of
complexity for different approaches can be found. All of them have in common that the offset
optimization problem for traffic signal coordination is NP-hard. Network coordination is
similar to the Periodic Event Scheduling Problem PESP. Serafini and Ukovich [18] proved

E. Köhler and M. Strehler 119

NP-completeness for the PESP by reducing the Hamiltonian Cycle Problem. In [21] Wünsch
provides a reduction from PESP to his formulation of the Network Signal Coordination
problem.

In the following we will sketch a NP-completeness proof that fits our traffic model. At
the end of Section 2 we motivated the use of constant transit times plus waiting times at
the intersection. Building up on this assumption we define the signal coordination problem
as follows.

I Definition 1 (Signal Coordination Problem). Input: Network G = (V,A) with
capacities and travel times consisting of a constant transit time plus waiting time at the
intersection; a set of traffic signals with arbitrary but fixed operating sequences at some of
the intersections vn ∈ V, n ∈ {1, . . . , N}, the cycle time Γ is the same for all traffic signals;
commodities θ ∈ Θ, θ = (sθ, tθ, dθ) with origin, destination and demand
Output: a set of offsets {ρ1, . . . , ρN} which minimize the overall travel time

We reduce the Signal Coordination Problem to the 3-Partition Problem which
is NP-complete [8]. The problem is to decide whether a given multiset S = {x1, . . . , x3m}
of 3m integers can be partitioned into disjoint triples S1, . . . , Sm that all have the same
sum C = 1

m

∑3m
i=1 xi. The 3-Partition Problem remains NP-complete when C

4 < xi <
C
2 ∀i ∈ {1, . . . , 3m}.

Assume 3m roads, with xi, (i = 1, . . . , 3m) flow units in each road, C = 1
m

∑3m
i=1 xi and

C
4 < xi <

C
2 ∀i ∈ {1, . . . , 3m} as above. There is a traffic signal at the end of each road

that has a cycle time of m time units and is green for exactly one time unit in each period.
Let the roads be wide enough such that all flow units from one road can pass their traffic
signal during one time unit. All intersections directly lead to a narrow road with a capacity
of C cars per time unit. Figure 2 shows the network used for the reduction.

...

d1

traffic signals

destination

demands

d2

d3
c = 1

m

∑
xi

x3m

Figure 2 Traffic network for reduction to 3-Partitioning. The narrow road at the exits forces
perfect coordination.

As the capacity can not be exceeded flow units will have to wait when this small road at
the exit is congested. If too much traffic signals turn green at the same time, flow units will
have to wait in front of a green traffic signal. Thus, if the related 3-Partition Problem
has a Yes answer, we can use the exit road at maximum capacity all the time and we need
m time units to empty the network. If the 3-partitioning has no Yes solution, then there
will be congestion in the network and flow units will have to wait for the next green cycle
yielding a higher overall travel time. This directly leads to Theorem 2.

I Theorem 2. Offset optimization of traffic signals is NP-complete, even without fixed
route choice and with travel times consisting of constant transit time plus waiting time.

It is easy to see that there are more realistic traffic networks than the one in Figure 2

ATMOS ’10

120 Traffic signal optimization using cyclically expanded networks

having similar properties. The main idea of the construction is to use traffic signals for
sorting, assigning and splitting traffic.

4 A new model

In this section we describe the various parts of our model that are combined to solve the
TSCTAP. These parts cover the cyclic time-expansion, expansion of crossings, and imple-
mentation of traffic signals. Building on these notions we will give a mixed integer program-
ming formulation, study basic properties, and discuss various subsequent improvements of
the model.

4.1 Modeling traffic signals
Cyclically time-expanded networks.

The notion of time-expanded graphs was introduced in the context of dynamic flows or flows
over time. Unlike standard static network flows, flows over time capture flow units that travel
through the network in a timely fashion. Flows over time were first studied by Ford and
Fulkerson in their seminal work on network flow theory [7] (see [11] for further references).
Already in this early work they introduced the concept of time-expanded networks. In this
expanded network for every node several copies of this node are added to the graph, one for
each desired time step. Then these nodes are connected by arcs, where the various copies
of the vertices are connected according to the travel times of the original arcs. Figure 3
shows a simple network together with its time-expanded network. The big advantage of
flows over time is the opportunity to capture the complete time-dependent behavior of the
journey of a flow unit in a given network. In contrast, a static flow can only describe the
time-independent behavior of this journey. Using time-expanded graphs one can not only
model flows over time, but one can also solve various optimization problems of network flows
efficiently (in the size of the time-expanded graph).

t=3

t=1t=3

t=2

t

0

1

2

3

4

5

Figure 3 Simple example of a 4-
vertex graph together with its time-
expanded graph for time horizon t.

Figure 4 Expanded intersection with
arcs for each turning alternative.

As explained earlier, for traffic signals and their coordination, a time-dependent model,
capable of describing the time-offset between consecutive intersections is a vital ingredient.
Hence, flows over time and time-expanded networks seem to be the suitable mathematical
model. Yet, time-expanded networks are rather inefficient if the time horizon is large, since

E. Köhler and M. Strehler 121

this determines the number of network copies that have to be provided. However, since traffic
signals have a periodical behavior it is not necessary to use a full time horizon expansion.
Instead, we suggest a cyclic time-expansion where we use only k ∈ N time steps of size t = Γ

k

and add the arcs according to transit times modulo k with adjusted capacities. To model the
ability to wait in front of an intersection, all copies of one node v are cyclically connected
in chronological order with waiting arcs vivi+1 to model a cyclically rolling horizon (see
Figure 5). A cost of one time unit is assigned to each waiting arc.

Intersections.

To model intersections with different lanes, turning directions, and interior traffic signal
offsets, we use a standard approach from traffic networks. Every intersection node is split
up into several nodes for incoming and outgoing traffic; interior arcs connect the lanes (see
Figure 4). Each of these arcs is assigned to one traffic light.

Traffic signals.

Now, the traffic signals themselves can be modeled by binary decision variables that switch
the capacities of the interior arcs at an intersection on or off, depending on the signal plan
and the corresponding time step (see Figure 5). For each traffic light a matrix Ae ∈ {0, 1}k×k
is given; here Aeij = 1 means that the particular traffic light is green at time step j when
using offset iΓk . So each row stands for a certain offset and determines the operating sequence
of the traffic light for this specific offset. For each interior lane e of the not time-expanded
graph we create such a matrix.

Ae =

0 0 1 1 · · · 0 0
0 0 0 1 1 · · · 0
. .
. .

For each intersection n we introduce k binary variables ~bn = (bn1 , . . . , bnk) ∈ {0, 1}k

with constraint
∑k
t=1 bnt = 1 that describe the solely chosen offset at the intersection. More

precisely, bni = 1 is equivalent to offset ρn = iΓk at intersection n. By multiplying this
characteristic vector ~bn with Ae and the capacity ce of a lane, we can switch the capacities
of the links on or off and thus represent the green and red lights.

Using f(e) ≤ ~bnAece for all interior lanes of an intersection (where ce is chosen in
correspondence to the granularity of the time-expansion) we can map the complete dynamic
behavior of traffic signals in our model.

t=3 t=1

Figure 5 Cyclic time-expansion of a traffic signal.

Putting together the various parts of the model we get the following definition of cyclic
time-expanded networks.

ATMOS ’10

122 Traffic signal optimization using cyclically expanded networks

I Definition 3 (Cyclically time-expanded traffic network). A cyclically time-expanded traffic
network is a network, that is obtained from a traffic network G = (V,A) by (i) expanding
the intersections with arcs for turning alternatives and lanes, (ii) cyclic time-expansion with
respect to the cycle time, and (iii) expanding signal plans.

4.2 Modeling traffic assignment
Building up on the cyclically time-expanded network, we can now consider the traffic as-
signment problem within this framework. Although flow can be considered to travel in a
time-dependent manner through the cyclically time-expanded network, one should rather
see this model as a static model that just captures some time-dependent aspects of traffic
flow. Due to the cyclic repetition of the vertex and arc copies, a flow particle traveling
through this network can be seen as a representative of a whole set of temporally repeated
particles at every multiple of the cycle time.

On the other hand, there is a closely related interpretation of static network flow for traffic
networks. In this interpretation one considers a flow-carrying path in the static network as a
mapping of a corresponding amount of flow particles traveling over time through the traffic
network at the corresponding flow rate. In other words, a flow-carrying path in the static
network represents a constant rate of flow on this path in the ‘real’ time-dependent traffic
network.

This interpretation suggests how to put together the two models, the cyclically time-
expanded network on the one hand and the static traffic assignment model on the other hand.
Basically, the demands for the different commodities have to be subdivided to the number
of layers/time steps in the cyclically time-expanded network. The precise construction is
given in the following.

Given (static) commodities θ ∈ Θ, θ = (sθ, tθ, dθ) in the original (static) network (sending
dθ units of flow from node sθ to node tθ), one has to extend them to the cyclically expanded
network. The demand has to be scaled to time Γ and can be divided uniformly among all
copies of sθ. The constraints for the sink nodes should be less restrictive, i.e., no uniform
distribution is required. We propose to use a super-source and super-sink, connected by a
backward arc, as shown in Figure 6.

... ...
expanded
network

cyclically

t

wn

w1v1

c = dθ

copies of v = sθ copies of w = tθ

s

fts = dθ

vn

c = dθ/k

Figure 6 Demand splitting for commodities.

Let G = (V,A) be a cyclically time-expanded traffic network and commodities θ ∈ Θ,
θ = (sθ, tθ, dθ), capacities c : A→ N, a set E of interior arcs at intersections with associated
matrices Ae for each e ∈ E, travel times te for each link and flow values fθ : A → R for
each commodity. Now we can formulate a mixed integer program for TSCTAP. We extend
a common multi-commodity min-cost circulation program for the cyclically time-expanded
network by adding the binary variables and capacity constraints above. To keep the mixed

E. Köhler and M. Strehler 123

integer program in a readable format we present it here in a somewhat condensed form
omitting some of the details and indices.

min
∑
e∈A

∑
θ∈Θ

tefθ(e)

s. t. 0 ≤
∑
θ∈Θ

fθ(e) ≤ c(e) ∀e ∈ A \ E (1)∑
e∈δ+(v)

fθ(e) =
∑

e∈δ−(v)

fθ(e) ∀θ ∈ Θ ∀v ∈ V (2)

fθ((tθ, sθ)) = dθ ∀θ ∈ Θ (3)
k∑
t=1

bnt = 1 ∀n ∈ {1, . . . , N} (4)

f(e) ≤ ~bnAece ∀e ∈ E (5)

fe ≥ 0, ~bn ∈ {0, 1}k

The constraints of type (1) fix the capacity bounds, type (2) implements the flow con-
servation and the constraints (3) force the circulation. Equation (4) ensures that exactly
one offset is chosen at each intersection, and (5) permits flow only on arcs with respect to
the chosen offsets.

4.3 Properties of the model
First, we examine the assignment problem for fixed traffic signals.

I Theorem 4. Using the cyclically time-expanded network the traffic assignment problem
for a fixed traffic signal coordination can be solved efficiently.

Proof. With fixed traffic coordination, i.e., all binary decision variables of our model are
fixed, we obtain a linear program for the traffic assignment problem. This LP can be solved
efficiently.

Alternatively, one could just remove all arcs that are switched off. Any algorithm for
the min-cost circulation problem can now be used for computing the traffic assignment
problem. J

Assume flow values assigned to the network and a fixed coordination. Multiplying flow
value and transit time and summing over all waiting arcs yields the overall waiting time.
Increasing flow at a certain traffic signal will increase the waiting time, because more flow
will be assigned to the waiting arcs. However, due to the bounded capacities, the flow units
on the waiting arcs may not leave completely on the first ‘green’ outgoing arc. Instead, the
flow will have to use more waiting arcs until the accumulated flow is reduced. Therefore, if
the incoming flow is raised linearly on all copies of an arc, then the growth of the waiting
time will be not linear but raher quadratic. More precisely the obtained function is piecewise
linear, but converges to a quadratic function if the timestep of the expansion converges to
zero. In Figure 7 we present the relation between flow and average waiting time on a single
link in the cyclically expanded network. The traffic is equally distributed on all copies of
this link, a traffic signal with a cycle time of 60 seconds and a red time of 20 seconds is put
at the end of the road and a free speed travel time of 10 seconds is assumed. Additionally, a
capacity reduction from two lanes to one lane at the traffic signal was used to demonstrate
the capability of our waiting edge model.

In praxis, the flow will not be equally distributed on all copies of an arc. Different
flow values on the copies can be interpreted as platoons of different sizes and densities.

ATMOS ’10

124 Traffic signal optimization using cyclically expanded networks

Considering this platoons the behavior of the average waiting time with respect to platoon
length and arrival time at the signal may change dramatically. But due to space limitations
we have to omit a detailed analysis here.

Nevertheless, we can also conclude an interesting property of the optimal solution, even
for arbitrary coordinations.
I Proposition 1. An optimal solution (system optimum) of the proposed multi-commodity
min cost flow problem is also an user equilibrium.

Proof. All transit times are load independent. Therefore any route change of a single road
user has no influence on the transit times. Consequently a system optimum is an user
equilibrium. J

max capacity
10

11

12

13

14

15

16

17

flow

av
er

ag
e

tr
av

el
 ti

m
e

ct,1

ct,2

ct,0

Figure 7 Average travel time with respect to
flow on a single link in the cyclically expanded
network. Incoming traffic is equally distributed
over time.

Figure 8 A fan-like expansion to model
time-dependent travel times. Note, that the
capacities are not equally distributed.

4.4 Improvements
In this section we propose some refinements of our model.

We introduced waiting arcs vivi+1 between consecutive copies of a node v, but the
capacities of these arcs have not been set. For modeling the restriction of small streets we
propose choosing the capacity with respect to the length of the street. This bounds the queue
at a traffic signal and allows backing-up of traffic over several consecutive intersections.

Often traffic signals are capable of switching between different programs or modes, e.g.,
different red-green splits. Our model can easily be extended to the case of several programs
or modes. This can be done by adding these programs to the matrices Ae. Thus the binary
variables not only choose the offset but also the operating sequence.

In reality, the speed within a platoon may vary from car to car. This is not yet captured
in our model. Also our assumption of complete load independent travel times on streets
between intersections may seem too extreme in some cases. For more realistic flow-dependent
travel times we can make use of a model used for flows over time with flow-dependent transit
times. In [10] a fan-like time-expanded network is suggested, that models different travel
times for different flow-rates on a given arc. Consider two intersections v and u with free-
speed travel time T on e = (v, u). Instead of only adding one arc et = (vt, ut+T) for each time
step of the expansion, several additional arcs et,i = (vt, ut+T+i) are added and the capacity
is split among those copies. See Figure 8 for a visualization of such a fan. Therefore in a
situation with low load the original arc et provides enough capacity and all road users can
be routed with the free speed travel time. Considering a rush-hour scenario some flow units
are assigned to the ‘slower’ copies et,i yielding an increasing average travel time. This flow
dependency does not touch the conclusion of Theorem 4.

E. Köhler and M. Strehler 125

5 Computational Results

In this section we evaluate the applicability of the presented model by discussing various sim-
ulation results. We apply two well-established microscopic traffic simulation tools: MATSim
(TU Berlin) and VISSIM (ptv AG) for our studies.

5.1 Scenarios
Real-world data for offset optimization is always hard to get. One needs detailed information
on the network, the traffic flow, and the signalization. Furthermore, we do not just need
load or usage information on the roads, but rather commodities with origin-destination
information.

In the results presented here we concentrate on three different scenarios. Wünsch [21]
uses parts of the inner-city of Denver and Portland. We chose the same scenario for Portland
with 16 intersections in a 4× 4-grid and a part of the Denver scenario with 36 intersections
in a 6× 6-grid which provides the opportunity of benchmarks. These two scenarios show a
typical North-American inner-cities grid consisting of regularly arranged one way streets. For
better evaluating the interplay between our traffic assignment and the signal coordination
we were interested in a more complex street network. Therefore we also chose the inner-city
of Cottbus, a German town of about 100.000 inhabitants south of Berlin, with 30 traffic
signal controlled intersections to test our model on a more European shaped city. The most
detailed data is available for Portland, but for our purposes the scenario is rather poor as
the given commodities do not provide much route choice. Every scenario was examined with
different load values reaching from nearly empty streets to nose-to-tail traffic.

Our research partner ptv AG kindly provided us with data for the North American
scenarios while we collected data for Cottbus ourselves. In the two larger scenarios traffic
signals are influenced by a preference for public transportation. Therefore the comparison
of simulated and observed traffic is limited.

5.2 Simulation
As mentioned before, for verifying and comparing our solutions to solutions of other opti-
mization techniques we use two different simulation software tools. The tool VISSIM from
ptv AG provides a microscopic traffic simulation with state-of-the-art longitudinal dynamics
and lane change models. The software MATSim is mainly developed at TU Berlin and ETH
Zurich and is a multi-agent transport simulation tool based on queue models. It is capable
of simulating large scale traffic networks and computing traffic assignment using an iterative
approach. See [14] for more details on this tool.

Quite surprisingly both simulation tools VISSIM and MATSim, despite their completely
different approaches, produce very similar results. Average travel times vary less than 5%
and the overall picture of congestion is nearly identical. As a consequence, the coordinations
obtained by our optimization seem to be robust to disturbances as both simulations rate
them equally.

The simulation process with these two tools shows the applicability of our model for offset
optimization and traffic assignment. In our solutions ‘green waves’, i.e., progressive signal
systems, are indeed created and traffic is assigned to well coordinated arterial roads. The
optimized coordination features lower travel times and less congestion compared, for exam-
ple, to random coordinations. This suggests that our model assumptions of flow independent
transit times are not too simplifying.

