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Preface

On July 6, 2010, the 10th International Workshop on Worst-Case Execution Time Analysis
(WCET 2010) was held in Brussels, Belgium. The workshop was organised as a satellite
event of the 22nd Euromicro Conference on Real-Time Systems (ECRTS’10). The goal of
this annual workshop is to bring together people from academia, tool vendors, and tool
users in industry who are interested in all aspects of timing analysis for real-time systems.
The workshop features a highly interactive format with ample time for in-depth discussions.
Topics of interest include:

different approaches to WCET computation,
flow analysis for WCET, loop bounds, feasible paths,
low-level timing analysis, modeling and analysis of processor features,
strategies to reduce the complexity of WCET analysis,
integration of WCET and schedulability analysis,
evaluation, case studies, benchmarks,
measurement-based WCET analysis,
tools for WCET analysis,
program and processor design for timing predictability,
integration of WCET analysis in development processes,
compiler optimizations for worst-case paths, and
WCET analysis for multi-threaded and multi-core systems.

The papers were presented at the workshop were selected based on peer reviews by
program committee members and external reviewers. 13 submissions out of 23 were finally
selected for presentation. These proceedings contain the presented papers, and the abstract
of the invited talk by Dr. Jean Souyris. For the first time a printed version of the final
proceedings was printed in advance, and distributed at the workshop, rather than being edited
as post-proceedings after the workshop. This version of the proceedings was printed and
published by OCG (ISBN 978-3-85403-268-7). The current online version of the proceedings
is a re-publication of the printed version.

I am happy to thank the authors, the Program Committee including the external reviewers,
the WCET Workshop Steering Committe, and the ECRTS’10 organizers for assembling
the components of a very stimulating workshop. The workshop organizers are also deeply
grateful to the ArtistDesign Network of Excellence for financial support.
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Timing Anomalies Reloaded

Gernot Gebhard1

1 AbsInt Angewandte Informatik GmbH
Science Park 1, D-66123 Saarbrücken, Germany
gebhard@asbint.com

Abstract
Computing tight WCET bounds in the presence of timing anomalies – found in almost any modern hard-
ware architecture – is a major challenge of timing analysis.

In this paper, we renew the discussion about timing anomalies, demonstrating that even simple hard-
ware architectures are prone to timing anomalies. We furthermore complete the list of timing-anomalous
cache replacement policies, proving that the most-recently-used replacement policy (MRU) also exhibits
a domino effect.

1998 ACM Subject Classification B.2.2

Keywords and phrases Timing Anomalies, Domino Effects, MRU Replacement Policy, LEON2

Digital Object Identifier 10.4230/OASIcs.WCET.2010.1

1 Introduction

The validation of the timing behavior of tasks in a safety-critical embedded software system requires
both safe and precise worst case execution time (WCET) bounds. Those bounds need to be safe
to ensure that each component of the software system performs its job in time. Furthermore, those
bounds are required to be precise to ensure the schedulability of such software systems. Two different
approaches have emerged to solve the timing analysis problem: measurement-based timing analysis
and static WCET analysis. In the following, we focus on static timing analysis and one of the main
challenges this analysis method has to face: timing anomalies.

Intuitively spoken, a timing anomaly is a counterintuitive behavior of a hardware architecture,
where a “good” event (e.g., a cache hit) leads to an overall longer execution, whereas the opposing
“worse” event, such as a cache miss, leads to a globally shorter execution time. In the presence of such
anomalies, the local worst case is not always a safe assumption in static timing analysis. To compute
safe timing guarantees, any static timing analysis has to consider all possible executions caused by
any non-determinism in the abstract hardware model (e.g., such as unknown cache contents). Due to
the loss of predictability, the static analysis of architectures featuring timing anomalies requires much
more effort in terms of computational power and memory consumption.

Intuitively, one would assume that timing anomalies are restricted to complex hardware archi-
tectures. In fact, the Motorola PowerPC 755 is known to have a timing anomaly due to its complex
pipeline [10]. Furthermore, architectures with caches with, e.g., PLRU or random replacement
policies feature timing anomalies as well [2].

However, even simple architectures can suffer from timing anomalies, as demonstrated throughout
this paper. We demonstrate that the LEON2 processor, developed at Aeroflex Gaisler [1], also features
a timing anomaly caused by the processor’s cache line fill mechanism.

In addition to discussing the LEON2, we complete the list of commonly used replacement policies
that are prone to timing anomalies by examining the MRU replacement policy.

Section 2 discusses related work. Section 3 formally defines timing anomalies and introduces
the existing timing anomaly classifications. Section 4 discusses the MRU replacement policy and
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2 Timing Anomalies Reloaded

proves that this replacement strategy exhibits a timing anomaly. Section 5 introduces the LEON2
architecture and demonstrates that this architecture is prone to a timing anomaly – despite its rather
simple structure. Finally, Section 6 concludes this paper.

2 Related Work

Lundqvist and Stenström [7] are the first to introduce the term timing anomaly. They find that the
worst case instruction execution time behavior does not necessarily contribute to the global worst case
execution time. In their paper the authors provide an example of a timing anomaly, where a cache
hit leads to the worst case timing. Engblom and Jonsson [5] also discuss timing anomalies. They
translate the notion of timing anomaly of Lundqvist and Stenström [7] to their model considering
(local) timing of pipeline stages instead of whole instructions.

Both Lundqvist and Engblom claim that timing anomalies cannot occur in processors that only
comprise in-order resources (i.e., two instructions can only use a resource in program order). This
statement is unfortunately not always true, as we show by means of the LEON2 hardware architecture.

Schneider [10] describes a timing anomaly present in the Motorola PowerPC 755 (MPC755). The
possibility to dispatch an instruction on two execution units with different behavior in conjunction
with pipeline stalls triggers the described timing anomaly.

Thesing [11] discusses the Motorola ColdFire 5307 that has a rather simple in-order pipeline.
He shows that the processor exhibits timing anomalies, caused by the pseudo round-robin cache
replacement algorithm.

Berg [2] discusses cache replacement policies and their timing anomalies. He finds that caches
using first-in first-out (FIFO), round-robin, or pseudo least-recently-used (PLRU) cache replacement
strategies suffer from timing anomalies. These replacement strategies are commonly used in embedded
hardware architectures, as they require less update logic compared to the LRU policy, which is free of
timing anomalies.

In the context of WCET analysis, Reineke et al. [9] provide the first formal definition of timing
anomalies. The paper provides a classification of timing anomalies, which we adopt in this paper.

Eisinger et al. [4] provide a novel methodology to automatically detect timing anomalies. Requir-
ing an accurate hardware model to be available (e.g., in VHDL), the approach computes an instruction
sequence that triggers a timing anomaly, if such a sequence exists. Yet, the approach is not fully
automatic, because hardware features potentially causing timing anomalies need to be identified
manually.

Reineke and Sen [8] discuss a related approach. Other than Eisinger et al., they propose a method
that allows a static timing analysis to safely discard analysis states by means of ∆ functions. A ∆
function computes the maximal difference in timing between two system states on any input instruction
sequence. For any pair of system states, a static timing analysis can consult the corresponding ∆
function to determine which of the two states can be safely discarded. This works well for small
hardware models, as demonstrated in the paper, but it remains unclear whether this approach can be
applied to complex embedded architectures in a beneficial way.

Kirner et al. [6] show that splitting up a WCET analysis into separate parallel WCET analyses
(corresponding to hardware components operating in parallel) is not generally safe in the presence of
timing anomalies. Furthermore, the authors identify special instances of “parallel’ timing anomalies
still making a parallel decomposition of the WCET problem feasible. Their findings correspond to
the classification of architectures (see Section 3.6). Non-fully timing compositional architectures do
not allow for a safe, parallel decomposition of the WCET problem.
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Cache Hit: A Prefetch B - Cache Miss C

Cache Miss: A C

Branch condition evaluated

Figure 1 Speculation-triggered timing anomaly: The processor executes a conditional branch instruction,
whose condition is yet unresolved. Assuming a cache hit for the initial code fetch, the processor speculatively
fetches the instruction B that is not contained in the cache. This causes an overall longer execution time, because
the cache line fill operation stalls the processor longer than it takes to resolve the branch condition.

3 Timing Anomalies

Intuitively, a timing anomaly is a counterintuitive behavior of a hardware architecture, where a local
speed-up leads to a global slow-down. Several – average-performance increasing – hardware features
may exhibit this kind of non-local execution time behavior. In the following we formally define timing
anomalies in accordance to the definition found in [9]. Furthermore, we discuss some examples of
timing anomalies commonly found in modern processors.

3.1 Formal Definition

I Definition 1. (Hardware State) For a given hardware architecture A, the set Ĥ comprises all
possible hardware states of that architecture. A specific hardware state of the architecture is η ∈ Ĥ.

I Definition 2. (Program) A program P is a directed graph P = (V,E) with E ⊆ V × V , where
the nodes V represent instructions, and an edge (u, v) ∈ E represents the control flow transition
from instruction u to v. A path ~π = π1π2 . . . through the program P = (V,E) is a possibly infinite
sequence of instructions, such that (πi, πi+1) ∈ E for each i < |~π|.

I Definition 3. (Execution) The execution γ~π of the path ~π is a function Ĥ ×N→ R≥0 assigning
each instruction on the path ~π a non-negative (relative) execution time depending on the initial
hardware state η (i.e, γ~π(η, i) denotes the time the processor needs to execute the instruction πi).
The (absolute) execution time under the initial state η until the position n ∈ N is Γ~π(η, n) =∑n

i=1 γ~π(η, i).

I Definition 4. (WCET) The worst case execution time (WCET) is determined by the worst-case
initial hardware state θ, such that limn→|~π| Γ~π(η, n) ≤ limn→|~π| Γ~π(θ, n) for all hardware states η.

Note that Definition 3 allows for different initial hardware states before the execution of the
program. This makes sense, because the precise initial state of the processor is usually unknown in
the scope of static timing analysis. Thus static timing analyses need to consider all possible initial
hardware states to provide safe WCET bounds.

I Definition 5. (Timing Anomaly) An architecture has a timing anomaly if there exists a path ~π
through a program P , i, n ∈ N with n > i, and a hardware state θ, such that γ~π(θ, i) < γ~π(η, i) and
Γ~π(θ, n) ≥ Γ~π(η, n) for all hardware states η 6= θ. The state θ is called timing-anomalous.

3.2 Examples

Figure 1 gives an example of a timing anomaly caused by the interaction between the branch prediction
mechanism, the instruction cache, and the processor’s ability to execute instructions out-of-order. In

WCET 2010



4 Timing Anomalies Reloaded

ALU:

FPU:

a1

f1 f2

a2 a3

ALU:

FPU:

a1

f2 f1

a2 a3

f1 dispatchable

Figure 2 Variant execution time triggered timing anomaly: This example demonstrates that a locally fast
instruction execution might cause a global slow-down of an instruction sequence. The instructions a1, a2, and
a3 execute on the ALU. The ALU features an early-out mechanism that allows integer divide instructions, such
as a1, to complete faster under certain circumstances. The other instructions f1 and f2 solely execute on the
FPU. Edges between instructions indicate definition-use dependencies.

this example the processor is currently executing a conditional change-of-flow instruction, whose
condition is not yet evaluated at the moment the instruction A is about to be fetched. Upon a cache hit
for code fetch of instruction A, the processor starts to speculatively fetch the uncached branch target
B. Although the initial cache hit locally causes a faster execution, the overall execution is slowed
down, because the cache line fill fetching B takes longer than resolving the branch condition.

This timing anomaly could also be caused by speculative execution. This means that the processor
starts to execute the fetched instructions, while the processor computes the branch condition. Instead
of fetching the instruction B and being stalled due to a cache miss, the processor could speculatively
execute the previously fetched instruction B resulting in a longer stall of the processor’s pipeline.

Figure 2 demonstrates a different timing anomaly caused by instructions with variant execution
times (e.g., due to dividers with an early-out mechanism). Here, the processor features two execution
units, an arithmetical logical unit (ALU) and a floating point unit (FPU). Depending on the input
parameters, the ALU executes integer division instructions, like a1, quicker. In this case, completing
instruction a1 earlier, the processor is able to dispatch instruction f2 in front of instruction f1. This
effectively causes the processor to execute all instructions sequentially. The instruction sequence
takes longer to complete, because the processor cannot benefit from its ability to execute instructions
in parallel. On the contrary, if instruction a1 takes longer to complete, the processor will dispatch
instruction f1 earlier. This allows the processor to execute the instructions a2 and f2 in parallel,
resulting in an overall faster execution.

The variable-execution-time-triggered timing anomaly corresponds to a so-called scheduling
anomaly. In the same fashion, a task that terminates earlier could lead to an overall longer schedule.
Whereas a faster schedule could be achieved if the very same task would run to completion a bit later.
Greedy schedulers are usually unable to prevent this kind of anomaly.

3.3 Domino Effects

The presence of timing anomalies increases the complexity of static timing analyses. A static timing
analysis cannot always assume the local worst case, if the analyzed architecture is prone to a timing
analysis. Instead the analysis has to take all possibilities into account to compute safe WCET bounds.

Often the effect of a timing anomaly on the execution time stabilizes eventually. This means that
any timing-anomalous execution reaches a point where it only differs by a constant from any other
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execution on the sequence of the input program. Such a timing anomaly is called k-bounded timing
anomaly, where k is the maximal difference in execution time caused by the timing anomaly. This is
formalized in Definition 6. In the presence of a k-bounded timing anomaly, a static timing analysis
could always assume the local worst case, adding the constant k to the computed WCET bound [8].1

I Definition 6. (k-bounded Timing Anomaly) An architecture has a k-bounded timing anomaly,
if there exists a k ∈ R≥0 such that for all timing-anomalous hardware states θ for the execution of a
path ~π through a program P holds: Γ~π(θ, n)− Γ~π(η, n) ≤ k for all n ∈ N and all states η.

Unfortunately, some hardware features cause timing anomalies whose effects on timing are
unbounded. Such timing anomalies are known as domino effects. Domino effects are essentially
different from k-bounded timing anomalies: A k-bounded timing anomaly occurring in a loop only
has a limited timing effect that eventually stabilizes. In other words, the loop body runtime will only
differ for a bounded number of iterations and converge finally. In the presence of a domino effect, the
loop body runtime will take different values without convergence in the future.

I Definition 7. (Domino Effect) An architecture has a domino effect, if it exhibits a timing anomaly
that is not k-bounded. Such timing anomalies are also known as unbounded timing anomalies.

Domino effects are real. Schneider [10] has demonstrated that the MPC755 pipeline actually
causes a domino effect. Furthermore, Berg [2] was able to show that, in contrast to the LRU
replacement policy, the pseudo LRU, the FIFO, and the round-robin replacement strategies suffer
from domino effects. Section 4 completes this list, proving the MRU policy to feature a domino effect
as well.

3.4 Challenges for Static Timing Analysis

The presence of timing anomalies impacts both performance and precision of a static timing analysis.
In general, an analysis must not always choose the locally most expensive execution, as this decision
might not always lead to the global worst case execution time. Consequently, the number of states to
consider during analysis time increases greatly, if the absence of timing anomalies cannot be proven
for an analysis state, where multiple successor states are possible.

Furthermore, the inability of proving the absence of a timing anomaly might also lead to an
increase in the computed WCET bound. The timing anomaly discussed in Section 5 can lead to an
overestimation of up to 20% (strongly depending on the analyzed program).

3.5 Classification of Timing Anomalies

Reineke et al. [9] discern three different classes of timing anomalies:

Scheduling timing anomaly: Most timing anomalies found in the literature correspond to this class
of timing anomalies. Figure 2 is actually an instance of a scheduling timing anomaly. Depending
on the execution time of a task, a faster execution might lead to a globally longer schedule. This
kind of anomaly is well-known in the scheduling domain and has been thoroughly studied on
various scheduling routines.
Speculation timing anomaly: Figure 1 demonstrates such a timing anomaly. An initial cache hit
(the local best case) causes a speculative prefetch addressing an instruction that is not cached. The
cache miss leads to an overall longer execution. Section 5 discusses a speculation anomaly found
in the LEON2 core.

1Note that k is an overestimation of the caused effect on timing. In most cases the precision of a static timing analysis
will degrade by assuming the local worst case and adding the constant k to the computed WCET bound.

WCET 2010



6 Timing Anomalies Reloaded

Cache timing anomaly: Cache timing anomalies are caused by some non-LRU cache replacement
strategies. Various cache replacement algorithms have been proven to cause domino effects.

The above classification sorts timing anomalies in accordance to the hardware property that is
responsible for the timing anomaly. So far, this classification appears to be exhaustive in the sense
that it covers all possible hardware features that might trigger timing anomalies.

Yet, the sole knowledge about the timing anomaly class does not suffice for static timing analysis.
In addition to the hardware feature causing the anomaly, it is necessary to know the kind of anomaly.
A static timing analysis of a hardware architecture that has a k-bounded timing anomaly can be
realized with less effort2 than a static analysis of an architecture that suffers under a domino effect as
discussed in Section 3.3.

Currently, it is unclear how to determine whether an instance of a timing anomaly is k-bounded
for a certain system state. Depending on the initial hardware state, a hardware feature triggering a
domino effect might only cause a constantly-bounded anomaly for this special case. Furthermore,
there exists no general approach to compute the constant k for a k-bounded timing anomaly.

3.6 Classification of Architectures

Depending on whether a hardware architecture exhibits k-bounded timing anomalies or domino
effects, the architecture can be classified into three categories. Wilhelm et al. introduce the following
categorization in [12]:

Fully timing compositional architectures: The architecture does not exhibit any timing anomalies.
Hence, the analysis can safely follow local worst-case paths only. The ARM7 is one example
architecture of this class. On a timing accident all components of the pipeline are stalled until the
accident is resolved. This even allows for a much simpler analysis where architecture components
(e.g., cache, bus occupancy, etc.) can be analyzed separately (i.e., a safe parallel decomposition of
the WCET problem is feasible).
Compositional Architectures with k-bounded effects: The architecture suffers from k-bounded
timing anomalies but not from domino effects. In general, an analysis has to consider all paths.
To trade precision with efficiency, it would be possible to safely discard local non-worst-case
paths by adding a constant to the computed WCET bound, as discussed in Section 3.3. So far, no
non-fully timing compositional architecture has been formally proven to belong to this class.
Non-compositional architectures: Architectures belonging to this class exhibit domino effects.
The MPC755 is known to belong to this class of architectures, because its complex pipeline might
cause a domino effect (see Section 3.3). For such architectures timing analyses always have to
follow all paths since any local effect may influence the future execution arbitrarily.

4 MRU Domino Effect

This section discusses the most-recently-used replacement strategy in the context of static timing
analysis. In contrast to the LRU replacement algorithm, MRU discards the most-recently accessed
cache line upon a cache miss. The MRU replacement algorithm is most useful when older data is
likely to be reused (e.g., after sequentially scanning an array or a file for data) [3].

Figure 3 demonstrates the domino effect by means of a 2-way cache using the MRU replacement
strategy. In this example, the memory locations a and b are accessed in an alternating pattern. Starting
with an empty cache, the cache set contents stabilize after two accesses. After the first two accesses

2Assuming the constant k is known.
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∅ ∅
a*

a ∅
b*

b a
a

a b
b

b a
zero misses per
iteration

timing-anomalous state

a c
a

a c
b*

b c
a*

a c
b*

b c
two misses per
iteration

Figure 3 An example domino effect for a 2-way cache using an MRU replacement policy for the repeating
access sequence (a, b)+. The left-hand side of a set depicts the most-recently accessed element. The first row
features an empty initial cache state, where no misses occur for the given sequence. The second row demonstrates
a different initial cache state that causes all accesses except the first to miss the cache. Each miss is marked by ∗.

that miss the cache set the access sequence will only produce hits. Starting with a cache set that
contains the addresses a and c, where a is the most-recently accessed one, each access to the cache
except for the first will lead to a cache miss. Because the MRU policy retains older data (i.e., the
memory location c in this case), an access to a will evict b from the cache and vice versa.

Proof. (The MRU algorithm exhibits a domino effect) Let n ∈ N≥2 be the associativity of a cache
governed under the MRU replacement policy. Additionally, let h,m ∈ R≥0 with h < m, where h
and m are the costs for cache hit and cache miss, respectively.

To show the presence of a domino effect, we need to find a path through a program and two initial
hardware states, such that the difference in execution times starting from the two initial states is not
constantly bounded.

Let P be a program alternately accessing the distinct memory locations a and b (starting with
a) that map to the same cache set and ~π be a path through that program. Furthermore, let ηempty be
a hardware state where the target cache set is initially empty, and ηfull be an initial hardware state,
where the target cache set contains the disjoint memory locations a,m1,m2, ...,mn−1 with mi 6= b

for i ∈ {1, 2, ..., n− 1} and where the cache line containing a is the most-recently accessed one.
It holds:

γ~π(ηempty, i) =
{

m i ∈ {1, 2}
h otherwise

γ~π(ηfull, i) =
{

h i = 1
m otherwise

Furthermore, it holds γ~π(ηfull, 1) < γ~π(ηempty, 1) and Γ~π(ηfull, l) ≥ Γ~π(ηempty, l) for all
l > 2. Thus, the state ηfull is timing-anomalous, in accordance to Definition 5.

The timing anomaly is not k-bounded. For any k ∈ R≥0 we can choose an l ∈ N, l > 2, such
that the k-boundedness according to Definition 6 does not hold:

Γ~π(ηfull, l)− Γ~π(ηempty, l) ≤ k | Γ~π(ηfull, 3)− Γ~π(ηempty, 3) = 0
⇔

∑l
i=4(γ~π(ηfull, i)− γ~π(ηempty, i)) ≤ k

⇔
∑l
i=4(m− h) ≤ k

⇔ (l − 3)(m− h) ≤ k

⇔ l ≤ k

m− h
+ 3

For l >
⌈

k
m−h

⌉
+ 3 the above relation is false. J

WCET 2010



8 Timing Anomalies Reloaded

5-Stage
Integer Unit

Instruction
Cache

Data
Cache

Memory Man-
agement Unit

Memory Controller

LEON2 Core:

I/O SDRAMPROM SRAM

Figure 4 Simplified block diagram of the LEON2 architecture.

5 LEON2 Timing Anomaly

In this section we discuss the LEON2 hardware architecture. The LEON2 was developed at Aeroflex
Gaisler as a successor of the ERC32 processor. A radiation-hardened version of the LEON2 is
available [1] which makes it suitable for the space domain, where fault-tolerance is required.

Similar to the ARM7, the LEON2 features a rather simple pipeline. The pipeline comprises five
stages. To speed up execution the LEON2 comprises disjoint instruction and data caches. Figure 4
depicts a block diagram of the LEON2 showing the memory hierarchy.

On a first view, the LEON2 appears to be a fully timing compositional architecture. The processor
neither performs speculative fetching nor does it execute instructions speculatively. The LEON2 does
not possess any branch-prediction mechanism. Instruction are executed and completed in-order. Each
instruction has to visit the five pipeline stages one after another. Thus, an instruction cannot overtake
a slower instruction blocking a certain pipeline stage. This prevents the possibility of a scheduling
anomaly. Upon a timing accident (i.e., a cache miss) the internal pipeline is stalled until the accident
is resolved. Both caches commonly use the LRU replacement policy3, which is known to behave in
a timing compositional manner. It appears that none of the above described timing anomalies can
occur. However, in the following we will show that the LEON2 has a hardware feature that potentially
triggers a timing anomaly (depending on the system state).

Upon a cache miss, the processor needs to load the missing cache line from main memory. Usually,
the whole cache line is loaded and put into the cache. Until the cache line has been filled, the processor
stalls the originating memory access. To reduce latencies, some architectures start loading the cache
line at the requested address directly forwarding the received data to the core (cache streaming).

A similar technique is available in the LEON2 architecture. Each cache line is equipped with
valid bits for each word4 inside the cache line. A cache line is either 16 or 32 byte wide and thus

3The LEON2 is synthesized from a VHDL model where different replacements algorithms can be configured. Among
others, MRU is a possible choice.

4A word is four bytes on the LEON2 hardware architecture.
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A: 0x00: ba 0x10

0x04: nop

B: 0x08: call <exit>

0x0c: nop

C: 0x10: nop

0x14: nop

0x18: ba 0x08

0x1c: nop

Assembler Code:

Initial Cache Hit:

A C B C

Burst Fetch:
0x10 .. 0x1c

Burst Fetch:
0x08 .. 0x1c

Initial Cache Miss:

A C B

Burst Fetch:
0x00 .. 0x1c

Legend:

Cache Hit

Cache Miss

Basic Block

Figure 5 LEON2 timing anomaly: The example demonstrates a timing anomaly present in the LEON2
processor caused by the instruction cache line fill mechanism. The basic blocks A, B, and C reside in the same
cache line. The local best case — assuming a cache hit for the instructions in basic block A — causes the global
worst case execution of the example: The core performs ten instructions fetches. On the contrary, only eight
instruction fetches are issued upon an initial cache miss.

comprises either four or eight valid bits. Upon a data cache miss, solely the requested word is loaded
from memory and put into the corresponding cache line. The instruction cache operates slightly
differently than the data cache. If an instruction fetch misses the code cache, the processor burst-fills
the corresponding cache line starting from the requested instruction till the end of the line. The
processor does not issue wrap-around burst fetches. Consequently, cache lines might only be filled
partially. Furthermore, the processor does not check for existing entries upon burst-filling the cache
line. A timing anomaly finally becomes possible, as the LEON2 processor allows cache line fills to
be interrupted under certain circumstances.

Figure 5 demonstrates how the described cache line fill mechanism can trigger a timing anomaly.
In this example the contents of the cache are assumed to be initially unknown. Each cache line can
hold up to eight instructions. Assuming an initial cache miss, the core fills the whole cache line. All
in all, the processor issues eight instruction fetches. Assuming cache hits for the first two instruction
fetches (basic block A) causes a timing anomaly. The remainder of the target cache line still remains
unknown. Reaching the basic block C, a static analysis then would need to assume a cache miss.
Recall that the processor might abort a cache line fill operation. Thus, the instructions of basic block
C need not necessarily be cached, although cache hits have been assumed for the initial accesses
to the cache line. In this case, the core will fill the upper half of the target cache line. Eventually,
the program branches to the basic block B. Again, a static analysis would need to assume a cache
miss. Because the processor does not check whether burst-fetched instructions are already cached,
the instructions in basic block C will be fetched again. Altogether the core performs ten fetches
after the initial cache hits. So, the processor performs 20% more memory accesses under the initial
assumption.

Despite the simple structure of the LEON2 a timing anomaly is possible, caused by a rather
simple, average-case performance increasing hardware feature. Obviously, the timing anomaly is a
speculation timing anomaly (see Section 3.5). Fetching subsequent instructions upon an instruction
cache miss, the processor assumes a sequential execution of the program.

The described timing anomaly is k-bounded. It is easy to see that the described effect will
eventually stabilize – a positive side effect of the employed cache replacement policy. Due to space
limitations we can not include the proof in this paper.

The code structure that causes the timing anomaly depicted in Figure 5 is not uncommon.
Analyzing industry LEON2 software, we were able to verify that due to the code structure this

WCET 2010
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phenomenon might occur in real world applications. Due to a non-disclosure agreement we must not
provide further details about this particular software.

6 Conclusion

In this paper we have proved that the MRU replacement policy is prone to domino effects. By this,
we have completed the list of commonly used replacement policies suffering under timing anomalies.
Additionally, we have shown that the LEON2 exhibits a timing anomaly, despite its simple structure.

In the future, we plan to study other hardware architectures that are being used in the automotive
and the aerospace domain. Furthermore, we will check whether known instances of timing anomalies
can be proven to be k-bounded.
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Abstract
The assumption of task independence has long been consubstantial with the formulation of many
schedulability analysis techniques. That assumption is evidently advantageous for the mathem-
atical formulation of the analysis equations, but ill fit to capture the actual behavior of the
system. Resource sharing is one of the system design dimensions that break the assumption of
task independence. By shaking the very foundations of the real-time analysis theory, the advent
of multicore systems has caused resurgence of interest in resource sharing and synchronization
protocols, and also dawned the fact that the assumption of task independence may be forever
broken. Research in cache-aware schedulability analysis instead has paid very little attention to
the impact that synchronization protocols may have on cache behavior. A blocked task may in
fact incur time penalties similar in kind to those caused by preemption, in that some useful code
or data already loaded in the cache may be evicted while the task is blocked. In this paper we
characterize the sources of cache-related blocking delay (CRBD). We then provide a bound on
the CRBD for three synchronization protocols of interest. The comparison between these bounds
provides striking evidence that an informed choice of the synchronization protocol helps contain
the perturbing effects of blocking on the cache state.

Keywords and phrases Resource access protocols, cache, worst-case response time

Digital Object Identifier 10.4230/OASIcs.WCET.2010.11

1 Introduction

The correctness of schedulability analysis techniques for preemptive real-time systems relies
on the use of safe estimates of both the worst-case execution time (WCET) of the system tasks
and the additional costs due to interrupts and task preemptions. Whereas the determination
of safe and tight WCET bounds is a widely acknowledged and studied problem [14], most
schedulability analysis techniques rest on the simplifying assumption of constant (and
negligible) context-switch costs. Unfortunately, the use of hardware acceleration features
like caches and complex pipelines breaks this assumption for good. With the adoption of
caches, in particular, the context-switch cost is no longer constant as it must account for the
interferences between tasks: interrupt handling and preemption may influence the execution
time of a preempted task. On resumption in fact, the preempted task may incur a number of
additional cache misses as some useful cache contents may have been evicted from the cache.
Cache-aware schedulability analysis techniques [5, 12, 13] aim at including those cache effects
in the schedulability analysis by accounting for the so-called cache-related preemption delay
(CRPD) overheads in the response time of individual tasks.

However, interference caused by tasks is not limited to task preemptions. The assumption
of task independence rarely holds in practice and real systems often include shared resources
which multiple tasks can access in mutual exclusion. Task blocking therefore occurs, which
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causes priority inversion to arise, and the need for resource access protocols to bound it. In
response time analysis (RTA) for fixed-priority systems, the time a task is forced to wait for
a shared resource in use by lower priority tasks (the task blocking time) is assumed to be
bounded.

When it comes to cache interference, however, task blocking may cause effects similar in
kind to task preemption, in that some useful code or data blocks already loaded in the cache
may be evicted while the task is being blocked. Very few works [10] consider the additional
time spent in reloading the evicted cache contents, which is referred to as Cache-Related
Blocking Delay (CRBD). Although a task typically suffers from blocking as it shares some
resources with lower priority tasks, different patterns and durations of blocking – and thus
the amplitude of the CRBD – can be induced by the specific resource access policy in use.

We contend that the CRBD cannot be dismissed as a negligible cache-related effect, and
should instead be accounted for by cache-aware schedulability analysis. The contribution of
this paper is a characterization of the effects of blocking on the cache behavior (i.e., CRBD)
in fixed-priority preemptive systems and the formalization of a worst-case bound of the
incurred delay under different resource access protocols. The rest of the paper is organized
as follows: section 2 surveys the state-of-the art approaches to cope with cache interference
between tasks; section 3 provides a formal definition of the CRBD and defines a bound to it
for three resource access protocols of interest; section 4 finally draws some conclusions.

2 Related Work

In general, WCET analysis approaches focus on intra-task cache behavior and, while not
directly accounting for inter-task (i.e., extrinsic) interference, try to include the cache effects
of the latter in schedulability analysis. In this paper we do not consider limited-preemptible
systems, cache partitioning or locking techniques, which may attenuate inter-task interference.

Since task preemption is typically regarded as the main source of interference between
tasks, the inclusion of cache effects in schedulability analysis is generally accomplished by
accounting for an upper bound on the CRPD in the response time of individual tasks. For
example, the RTA iterative equation for task τi has been extended to include cache effects
due to preemptions as follows:

wn+1
i = Ci +Bi +

∑
j∈hp(i)

⌈wni
Tj

⌉
× (Cj + γj) (1)

where wki refers to the time window under analysis, Ci and Bi are respectively the WCET
and maximum blocking time for the analyzed task, and the remaining term represents the
interference from higher priority tasks, which includes the induced CRPD γj [5].

The exact CRPD depends on both the preempted and the preempting tasks since it
captures the time required by the preempted task to reload cache blocks that have been
evicted by the preempting tasks and that will be reused when the preempted task resumes
execution.

Two basic concepts are useful to understand the bounds on cache interference between
tasks:
- Useful Cache Blocks (UCB): cache blocks that may be referenced again before they could

be evicted by other memory blocks, according to the cache replacement policy;
- Used Cache Blocks (UCB): cache blocks that may be accessed during the execution of

the preempting task.
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Earlier approaches [5, 6] that relied on UCB or UCB alone to compute the CRPD
bound were overly conservative as neither all UCB would be always evicted nor the UCB
would necessarily evict useful blocks. Less pessimistic approaches have been suggested in
[7, 13, 12], which account for both UCB and UCB to compute the CRPD bound. Moreover,
acknowledging the fact that a cache block may not be useful (or used) along every program
path, Negi et al. [9] introduce the more elaborate notions of Cache Utility Vector (CUV) and
Final Usage Vector (FUV) to capture all possible cache states along the different execution
paths of both the preempted and the preempting tasks. A refinement in UCB computation,
combined with WCET analysis, has been proposed in [1]. More recently, with respect to
LRU set-associative caches, the idea of resilience has been introduced [2] to exclude from the
CRPD computation those UCB that can be guaranteed to persist in the cache, thanks to
the specific replacement policy.

The term Bi in Equation 1 refers to an upper bound to the blocking time suffered by task
τi due to resource contention. As observed in [10], similarly to the interference from higher
priority tasks, the interference from lower priority tasks contending for shared resources
should be considered to predict cache behavior. The effects of blocking are similar to those
related to the CRPD since a lower priority task may evict some useful cache blocks of a
higher priority task, which thus incurs some CRBD.

The work in [10] extends previous work by the same authors on fully-preemptive and
non-preemptive task regions, to cope with shared resources under the Priority Inheritance
Protocol. They use a complex framework that exploits task phasing to account for both
CRPD and CRBD in the response time of a task. The computation of the CRBD (limited
to data cache) employs the same concepts as used to compute the CRPD. In contrast to [10],
in this paper we focus on computing an upper bound on the CRBD under different protocols,
rather than on its inclusion in the worst-case response time analysis.

3 Cache-Related Blocking Delay

Shared resources typically need to be accessed in mutual exclusion. When a high priority
task needs to access a resource that is already locked by a lower priority task, it cannot
proceed until the lower priority task completes execution inside the resource and relinquishes
its lock. Whenever a lower priority task prevents the execution of a higher priority task,
the system experiences potentially unbounded priority inversion. This phenomenon can
be bounded with the use of a resource access protocol. In this paper we focus on three
well-known protocols: the Priority Inheritance Protocol (PIP), the Priority Ceiling Protocol
(PCP) and the Immediate Ceiling Protocol (ICP).

In a fixed-priority preemptive system with shared resources equipped with a synchroniza-
tion protocol, three different kinds of blocking may arise [8]:
- Direct blocking occurs when a higher priority task requests a shared resource held by a

lower priority task; another form of direct blocking, transitive blocking1, occurs when
nested resources access is permitted, and a blocked task transitively suffers from the
blocking incurred by the blocking task itself.

- Inheritance or push-through blocking occurs for a task τm that does not need any shared
resource, when a lower priority task τj blocks a task τi with priority π(τi) > π(τm) and
executes at a priority higher than π(τm) due to some priority inheritance rule.

1 Also referred to as chain blocking.

WCET 2010
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Figure 1 Example of CRBD.

- Avoidance blocking occurs when a task τi is denied access to an available resource to
prevent deadlock.

From the standpoint of caches, the execution of the blocking task inside a critical section
may cause the eviction of useful cache contents that would have later been reused by the
blocked task. A high priority task will thus incur a time penalty (or blocking delay) because
of the additional cache misses, regardless of the type of suffered blocking.

The scenario depicted in Figure 1 illustrates the different types of blocking under the
PIP and shows how lower priority tasks may affect the cache content of higher priority tasks.
In particular, task τ1 and τ3 suffer direct blocking, while task τ2 suffers inheritance blocking.
Assume that τ1 has loaded four cache blocks that would be shortly reused (i.e., the shaded
memory addresses in Figure 1) in a small direct mapped instruction cache. Unfortunately,
task τ1 is blocked when trying to access shared resource R currently held by τ3, which in
turns is blocked by τ4 on the shared resource S. While τ3 has no effect on the useful cache
content of τ1, the code executed by τ4 in its critical section accessing S maps exactly to the
same cache sets and evicts all the four useful blocks of τ1. When τ1 resumes, it will incur a
CRBD of four additional cache misses.

A subtler penalty is experienced by task τ2 due to the execution of τ3: whereas it does
not share any resource with other tasks, τ2 is blocked due to priority inheritance. In the
example, the useful cache content of τ2 is evicted during the execution of τ3 inside its critical
region. It is worth noting that τ2 would not have suffered any interference (CRPD) due to
the higher priority task τ1.

Hence, blocking does not only affect the response time of a task as a single worst-case
factor independent of the task itself, but it may also directly affect its execution time. This
is so because priority inversion, even if bounded, causes a cache-related delay akin to that
caused by preemption. Similarly to CRPD, the amount of delay potentially incurred by a
task on a single blocking event depends on both the cache content of the blocked task and
the execution of the blocking task.

The actual CRBD is thus a function of the UCB (cf. Section 2) of the blocked tasks and
the UCB of the blocking task. In contrast to CRPD, however, the UCB are not determined
by the whole execution of the blocking task since the induced delay can stem just from
the execution inside critical sections. Furthermore, in case of direct (and some forms of
avoidance) blocking, also the UCB of the blocked task are limited to those determined at
the beginning of the critical section at which the task is blocked.

Although we can expect the CRBD to be small for single critical sections, its relevance
increases as soon as a task may experience several and potentially different blocking events
during the same activation. The CRBD arising from such blocking events cannot be
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disregarded during schedulability analysis as its cumulative effect may invalidate the analysis
results.

We performed some initial experiments to gage by static analysis the impact of the CRBD
on the instruction cache performance of blocked tasks. We implemented a small test case
made up of three tasks: τ1 and τ3, reading and/or writing a shared resource, and a notionally
independent task τ2, taken from the Mälardalen benchmark2. We extended the Heptane
tool from IRISA/Rennes to compute the number of additional cache misses incurred by τ1
and τ2 owing to direct blocking and indirect blocking respectively. With a 4 KB, 32 B lines,
direct-mapped instruction cache, under PIP, task τ1, whose stand-alone cache performance
shows 30 misses over 1011 cache accesses, may suffer 8 additional cache misses from the
CRPD directly induced by τ3. Task τ2 may incur 3 further cache misses against a stand-alone
cache performance of 9 misses over 54 accesses, when the impact of inheritance blocking is
not considered3.

The CRBD potentially suffered from a task depends on the actual resource access protocol
in use, as it determines both the possible types of blocking incurred and the maximum
number of blocking events suffered for each activation.

