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Preface

In 2010, the International Doctoral Workshop on Mathematical and Engineering Methods
in Computer Science (MEMICS’10) entered in the second pentad of three day workshops
organized in the Czech Republic region of South Moravia by Faculty of Information Tech-
nology of Brno University of Technology and Faculty of Informatics of Masaryk University.
MEMICS’10 returned to Mikulov, Czech Republic, and was held between October 22nd and
24th, 2010.

The MEMICS workshops provides an opportunity for PhD students to present and
discuss their work in an international environment. The focus on PhD studies and not
a particular narrow scientific area leads to a cross-disciplinary orientation of MEMICS
workshops, providing a pleasant environment for an exchange of ideas among several different
fields of computer science and technology. A joint project of the above mentioned two faculties
Mathematical and Engineering Approaches to Developing Reliable and Secure Concurrent
and Distributed Computer Systems, financially supported by the Czech Science Foundation,
provides the necessary funding for organization of the current series of MEMICS workshops.

Submissions are traditionally invited in the following areas: computer security; software
and hardware dependability; parallel and distributed computing; formal analysis and verific-
ation; simulation; testing and diagnostics; GRID computing; computer networks; modern
hardware and its design; non-traditional computing architectures; quantum computing; as
well as all areas of theoretical computer science underlying the previously mentioned subjects.
Moreover, this year, the scope of MEMICS was extended towards computer graphics and
vision, signal and image processing, text and speech processing, human-computer interaction,
especially when related with security or parallel or distributed processing.

The scientific programme of the MEMICS’10 workshop consisted of 23 contributed papers
selected by the international Programme Committee from a total of 37 contributions. Each
paper was reviewed by three independent reviewers who provided not only a recommendation
to the Program Committee, but also gave an extensive feedback to the authors. The
contributed papers were complemented by presentations, having the form of summaries of
PhD student’s works that already underwent a rigorous peer review process and have been
presented at some high quality international conference. A total of 19 presentations selected
from 23 submissions was also included in the programme.

All the presentations were given by PhD students who had the opportunity to speak
in front of their peers and to receive immediate feedback from participating senior faculty
members, including the invited lecturers. From the 23 contributed papers, 17 were selected
to appear in the OASIcs proceedings. The selection was based on the Programme Committee
reviews and also on the quality of presentations given during the MEMICS workshop.

The Best paper award came to three contributed papers, selected by the Programme
Committee chairs at the end of the workshop. The awarded papers were: (i) Thomas
Reinbacher, Joerg Brauer, Martin Horauer, Andreas Steininger, and Stefan Kowalewski:
Test-Case Generation for Embedded Binary Code Using Abstract Interpretation, (ii) Martin
Maška, Pavel Matula, and Michal Kozubek: Simultaneous Tracking of Multiple Objects Using
Fast Level Set-Like Algorithm, and (iii) Zdeněk Přikryl, Jakub Kroustek, Tomáš Hruška,
and Dušan Kolář: Fast Translated Simulation of ASIPs. The awards consisted of diplomas
for all authors of the selected papers complemented with financial rewards, covered by the
sponsoring organizations Red Hat Czech Republic, Zoner Software, and Honeywell Czech
Republic.
Sixth Doctoral Workshop on Math. and Eng. Methods in Computer Science (MEMICS’10)—Selected Papers.
Editors: L. Matyska, M. Kozubek, T. Vojnar, P. Zemčík, D. Antoš
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The MEMICS’10 workshop was financially supported by the Doctoral Grant 102/09/H042
from the Czech Science Foundation. Related direct and indirect support and help from the
organizing faculties is also highly appreciated.

Brno, February 2011 Luděk Matyska, Tomáš Vojnar, Michal Kozubek,
and Pavel Zemčík

PC chairs of MEMICS’10
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Abstract
Recently, the massively parallel architecture has been used to significantly accelerate many com-
putation demanding tasks. For example, in [2, 5] we have shown how CUDA technology can
be employed to accelerate the process of Linear Temporal Logic (LTL) Model Checking. In this
paper we redesign the One-Way-Catch-Them-Young (OWCTY) algorithm [7] in order to devise a
new CUDA accelerated OWCTY algorithm that will significantly outperform the original CUDA
accelerated algorithm and will be resistant to slowdown caused by improper ordering of the input
data representation.

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.1

1 Introduction

Model checking [1] is a wide-spread technique for automated formal verification of parallel
and distributed software and hardware systems. For a given formal description of a system
and desired system property, the goal of the model checking procedure is to analyse reachable
system configurations in order to decide whether the system satisfies the property or not. The
model checking technique generally suffers from the so called state space explosion problem
that makes wide gap between the complexity of systems the current model checking tools
can handle and the complexity of systems built in practice. As a result, the applicability of
the model checking method to large industrial systems is rather limited.

A possible way to reduce the delay due to the formal verification process is to accelerate
computation of verification tools using contemporary parallel hardware. Hardware platforms
such as multi-core multi-CPU systems or many-core hardware accelerators have recently
received a lot of attention in this aspect. At the leading edge of this class of massively parallel
chip architectures are the modern Graphics Processing Units (GPU). GPUs have emerged
as a revolutionary technological opportunity due to their tremendous massive parallelism,
floating point capability, low cost, and ubiquitous presence in commodity computer systems.

Many key computational kernels have been redesigned to exploit the performance of this
modern hardware. The key to effective utilisation of GPUs for scientific computing is the
design and implementation of efficient data-parallel algorithms that can scale to hundreds
of tightly coupled processing units.

In this paper we target LTL model checking, where the property to be verified is given
as a formula of Linear Temporal Logic (LTL). The problem of LTL model checking can be

∗ This work has been supported in part by the Czech Grant Agency grants No. 201/09/1389 and
102/09/H042.
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2 CUDA Accelerated LTL Model Checking – Revisited

reduced to the problem of detection of an accepting cycle (cycle containing vertex denoted
as accepting) in a directed graph. In our previous work [5] we have redesigned the maximal
accepting predecessors (MAP) algorithm [6] for detection of an accepting cycle in terms of
matrix-vector product in order to accelerate LTL model checking on many-core GPU plat-
forms. Our experiments demonstrate that using the NVIDIA CUDA technology results in a
significant speedup of verification process. The proposed method exhibits two weaknesses.
First, it is the very expensive phase of preparation of data structures for consecutive CUDA
processing, and second, the limited size of the state space that can fit the memory of a single
CUDA device.

Further we have shown [2] that the expensive phase of encoding the state space into
the appropriate representation can be itself accelerated by means of multi-core parallel
processing followed by a few CUDA operations and second, we have shown how to employ
multiple CUDA devices to overcome the memory limitations of a single device. Although
preserving a decent efficiency of our inter-CUDA communication intensive parallel algorithm
for LTL model checking, the proposed methods may affect the ordering of the representation
which subsequently causes significant slowdown of the overall CUDA computation of the
MAP algorithm.

In this paper we redesign the One-Way-Catch-Them-Young (OWCTY) algorithm [7] in
order to devise a new CUDA accelerated OWCTY algorithm, both superior to the previous
MAP algorithm in speed and robust to improper ordering in the representation.

2 Preliminaries

2.1 LTL Model Checking
To answer an LTL model checking question, the model checking tools, such as SPIN [9] or
DiVinE [3], employ the automata-theoretic approach to LTL model checking, which allows to
reduce the LTL model checking problem to the problem of non-emptiness of Büchi automata.
In particular, the model of a system S is viewed as a finite automaton AS describing all
possible behaviours of the system. The property to be checked (LTL formula ϕ) is negated
and translated into Büchi automaton A¬ϕ describing all the behaviours violating ϕ. In order
to check whether the system violates ϕ, a synchronous product AS ×A¬ϕ of AS and A¬ϕ is
constructed describing those behaviours of the system that violates ϕ, i.e. L(AS × A¬ϕ) =
L(As) ∩ L(A¬ϕ). The automata AS , A¬ϕ, and AS×A¬ϕ are referred to as system, property,
and product automata, respectively. System S satisfies formula ϕ if and only if the language
of the product automaton is empty, which is if and only if there is no reachable accepting
cycle in the underlying graph of the product automaton. The LTL model checking problem is
thus reduced to the problem of the detection of an accepting cycle in the product automaton
graph.

There are several parallel algorithms for accepting cycle detection. In [5] we have adapted
the MAP algorithm [6] to allow for CUDA accelerated LTL model checking. The main idea
behind this algorithm is based on the fact that each accepting vertex lying on an accepting
cycle is its own predecessor. The algorithm computes a single representative accepting
predecessor for each vertex. We presuppose a linear ordering < of vertices (given e.g. by
their memory representation) and choose the maximal accepting predecessor. If a vertex
is its own maximal accepting predecessor the presence of an accepting cycle is guaranteed.
If there is an accepting cycle in the graph, but none of the vertices is its own maximal
accepting successor, then the maximal accepting predecessor of all the vertices of the cycle
must be the same, must lie outside the cycle and can thus be marked as non-accepting. The
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algorithm iteratively computes the maximal accepting predecessor for all the vertices until
an accepting cycle is found or the set of accepting vertices becomes empty.

Another parallel algorithm for accepting cycle detection is One-Way-Catch-Them-Young
(OWCTY) algorithm [7]. The key idea of the algorithm is maintaining an approximating set
of states that may lie on an accepting cycle in the graph G. The algorithm repeatedly refines
the approximating set by locating and removing states that cannot lie on any accepting cycle.
The algorithm employs two rules to remove vertices from the approximating set: 1. vertices
not reachable from any accepting vertex (vertices in the set F ) and 2. vertices having zero
in-degree.

The basic scheme of the OWCTY algorithm is given in Algorithm 1. The function
Reachability(S) computes the set of all vertices that are reachable from the set S. The
function Elimination(S) successively eliminates those vertices that have zero in-degree.
The assignment on line 5 removes from the graph the vertices according to the 1. rule.
The assignment on line 6 removes from the graph the vertices according to the 2. rule.
The while loop terminates when fixpoint of the approximating set is reached. In the case
that the approximating set is nonempty the presence of an accepting cycle is guaranteed.
Moreover, we can weaken the termination condition in the following way:

Algorithm 1 OWCTY
proc OWCTY(G = (V ,E),F ⊆ V , init_state ∈ V )

1: S ← Reachability(init_state)
2: old← ∅
3: while S 6= old do
4: old← S
5: S ← Reachability(S ∩ F)
6: S ← Elimination(S)
7: end while
8: return S 6= ∅

I Proposition 1. Elimination(S) = S is a correct termination condition of Algorithm 1.

Proof. Let us assume that S′ := Reachability(S ∩ F ) = Elimination(S) and let  
denote reachability relation. Then if S′ 6= ∅ we have: 1) ∀u ∈ S′.∃v ∈ F : u  v, 2)
∀v ∈ S′.∃u ∈ S′ : (u, v) ∈ E. Hence there is an infinite sequence π := u1, v1, u2, v2, . . . :
ui ∈ F, (vi, ui) ∈ E, ui  vi−1. And since F is finite, we may conclude that π contains an
accepting cycle. J

2.2 CUDA Architecture
The Compute Unified Device Architectures (CUDA) [8], developed by NVIDIA, is a parallel
programming model and software environment providing general purpose programming on
Graphics Processing Units. At the hardware level, GPU device is a collection of multi-
processors each consisting of eight scalar processor cores, instruction unit, on-chip shared
memory, and texture and constant memory caches. Every core has a large set of local 32-bit
registers but no cache. The multiprocessors follow the SIMD architecture, i.e. they con-
currently execute the same program instruction on different data. Communication among
multiprocessors is realised through the shared device memory that is accessible for every
processor core.

On the software side, the CUDA programming model extends the standard C/C++
programming language with a set of parallel programming supporting primitives. A CUDA

MEMICS’10
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1510 8 5 10 8 2 1 11 15 22 8 11 26 30 33

0 1 2 3 4 5 6 7 |V|

Figure 1 Adjacency list representation: G = (V, E) is stored as two arrays of sizes |V | + 1 and
|E|.

program consists of a host code running on the CPU and a device code running on the
GPU. The device code is structured into so called kernels. A kernel executes the same
scalar sequential program in many data independent parallel threads.

Each multiprocessor has several fine-grain hardware thread contexts, and at any given
moment, a group of threads called a warp execute on the multiprocessors in a lock-step man-
ner. When several warps are scheduled on multiprocessors, memory latencies and pipeline
stalls are hidden primarily by switching to another warp.

2.3 CUDA Accelerated MAP Algorithm

To realise efficiently any CUDA-aware graph algorithm needs the graph to be represented
in a compact, preferably vector-like, fashion. The MAP algorithm employs a variant of
adjacency list representation, resembling Compressed Sparse Row (CSR) representation as
illustrated in Figure 1. See [5] for more details. The key idea of the acceleration of the
MAP algorithm lies in the parallel computation of the maximal accepting predecessor for
all the vertices. We have devised a CUDA kernel that updates the values of the maximal
accepting predecessors along the corresponding outgoing edges simultaneously for all vertices
in the graph. See [5] for more details. Besides the data structure for representing the graph,
the CUDA algorithm has to maintain another data structure to store the MAP values – a
vector. Data manipulation thus resembles a sparse matrix (graph) vector (values of maximal
accepting predecessor) multiplication pattern, which is known to be convenient for CUDA
acceleration.

Our CUDA accelerated approach to LTL model checking exhibited certain weaknesses
as already mentioned in [5]. Among other aspects it was the costly preparation of data
structures for consecutive CUDA processing. Though we have diminished the size of this
problem considerably by means of multi-core parallelisation [2], a new flaw consequently
emerged. The altered ordering in the CSR representation has shown less efficient for the
MAP algorithms. To understand why, we should point out that we are actually computing
minimal accepting successors. Considering successors allows us to store only the forward
edges and preferring smaller values inverts the BFS ordering enforced by generation (actual
BFS ordering provided significantly worse results). This observation can then be explained
by existence of paths going out of accepting cycles: prolonging search for maximal successor
and preventing termination when one is found. While avoided by order inversion, this aspect
seems to be partially restored when generation is done concurrently. The following CUDA
accelerated OWCTY algorithm should prove more resistant to any improper ordering in
CSR representation.
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3 CUDA Accelerated OWCTY Algorithm

The non-CUDA version of OWCTY algorithm comprises of alternating execution of forward
reachability and backward elimination (Algorithm 1). In the current context we denote
elimination of vertices without immediate predecessors as backward elimination. These two
operations will similarly be the building blocks of our new implementation. Their data-
parallel versions to be precise.

Implementation of reachability was given sufficient space in [2] (where referred to as
closure computation). We will thus in the following concentrate on describing in more
detail the implementation of backward elimination and subsequently the whole OWCTY
algorithm. Given the fact that the algorithm disposes of only the forward edges we were
unable to follow the most obvious implementation procedure, i.e. to eliminate a vertex if all
its predecessors were already eliminated. The option of providing also the backward edges
would be overly complex both in time and space. Our backward elimination hence needed
to consist of two steps (see Algorithm 2). The first step is performed by the CUDA kernel
Progress, starting at line 7. This kernel has the purpose of propagating the property of not
to be eliminated to its successors. Followed by the second kernel Check which eliminates
vertices without this property. Finally, the operations Elim, SetElim, etc. are low-level
bitwise operations on a piece of memory assigned to every vertex, which allows them to be
performed very fast even on simple GPU processing units.

Having described the building blocks, we may proceed to the actual OWCTY algorithm
implementation (see Algorithm 3). The basic layout is equivalent to the original imple-
mentation. The CUDA kernel VisAccepting sets all accepting vertices to visited. Having
considered the Proposition 1, we need not to test if Reachability visited all vertices.
Only its effect, the elimination of non-visited vertices is necessary (via kernel TestSet).
The elimination proceeds as described above. Furthermore, if no vertex is eliminated (line 5)
the algorithm terminates with resulting value stored in variable found. It is observable that
found keeps track of existence of not eliminated vertices thus providing correct answer once
the main cycle terminated.

The dual version of OWCTY algorithm, here referred to as reversed OWCTY, may seem
to present equivalent obstacles as far as the CUDA implementation is concerned. Though as
stated in [2] backward reachability via forward edges is securable (with certain slowdown),
allowing us to implement elimination in the trivial way as sketched above. The rest of the
algorithm remains the same and the resulting efficiency of both implementation is compared
in Section 5.

4 Early Termination and Combination of Algorithms

A key property of some model checking algorithms is that they can be altered to provide early
termination. It means that they can detect the presence of an accepting cycle before the state
space generation procedure completes its task. We were able to adapt our implementation
of CUDA accelerated OWCTY algorithm to mimic this behaviour as well. The idea is very
similar as in our previous papers [2, 5]. In particular, we let the CPU perform (parallel)
state space generation while having the GPU apply CUDA accelerated OWCTY algorithm
on partially constructed graph. If the part of the graph constructed so far contains an
accepting cycle, CUDA accelerated OWCTY algorithm simply reveals it before the state
space generation is complete.

To further extend the potential efficiency of the proposed model checking method we
allow for both the MAP and OWCTY algorithm to be executed concurrently in the back-

MEMICS’10



6 CUDA Accelerated LTL Model Checking – Revisited

Algorithm 2 Backward Elimination
1: while change do
2: Progress(V )
3: change, found← false
4: Check(V , change, found)
5: result← change ? true : result
6: end while

kernel Progress(V ) // run in data-parallel fashion on all v ∈ V at once
7: if ¬Elim(v) then
8: for all u ∈ Succ(v) do
9: if ¬Elim(u) ∧ElimPrep(u) then

10: UnsetElimPrep(u)
11: end if
12: end for
13: end if

kernel Check(V , change, found) // again on all v ∈ V at once
14: if ¬Elim(v) then
15: if ElimPrep(v) then
16: SetElim(v)
17: change← true
18: else
19: SetElimPrep(v)
20: found← true
21: end if
22: end if

Algorithm 3 CUDA OWCTY
1: VisAccepting(V )
2: while result do
3: Reachability(V )
4: TestSet(V )
5: result← false
6: Elimination(V , found, result)
7: end while
8: return found

ground of the state space generation. This work flow, though requiring two CUDA devices,
provides the best result of the two algorithms whether or not was the early termination
available (and with negligible impact on their stand-alone performance).

5 Experimental Evaluation

We have implemented both variants of CUDA accelerated OWCTY algorithm as a part of
DiVinE-CUDA [4]. We compared the performance of these algorithms against the original
CUDA accelerated MAP algorithm [2, 5].

All the experiments were run on a Linux workstation with a quad core AMD Phenom(tm)
II X4 940 Processor @ 3GHz, 8 GB DDR2 @ 1066 MHz RAM and two NVIDIA GeForce
GTX 280 GPU’s with 1GB of GPU memory.

Table 1 provides details on run-times of the algorithms. The total run-time includes the
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Models
(seq. total time:
MAP/OWCTY)

CPU
cores

CSR
time

CUDA MAP CUDA OWCTY CUDA OWCTY
REVERSE

CUDA total CUDA total CUDA total
time time time time time time

w
ith

ou
t

ac
ce

pt
in

g
cy

cl
e

elevator 1
(100/41)

1 24.5 6.0 31.6 0.7 26.3 0.2 25.8
2 15.2 5.8 22.3 0.8 17.3 0.3 16.8
3 12.1 6.1 19.2 1.2 14.3 0.3 13.4

leader
(697/297)

1 86.0 0.1 87.4 1.1 88.4 0.8 88.1
2 49.1 4.2 54.5 2.2 52.5 1.2 51.5
3 35.4 9.3 45.2 4.3 40.2 1.3 37.2

peterson 1
(445/188)

1 97.9 3.5 102.3 1.0 99.8 0.5 99.3
2 58.3 9.5 69.6 1.8 61.9 0.7 60.8
3 41.5 10.0 52.7 2.1 44.8 0.8 43.5

anderson
(115/113)

1 30.6 1.5 33.2 0.5 32.2 0.2 31.9
2 19.5 1.6 22.4 0.5 21.3 0.3 21.2
3 15.5 4.4 21.6 1.2 18.4 0.4 17.6

w
ith

ac
ce

pt
in

g
cy

cl
e

elevator 2
(50/177)

1 27.2 0.6 28.7 1.2 29.3 0.5 28.6
2 19.5 0.9 21.5 1.8 22.4 0.6 21.2
3 14.6 0.9 16.4 2.0 17.5 0.5 16.0

phils
(397/576)

1 45.2 < 0.1 46.1 < 0.1 46.1 < 0.1 46.1
2 29.6 < 0.1 30.3 0.1 30.4 < 0.1 30.3
3 20.8 < 0.1 21.6 0.1 21.7 < 0.1 21.6

peterson 2
(173/404)

1 25.7 4.0 30.5 0.4 26.9 0.3 26.8
2 17.4 4.3 22.5 0.6 18.8 0.8 19.0
3 12.5 0.6 13.8 1.2 14.4 1.0 14.2

bakery
(240/907)

1 22.1 < 0.1 23.2 0.4 23.6 0.2 23.4
2 13.5 < 0.1 14.4 0.5 14.9 0.3 14.7
3 6.2 < 0.1 7.3 0.8 8.1 0.1 7.4

Table 1 The overall run-times of the algorithms in seconds.

initialisation time (not reported in the table), CSR construction time (CSR time) and time
spent on CUDA computation (CUDA time). Note that during the whole computation of
the algorithm, one core oversees the communication with CUDA device and thus cannot be
efficiently used in the CSR construction.

We have extended the table presented in [2] by the times for both variants of CUDA
accelerated OWCTY algorithm. We can see that the reversed variant of CUDA accelerated
OWCTY algorithm has better times that the standart variant. The reason behind it is that
in reversed OWCTY the elimination was implemented more efficiently to the detriment of
the reachability procedure. And since in most of the tested models the reachability needed
considerably less iteration, it was the reversed version that thrived.

We can further see that both variants of CUDA accelerated OWCTY algorithm signi-
ficantly outperform the original CUDA accelerated MAP algorithm on most valid model
checking instances (without accepting cycle). Also on most of the invalid instances (with
accepting cycle) the reversed OWCTY algorithm has slightly better times than the MAP
algorithm. Moreover, on peterson 2 the MAP algorithm falls behind both the OWCTY
algorithms significantly. The reason is that the performance of CUDA accelerated MAP
algorithm deeply depends on the ordering in CSR representation which directly affects the

MEMICS’10



8 CUDA Accelerated LTL Model Checking – Revisited

number of calls to CUDA kernels [2, 5].
The improper ordering in CSR representation is even more crucial in case of multi-

core acceleration of CSR representation. The parallel CSR construction usually affects the
ordering and can lead to slowdown of CUDA computation as in the case of leader. The
experiments show that the performance of the OWCTY algorithms does not depend on the
ordering in CSR representation as much as the MAP algorithm. All together it seems that
when the multi-core acceleration of CSR representation is utilised the reversed variant of
the OWCTY algorithm is clearly a winner for CUDA computation.

6 Conclusions

We have demonstrated that the new CUDA accelerated OWCTY algorithms outperform
the original MAP algorithm on valid instances of model checking problems. Moreover, the
reversed variant of OWCTY algorithm has slightly better times also on invalid instances.
The experiments also show that in opposite to MAP algorithm the OWCTY algorithm
is resistant to improper ordering in CSR representation. This is particularly important
when the order affecting multi-core acceleration of data preparation is applied. In the
future we would like to include also the state space generation in CUDA acceleration thus
allowing the whole model checking procedure to fully utilise the parallel potential of many-
core architectures.
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Abstract
The formalism of modal transition systems (MTS) is a well established framework for systems
specification as well as abstract interpretation. Nevertheless, due to incapability to capture some
useful features, various extensions have been studied, such as e.g. mixed transition systems or
disjunctive MTS. Thus a need to compare them has emerged. Therefore, we introduce transition
system with obligations as a general model encompassing all the aforementioned models, and
equip it with a process algebra description. Using these instruments, we then compare the
previously studied subclasses and characterize their relationships.

Keywords and phrases modal transition systems, process algebra, specification
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1 Introduction

Design and verification of parallel systems is a difficult task for several reasons. Firstly,
a system usually consists of a number of components working in parallel. Component based
design thus receives much attention and composition is a crucial element to be supported
in every reasonable specification framework for parallel systems. Secondly, the behaviour
of the components themselves is not trivial. One thus begins the design process with an
underspecified system where some behaviour is already prescribed and some may or may
not be present. The specification is then successively refined until a real implementation
is obtained, where all details of the behaviour are settled. Therefore, a need for support
of stepwise refinement design arises. This is indispensable, either due to incapability of
capturing all the required behaviour in the early design phase, or due to leaving a bunch
of possibilities for the implementations, such as in e.g. product lines [6]. Modal transition
systems is a framework supporting both these fundamental features.

Modal transition systems (MTS) is a specification formalism introduced by Larsen and
Thomsen [7, 1] allowing both for stepwise refinement design of systems and their compos-
ition. A considerable attention has been recently paid to MTS due to many applications,
e.g. component-based software development [9], interface theories [10], or modal abstractions
and program analysis [5], to name just a few.

The MTS formalism is based on transparent and simple to understand model of labelled
transition systems (LTS). While LTS has only one labelled transition relation between the
states determining the behaviour of the system, MTS as a specification formalism is equipped
with two types of transitions: the must transitions capture the required behaviour, which

∗ The word “Systemses” in the title is deliberate. Modal transition systems is a formalism. We consider
several formalisms based on modal transition systems here.
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client(a) server database

request query

processing
response answer

(b)

request

processing
response

Figure 1 An example of (a) a modal transition system (b) its implementation

is present in all its implementations; the may transitions capture the allowed behaviour,
which need not be present in all implementations. Such a system can be refined in two ways:
a may transition is either implemented (and becomes a must transition) or omitted (and
disappears as a transition). Figure 1 depicts an MTS that has arisen as a composition of
three systems and specifies the following. A request from a client may arrive. Then we can
process it directly or make a query to a database where we are guaranteed an answer. In both
cases we send a response. On the right there is an implementation of the system where the
processing branch is implemented and the database query branch is omitted. Note that in
this formalism we can easily compose implementations as well as specifications.

While specifying may transitions brings guarantees on safety, liveness can be guaranteed to
some extent using must transitions. Nevertheless, at an early stage of design we may not know
which of several possible different ways to implement a particular functionality will later be
chosen, although we know at least one of them has to be present. We want to specify e.g. that
either processing or query will be implemented, otherwise we have no guarantee on receiving
response eventually. Therefore, several formalisms extending MTS have been introduced.
Disjunctive modal transition systems (DMTS) do not enforce a particular transition, but
specify a whole set of transitions at least one of which must be present. (In our example, it
would be the set consisting of processing and query transitions.) DMTS have been introduced
in several flavours [8, 4, 2]. Another extension guaranteeing more structured requirements
on the behaviour are mixed transition systems (MixTS) [3]. Here the required behaviour is
not automatically allowed (not all must transitions are necessarily also may transitions) and
it must be realized using other allowed behaviour. This corresponds to the situation where
a new requirement can be implemented using some reused components. Moreover, it allows
for some liveness properties as well. All in all, a need for more structured requirements has
emerged. Therefore, we want to compare these formalisms and their expressive power.