ATMOS ’10

126 Traffic signal optimization using cyclically expanded networks

coordination travel time rel. difference

average random 57900 s -
best random 54600 s −6%
optimized 44100 s −24%

coordination delay

average random 30.1
best random 21.9
present 16.6
OPTIMIZATION (10 s) 16.4
platoon model (1 s) 16.1
TRANSYT (800 s) 15.9

Table 2 Coordination and traffic assignment in
Cottbus.

Table 3 Simulation results for Port-
land (VISSIM).

Since we have no coordination data of all of the considered cities that only use one uniform
cycle time and are not influenced by public transport, we also compare the optimized set of
offsets to sets of randomly chosen offsets. Out of these random coordinations we chose the
simulation result of the best of these random offsets. This best simulation result with respect
to the overall travel time gives an impression of what can be obtained in an arbitrary or at
least not very involved signal coordination. For all scenarios our offset optimization yields
an improvement of 10 to 30 % compared to this best guess. Table 2 shows a typical example
of simulation results for Cottbus (10 commodities with 0.2 cars per second in average, cycle
time 90 seconds, 100 random offsets, 20 simulation runs per coordination).

5.3 Comparison to established approaches
To compare our model to previous approaches we use the results of [21] for the Portland
scenario. In this experiment route choice is disabled, i.e., we compare only the performance
of coordination. The benchmark is set by TRANSYT, a genetic programming tool for
coordination, and the platoon model of [21]. Table 3 summarizes the results. The running
time of the particular algorithm is given in brackets.

For coordination without the assignment our approach yields competitive solutions. The
variances most likely result from the differences of the traffic model. TRANSYT uses a
model with dynamics similar to the model in the simulation; the platoon approach and our
approach make much more simplifying assumptions. Furthermore, we did not use a fine-
tuned calibration of travel times in our model yet. This will probably yield even less delay.
The influence of overestimating or underestimating the travel times will be investigated in
upcoming experiments.

5.4 Advantages of simultaneous traffic assignment
One of the main intentions of this model is feedback between traffic assignment and coordi-
nation during the optimization process. We demonstrate the impact of our approach by the
help of a small example. Given two parallel routes between two intersections A and B with
two additional intersections on each route, we aim to find an optimal assignment for two
commodities (A to B and B to A) and an optimal coordination for the six traffic signals.
We assume identical operating sequences for each traffic signal (cycle time 60 s, green for
27 s) and a travel time of 20 seconds between consecutive intersections. The network is
presented in Figure 9.

For initially computing a static traffic assignment we assume that the same strictly convex
link-performance function is given for each link in the network. A conventional approach

E. Köhler and M. Strehler 127

A B

20 sec

Figure 9 Small example for simultaneous routing and coordination.

would first determine the assignment by the help of these functions. Convexity yields a
fifty-fifty split for each commodity between upper and lower path in this simple network.
Therefore, we fix this split and optimize the coordination with our model and compare this
to the results of the simultaneous optimization.

For the fifty-fifty split there are a lot of conflicts with the traffic in opposite directions.
The simulation yields an average waiting time of 25.2 seconds for the best coordination.

In contrast, the solution of the simultaneous optimization is very different. The com-
modity from A to B is completely assigned to the lower path, while the commodity from
B to A is completely assigned to the upper path. This avoids all conflicts with opposite
traffic and allows perfect ‘green waves’. The average waiting time is reduced to 6.1 seconds
and occurs only at the first traffic signal where cars are assumed to appear randomly. The
simultaneous assignment and coordination reduces waiting time by 75 percent in this simple
scenario. The effect of separating traffic flows to force ‘green waves’ is also observed in
realistic scenarios like Cottbus, although the effect on the waiting times is not as dramatic
as in the constructed network.

These completely different but high-performance assignments characterize the presented
model. We believe that similar results can not be obtained without simultaneously con-
sidering assignment and coordination, i.e., a highly-adaptive traffic signal optimization can
not find a competitive solution. These results also suggest that traffic signal coordination
should be used to actively route or redirect traffic.

5.5 Solving the model
For practical applications a model should be quickly solvable. Due to the time-expansion
and the decision variables, the MIP-formulation of our model is rather large. Table 4 shows
the size of the Cottbus scenario with its 30 traffic signals controlled intersections, 14 com-
modities, and a cyclic expansion with 90 time steps (Γ = 90 seconds) and the corresponding
mixed integer program (MIP). Additionally, the offset of one traffic signal is fixed to avoid
symmetry.

Solving the mixed integer programs with CPLEX produces some expected and some
quite surprising effects. Optimal solutions are obtained very fast. An optimal assignment
and coordination for the regular shaped American cities is often calculated in less than 10
seconds (depending on commodities and load). Unfortunately it takes much longer to prove
optimality, i.e., to close the gap to the dual bound. The dual bound increases slowly while the
primal solution remains unchanged. In scenarios with many conflicts between commodities
with opposite directions the gap can not be closed by CPLEX at all. In some scenarios a gap
of up to 30 % remains even after hours of computation. Still, the obtained primal solutions
show very good performance in the simulation. On the other hand even slight disturbances
like changing the demand of a commodity or changing a signal plan a little bit may yield a

ATMOS ’10

128 Traffic signal optimization using cyclically expanded networks

Number of

Network: nodes 15570
arcs 31410
decision variables 2700

MIP: variables 80211
constraints 159821
non-zeroes 625167

Table 4 Size of the expanded Cottbus network and its MIP.

complete different behaviour of the solver and may significantly influence the running time.
Obviously it is very hard to compute good dual bounds. This observation is supported

by data from the Cottbus scenario. The instance in Table 4 was solved using CPLEX. We
obtained a primal solution with objective function of value 44100. The best dual bound
stayed at 37025 after one day of computation. To rate the relevance of this dual solution
we compare it to two trivial bounds. Calculating the length of a shortest path for each
commodity times the demand of this commodity yields a dual bound of 33390. Calculating
an assignment without traffic signals in the unexpanded network yields a dual bound of
about 35180. Thus, the dual bound was not significantly increased by CPLEX. Therefore,
our next steps will focus on the improvement of the formulation of the mixed integer program
to speed up the computation of good lower bounds.

6 Discussion

The main advantage of our model is the simultaneous description of the traffic assignment
problem and the traffic signal coordination problem in an uncomplex linear mixed integer
programming formulation. The interactions between road users and the traffic signal co-
ordination are taken into account and provides considerable potential for better solutions.
Furthermore, our model allows for an efficient solution of the traffic assignment problem
when the signal coordination is fixed.

The simulation results suggest the applicability of our model in real-world traffic opti-
mization frameworks. In spite of the size of the MIP-formulation good solutions are obtained
fast. Solving this mixed integer program with a common solver also yields a dual bound
for the solution. This guaranteed maximal gap to optimality allows to evaluate the quality
of the found solution and thus is a great advantage over heuristic approaches with genetic
programming or neural networks. Our next steps especially focus on the improvement of
the dual bounds. An improvement here will lead to better performance of the solver.

7 Acknowledgment

The authors would like to thank Christian Liebchen and Gregor Wünsch who were involved
in the first ideas of the cyclically time-expanded network. Gregor Wünsch also kindly per-
mitted us to use the graphic of Figure 1. We would like to thank ptv AG and especially
Dr. Klaus Nökel from ptv AG for the provided real-world data, the opportunity to use VIS-
SIM for our experiments and for very valuable discussions on traffic signal coordinations.
Similarly, we would like to thank Kai Nagel and his group for providing the MATSim tool
for our experiments.

E. Köhler and M. Strehler 129

This work was funded by the German ministry of education and research (BMBF) within
the ADVEST project (Mathematics for the innovation in industry and services).

References
1 J. Adolph. Regelung des Wagenverkehrs in Straßen mittels elektrischer Signallampen.

Reichspatentamt, 1925. DE 439255 A.
2 R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. Prentice Hall, 1993.
3 R. E. Allsop and J. A. Charlesworth. Traffic in a signal-controlled road network: An exam-

ple of different signal timings inducing different routeings. Traffic Eng. Control, 18(5):262–
265, 1977.

4 M. C. Bell and R. D. Bretherton. Ageing of fixed-time traffic signal plans. In 2nd Interna-
tional Conference on Road Traffic Control, London, 1986.

5 M. G. H. Bell and H. Ceylan. Traffic signal timing optimization based on genetic alorithm
approach, including drivers’ routing. Transportation Research Part B, 38:329–342, 2004.

6 S. W. Chiou. Optimization of Area Traffic Control for Equilibrium Network Flows. PhD
thesis, University College London, 1999.

7 L. R. Ford and D. R. Fulkerson. Flow in Networks. Princeton University Press, 1962.
8 M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., New York, 1979.
9 N. H. Gartner, J. D. C. Little, and H. Gabbay. Optimization of traffic signal settings by

mixed-integer linear programming, Part I: The network coordination problem. Transporta-
tion Sciences, 9:321–343, 1966.

10 E. Köhler, K. Langkau, and M. Skutella. Time-expanded graphs with flow-dependent
transit times. In R. H. Möhring and R. Raman, editors, Proceedings ESA 2002, LNCS 2461,
pages 599–611. Springer, 2002.

11 E. Köhler, R. H. Möhring, and M. Skutella. Traffic networks and flows over time. In
J. Lerner, D. Wagner, and K. A. Zweig, editors, Algorithmics of Large and Complex Net-
works, LNCS 5515, pages 166–196. Springer, 2009.

12 S. Lämmer. Reglerentwurf zur dezentralen Online-Steuerung von Lichtsignalanlagen in
Straßennetzwerken. PhD thesis, Technische Universität Dresden, 2007.

13 J. D. C. Little. The synchronizing of traffic signals by mixed-integer linear programming.
Operations Research 14, pages 568–594, 1966.

14 MATSim Homepage. http://www.matsim.org/.
15 J. T. Morgan and J. D. C. Little. Synchronizing traffic signals for maximal bandwidth.

Journal of the Operations Research Society of America, 12(6):896–912, 1964.
16 T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press, 2005.
17 D. Schrank and T. Lomax. 2009 Urban Mobility Report. Texas Transportation Institut,

2009.
18 P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems.

SIAM Journal on Discrete Mathematics, 2(4):550–581, 1989.
19 D. Sun, R. F. Benekohal, and S. T. Waller. Multiobjective traffic signal timing optimiz-

ing using non-dominated sorting genetic algorithm. In IEEE IV2003 Intelligent Vehicles
Symposium, 2003.

20 F. Teklu, A. Sumalee, and D. Watling. A genetic algorithm approach for optimizing traffic
control signals considering routing. Computer-Aided Civil and Infrastructure Engineering,
22:31–43, 2007.

21 G. Wünsch. Coordination of Traffic Signals in Networks. PhD thesis, Technische Univer-
sität Berlin, 2008.

ATMOS ’10

http://www.matsim.org/

Column Generation Heuristic for a Rich Arc
Routing Problem
Sébastien Lannez1,2,3, Christian Artigues2,3, Jean Damay1, and
Michel Gendreau4

1 SNCF I&R/SRO ; 45 rue de Londres, 75008 Paris, France,
{sebastien.lannez,jean.damay}@sncf.fr

2 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
artigues@laas.fr

3 Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077
Toulouse, France

4 CIRRELT, Université de Montréal, C.P. 6128, Montréal (Québec), H3C 3J7
Canada
michel.gendreau@cirrelt.ca

Abstract
In this paper we address a real world optimisation problem, the Rail Track Inspection Scheduling
Problem (RTISP). This problem consists of scheduling network inspection tasks. The objective
is to minimise total deadhead distance. A mixed integer formulation of the problem is presented.
A column generation based algorithm is proposed to solve this rich arc routing problem. Its
performance is analysed by benchmarking a real world dataset from the French national railway
company (SNCF). The efficiency of the algorithm is compared to an enhanced greedy algorithm.
Its ability to schedule one year of inspection tasks on a sparse graph with thousand nodes, arcs
and edges is assessed.

1998 ACM Subject Classification J.m [COMPUTER APPLICATIONS]: Miscellaneous

Keywords and phrases arc routing, column generation, heuristic, railtrack maintenance

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.130

1 Introduction

One of the major problems that railway companies have faced since the very beginning are
failures in tracks. Defects in rails, as the basic part of a track may result in serious accidents.
Réseau Ferré Français (RFF), the French railway infrastructure manager, have delegated
some railway maintenances to the Société Nationale des Chemins de Fers (SNCF), a French
railway company. SNCF is committed to ensure the safety of the railway network. One of
these maintenances is to prevent tracks failures. In order to quickly inspects the French
network, SNCF is using ultrasonic defectoscopy to detect and survey imperfections in rails.
Inspection frequencies increase with speed and cumulated train weight.

Inspection frequencies range from six months to twenty years. Two third of the total
inspections (35 000 km) are performed on tracks which should be visited once or twice a year.
These tracks are called primary tracks. All the remaining inspections (secondary tracks) will
be performed by local logistic departments. A map representing these tracks is presented in
figure 1a. A schematic zoom around Bordeaux is shown in figure 1b. Ultrasonic inspections
are performed with three specialised rolling stock units, thereafter called vehicles. Their
maximum speed and working capacity are different. The detection of defects in the track is

© Sébastien Lannez, Christian Artigues, Jean Damay and Michel Gendreau;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 130–141

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

S. Lannez and C. Artigues and J. Damay and M. Gendreau 131

(a) Map of primary tracks (b) Graph model of railtracks around Bordeaux

Figure 1 French railway network model

performed by reverberation analysis of the ultrasonic waves passing through the rails. These
vehicles can move during at most six hours per day. This limitation is due to maximum shift
duration and maximum daily inspection distance. This distance is limited by the water tank
capacity needed to keep sensors and rails coupled during measure. These tanks can only be
refilled at special stations. Over the 200 stations on the primary tracks, 90 are equipped with
water supply. For organisational purposes, vehicle’s moves are geographically constrained
and their maintenances should be performed periodically.

The problem SNCF is dealing with is to visit a given set of tracks taking into account
some operational constraints. Tracks outages can alter vehicle’s speed or prevent them
from circulating during certain days. Vehicle’s speed depends whether it is inspecting or
deadheading: during deadhead trips speed can be more than three times faster than when
inspecting. Vehicle’s daily inspection capacity is limited by the total amount of water which
can be brought on board. Water tank refill is time consuming and needs rarely available
operators at the station. Hence, it is not desired to do more than one refill per shift. The
main cost indicator is a common logistic performance ratio based on the quantity of tracks
inspected per year divided by the total traveled distance in a year. The total quantity of
primary tracks to be inspected every year is constant, so minimising this performance ratio
reduces to the minimisation of the total deadhead distance.

This problem can be modeled as an arc routing problem related to the ones describing
road deicing, waste collection or network weeding as described in the survey from [18–21]. It
involves complicating constraints, namely shift limited duration, water supply, track outages
and heterogeneous fleets. Another difficulty is the network size which makes it a real challenge
to solve.

2 Literature review

2.1 Industrial arc routing problems
In [14], the authors notified that industrial vehicle routing problems are rich: models are
generalisations of lots of academic ones, and input data dimension can be huge.

Road related problems have supplied researchers with a lot of arc routing problems. A
review of problems arising during winter road maintenances has been published in the articles
[18–22]. They also present industrial applications. Waste collection or postal deliveries are

ATMOS ’10

132 Column Generation Heuristic for a Rich Arc Routing Problem

also an active field from arc routing problems. In [16], a description of a waste collection
problem is presented. A nation wide postal delivery problem has been modeled as an
industrial arc routing problem in [15].

2.2 Arc routing problems
In this section, some arc routing problems and their applications are presented. For a more
complete catalog of them, a good introduction might be the books [7] and [5] and the survey
articles [8, 9].

One problem the RTISP is related with is the capacitated arc routing problem (CARP),
described in [13]. It consists in visiting a set of arcs with a single vehicle. Each visited arc
reduces by a given amount the remaining working capacity of the vehicle. In the RTISP, tasks
and deadheads circulation can be modeled with arcs. The working capacity of vehicles is
constrained by the vehicle’s water tank capacity and the duration of a shift. The capacitated
arc routing problem with time windows (CARP-TW) extends the CARP by constraining
the possible visits of arcs to belong to a set of periods. Paper [10] contains a description
of a column generation procedure. In [23], a procedure to solve this problem with a greedy
randomised adaptive search procedure (GRASP) associated with path relinking is described.
Another extension is the capacitated arc routing problem with refill points (CARP-RP)
presented in [2], also called the capacitated arc routing problem with intermediate facilities
(CARP-IF) in [12]. It extends the CARP by adding refill facilities to certain nodes.

We have not been aware of published work about methods for solving a problem having
all these features. However, this problem, which can be called multi-capacitated arc routing
problem with time windows, refill points and heterogeneous fleet (H-MCARP-RP-TW), is
suitable for the description of the RTISP and also of use for others transportation problems.

3 Assumptions and models

3.1 Hypothesis
Vehicle moves are modeled with arcs and edges. They represent either inspection tasks and
deadhead traversals of track portions or complex moves like unit switch back or station
traversal. Arcs are suitable for the description of unidirectional railway tracks whereas edges
are for bidirectional railway tracks. Nodes describe stations, communication between railway
tracks, or locations in the network where the vehicles can change their circulation mode.
Only primary tracks are directly modeled.

For the schedule to be easily adapted during operations, multiple shifts per day are not
taken into account. Each shift consists of a trip between two refill stations with a total
distance to inspect smaller than the capacity of the water tank and a total trip duration
smaller than the duration of a work shift. Given all the feasible shift pattern paths, the RTISP
becomes the problem of selecting and scheduling them in order to satisfy all inspections at
the lowest cost.