In principle, the CRBD problem could be transformed into a CRPD problem by modeling
the critical sections as tasks that may preempt higher priority tasks, thus exploiting the
intrinsic similarities between the two phenomena. However, some specialization should still
be needed to capture the specificity of blocking as well as of the resource access protocol
in force, thus boosting the complexity of the analysis approach considerably. For example,
preemption points should be predefined to permit a sound computation of UCB in case of
direct blocking. Similarly, one may need to account for the transitivity of blocking depending
on the resource access protocols in use. In our approach, instead, we solely focus on the
computation of UCB and UCB and exploit sound theoretical bounds [11] on the number of
blocking events to provide an upper bound on the CRBD.

In the following we first provide a formal characterization of the CRBD potentially
incurred by a task; and then we exploit well-known bounds on the number of blocking events
suffered by a task, under different resource access protocols to observe that the way in which
the worst-case CRBD can affect the execution time of tasks is highly related to the choice of
protocol.

3.1 Bounding the Cache-Related Blocking Delay
We assume total ordering between tasks such that i < j if π(τi) > π(τj): hence τ0 is the
highest priority task. In our model a task τi self-suspends only at the end of every execution
of its jobs, and may access a shared resource R ∈ SRi, where SRi identifies the subset of
the system resources (SR) that get accessed by τi.

It is worth noting that from a finer-grained point of view, acquiring (respectively releasing)
a shared resource corresponds to entering (exiting) a critical section where the resource
is locked (unlocked). Since a task τi may access a shared resource R through different
critical sections, we define csRi to be the set of critical sections in τi accessing the resource
R ∈ SRi. Similarly, csRi,k identifies the kth critical section in τi accessing the resource
R ∈ SRi. In any case, we assume critical sections to be properly nested so that they
can never overlap. For every pair of critical sections csi,k, csi,z in τi either csi,k ⊂ csi,z,

2 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
3 Furthermore, in this case, no additional misses originate from preemption by τ1.
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csi,k ⊃ csi,z or csi,k ∩ csi,z = ∅.
The determination of the CRBD incurred by a task exploits similar concepts as when

computing the CRPD, involving the computation of UCB and UCB for blocked and blocking
task respectively. First, we recall that the set of UCB and UCB for a task τi are dependent
on each specific node n in the Control-Flow Graph (CFG) of τi, where each node represents
a basic block. In fact, UCB and UCB can be safely computed at basic block level, as proved
in [6].

According to [7, 13, 12] the UCBni for a task τi at node n can be computed as the
intersection between the sets of ReachingBlocks (RB) and LiveBlocks (LB) at node n where
RB is the set of cache blocks potentially cached at node N , whereas LB is the set of blocks
that could potentially be reused in the successors of n. Intuitively, instead, UCBni can be
computed as RBi(n). Thus, UCBni = RBi(n)

⋂
LBi(n) and UCBni = RBi(n).

In case of blocking, we are interested in determining UCB and UCB for a task τi blocked
on a critical section csRi,k. For example, let us consider a simple case of direct blocking
between two tasks. Task τi is blocked when trying to access critical section csRi,k because a
lower-priority task τj is executing inside a critical section cs ∈ csRj accessing the same shared
resource R. In this case, the set of UCB for the blocked task τi is to be computed with
respect to the node nR trying to enter csRi,k.

UCBRi,k = RBi(nR) ∩ LBi(nR), where nR is the entry node of csRi,k

The set of UCB for the blocking task τj must be computed with respect to the critical
section csRj,h it is executing within, as only the RBs in csRj,h can affect the cache state of
τi. For this reason, we extend the notion of RB to address intervals of nodes in the CFG
instead of single nodes.

Given an interval [n1, n2] = I ∈ CFG(τi), we define RBi(I) as the contribution to
RB(n2) of all possible paths in CGF (τi) from node n1 to n2. Accordingly,

UCBj(csRj,h) = RBj(csRj,h) = RBj([first_node, last_node]csR
j,h

)

In the example, the execution of τj inside csRj,h may evict some useful cache blocks that τi
may have loaded in the cache before its attempt to enter csRi,k. The incurred CRBD can be
computed as a function of the UCBRi,k and UCBRj,h terms just defined:

CRBD = ⊗σ
(
UCBRi,k, UCBj(csRj,h)

)
×miss penalty (2)

where the ⊗σ operator accounts for the actual cache associativity and replacement policy
in combining the information on useful and used cache blocks, cf. [13, 1]. For example,
for direct-mapped caches, ⊗DM (UCB,UCB) will include those cache sets which at least
one cache block in both UCB and UCB is mapped to (set intersection). For LRU n-way
set-associative caches, instead, the ⊗LRU operator must account for the number of additional
cache misses for each cache set. In case of a non-empty UCB set, those misses are bounded
by the minimum between the cache associativity (n) and the number of UCB mapping to
that cache set [4].

In case τi and τj share more than one resource, we can generalize Equation 2 to determine
an upper bound on the delay suffered by τi, due to a single direct blocking by τj for any
critical section accessing any shared resource as follows:

CRBDi,j ≤ max
R∈SRi,k∈[1,|csR

i
|]

cs∈csR
j

{
⊗σ
(
UCBRi,k, UCBj(cs)

)}
×miss penalty (3)
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However, Equation 3 just holds in this simple case where neither transitive direct blocking
nor other types of blocking are taken into account. In terms of CRBD, determining the
effects of inheritance blocking is much more complex, as the computation of UCB for the
blocked task cannot make any simplifying assumption on when the task actually gets blocked.

A more comprehensive bound on the CRBD incurred by a task can be computed by
leveraging on the bounds that a specific resource access protocol places on blocking. An
upper bound on the worst-case number of blocking events incurred by a task is given in
[11, 3] for each protocol. That bound is then combined with the worst-case duration of each
critical section to derive a bound on the blocking time potentially suffered by a task. Those
bounds typically rely on the notion of potentially blocking critical sections to account for
any type of blocking that may occur under the protocol itself. To this end, βi,j is defined in
[11] as the set of critical sections of a lower-priority task τj which can block τi in any way.
The bounds on the number of blocking events and blocking time exploit the β∗i,j set which
identifies the set of outermost critical sections of τj that can block τi. More formally:

β∗i,j = {(csj,k|csj,k ∈ βi,j) ∧ (¬∃csj,m ∈ βi,j , csj,k ⊂ csj,m)}

We will exploit the same concepts, with the only difference that we are not interested in the
critical section that may incur the maximum blocking time since we focus on the CRBD,
which is independent of the duration of the critical section. Instead, we are interested in the
critical section csj,k ∈ β∗i,j which causes the eviction of the greatest number of useful blocks
for the blocked task, for all lower-priority tasks τj .

In the following, we will combine given bounds on the number of blocking events with
the same concepts as used in CRPD analysis to provide a safe upper bound on the CRBD
under different protocols.

3.2 CRBD under the Priority Inheritance Protocol
When access to shared resources is managed with PIP [11], whenever a task that holds the
lock of a resource blocks a higher-priority task, it inherits the priority of the highest-priority
task it is blocking4. When a task releases the lock of a resource, its priority is lowered to the
highest inherited priority value5 [15].

PIP is interesting as it does bound priority inversion and also does not require any
knowledge on the system’s tasks and their priorities, since the priority value to inherit is
determined dynamically. Unfortunately, PIP does not prevent deadlock (which may occur
in case of nested critical sections) and a task can be blocked multiple times during a single
activation. In fact, a task τi can be blocked for the duration of at most min(n,m) outermost
critical sections, where n is the number of lower-priority tasks that may block τi and m is
the number of semaphores6 that can be used to block τi. In the following we re-elaborate
both bounds from the standpoint of the CRBD.

3.2.1 Bound on Lower Priority Tasks
Under PIP, a high priority task τH can be blocked by a lower priority task τL for at most
the duration of one critical section of β∗H,L. Therefore, given a task τi for which there are

4 This occurs to transitively inherit priority in case of chain blocking.
5 The original protocol restores the priority to the value inherited before entering the critical section,

which is incorrect.
6 A semaphore corresponds to a shared resource since we assume each resource to be guarded by a binary

semaphore.
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18 Bounding the Effects of Resource Access Protocols on Cache Behavior

n lower priority tasks {τi+1, . . . , τi+n}, τi can be blocked for at most the duration of one
critical section in each β∗i,k, i+ 1 ≤ k ≤ i+ n [11].

If we assume that all shared resources and critical sections are statically known, we can
define a resource access graph and table, similar to that shown in Figure 2.

P Q R
τ0 csP0,1 csR0,1

τ1 csP1,1 csQ1,1

τ2 csQ2,1 csR2,1

csQ2,2

Figure 2 Resource graph and corresponding resource access table.

Note that the critical section cs1,1 of resource P performs a nested access to critical
section cs1,1 of resource Q. In this case, the βi,j sets derived from Table 2 are as follows:
β0,1 = {csP1,1, cs

Q
1,1} due to resource nesting, β1,2 = {csQ2,1, cs

Q
2,2, cs

R
2,1} (by inheritance

blocking), and β0,2 = {csR2,1, cs
Q
2,1, cs

Q
2,2} as τ2 could transitively block τ0 by blocking τ1.

The β∗i,j sets, instead, removes redundant innermost critical sections; thus, for example,
β∗0,1 = {csP1,1}.

As discussed in Section 3.1, computing the UCB of the blocked task τi in case of
inheritance blocking needs to consider any possible node in CFG(τi), similarly to task
preemption. To avoid the overestimation in considering all possible nodes, we will threat
inheritance blocking separately.

An upper bound on the CRBD in case of direct blocking of τi due to τj is the maximum
⊗σ applied to UCB and UCB for any resource accessed by τi, every critical section in τi
accessing that resource and every outermost critical section of τj potentially blocking τi.
Hence, it can be formalized as:

CRBDbase
i,j ≤ max

R∈SRi,k∈[1,|csR
i
|]

cs∈β∗
i,j

{
⊗σ
(
UCBRi,k, UCBj(cs)

)}
×miss penalty (4)

With regard to inheritance blocking, we need to account for the most penalizing blocking point
for τi (i.e., node in the CFG). To this end we define β̂i,j , a subset of β∗i,j including all critical
sections in τj which can block τi due to inheritance blocking. Thus, β̂i,j = {cs|cs ∈ β∗i,j ∧ cs
can block τi due to inheritance blocking}. We can now compute the maximum CRBD
incurred by τi due to inheritance blocking by τj as follows:

CRBDinherit
i,j ≤ max

cs∈β̂i,j
n∈CFG(τi)

{
⊗σ
(
UCBni , UCBj(cs)

)}
×miss penalty (5)

However, since a lower priority task τj can block τi because it is executing inside at most one
cs ∈ β∗i,j , each τj can induce solely one of either inheritance or "non-inheritance" blocking on
τi. Hence, we can safely account for the worst-case blocking (inheritance or not), that is:

CRBDi ≤
∑
j>i

max
(
CRBDbase

i,j , CRBDinherit
i,j

)
(6)
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3.2.2 Bound on Semaphores
A second upper bound on blocking, based on the number of semaphores potentially blocking
a task under PIP is given in [11]. Under PIP, if there are m semaphores which can block
task τi, then τi can be blocked at most m times, as it can be blocked at most by one critical
section for each potentially blocking semaphore. Since we assume that each semaphore
corresponds exactly to a shared resource, then τi can be blocked at most by one critical
section for each potentially blocking resource.

Similarly to the previous case, [11] defines ξi,j,k as the set of critical sections of a lower-
priority task τj guarded by a semaphore Sk and which can block τi (due to any type of
blocking). Subsequently, ξ∗i,j,k identifies the set of all potentially blocking outermost critical
sections guarded by Sk, that is ξ∗i,j,k = {csSkj,m|cs

Sk
j,m ∈ β∗i,j}.

For example, recalling Table 2, ξ∗0,1,P = {csP1,1}, ξ∗0,1,Q = {csQ1,1}, ξ∗0,2,R = {csR2,1} and
ξ∗1,·,R = {csR2,1} (inheritance). Similarly to the first bound, we define ξ̂i,j,k, a subset of
ξ∗i,j,k including all critical sections in ξ∗i,j,k guarded by the semaphore Sk which can block τi
through inheritance blocking. Thus, ξ̂i,j,k = {cs|cs ∈ ξ∗i,j,k∧cs can block τi due to inheritance
blocking} can be used to separately account for the direct and inheritance cases. First we
provide a means to compute the maximum CRBD for each resource that accounts for any
lower priority task and any cs in those tasks that may incur both forms of blocking.

CRBDbase
i,R ≤ max

j>i,k∈[1,|csR
i
|]

cs∈ξ∗
i,j,R

{
⊗σ
(
UCBRi,k, UCBj(cs)

)}
×miss penalty (7)

CRBDinherit
i,R ≤ max

n∈CGF (τi)
j>i

cs∈ξ̂i,j,R

{
⊗σ
(
UCBni , UCBj(cs)

)}
×miss penalty (8)

Again, since task τi can be blocked at most once for each semaphore (resource), we can
compute a safe upper bound on the blocking delay by summing the |S| worst-case penalties
over the S ⊂ SR semaphores (resources) potentially blocking τi:

CRBDi ≤
∑
R∈S

max
(
CRBDbase

i,R , CRBDinherit
i,R

)
(9)

The actual bound on the CRBD under PIP is then determined by the minimum between the
bounds on lower priority tasks and semaphores (i.e., Equations 6 and 9).

3.3 CRBD under the Priority Ceiling Protocol
With PCP [11], each resource is assigned a ceiling priority which is set to at least the priority
value of the highest-priority task that uses that resource. Since ceiling priorities are assigned
statically, all the tasks of the system and their priority must be known statically. For a task
τi to be able to access the critical section of a resource, its current priority must be higher
than the ceiling priority of any currently locked resource (i.e. semaphore). Otherwise, the
task that blocks τi inherits the ceiling priority of the resource it is locking.

PCP introduces avoidance blocking: a task, when trying to access a resource that is
currently available, is blocked if its current priority is not higher than the highest ceiling
of all semaphores currently locked by other tasks. This protocol rule is used to warrant
the absence of deadlock. Furthermore, transitive blocking is not possible, a task τi can be
blocked at most once per activation, and the duration of the priority inversion is minimized.
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20 Bounding the Effects of Resource Access Protocols on Cache Behavior

Similarly to PIP, a bound on the delay incurred by the effects of blocking on the cache
state must account for inheritance blocking separately from direct and avoidance blocking as
only the latter ones are triggered when a task attempts to access a resource. Provided that
the computation of the β∗i,j set includes all critical sections of τj that may block7 τi due to
direct, inheritance or avoidance blocking, an upper bound for the CRPD can be computed in
a similar way to the first bound on PIP. The CRBD suffered by a task τi can be bounded by
the following equation:

CRBDi ≤ max
j>i

{
max

(
CRBDbase

i,j , CRBDinherit
i,j

)}
(10)

where CRBDbase
i,j and CRBDinherit

i,j are exactly as defined in the PIP case (Eq. 4 and 5
respectively). As opposed to the PIP case, we are interested just in the most penalizing
critical section among all critical sections and all lower-priority tasks, due to Theorem 12 in
[11].

3.4 CRBD under the Immediate Ceiling Priority Protocol
The Immediate Ceiling Priority Protocol (ICPP) (direct derivative of Baker’s stack resource
policy [3]) is similar to PCP, as ceiling priorities are assigned to resources with the same
rules. Under ICPP however, a task that enters in a critical section always inherits the ceiling
priority, while under PCP only when it is blocking a higher-priority task; therefore all tasks
with a priority lower than or equal to the ceiling priority cannot be scheduled until the
resource has been released. ICPP retains the advantages of PCP: absence of deadlock, tasks
can block at most once during each activation and the blocking duration is minimized.

The maximum blocking time for a task τi is bounded by the longest outermost critical
section executed by a lower-priority task τj using a resource with a ceiling priority greater
than or equal to the priority of τi.

More importantly from the CRBD standpoint, the rules of ICPP prevent any disturbing
effects on the cache state of the blocked task. In fact, if blocking occurs, it is always before
the affected job begins execution; this implies that cache analysis does not need to account
for any effect and can continue to assume the worst-case initial cache state (empty or chaos
state, depending on the analysis approach). More formally: CRBDi = 0, ∀τi.

3.5 Including the CRBD in Response Time Analysis
A safe bound βi on the CRBD suffered from each task can be straightforwardly included in
the iterative equation of response time analysis. In contrast to CRPD, the delay incurred by
blocking does not need to propagate to lower priority tasks since it is separately considered
for each task:

wn+1
i = Ci +Bi + βi +

∑
j∈hp(i)

⌈wni
Tj

⌉
× (Cj + γj) (11)

where both Bi and βi depend on the resource access protocol of choice. It is worth noting
that the worst-case blocking time and CRBD are not guaranteed to occur altogether. In
principle, it could be possible to tighten the computation by accounting for the maximum
co-occurrence of Bi and βi.

7 Note that the ceiling priority of the resource must be considered when determining potentially blocking
critical sections.
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As seed for reflection, we note that when it comes to more complex analysis approaches,
like e.g., resilience analysis for set-associative caches [2], computing the βi and γj terms
separately may invalidate the CRPD analysis result, as blocking may incur additional accesses
to a cache set.

The comparison of the bounds obtained for the protocols addressed in this paper, though
limitedly to their bounds on lower priority tasks8, shows that ICP is by far preferable with
respect to interference on cache as it does not incur any CRBD. The CRBD bounds we
provided are pessimistic. Tighter bounds could be computed by straightforwardly extending
our approach to a more precise representation for UCB and UCB like in [9] or by taking
advantage, for example, of task phasing.

4 Conclusion

In this paper we contended that the cache effects caused by the use of synchronization
protocols to arbitrate the access to shared resources cannot be dismissed as negligible. Cache
contents that are useful to a task of interest may in fact be evicted by lower-priority tasks
when the task is blocked. Moreover, different protocols may incur different effects on the
task state of the blocked task.

We provided a (pessimistic) bound on the cache-related blocking delay for two well-known
protocols: the Priority Inheritance Protocol and the Priority Ceiling Protocol. We also
showed that the use of the Immediate Ceiling Protocol does not induce any CRBD, as tasks
can be blocked only once per activation and prior to their execution after release.

Although the quantitative effect of the CRBD is not likely to compare with the CRPD, it
should not be dismissed as irrelevant: it is arguably important to include it in schedulability
analysis that aims to accuracy. We also contend that the cache-related impact should also
be contemplated as a distinct evaluation criterion for the selection of the resource access
protocol to adopt in a real-time system.

In future work, we plan to define the integer linear problems required for the calculation
of the CRBD bounds provided herein, and perform a quantitative estimation of the impact
of the CRBD on a representative application case.

Acknowledgements The authors wish to acknowledge the advice of the anonymous review-
ers, which helped improve the initial version of this paper, and the support by Damien Hardy
at IRISA/Rennes on the Heptane tool.

8 The bounds that PIP places on semaphores is not straightforwardly comparable with the bound on
PCP.
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Abstract
Schedulability analysis for hard real-time systems requires bounds on the execution times of its
tasks. To obtain useful bounds in the presence of caches, cache analysis is mandatory.
The subject-matter of this article is the static analysis of the tree-based PLRU cache replacement
policy (pseudo least-recently used), for which the precision of analyses lags behind those of other
policies. We introduce the term subtree distance, which is important for the update behavior of
PLRU and closely linked to the peculiarity of PLRU that allows cache contents to be evicted in
“logarithmic time”. Based on an abstraction of subtree distance, we define a must-analysis that
is more precise than prior ones by excluding spurious logarithmic-time eviction.
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1 Introduction

In hard real-time systems, one needs to derive offline guarantees for the timeliness of re-
actions. Thereto, one must determine bounds on the worst-case execution time (WCET)
of programs [12]. To obtain tight and thus useful bounds on the execution times, timing
analyses must take into account the cache architecture of the employed processors. However,
developing cache analyses—analyses that statically classify memory accesses as cache hits
or cache misses—is a challenging problem.

Besides the determination of addresses that are being accessed, cache analysis is con-
cerned with the analysis of the employed replacement policy. Precise and efficient analyses
have been developed early on for LRU [3, 11] and more recently also for FIFO [4, 5]. How-
ever, there is a third major policy, PLRU (pseudo least-recently used), which is for instance
employed in the TriCore 1798 and several PowerPC variants (MPC603e, MPC755,
MPC7448). Compared to analyses of LRU or FIFO, no analyses of similar precision exist
for PLRU. The best known PLRU analysis was introduced in [6] for associativity 8 and
later categorized as an instance of relative-competitiveness-based analyses [8]. For PLRU,
such analyses can at most classify log2(k) + 1 out of k cached memory blocks as hits.
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In Section 3, we describe three properties of PLRU that make its analysis challenging
and coin terms for them: non-trivial logical states, logarithmic-time eviction and arbitrary
survival. In Section 4, we address the first one: we adapt knowledge about PLRU [9] and
show how to represent the logical state of PLRU cache sets by abstracting from cache set
states that are physically different but exhibit the same replacement behavior. Section 5,
presents our main contributions. We identify two new sizes of PLRU that are relevant to
logarithmic-time eviction: number of leading zeros and subtree distance. Subsequently, we
define a must-analysis that is based on abstractions of those two sizes and can exclude
spurious logarithmic-time eviction.

In Section 6 we cover closely-related work including relative-competitiveness-based anal-
yses, against which we compare in Section 7. The introduced analysis is more precise than
prior ones and has strong advantages in the analysis of loops, at the cost of an acceptable
loss in analysis performance.

2 Foundations

Memory Blocks, Caches, and Access Sequences

Caches store a subset of the main memory’s contents to bridge the latency gap between CPU
and main memory. To reduce management overhead, main memory is logically partitioned
into a set of equally-sized memory blocks B. Blocks are cached as a whole in cache lines of
equal size. To enable an efficient cache look-up of blocks, each block can only be stored in
a small number of cache lines. For this purpose, caches are partitioned into equally-sized
cache sets QPk

. The size of a cache set is called the associativity k of the cache. As the cache
is smaller than the main memory, the number of memory blocks that map to a particular
cache set is greater than the size of the cache set. Upon cache misses, a replacement policy
must decide which memory block to replace. Well-known policies for individual cache sets
are least-recently used (LRU), first-in first-out (FIFO), and pseudo-LRU (PLRU) a cost-
efficient variant of LRU. For an introduction to caches refer to [7]. A cache set can be
formalized by:

Its domain QPk
, where the subscript denotes policy and associativity. E.g., QFIFOk

is
the set of all FIFO-controlled cache sets of associativity k.
An update function UPk

: QPk
× B → QPk

, which computes the state of a cache set
q ∈ QPk

after a memory block b ∈ B has been accessed.
Let S := B∗ be the set of finite access sequences to memory blocks, e.g. s1 := 〈a, b, a, c〉.

The update function UPk
can be lifted from a single access to access sequences in the expected

way.

Static Analyis

Our work is based on static analysis by abstract interpretation, which abstracts from the
concrete program semantics and its respective concrete domain D. Instead, it represents
more abstract information in an abstract domain A. The relation between D and A can be
given by an abstraction function αA : D → A and a concretization function γA : A → D.
For safety properties, one often abstracts from a collecting semantics. In that case, D is a
powerset domain.

A program is analyzed by performing a fixed-point computation on a set of equations
induced by that program. The equations are set up with the help of an abstract transformer,
UA : A × I → A, that describes how abstract values before and after instructions I are
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1

1 0

a b c d

e−→
M

0

1 1

a b e d

a−→
H

1

1 1

a b e d

f−→
M

0

1 0

a b e f

Initial state:
[a, b, c, d][110]

After a miss to e:
[a, b, e, d][011]

After a hit to a:
[a, b, e, d][111]

After a miss to f :
[a, b, e, f ][010]

Figure 1 Updates of a PLRU cache set for the access sequence 〈e, a, f〉.

correlated. If an instruction has multiple predecessors, a join function JA : A × A → A

combines all incoming values into a single one. For an introduction to abstract interpretation
refer to [2].

Static Cache Analysis

The aim of static cache analysis is to classify individual memory accesses as hits (H) or
misses (M). However, for some accesses an analysis might fail to classify them as hits or
misses, i.e. they remain unclassified (>). The classification domain is given by Class :=
{H,M}>.

Static cache analysis by abstract interpretation computes may- and must-cache informa-
tion at program points: may- and must-cache information are used to derive upper and lower
approximations, respectively, to the contents of all concrete cache states that might occur
whenever program execution reaches a program point. Must-cache information is used to
derive safe information about cache hits. The more cache hits can be predicted, the better
the upper bound on the execution times. May-cache information is used to safely predict
cache misses.

As most cache architectures manage their cache sets independently from each other,
cache analyses can analyze them independently as well. Thus, we limit ourselves to the
analysis of a single cache set. For details on (LRU-)cache analysis refer to [3].

3 PLRU: Semantics and Analysis Challenges

Pseudo-LRU (PLRU) is a tree-based approximation of the LRU policy. It arranges the k
cache lines at the leaves of a tree with k−1 “tree bits” pointing to the line to be replaced/filled
next; a 0 indicating the left subtree, a 1 indicating the right. After every access, all tree bits
on the path from the accessed line to the root are set to point away from the line. Other
tree bits are left untouched.

There are at least two variants of PLRU that differ in their handling of invalid cache
lines:
Sequential-fill If there are invalid lines upon a cache miss, the least of them (w.r.t. an

ordering) is filled. Only if all lines are valid the tree-bits determine which line to replace.
Tree-fill Regardless of invalid lines, the line to be filled or replaced is always determined by

the tree-bits.
In the following, we only consider the tree-fill variant. Examine Figure 1: In the initial

state, the tree bits point to the line containing memory block c. We textually represent a
PLRU-state by the contents of its cache lines and the pre-order traversal of its tree bits.
The initial state in the example is thus written [a, b, c, d][110]. A miss to e evicts the memory
block c which was pointed to by the tree bits. To protect e from eviction, all tree bits on the
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path to the root of the tree are made to point away from it. Similarly, upon the following
hit to a, the bits on the path from a to the root of the tree are made to point away from a.
Note that they are not necessarily flipped. Another access to a would not change the tree
bits at all as they already point away from a. Finally, a miss to f eliminates d from the
cache set. So, one can represent PLRU cache sets as a k-tuple of memory blocks and k − 1
bits:

q ∈ QPLRUk
:= Bk

⊥ × Bk−1 (1)

Non-trivial logical cache states

Caches implemented in hardware have to satisfy several contradictory optimization goals.
For instance, they should provide a low hit latency at a lower power consumption and
implementation cost, i.e., area consumption. To satisfy these goals, a cache implementation
cannot arbitrarily rearrange the contents of its cache lines upon every access to reflect an
access’s effect on its logical state. Instead, as in the implementation of PLRU described
above, a small number of additional status bits is maintained and updated upon accesses.
Due to these status bits, several physical states of the cache represent the same logical state.
For static cache analyses it would be inconvenient and inefficient to distinguish such states,
as they exhibit the same observable behavior in terms of hits and misses. The first step in
the design of a cache analysis should therefore be to abstract from physical cache states to
logical cache states.

For caches employing LRU or FIFO it is easy to abstract from the physical positions of
memory blocks in cache sets. For LRU one can abstract from physical cache set positions by
ordering the memory blocks from most-recently to least-recently used, i.e. by their age [3].
For FIFO one can abstract by ordering the blocks from last-in to first-in, i.e. according to
their distance to the FIFO pointer [4]. In Section 4, we introduce a sound and complete
abstraction from physical cache positions for PLRU, which is more involved due to its “non-
linear” tree structure. This abstraction is a coarsest that is still complete: It distinguishes
two concrete states if and only if there are access sequences that will result in a different
hit/miss behavior.

Logarithmic-time eviction

Consider a cache set of size k: If LRU is employed, it takes at least k accesses to evict a
block that has just been accessed [9]. If PLRU is employed, a block might already be evicted
after only log2(k) + 1 accesses [9]. Although this is usually not the case, it is challenging
for a must-analysis to prove containedness of more than log2(k) + 1 blocks. In Section 5, we
introduce a must-analysis that keeps track of correlations between memory blocks in order
to exclude spurious logarithmic-time eviction.

Arbitrary survival

May-analysis of PLRU is also more difficult than may-analysis of LRU or FIFO: as opposed
to LRU and FIFO, a block b may still be cached after an arbitrary number of accesses
to other memory blocks, even if arbitrarily many different blocks are accessed [1]. This
makes it challenging for a may-analysis to prove eviction of blocks. The only may-analysis
we currently see would be based on the “evict”-metric introduced in [9]. It would have to
observe e(k) = k

2 log2(k) + 1 successive accesses to pairwise different blocks in order to be
able to then predict a miss. Such an analysis would likely be of little or no practical use.
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Figure 2 Three equivalent states and a state annotated with edge bits and logical cache positions.

4 Coarsest Complete Abstraction: from Physical to Logical Cache
States

Ordering blocks from last-in to first-in in logical states of FIFO and from most- to least-
recently used in logical states of LRU is similar. In both cases, blocks are ordered by
decreasing miss replacement distance:

I Definition 1 (Miss Replacement Distance). The miss replacement distance, mrd(q, b), of
a block b is the minimum number of successive misses that evict b from the cache set q. If
b /∈ q, mrd(q, b) := 0.

For PLRU, blocks can also be ordered by their miss replacement distance. However, this
is more involved. Consider the cache set states in Figure 2. All these states are equivalent
with respect to their replacement behavior: if one carries out an arbitrary but fixed access
sequence on all states, the same blocks will be evicted in the same order. Given that only
misses happen, the blocks will be evicted in the order c, b, d, a. The relation between the
physical position of a block and its miss replacement distance is established in four steps:
1. For replacement it does not matter whether a block b is contained in a left or a right

subtree. What matters is whether or not a tree bit points to the subtree containing
b or not. Hence, we associate an edge bit with each edge in the tree. It is 0 if the
corresponding tree bit points along this edge and 1 otherwise.

2. Subsequently, we associate an access path with each block b in a cache set q. An access
path, ap(q, b), is the sequence of edge bits encountered on the path from b to the root of
q. If b /∈ q, then ap(q, b) = ⊥. In (all of) the above examples, the access path of d is 10
and the one of c is 00.

3. The logical position of a block in a cache set is its access path interpreted as a binary
number. In the above examples, the logical position of d is 2 and the one of c is 0.

4. The miss replacement distance of a block is its logical position plus one.
For an example, see the rightmost PLRU tree in Figure 2: edges are annotated with edge
bits and leaves are annotated with logical cache positions.

I Observation 2 (Access Path Update). Consider two cached blocks a 6= b with access paths
pa and pb. Let pa = prea ◦p1 ◦ suff and pb = preb ◦p1 ◦ suff , where |p1| = 1: the paths pa and
pb start with different prefixes prea respectively preb, join after the last different bit p1, and
finish with the (possibly empty) shared suffix suff . After accessing b, all tree bits on the path
of b point away from b, i.e. all edge bits are 1 and the new access path of b is p′b = 1 . . . 1.
Since a and b share a suffix, setting the tree bits on the path to b also affects a’s suffix: its
new access path is p′a = prea ◦ 0︸︷︷︸

p1

◦ 1 . . . 1︸ ︷︷ ︸
suff

.

I Theorem 3 (Miss Replacement Distance [9]). A block b with access path ap(q, b) = p1 . . . pn

has miss replacement distance mrd(q, b) = p1 . . . pn + 1.
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H
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[x, c, b, a]∼ [b, c, x, a]∼ [c, b, a, x]∼ [y, c, b, a]∼

Figure 3 Eviction of x in log2(4) + 1 = 3 steps by the access sequence 〈b, c, y〉.

Essentially, the above proceeding defines equivalence classes on PLRU cache sets, i.e. the
quotient structure QPLRU∼

k
:= QPLRUk

/∼, where the equivalence relation is based on access
paths and abstracts from the tree bits. q1 ∼ q2 ⇐⇒ ∀b ∈ B : ap(q1, b) = ap(q2, b). Hence,
logical cache set states q̃ ∈ QPLRU∼

k
can be represented as a function that maps blocks b ∈ B

to their logical position q̃(b):

q̃ ∈ QPLRU∼
k

= B → {⊥, 0, . . . , k − 1} (2)

In an isomorphic representation as k-tuples of blocks, one can order blocks decreasingly by
their logical position (miss replacement distance). For instance, q̃ = [a, d, b, c]∼ represents
the three equivalent states in Figure 2: q̃(a) = 3, q̃(d) = 2, q̃(b) = 1, q̃(c) = 0, and q̃(x) = ⊥
for all other blocks x.

5 More Precise Must-Analysis Based on Subtree Distances

Logarithmic-time eviction

Consider the succession of states in Figure 3. After x has been inserted into the cache set,
it only takes 3 accesses to evict it—although the associativity is 4.

Generalized to a k-way PLRU, log2(k) + 1 is a tight lower bound on the number of
accesses that are necessary to evict a just inserted block [9]: After the access to a block x,
its access path is 1 . . . 1. To replace x, all edge bits on its access path must be flipped to
0 . . . 0. By Observation 2, an access to another block a flips at most one of x’s edge bits to
0. Also, the shared suffix of a and x is set to 1 . . . 1. Hence, to evict x with as few accesses
as possible, one set the edge bits to 0 from left to right to avoid flipping bits back to 1.

For instance consider Figure 3: The access to b, which is the “direct neighbor” of x, sets
the first edge bit of x to 0. The access to c, which is contained in a subtree “that is one step
further away” than b, sets the second edge bit of x to 0. Note that accessing a instead of
c has the same effect on x. If the cache set was 8-way associative, the third edge bit could
be set to 0 by accessing one of the 4 blocks in the “next” subtree. Below we will formally
define the notions in double quotes as subtree distance.

Sketch of the Analysis

As edge bits in an access path must be set to 0 from left to right to evict a block, the
number of leading zeros in access paths is an interesting size. To predict hits, our must-
analysis maintains an upper bound on the number of leading zeros: as long as this bound is
less than log2(k) for a block, that block can not be evicted. To improve analysis precision, we
additionally maintain approximations on subtree distances. With information about subtree
distances, the analysis can model the flipping of tree-bits more precisely and is able to
exclude more spurious behavior, e.g. the logarithmic-time eviction of blocks.
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(a) d(q̃, a, b) = lz(q̃, b) + 1,
e1 = 1, e′1 = 0, lz(q̃′, b) =
lz(q̃, b) + 1

a b
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(b) d(q̃, a, b) > lz(q̃, b) + 1, Al-
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lz(q̃′, b) = lz(q̃, b)
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(c) d(q̃, a, b) < lz(q̃, b) + 1,
e1 = 0, e′1 = 1, lz(q̃′, b) =
d(q̃, a, b)

Figure 4 Update of the number of leading zeros lz(q̃, b) upon a cache hit to block a.

Leading Zeros and Subtree Distance

I Definition 4 (Number of Leading Zeros). The number of leading zeros of a block, lz(b), is
the number of leading zeros (nlz : N→ N)1 in the access path of that block (q̃(b)):

lz : QPLRU∼
k
× B → {⊥, 0, . . . , log2(k)} (3)

lz(q̃, b) :=
{

nlz(q̃(b)) : q̃(b) 6= ⊥
⊥ : otherwise

(4)

For example, in the state q̃ = [x, c, b, a]∼ of Figure 3, lz(q̃, a) = 2, lz(q̃, b) = 1, lz(q̃, c) =
lz(q̃, x) = 0, and lz(q̃, y) = ⊥ for all other blocks y.

IDefinition 5 (Subtree Distance). The subtree distance between two cached blocks, d(q̃, a, b),
is the distance to their least common ancestor in the tree.

d : QPLRU∼
k
× B × B → {⊥, 0, . . . , log2(k)} (5)

d(q̃, a, b) :=
{

log2(k)− ntz(q̃(a)⊕ q̃(b)) : q̃(a) 6= ⊥, q̃(b) 6= ⊥
⊥ : otherwise

(6)

If both blocks are cached (q̃(·) 6= ⊥) the subtree distance between them is the height of
the tree (log2(k)) minus the length of their shared suffix (ntz(·)). Otherwise, the distance
is undefined (⊥). Assuming two’s complement binary encoding, the length of the shared
suffix can be computed by: First, a bitwise xor (⊕) of the logical positions, which produces
a 0 bit if two bits are equal. Then, the number of trailing zeros1 in the result is the length
of the shared suffix. For example, in the first tree of Figure 3, d(q̃, c, c) = 0,d(q̃, c, a) =
1,d(q̃, c, b) = d(q̃, c, x) = 2, and d(q̃, a, b) = d(q̃, a, x) = 2, and so on.

To see how the number of leading zeros is updated upon a cache hit to a block a, consider
Figure 4. In the successor state q̃′ of q̃, the number of leading zeros after a hit to a (q̃(a) 6= ⊥)

1 nlz, ntz : N → N compute the number of leading/trailing zeros of two’s-complement numbers. For
definitions and efficient implementations see [10].
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is

lz(q̃′, b) =


⊥ : lz(q̃, b) = ⊥
lz(q̃, b) + 1 : d(q̃, b, a) = lz(q̃, b) + 1 Figure 4a
min{lz(q̃, b),d(q̃, b, a)} : otherwise Figures 4b, 4c

(7)

Upon a cache miss to block a (q̃(a) = ⊥) the logical position of each cached block is
decremented (q̃(b) − 1), see Definition 1 and Theorem 3. Furthermore, the block at logical
position 0 is evicted and trivially lz(q̃′, a) = 0:

lz(q̃′, b) =


0 : b = a

lz(q̃(b)− 1) : b 6= a, q̃(b) 6= ⊥, q̃(b) > 0
⊥ : otherwise

(8)

Abstraction

As explained above, the number of leading zeros is decisive for the question whether a block
can be evicted. Hence, the first constituent of our abstract domain is the number of potential
leading zeros:

plz ∈ PLZk := B → {0, . . . , log2(k),>} (9)

As the prefix potential suggests, plz(b) is an upper bound on the number of leading zeros
in the access path of b. If plz(b) = >, then b may not be cached (anymore). Formally, the
meaning of plz ∈ PLZk is given by the concretization function:

γPLZk
: PLZk → QPLRU∼

k
(10)

γPLZk
(plz) := {q̃ ∈ QPLRU∼

k
| plz(b) 6= > ⇒ 0 ≤ lz(q̃, b) ≤ plz(b)} (11)

For the analysis to be able to exclude the possibility of logarithmic-time eviction, it
needs information about subtree distances. To see this, consider Equation 7, specifically
that the second case depends on d(q̃, b, a): If the analysis had no information about the
subtree distance d(q̃, b, a), it would have to conservatively take into account the case that
d(q̃, b, a) = lz(q̃, b) + 1. This would mean that upon an access to block a, the upper bound
plz(b) would have to be incremented for all b 6= a. Ultimately, an analysis that abstracts
completely from subtree distances can never exclude logarithmic-time eviction. Consequently,
to increase analysis precision, the second constituent of our abstract domain maintains some
information about subtree distances.