We introduce transition system with obligations (OTS), a framework that encompasses
all the aforementioned systems. Further, we introduce a new process algebra, since there
was none for any of the discussed classes of systems. The algebra comes with the respective
structural operational semantics, and thus enriches the ways to reason about all these
systems. More importantly it allows us to obtain their alternative characterization and
provide a more compact description language for them. Altogether, these two new tools allow
us to compare all the variants of MTS and we indeed show interesting relationships among
the discussed systems. We characterize the process algebra fragments corresponding to the
various subclasses of OTS, such as MTS, MixTS or variants of DMTS. Since bisimulation
is a congruence w.r.t. all operators of the algebra, this allows for modular analysis of
the systems and also for practical optimizations based on minimization by bisimulation
quotienting. Finally, since OTS allow to specify requirements in quite a general form, we can
perform some important optimizations in the composition of systems. E.g., when composing
DMTS we can avoid an additional exponential blowup that was unavoidable so far.
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2 Preliminaries

In order to define the framework we will work in, we need a tool to handle complex
requirements imposed on the systems. For this we use positive boolean formulae.

I Definition 1. A positive boolean formula over set X of atomic propositions is given by the
following syntax:

ϕ ::= x | ϕ ∧ ϕ | ϕ ∨ ϕ | tt | ff

where x ranges over X. The set of all positive boolean formulae over X is denoted as B+(X).
The semantics JϕK of a positive boolean formula ϕ is a set of subsets of X satisfying ϕ. It is
inductively defined as follows:

JxK = {Y ⊆ X | x ∈ Y } Jϕ ∧ ψK = JϕK ∩ JψK JttK = 2X JffK = ∅ Jϕ ∨ ψK = JϕK ∪ JψK

Every positive boolean formula can be uniquely represented in conjunctive normal form
(CNF). It can also be uniquely represented in disjunctive normal form (DNF). In the
disjunctive normal form of ϕ, the disjuncts are precisely the minimal elements of JϕK (with
set inclusion). The formulae tt and ff are never needed as proper subformulae of any other
formula.

We now proceed with the definition of the systems that are general enough to capture
features of all the systems that we discuss in the paper.

I Definition 2. A transition system with obligations (OTS) over an action alphabet Σ is
a triple (P, 99K,Ω), where P is a set of processes, 99K ⊆ P × Σ × P is the may transition
relation and Ω : P → B+(Σ× P ) is the set of obligations.

For simplicity we also require the systems to be finitely branching, i.e. for every P ∈ P
there are only finitely many P ′ ∈ P with (P, a, P ′) ∈ 99K for some a. Nevertheless, we could
easily drop this assumption if we allowed conjunctions and disjunctions of infinite arities.

Various subclasses of OTS have been studied. We list the most important ones and depict
their syntactic relationships in Fig. 2.

A disjunctive modal transition system (DMTS) [8] is an OTS where the must obligations
are in CNF. An arbitrary OTS can thus be expressed as a DMTS. Indeed, as noted above,
any formula can be translated into CNF. However, this can cost an exponential blowup.
A mixed transition system (MixTS) [3] is an OTS where the must obligations are just
conjunctions of atomic predicates.

Moreover, we can impose the following consistency requirement

Ω(S) 6= ff and if Ω(S) contains (a, T ) then S a
99K T,

which guarantees that all required behaviour is also allowed. This gives rise to the following
systems:

A consistent DMTS (cDMTS) [2] is a DMTS satisfying the consistency requirement.
A modal transition system (MTS) [7] is a MixTS satisfying the consistency requirement.
A labelled transition system (LTS) is an MTS such that whenever S a

99K T then Ω(S) =
(a, T ) ∧ ϕ for some ϕ. Since all behaviour of an LTS is both allowed and required at the
same time, we also call LTS an implementation.

MEMICS’10
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OTS

DMTS

MixTS cDMTS

MTS

LTS

Figure 2 The syntactic hierarchy of MTS extensions

In order to define the refinement relation on the systems, we need the following auxiliary
notion of refinement on formulae motivated by the following example.

I Example 3. Let us assume formulae ϕ = (a ∧ b) ∨ c and ψ = A ∨ C ∨D. The renaming
R : a = A, c = C then guarantees that ϕ⇒ ψ. This logical refinement (entailment) up to
renaming is formalized in the following definition.

I Definition 4. Let R ⊆ X ×X, let ϕ, ψ ∈ B+(X). We write ϕ vR ψ to denote

∀M ∈ JϕK ∃N ∈ JψK ∀n ∈ N ∃m ∈M : (m,n) ∈ R

Note that if we take R = id, ϕ vid ψ if and only if ϕ⇒ ψ (i.e. JϕK ⊆ JψK). Before proceeding
to the fundamental definition of OTS, we prove the following lemmata that will be useful in
later proofs. The first lemma is straightforward.

I Lemma 5. Let ϕ ∈ B+(X). Then JϕK is an upwards closed set in (2X ,⊆).

For the two following lemmata, assume this situation: Let X be an arbitrary set and let
Yx be an arbitrary finite set for all x ∈ X. Let ϕ ∈ B+(X) and ϕ̂ be the formula that is
created from ϕ by replacing all occurrences of x by

∨
Yx (where

∨
∅ = ff).

I Lemma 6. Let Z ⊆ X and let Z ′ ⊆
⋃

z∈Z Yz such that for all z ∈ Z, there is some
y ∈ Yz ∩ Z ′. Then Z ∈ JϕK implies Z ′ ∈ Jϕ̂K.

Proof. The proof is done by induction on ϕ.
The cases of ϕ = tt and ϕ = ff are trivial.
ϕ = x. Then ϕ̂ =

∨
Yx. Z ∈ JϕK implies x ∈ Z and thus there is some y ∈ Yx ∩ Z ′.

Therefore Z ′ ∈ Jϕ̂K as Jϕ̂K contains {y} and it is an upwards closed set.
ϕ = ψ ∧ ξ, then ϕ̂ = ψ̂ ∧ ξ̂. Let Z ∈ JϕK = JψK ∩ JξK. Then Z ∈ JψK and Z ∈ JξK. Due to
the induction hypothesis, Z ′ ∈ Jψ̂K and Z ′ ∈ Jξ̂K, thus also Z ′ ∈ Jψ̂ ∧ ξ̂K = Jϕ̂K.
The case of ∨ is similar to the previous case. J

I Lemma 7. Let Z ′ ⊆
⋃

x Yx and let Z = {x | ∃y ∈ Yx ∩ Z ′}. Then Z ′ ∈ Jϕ̂K implies
Z ∈ JϕK.

Proof. The proof is done by induction on ϕ.
The cases of ϕ = tt and ϕ = ff are trivial.
ϕ = x. Then ϕ̂ =

∨
Yx. As Z ′ ∈ Jϕ̂K, there has to be some y ∈ Yx ∩ Z ′. Thus x ∈ Z,

which means that Z ∈ JϕK.
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The cases of ∧ and ∨ are similar to the proof of the previous lemma. J

We can now proceed to the fundamental definition of refinement of OTS.

I Definition 8. Let (P1, 99K1,Ω1), (P2, 99K2,Ω2) be two OTS and R ⊆ P1 × P2. We say
that R is a refinement relation, if (S, T ) ∈ R implies that:

Whenever S a
99K S′ there is T a

99K T ′ such that (S′, T ′) ∈ R.
Ω1(S) vΣR Ω2(T ) where ΣR = {((a, S), (a, T )) | a ∈ Σ, (S, T ) ∈ R}.

We say that S refines T (denoted as S ≤ T ) if there is a refinement relation R such
that (S, T ) ∈ R. Further, we say that a process I is an implementation of a process S
if I is an implementation and I ≤ S. We denote the set of all implementations of S by
JSK = {I | I ≤ S, I is an implementation}.

I Remark. Clearly, our definition of refinement coincides with modal refinements on all
discussed subclasses of OTS.

One can easily see that every system satisfying the consistency requirement has an
implementation, whereas DMTS and MixTS do not necessarily have one. We can compare
various flavours of modal transition systems according to expressivity. Due to previous
observation, we only consider nonempty sets of implementations.

I Definition 9. Let C,D be subclasses of OTS. We say that D is at least as expressive as
C, written C � D, if for every C ∈ C with JCK 6= ∅ there is D ∈ D such that JDK = JCK.We
write C ≡ D to indicate C � D and C � D, and C ≺ D to indicate C � D and not C ≡ D.

3 Process Algebra for DMTS

In this section we define a process algebra for OTS. However, since the processes represent sets
of implemented systems (i.e. sets of sets of behaviours), we still need the obligation function
to fully capture them. For the sake of simplicity, we introduce the parallel composition
operator only in the following subsection.

I Definition 10. Let X be a set of process names. A term of process algebra for OTS is
given by the following syntax:

P ::= nil | co-nil | a.P | X | P ∧ P | P ∨ P |  P

where X ranges over X and every X ∈ X is assigned a defining equality of the form X := P

where P is a term. The semantics is given by the following structural operational semantics
rules:

a.P
a

99K P

P
a

99K P ′

X
a

99K P ′
X := P

P
a

99K P ′

P ∧Q a
99K P ′

P
a

99K P ′

P ∨Q a
99K P ′

The obligation function on terms is defined structurally as follows:

Ω(nil) = tt Ω(P ∧Q) = Ω(P ) ∧Ω(Q)
Ω(co-nil) = ff Ω(P ∨Q) = Ω(P ) ∨Ω(Q)
Ω(a.P ) = (a, P ) Ω( P ) = Ω(P )
Ω(X) = Ω(P ) for X := P
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As a convenient shortcut we introduce ?P ≡ (P ∨ nil) to capture the may transitions, i.e. an
allowed behaviour that is not necessarily forced. Hence we easily obtain the following using
the rules above:

P
a

99K P ′

?P a
99K P ′

Ω(?P ) = tt

We now obtain the discussed subclasses of OTS as syntactic subclasses generated by the
following syntax equations (modulo transformation to CNF):

DMTS P ::= nil | a.P | X | P ∧ P | P ∨ P |  P | co-nil
cDMTS P ::= nil | a.P | X | P ∧ P | P ∨ P

MixTS P ::= nil | a.P | X | P ∧ P | P ∨ nil |  P | co-nil
MTS P ::= nil | a.P | X | P ∧ P | P ∨ nil
LTS P ::= nil | a.P | X | P ∧ P

3.1 Composition

We define the composition operator based on synchronous message passing, as it encompasses
the synchronous product as well as interleaving.

I Definition 11. Let Γ ⊆ Σ be a synchronizing alphabet. For processes S1 and S2 we define
the process S1 ‖ S2 as follows.

S1
a

99K S′1 S2
a

99K S′2

S1 ‖ S2
a

99K S′1 ‖ S′2
a ∈ Γ

S1
a

99K S′1

S1 ‖ S2
a

99K S′1 ‖ S2
a ∈ Σ \ Γ S2

a
99K S′2

S1 ‖ S2
a

99K S1 ‖ S′2
a ∈ Σ \ Γ

As we may assume obligations to be in disjunctive normal form, let us denote Ω(S1) =∨
i

∧
j(aij , Pij) and Ω(S2) =

∨
k

∧
`(bk`, Qk`). We define Ω(S1 ‖ S2) by

∨
i,k

( ∧
j,`:aij=bk`∈Γ

(aij , Pij ‖ Qkl) ∧
∧

j:aij /∈Γ

(aij , Pij ‖ S2) ∧
∧

`:bk` /∈Γ

(bk`, S1 ‖ Qkl)
)

Intuitively, for a process S, the set JΩ(S)K ⊆ 2Σ×P consists of all possible choices of
successors of S that realize all obligations. Composing JΩ(S1)K and JΩ(S2)K in the same
manner as may transitions above generates JΩ(S1 ‖ S2)K.

Note that JΩ(S)K corresponds to DNF of obligations. Nevertheless, they can also be
written equivalently in the form of a set of must transitions of DMTS, which corresponds to
CNF. During the design process CNF is more convenient to use, whereas the composition has
to be done in DNF even for DMTS and then translated back, thus causing an exponential
blowup. However, using OTS allows for only one transformation and then the compositions
are done using DNF, as the result is again in DNF. As our definition extends the previous
definitions on all the discussed models, this shows another use of OTS.

I Remark. Refinement is a precongruence with respect to all operators of the process algebra
(including the composition operator). Hence, refinemental equivalence, i.e. ≤ ∩ ≤−1, is a
congruence.
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4 Hierarchy Results

In this section, we study the relationship between the OTS subclasses and establish the
following complete result:

LTS (implementations) ≺ MTS ≺ MixTS ≺ cDMTS ≡ DMTS (OTS)

We first show that cDMTS ≡ DMTS. We do that by showing that every OTS process that
has an implementation can be substituted by an OTS process that satisfies the consistency
requirement and has the same set of implementations. To that end, we use an auxiliary
definition of a consistency relation. This definition is a slight modification of the consistency
relation defined in [8]. In the definition, the notation 2PFin stands for the set of all finite
subsets of P.

I Definition 12 (consistency). Let (P, 99K,Ω) be a OTS. A subset C of 2PFin is called
a consistency relation if for all {S1, . . . , Sn} ∈ C and i ∈ {1, . . . , n} there is X ∈ JΩ(Si)K
such that for all (a, U) ∈ X there are Sj

a
99K Tj (for all j) such that {U, T1, . . . , Tn} ∈ C.

It may be easily seen that an arbitrary union of consistency relations (for given OTS) is also
a consistency relation. Therefore, we may talk about the greatest consistency relation. The
following lemma explains the motivation behind the consistency relation, i.e. that a set of
processes is consistent if it has a common implementation.

I Lemma 13. Let S1, . . . , Sn be processes. There exists a consistency relation C containing
{S1, . . . , Sn} if and only if

⋂
1≤i≤nJSiK 6= ∅.

Proof. Recall that ϕ vΣ≤ ψ if and only if for all M ∈ JϕK there is some N ∈ JψK such that
for all (a, T ) ∈ N there is some (a, S) ∈M such that S ≤ T .

We show that C = {{S1, . . . , Sk} | k ∈ N,
⋂

iJSiK 6= ∅} is a consistency relation. Let
{S1, . . . , Sn} ∈ C, let I ∈

⋂
iJSiK and let i ∈ {1, . . . , n} be arbitrary. Take M = {(a, J) |

I
a

99K J}. Clearly, M ∈ JΩ(I)K as I is an implementation. Due to Ω(I) vΣ≤ Ω(Si) there has
to be some N ∈ JΩ(Si)K such that for each (a, U) ∈ N there is (a, J) ∈M such that J ≤ U .

Let now X = N and let (a, U) ∈ X. Then I a
99K J with J ≤ U . Therefore, as I ≤ Sj ,

Sj
a

99K Tj and J ≤ Tj for all j. Thus J ∈ JUK ∩
⋂

iJTiK and {U, T1, . . . , Tn} ∈ C.
To show the converse, assume that there is a consistency relation C containing {S1, . . . , Sn}.

We know that for all i there is someX ∈ Ω(Si) such that for all (a, U) ∈ X there are Sj
a

99K Tj

(for all j) such that {U, T1, . . . , Tn} ∈ C. For fixed i, we denote the chosen X as Xi. We
construct I coinductively as follows:

Ω(I) =
∧

i

∧
(a,U)∈Xi

(a, JU
i )

with I 99K transitions to all (a, JU
i ), where JU

i is a common implementation of U , T1, . . . ,
Tn with Ti given above. Clearly, I is an implementation of all Si. J

We now proceed with the construction of a new consistent OTS that is equivalent to the
original OTS.

I Definition 14. Let (P, 99K,Ω) be a OTS, Con its greatest consistency relation. We create
a new OTS as (Con, 99K,Ω) where
S a
99K T whenever for all S ∈ S, S a

99K T with T ∈ T .
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16 Process Algebra for MTSs

Ω(S) =
∧

S∈S Ω̂(S) where Ω̂(S) is the formula that is created from Ω(S) by replacing
all occurrences of (a, U) by

∨
{(a, {U, T1, . . . , Tn}) | ∀i : Si

a
99K Ti, {U, T1, . . . , Tn} ∈ Con}

(where
∨
∅ = ff).

Note that due to the properties of Con, Ω(S) is never ff . We prove that the construction is
correct, i.e. for every consistent process of the original OTS, we have indeed a process of the
new OTS with the same set of implementations.

I Theorem 15. Let S be a process. Then JSK 6= ∅ if and only if {S} ∈ Con. Moreover, if
{S} ∈ Con then JSK = J{S}K.

Proof. The first part of the theorem is already included in Lemma 13. We thus prove the
second part. We first show that I ∈ JSK implies I ∈ J{S}K. We define R as:

R = {(I, {S1, . . . , Sn}) | n ∈ N,∀i : I ∈ JSiK, {S1, . . . , Sn} ∈ Con}

and prove that R is a refinement relation. Let (I, {S1, . . . , Sn}) ∈ R.
Let I a

99K J . Then, as I ≤ Si, Si
a

99K Ti with J ≤ Ti for all i. Thus also {S1, . . . , Sn}
a

99K
{T1, . . . , Tn} and (J, {T1, . . . , Tn}) ∈ R.
Let Ω(I) = ϕ, Ω({S1, . . . , Sn}) = ψ. We need to show that ϕ vΣR ψ.
Let M ∈ JϕK. Then, as I ≤ Si for all i, there exist Ni ∈ JΩ(Si)K such that for all
(a, U) ∈ Ni exists (a, J) ∈ M with J ≤ U (due to ϕ vΣ≤ Ω(SI)). We use the notation
J(a,U) to denote such J .
Let now N = {(a, {U, T1, . . . , Tn}) | ∃i : (a, U) ∈ Ni,∀j : Sj

a
99K Tj , J(a,U) ≤ Tj ,

{U, T1, . . . , Tn} ∈ Con}. Clearly, for all (a, {U, T1, . . . , Tn}) ∈ N there is some (a, J) ∈M
such that (J, {U, T1, . . . , Tn}) ∈ R (we take J = J(a,U)).
We need to prove that N ∈ JψK. In other words, we need to prove that for all i,
N ∈ JΩ̂(Si)K. That is, however, a straightforward corollary of Lemma 6 (take Z = Ni,
Z ′ = N).

We now show that I ∈ J{S}K implies I ∈ JSK. We define R as:

R = {(I, S) | I ≤ S with S ∈ S ∈ Con}

and prove that R is again a refinement relation. Let (I, S) ∈ R and let S be such that I ≤ S
and S ∈ S.

Let I a
99K J . Then S a

99K T with J ≤ T and thus S a
99K T with T ∈ T . Thus also

(J, T ) ∈ R.
Let Ω(I) = ϕ, Ω(S) = ψ. We need to show that ϕ vΣR ψ. Let M ∈ JϕK. Due
to the fact that ϕ vΣ≤ ΩS, we know that there exists N ′ ∈ JΩ(S)K such that for
all (a, {U, T1, . . . , Tk}) ∈ N ′ there exists (a, J) ∈ M with J ≤ {U, T1, . . . , Tk}. Take
N = {(a, U) | (a, T ) ∈ N ′ with U ∈ T }. Clearly, as N ′ ∈ JΩ(S)K also N ′ ∈ JΩ̂(S)K.
Using Lemma 7, we get that N ∈ JΩ(S)K (take Z ′ = N ′, Z = N). J

The following lemma shows that MixTS ≺ cDMTS.

I Lemma 16. There is no MixTS M such that JMK = Ja.nil ∨ b.nilK.

Proof. We first note that any equation defining a MixTS may be written in the following
normal form:

X :=
∧

i

?ai.Si ∧
∧
j

 aj .Tj
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Clearly, there are three implementations of a.nil ∨ b.nil, namely a.nil, b.nil and a.nil ∧ b.nil.
Let thus M have these three implementations. Clearly, the  part of M has to be empty
(i.e. Ω(M) = tt) asM can force neither a transition nor b transition. But then nil ∈ JMK. J

Due to Theorem 15, we have a syntactic characterization of consistent OTS. Since we now
know MixTS ≺ DMTS, a question arises whether such a characterization can be obtained also
for consistent MixTS. Observe that the previous construction transforms every MixTS into
a consistent OTS with formulae in CNF where all literals in one clause have the same action.
One might be tempted to consider the following syntactic characterization of consistent
MixTS:

P ::= nil | X | a.P | P ∧ P |
∨

i

a.Pi

However, that is not the case, as shown by the following lemma. Hence, this question remains
open.

I Lemma 17. There is no MixTS M such that JMK = J(a.(a.nil ∧ b.nil) ∨ a.nil) ∧ ?a.a.nilK.

Proof. Let M =
∧

i ?a.Ni ∧
∧

j  a.Oj . (All outgoing transitions from M have to be a-
transitions.) We make the following observations:

For all j, Ω(Oj) = tt. Otherwise, a.nil could not be an implementation of M .
Also, for all j, Oj

a
99K. Otherwise, a.(a.nil ∧ b.nil) could not be an implementation of M .

There has to be some k such that a.nil ∈ JNkK, as a.nil ∧ a.a.nil also has to be an
implementation of M .

We now show that a.a.nil is an implementation of M . Let R′ be an arbitrary refinement
relation such that (a.nil, Nk) ∈ R′ (we know that such R′ exists as a.nil ≤ Nk). Take R as

R = id ∪R′ ∪ {(a.a.nil,M)} ∪ {(a.nil, Oj) | ∀j}

We now show that R is a refinement.
a.a.nil a

99K a.nil is matched by M a
99K Nk.

Ω(a.a.nil) = (a, a.nil), Ω(M) =
∧

j(a,Oj), thus Ω(a.a.nil) vΣR Ω(M).
((a.nil), Nk) ∈ R′, therefore the conditions of refinement are satisfied.
a.nil a

99K nil is matched by Oj
a

99K nil
As Ω(Oj) = tt, clearly Ω(a.nil) vΣR Ω(Oj).

However, a.a.nil is not an implementation of (a.(a.nil ∧ b.nil) ∨ a.nil) ∧ ?a.a.nil. J

Finally, we show that MTS ≺ MixTS.

I Lemma 18. There is no MTS S such that JSK = J?a.b.nil ∧ ?a.c.nil ∧  a.(?b.nil ∧ ?c.nil)K.

Proof. Similarly to MixTS, any equation defining a MTS can be written in the following
normal form:

X =
∧

i

?ai.Si ∧
∧
j

aj .Tj

There are three implementations which S has to possess and those are a.b.nil, a.c.nil,
and a.b.nil ∧ a.c.nil and S cannot possess any other implementation. Clearly, S cannot
be of the form a.T ∧ P , as then T would have to satisfy b.nil ≤ T (as a.b.nil ≤ S), also
c.nil ≤ T (as a.c.nil ≤ S), yet it cannot satisfy (b.nil ∧ c.nil) ≤ T (as a.(b.nil ∧ c.nil) 6≤ S).
This is not possible as it can be proven that if P ≤ T and Q ≤ T then also P ∧Q ≤ T for
all OTS. Therefore S =

∨
i ?a.Si and thus Ω(S) = tt. But then nil ≤ S and S has more

implementations than ?a.b.nil ∧ ?a.c.nil ∧  a.(?b.nil ∧ ?c.nil). J
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18 Process Algebra for MTSs

For the sake of completeness, we also state that LTS ≺ MTS. This trivially follows, as
every LTS only has one implementation, whereas e.g. ?a.nil has two implementations a.nil
and nil.

5 Conclusion and Future Work

We have introduced a new formalism of transition system with obligations together with its
process algebra. We have used it to compare various previously studied systems. The main
result shows that general DMTS are not more powerful than consistent DMTS, whereas mixed
transition systems are strictly less expressive. Furthermore, we have given an alternative
syntactic characterizations of the studied systems, although a complete syntactic criterion
for consistent mixed transition systems remains as a future work. Surprisingly, using more
general OTS leads to some optimizations in computation of the composition that were not
possible in the previously used frameworks (as discussed in [2]).
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Algorithm for Graph Cut Based Image
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Abstract
In this paper, we propose a modification to the Boykov-Kolmogorov maximum flow algorithm [2]
in order to make the algorithm preserve the topology of an initial interface. This algorithm is
being widely used in computer vision and image processing fields for its efficiency and speed when
dealing with problems such as graph cut based image segmentation. Using our modification we
are able to incorporate a topology prior into the algorithm allowing us to apply it in situations
in which the inherent topological flexibility of graph cuts is inconvenient (e.g., biomedical image
segmentation). Our approach exploits the simple point concept from digital geometry and is
simpler and more straightforward to implement than previously introduced methods [14]. Due to
the NP-completeness of the topology preserving problem our algorithm is only an approximation
and is initialization dependent. However, promising results are demonstrated on graph cut based
segmentation of both synthetic and real image data.

Keywords and phrases maximum flow, topology preserving, image segmentation, graph cuts

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.19

1 Introduction

Modern approaches to image segmentation often formulate the problem in terms of minim-
ization of a suitable energy functional. Such methods have many benefits. Most notably,
mathematically well-founded algorithms can be used to solve the originally vaguely specified
task. Among the most popular energy minimization algorithms for image segmentation
belong the level set framework [11] and recently also the graph cut framework [1, 3] both
having their pros and cons depending on a particular situation. In this paper, we focus on
the latter one.

Graph cuts, originally developed as an elegant tool for interactive object cutout, quickly
emerged as a general technique for solving diverse computer vision problems such as image
restoration or stereo [3]. In some sense, they can be seen as a combinatorial counterpart
of the level set method [1]. Likewise level sets they are applicable to a wide range of
energy functions [9], directly extensible to N-dimensional space, topologically flexible and
with implicit boundary representation. Moreover, they offer integration of various types
of regional or geometric constraints and the ability to reach global optima in polynomial
time [2]. In this framework, the input image is converted to a weighted graph with the
energy function encoded in the edge weights. Subsequently, a minimum st−cut [5] is found,
effectively yielding a global minimum of the energy. Typically, maximum flow algorithms are
used to find a minimum cut in the graph based on the Ford-Fulkerson max-flow/min-cut
duality theorem [5].
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20 A Simple Topology Preserving Max-Flow Algorithm

The aforementioned topological flexibility of graph cuts is not always desirable. There
are situations in which the number of objects in the image and their topology is known in
advance, e.g., in biomedical image segmentation only one object topologically equivalent
to a sphere should be segmented during brain extraction. Topology is also an important
prior for object tracking where objects are not allowed to split or join. The topology
preserving problem has been studied extensively in the context of level sets [7]. To the best
of our knowledge, the literature is not as rich in the graph cut universe with the work of
Zeng et al. [14] being the only relevant. In their work, the topology preservation is embedded
into the maximum flow computation. Unfortunately, the algorithm is rather complicated
with description missing many important details1. They also showed that the topology
preserving problem is NP-complete so the devised algorithm no longer guarantees to reach a
global minimum. A partially similar problem is addressed also in [12]. Another option of
enforcing the topology preservation is through integration of hard constraints into the energy
function itself. However, this may involve considerable amount of user interaction.

In this paper, we propose a new topology preserving maximum flow algorithm for graph
cut based image segmentation. Similarly to [14] our algorithm is a modification of the
Boykov-Kolmogorov algorithm [2] in a way that guarantees that the output of the algorithm
conforms (in the topological sense) to a given initial interface. It is achieved by making
sure that the topology of the initialization is preserved during label changes throughout
the computation. We borrow several ideas from [14], however, our method is simpler and
generally less error-prone implementation-wise. Nevertheless, it is still an approximation,
i.e., only locally optimal solution is produced. We demonstrate the potential of the proposed
method on graph cut based segmentation of both synthetic and real image data using the
Chan-Vese segmentation model [4, 13].

This paper is organized as follows. In Section 2 a brief review of the Boykov-Kolmogorov
maximum flow algorithm and simple point concept from digital geometry is given. The
proposed modifications, complexity guarantees and differences from [14] are described in
Section 3. Section 4 contains experimental results of the devised algorithm. We conclude the
paper in Section 5.