3.2 Graph and vehicle representation
A multigraph G = (V,A) containing arcs and edges (A) and nodes (V) models the railway
network. Arcs and edges can represent tasks (Ā), deadhead traversal (Ã) or wait (Â). Nodes
can represent rest and refill stations (V̄), or communications between railtracks and measure
interruption possibility (Ṽ). The corresponding arcs describe the set (A). All these sets are
indexed by k when they are related to the subnetwork which can be inspected by vehicle

S. Lannez and C. Artigues and J. Damay and M. Gendreau 133

k ∈ K. The parameter la is the length in kilometers of arc a. The parameter dak is the
traversal duration of arc a for vehicle k. The parameter wk is the working capacity, in
kilometers, of the vehicle k. Loop arcs (Â) represent dead shifts and have a traversal duration
of one shift.

3.3 Calendar

The calendar H is assumed to not contains any non working day. It is composed of integer
values representing number of “shift seconds” since the first period of the planning horizon.
The need for a small timeslot comes from the wide range of task duration and the relatively
high speed of vehicles. t is a timeslot in H, s the duration of a shift and p the first period of
the calendar. The subset D ⊆ H contains the first ”shift seconds” of each shift. The subset
H̄a,k ⊆ H contains the set of periods during which vehicle k can not traverse arc a.

3.4 Mathematical model

The binary integer program presented in this section is used to better clarify the mathematical
representation of the RTISP. The modelM contains an exponential number of variables,
each one representing a feasible shift pattern.

Objective function

Minimise total deadhead: the cost of an arc is the length of the arc if this arc is a deadhead
one. No cost is imputed for other arcs.

ca =

{
la, if a ∈ Ã,
0, else.

(1)

Shift flow model - (M)

Given the complete set of feasible trips between two refill stations, vehicles circulation can be
modeled as a flow on a multicommodity network, each arc representing feasible daily trips.

The set Q contains all shift patterns. The subset Qk contains all shift patterns valid
for vehicle k. Each shift pattern q is associated to a path between two nodes having refill
facilities. Let Pq denote the sequence containing the visited arcs in their visiting order.

Let Hq denote the set of periods during which the shift q can start. Let s be the duration
of a shift. Let ztq equal one if shift pattern q is performed during calendar day t. Let Aaq be
a parameter which equal one if arc a is inspected during shift pattern q. Let Saq and Eaq be
parameters which equals one if arc a is respectively the first and the last of the shift pattern
q.

Let δ+(v) and δ−(v) denote the set of outgoing arcs and the set of ingoing arcs of node v.
The cost of a shift pattern is defined as follows:

cq =
∑
a∈Pq

ca, ∀k ∈ K, q ∈ Qk. (2)

ATMOS ’10

134 Column Generation Heuristic for a Rich Arc Routing Problem

The mixed integer program is as follows:

minimise
∑
q∈Q

∑
t∈D

cqz
t
q (3)

subject to∑
t∈D

∑
q∈Q

Aaqz
t
q ≥ 1, ∀a ∈ Ā (4)

∑
q∈Qk

a∈A∑
a∈δ+(v)

Saqz
t+s
q −

a∈A∑
a∈δ−(v)

Eaqz
t
q = 0, ∀v ∈ V̄ , k ∈ K, t ∈ D (5)

∑
q∈Qk

ztq ≤ 1, ∀k ∈ K, t ∈ D (6)

ztq = 0, ∀t /∈ Hq (7)
ztq ∈ {0, 1}, ∀t ∈ D, q ∈ Q (8)

The objective function (3) ensures that from all feasible solutions the one with minimum
total deadhead will be selected. Constraints (4) ensure that the set of selected shift permits
to perform all inspection tasks. Constraints (5) ensure for each vehicle that two consecutive
shifts end and start at the same node. Constraints (6) enforce for each vehicle the assignment
of at most one shift per calendar day. Constraints (7) ensure that shift are scheduled during
valid periods. Constraints (8) ensure that solutions are integer.

4 Relaxation

Solving modelM with an out-of-the-box branch-and-bound method is not tractable due to
the large number of binary variables and constraints. Fortunately, space and time distribution
of inspection tasks are correlated. The analysis of the way the experts are actually scheduling
the vehicles shows that relaxing some of the time related constraints does not destroy too
much the structure of the provided feasible solutions.

The main idea of our algorithm is to relax constraints which tie together shifts, while
maintaining strong feasibility inside each of them (trip length, shift duration, task sequence
and time windows). This relaxation is strengthened by adding cuts which reduce the selection
of infeasible solutions. RM is a continuous relaxation ofM in which we relaxed shift relation
constraints (5) and (6) and time index of decision variables ztq.

4.1 RM:

The relaxed model RM is obtained by removing the time based indexation of the variables
ztq. Constraints (6) are removed because they are redundant in this new model. Constraints
(7) are removed because time is no longer taken into account. The substitution performed is∑

t∈D z
t
q = zq.

S. Lannez and C. Artigues and J. Damay and M. Gendreau 135

The linear program is as follows:

minimise
∑
q∈Q

cqzqsubject to∑
q∈Q

Aaqzq ≥ 1, ∀a ∈ Ā, (9)

∑
k∈K

∑
q∈Qk

a∈A∑
a∈δ+(v)

Saqzq −
a∈A∑

a∈δ−(v)

Eaqzq = 0, ∀v ∈ V̄ , (10)

zq ∈ [0, 1], ∀q ∈ Q. (11)

4.2 Enhancing RM with a local pseudo cut
Our preliminary computational tests on solving RM by column generation have highlighted
the selection of some columns with incompatible time windows. To reduce this side effect,
relaxation is strengthen by adding cuts inspired by Benders feasibility cuts [4]. At each
column generation iteration, a subproblem is solved to check if every shift pattern can be
assigned to a calendar date. If it is not, a cut aiming at limiting the selection of infeasible
sets of shifts is generated and added to model RM.

The chosen cut is the subset variable sum. For a given solution containing n shifts, of
which only m can be scheduled together, it ensures that at most m of the corresponding
variables can be non zero. Let z̄IP be an integer solution, with z̄IPq the value of variable zq
in this integer solution. We recall that Q contains the set of shift patterns. The “subset
variables sum” cut can be expressed as follows:∑

q∈Q|z̄IPq >0

zq ≤ m. (12)

Unfortunately, this cut is not strong enough to be efficient in the linear model RM and
using out-of-the-box branch-and-bound solver to get an integer solution from RM is actually
not an option due to high computation time. To overcome this situation a heuristically
generated cut is used to remove bad integer solutions directly in the continuous space of RM.
The cut is called a local pseudo cuts. These cuts are called pseudo cuts because they are not
valid for the integer program: feasible solutions can be cut. They are called local cut because
they can help to generate integer feasible solutions in the neighborhood of the current one.
The local pseudo cut counterpart of the “subset variables sum” can be expressed as follows:∑

q∈Q|z̄IPq >0

1
z̄LPq

zq ≤ m. (13)

5 Column generation based heuristic - AlgoColGen

5.1 Overall view
The proposed algorithm is based on a mathematical decomposition which is heuristically
solved in three steps. The first one is used to aggregate simple tasks into work shifts with the
use of a column generation algorithm applied to the model RM. It generates a continuous
solution to the problem. In the second step, a rounding greedy heuristic is used to get
an integer solution. This new integer candidate solution is tested against calendar day

ATMOS ’10

136 Column Generation Heuristic for a Rich Arc Routing Problem

Figure 2 Scheme of the decomposition algorithm

assignment to check if it is feasible according to task cover constraints (6). If it is not, a local
pseudo cut is generated. If it is, the new candidate solution is used to generate a constraint
program for the third stage. This last stage is used to check the feasibility of the set of
work shifts. If this test fails, a local pseudo cut which can be added to RM is generated.
Otherwise, a solution with minimum total deadhead traversal distance is approximated. The
general scheme of this algorithm is given in the figure 2.

5.2 Stage 1 - Column generation

The master problem is a set covering problem (SCP) with additional constraints. The
subproblems are to find elementary shortest paths between two refill stations with resource
constraints.

Master problem - (RM)

The master problem of the column generation is the mathematical model RM. It is a linear
program solved by the simplex algorithm.

Subproblems - (SP)

Shift patterns are generated by solving elementary shortest path problems with two resource
constraints (water, shift duration). The implemented procedure is a label setting algorithm
inspired by the algorithm presented in [11].

The dual variable λa is associated to each constraint (9). The dual variable µak̄ is
associated to each constraint (10). The parameter k̄ is the index of the vehicle for which a
shortest path is to be computed and t̄ is the first period of a shift.

S. Lannez and C. Artigues and J. Damay and M. Gendreau 137

SP (λ, µ, k̄, t̄) =

minimise
∑
a∈A

t≤t̄+s∑
t=t̄

(caλa + µt
ak̄

)xt
ak̄

(14)

subject to∑
a∈Ã

t̄+s∑
t=t̄

lakx
t
ak̄
≤ wk̄, (15)

∑
a∈δ−(v)

x
t−dak̄
ak̄

−
∑

a∈δ+(v)

xt
ak̄

= 0, t ∈ H, t̄ ≤ t ≤ t̄+ s (16)

xtak = 0 a ∈ A, t ∈ H̄a,k (17)
xtak ∈ {0, 1}, a ∈ A, t ∈ H (18)

Constraints (15) enforce length of shortest paths to not exceed vehicle’s water capacity.
Constraints (16) ensure flow conservation. Constraints (17) ensure that no arc are traversed
during outages. Finally, constraints (18) ensure that vehicle can only move on the graph.

It should be noticed that it would be intractable to compute, at each column generation
iteration, K ·D constrained shortest paths. Our implementation enables finding valid shortest
paths for multiple calendar days. It can be parameterised to generate from K to K · D
subproblems. At the first extreme, the feasible solution space of each of the K subproblems
is large. Solving one of them is very time consuming. In the other extreme, the feasible
solution space of each of the K ·D subproblems is narrow and solving one of them is fast.

5.3 Stage 2 - Early feasibility test
The column generation model becomes quickly degenerated with a lot of columns and few
constraints. Getting an integer solution from RM with a general purpose branch-and-bound-
and-cut is not a realistic choice because the solution space is far too wide. In order to quickly
get an integer feasible solution, a rounding heuristic, named AlgoGreedyCover , inspired by
the greedy algorithm proposed by Chvàtal [6] is applied to the set covering problem. This
heuristic selects columns to be rounded up by computing a ratio of the column cost and
the number of times it appears in the rows. It ensures the satisfaction of cover constraints
(4). The selected shifts are tested against calendar day assignment with a max flow problem.
The optimal flow gives an upper bound on the maximum number of shifts which can be
scheduled. If it is lower than the number of shifts, a local pseudo cut is generated and added
to the master problem, see Section 4.2. Otherwise, a new candidate solution has been found.
It is saved and will be tested against feasibility for modelM in the third stage. It should
be noticed that the rounding heuristic and the max flow algorithm are both polynomial
algorithms [1].

Rounding heuristic - AlgoGreedyCover

The rounding heuristic consists in computing, for each fractional variable, the ratio between
the objective function coefficient and the number of times it appears in the rows. The value of
the variable with lowest ratio is rounded up and removed from the list of selectable columns
(Q̄). The related cover constraints are marked as satisfied. Each variable which is selectable
and for which every cover constraints are marked as satisfied is removed from Q̄ and its value
set to zero. The ratio of each column is updated and the algorithm iterates until all cover
constraints are satisfied or no variable is selectable.

ATMOS ’10

138 Column Generation Heuristic for a Rich Arc Routing Problem

Calendar day assignment - (Mcal)

The problem of flow maximisation in a graph is used for modeling possible assignment of
shifts to calendar days. This problem has been proved to be polynomially solvable, [1].

Let Bqt be a parameter which equals one if shift q can be assigned to calendar day t.
Let Q̄k be the set of selected shift patterns of vehicle k. Let yqt be a binary variable which
equals one if shift pattern q is assigned to calendar day t.

The assignment problem is defined as follows: Mcal(k) =

maximise
∑
t∈D

∑
q∈Q̄k

Bqtyqt (19)

subject to∑
t∈D

Bqtyqt ≤ 1 ∀q ∈ Q̄k (20)∑
q∈Q̄k

Bqtyqt ≤ 1 ∀t ∈ D (21)

yqt ∈ {0, 1} ∀t ∈ D, q ∈ Q̄k (22)

The objective function (19) ensures that among all feasible solutions, the one maximising
the number of assigned shifts is to be chosen. Constraints (20) ensures that a shift pattern
can be assigned to at most one calendar day. Constraints (21) ensures that a calendar day
can not be assigned to more than one shift.

5.4 Stage 3 - Complete feasibility test
The above-described rounding heuristic does not take into account tasks sequencing con-
straints. Solutions found during stage 2 can still violate the flow conservation constraints
between shifts (5). To overcome this situation, an extension of a Traveling Salesman Problem
with Time Windows [3] is used to construct a feasible solution from the task groups selection
of these solutions. This problem models at a macroscopic level the RTISP with a period
duration of one shift. A list algorithm is presented to solve it. Each node of the TSP graph
represents a shift pattern. For each node, a list of time windows, during which vehicles can
go through, are defined. Arcs between nodes represents end of day deadhead moves. Their
cost is the total distance between the end of the shift and the start of the next shift. The
duration needed to traverse each arc depends on the shift pattern duration and the vehicle
deadhead speed.

This problem is solved with a heuristic named AlgoSchedList, based on a constraint
propagation and list scheduling. It relies on depth first search without backtracking. Indeed,
due to computational difficulty, we replace backtracking by a guided multi start framework.
At the end of each search, each decision taken during the search (branch selection) is priced.
These prices are used to update a transition cost matrix. Once matrix cost is fully updated,
the search is restarted. The pricing mechanism is inspired by the Vickrey-Clarke-Groves
mechanism, a well known externality measure described in [17]. At first, these prices
are initialised with travel distance between tasks. They are further estimated after each
AlgoSchedList run.

6 Enhanced greedy heuristic - AlgoGreedy

In order to evaluate our column generation heuristic, we additionally designed a greedy
algorithm to solve the complete RTISP based on the dynamic programming method described

S. Lannez and C. Artigues and J. Damay and M. Gendreau 139

in 5. Starting from a node, a period and a vehicle, a shortest path satisfying resource
constraints is computed. The shortest path is appended to the schedule of the current vehicle.
We let the vehicle go forward until the end of the schedule horizon is reached. Then, we
continue with the next vehicle. If no task is reachable from the current node, then a deadhead
move is performed to find the nearest node which enables performing a task.

In order for the tasks to be selected during shortest path computation, different weight
update rules have been tested. The one used in this paper uses information about task time
windows and tasks duration.

Let wka denote the cost of performing task i on vehicle k. This cost is defined as follows:

wka = −M + ca2.0−
esa
lsa

),

with esa and lsa the earliest and latest start of task a. M should have a value such that
the algorithm will always prefer performing a task rather than deadheading.

7 Computational tests

7.1 Real dataset
The test dataset contains mainly two distinct parts which are static data and dynamic data.
Static data contains the network representation of the railway network and the vehicles
outages which are likely to rarely change during the life cycle of the decision tool. Dynamic
data contains the tasks time windows and tracks outages which can be updated at most
every months. For the purpose of this article we present a dataset based on information
acquired for 2009.

The infrastructure graph has 1000 arcs, 500 edges and 760 nodes. A total of 500 tasks
must be performed per year. The generated graph has 1600 arcs, 500 edges and 770 nodes of
which 90 are refill stations. Task time windows have a fixed size of 28 days and duration
ranging from few minutes to six hours. The duration of a shift is fixed to seven hours. The
horizon used for shortest paths computation is one month, which yields 12 subproblems per
vehicle.

7.2 Computational tests
Based on the real dataset we derived three scenarios. In the first one, named no outage,
we removed all track outages. In the second one, small outages, we divided by 10 the
duration of each outage. The last one, named full outages, is the real dataset provided by
the company. For each algorithm and each scenario, we show the task completion rate (r)
and the performance ratio (p).

The performance ratio (p) is calculated to reflect the rate between the total inspected
distance (di) and the total deadhead (dd) moves :

p = di
di + dd

.

The task completion rate (r) is used for getting information about the hardness of the
instance. The real dataset is actually in constant evolution and is known not to be feasible.
In fact, the information about whether outages can be traversed or not is not yet available.
To cope with this situation, a slack variable with a prohibitive cost is added to each covering
constraints of the model.

ATMOS ’10

140 Column Generation Heuristic for a Rich Arc Routing Problem

In the table in figure 3, it can be seen that the column generation heuristic outperforms
the greedy algorithm in terms of task coverage and solution quality. In the table in figure 4,
it can be seen that the performance of the column generation algorithm seems to be better
when time windows are tight.

No outages small outages full outages
r p r p r p

AlgoGreedy 100% 18.82% 27% 9.77% 23% 9.06%
AlgoColGen 100% 30.50% 37% 25.54% 31% 22%

Figure 3 Task coverage and solution quality

No outages small outages full outages
t t t

AlgoGreedy 47 767 539
AlgoColGen 3434 180 61

Figure 4 Computation time (in seconds)

8 Conclusion

In this paper, a railway maintenance routing problem and a mixed integer formulation is
presented. An original column generation heuristic is proposed to solve it. Cut generators
based on model relaxation resolution are proposed and implemented. A comparison between
this heuristic and an enhanced greedy algorithm is presented. The numerical tests show that
the column generation heuristic performs better than the greedy heuristic. Furthermore, it
highlights the difficulty for the greedy algorithm to tackle dataset with highly constrained
time windows. The difficulty to perform all tasks is due to the presented dataset. It is an
extreme situation in which it is forbidden to traverse during every outages and the minimum
outage duration is one day.