There are several ways to approximate subtree distances in an abstract domain. We
chose an abstraction such that abstract elements can be represented efficiently. For each
pair of blocks we distinguish between four classes of distances; zero, non-maximal, maximal,
and unknown:

ADk := B × B → {{0} , [1, log2(k)), {log2(k)} ,>} (12)

Formally, the meaning of ad ∈ ADk is given by:

γADk
: ADk → QPLRU∼

k
(13)

γADk
(ad) := {q̃ ∈ QPLRU∼

k
| ad(a, b) 6= > ⇒ d(q̃, a, b) ∈ ad(a, b)} (14)
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Although the domain B×B of an ad ∈ ADk is of size O(|B|2), each ad ∈ ADk can be stored
in size O(|B|) by using a set of two disjoint sets of blocks {B0, B1}:

ad(a, b) = {0} ⇐⇒ a = b,∃i : a ∈ Bi

ad(a, b) = [1, log2(k)) ⇐⇒ a 6= b,∃i : a, b ∈ Bi

ad(a, b) = {log2(k)} ⇐⇒ a 6= b,∃i : a ∈ Bi, b ∈ B1−i

ad(a, b) = > ⇐⇒ {a, b} 6⊆ B0 ∪B1

(15)

Blocks with maximal distance are contained in different sets, blocks with non-maximal
distance are contained in the same set. For instance ({a, b}, {c}) corresponds to ad(a, b) =
[1, log2(k)), ad(a, c) = ad(b, c) = {log2(k)}, and ad(x, y) = > for all other x 6= y.

Now that PLZk and ADk are introduced, we define the abstract domain of the must-
analysis, which is a partial function that associates bounds on leading zeros with approxi-
mations of subtree distances:

PlruAD
k := ADk ↪→ PLZk (16)

The set of concrete cache set states represented by q̂ ∈ PlruAD
k is determined by:

γAD
Plruk

: PlruAD
k → P(QPLRU∼

k
) (17)

γAD
Plruk

(q̂) :=
⋃

ad∈dom(q̂)

γADk
(ad) ∩ γPLZk

(q̂(ad)) (18)

A concrete state must satisfy any of the distance constraints γADk
(ad) and the associated

constraints on leading zeros γPLZk
(q̂(ad)).

Classification

An access to a block b can be classified as a hit if its number of leading zeros is at most
log2(k) for all approximations of subtree distances. Otherwise, the access might be a miss.

CAD
Plruk

: PlruAD
k × B → Class (19)

CAD
Plruk

(q̂, b) :=
{

H : ∀ad ∈ dom(q̂) : q̂(ad)(b) 6= >
> : otherwise

(20)

Join

For coinciding approximations of subtree distances, the associated approximation of leading
zeros is joined by taking the maximum bound for each block:

JAD
Plruk

(q̂1, q̂2) := λad.


q̂1(ad) : ad ∈ dom(q̂1) \ dom(q̂2)
q̂2(ad) : ad ∈ dom(q̂2) \ dom(q̂1)
JPLZk

(q̂1(ad), q̂2(ad)) : ad ∈ dom(q̂1) ∩ dom(q̂2)
(21)

JPLZk
(plz1, plz2) :=

{
λb.max{plz1(b), plz2(b)} : plz1(b) 6= >, plz2(b) 6= >
> : otherwise

(22)
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Update

The update of PlruAD
k is based on the updates of ADk and PLZk. First, consider

UADk
: ADk × PLZk × B × Class→ 2ADk :

UADk
({B0, B1}, plz, a,H) := {{B′0, B1} | B′0 := B0 ∪ {a}, a /∈ B1, |B′0| ≤ k/2} (23)

UADk
({B0, B1}, plz, a,M) := {{B′0, B1} | B′0 := B0\{x}∪{a}, plz(x) ∈ {log2(k),>}, |B′0| ≤ k/2}

(24)
UADk

(ad, plz, a,>) := UADk
(ad, plz, a,H) ∪ UADk

(ad, plz, a,M) (25)

Upon a hit to block a, a must be cached. Hence, we can make assumptions about its
distances by adding it to a set Bi. To maintain consistency, a must not be contained in both
sets simultaneously (a /∈ B1−i). Furthermore, at most k/2 blocks can have non-maximal
subtree disctance to each other (|B′i| ≤ k/2). (Note that B0 and B1 are interchangeable
since {B0, B1} is a set.)

Upon a cache miss, the accessed block a inherits its subtree distances from the replaced
block x. Due to the abstraction, several blocks might come into consideration for eviction,
namely all blocks with plz(x) ∈ {log2(k),>}.

If the access is unclassified, one has to take the union of the results of the hit- and
miss-update.

The update of the potential leading zeros closely resembles the three cases in Figure 4:

UPLZk
(plz, ad, a) := λb.



0 if a = b

> else if ad(a, b) = >
plz(b) else if plz(b) + 1 < L

plz(b) + 1 else if L ≤ plz(b) + 1 ≤ U
U else if plz(b) + 1 > U

(26)

Since the subtree distances are approximated, one has to rely on lower and upper bounds
(L ≡ min{n ∈ ad(a, b)}, U ≡ max{n ∈ ad(a, b)}) of the interval ad(a, b) 6= >. Consider the
fourth case for instance: since plz(b) + 1 = d(q̃, a, b) might be possible, one has to increment
plz(b).

The update on PlruAD
k assigns each subtree distance approximation ad ′ an updated

approximation of leading zeros. Different approximations ad might be updated to the same
ad ′. Hence, one must join (t) all updated approximations of leading zeros (UPLZk

()) of all
ad for which ad ′ ∈ UADk

(ad, . . .).

UAD
Plruk

(q̂, a, cl) :=

λad ′.
⊔
{UPLZk

(q̂(ad), ad ′, a) | ad ∈ dom(q̂), ad ′ ∈ UADk
(ad, q̂(ad), a, cl)} (27)

Uncertainty about accessed addresses

Cache analysis comprises value analysis and replacement analysis. Value analysis determines
approximations to accessed addresses, which are the inputs to the cache. Given the accessed
addresses, replacement analysis determines approximations to cache contents. Therefore a
replacement analysis is generally applicable to instruction, data, and unified caches.

There are cases where the value analysis cannot precisely determine the address of a
memory access. Nonetheless, the replacement analysis can always handle such uncertainty
in a sound way: a sound successor state can be computed by performing updates of the
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current state for all addresses that might be accessed and then joining all those states
into a single one. However, this way, the uncertainty about accessed addresses translates
into additional uncertainty about cache set states, which might translate into less classified
accesses.

6 Closely Related Work

The related works most relevant for this paper are cache analyses of LRU [3], FIFO [4, 5]
and PLRU [8]. [3] introduces the concepts of may- and must-caches and present may- and
must-analyses for LRU that are based on abstract interpretation. [4, 5] introduce several
must- and a may-analyses for FIFO and show how to combine the corresponding abstract
domains in order to improve analysis precision. For pointers to earlier work on cache analysis
directed at WCET analysis and other cache analyses, we kindly refer the reader to [4].

The only prior analysis of PLRU, PlruRC
k , is a must-analysis based on relative com-

petitiveness [8]. Under certain conditions, relative competitiveness allows one to use cache
analyses for one policy as cache analyses for other policies. For instance, an LRU must-
analysis for a log2(k) + 1-way associative cache can be employed as a must-analysis for a
k-way PLRU.

7 Evaluation

In the following, we compare to each other
(a) the analysis PlruAD

k presented in this paper,
(b) the analysis PlruRC

k based on relative competitiveness [8] as explained in Section 6, and
(c) the collecting semantics PlruCS

k of PLRU.
The collecting semantics is the exact set of cache set states that may reach a program point.
It delimits the precision of any static analysis. If a memory access cannot be classified as
hit or miss in the collecting semantics, no sound static analysis can do so. We computed it
using an analysis based on a powerset domain of symbolically-represented concrete cache-set
states.

To quantify the precision of the analyses, we applied the analyses to two parametrizable
classes of synthetic benchmarks, where the parameter n controls the level of temporal local-
ity: Loop(n) is a loop that iterates 16 times and accesses n different blocks, i.e. (1 2 . . . n)16.
Rand(n) is a set of 100 sequences, each containing 100 randomly distributed accesses to n
different blocks, i.e. (1|2| . . . |n)100.

The results for associativities k = 4 and k = 8 are shown in Table 1 (for k = 2, PLRU
is identical to LRU). Except for one negligible exception, PlruAD

k can guarantee higher hit

Table 1 Guaranteed hit rates [%] provided by the two analyses and the collecting semantics.

Associativity k = 4 Associativity k = 8

n 2 3 4 5 2 3 4 5 6 7 8

Lo
op

PlruRC
k 93.8 93.8 0.0 0.0 93.8 93.8 93.8 0.0 0.0 0.0 0.0

PlruAD
k 93.8 93.8 92.2 0.0 93.8 93.8 93.8 92.5 90.6 0.0 0.0

PlruCS
k 93.8 93.8 92.2 0.0 93.8 93.8 93.8 92.5 91.7 90.2 86.7

R
an

d PlruRC
k 98.0 97.0 73.1 58.8 98.0 97.0 96.0 77.7 64.4 55.7 48.1

PlruAD
k 98.0 97.0 94.7 75.4 98.0 97.0 95.8 93.0 84.3 63.5 52.0

PlruCS
k 98.0 97.0 94.7 75.4 98.0 97.0 96.0 93.9 91.0 84.0 68.4

WCET 2010



34 Toward Precise PLRU Cache Analysis

rates than PlruRC
k .

For the Loop benchmarks, PlruRC
k cannot classify any hits if n > log2(k) + 1, wheras

PlruAD
k can do so for up to n = 2 log2(k). Hence, PlruAD

k is preferable for loops containing
more than log2(k) + 1 different accesses. If the analyses predict hits, the amount is close to
the limit given by PlruCS

k .
The Rand benchmarks are stress tests for the abstract domains. For smaller n, both

analyses perfom equally well. For n > log2(k) + 1, the gap between the collecting semantics
and the analysis results grows. With increasing n, PlruRC

k falls behind PlruAD
k .

Regarding the efficiency of the analyses, please note that PlruAD
k and PlruCS

k are imple-
mented as prototypes whereas PlruRC

k is tuned. For each analysis we measured the overall
time needed to complete all benchmarks. For k = 4, all analyses took around 3.3s. For
k = 8, PlruRC

k completed after 3.5s, PlruAD
k after 5.5s, and PlruCS

k after 12.5s. Compared
to PlruRC

k , the disadvantage of PlruAD
k is that it is a disjunctive domain, which entails higher

memory consumption and lower performance.

8 Conclusions and Further Work

Our first contribution, the PlruAD
k analysis, has pros and cons: It is more precise than its sole

competitor PlruRC
k . Most importantly, it can classify hits in “larger” loops, where PlruRC

k

cannot. On the other hand, its higher memory consumption might hamper scalability.
However, tradeoffs are possible by changing the approximation of subtree distances, i.e.
plugging-in different domains ADk.

Our second contribution, the understanding of the subtree distance and its relation to
other sizes, is perhaps more valuable than the analysis itself: For FIFO, it was shown to be
beneficial for precision to refine the abstract transformer by discriminating between hits and
misses [4]. For PLRU, this is not sufficient as a hit can both, accelerate or defer the eviction
of other blocks. Instead, we consider the subtree distance as an important size in the design
of future PLRU (may-)analyses, which will possibly degrade PlruAD

k to a proof-of-concept
analysis.

References
1 Christoph Berg. PLRU cache domino effects. In WCET, 2006.
2 Patrick Cousot and Radhia Cousot. Building the Information Society, chapter Basic Con-

cepts of Abstract Interpretation, pages 359–366. Kluwer Academic Publishers, 2004.
3 Christian Ferdinand. Cache Behaviour Prediction for Real-Time Systems. PhD thesis,

Saarland University, 1997.
4 Daniel Grund and Jan Reineke. Abstract interpretation of FIFO replacement. In Jens

Palsberg and Zhendong Su, editors, Static Analysis, 16th International Symposium, SAS
2009, volume 5673 of LNCS, pages 120–136. Springer-Verlag, August 2009.

5 Daniel Grund and Jan Reineke. Precise and efficient FIFO-replacement analysis based on
static phase detection. In ECRTS, 2010.

6 Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm. The
influence of processor architecture on the design and the results of WCET tools. Proceedings
of the IEEE, 91(7):1038–1054, 2003.

7 John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Ap-
proach, 3rd Edition. Morgan Kaufmann, 2003.

8 Jan Reineke and Daniel Grund. Relative competitive analysis of cache replacement poli-
cies. In LCTES ’08: Proceedings of the 2008 ACM SIGPLAN-SIGBED Conference on



Daniel Grund and Jan Reineke 35

Languages, Compilers, and Tools for Embedded Systems, pages 51–60, New York, NY,
USA, 2008. ACM Press.

9 Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. Timing predictability
of cache replacement policies. Real-Time Systems, 37(2):99–122, 2007.

10 Henry S. Warren. Hacker’s Delight. Addison-Wesley, 2003.
11 Randall T. White, Christopher A. Healy, David B. Whalley, Frank Mueller, and Marion G.

Harmon. Timing analysis for data caches and set-associative caches. In RTAS ’97: Pro-
ceedings of the 3rd IEEE Real-Time Technology and Applications Symposium, page 192,
Washington, DC, USA, 1997. IEEE Computer Society.

12 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution-time problem—overview of methods and survey of tools. Transactions
on Embedded Computing Systems, 7(3):1–53, 2008.

WCET 2010



Integrating Abstract Caches with Symbolic
Pipeline Analysis
Stephan Wilhelm1 and Christoph Cullmann1

1 AbsInt Angewandte Informatik GmbH, Science Park 1; D-66123 Saarbrücken,
Germany

Abstract
Static worst-case execution time analysis of real-time tasks is based on abstract models that
capture the timing behavior of the processor on which the tasks run. For complex processors,
task-level execution time bounds are obtained by a state space exploration which involves the
abstract model and the program. Partial state space exploration is not sound. Symbolic methods
using binary decision diagrams (BDDs) allow for a full state space exploration of the pipeline,
thereby maintaining soundness. Caches are too large to admit an efficient BDD representation.
On the other hand, invariants of the cache state can be computed efficiently using abstract
interpretation. How to integrate abstract caches with symbolic-state pipeline analysis is an open
question [11]. We propose a semi-symbolic domain to solve this problem. Statistical data from
industrial-level software and WCET tools indicate that this new domain will enable an efficient
analysis.

Digital Object Identifier 10.4230/OASIcs.WCET.2010.36

1 Introduction

The execution time of a task depends on the execution speed of the processor on which the
task runs, as well as on the executed program code and on input values. Further, complex
processors implement various features to reduce the average execution time, e.g., pipelines
and caches. Execution times on such processors also depend on the execution history and on
the start state of the hardware [7, 9]. As a consequence, tools for safe WCET prediction
have to cover all feasible program paths, inputs, and hardware states.

Static WCET analysis only becomes computationally feasible in practice by using abstrac-
tion, which is applied to both the modeling of processor and program behavior [5]. However,
abstraction loses information which leads to uncertainty, e.g., it may not be possible to
statically determine the exact address of a memory access. Furthermore, program inputs are
not precisely known in advance. At the level of the hardware model, this lack of information
is accounted for by non-deterministic choices. To be safe, the analysis has to explore all
possibilities. This can lead to state explosion making an explicit enumeration of states
infeasible due to memory and computation time constraints [10].

In [13] we presented a symbolic approach for pipeline analysis that avoids the explicit
enumeration of reachable pipeline states, and showed its effectiveness in alleviating the state
explosion problem in WCET analysis. The implementation cooperates efficiently with a
framework of static analyses based on abstract interpretation. A commonality of these
analyses is the fact that they run prior to pipeline analysis. Hence, cooperation boils down
to importing statically available analysis results. In contrast, the abstract interpretation
of caches [6] cannot be separated from pipeline analysis. The cache state depends on the
order of memory accesses and therefore on the state of the pipeline. The pipeline state in
turn is influenced by the latency of instruction and data fetches which depends on the cache
state. Explicit-state implementations of pipeline analysis establish a one-to-one relationship
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between pipeline and cache states, i.e., they combine each abstract cache state with a single
abstract pipeline state. The pipeline state triggers an update of its associated cache state
whenever the processor accesses a cached memory area.

Symbolic-state implementations cannot afford a one-to-one relation between pipeline and
cache states without losing the advantages of symbolic state space exploration. We present
experimental evidence that a one-to-one relation between pipeline and cache states is not
required in practically relevant scenarios. Furthermore, we describe a semi-symbolic domain
that efficiently integrates abstract interpretation based cache analysis with symbolic pipeline
analysis while preserving a high analysis precision.

2 The Problem

Notation. The sets of natural numbers and Boolean values are denoted by N and B,
respectively. I ⊂ N× N is the set of intervals such that ∀(l, u) ∈ I : l ≤ u. We write f · g for
conjunction, f + g for disjunction, and f for negation of Boolean functions and variables. A
vector of Boolean values is written as ~x.

Pipeline analysis [10, 4] computes upper bounds on the execution time of basic blocks using
an abstract pipeline model. The model accounts for timing-relevant processor components,
such as pipelining, speculation, and peripheral hardware. To reduce complexity, ALUs and
register files are handled by a dedicated value analysis [3]. Symbolic pipeline analysis [13]
uses BDD representations [2] of abstract pipeline models and sets of abstract states. The
involved BDDs are directed, acyclic graphs that represent Boolean functions of type Bn → B.
An example BDD for the Boolean function x0 · x1 · x2 · x3 · x4 · x5 + x0 · (x1 + x1 · x2) is
depicted in Fig. 2.

The idea behind the symbolic approach is, that an abstract pipeline model corresponds
to a finite state machine (FSM) with n Boolean state variables. Assignments of the state
variables define pipeline states, e.g., in terms of different positions of instructions (identified
by their addresses) in the pipeline. An FSM consists of a set of states Q ⊆ Bn, a set of
initial states S ⊆ Q and a transition relation T ⊆ Q×Q. Each set of states A ⊆ Q, as well
as the transition relation T , can be associated with a Boolean function A : Bn → B where
A(~x) = 1 ⇔ ~x ∈ A and T : Bn × Bn → B where T(~x, ~y) = 1 ⇔ (~x, ~y) ∈ T . We say that
A : Bn → B is the characteristic function of the set A. The pipeline model is given in terms
of its symbolic transition relation by the BDD TM. Static program information, such as
branch targets and intervals of register contents, are encoded into a BDD program relation
TL that restricts the possible transitions of TM. A set of pipeline states is represented
by a BDD A. State traversal is implemented by repeated application of a symbolic image
operator Img : (Bn × Bn → B)× (Bn → B)→ (Bn → B) [8]. The set of successor states for
the states in A is computed by Img(TM ·TL,A).

Cache analysis [6] operates on abstract representations of cache states. The abstract
representation allows to trade precision for efficiency. Soundness is maintained by losing
information only on the safe side, i.e., the result over-approximates the concrete cache states
but it never misses a reachable cache state. The interface of the cache analysis comprises
functions to query and update abstract caches with intervals of memory addresses. It also
features a join operator for joining two cache states into another cache state that over-
approximates both. The join operation may lose precision. There are two possibilities for
integrating a symbolic-state implementation of pipeline analysis with a cache representation:
1. Including the cache into the symbolic representation of pipeline states.
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2. Associating an abstract cache representation with a symbolic representation of pipeline
states.

Let us consider the first approach. Even small caches are too large to admit a straightforward
BDD representation for symbolic state traversal. In [12] we proposed an alternative symbolic
representation for caches. Compactness was achieved by losing the correlation between the
abstract cache cells; the resulting BDD is no longer the characteristic function of a set of
hardware states. Unfortunately, it seems that – despite its compactness – the proposed
representation does not allow for an efficient state traversal. So far, attempts to design
efficient image operators, i.e., operators that avoid an exhaustive enumeration of the encoded
states, have not been successful.

The second possibility seems equivalent to the approach taken by explicit-state imple-
mentations. However, symbolic-state implementations cannot afford a one-to-one relation
between pipeline and cache states without losing the advantages of symbolic state space
exploration. The explicit handling of caches would require the same explicit enumeration of
pipeline states that the symbolic representation is trying to avoid. The next section presents
a domain that is based on this second possibility, but uses a more favorable relation between
pipeline and cache states.

3 Proposed Domain

We propose a semi-symbolic domain that integrates an abstract cache representation with
a symbolic representation of pipeline states. The explicit enumeration problem is avoided
by maintaining an efficient relation between pipeline and cache states. The basic idea is
that we combine a set of pipeline states (represented symbolically by a BDD) with a single
abstract cache state. The product of the pipeline and cache domains is thus based on an
n-to-one relation. This allows us to preserve the benefits of the symbolic representation by
manipulating sets of pipeline states symbolically.

Let Ĉ and Bn → B denote the abstract cache domain and the symbolic pipeline domain,
respectively. A partition of abstract hardware states is a tuple of type (Bn → B)× Ĉ and H
denotes the set of all partitions. The proposed domain D is the power set of H excluding the
empty set.

3.1 Updating partitions of abstract hardware states

We show the update of a single partition (A, â) ∈ H, where A : Bn → B is a BDD representing
a set of pipeline states and â ∈ Ĉ is an abstract cache state. Let AC be the set of all addresses
in cached memory that are accessed by the analyzed program. For the remainder of this paper
we assume that all memory accesses address cached memory regions. The pipeline model
then needs m = log2(|AC |) state variables for addressing memory. We require that these
variables appear first in the BDD representation. The addressed interval can be obtained by
a function acc : (Bn → B)→ I that inspects the first m BDD variables. Its implementation
is discussed in Sec. 3.3.

The classification function cl : Ĉ × I→ {(0, 1), (1, 0), (1, 1)} of the abstract cache domain
determines whether an access results in a cache hit (0, 1) or miss (1, 0). Note that the result of
this query can also be undecided (1, 1) if precise information has been lost due to abstraction
or if the interval comprises both, cache hits and misses. The result of cl(â, acc(A)) can
be encoded as a symbolic relation TC by a function enc : B2 → (Bn × Bn → B). The
computed relation restricts the possible transitions of the model relation TM. It only allows
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step(A, â) =
let I = acc(A) in
let TC = enc(cl(â, I)) in

(Img(TM ·TL ·TC ,A) , up(â, I))

Figure 1 Implementation of the update function step : H → H.

for transitions that correspond to the result of the cache query. This is analogue to the
construction of TL from statically available program information.

Let up : Ĉ × I→ Ĉ denote the update function for abstract cache states. The update of
a single partition (A, â) can then be computed by a function step : H → H as depicted in
Fig. 1. The step function first determines the interval I of memory addresses that is accessed
by the pipeline states in A. It then queries the cache domain to determine whether the
access hits or misses the cache and – based on this information – constructs the BDD TC for
restricting the reachable pipeline states. The constructed BDD is conjoined with the BDDs
TM and TL to obtain the effective transition relation for the next update. By application of
the image operator on the computed transition relation and the set of pipeline states A, it
computes the set of successor pipeline states. The next cache state is obtained by application
of the cache domain update function on the current cache â and the accessed interval I.

3.2 Balancing pipeline and cache states
In order to maintain a favorable n-to-one relation between pipeline and cache states, we
introduce a balancing operation to be applied in each round of the state traversal. The
balancing operation involves two steps: partition and join. The partition step is based on the
decomposition of the BDD of pipeline states. Decomposition of a BDD f : Bn → B into its
cofactors with respect to a variable xn means computing subfunctions g, h : Bn−1 → B such
that g(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0) and h(x1, . . . , xn−1) = f(x1, . . . , xn−1, 1). This
decomposition, also known as Shannon expansion, is a very efficient operation on BDDs and
the foundation of many basic BDD algorithms.

Let (A, â) ∈ H be a partition of abstract hardware states. The first m state variables
in A encode the accessed interval of memory addresses. We partition (A, â) by a function
part : H → D that recursively decomposes A into its cofactors with respect to the first m
state variables. A new partition is created for each cofactor together with a copy of the cache
state â. The decomposition proceeds until all satisfying paths of the BDD pass through the
variable m+ 1. As a result, all pipeline states in a new partition (Ax, â) ∈ part(A, â) access
the same interval of memory addresses. Note that step(Ax, â) yields a more precise successor
cache state than step(A, â).

Excessive partitioning might lead us back to the explicit enumeration problem. In the
worst case, each partition in a domain element D ∈ D encodes only a single pipeline state.
We prevent this by applying a join operator to partitions of D. Let t denote the join operator
for abstract caches [6]. The union of two sets of pipeline states is implemented by disjunction
of their characteristic functions. Two partitions (A, â) and (B, b̂) are joined by a function
join : H×H → H:

join((A, â), (B, b̂)) = (A + B, â t b̂)
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To minimize the loss of cache precision, we join only partitions whose pipeline states
access the same interval of memory addresses. This restriction also prevents us from undoing
the partitioning. The loss in cache precision could be limited further by joining only hardware
states with similar caches. This however requires a similarity metric for abstract cache states.
A simple but efficient similarity metric would be, to only join two cache states â, b̂ ∈ Ĉ if one
of them already over-approximates the other, which is equivalent to

â t b̂ = â or â t b̂ = b̂

Besides balancing the relation between pipeline and cache states and optimizing the
representation for an efficient implementation of the function acc : Bn → I, the application
of regular partition and join operators also ensures a canonical representation of hardware
states; because of the balancing operations, a particular hardware state always ends up in
exactly one partition of an element of D. This property allows for an efficient equality check
of data flow elements by pairwise invocation of the equality operators of the two underlying
domains on the contained partitions. It is most efficient if the number of partitions is small.

3.3 State traversal and performance
The state traversal for micro-architectural analysis on the domain D is implemented by
repeated application of the function step : H → H to all elements of a domain element
D ∈ D. Partition and join functions are applied in each round of the traversal for balancing
pipeline and cache states before applying the step function.

The proposed domain is most efficient if each cache state is associated with a large number
of pipeline states. This allows for a small number of BDD operations which exploits the
caching of intermediate results that is typical for BDD algorithms. Moreover, it significantly
reduces the required number of cache updates since we perform a single cache update for all
of the associated pipeline states. Note that a small number of partitions per domain element
is also desirable.

A favorable relation between pipeline and cache states is maintained by the regular
application of the join operator. The prior application of the partition operator minimizes
the loss of cache precision and optimizes the BDD representation to allow for an efficient
implementation of the function acc : Bn → I. Its efficiency depends on the fact that

the variables for addressing memory appear first in the BDD, and
all encoded pipeline states access the same interval of addresses.

Hence, it suffices to enumerate the satisfying paths over the first m BDD variables. Let us
consider the example depicted in Fig. 2. The example BDD shows only the first 6 state
variables for accessing memory, i.e., we have m = 6. Note that in the full representation,
the terminal node 1 would be replaced by a subgraph that represents the set of associated
pipeline states. The BDD is evaluated by traversing the graph from the first variable node
x0 to one of the terminal nodes 1 or 0. Each variable node has two outgoing edges: the
solid edge indicates that the variable has value 1, the dashed edge corresponds to the value
0. Nodes whose values do not influence the final result are omitted in the BDD (dont-care
nodes). The terminal nodes represent the evaluation result. A path that ends at the terminal
node 1 is called a satisfying path. It corresponds to one or several satisfying assignments of
the variables. The satisfying paths over the example BDD of Fig. 2 are depicted in the first
table of Fig. 3. To determine the interval that corresponds to a satisfying path, we set all
dont-care nodes to 0 to obtain the lower bound (see table 3 in Fig. 3), and to 1 to obtain the
upper bound (see table 2 in Fig. 3). Finally, we obtain the represented interval by taking the
minimum and maximum of the intervals over all satisfying paths.
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Figure 2 BDD representation of the memory
access interval [8, 32]. In the full representation,
the terminal node 1 is replaced by a subgraph that
represents the set of associated pipeline states.

x0 x1 x2 x3 x4 x5

1 0 0 0 0 0
0 1 - - - -
0 0 1 - - -

1. satisfying paths

x0 x1 x2 x3 x4 x5 ub
1 0 0 0 0 0 32
0 1 1 1 1 1 31
0 0 1 1 1 1 15

2. upper bound

x0 x1 x2 x3 x4 x5 lb
1 0 0 0 0 0 32
0 1 0 0 0 0 16
0 0 1 0 0 0 8

3. lower bound

Figure 3 Computing the lower and upper
bounds of the intervals that correspond to the
satisfying paths. The complete interval is then
computed as [min{32, 16, 8},max{32, 31, 15}] =
[8, 32].

The example shows that the interval can be computed from the BDD without enumerating
all contained addresses. Note that the computational effort does not grow significantly if
the interval shares a larger address prefix (using additional state variables x6, x7, . . . , xm to
address memory). The additional state variables either allow only for a single assignment,
or most of them are dont-care nodes. The number of satisfying paths in the BDD will stay
small.

4 Typical Cache Access Patterns

We experimented with 6 tasks of a commercial, safety-critical real-time software1 to assess
the correlation between memory accesses from different pipeline states. The tasks have been
fully unrolled and annotated to avoid serious state explosion. The employed annotations
specify ranges for register contents at selected program points to improve the precision
of the value analysis and thereby reduce the reachable state space of the pipeline model.
Note that full unrolling is not feasible for all software but required to obtain results with
explicit-state implementations of very complex pipeline models. Otherwise, the analysis
would not terminate in acceptable time because of state explosion. The following results have
been obtained with the commercial, explicit-state pipeline model of the Motorola PowerPC

1 Closed source and confidential.
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755 [10, 1]. With full unrolling and annotations, all analyses terminate in less than 5 minutes
running on an Intel i5 CPU at 2.67 GHz. We instrumented the pipeline model to print the
following information for each access into a cached memory area:
1. Type of access, i.e., instruction or data.
2. Address and context of the currently analyzed basic block.
3. Cycle count since start of current basic block.
4. Accessed address or address range.
For each type of access, we collect all accesses with equal basic block address, analysis context,
and cycle count. Symbolic pipeline analysis explores the model’s state space cycle-wise in
breadth-first order. Hence, all accesses in one set are issued from pipeline states in the same
exploration layer. We partition the sets depending on the accessed addresses to obtain the
number of different memory accesses from the same layer. The following tables list the results
of this experiment. For each task (numbered t1, . . . , t6) the first row gives the results for
instruction cache accesses, whereas the second row reports the same information for data
cache accesses.

Table 1 Avg. number of partitions per cycle.

t1 t2 t3 t4 t5 t6

2.19 1.51 1.94 2.03 2.13 1.52
1.38 1.11 1.29 1.35 1.35 1.02

Table 2 Max. number of partitions per cycle.

t1 t2 t3 t4 t5 t6

42 7 42 42 42 10
6 2 6 6 6 2

Table 3 Avg. number of states per partition.

t1 t2 t3 t4 t5 t6

17.24 35.35 25.49 25.61 35.63 19.96
10.82 28.07 20.76 25.94 25.61 7.87

Table 4 Max. number of states per partition.

t1 t2 t3 t4 t5 t6

4927 1311 8519 8190 8544 1091
1947 720 7140 7783 8115 268

According to Tab. 1, the average number of partitions is roughly 2. This number
corresponds directly to the expected average number of partitions of an element of the
proposed domain D. Tab. 3 shows the average sharing, i.e., the number of pipeline states that
can be encoded into a single BDD. The results indicate that the average relation between
pipeline and cache states is roughly 18 : 1 (by dividing the average sharing of Tab. 3 by the
average number of partitions of Tab. 1). The maximum number of partitions stays fairly
small as shown by the results in Tab. 2. On the other hand, the maximum number of pipeline
states per BDD can be quite large as shown by the results in Tab. 4.

All results indicate that the proposed domain operates on tuples with typical pipeline-
cache relations between 1 : 1 and 8544 : 1, with an average of 18 : 1. These numbers hold
under the assumption that the analysis maintains maximum cache precision. The proposed
domain allows higher numbers of pipeline states per partition if caches are joined more
aggressively. Larger numbers of pipeline states per partition can also be expected when the
analysis encounters cases of imprecise information, e.g., about memory accesses.

5 Conclusion

We presented a new domain that integrates a symbolic exploration of abstract pipeline
states with an abstract interpretation based domain for computing invariants of the cache
state. Sets of pipeline states are stored in BDDs and manipulated symbolically using BDD
operations. Abstract cache states are associated with sets of symbolically encoded pipeline
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states. Partition and join steps balance the representation to preserve a high analysis precision
while avoiding an explicit enumeration of pipeline and cache states. Statistical data indicates
that it is possible to maintain a favorable relation between pipeline and cache states, which
allows us to reap the benefits of symbolic state traversal for pipeline analysis.
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Abstract
This paper considers the use of Extreme Value Theory (EVT) to model worst-case execution

times. In particular it considers the sacrifice that statistical methods make in the realism of their
models in order to provide generality and precision, and if the sacrifice of realism can impact
the safety of the model. The Gumbel distribution is assessed in terms of its assumption of
continuous behaviour and its need for independent and identically distributed data. To ensure
that predictions made by EVT estimations are safe, additional restrictions on their use are
proposed and justified.
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1 Introduction

By their nature, hard real time systems have deadlines to meet, with consequences for failure.
This leads to the problem of worst case execution time: finding out the minimum bound on
a program’s runtime. Unfortunately, in general this is an unanswerable question, as solving
this would solve the halting problem. If restrictions are enforced on the program, then the
question may be answerable - however, it may not be tractable.

The nature of these restrictions can be understood by noting that WCET estimation
involves an element of model building, and therefore the work of Levins [10] is applicable.
Levins describes a three-fold trade-off on useful models between generality, realism and
precision, and argues that no useful model can maximize all three of these properties. Whilst
Levins did not define these terms, assuming the meanings to be obvious, they have come to
mean the following:

Generality: The degree to which the model is applicable to multiple situations in the
real world.
Realism: The degree to which the model accurately represents the actual phenomena
occurring in the real world.
Precision: The degree to which error bounds are minimised when comparing the model’s
predictions with the real world.

The term “useful model” was later defined as one which is understandable, measurable,
and computationally soluble [12]. Later work by Bullock and Silverman [3] named these
three properties the models tractability, and constructed an argument for a four-fold tradeoff
between tractability and the original properties of a useful model defined by Levins. Within
this four-fold tradeoff, Levins useful models are situated at the threshold between intractable
and tractable models.
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Levins’ philosophy is demonstrated in current approaches to WCET estimation such as
abstract interpretation [7] which sacrifices precision to gain an approach which is general and
realistic - and the lack of precision manifests itself in a relatively high overestimation of the
true WCET. Unfortunately, the requirement to guarantee the safety of the estimation, that
the WCET is bounded from above, not below, requires an element of precision. Further,
current research into abstract interpretation is increasing the precision of the method, which
according to Levins will require another aspect to be sacrificed. One present approach
achieves this by sacrificing some realism by using a heuristic [14]. Other approaches may
sacrifice generality, or may simply build a more precise and more complicated model which
sacrifices tractability.

Statistical analysis, as proposed by Edgar and Burns [5, 6] is a method which takes a
radically different approach to abstract interpretation. Statistical analysis sacrifices realism
for generality and precision, by using extreme value theory (EVT) statistics [9]. EVT is
a collection of statistical models which are suited to accurately predicting the tail end of
a distribution. By fitting one such model, the Gumbel distribution, to observed data the
probability of failing to meet a given execution time can be found, and this can be used as
the foundation of a probabilistic real time system [2]. Clearly, EVT is not a realistic model
of a computer system, but it can model observed behavior precisely. Statistical analysis
was studied further by Hansen, Hissam and Moreno [8], who modified the work to fit more
accurately with the original design of EVT. The same modifications also produce results
in the form of probability of failure in a given time period, as preferred by the testing
community [4].

This paper aims to look at an issue which has not yet been adequately addressed: the im-
pact of the lack of realism in the model on the safety of Gumbel-derived estimates. Primarily,
this manifests itself in subtle differences between the Gumbel distribution and the properties
of an actual system. Sections 2 and 3 detail two significant lapses of reality in the model,
and demonstrate how unsafe predictions could be made using statistical analysis. Section 4
details methods to take into account these lapses of reality, either by proving that they do
not apply or adapting the application of statistical analysis to compensate. Conclusions are
presented in Section 5.

2 Continuous vs. Discrete Distributions

The Gumbel distribution, along with any other continuous probability distribution, makes
an assumption that all values are possible. This is clearly unrealistic; looking at the control
flow graph of a program will show that a program can not terminate at any point. Instead,
programs perform computation for a period of time, and then may stop or perform more
computation. For instance, consider the program in Figure 1, being run on a simple processor
with no features to speed up execution. The function F refines a result until either the result
is accurate enough or the routine hits a recursion depth limit. This program may or may not
exhibit exponential decay in the probability of its execution times depending on the nature
of G, the refinement function, and the input x. However, it has the property that it cannot
terminate during an execution of G, or the accuracy test. This means that the only times
it can terminate are the times expressible as:

j∑
i=0
rt(f(xi)) where j ∈ [0, 5], and xi ∈ Dom(F )

Assuming that the domains of the functions F and G are finite, then the program may
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F (x, d)
1 x = G(x)
2 if x has sufficient accuracy or d ≥ 5
3 return x
4 else
5 return F (x, d+ 1)

Figure 1 A program which does not have a continuous distribution of runtimes

only terminate at finitely many times. Further, the set of all possible termination times
need not occupy the entire interval of termination times. For instance, F and G may be
written so the program takes a multiple of 5 cycles to complete. Then the program will not
terminate on any cycle which isn’t a multiple of 5.

This becomes a problem because the Gumbel distribution assumes that the program
can stop at any point, and hence will produce results which do not make sense. Using the
previous example, it is known that the probability of termination by cycle 9 is the same as
termination by cycle 6 - if the program hasn’t terminated before cycle 6, it cannot terminate
until cycle 10. The prediction of the Gumbel distribution differs, as shown in Figure 2. In
fact, the Gumbel distribution produces values lower than the actual distribution - and these
values are unsafe.

Hence the problem is as follows. By using a continuous function to model the execution
time of the program, an assumption is made on the program that it can terminate at any
point. Whilst any synchronous processor has some form discrete time, therefore invalidating
this assumption, such small errors would pass unnoticed. The major issue is that due to
how programs are written, this error could be a noticeable amount of time. For example,
suppose that the function G took a multiple of a million cycles to run. As embedded
processors operate in the MHz frequency range, this could amount to delays of a noticeable
fraction of a second.

3 EVT assumes the IID property

EVT also makes the assumption that the data to be modeled is i.i.d., or independent and
identically distributed [9]. As an example, consider the original purpose of the Gumbel
distribution: modeling floodwater levels - a safety critical situation, where reliable results
are needed. Floodwater data is normally independent; provided the landscape is unchanged
and flood defences repaired but not enhanced, one flood does not affect another. If this is
not the case, then future floods are said to depend on the flood which caused this change.
Similarly, these future floods will also have a different distribution to the previous floods, due
to the changes effecting how much water is needed to cause flooding. Hence, these future
floods do not follow the same distribution as the past floods, and so are not identically
distributed.

In statistics, the i.i.d. assumption simplifies things immensely, if it can be made. Unfor-
tunately, the execution times of programs need not be independent or identically distributed.