2 Preliminaries

2.1 The Boykov-Kolmogorov Algorithm
The maximum flow algorithm introduced by Boykov and Kolmogorov is one of the most
popular when dealing with graph cut based image processing [2].

I Definition 1. Let G = (V, E) denote a directed graph with two distinguished nodes s and
t, where every edge (u, v) ∈ E is assigned a non-negative real valued capacity cuv. A flow is
a mapping f : E → R+. It is called feasible if:
1. ∀(u, v) ∈ E : fuv ≤ cuv (capacity constraint)
2. ∀u ∈ V \ {s, t} :

∑
(u,v)∈E fuv =

∑
(w,u)∈E fwu (flow conservation rule)

The flow value |f | is defined as
∑

(s,v)∈E fsv and the maximum flow problem is a problem of
finding a feasible flow of a maximum value.

To find a maximum flow the Boykov-Kolmogorov algorithm (BKA) uses the augmenting
path strategy [5]. This strategy involves iterative searching of a non-saturated path from s

1 The author provided implementation has stability issues and the source code seems to perform operations
not mentioned in the paper.
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Figure 1 Boykov-Kolmogorov maximum flow algorithm scheme with active, passive and free
nodes. An augmenting path (bold) is found when the two dynamic trees touch.

to t in the residual graph and pushing as much flow as possible along this path. A residual
graph is obtained from G by taking the residual capacity cf

uv = cuv − fuv as the edge capacity
for all (u, v) ∈ E . The popularity and efficiency of BKA stems from the way augmenting
paths are searched. It grows two dynamic trees from the terminal nodes s and t and an
augmenting path is found when the two trees touch. This stage is called tree growth. In
the augmentation stage the flow is sent along this path. This step may break the trees into
forests (edges become saturated). Subsequently, adoption stage is performed to restore the
two trees and the whole process is repeated. A visualization of BKA is depicted in Fig. 1.
For a detailed description, please refer to [2].

Obtaining the requisite minimum cut is straightforward after the maximum flow has
been found. Due to the min-cut/max-flow duality [5] the minimum cut is determined by the
saturated edges (i.e., edges with zero residual capacity) and the cost of the cut is the same
as the maximum flow value. In Section 3 we explain how these principles are exploited in
image segmentation.

2.2 Digital Topology and Simple Point Concept
Digital topology is a subfield of digital geometry that deals with topological properties of
digital (binary) images/objects, i.e., spatial properties such as connectedness (or number of
objects and holes) that are invariant under certain kind of transformations (e.g., continuous
deformations involving stretching, etc.) [8]. In this context, a simple point refers to a
point whose switching from background to foreground or vice versa does not change the
topology of the digital image. It is one of the fundamental ideas allowing topology preserving
deformations of digital images. A fast characterization of simple points in 2D has been
introduced by Klette and Rosenfeld [8]. Their method considers the number of connected
background and foreground components in the 8-neighbourhood of the investigated point
and can be efficiently implemented using a look-up table. An extension to 3D employing a
breadth-first search in a small graph has been proposed in [10].

3 Topology Preserving Algorithm

In traditional graph cut based image segmentation a graph is created from the image where
each node in the graph corresponds to an image voxel (plus the two terminal nodes s and t

connected to all non-terminal nodes are added) and with the energy encoded in the edge
weights [1]. A maximum flow algorithm is then used to find the minimum st-cut effectively
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yielding a global minimum of the energy. The final node labels are determined by the
minimum cut partitioning. When using BKA this is equivalent to a so-called tree membership,
i.e., the node/pixel is implicitly labelled as background or foreground depending on whether
it lies in the s or t tree, respectively, after the computation has finished.

The described method does not impose any topology constraints on the result. In general,
the final segmentation may contain arbitrary number of objects, holes, etc. To avoid this (for
the reasons given in the introduction) we modify BKA to handle labels and topology changes
explicitly. The modifications to particular stages of BKA are presented in the following
subsections.

3.1 Initialization
Node labels are initialized using a user supplied mask (interface). The algorithm ensures
that the final segmentation conforms to this initialization in the topological sense, e.g., if the
initial mask contains one object with a hole there will be a single object with a hole on the
output. In object tracking the initial mask may typically correspond to the segmentation
from the previous time point.

The algorithm starts with a zero flow. Instead of two trees, four trees are maintained
during the computation. We will denote them SF , SB , TF and TB . Initially, SF tree contains
nodes labelled as foreground and connected to s through an edge of non-zero residual capacity.
Similarly, TB contains nodes labelled as background and connected to t through an edge of
non-zero residual capacity. Analogously for SB and TF .

3.2 Tree Growth
The tree nodes are called active if they are on the border of the tree (the tree can grow
from them) otherwise they are passive. Nodes that do not belong to any of the trees are
free. See Fig. 1 for illustration. Initially, all tree nodes are active. In this stage the four
trees grow by acquiring new children for their active nodes. An active node p is chosen and
its neighbours connected through an edge of non-zero residual capacity are considered for
growth. Let l(p) denote the label of p and t(p) the associated tree. Following situations may
arise when considering neighbouring node q:

q is free: If l(p) = l(q) then q is recruited as a child of p. If l(p) 6= l(q) and q is simple
then it is also recruited as a child of p and relabelled to l(p). If q is recruited it becomes
active. Nothing is done otherwise.
t(p) 6= t(q): An augmenting path has been found (irrespective of the node labels). The
algorithm continues with the augmentation stage.
t(p) = t(q) and l(p) 6= l(q): q is recruited as a child of p if it is simple and its label is
associated to the opposite tree (recall that s is associated with the background and t

with the foreground), i.e., if either (1) t(q) = t and l(q) = b or (2) t(q) = s and l(q) = f .
If q is recruited it is relabelled to l(p) and becomes active.

As soon as all neighbours of p are explored the node becomes passive and a new active node
is picked. When there are no active nodes the computation ends.

3.3 Augmentation and Adoption
These two stages remain the same as in the original algorithm. During augmentation nodes
behind saturated edges and all their descendants became orphans. During the adoption
stage new parents are searched for the orphans among their neighbouring nodes (in the same
subtree). If no admissible parent is found the node becomes free.
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3.4 Active Node Selection Rules
To ensure homogeneous propagation of the segmentation boundary (as in the level set
algorithms) active nodes closest to the frontier between the foreground and background
should be handled first in the tree growth stage. Various methods can be used to efficiently
extract nodes closest to the frontier. The bucket priority queue approach introduced in [14]
is not correct according to us and caused buffer underflows in both the original and our
implementation. Instead we store queues of active nodes with the same distance from the
separating boundary in an associative array. This approach has a logarithmic time complexity
(in the number of graph nodes), however, it is correct and in practice as efficient (in both
memory and time) as the constant-time method of [14]. To initialize the distance attribute of
each node an L1 metric distance transform is employed in the beginning of the computation.
Subsequently, this attribute is updated whenever a node label changes.

3.5 Complexity Guarantees and Discussion
The modified algorithm still runs in polynomial time. However, note that it is no longer
guaranteed to reach a global minimum of the corresponding energy functional. Similarly to
the level set based algorithms [7], only a locally optimal solution is obtained that may strongly
depend on the initialization. As proved in [14] minimizing the original energy with the
topology preserving constraint is an NP-complete problem. The output segmentation is given
by the explicit node labels handled in the algorithm (i.e., not by the final tree membership
of nodes). Because simple point check is always performed before node relabelling in the tree
growth stage the solution topology has to conform to the initial mask. Finally, the main
difference between our algorithm and [14] is the elimination of the overly complex inter- and
intra-label steps. We treat all augmenting paths equally irrespective of the labelling.

4 Experimental Results

In this section we present the results of the proposed algorithm at segmentation of both
real and synthetic image data. The Chan-Vese segmentation model [4, 13] is used as the
energy functional being minimized. This model aims for partitioning the input image
into two possibly disconnected regions (i.e., foreground and background) minimizing their
intensity variance and the length of the separating boundary. We compare the results of the
topology preserving algorithm with those obtained using the conventional Boykov-Kolmogorov
algorithm. Three images were used for the comparison as depicted in Fig. 2.

The first experiment consisted of brain MRI image segmentation. Undesirable results are
produced using the conventional topology-free algorithm where bright parts of the image are
segmented. On the other hand, a single object corresponding to the brain is extracted using
the topology preserving algorithm with the depicted initialization. Fluorescently stained cell
nuclei are segmented in the second experiment. Using the standard algorithm all three nuclei
merge into one object. This can be avoided using the topology preserving algorithm with
initialization containing exactly three seeds as illustrated on the second row in Fig. 2. In the
last experiment, topology preserving algorithm is used to keep the middle and ring fingers
separated in the final segmentation. On a side note, despite our algorithm is different, we
are also able to reproduce the results presented in [14].

Even though the results of the traditional and topology-preserving algorithms vary we have
also conducted a comparison of running times of both methods to illustrate the performance
penalty incurred by the additional simple point inspections. The test was performed on
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Figure 2 First column (from left): Input image. Second column: Segmentation using the
conventional topology-free graph cuts. Third column: Initial mask for the topology preserving
algorithm. White markers correspond to the foreground. Fourth column: Results of the topology
preserving algorithm.

a common laptop equipped with an Intel Core 2 Duo processor at 2.0 GHz and 4 GB of
RAM. As can be seen from the numbers listed in Table 1, the speed penalty is quite low
in 2D. However, according to our experiments the topology preserving algorithm may be
significantly slower in specific situations. Finally, we have not examined the performance of
the algorithm in 3D. In this case a larger performance hit is to be expected due to the more
complex simple point inspection routine.

5 Conclusion

A modification of the Boykov-Kolmogorov algorithm allowing topology preserving graph
cut based image segmentation has been introduced in this paper. This modification is
based on the simple point concept from digital geometry and is simpler than previously
proposed algorithms. Despite its relative simplicity, it is able to achieve the same results
and is ready for use in situations in which topology preserving is desirable. This was verified
on a series of segmentation experiments. In our future work we would like to investigate
the possibility of integration of topology preserving constraints also to other maximum
flow algorithms such as the Push-Relabel method [6] or even the dynamic maximum flow
algorithms. Implementation of the method described in this paper can be downloaded from
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Table 1 Comparison of running times of the original Boykov-Kolmogorov algorithm and the
proposed topology preserving modification.

Input image Size Boykov-Kolmogorov Topology-preserving
Brain 350 × 350 2.02 s 2.89 s

Cell nuclei 280 × 361 0.49 s 0.51 s
Hand 228 × 275 0.10 s 0.13 s

our website http://cbia.fi.muni.cz/projects/graph-cut-library.html.
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Abstract
In this paper, an extension of our previous research focused on haptic rendering based on inter-
polation from precomputed data is presented. The technique employs the radial-basis function
(RBF) interpolation to achieve the accuracy of the force response approximation, however, it as-
sumes that the data used by the interpolation method are generated on-the-fly during the haptic
interaction. The issue caused by updating the RBF coefficients during the interaction is analyzed
and a force-response smoothing strategy is proposed.

Keywords and phrases haptic rendering, radial-basis function approximation, precomputation,
deformation modeling
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1 Introduction and Related Work

The real-time haptic interaction with deformable objects is an interesting area of research
with wide range of applications. However, the haptic rendering of response force that requires
high refresh rate (at about 1 kHz), heavily restrict the cost of computations needed for
updating the force. Nevertheless, the expensive computations must be involved when for
example realistic deformation modeling is considered, motivated by construction of surgical
simulators for training or operation planning. In this case, the behaviour of the scene
is goverened by models emerging in the theory of elasticity, resulting in computationally
expensive calculations that cannot be performed inside the haptic loop.

Besides various strategies such as simplification of the underlying mathematical models,
an approximation from precalculated data has been successfully exploited. A pioneering
work employing the force extrapolation to achieve the haptic refresh rate for interaction with
linear anisotropic deformable model is given in [10]. In [6], the force response is computed in
haptic loop by linear interpolation of precalculated deflection curves stored in mesh nodes.
A data-driven haptic rendering based on the radial-basis function (RBF) interpolation of
measured data is studied in [4]. The work is further extended in [5] by considering the
interpolation for reproducing also the viscoelastic properties. A comprehensive system based
on RBF-based neural networks is described in [1].

In this paper, an extension our earlier work based on precomputation and approximation
of state spaces [8] is presented. Originally, the method employed fast polynomial interpolation
using regularly distributed data generated during off-line phase. Two modifications of the
approach has been proposed: first, in [9], it was shown that the accuracy of the method can
be significantly improved by employing radial-basis function (RBF) interpolation. Second,
in [3], the original method has been modified to avoid the time-consuming recalculation of
state space by introducing on-line precomputation when the states needed for interpolation
are generated directly during the haptic interaction. However, it was supposed that only
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polynomial interpolation can be used for that case. The main contribution of this paper is to
show that two modifications described above can be combined resulting in technique taking
advantage from both the on-line state generation and RBF approximation.

2 Preliminaries

2.1 Radial-Basis Function Interpolation and Haptic Rendering

The radial-basis function (RBF) interpolation is used for approximating a function f(x) in
arbitrary point x from a given vector of evaluations f = (f1, . . . fn) in arbitrarily distributed
points (x1, . . . xn). It is computed as

f̃(x) = p(x) +
n∑

i=1
λiφ (|x− xi|) (1)

where φ is the radial-basis function, p = c0 + c1x . . . cmx
m is a polynomial and λi are

interpolation coefficients. The vectors λ and c of coefficients λi and ci, respectively, are
computed from the evaluation vector f as follows:(

A P
P> 0

)(
λ

c

)
=
(

f
0

)
(2)

where Aij = φ (|xi − xj |) and Pij = pj(xi) for basis polynomial pj . In our setting, linear
polynomial p is considered together with linear (φ(r) = r) and cubic (φ(r) = r3) radial-basis
functions.

In [9], the RBF method is employed to approximate the components of the force response
f(x) for an arbitrary position x of the haptic interation point (HIP) during haptic loop.
However, before the haptic interaction is executed, a large set of force responses fi associated
to various positions xi of HIP (being referred as state space) is constructed numerically
during an off-line phase.

2.2 State-space Construction

In [3], on-line construction of the state space has been introduced: instead of building the
entire state-space during the off-line phase, the calculation of a force responses is performed
directly during the interaction. The distribution of the points xi of the state space for which
the responses fi are being calculated is determined on-the-fly by the actual position and
motion of the HIP.

It has been shown that although the precomputation of a single state (i.e. the force
response) takes from hundreds milliseconds to seconds, the interpolation runs stably at haptic
refresh rate (1 kHz), provided the states are generated concurrently by dozens of processes
running in distributed environment. Thus, the state space used by interpolation is gradually
augmented: in our setting from about dozens to hundreds of new states were added to the
actual space during one second. It was supposed that in each step of the haptic loop the HIP
is located within the area enclosed by regularly-distributed known states, so the polynomial
interpolation can be used to approximate the associated force response. However, due to
this assumption, the HIP speed is restricted as quantitatively evaluated in [3].
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3 RBF Approximation on Updated Data

3.1 From Interpolation towards Extrapolation
The issue addressed in this paper is represented by the limited speed of motion towards
the horizon of the actually known state space. In contrast to the polynomial interpolation
using the regularly distributed data, the approximation based on RBF is able to make use of
data scattered in the space. Therefore, it is possible to leave the space fully populated by
already known states and approximate the values of the force response in areas with sparsely
distributed known states and even extrapolate outside the known state space. The downside
of this approach is increase of the approximation error and possible loss of the accuracy.

Further, in contrary to the interpolation based on regular grid, the RBF method can
make use of arbitrary number of known points. Therefore, two tasks arise to be performed
by the process handling the interpolation :
1. select up to n nearest points, where n is constant and
2. compute the RBF coefficients for selected points by solving Eq. 2.
There is no need to explicitly switch between extrapolation and interpolation, the RBF
method approximates the forces in the same way both outside and inside the area defined by
the known states. When leaving the densely precomputed area and the approximation shifts
to the extrapolation, numerous distributions of the nearest known points can occur. Following
distributions describe the characteristic situations with respect to the HIP movement which
can occur during the simulation (see figure 1 for illustration):

HIP enters a sparse area where a limited number of states is available: RBF starts
partially extrapolating from the remote points in the safe area,
HIP gets into gap: RBF provides a bridge between two safe areas,
HIP gets into blank area where no states are known: RBF works as pure extrapolation
method.

Figure 1 Characteristic situations when leaving the densely-populated area. The known states
are shown on the regular grid together with the path of HIP. From left to right: sparse area, bridge
and blank area.

3.2 Returning from Extrapolation towards Interpolation
The distribution of known states with respect to the position of HIP is updated for two
reasons: either new states requested previously arrive from the solvers, or the position of the
HIP changes rendering some new known states as nearer than some previously used states.
In both cases, the blank area can change into sparse area or gap and further into safe area
shifting the approximation back from extrapolation to interpolation.
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To reflect the changes of the state space inside the approximation procedure, it is
necessary to compute updated set of RBF coefficients. However, two issues arise here: first,
the complexity of solving Eq. 2 is in O(n3) and therefore for a large number of states,
recomputing the coefficients can be a computationally demanding task that cannot be done
inside the haptic loop. Second, switching to a new set of RBF coefficients in one step can
result in non-continuous change in the force response being perceived as a jump in the force
feedback. Therefore the interpolation is implemented as two concurrent processes:
Updating process is event-driven: if a state space is updated or HIP travels a distance
larger than predefined threshold, it selects n known states enclosing the HIP and computes
the updated RBF coefficients (λ′, c′) according to Eq. 2.
Interpolating process is running at haptic rate: in each step, it computes the force response
from the actual RBF coefficients (λ, c) according to Eq. 1. If updated set of coefficients
(λ′, c′) is available, it performs a damped coefficient switch, i. e. in following steps of the haptic
loop it computes interpolated forces from both (λ, c) and (λ′, c′) and calculates weighted
average moving the weight in every tenth step (10ms) between (λ, c) and (λ′, c′) so that the
force difference is lower than 7% which is a lower bound for the just noticeable difference
[7, 11] for variety of haptical hand interactions.

By shifting the weight between two successive RBF coefficients on lower frequency than
is the human perceptive resolution and by limiting the change of resulting force by the just
noticeable difference we can assure the user will not experience twitches or vibrations caused
by discontinuous changes in the force feedback.

4 Results

We have incorporated the modifications presented in previous section in our haptical simulator
[2] and present here the evaluation of this implementation. Also to be able to study the
effects of dynamical changes in the set of precomputed set of states and to simulate the
on-line precomputation in deterministic way, we have modified the scheduler so that it was
able to add the states to the known set with in advance given timing.

All the experiments have been performed on PC with 2x Dual Core AMD Opteron
Processor 2218 2.6GHz with 3GB RAM using the model of the human liver with 1777
elements (see [9] for details). The total length of model was about 22 cm and we have
experimented with force response associated with compression-like deformation between 0
and 6 cm. The state-space was given by a regular grid with cell size of 6mm.

First, the experiments have confirmed that it is possible to compute the approximation
using the RBF inside the haptic loop, whereas the RBF update spreads over dozens of
iterations of the haptic loop. For example, for 100 states it takes in average 160 ms to
update the RBF and 60µs to approximate the forces, for 300 states it is 1.6 s and 200-250µs,
respectively.

Further, the magnitude of extrapolation error has been studied (Fig. 2). These results
were obtained by displacing one node of the mesh by 6 cm in the direction of the x axis
towards the center of the model considering three characteristic situations introduced in
section 3.1. Note that presented values represent time independent equilibrium and is
therefore not influenced by the damping effect. The absolute and relative errors are given
w.r.t. the completely known state space. In all the cases state space of 100 nearest known
states was used. In the first case the displacement path started at the border of the known
space and continued towards space without any precomputed values. In the second case, it
crossed the empty space towards another area continuously populated with known states.
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Figure 2 Resulting force (left) and relative error (right) of the extrapolation for the three
characteristic situations from section 3.1.
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Figure 3 Damping the RBF coefficient switch: comparison of the force response change after
comming sets of states. Absolute force (right) is presented together with ratio between resulting
force for sucessive haptic frames an non-damped (middle) and damped (right) coefficient switching.

In the case of sparse area, the density of known states descended continuously along the
deformation path.

The error of the extrapolation in the case of blank area grew rapidly with the length
of deformation while few sparsely distributed known states along the path were enough for
the RBF to approximate the resulting force with relatively low error. Also note two rapid
changes in the approximated force in the case of the gap crossing. These come from the
change in the set of nearest points used for the approximation: the first jump corresponds to
the point where first points from the other side of the gap are added, the second jump then
similarly corresponds to the removing of the last points from the starting side of the gap.

Finally, the damped switch of the RBF coefficients was verified experimentally. The HIP
was displaced similarly to the blank area setup in the area without any precomputed states
extrapolating from distant continuously precomputed area. Then in intervals of 10 s groups
of states were added to the known state space starting with most distant states to the HIP
filling the empty space completely in the end. The Fig. 3 depicts jumps in the absolute value
of feedback force together with relative change of the force between two successive iterations
of the haptic loop and it can be clearly seen, that without damping the change exceeds the
just noticeable difference by far, whereas the proposed damping was able to spread the jump
in the force in several successive frames of the haptic feedback.
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5 Conclusions and Future Work

In this paper, an extension to the haptic rendering method based on precomputation and
approximation has been proposed. It was shown that the RBF interpolation, which improves
the accuracy of the approximation, can be employed also in the case when the states are
generated directly during the haptic interaction. Possible issues were identified and resolved:
the RBF coefficients were recomputed by additional thread running on lower frequency and
the switch to the updated coefficients were damped in order to avoid artificial discontinuities
in the force response. The technique proposed in the paper was verified by experiments
presented in result section.

Our future work will focus on finding new scheduling strategies considering e. g. motion
direction heuristics, sparse area precomputation or prioritizing and preempting some states.
We also plan to improve the speed of RBF coefficient update by using some advanced
technique for matrix inversions.
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Abstract

Recently, almost uncontrolled technological progress allows so called high-throughput data
collection for sophisticated and complex experimental biological systems analysis. Especially,
it concerns the whole cellular genome. Therefore it becomes more and more vital to suggest
and elaborate gene network models, which can be used for more complete interpretation of large
and complex data sets. The presented paper concerns modeling of interactions in yeast genome.
With the reference to previously published papers concerning the same subject, our paper presents
a significant improvement in calculation procedure leading to very effective reduction of time
of calculation.

1998 ACM Subject Classification I.5.1 Models, I.5.4 Applications

Keywords and phrases Fuzzy network, gene expression, time optimization

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.32

1 Introduction

Immediate technological evolution allows the analysis of more and more composite biological
systems. The creation of elaborate gene network models involves widely developed analyses,
which allows the better utilization of biological interpretation of medical data packages,
particularly data concerning gene expression measurements. An example of a very effective
modeling of gene network was previously presented by Sokhansanj et al. in BMC Bioinformat-
ics [1]. This algorithm, which takes advantage of the theory of fuzzy sets, allows the creation
of a model of intergenetic interactions. Input data for the described fuzzy system are gene
expression measurements obtained as a result of a biological experiment using GeneChip
microarray technology.

The huge advantage of the described method is that it receives the exact model of inter-
actions in the result of the analysis. However, the time of account is its main defect. In the
article, we present a detailed description of the algorithm with modifications on the significant
correction of the speed of calculation (over 95% time reduction) to obtain almost identical
results in comparison with the original exhaustive algorithm.

2 Original Algorithm Idea

In this study, measurement data of gene expression, obtained during the whole cellular cycle,
are used. Results are collected in the I matrix, in which the following rows expressions
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of individual Gi genes are included:

I =


e1,1 e1,2 · · · e1,N
e2,1 e2,2 · · · e2,N
...

. . .
eM,1 eM,2 · · · eM,N

 =


G1
G2
...

GM

 (1)

Gi = [e1, e2, . . . , eN ] (2)

2.1 Data Preparation
Raw data are processed non-linearly at the beginning according to (Eq. 3). This transforma-
tion conducts the standardization of the input data in the interval < −1; 1 >, as it is possible
that data are collected from different microarray experiments.

Î = arctan(I)
π
2

(3)

Data prepared this way are entered into the fuzzy system, which initially affects their
fuzzification for sets with low, medium, and high expression respectively (Eq. 4,5 and 6).
In the destination of further calculations, fuzzy data arrays FL, FM and FH are concatenated
in the third dimension of the F matrix (Eq. 7).

FLi,j
=

{
−êi,j êi,j < 0

0 êi,j > 0 (4)

FMi,j
= 1− |êi,j | (5)

FHi,j
=

{
0 êi,j < 0
êi,j êi,j > 0 (6)

F = {FL, FM , FH} (7)

2.2 Fuzzy Rules
The database in the described fuzzy system consists of three basic fuzzy rules in the following
form:

if input is LOW then output is ExpressionLevel
if input is MEDIUM then output is ExpressionLevel
if input is HIGH then output is ExpressionLevel

where: ExpressionLevel ∈ {LOW, MEDIUM, HIGH}.
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Figure 1 Linear functions used to fuzzify gene expression data

With a view to enable calculations, a relevant notation of the record is provided in the form
of the r vector:

r = [l1, l2, l3] (8)

where l1 is the output expression if input is LOW, l2 is the output expression if input is ME-
DIUM, l3 is the output expression if input is HIGH and li ∈ {1, 2, 3} (output expression is 1
– low, 2 – medium or 3 – high).

Example: The following exemplary rule database

if input is LOW then output is HIGH
if input is MEDIUM then output is MEDIUM
if input is HIGH then output is LOW

can be described using the following vector:

rexample = [3, 2, 1]

2.3 Iteration Issue
The fuzzy system is used repeatedly to model the initial vector of the expression, based on
the chosen input genes and the chosen linguistic fuzzy rules.

For every choice of initial genes and combination of linguistic rules (combination of vectors
r), the result of a vector being compared with the original vector of the expression of the initial
gene is obtained. The optimum combination of input genes and linguistic rules is chosen using
a certain rate of error described hereinafter. This guarantees gaining the highest resemblance
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Figure 2 Example of the connections to an output gene in the fragment of the network modeled
using four input genes per output

between the vector obtained as a result of the modeling and the original vector of the initial
gene created.

Due to the huge amount of iterations, limiting the number of genes considered in the ana-
lysis to be initial genes is intentional. An optimum number of four initial genes is suggested.

Determining the huge number of iterations discarded is worthwhile. In the analysis
of the discussed microarray of the 12 genes of yeast, conducting the analysis of the effect
of the 11 remaining genes is necessary for each of them. To establish the recommended
number of four entries, conducting calculations for the following number of the combinations
of input genes is necessary:

C1
11 combinations for tests of influence of one gene on the network output

C2
11 combinations for two inputs

C3
11 combinations for three inputs

C4
11 combinations for four inputs.

These values are calculated in (Tab. 1). In the case of testing the influence of one gene,
for each output the test of the 27 combinations of linguistic rules is necessary. For two
input genes, there are 272 = 729 combinations of rules; and for three input genes, there are
273 = 19683 combinations. The case with four input genes gives 274 = 531441 combinations.
The total number of iterations included in the elaborated software during the single yeast
microarray analysis gives

Loryg = 12 · C1
11 · 27 + C2

11 · 272 + C3
11 · 273 + C4

11 · 274 = 2143963404.