This work on train units for ultrasonic inspection can be extended to other maintenance
train units which also have a limited capacity. An extensive study of the pseudo local cut
impact is also of interest.

References
1 R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows: theory, algorithms, and

applications. Prentice-Hall, Inc., 1993. ISBN 0-13-617549-X.
2 A. Amaya, A. Langevin, and M. Trépanier. The capacitated arc routing problem with

refill points. Operations Research Letters, 35(1):45–53, 2007. ISSN 0167-6377.
3 D.L. Applegate, R.E. Bixby, V. Chvàtal, and W.J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton Press, 2007.

4 J.F. Benders. Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik, 4:238–252, 1962.

5 S. Raghavan B.L. Golden and E.A. Wasil, editors. The Vehicle Routing Problem: Latest
Advances and New Challenges. Springer US, 2008.

S. Lannez and C. Artigues and J. Damay and M. Gendreau 141

6 Vasek Chvàtal. A Greedy Heuristic for the Set-Covering Problem. Mathematics of
Operations Research, 4(3):233–235, 1979.

7 M. Dror, editor. Arc Routing: Theory, Solutions and Applications. Springer, 2000. ISBN
0-79237-898-9.

8 H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part I: The chinese
postman problem. Operations Research, 43(2):231–242, 1995.

9 H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part II: The rural
postman problem. Operations Research, 43(3):399–414, 1995.

10 J.L Ellis and S. Wohlk. Solving the capacitated arc routing problem with time windows
using column generation. CORAL Working Papers L-2008-09, University of Aarhus,
Aarhus School of Business, Department of Business Studies, January 2009.

11 D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the elementary
shortest path problem with resource constraints: Application to some vehicle routing
problems. Networks, 44(3):216–229, 2004.

12 G. Ghiani, G. Improta, and G. Laporte. The capacitated arc routing problem with
intermediate facilities. Networks, 37(3):134–143, 2001.

13 B.L. Golden and R.T. Wong. Capacitated arc routing problems. Networks, 11(3):305–315,
1981.

14 G. Hasle and O. Kloster. Geometric Modelling, Numerical Simulation, and Optimization,
chapter Industrial Vehicle Routing, pages 397–435. Springer Berlin Heidelberg, 2007.

15 Stefan Irnich. Solution of real-world postman problems. European Journal of Operational
Research, 190(1):52 – 67, 2008. ISSN 0377-2217. DOI: 10.1016/j.ejor.2007.06.002. URL .

16 B. Kim, S. Kim, and S. Sahoo. Waste collection vehicle routing problem with time
windows. Computers & Operations Research, 33:3624–3642, 2006.

17 A. Max-Colell, M.D. Whinston, and R. Green. Microeconomic Theory. Oxford University
Press, 1995.

18 N. Perrier, A. Langevin, and J.F. Campbell. A survey of models and algorithms for
winter road maintenance. Part I: system design for spreading and plowing. Computers &
Operations Research, 33:209–238, 2006.

19 N. Perrier, A. Langevin, and J.F. Campbell. A survey of models and algorithms for winter
road maintenance. Part II: system design for snow disposal. Computers & Operations
Research, 33:239–262, 2006.

20 N. Perrier, A. Langevin, and J.F. Campbell. A survey of models and algorithms for
winter road maintenance. Part III: Vehicle routing and depot location for spreading.
Computers & Operations Research, 34:211–257, 2007.

21 N. Perrier, A. Langevin, and J.F. Campbell. A survey of models and algorithms for
winter road maintenance. Part IV: Vehicle routing and fleet sizing for plowing and snow
disposal. Computers & Operations Research, 33:239?262, 2007.

22 N. Perrier, A. Langevin, and C.A. Amaya. Vehicle routing for urban snow plowing
operations. Transportation Science, 42:44–56, 2008.

23 M. Reghioui, C. Prins, and N. Labadi. Grasp with path relinking for the capacitated
arc routing problem with time windows. In Proceedings of the 2007 EvoWorkshops
2007 on EvoCoMnet, EvoFIN, EvoIASP,EvoINTERACTION, EvoMUSART, EvoSTOC
and EvoTransLog, pages 722–731, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN
978-3-540-71804-8.

ATMOS ’10

The Team Orienteering Problem: Formulations
and Branch-Cut and Price∗

Marcus Poggi1, Henrique Viana1, and Eduardo Uchoa2

1 Departamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro
Rio de Janeiro-RJ, Brasil
{poggi, fviana}@inf.puc-rio.br

2 Departamento de Engenharia de Produção, Universidade Federal Fluminense
Niterói-RJ, Brasil
uchoa@producao.uff.br

Abstract
The Team Orienteering Problem is a routing problem on a graph with durations associated to
the arcs and profits assigned to visiting the vertices. A fixed number of identical vehicles, with
a limited total duration for their routes, is given. The total profit gathered by all routes is to be
maximized. We devise an extended formulation where edges are indexed by the time they are
placed in the route. A new class of inequalities, min cut, and the triangle clique cuts of Pessoa
et. al., 2007 are added. The resulting formulation is solved by column generation. Branching is
done following the work of Boussier et al. 2007, to which the branch-cut-and-price algorithm here
proposed is compared. A few new upper bounds were obtained. Overall the presented approach
has shown to be very competitive.

1998 ACM Subject Classification G.1.6 Optimization, Integer Programming

Keywords and phrases Branch-Cut and Price, Team Orienteering Problem, Column Generation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.142

1 Introduction

Routing Problems are among the most studied problems in Combinatorial Optimization.
Routing problems consider a fleet of vehicles to visit a set of customers. In most versions of
this family of problems, all customers have to be visited exactly once. However, in many
applications of the real world, there are constraints that force us to choose which customers
to visit. The Team Orienteering Problem (TOP) models one of such situations. In the TOP,
each customer has an associated profit and the tours have a maximum duration. The choice
of customers is made balancing their profits and their contributions for the route duration.
Formally, we consider a complete undirected graph G(V,E) where V = {0, . . . , n+ 1} is the
set of vertices and E is the set of edges. Vertex 0 is the starting point and n + 1 is the
ending point of the routes. A nonnegative profit pi is associated to each vertex i and lij is
a symmetric travel time between vertices i and j. The fleet has m identical vehicles. The
objective is to maximize the total reward collected by all the routes, satisfying the time limit
L for each route. Not all customers have to be visited. When only one vehicle is considered,
we have the Orienteering Problem, OP , which has been shown to be strongly NP-Hard (see
Laporte and Martello(1990) [7]), therefore the TOP is also NP-Hard.

∗ This work was partially supported by CNPq.

© H. Viana , E. Uchoa and M. Poggi;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 142–155

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Marcus Poggi, Henrique Viana, and Eduardo Uchoa 143

The literature on the Team Orienteering Problem - TOP is quite recent. It has been
proposed by Butt and Cavalier(1994) [3] with the name Multiple Tour Maximum Collection
Problem. Two years later, the paper by Chao et al.(1996) [4] formally introduced the problem.
As noted above, the TOP is a version of the Orienteering Problem considering multiple
vehicles. Orienteering Problems consider that only one vehicle visit the clients. An exact
algorithm for the Orienteering Problem was proposed in Fischetti et al.(1998) [5]. The first
experimental work on the TOP is presented in Chao at al. [4], it generated the currently
most used benchmark instances set. Tang and Miller-Hooks [9] proposed a Tabu Search
combined with an adaptive memory procedure. Most of the best known solutions for these
TOP benchmark instances are found in Archetti et al.(2005) [1]. This last work proposed
two versions of Tabu Search and two metaheuristics implementations based on Variable
Neighborhood Search - VNS. Ke et al. (2008) [6] developed two ant colonies variations. This
approach has been able to get competitive results, reducing the overall computational time.
More recently, Vansteenwegen et al.(2009) [10] has presented a VNS which obtains results
almost as good as the results in [1], but with a reduced computational time. However, in
general, the quality of the solutions presented in [1] are still better. Finally, an exact column
generation algorithm, a branch-and-price, has been proposed by Boussier et al. [2]. We use
these last results as benchmark for comparison.

In this paper we first present integer programming compact formulations based on
arc indexed variables. The first formulation is then extended by considering variables
that contain information on the duration of the routes. Next, this latter formulation is
decomposed to derive an associated column generation formulation where variables represent
routes (elementary or not). Valid inequalities on the arc indexed extended variables are
recalled, and new valid inequalities on these variables are proposed. These are joined up in a
branch-cut-and-price scheme.

We organized the text as follows. Section 2 addresses the compact and the column
generation formulations. Section 3 describes in detail the branch-cut-and-price scheme. The
following section 4 presents the experimental results obtained. They are compared with the
results in [2]. Finally, conclusions are drawn in section 5.

2 Mathematical Formulations

We now present three Integer Programming formulations for the TOP . The first one is
equivalent to the one in Vansteenwegen et al.(2009) [10] which uses variables indicating
whether a vehicle route uses or not an arc. Indexing on the vehicles is necessary to take care
of the duration of the routes. In the second formulation, these arc indexed variables are also
indexed on the instant it starts in the route. This allows to avoid indexing on the vehicles,
since no variable indicating an arc will finish after the maximum duration will be considered.
The first formulation is said to be compact because its number of variables is polynomial
and, although the number of constraints is exponential, they can be separated in polynomial
time (subtour elimination constraints). The second formulation has a pseudo-polynomial
number of variables and therefore is less compact than the first one. Finally, we present
a formulation with an exponential number of columns. Each column represents a possible
route and the formulation can be seen as a decomposition of the previous one.

The notation used in the formulations considers a directed complete graph with arc set A.
Vertex sets are V = {0, . . . , n+ 1} and V − = {1, . . . , n}, where the latter contains only the
customer vertices. The nonnegative profits are denoted by pv for v ∈ V −, arc travel times
are given by la for a = (i, j) ∈ A. The number of identical vehicles is given by m.

ATMOS ’10

144 The Team Orienteering Problem: Formulations and Branch-Cut and Price

2.1 Compact Formulation

This TOP formulation uses binary variables xka to indicate whether arc a is traversed or not
by the vehicle k. Binary variables yv are set to one to indicate the vertex v is visited and to
zero otherwise.

max
∑

v∈V −
pv · yv (1)

m∑
k=1

∑
a∈δ−(v)

xka − yv = 0 ∀v ∈ V − (2)

m∑
k=1

∑
a∈δ−(S)

xka − yv ≥ 0 S ⊂ V ∀v ∈ S (3)

m∑
k=1

xka ≤ 1 ∀a ∈ A (4)∑
a∈A

lax
k
a ≤ L k = 1, . . . ,m (5)∑

a∈δ+(v0)
xka = 1 k = 1, . . . ,m (6)∑

a∈δ−(vn+1)
xka = 1 k = 1, . . . ,m (7)

yv ∈ {0, 1} ∀v ∈ V − (8)
xka ∈ {0, 1} ∀a ∈ A ∀k = 1, . . . ,m (9)

The objective function (1) maximizes the sum of profits associated to the visited vertices.
Constraints (2) ensures that a customer is visited once at most by one vehicle. Connectivity
of the routes is guaranteed by constraints (3) that indirectly imposes subtour elimination of
optimal solutions. The constraint set (4) forbids the use of an arc by two or more routes.
The maximum duration of the routes imposed by constraints (5). Constraint sets (6) and (7)
force m vehicles to leave from the starting point and return to the ending point.

2.2 Less Compact Formulation

In this formulation, each arc has an extra index l. This index represents the departure time
of a vehicle using the arc. Variable xlka indicates that vehicle k passes through arc a starting
with l units of time consumed. Since each arc can only be used once, it can start at exactly
one single duration spent and we can write:

xka =
L∑
l=0

xlka (10)

In order to take into account the duration associated to the arcs, we modify the original
graph as follows. We create an intermediate vertex wa for each arc a ∈ A. These artificial
vertices have a demand associated to them equal to the travel time of arc a in the original
graph. For instance, let wij be an intermediate point on arc a = (i, j). The original arc
becomes two new arcs a1 = (i, wij) and a2 = (wij , j). The resulting modified graph has then
arc set A1

⋃
A2, where A1 = {(i, wij), (i, j) ∈ A} and A2 = {(wij , j), (i, j) ∈ A}. The vertex

set is given by V
⋃
A. Figure 1 shows the graph transformation. The intermediate vertex

(gray point) consumes a demand (time) that corresponds to the travel time of the original
arc (i, j). In this case, the travel time of arc (i, j) is 2.

Marcus Poggi, Henrique Viana, and Eduardo Uchoa 145

Figure 1 Graph transformation

The formulation on variables xlka is obtained by replacing variables xka for equation (10)
in the compact formulation 2.1. As mentioned above, constraints (5) can be removed, since
the route duration limit can be done by considering only appropriate l indexes. Furthermore,
we can impose that m arcs leave vertex 0 and return to vertex n+ 1. This uniquely identify
the vehicle routes and, consequently, allow to remove index k from variables xlka . The second
formulation is then written on variables xla, a ∈ A1

⋃
A2, l = 0, 1, . . . , L. In fact, it would be

more precise to use as largest value of l as L minus the travel time of the arc connecting the
arrival vertex to vertex n+ 1. We use L to simplify the notation.

max
∑

v∈V −
pv · yv (11)

L∑
l=0

∑
a∈δ−(v)

xla − yv = 0 ∀v ∈ V − (12)∑
a∈δ−(v)

xla −
∑

a∈δ+(v)
xla = 0 ∀l = 0, ..., L ∀v ∈ V − (13)

xl(i,wij) = x
(l−l(i,j))
(wij ,j) ∀l = 0, ..., L ∀(i, j) ∈ A (14)

L∑
l=0

∑
a∈δ+(0)

xla = m (15)∑
a∈δ−(n+1)

x0
a = m (16)

yv ∈ {0, 1} ∀v ∈ V − (17)
xla ∈ {0, 1} ∀a ∈ A1

⋃
A2 ∀l = 0, ..., L (18)

This formulation can be seen as a flow formulation. Flow conservation is assured by
constraints (13) on the original vertices, while constraints (14) do the same on the intermediate
vertices. They also impose that traversing an arc consumes time. Finally, constraints (15)
and (16) impose the number of routes.

2.3 Column Generation Formulation
As the (pseudo-polynomial) number of variables in the formulation just above may be huge,
we apply a Dantzig-wolfe decomposition. The master problem considers only the constraints
that keep track of the visited vertices and the one that guarantees the number of routes to be
m. The columns represent the routes, therefore assuring the flow conservation constraints are
satisfied. For integer solutions of the second formulation the columns are elementary routes.
On the other hand, when the linear relaxation is considered, the less compact formulation is
equivalent to this column generation formulation when the routes can also be non-elementary
or walks on the graph.

ATMOS ’10

146 The Team Orienteering Problem: Formulations and Branch-Cut and Price

All possible columns can be expressed in terms of its arcs indexed by their start instant
in the route, elementary or not. Coefficient glja indicates that arc a initiating at duration l
is used in route j. Let Q represent the set of all possible routes. Let also λj represent the
variable indicating whether route (or non-elementary route) j is chosen. We can write:

∑
j∈Q

glja · λj = xla ∀a ∈ A ∀l = 0, ..., L (19)

The column generation formulation is then obtained by replacing variable xla in constraints
(12) and (16) following the equation above. The formulation is given by:

max
∑

v∈V −
pv · yv (20)

∑
a∈δ−(v)

∑
j∈Q

L∑
l=0

glja · λj = yv ∀v ∈ V − (21)∑
a∈δ+(0)

∑
j∈Q

g0j
a · λj = m (22)

yv ∈ {0, 1} ∀v ∈ V − (23)
λj ∈ {0, 1} ∀j ∈ Q (24)

Constraints (21) guarantee that if a vertex is visited, some selected route must visit it.
The constraint (22) forces that m routes leave from the starting point.

3 Robust Branch-Cut-and-Price Algorithm

This section describes the proposed Branch-Cut-and-Price algorithm. We first present the
pricing subproblem to solve the linear relaxation of the second formulation above by column
generation. This implies allowing non-elementary routes to be obtained, but also to avoid
solving a strongly NP-Hard problem. The resulting pricing can be solved in pseudo-polynomial
time. We say that the Branch-Cut-and-Price is robust regarding its efficiency when this
complexity is kept for all pricing done in the algorithm. To preserve this property the cuts
presented in following subsections are defined over the variables of the second formulation.
Branching is also done keeping this property and is detailed at the end of this section.

3.1 Pricing Subproblem
The pricing subproblem corresponds to finding routes, elementary or not, with maximum
reduced cost and duration at most L. This can be done by dynamic programming using the
recursion given below (25).

rlc(j) = max{rlc(j), rc(i)l+l(i,j) + p(j)− π(i,j)} (25)

The maximum reduced cost at vertex j and route duration l is given by rlc(j). The value
π(i, j) is the dual cost of arc (i, j) and sums up all dual contributions from the current
restrcited master problem. In the root node of the branch-cut-and-price π(i, j) corresponds
to the dual variable associated to the jth constraint (21). As cuts are added and branching
is done other dual values will contribute to the value of π(i, j).

The route, elementary or not, with largest reduced cost is found, regardless of the values
of π(i, j), in O(nL). It is possible to eliminate 2-cycles in the routes ((i, j) and (j, i) in
sequence) without changing this complexity.