An obvious example of runtimes being dependent is that of amortised data structures. In
this case the runtime of adding an element to the data structure depends on the current state
of the data structure. Avoiding amortised data structures is not enough though; depending
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Figure 2 An illustration of how the Gumbel distribution can infer unsafe values due to the
implicit assumption that a program may stop at any time during execution.
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on testing methodology, almost any program can have dependent runtimes, simply through
an on-chip cache. If the program can leave the cache in multiple states depending on its
input, then each runtime is dependent on what was run before it - and such a dependence
may not be trivial to model. For instance, a long runtime may mean that more parts of the
instruction code have been loaded into cache, decreasing the next runtime. Alternatively,
it may mean that this run of the program performed a lot of cache thrashing - and hence
leaving the cache in a less useful state for the next run of the program.

Further, some systems may necessarily have dependent runtimes, especially in the case
of systems which manipulate a value in the real world. As an example, take an aircraft flight
control system. As an input, the control system will consider the present velocity of the
aircraft and produce an output which is a modification to that velocity. Hence the input,
and therefore runtime, of any run of the system will depend on the outputs of every previous
run.

A similar argument can be used to reason that program runtimes need not be identic-
ally distributed, in that each run of the program has the potential to “change the world”.
However, it turns out that the problem of runtimes not being identically distributed is more
widespread. Suppose X(n) is the uniform random distribution over the closed interval [1, n],
and that programs A,B produce different runtime distributions when run with data sampled
from X(100). Then define program C as follows:

C(n) =

{
A(bn/2c) if n is even
B(bn/2c) if n is odd

Then if C has its runtimes sampled with data from X(200), the runtimes will follow two
distributions - one for those which have odd input data, and one for those with even input
data. Hence the runtimes cannot be treated as being identically distributed at face value. It
is possible to combine multiple distributions into one, but this can cause a loss of accuracy
when fitting the Gumbel distribution. Further, it would be necessary to ensure that all
possible distributions of runtimes were found. Given that the number of paths through a
program is potentially large, and each path potentially leads to a different distribution, this
would cause an unacceptable amount of testing to be necessary.

It should also be noted that this observation correlates with the results presented in
Edgar’s work [5]. For experiments on branch prediction there is a strong argument for the
results being i.i.d.: that the effects of other unknown processes on the branch prediction
experiment can be modeled by some i.i.d. random variable. In turn, this leads to highly
accurate results. In more complicated experiments, such as bubble sort, there is no such
argument as the amount of work the algorithm does is a non-trivial property of the in-
put. Consequently the results of Gumbel prediction are much poorer in the bubble sort
experiment [5].

In related work, Petters [13] also stated that the i.i.d. assumption needs to hold for EVT
statistics to be valid. Petters’ approach is to use statistical methods to gain a confidence
value on predicted runtime of “measurement blocks” of code, and combine these to get an
overall WCET. To ensure the i.i.d. assumption holds, Petters proposes to randomise any
potentially unknown element of the processor state at the beginning of each measurement
block. By using these measurement blocks, the problems outlined above are avoided as
there are limited paths through the code, and within these blocks hazards are encountered
with fixed probabilities determined by the initial randomisation. The potential downside to
Petters’ work is that it is assumed that the measurement blocks are independent. Whilst for
Petters’ work, on modelling processor features, it can be ensured that measurement blocks



D. Griffin and A. Burns 49

are independent, it may not be a practical assumption when modelling entire systems.

4 Additional Properties Needed to use EVT

Given the issues raised in the previous sections, it is apparent that to make use of EVT it
is necessary to take measures so that it is known that the lack of realism in the model does
not produce unsafe estimates.

There are two potential solutions available. The first is to prove that the problems either
do not apply, or are bounded. The second is to adapt the use of statistical analysis so that
it does not encounter any problems.

4.1 Proving Strategies and Bounding Undesirable Behaviour
One strategy to avoid problematic effects is to prove that they do not exist, or to prove
a bound on them. Neither of these strategies can be automated, as mathematical proof is
not automatable. Fortunately, there are some general techniques which can be used, which
are outlined here. The techniques focus on producing some form of bound on undesirable
properties.

To cope with the effects of approximating a discrete distribution with a continuous dis-
tribution, there is a simple method. This is to determine the maximum error this introduces
and to add this error to any prediction. This seems as if it could be difficult to accomplish,
as the maximum error is not known; however, there is a simple method available which does
not require this information. Instead of modeling the observed data directly, first convert
the data to exceedance probabilities, such that value xn is exceeded with probability pn,
for n ∈ [1, k] and the xn being original data points. Then model the data series of value
xn occurring with probability pn−1, with p0 = 1. This is illustrated in Figure 3 and moves
the Gumbel estimate above the safety line by the minimum amount required to guarantee
safety. The downside to moving the points in this way is that the estimates are pessimistic
almost everywhere.

Another method to deal with errors from approximating a discrete distribution with
a continuous distribution would be to try and argue that the effects are negligible. For
instance, in the case when only a single path is being considered the error can be bounded
by the largest single processor delay. This delay is likely to be measured in tens of processor
cycles, and in if the processor speed is measured in MHz then the errors involved are likely
to be negligible. Similar arguments could also be made if the different paths through the
program have similar lengths and experience similar amounts of randomly-modeled hazards.

Proving the i.i.d. assumption is hard to do conclusively, with caches being an example of
a common processor feature which causes the i.i.d. assumption to be violated. However, in
some systems, particularly soft real time systems, it may be adequate to perform statistical
analysis of the test data to determine if the i.i.d. assumption appears to hold. A statistical
test for independence is as follows: Assume the null hypothesis that the execution times
are independent of the system’s previous actions. As the system’s previous actions are
determined by the system’s input, it is sufficient to look for correlation between the runtime
of a test and the inputs to previous tests. If correlation exists then the null hypothesis
can be disproved; if correlation does not exist it only indicates that the test data does not
disprove the null hypothesis, and that over the entire set of test data the data appears
independent to some degree of confidence. The test can be improved by splitting it into
subtests of contiguous test data; this would prevent small runs of of dependent results from
being hidden by a large quantity of independent results.
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Figure 3 An illustration of how to offset the Gumbel distribution to guarantee safe values
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Another tactic to take into account dependence would be to bound it. This could easily
be accomplished by a periodic reset of the system, which would break dependencies. Then
the drift in execution times over this period could be found through a number of methods,
including statistical analysis, as these are i.i.d. and very close to being continuous. For some
systems, for instance the previously mentioned aircraft control system, a complete reset of
the system may be impossible. In this case an appropriate strategy could be to periodically
reset those resources which can be reset, and perform statistical analysis to gain some
confidence that the remaining inputs to the system do not cause any dependencies between
job executions.

Proving the identically distributed assumption is harder. The problem is that for every
path through the program there will be a different set of hazards, leading to a potentially
different distribution, and that it is difficult to argue that the worst case distribution is
represented in the test data. If the worst case distribution is not represented, then statistical
analysis cannot take it into account when combining all observed distributions into a Gumbel
distribution. The simplest method here would be to ensure some level of code coverage, such
as modified condition/decision coverage [1], and to ensure that each different path identified
by the code coverage technique has sufficient samples taken from it to form a distribution.

4.2 Adapting Statistical Analysis
If it is not possible to bound the effects of not meeting the i.i.d. assumption, then the
application of statistical analysis must be adapted instead. For this, it is necessary to
look at what effects are being modeled, and identify what could cause problems. Given a
sequential program and a system to run it on, it is reasonable to say that the execution time
of the program depends on three properties:

The input to the program.
The initial state of any resources the program uses.
Competition for resources from other programs (in preemptive or multiprocessor envir-
onments).

The third of these can be ignored, provided that testing is carried out in a representative
environment including the programs which compete for the resource. However, it is necessary
to enforce that programs do not directly communicate with each other, as this can introduce
non-i.i.d. behavior. In such a case, it would be possible to use statistical analysis to predict
the WCET of a group programs which do communicate heavily with each other, as then the
dependencies become internal and invisible to the model.

Similarly, there is a simple solution to the second of these properties: perform a reset of
the processor and shared resources between tests. Unfortunately, such an assumption may
not be realistic or desirable in the real world, so an alternative would be to test multiple sub-
systems which all share the same resources at once. If such tests were randomly interleaved,
then it becomes valid to treat the initial state of the resources as another i.i.d. random
variable, because for each test of a subsystem, any other test on any subsystem could have
been carried out before, which effectively randomises the shared resources.

This only leaves the fact that input can effect runtime, leading to non-identically distrib-
uted runtimes, as a problem. The most obvious solution to this would be to fix the input
such that it forces the worst case path through the program. The fixed input would guar-
antee that the measurements are sampled from the same distribution. The major concern
with this approach is that due to low level processor details, such as floating point division,
it is conceivable that using a single input will not be able to find the WCET. Hence it makes
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sense to widen the values used as input, when sampling, to the set of all inputs which lead
to the worst case path through the program.

The biggest issue with the above remedy is that it requires knowledge of the worst case
path through the program, but the worst case path through the program is not known -
or WCET analysis wouldn’t be necessary. However, other analysis methods may be able
to determine a set of candidate paths through the program, of which one is the worst case
path. This can be seen in abstract interpretation [7], which uses abstract states consisting
of many concrete states to determine the worst case path. Statistical analysis could be used
in this case to analyse each path in such a set individually to determine which path is the
worst case, essentially reversing the abstraction. It may be that statistical analysis would
indicate that all of the paths in the worst case abstract state present a better case than
those in some other set, in which case the paths to be explored by abstract interpretation
would have to be extended to this other set.

An alternative method of making the identically distributed assumption hold would be
to use external measurements, such as the number of instructions executed and the number
of cache misses, to create a catergorisation scheme. Provided that the chosen measurements
lead to categories whose members are sampled from the same or similar distributions, the
identically distributed assumption should hold. Then it becomes possible to work out a
WCET time by applying statistical analysis to each category and picking the maximum.
Alternatively, the categories could form the basis for using parametric WCET analysis tech-
niques [11] to further enhance the precision of the results.

If the i.i.d. assumption is satisfied by using some of the methods outlined above, then
it only remains to determine that the errors associated with fitting a smooth curve to the
distribution are small and that the safety of the model is preserved. Fortunately, this turns
out to be relatively straightforward: given the restrictions to make the measurements meet
the i.i.d. requirement, the measurements should be similar enough that a significant error,
of the type seen in Figure 2, cannot exist.

5 Conclusion

The use of statistical estimation for WCET is a powerful method, and can be used to model
WCET with great accuracy [5, 6, 8]. However, as statistical estimation sacrifices realism it
is necessary to take measures so that the safety of the model is not an unintended casualty
of this sacrifice. To ensure the safety of the model it is either necessary to prove that
the assumptions of EVT statistics hold or to adapt the application of statistical analysis.
Adaption requires an additional set of restrictions on the measurements used to generate
the statistical model, but in turn these should produce a more sound model.
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Abstract
Hybrid measurement-based approaches to worst-case execution time (WCET) analysis combine
measured execution times of small program segments using static analysis of the larger soft-
ware structure. In order to make the necessary measurements, instrumentation code is added to
generate a timestamped trace from the running program. The intrusive presence of this instru-
mentation code incurs a timing penalty, widely referred to as the probe effect. However, recent
years have seen the emergence of trace capability at the hardware level, effectively opening the
door to probe-free analysis.

Relying on hardware support forces the WCET analysis to the object-code level, since that
is all that is known by the hardware. A major disadvantage of this is that it is expensive for
a typical software engineer to interpret the results, since most engineers are familiar with the
source code but not the object code. Meaningful WCET analysis involves not just running a tool
to obtain an overall WCET value but also understanding which sections of code consume most
of the WCET in order that corrective actions, such as optimisation, can be applied if the WCET
value is too large.

The main contribution of this paper is a mechanism by which hybrid WCET analysis can still
be performed at the source level when the timestamped trace has been collected at the object
level by state-of-the-art hardware. This allows existing, commercial tools, such as RapiTime, to
operate without the need for intrusive instrumentation and thus without the probe effect.

Digital Object Identifier 10.4230/OASIcs.WCET.2010.54

1 Introduction

The task schedule in a real-time system is responsible for allocating the CPU’s time to a
number of single-threaded tasks. All scheduling algorithms, and the schedulability tests that
check their feasibility, assume that the Worst-Case Execution Time (WCET) of each
task is available as a fixed value.

Deriving the actual WCET completely automatically with a tool is impossible in the
general case, not least because such a tool would also solve the halting problem, see [12].
However, practical experience has shown that a useful estimate of the WCET can be derived
using a tool with a little guidance from the user.

Most often, industry uses the WCET estimate to validate compliance of tasks with their
execution-time budgets, assigned early in the development process to allow construction of
the task schedule. This validation is done by recording end-to-end execution times under
quite extensive and demanding testing conditions; the longest time is generally referred to as
the High-Water Mark Time (HWMT). The underlying premise of this approach is that
the testing regime is representative of real system operation and that, with enough testing,
the HWMT lies in close proximity to the actual WCET. However, there are a number of
disadvantages of such a simplistic approach:
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No understanding is given regarding the path through the software which leads to the
HWMT and engineers therefore lack insightful knowledge of where time is spent. This
information is crucial in optimisation efforts, particularly when the HWMT exceeds the
budget of a task.
Although pessimism is eliminated (either the test harness captures the actual WCET
or an uncomputable degree of underestimation exists), a bound on the actual WCET
cannot be guaranteed without full path coverage and, perhaps more significantly, full state
coverage at the hardware level. Acknowledging this issue, industry adds some percentage
to the HWMT in order to bypass any underestimation, and considers this as the WCET
estimate. Even with this additional step there is still no guarantee that the actual WCET
is bounded; it could even lead to underutilisation of system resources if, in fact, the actual
WCET has been captured but the safety margin is too excessive.
In safety-critical systems, MC/DC [5] is normally the coverage metric that needs to be
satisfied before testing halts. In effect, properties affecting the execution time, such as
hardware effects and loop iterations are neglected. This is a considerable anomaly given
the increasing complexity of modern embedded hardware and the jitter it introduces into
the execution time profile of a task.

An alternative to high-water marking, offered by Hybrid Measurement-Based Ana-
lysis (HMBA), is to measure execution times of small program segments and then combine
these data in a final calculation stage, to deliver a WCET estimate. The necessary meas-
urements are extracted from a timestamped trace of execution, which a running program
emits when instrumented. Because instrumentation code is traditionally compiled into the
executable, it has been intrusive by nature. On the one hand, this provides portability and
flexibility. On the other hand, it manifests the probe effect where normal (i.e. without
instrumentation) register and cache usages are displaced, a timing penalty is incurred, and
overall code size increases.

Recent years, however, have seen an increasing number of embedded micro-controllers
feature some level of trace capability (Nexus [1] adopted by Freescsale, ARM Embedded
Trace Macrocell [8], and others) without the requirement for software instrumentation. A
suitable debugger can then reconstruct exactly the sequence of instructions executed together
with timestamps. This trace of instructions and timestamps provides an ideal foundation
for WCET analysis at the object-code level, having great detail while eliminating the probe
effect.

But object-level WCET analysis has two major drawbacks. First, many current HMBA
techniques [6, 7, 3], and commercial HMBA tools such as RapiTime, derive their program
model from hierarchical source code structures. They cannot, therefore, directly analyse the
hardware-generated trace of object code. Second, even if that first obstacle were overcome,
it remains expensive for engineers to interpret the results, such as which code is on the
worst-case path, since their expertise concerning the application is usually at the source code
level.

In this paper, we present a mechanism by which HMBA can still be performed at the
source level when the timestamped trace has been collected at the object level by state-of-
the-art hardware. This allows existing HMBA techniques to operate without the need for
intrusive instrumentation and thus without the probe effect.

The remainder of this paper is structured as follows. Section 2 gives more background on
HMBA, in particular discussing mechanisms available to obtain timestamped traces. Section 3
then shows how an object-code trace can be utilised at the source level and discusses future
issues to be resolved. Next, Section 4 demonstrates the improvement gained by the proposed
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method over existing intrusive instrumentation. We finally conclude in Section 5.

2 Background and Related Work

2.1 Instrumentation and Tracing
As noted above, HMBA relies on instrumentation points (ipoints) to collect measurements.
Upon execution during testing, these ipoints emit (integer) identifiers and are time stamped
accordingly, resulting in a timestamped trace of execution. The trace is subsequently parsed
to extract both the WCETs of program segments and other path-related information such as
loop bounds (if required).

There are a number of mechanisms available to generate and extract traces:
Simulation: Cycle-accurate simulators, such as SimpleScalar [2], allow individual instruc-
tions to be traced (through the program counter) whereby the simulator provides the
time stamp. However, because a simulator is a hardware model, this method encounters
problems associated with producing a cycle-accurate processor model. This is often very
difficult due to missing or incorrect information [9].
Software: A tailored ipoint routine is inserted into the source code at particular locations.
When an ipoint is hit during execution, it is time stamped on target; traces are stored
internally in a memory buffer to be downloaded on test completion. The advantage of
this approach is that porting to new architectures is relatively straightforward. However,
this results into the probe effect.
Software/Hardware: This is similar to software only instrumentation, except that the
ipoint routine writes its identifier to an I/O port on target. The port is monitored by an
external capture device, e.g. a logic analyser, which timestamps ipoints off target as they
appear and also serves to store the timing traces. Penalties associated with the probe
effect are minimised because the ipoint routine can be reduced to a few instructions.
However, the target must have available and accessible pins to emit the data, which is
not always practical with more advanced processors. It may also be necessary to disable
the cache so that the data written by the ipoint routine is observed on the bus.
Hardware: The probe effect can be prevented with the assistance of on-chip debug
interfaces. In these cases, the trace data are either written to an on-chip trace buffer
for subsequent download, or exported directly in real time through an external port. In
order to limit the size of traces, only the program flow discontinuities are monitored, i.e.
taken jumps. However, bandwidth remains the major technical obstacle because the port
or debugger must keep pace with the rate at which trace data are produced; otherwise,
blackouts arise in which parts of a timing trace are overwritten and essentially lost.

There is clearly a trade-off in using any of the above trace generation methods. On the
one hand, source-level instrumentation provides greater flexibility and is often the most
convenient, but it is handicapped by the probe effect. On the other hand, less intrusive
instrumentation normally demands some type of hardware support.

2.2 Hybrid Measurement-Based Analysis
Although end-to-end testing and HMBA are closely linked, in that they both utilise test
vectors to stress execution times, the latter has the following principal advantages:

Piecing together measured execution times of small program segments with path-specific
information in the WCET calculation alleviates the test harness in two ways. First, it
eliminates the requirement to find a test vector that causes all loops to iterate through



Adam Betts, Nicholas Merriam, and Guillem Bernat 57

their maximum bound simultaneously. By using a program model, HMBA instead
allows loop bounds obtained from SA or end users to be included a posteriori to the
measurement stage. Second, the test harness need not attempt to trigger the WCET
of program segments in the same run, as HMBA multiplexes this information from all
executions before carrying out the WCET computation. Obviously, coverage remains an
issue since the units of computation must be stressed adequately enough to represent
worst-case behaviour, although how this is realised is an open research question.
Increasing the level of instrumentation beyond the start and end of the program allows
valuable information to be extracted, including: the functions executed most frequently
on the path leading to both the HWMT and the computed WCET estimate; the number
of observed loop iterations; which sections of code have been covered by the test harness.
As mentioned above, this information is essential to engineers as it provides insights into
the non-functional properties of the code.

Once the timestamped trace has been generated, the calculation engine is tasked with
producing a WCET estimate; how this is done depends on the type of program model. Much
of the research on calculation engines has assumed a graph-based program model, such as the
Control Flow Graph (CFG), chiefly because CFGs can easily model arbitrary control flow,
including goto-littered code; comparatively, the Abstract Syntax Tree (AST), which is
the de facto tree-based program model, fails or struggles to do so as the hierarchical relation
between program segments is absent.

However, tree-based approaches based on the AST retain a number of advantages. First,
in comparison to the linear programming [13] and path-based [14] calculations of graph-based
program models, low computational complexity is incurred. Efficiency of the calculation is
a specific concern when WCET analysis is integrated into an interactive environment [10]
or when the system has a large code base. Second, in addition to integral values, execution
time profiles derived from measurements can be combined to produce probabilistic WCET
estimates [3, 4]. Third, it is straightforward to relay the longest path returned by the
calculation engine onto the source code.

3 Object-Code Tracing

The normal work-flow of a source-level HMBA tool is to insert ipoints into the code while
the program model, i.e. the AST, is being constructed. As ipoints are positioned, they
are also assigned identifiers. When executed, these ipoints produce a trace of the form
(identifier, timestamp). However, the hardware tracing mechanisms mentioned in the
previous section instead provide a trace of the form (address, timestamp), where address
is the destination of a branch; that is, the identifier of an ipoint is an address. Thus a
source-level HMBA tool is usually unable to consume a trace in this format because there is
no correspondence between the ipoint identifiers assigned and the addresses observed.

Thus the first issue to overcome is the ability for each inserted ipoint to use an address
as its identifier. This can be done using global assembly labels1. That is, global assembly
labels are generated for each inserted ipoint using a macro, an example of which appears in
Figure 1. The resulting addresses of the labels are then passed back to the HMBA tool so
that it can replace the original identifiers of ipoints. With this small step, the HMBA tool is

1 Such a feature has already been implemented by RapiTime in the MERASA project — see
http://www.merasa.org
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#define RPT_Ipoint( I ) \
({ asm volatile (".globl __rpt_ipoint_" # I "\n" \

"__rpt_ipoint_" # I ":" ); \
})

Figure 1 C Macro to Generate Assembly Label Ipoint

able to parse a trace in (address, timestamp) format and therefore perform the WCET
analysis.

It would appear that debug information generated by the compiler could instead be used
to map traces to the source level, rather than global assembly labels. However, in industry,
debug builds are typically only available very early in the development process; this solution
is independent of debug information being available.

The second issue is that hardware debug interfaces only record a sequence of branch
destinations, and not every address which corresponds to an ipoint label. The solution is to
analyse the disassembly for branch instructions and then interpolate the missing instructions
from the trace, recording only those that correspond to ipoint addresses. With both of these
steps, therefore, a HMBA tool is able to consume an object-level trace as produced by a
hardware debug interface.

3.1 Discussion
There are several outstanding issues with the proposed mechanism as summarised in the
following discussion.

3.1.0.1 Processor limitations:

Evidently, our technique is limited to processors that provide tracing facilities. This implicitly
excludes high-end PowerPC architectures which are widely used in the avionics industry and
where there is a strong need for WCET analysis for certification reasons.

3.1.0.2 Loop unrolling:

Optimising compilers often unroll loops [11], in effect replicating the body of a loop a
particular number of times and adjusting the control logic as necessary. This would generate
multiple copies of a global label, which is illegal assembly, and consequently such optimisations
have to be disabled. In any case, such optimisations are normally disabled in safety-critical
systems.

3.1.0.3 Ipoint locations:

Knowledge of the object code also assists in improving the accuracy of source-level instru-
mentation. For instance, consider the source code in Figure 2. Here the intention is to
observe the start execution time of check_sum with the ipoint 2147483643 (through the
function RPT_Ipoint). However, in the compiled object code, shown in Figure 3, this ipoint
appears at address 003f98b4, which is six instructions after the start of check_sum. This
can be resolved by instead assigning the start address of the basic block (which contains the
ipoint label) as the ipoint identifier, rather than the raw address of the compiled label. In
this example, therefore, the ipoint should be assigned identifier 003f989c.
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Uint8 check_sum( Uint8 * msg, Uint8 len )
{

RPT_Ipoint( 2147483643) ;
Uint8 c, i;
c = 0xAA;
...

Figure 2 Example Instrumented C Source Code

003f989c <check_sum>:
3f989c: 94 21 ff d0 stwu r1,-48(r1)
3f98a0: 93 e1 00 2c stw r31,44(r1)
3f98a4: 7c 3f 0b 78 mr r31,r1
3f98a8: 90 7f 00 18 stw r3,24(r31)
3f98ac: 7c 80 23 78 mr r0,r4
3f98b0: 98 1f 00 1c stb r0,28(r31)

003f98b4 <__rpt_ipoint_2147483643>:
3f98b4: 38 00 ff aa li r0,-86
3f98b8: 98 1f 00 09 stb r0,9(r31)
3f98bc: 38 00 00 00 li r0,0
3f98c0: 98 1f 00 08 stb r0,8(r31)
...

Figure 3 Example Instrumented Disassembly
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Note that, when the intention of the ipoint is to record the time at which flow returns to
the calling function, it is more appropriate to use the last address of the containing basic
block as the identifier of an ipoint.

The next step in this work is to distinguish between ipoints corresponding to the beginning
and end of function execution and all others, assigning each of the former its optimal identifier.

3.1.0.4 Trace size:

Tracing at the object-level typically results in very rapid generation of data. For instance,
a processor running at 200MHz, with an average of one branch every 10 instructions and
using 64 bits to record each branch timestamp, would generate 160MB in one second. A
one-hour test would generate around half a terabyte of data. Despite the fact that storage
costs continue to fall, object-level trace data remains difficult and expensive to archive and
analyse. A key step forwards is to interpret the data in real time, removing the need to store
all the trace data.

In 2010, Rapita Systems Ltd is starting a development project, assisted by the UK
regional development agency Yorkshire Forward, to bring together the latest hardware and
software techniques to allow real-time analysis of trace data.

4 Evaluation

To show the benefit of the proposed approach, the techniques described in the previous
section were implemented in the RapiTime toolchain.

We analysed a synthetic in-house benchmark of 226 lines of C code, comprising six
functions, whose functionality is to receive and respond to a number of different kinds of
messages. The benchmark was instrumented using the C instrumenter of the RapiTime
toolkit, which inserted a total of 28 ipoints. Compilation of the instrumented source was
done through a GCC cross-compiler for the PowerPC architecture.

The binary was then wrapped in a test harness and executed on a Freescale MPC565
with a Wuerz evalutation board. The timestamped trace was obtained through a Lauterbach
PowerTrace debugger via a Nexus debug port. Two such traces were obtained: one using an
intrusive tracing mechanism and the other using the approach presented in this paper.

Each of the traces were parsed by RapiTime to produce a WCET estimate and other
timing information for each function. A screenshot of the RapiTime report viewer showing
results of the analysis appears in Figure 4. The most important information appears in the
two stacked views in the centre:
Top view: This shows various execution time data, such as the longest execution time and the

WCET estimate. The root function under analysis is message_receive: the highlighted
times show its longest end-to-end execution time.

Bottom view: This displays the source code and the relative locations of ipoints. In Figure 4,
there is an ipoint at the start of message_receive with identifier 4168328, corresponding
to the address 3f9a88.

A more thorough presentation of the results appears in Table 1, which shows the WCET
estimate for each function in the application obtained from object-level and source-level
instrumentation. As can clearly be observed, every function benefits from the probe-free
instrumentation. For the root function message_receive, the WCET is reduced from
20.339 microseconds to 11.863 microseconds, the former owing to instrumentation overheads.
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This amounts to a ≈ 42% decrease in the overall WCET estimate when using object-
code instrumentation, which is a substantial benefit for a relatively small application, thus
underlining the benefit of adopting hardware debug interfaces in HMBA.

Function WCET Object WCET Source
Instrumentation Instrumentation

message_receive 11.863 20.339
check_sum 7.232 8.732

count_set_bits 4.940 9.232
process_in_buffer 6.858 11.214

send_message 0.746 0.804
simulate_save_to_flash 0.457 0.839

Table 1 WCET Estimates (in Microseconds) for Each Function in Analysed Program

It should be noted, however, that the overheads of the intrusive instrumentation are
unusually high in this application. This is because the code base itself is fairly trivial,
containing several tight loops. Future work will assess the impact of the proposed technique
on a range of more realistic and, in particular, larger examples.

5 Conclusions

State-of-the art HMBA tools such as RapiTime automatically insert software instrumentation
points into the source code while constructing the program model on which they base the
WCET calculation. The biggest drawback of this approach is that the instrumentation adds
an overhead. The probe effect is a key weakness of HMBA tools and an objection to their
uptake, with the overheads not only disturbing the accuracy of the results but even making
the software too slow and/or large to run in the target test environment.

This can be circumvented by instead utilising the trace facilities provided by hardware
debug interfaces. Using object-level tracing, however forces the analysis to that level. This is
especially inconvenient for commercial tools, which normally present the calculated data at
the source level, since this is where most engineers retain expertise. This paper presented a
solution to the problem by showing how to match the addresses of instrumentation points in
the program disassembly to source lines.

We showed some initial results using the presented approach: for a small application,
there was a ≈ 42% reduction in the WCET estimate in comparison to using intrusive
instrumentation. The ability to perform analysis without the probe effect is a significant
advance in the maturity and applicability of HMBA tools and plays a vital role in their wider
adoption in industry.
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Figure 4 Screenshot of RapiTime Report.
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Abstract

The present paper investigates the influence of the execution history on the precision of measurement-

based execution time estimates for embedded software. A new approach to timing analysis is

presented which was designed to overcome the problems of existing static and dynamic methods.

By partitioning the analyzed programs into easily traceable segments and by precisely controlling

run-time measurements with on-chip tracing facilities, the new method is able to preserve inform-

ation about the execution context of measured execution times. After an adequate number of

measurements have been taken, this information can be used to precisely estimate the Worst-Case

Execution Time of a program without being overly pessimistic.
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1 Introduction

Information about the execution time of programs in embedded systems must be available

at several design stages. During the initial phases, a rough estimate of the execution times

should be available so that components which fit the expected workload of the system can

be chosen. In the final phase of a project, precise execution times must be known in order

to verify that the system fulfils all its timing requirements. The increasing complexity of

real-time systems makes reasoning about the execution time of embedded software more and

more challenging. This particularly holds for the Worst-Case Execution Time (WCET) of

a task since it might only occur under rare circumstances which are caused by a nontrivial

interaction of system components.

Existing methods for WCET analysis can be divided into static and dynamic methods.

Static timing analyses try to determine a safe upper bound for all possible executions of

a given program. In contrast, dynamic methods use measurements taken during a finite

number of actual executions to determine an estimate of the WCET. On current processor

architectures, both methods do not always produce satisfying results. The interaction of

performance enhancing features in modern processors makes it very unlikely to observe

the worst-case execution during a few test runs. Hence measurement-based analyses might

underestimate the WCET considerably. Furthermore, existing methods are often not able to
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represent the performance gain from caches (cache effects) precisely. If only the worst-case

execution time is considered for each basic block in a loop body, a performance increase in

following iterations due to caching cannot be represented. This can make dynamic estimates

very pessimistic, too. Static analyses must use (safe) approximations for the potential states

of the analyzed system as the state space can grow very large for sophisticated architectures.

These approximations are necessary to make the computation of WCET estimates feasible,

but the increase of the reported bounds and the resulting imprecision can restrict their

practical use.

This paper presents a context-sensitive analysis of accurate instruction-level measure-

ments which can provide precise worst-case execution time estimates. The notion of context-

sensitivity is a well-known concept from static program analysis. It has been shown that

the precision of an analysis can be improved significantly if the execution environment is

considered. This especially holds if the analysis does not only consider different call sites but

also distinct iterations of loops (see [12]), as this allows the consideration of cache effects. Up

to now, context information is mainly used in static timing analysis. The results presented

in this work suggest that the precision of measurement-based timing analyses, too, can be

increased considerably by incorporating context information.

Recent developments in debug hardware technology allow the creation of cycle-accurate

traces with a fully programmable on-chip event logic [13]. The increasing availability of these

tools for instruction-level measurements and the precise timing information they provide

motivate the use of methods from static timing analysis for measurement-based approaches.

As dynamic methods for WCET estimation can be adapted to new processor architectures

much more easily than the models used in static analyses, this would reduce the initial

investment necessary for performing exact timing analyses.

The influence of context information on the precision of execution time estimates is not

only interesting for WCET analysis. All forms of execution time inspection on complex

architectures might be improved by incorporating context information, even if the worst-

case is not (yet) of interest, like during design space exploration in an early development

phase.

The remainder of this work will be organized as follows. The next section will list some

related approaches for dynamic WCET analysis. Section 3 introduces a new context-sensitive

method for measurement-based execution time analysis. In the fourth section, experimental

results with this method will be presented. The last section gives a summary of the work

and the impact of the results.

2 Related Work

A complete overview of existing methods for WCET analysis can be found in [20]. This

section will focus on measurement-based methods. One of the first attempts to consider

the execution context of execution times was the structure-based approach, a technique for

static timing analysis proposed in [16], but it only aimed at a more precise combination

of execution times from individual program parts. Similar techniques are still used for

measurement-based WCET analysis, e.g. in [5], but they lack the ability to reflect the

interaction of individual program parts which is mandatory to represent the influence of

the execution history for example due to cache effects. An extension to the structure-based

approach which can distinguish execution times of loop iterations is described in [6], but

there is no practical evaluation of the effects on the execution time estimates.

To overcome the problem of exhaustive measurements, several solutions have been de-
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veloped (e.g. [7] and [18]) that try to partition a program into parts which can be measured

more easily. These approaches usually assume that the system can be brought into a worst-

case state before taking measurements, e.g. by clearing the cache. This assumption may hold

on simpler processors, but it is hard to fulfil in complex systems as it might not be clear

what this state looks like due to a complex interaction of system components [9]. Modifying

the system state can also make the execution time estimates very pessimistic, for example

if the cache is cleared too often during the measurements. Further solutions include the

automatic generation of input data to enforce a worst-case execution [19, 18] or the probab-

ilistic analysis of measurements [5]. The use of results from a cache analysis to guarantee

that a sufficient number of measurements have been performed was described in [14]. An

approach based on game theory which can represent varying execution times for different

loop iterations is presented in [15]. It is also based on program partitioning, an automatic

generation of input data and requires that all loops in the analyzed program can be un-

rolled completely. In [11] constraint logic programming is used to model context-sensitive

execution times based on constraints that are derived from an execution time dependency

analysis of program traces.

Although only an incomplete overview of methods for measurement-based timing ana-

lysis can be given here, the main concern of existing approaches seems to be to enforce

the observation of a worst-case execution. Furthermore, many techniques require that the

analyzed program is changed since instrumentation code must be added. In contrast to this,

the following section will introduce an approach which aims at the precise combination of a

large number of measurements. By using evaluation boards which provide hardware support

for controlling the collection of trace data, probe effects are avoided since code instrument-

ation is not necessary. Furthermore, steering measurements precisely during runtime allows

increasing the precision of execution time estimates since cache effects can be represented

by distinguishing the execution history of an observed code region.

3 Proposed Method

This section presents a new concept for measurement-based timing analysis. The method

works on the interprocedural control flow graph (ICFG) of a program executable and re-

quires measurement hardware that can be controlled by complex trigger conditions. The

development of the approach was motivated by the limited size of trace buffer memory which

is available in current hardware for on-chip execution time measurements. Measurement

hardware which stores traces in an external memory overcomes this problem by sacrificing

accuracy. Due to bandwidth constraints these traces only store certain instructions, for ex-

ample taken branches. Additionally, timestamps for these instructions are often only created

when a partial trace is transfered from a small on-chip buffer to the large external memory.

Hence deriving the execution time of every single instruction is hardly possible. As a con-

sequence of these limitations, it is not feasible to determine context-sensitive execution times

from end-to-end measurements, since it is not possible to create cycle-accurate end-to-end

traces for programs of realistic size, i.e. traces containing a timestamp for every executed

instruction. Instead of using traces of complete program runs, this work investigates the

use of the programmable trigger logic in state-of-the-art evaluation boards for embedded

processors to create context-sensitive program measurements. Current tracing technology,

like the Infineon Multi-Core Debug Solution [13], allows considering the execution history

of a program before starting a measurement run. This is achieved by dedicated event logic

in the actual hardware which can be used to encode state machines to model the program



Stefan Stattelmann and Florian Martin 67

(a) ICFG with virtual inlining (b) Partitioning into segments

Figure 1 Execution contexts and program partitioning

state. These possibilities motivated the development of an analysis which makes use of this

additional logic to generate context-sensitive traces despite the limitations of the trace buffer

size. The analysis is divided into several phases:

Initially, the ICFG is created and partitioned into program segments in such a way that

every possible run through the segments can be measured with the available trace buffer

memory.

The information gathered during the partitioning phase is used to generate trace auto-

mata that will control the measurements.

Taking measurements requires a sufficiently large number of actual executions of the

analyzed program on the target hardware.

After the measurements have been taken, the context-sensitive timing information for

each basic block of the program can be extracted and annotated to the ICFG. Further

computations then yield the worst-case path through the ICFG and an estimate of the

worst-case execution time of the program.

3.1 Control Flow Extraction

Initially, the control flow is extracted from the program executable and its ICFG is construc-

ted. To represent the execution context of program parts precisely, the concept of virtual

inlining, virtual unrolling (VIVU) is used [12]. VIVU applies function inlining and loop

unrolling on the level of the ICFG. Thus the ICFG can contain several copies of the same

basic block for which different execution times can be annotated. To consider the execution

history of these duplicates, the control flow graph is extended with additional information

that represents the execution context. A call string is used to model a routine’s execution

history. Call strings can be seen as an abstraction of the call stack that would occur during

an execution of the program. In this work, a call string will be represented as a sequence of

call string elements. A Call string element (b, r) is a pair of a basic block b and a routine

r which can be called from b. Only valid call string elements will be allowed, meaning it

must be possible that the last instruction of the basic block b is executed immediately before

the first instruction of routine r. For the entry routine of the analyzed task (e.g. main in a

standard C program) there is no execution history as the execution is started by calling the

respective routine. This context is described by the empty call string ǫ. It will be omitted

in the following examples. The intuition behind this representation of an execution context

is that whenever a routine is called, the call string is extended with another element to
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(a) Original CFG (b) First iteration unrolled

Figure 2 Extension of the CFG by virtual unrolling

describe the context of the function body. Therefore extending the call string works sim-

ilar to extending the call stack during program execution. Since the execution history of

a routine can be very complex, its call string representation might become very long. In

order to achieve a more compact representation of execution contexts, the maximal length

of call strings will be bounded by a constant k ∈ N0. For call strings which describe a valid

execution but exceed the maximal length, only the last k call string elements will be used

to describe the context. In the following examples a call string length of one will be used.

Figure 1a depicts an example of virtual inlining in an ICFG by duplicating routine bod-

ies for every call site. Intraprocedural edges are drawn with solid lines, while the edges

describing a function call are represented by dashed lines. Routines are not explicitly high-

lighted in the ICFG, but every routine is assumed to have a unique entry node, which is

the target of the call edges, and an artificial exit node through which the routine must be

left. The effect of virtual unrolling is shown in in Figure 2. Virtual unrolling also extends

the ICFG by duplicating nodes. Additional precision is gained by extracting loops from

their parent routine and treating them like recursive routines. This allows a more precise

classification of the execution history than a simple calling context when searching for the

WCET path through the program, since varying execution times in different loop iterations

can be represented independently from the parent routine.

3.2 Program Partitioning

To cope with the limited memory for trace data, the ICFG is partitioned into program

segments. These segments consist of a start and an end node in the graph which must fulfil

the condition that the longest path in terms of executed instructions (not execution time)

between them is smaller than or equal to the number of instructions for which timestamps

can be stored in the trace buffer. Additionally, both nodes must be part of the same

execution context. Segments can either include all nodes which lie on the interprocedural

paths between the start and the end node or they can be restricted to the nodes on the

intraprocedural paths. By excluding calls to other routines, the size of a program segment

can be reduced, but information about the execution context can be preserved in the traces.