They require compound accounts from the disposed implementation programme on time
optimization executable for over two billion cases of the described procedures. The final
modification of the conclusion process contributes to the progress through the introduction
of additional ratios of error in the analysis of the combinations of input genes. This most
significantly limits the number of selected fuzzy rules.

2.4 Inference Engine

The described fuzzy system concludes each iteration of the algorithm, that is, for each
combination of the fuzzy input genes FC (see Eq. 7) as well as the combination of linguistic
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Table 1 Number of analyzed combinations of rules for each combination of input genes

C1
11 =

(11
1

)
= 11!

(11−1)!·1! = 11!
10! = 11

C2
11 =

(11
2

)
= 11!

(11−2)!·2! = 11!
9!·2! = 55

C3
11 =

(11
3

)
= 11!

(11−3)!·3! = 11!
8!·3! = 165

C4
11 =

(11
4

)
= 11!

(11−4)!·4! = 11!
7!·4! = 330

rules included in the matrix RC (Eq. 8).

RC =


r1
r2
...
rn

 (9)

F̃i,j,k = FCi,j,RCi,k
(10)

D1,j,k =
n∑
i=1

F̃i,j,k (11)

D = {Dlow, Dmedium, Dhigh} (12)

As a result, the fuzzy output set D is created.

2.5 Dealing with the Fuzzified Output
To obtain ultimate modeling results, the fuzzy result of inference is transmitted for defuzzific-
ation according to equations (Eq. 13 and 15). Equation (Eq. 14) is the graphic interpretation
of the conclusion mechanism presented in (Fig. 3).

Õ1,i = D1,i,3 −D1,i,1

D1,i,1 +D1,i,2 +D1,i,3
(13)

Õ = Dhigh −Dlow

Dlow +Dmedium +Dhigh
(14)

O = tan(Õ · π2 ) (15)

The expression model O obtained through the presented algorithm on the output gene is com-
pared with the original expression vector of the output gene GO according to the following
formula:

E =

N∑
i=1

(GOi
−Oi)2

N∑
i=1

(GOi −GO)2

(16)
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Figure 3 Inference scheme using the exemplary rule matrix. Inputs – genes G1, G2, . . . , GM .
Fuzzified output – D matrix.

where GOi
is the i–th expression measurement of the original output gene, Oi is the i–th

expression vector measurement obtained as a modeling result and GO represents the mean
of the expression vector obtained as a result of modeling. In the comparison between
the obtained identical model and the real expression vector of the output gene, the error
coefficient E takes a value of zero. Hence, the better the choice of input genes and their
respective linguistic rules, the lower the value of error coefficient is.

3 Time Optimization

As shown in (Sec. 2.3), computational complexity of the algorithm results mainly from
the necessity for the continuous repetition of the fuzzy conclusion procedure for the huge
number of combinations of the applied input data. To reduce that amount in the conclu-
sion mechanism, several modifications are applied using three additional error coefficients
constructed analogously to the main error coefficient (Eq. 16). However, they work inside
the fuzzy system and on the fuzzified data of input genes, as well as in the fuzzy interpretation
of the original output gene.

EL =

N∑
i=1

(FLOi
−Dlow)2

N∑
i=1

(FLOi
− FLO

)2

(17)
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EM =

N∑
i=1

(FMOi
−Dmedium)2

N∑
i=1

(FMOi
− FMO

)2

(18)

EH =

N∑
i=1

(FHOi
−Dhigh)2

N∑
i=1

(FHOi
− FHO

)2

(19)

The modified algorithm has four steps. In the first three, the k best linguistic rules with
respect to the smallest coefficients EL, EM and EH are stored in particular fuzzy sets. Next,
in the fourth step, the analysis of the original algorithm is subsequently performed, taking
only k3 of all the best combinations of the linguistic rule vectors stored in the first three
steps.

For comparison, the number of fuzzy conclusion procedure calls in case of the optimized
algorithm for the described yeast microarray is equal to

Lopt = 12 · C1
11 · (3 · 3 + k3) + C2

11 · (3 · 32 + k3) + C3
11 · (3 · 33 + k3) + C4

11 · (3 · 34 + k3).

The number for k = 25 takes the value of

Lopt

∣∣∣
k=25

= 106329168.

Therefore, the reduction of the fuzzy conclusion mechanism calls is:

(1− Lopt
Loryg

) · 100% = 95.04%

The same percentage of time reduction is also observed.

4 Results

The introduced modifications allow for calculations in a much shorter time. Table (Tab.
2) presents the comparison of the calculation times between the original algorithm and
the modified one depending on the constant k of the best rules in the fuzzy sets. As can
be seen in the case of the 15 rules, it is possible to obtain the first solution for more than
half of the genes using only 1.12% of the original calculation time. For 25 best rules, the
calculation time is reduced to 4.9% of the exhaustive search time. Thus, we can obtain the
best results for three-fourths of the analyzed genes.
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Table 2 Results for the time optimized algorithm

Gene 5 best rules 10 best rules 15 best rules 20 best rules 25 best rules
k = 5 k = 10 k = 15 k = 20 k = 25

time: 0.1% time: 0.39% time: 1.12% time: 2.55% time: 4.9%

SIC1 1 1 1 1 1
CLN1 24 11 1 1 1
CLN2 2 2 1 1 1
CLN3 236 18 18 18 5
SWI4 3359 1047 12 12 10
SWI6 293 23 1 1 1
CLB5 121 121 121 121 121
CLB6 7 7 2 1 1
CDC6 1 1 1 1 1
CDC20 4 4 1 1 1
CDC28 58579 12313 722 246 49
MBI1 14 1 1 1 1
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Abstract
One of the problems connected with a real-time protein-ligand docking simulation is the need

to store series of precomputed electrostatic force fields of a molecule changing in time. A single
frame of the force field is a 3D array of floating point vectors and it constitutes approximately
180 MB of data. Therefore requirements on storage grow rapidly if several hundreds of such
frames need to be stored.

We propose a lossy compression method of such force field, based on audio and video coding,
and we evaluate its properties and performance.

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.40

1 Introduction

Proteins play an essential role in many biological processes in cells and thus are an important
subject of studies of many biochemists. Biological activity of a protein is frequently described
in terms of the docking problem—under what conditions and where on the surface of the
protein a small molecule (ligand) can be attached in an energetically favoured position.
Various automated methods of solving the problem exist [3]. Recently haptic-assisted
methods (the inter-molecular forces are delivered to the user with a force-feedback device)
were introduced [6].

We have developed an improved docking simulator [5] with emphasis on realistic feeling
as well as accuracy of the interaction. Unlike previous methods, the ligand is connected to
the haptic device by visco-elastic link which is known to improve the feeling of manipulation
with real objects [7].

The principal forces involved in the interaction are van der Waals and electrostatic.
The latter have long range influence, therefore the only feasible approach is precomputing
the resulting force field on a 3D grid of sufficient resolution (typically 250 points in each
dimension). Because the molecule can change its shape in time, the induced force field
changes as well, resulting in a long sequence of 3D “frames” whose size becomes unmanageable.
Here we propose a compression method on this data inspired by common audio and video
compression.

2 Compressed Data and Its Properties

The data we are interested in are formed by a series of frames. A single frame is a 3D array
of 3D vectors, having 250 cells in each dimension. The force vectors are represented as single
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Figure 1 Schema of lossy compression of force field

precision floating point numbers. Altogether it leads to approx. 180 MB (2503 · 3 · 4B) of raw
data per one frame.

The force field is a sum of contributions of all charged atoms of the macromolecule on
a unit charge, given by the Coulomb law Fi = keqie/r

2. This yields steep peeks in near
vicinity of the macromolecule atoms while the field is relatively smooth farther. The dynamic
range is as many as 18 orders of magnitude for the same reasons. On the other hand, due
to the complementary van der Waals interaction in the haptic model, which generates even
steeper barriers, it is virtually impossible for any two atoms to get closer than approx. 1Å.
Therefore we do not have to insist on accurate encoding of the force field peeks.

3 Compression Method

According to the reasoning given above, accurate encoding of high values of the force field is
not required, therefore we trade off accuracy for compression ratio, and we aim at a rather
aggressive lossy compression scheme.

Currently, the Cartesian components of force vectors in each frame are processed separately,
exploiting their possible correlation would be a subject to further work.

Figure 1 outlines the whole compression process. Its principal steps, heavily inspired by
audio and video codecs, are:

1. Component separation: Cartesian components are treated independently.
2. Scale analysis: for each frame set an appropriate scaling factor (which maps the field

domain onto [−1; 1]) for subsequent µ-law transform is determined.
3. Logarithmic transform and quantization
4. Decomposition into blocks
5. Prediction: best-fitting parameters of some prediction model are found
6. Coding of residuals w.r.t. the predictor

The rest of this section deals with detailed description of those steps.

3.1 Frame Types
The frames of the force field are classified in a manner defined in MPEG-1 and later adopted
in many video codecs.:

1. I-frame—uses linear filters with fixed coefficients
2. P-frame—uses one previous I- or P-frame for prediction
3. B-frame—uses one previous and one following I/P-frame for prediction

Specific assignment of frame type is controlled by configuration. One example of such
a scheme is IBBPBBP that is commonly used by MPEG video compression.
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3.2 Logarithmic Transform and Quantization
The first approach of compressing the floating point numbers directly lead to low compression
rates and high decompression times due to large amount of floating point arithmetics.
Therefor quantization was introduced combined with logarithmic transform to deal with the
large dynamic range of the data (Sect. 2). Values are scaled down in order to fit into the
interval [-1;1]. Then continuous version of µ-law companding algorithm is applied:

F (x) = sgn(x) ln(1 + µ|x|)
ln(1 + µ)

We allow adaptive scaling to accommodate different value range. However, since I- and
P-frames are used for prediction later, the scale cannot change arbitrarily. Therefore we split
frames into sets by the location of I-frames and let all frames in the set share one scale.

The transformed values are subsequently quantized—expressed as integer value with
configurable number of bits. Finally, the whole field is split into smaller blocks of equal size
that are further processed separately.

3.3 Prediction
3.3.1 I-frames
I-frames start each frame set and they represent the corresponding frame accurately (up to
the loss due to logarithmic quantization). This is to allow seeking in the compressed file and
to prevent accumulation of further error throughout the whole frame sequence.

In I-frames the values (each Cartesian component of the force) in the block (cube of
points) are ordered into a sequence according to a fixed pattern first, and those are passed to
predictor. The force fields are formed by continuous wave-like patterns that makes them in
some aspects similar to audio waves. For prediction we use linear order predictors with fixed
coefficients, originally described in the Shorten[9], where they were used for compression of
audio signal, and were later adopted also by AudioPaK[2] or Flac[1]. The predictor attempts
to fit a p-order polynomial to the last p points:

x̂0[n] = 0 (1)
x̂1[n] = x[n− 1] (2)
x̂2[n] = 2x[n− 1]− x[n− 2] (3)
x̂3[n] = 3x[n− 1]− 3x[n− 2] + x[n− 3] (4)

. . . (5)

where x[n] denotes signal sample at point n and x̂k[n] the kth order prediction for the sample
at point n. The prediction error can be also computed recursively, making the method
attractive from the performance point of view. We chose 5 as the maximal order used. Higher
order predictors showed only little contribution to the compression while slowing down the
compression significantly. The reader is suggested to refer to [9] for further details.

3.3.2 P-frames
P-frames use previous I- or P- frame as the prediction that is then subtracted from current
frame to obtain the prediction residual (encoded in the same way as I-frames, cf. Sect. 3.4).
Unlike MPEG compression we don’t make motion prediction yet; so far we were not able to
elaborate a promising scheme.
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Figure 2 Testing molecules alanine and enkephalin

3.3.3 B-frames
B-frames use the nearest preceding and following I- or P-frame from which weighted average
is computed. The weights used are distances (number of frames) from current frame to the
respective I- or P-frame:

X̂ = 4f · P +4p · F
4p+4f

where P and F are the preceding and following frame, and 4p and 4f are the distances
from them. The same residual encoding (Sect. 3.4) is used again.

3.4 Residual Coding
The distribution of residual values resembles a two-sided geometric distribution. Therefore
we choose Rice codes [8], which are known to perform well in this case, for the residual
coding.

Rice codes are designed to code non-negative integer numbers, we have to map the error
codes to this domain. If all error values in a block are either non-positive or non-negative
(which turns to be more than 50% of cases on real data), we encode just absolute values
and keep the block-wide information on the sign. This trick saves one bit per single value.
Otherwise the values are interleaved—positive values map to even numbers and negative
values to odd numbers.

3.5 Frame Promotion
It turns out that for some B-frames the P-frame prediction would lead to a better compression.
Moreover, evaluation of the experimental data shows that it typically happens on all Cartesian
components of the vector field simultaneously. Therefore we introduce frame promotion,
ad-hoc replacement of the B-frame by P-frame in the specific frame set.

The method requires no extra work on the decompression side and only small additional
effort during the compression. The overall compression ratio is improved by 0.5%–2% (see
Sect. 4.2).

Similarly, sometimes I-frames deliver better compression than P-frames as well. However,
we do not promote P- to I-frames due to much higher requirements on decompression time.

4 Results

Experimental implementation of the presented compression method is available. We used
it for quantitative analysis of the method properties. Rather than evaluating the method
directly with large macromolecules, we chose smaller molecules—alanine amino-acid and
met-enkephalin peptide (Fig. 2). Alanine itself and the amino-acids forming enkephalin
occur frequently in large macromolecules, and due to their flexibility (there are two freely
rotatable bonds in alanine, and many more in enkephalin) they represent the worst case of
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Figure 3 Average relative error for enkephalin at various quantization levels

type alanine enkephalin

I 17% 16%
P 6% 6%
B 7% 7%

Table 1 Compression ratio per frame type. Only P-frames of compression schemes without
B-frames are included (see text)

local behaviour of the force field for the compression. Testing data sets were generated by
molecular dynamics simulation, interpolated with a method we developed before [4]. The
force field was sampled on a grid of 250 points in each dimension, a resolution used in the
haptic application, with approx. 200 frames in both sets.

4.1 Data Loss
Figure 3 shows typical relative loss observed. Data loss is only a result of floating point
arithmetic involved in µ-law transform and the quantization. Tests were performed with
quantization ranging from 16 to 30 bits. Under the assumption that the compression
inaccuracies are located close to the macromolecule atoms (Sect. 2) we conclude that the
relative error of 10% at 16 bits is still acceptable.

4.2 Compression Ratio
Table 1 shows the achieved compression ratio per frame type and testing data set, using
16bit quantization. The dispersion of the compression ratio for I- and B-frames is negligible
regardless of their position in the compression scheme. On the other hand, for P-frames it
holds only when they follow an I- or P-frame immediately in the scheme. This is a consequence
of the prediction used for P-frames— the farther a P-frame is from the preceding I- or P-frame,
the bigger is the prediction error, making the space occupied by encoded residuals to grow
almost arbitrarily.

We didn’t observe any significant difference between behaviours of the compression of the
two molecules, therefore we further refer to enkephalin only.

Figure 4 shows results for several compression schemes applied on the enkephalin data
set. The testing frame sequence was split fruther into four phases—two are fairly stable,
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Figure 4 Comparison of compression schemes Asterisk marks disabled frame promotion.

where the shape changes are small in either unfolded or folded shape of the molecule, while
two others represent folding and unfolding of the molecule. The absolute compression ratios
differ between these segments, however, the trends are quite parallel.

We tested two schemes without B-frames and several with two groups of B-frames (the
IBBPBBP type), each group having two to six B-frames. The trend visible in the figure
indicates that adding groups of more than three B-frames improves the overall compression
ratio w.r.t. P-frames only. The overall compression ratio approaches the ratio of the B-frames
themselves (Tab. 1).

The effect of the frame promotion is also clearly observable.

4.3 Decompression time

Decompression times are, due to the algorithm, independent on the actual data sets. Using
the data sets of 250 grid points in each dimension and 16bit quantization the current
experimental implementation achieves 8, 2, and 3 seconds1 for I-, P-, and B-frames at AMD
Opteron 885 at 2.6 GHz with sufficiently large memory to eliminate the effects of disk I/O.
The measured times correspond to the complexity of the decoding formulae of the frame
types.

The times may look too large for a single frame, and they are rather far from the target
real-time requirement of the haptic simulation, however, they correspond to the size of the
data (approx. 100× more than HDTV).2 However, as the current implementation is a proof
of concept only, there is still room for conventional optimization of the numeric code as well
as leveraging apparent data parallelism.

1 The times do not include the expensive final inverse of the µ-law transform, which is necessary in the
haptic application on only a few points—current positions of the interacting ligand atoms.

2 Standard gzip compression takes approximately the same time with signifficantly worse compression
ratio of ∼ 90%.
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4.4 Further quantization of P- and B- frames
We carried experiments with further, more aggressive quantization of residuals of the P- and
B-frames. The outcome is very destructive on P-frames because of introducing unacceptable
error. The effect is not so apparent on B-frames, however, compression ratio is not improved
significantly. Therefore we conclude that further quantization is not usable in the method.

5 Conclusion

The problem we approached, compression of vector field changing in time, exhibits similar
properties to audio and video compression, however, it has three spatial dimensions, therefore
the involved data size exceed HDTV video by approx. 100 times. We proposed a compression
method inspired by both audio and video codecs, and we evaluated its properties.

The achieved compression ratio is about 7–8% of the original data size. Despite the
compression method is lossy, the induced relative error seems to be acceptable, however, the
real effect on the haptic simulation still has to be evaluated. The compression ratio and data
loss can be traded off by tuning compression parameters, though. Decompression times of
the current naïve implementation are rather high, corresponding to the data sizes, however,
we foresee room for fairly straightforward improvements by optimization of the numeric code
and parallel implementation as well.

Despite the method was designed to compress electrostatic force field of molecular
interaction, it does not rely on many of its specific properties. It is generally applicable on
similar vector fields in other applications where lossy behaviour is allowed and where the
assumptions of high dynamic range of the signal and continuous values hold.

References
1 FLAC. Flac – format, 2008. Online; last access 2009/12/23; available on: http://flac.

sourceforge.net/format.html.
2 Mat Hans and Ronald W. Schafer. Lossless compresion of digital audio. Technical Report

HPL-99-144, November 1999.
3 Esther Kellenberger, Jordi Rodrigo, Pascal Muller, and Didier Rognan. Comparative evalu-

ation of eight docking tools for docking and virtual screening accuracy. Proteins: Structure,
Function, and Bioinformatics, 57(2):225–242, 2004.

4 Aleš Křenek. Towards interactive molecular models. PhD thesis, 2005. Faculty of Inform-
atics, Masaryk University, Brno.

5 Aleš Křenek and Jiří Filipovič. Haptics-assisted docking simulation using virtual coupling,
2010. in preparation.

6 Hiroshi Nagata, Hiroshi Mizushima, and Hiroshi Tanaka. Concept and prototype of protein-
ligand docking simulator with force feedback technology. Bioinformatics, 18(1):140–146,
2002.

7 Miguel A. Otaduy and Ming C. Lin. Stable and responsive six-degree-of-freedom haptic
manipulation using implicit integration. World Haptics Conference, pages 247–256, 2005.

8 R. Rice and J. Plaunt. Adaptive variable-length coding for efficient compression of space-
craft television data. IEEE Transactions on Communication Technology, 19(6):889–897,
1971.

9 Tony Robinson. SHORTEN: Simple lossless and near-lossless waveform compression. Tech-
nical Report TR156, December 1994.

http://flac.sourceforge.net/format.html
http://flac.sourceforge.net/format.html


Automatic C Compiler Generation from
Architecture Description Language ISAC
Adam Husár1, Miloslav Trmač1, Jan Hranáč2, Tomáš Hruška1,
Karel Masařík1, Dušan Kolář1, and Zdeněk Přikryl1

1 Brno University of Technology, Faculty of Information Technology
Bozetechova 2, Brno, Czech Republic
{ihusar, itrmac, hruska, masarik, kolar, iprikryl}@fit.vutbr.cz

2 ApS Brno, s.r.o.
Purkynova 93a, Brno, Czech Republic
hranac@aps-brno.cz

Abstract
This paper deals with retargetable compiler generation. After an introduction to application-
specific instruction set processor design and a review of code generation in compiler backends,
ISAC architecture description language is introduced. Automatic approach to instruction se-
mantics extraction from ISAC models which result is usable for backend generation is presented.
This approach was successfully tested on three models of MIPS, ARM and TI MSP430 architec-
tures. Further backend generation process that uses extracted instruction is semantics presented.
This process was currently tested on the MIPS architecture and some preliminary results are
shown.

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.47

1 Introduction

As semiconductor process node technology advances and allows Moore’s law to be still
valid, chip designers are faced with a problem how to make a chip that conforms to given
performance, power, and cost requirements, but still can be used in many different devices in
order to alleviate non-recurring engineering costs (chip design and mask manufacturing) that
rise tremendously with each new technology process node.

Electronic System Level (ESL) methodologies try to lower design costs by providing
guidelines for SoC (System on Chip) and MPSoC (Multiprocessor SoC) design. One ESL
methodology for MPSoC design presented in [5] comprises of several steps, where the most
important ones are target application analysis, task partitioning to specific processors,
and optimization of such specific processors to suit performance, power and cost require-
ments. Processors optimized for a certain task are called Application Specific Instruction-set
Processors (ASIPs).

When an ASIP is designed, the target application is analyzed and hot spots are found.
New instructions that accelerate frequent computations are added to the ASIP’s instruction
set and the application is compiled and analyzed again. This process, often called compiler-in-
the-loop ASIP design [2], is iteratively repeated until requirements are satisfied. To allow such
optimization process, compiler, assembler, and simulator for the current ASIP architecture
must be available.

Project Lissom running at the Brno University of Technology approaches this problem
by providing an development environment for application-specific instruction processor
(ASIP) design and optimization. Using Architecture Description Language (ADL) ISAC [7],
the user can describe both the architecture (instruction set, registers and memories) and
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microarchitecture (usually pipelined processor implementation). From this description can
all the needed tools and hardware description be generated. C language compiler is one of
the essential tools and this paper presents a novel approach to higher-level programming
language compiler generation from an ADL model.

2 Related Work

2.1 Retargetable Compilers

Retargetable compilers are higher-level programming language compilers that can be adapted
to compile for different architectures.

Compilers are usually divided into three components. A frontend first parses input
language, performs semantic checks and generates intermediate program representation
(IR). Then a midend (also called optimizer or middle-end) is applied and performs mostly
target-independent optimizations on IR. Resulting IR is passed to a backend (also called
code generator) whose task is to transform the IR into target architecture program.

Examples of retargetable compilers are gcc, LLVM, CoSy, SUIF, lcc, Trimaran, LANCE,
and SPAM. Target features may vary substantially and because of flexibility and needs for
some target-specific modifications is adapting these listed compilers for a different target
requiring extensive compiler expertise and it is up to the tool developers to make the compiler
retargetting based on an ADL model as user-retargetable as possible.

2.2 Automatical Compiler Retargeting using an ADL Model

Instruction selection pass is usually performed in a backend as one of the first passes. The
purpose is to transform input intermediate representation that uses compiler’s IR instructions
to a representation with target instructions. Instruction selection pass is generated by
so-called code generator generators from some instruction description, where instruction
semantics is in form of a tree or DAG (Directed Acyclic Graph) patterns.

Instruction selection pass is the most problematic pass to generate from an ADL model,
and in this paper we will focus only on it. For example in LISATek Processor Designer suite,
one of the most advanced ASIP design environments used in practice, significant manual
effort to create instruction selection patterns from LISA language model is needed [3]. In a
recent book C Compilers for ASIPs: Automatic Compiler Generation with LISA [2], they
state that to derive instruction selection patterns from instruction behavior in C “is quite
difficult, if not impossible”. In the first compiler generator version, patterns were described
using graphical interface and this caused the semantics information to be stored outside
the LISA model in a special format. To partially overcome this problem, a special section
SEMANTICS for patterns description was introduced, however, the instruction semantics is
still present in the model twice, once in SEMANTICS and once in BEHAVIOR. A similar
approach is used in Tensilica TIE [5], where two types of description: one for simulation
and for hardware generation, second for compiler generation, are used. Review of other
approaches to compiler generation can be found in [8], and also in [2].

We are convinced that a potential ADL user is usually familiar with the C language and
to specify instruction behavior using this language is very convenient, better than to learn a
new specification language with new syntax and a set of operations. However, as the LISA
approach shows, to extract instruction semantics from C language description suitable for
compiler generation is difficult and even is such a large project was not solved.
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This paper comes with a novel solution that approaches this problem and that allows
to extract automatically instruction selection patterns. Further, the process of compiler
backend generation that uses such extracted instruction semantics is briefly presented.

3 ISAC Language

The ISAC (Instruction Set Architecture C) language falls into the category of mixed ADLs
and allows both to describe architecture and microarchitecture. For purposes of this paper,
we will consider only the architectural description. The ISAC language is originally based on
the language LISA [1] where we simplified syntax and improved some constructs. Processor
architecture consists of register, memory, and instruction set specification.

Description of each instruction consists of textual and binary representation and also of
its semantics (behavior). For most existing instruction sets, many of instruction features are
similar (like register and immediate operands, or conditional predicates), so for conciseness,
the description is hierarchical and it is based on translational context-free grammars. There
are two main constructs used to describe the instruction set. The first one is OPERATION,
where parts of instruction’s syntax, coding, and semantics are described. Construct GROUP
is used to describe situations where an instance in an operation can be one of a set of
operations or groups. One special group and operation modifier was introduced to the ISAC
language because of compiler generation. It is a keyword REPRESENTS and tells that this
group or operation is a register operand.

Example description of MIPS architecture instructions ADD and SUB is in fig. 1. Names
of sections ASSEMBLER, CODING, and EXPRESSION were abbreviated to ASM, COD,
and EXPR, also binary encoding was slightly modified in this example.

OPERATION reg REPRESENTS regs {
ASM { "R" regnum=#U }; COD { regnum=0bx[5] }; EXPR { regnum; } }

OPERATION opc_add { ASM{ "ADD" }; COD{ 0b10 }; EXPR{ 0x2; };}
OPERATION opc_sub { ASM{ "SUB" }; COD{ 0b11 }; EXPR{ 0x3; };}
GROUP opc = opc_add, opc_sub;
OPERATION instr {

INSTANCE reg ALIAS {rd, rs, rt}; INSTANCE opc;
ASM { opc rd "," rs "," rt }; // Assembly syntax
COD { 0b00 rs rt rd opc }; // Binary coding
BEHAVIOR { // Instruction behavior described using C

switch (opc) {
case 0x2: regs[rd] = regs[rs] + regs[rt]; break;
case 0x3: regs[rd] = regs[rs] - regs[rt]; break;

}};}

Figure 1 Description of MIPS instructions ADD and SUB in ISAC

To generate a C compiler, we need to extract instruction semantics and syntax for each
instruction and then use it to generate compiler backend. We will look at these two steps in
the following sections.
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instr instr__opc_add__reg__reg__reg__, // Name
%R1 = i32 regop(cl0, 1); // Semantics
%R2 = i32 regop(cl0, 2);
%add = add(%R1, %R2);
regop(cl0, 0) = i32 %add;,
"ADD" 0 "," 1 "," 2 // Syntax

Figure 2 Extracted instruction ADD with its semantics and syntax

4 Instruction Semantics Extraction

In the ISAC language is the instruction set described hierarchically using context-free
grammars, there is no notion of an instruction present. However, to be able to identify
particular instructions in the backend, we need to extract a set of instructions. To get such a
set, we simply generate the assembly language from the assembly language grammar obtained
from the model. Absence of cycles in this grammar is ensured by the ISAC language compiler,
therefore the generated language is finite. Detailed information on grammar extraction from
an ISAC model can be found in [6]. For our example in fig. 1, we get a language consisting
of two words “ADD reg , reg , reg” and “SUB reg , reg , reg”.