Marcus Poggi, Henrique Viana, and Eduardo Uchoa 147

3.2 Families of Cuts
Two families of cuts are used in the proposed branch-cut-and price algorithm. The Min
Cut inequalities next described is, to the best of our knowledge, new. The second one is
an adaptation of the Triangle Clique cuts in Pessoa et al. (2007) [8]. Both are described
on variables xla and yv from the second formulation, the original variables of the column
generation formulation. However, the resulting constraints are written in terms of λj variables,
via equation (19), and added to the column generation formulation.

3.2.1 Min Cut Inequalities
This family of cuts relies on the intuition that fractional solutions for the second formulation
will go in and out of a vertex several times, while integer solutions will at most have one
value of xl(i,j) for all i and all l, greater than zero, and equal to one. In a certain sense, it
works as a sub-cycle elimination constraint, although it considers all routes with non-negative
value in the current solution at once.

Figure 2 Fractional solution violating a min-cut inequality

Figure 2 presents one such situation where a fractional can be cut off. First observe that
exactly one unit of flow enters vertex V1, satisfying constraints (12), but violating integrality.
Now, verify that the minimum cut from the departing vertex V0 to all copies of V1 (or to the
converging vertex on the top of the figure) is 0.5. This cut is given by the set of all vertices
in gray and the minimum value for it is one (or the current value of variable y1).

Let S be the set of vertices associated to one such minimum cut regarding vertex v. The
corresponding inequality is given by:

∑
a,l|a∈δ−(S)

xla ≥ yv (26)

Identifying a violated min-cut inequality amounts, therefore, to solve a minimum s-t
cut problem. Consider the graph with vertex set {0, n+ 1}

⋃
{(i, l)|i ∈ V −, l = 0, . . . , L}

and arc set {(il, jl−li,j)|xl(i,j) > 0}, where the capacity of the arcs are given by the values of
variables xl(i,j) in the current fractional solution. To this graph, add a sink vertex and arcs

ATMOS ’10

148 The Team Orienteering Problem: Formulations and Branch-Cut and Price

from all copies of a vertex v, vl for l = 0, . . . , L, and assign an infinity capacity. To obtain
minimum s-t cuts, we solve max-flow problems on this graph with vertex 0 as source and the
required artificial vertex as sink.

The resulting inequality (26) is defined only on variables from the second formulation.
Therefore, the associated dual variable will allow assigning its value to the arcs dual costs
and the pricing problem will remain unchanged.

3.2.2 Triangle Clique Cuts
Let S ∈ V − be a set of exactly three vertices. Consider now all arcs in A1

⋃
A2 that has as

extreme point on a vertex in S, and their multiplicities on l. Two such arcs are compatible
when there exists a route that contains both.

Figure 3 Compatible arcs

Figure 3 illustrate the compatible arcs idea. There are black and gray vertices. The black
ones are the vertices of S. The gray ones are the intermediate ones. The index l represents
the departure time for each arc. The demand d value on the gray vertices correspond to the
travel time of the original arc associated to this intermediate vertex. It can be observed that
the arcs in bold describe a possible part of a route and therefore are compatible. It worths
mentioning that a5 and a6 are not compatible with the arcs in bold because if there were a
flow returning to vertex i, the arrival time at i would not be equal to 10.

The triangle clique cuts simply states that the sum of the variables associated to arcs
(and their multiplicities) in a set where every pair is not compatible can be at most one.
This can be view as a clique in an incompatibility graph where there is an edge uniting every
pair of incompatible arcs. Another way to look at this same structure is to consider stable
sets in a compatibility graph which, in this case, is much less dense.

Let G′ = (V ′, E′) be the compatibility graph where each vertex of V ′ is a time-indexed
arc al = (i, j)l for a ∈ A1

⋃
A2 and l = 0, . . . , L. In this case, an edge e = (al11 , a

l2
2) belongs

to E′ if, and only if al11 and al22 are compatible. Let S = {i, j, k}. There are four cases:
Case 1: if e = ((i, wij)l1, (i, wik)l2), then e /∈ E′

Case 2: if e = ((i, wij)l1, (k,wkj)l2), then e /∈ E′

Case 3: if e = ((i, wij)l1, (wij , k)l2), and l1 6= l2 − l(wij), then e /∈ E′

Case 4: if e = ((i, wij)l1, (wij , k)l2), and l1 = l2 − l(wij), then e ∈ E′

Marcus Poggi, Henrique Viana, and Eduardo Uchoa 149

For any stable set I ⊂ V ′, the following inequality is valid:
∑
al∈I

xla ≤ 1

The separation routine for the triangle clique cuts finds the stable set I ⊂ V ′ in G′ that
maximizes

∑
al∈I x

l
a, where xla denotes the current LP optimal solution. Despite of the

problem of finding the maximum-weighted stable set being strongly NP-Hard, we can explore
the specific structure of G′ and find a maximum weighted independent set in linear time.

A set I is a maximum-weight stable set for a set of chains if, and only if, it is the union of
maximum-weight stable set for each single chain. We find in linear time the maximum-weight
stable set for each chain H, using a dynamic programming procedure. Let alii be the ith
vertex in the chain H, numbered from 1 to |H| from one extreme to the other of the chain.
Let us define I∗(i, 1) as the maximum stable set for the subchain containing the first i vertices
of H than t does use the ith vertex. Finally, let c(I) =

∑
al∈I x

l
a. We have the following

recurrence:

c(I∗(i, 1)) = xliai + c(I∗(i− 1, 0))
c(I∗(i, 0)) = max(c(I∗(i− 1, 0)), c(I∗(i− 1, 1)))

It is worth mentioning that these cuts are also a way to eliminate cycles of fixed size in the
solution of the restricted master problem.

3.3 Details of the Branch-and-Bound

The branch-cut-and-price algorithm starts with a column generation phase. Once an optimal
LP solution is found either cuts are separated or branching is performed. In both cases, the
pricing problem must be solved again until another optimal LP solution is obtained.

We branch on the vertices, as in Boussier et al. (2007) [2], deciding whether they are served
or not. It is a robust branching scheme because it does not affect the pricing subproblem.
Bounding is done using the values of the feasible solutions found in [2].

The master formulation used is a linear relaxation from formulation presented in 2.3.
Whenever we fix any variable yv = 1, in a node of branch-and-bound tree, there must be a
route that visits v. When this is not the case, the problem becomes infeasible. Therefore, to
branch on the yv variables, it is necessary to add artificial slack variables f+, f− and q, with
large costs, to the constraints in order to guarantee the feasibility of the current restricted
master problem. Its modified formulation can be written:

max
∑

v∈V −
pv · yv −

∑
v∈V −

M · f+
v −

∑
v∈V −

M · f−v −M · q (27)

∑
a∈δ−(v)

∑
j∈Q

L∑
l=0

glja · λj + f+
v − f−v = yv ∀v ∈ V − (28)∑

a∈δ(0)+

∑
j∈Q

g0j
a · λj + q = m (29)

Infeasibility is detected when an artificial slack variable has positive value when LP optimality
is reached.

Branching only on the yv variables may end up with a fractional solution. In this case,
we may proceed branching on the xla variables until an integer optimal solution is reached.
No results with second branching is presented and when there is still a fractional solution
the corresponding upper bound is reported. We choose the yv variable with value closer to
0.5 to branch on.

ATMOS ’10

150 The Team Orienteering Problem: Formulations and Branch-Cut and Price

4 Computational Experiments

We have tested our algorithm using the instances from Chao et al. (1996) [4]. There are seven
datasets where the number of vertices ranges from 21 to 102. For a given number of vertices,
instances only differ on the values of L and m. All experiments were performed on a notebook
with processor Intel Core Duo (but using a single core) with a clock of 1.66GHz and 2GB of
RAM. Results are presented in Tables 1 to 4. All tables have the following columns. Instance
is the name of the instance file; m is the number of vehicles; L is the maximum duration for
the routes; LB is the best lower bound, i.e. the value of the best known solution for the TOP
instance; CG contains the linear relaxation value for the column generation formulation;
ROOT UB presents the LP upper bound in the root node when both families of cuts are
separated; Our UB is the value of the best upper bound found by our branch-cut-and-price
algorithm; Boussier UB is the upper bound presented in Boussier et al.(2007) [2]; columns
CGT, CT and OT present the CPU time spent in the pricing problem, in the cut separation
procedures and in solving the linear programming problems with CPLEX 11.2, respectively;
NN indicates the number of nodes explored in the branch-cut-and-price; finally, the IS the
value of the best integer solution our algorithm found whenever this was the case.

We concentrate our analysis on tables 1 and 2. This is so since the instances in tables 3
and 4 appear to be easy. In those tables, with instances with 64, 66 and 102 vertices, the
important remark is that when the column generation formulation did not find the optimal
solution value as upper bound, the cut separation lead to this. Moreover, the integer optimal
solution was found by our algorithm in 16 out of the 22 instances. Also, the total CPU
times where consistently below 2 minutes. This was also the case for the branch-and-price of
Boussier et. al. (2007).

Table 1 presents the results for instances with 33 vertices. In the case with 4 vehicles the
bounds where identical to the one of Boussier et. al. (2007), with only one instance with a
bound above the optimal solution value. In the cases with 2 and 3 vehicles our algorithm
compared favorably, obtaining better bounds in 7 out of 9 instances. Again the cut separation
improved significantly the bounds. Although a specific column in the tables with only the
Min Cut inequalities was not presented, we observed that these were the most effective cuts.
Finally, the results on the instances with 100 vertices presented in table 2 can be verified to
be similar. In the instances where a tie with the branch-and-price of Boussier et. al. (2007)
did not occur, our algorithm outperform theirs in 5 out 6 instances. This was specially true
for the most difficult instances p4.4.j and p4.4.k. Again, cut separation was crucial.

5 Conclusions

This work proposes a robust branch-cut-and-price algorithm for the TOP . The experimental
results showed that the CPU times were considerably small, even though the duration of the
routes were considered with a precision of two decimals, corresponding to large values. These
large values explain why solving the pricing subproblem were the most time consuming step.
The family of valid inequalities, Min Cut, appeared to be the main contribution of this work,
this is so since they can be adapted to a wide class of routing problems. Regarding the TOP ,
the effort is now on testing and polishing the code with branching on the arc variables. This
shall allow finding optimal solutions and to prove their optimality for many of the instances
from Chao et al.(1996). To conclude we believe that the ideas here presented allow improving
the state-of-the-art in solving instances of the TOP in the near future.

Marcus Poggi, Henrique Viana, and Eduardo Uchoa 151

Ta
bl
e
1

R
es

ul
ts

fo
r

in
st

an
ce

s
w

ith
33

ve
rt

ic
es

In
st

an
ce

m
L

LB
C

G
R

O
O

T
U

B
O

ur
U

B
B

ou
ss

ie
r

U
B

C
G

T
C

T
O

T
N

N
IS

p3
.2

.h
2

25
41

0
43

0.
64

5
41

0
41

0
41

7.
5

26
.5

6s
18

.9
8s

0.
38

s
1

41
0

p3
.2

.k
2

32
.5

55
0

57
5.

08
8

55
0

55
0

56
6.

66
7

81
.2

4s
28

.1
4s

1.
17

s
1

-
p3

.3
.e

3
11

.7
20

0
21

3.
33

3
21

3.
33

3
21

0
20

0
2.

68
s

15
.4

9s
0.

32
s

4
-

p3
.3

.i
3

18
.3

33
0

35
5

33
5

33
0

33
6.

66
7

22
.0

0s
17

.9
5s

0.
64

s
3

33
0

p3
.3

.j
3

20
38

0
40

3.
33

3
38

0
38

0
39

0
15

.6
8s

21
.5

0s
0.

47
s

1
-

p3
.3

.k
3

21
.7

44
0

45
8.

63
6

44
0

44
0

45
0

11
.7

1s
6.

11
s

0.
32

s
1

44
0

p3
.3

.l
3

23
.3

48
0

50
3.

33
3

48
6.

66
7

48
6.

66
7

48
0

90
.1

7s
86

.4
3s

1.
63

s
4

-
p3

.3
.m

3
25

52
0

53
7.

5
52

0
52

0
52

6.
66

7
32

.1
0s

27
.7

4s
0.

47
s

1
-

p3
.2

.e
2

17
.5

26
0

27
6.

25
26

0
26

0
26

2
4.

96
s

0.
12

s
0.

14
s

1
26

0
p3

.4
.k

4
16

.2
35

0
35

0
35

0
35

0
35

0
2.

47
s

0.
00

s
0.

02
s

1
35

0
p3

.4
.l

4
17

.5
38

0
39

5
38

0
38

0
38

0
11

.8
9s

0.
41

s
0.

15
s

1
-

p3
.4

.m
4

18
.8

39
0

40
5

39
0

39
0

39
0

9.
51

s
0.

34
s

0.
06

s
1

-
p3

.4
.n

4
20

44
0

46
1.

66
7

44
6.

66
7

44
6.

66
7

44
6.

66
7

56
.5

9s
4.

70
s

0.
54

s
4

-
p3

.4
.o

4
21

.2
50

0
51

1.
11

1
50

0
50

0
50

0
14

.8
5s

0.
60

s
0.

13
s

1
-

p3
.4

.p
4

22
.5

56
0

56
6.

66
7

56
0

56
0

56
0

18
.0

9s
0.

58
s

0.
14

s
1

56
0

ATMOS ’10

152 The Team Orienteering Problem: Formulations and Branch-Cut and Price

Ta
bl
e
2

R
es

ul
ts

fo
r

in
st

an
ce

s
w

ith
10

0
ve

rt
ic

es

In
st

an
ce

m
L

LB
C

G
R

O
O

T
U

B
O

ur
U

B
B

ou
ss

ie
r

U
B

C
G

T
C

T
O

T
N

N
IS

p4
.2

.a
2

25
20

6
20

6
20

6
20

6
20

6
7.

47
s

0.
00

s
0.

17
s

1
20

6
p4

.2
.b

2
30

34
1

34
4

34
4

34
4

34
1

24
.7

0s
2.

06
s

0.
20

s
1

-
p4

.3
.a

3
16

.7
0

0
0

0
0

0.
15

s
0.

00
s

0.
02

s
1

-
p4

.3
.b

3
20

38
38

38
38

38
0.

13
s

0.
00

s
0.

03
s

1
38

p4
.3

.d
3

26
.7

33
5

34
2

34
2

33
6.

85
7

33
9

13
6.

68
s

16
4.

57
s

1.
95

s
12

-
p4

.3
.e

3
30

46
8

47
0.

09
1

46
9.

5
46

8.
33

3
46

8.
75

32
9.

04
s

57
.5

2s
2.

12
s

8
-

p4
.3

.f
3

33
.3

57
9

59
1

58
0.

33
3

58
0

58
4.

5
10

20
.0

8s
24

4.
82

s
4.

36
s

8
-

p4
.4

.d
4

20
38

38
38

38
38

0.
12

s
0.

00
s

0.
04

s
1

38
p4

.4
.e

4
22

.5
18

3
18

3
18

3
18

3
18

3
0.

62
s

0.
00

s
0.

09
s

1
-

p4
.4

.f
4

25
32

4
32

4
32

4
32

4
32

4
3.

68
s

0.
00

s
0.

17
s

1
32

4
p4

.4
.j

4
35

73
2

74
9.

41
73

4.
79

7
73

3.
38

74
1.

47
2

13
13

.6
0s

23
2.

69
s

7.
22

s
6

-
p4

.4
.k

4
37

.5
82

1
84

1.
79

9
82

1.
46

2
82

1.
46

2
83

1.
94

5
19

37
.0

8s
14

3.
58

s
12

.2
9s

4
-

Marcus Poggi, Henrique Viana, and Eduardo Uchoa 153

Ta
bl
e
3

R
es

ul
ts

fo
r

in
st

an
ce

s
w

ith
66

ve
rt

ic
es

In
st

an
ce

m
L

LB
C

G
R

O
O

T
U

B
O

ur
U

B
B

ou
ss

ie
r

U
B

C
G

T
C

T
O

T
N

N
IS

p5
.2

.b
2

5
20

20
20

20
20

0.
20

s
0.

00
s

0.
65

s
1

20
p5

.2
.c

2
7.

5
50

50
50

50
50

0.
26

s
0.

00
s

2.
32

s
1

50
p5

.2
.d

2
10

80
80

80
80

80
0.

34
s

0.
00

s
0.

31
s

1
80

p5
.2

.e
2

12
.5

18
0

18
0

18
0

18
0

18
0

1.
38

s
0.

00
s

0.
14

s
1

18
0

p5
.2

.f
2

15
24

0
24

0
24

0
24

0
24

0
3.

79
s

0.
00

s
0.

19
s

1
24

0
p5

.2
.g

2
17

.5
32

0
32

0
32

0
32

0
32

0
9.

88
s

0.
00

s
0.

23
s

1
32

0
p5

.3
.m

3
21

.7
65

0
65

0
65

0
65

0
65

0
24

.4
6s

0.
00

s
0.

23
s

1
65

0
p5

.3
.n

3
23

.3
75

5
75

5
75

5
75

5
75

5
39

.9
0s

0.
00

s
0.

24
s

1
-

p5
.3

.o
3

25
87

0
87

0
87

0
87

0
87

0
62

.9
7s

0.
00

s
0.

27
s

1
87

0
p5

.3
.p

3
26

.7
99

0
99

0
99

0
99

0
99

0
61

.6
1s

0.
00

s
0.

29
s

1
99

0
p5

.4
.t

4
25

11
60

11
60

11
60

11
60

11
60

58
.0

8s
0.

00
s

0.
29

s
1

11
60

p5
.4

.u
4

26
.2

13
00

13
00

13
00

13
00

13
00

60
.3

4s
0.