After this partitioning, each node of the ICFG is covered by at least one program segment and
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it suffices to perform measurements for individual segments to determine context-sensitive

execution times for every basic block.

The program from Figure 1a will be used to illustrate the concept of program segments.

Assume the program is to be traced with a trace buffer which can hold timestamps for at most

6 instructions. In order to extract cycle-accurate and context-sensitive timing information,

at least 3 program segments are necessary. Each of these segments is measured individually

and the results are combined during a post-processing phase. Figure 1b illustrates one

possible partitioning. In this example, a separate segment is created for the body of the

routine addnb at each call site. Additionally, the segment for the top-level routine main is

assumed to be measured without the routine it calls. This assumption makes it possible

to handle the limited trace buffer. However, to fulfil this assumption during an actual

measurement run, it must be possible to trigger the measurement hardware precisely.

3.3 Trace Automata

For each program segment, a trace automaton is generated to control the measurement runs

of the respective segment. These state machines encode the conditions which describe the

execution history of each segment, i.e. which instructions must have been executed before the

execution context of the observed program run matches the program segment. Monitoring

the execution of the program before starting a measurement allows preserving information

about the execution context even if the trace does not contain the complete execution history

of the analyzed code regions. The automata are constructed from the execution history of

the respective segments, which is described by a sequence of call sites and loop entries (call

string). This abstract description of trace preconditions is translated to the event logic of

the evaluation board using a software debugger [4] which is then used to collect measurement

data.

For the description of an execution context, each element of a call string describes two

conditions in terms of executed instructions: the call instruction in the call block must be

executed immediately before the first instruction of the called routine. Additionally, the

sequence of the elements constrains the order of these conditions, i.e. the order of the calls.

In principle, they can be directly translated to a trace automaton which changes its state

depending on whether the correct routines are called at the appropriate call sites. But

since most call sites call exactly one routine, the automata created by this strategy are

not minimal. On the other hand, there might be program segments which have a common

call string, but lie in a different instruction address range (e.g. if a routine gets partitioned

into two segments). Hence it is not sufficient to consider only the context description when

constructing trace automata.

To generate a trace automaton for measuring a program segment, the first step is to

create states and transitions which correspond to the constraints described by the call string

representation of the segment’s execution context. After that, states must be added to

express which instructions on the paths through the segment should be traced. The complete

approach proceeds as follows:

Initially, the automaton has a single state, no transitions and generates no output. Then,

at least one state for each element of the call string is added to the automaton. How many

states are added depends on the properties of the call site described by the string element.

If the call described by the element has only one possible destination, it suffices to use the

address of the call block as condition for the transition to the next state. Similarly, if this

is not the case but the destination routine is only called at this call site, it is enough to

add a single state which is entered as soon as the entry address of the respective routine is
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(a) Basic block calls a unique routine (b) Routine is only called from one basic block

(c) Several callers and callees

Figure 3 Translation of a call string element

encountered. For call string elements which fulfil neither of the conditions, both states have

to be added to the trace automaton to model the requirements for the execution history

described by the call string elements. These three cases are illustrated in Figure 3 for the

one-element call string (0x4000, addnb) and the routine addnb from Figure 1a which starts

at the memory location 0x4018 and returns at address 0x4028.

Finally, the state for actually storing trace data is added. For program segments which

cover all routines that are called on the paths through the segment, this can be done by

adding a single state which is entered as soon as the start block is entered and left when

the end block is left. In this state, all instructions which will be executed will also be stored

in the trace buffer. For segments which exclude called routines, things are slightly more

complicated and an additional state gets necessary. The tracing state is constructed as

before, but the additional state is entered when calls are executed within the segment (i.e.

when the address interval for the segment is left) and no trace data will be generated while

the automaton is in this state. Note that no extra state for storing trace data is necessary

if the program segments covers a complete routine and all its calls. In this case, tracing can

start as soon as the addresses for all call string elements of the execution context have been

processed by the automaton. This is also illustrated in Figure 3.

3.4 Trace Data Generation

Taking measurements requires a sufficiently large number of actual executions of the ana-

lyzed program on the target hardware. The approach relies on the assumption that all

worst-case execution times of each basic block in every execution context were observed

during the measurements to produce a safe estimate. As the program under consideration

is not modified in any way, measurements should be taken under realistic conditions to

produce execution time estimates that match the expected workload. Using typical inputs

during a large number of measurements should result in estimates close to the actual WCET.

Controlling the generation of trace data with state machines offers the advantage that the

measurement logic can wait for code region which are executed rarely before triggering the
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trace generation. Since this process can be automated, achieving a sufficient level of code

coverage is facilitated, but not guaranteed.

3.5 Timing Extraction

After a set of traces has been generated for each of the segments into which the program of

interest was partitioned, the maximal execution time for each basic block is extracted from

the measurements. As the traces are assumed to be cycle-accurate, this is a straightforward

process since every instruction which gets executed during a measurement run must also

be contained in the respective trace. Additionally, the traces must contain a (relative)

timestamp for each instruction. Since tracing is controlled by (an implementation of) a

trace automaton, the precise execution context of the trace data is known. Hence the

execution time for each basic block can be extracted from a trace by simply going through

the trace and the ICFG in parallel. Whenever a new basic block is entered in the trace, the

respective node must be found in the ICFG. Depending on the type of program segment

which is annotated, this search for a successor must be carried out on the whole ICFG or just

within the current routine, i.e. without following call edges. The execution time of a basic

block is determined by subtracting the timestamp of its first instruction from the timestamp

of the first instruction of its successor block. As the context in which a trace is generated is

preserved while creating the measurements, basic block execution times from the trace are

only annotated to those nodes with matching context. In case of virtual inlining, this means

that execution times are only annotated to those nodes in the ICFG at the correct call site,

but not to the nodes in other contexts (although these nodes represent the same basic blocks

on assembly level). Depending on the level of unrolling, the execution times of nodes within

a loop can also be assigned to distinct iterations. Hence the worst-case execution time of

nodes in the first iteration of a loop, which might generate many misses in the instruction

cache, can be easily separated from the remaining iterations. Further iterations are usually

not expected to suffer the same performance penalty from cache misses. By duplicating these

nodes, the WCET estimates get more precise compared to approaches which cannot make

this distinction. In contrast to the method presented in [11], no additional processing of the

traces has to be performed to derive these dependencies between basic block execution times.

Additionally, the worst-case execution time of the whole program can still be computed by

implicit path enumeration [10] and there is no need to resolve additional execution time

constraints using constraint logic programming.

For each node in the ICFG which was covered by a trace, this provides the execution time

for this particular run. Under the assumption that all local worst-cases were observed during

the measurements, meaning that the worst-case execution time of each node is covered by

at least one of the traces, the maximum from all of the execution times equals the worst-

case execution time. All nodes in the ICFG which never occurred in one of the traces are

assumed to be never executed during any execution of the program. If a sufficiently large

number of measurements has been taken under realistic conditions, taking the maximum of

the measured execution times for each node is likely to provide the worst-case execution time

or at least a realistic estimate of it. Nevertheless, the presented work provides no means to

enforce these conditions.

3.6 Cache Analysis

The design of the proposed method allows an easy integration of static analyses to make the

measurement phase more efficient. To demonstrate this, the cache analysis described in [8]
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Figure 4 Comparison of context-sensitive and end-to-end measurements

has been adapted to classify the instruction cache behavior of different execution contexts.

This classification is achieved by comparing the number of potential and guaranteed cache

hits and misses for different execution contexts of a basic block. If two program segments

from the same code region, but with a different execution history, will exhibit a (roughly)

identical cache behavior, they will not be distinguished during the measurements. By joining

some of the execution contexts generated by the VIVU approach, the number of measure-

ments can be reduced without influencing the precision of the WCET estimates. A detailed

description of this optimization is beyond the scope of this paper, but further details can be

found in [17].

4 Experimental Results

The proposed method was implemented as an extension of the AbsInt aiT WCET Ana-

lyzer [1] and tested with an Infineon TriCore TC1797ED evaluation board. Several com-

mon WCET benchmarks could be successfully analyzed, in particular programs from the

Mälardalen WCET Benchmark Suite [3] and the DEBIE-1 benchmark [2], which is an adap-

ted satellite control application. No changes to the hardware state or the analyzed software

were performed during the experiments. The programs were simply loaded into the flash

memory of the evaluation board and then measured several times successively. Input data for

the programs did not have to be generated as this was already handled by the benchmarks.

For an initial test, the estimates provided by the implementation were compared to

WCET estimates based on a number of simple end-to-end measurements. The result of this

comparison is shown in Figure 4. Estimating the worst-case execution time of programs
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Figure 5 Improvement of WCET estimates through context information

based on measurements is problematic as it usually cannot be guaranteed that the worst-

case has been covered. This was demonstrated by the test case HandleTelecommand from

the DEBIE-1 benchmark: though a considerable effort was made for the measurements, the

observed end-to-end execution times were considerably smaller than the context-sensitive

WCET estimates. Manual examination of the traces showed that some routines which were

on the WCET path reported by the context-sensitive approach were never executed during

the end-to-end measurements. Hence this test case showed that for programs which rarely

execute the routines which are responsible for the worst-case execution, the presented ap-

proach is superior to simpler methods. The program partitioning and the precise control over

the measurement runs allows the measurement hardware to wait for these rarely executed

program parts before starting the actual trace. Nonetheless, the prototype implementation

reported some WCET estimates which were smaller than the maximal execution time ob-

served during the end-to-end measurements. One reason for this is that the measurement

hardware sometimes did not start the traces immediately after they were triggered. As a

result of these delays, some basic blocks were never completely covered by the measure-

ments and thus the execution time was underestimated. As the number of measurements

which were taken during the experiments was relatively small, insufficient coverage of critical

program parts is another potential cause of the underestimation.

The effect of context information for measurement-based execution time estimation was

investigated by using the same set of trace data with and without the consideration of

the execution history (Figure 5). A smaller number of measurements was performed for

these experiments than for the previous ones as the focus was not on precisely estimating
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the WCET (i.e. covering all local worst-cases), but on investigating the effect of context

information. For this reason, some results presented in Figure 5 differ slightly from previous

estimates. The context-insensitive analysis uses the maximal execution time of each basic

block found in the traces and annotates this value to every copy of the respective basic

block in the ICFG. On the other hand, the context-sensitive analysis was able to annotate

smaller execution times to some of the basic block instances since it is able to preserve

information about the execution history, e.g. by distinguishing the first from all remaining

iterations of a loop. For two out of three test cases, the context-sensitive approach seems

to be able to represent cache effects more precisely. Hence, smaller WCET estimates are

reported. This effect could not be observed for the smallest of the test cases, probably

since the execution time of the program does not benefit from caches due to its linear

structure. The results of this comparison suggest that the difference between a context-

sensitive and a context-insensitive analysis can be substantial. By increasing the number of

measurement runs, this effect can only be intensified, as for every increase in the context-

sensitive estimate, the context-insensitive estimate must grow as well. Thus the execution

context of execution time measurements should be preserved whenever possible. If this is

not done, cache effects cannot be determined correctly, which is why a context-insensitive

evaluation might introduce a severe amount of pessimism to the execution time estimates,

which renders them less precise.

5 Conclusion

This work proposed a new approach to measurement-based timing analysis which makes use

of techniques from static program analysis. The results obtained during the experiments

show that state-of-the-art measurement hardware can be used to determine WCET estimates

automatically. To get precise results, a large number of measurements should be performed

since the method relies on the assumption that the local worst-case for each basic block was

observed during the measurements. Although the new approach seems to be more robust

and more precise than existing methods for measurement-based timing analysis, it does not

overcome their inherent problems, like the dependence on input data. However, controlling

the collection of trace data precisely allows weakening the influence of these problems to the

WCET estimate, e.g. because it is now possible to facilitate measurements within program

parts or execution contexts which are executed very rarely. While the precise control of trace

data generation makes it more likely that local worst-case executions can be observed, the

use of context information allows the precise combination of partial execution times. This

makes the calculated WCET estimates less pessimistic.

The outcome of the experiments also shows that only measuring each basic block of-

ten enough, which is the prevailing paradigm for measurement-based timing analysis, is

not enough to determine precise execution time estimates as the execution history might

have a significant influence on them. For static timing analysis this is a well-known fact,

but the presented results suggest that all techniques for reasoning about software execution

times on complex hardware can benefit from the use of context information. This includes

measurement-based execution time analysis as well as techniques for execution time estim-

ation in a design space exploration or simulation environment.

As a complex event logic for trace data generation is not always available, measurement-

based methods for WCET analysis could try to reconstruct context information from trace

data instead of controlling its creation. This should still improve the precision of the estim-

ates, but would also work with simpler measurement facilities. Extracting a context-sensitive
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worst-case execution time for each basic block from the trace data has the additional be-

nefit that only one value has to be stored for every execution context. As more traces

are generated, these values are only updated if a longer execution time has been observed.

All execution times which are below the worst-case can be discarded without influencing

the final result. This allows the efficient parallelization of trace data generation and tim-

ing extraction. Additionally, this approach can also help to reduce the tremendous storage

requirements which measurement-based methods for WCET analysis often have.
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Abstract
Calculating the worst-case execution time (WCET) of real-time tasks is still a tedious job. Pro-
grammers are required to provide additional information on the program flow, analyzing subtle,
context dependent loop bounds manually. In this paper, we propose to restrict written and gen-
erated code to the class of programs with input-data independent loop counters. The proposed
policy builds on the ideas of single-path code, but only requires partial input-data independence.
It is always possible to find precise loop bounds for these programs, using an efficient variant
of abstract execution. The systematic construction of tasks following the policy is facilitated
by embedding knowledge on input-data dependence in function interfaces and types. Several
algorithms and benchmarks are analyzed to show that this restriction is indeed a good candidate
for removing the need for manual annotations.

Digital Object Identifier 10.4230/OASIcs.WCET.2010.77

1 Introduction

Worst-Case Execution Time (WCET) analysis is concerned with determining an upper
bound for the time needed to execute a task or procedure on a particular architecture. It
is a necessary prerequisite for verifying that a system meets its timing specification. A
widely used approach for WCET analysis is to analyze the set of execution paths and the
timing of instruction sequences separately. The latter also includes the analysis of hardware
components with global state, such as instruction and data caches or pipelines. Finally, the
results of both the high-level and low-level analysis are fed into a solver, which computes the
maximum execution time [12].

Flow facts are constraints that describe restrictions on the set of possible execution
sequences. The path analysis has to determine a set of finite execution sequences as an
overapproximation to all possible execution paths. As each considered execution path has to
be finite, it is necessary to bound loop iteration counts and recursion depths. Together with
information about the target of indirect jumps, these bounds are sufficient and necessary
to derive some WCET bound. Loop bounds are either detected using an automated loop
bound analysis, or are specified by the programmer through annotations.

WCET analysis is primarily concerned with the execution time of machine code on one
particular architecture. Therefore, knowledge about the execution paths of a task is only
useful if it can be mapped to machine code in a reliable way. Due to compiler optimizations,
source code annotations are difficult to map to machine code. Annotations on the assembler
level are difficult and tedious to write, and cannot be reused when the program is recompiled.

One solution to this dilemma is to have both a language that allows to integrate, test
and verify flow information, and compilers that are aware of these flow facts, and transform
them into flow facts on the machine code level [7, 3]. While highly desirable, flow-fact aware
compilers are still rare. More importantly, source code annotations tend to be error prone,
and often stay untested.
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Another potential solution to eliminate the need for machine code level annotations is
to derive all necessary flow facts automatically using an automated loop bound analysis. A
variety of dataflow techniques has been proposed and implemented (e.g. [8]), as well as more
expensive methods such as symbolic model checking. The problem with these techniques
is that it is hard to predict whether they will find all necessary flow facts. In the fields
of compiler optimization and testing, where most techniques were developed, a successful
analysis is useful, but not crucial for correctness. In the WCET analysis domain, however,
failing to derive loop bounds requires the user to resort to manual annotations.

We think that being unable to predict the success of loop bound analysis is a major
obstacle for building systems that do not depend on user annotations. While for arbitrary
code, there is little hope to find all necessary flow facts automatically, the situation is different
if the implementation has to follow certain rules. Single path code [9] is characterized by the
fact that there are no input-data dependent decisions and consequently only one possible
execution path. For single-path code, all flow facts can be obtained by simply executing
the program and recording the execution trace. Moreover, it is possible to transform all
programs with known loop bounds to single-path form [10]. However, the single path policy
is perceived to be too restrictive, as it does not allow any input-data dependent control flow
at all.

In this paper, we propose a formal code policy less restrictive than single path, which does
not ban the use of all input-data dependent control flow decisions. It e.g. allows to use state
machines, without the need to transform the corresponding dispatch table to non-branching
code, as required by the single-path concept. The policy is still sufficiently restrictive to
guarantee that a simple and efficient form of abstract execution [4] will find the flow facts
necessary for bounding the execution time.

Intuitively, the policy presented in this paper requires that all loops have at least one
exit condition independent of input data. We present a formal definition of input-data
dependence, and automatically classify input-data independent decisions. To this end, we
use a program analysis technique which is similar to the one given in [5], but provides a
more liberal definition of input-data dependence. Furthermore, the notion of input-data
independence can be included in the application programming interface (API), facilitating a
systematic construction of programs known to be analyzable.

As an example, compare the two implementations of binary search given in Listing 1a
and Listing 1b, assuming that the size of the array is known. Both implementations have a
similar performance, but different characteristics when it comes to loop bound analysis. The
classic implementation in Listing 1a requires a relatively complicated proof to establish the
loop bound. In contrast, it is easy to calculate the loop bound for the implementation in
Listing 1b. If the size of the array is input-data independent, the second implementation
agrees with the proposed policy. The single path implementation, which allows to calculate
the exact number of iterations for a given array size, is shown in Listing 1c.

The crucial question deciding the acceptance of this methodology is whether it is too
restrictive or not. To this end, we argue that many algorithms we believe to be useful in
typical hard real-time systems can indeed be designed to follow the policy in a natural way.
Furthermore, it is possible to transform manually annotated loops into loops with an input-
data independent exit condition. While this does not solve correctness and maintainability
problems of annotations, it shows that all tasks can be written in a way adhering to the
policy.
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int bsearch_std (int arr [], int N, int key)
{

int lb = 0;
int ub = N - 1;
while (lb <= ub)
{

int m = (lb + ub) >>> 1; /* unsigned shift */
if (arr[m] < key) lb = m+1;
else if (arr[m] > key) ub = m -1;
else return m;

}
return -1;

}

(a) Dependent loop counter

int bsearch_idi (int arr [], int N, int key)
{

int base = 0;

for (int lim = N; lim > 0; lim >>= 1)
{

int p = base + (lim >> 1);
if (key > arr[p]) base = p + (lim &1);
else if (key == arr[p]) return p;

}

return -1;
}

(b) Independent loop counter

int bsearch_sp (int arr [], int N, int key)
{

int base = 0;
int r = -1;

for (int lim = N; lim > 0; lim >>= 1)
{

int p = base + (lim >> 1);
if (key > arr[p]) base = p + (lim &1)
if (key == arr[p]) r = p;

}
return r;

}

(c) Single path

Listing 1 Different Implementations of Binary Search
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Outline

In Section 2, we discuss the notion of input-data dependence, and give a formal definition,
which is easy to check both manually and automatically. Section 3 defines the class of tasks
with input-data independent loop counters, and shows how to extend function interfaces and
the type system to capture the intended input-data independence of variables. In Section 4,
we propose a simple and efficient abstract execution framework to extract precise loop bounds.
In Section 5, examples of algorithms and real-time benchmarks are evaluated with respect to
the policy. Finally, Section 6 discusses future work and concludes the paper.

2 Input Data Independence

To analyze the WCET of a function, it is in general necessary to assume additional restrictions
on the initial state of variables. For example, the execution time of a function performing a
binary search depends at least on the size of the input array. The tasks scheduled in hard
real-time systems, however, must always have an absolute WCET bound, which is provided
as input to the scheduling algorithm. The policy presented in this paper requires certain
variables to be input-data independent with respect to real-time tasks.

An expression is input-data independent if its value at a specific instruction of one
execution trace does not depend on the environment. This includes dependencies on sensor
values, timers and other values obtained from outside the system, as well as dependencies on
other tasks or the runtime system, for example due to shared variables.

This would be the ideal notion of input-data independence, but it is intractable to check
automatically. For example, if an arbitrary function f(x) returns a constant independent
of its parameter x, then f(x) is input-data independent even if x is a value obtained from
the environment. But deciding automatically whether the result of some arbitrary function
has a dependency on one of its inputs is not possible in general. We do not want to be too
restrictive either: An expression should not be unconditionally classified as being input-data
dependent only because one decision on the path to the corresponding instruction was.

For these reasons, we define input data dependence in terms of dataflow equations, which
can be easily checked by machines and are still comprehensible by humans.

There is already a close correspondence between data dependencies in static single
assignment (SSA) form [1] and input data dependencies. In SSA form, the dependencies
between the uses of a variable and its definition are made explicit by subscripting variables
with an index reflecting their definition site, and adding dedicated statements for merging
reaching definitions. Dependencies due to control flow decisions and due to the mutation of
fields or array elements are not captured by SSA though.

In Figure 1, the source language for the analysis is defined. The statement v := read
assigns v to a statically unknown value obtained from an interaction with the environment.
The language includes support for reading and writing elements of arrays and fields of
composite types. Variable definitions are in SSA form, i.e. each variable only appears once
on the left-hand side of an assignment, and definitions reaching an use site are explicitly
merged by so called φ functions.

We now define input data dependence in terms of an operator A, which maps each
statement to one or more dataflow equations. Following [5], the domain of the analysis is the
semilattice {ID, IDI}. A variable vi is input-data independent if there is a solution to the
data-flow equations listed in Figure 2 with vi = IDI, and input-data dependent otherwise.
If a variable depends on two or more other variables, it is input-data independent only if all
variables it depends on are. Therefore we define ID u IDI = IDI u ID = ID.
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v := c Assign v to an integer constant
v := read Assign v to a value obtained from the environment
v := v1 ◦ v2 Assign v to v1 ◦ v2, with ◦ ∈ {+,−, ∗, <,≤,=, AND, OR, XOR}
v := v1[v2] Assign v to the element at position v2 of the array v1

v[v1] := v2 Set element v1 of the array v to v2

v := v1.F v is assigned to the field F of of v1

v.F := v1 The field v.F is assigned to v1

v := φ(v1, . . . , vn) v is the reaching definition from the set {v1, . . . , vn}
bz v Conditional branch, following the “true” edge if v = 0

Figure 1 The input language for input-data dependence analysis

The equations dealing with constants, environment interaction and binary operators are
straightforward. Dependencies between control-flow decisions and φ functions are defined in
terms of decision branches. A decision branch of y := φ(x1, . . . , xn) is a conditional branch
bz vc, which has a direct influence which definition of x will reach the merge point defining
y. If bz vc has an influence which definition reaches y := φ(x1, . . . , xn), y not only depends
on {x1, . . . , xn}, but also on the condition variable vc.

Formally, bz vc is a decision branch if there are two paths p1 and p2 starting at bz vc
and a variable xi such that (a) p1 and p2 only have the first statement (bz vc) in common
(b) p1 includes the assignment to xi (c) p2 does not include the assignment to xi (d) the last
statement of p2 is the merge point y := φ(x1, . . . , xn). To ensure this definition is correct
in the presence of loops, we require all code to be in Loop-Closed SSA form. The set of all
decision branches of y := φ(x1, . . . , xn) is denoted by D(y). The resulting dependencies are
reflected in the equations for phi functions in Figure 2.

Dependencies due to the mutation of array elements or fields usually require an alias
analysis, determining which statements might influence which fields. A straight-forward
type-based alias analysis [2] is not suitable for arrays, as arrays with the same element type
may be used for both static and dynamic data. Store-based alias analyses distinguish data
based on the memory address or the allocation site. As they track the set of all memory
locations a variable may point to, the outcome of these analyses is difficult to predict for
humans.

Therefore, a type attribute IDI is introduced, that distinguishes input-data independent
and input-data dependent array types. This is similar to the const attribute in C. If v is
declared to be input-data independent, we write idtype(v) = IDI, otherwise idtype(v) = ID.
In an assignment v = v1[v2], v is input data independent if v1 and v2 are input-data
independent, and idtype(v1) = IDI. Assignments to arrays need to be type checked. It
is required that in an assignment v[v1] = v2 both v1 and v2 are input-data independent if
idtype(v) = IDI.

For fields of composite types, we need a more fine grained distinction than for arrays,
where either all or no elements are declared to be input-data independent. Consider e.g. a
datatype for resizable vectors, consisting of three fields, one for the data in the vector, one
for the vector’s size and one for its maximum capacity. While some algorithms may require
the maximum capacity to be input-data independent, clearly neither the size nor the internal
data field have to be.

As it is usually possible to define different composite data types for different purposes,
fields of a composite datatype are explicitly declared as being input data independent. In
Figure 2, we write idtype(v.F ) = IDI to denote that field F of variable v is declared to
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A[v := c] ≡ v = IDI

A[v := read] ≡ v = ID

A[v := v1 ◦ v2] ≡ v = v1 u v2

A[v := v1[v2]] ≡ v = v1 u v2 if idtype(v1) = IDI

v = ID otherwise
A[v := v1.F ] ≡ v = v1 if idtype(v1.F ) = IDI

v = ID otherwise
A[v := φ(v1, . . . , vn)] ≡ v =

d
v1, . . . , vn u

d
bz ci∈D(v) ci

Figure 2 Dataflow equations for input-data dependence analysis (without type checking)

be input-data independent. Similar to arrays, a type checker has to ensure that v.F is not
declared being input data independent if the right hand side of the assignment v.F = v1 is
not.

The example in Figure 3 illustrates the concepts presented in this section. It consists of
two loops with an input-data independent loop counter, and a conditional branch, whose
condition is input-data dependent. In this example, bz b2 is the only decision branch, deciding
whether r2 or r3 reaches r5 = φ(r2, r3). Therefore, r5 depends on the condition variable b2,
and is input-data dependent.

3 Input-data Independent Loop Counters

In this section, we will define the class of tasks with input-data independent loop counters.
We restrict ourselves to reducible loops [6], i.e., loops with a unique entry node, called the
loop header. A conditional branch within the loop is a decision branch for this loop, when
there is one outgoing edge that exits the loop.

I Definition 1. A task has input-data independent loop counters, if each loop has at least
one input-data independent decision branch, which will eventually terminate the loop. A
conditional branch bz v is input-data independent if its condition variable is classified as
IDI.

This definition captures those tasks whose loop iteration counts can still be determined
after removing all input-data dependent variables. The example in Figure 3 has two loop
decision branches, bz b1 for the outer loop, and bz b3 for the inner loop. As both are
input-data independent, dsum indeed has input-data independent loop counters.

One important goal driving the definition above is that it should be possible to sys-
tematically construct tasks with input-data independent loop counters. To this end, the
notion of input-data independence is included in the interface definition of functions. The
interface specification of a function includes the set of parameters that need to be input-data
independent. The caller of the function has to ensure that those parameters which need to
be input-data independent indeed are, every time the function is called. In the example,
the caller of dsum has to ensure N is input-data independent. Using this assumption, the
analysis can prove that the function has input-data independent loop counters locally.

For composite data types and arrays, input-data independence is specified at the definition
site. For example, the library provider specifies that the capacity field of a resizable vector
always has to be input-data independent. The type system then has to check that no
input-data dependent values are assigned to that field.
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// @precondition : N = IDI
int dsum(int arr [], int N)
{

int r=0;
int i=0;
while(i < N) {

int c = read ();
if(c) {

int j = i;
while (j++ < N) {

r+= arr[i];
}

}
i=i+1;

}
return r;

}

Listing 1 Source Code for the Input-Data Dependence Analysis Example

(a) SSA Flow Graph

i1 = IDI
i2 = i1 ! i3
i3 = i2
j1 = i2
j2 = j1 ! j3
j3 = j2
N = IDI
t1 = idtype(arr)
b1 = i2 !N
b2 = ID
b3 = j2 !N
r1 = IDI
r2 = r1 ! r5

r3 = r2 ! r4

r4 = r2 ! t1
r5 = (r2 ! r3) ! b2

1

(b) DF Equations

i1 = IDI
i2 = IDI
i3 = IDI
j1 = IDI
j2 = IDI
j3 = IDI
N = IDI
t1 = idtype(arr)
b1 = IDI
b2 = ID
b3 = IDI
r1 = IDI
r2 = ID
r3 = ID
r4 = ID
r5 = ID

1

(c) Solution

Figure 3 Example of the Input-Data Dependence Analysis
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4 Generating Flow Facts by Abstract Execution

In this section, we will demonstrate an efficient way to derive all necessary flow facts for
tasks with input-data independent loop counters.

For single-path code, all flow facts can be derived automatically by executing the task,
and recording the instruction trace. As there is only one trace, counting the number of times
a basic block is executed provides exact, absolute execution frequency counts.

The basic idea is similar for code with input-data independent loop counters. However,
we need to take nondeterministic control flow branches into account. Instead of absolute
execution frequencies, relative ones are recorded to obtain precise flow facts. The framework
of abstract execution [4] provides all necessary notions for this analysis.

However, in our setting abstract execution is extremely simplified by eliminating all
statements dealing with input-data dependent variables in a preprocessing step.

Generating bounds on relative loop iteration counts works by tracking and merging loop
counters. A scope is the set of basic blocks associated with a method or loop. For each scope,
loop counter and loop bound variables are introduced for every loop within the scope. The
loop bounds are reset at the task entry. Loop counters are reset when a scope is entered.
Each time the corresponding loop body is executed, the loop counter is increased. When
the scope is left, the loop counter is read, updating the loop bound for the scope/loop pair.
Additionally, one counter keeps track of the sum of innermost loops executed in a scope. In
this way, it is possible to obtain precise flow facts when there are two or more inner loops
with different dependencies on an outer loop counter.

Due to the removal of all input-data dependent assignments, it is not necessary to merge
the values of ordinary program variables at any point. Only the loop counters used to extract
relative loop bounds need to be merged. This observation significantly reduces the complexity
of the analysis.

Figure 4a shows the simplified control flow graph of the dsum example from Figure 3,
with all input-data dependent variables removed. Split points correspond to conditional
branches, where the condition variable has been identified as input-data dependent. Note
that control flow is split non-deterministically at these nodes, as the condition variable is no
longer available.

In Figure 4b, the control flow graph for the abstract execution computing the flow facts
for this example is shown. Note that although we used the same programming language for
the analyzed input and the generated program carrying out abstract execution, this is not
necessary in general. When only a low-level representation of the input is available, it might be
desirable to use a higher-level language to generate code for abstract execution. Moreover, for
languages with platform-dependent semantics, abstract execution has to faithfully interpret
the characteristics of the target platform.

We believe that this form of abstract execution will not have any scalability issues in
practice, though experiments with large programs have not been performed yet.

5 Examples and Evaluation

This section discusses important classes of algorithms and tasks with input-data independent
loop counters, and investigates the input-data independence of loop counters on a set of
selected benchmarks.
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(a) Reduced Flow Graph (b) Abstract Execution Flow Graph

Figure 4 Loop Bound Analysis of the dsum Example

Digital Signal Processing

Many algorithms used in digital signal processing do have natural single path implementations,
given fixed array, matrix and block sizes. Examples include matrix multiplication, the discrete
cosine transform (DCT), the discrete Fast Fourier Transform (FFT) and Finite Impulse
Response (FIR) filters. The symbolic loop bound for e.g. FFT is not trivial to find. Given
an input-data independent block size, the abstract execution technique from Section 4
determines precise loop bounds, taking non-rectangular loop nests into account. For single-
path algorithms, the complexity of calculating a loop bound is comparable to the complexity
of simply executing the program.

Search and Sort

Binary search has already served as an example in the introduction (Listing 1). Insertion
Sort and iterative Merge Sort are sorting algorithms which use input-data independent loop
counters if the size of the array to be sorted is input-data independent. Quick Sort does not,
but is unsuitable for hard real-time systems because of its poor worst-case performance.

State Machines

State machines, which perform different actions depending on the value of a state variable,
incur a higher overhead when transformed to single-path code. This is because the actions
of every state have to be carried out to conform to the single-path requirement. With our
new code policy, the loop counters in each action are input-data independent, state machines
need not be changed so that the task conforms to the policy.

Data structures with dynamic size

The loops of algorithms operating on data structures with a variable number of elements are
usually bounded by a function based on the number of elements, not their maximal capacity.
For these algorithms, different variants which are oriented towards the worst-case (size =
capacity), need to be used. As it is necessary to distinguish undefined and defined entries, a
certain overhead will be unavoidable here. It still remains to be evaluated whether this is an
acceptable strategy.
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Qualitative Benchmark Evaluation

We manually analyzed the properties of three applications available for the Java Optimized
Processor (JOP) [11], and evaluated whether they conform with the policy. We found that
most loop bounds do have input-data independent counters, while for those that do not, the
dataflow analysis in JOP’s WCET tool failed to derive loop bounds as well.

Lift benchmark: The Lift benchmark is the control loop of a simple lift controller. The
task performs one out of a few different actions depending on its state and sensor values.
All loops in the Lift benchmark have input-data independent counters, with most of them
already being identified by the dataflow analysis integrated with JOP’s WCET tool. When
eliminating all input-data dependent assignments manually, 8 out of 13 methods are removed
from the code.

Kfl Benchmark: The Kfl application is the software for a node in a distributed mast
control application. All but two loops again had input-data independent counters. The
remaining ones need to be annotated manually. The annotations are based on the program-
mer’s knowledge that some global, static variable is always between 0 and 3. This is a
non-obvious information, unlikely to be found by an automated analysis. This suggests to
rewrite the offending code in order to avoid the annotation.

EjipCmp Benchmark: This benchmark is taken from an implementation of the UDP/IP
stack used in a multi-core version of JOP. Some of its loops depend on the number of bytes
a message contains. While there is a global limit to this bound, which depends on the size of
the array used for storing the message, the message length is not input-data independent. In
this case, the easiest way to conform to the policy is to add another exit condition based on
the global limit.

6 Discussion

6.1 Source Code versus Machine Code

The ideas presented in this paper work on two different levels: The construction of predictable
code applies to the source code level, while the flow fact generation for the compiled code
applies to an optimized representation in some lower level language. This may either be
low-level C, an internal representation of the compiler, or even machine code. For machine
code, the flow graph reconstruction is not easy to automate though.

For the source code level, we need to provide a methodology for building or generating
the code, and analysis tools to verify that the code meets the policy. The first goal is met
by introducing annotations specifying input data independence via function interfaces and
type annotations. To detect input-data dependencies, we perform a dataflow analysis on the
source code. It is the responsibility of the programmer to ensure that input-data dependent
branches terminate a loop eventually. If this is not the case, the program is considered to be
faulty, and abstract execution may not terminate.
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6.2 Functional Correctness vs. Timing Analysis
Proving the functional correctness is of course important too, so an interesting question is
whether implementations which fulfill the proposed policy are easier or more difficult to
prove correct. While we do not know an answer in general, the ability to detect loop bounds
by means of static analysis is also beneficial for other program analysis tools. In particular,
bounded model checkers, which are used to prove the absence of certain runtime errors (null
pointer dereference, out of bound array indices) need to know all loop iteration bounds.

7 Conclusion

In this paper, we have presented a formal definition for a code policy for hard real-time
systems. For tasks with input-data independent loop counters, it is guaranteed that all
loop bounds can be detected automatically. Furthermore, it is possible to check statically
that the policy is fulfilled, and to systematically construct tasks following this policy. We
have argued that this policy, which originates from the single-path paradigm, is suitable
for real-time systems, and indeed characterizes a large set of analyzable code. Finally, a
sketch of a static, efficient implementation of abstract execution to derive all loop bounds has
been presented. We have recently started the implementation of the input-data dependency
analysis. Future work includes implementation of the simplified abstract execution technique,
removing statements dealing with input-data dependent prior to the analysis. Furthermore,
we want to investigate suitable algorithms for dynamic data structures, and experiment with
the analysis of machine code on ARM targets, which have served as a platform for single-path
experiments in the past.
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Abstract
Time-critical avionics software products must compute their output in due time. If it is not the
case, the safety of the avionics systems to which they belong might be affected. Consequently,
the Worst Case Excution Time of the tasks of such programs must be computed safely, i.e., they
must not be under-estimated. Since computing the exact WCET of a real-size software product
task is not possible (undecidability), “safe WCET” means over-estimated WCET. Here we have
an industrial issue in the sense that too over-estimating the WCET leads to a waste of CPU
power. Hence, the computation a safe and precise WCET is the big challenge. Solutions to that
problem cannot only rely on the technique for computing the WCET. Indeed, both hardware
and software must be designed to be as deterministic as possible. For its Flight controls software
products, Airbus has always been applying these principles but, since the A380, the use of more
complex processors required to move from a technique based on measurements to a new one
based on static analysis by Abstract Interpretation. Another kind of avionics applications are
the so-called High-performance avionics software products, which are significantly less affected
by - rare - delays in the computation of their outputs. In this case, the need for a “safe WCET”
is less strong, hence opening the door to different other ways of computing it. In this context,
the aim of the talk is to present the challenge of computing WCET in Airbus’s industrial context,
the achievements in this field and the evocation of some trends and perspectives.
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Abstract
To meet performance requirements as well as constraints on cost and power consumption, future
embedded systems will be designed with multi-core processors. However, the question of timing
analysability is raised with these architectures. In the MERASA project, a WCET-aware multi-
core processor has been designed with the appropriate system software. They both guarantee
that the WCET of tasks running on different cores can be safely analyzed since their possible
interactions can be bounded. Nevertheless, computing the WCET of a parallel application is still
not straightforward and a high-level preliminary analysis of the communication and synchroniz-
ation patterns must be performed. In this paper, we report on our experience in evaluating the
WCET of a parallel 3D multigrid solver code and we propose lines for further research on this
topic.

Digital Object Identifier 10.4230/OASIcs.WCET.2010.90

1 Introduction

The demand for computing power in embedded systems is ever growing as is the demand
for new functionalities that will improve safety, comfort, number and quality of services,
greenness, etc. Multi-core processors are now being considered as first-rate candidates to
achieve high performance with limited chip costs and low power consumption. However,
off-the-shelves components do not exhibit enough timing predictability to be used to design
hard real-time (HRT) systems since the estimation of worst-case execution times (WCETs)
would be infeasible or extremely pessimistic.

The MERASA project focuses on multi-core processors and system-level software for
HRT embedded systems. The main issue is to guarantee the analyzability and predictability
of WCETs. The proposed MERASA architecture features 2 to 16 cores, each one with
simultaneous multithreading (SMT) facilities designed to support one HRT thread and up to
three non real-time (NRT) threads. Private instruction and data scratchpad memories favor
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local memory accesses for HRTs and the shared memory hierarchy, including the common bus,
features time-predictable arbitration policies. Target workloads are multiprogrammed, mixed-
critical tasks, as well as multithreaded, including control and data parallelism. However,
computing the WCET of a parallel application is not a straightforward process even when
the hardware features timing predictability. As far as we know, this issue has not been
addressed so far and the work that is reported in this paper is to be seen as a first attempt
from which we will get feedback to guide future research.