We also need unique instruction identification and instruction semantics. To obtain this,
we construct a finite automaton with three types of terminals on transitions: operation
names, assembly syntax parts, and instance names and parts of semantics in language C.
Each path from the starting state to a final state then represents one instruction. For each
such path we separately concatenate operation names, assembly terminals, and we also create
C code that represents the instruction semantics.

Like this we obtain the instruction syntax and semantics, the only problem is that the
form of semantics in the C language we retrieved from the ISAC model is neither suitable
for instruction selection pass generation nor for other analyses.

But we can simplify it. We parse this code, then apply optimizations like constant
propagation and dead code elimination. Further, memory and register accesses are identified.
This way we obtain semantics representation that is usable for instruction selection pass
generation. This process is fully automatic and we need no to add to the model information
about instructions specific only for compiler generation. This approach overcomes possible
inconsistency problems when behavior is described twice in LISA approach (described in
subsection 2.2).

The result for our example can be seen in fig. 2. Semantics is described using our SSA-
based intermediate representation, auxiliary variables have prefix % and cl0 is an identifier
that specifies general-purpose register class.

In this example, instruction semantics is described as a simple DAG with two register
input operands on leaves. Register values are added and stored into another register operand.
As operations in semantics description can be standard arithmetic, register read/write, and
memory load/store operations used. Conditional execution is expressed using operation if,
and jumps with operation br.

5 Retargetable Backend Generation

We have decided to base our work on the open-source LLVM compiler[4]. Only trivial
modifications are necessary in the frontend, most of the work involves the backend (which
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def instr__opc_add__reg__reg__reg__:
LissomInst<
(outs cl0:$op0), (ins cl0:$op1, cl0:$op2), // Operands
"ADD $op0 , $op1 , $op2", // Syntax
[(set cl0:$op0, (add cl0:$op1, cl0:$op2))]>; // Selection pattern

Figure 3 LLVM instruction description example

generates the actual assembler output).
The largest component of the LLVM backend is instruction selector, which converts an

input program from a target-independent representation into a lower-level representation
that deals with instructions of the target architecture. LLVM uses a tree pattern matching
instruction selector, which can take advantage of complex instructions, as long as they
generate only one result. The instruction selector is automatically generated from instruction
descriptions, they include an expression tree representation of the semantics to match, but it
also allows adding C++ code to handle more complex cases.

An example of instruction description that is generated from example in fig. 2 is provided
in fig. 3.

LLVM also needs some information about the overall structure of the instruction set. Most
important is the legalization pass, which modifies the input program to only use operations
that are available in the target architecture. Unfortunately LLVM cannot extract the required
information from the individual instruction descriptions, so this information is generated
separately.

Fuirther LLVM needs to generate some target instructions after instruction selection has
finished, notably instructions for moves and memory accesses necessary for register allocation
and spilling. These instructions are located by finding instructions matching a specific form
of operations, that do not have any unwanted side effects.

Finally, we generate code handling function frames, function calls, parameter passing,
and other transformations dependent on the architecture Application Binary Interface (ABI)
describing calling conventions and register allocation rules. Means to allow the user to specify
the ABI are currently being added to the ISAC language. In absence of such information,
the backend generator automatically generates a reasonable ABI by examining the existing
instructions, e.g. looking for a “return” or “call” instruction.

6 Results and Future Work

Program that extracts compiler generator information from ISAC model was implemented
and tested on architectural models of 2 32-bit general-purpose processors MIPS (MIPS32,
Release 1) and ARM (ARMv5) and a 16-bit microcontroller MSP430 from Texas Instruments.
MIPS and ARM models describe all basic instructions from their instruction set without any
extensions and co-processors, model of MSP430 is complete and describes all the instructions
this instruction set provides. Results are shown in table 1. All tests were run on Intel Core2
Quad 9550 @2.83GHz, Fedora 9, x86_64, only one core was used. Semantics extraction
program was compiled with gcc 4.4.1 using -O3. Total execution time is an average from 5
runs and the standard deviation was ± 3%.

Each instruction of the ARM architecture can have one of 15 different predicates and may
use one of 8 different addressing modes and this is the reason why the extracted instructions
count is so high. The behavior of most instructions of the the MSP430 architecture is described
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using just one ISAC operation that contains large switches. For each such instruction is lots
of code generated and this causes high relative extraction time.

We cannot compare these counts of extracted instructions to other approaches, because in
the available publications on related work, intermediate instruction-set forms are neglected,
and directly the results of generated compilers are presented.

Table 1 Transformation time and count of generated instructions for ISAC models of MIPS and
ARM architectures

MIPS ARM MSP430
ISAC lines 1110 1450 2040
C lines 610 1190 665
Count of extracted instructions 281 5741 718
Extraction time 0.5 s 35.5 s 16.0 s

When creating the ISAC model, the designer must be careful about using correct data
types, otherwise unnecessary data type conversions in selection patterns are generated.
Inspection of generated patterns can reveal diverse bugs in instruction behavior. A tool that
graphically displays extracted patterns was developed and this and this can greatly aid in
processor design verification.

Extracted semantics for the MIPS architecture was used to generate MIPS LLVM backend.
This backend was first working at the time of writing this paper, therefore we present here
only preliminary results for a simple program that calculates the Fibonacci sequence.

This program was compiled for MIPS by compilers GCC 4.4.1, and CLANG 1.0 with
LLVM 2.8 (CLANG is a frontend that generates intermediate representation for LLVM).
Input for our generated backed was obtained by compiling source code with CLANG 1.0
and then optimized (for -O3) with LLVM 2.8 optimizer. Resulting assembly code was then
assembled and simulated using tools automatically generated from the MIPS ISAC model
(e.g. [7]). Cycle counts needed to execute the program are shown in table 2.

Table 2 Preliminary results for backend generator for the MIPS architecture, values are cycle
counts needed to simulate compiled program that calculates the Fibonacci sequence

GCC LLVM Backend generated from the
ISAC model

No optimizations (-O0) 1991 2200 1416
All optimizations (-O3) 508 506 913

Current plans for the future are: to allow the user to specify ABI, support for predicated
execution, arbitrary bit-width integral data types, floating and vector (SIMD) variables and
operations. Also we will improve the backend generator according to semantics description
extracted from ARM, MSP430, and other models.

7 Conclusion

This paper presents an approach to higher-level language compiler generation. Backend is
the part of compiler, where most of target-specific transformations is done and to accelerate
application-specific processor architecture development, we need to generate compiler backend
as automatically as possible.
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First, architecture description language ISAC is briefly presented. Further, translation
from ISAC architecture model to the compiler generation model is described. This approach
overcomes problems caused by possible architecture model inconsistencies when one type
of description is used for simulation and hardware generation and another type is used for
compiler generation as is in similar projects usual. Inspection of extracted patterns can also
point to some bugs that may be present in the architecture model and leads the user to
use exact data types. Usage of exact data types also results in a model usable for efficient
hardware generation.

Instruction semantics extraction from ISAC is fully automatic and it was tested on
architectures MIPS, ARM, and MSP430. Extracted information was used to generate a
backend for the MIPS architecture and some preliminary results were presented.
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Efficient Computation of Morphological Greyscale
Reconstruction

Pavel Karas
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Abstract
Morphological reconstruction is an important image operator from mathematical morphology. It
is very often used for filtering, segmentation, and feature extraction. However, its computation
can be very time-consuming for some input data. In this paper we review several efficient
algorithms to compute the reconstruction, and compare their performance on real 3D images
of large sizes. Furthermore, we propose a GPU implementation which performs up to 15× faster
than the CPU methods. To our best knowledge, this is the first GPU implementation of the
morphological reconstruction, described in literature.

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.54

1 Introduction

Mathematical morphology is a theory for analysis and processing spatial structures in im-
ages. Morphological methods can be used for image pre-processing and for image analysis
[9, 14, 16].

Morphological reconstruction is an advanced approach to image analysis. It can be used
for various applications, such as filtering, segmentation, and feature extraction [18], image
and video compression [13], remote sensing [15], and biomedical image analysis [12]. In image
segmentation, the reconstruction is often used for pre-processing, to avoid over-segmentation
[5, 8].

To compute the morphological reconstruction, several sequential and FIFO-based al-
gorithms were proposed [11, 18]. To our best knowledge, no GPU implementation of the
morphological reconstruction has been described in literature. Eidheim et al. [6] proposed a
GPU implementation of basic morphological operations, such as dilation and erosion. These
algorithms are easy to implement in parallel as described in [3]. Jivet et al. [10] implemen-
ted the morphological reconstruction on a dedicated FPGA hardware using the iterative
computation of the geodesic dilation. In this paper, we adopt the sequential algorithm [18]
with the reduced number of iterations and propose a parallel GPU-based implementation.
We compare its performance with several algorithms executed on CPU.

1.1 Notations

In the following text, an n-dimensional image f is considered a mapping from a finite
subset Df ⊂ Zn into a set I of image values. I is usually a finite discrete set of m levels
{0, 1, . . . ,m − 1}. The discrete grid G ⊂ Zn × Zn provides the neighbourhood relationship
between pixels: p is a neighbour of q if and only if (p, q) ∈ G. Depending on a particular
application, various grids can be used; in 2-D case, 4-, 6-, or 8-connectivity are the most
common examples.

© Pavel Karas;
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1.2 Definition of Morphological Reconstruction by Dilation

Before we define the reconstruction by dilation, we define the geodesic dilation first. We use
the same definition as in [15]. Let f , g be two images fulfiling the following properties:
Df = Dg, i.e., both images share the same definition domain,
f(p) ≤ g(p),∀p ∈ Df , i.e., f is smaller or equal to g in all pixels

We call f the marker image and g the mask image and define the geodesic dilation of size
1 as follows:

δ(1)
g (f) = δ(1)(f) ∧ g, (1)

where δ(1) denotes the elementary dilation (i.e., dilation with the smallest non-trivial struc-
ture element of the used connectivity) and the ∧ operator denotes point-wise minimum. The
geodesic dilation of size n > 1 is obtained by performing n successive geodesic dilations:

δ(n)
g (f) = δ(1)

g

[
δ(n−1)
g (f)

]
. (2)

The reconstruction by dilation is defined as the geodesic dilation iterated until stability:

Rδg(f) = δ(i)
g (f), (3)

where i is such that δ(i+1)
g (f) = δ

(i)
g (f). The reconstruction by dilation of a 1-D signal is

illustrated in Fig. 1.
In our application of biomedical image analysis, we process 3-D grayscale images. There-

fore, we describe our implementations for the 3-D images with the 6-connectivity.
The paper is organized as follows: First, we review three algorithms for computing the

morphological reconstruction, described in literature [18]. Second, we describe our GPU
implementation. Finally, we analyze and compare the performance of all implementations
on several 3D images from our field.

(a) Marker f and mask g (b) δ(1)
g (f) (c) δ(2)

g (f)

(d) δ(3)
g (f) (e) δ(4)

g (f) (f) δ(5)
g (f) = Rδg(f)

Figure 1 Reconstruction by dilation Rδ of a 1-D signal g from a marker signal f .
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2 Methods

2.1 Existing Algorithms
Standard technique

The reconstruction by dilation can be computed directly from its definition (3). Even though
the iterations can be performed efficiently using van Herk/Gil-Werman algorithm [7, 17], an
enormous number of iterations is required to converge. Therefore, we do not consider this
algorithm in our paper in the performance evaluation.

Sequential reconstruction (SR)

This algorithm was proposed to reduce the number of iterations [18]. The image is scanned in
a predefined order and the information is propagated throughout the image. First, the image
is scanned in the raster order—see Fig. 2a. Subsequently, it is scanned in the anti-raster
order—Fig. 2b. The scans are repeated until convergence. The computation is performed
"in-place" in the marker image.

Hybrid reconstruction algorithm (HRA)

HRA does not yield multiple iterations, thus, the computation time is further reduced [18].
It has two phases: a sequential and a FIFO phase. The former uses the previous sequential
algorithm to execute a single iteration. During the anti-raster scan, pixels of regional maxima
are put into a queue. In the latter phase, the pixels are read from the queue and their
neighbourhood pixels are examined. If the information is propagated to the neighbourhood
pixels, they are put into the queue. Once the queue is empty, the computation is complete.

2.2 GPU Implementation (SR_GPU)
Our GPU implementation is a modified version of the SR algorithm described in Section
2.1 and Fig. 3. It was written in the CUDA parallel programming model [2]. For the
flowchart of the SR_GPU algorithm refer to Fig. 3. The raster and anti-raster scans are
performed in each dimension, separately. Thus, each iteration requires 4 or 6 passes for
a 2-D or 3-D image, respectively. The raster scans are executed by CUDA kernels called
x_Forward, y_Forward, and z_Forward; the anti-raster scans are performed by kernels
called x_Backward, y_Backward, and z_Backward. Since the Forward and Backward kernels
are analogous, only the Forward variants will be described.

(a) Raster scan (b) Anti-raster scan

Figure 2 Scanning patterns in a 2-D image of size w × h pixels.
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Figure 3 Flowchart of the SR_GPU algorithm for the morphological reconstruction. The
functions, called x_Forward, y_Forward, z_Forward, x_Backward, y_Backward, and z_Backward,
provide image scans. The global_change variable indicates changes in the marker image.

y_Forward

The y_Forward kernel is executed by NxNz threads, where Nx, Nz are the sizes of the input
images in x and z dimension, respectively. Except the input images marker and mask and
the variable called global_change stored in the global memory, all the variables can be
stored in registers. Since the threads are regularly distributed across the x and z dimensions
of the images, the accesses to the global memory are naturally coalesced [2], achieving the
maximum bandwidth.

z_Forward

The z_Forward kernel is analogous to the y_Forward kernel.

x_Forward

The x_Forward kernel is executed by NyNz threads. Since the threads are now distributed
across the y and z dimensions of the images, we cannot use the same approach as above to
achieve optimum access to the global memory. Therefore, we pre-load data and compute
results in the shared memory [2]. Afterwards, the data is written back to the global memory.
Only few threads of a block perform the computation itself, so this approach may seem
to be less efficient. However, the GPU thread scheduler can switch between warps, thus
overlapping the arithmetic operations and memory accesses and hiding the global memory
latency.

Stopping criterion

The scans are repeated until convergence, much like in the classic SR algorithm. The test of
convergence is performed by inspecting the global_change variable after each scan. Gath-
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(a) 512 × 512 × 5 px (b) 512 × 512 × 20 px

(c) 512 × 512 × 100 px (d) 1300 × 1030 × 80 px

Figure 4 Input images.

ering information from all threads to one output variable generally requires the reduction
kernel [1]. However, in this case, only a boolean-type information is needed, thus, the reduc-
tion can be avoided. Before each scan, global_change is set to false. Iff a thread performs
the first change in the marker image, it assigns global_change to true. This approach also
avoids write-before-read conflicts.

3 Results

The performance of the three algorithms, namely SR, HRA, and SR_GPU, was compared
on four real 3-D images from confocal microscopy (Fig. 4). These images were taken as the
input mask image g.
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Two different approaches to create the marker image f were chosen. First, all but one
of the pixels of the marker image are set to zero. The non-zero pixel was selected to be the
one with the maximum value in the mask image and its value was set to the same value.
Second, the values of pixels in the marker image were set to the values of those in the mask
image, decreased by a constant h:

f(p) = max{g(p)− h, 0}. (4)

The morphological reconstruction with the marker image defined as above is often called
the HMAX transform in literature [16].

The implementations were tested on a workstation with an Intel Core2 Quad Q6600
2.4 GHz CPU, 8 GB DDR2 RAM, and a GeForce GTX 470 GPU with 448 SPs and 1280
MB of GDDR5 memory.

3.1 Morphological Reconstruction With a Simple Marker Image
The results of the first experiment are summarized in Table 1. The computation times are
in seconds, the data-transfer overhead for the GPU implementation is included.

It is obvious that results of both the SR and SR_GPU algorithm strongly depend on
the number of iterations needed to complete the computation. The number of iterations
depends strongly on both the image dimensions and the image content. The queue-based
HRA algorithm does not yield such iterations and converges significantly faster. However,
the GPU implementation is faster almost in all cases, due to higher performance and memory
bandwidth of the graphics hardware. The image (d) is the only case where the HRA al-
gorithm on CPU performs better, since the number of iterations is extremely high (661). In
other cases, the GPU implementation achieves up to 15× speedup over the HRA algorithm.

3.2 HMAX Transform
The results of the second experiment are summarized in Table 2. They are very similar to
those in the previous experiment, however, the number of iterations is generally lower.

We also analysed the dependancy of both the computation time and the number of
iterations on the h parameter. The results for two selected images are shown in Fig 5. As
expected, the dependancy is strong for the SR and the SR_GPU algorithms, while there
is almost no dependancy for the HRA algorithm. However, the computation time for the
SR_GPU algorithm does not grow so fast with increasing the number of iterations, because
with the higher computation time, the effect of the data-transfer overhead is reduced.

Table 1 Morphological reconstruction with a simple marker image. In the columns 2,
3, and 4, computation times in seconds are presented. The column 5 shows the number of iterations
needed to complete the computation in SR and SR_GPU. In the last column, the speedup achieved
by the SR_GPU algorithm is presented.

Image SR [s] HRA [s] SR_GPU [s] iterations speedup

(a) 8.02 2.26 0.22 30 10.3

(b) 18.74 6.17 0.51 17 12.1

(c) 280.23 64.57 4.16 51 15.5

(d) > 2 hours 98.97 135.13 661 0.7
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Figure 5 Computation time and number of iterations for the HMAX transform on two selected
images.

4 Conclusion

In this paper we proposed a GPU implementation for the morphological reconstruction and
compared its performance with two CPU algorithms. The results showed that graphics
hardware offers good speedup and is able to perform significantly faster than the optimized
CPU algorithm in most cases.

By optimizing our GPU implementation, further speedup could be achieved. The main
issue is the high number of iterations for some input data. By implementing the optimized
HRA algorithm, this could be avoided, but FIFO-based algorithms are not generally good
candidates for GPU acceleration. In our future work, we will study possibilities of adopting
the HRA algorithm for GPU.

The CPU implementations can be improved, too, for example, by utilizing multiple CPU
cores. However, in the case of the faster queue approach this would require a challenging
effort. The performance of the SR algorithm strongly depends on the number of cache misses
and could be also improved by using cache-efficient matrix transpositions [4]. This is the
subject of our future work.

Table 2 HMAX transform with the parameter h = 10. In the columns 2, 3, and 4,
computation times in seconds are presented. The column 5 shows the number of iterations needed
to complete the computation in SR and SR_GPU. In the last column, the speedup achieved by the
SR_GPU algorithm is presented.

Image SR [s] HRA [s] SR_GPU [s] iterations speedup

(a) 0.57 0.56 0.06 7 9.3

(b) 3.39 2.23 0.17 10 13.1

(c) 25.63 13.73 0.94 15 14.6

(d) 1414.25 71.73 40.37 204 1.8
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Abstract
Identification in the limit, originally due to Gold [10], is a widely used computation model for
inductive inference and human language acquisition. We consider a nonconstructive extension
to Gold’s model. Our current topic is the problem of applying the notions of reliability and
refutability to nonconstructive identification. Four general identification situations are defined
and two of them are studied. Thus some questions left open in [13] are now closed.

Keywords and phrases inductive inference, identification, reliability, refutability, nonconstruct-
ive computation
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1 Introduction

The computational model of inductive inference known as identification (also: identification
in the limit, algorithmic learning, etc.), introduced by Gold [10], and its many variations
have been widely studied. The reader is encouraged to refer to [20] and [14] for detailed
surveys on applying Gold’s model to learning recursive functions and recursive languages
from positive data, respectively.

Gold’s original model deals with some abstract computational device which makes guesses
about some object it has as an input. That device, also referred to as inductive inference
machine (IIM), is usually said to identify a class of objects if it identifies (i.e. correctly
guesses) any object within that class. However, in the general case the IIM behaviour on
objects not from the class in question is not specified.

This issue is dealt with in the “reliable identification” model, which is due to Blum and
Blum [2], Minicozzi [16], and later Sakurai [19]; “refutable identification”, first considered
by Mukouchi and Arikawa [17], is a strengthening of the reliable model. Both these models
prohibit the IIM to output any sequence which could be a correct sequence of guesses for
some class member (if the given object is not such a member), and the refutable model
specifies the IIM to explicitly refute any non-member.

In the thesis [13], Gold’s model was extended with nonconstructive computational meth-
ods, which allow the IIM to utilize some additional information. There is, however, a certain
difference between the nonconstructive identification and the traditional “identification with
additional information” (see e.g. [4, 7, 11, 12]). We briefly introduce the two main distinc-
tions. First, all the three nonconstructive identification models (K, S and F ) are given on
a general level, instead of defining a separate criterion for each particular situation (as it is
usually being done). Second, these models are specially constructed so that a trivial help
(i.e. supplying the desired answer) would not be possible.

Allowing additional information for identification introduces the following dilemma:
Should we always assume that the help the IIM gets is correct (and if not, should we refute
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this help)? Note the obvious similarity between this problem and the one stated above,
solved by introducing reliability for identification. That motivated the author to consider
two levels of reliability and refutability and, correspondingly, four different identification
situations in nonconstructive identification.

In the current paper, we show a class of non-recursive functions that is not identifiable
without any additional information, but is nonconstructively identifiable with the following
properties. On the one hand, the help information it is identifiable with can be biased by
a function that grows to infinity; on the other hand, it is refutably identifiable (utilizing,
however, another kind of help).

To our knowledge, the problems of such type were neither previously solved nor con-
sidered at all.

2 Preliminaries

In this section, we briefly introduce the notions used in this paper. Notions from recursive
function theory not explained here are treated in e.g. Rogers’ textbook[18]; a more brief
introduction into recursion theoretic notions can be found in Gallier and Hicks’ online books
[8, 9]. The notion of Kolmogorov complexity is explained in detail in [15].

N denotes the set of nonnegative integers {0, 1, 2, ...}. N+ denotes the set of positive
integers {1, 2, 3, ...}. R denotes the set of all total recursive functions.
〈x0, x1, ..., xk〉 is an ordered tuple of elements x0, x1, ..., xk (in that order). If X is such

a tuple, we refer to each its kth element as Xk. Given some universal set U , we write 〈Uk〉
to denote a set of all tuples of some length k over U . 〈U∗〉 ≡ ∪k∈U 〈Uk〉, i.e. the set of
all finite length tuples over U . 〈U∞〉 denotes the set of all infinite length tuples over U .
〈U〉 ≡ 〈U∗〉 ∪ 〈U∞〉, i.e. the set of all possible tuples over U , of both finite and infinite
length.
∀∞,∃∞,∃! denote “for all but finitely many”, “there exist infinitely many”, “there exists

a unique”, respectively.
For an object x, l(x) denotes the length of the binary presentation of x. For a set X,

d(X) is its cardinality and X̄ is its complement. For a sequence X, l(X) is its length. For
a sequence X, X[n] denotes its initial segment of length n. For a total function f , f [n]
denotes the initial segment of its graph. We write f(x0) ↓ and f(x0) ↑ to denote that f is
defined (undefined) on x0.

Given a class U , we call any partial recursive function ϕ : N → U a numbering for U .
We say that U is defined in ϕ (written: ϕ(U) ↓), iff ∀u ∈ U : (∃n ∈ N)[ϕn = u]. Talking
about identification of some U in some ϕ, we always assume ϕ(U) ↓.

Having fixed some universal Turing machine Muni, by (plain) Kolmogorov complexity of
some object u we call the value

C(u) = min{l(p) : Muni(p) = u} (1)

In this paper, only the so-called “plain” Kolmogorov complexity will be used (for more
details see [15]), and our results will rely on one fixed Muni.

A tuple J ∈ 〈N∞〉 is a BC-sequence for some object u in some numbering ϕ =
ϕ0, ϕ1, ϕ2, . . . (written: J ∈ BC(u, ϕ)), iff ∀∞n ∈ N : ϕJn = u.

A tuple J ∈ 〈N∞〉 is an EX-sequence for some u in some ϕ (written: J ∈ EX(u, ϕ)),
iff J ∈ BC(u, ϕ) ∧ (∀∞n ∈ N : Jn = Jn+1).

A tuple J ∈ 〈N∞〉 is a FIN -sequence for some u in some ϕ (written: J ∈ FIN(u, ϕ)),
iff J ∈ EX(u, ϕ) ∧ (∀n ∈ N : Jn = Jn+1).
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We say that FIN , EX, BC are identification criteria. We say that I : U → {〈N〉} is
an (information) presentation of a class U . We say that I is injective, iff ∀u, v ∈ U : (u 6=
v) ⇒ (I(u) ∩ I(v) = ∅). We assume that any presentation I we deal with is injective. We
say that I is unambiguous, iff ∀u ∈ U : d(I(u)) = 1.

A presentation of a recursive function f is its graph, i.e. pairs 〈x, f(x)〉, which can
be reduced to simply a sequence of values f(0), f(1), f(2), . . . in case we deal with total
functions only (like in this paper). We assume, without a loss of generality [10], that a
graph of any function f is always input in its natural order, i.e. f(0), f(1), f(2), and so on.
Clearly, a function graph is an injective presentation.

An inductive inference machine (IIM) is an abstract device that receives positive integers
from time to time and generates positive integers from time to time. If M is some IIM, by
M(X) = Y we denote “Y is the output M writes having received some input X”.

Given some identification criterion X : X ∈ {FIN,EX,BC}, some IIM M , some object
u and its presentation I and some numbering ϕ, we say M X-identifies u from I in ϕ

iff M(I(u)) ∈ X(u, ϕ). Obviously, if M EX-identifies some u, it BC-identifies it; if M
FIN -identifies u, it EX-identifies it.

Given some identification criterion X, some IIM M , some class of objects U , some
presentation I and some numbering ϕ, we say that M X-identifies U from I in ϕ iff M

X-identifies every u ∈ U from I in ϕ.
Given some identification criterion X, some IIM M , some class of objects U , some

presentation I and some numbering ϕ, we say that M reliably X-identifies U from I in ϕ
iff the following holds:
1. ∀u ∈ U : M(I(u)) ∈ X(u, ϕ);
2. ∀u /∈ U : M(I(u)) /∈ X(u, ϕ).
Given some additional refutation symbol #, we say that M refutably X-identifies U from I

in ϕ iff the following holds:
1. ∀u ∈ U : M(I(u)) ∈ X(u, ϕ);
2. ∀u /∈ U : M(I(u))l(M(I(u))) =“#”.
We say that U is (reliably, refutably) X-identifiable from I in ϕ iff there exists an IIM that
(reliably, refutably) X-identifies U from I in ϕ.

3 Nonconstructive identification

There are several definitions of nonconstructive identification [13]. Here we consider one
of them, the so-called F -nonconstructivity, which is very similar to identification given the
upper bound on the program size (see e.g. [4, 12]). However, the definition given here does
not limit identification to function or language learning, or to any other particular type of
learning.

I Definition 1. Given some identification criterion X, some IIM M , some class U , some
presentation I and some numbering ϕ : ϕ(U) ↓, we say that M F -nonconstructively X-
identifies U from I in ϕ with amount of nonconstructivity p(n), iff ∀n ∈ N : ∃m ∈ N s.t.
the following holds:
1. m ≤ p(n);
2. ∀u ∈ U ∩ {ϕi|i ≤ n} : M(〈I(u),m〉) ∈ X(u, ϕ).