00
s

0.
28

s
1

13
00

p5
.4

.v
4

27
.5

13
20

13
20

13
20

13
20

13
20

91
.8

5s
0.

00
s

0.
40

s
1

-

ATMOS ’10

154 The Team Orienteering Problem: Formulations and Branch-Cut and Price

Ta
bl
e
4

R
es

ul
ts

fo
r

in
st

an
ce

s
w

ith
64

an
d

10
2

ve
rt

ic
es

In
st

an
ce

m
L

LB
C

G
R

O
O

T
U

B
O

ur
U

B
B

ou
ss

ie
r

U
B

C
G

T
C

T
O

T
N

N
IS

p6
.2

.f
2

20
58

8
58

8
58

8
58

8
58

8
8.

38
s

0.
00

s
0.

25
s

1
58

8
p6

.2
.g

2
22

.5
66

0
66

0
66

0
66

0
66

0
19

.3
4s

0.
00

s
0.

13
s

1
66

0
p6

.4
.j

4
15

36
6

36
6

36
6

36
6

36
6

0.
75

s
0.

00
s

0.
02

s
1

-
p6

.4
.k

4
16

.2
52

8
52

8
52

8
52

8
52

8
1.

52
s

0.
00

s
0.

01
s

1
-

p6
.4

.n
4

20
10

68
10

68
10

68
10

68
10

68
26

.0
3s

0.
00

s
0.

05
s

1
10

68
p7

.3
.f

3
40

24
7

24
7

24
7

24
7

24
7

8.
43

s
0.

00
s

0.
08

s
1

-
p7

.3
.g

3
46

.7
34

4
34

9
34

4
34

4
34

4
30

.3
0s

0.
14

s
0.

05
s

1
34

4
p7

.4
.i

4
45

36
6

36
9

36
6

36
6

36
6

22
.3

8s
0.

17
s

0.
05

s
1

36
6

p7
.4

.j
4

50
46

2
47

6.
19

2
46

2
46

2
46

2
50

.1
6s

0.
34

s
0.

06
s

1
-

Marcus Poggi, Henrique Viana, and Eduardo Uchoa 155

References
1 C Archetti, A Hertz, and M G Speranza. Metaheuristics for the team orienteering problem.

Journal of Heuristics, 13:49–76, 2005.
2 S Boussier, D Feillet, and M Gendreau. An exact algorithm for team orienteering problems.

4OR, 5(3):211–230, 2007.
3 S E Butt and T M Cavalier. A heuristic for the multiple tour maximum collection problem.

Computers and Operations Research, 21:101–111, 1994.
4 I M Chao, B Golden, and E A Wasil. The team orienteering problem. European Journal

of Operational Research, 88:474–474, 1996.
5 M Fischetti, J Salazar, and P Toth. Solving orienteering problem through branch-and-cut.

INFORMS Journal on Computing, 10:133–148, 1998.
6 L Ke, C Archetti, and Z Feng. Ants can solve the team orienteering problem. Computers

and Industrial Engeneering, 54:648–665, 2008.
7 G Laporte and S Martello. The selective traveling salesman problem. Discrete Appl Math,

26:193–207, 1990.
8 A Pessoa, M Poggi, and E Uchoa. A robust branch-cut-and-price algorithm for the hetero-

geneous fleet vehicle routing problem. Networks, 54:167–177, 2009.
9 H. Tang and E. Miller-Hooks. A tabu search heuristic for the team orienteering problem.

Computers and Operations Research, 32:1379–1407, 2005.
10 P Vansteenwegen, W Souffriou, G Vanden Berghe, and D Van Oudheusden. A guided local

search metaheuristic for the team orienteering problem. European Journal of Operational
Research, 196(1):118–127, 2009.

ATMOS ’10

The Complexity of Integrating Routing Decisions

in Public Transportation Models

Marie Schmidt and Anita Schöbel

Institute of Numerical and Applied Mathematics

University of Göttingen {m.schmidt,schoebel}@math.uni-goettingen.de

Abstract

To model and solve optimization problems arising in public transportation, data about the pas-

sengers is necessary and has to be included in the models in any phase of the planning process.

Many approaches assume a two-step procedure: in a first step, the data about the passengers

is distributed over the public transportation network using traffic-assignment procedures. In a

second step, the actual planning of lines, timetables, etc. takes place. This approach ignores

that for most passengers there are many possible ways to reach their destinations in the public

transportation network, thus the actual connections the passengers will take depend strongly

on the decisions made during the planning phase. In this paper we investigate the influence of

integrating the traffic assignment procedure in the optimization process on the complexity of

line planning and aperiodic timetabling. In both problems, our objective is to maximize the

passengers’ benefit, namely to minimize the overall travel time of the passengers in the network.

We present new models, analyze NP-hardness results arising from the integration of the routing

decisions in the traditional models, and derive polynomial algorithms for special cases.

1998 ACM Subject Classification G.2.2 Network Problems

Keywords and phrases Line Planning, Timetabling, Routing

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.156

1 Passenger-oriented planning using OD-data

Decisions in public transportation depend strongly on the behavior of the passengers who

want to travel in the public transportation network. Thus integrating passenger data in

public transportation models in a realistic way is crucial. Until now, many approaches

assume a two-step procedure: in a first step, the data about the passengers is distributed

over the public transportation network using traffic assignment procedures. In line planning,

e.g., one ends up with so called traffic loads we giving an (approximate) number of passengers

who want to use edge e. Also in timetabling it is usually assumed that the number of

passengers who want to take a certain vehicle at a certain station is known beforehand. In

a second step, the actual planning of lines, timetables, etc. takes place. This reduces the

complexity of the models but is not realistic from a practical point of view since the routing

decisions of the passengers depend on the lines or timetables which are not known before

the optimization problem is solved.

Only a few approaches integrate the routing decisions. In line planning this has been

done in [1, 13, 10, 8]. In periodic timetabling this has been studied recently in [4, 6, 3].

In this paper we reformulate some of the common models for line planning and timetabling

taking into account origin-destination data and including the routing of the passengers in

the optimization process. Thereby we assume that we have passenger data given as a set

of origin-destination-pairs (OD-pairs) with weights representing the number of passengers

traveling from an origin to a destination.

© Marie Schmidt and Anita Schöbel;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 156–169

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Marie Schmidt and Anita Schöbel 157

The remainder of this paper is structured as follows. We start in Section 2 describing

the model we use for the line planning problem integrating the routing decisions, in the

following called line planning with OD-pairs. As planning with OD-pairs is NP-hard even in

special cases, we restrict ourselves to the case of only one OD-pair in Section 2.1 and show

its similarity to a Resource-Constrained Shortest Path problem, hence still being a hard

problem. In Section 2.2 we furthermore restrict the structure of the public transportation

network to be linear. We present polynomial and pseudo-polynomial algorithms for special

cases of this problem, and extend them in parts to the case of OD-pairs all having the same

origin in Section 2.3.

In Section 3 we introduce a model for aperiodic timetabling, that does not fix passenger

weights before the optimization step but integrates the passenger routing into the optimiza-

tion process. In the following we will call this problem (aperiodic) timetabling with OD-pairs.

Surprisingly, if the origin events and destination events of the passengers are given the prob-

lem turns out to be as easily solvable as the classical timetabling problem, see Section 3.2.

However, if origins and destinations of the OD-pairs are given as stations, integrating the

passenger routing results again to be strongly NP-hard even if all passengers start at the

same station.

2 Line planning with OD-pairs

In line planning we consider a public transportation network PTN = (S,E) with stations

S = {si : i = 1 . . . , n} and passengers’ demand for traveling. The goal of line planning is to

determine a set of lines L′ and their frequencies. There exist cost-oriented and passenger-

oriented objective functions, where the latter may consider the number of direct passengers

or the travel time of the passengers. A few recent approaches allow that passengers are

freely routed (see [13, 10, 8]).

In our study we investigate the following model. We are given a line pool L from which

lines can be chosen. Every line in the pool is given by a directed path in the network that

contains every edge at most once. The cost of building a line l is bl. We also have a set of

OD-pairs OD = {(ui, vi) : i = 1, . . . ,m}, where (u, v) ∈ OD represents passengers who want

to travel from station s(u) to station s(v). There is a weight wuv assigned to each OD-pair

representing the number of passengers who want to travel from s(u) to s(v). For the sake

of simplicity we neglect capacity restrictions in this model, and we assume that all chosen

lines run with the same frequency. So our objective is

min
∑

(u,v)∈OD

wuvW (s(u), s(v)) s.t.
∑

l∈L′

bl ≤ B

where W (s(u), s(v)) stands for the travel time of OD-pair (u, v). This travel time typically

includes the riding time and a penalty for every transfer. Given a length dij for every edge

{si, sj} ∈ E and a velocity factor αl for every line l ∈ L the driving time clij of line l on edge

{i, j} can be determined as clij := αldij . The transfer penalties pl1l2i are assumed to depend

on the station si where the transfer takes places and on the lines l1 and l2 between which

it is performed. In the constraint we require that the cost of the line system, obtained by

summing up the costs bl for all lines l which are chosen, does not exceed a given budget B.

In order to depict the various travel possibilities from the origins to the destinations, we

construct a change&go network N = (V,A) from the public transportation network PTN

(based on [13]). The node set V consists of nodes [si, l] for every node si ∈ S and every

line l that contains station si. For every line l given by the node sequence s1l , . . . , skl we

ATMOS ’10

158 Integrating routing decisions

connect [sjl , l] to [sj+1l , l] by a directed arc of length c([s
jl
,l],[s

j+1l
,l]) = cls

jl
s
j+1l

for every j =

1, . . . kl − 1, representing the driving time for using line l on edge {sjl , sj+1l}. Additionally

every pair of nodes [si, l1], [si, l2] is connected by two directed transfer arcs ([si, l1], [si, l2])

and ([si, l2], [si, l1]) which represent the transfer possibilities between the lines l1 and l2
at station si. Thus their arc lengths are c([si,l1],[si,l2]) = pl1l2i and c([si,l2],[si,l1]) = pl2l1i ,

respectively. To model the passengers’ demand we add extra nodes u, v for every origin u

and every destination v and connect them by directed arcs of travel time and cost 0 to the

nodes [s(u), l] and [s(v), l] for all l ∈ L respectively. In Figure 1 you can find an example:

The public transportation network is depicted in Fig. 1a. The nodes represent stations,

the edges represent possible direct rides. We have a line pool L = {l1 : A − B − C, l2 :

D−E −F, l3 : A−D−E −B−A, l4 : C −F} and OD-pairs (A,F) and (D,C). In Fig. 1b

the change&go network is shown. The dotted lines represent the origins and destinations of

the passengers, the dashed lines stand for the transfer possibilities between two lines.

A B C

D E F

5

3

4

2 4

6 3

(a) Public transportation network.

A A− l1 B− l1 C− l1 C

A− l3 B− l3 C− l4

D D− l3 E− l3 F− l4 F

D− l2 E− l2 F− l2

2.5 2

2 1

3 6 2
5

5

(b) Constructed change&go network.

Figure 1 Construction of the network N from an instance of line planning with OD-pairs.

In [13] it has been shown that line planning with OD-pairs is NP-hard even for the case

of a linear graph PTN with edge lengths de = 0 for all e ∈ E, and line costs, transfer

penalties and passenger weights all equal to 1. It was also mentioned that line planning

stays NP-hard, if all possible lines are included in the line pool.

In order to understand the border between NP-hardness and polynomially computability

we will hence make restrictions on the set of OD-pairs. We will start in Section 2.1 with

the case where there is only one OD-pair. In Section and 2.2 we further restrict ourselves to

the case of linear networks. We will then extend some of the results to the case with several

OD-pairs having the same origin and going to the same direction.

2.1 Line Planning with one OD-pair

For solving the line planning problem with one OD-pair, we assign to each transfer arc

a = ([si, l1], [si, l2]) and each origin arc a = (u, [s(u), l2]) in the change&go network a second

label ba that represents the line cost ba = bl2 . For the driving arcs and the destination arcs

this cost label is set to ba = 0.

Now in this modified change&go network N , we have to find a path from the OD-pair’s

origin to its destination that satisfies the budget constraint and minimizes the path length

which represents the travel time on the path. Thus at first glance our problem looks like a

Resource-Constrained Shortest Path problem in the change&go network N , where “shortest”

is meant with respect to the travel time and the “resource” is the budget B. But still there is

a difference: in the line planning problem with one OD-pair, the line cost has only to be paid

once, even if a line is entered more often. Nevertheless, we can benefit from known results

Marie Schmidt and Anita Schöbel 159

u v

s1 s2 s3

M M

M −m1M −m2

(a) Public transportation network.

bl0 = 0 s1, l0 s2, l0 s3, l0

bl1 = m1 u s1, l1 s2, l1 v

bl2 = m2 s2, l2 s3, l2

M M

M −m1

M −m2

(b) Change&go network.

Figure 2 Reduction from Partition to line planning with one OD-pair with equal line speed and

without transfer penalties.

about the Resource-Constrained Shortest Path problem. Modifying a proof for NP-hardness

of this problem (see [14]) shows NP-hardness of line planning with one OD-pair. We then

modify a procedure proposed by [9] for the Resource-Constrained Shortest Path problem to

solve the line planning problem with one OD-pair in pseudo-polynomial time.

◮ Theorem 1. Line Planning with one OD-pair is NP-hard, even if

the speed of all lines is equal and

there are no transfer penalties.

Proof. An instance of the decision problem Partition [2] consists of a setM of n numbers

that sum up to a number M . The question is whether there is a subsetM′ ofM such that

the sum of all elements inM′ is M2 . LetM = {m1, . . . ,mn} be an instance of Partition.

We construct the following instance of line planning with one OD-pair: The public

transportation network consists of of n + 1 stations s1, s2, . . . , sn+1. For j = 1, . . . n sj is

connected to sj+1 by two edges, ej and ej . The length of ej is set to M , the length of ej
to M −mj . The line pool consists of n+ 1 lines, l0 = (s1, e

1, s2, e
2, . . . , en, sn+1) with cost

0 and lj = (sj , ej , sj+1) for j = 1, . . . , n with cost mj . Figure 2 shows the PTN and the

change & go graph N for an example withM = {m1,m2}.

Note that for every path from u to v in N we have that the sum of its costs b(P) and its

time c(P) is nM . Now we will show that if and only if there is a path with line cost ≤ M2
and time ≤ nM − M2 there is a solution to the given instance of Partition. Let P be such

a path from the origin u to the destination v in the change&go network N , and let EP be

its edge set. From b(P) + c(P) = nM , b(P) ≤ M2 and c(P) ≤ nM − M2 we may conclude

that b(P) = M
2 holds. Hence, the subsetM′ := {mi : i ∈ I ′} ofM is a solution to the given

instance of Partition. Vice versa for a solutionM′ to Partition we define

L′ := {li : mi ∈M
′} ∪ {l0} and E := {ei : mi ∈M

′} ∪ {ei : mi 6∈ M
′}.

Then E forms a path P in PTN which uses exactly the lines of L′ (sinceM′ 6=M) and it

holds that

b(P) =
∑

l∈L′

bl =
∑

mi∈M

mi =
M

2
, and c(P) =

∑

e∈E

ce =
∑

mi∈M′

(M−mi)+
∑

mi 6∈M′

M =M−
M

2
,

thus opening all lines that are used by P is a solution to the line planning problem. ◭

Although the Resource-Constrained Shortest Path problem is NP-hard, there exist sev-

eral pseudo-polynomial algorithms (see e.g. [9]). To solve the line planning problem with

ATMOS ’10

160 Integrating routing decisions

one OD-pair, we will proceed analogously to [9], that is we will construct a search graph in

which we are able to run a modified Dĳkstra’s algorithm in pseudo-polynomial time.

We construct the search graph GCS = (VCS ,A
C
S) from N in the following way: For every

i ∈ V \ {u, v} and every c ∈ {1, 2, . . . , C} with C =
∑

a∈A ca we introduce a node [i, c]. For

every arc (i1, i2) in A \ {(u, i), (i, v) : i ∈ V } and every c ∈ {1, 2, . . . , C} with c+ c(i1,i2) ≤ C

we draw an arc ([i1, c], [i2, c + c(i1,i2)]) and assign a cost of b([i1,c],[i2,c+c(i1,i2)]) := b(i1,i2) to

it. We introduce a node [u, 0] that is connected to all nodes [i, 0] for which (u, i) ∈ A by an

arc of length and cost 0. For every c ∈ {1, 2, . . . , C} we add a node [v, c] and connect it to

all [i, c] for which (i, v) ∈ A by an arc of length and cost 0.

We now run a modified Dĳkstra’s algorithm in this graph to find shortest paths from

[u, 0] to all nodes [i, c]. The traditional Dĳkstra’s algorithm is modified in the following way:

for each node i, for which a path of minimal cost B(i) is already known, a list of the lines that

were used to reach this node is stored. Let P(k) denote the set of nodes for which a minimal

cost path is already found in step k. Then for every node j in the set of nodes that are not

in P(k) but adjacent to a node in P(k), a temporary cost B̃(j) = mini∈P(k)B(i) + b̃(i,j) is

assigned, where

b̃(i,j) =

{

0 if the line associated to j is in the list associated to i

b(i,j) otherwise .

Now, like in the traditional Dĳkstra’s algorithm, the node j with smallest B̃(j) is included in

P(k+1) and B(j) = B̃(j). Among the paths from [u, 0] to [v, c] for some c with B([v, c]) ≤ B

we choose a path P̃ with minimal c and transform it to a path P in N with length a and cost

B([v, a]) by taking the vertices and arcs corresponding to the ones in P. The result is the

calculation of an optimal path in time O(n2
NC

2) (as in [9]) where nN denotes the number

of nodes in the network N .