Within the MERASA project, a collision avoidance application, developed by Honeywell
International and based on the Laplace’equation for a 3D path planning, has been selected as
example of an industrial-relevant application to support investigations on timing analyzability
and predictability. In this paper, we study the core component of this application, a
3D multigrid solver. The parallelized version of this code splits the 3D domain into 3D
compartments and creates one thread to process each compartment. We assume a number of
threads equal to or lower than the number of cores in the target MERASA processor so that
all the threads can run in parallel, each on one core. While the hardware guarantees isolation
between concurrent HRT threads so that their respective WCETs could be analyzed without
any difficulty as if they were independent, software-related dependencies due to shared data
and synchronizations make the WCET analysis of the whole application challenging. In this
paper, we show how we have estimated the WCET of the parallel 3D multigrid solver.

The paper is organized as follows. Section 2 introduces the multi-core processor and
system software designed within the MERASA project. The parallel 3D multigrid solver is
presented in Section 3. How the WCET of this application can be analyzed is discussed in
Section 4 and experimental results are reported in Section 5. Section 6 provides feedback
from this study and Section 8 concludes the paper.

2 The MERASA multi-core architecture and system software

The MERASA processor architecture was developed as a timing predictable and WCET-
analyzable embedded multi-core architecture. Cores must execute HRT threads in isolation,
and the hardware must guarantee a time-bounded access to shared resources by e.g. applying
techniques for a real-time capable bus and memory controller [7]. In order to allow mixed
application execution of HRT and NRT threads each MERASA core is an in-order SMT-core
providing the possibility to run a HRT thread simultaneously in concert with additional NRT
threads. The cores of our multi-core processor feature two pipelines, an address and a data
pipeline, a first level of hardware scheduling to the thread slots, a real-time aware intra-core
arbiter, a data scratchpad (DSP) and a dynamic instruction scratchpad (D-ISP) [5] on core
level. The instruction scratchpad is automatically filled with target functions on call/return
instructions so that (a) the load time only depends on the function size and can be accounted
for when computing the WCET, and (b) every instruction fetch within a function always
hit in the D-ISP. The real-time aware intra-core arbiters are connected to the real-time bus
for accessing the main memory. The real-time bus features different real-time bus policies
inspired from Round-Robin and priority-based schemes [6] for dispatching requests to the
memory. Thus, we are able to execute multi-programmed and multithreaded workloads
on our multi-core processor. A detailed description of the MERASA multi-core and its
implementations as low-level (SystemC) and high-level simulators and also as an FPGA
prototype are available at the website of the MERASA project (www.merasa.org).

The MERASA system software [11] represents an abstraction layer between application
software and embedded hardware. On top of the MERASA multi-core processor it provides
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the basic functionalities of a real-time operating system (RTOS) like synchronization functions
and memory management facilities to be a fundament for application software. Similar
demands as for the processor architecture arise for the RTOS: the challenge is to guarantee
an isolation of memory and I/O resource accesses of various HRT threads running on different
cores to avoid mutual and possibly unpredictable interferences between HRT threads and
therefore also enable WCET analyzability. If common resources are accessed, a time-bounded
handling must be guaranteed. The resulting system software executes HRT threads in parallel
on different cores of the MERASA multi-core processor. To yield thread isolation, we decided
to apply a second level of hardware-based real-time scheduling and devised a thread control
block (TCB) interface for the system software. The TCB interface is used to schedule by
hardware a fixed number of HRT threads (fixed by the number of cores, one per core) and an
arbitrary number of NRT threads into the available hardware thread slots. The commonly
used POSIX-compliant mechanisms for thread synchronization, like mutex, conditional and
barrier variables are implemented in a time-bounded fashion and a fixed WCET of each
function was computed [11]. For the dynamic memory management we chose a flexible
two-layered mechanism with memory pre-allocation in the first and the real-time capable
TLSF [4] memory allocator in the second layer.

3 The multigrid solver application

3.1 General overview

The software considered in this study is part of a larger application for airbone collision
avoidance. Moreover, it is the basic building block that plans a path between the current
vehicle position and the current goal position, using the Laplace’s equation. The Laplacian
algorithm constructs paths through a 3D domain by assigning a potential value of v(r) = 0
for r on any boundaries or obstacles, and a potential value of v(r) = −1 for r on the goal
region. Then Laplace’s equation is solved in the interior of the 3D region, guaranteeing no
local minima in the interior of the domain, leaving a global minimum of v(r) = −1 for r on
the goal region, and maxima of v(r) = 0 for r on any boundaries or obstacle. A path from any
initial point r(0) to the goal is constructed by following the negative gradient of the potential v.

Numerical solutions of Laplace’s equation are obtained by partitioning the domain, then
iteratively setting the potential at each interior point equal to the average of its nearest
neighbors. By varying the grid size (halving the voxel1 size at each step) from the crudest
that still leaves paths between obstacles, to the finest that is required for smooth paths, the
iteration converges in a time proportional to the number of voxels in the finest grid. The
solution on crude grids is cheap, and is used to initialize the solution on finer grids. This
multigrid technique is described in [10].

In the version of the code we considered, the multigrid solver function includes five phases,
each of them breaks down into an interpolation step and an iteration step, shown in Table 1.
There are no data races in the interpolation code, while those are in the iteration step code.

1 A voxel is a volume element, representing a value on a regular grid in a 3D space. It is analogous to a
pixel in a 2D space.
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Table 1 Steps in the multigrid solver algorithm

Interpolation Iteration

for (x=0; x<NX; x++)
for (y=0; y<NY; y++)

for (z=0; z<NZ; z++)
v[x][y][z]

= compInterpolate(old_v);

for (i=0; i<NUM_ITE; i++)
for (x=0; x<NX; x++)

for (y=0; y<NY; y++)
for (z=0; z<NZ; z++)

v[x][y][z]
= compIterate(v);

3.2 Parallel version

This code has been parallelized by breaking the 3D domain down into 3D compartments, as
illustrated in Figure 1. The main thread creates as many child threads as compartments and
each of them performs the computations for one compartment. The main thread orchestrates
the phases and steps and enforces the synchronization of the child threads after each step.
During interpolation steps, the child threads run independently from each other. However a
synchronization at the end is required to ensure that the whole 3D matrix has been processed
before starting the iteration step. In the iteration steps, each thread has to synchronize with
the threads that produce the data it depends on and with the threads that consume the
produced data.

Figure 1 3D domain splitting into compartments

4 WCET analysis of the parallel multigrid solver

4.1 General overview

Analyzing the WCET of a parallel application requires two steps. First, it is necessary to
analyze the general structure of the code, and to determine which parts are executed in
parallel. The result of this step is a slicing of the code into units and the specification of how
units are scheduled with respect to each other. This specification allows deriving the list of
code units for which a WCET must be computed and a formula to determine the WCET
of the whole application from the WCETs of code units. Second, the synchronizations and
communications between threads must be carefully analyzed to be able to compute upper
bounds for waiting times due to synchronizations.
In the following, we will illustrate these two steps considering the multigrid solver application
introduced in Section 3.
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4.2 Analysis of the application structure
Figure 2 shows the structure of the parallel code, the synchronization points between the
main thread and the child threads, as well as the synchronizations between child threads (in
this figure, PiSj stands for “Phase i, step j”). From this structure, it is possible to derive
a first breakdown of the overall WCET, as shown in Figure 3. This diagram combines the
WCETs of code parts, some of them are executed by the main thread and the other ones by
the child threads. The question of the synchronizations will be addressed in Section 4.3 but
what is suggested here is that the WCET of a code part executed by the main (resp. a child)
thread does not include the waiting time for other threads: the waiting time is represented
by the WCET of child threads (resp. of the main thread). According to the diagram, the
WCET can be computed as:

WCETglobal =WCET (main) +
5∑
i=1

2∑
j=1
WCET (PiSj)

where WCET (main) is computed without accounting for the waiting times.

Figure 2 Structure of the parallel multigrid solver code

Figure 3 First-level breakdown of the WCET

Now, this application requires a second level of analysis due to the synchronizations
between child threads in the iteration steps. As explained in Section 3.2, the sequential
algorithm enforces data dependencies between successive iterations of the loop nest since the
potential of a voxel is computed from the potential of its neighbors (some of them have been
updated before it, other ones will be updated after it). Once the 3D domain is split into
compartments, each one has dependencies with the borders of its neighbor compartments.
Moreover, the grid is processed several times in a loop.

Fortunately, data sharing patterns are regular and it is possible to compute the WCET of
a whole interpolation step as illustrated in Figure 4. The interesting point here is the absence
of data races requiring synchronizations between the first compartments and the last ones
which allows the first threads starting a new iteration of the outer loop before the last threads
have finished the current iteration. This is demonstrated in Figure 4 by the overlapping of i0
threads with i1 threads in the 4-, respectively 8-threaded cases. The examples show that a
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computation speed-up of at most 2 in the 4-threaded and 4 in the 8-threaded cases can be
achieved (not taking the main thread and the synchronization overheads into account).

As a result, if the WCET of each computation part is noted Wi and NUM_ITE is the
number of iterations, the WCET of an iteration step can be computed as:

WCET (PiS2) =


2.Wi × NUM_ITE with 2 threads
3.Wi + 2.Wi × (NUM_ITE− 1) with 4 threads
4.Wi + 2.Wi × (NUM_ITE− 1) with 8 threads

Figure 4 Second-level breakdown of the WCET

4.3 Analysis of the synchronizations
In the application under analysis, the inter-thread synchronizations are implemented using
POSIX-compliant mutex and conditional variables. In this Section, we focus on the mutex
variable acquisition (mutex_lock) but the approach that we propose to analyze the waiting
time within this function is also valid for other synchronization primitives.
A simplified version of the mutex_lock() function is shown in Figure 5. There are four different
cases for a thread trying to acquire the mutex lock. If the mutex lock is free, the thread will
acquire the guard lock (1), the mutex lock, and release the guard lock (4). If the mutex lock
is hold by another thread, the thread will, after acquiring the guard lock (1), suspend on the
mutex lock (2). If the other thread releases the mutex lock, all suspended threads will try to
get the mutex lock (3). Now, there are two possibilities: either a thread acquires the mutex
lock (4) or it is suspended again (2) if an other thread acquired the mutex lock successfully.
The worst-case waiting time for the guard lock is then the maximum WCET of all these
four paths and of the similar paths in the other primitives that manipulate the guard lock,
multiplied by the number of active threads.
In general, the WCET of a synchronization primitive can be broken down into four terms:

Term depends on...
# threads application

Te Execution time when the synchronization variable is free no no
Tw1 Overhead execution time when the thread has to wait for

the variable
no no

Tw2 Waiting time related to system-level variables yes no
Tw3 Waiting time related to application-level variables yes yes
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As far as mutex_lock() is concerned, these times can be computed as follows:
Te is the WCET computed with flow facts indicating that the loops (the one that
implements the wait for the mutex lock, but also the one that stands for the wait for the
guard lock in spinlock_lock()) have zero iteration, which corresponds to the situation
where both the guard lock and the mutex lock are free. This is a constant time.
Tw1 is the overhead time of waits (both for the guard lock and the mutex lock), i.e.
the time to enter and then leave the loop, considering the lock is released right after
the unsuccessful try. In practice, this time is the difference between Te and the WCET
computed considering each loop iterates once (ignoring the waiting time). This time is
also constant.
Tw2 stands for the waiting times that relate to variables that are manipulated by system-
level code only. This is the case for the guard lock. The knowledge of the system software
code makes it possible to determine all the possible executions where a thread holds
the guard lock. The time Tw2 then depends on the number of threads but not on the
application code, i.e. once the system software has been analyzed, this time is known for
any application.
Finally, Tw3 includes the waiting times that relate to variables used at the application
level. Here, the mutex lock is concerned. How long a thread will have to wait to get
the mutex lock depends on the application code and more specifically on possible paths
from any call to mutex_lock() to any call to mutex_unlock(). This time also depends on
the number of threads that are likely to use the variable.

int mutex_lock(mutex_t mutex) {
(1) spinlock_lock(&mutex->guard);

...
while (spinlock_trylock(&mutex->the_lock)) {
... // insert thread into queue

(2) spinlock_unlock_and_set_suspended(&mutex->guard);
(3) spinlock_lock(&mutex->guard); // on wakeup

}
...

(4) spinlock_unlock(&mutex->guard);
}

Figure 5 Code of the mutex_lock primitive

Three kind of synchronizations have to be considered when analyzing the WCET of the
parallel multigrid solver. Synchronizations from the main thread to the child threads rely
on a shared variable that indicates the next step to execute. It includes a mutex lock (to
protect accesses to the shared variable) and a condition to wait on when the variable is not
in the expected state. With N child threads, the number of threads that manipulate the
lock and the condition is N + 1. The paths on which the lock can be hold can be identified
in the main thread and child thread codes: the maximum WCET of these paths, multiplied
by N + 1, makes the Tw3 term for the lock. Synchronizations from the child threads to the
main thread (it must wait that they all have performed the current step before initiating the
next one) are similar except for each thread has its own state variable (which is shared only
with the main thread). Synchronizations between two child threads (when one produces data
used by the other one, on compartment borders) are implemented through state variables
related to each child thread. As above, state variables include mutex lock and conditions.
Each state variable is shared with the producers and consumers of its owner.
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5 Experimental results

In this Section, we provide experimental results obtained considering the following configura-
tion for the MERASA multi-core processor: 2 to 8 cores available for computation threads
(an additional core is considered for the main thread), perfect ISP (all the instructions can be
fetched from the instruction scratchpad memory), DSP (scratchpad for stack data), round-
robin bus, 5-cycle DRAM latency. Due to the round-robin policy and to intra-core arbitration
between real-time and non-real-time threads, the worst-case latency of an access to the main
memory is 5 ·n+ 12 for an n-core configuration. In addition, we have considered a single-core
configuration to calculate the WCET of a single-threaded version of the application. The
application was compiled to the TriCore ISA [13].

WCETs have been computed using OTAWA, a toolset based on static WCET analysis
techniques [2]. A specific model of the MERASA architecture has been implemented within
this framework. To control the WCET analysis, we have written a script that initiates
all the required computations. First, it gets all the WCET terms needed for system-level
synchronization functions; then, it requests the WCET analysis of application-level code
parts (main function, computation steps); finally, it combines all these times to compute the
overall WCET.

Table 2 Estimated WCETs (# cycles)

1 thread 2+1 threads 4+1 threads 8+1 threads
1 core 53,990,765 - - -
3 cores 58,297,375 66,849,369 - -
5 cores 62,603,985 73,372,109 40,389,428 -
9 cores 71,217,205 86,417,589 47,678,968 28,105,761

Table 2 shows our WCET estimates for several configurations (from 1 to 9 cores) and
for several versions of the application (from 1 to 8+1 threads). We considered small grid
sizes so that only three phases (instead of five) are executed. As expected, the WCET of
a t-threaded version of the application increases with the number of cores: this is due to
the round-robin bus policy under which, in the worst case, a given core has to wait for all
the other cores to be served before being served itself. Then the worst-case memory latency
increases linearly with the number of cores.

On the other hand, the WCET is noticeably improved when the application is parallelized
to 4 threads and more. We define the WCET-speedup as the WCET of the single-threaded
code executed on one core over the WCET of the n-threaded code executed on n cores. On
a 9-core architecture, the WCET-speedup is 1.13 with 4 computation threads and 1.9 with 8
computation threads.

Table 3 indicates how the WCET breaks down into "active" execution time (ignoring
all waits), waiting time due to synchronizations and waiting time for producing threads
(in iteration steps, a computation thread has to wait until all the previous compartments
have been updated by other threads before starting to update its own compartment). The
provided numbers are for a 9-threaded version of the code and a 9-core configuration, but
other combinations exhibit similar breakdowns. It appears that the part of the execution
time due to the main thread is small (6%): it mainly includes the time to read the grid.
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Moreover the synchronizations have little impact on the overall WCET: they account for
less than 2%. This is due to limited interactions between concurrent threads. The largest
part of the total WCET (more than 92%) comes from the computation threads. About
one half of this time is spent in performing the computations assigned to a thread (three
interpolation steps and three iteration steps for the map size selected for this study) while the
other half is spent in waiting for producing threads within iteration steps. This is coherent
with Figure 4 that shows that the length of loop body in an iteration step should be twice
the length of computing one compartment. Predominance of the iteration steps duration in
the total WCET explains why the dual-threaded version of the code does not improve the
WCET but instead degrades it: since parallelism is not exploited in the iteration steps (both
compartments must be processed in sequence), the gain due to parallelized interpolation
steps is not sufficient to counterbalance the cost of synchronizations.

Table 3 WCET breakdown (8 computation threads, 9 cores)

WCET for the main thread without waits 6.0%
WCET for a computation thread without waits 45.0%
Time to wait for producers in iteration steps 47.2%
Total waiting time for synchronizations 1.8%

6 Lessons learnt from this case study

While research on WCET computation of sequential programs has received much attention
the last fifteen years, resulting in a set of techniques that can handle not too complex software
and hardware, the arrival of multi-cores on the embedded systems market raises the need
of investigating strategies to analyze the WCET of parallel applications. In this paper, we
have reported a study that has been carried out as part of the MERASA project. This
first experience in the domain has inspired new lines of research that we will outline in this
Section.

The first need for the WCET analysis of a parallel program that appeared during this
study is to get an overview of the structure of the application. It is necessary to determine
which parts of the code execute in parallel and where the dependencies are. This knowledge
is required to build the first-level breakdown of the overall WCET and to schedule the
analysis of each piece of code that must be taken into account. Automatically extracting
this kind of information from the source or executable code seems infeasible and it is likely
that the user/programmer will be asked to provide them. However, this might be a source of
errors and it may be desirable to favor well-known parallelization patterns. In addition, an
appropriate formalism to express the software parallel architecture would be helpful.

The second need concerns synchronizations: to compute worst-case waiting times, it is
necessary to know where synchronizations occur and which threads share synchronization
variables. Moreover, the paths on which locks are hold by threads must be carefully identified.
Again, specific support should be provided (e.g. in the form of an annotation language) so
that the user can specify these information.

In addition, the considered WCET analysis tool must be enhanced to be able to process
the specifications of the parallelized code (structure and synchronizations). In particular, we
have identified as a must functionality the ability to compute the WCET of a given path
(from address a to address b) taking into account its possible contexts of execution. For
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example, the cache behavior should be preliminary analyzed considering the whole program
instead of performing the cache analysis on the path only. So far, the OTAWA toolset does
not support global context analysis for path WCET estimation. This is the reason why we
have considered a perfect instruction scratchpad in this paper.

Finally, we would like to point out that WCET analysis might not be feasible for any
parallel code. As future work, we plan to provide a set of parallelization recommendations
that will serve as guidelines to split the computations into parallel threads so that both the
code structure and the communication and synchronization patterns match the requirements
for timing analyzability.

7 Related work

As we have mentioned it, we are not aware of any paper dealing with the WCET analysis
of data-parallel applications and in particular with the analysis of synchronization delays.
However, several recent works have studied the impact of interactions between concurrent
threads on the WCET.

Some papers focus on the delays introduced by the other threads in the interconnection
structure (mainly at the bus level). Solutions reside in predictable arbitration schemes
like Round-Robin (considered in the MERASA architecture) [6] or TDMA schemes [1]. A
different approach integrates task- and system-level analyses to derive upper bounds for
memory latencies [8].

Other contributions concern the analysis of interactions in the level-2 shared cache [12]
or solutions to make this analysis more accurate [3][9]. They all focus on spatial conflicts
(when two concurrent threads may access the same cache line in a shared cache), not on
temporal interferences (i.e. their cache analysis does not take into account the times at which
conflicting accesses to the cache will occur but considers instead the worst case).

8 Conclusion

Multi-core processors seem to be key components for the design of future embedded systems
because of their ability to provide high performance with low cost and low power consumption.
However, existing designs are often not compatible with worst-case execution time analysis
since the dynamic sharing of resources (bus, memory hierarchy, etc.) makes it complex if
not impossible to determine upper bounds on the delays experienced by a thread running
on one of the cores that are due to other threads running on other cores (or on the same
core if simultaneous multithreading is supported). The MERASA project fills in this gap by
developing a hard-real-time-aware multi-core processor and the appropriate system software.
Both levels (hardware and software) have been designed keeping in mind the need of being
able to determine upper bounds on pipeline, bus and memory latencies as well as on delays
related to dynamic memory management and inter-thread synchronization. As a result, the
MERASA multi-core can be used to run mixed multiprogrammed workloads with critical
and non critical tasks as well as parallel programs subject to timing constraints.

However, even with WCET-friendly hardware, the WCET analysis of a parallel application
is still challenging because it requires having a clear view on the code parallel structure and
on the communication and synchronization patterns. We have investigated this field and this
paper reports our first experiment in computing the WCET of a parallel 3D multigrid solver
code. The process described here is completely guided by the user who must provide insight
into how the complete code breaks down into units that can be analyzed separately before
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their respective WCET estimates are combined to produce the total WCET. As future work,
we plan to work on automating the analysis as much as possible.
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Abstract
To take full advantage of the increasingly used shared-memory multicore architectures, software
algorithms will need to be parallelized over multiple threads. This means that threads will
have to share resources (e.g. some level of cache) and communicate and synchronize with each
other. There already exist software libraries (e.g. OpenMP) used to explicitly parallelize available
sequential C/C++ and Fortran code, which means that parallel code could be easily obtained.

To be able to use parallel software running on multicore architectures in embedded systems
with hard real-time constraints, new WCET (Worst-Case Execution Time) analysis methods
and tools must be developed. This paper investigates a method based on model-checking a
system of timed automata using the UPPAAL tool box. It is found that it is possible to perform
WCET analysis on (small) parallel systems using UPPAAL. We also show how to model thread
synchronization using spinlock-like primitives.
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1 Introduction

The execution of hard real-time systems must be predictable in order to ensure a certain
system behavior. In particular, the WCETs (Worst-Case Execution Times) of the hard
real-time tasks are assumed to be known and given as input to different real-time system
scheduling algorithms [4, 10, 17]. The WCET of a task is dependent both on the properties
of the software which is executed as well as the underlying hardware. Today, there are
algorithms and tools which strive to derive a safe and tight bound on the WCET of a task,
using the task code and a model of the (single-core) target hardware. Some examples of such
tools are aiT [9, 27], SWEET [8, 27] and RapiTime [23, 27].

Over the past years, there has been (and there will probably continue to be) a rapid
increase in the usage of multicore architectures in embedded real-time systems. These
architectures have several independent processing units (cores) on each chip. The cores
typically share some resources (e.g. some level of on-chip cache) which introduces dependencies
among the cores. Thus the cores could experience delays due to simultaneous access to
these shared resources; e.g., if the L1 caches are non-shared and the L2 cache is shared, two
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simultaneous misses in the L1 caches will cause one of the cores to delay while the other core is
granted access to the L2 cache. If there are one or more levels of core-individual (non-shared)
caches, some memory coherence and consistency model will probably be implemented. This
means that a line in the local cache of one core may be invalidated by another core’s cache,
thus introducing a cache miss if the line is again referenced [1].

To take full advantage of these new kinds of architectures, algorithms will need to be
parallelized over multiple threads. This means that the threads will have to share resources
and communicate and synchronize with each other. There already exist software libraries
used to explicitly parallelize sequential code – one example available for C/C++ and Fortran
code running on shared-memory machines is OpenMP [20]. The conclusion is that parallel
software running on parallel hardware is already available today and will probably be the
standard way of computing in the future.

This means that new algorithms, methods and tools for WCET analysis are needed
to guarantee the schedulability and predictability of this new kind of systems, where a
task could consist of several cooperating threads running in parallel on individual cores.
This paper presents a method for WCET analysis of parallel (or sequential) code executing
on shared-memory multicore (or single-core) architectures, using verification techniques
(model-checking) on a system of timed automata. The paper shows that it is possible to
model and analyze the impact on the WCET from having a memory hierarchy consisting of
core-individual L1 instruction and data caches, and a shared L2 cache. It also shows how a
mutual exclusion software primitive similar to a spinlock could be modeled.

The organization of the rest of this paper is as follows. Section 2 presents some related
research performed on analysis of multicore architectures. Section 3 contains an introduction
to timed automata and the modeling tool box UPPAAL [5]. Section 4 describes the models
and verification queries used to calculate the WCET estimate of an example program. Section
5 contains a discussion of the proposed method. It also suggests several aspects of the method
that should be further investigated.

2 Related Work

The idea of using model-checking to perform WCET analysis has been investigated and
shown to be adequate for analyzing parts of a single-core system in [14] and [19]. However,
to the best of our knowledge, no prior research has been conducted regarding multicores with
complete (and non-perfect) memory hierarchies. This aspect is investigated in this paper.

In [18] and [28], model-checking is used to perform WCET analysis. Both papers are
closely related to the work presented herein, but mainly propose methods to reduce the state
space by altering the program model without affecting the true WCET of the program. Our
approach is more focused on analyzing the impact on the WCET from allowing synchronizing
tasks. In [28], a perfect data cache is assumed (i.e., all accesses are assumed to be hits), which
is generally not the case. In contrast, this paper assumes a complete and non-perfect memory
hierarchy. In [29] and [30], static analyses of shared L2 instruction caches are presented. Also
in these papers, perfect L1 data caches are assumed.

Other than this, to the best of our knowledge, there mainly exist different techniques
used to increase the predictability and analyzability (e.g. to tighten the WCET estimate) of
multicore systems. In an extension to the method presented in [29], memory bits for each
instruction are used to determine whether the instruction should be cached or not [12] – e.g.,
to avoid pollution of the shared cache, “Static Single Usage” [12] instructions should not be
cached. This generates the possibility to determine a tighter WCET estimate.



A. Gustavsson, A. Ermedahl, B. Lisper and P. Pettersson 103

In [21], arbiters (hardware circuits) are added to a shared-memory multicore processor to
synchronize the memory accesses in order to increase the timing-predictability of the system.
The result is a multicore architecture that can be analyzed with existing single-core WCET
analysis tools.

GAMC [22] is an SDRAM controller which upper bounds the delay a core can suffer
from memory-interferences from other cores. This is an important aspect since the largest
memory access latency will occur when accessing the main memory. The result is a tight
WCET estimate which only differs at most 13% from the largest measured execution time.
Similarly, in [4] and [24], TDMA-based memory bus access policies are introduced to make
all memory access latencies predictable, regarding the WCET.

3 Timed Automata & UPPAAL

Timed automata1 [3] can be used to model real-time systems. An automaton can be viewed
as a state machine with locations and edges [15]. A state represents certain values of the
variables in the system and which location of an automaton is active, while the edges represent
the possible transitions from one state to another [15]. (Continuous) time is expressed as a
set of real-valued variables modeling clocks. In UPPAAL, all clocks are initialized to zero
and then increase with the same rate [7].

A transition is enabled (i.e., it is possible to perform the particular transition from one
state to another) if its accompanying guard is satisfied. A guard can simply be viewed as a
boolean expression (which can include variables and clocks) which enables or disables the
edge. The guard cannot force the transition to be taken however [7]. When a transition is
taken, actions can be performed (e.g., variables can be updated and clocks can be reset to
zero).

UPPAAL2 [5, 16, 26] is a tool used to model, simulate and verify networks of timed
automata [5, 7, 15]. The automata can synchronize via channels on transitions. Only two
automata are allowed to synchronize via a given regular channel at a time. Channels can also
be declared as being broadcast, which means that one issuing automaton can synchronize
with an arbitrary number (including zero) of waiting automata. Another possibility is to
declare a channel as being urgent, which means that when a transition is enabled, it will be
performed without allowing any time to pass.

Locations in an UPPAAL timed automaton can have special properties as well; urgent or
committed. When a location with one of these properties is active, time is not allowed to
pass. The difference between urgent and committed locations is that if there are committed
locations active, an outgoing transition from one such location must be taken in the next step
– if such a transition does not exist or is not enabled, the system will deadlock. A location in
the automaton can have an invariant associated with it. An invariant is a clock constraint
which limits the amount of time for which the location is allowed to be active.

Some other features of UPPAAL are a C-like programming interface to ease the modeling
task, and meta-variables [5]. If the only difference between two states is the values of variables
declared as meta, then the states are considered to be the same. This is useful for reducing
the size of the state space while verifying properties of the system. Care should be taken to
avoid using meta-variables in a way that could eliminate states from the analysis that actually

1 The formal syntax and semantics of timed automata can be found in e.g. [2] and [15].
2 An introduction to UPPAAL and the formal semantics of networks of timed automata are given in [5]

and [15] respectively.
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Figure 1 The modeled architecture.

Property L1-I L1-D L2

Lines 4 4 8

Words/Line 2 2 4

Sets 2 4 2

Latency 1 1 10

Replacement Policy LRU LRU LRU

Table 1 Cache Properties.

Figure 2 Model of the task interface.

should be taken into account, though. Verification of system properties (requirements) is
performed by formulating queries used by the UPPAAL verifier. The query language is
described in e.g. [5] or in the help session accompanying the UPPAAL binaries [26].

4 WCET Analysis Using UPPAAL

To model a fictitious shared-memory multicore architecture, a network of timed automata is
created in UPPAAL3. The architecture is assumed to have the properties depicted in Figure
1; i.e., core-individual L1 instruction and data caches, and a shared L2 cache. In the figure,
the arrows between the cores and the caches show the possible flow of memory contents (i.e.,
instructions and data). The core is assumed to be very simple, only incorporating a pipeline
similar to a basic five-stage, in-order RISC-pipeline. The caches are assumed to have the
properties found in Table 1.

The resulting models are presented in Figure 3. For a multicore architecture with n cores,
there will be n sets of the models in Figures 3a–3c (i.e., one set per core) but only 1 set of
the models in Figures 3d–3g4. For the current approach, no value analysis is used. Therefore,
in the below given models, no actual memory contents is ever transferred or kept track of in
the memory hierarchy. The only thing considered is what memory locations (addresses) are
referenced by the program. A limitation of this approach is that dynamic memory references
cannot be easily modeled.

4.1 The Program Model Interface
The interface for modeling a thread is shown in Figure 2. The “Initialization” part is optional
and the init_task() function could simply be empty. The “Terminating Synchronization”
part ensures that no time is missed by the WCET analysis. If the pipeline should be emptied
at the end, a delay should be inserted to account for this in this part of the model.

3 UPPAAL version 4.0.10 (rev. 4417) has been used in this paper.
4 With one exception regarding the Lock handler automaton – there is one Lock handler per lock, i.e.,

per critical section.
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The middle (framed) part depicts the instruction execution interface. The instructions
are assumed to be assembly instructions and are executed one by one. An instruction is
executed by synchronizing with the core automaton via the exec_instr[id] urgent channel
and setting information about the access via the function call set_access_info(). The
arguments should be interpreted as: id – the core on which the instruction should be executed;
instr_address – the memory address where the instruction is stored; data_address – the
address in memory on which the data accessed by the instruction is stored (only used for
instructions such as LOAD and STORE etc.); data_access – a boolean telling whether the
instruction is a data accessing instruction (e.g., a LOAD or STORE etc.); write_data – a
boolean distinguishing between read and write instructions (i.e., whether the instruction is a
LOAD or STORE etc.).

Other types of instructions, such as branch instructions and instructions not referencing
memory locations, should be accounted for by adapting the structure of the automata
modeling the program. Thus, the structure of the program should be represented by the
structure of the automata. This representation could be automatically generated using flow
facts generated by a static analysis tool, such as SWEET [8]. The translation would be close
to 1:1 of the instruction-level CFG (Control Flow Graph) [18]. To account for hazards, extra
stalls can be inserted into the pipeline by setting the stalls[id] variable to the desired
value before executing the instruction.

To account for the possible memory locations that a given instruction could reference, a
value analysis could be used [27]; and to account for the possible values of different variables
affecting the execution pattern of the program, a control flow analysis could be used [27].
The structure of the automata modeling the program could then be adapted accordingly (e.g.
by adding one transition for each possible memory reference or variable value). This means
that UPPAAL will automatically account for the (global) worst-case memory reference or
variable value. This approach could also avoid unwanted effects from timing anomalies since
UPPAAL searches the entire state space when finding the WCET estimate.

4.2 The Model of the Core

The model of the core is depicted in Figure 3a. This automaton represents the timing model
of the core (the pipeline etc.) and is the automaton with which the program-automaton
synchronizes to execute instructions. When an instruction should be executed, the core
accesses the memory hierarchy to fetch it and then steps the pipeline. If the instruction
accesses data, the pipeline is stepped (stalls are inserted) until the memory access stage is
reached, then the data is accessed. This leads to an over-approximation of the execution
time. However, to avoid further over-approximation (which could be much larger), another
instruction can be fetched while the data is accessed.

The exec_instr_done[id] channels are declared as broadcast so that the program-
automata do not have to synchronize via these channels before a request to execute a new
instruction can be issued. This is to minimize the number of locations in the program-
automaton (to make the interface as clean as possible and to minimize the state space).

4.3 The Models of the Caches

The models of the L1 instruction and data caches are depicted in Figure 3b and 3c respectively.
The main difference between these cache models is that a data cache has the ability to
invalidate a line in the other data caches. Otherwise the models are quite straightforward.
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Step_Pipeline

tCore<=1+stalls[id]

Step_pipeline

tCore<=I2D_delay

Signal_Done

Touch_data

Wait_for_I_cache

Get_instruction

Idle

tCore>=1+stalls[id]

exec_instr_done[id]!

tCore>=I2D_delay

access[id].data &&
!wait_for_data[id]
access_I_done[id]?

tCore=0

!access[id].data &&
!wait_for_data[id]
access_I_done[id]?

tCore=0

access_D[id]!
calc_access_info_for_level(id,1,
                               true, true),
wait_for_data[id]=true

access_I[id]!

exec_instr[id]?

init_core(id)

(a) Core

Wait_for_L2

Signal_Done

!hit_go_to_L2

hit_delay

tCache<=cache_hit_time[0]

Check_cache

Idle

access_cache_s_done?

access_cache_s!
shared_caller=id,
shared_call_data=false

tCache>=cache_hit_time[0]

hit
tCache=0

!hit
calc_access_info_for_level(id,2,
                              false, false)

access_I_done[id]!

access_I[id]?
hit=access_cache_L1_instr(id)

init_cache(id)

(b) L1 Instruction cache

Invalidate

tCache<=invalidation_delay[0]

Signal_Done

Check_write

Wait_for_L2

Hit_delay

tCache<=cache_hit_time[1]

!hit_go_to_L2

Check_hit

Idle

wait_for_data[id]=false

tCache>=invalidation_delay[0]
invalidate_L1(id)

access_data[id].write
tCache=0,
calc_access_info_for_level(
                id, 1, true, false)

!access_data[id].write

tCache>=cache_hit_time[1]

access_cache_s_done?
update_cache_L1_data(id)

access_cache_s!
shared_caller=id,
shared_call_data=true

hit
tCache=0

!hit
calc_access_info_for_level(id,2,
                               true, false)

access_D[id]?
hit=access_cache_L1_data(id)

init_cache(id)

(c) L1 Data cache

Signal_Done

Delay

tCache<=cache_hit_time[hit?2:3]

Idle

tCache>=cache_hit_time[hit?2:3]

access_cache_s_done!

access_cache_s?
hit=access_cache_L2(),
tCache=0

init_cache()

(d) L2 Shared cache
Locked

Unlocked

go_lock[id]!
locked[id]=false

go_lock[id]?
locked[id]=true

init_lock(id)

(e) Lock handler
Stop_Time

Wait

all_tasks_finished()
finished?

(f) Finisher

go?

(g) Go

Figure 3 Timing model of the considered multicore architecture.

All the cache content handling is performed by the access_cache_L1_{instr,data}(),
update_cache_L1_data() and invalidate_L1() functions.

If the accessed data is not available in the L1 cache, it is fetched from the L2 shared
cache, which is depicted in Figure 3d. This model is even more straightforward – all the
cache content handling is performed by the access_cache_L2() function. If the accessed
data is not located in the L2 cache, it is fetched from the main memory (which is assumed
to always hit).

All the caches in the system can be individually defined, regarding set-associativity, cache
size, block size and replacement policy (the used cache properties can be found in Table 1).

4.4 The Auxiliary Automata
These automata, depicted in Figures 3e–3g, are implementation specific. The Lock handler-
automaton can be (and is) used to implement spinlocks. The Finisher-automaton is used to
stop the time and deadlock the system when all tasks have finished executing. And finally,
the Go-automaton is very versatile. It simply waits to synchronize via an urgent channel
(thus not allowing any time to pass when the transition is enabled). This can be viewed as a
trick to achieve the desired system behavior (e.g. to achieve system progress).
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4.5 WCET Analysis by Verification

Branch_instruction

Lock

Wait_for_Core

Unlock

Finished

Unlock_Instruction

CS_ST_instruction_and_data

Check_Lock

Test_instruction

LD_instruction_and_data_lock

exec_instr[id]!
set_access_info(id,mem_address++,-1,false,false)

exec_instr[id]!
set_access_info(id,mem_address++,1073,true,true)

exec_instr_done[id]?

count == 3

exec_instr[id]!
set_access_info(id,mem_address++,1073,true,true)

finished!

!wait_for_data[id]
go!

finished_tasks[id] = true

count < 3
count++,
mem_address=first_address

locked[0]
go!

mem_address=first_address

go_lock[0]?

exec_instr[id]!
set_access_info(id,mem_address++,1097,true,true)

!locked[0]
go_lock[0]!

exec_instr[id]!
set_access_info(id,mem_address++,-1,false,false)

exec_instr[id]!
set_access_info(id,mem_address++,1073,true,false)

init_task()

Figure 4 Model of a program with
spinlock-like synchronization.

Given the above described network of timed au-
tomata, UPPAAL can verify if different proper-
ties hold for the system. The verification property
that is used to find the WCET estimate looks like5:
A[] t <= x. This property should be interpreted
as: “For every possible state, the value of the clock
t is always less than or equal to x”. The WCET
analysis is easily performed by running the model-
checker (verifier) in a binary search style by altering
the value of x until the WCET estimate is found6.

In order for this approach to work, some other
properties of the system must also be verified; oth-
erwise there might exist some amount of time that
is not accounted for when calculating the WCET
estimate, or the overall system behavior could be
incorrect. It must be verified that: whenever the
system is in a deadlock state, the Finisher automa-
ton is in its Stop_Time location; the system will
always reach a state where the Finisher automaton
is in its Stop_Time location; when the Finisher
automaton is in its Stop_Time location, all other
automata modeling the hardware are in their Idle
locations, and all automata modeling the program
have finished; and mutual exclusion is guaranteed
on critical sections. By using similar verification
properties to the one above, UPPAAL can check
these properties automatically7.

4.6 Experimental Evaluation

An example model of a program (using the interface
given in Figure 2) is given in Figure 4. The task of the modeled program is very simple; it
just acquires a spinlock-like lock and then writes to a shared variable before releasing the
lock, and it executes this procedure three times before finishing its execution.