Iļja Kucevalovs 65

Further in the text “nonconstructive”, “nonconstructively” etc. is also referred to as “NK”.1
Any identification model without additional information is called “constructive”.

4 Application of reliability and refutability

One can consider two levels of applying reliability and/or refutability to nonconstructive
identification:
1. Reliable / refutable identification;
2. Reliable / refutable nonconstructivity.
On the first level, one deals with the usual problem of reliability and refutability: Which
classes in which numberings can be identified so that input of a non-member presentation
would not result in misleading “identification” of it. Nonconstructive methods are used to
assist reliability or refutability.

On the second level, the problem is the following: Which is that nonconstructive iden-
tification model (if it exists), such that not only correct, but also incorrect nonconstructive
information helps identifying some class in some numbering in compliance with some cri-
terion. By saying “helps” we mean that no constructive identification would be possible in
that case.

Thus, in accordance with [13], the following four situations are defined:
1. NK-X (the usual nonconstructive identification model);
2. NK-R-X (reliable / refutable models utilizing nonconstructivity);
3. R-NK-X (nonconstructive models which are required to work correctly with incorrect

help);
4. R-NK-R-X (reliable / refutable nonconstructive models which are required to work

correctly with incorrect help).

We will also use the situation names to denote the corresponding inferring power classes.
That is, for a situation Z, the class Z is the set of classes which are Z-identifiable.

In [13], only the NK-X situation was studied. It was noted (and some examples were
given) that even emptiness (non-emptiness) of the classes NK-R-X and R-NK-X can be
tedious tasks to solve (while proving the R-NK-R-X case would obviously close both these
questions). Below we prove non-emptiness of NK-R-X and R-NK-X, leaving out R-NK-
R-X.

The above definition of F -nonconstructivity is modified in order to properly define the
R-situations.

I Definition 2. Given some total E : N → N s.t.

lim
n→∞

E(n) =∞ (2)

as well as some identification criterion X, some IIM M , some class U , some presentation I
and some numbering ϕ : ϕ(U) ↓, we say that M E-reliably F -nonconstructively X-identifies
U , iff ∀n ∈ N : ∃m ∈ 〈N〉 s.t. the following holds:
1. ∀u ∈ U ∩ {ϕi|i ≤ n},∀j ∈ N : M(〈I(u),mj〉) ∈ X(u, ϕ);
2. ∀u ∈ U ∩ {ϕi|i ≤ n} : limj→∞M(〈I(u),mj ± E(j)〉) ∈ X(u, ϕ).

1 From Latvian “nekonstrukt̄ıvs” (nonconstructive). This is being done in accordance with the original
thesis [13], which was written in Latvian.
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5 Results

I Theorem 3. There exists a class U and a numbering W such that the following properties
hold:
1. U is not constructively identifiable in W ;
2. U is F -nonconstructively FIN -identifiable in W (NK-FIN);
3. U is F -nonconstructively refutably FIN -identifiable in W (NK-Ref -FIN);
4. U is reliably F -nonconstructively FIN -identifiable in W (Rel-NK-FIN).

Proof. The NK-FIN part is immediate from Rel-NK-FIN .
Consider the total functions h,m : N → N defined as follows:

h(x) =
{
C(1024), x = 0
min{n ∈ N | (n > h(x− 1)) ∧ (C(n) > C(h(x− 1)))}, x > 0 (3)

m(x) = min{C(n) | n ∈ N ∧ n ≥ x} (4)

It is obvious that both such functions do exist; however, neither h [13] nor m [15] can
be recursive. Moreover, m, despite being unbounded from above, grows slower than any
computable function [15].

Let 〈p0, p1, ...〉 be a growing sequence of all the prime numbers starting with p0 = 3. For
every k ∈ N , we define

fk(x) ≡ h((pk)x) (5)

The numbering W is defined as follows:

wi =


fk, ∃k ∈ N, j ∈ N \ [0; k − 1],

n ∈ N ∩
[
h(j)− bm(j)

2 c;h(j) + bm(j)
2 c

]
:

fk(n) = i

h, otherwise

(6)

We now briefly explain the idea of the above construction. Each function fk outputs h
values from arguments taken from powers of the k-th prime. That is, range(fi)∩range(fj) =
{1} for every natural i 6= j. Moreover, range of every fk fully contains the set of its indices
in W . (That is, every fk is self-referential in W .) However, indices are contained not in the
full range of fk, but only in the intervals defined by the functions h and m starting from
the k-th interval.

The class

U = {fn | n ∈ N} (7)

is not constructively identifiable in W . First of all, W is not recursive due to non-recursive-
ness of h and m. That is to say, all the information an IIM can rely on is the self-referential
values of fk. If there existed a value x0 such that every fk would output a self-reference
given x0, the problem of constructing an IIM would be trivial; however, every fk does not
output self-references up to the argument value from the k-th interval — that is, no self-
referential interval is common for all the fk. So the only possibility left for identifying U is
to possess some “knowledge” about the structure of infinitely many such intervals; this is
also not possible due to the incomputable properties of h and m stated above.
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Nevertheless, U is reliably F -nonconstructively FIN -identifiable in W . For every fk, we
define the set

π(fk) = {h(i) | i ≥ k} (8)

It is easy to see that an IIM defined as

M(〈〈f(0), f(1), ...〉, π0 ∈ π(f)〉) = 〈f(π0), f(π0), ...〉 (9)

F -nonconstructively FIN -identifies U . Moreover, this identification is E-reliable with
E(x) ≡ bm(x)

2 c. Indeed, the condition (2) for E does hold, while any additional inform-
ation word (8), even having been biased by E, would still help FIN -identify U .

What is left for us is to prove the NK-Ref -FIN part. For any input object u, define
the infinite additional information word

〈h(0), h(1), ...〉 (10)

(We assume that the elements are mutually separated using some meta symbols.)
The IIM waits until the element h(i) = u(1). If h(i) > u(1) or i is not prime (or is less

than 3), IIM outputs “#” and stops; otherwise it continues running the following algorithm:

1. Set x← 2;
2. Calculate (pi)x;
3. Wait until the element h((pi)x);

a. If h((pi)x) = u(x):
i. Output u(h(pi)) (if it is already received);
ii. Set x← x+ 1;
iii. Go to Step 2;

b. If h((pi)x) 6= u(x):
i. Output “#”;
ii. Stop execution.

It is quite obvious that such an IIM NK-Ref -FIN -identifies U with infinite noncon-
structivity. �

6 Conclusions and future work

We have shown that the classes NK-R-X and R-NK-X are not empty; moreover, the
intersection of these classes is not empty. However, the above construction is not strong
enough to allow proving (or disproving) the strongest case R-NK-R-X 6= ∅. Indeed, the
refutable part of the proof relies on exact comparison of the additional information and the
object in question, — that is, no errors in the given help could be allowed.

On the other hand, in the current paper we did not distinguish between e.g. Rel-NK-X
and Ref -NK-X. Moreover, only the F -type nonconstructivity was studied, while the other
nonconstructivity types could be considered for reliable/refutable identification as well. We
hope to give a more complete hierarchy of reliably nonconstructive identification classes in
the future.
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Abstract
A topological flexibility of implicit active contours is of great benefit, since it allows simultan-

eous detection of several objects without any a priori knowledge about their number and shapes.
However, in tracking applications it is often required to keep desired objects mutually separated
as well as allow each object to evolve itself, i.e., different objects cannot be merged together, but
each object can split into several regions that can be merged again later in time. The former
can be achieved by applying topology-preserving constraints exploiting either various repelling
forces or the simple point concept from digital geometry, which brings, however, an indispensable
increase in the execution time and also prevent the latter. In this paper, we propose more efficient
and more flexible topology-preserving constraint based on a region indication function, that can
be easily integrated into a fast level set-like algorithm [15] in order to obtain a fast and robust
algorithm for simultaneous tracking of multiple objects. The potential of the modified algorithm
is demonstrated on both synthetic and real image data.

Keywords and phrases level set framework, topology preservation, object tracking
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1 Introduction

Detection and tracking of object boundaries is an important task in many computer vision
applications such as video surveillance, monitoring, or robotics as well as in biomedical
studies aimed at understanding the mechanics of cellular processes such as proliferation,
differentiation, or migration. In general, desired objects can have arbitrary initial shapes
that can, in addition, undergo changes in time. Therefore, an optimal tracking algorithm
should be able to detect objects of complex boundaries and adapt easily to their changes.
Furthermore, it should also achieve real-time or at least near real-time performance in order
to be fruitfully applied in practice.

Implicit active contours [4, 5, 6, 23] have become popular namely due to their inherent
topological flexibility and ability to detect objects of complex shapes. Their solution is
usually carried out using the level set framework [19, 18], in which the contour is represented
implicitly as the zero level set (also called interface) of a scalar higher-dimensional function.
This representation has several advantages over the parametric one [10, 3]. In particular, it
avoids parameterization problems, the topology of the contour is handled inherently, and the
extension into higher dimensions is straightforward. On the other hand, a numerical solution
of associated partial differential equations brings a significant computational burden limiting
the use of this approach in real-time applications.

Many approximations, aimed at speeding up the basic level set framework, have been
proposed in last two decades. In the family of gradient-based implicit active contours [4, 5],
the narrow band [1], sparse-field [25], and fast marching method [20] have become popular.
Later, other interesting approaches based on the additive operator splitting scheme [8]
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or a pointwise scheduled propagation of the implicit contour [7, 17] have emerged. Shi
and Carl [22] proposed a fast algorithm that is able to track the gradient-based as well as
region-based [6, 23] implicit active contours, provided the speed function can be decomposed
into data-dependent and regularization terms. We also refer the reader to the work by Lie
et al. [12], Wang et al. [24], and Maška et al. [15] introducing other fast algorithms that
minimize popular Chan-Vese model [6].

The topological flexibility of implicit active contours is of great benefit, since it enables to
detect several objects simultaneously without any a priori knowledge about their number or
shapes. However, for tracking purposes such a flexibility is not always suitable. For instance,
when two initially isolated objects touch later in time it is often required to keep them
separated. This can be achieved by applying topology-preserving constraints based on either
various repelling forces [2, 11] or the simple point concept from digital geometry [9, 14], which
brings, however, an indispensable increase in the execution time caused by their evaluation
in a local neighbourhood of the interface. Furthermore, they also prevent each object from
being evolved at will, e.g., from splitting into several regions.

In this paper, we propose more flexible topology-preserving constraint that brings only
negligible increase in the execution time. It exploits a region indication function, has constant
time complexity, and can be easily integrated into our fast level set-like algorithm [15] in order
to obtain a fast and robust algorithm for simultaneous tracking of multiple objects based on
the minimization of the Chan-Vese model [6]. In comparison to the tracking algorithm by
Shi and Carl [21] that exploits the region indication function as well, the proposed algorithm
does not require the contours to be initially separated by the background nor evaluate relaxed
topological numbers. It also allows two different object contours to touch inherently, without
any additional tests.

The organization of the paper is as follows. In Section 2, the theoretical background of the
Chan-Vese model and the basic principle of our fast level set-like algorithm [15] intended for
its minimization are reviewed. Section 3 is devoted to the topology-preserving modification
of the original algorithm. Experimental results are demonstrated in Section 4. We conclude
the paper with a discussion and suggestions for future work in Section 5 and 6, respectively.

2 Fast Algorithm Minimizing the Chan-Vese Model

In order to obtain a mathematically easier minimization problem, Chan and Vese [6] in-
troduced a piecewise constant approximation to the well-known functional formulation of
image segmentation by Mumford and Shah [16]. Let Ω be an image domain and u0 : Ω→ R
be an input image defined over this domain. The basic idea of the Chan-Vese model is to
find a piecewise constant approximation of u0 being constant in two possibly disconnected
regions Ω1 and Ω2 of constant levels c1 and c2, respectively, separated by a closed segmenting
contour C (Ω = Ω1∪Ω2∪C) of minimal length. The Chan-Vese model can be formulated as

ECV (C, c1, c2) = µ|C|+ λ1

∫
Ω1

(u0(x)− c1)2 dx+ λ2

∫
Ω2

(u0(x)− c2)2 dx , (1)

where µ is nonnegative and λ1 and λ2 are positive constants. Embedding the contour C in
a scalar higher-dimensional function φ with C as its zero level set, the functional can be
minimized using the level set framework. The associated Euler-Lagrange equation has the
following form:

∂φ

∂t
+ δε(φ)

[
µ · div

(
∇φ
|∇φ|

)
− λ1(u0 − c1)2 + λ2(u0 − c2)2

]
= 0 , (2)
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where

c1 =
∫

Ω u0(x)(1−Hε(φ(x))) dx∫
Ω(1−Hε(φ(x))) dx

and c2 =
∫

Ω u0(x)Hε(φ(x)) dx∫
ΩHε(φ(x)) dx

. (3)

The symbols Hε and δε denote regularized versions of the Heaviside and Dirac delta functions.
Careful attention has to be paid to the regularization of these functions, since it affects
the model performance. Provided δε is nonzero in the whole domain, the Chan-Vese model
has the tendency to compute a global minimizer. On the contrary, the choice of δε with a
compact support results only in a local minimizer and, therefore, the dependence on the
initialization.

In our previous work [15], we introduced a fast level set-like algorithm that locally
minimizes the Chan-Vese model (a suitable choice of initial model, however, often leads to
finding a global minimum) and avoids a nontrivial and time-consuming numerical solution of
the associated Euler-Lagrange equation. Instead of evolving the whole implicit function in a
small time step, only the interface points stored in a list data structure are moved to the
exterior or interior depending on the sign of the speed function F in the normal direction
given as

F = µκ− λ1(u0 − c1)2 + λ2(u0 − c2)2 , (4)

where κ denotes the curvature of the interface. Simultaneously, their local neighbourhoods
(4-neighbourhoods in 2D and 6-neighbourhoods in 3D, respectively) are updated accordingly.
The local propagation of each interface point allows the values c1 and c2 to be updated incre-
mentally, since we know exactly which points move to the exterior and interior. Furthermore,
considering the level set function φ as a mapping of the set membership of each point (i.e.
the points of the interface are represented by the value 0, interior points by -1, and exterior
ones by 1), the curvature of the interface can be roughly approximated in an incremental
manner. These ideas result in a fast algorithm for tracking implicit contours driven by the
Chan-Vese model. We refer the reader to the original paper [15] for further details.

3 Topology-Preserving Modification

To ensure that different objects are kept mutually separated as well as allow each object
to evolve itself, we integrate our fast algorithm described in the previous section with a
region indication function ψ : Ω → {0, 1, 2, . . . } that is evolved simultaneously with the
simplified level set function φ. Remind that in each iteration the original algorithm propagates
each interface point locally depending on the sign of the speed function F . Therefore, a
modification of the local propagation of each interface point will result in a modification of
the original algorithm itself.

Let φ be determined by a possibly disconnected background region Ψ0 and M possibly
disconnected disjoint objects Ψ1,Ψ2, . . . ,ΨM (Ω =

⋃
0≤i≤M Ψi). Let p ∈ Ω be a point of

the interface of the object Ψi, 0 < i ≤M , that is being propagated. The behaviour of the
modified algorithm can be divided into two cases depending on the sign of F (p). First,
assume that F (p) < 0 (Fig. 1a). The original algorithm transfers p to the exterior and adds
all its interior neighbours to the interface. The modified algorithm behaves in the same way
as the original one. Clearly, only p is switched from the foreground to the background. It is
therefore sufficient to reset its region indicator to 0.

The second case, when F (p) > 0 (Fig. 1b), is more complicated than the first one. The
original algorithm transfers p to the interior and adds all its exterior neighbours (denote them
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Figure 1 Comparison of one iteration of the original algorithm (top row) and the modified one
(bottom row) in case of (a) F (p) < 0 and (b) F (p) > 0. The black points correspond to the interface,
the white ones to the exterior, and the gray ones to the interior. The arrows from p correspond to
the directions of possible propagations of the interface in this iteration. The numbers correspond to
the region indication function ψ.

by E(p)) to the interface. In this case, each point in E(p) is switched from the background
to the foreground. Therefore, the modified algorithm changes their region indicators to i. It
is important to note that one more test has to be performed in the modified algorithm in
order to preserve the interface connectedness of each object. Let N(p) be a set of neighbours
of p of different region indicators. Clearly, if |E(p)| < |N(p)|, p must be put back to the
interface, φ(p) = 0, in order to preserve the interface connectedness of the object Ψi, since p
has a neighbour q of the region indicator j, 0 < j ≤M , j 6= i, that belongs to the interface
of the object Ψj .

4 Experimental Results

In this section, we present several results and comparisons on both synthetic and real image
data to demonstrate the potential of the proposed algorithm. The experiments have been
performed on a common workstation (Intel Core2 Duo 2.0GHz, 2GBRAM, Windows XP
Professional). For comparison purposes, we integrated the original algorithm [15] with the
simple point concept from digital geometry to obtain a fast topology-preserving alternative
to the modified algorithm described in the previous section. We denote these algorithms as
SP (simple point) and RI (region indicator), respectively, depending on the concept used for
preserving the contour topology.

We start with a synthetic binary image of size 200 × 200 pixels containing two circles
(Fig. 2). In case of the SP algorithm, the contour cannot change its topology and, therefore,
only one 8-connected component is obtained as a result. On the other hand, the RI algorithm
allows the contour to split into several parts and each circle is detected separately. The
execution time was less than 0.01 seconds in both cases.

The second experiment is aimed at separation of two touching objects in a noisy synthetic
image of size 350× 170 pixels (Fig. 3). Both algorithms output two 8-connected components.
However, in case of the SP algorithm they are separated by often undesired 4-connected
background path. The computation took 0.014 and 0.013 seconds, respectively.

We conclude this section with an application of the SP and RI algorithms for tracking of
AIF-transfected living cells of the MCF-7 cell line (Fig. 4 and 5, respectively). The time-lapse
series acquired using a fluorescence microscope has 25 frames of size 648× 515 pixels. The
execution time was about 0.111 and 0.107 seconds, respectively, in average per frame.



Martin Maška, Pavel Matula, and Michal Kozubek 73

Figure 2 Segmentation of a synthetic image with two circles (µ = 0.5, λ1 = λ2 = 1). Top row:
Evolution of the SP contour. Bottom row: Evolution of the RI contour.

Figure 3 Segmentation of touching objects (µ = 0.5, λ1 = λ2 = 1). Left: Input image overlaid
with two initial contours. Centre: Segmentation result of the SP algorithm. Right: Segmentation
result of the RI algorithm.

5 Discussion

The final evaluation of the modified algorithm is introduced in this section. We discuss,
namely, the experimental results presented in Sect. 4 in detail.

The topology-preserving constraint exploiting the region indication function is very simple
and has constant time complexity. There is no need to evaluate any complex condition
in a local neighbourhood of a considered point. In comparison to the original algorithm,
the increase in the execution time of the modified algorithm is negligible, from about 2
up to 4 percent in both 2D as well as 3D. Compared with the SP algorithm, it is about 4
percent faster in 2D and even about 9 percent faster in 3D, where the breadth-first search
algorithm [13] has been used for the simple point detection. On the other hand, the RI
algorithm consumes slightly more memory than the others, since it requires additional space
for storing region indicators. However, the increase is less than 5 percent.

The experiments illustrated in Fig. 2–5 showed the main advantages of the RI algorithm
over the SP one for simultaneous tracking of multiple objects. Considering the simplest
tracking scheme in which the final contour from the previous frame is used as a seed in the
next one, the RI algorithm adapts easily to splitting of a connected object in one frame into
several regions in the next one. Furthermore, it also allows us to find boundaries of touching
objects without any background gap between them. It is important to note that considered
tracking scheme might have problems in situations involving large movements of the objects
or when the final contour of one object from the previous frame overlaps with another object
in the next frame. This will be addressed in future work.
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Figure 4 Tracking of AIF-transfected living cells using the SP algorithm (µ = 0.3, λ1 = 1,
λ2 = 2). The frames number 1, 3, 7, 10, 13, 14, 15, and 22 are shown. Top rows: Original image
data overlaid with final contours. Bottom rows: Segmentation results of the SP algorithm.

6 Conclusion

We have addressed the problem of imposing topology-preserving constraints on evolving
implicit contours. We have proposed a topology-preserving constraint exploiting a region
indication function, that is more flexible than the ones based on either various repelling forces
or the simple point concept from digital geometry, has constant time complexity, and can be
easily integrated into our fast level set-like algorithm minimizing the Chan-Vese model. The
experiments verified topology-preserving properties of the modified algorithm and showed its
speed and better usability for simultaneous tracking of multiple objects in comparison to the
one exploiting the simple point concept.

Acknowledgments. This work has been supported by the Ministry of Education of the
Czech Republic (Projects No. MSM-0021622419, No. LC535 and No. 2B06052). The authors
would also like to thank Dr. Miroslav Vařecha for providing the time-lapse series of MCF-7
cell line.
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Figure 5 Tracking of AIF-transfected living cells using the RI algorithm (µ = 0.3, λ1 = 1, λ2 = 2).
The frames number 1, 3, 7, 10, 13, 14, 15, and 22 are shown. Top rows: Original image data overlaid
with final contours. Bottom rows: Segmentation results of the RI algorithm.
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Abstract
Embedded Block Coding with Optimal Truncation (EBCOT) is the fundamental and compu-
tationally very demanding part of the compression process of JPEG2000 image compression
standard. EBCOT itself consists of two tiers. In Tier-1, image samples are compressed using
context modeling and arithmetic coding. Resulting bit-stream is further formated and truncated
in Tier-2. JPEG2000 has a number of applications in various fields where the processing speed
and/or latency is a crucial attribute and the main limitation with state of the art implementa-
tions. In this paper we propose a new parallel approach to EBCOT context modeling that truly
exploits massively parallel capabilities of modern GPUs and enables concurrent processing of
individual image samples. Performance evaluation of our prototype shows speedup 12 times for
the context modeller, and 1.4–5.3 times for the whole EBCOT Tier-1, which includes not yet
optimized arithmetic coder.

Keywords and phrases JPEG2000, EBCOT, Context Modeling, GPU, GPGPU, parallel
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1 Introduction

JPEG2000 [10] is an image compression standard created by the Joint Photographic Experts
Group (JPEG). JPEG2000 is aimed at providing not only compression performance superior
to the current JPEG standard but also advanced capabilities demanded by applications in the
fields such as medical imaging [18], film industry [12], or image archiving. It features optional
mathematically lossless processing, error resilience, or progressive image transmission by
improving pixel accuracy and resolution. On the other hand, the advanced features and the
superb compression performance yields higher computational demands which implies slower
processing.

Graphics processing units (GPUs) have become a popular computing architecture in
last half of decade due to their rapid increase of performance compared to traditional
CPUs [16]. While parallel and hierarchical architecture of GPUs allows for impressive
increase of performance at moderate cost, it requires specific regards when designing and
implementing algorithms to utilize potential of the GPU (Section 2.2). Since JPEG2000
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introduction, there has been a great deal of effort to provide JPEG2000 applications with
sufficient processing speed and bandwidth. The majority of this effort has its base in FPGA
and VLSI in general [3, 11, 20]. As for the GPU computing, there has been attempts [17, 19]
to coarse-grained parallelization resulting in performance very close to CPU implementations.
Our goal is adaptation or re-formulation of individual algorithms resulting in fine-grained
and more effective design which fits the specifics of modern GPUs better.

The simplified block diagram of compression system defined by JPEG2000 standard is
illustrated in Fig. 1. Prior to actual compression the image data is transformed using Discrete
Wavelet Transform [6, 7, 14] (DWT). JPEG2000 standard prescribes use of CDF 9/7 and
CDF 5/3 wavelet transform [5] for lossy and lossless compression modes respectively. In
case of lossy compression, the transformed coefficients are quantized using uniform scalar
dead-zone quantization [13]. The process of quantization introduces the data precision
reduction in order to make it more compressible. Thereafter the data is compressed in
EBCOT Tier-1 and the resulting bit-stream is further formated in Tier-2. As can be seen in
Fig. 2, the most computationally intensive parts of JPEG2000 are DWT, Context Modeling,
and Arithmetic Encoding.

This paper describes a novel fine-grained GPU-based parallel design of the context
modeling part of JPEG2000. Section 2 provides background on context modeling in JPEG2000
and mentions GPU basics needed for further explanations of our design introduced in Section 4.
Section 3 reviews related work. The evaluation methodology, experimental results and their
discussion is in Section 5. Section 6 summarizes the key findings and presents directions for
future work.

2 Preliminaries

As noted above, EBCOT is a two-tiered coder. The input to Tier-1 is DWT-transformed
image partitioned into so called code-blocks1. Each code-block is processed independently
in Tier-1 using context modeling and arithmetic coding to form an embedded bit-stream
representing the compressed code-block. The context modeller analyzes the bit structure
of the images and collects contextual information (CX) which is passed together with bit
values (D) to the arithmetic coder. The JPEG2000 uses MQ-Coder—a context adaptive
binary arithmetic coder—defined in JBIG2 standard [9]. The MQ-Coder codes bit values
based on its context information. There is 19 different contexts defined and for each of

1 Recommended code-block dimensions are 16× 16, 32× 32, and 64× 64. The total number of code-block
samples may not exceed 4096.
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them, the arithmetic coder maintains and consecutively adapts probability estimate [4, 2].
Final compressed bit-stream is formatted during Tier-2, where the embedded bit-streams are
combined so that the desired rate-distortion criteria is fulfilled.

The following explanation of JPEG2000 and EBCOT processes uses only single color
component of the image for sake of simplicity. This approach is possible because EBCOT
Tier-1 processes color components independently [1, Chapter 6.6].

2.1 EBCOT Tier-1 Context Modeling
The context modeling module processes code-blocks bit-plane by bit-plane2 starting from
the most significant bit-plane (MSB). Each bit-plane is coded in three passes but each
bit is processed in exactly one pass—i.e., each pass scans through the entire bit-plane but
processes only some of the bits. The decision whether to process a bit in current pass or not
is made based on current state of the bit and states of its neighbours. Note that the bit state
information changes as the bits are processed; therefore, the process is defined sequentially
with the prescribed scanning order to create and maintain correct state. The scanning order
in the bit-plane is illustrated in [1, p. 166]. The three passes are i) Signification Propagation
Pass (SPP), ii) Magnitude Refinement Pass (MRP), and iii) Clean-Up Pass (CUP). Each
pass encodes a bit using one or more of the following four bit-coding operations defined by
JPEG2000 standard: Zero Coding (ZC), Run-Length Coding (RLC), Magnitude Refinement
Coding (MRC), and Sign Coding (SC). Based on bit values and state informations, these four
operations generate 1–4 CX,D pairs per each bit in a bit-plane as input for the arithmetic
encoder.

The state information consists of three state variables σ, σ′, η. The σ and σ′ states are
shared by all the bits of a pixel, indicating that the first non-zero bit of the pixel has already
been processed and that MRC coding has been applied, respectively. The η is not shared,
and indicates the bit has been processed in SPP pass on the current bit-plane [1].

A bit is in a so called preferred neighborhood (PN) if at least one of its 8 adjacent
neighbours is significant, i.e., has σ = 1. All bits having σ = 0 and being in the PN are coded
in SPP pass. The bits of the pixels that have become significant in the previous bit-planes,
are coded in second, MRP, pass. Those bits have σ = 1 and η = 0. The rest of bits in current
bit-plane is processed in CUP pass—i.e., all bits having σ = η = 0 after the previous two
passes.