Similarly for B̂ = min{B,
∑

a∈A ba} we can construct a modified search graph GB̂S =

(VB̂S ,A
B̂
S) where there is a node for every possible combination of nodes in N and cost

values and find a solution using Dĳkstra’s algorithm in this graph in O(n2
N B̂

2).

Thus we obtain the following theorem:

◮ Theorem 2. Let PTN be a public transportation network with n nodes and N the cor-

responding change&go network with nN nodes. Then the line planning problem with one

OD-pair in N is solvable in pseudo-polynomial time

1. O(n2
NC

2) with C =
∑

a∈A ca, or

2. O(n2
N B̂

2) with B̂ = min{B,
∑

a∈A ba}.

2.2 Line planning with one OD-pair in a linear network.

In this section we will restrict ourselves to public transportation networks PTN = (S,E) that

are linear, that means S = {s1, s2, . . . , sn} and E = {{s1, s2}, {s2, s3}, . . . , {sn−1, sn}}. In

this case, if all lines have the same speed, it makes no sense for a passenger to leave a line and

enter it again later. We hence can apply the solution methods for the Resource-Constrained

Shortest Path problem without any modifications.

For linear networks where all lines have the same speed, we can also perform modified

Resource-Constrained Path calculations in a the following reduced networkNL: Let S(l) ⊂ S

denote the stations that are visited by line l. We define the directed network NL = (VL, AL),

called line network. VL = L∪ {u, v}, that means the nodes of this network are given by the

lines of the original problem and the origin and destination node. We set AL = {(li, lj) :

Marie Schmidt and Anita Schöbel 161

u s1 s2 s3 s4 s5 v

l1

l2

l3

l4

l5

(a) Linear public transportation network.

l1 l5

u l3 v

l2 l4

(b) Line network.

Figure 3 Example for the construction of the line network.

S(li) ∩ S(lj) 6= ∅} with b(li,lj) = blj , b(u,lj) = blj and b(li,v) = c(u,li) = c(li,v) = 0. See

Figure 3 for an example. NL can be generated from PTN in O(n|L|).

The arcs in the line network NL depict the transfer possibilities between the lines, thus

we want the length of a path PL from u to v in NL to reflect the transfer penalties on this

path. As these penalties do not only depend on the lines, but also on the stations where the

transfers take place, these penalties are path dependent.

For every path P from u to v in the change&go network N we can find a corresponding

path P ′

L
= PL(P) from u to v in NL. We define the costs of P ′L to be

c(P ′L) = min{c(P) : PL(P) = P ′L} −
∑

e∈PPTN

ce,

for the path PPTN from s(u) to s(v) in PTN. Because of the equal line speed,
∑

e∈PPTN
ce

is the driving time for every path P from u to v in N , thus c(P ′L) indeed reflects the transfer

penalties on a path P in N which is minimal among all paths using the line sequence given

by P ′L. Note that also for the budget labels ba it holds that
∑

a∈PL
ba =
∑

a∈P (PL)
ba.

Thus a path PL from u to v inNL of minimal costs c(PL), fulfilling the budget constraints,

corresponds to an optimal path P in N with costs c(P) = c(PL) +
∑

e∈PPTN
ce.

This correspondence enables us to improve the run time O(n2
NC

2) or O(n2
N B̂

2) for the

line planning problem with one OD-pair (u, v) in a linear network PTN with all lines having

the same speed by solving a modified Resource-Constrained Shortest Path problem in NL:

◮ Theorem 3. A line planning problem with one OD-pair (u, v) in a linear network PTN

with equal line speed can be solved in pseudo-polynomial time O(n|L| + |L|2(Q + 1)2) or

O(n|L|+|L|2B̂2) with Q =
∑

s∈S

∑

{li,lj},li,lj∈L(s) p
lilj
s and B̂ = min{B,

∑

{li,lj}∈AL
b{li,lj}}.

Proof. We construct the line search graph GQS = (VQS ,A
Q
S) from the line network NL =

(VL, AL) in the following way: Let L(s) denote the set of all lines that visit station s.

For every l ∈ VL \ {u, v} and every q ∈ 1, 2, . . . , Q with Q =
∑

s∈S

∑

{li,lj},li,lj∈L(s) p
lilj
s

we introduce a node [l, q]. For every arc (l1, l2) in AL \ {(u, l), (l, v) : l ∈ VL} and every

0 ≤ q ≤ q̃ ≤ Q we draw a potential arc from [l1, q] to [l2, q̃]. We introduce a node [u, 0] that

is connected to all nodes [l, 0] for which (u, l) ∈ AL by an arc of length and cost 0. For every

q ∈ {1, 2, . . . , Q} we add a node [v, q] and connect it to all [l, q] for which (l, v) ∈ AL by an

arc of length and cost 0.

We now run a modified Dĳkstra’s algorithm in this graph to find shortest paths from

[u, 0] to all nodes [l, q]. For each node l, for which a path of minimal cost B(l) is already

known, a station s(l), representing the current transfer station in the corresponding path P

ATMOS ’10

162 Integrating routing decisions

in N is stored. Let P(k) denote the set of nodes for which a minimal cost path is already

found in step k. Let T (k) denote the set of nodes [l2, q̃] such that ([l1, q], [l2, q̃]) ∈ A
Q
S for an

[l1, q] ∈ P(k) and q̃ = q+minŝ≥s(l1),ŝ∈S(l1)∩S(l2) p
l1l2
ŝ with S(l) containing all stations that are

visited by line l.That means for given [l1, q] and l2, among the potential arcs ([l1, q], [l2, q̃])

we choose the one that reflects the lowest transfer penalty that is possible for a transfer

between l1 and l2 after station s(l1) and include it in P(k). To every node [l2, q̃] in T (k) a

temporary cost B̃([l2, q̃]) = min[l,q]∈P(k)B([l, q]) + bl2 is assigned. Now the node [l2, q̃] with

smallest B̃([l2, q̃]) is included in P(k + 1) and B([l2, q̃]) := B̃([l2, q̃]). Furthermore, we set

s(l2) := ŝ for the ŝ chosen as a transfer station from l1 to l2.Among the paths from [u, 0] to

[v, q] for some q with B([v, q]) ≤ B we choose a path PS with minimal q and transfer it to

a path PL in NL with length q and cost B([v, q]).

Like in the original Dĳkstra’s algorithm we have to consider every arc in the line search

graph at most once, so the run time is quadratic in the number of nodes of GQS . Similarly

we can construct a modified line search graph GB̂S = (VB̂L ,A
B̂
L) where there is a node for

every possible combination of node in N and cost value and find a solution using Dĳkstra’s

algorithm in this graph in O(|L|2B̂2). ◭

Note that if the transfer penalties do not depend on the stations where the transfers take

place, they can be assigned directly as lengths to the arcs of the line network such that the

problem can be solved directly as a Resource-Constrained Shortest Path problem.

But still, line planning in a linear network with one OD-pair is NP-hard.

◮ Theorem 4. Line Planning with one OD-pair in a linear public transportation network is

NP-hard, even if the speed of all lines is equal.

◮ Theorem 5. Line Planning with one OD-pair in a linear public transportation network is

NP-hard, even if there are no transfer penalties.

For the proofs of these two results we refer to [12].

Combining the two restrictions from Theorems 4 and 5, due to Theorem 3 we however

obtain a polynomial run time of O(n|L| + |L|2) in the case without transfer penalties and

O(n|L|+ |L|6) with equal penalties which can further be improved as follows.

◮ Lemma 6. Line planning with one OD-pair in a linear public transportation network with

equal line speed can be solved in

1. O(n|L|+ |L|2) if there are no transfer penalties.

2. O(n|L|+ |L|4) if the transfer penalties are all equal.

Proof. The first statement follows directly from Theorem 3 or by applying the Dĳkstra’s

algorithm in NL to find a cost optimal solution.

For the second statement, without loss of generality we can assume cchange = 1. NL has

|L|+ 2 nodes. As a shortest path in NL visits every node at most once, the optimal travel

time in NL is bounded by Q = |L|. So according to Theorem 3 given the line network NL
the problem can be solved in O(|L|4). ◭

2.3 Line planning with OD-pairs having the same origin in linear
networks

In this section we investigate if the results of the previous section can be generalized. We still

stick to the restriction that the underlying network is linear but relax the strong assumption

of only one OD-pair by allowing a set of OD-pairs which all have the same origin and start

Marie Schmidt and Anita Schöbel 163

traveling into the same direction. We will see that in some cases we still can apply the

algorithms for one OD-pair from Sections 2.1 and 2.2 so that we can solve some problems

easily. However, having several OD-pairs with the same origin, line planning is even NP-

hard if all lines have the same speed and if all transfer penalties are equal (which for one

OD-pair can be solved in polynomial time, see Lemma 6).

◮ Theorem 7. Line Planning with OD-pairs having the same origin and going to the same

direction in a linear public transportation network is NP-hard, even if

the speed of all lines is equal and

all transfer penalties are equal.

Proof. The proof is a reduction from Partition similar to Theorem 2, see [12] for details. ◭

In the following lemma we will show that in the situation of Theorem 7, there is an

optimal solution such that the paths of all OD-pairs are nested. This property will enable

us to solve the problem analogously to a line planning problem with only one OD-pair with

equal line speed in a linear network in pseudo-polynomial time.

◮ Lemma 8. Consider a line planning problem with all OD-pairs having the same origin

and going to the same direction in a linear public transportation network with

equal line speed and

equal transfer penalties.

There is always an optimal line set L′ together with a set of paths {P ∗i } in N(L′), P ∗i being the

path for OD-pair (u, vi) without origin and destination arc, such that P ∗ :=
⋃

(u,vi)∈OD P
∗
i

is a path in N .

Proof. Because of the equal line speed, the driving time for the OD-pairs is not path de-

pendent. Thus instead of the total travel time, we can regard only the weighted sum of the

transfers.

Suppose that {Pi : i = 1, . . . ,m} is the path set of an optimal solution where Pi is

the path from s(u) to s(vi). Now (assuming that the OD-pairs are ordered such that the

distance from s(u) to s(vi) increases with increasing i) we will show that for every Pm that

is contained in such a set, there exist paths P ∗i for i = 1, . . . ,m− 1 such that P ∗i ⊂ Pm and

{P ∗i : i = 1, . . . ,m− 1} ∪ {Pm} is also an optimal path set for the problem.

Suppose that this is not the case. Then in every optimal path set there exists an index

i such that Pi 6⊂ Pm. Let Pmi be the path from s(u) to s(vi) contained in Pm. For

a subgraph G of N we denote by b(G) the sum of the costs of all lines used by G and

by t(G) the number of transfers in G. Concerning the line costs we first observe that

b(Pi ∪ Pm) ≥ b(Pm) = b(Pm ∪ P
m
i). Thus t(Pmi) > t(Pi), because otherwise changing Pi to

Pmi would lead to an optimal set. As p
lilj
s := p for all transfers we have t(Pi) + p ≤ t(Pmi).If

we denote by P̂m the path consisting of Pi, possibly a transfer and the part Pm(vi) of Pm
starting in station s(vi), we obtain

t(P̂m) ≤ t(Pi) + p+ t(Pm(vi)) = t(Pi) + p+ t(Pm)− t(Pmi) ≤ t(Pm)

and thus for the transfer costs weighted with the passenger numbers it holds that

wit(Pi) + wmt(P̂m) < wit(Pi) + wmt(Pm).

Thus the total transfer costs for path set {Pj : j = 1, . . . ,m − 1} ∪ {P̂m} are smaller than

the total transfer costs for path set {Pi : i = 1, . . . ,m}. From b(Pmi ∪ Pm) ≥ b(Pmi ∪ P̂m) it

follows that

b({Pi : i = 1, . . . ,m}) ≥ b({Pj : j = 1, . . . ,m− 1} ∪ {P̂m}),

ATMOS ’10

164 Integrating routing decisions

thus the path set {Pj : j = 1, . . . ,m − 1} ∪ {P̂m} is feasible. Thus {Pi : i = 1, . . . ,m} was

not an optimal path set. ◭

This property enables us to find an optimal solution reducing the problem to a line

planning problem with one OD-pair and applying Theorem 3.

◮ Theorem 9. The line planning problem with all OD-pairs having the same origin and

going to the same direction in a linear public transportation network with

equal line speed for all lines and

equal transfer penalties

is solvable in pseudo-polynomial time O(n|L|+ |L|2B̂2) or O(n|L|+ |L|2W 2) where

B̂ = min{B,
∑

a∈A

ba}, and W =
∑

s∈S

∑

{li,lj},li,lj∈L(s)

∑

(u,vj)∈OD,s<s(vj)

wuvj .

Proof. Consider an instance I1 of the described problem with OD-pairs (u, vi) ∈ OD1 labeled

in increasing order of s(vi). Let N1 denote the associated change&go network. Let I2 denote

the instance of the line planning problem in the same public transportation network with

the same costs, with the only OD-pair (u, vm) ∈ OD1 for which the distance between s(u)

and s(vj) is maximal and where the transfer penalties are given as

pliljsk := psk :=
∑

j=1,...,m:(u,vj)∈OD:sk<s(vj)

wuvj .

Let N2 denote the associated change&go network. We will now show that there is a bĳection

between solution paths P 2 in N2 and sets of solution paths {P 1
i : i = 1, . . . ,m} in N1 with

P 1 :=
⋃

(u,vi)∈OD P
1
i being a path in N1, both having the same line costs and the same

solution value. Let b(G) denote the line costs of a subgraph G of a change&go network

and t(P ′) the number of transfers on a path P ′. For a path P 2 in N2 define P 1
i (P 2) to

consist of the path P 2 seen as path in N1 ending as soon as the station s(vi) is reached.

We directly obtain b(P 2) = b(
⋃m
i=1 P

1
i (P 2)). Furthermore it can be justified that t(P 2) =

∑m
j=1 wuvj t(P

1
j (P 2)).Vice versa, for a set of paths {P 1

i : i = 1, . . . ,m} in N1 for which

P 1 :=
⋃

(u,vi)∈OD P
1
i is a path, we define P 2(P 1) as the path P 1 regarded in N1. Then like

above we have

b(P 2(P 1)) = b(P 1) = b(

m
⋃

i=1

P 1
i) and t(P 2(P 1)) =

m
∑

j=1

wuvj t(P
1
j).

Thus there is a bĳection between solution paths P 2 in N2 and sets of solution paths {P 1
i :

i = 1, . . . ,m} in N1 with P 1 :=
⋃

(u,vi)∈OD P
1
i being a path in N2, both having the same

line costs and the same solution value. Finally, Theorem 9 follows by applying Theorem 3 to

the instance I2 of the line planning problem for one OD-pair and all lines having the same

speed that is constructed in the way described above. ◭

In Lemma 6.1 it has been shown that the line planning problem with one OD-pair in a

linear public transportation network can be solved by a Dĳkstra’s algorithm regarding the

line costs if all lines have the same speed and there are no transfer penalties, because in this

case the value of the objective function does not depend on the choice of L′. For the case of

multiple OD-pairs with the same origin, we obtain a minimal cost solution by applying the

algorithm from Lemma 6.1 for the OD-pair with longest travel time.

◮ Lemma 10. A line planning problem with all OD-pairs having the same origin and going

to the same direction in a linear public transportation network

Marie Schmidt and Anita Schöbel 165

with equal line speed and

without transfer penalties

can be solved in O(n|L|+ |L|2).

Similar to these results we can also use Theorem 2 to derive a pseudo-polynomial algorithm

for the case of arbitrary line speed and no transfer penalties.

Our results of line planning in linear networks are summarized in the following table.

Restrictions Restrictions Complexity Complexity

line speed transfer penalties one OD-pair same origin

equal no penalties O(n|L|+ |L|2) (6.1) O(n|L|+ |L|2) (10)

equal equal penalties O(n|L|+ |L|4) (6.2) NP-hard (7), solvable

in O(n|L| + |L|2W 2) or

O(n|L|+ |L|2B̂2) (9)

equal arbitrary NP-hard (4), solvable in

O(n|L| + |L|2(Q + 1)2) or

O(n|L|+ |L|2B̂2) (3)

NP-hard (4, 7)

arbitrary no penalties NP-hard (5), solvable in

O(n2

NC
2) or O(n2

N B̂
2) (2)

NP-hard (5), solvable in

O(n2

N B̂
2) or O(n2

N C̃
2) [12]

arbitrary equal penalties or

arbitrary

NP-hard (5), solvable in

O(n2

NC
2) or O(n2

N B̂
2) (2)

NP-hard (5)

where

C =
∑

a∈A ca,

C̃ :=
∑n−1
i=1 (
∑

j=1,...,m:(u,vj)∈OD:si+1<s(vj)
wuvj) · c[si,l],[si+1,l],

B̂ = min{B,
∑

a∈A ba},

Q =
∑

s∈S

∑

{li,lj},li,lj∈L(s) p
lilj
s , and

W =
∑

s∈S

∑

{li,lj},li,lj∈L(s)

∑

(u,vj)∈OD,s<s(vj)
wuvj .

Note that the case of equal line speed and without transfer penalties can still be solved

in polynomial time for general OD-pairs, see [12].

3 (Aperiodic) Timetabling with OD-pairs

Given a line plan, the timetabling process searches for the arrival and departure times for all

lines at all stations. To this end the public transportation network PTN is extended to a so-

called event-activity-network N = (E ,A) (see e.g. [7, 5]). Every arrival and every departure

of a vehicle is modeled as an arrival or departure event e ∈ E = Earr ∪ Edep. The events are

connected by driving activities Adrive, waiting activities Await, or changing activities Achange.