The same task is run on two cores (both tasks are released at the same time) and the
result of the analysis is a WCET estimate equal to 636 clock cycles (the other properties
mentioned above are also satisfied); using the specific values of the cache sizes (Table 1) and
latencies etc. The main memory is assumed to have a latency of 80 clock cycles. Each step
in the binary search approach is performed within 1 second and the total number of steps is
11 (this is dependent on the initial values of x in the verification property from section 4.5,
however).

5 The UPPAAL verifier syntax can be found in [5] or in the online help session accompanying the UPPAAL
binaries [26].

6 Similar approaches to WCET analysis using model-checking are described in [18], [19] and [28].
7 To guarantee a safe verification, the UPPAAL option “Extrapolation” should be set to “None”.
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An initial investigation of some potential problems regarding the scalability of the model-
checking approach has been conducted. By increasing the number of cores to four and
running one instance of the same example program as above on each core, we get a large
slowdown in the analysis time. Another investigation, where the release time of the second
task is made general in the interval [0, 1000], has also been performed. The same result, a
large slowdown in the analysis time, was observed. Increasing the sizes of the (meta-declared)
caches to 2048 lines for the L1 caches and 8192 lines for the L2 cache, does not seem to have
an equally large impact on the analysis time though. The memory usage increases drastically,
however. The required times for performing one binary search step are summarized in the
table below (a dual-core processor, running at 2.66GHz, with 4GB of RAM was used). The
“2 Cores” column represents the original experiment and is the base for comparison. The
total time is an approximation of the total time needed to perform the analysis, assuming 11
iterations, and that the binary search strategy for invoking the UPPAAL verifier is handled
by a script.

2 Cores 4 Cores Release Time $ Sizes
Time <1s >3h (aborted) 44s 14s

Total Time 11s >33h 500s 150s

A consequence of these results is that the complexity of the models and the size of the
analyzed program (and thus the achievable tightness of the WCET estimate) have to be
balanced to avoid making the state space explode. The case with 4 cores was aborted after
approximately 3 hours when the virtual memory demands exceeded the available amount of
RAM (4GB).

5 Discussion & Future Work

Modeling systems is very easy using UPPAAL, which also offers a useful interface for
performing model-checking. This paper has shown that WCET analysis of parallel code and
hardware can be performed using the model-checking techniques available in e.g. UPPAAL.
There are some limitations imposed by using UPPAAL to perform the WCET analysis,
however. The C-style interface is a bit limited regarding function calls; e.g., an array-argument
must have a known size – this limits the level to which the code can be written in a generical
way. However, the UPPAAL C-functions are meant to be very simple and small and the
C-style interface offered by UPPAAL is in general very rich, so the pros very much outweighs
the cons.

Another drawback is the binary search strategy that has to be used for finding the WCET
estimate. This could lead to unnecessarily large overheads in the analysis. One way to avoid
the binary search approach is to use the new sup8-operator, implemented in (and described
in the help session accompanying) the development version (4.1) of UPPAAL [26]. The
sup-operator finds the maximum value of an expression evaluating to either an integer or
a clock. To find the WCET estimate using the sup-operator, the following property could
simply be verified: sup: t. This property should be interpreted as: “Find the maximum
value of the clock t”. This approach works for the proposed system model since the system
is deadlocked and the time is stopped when all tasks have finished executing. The reason to
why this approach is not used in this paper is because of the development (unstable) state of
the UPPAAL-version (4.1) in which the sup-operator is implemented.

8 sup is an abbreviation of suprema.
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However, an initial investigation using the sup-operator has been performed on the system
described in section 4.6. By verifying the property sup: t, it is found that the WCET
estimate is 636 clock cycles (the same result as achieved by using the binary search approach).
The total time needed to verify the property is in the order of 1 second – this is superior
to the binary search approach where approximately 1 second (plus the overhead needed to
adjust the parameters) is needed for each binary search step.

An investigation of the sup-operator’s impact on the scalability has also been conducted
for the same system setups that were described in section 4.6. The result is presented in the
table below.

2 Cores 4 Cores Release Time $ Sizes
Time 1s >3h (aborted) 42s 14s

Total Time 1s >3h 42s 14s

As for the binary search approach, the case with 4 cores was aborted after approximately
3 hours when the virtual memory demands exceeded the available amount of RAM (4GB).
As can be seen, the total time needed to perform the entire analysis using the sup-operator
is quite comparable to the time needed to perform one binary search step (excluding any
parameter adjustment overhead). This makes the sup-operator a very promising feature of
UPPAAL; since the entire analysis can be performed automatically (in one step) and the
implied overhead, if any, is negligible.

Further investigations should be performed, regarding how well this method (model-
checking) scales with the size of the modeled program and the complexity of the hardware
model. It would also be worth investigating the impact on the size of the state space (and
thus the analysis time) by transferring more of the cache handling functionality from the
cache automata to the cache handling C-functions, and vice versa. On one extreme, all
the cache handling could be done by the C-functions, while the automaton only is used to
perform the cache access delay.

Another way of (hopefully) increasing the scalability of the method is to extend the use of
scalars. When scalars are used, UPPAAL can apply symmetry reduction on the model [13],
which can lead to a dramatic decrease in the size of the state space. Symmetry reduction
eliminates redundant paths in the model. Considering the models presented in section 4,
there are lots of redundant paths. The same program is executed on several homogenous
cores with a homogenous memory hierarchy. This means that the same execution pattern
exists several times in the state space, the only difference is which program (and core and
caches) it concerns. As a simple example, either program 0 is considered to start before
program 1, or vice versa – only one of the possibilities needs to be considered since the
models are equal; this is what symmetry reduction tries to achieve. Scalars and symmetry
reduction are also described in more detail in the UPPAAL help session9.

The granularity of the proposed interface in this paper is on the instruction level. This
increases the size of the state space compared to using a basic block granularity. One way
of reducing the size of the state space, and keep the instruction level granularity (when
considering non-preemptive tasks at least), could be to merge instructions on the same cache
line that do not access data and add some additional delay in the program model to represent
the merging. This would be possible since the lines in the (non-shared) instruction cache
never are invalidated by another cache; if one instruction is available, all other instructions in

9 The UPPAAL help session accompanies the UPPAAL binaries, available at [26]. It is also available at
http://www.uppaal.org/help.php?file=WebHelp (for the official release of UPPAAL).
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the same line are also available. This approach can be viewed upon as a manually performed
partial order reduction [6, 11].

The static WCET analysis tool SWEET10 is already capable of generating models in
the UPPAAL syntax on a special format [25]. Performing minor changes to this generation
could adapt SWEET to also being able to create models on the format specified by this
paper. This means that benchmarks could be easily translated and analyzed together with
the hardware models presented herein.

Other suggestions for future work are to implement a more detailed timing model to avoid
over-approximating the WCET, to implement a model of a real-world multicore architecture,
such as e.g. the ARM Cortex, and to investigate the possibilities of implementing models of
more synchronization primitives, e.g. mutexes and condition variables.

A final and very important conclusion is that WCET analysis of the inter-thread commu-
nication and interferences on shared resources can be made quite simple using the suggested
model-checking method, compared to static analysis (see e.g. [29]). However, it will probably
be quite difficult to make the model-checking method scale well.
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Abstract
Safe and tight worst-case execution times (WCETs) are important when scheduling hard real-
time systems. This paper presents METAMOC, a modular method, based on model checking
and static analysis, that determines safe and tight WCETs for programs running on platforms
featuring caching and pipelining. The method works by constructing a UPPAAL model of the
program being analysed and annotating the model with information from an inter-procedural
value analysis. The program model is then combined with a model of the hardware platform and
model checked for the WCET. Through support for the platforms ARM7, ARM9 and ATMEL
AVR 8-bit, the modularity and retargetability of the method are demonstrated, as only the
pipeline needs to be remodelled. Hardware modelling is performed in a state-of-the-art graphical
modelling environment. Experiments on the Mälardalen WCET benchmark programs show that
taking caching into account yields much tighter WCETs than without modelling caches, and that
METAMOC is a sufficiently fast and versatile approach for WCET analysis.

Digital Object Identifier 10.4230/OASIcs.WCET.2010.113

1 Introduction

Embedded software is virtually ubiquitous these days. It is used to control the proper
functioning of technical devices we routinely use and rely on in our daily life. Often embedded
software is applied in safety-critical systems—e.g. the braking system of a car or the steering
gear of an airplane. Many of these safety-critical systems are also time-critical, meaning that
the calculations performed by the tasks of an embedded system need not only be correct
but must be carried out in a timely fashion. Worst-case execution time (WCET) analysis
is concerned with providing guarantees for proper timing behaviour of system tasks by
computing bounds for their execution time on given processors.

In order to allow for reliable and efficient scheduling of tasks, the scheduling algorithms
need safe and tight WCETs. Two different classes of methods are predominant (see also [11]):
measurement-based methods, where statistical information on WCETs is obtained by ex-
ecuting tasks on the given processor or simulator for a sample collection of input, and
static methods, where static analysis (typically abstract interpretation and integer linear
programming [10]) of the task, taking the specific hardware platform into account, allow the
derivation of safe upper bounds on the execution time. The method presented in this paper,
Modular Execution Time Analysis using Model Checking (METAMOC)1, is a static method
utilising model checking to provide safe WCET estimates. Figure 1 provides an overview of
the prototype implementation of METAMOC.

1 http://metamoc.dk
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Figure 1 Overview of the prototype implementation of METAMOC. The top row shows required
inputs. The executable (annotated with loop bounds) is the only user input, whereas the other
inputs are platform specific models developed by specialists or hardware vendors. The output is a
WCET estimate for running the executable on the hardware platform. Rounded and rectangular
boxes represent actions and objects, respectively.

Modern processors utilise techniques such as caching and pipelining, which increase the
average number of operations that can be executed per time unit. Since these techniques are
also found in many processors intended for embedded devices, such as members of the widely
deployed ARM7 and ARM9 families, a modern WCET analysis method must take them into
account to be useful. The use of model checking in METAMOC provides a modular approach
for dealing with these techniques: the model to be analysed comprises an abstract model
of the program, and similarly for the component models for the hardware platform, which
include caches, pipelines and memories. Thus, WCET analysis of a platform with, say, a
new pipeline component only requires a model for the new component.

The paper is organised as follows. Section 2 provides a brief introduction to the model
checker UPPAAL [2] and its extensions to timed automata (TA). Section 3 describes the
models used in METAMOC for hardware components and programs, and in which ways they
interact. The modularity of the method is demonstrated through support for the platforms
ARM7, ARM9 and ATMEL AVR 8-bit. Section 4 details a number of experiments, which
evaluate the applicability and performance of METAMOC. The experiments are conducted
using a suite of WCET benchmark programs from Mälardalen Real-Time Research Centre2.
Section 5 gives an overview of related work. Section 6 concludes the paper and presents
possible directions for future work.

2 The UPPAAL Model Checker

UPPAAL [2] is a model checker for real-time systems which, besides the verification engine,
features a state-of-the-art graphical user interface for modelling, simulation and verification.
This section gives a brief introduction to UPPAAL models, which are used as the model

2 http://www.mrtc.mdh.se/projects/wcet/home.html

http://www.mrtc.mdh.se/projects/wcet/home.html
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formalism in METAMOC.
Systems in UPPAAL are modelled as a network of timed automata (TA), that is a set

of finite automata and a set of free-running clocks that can be reset. The TA are extended
with a number of features to ease modelling. Binary synchronisation channels enable a TA
having an edge labelled name! to synchronise with another TA having an edge labelled
name?, i.e. they follow the edges together in one transition. If several pairs are possible, a
pair is chosen non-deterministically. Urgent channels dictate that synchronisations must be
carried out immediately whenever possible, i.e. a time delay must not occur. Another case
where a time delay must not occur is when one or more of the TA are in a location marked
as committed. Priorities can be assigned to TA, such that a transition in a TA is enabled
only if no transitions in any higher priority TA are enabled.

In addition to the control-flow primitives, UPPAAL models can contain a number of
discrete-valued variables (and arrays of variables) and a number of C-like functions that can
access and update those variables. These functions can be used as guards on transitions, or
invoked when an transition is taken to update variables.

Properties to be verified for the systems are formulated in a logic inspired by timed com-
putation tree logic (TCTL). Besides standard TCTL, UPPAAL provides a special sup prop-
erty for finding the supremum of a clock. For example, the property “sup: cyclecounter”
causes UPPAAL to determine an upper bound for the clock cyclecounter. This exact
property is used by METAMOC. For an introduction to TA model checking and TCTL
see [1].

3 Modelling Hardware Components and Programs

As is clear from Figure 1, METAMOC is centered around a number of models. In this
section we explain the ideas behind the models and how they fit together. Starting in the
upper left corner of Figure 1, the method takes as input an executable annotated with
loop bounds. The executable is disassembled using the tools objdump and Dissy3, and the
resulting assembly code is given as input to a generator and a value analysis. The generator
creates a control flow graph (CFG) from the assembly code, in the form of a UPPAAL model,
which is annotated with results from the value analysis. Besides the executable, the method
takes as input a pipeline model, a main memory model and some cache specifications. The
latter are given as input to another generator, which creates cache models. Finally, the four
models are combined and model checked, resulting in a WCET estimate for running the
executable on the hardware platform. The CFG generator, the value analysis, the cache
generator and the combine tool have been written for the prototype implementation by the
authors of this paper and are released as open source.

We use a prototype implementation of METAMOC for a simplified ARM920T processor4
as a continuing example in this section. The ARM920T processor is a member of the ARM9
family, which features an ARM9TDMI processor core5, separate instruction and data caches,
a memory management unit (MMU), and a bus interface for connecting main memory.
We have modelled the core and the caches of the processor together with a simple main
memory. The MMU and the bus interface are not modelled, and we have modelled least
recently used (LRU) caches rather than first in first out (FIFO) caches, as FIFO caches

3 http://www.gnu.org/software/binutils/ and http://code.google.com/p/dissy/
4 http://infocenter.arm.com/help/topic/com.arm.doc.ddi0151c/ARM920T_TRM1_S.pdf
5 http://infocenter.arm.com/help/topic/com.arm.doc.ddi0180a/DDI0180.pdf
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Figure 2 Communication between components in the ARM920T and the main memory.

cause timing anomalies [3]. Section 3.4 discusses the problem with FIFO caches and how
they can be handled by METAMOC. The core implements the ARM instruction set v4T and
contains a five stage pipeline with the stages fetch, decode, execute, memory and writeback.
Communication between components in the model is illustrated in Figure 2. In order to
demonstrate the modularity of the method we have utilised the ARM920T implementation
to rapidly create implementations for the processors ARM7 and ATMEL AVR 8-bit. This
process is detailed in Section 3.5.

In the following, a program is understood as a low-level machine executable representa-
tion, which has been disassembled to human readable assembly. The WCET of a program
depends heavily on the hardware platform it is executed on, which explains why it is neces-
sary to do the analysis at the lowest level; it is only at this level that enough information is
present to determine the exact execution behaviour.

3.1 Modelling Pipelines
A pipeline is the part of a processor responsible for the execution of instructions. A pipeline
divides the execution of an instruction into a number of parallel stages, in order to increase
the average pace of execution. The five stages found in the ARM9TDMI core are illustrated
in Figure 2. The fetch stage fetches instructions from main memory through the instruction
cache. The decode stage determines the instruction type and the involved registers and
prepares the needed values for the execute stage. The execute stage performs the actual
arithmetic or logical computation. The memory stage accesses main memory through the
data cache. Finally, the writeback stage writes computed values back into the registers.
Each instruction flows through all stages, staying at least one cycle in each stage.

The parallel nature of a pipeline matches the parallel nature of a UPPAAL model,
making the modelling of a pipeline in METAMOC a straight-forward process. Figure 3
shows a sketch of the UPPAAL model for the ARM9TDMI pipeline. The model contains
an automaton for each stage in the pipeline. Progress in the model is forced by declaring
all synchronisation channels as urgent, and time is bounded using a committed location in
the writeback automaton. The non-determinism arising from the automata combinations is
limited using priorities, since all combinations will result in the same state before time is
allowed to progress. The simulation ensures that a safe overapproximation of the execution
time is found. For example, since branch instructions are evaluated in the execute stage
in hardware and in the program model in METAMOC, special handling is required. Even
though the hardware flushes the fetch and decode stages in case of a branch to a non-
consecutive address, the instruction cache has been affected, and we imitate this effect in
METAMOC by having the fetch automaton perform two fetches without moving the fetched
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Figure 3 Sketch of the UPPAAL model for the pipeline in the ARM9TDMI processor core.
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Figure 4 UPPAAL model for the decode stage in the ARM9TDMI pipeline. The model uses
the local clock x, the functions move and the function must_stall. A single location is marked as
committed with a C.

instructions further on in the pipeline.
Another example is pipeline stalls, which are handled in the decode automaton. The

automaton initially delays for one cycle. Then, if the current instruction depends on data
being loaded by the memory stage or data being shifted or sign extended by the writeback
stage, it stalls until the data is ready. Consider the instructions:

LDR R0, [R1] # Load R0 with the word pointed to by R1

ADD R2, R0, R1 # Store the sum of R0 and R1 in R2

The sum cannot be computed before the value of R0 is available, and the second instruction
must therefore stay in the decode stage until the load has finished in the memory stage.
The actual UPPAAL model for the decode stage is shown in Figure 4. Pipeline stalls are
documented by four examples in the reference manual for the core, however, the manual
does not guarantee that the examples are exhaustive. The pipeline model in METAMOC
handles the four examples cycle-accurately.

To further validate our pipeline model, we have used it to calculate the number of cycles
for executing some small, single-path programs from the Mälardalen WCET benchmarks
and compared these cycle counts to results from the ARMulator emulator6, assuming only
cache hits. The cycle counts are comparable (with our estimates erring on the safe side),
e.g. fibcall gives 407 vs. 415. It should be noted that ARMulator does not give any definite
guarantees regarding cycle-accuracy7, which means the cycle counts can only be used for
approximate comparisons.

6 http://infocenter.arm.com/help/topic/com.arm.doc.dui0058d/DUI0058.pdf
7 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka4106.html
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An important property of our simplified model of the ARM920T processor is that it is
free of “timing anomalies”, as its pipeline is in-order [4], and it is modelled with LRU caches.
If a processor has timing anomalies, it means that the local worst-case might not lead to
the global worst-case. For instance, a cache hit rather than a cache miss might lead to a
longer overall execution time. The absence of timing anomalies makes it convenient to find
overapproximations, as the local worst-case can be used. Alternatively, if presented with a
processor with timing anomalies, additional non-determinism in the model might be used
to explore all local possibilities.

3.2 Modelling Caches
Another feature for improving the average execution pace is caching. The basis of caching
is the principles of locality. Caches improve the pace greatly, since a main memory access
might take e.g. 33 cycles while a cache access typically only requires a single cycle. A cache
is divided into sets, where each block from main memory can reside in precisely one of these
sets. Each set is divided into lines, also called “ways”. A memory block can be stored in any
of the lines in the set that it can be cached in. When a memory access occurs, eviction of a
line in a cache set might be required, since all lines might be occupied. If that is the case,
a replacement policy is used to determine which line to evict.

The ARM920T processor has separate instruction and data caches. Both are 16 KB, 64
way associative, have eight words (i.e. 32 bytes) per line, support the write-through and
write-back write policies, and support the pseudo-random and FIFO replacement policies.
As mentioned above, we consider an LRU policy in this paper. The set for a byte at address
x is determined by (x & ((ns−1)� log2(ls)))� log2(ls), where ns is the number of sets, ls is
the line size in bytes, &, � and � are bitwise AND and SHIFT operators. This expression,
slightly modified, is part of the cache models.

In order to add caching to the pipeline model, each cache is modelled as a UPPAAL
model, simulating a cache hit by delaying for one cycle and a cache miss by synchronising
with the UPPAAL model for main memory, which delays the appropriate number of cycles.
The cache model has to keep track of which memory blocks are currently in the cache. It
does so by storing an array of 512 addresses, as there are 512 lines. Cache hits are determined
using this array, and the cache replacement policy is implemented as functions.

3.3 Modelling Programs
The program is modelled as a data-insensitive CFG of the program, which communicates
with the fetch stage of the pipeline. Figure 5 shows a simplified example of a program
with two functions: main and foo. All programs have a main function, which is where
the execution starts. Function calls are simulated by transferring control to the function
automaton and transferring control back to the call-site when the function returns. This
is illustrated in Figure 5 by synchronisation over the channels fooCall and fooReturn.
Bounded recursion is supported, albeit only through manual modification of the generated
models. Loops are handled using loop counter variables that ensure that a back-edge of a
loop can only be taken the specified number of times.

In order to reduce the amount of non-determinism in the program model, it is deter-
minised using a simple rule: executing more code increases the execution time. Concretely,
this means that loops are iterated the maximum number of times, and that forward branches
are sometimes ignored. For example if a forward branch skips over a number of instructions
it is ignored, as following it will only lead to less code being executed. Before ignoring such
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Figure 5 Sketches of the UPPAAL models for the functions main and foo.

a forward branch, the effects of the pipeline still have to be considered as if the jump is
sufficiently small it might be the worst-case to take the branch, flushing the pipeline. This
form of determinisation is not safe in the presence of timing anomalies.

The program CFG is annotated with the memory addresses accessed, determined stat-
ically using a value analysis. We have implemented a precise, inter-procedural constant-
propagation value analysis using weighted push-down systems (WPDSs) [7] and loop un-
rolling. For brevity reasons we omit the details on the value analysis.

3.4 Handling Timing Anomalies such as FIFO Caches
FIFO caches cause domino effects [3], which are a type of timing anomaly. A domino effect
is where the iteration of a loop body gives rise to different states of a hardware component,
e.g. the pipeline or the caches, without convergence. The consequence is that it is not
safe to unroll the loop any number of times and assume that state leads to the global
worst case. Concretely for METAMOC this means the maximum number of loop iterations
cannot be assumed, as if the bound is n, iterating the loop m times, where m < n, might
lead to a hardware state that becomes slower overall than iterating the loop n times. By
changing the guards on transitions in the program CFG that exit a loop to be more lenient,
we can introduce non-determinism to explore all possible iterations of loops and thereby
handle cache replacement policies that cause domino effects. Similarly, the determinisation
described in Section 3.3 must be disabled for the analysis to be sound. However, the added
non-determinism often results in state space explosion making the program unanalysable.

3.5 Support for ARM7 and ATMEL AVR 8-bit
Inspired by the WCET Tool Challenge 20088 we have implemented METAMOC for the
ARM7TDMI processor core9. The core has three pipeline stages: fetch, decode and execute.
The execute stage covers the actions performed by the execute, memory and writeback stages
in the ARM9TDMI. Since the ARM9TDMI model could be reused extensively, and since
both cores implement the v4T instruction set, we were able to create the ARM7TDMI model
in less than a man-week.

To show that other popular embedded processors can be supported as well, we have
implemented support for the ATMEL AVR 8-bit processor. It took approximately one man-
week to implement the support and only required adding a new pipeline, creating support
in Dissy for the AVR architecture and slightly generalising the CFG generator. Since the
processor has no caches, no value analysis is performed.

8 http://www.mrtc.mdh.se/projects/WCC08/
9 http://infocenter.arm.com/help/topic/com.arm.doc.ddi0210c/DDI0210B.pdf
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4 Experiments

To evaluate the applicability and performance of our method, we evaluate it on a number of
WCET benchmark programs from the Mälardalen Real-Time Research Centre. We compile
the programs using a cross-compiling GNU C Compiler (GCC)10. The model generation is
done on a 2 GHz Intel Core 2 Duo processor with 4 GB of RAM, and the model checking
is done on a Dell PowerEdge 2950 with two 2.5 GHz Intel Quad Core Xeon processors
and 32 GB of RAM. The UPPAAL settings for all runs are: depth-first search, aggresive
state-space reduction and 64 MB hash table size.

We have manually annotated all loops in the programs with loop bounds. In addition we
have promoted a few local variables to the global scope to sidestep GCC’s translation of large
local arrays into data segments with specialised initialiser code. We have discarded programs
that either use floating point operations, do register-indirect jumps, or do not compile.
GCC inserts software floating point routines, which we could analyse given an estimation
of the routines’ loop bounds—these are hard to estimate though, without thorough manual
analysis. Out of 35 programs, this resulted in 21 programs11 for the ARM architecture and
19 programs for the AVR architecture12.

METAMOC has many parameters that can be adjusted for different trade-offs between
precision, memory and analysis time: the compiler optimisation level, the amount of heuristic
determinisation and manual annotation of the models, the level of hardware detail modelled
and model checker options (specifically state space reduction techniques). To demonstrate
the modularity of the method we have tested three different ARM9 configurations in order
of increasing precision: with no caches (always assuming that main memory is accessed),
with only an instruction cache, and with both an instruction cache and a data cache. Our
value analysis is only used when the data cache is enabled. The improvements gained by
using more precise models can be seen in Figure 6a, while the increase in analysis time can
be seen in Figure 6b. We have omitted the benchmarks for the ARM7 architecture as the
results are very similar to the ARM9 results.

Our applicability results are presented in Table 1, together with the analysis times in
Figure 6b. For the ARM9 we are able to provide WCETs for all 21 benchmarks. The adpcm
program results in state space explosion when enabling any caches. The ndes program is only
analysable with an instruction cache with 128 cache lines. When both caches are enabled,
we manually have to modify the models for three of the benchmarks: compress has a small
syntactical error due to deep loop nesting; and for matmult and bsort100 the number of data
cache lines modelled concretely must be reduced from 512 to 128 and 64, respectively (which
amounts to editing a constant in the model editor, due to the modular design). Without
this manual modification, UPPAAL runs into its 4 GB memory limit.

More AVR benchmarks suffer from state space explosion than ARM benchmarks, pri-
marily due to the ARM architecture having support for predicated (conditional) execution
of all instructions, thus reducing the number of distinct paths through the program.

The analysis times are all within 42 mins., with the average across all configurations and
benchmarks being 100.47 secs. Details of the benchmarking are available at the METAMOC

10For ARM: GCC 4.1.2, with the options -O2 -g -fno-builtin -fomit-frame-pointer. For AVR: GCC
4.3.3, with the options -O2 -g -fno-builtin -fno-inline -fomit-frame-pointer -mmcu=avr5

11 adpcm, bs, bsort100, cnt, compress, crc, edn, expint, fac, fdct, fibcall, fir, insertsort, janne_complex,
jfdctint, matmult, ndes, ns, nsichneu, prime, ud.

12The same as for the ARM, except bsort100 and nsichneu, which failed compiling due to the resulting
program image being too large for the AVR.
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ARM9 w. LRU caches, 21 benchmarks
Analysable without caches 21
Analysable with instruction cache 20
Unanalysable, state space explosion 1
Manual modification of instruction cache size 1
Analysable with data and instruction cache 19
Unanalysable, state space explosion 2
Manual modification of data cache size 2
Manual syntax fix of model 1

ATMEL AVR 8-bit, 19 benchmarks
Analysable 16
Unanalysable, state space explosion 3

Table 1 How many programs were analysable, and reasons for failure.
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Figure 6 (a) Improvement in WCET estimate by precisely modelling the different caches on the
ARM9. The average improvement in WCET estimate is 72.2% by modelling the instruction cache,
and 82.3% by modelling both caches. (b) Analysis times for the different configurations in minutes.
The average successful analysis times are, respectively: 52.46 secs., 80.76 secs., 27.84 secs. and
235.32 secs.

website, including the actual WCET estimates and UPPAAL models generated.
We have experimented with modelling an ARM9 with a FIFO instruction cache, disabling

the determinisation described in Section 3.4 as this is unsound in the presence of timing
anomalies, but our results are very inconclusive. Some benchmarks can be handled almost
as efficiently by using different optimisations in the model checker, such as the “convex hull”
overapproximation technique, while others suffer from massive state space explosion. Convex
hull collapses states that only differ in their clock valuations into one overapproximated state
for further exploration. The efficiency of this depends very much on the search order, but
this cannot be managed at such a detailed level currently. The handling of timing anomalies
is an area of future work.

5 Related Work

Using model checking for determining worst-case execution times (WCETs) is a debated
approach. In [10] it is claimed that model checking is not suitable for WCET analyses,
however, in [6] it is shown that model checking can actually improve WCET estimates for
hardware with caching. In this paper we show that model checking can be used for WCET
analysis for a simplified model of a real-world, modern processor—and with good results
and performance.

Cache analyses can generally be sorted into abstract and concrete cache analyses. In
the former, a model state covers a number of concrete hardware states that are similar in
some way. In the latter, a model state corresponds to a particular, concrete hardware state.
The common model for abstract cache analyses as in [5] has the advantage of being space
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efficient, with a trade-off of precision.
The pipeline analysis typically uses an abstract model of the pipeline to take its impact

on the execution into account [5]. The pipeline analysis should be able to handle unknown
memory values. They might lead to non-determinism, as it might be impossible to deduce
a reasonable overapproximation. For this reason, abstract pipeline states are traditionally
represented as a set of concrete pipeline states [8]. Recent work has looked into using binary
decision diagrams (BDDs) to represent abstract pipeline states [12]. The work presented
in this paper is conceptually similar but the standard reduction techniques of the model
checker is used. Using real-time model checking should be more resilient to the memory
delay than the method presented in [12], as delays of any length results in a single state,
without intermediate states for each time unit.

For the path analysis, implicit path enumeration technique (IPET) and integer linear
programming (ILP) have been combined in several tools [11, p. 42]. In [9], a path-based
method is presented and has been implemented as an alternative to IPET in the SWEET
tool. The method is more effective than previous path-based methods. Furthermore, path-
based methods explore a path explicitly which, in contrast to IPET, could make debugging
and infeasible path pruning easier. The path analysis presented in this paper is a simple
exploration of the CFG of the program, with pruning of paths which cannot lead to the
worst-case behaviour, but no pruning of infeasible paths.

6 Conclusion and Future Work

The optimisation features of modern processors, such as caching and pipelining, make it
difficult to determine safe and tight WCETs. Our method, METAMOC, is a modular and
easily retargetable approach for determining WCETs for programs running on hardware
platforms featuring caching and pipelining, but no timing anomalies. In order to evaluate
the method, a prototype implementation has been made for a simplified model of the ARM9
architecture, a typical processor for embedded systems. To show the modularity of the
approach, the initial prototype has been extended with support for the ARM7 and ATMEL
AVR architectures.

The prototype has been benchmarked to test its performance and general applicability.
The experiments additionally show that much tighter WCET estimates are found when tak-
ing instruction caching into account: up to 96% tighter estimates, and 72.2% on average.
Also considering the data cache increases the average to 82.3%. When taking both caches
into account, the average analysis time is just under four minutes. For the ARM9 archi-
tecture, WCET estimates are given for all benchmarks, but requiring manual tweaking in
four cases. For the ATMEL AVR three programs are unanalysable due to the model checker
running out of memory.

Future work includes improving the model checker technology, and thereby being able
to handle timing anomalies. We speculate that our models will parallelise very efficiently,
as paths seem to be quite independent (especially when including caches). Distributing the
model checking across more hosts will allow us to use much more memory, thereby allowing
the analysis of larger programs. Exploiting the structure of our models in order to summarise
the effects of long deterministic chains, e.g. basic blocks, into single steps should also help.
Seeing that abstract caches seem to give a good trade-off between precision and performance,
adding support for abstract caches would be interesting. Finally, rather than being data-
insensitive, we would like to incorporate some form of flow facts into the program model. We
already support this in some form, by allowing the user to manually annotate the program
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model, but it would be more beneficial if some flow facts were deduced automatically.
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Abstract
Current worst-case execution time (WCET) analyses do not support programs using dynamic memory al-
location. This is mainly due to the unpredictability of cache performance introduced by standard memory
allocators. To overcome this problem, algorithms have been proposed that precompute static allocations
for dynamically allocating programs with known numeric bounds on the number and sizes of allocated
memory blocks. In this paper, we present a novel algorithm for computing such static allocations that can
cope with parametric bounds on the number and sizes of allocated blocks. To demonstrate the usefulness
of our approach, we precompute static allocations for a set of existing real-time applications and academic
examples.
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1 Introduction

In modern embedded hardware, caches are used to bridge the increasing gap between processor
speed and memory access times. For a timing analysis striving to derive tight bounds on a program’s
worst-case execution time these caches impose additional challenges. Such an analysis may not
conservatively assume each memory access to be a cache miss without risking to be overly imprecise
as turning off the cache completely may lead to a thirty fold increase of the execution time [5]. Also,
lower bounds on the number of cache hits are not necessarily leading to tight bounds due to timing
anomalies [7]. Timing anomalies denote situations where local worst-case behavior, i.e. a cache
miss, does not always lead to global worst-case behavior. Hence, a statically more predictable cache
behavior enables the derivation of tighter bounds on the programs worst-case execution times.

In the presence of dynamic memory allocation, WCET analyses fail to determine precise time
bounds due to the unpredictability dynamic memory allocation inflicts on the cache behavior. General
purpose dynamic memory allocators strive to cause little fragmentation and neither provide guarantees
about their own worst-case execution time, nor do they provide information about the cache set
mapping of the memory addresses they return. The cache set that a dynamically allocated memory
block is mapped to is therefore statically not predictable. Consequently, WCET analyses can,
in general, not classify accesses to dynamically allocated memory as cache hits or cache misses.
Additionally, the processes of dynamic memory allocation as well as deallocation pollute the cache
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themselves. Memory allocators manage free memory blocks in internal data structures which they
maintain and traverse during allocation and deallocation operations. These unpredictable traversals of
internal data structures result in unpredictable influences on the cache.
To circumvent these problems, programmers revert to static memory allocation within hard real-time
programs. However, often dynamic memory allocation has advantages over static memory allocation.
To enable dynamic memory allocation for hard real-time applications, Herter and Reineke proposed
an algorithm to statically precompute memory addresses and replace calls to the memory allocator
by sequences of fixed addresses [3]. This way, programmers can use dynamic memory allocation
to alleviate the task of efficiently reusing memory, while the program itself can—after an automatic
transformation—be analyzed by current WCET analyses.
However, the algorithm proposed in [3] is limited to programs that contain only loops bounded by a
numerical value. Additionally, the requested block sizes—or at least tight bounds on these—need
to be statically known. In this paper, we propose a novel algorithm that can cope with parametric
bounds on the number of possible loop iterations and requested block sizes.

Figure 1 visualizes the application area for the proposed algorithm. We start with a program using
dynamic memory allocation that is intended to be deployed in a hard real-time setting. However,
due to the unpredictability that dynamic memory allocation inflicts on the cache behavior of the
program, no tight bounds for the program’s worst-case execution can be determined using current
WCET analyses.

In a first phase, we apply a static program analysis to compute liveness information for the
dynamically allocated objects. This information together with user supplied loop and recursion
bounds is used as input for the proposed algorithm for precomputing static memory addresses. In the
second and final phase, we replace calls for memory allocation by functions that return a sequence
of precomputed addresses. Using fixed memory addresses, calls to free become obsolete and can
simply be removed. This phase yields a modified program in which the memory addresses of all
objects are statically known. For such a program, current WCET analyses can compute tight bounds
on its worst-case execution time.

x = malloc(
      sizeof (list));
...
y = x->data;          

Static
Analysis

Pre-computation
of Static Addresses

Analysis 
results

User 
supplied 
Param. 

Loop/Size 
Bounds

x = nextAddr();
...
y = x->data;          

Original Program Modified Program

x = malloc(
      sizeof (list));
...
y = x->data;          

Figure 1 Field of application for the proposed algorithm
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The remainder of this paper is organized as follows. Section 2 briefly reviews related work. In
Section 3, we formally describe a program’s memory allocation behavior. The algorithm presented in
Section 4 uses such a formal description to statically precompute memory addresses for the allocated
memory blocks. In Section 5, we present results obtained from precomputing memory allocations for
a set of academic and real-life programs.

2 Related Work

There are two other approaches to make programs that dynamically allocate memory more analyzable
with respect to their WCET. In [4], Herter et al. propose to utilize a predictable memory allocator
to overcome the problems introduced by standard memory allocators. Schoeberl proposes different
(hardware) caches for different data areas [10]. Hence, accesses to heap-allocated objects would
not influence cached stack or constant data. The cache designated for heap-allocated data would be
implemented as a fully-associative cache with an LRU replacement policy. For such an architecture
it would be possible to perform a cache analysis without knowledge of the memory addresses of
the heap-allocated data. However, a fully-associative cache, in particular with LRU replacement, is
limited in size due to technological constraints. Those two approaches have the advantage not to rely
on tight bounds on the number of allocation requests and the sizes of requested memory blocks.

An algorithm to statically precompute memory addresses and replace calls to the memory allocator
by fixed addresses for programs in which all occurring loops and requested sizes can be (tightly)
bounded by a numerical value was proposed in [3]. This approach, although applicable to a smaller
class of applications, has the advantage to yield entirely static allocations, removing memory allocation
procedures completely.

3 A Formal Model for Memory Allocations

To describe a program’s memory allocation behavior, we start by collecting all allocation sites, i.e.
occurrences of malloc within the program, in a set M . Per assumption, we know how often each
allocation site can be reached during program allocation as loop and recursion bounds are known, at
least parametrically. Hence, we introduce a further set

U =
⋃

m∈M

{um}

where um ∈ N ∪ P is an upper bound on how often allocation site m may be reached, i.e. how often
this function call may be invoked. P denotes the set of parametric loop and recursion bounds. For
each allocation site m, we construct a function fm such that fm(i) evaluates to the size of the memory
block requested the i-th time allocation site m is reached. These sizes may be over-approximated by
intervals. And consequently,

A =
⋃

m∈M

{
fm : N≤um∈U 7→ Im

}
where Im is a set of intervals, is the set containing functions describing the allocation requests for all
allocation sites. Now, the set

R =
{

(m, i) | m ∈M ∧ i ∈ N≤um∈U
}

contains all allocation requests that may occur during program execution.
For precomputing feasible memory allocation we also need to know which allocated blocks have

overlapping lifetimes. Liveness information for dynamically allocated memory blocks can safely be
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over-approximated using shape analysis [9]. We assume this information to be available and encode
it in a conflict function

C : 2R 7→ {0, 1}

that evaluates to 1 iff its argument requests at least two memory blocks with overlapping lifetimes.
When precomputing static memory addresses for originally dynamically allocated memory blocks,

we may not want to ignore cache set mappings completely. Hence, we are presented two options. We
may strive for cache set mappings leading to further improved predictability of the program. This,
however, requires us to be aware of many details of the cache analysis applied to the transformed
program. Basically, to be able to decide which cache set mapping may enable a subsequent cache
analysis to classify the largest number of memory accesses as hits or misses calls for knowing the
exact analysis algorithm. The second option would be to strive for good cache performance such
that the risk is reduced that the statically precomputed addresses decrease program performance. In
order not to rely on assumptions about subsequently applied analysis techniques or to be restricted to
specific analyses, we favor the second option.