2.2 GPU architecture and programming model
Attracted by their raw computing power, a number of general-purpose GPU computing
approaches has been implemented in recent years, including GLSL3, CUDA, and OpenCL4.
Because of its flexibility and potential to utilize power of GPU, we have opted for CUDA
(Compute Unified Device Architecture) [15]—a massively parallel computing architecture
designed by Nvidia. In general, modern GPU architectures are, capable of running thousands
of threads in parallel. In the context of CUDA, threads are grouped into so called thread
blocks. Threads within the block can cooperate among themselves using synchronization

2 Bit-plane is defined as one-bit image composed of the same bit of each pixel, see [8, Chapter 3]. Number
of bit-planes corresponds to the number of bits per pixel for each color component of the image. Given
the preceding DWT transformation, each “pixel” in actually a DWT coefficient generated by the
transformation.

3 http://www.opengl.org/documentation/glsl/
4 http://www.khronos.org/opencl/
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primitives, shared memory, and global memory. Compared to the global memory, the shared
memory is considerably smaller and significantly faster and should be used whenever possible.
The advantage of the global memory is that it can be accessed by all threads, whereas
the shared memory is only visible to threads of one block. The common CUDA work
flow is to copy data from RAM to the global memory of the GPU. All GPU threads can
access and process the data directly in global memory, or, more preferably, the data can
be partitioned and fetched into the shared memory to provide higher throughput for more
complex operations. It is also important that threads within the same warp follow the same
execution path; otherwise the thread divergence is introduced and divergent execution paths
are serialized, thus worsening performance.

3 Related Work

JPEG2000 standard allows for code-block level parallelism, which is rather coarse-grained
and because of intermediate data size requirements, it enforces use of global memory on
CUDA platform. Another option is stripe-level parallelism in casual mode, which has lesser
requirements on memory but results in worse compression performance. Sequential nature of
the context modeller requires processing of one code-block/stripe by a single thread only;
thus yielding (a) not enough threads too utilize massively parallel architecture of GPUs
and (b) code divergence that introduces further performance penalty.The code-block level
parallelism has been used by the CUJ2K [19], an open source JPEG2000 project which uses
CUDA architecture and its programming model to implement all compute intensive parts for
GPU. A design similar to CUJ2K has been proposed by Datla et al. in [17].

4 Context Modeling Parallelization for GPU Architectures

Compared to the coarse-grained parallelism contained within JPEG2000 standard, the bit-
parallel context modeling architecture proposed by us allows for independent processing of all
samples of a bit-plane as well as independent processing of all bit-planes. Our design bypasses
the three coding passes (SPP, MRP, CUP) and the prescribed scan pattern, enabling direct
coding by the four bit-coding operations (ZC, MRC, RLC, SC).

For the purposes of the following explanation we define a code-block as two-dimensional
sequence of samples, γx,y (x = 1..m, y = 1..n), m and n being the horizontal and vertical
code-block dimensions respectively. A binary representation of a sample γ is a sequence
[γP−1, γP−2, . . . , γ1, γ0] where P is image bit depth. γp

x,y thus denotes a bit of the sample
[x, y] on bit-plane p.

To be able to bypass the passes and to enable the direct coding, we introduce two new
state variables ρp

x,y, and τp
x,y as replacement to the original states. The meaning of the two

new state variables is as follows: ρp
x,y is shared by all the bits of each pixel and ρp

x,y = 1
indicates the pixel γx,y became significant in either p or in one of the previous bit-planes
according to the processing order; τp

x,y = 1 indicates γx,y is going to become significant
during SPP on the current bit-plane.

To be able to code a bit-plane p in parallel, the two new coding states need to be
precomputed before the actual coding. The ρp+1

x,y is computed in parallel by examining
the previous p + 1 bit-planes; ρp+1

x,y = 1 iff there is a non-zero bit above current bit, i.e.∨P
p′=p+1 γ

p′

x,y = 1.
The τp

x,y is inductively computed in parallel as follows:
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τp
x,y = 1 ∀[x, y] where ρp+1

x,y = 0 ∧ γp
x,y = 1 ∧ at least one of 8 adjacent neighbors has

ρp+1 = 1
In each further step τp

x,y = 1 ∀[x, y] where ρp+1
x,y = 0 ∧ γp

x,y = 1 ∧ ( at least one of 8
adjacent neighbors has ρp+1 = 1 ∨ one of four preceding neighbours5 has non-zero τp).

Original New

MRC σx,y = 1 ∧ ηx,y = 0 ρp+1
x,y = 1

RLC σx,y = 1 ∧ ηx,y = 0 ∧ y is a multiple
of 4 ∧

∑x+1
i=x−1

∑y+4
j=y−1 σi,j = 0

ρp+1
x,y = 0 ∧ is in PN ∧(∑x+1

i=x−1

∑y+4
j=y−1 (ρp+1

i,j + τp
i,j) +∑y+3

j=y−1 γ
p
x−1,j + γp

x,y−1 = 0
)

ZC σx,y = 0 ∧ [in PN (for SPP) or ηx,y

= 0 (for CUP)]
ρp+1

x,y = 0 (PN differentiate SPP
from CUP)

SC (SPP or CUP preconditions) ∧ γp
x,y

= 1
ρp+1

x,y = 0 ∧ γp
x,y = 1 (τp

x,y

differentiates SPP from CUP)
Table 1 Overview of preconditions of coding operations.

Once both ρ and τ state variables are computed, the coding operations for an arbitrary
bit γp

x,y can be decided. In order to avoid execution path divergence on GPU, we propose to
serialize the coding operations execution manually and to implement bit-to-thread mapping—
i.e., the thread-blocks are of the same dimension as the code-blocks; each bit-plane is processed
in the following four consecutive steps: MRC, RLC, ZC, SC. Note, that each coding operation
is executed on a bit-plane in parallel. The only constraint on bit coding independence stems
from diverging number of bits coded by the RLC operation. The RLC is defined to code
one to four bits in column and a prediction of the number is virtually as expensive as the
RLC coding itself. The only operation affected by this is ZC, so we choose to perform RLC
operations on current bit plane before ZC. Although the new design we propose allows for
parallelism among bit-planes too, we do not exploit it because of restricted shared memory
size. Direct selection of coding operations based on the new state variables compared to the
original sequential state variables is summarized in Table 1. A detailed equivalence proof is
beyond the size limitation of this paper.

State information is also needed by the coding operations. To code the bits, the original
coding operations use σ, SC also exploits pixel sign information, and MRC uses σ′ state.
The new state variables are used instead as follows:

MRC uses ρp+1 and τp of all the neighbors instead of σ; the σ′ is substituted by looking
for the position of the first non-zero bit on previous p+ 1 bit-planes.
instead of σ, ZC uses ρp+1 of all neighbors and τp of four preceding neighbors for bits
belonging to SPP. ρp+1 and τp all neighbors and bit value of the four preceding neighbors
are used for bits belonging to CUP.
instead of σ, SC uses ρp+1 of two vertical and two horizontal neighbors and τp of the
upper and the left side neighbor for bits belonging to SPP. ρp+1 and τp of two vertical
and two horizontal neighbors and bit value of of the upper and the left side neighbor for
bits belonging to CUP.
RLC uses no state information at all, both prior and after the transformation.

5 The four preceding neighbors of [x, y] are as follows: [x, y − 1]; [x− 1, y − 1]; [x− 1, y]; [x− 1, y + 1].
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The described fine-grained parallel algorithm allows for processing individual bits in
parallel threads, resulting in high utilization of multi-processors on GPU. Depending on
chosen code block size, the data may be processed entirely in the fast shared memory6.

5 Experimental Evaluation

5.1 Methodology
We implemented two benchmark sets focused on the EBCOT Tier-1 processing speed of
selected single-threaded CPU implementations (OpenJPEG7, JasPer8 and Kakadu9) and
GPU implementation (CUJ2K10) together with our GPU implementation nicknamed bpcuda.
Except for Kakadu, all the implementations are open-source—this allowed us to add additional
timer functions to the source codes to obtain comparable results. Kakadu codec introduced
two limitations: (a) only the timer provided by the Kakadu authors could be used, (b) the
benchmarking of all the implementations comprises run-time of the whole EBCOT Tier-1,
not just the context modeller, to make results directly comparable. Further insight into
EBCOT Tier-1 components has been implemented using the best open-source CPU and
GPU implementations: JasPer and bpcuda.

Primary input image parameters affecting processing speed are size and bit-depth. The
image content itself also affects the runtime of EBCOT Tier-1; thus we selected two extreme
cases and one standard image for the first benchmark set: a single-color image, a white-noise
image, and Lenna image, a well-known picture which is broadly used for benchmarking
purposes. All three images were 8-bit grayscale with the same size of 512×512 pixels. The
second benchmark set was focused on dependency analysis of processing time on image size:
three images with the same content (a real-world digital photography portrait) and different
size have been used. Images were 8-bit grayscale with the size of 1280×720, 1920×1080
and 4096×2160 pixels, corresponding to common size used in cinematography. The images
were preprocessed using 3-level reversible DWT transformation prior to their processing in
EBCOT. Both benchmarks were run 30 times for the same configuration and codec.

Hardware and software configuration was as follows: CPU Intel Core i7 950 at 3.07GHz,
6GB DDR3 main memory, ASUS P6T6 WS Revolution motherboard, GeForce GTX 285
GPU (with 30 multiprocessors, 240 cores, 16 MB of shared memory, 2 GB of global memory).
Software stack included Ubuntu Linux 9.04 with 2.6.28-15-server kernel, NVIDIA device
drivers version 256.53, CUDA toolkit 3.1, and GCC version 4.3.3.

5.2 Experimental Results and Discussion
Table 2 summarizes results for both benchmark sets. It can be seen that for trivial small
image (single color 512×512 image), the CPU implementations outperform GPU ones—this is
caused by the overhead of memory transfers and low utilization of the GPU multi-processors.
For non-trivial images and namely for larger images, the computation time prevails and
the GPU implementations perform better compared to CPU ones. For efficient bpcuda
implementation, even processing of 512×512 non-trivial images is approximately 2× better

6 Because of shared memory size limitations, older NVidia GPUs are limited to 16× 16 code blocks, while
new NVidia Fermi architecture allows for larger code blocks.

7 http://www.openjpeg.org/
8 http://www.ece.uvic.ca/~mdadams/jasper/
9 http://www.kakadusoftware.com/
10 http://cuj2k.sourceforge.net/

http://www.openjpeg.org/
http://www.ece.uvic.ca/~mdadams/jasper/
http://www.kakadusoftware.com/
http://cuj2k.sourceforge.net/
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compared to the best CPU implementation. Overall, 1.4–6.1 speedup can be observed for
non-trivial images.

OpenJPEG JasPer Kakadu CUJ2K bpcuda

Single-Color 39.9± 2.9 11.5± 2.3 1.2± 0.4 14.1± 0.1 12.4± 0.1
Lenna 128.9± 29.1 80.6± 20.2 47.8± 3.9 101.0± 0.2 26.3± 0.1
White-Noise 185.4± 4.9 129.9± 3.3 61.8± 3.9 98.2± 0.2 30.2± 0.1

1280×720 364.8± 2.9 164.0± 0.1 145.6± 4.9 120.1± 0.3 63.5± 0.3
1920×1080 723.3± 1.7 369.3± 16.6 309.7± 4.6 258.6± 0.4 137.2± 0.5
4096×2160 2818.0± 7.8 1481.5± 1.3 1093.1± 4.6 914.1± 0.8 662.9± 0.3
Table 2 EBCOT Tier-1 processing time [ms] of different implementations. Lower time means

better performance.

To provide deeper insight into the EBCOT Tier-1 components, the profiling results of
EBCOT Tier-1 of bpcuda and the reference CPU implementation JasPer are compared. We
used the Valgrind suite for the application profiling JasPer and the combination of built-in
CUDA timer functions for bpcuda. As shown in Fig. 2, the EBCOT Tier-1 is the most
time-consuming part of the encoding chain on CPU. From the profiling information and the
measured times, we can compare the runtimes of the single-threaded JasPer implementation
and our bpcuda. In the case of JasPer processing the HD image (1920×1080 pixels), the
context modeller occupies the 76% (280.7ms) and the arithmetic coder consumes 24%
(88.6ms) of the EBCOT Tier-1. When bpcuda processes the same image, the context
modeller consumes only 17% (23.3ms) and 83% (113.9ms) is spent in the arithmetic coder.
The overall speedup 1.4–5.3 of the EBCOT Tier-1 is degraded due to yet not-optimized
arithmetic coder. The speedup of the context modeller itself is 12 times when compared to
JasPer, the best open-source CPU implementation. We consider the results of parallelized
context modeller a significant improvement, indicating that we succeeded in reducing the
EBCOT Tier-1 time-consumption mainly by re-formulation of the BPC part.

6 Conclusion and Future Work

In this paper, we have presented a novel approach to reformulating the context modeller
algorithm of the EBCOT Tier-1 process in JPEG2000 in a way that enables an efficient
implementation on GPU computing platform. The proposed algorithm has been implemented
using CUDA, showing significant performance increase over existing CPU and GPU JPEG2000
implementations. In the future, we will focus on acceleration of the MQ-Coder in the EBCOT
Tier-1 process and bit-stream formatting, thus finishing complete JPEG2000 acceleration for
GPU architectures.
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Abstract
In this paper, a new method of hijacking the Linux kernel is presented. It is based on analysing
the Linux system call handler, where a proper set of instructions is subsequently replaced by a
jump to a different function. The ability to change the execution flow in the middle of an existing
function represents a unique approach in Linux kernel hacking. The attack is applicable to all
kernels from the 2.6 series on the Intel architecture. Due to this, rootkits based on this kind of
technique represent a high risk for Linux administrators.

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.85

1 Introduction

We propose a new attack on the Linux kernel based on changing the control flow in the
system call handler. The attack is applicable to all members of the 2.6 family on the Intel
architecture. The main idea, changing the control flow in the middle of the system call
handler, has not been to the best of our knowledge considered before and hence rootkits (tools
setting up an environment for an attacker and hiding his/her activities) are not detectable
using current detection tools. To compensate for the newly proposed attack, we also provide
a new detection tool capable of detecting the new attack.

Application

Libraries

System call interface

Kernel subsystems

Hardware

User mode
→ user space
→ subset of instructions

Kernel mode
→ kernel space
→ all instructions

Figure 1 Operating system hierarchy

Basically, attacks can be divided into two main groups according to the operating system
hierarchy (Fig. 1)[1, 2]:
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1. Attacks on user mode. Attacks against user’s and system’s applications and libraries.
In this case, the attack is usually performed by a simple substitution of binaries, where
the attacker swaps the originals with the corrupted. Fortunately, these kind of attacks
are quite easy to detect thanks to checksums. There is also a possibility to use private,
static-compiled binaries.

2. Attacks on kernel mode. Most of nowadays attacks are oriented towards kernel space,
especially against kernel interfaces like system call interface or virtual file system. The
main reason why these kind of attacks are so popular is because the attacker is able
to gain control of the whole system with no mercy. We can easily imagine that if we
change the behaviour of kernel interfaces, we will change the behaviour of the whole
system (because user space programs rely on them). The attacker usually wants to hide
his activity in the system so he modifies the interfaces to publish only a subset of real
results. In the case of kernel space attacks, there is no reliable method how to reveal the
attacker in the system. We can only hope that he was not skilled enough to masquerade
all side effects of his activities.

In the rest of the paper, we will focus solely on the system call interface. We will discuss
existing types of attacks on this mechanism and later on, an original attack will be revealed.
Our idea will be to inject jump code in the middle of the system call handler.

2 System Call Interface

The system call interface forms an interface for switching between user and kernel mode. An
application raises a query through the system call interface and the kernel tries to satisfy it.
The system call interface is probably the most important interface in the system as it creates
an abstract layer between users and the kernel.

In Linux (on the IA-321), system calls are identified by numbers and their invocation is
realized by a software interrupt. Parameters are passed through CPU’s registers in a strict
order: eax, ebx, ecx, edx, esi, edi and ebp. The eax register is used to hold the system
call number. Let us see how system calls work on the case of the setuid()2 call (Fig. 2).

First of all, an application (or a wrapped routine in a library) has to fill CPU’s registers
with expected values. Then, an exception is risen by the int $0x80 instruction which will
cause the switch-over to the kernel mode and a system call handler activation. The address
of the system call handler is saved in the interrupt table and is determined by an index into
this table (0x80 in this case).

The system call handler (implemented in system_call()) first saves the number of the
system call and then the contents of all CPU’s registers (SAVE_ALL macro). All passed
arguments are saved and the CPU is released for further computing. Then, some basic tests
are performed (we will cover this in detail in Subsection 4.1). If everything is alright, the
system call number saved in the eax register is used as an index into the system call table to
invoke a system call function (sys_setuid() in the described example).

System call functions perform the executive code. Their purpose is to change the system
state or return system values. All system call functions are implemented as asmlinkage,
which means that their arguments are saved exclusively on the stack.

When the system call function finishes, the return value is saved on the stack in the
place of the $eax register. The system call handler continues with disabling interrupts

1 Intel architecture, 32bit. Known also as i386 or x86.
2 Setuid() sets the effective user ID of the current process.
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Interrupt table

divide_error

debug

...

system_call0x80

…

0x01

0x00

System call table

sys_restart_syscall
sys_exit
sys_fork
sys_read3

2
1
0

......
sys_setuid23

…
mov    $UID,%ebx
mov    $23,%eax
int $0x80
...

Application / Library

system_call:
pushl %eax
SAVE_ALL
…
cmpl $(nr_syscalls), %eax
jae syscall_badsys
call *sys_call_table(,%eax,4)
movl %eax,PT_EAX(%esp)
cli
movl TI_flags(%ebp), %ecx
testw $_TIF_ALLWORK_MASK, %cx
jne syscall_exit_work
…
RESTORE_REGS
addl $4, %esp
iret

 System call handler

asmlinkage long sys_setuid
(uid_t uid)
{
  int old_euid = current­>euid;
  int retval;
  …
  return retval;
}

System call function 
idtr

CPU
register

......

Figure 2 The Linux system call interface

and performing additional tests. On success, all CPU’s registers are restored from the
stack (RESTORE_REGS macro) and the function is finished with the iret instruction. This
instruction causes a controlled switch-over back to the user mode and a continuation of the
application.

The system calls are used very frequently and the implementation by software interrupt
is not very efficient. Due to this, processors Intel Pentium II and older contain an additional
instruction called a “fast system call” (the sysenter instruction). Although this instruction
calls another handler (sysenter_entry()), the results (and even the body of the function)
is almost the same as in the case of a system call handler (system_call()). So we do not
have to distinguish between these two methods in the rest of the paper—the impact will be
the same.

3 State of the Art

Attacks against the system call interface are relatively old and widespread. In this section,
we will briefly describe existing types of such attacks:

1. Attacks on the system call table. The oldest and the most widely used way of
intrusion. Its aim is to change an original record in the system call table with another
version of the system call function [3]. This function is then used instead of the original.
In most cases it acts like a wrapper for the original function filtering its results. The
system call table is usually checked by administrators nowadays, so attackers had to
develop more sophisticated ways of attacks.

2. Attacks on the system call function. If we do not want to change records in the
system call table, we can move one step forward and change the prologue of the system
call function [4]. The basic idea is to rewrite the entry point of the original function
with a jump to a different function. The usage is the same as in the previous with one
exceptions—if we want to use the original function, we have to repair its prologue or an
infinite loop threatens.

MEMICS’10
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3. Attacks on the system call handler. Another method how to redirect the execution
flow without touching the system call table is to leave off using it. To do so, we have
to copy the original system call table to a new location and change the pointer in the
system call handler [5]. When it is done, the old system call table is not used anymore
and we can modify our private one, just like in the first case.

4. Attacks on the interrupt table. If we take a closer look at Fig. 2, we can reveal that
a second table is used in the subsystem—the interrupt table. The attacker can change
records even in this table and forge the handler routine [6]. This attack is not trivial as
the attacker needs to build up his own handler function and the interrupt subsystem is
closely associated with the computer architecture.

5. Attacks on the idtr register. The interrupt table is located thanks to the idtr
register. The value of the register can be modified by the sidt instruction. The attacker
can do the same trick as in the attack on the system call handler—make a copy of the
table and change the value in the idtr register to pointer on it [7].

4 The New Approach

In this section, we will focus on changing an execution flow in the middle of an existing
function. The idea is motivated by attacks on the system call function, where the prologue is
rewritten by a jump code. We will try to generalize this technique to be applicable even in
the middle of functions.

If we want to hijack an execution flow in the middle of an existing function, we have to
rewrite its code. This is quite easy. The biggest problem is to ensure the original behaviour
of the corrupted function. If we write down all the problems we have, we will get these three
issues:

1. Seven bytes of space. For hijacking the execution flow, we have to rewrite the existing
code with a jump or call instruction. The easiest way is to fill one of the CPU’s registers
with the destination address and then perform an absolute jump3. If we write it down in
assembly, we will get something like this:

movl $0,%eax --> \xb8\x00\x00\x00\x00
jmp *%eax --> \xff\xe0

The code is compiled as shown on the right side. The result is seven bytes long machine
code. This means that we will need to rewrite at least two instructions as the Intel
architecture uses a variable instruction length.

2. Keep valid code. We have to keep the code valid after overwriting it. If we produce an
invalid instruction, the CPU rises an exception and immediately terminates the process.
Due to this, we have to respect the beginnings and ends of instructions and do not
overwrite code containing the labels.

3. Keep the original semantics. We will change the structure of the considered function
by injecting some code. As we want to keep the original behaviour, we have to compensate
the rewritten code to sustain the original semantics. This is the most difficult condition
and requires a data analysis because when the hijacking is completed, the function must
continue in its execution with no restrictions.

3 It is not possible to do an absolute jump by jmp $address.
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We will now demonstrate how to solve the above problems for the particular case of the
system call handler.

4.1 Where to Hijack Control Flow in the System Call Handler
In this subsection, we will study the code of the system call handler and try to determine
best places for hijacking. The handler is a low-level subsystem thus it is completely written
in assembler4:

system_call:
pushl %eax //Storing of system call number
SAVE_ALL //Storing of all CPU’s registers
movl $0xffffe000, %ebx //Calculation of the pointer to
andl %esp, %ebx //current process

The function starts its activity by storing the system call number and all CPU’s registers
in the stack. Afterwards, a pointer to the current process is calculated and saved in the ebx
register.

In a above code fragment, we now try to find a candidate place for hijacking. We
cannot rewrite the beginning instructions which are saving data from the user space (we
would probably loose some data). However, when all data from the user space is saved,
the CPU is released and there is an ideal opportunity for hijacking the control flow. If we
measure the number of bytes of two instructions calculating the pointer to the current process
(movl, andl), we will get seven bytes. The calculation of the pointer is also standalone and
independent and it can be easily reproduced.

testw $_TIF_WORK_SYSCALL_ENTRY,TI_flags(%ebp) //Process traced?
jnz syscall_trace_entry //If so, jump to trace function
cmpl $(nr_syscalls), %eax //eax >= number of system calls?
jae syscall_badsys //If so, abort

The system call handler continues with two tests. The first one checks whether the
running process is being traced. If the trace flag is set, the process is stopped and made
available to the debugger. The second test checks the validty of system call number in eax
register. As the number in eax register represents an index into the table, it cannot be
greater than total number of system calls in the system.

We can leave studying of the fragment above very briefly. We would break code containing
relative jumps (jnz, jae) which would be very difficult to compensate.

call *sys_call_table(0, %eax, 4) //Calling sys_call_table[eax]
movl %eax,PT_EAX(%esp) //Storing of return value

The core of the system call handler. The eax register is used as an index into the system
call table to call the system function. The return value is saved into the stack in the position
of the eax register for the user space.

Despite the core of the system call handler is suitable for hijacking, we will leave it off.
The reason is that the pointer to the system call table is also modified by attacks on the
system call handler and the system scanners generally test this value.

4 This code can be found in Linux kernel source: arch/x86/kernel/entry_32.S.
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cli //Clear Interrupts
movl TI_flags(%ebp), %ecx //Copy process flags in ecx
testw $_TIF_ALLWORK_MASK, %cx //Is needed extra work?
jne syscall_exit_work //If so, do extra work

When the system function returns, all interrupts are masked and the process is tested
against additional work requirements (unserved signal, process is traced).

The code fragment above offers another opportunity for hijacking. The length of the
movl and testw instructions is eight bytes, which is enough for jumping out. These two
instructions are also standalone so we can reproduce them.

RESTORE_REGS //CPU’s registers restoration
addl $4, %esp //Clearing up system call number from stack
iret //Return from interrupt

The end of the system call handler prepares the system to switch back to the user mode.
All CPU’s registers are restored from the stack (filled with results of the system call), the
system call number is cleared and the iret instruction is triggered.

The hijacking of this terminating fragment is possible too. The main problem is when
the process is traced and so does not use this code fragment.

4.2 Changing the Control Flow in the System Call Handler
So far, we have located two suitable places for hijacking the control flow in the system call
handler. Both of them are occurring in the whole 2.6 kernel and thus offering a very good
portability and usability.

Our goal is to modify the return values from the system call functions which are available
after their invocations. Due to this, we will focus on the second place suitable for hijacking
the control that we have identified in the system call function.

system_call:
pushl %eax
SAVE_ALL
…
cmpl $(nr_syscalls), %eax
jae syscall_badsys
call *sys_call_table(,%eax,4)
movl %eax,PT_EAX(%esp)
cli
movl TI_flags(%ebp), %ecx
testw $_TIF_ALLWORK_MASK, %cx
jne syscall_exit_work
…
RESTORE_REGS
addl $4, %esp
iret

  System call handler

 trampoline:
 pushl %esp
 call  hijack
 popl %esp
 movl FLAGS(%ebp), %ecx
 testw $MASK, %cx
 jmp  comeback

 movl trampoline,%eax
 jmp  *%eax

asmlinkage void hijack
(struct pt_regs* regs) {
  switch(regs­>orig_ax) {
    case __NR_read:
      ...
  }  
}

 7B jump code

 Trampoline

 Hijack function

Figure 3 Hijack implementation

We will rewrite selected part of the code by an unconditional jump into the trampoline
function (trampoline()). The trampoline has several tasks. First, it saves the top of the
stack to ensure a convenient access to the system call results. Subsequently, it calls the hijack
function (hijack()), which modifies these results on the basis of the system call number
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(deleting records about hidden directories in the ls program, for example). When the hijack
function returns the execution back to the trampoline, the system has to be set back to the
original state. To do so, the stack is cleared, instructions used for the hijacked jump are
compensated and the execution is returned just after the kidnapped place. The attack is
over.

5 Experiments

To verify all the presented facts and ideas, two rootkits based on this new technique were
implemented. The first one, called MoleKit, is able to infiltrate the system through writing
into the /dev/mem file5. Molekit provides only basic services like process and directory
hiding. It is because attacking the system through /dev/mem file is quite complicated due
to many heuristics needed (finding code patterns in the memory), but it represents a way
how to infiltrate a system even without a loadable kernel module support (see [8] for more
information).

The second rootkit is called Powerkit and infiltrates the system using a kernel module.
The main advantage of kernel modules is the access to the kernel API. This makes it possible
to implement advanced features such as keylogging or escalation of privileges.