If πi denotes the time of event i, and a = (i, j) an activity linking event i and event j, a

timetable (πi)i∈E is feasible if every activity a = (i, j) satisfies la ≤ πj − πi ≤ ua for some

given lower and upper bounds la and ua on the duration of activity a. While in periodic

timetabling (see [5] and references therein) it is required that the resulting timetable is

periodic which causes NP-hardness even for the feasibility problem, aperiodic timetabling

drops the assumption of feasibility which in general results in an easier problem. Given a

fixed number of passengers wa for every activity a, the goal of traditional timetabling is

to minimize the sum of the travel times. The problem can be solved efficiently by linear

programming [11]. In our model we again do not start with such fixed weights wa but with

a set of OD-pairs which can be freely routed through the network. For integer programming

as well as heuristic approaches for periodic timetabling with OD-pairs see [4, 6, 3].

ATMOS ’10

166 Integrating routing decisions

3.1 Integrating OD-pairs in the model

Let a set of OD-pairs OD = {(u, v)} with weights wuv be given. Every path from a departure

event i at station u to a departure event j at station v represents a possible journey from

u to v. As in general πi 6= πi′ and πj 6= πj′ for departure events i and i′ at station u and

arrival events j and j′ at station v, the travel time depends on the path that is chosen for

the OD-pair (u, v). To integrate the routing procedure we add the origins and destinations

to the network by introducing origin nodes Eorg = {uorg : (u, v) ∈ OD} and destination

nodes Edest = {vdest : (u, v) ∈ OD}. We connect every uorg ∈ Eorg to all departure events i

at station u by an origin arc (uorg, i) and every arrival event j at station v to vdest ∈ Edest

by a destination arc (j, vdest). The arc sets are denoted by Aorg and Adest respectively.

Our objective is to find a feasible timetable π and for every OD-pair (u, v) a path

Puv = (uorg, iuv1 , i
uv
2 , . . . , i

uv
uv, v

dest) from uorg to vdest such that the sum of all travel times
∑

(u,v)∈OD wuv(πiuvuv − πiuv1
) is minimal.

Finding an optimal solution to the described problem turns out to be strongly NP-hard:

◮ Theorem 11. The timetabling problem with OD-pairs is strongly NP-hard, even if all

OD-pairs have the same origin.

Proof. An instance of the decision problem Minimum Cover ([2]) consists of a finite set S,

a collection C of subsets of S and a positive integer K ≤ |C|. The question to decide is

whether there is a subset C ′ of C with |C ′| ≤ K such that every element of S is contained

in at least one member of C ′.

Let m = |S| and n = |C|. To reduce an instance (S,C,K) of Minimum Cover to the

timetabling problem with OD-pairs for every si ∈ S we will represent the elements si ∈ S

by OD-pairs (u, vi) with wuvi = n and the sets cj ∈ C by a structure consisting of two

trains tr1j and tr2j , five stations a1
j , a

2
j , a

3
j , a

4
j , a

5
j and an OD-pair (u, vj) with wuvj = 1 in the

way depicted in Figure 4. Here, the square nodes are the departure and arrival events. The

origin and destination events are represented by ovals. The dotted lines are the origin and

destination arcs, the solid lines represent driving and waiting activities, changing activities

are represented by dashed lines. The gray lines indicate where it will be possible to enter

and to leave this structure.

Note that for each of these structures stri when making the timetable we have to choose

either to assign a length of 1 to the arc (a2
j −D, a

3
j − A) or to the arc (a3

j −D, a
4
j − A). If

we assign a length of 1 to the latter, the travel time of OD-pair (u, vj) will be 1 and because

of wuvj = 1 it will contribute an amount of 1 to the objective function.

a2
j − D a4

j − A

a1
j − D a2

j − A a2
j − D a3

j − A a3
j − D a4

j − A a4
j − D a5

j − A

uorg vdest
j

[0, 0] [0, 0] [0, 1] [0, 0] [0, 1] [0, 0] [0, 0]

[1, 1]

[0, 0] [0, 0]

Figure 4 The structure strj representing a set cj in the reduction from Minimum Cover to the

timetabling problem with OD-pairs.

We identify a1
j and uorg for all stations a1

j , that means we connect every a1
j by an origin

Marie Schmidt and Anita Schöbel 167

activity to the origin node uorg. For every si ∈ cj we connect (a3
j −A) to a departure event

(a3
j −Dep) of a train trij that by a driving activity is connected to the arrival event of train

trij in vi. The upper and lower bound for all arcs outside of the structure strj are set to

[la, ua] = [0, 0]. See Figure 4 and 5 for an example of the construction for an instance of

Minimum Cover with S = {1, 2, 3, 4} and C = {{2, 3, 4}, {1, 4}, {2, 3}}. The square nodes

are the departure and arrival events. The origin and destination events are represented by

ovals. The dotted lines are the origin and destination arcs, the solid lines represent driving

and waiting activities, changing activities are represented by dashed lines. The nodes strucj
represent the structures from Figure 4.

(tr21 − a3
1 − D) (tr21 − v2 − A) v1dest

str1 (tr31 − a3
1 − D) (tr31 − v3 − A)

(tr41 − a3
1 − D) (tr41 − v4 − A) v2dest

uorg str2 (tr12 − a3
2 − D) (tr12 − v1 − A)

(tr42 − a3
2 − D) (tr42 − v4 − A) v3dest

str3 (tr23 − a3
3 − D) (tr23 − v2 − A)

(tr33 − a3
3 − D) (tr33 − v3 − A) v4dest

Figure 5 Reduction from Minimum Cover.

We observe that if for an OD-pair (u, vi) there is a structure strj such that uorg is

connected to strj and there is a length of 1 assigned to (a3
j − D, a

4
j − A), the OD-pair

will arrive at its destination in time 0 while if there is no such structure, there will be a

contribution of n to the objective function. Thus as K < |C| = n in a feasible solution for

every OD-pair there must be at least one structure strj such that u is connected to strj and

there is a length of 1 assigned to (a3
j −D, a

4
j −A).

We conclude that C ′ := {cj1 , . . . , cjk} is a solution to the Minimum Cover problem if

and only if assigning a length of 1 to (a3
j − D, a

4
j − A) for all j such that cj ∈ C

′ and to

(a2
j −D, a

3
j −A) for all other j leads to a solution of the timetabling problem with OD-pairs

with solution value ≤ K. ◭

3.2 Timetabling with routing between events

Let’s assume that instead of having a set of OD-pairs consisting of pairs of stations we have

a set of OD-pairs that consists of departure and arrival events as origins and destinations.

I.e., the passengers not only fix the location of their origins and destinations but also the

departure and arrival events (the first and the last train they wish to take). Thus OD =

{(i, j)}, where i ∈ Edep represents the departure of the train a passenger wants to take at a

certain station and j ∈ Earr represents the arrival of the train at the end of the passenger’s

journey. Again we assign a weight wij to (i, j). Note that there may be several paths in

N connecting a departure event i to an arrival event j, thus given OD-pair (i, j) we do not

know the specific path this OD-pair will take. Nevertheless, the choice between these paths

does not really matter because in the resulting timetable these paths will all have the same

ATMOS ’10

168 Integrating routing decisions

length of πj − πi. Our objective is to minimize the weighted sum of the travel times of all

OD-pairs:

min
∑

(i,j)∈OD

wij · (πj − πi) (1)

s.t. πh − πg ∈ [lgh, ugh] ∀(g, h) ∈ A (2)

πg ∈ Z ∀g ∈ E (3)

◮ Theorem 12. Aperiodic timetabling with OD-pairs given as origin and destination events

can be solved by linear programming.

Proof. The coefficient matrix of the problem is the transposed of a node-arc-incidence matrix

and hence totally unimodular. ◭

We can envision the minimization of the weighted sum of the πj−πi in terms of the orig-

inal problem by introducing virtual edges from i to j for every OD-pair (i, j) and assigning

weights wij to these edges and wa = 0 to all other edges. Formulating the original aperiodic

timetabling problem in this modified network leads to the formulation (1)-(3).

Note that the travel time of an OD-pair (i, j) only depends on the time at node i and

node j and not on the path from i to j. If for every OD-pair (i, j) we chose a path Pij from i

to j, set wa :=
∑

(i,j)∈OD:a∈Pij
wij , solving the aperiodic timetabling problem with weights

wa leads again to the same integer program since the objective functions are equal.

We can use the result from Theorem 12 to solve the general timetabling problem with

OD-pairs: Let N be a network and OD = {(ui, vi) : i = 1, . . . , n} be a set of OD-pairs. In

the network N for every OD-pair (ui, vi) we define E idep := {e ∈ Edep : (uorg
i , e) ∈ Aorg} and

E iarr := {e ∈ Earr : (e, vdest
i) ∈ Adest}.

◮ Lemma 13. The timetabling problem with OD-pairs can be solved by solving every dif-

ferent instance (N , ÕD) of the timetabling problem with OD-pairs OD := {(eidep, e
i
arr) : i =

1, . . . , n} with eidep ∈ E
i
dep, e

i
arr ∈ E

i
arr and comparing the solution values. In particular

1. If for every (ui, vi) ∈ OD it holds that |E idep| = |E iarr| = 1 an optimal solution to the

timetabling problem with OD-pairs can be found by solving one linear program.

2. If OD = {(u1, v1)} an optimal solution to the timetabling problem with OD-pairs can be

found by solving at most |E1
dep| · |E

1
arr| linear programs.

4 Conclusions and Further Research

In this paper we integrated the routing of the passengers in the optimization process in

line planning and timetabling problems. We showed that solving the line planning problem

with OD-pairs is NP-hard even in simplified cases, but were able to give polynomial time

algorithms for several special cases. Although timetabling with fixed passenger paths can

be solved easily by linear programming, including the routing decisions results in an NP-

hard problem. However, if the start and destination event of every OD-pair are known, the

problem can be solved as efficiently as aperiodic timetabling itself.

In our further research, we will generalize the algorithms for line planning with one

OD-pair in linear networks to develop heuristics for the general case. An important next

step will be to include capacity restrictions and frequencies in the line planning model.

Concerning timetabling, we are interested in finding further restrictions on the problem

structure that make the problem easily solvable and to develop heuristics based on these

approaches. Another promising heuristic idea, both for line planning and timetabling, is to

Marie Schmidt and Anita Schöbel 169

iterate routing and optimization steps to successively improve the solution; we are currently

testing such a procedure numerically. We furthermore will investigate the benefit of such an

integrating, e.g., the improvement of the passengers’ travel time when integrating routing

in the optimization process.

References

1 J.A. Mesa G. Laporte, A. Marín and F.A. Ortega. An integrated methodology for rapid

transit network design. In Algorithmic Methods for Railway Optimization, volume 4359 of

Lecture Notes in Computer Science, pages 187–199. Springer, 2007.

2 M.R. Garey and D.S. Johnson. Computers and Intractability — A Guide to the Theory of

NP-Completeness. Freeman, San Francisco, 1979.

3 M. Kaspi. Service oriented train timetabling. Master’s thesis, Tel Aviv University, 2010.

4 M. Kinder. Models for periodic timetabling. Master’s thesis, Technische Universität Berlin,

2008.

5 C. Liebchen. Periodic Timetable Optimization in Public Transport. PhD thesis, Technische

Universität Berlin, 2006. published by dissertation.de.

6 J. Lübbe. Passagierrouting und taktfahrplanoptimierung. Master’s thesis, Technische Uni-

versität Berlin, 2009. in german.

7 K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables. Deutsches

Zentrum für Luft– und Raumfahrt, Institut für Flugführung, Braunschweig, 1998. Habili-

tationsschrift.

8 K. Nachtigall and K. Jerosch. Simultaneous network line planning and traffic assignment.

In M. Fischetti and P. Widmayer, editors, 8th Workshop on Algorithmic Approaches for

Transportation Modeling, Optimization, and Systems, 2008.

9 C. A. Phillips. The network inhibition problem. In Annual ACM Symposium on The-

ory of Computing - Proceedings of the twenty-fifth annual ACM symposium on Theory of

computing, pages 776–785, New York, 1993. ACM.

10 M. E. Pfetsch R. Borndörfer, M. Grötschel. A column generation approach to line planning

in public transport. Transportation Science 41, pages 123–132, 2007.

11 R. T. Rockafellar. Network flows and monotropic optimization. John Wiley & Sons, Inc.,

1984.

12 M. Schmidt and A. Schöbel. The complexity of integrating routing decisions in public trans-

portation models. Technical report, Institut für Numerische und Angewandte Mathematik,

Georg-August Universität Göttingen, 2010. NAM Report.

13 A. Schöbel and S. Scholl. Line planning with minimal transfers. In 5th Workshop on

Algorithmic Methods and Models for Optimization of Railways, number 06901 in Dagstuhl

Seminar Proceedings, 2006.

14 Z. Wang and J. Crowcroft. Quality of service routing for supporting multimedia applica-

tions. IEEE Journal on Selected areas in communications, 14(7):1228–1234, 1996.

ATMOS ’10

	14
	0 Titlepage
	1 Table of Contents
	2 Preface
	Preface

	3 Organization
	Organization

	1
	Introduction
	Problem Classification: ``Assignment'' vs. ``Timetabling'' Problems
	``Assignment'' Problems
	``Timetabling'' Problems
	A note on the objective function

	Solution Methods
	Old days: Lagrangian relaxation for arc ILPs
	These days: Column generation/pricing for path ILPs
	Evergreen: diving heuristics

	Defining and Solving Path ILP Formulations of IMCF
	Assignment Problems
	Timetabling Problems
	Linearizing quadratic objective functions

	Conclusions

	2
	Introduction
	The Track Allocation Problem
	A Bundle Approach
	Rapid Branching
	Perturbation Branching
	Binary Search Branching

	Computational Results
	Bundle Calibration
	Rapid Branching

	3
	Introduction
	Motivation and Outline
	The Train Routing Problem
	Robust Planning
	Basic Platforming
	Increasing the Absorption Capacity
	Backup Platforms

	Online Re-scheduling
	Recovery strategies
	Re-scheduling algorithms
	The objective function
	Shift constraints

	Simulation Framework
	Preliminary Computational Results
	Conclusions

	4
	Introduction
	Mathematical model
	Metaheuristic methods
	Construction phase
	Improvement phase
	Neighborhoods
	Tabu search

	Upper bound

	Instances
	Results
	Conclusion

	5
	Introduction
	The train timetabling problem
	Problem description
	Model

	Solution Methods
	Bundle Method
	Dynamic Graph Generation
	Rounding Heuristic
	Load Balancing Functions

	Numerical Results
	Proofs

	6
	Introduction
	Related Work
	Problem Definition
	Overview of the paper

	D-VDP: Decision Problems
	M-VDP: Maximization Problems
	M-VDP-Any: Terminals anywhere
	M-VDP-Out: Terminals on the outer face
	M-VDP-Sep: Separating cut

	R-VDP : Routing in rounds
	R-VDP-Sor: Terminals sorted on the outer face
	R-VDP-Sep: Separating cut
	R-VDP-Sep: Separating cut, p2

	7
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Time-Dependent Road Networks
	2.2 Algorithmic Ingredients
	2.3 Time-Dependent Contraction Hierarchies

	3 Five Algorithms
	4 Approximate Travel Time Functions
	5 On Demand Precomputation
	6 Experiments
	7 Conclusions and Future Work

	8
	Introduction
	Related Work

	Our Approach to Ride Sharing
	Algorithmic Details
	Adding and Removing Offers
	Constraints
	Algorithmic Optimizations

	Experimental Results
	Environment
	Test Instances

	Conclusions and Future Work

	9
	Introduction
	Robustness Concepts
	Strict Robustness
	Light Robustness
	Recoverable Robustness

	A New Approach: Recover to Optimality
	Numerical Studies
	Problem Instance and Parameters
	Setting
	Evaluation
	Objective value.
	Average buffer.
	Average recovery costs when recovering to feasibility.
	Worst-case recovery costs when recovering to optimality.
	Feasibility.
	Running times.

	Conclusion

	10
	Introduction
	Preliminaries
	Complexity of offset optimization
	A new model
	Modeling traffic signals
	Modeling traffic assignment
	Properties of the model
	Improvements

	Computational Results
	Scenarios
	Simulation
	Comparison to established approaches
	Advantages of simultaneous traffic assignment
	Solving the model

	Discussion
	Acknowledgment

	11
	Introduction
	Literature review
	Industrial arc routing problems
	Arc routing problems

	Assumptions and models
	Hypothesis
	Graph and vehicle representation
	Calendar
	Mathematical model

	Relaxation
	RM:
	Enhancing RMwith a local pseudo cut

	Column generation based heuristic - AlgoColGen
	Overall view
	Stage 1 - Column generation
	Stage 2 - Early feasibility test
	Stage 3 - Complete feasibility test

	Enhanced greedy heuristic - AlgoGreedy
	Computational tests
	Real dataset
	Computational tests

	Conclusion

	12
	Introduction
	Mathematical Formulations
	Compact Formulation
	Less Compact Formulation
	Column Generation Formulation

	Robust Branch-Cut-and-Price Algorithm
	Pricing Subproblem
	Families of Cuts
	Min Cut Inequalities
	Triangle Clique Cuts

	Details of the Branch-and-Bound

	Computational Experiments
	Conclusions

	13
	Passenger-oriented planning using OD-data
	Line planning with OD-pairs
	Line Planning with one OD-pair
	Line planning with one OD-pair in a linear network.
	Line planning with OD-pairs having the same origin in linear networks

	(Aperiodic) Timetabling with OD-pairs
	Integrating OD-pairs in the model
	Timetabling with routing between events

	Conclusions and Further Research