Unfortunately, under the assumption that P 6= NP , one cannot efficiently approximate an optimal
placement of objects in memory that reduces the number of cache misses [8]. However, Chilimbi et
al. showed that simply trying to place objects that are likely to be accessed contemporaneously next
to each other in memory achieves significant increases in performance [1]. To exploit this heuristics,
we construct a bias function

B : (R×R) 7→ {0, 1}

such that B(r1, r2) evaluates to 1 iff the block requested in r1 is likely to be accessed prior to the
one requested in r2. How can we statically obtain information about what objects will be accessed
contemporaneously during program execution? Chilimbi’s work relied on the user to provide this
information. While this yields the most precise information in most cases, we can also approximate
object access behavior using shape analysis [9]. We say that two objects o1 and o2 are likely to be
accessed contemporaneously if there exist field pointers between o1 and o2. A third, more efficient
but potentially less precise way to gather this information is to apply a data structure analysis [6]
together with the heuristics that objects organized in the same data structure are likely to be accessed
contemporaneously.

An allocation problem is then a six-tuple

(M, U, L, A, C,B)

where L is a set of constraints on the parameters in P .
An allocation is a feasible solution to an allocation problem of the form⋃

r∈R

{(r, addr)}

where addr denotes the precomputed starting address of the memory block requested by r.
An optimal allocation is a feasible solution to an allocation problem such that (1) there is no

other feasible solution with smaller memory consumption. And (2), considering the set of all feasible
solutions with minimum memory consumption, no solution exists that places more blocks, for which
the bias function B evaluates to 1, in memory next to each other.

Finding such optimal solutions is still at least NP-hard. Let (V, E, k) be a given instance of the
k-colorability problem for a graph G = (V, E). Generate the allocation problem

K = (V, {1}, {}, {f : {1} 7→ [1, 1]}, C : R×R 7→ {0, 1}, B : R×R 7→ {0})
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where B maps all arguments to 0 and C is defined s.t.

C(S) = 1⇔ ∃v1, v2.(v1, v2) ∈ E ∧ {v1, v2} ⊆ S

This transformation can be done in polynomial time and can be used to solve the k-colorability
problem for G as follows. Find an optimal allocation for K and check whether less than or equal to k

memory addresses are used, in which case G is k-colorable by associating each memory location
with a (different) color.

We choose a heuristic approach to finding good solutions as striving for optimal solutions would
render our technique only applicable to very small applications.

4 Algorithm

Before starting to precompute suitable memory addresses for allocated memory blocks, the algorithm
transforms its input I = (M, U, L, A, C,B) as follows. Using the bias function B, maximal ranges
of allocated memory blocks that should be placed adjacent in memory are identified. These ranges
are then split again into blocks, such that the sizes of the resulting normalized blocks are multiples
of the size of a cache line. The last normalized block may be of smaller size and splitting must not
occur within the bounds of an allocated memory block. This transformation yields a new allocation
problem I ′ = (M ′, U ′, L′, A′, C′) for a parametric set of normalized blocks. M ′ denotes now the
set of maximal ranges of allocated memory blocks, or abstract allocation sites, while the functions
collected in A′ map to the sizes of the single normalized blocks of these ranges. U ′ ⊂ N ∪ P ′ and
L′ are the accordingly updated constraints on loop/recursion bounds and parameters. We gain two
advantages from this transformation step. The number of blocks considered by the algorithm is in
general reduced, leading to a smaller problem instance. Also, the bias function was consumed and the
algorithm does not need to respect further constraints introduced by this function.

Given the input I ′, the values of the parameters P ′ are unknown at design time. Hence, the
resulting allocation scheme is parameterized in P ′. To enable the algorithm to cope with this, we
introduce memory block chunks. A chunk is a relative placement of memory blocks from different
abstract allocation sites in M ′, such that there is no conflict within a chunk itself. Chunks are then
placed sequentially in memory such that memory blocks of each abstract allocation site m ∈ M ′

occur exactly um times. Formally, a chunk is a set of triples (m, i, o), with the intended meaning that
the i-th request from abstract allocation site m is located within the chunk at relative position o. An
allocation, i.e. solution to an allocation problem, contains several types of chunks and the number of
occurrences of a specific chunk is parametric. By this, we reduce the computation of a solution to an
allocation problem to finding an appropriate selection of chunks.

Let us consider a standard example for advantageous use of dynamic memory allocation, namely
in-situ list copy. Assume, we want to copy a singly-linked list Ms to a doubly-linked list Md with
minimal memory consumption. The size of a list is determined by a parameter p. Assume, the
singly-linked list is traversed once and on this traversal the visited elements are copied to newly
allocated elements of the doubly-linked list. Then, the i-th element of the singly-linked list has a
conflict with the j-th element of the doubly-linked iff j < i. An allocation scheme with minimal
memory consumption is given in Figure 2a. Note that a memory optimal allocation is not necessarily
unique, neither are optimal solutions in general. Figure 2b gives a second possible mapping for our
list example with minimum memory consumption.

What set of chunks would we like our algorithm to compute? With the additional constraint that
the size of a chunk is determined by the size of the largest normalized memory block it contains, we
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would anticipate a solution set

S = {{(Md, 1, 0)}, {(Ms, p, 0)}} ∪
⋃

i∈[2,p]

{(Md, i, 0), (Ms, i− 1, 0)}

Figure 3 shows these chunks and their corresponding number of occurrences. Putting these chunks
consecutively in memory yields the optimal allocation scheme shown in Figure 2b.

Md, 1 Md, 2 . . . Md, i . . . Md, p − 1 Md, p

Ms, 1 Ms, 2 . . . Ms, p − 2 Ms, p − 1 Ms, p

(a)

Md, 1 Md, 2 Md, 3 Md, 4 . . . Md, p − 1 Md, p

Ms, 1 Ms, 2 Ms, 3 . . . Ms, p − 2 Ms, p − 1 Ms, p

(b)

Figure 2 Allocation schemes for list-copy with minimal memory consumption

Md, 1

1 repetition

Md, i

Ms, i − 1

(p− 1) repetitions

i ∈ [2; p]

Ms, p

1 repetition

Figure 3 Allocation chunks for the list-copy example

We distinguish 2 kinds of chunks, singleton and repetitive chunks. A singleton chunk is a chunk
that is generated exactly once, while multiple instances of repetitive chunks are generated. In our list
example, the algorithm generates 2 singleton and 1 repetitive chunks.

Our algorithm to compute such sets of chunks for a given allocation problem works as follows.
The algorithm maintains a workset of unprocessed, i.e. not yet located within a chunk, requests for
normalized blocks. This set is initialized with the set

R′ =
{

(m, i) | m ∈M ′ ∧ i ∈ N≤um∈U ′
}

While the workset is not empty, the algorithm creates singleton chunks followed by sequences of
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repetitive chunks. Algorithm 1 gives the pseudo code for this main routine.

Algorithm 1: Algorithm to compute a suitable set of chunks
Data: Problem specification I ′ = (M ′, U ′, L′, A′, C′)
Result: Allocation scheme as a set of chunks
workset = Set of requests R obtained from M ′, U ′ and A′;
while workset 6= ∅ do

createChunk(workset, true); // first chunk – unrolling
removeProcessedRequests();
if workset = ∅ then break;
createChunk(workset, false); // create repetitive chunk
computeRepetitions(); // repeat last chunk
removeProcessedRequests();

end

The function createChunk creates new chunks and adds normalized blocks until no further blocks
are requested for a given abstract allocation site or no further blocks can be added without either
causing a conflict or exceeding the size of the chunk. The order in which blocks are added is either
given by the problem specification (in the case of singleton chunks) or in decreasing order of block
sizes (in the case of repetitive chunks). This order also determines the size of a chunk. Algorithm 2
gives the pseudo code for this function.

Algorithm 2: createChunk
Data: Set of requests R, boolean isSingleton
Result: Chunk
if ¬ IsSingleton then sortByRequestSize(R)
for (m, i) ∈ R do

boolean added = true;
while i < um ∧ added do

added = addRequestToChunk();
if added then i++;

end
end

Requests or normalized blocks are added to a given chunk in the following way. If the chunk is
empty, the request is always added at the first position of the chunk and the size of the chunk is set to
the size of the first request. Subsequent blocks are temporarily placed at position p = 0. In case this
does not cause conflicts, the request is added and the algorithm returns true. While conflicts do occur,
the subsequent request is shifted to the next position p + 1 until either all conflicts are solved and
the requested block is added or no space in the chunk is left and the block is not added. Algorithm 3
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gives the pseudo code for this operation.

Algorithm 3: addMallocToChunk
Data: Request r

Result: boolean added
if chunk.isEmpty() then

addAtZero(r);
return true;

end
int pos = 0;
while pos ≤ ChunkSize − sizeOf(r) do

If ¬ conflictInChunk() return true;
pos++;

end
return false;

The problem specification may contain several parameters and also the sizes of requested blocks
can be parametric. Hence, not all conditionals within the above functions may be computed directly.
Only the set of parameter constraints L given as part of problem specification may be used to
decide these conditions. If the set L is not sufficient to allow for deciding conditionals, we split the
specification depending on the various outcomes.

For instance, a conditional
if p < q

leads to the following two problem specifications:

S = (M, U, L ∪ {(p < q}, A, C,B)

and
S = (M, U, L ∪ {(p ≥ q}, A, C,B)

Hence, each time the set of restrictions on parameters, LS , does not contain enough information
to decide whether a conditional c is satisfied, we replace the current allocation problem S by two new
allocation problems, St and Sf . In St, we set LSt

to LS ∪ {c}, and accordingly in Sf to LS ∪ {¬c}.

5 Experiments

We did a preliminary evaluation of our algorithm using two programs that perform an in-situ copy
from one data structure to another as well as a small set of existing (hard) real-time programs taken
from the MiBench benchmark suite [2].

In-Situ Copy

The memory allocation behavior of a program copying a singly-linked list to a doubly-linked list as
used as an example in Section 4 can be formalized as

({ms, md}, {ps, pd}, {ps = pd}, {fms : [ps] 7→ [8, 8], fmd
: [pd] 7→ [12, 12]}, Clc,Blc)

With the intended meaning that there are two allocation sites, one for the elements of the singly-linked
list, one for those of the doubly-linked one. Each site can be reached at most ps and pd times,
respectively. We know, that ps = pd =: p as all elements are copied. Clc is constructed, such that
there are conflicts between list elements that are in-use at the same time. Blc evaluates to 0 for all
inputs, i.e. no bias is given, to prevent bias disabling the algorithm to compute memory optimal
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solutions. Our algorithm was able to compute for such a program description a memory optimal set
of chunks as depicted in Figure 2b. With Blc constructed such that elements adjacent within a list are
to be put adjacent in memory, our algorithm computes a similar set of chunks as depicted in Figure 4.
This normalization yields blocks of size 96 KB and 32 KB for the doubly- and singly-linked list,
composed of 8 and 4 objects of the original lists, respectively. However, the repetitive chunk contains
now two blocks from the singly-linked list together with one block from the doubly-linked one.

Md, 1

1 repetition

Md, i

Ms, 2i − 3 Ms, 2i − 2

(p′d − 1) repetitions

i ∈ [2; p′d]

Ms, i

2 repetitions

i ∈ [p′s − 1; p′s]

Figure 4 Allocation chunks for normalized in-situ list copy

Consider next the reverse list-copy from doubly-linked to singly-linked elements(
{ms, md}, {p}, {}, {fms

: [ps] 7→ [q, q], fmd
: [pd] 7→ [12, 12]}, Clc, 2R 7→ {0}

)
with parametric sizes. At allocation site ms blocks of size q KB are requested, at site md 12 KB
blocks, with 4 < q ≤ 12. On this example, our algorithm computes the following solutions.

L = {6 < q ≤ 12}

Ms, 1

1 repetition

Md, i − 1

Ms, i

(p− 1) repetitions

i ∈ [2; p]

Md, p

1 repetition

L = {4 < q ≤ 6, p ≡ 1 mod 2}

Ms, 1

1 repetition

Md, i

Ms, 2i Ms, 2i + 1

(p− 1)/2 repetitions

i ∈ [1; (p− 1)/2]

Md, p

(p− 1)/2 + 1 repetition

i ∈ [(p− 1)/2 + 1; p]

L = {4 < q ≤ 6, p ≡ 0 mod 2}

Ms, 1

1 repetition

Md, i

Ms, 2i Ms, 2i + 1

p/2− 1 repetitions

i ∈ [1; p/2− 1]

Md, p/2

Ms, p

1 repetition

Md, p

p/2 repetition

i ∈ [p/2; p]

Figure 5 Allocation chunks for the reversed in-situ list-copy example

Patricia (MiBench)

A patricia trie is a data structure used in place of full trees with very sparse leaf nodes. Patricia tries
are often used to represent routing tables in network applications. This application uses patricia tries
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to construct a routing table. The benchmark program is formalized to

(Mp, Up, {}, Ap, Cp,Bp, (R×R) 7→ {0})

where Mp = {1, 2}, Up = {I, R}, Ap = {f1 : N≤I 7→ [8 ·ml, 8 ·ml], f2 : N≤I 7→ [8 ·ml, 8 ·ml]},
and Cp(C) = 1. The parameter ml denotes a variable value, possibly determinable by a value
analysis. As we cannot safely determine that two allocated blocks are not contemporaneously in-use,
our algorithm is not able to compute a better memory allocation than the one given in Figure 6a. This
application shows one limitation of precomputing memory addresses, namely that a previous analysis
must be able to gather precise liveness information regarding which allocated blocks are alive at the
same time.

(a) Patricia

M1, i

I repetitions

i ∈ [1; I]

M2, i

R repetitions

i ∈ [1; R]

(b) Dijkstra

Md, 1

Md, 2

1 repetition

Md, i

(p− 2) repetitions

i ∈ [3; p]

Figure 6 Allocation chunks for the Patricia and Dijkstra test cases

Dijkstra (MiBench)

Dijkstra constructs a large graph (as an adjacency matrix) and then computes the shortest paths
between pairs of nodes using repeated applications of Dijkstra’s algorithm. The program can be
described by

(Md, Ud, {}, Ad, Cd,Bd)

where Md = {1}, {u1} =
{

n2}, Ad =
{{

x 7→ [16, 16] | x ∈ N≤n2
}}

, and

Cd(C) =
{

1 if ∃i, j ∈ C.j ∈ (i, (i− 1) · n]
0 otherwise

Here, n is the number of nodes of the constructed graph. For this application, our algorithm computed
a chunk set as depicted in Figure 6b.

Susan (MiBench)

Susan is an image processing application used to determine the position of edges and/or corners
within the input image for guidance of unmanned vehicles. Its allocation behavior can be formalized
to

(Ms, Us, {}, As, Cs, (R×R) 7→ {0})

where Ms = {1, 2, 3, 4, 5, 6, 7, 8, 9},
⋃

m∈Ms
us = {1}, As = {f1 : {1 7→ x · y}, f2 : {1 7→

516}, f3 : {1 7→ (14 + x)(14 + y)}, f4 : {1 7→ 16}, f5 : {1 7→ 4 · x · y}, f6 : {1 7→ 4 · x · y}, f7 :
{1 7→ 4 · x · y}, f8 : {1 7→ x · y}, f9 : {1 7→ 4 · x · y}}, and

Cs(C) =
{

1 if {(1, 1)} ( C ∨ {(7, 1), (8, 1)} ⊆ C ∨ {(3, 1), (4, 1)} ⊆ C

0 otherwise

Here, x and y are fixed parameters determining the size of the processed images. Again, our algorithm
computed a memory optimal chunk set as depicted in Figure 7.
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M1, 1

1 repetition

M2, 1

M3, 1

M5, 1

M6, 1

M7, 1

M9, 1

1 repetition

M4, 1

M8, 1

1 repetition

Figure 7 Allocation chunks for the Susan test case

6 Conclusions

Statically precomputing memory addresses for otherwise dynamically allocated blocks yields sig-
nificant advantages. Compared to striving for predictable memory allocation, predictability of the
program is increased as addresses of (heap) objects become statically known. Furthermore, with
allocation and deallocation removed completely from the program, so are unpredictability resulting
from cache pollution caused by allocators and the uncertain response times of (de)allocation routines
removed. However, static precomputation is not applicable to all hard real-time applications. While
the algorithm presented in this paper increases the class of programs that such an approach can
cope with, there are still limitations. The Patricia benchmark showed that if such an approach is to
preserve the main advantage of dynamic allocation, efficient memory reuse, precise information about
which blocks may be allocated at the same time must be available to the algorithm. Hence, such an
approach relies on precise static preanalyses to yield results that enable similar program performance
compared to a program using dynamic memory allocation. Without such analyses, predictability
comes at the price of overly high memory consumption. Furthermore, too little information about the
relations between parameters can lead to an overly large solution set, as each time decisions cannot
be made due to incomplete information, the algorithm considers two cases, splitting to two solution
paths. However, given decent information about the program to transform, our algorithm showed
very promising results. An automatic analysis to gather these informations as well as an exhaustive
evaluation of the presented algorithm are to be tackled next.
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Abstract
Modelling of real-time systems requires accurate and tight estimates of the Worst-Case Execution
Time (WCET) of each task scheduled to run. In the past two decades, two main paradigms
have emerged within the field of WCET analysis: static analysis and hybrid measurement-based
analysis. These techniques have been succesfully implemented in prototype and commercial
toolsets. Yet, comparison among the WCET estimates derived by such tools remains somewhat
elusive as it requires a common set of benchmarks which serve a multitude of needs.

The Mälardalen WCET research group maintains a large number of WCET benchmark pro-
grams for this purpose. This paper describes properties of the existing benchmarks, including
their relative strengths and weaknesses. We propose extensions to the benchmarks which will
allow any type of WCET tool evaluate its results against other state-of-the-art tools, thus setting
a high standard for future research and development.

We also propose an organization supporting the future work with the benchmarks. We suggest
to form a committee with a responsibility for the benchmarks, and that the benchmark web site
is transformed to an open wiki, with possibility for the WCET community to easily update the
benchmarks.

Digital Object Identifier 10.4230/OASIcs.WCET.2010.136

1 Introduction

Bounding the Worst-Case Execution Time (WCET) of real-time software is crucial when
developing and verifying real-time systems. These bounds must be safe and tight (i.e., as
close to the actual WCET as possible).

WCET analysis attempts to deliver such a bound. Its techniques can broadly be categor-
ised as follows:

End-to-end measurements is the traditional approach and is used widely in industry.
Test-vector generation algorithms attempt to stress the longest execution time of the
program under analysis. To try and bypass any optimism, some additional margin is
added to the longest recorded time and this is considered as the WCET estimate.
Static analysis relies on mathematical models of the software and hardware involved.
The hardware model allows the execution time of individual instructions to be gleaned.
The software model represents possible execution flows. Combining these models with
information about the maximum number of times loops are iterated, which paths through
the program that are feasible, execution frequencies of code parts, etc., results in a WCET
estimate. Provided that the models are correct, the WCET estimate is always safe, i.e.,
greater than or equal to the actual WCET.
Hybrid measurement-based analysis operates similarly to static analysis, except it does
not create a hardware model. Rather, it uses measurements to derive execution times
of small program parts, before combining them using flow information in the WCET
calculation. Although the WCET estimate is generally more accurate than that computed
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by static analysis, there is a possibility of underestimation if testing has not sufficiently
stressed the execution times of the small program parts.

A number of WCET analysis tools have emerged in recent years. Academic toolsets of note
include: OTAWA [14], Chronos [11], SWEET [12], and Heptane [8]. Some of the developed
techniques have also migrated into fully-fledged commercial tools, including: RapiTime [18],
aiT [1], and Bound-T [21]. However, a comparison between these tools, and the associated
methods and algorithms, requires a common set of benchmarks. The typical evaluation
metric is the accuracy of the WCET estimate, but of equal importance are other properties
such as performance (i.e., scalability of the approach) and general applicability (i.e., ability
to handle all code constructs found in real-time systems). In summary, it is very useful to
have an easily available, thoroughly tested, and well documented common set of benchmarks
in order to enable comparative evaluations of different algorithms, methods, and tools.

The Mälardalen WCET benchmarks have been assembled with the above goals in mind.
This paper describes properties of the existing benchmarks, including their relative strengths
and weaknesses. In particular, we propose to extend the benchmarks with new types of codes,
which will raise the standard for future research and development of WCET algorithms,
methods, and tools. We also propose an organization supporting the future work with the
benchmarks.

The rest of the paper is organized as follows: Section 2 places the Mälardalen WCET
benchmarks into context by reviewing other benchmark suites on offer. Following that,
Section 3 describes the WCET benchmarks and Section 4 evaluates them, presenting ideas
for development of an extended version. Section 5 concludes the paper and presents future
work.

2 Related Benchmarks

Benchmarking is a problem not only in the WCET community but across various computing
disciplines. For this reason, the number of available benchmark suites for computer science is
large. A typical goal of these benchmarks is to evaluate performance for various computing
areas, for example for integer and floating-point calculations, e.g., the Drystone benchmark
[3], and for stressing a system’s processor, memory subsystem and compiler, e.g., the SPEC
CPU2006 benchmark [2].

As an exhaustive examination of benchmarking suites for computer science is beyond
the scope of this paper, this section instead relates to those which have most relevance to
WCET analyses.

The goal of the EDN Embedded Microprocessor Benchmark Consortium (EEMBC) [4]
is to specify benchmarks for both the hardware and software utilised in embedded systems.
At the time of this writing, eight suites are available, each of which is designed to stress a
particular type of workload in the embedded domain, including: automotive, digital imaging,
digital entertainment, energy consumption, mobile Java applications, networking, office
automation (e.g. printers), and telecommunications. All of the benchmarks are written in C
or Java. A benefit of the EEMBC benchmarks is that they are continually maintained and
updated, as the consortium is run as a non-profit organisation. However, the downside is
that gaining access to the benchmarks requires a licence, even for academics.

Drawing motivation from this deficiency, the MiBench benchmarks [13] were proposed,
which are open source in comparison and are written in C. Similarly to the EEMBC suites,
MiBench splits its programs into six distinct groups: automotive, consumer, networking,
office automation, security, and telecommunications. Given their strong correlation to the
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embedded domain, many of these benchmarks appear to be suitable candidates for WCET
analysis, although they have been sparsely used in the WCET community.

In the WCET tool challenge of 2008 [22], several other benchmarks were introduced. The
DEBIE-1 benchmark is a satellite application, written in C, consisting of six tasks. The main
appeal of this benchmark is that it is a realistic application, having been initially supplied
by Space Systems Finland Ltd, and it is shipped with a test harness (developed by Tidorum
Ltd [21]) thereby easing measurement-based analyses. The other four benchmarks used,
rathĳit_1 through rathĳit_4, were provided by Saarland University, and aim to have large
instruction cache and data cache footprints. The DEBIE-1 benchmark is not open source,
but can be requested from Tidorum Ltd, whereas the rathĳit applications are freely available.

PapaBench [15] is another recently proposed benchmark in the WCET community, which
is based on an actual real-time application from within the avionic industry. PapaBench is a
real-time embedded benchmark derivated from the software of a GNU-license UAV, called
Paparazzi. Formerly driving a bi-processor AVR architecture, the application C sources have
been adapted to compile under several other platforms. Similarly to the DEBIE-1 benchmark,
PapaBench consists of a number of tasks and interrupts.

3 The Mälardalen WCET Benchmarks

The Mälardalen WCET benchmarks were collected in 2005 from several researchers within
the WCET field. Properties of each benchmark program (which are all written in C) are
listed in Table 1 and 2.

The purpose of the Mälardalen WCET benchmarks is to have a common, easily available,
set of test programs for WCET methods and tools. The benchmarks includes a broad set of
program constructs to support testing and evaluation of WCET tools.

The Mälardalen WCET benchmarks are available on a web page [23]. The benchmark
programs are marked with the following properties: I = uses include files (i.e., uses more
than one file), E = calls external library routines, S = is a single path program (no flow
dependency on external variables), L = contains loops, N = contains nested loops, A =
uses arrays and/or matrices, B = uses bit operations, R = contains recursion, U = contains
unstructured code, and F = uses floating point calculation. The size of source code file
(bytes), as well as LOC = number of lines of source code, is also provided.

There are some main categories of benchmark programs:
Well-structured code (all benchmark programs except duff)
Unstructured code (duff)
Array and matrix calculations (bs, bsort100, edn, fdct, fft1, insertsort,
ludcmp, matmult, minver, ndes, ns, qsort-exam, qurt, select, st)
Nested loops (adpcm, bsort100, cnt, compress, crc, edn, expint, fft1,
fibcall, fir, insertsort, janne_complex, ludcmp, matmult, minver,
ns, qsort-exam, select)
Input dependent loops (bsort100, janne_complex, insertsort)
Inner loops depending on outer loops (crc, fir, janne_complex, insertsort)
Switch cases (cover)
Nested if-statements (nsichneu)
Floating point calculations (fft1, lms, ludcmp, minver, qsort-exam, qurt,
select, sqrt, st)
Bit manipulation (crc, edn, fdct, lcdnum, ndes)
Recursive code (recursion)
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Program Description Comments
adpcm Adaptive pulse code modulation

algorithm.
Completely well-structured code.

bs Binary search for the array of 15
integer elements.

Completely structured.

bsort100 Bubblesort program. Tests the basic loop constructs, integer compar-
isons, and simple array handling by sorting 100
integers.

cnt Counts non-negative numbers in
a matrix.

Nested loops, well-structured code.

compress Compression using lzw. Adopted from SPEC95 for WCET-calculation.
Only compression is done on a buffer (small
one) containing totally random data.

cover Program for testing many paths. A loop containing many switch cases.
crc Cyclic redundancy check compu-

tation on 40 bytes of data.
Complex loops, lots of decisions, loop bounds
depend on function arguments, function that
executes differently the first time it is called.

duff Using “Duff’s device” to copy 43
byte array.

Unstructured loop with known bound, switch
statement

edn Finite Impulse Response (FIR)
filter calculations.

A lot of vector multiplications and array hand-
ling.

expint Series expansion for computing
an exponential integral function

Inner loop that only runs once, structural
WCET estimate gives heavy overestimate.

fdct Fast Discrete Cosine Transform. A lot of calculations based on integer array
elements.

fft1 1024-point Fast Fourier Trans-
form using the Cooly-Turkey al-
gorithm.

A lot of calculations based on floating point
array elements.

fibcall Iterative Fibonacci, used to cal-
culate fib(30).

Parameter-dependent function, single-nested
loop

fir Finite impulse response filter
(signal processing algorithms)
over a 700 items long sample.

Inner loop with varying number of iterations,
loop-iteration dependent decisions.

insertsort Insertion sort on a reversed array
of size 10.

Input-data dependent nested loop with worst-
case of (n2)/2 iterations (triangular loop).

Table 1 Benchmark programs (part 1)

Automatically generated code (nsichneu, statemate)

3.1 Additional information provided
The web page also includes meta-data for the benchmarks: inputs for some of the benchmarks,
number of loop iterations, and some types graphs. This is described in more detail in the
following.

Single-path/multi-path benchmarks and inputs to the benchmarks.

The programs in the benchmark can all be run "as is", i.e., the programs contain their own
inputs. This means that they execute a single path. However, most realistic programs are
run with different inputs at different invocations. If the inputs can affect the control flow,
the program’s WCET is usually highly dependent on inputs.

For WCET analysis, it is important to know the possible values of the input variables
since these, in general, must be constrained as much as possible in order to obtain tight
program flow constraints from the flow analysis.
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Program Description Comments
janne_complex Nested loop program. The inner loops number of iterations depends

on the outer loops current iteration number.
jfdctint Discrete-cosine transformation

on 8x8 pixel block.
Long calculation sequences (i.e., long basic
blocks), single-nested loops.

lcdnum Read ten values, output half to
LCD.

Loop with iteration-dependent flow.

lms LMS adaptive signal enhance-
ment. The input signal is a sine
wave with added white noise.

A lot of floating point calculations.

ludcmp LU decomposition algorithm. A lot of calculations based on floating point
arrays with the size of 50 elements.

matmult Matrix multiplication of two
20x20 matrices.

Multiple calls to the same function, nested func-
tion calls, triple-nested loops.

minver Inversion of floating point mat-
rix.

Floating value calculations in 3x3 matrix. Nes-
ted loops (3 levels).

ndes Complex embedded code. A lot
of bit manipulation, shifts, array
and matrix calculations.

A lot of bit manipulation, shifts, array and
matrix calculations.

ns Search in a multi-dimensional ar-
ray.

Return from the middle of a loop nest, deep
loop nesting (4 levels).

nsichneu Simulate an extended Petri net. Automatically generated code with more than
250 if-statements.

qsort-exam Non-recursive version of quick
sort algorithm.

The program sorts 20 floating point numbers
in an array. Loop nesting of 3 levels.

qurt Root computation of quadratic
equations.

The real and imaginary parts of the solution
are stored in arrays.

recursion A simple example of recursive
code.

Both self-recursion and mutual recursion are
used.

select A function to select the Nth
largest number in a floating
point array.

A lot of floating value array calculations, loop
nesting (3 levels).

sqrt Square root function implemen-
ted by Taylor series..

Simple numerical calculation.

st Statistics program. This program computes for two arrays of num-
bers the sum, the mean, the variance, and stand-
ard deviation, and the correlation coefficient
between the two arrays.

statemate Automatically generated code. Generated by the STAtechart Real-time-Code
generator STARC.

Table 2 Benchmark programs (part 2)

For an embedded program or task (written in C or a similar language), the input variables
can be:

Values read from the environment using primitives such as ports or memory mapped I/O,

Parameters to main() or the particular function that invokes the task, and

Data used for keeping the state of tasks between invocations or used for task communica-
tion, such as external variables, global variables or message queues.

Therefore, we have defined multiple input values for some of the benchmarks, to be able to
test and evaluate such input dependency. These inputs are provided as intervals, i.e., limits
to the inputs. The inputs are stored on the web page as "input annotations" (.ann files) in
SWEET format.
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Loop bounds.

Each benchmark program has been run either "as is" (in single mode), or, if inputs are
defined, with all inputs. The loop bounds that have been found are stored in a file at the
web site. The loop bounds for the program are either exact (in the single mode case) or the
maximum possible with the possible inputs, as defined on the web site. This information can
be useful when doing loop bound analysis.

Call graph for compress.nic
Sat Feb 25 22:57:14 2006 main

initbuffer compress

getbyte

cl_hash

cl_block

output

putbyte writebytes

Figure 1 Example of a call graph for a benchmark program (compress).

Call graph and scope hierarchy graph.

The web site contains some graphs generated by the SWEET tool. For each benchmark file,
a call graph (see Figure 1) is provided as a PDF file. A scope hierarchy graph is also available
(see Figure 2), which is a context sensitive graph showing calls to functions and entries to
loops. The root scope (at the top) is typically the main function, or the top function in a
subgraph. The (iteration) scope is either a function or a loop, and constitutes a (possibly)
looping entity in the program. The arrow from one scope to another below represents a call
in the case of a function scope, or a loop invocation in the case of a loop scope. If loops are
considered as a special case of (tail recursive) functions (which is a common way to look
at loops), the call graph becomes the scope hierarch graph. The scope hierarchy graph is
context sensitive, which means that each call site to a function creates a unique scope of the
called function. The graph gives a possibility to find all, possibly looping, scopes (functions
and loops) in the program.

4 Evaluation of the Mälardalen WCET Benchmarks and Ideas for
Future Changes

The Mälardalen WCET benchmarks have been used extensively during their five years of
existence. The benchmarks have been used mainly in two ways:

1. For evaluation of WCET algorithms and tools in research papers. The following list
gives some examples of papers that have used the Mälardalen WCET benchmarks:
[11, 17, 6, 16, 10].
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Scope hierarchy graph for compress.nic
Sat Feb 25 22:57:14 2006 main

main_initbuffer main_compress

main_initbuffer_L1 main_compress_L1 main_compress_L2 main_compress_getbyte1 main_compress_cl_hash

main_compress_L2_L1 main_compress_L2_getbyte2 main_compress_L2_cl_block

main_compress_L2_cl_block_cl_hash main_compress_L2_cl_block_output

main_compress_L2_cl_block_cl_hash_L1 main_compress_L2_cl_block_cl_hash_L2 main_compress_L2_cl_block_output_L1 main_compress_L2_cl_block_output_writebytes1 main_compress_L2_cl_block_output_writebytes2

main_compress_L2_cl_block_output_L1_putbyte main_compress_L2_cl_block_output_writebytes1_L1 main_compress_L2_cl_block_output_writebytes2_L1

main_compress_cl_hash_L1 main_compress_cl_hash_L2

Figure 2 Example of a scope graph hierarchy for a benchmark program (compress).

2. For comparisons between WCET tools. A subset1 of the Mälardalen WCET benchmarks
was used during the WCET Challenge 2006 [7, 20] as the standard against which the
tools were compared.

The benchmarks have been used as test programs also for other purposes, like dynamic
programming [9], migration of real-time tasks [19], and scratchpad memory management [5].

During the years, we have received a lot of feedback. The issues that have been raised
mainly belong to some of the categories below. We present the feedback, together with ideas
for future changes.

The benchmarks are mostly small programs.

The Mälardalen WCET Benchmarks are rather small (all except two are less than 900 LOC).
This can be convenient and handy. However, they typically test just a few programming
constructs. The small sizes also imply that it can be hard to test how algorithms and
tools scale with larger programs. Moreover, they are typically just parts of programs, i.e.,
they contain a rudimentary main plus some functions. Another drawback is that the whole
program often fits in a cache, so it is hard to evaluate cache analyses. Therefore, it would be
interesting with larger code sizes constituting full applications.

The benchmarks are not real-time industrial applications.

Many of the Mälardalen WCET benchmarks are non-real-time programs, which is acceptable
if only different programming constructs need to be tested. But what often is needed is
industrial real-time applications with a realistic code size, and a mix of code constructs
typical for such applications. However, it seems to be hard to get such applications from the
industry, and to get permission to publish the code on an open web site. One possibility is to
add benchmarks that was used during the WCET Challenge 2008 (the DEBIE-1 benchmark
and rathĳit_1 through rathĳit_4). These benchmarks are available through the WCET Tool
Challenge 2008 homepage [22]. We also would like to get more code examples from industry,
and we have an idea how that might be done (see Section 5).

1 The selected programs are marked with an * at the web page.
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The benchmarks are mainly focussed on flow analysis.

What seems to be missing is programs that are targeting testing of program analysis for, e.g.,
instruction caches, data caches, branch predictions and/or other type of hardware features.

Some program constructs are missing.

Even though there are some benchmark programs containing, e.g., unstructured code and
recursion, there could be more complex examples to really hard-test such troublesome
constructs. Other types of program constructs that could be added is code with highly context-
sensitive execution behaviour, programs with complex low-level code (like bit-operations and
shifts), use of dynamic memory, mode-specific behaviour, tasks with multiple roots, tasks
wrapped in a loop, and programs using function pointers.

Too few benchmarks are multi-path programs.

As mentioned above, all current benchmarks are basically single path programs. Therefore,
the benchmarks should be extended to include programs with multiple input values. The
possible input-value combinations should be an easily available part of the benchmark.

Weak support for measurement-based WCET analysis.

The main limitations to using the Mälardalen WCET benchmarks in end-to-end and hybrid
measurement-based approaches include the following: the inputs of each program are fixed in
the file and therefore different inputs cannot be supplied as parameters; bounds on the input
variables are not specified, thus the turnaround time of testing is excessive; the worst-case
test vector is not given and thus obtaining the actual WCET is impossible; a common set of
realisitic test vectors is missing, thus different tools and techniques are very likely to generate
different inputs, making comparison awkward.

Our idea to tackle these problems is to provide measurement-based versions of the
benchmarks which consume a test vector from the command line. Furthermore, it is also
useful to provide:

A test harness which calls each benchmark with a predefined (large) set of test vectors.
These test data will be generated a priori through, for example, a genetic algorithm. The
rationale for such a test harness is that it provides a common framework to compare
different hybrid measurement-based approaches.
Bounds on input variables. The key part of end-to-end approaches is the test-vector
generation stage, thus merely providing a static set of test vectors is not sufficient. By
also supplying bounds on the input variables, therefore, allows an exhaustive exploration
of the input space. These bounds are also useful for static analysis tools.

Only C programs are available.

It can be considered as a weakness that the current benchmarks only include programs
written in C. After all, real-time systems are coded in many other languages, like assembler,
C++, Java, and Ada. Also, more code generated from real-time systems modelling tools,
like UML and Simulink/MATLAB would be interesting to add to the benchmarks.
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Code for parallel systems is missing.

Benchmarks containing code for parallel systems where tasks interact might be interesting,
as the WCET research moves towards multicore systems.

Precompiled binaries should be available for more types of compilers and
processors.

At present, there are precompiled binaries available only for the Renesas H8300 processor (in
COFF format) using gcc. It would be of interest to have precompiled binaries generated by for
the most common processors in real-time systems, including SimpleScalar/M5 configuration
files and compiler options. A set of often used compilers should be chosen, and the compilation
should be made with a suitable number of basic flag settings.

The benchmark web site should include more results and statistics.

It would be interesting for the developers to have more results for the benchmark programs
at the web site, for comparison and debugging. Also, available results for, e.g., flow analysis
would let researchers concentrate on low-level analysis, and vice versa.

Actual worst case execution time for different compilers and processors.
The inputs that provoked the worst case execution time, and the associated path.
The WCET estimates generated by different tools.
Flow facts generated by different tools: loop bounds, infeasible paths, recursion depths,
etc.
Results from low-level analysis, like timing for code parts (like basic blocks), cache misses,
branch prediction misses, etc.
Statistics for the programs, like number of functions, function calls, variables, etc.

More types of graphs.

There could be more graphs for the benchmarks, e.g., control flow graphs (CFGs), and other
graphs generated by the various WCET tools.

5 Conclusion and Future Work

This paper analysed the Mälardalen WCET benchmarks as they exist today. Since their
introduction in 2005, they have been used extensively by WCET researchers and developers.
The feedback from multiple researchers has highlighted their strengths and existing drawbacks.
Taking these onboard, future work will include enhancements to the benchmarks in the
following directions: better support for measurement-based analyses; larger programs to
stress scalability of tools; more realistic real-time programs and a wider range of languages
and code constructs to test applicability of tools. With these upcoming modifications, the
WCET benchmark suite will continue to provide a suitable framework for researchers to
evaluate their WCET tools and techniques in a multitude of dimensions.

We also propose a new organization of the work with the benchmarks. We need to engage
the WCET community of researchers and developers be able to continuously extend the
benchmarks to meet the needs of the community. Therefore, we suggest to form a committee
with a responsibility for the benchmarks, and that the benchmark web site is transformed to
an open wiki, with possibility for the WCET community to easily update the benchmarks
and the associated meta-data.
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The updates should be supervised by a committee and a steering group. The committee
should be responsible for the organization of the benchmarks, the presentation of the
benchmarks on the wiki, the quality check of the benchmarks, and the reporting of the state
of the benchmarks to the the WCET community.

The committee and steering group should include representatives from different groups,
like WCET researchers, tool vendors and real-time systems developers and industry users.
The industry representatives could help in getting permission to publish real applications
as benchmarks. A broad view of technical and other view should be represented, like
measurement, flow analysis and low-level experts, users of small and large systems, hard and
soft real-time system developers, etc.

The authors offer hosting this new web site at Mälardalen University.
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