As these two rookits use the new method of hijacking, no current anti-rootkit or validity
scanner can detect them. Because of that, we implemented Sentinel scanner [9]. Sentinel is a
tool which periodically checks integrity of the interrupt subsystem, the system call interface
(including the new method presented in this paper) and the virtual file system. The detection
is based on testing key values of these subsystems (tables, pointers to tables, system call
handler code, function prologues, ...) against their reference values obtained after system
instalation.

6 Conclusion

In this paper, a new method of hijacking the Linux kernel was presented. The attack
was successfully verified on the whole 2.6 kernel series and two rootkits based on this new
technique were implemented. Because these two rookits would represent a serious security
risk for Linux administrators, a tool for their detection was published.
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Abstract
Application-specific instruction set processors are the core of nowadays embedded systems. There-
fore, the designers need to have powerful tools for the processor design. The tools should be
generated automatically based on a processor description. One of the most important tools is
the simulator. It is used during a testing phase of the processor design and during target software
development. The key feature of the simulator is its speed. The concept of a special simulation
type – translated simulation – is presented in this paper. This simulation exploits information
from a target C compiler. Both the simulator and the C compiler are generated based on the
processor description in an architecture description language ISAC. Experimental results of this
concept show very good simulation speed and fast generation of the simulator.

Keywords and phrases Hardware/sofware co-design, simulation, architecture description lan-
guages, application-specific instruction set processors.

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.93

1 Introduction

Embedded systems have become essential part of our nowadays lives. One can find them
almost everywhere. There can be one or more application-specific instruction set processors
(ASIPs) inside an embedded system. Each processor has usually dedicated functionality and
it is highly optimized for it. There are many trade-offs among which part of functionality
should be implemented directly in the processor and which part should be implemented in
software. The process of optimal solution searching is called design space exploration (DSE).
Therefore, the designer should have a good integrated desktop environment (IDE) for the
processor design. The IDE should provide automatic tool-chain generation based on the
processor description. The tool-chain consists of the tools for processor programming, such
as an assembler or C compiler, and of the tools for processor simulation, such as a simulator
or profiler.

The processor itself can be described using either hardware description language (HDL)
or architecture description language (ADL) (see [11]). Generally, ADLs are better for fast
DSE and rapid processor prototyping, since ADL hides hardware details. Those details can
be unknown at the beginning of the processor design or the designer does not want to take
care of them.

One of the tools used during the whole processor design is a simulator. Therefore, the
simulator has to be fast enough. Furthermore, the simulator is also used for the target
software development (often at the same time as the hardware is designed – hardware/software
co-design). There are several different types of simulators. Each of them is usually used in
different phase of the processor design (less accurate simulator during the first steps in DSE,
more accurate simulator during the preparation of final hardware realization). Various types
are discussed in the section 2, and advantages or disadvantages are highlighted.
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Our project running at Brno University of Technology is called Lissom (see [7]). It
provides whole IDE for the processor design and tools for multiprocessor system on a chip
design. In this paper, we present the concept of a block-accurate simulator called translated
simulator. It uses additional information of basic blocks from the target C compiler. It is
based on the LLVM (Low Level Virtual Machine) platform [8]. The compiler can be also
generated based on the processor description using the ISAC (Instruction Set Architecture
C) language. The ISAC language is inspired by the LISA (Language for Instruction Set
Architectures) language [5] and it has been developed within the Lissom project.

2 State of the Art

There are a few projects which try to give the developer a whole IDE for the processor design.
Each of them uses its own description language which has been developed within the project.
An open source project ArchC [1] uses ADL called ArchC. It is a description language for
pipeline systems based on SystemC. The processor description is composed of several parts.
The designer can describe resources, such as memories or registers, instruction set and its
behavior. The behavior is described with SystemC functions in shared libraries.

Another widely used ADL is LISA. The processor description in LISA language is composed
of several parts. In one part, resources are defined. In the other part, an instruction set with
behavior and processor microarchitecture is described. In both projects (ArchC and LISA),
the interpreted and compiled simulators are available, but none of them supports translated
simulator.

At the Vienna University of Technology, an ADL called xADL (see [2]) was developed.
The processor is described with hardware blocks which are interconnected. The xADL
language supports generation of the translated simulator. The LLVM platform is used for
simulator creation; therefore, the creation of simulator takes a long time since the whole
LLVM has to be compiled.

An introduction to the simulator terminology used in this paper is in the following text.
The basic type of simulator is an interpreted simulator. The run of interpreted simulator
is based on the following concept. It fetches an instruction then it decodes the instruction,
and executes it. Therefore, it is not dependent on simulated application and it allows
self-modifying code out of the box. On the other hand, it constantly fetches and decodes the
same instructions (e.g. instructions within a loop). Hence, this slows the simulator down.

Another type is a compiled simulator. Unlike the interpreted simulator, the compiled
simulator is created in two steps. In the first step, a simulated application is analyzed. In the
second step, based on the analysis, the simulator itself is created. It is clear that the basic
type of compiled simulator cannot simulate self-modifying code and it is dependent on the
analyzed application. Note that this is not true in the case of dynamic compiled simulators
(see [12]).

Other important feature of simulators is the simulator accuracy. Basically, the simulator
can be cycle-accurate, instruction-accurate or block-accurate. In the first type, the basic
step of the simulation is single clock cycle. Therefore, this type of simulator is very close to
hardware and gives the most relevant information about the behavior of a real processor. On
the other hand, the speed is not very good, since the whole microarchitecure is simulated.
Therefore, this type of simulator is used when the processor design is stable enough.

In the second type, the basic step of the simulation is single instruction. The processor
microarchitecture is not simulated. This type is used for target software development (i.e.
the software which will run on designed processor), or it can be used for virus detection where
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an instruction-accuracy is enough. Note that the cycle-accurate and instruction-accurate
simulators can be either interpreted or compiled [12].

The block-accurate simulator uses a whole basic block in a simulated application as a
basic step of the simulation. The basic block is an indivisible sequence of instructions with
one entry point (start address), one exit point (end address), and no branch instructions
within it. These addresses cannot be always determined during static analysis of a simulated
program. There can be (and in a real processors usually is) a branch instruction, which
gets a destination address from a register. Therefore, this address is known only during a
simulation. The start and end addresses of all basic blocks are known during a compilation,
so the compiler can save this information for further usage by simulator. Since we need to
preprocess this information, the block-accurate simulators are only compiled; therefore they
are dependent on particular simulated application.

3 ISAC Language

The ISAC language falls into so-called mixed architecture description languages. It means
that the processor instruction-set with processor microarchitecture is described in one model.
The processor model consists of two parts in the ISAC language. In the first part, the
processor resources, such as registers or caches, are described. In the second part, processor
instruction-set together with microarchitecture is described. The basic construction of the
second part is operation construction. The operation can have several sections. The section
describes either instruction-set or microarchitecture and forms one of the four basic models of
processor. Each model describes the processor from different point of view. The models are:
instruction-set model, timing model, model of instruction analyzers hierarchy and behavioral
model.

The instruction-set model is formed by the assembler and coding sections. The assembler
section describes the textual form of an instruction (assembly language). The coding section
describes the binary form of the instruction (machine code). The timing model is formed by
the activation section. This section denotes what and when is done in the microarchitecture
of processor (e.g. timing of processor pipeline). The model of instruction analyzers hierarchy
is formed by the section structure. This section describes timing of instruction decoding. The
behavior model is specified by sections expression and behavior, where the ANSI C language
is used (i.e. ANSI C descibes the behavior of instructions and processor microarchitecture).
Note that the expression section has the same meaning as the return statement in a function
(i.e. it is used for returning of a value if particular operation is used during instruction
decoding).

Operations can be grouped according to some criteria, such as similar functionality (e.g.
operations describing arithmetic instructions). The group construction is used for grouping
of that operations or other groups. An operation can use other operations or groups using
the instance statement (e.g. an operation describing move instruction uses another operation
describing immediate operand). The processor model consists of a resource description
and many operations and groups. There is one mandatory operation called main. This
special operation is used for synchronization (i.e. clock cycle generation). An example of two
operations is in Listing 1. There is an operation describing 8-bit immediate operand using
8-bits attribute and other operation describing move_acc instruction. The second operation
uses results from previous operations (i.e. it uses results from expression sections which is
the value of immediate operand). More information can be found in [9].

Basically, the processor can be described on instruction-accurate or cycle-accurate level
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Listing 1 Example of ISAC Language Source Code
// Operation with one attribute
// attr for 8 bit operand
OPERATION imm8 {

ASSEMBLER { attr=#U };
CODING { attr=0bx[8] };
EXPRESSION { attr; };

}
// Operation describing move
OPERATION move_acc {

INSTANCE imm8;
ASSEMBLER { "move_acc" imm8 };
CODING { 0b0101 imm8 };
BEHAVIOR { acc = imm16; };

}

by the ISAC language. Note that the processor model at instruction-accurate level has
operation main with the structure section.

4 Concept of Translated Simulation

The following notation is used in this section. A target C compiler is the generated C compiler.
It is generated from the processor model and it is based on the LLVM platform. A target
application is the application which will run on the designed processor. A host C compiler
is gcc compiler which compiles the generated simulator itself. The process of the simulator
generation has three parts. The processor description has to be on the instruction-accurate
level. The first part is performed only once for any particular processor description. The
next two parts are target application specific, so they have to be performed every time when
the target application is changed.

In the first part, the analyzer of the target application is generated. It is generated
only once and it is based on the processor description (i.e. it does not have to be re-
generated until the processor description has changed). This analyzer is similar to the
disassembler, so it accepts an application in the machine code. But instead of emitting the
assembly code, it emits C code. The analyzer itself is based on the enhanced formal models
coupled finite automata [6] and lazy finite automata. Lazy finite automaton M is septuple
M = (Q,Σ, δ, s, F, S, z), where Q is a finite set of states, Σ = {0, 1} is an input alphabet,
s ∈ Q is a starting state, F ⊆ Q is a set of final states, δ = Q× Σ∗ ×Q is a finite transition
relation, S is a set of semantic actions, and z is a relation z ⊆ δ × S. The relation z assigns
semantic actions to transition relations. The semantic action is indivisible sequence of a C
code which is executed when a particular transition is taken. Definitions of configuration,
move, and accepted language are analogical to definitions in normal lazy finite automaton.

Coupled finite automata C used in the analyzer is a triple C = (M1,M2, h), where Mi is
a lazy finite automaton for i = 1, 2, and h is a bijective mapping from δ1 to δ2. Definition of
bijective mapping h, and translation by coupled finite automata are analogical to definitions
in normal coupled finite automata (see [6] for more details). The automaton M1 is used as an
instruction parser (Σ1 = {0, 1}) and the automatonM2 is used as a C code generator. The set
S2 contains the modified C code from the behavior and expression sections, which are taken
from the processor description. The content of the behavior section is changed in a way that
the constants, which are represented by attributes, are replaced by their evaluation (values
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are obtained from the automaton M1 during translation). Furthermore, each statement
is encapsulated, so the C code is only printed into a file, not executed. Let’s assume the
behavior section from the Listing 1. In the simple case, the content of original expression
section of the imm8 operation, attr;, is changed to fprintf(fp, "imm8 = %d\n", attr);,
and the content of original behavior section of the move_acc operation, acc = imm8;, is
changed to fprintf(fp, "acc = imm8;");.

In the second part, the core of translated simulator is created (i.e. the analyzer generates
a C code based on the target application). The generated output C code has to be organized
somehow. If the output would be only one single function, then, in the the case of large target
application, the function would become uncompilable (e.g. problems with optimizations,
problems with virtual memory, etc.). Therefore, the address space of the designed processor
is divided into so-called segments. Each segment has the same fixed size, which is set during
the creation of an analyzer by the developer. The size has to be equal to some power of two
(e.g. 512 or 1024). The reason for that action is explained later. Functions are generated for
each segment. It simulates instructions within the segment. This function has one parameter.
It is used for passing the program counter. Each function contains single switch statement
which takes this parameter. The case statement is generated for each instruction within
the segment. Note that the case bodies are generated by the M2 automaton. In a straight
approach, each case is ended with a break statement. There are two main reasons why this
approach does not allow effective host compiler optimization. Firstly, each break ends the
function. That means that the computed values, which can be used in the next simulated
instruction, are swapped out from the host registers to the main memory. From the host
processor point of view, it would be better to keep these values in the registers. Secondly,
the case does not allow additional optimizations since it creates the end of basic block in
the simulator code. The side effect of the two mentioned constructions leads to worse cache
hit/miss ratio too. Therefore, the following improvement is used.

Since the analyzer knows the starting and ending addresses of basic blocks in the target
application (they are stored as debug info in the target application), the break is generated
only if an address of an analyzed instruction is equal to an ending address of some basic
block. Otherwise, the simulation of new clock cycle is performed (i.e. the behavior section
of main operation is executed). The case is generated only if an address of an analyzed
instruction is equal to a starting address of some basic block. The Fig. 1 shows previous
principle. Each instruction has 32 bits and the address space can be addressed by 8 bits in

Figure 1 Principle of a translated simulator generation
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this example. Note that there is no break for address 0 (it is not ending address) and there
it no case for the address 4 (it is not starting address). Therefore, the unmodified behavior
section of synchronize operation main is generated there.

The whole target application is represented by several functions. These functions are
stored in a table. The key to this table is created by the right bit shift of an instruction
address value. The count of bits needed for shifting is computed from the segment size
(square root of segment size). The limitation of the segment size (power of two) guarantees a
fast transformation from the addresses to the keys used in the table. Note that the valid
addresses are addresses of the start and end of basic blocks. The simulator itself is formed
by a loop which calls particular functions from the table together with the execution of the
unmodified behavior section of synchronize operation main.

In the third part, the simulator itself is created via a compilation of target application
independent parts, such as the representation of the resources, and target application
dependent part (i.e. functions generated by the analyzer).

5 Experimental Results and Future Research

Several experiments of translated simulation concept were performed. As testing processor
architectures we chose MIPS and VEX. Both processors are described on instruction-accurate
level in the ISAC language. MIPS is a 32bit RISC (reduced instruction set computer)
architecture developed by MIPS Computers Systems. The instruction-set of MIPS is in
version MIPS32 Release 1. VEX is a four-slot 32bit VLIW (very large instruction word)
architecture designed by HP [4]. Each slot is unique (i.e. each slot processes different types
of instructions).

MiBench test suite [10] was used for testing and simulation speed measuring. All
simulations were performed on the same host – Intel Core 2 Quad with 2.8 GHz, 1333 MHz
FSB and 4GB RAM running 64-bit Linux based operating system. The gcc (v4.4.4) compiler
with optimizations (–O3) was used for creation of simulator generators and simulators. All
results are the average values of several runs of each test (differences of values from average
are in tenths of a percent).

Fig. 2 shows the performance comparison of all simulator types for MIPS and VEX. As
we can see in this figure, the speed of translated simulation is approximately 70% faster than
compiled simulation and up to four times faster than interpreted simulation.

In average, the times needed for creation of compiled simulator generators are 5.03s
for MIPS and 17.42s for VEX. The creation of translated simulator generators takes 4.93s

Figure 2 Performance comparison of all simulator types
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Figure 3 Simulator generation time

for MIPS and 17.17s for VEX. In Fig. 3, we can see generation times of simulators based
on a target application (for the compiled and translated simulation). The time needed for
generation of an interpreted simulator is constant because it is application independent. The
sum of times needed for creation of translated simulator generator and simulator itself is
lower than creation time of interpreted simulator, based on target application complexity.
This is another advantage of this simulator type.

Our concept of translation simulation is fully competitive. For example, our solution is
in average 40% faster than the concept of translated simulation created at Vienna University
of Technology (according to results in [3]). The comparison was made on MIPS architecture
and the set of five MiBench algorithms.

6 Conclusion

The concept of translated simulation is presented in this paper. The simulator is generated
based on a processor description and a target application. A processor is described using
the architecture description language ISAC. The generator of simulator needs to know all
starting and ending addresses of all basic blocks in the target application. This information
is obtained from the C compiler. It is based on LLVM platform and it is generated from the
same processor description. The generator of a simulator is based on several formal models.
The same formal models are also used in other generators, such as hardware description
generator. Hence, no additional huge verification of hardware realization is needed. The
experimental results show very good simulation speed and the time needed for a creation of
the simulator itself is low. All mentioned features provide the powerful platform for ASIP
and target software development.
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Abstract
This paper describes a framework for test-case generation for microcontroller binary programs
using abstract interpretation techniques. The key idea of our approach is to derive program
invariants a priori, and then use backward analysis to obtain test vectors that are executed
on the target microcontroller. Due to the structure of binary code, the abstract interpretation
framework is based on propositional encodings of the program semantics and SAT solving.
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1 Introduction

Traditionally, formal verification and structural testing are considered as orthogonal concepts
for increasing the quality of software. Whereas formal verification techniques such as model
checking or abstract interpretation establish a full proof of correctness, testing increases
confidence in the correctness of a system by meeting certain coverage criteria, where none
of the examined paths violates the specification. However, the underlying coverage criteria,
which are often dictated by industrial standards [20], are typically insufficient for finding
property violations as argued by Heimdahl et al. [13].

In the embedded systems domain, verification and validation techniques should ideally be
applied to the executable binary code of a program, since the exact semantics of the program
is not unambiguously specified in high-level representations such as C code [1]. Further, it
is not unknown for compilation itself to introduce errors [10]. However, embedded systems
code often strongly relies on the behavior and state of the hardware and on interaction
with the environment. The need to model these two properties properly, among others,
aggravates the state explosion in model checking and limits its applicability. On the other
hand, abstract interpretation provides a scalable approach to verification that often suffers
from imprecision, and subsequently, a high number of spurious warnings. This is even more
so on the binary-code level, where interleavings of arithmetic and logical operations as well
as the finite precision of registers pose additional challenges.
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In case of a violated property, abstract interpretation typically does not provide a
counterexample, which is extremely helpful for fixing the defect [7]. By way of contrast, this
property is fulfilled by both model checking and testing.

1.1 Approach

The ultimate goal of our work is to derive real counterexample traces for binary programs.
To do so, our approach uses abstract interpretation to detect potential violations, and then
derive paths through the program that could have led to that violation using backward
analysis. These paths define test vectors, which are examined on the real hardware to filter
spurious traces that have been introduced through over-approximation.

1.2 Contributions

Spurious warnings are a major issue when applying abstract interpretation in industrial
practice. Typically, investigating spurious warnings relies on manual inspection of program
invariants. The complex structure of embedded code makes manual inspection difficult and
time-intensive. To leverage these issues in embedded-software verification, we contribute a
framework that: (i) applies abstract interpretation to generate assertion-directed test cases;
(ii) provides a link to the actual target hardware; (iii) automatically identifies spurious test
traces.

2 Test-Case Generation Using Abstract Interpretation

Our framework (cf. Fig. 1) takes an executable binary file and a specification (cf. Sect. 2.1) as
inputs. The binary file is ready to be run on the target hardware. After parsing, we build an
initial control flow graph (CFG) of the binary and apply abstract interpretation (cf. Sect. 2.2)
to derive program invariants. These invariants are used by the test-case generator to identify
possible specification violations. Then, a backward analysis derives actual program inputs
(cf. Sect. 2.3), that drive execution towards the specification violation. The test traces are
then transferred to and executed on real hardware (cf. Sect. 2.4), i.e., an IP-core instance of
the target microcontroller running within an FPGA embedded in its operating environment.
A test-case monitor is attached to the IP core that tracks specification items during execution
and provides runtime feedback.
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binarybinary

specspec

abstract
inter-

pretation
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generator

test-case
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target
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va
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Figure 1 Framework overview
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2.1 Specification Language
In the past, we have carried out a case study [18] in cooperation with an industry partner
using [mc]square [21], which is a binary code verification tool. When confronting our
partner with the full expressive power of temporal logics (CTL in this case), it turned out
that it is particularly difficult for test engineers to translate their well-understood textual
specifications into temporal logic formulas. Moreover, most specification items of the case
study were local assertions (properties that hold at a specific program location) or global
invariants (properties that hold at any program location), an observation also emphasized
by Hoare [14, p. 10]. Consequently, to express program properties of interest, we propose a
simple specification language, which is defined through the following grammar:

Ψ ::= A(pc, ϕ) | I(ϕ)
ϕ ::= true | false | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | AP

To express the semantics of this specification language, let a state of a program be a tuple
〈pc,m〉 ∈ Locs×Mem, where Locs is a finite set of program locations, and Mem represents
the set of all possible memory configurations of the microcontroller. Then, the state space of
the program is a subset of Locs×Mem. The property ϕ is a predicate over memory locations
m ∈ Mem. Additionally, AP denotes the set of atomic propositions about memory cells in
Mem. The satisfaction relation associated with ϕ is intuitively clear, following the standard
inductive definition. If m ∈ Mem satisfies ϕ, we write m |= ϕ.

Properties, in turn, can be of local or global nature. A local assertion is a property A(pc, ϕ)
attached to a certain program location pc ∈ Locs. Given a set of states S ⊆ Locs ×Mem,
then A(pc, ϕ) holds w.r.t. S iff m |= ϕ for all 〈pc′,m〉 ∈ S with pc = pc′. Similarly, a global
invariant I(ϕ) holds iff m |= ϕ regardless of pc′.

Our framework either reads a user-defined specification or uses existing assertions from the
high-level representation of the program by parsing compiler-generated debug information.

2.2 Abstract Interpretation
The key idea in abstract interpretation is to simulate the execution of each concrete operation
g : C → C in a program using an abstract analogue f : D → D, where C and D denote
the domains of concrete values and descriptions. Each abstract operation f is designed
to model its concrete counterpart g in the following sense: If d ∈ D describes a concrete
value c ∈ C, then the result of applying g to c is described by applying f to d. Typically,
the abstract operations are designed manually. However, handcrafting transformers for the
complete instruction set of a microcontroller, which consists of more than 100 instructions, is
time-consuming and error-prone. Consequently, we synthesize optimal transfer functions [19]
from propositional encodings of the instructions’ semantics using SAT solving [4]. The
process of translating instructions into propositional Boolean formulas is often colloquially
referred to as bit-blasting.

To derive a set of test cases, our abstract interpretation framework first computes
invariants using intervals and synthesized transformers. If the invariants exhibit a potential
property violation, we use backward analysis to derive a path (the test case) from the
property violation to the start of the program. It is important to observe that sound abstract
interpretation itself requires a CFG of the program to be available. However, recovering
indirect control from binaries is a notoriously difficult problem [16]. Consequently, the CFG
used in the abstract interpretation framework is incrementally extended using information
gained through the test-case execution. Since the aim of our work is to detect test traces that
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exhibit faulty behavior instead of proving correctness of an implementation, this approach is
convenient. The remainder of this section discusses two approaches used to derive program
invariants.

2.2.1 Affine transfer functions of basic blocks
The semantics of a microcontroller instruction can be encoded in propositional logic, which
has become a standard technique in software verification, owing much to the advances in
bounded model checking [3]. To illustrate this, consider the instruction INC A on an 8 bit
architecture, which increments register A by one. The input and output values of A are
represented by bit-vectors of length 8, denoted a and a′, respectively. Then, the effects of
applying INC A can be expressed propositionally, where a[i] denotes the i-th bit of a and ⊕
denotes the exclusive-or:

INC A :=
∧7

i=0

(
a′[i]↔ a[i]⊕

∧i−1
j=0 a[j]

)
Similar encodings can be derived for the entire instruction set [5]. The value of these
encodings is that optimal transfer functions for either single instructions or whole sequences
of instructions can be derived using successive calls to a decision procedure, in this case a
SAT solver, prior to executing the actual analysis. Affine equalities [15] are systems of the
form

∧m−1
i=0 (

∑ni−1
j=0 λi,j · vj = di), where vj are program variables and λi,j , di ∈ Z, which

can be used to describe relations between variables. Our approach derives optimal affine
transformers for basic blocks from the Boolean encodings, using the algorithm developed
by Brauer and King [4, Sect. 3.2]. As an example, consider the above instruction, and for
brevity, let 〈〈a〉〉 =

∑7
i=0 2ia[i]. Then, we obtain the following affine system:

(〈〈a〉〉 ≤ 254)⇒ (〈〈a′〉〉 = 〈〈a〉〉+ 1) (〈〈a〉〉 = 255)⇒ (〈〈a′〉〉 = 0)

Using this representation, linear constraints — most notably octagons [17] — that distinguish
inputs that lead to overflows are derived from the Boolean formulas. Otherwise, no affine
relation between a and a′ could be determined since, e.g., 254 + 1 = 255 and 255 + 1 = 0 in
unsigned machine-arithmetic.

2.2.2 Local invariants through interval analysis
Interval analysis determines invariants using the computationally attractive interval abstract
domain [8]. Let N? = {0, . . . , 255} denote the set of numbers representable with a single
8-bit word. Then, a word-level interval is composed of [a, b] with a, b ∈ N? and a ≤ b. With
> = [0, 255], ⊥ = ∅, and a join defined as [a1, b1] t [a2, b2] = [min(a1, a2),max(b1, b2)], the
domain forms a complete lattice.

To illustrate interval arithmetic, consider an ADD A,B instruction, summing the operands
A with B and storing the result back to A. Suppose, we enter the instruction with the intervals
A = [12, 74] and B = [10, 14], then we can derive that the resulting value in A will be within
the interval [12 + 10, 74 + 14] = [22, 88]. These invariants are derived for each program
counter location using fixed-point iteration and a combination with affine relations, following
the reduction algorithm described in [5, Sect. 6]. More details are given in [6].

As a result, the analysis yields a list of word-level intervals over memory locations attached
to every pc location, i.e., 〈pc, (A[a0, b0],B[a1, b1], . . . )〉. These invariants are used to detect
potential violations of the specification. For example, if the global invariant I(A < 25) should
hold, then we identify all locations as potential violations that have intervals for A including
valuations ≥ 25. The test-trace generation algorithm starts from these program locations.
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2.3 Test-trace generation

Our algorithm starts from a program location where the specification may be violated, and
systematically searches for traces that lead to this violation. Given an assertion Ψ and an
invariant θ, we convert ¬Ψ into a disjunctive normal form and treat ¬Ψ ∧ θ as the desired
postcondition. Next, we apply the affine transfer function in reverse using integer linear
programming, which gives us a precondition, and then, this step is iteratively applied for
all possible predecessors, until the entry of the program is reached. The preconditions are
computed in breadth-first order, which guarantees that shortest paths to the entry are found.
For reasons of continuity, we defer the presentation of an example to Sect. 3.

2.4 Test-trace deployment and execution

A single test trace t is a path of program counter locations π := 〈pc0, . . . , pcn〉 with pci ∈ Locs
and a set of external inputs In := 〈pc, i〉 attached to certain program locations. For example,
In := 〈0xC1C1,p1← 0xB2〉 represents that 0xB2 will be provided on I/O port p1 at program
counter location 0xC1C1.

In our approach, we do not explicitly alter the code itself, nor do we insert additional
event-triggers into the source code, which is a common practice in runtime verification [12].
Our monitoring is done by a hardware monitor unit, attached to an industrial IP core of
the target microcontroller. The whole execution takes place on an FPGA, connected to
the actual environment of the application. The monitor unit allows us to non-intrusively
and on-the-fly monitor and track memory accesses of the microcontroller core. Besides, the
monitor compares the current program counter with the expected one given in π. Whenever
this comparison fails, we halt the microcontroller, mark t as infeasible, and load the next
test trace, thus, subsequently ruling out spurious test traces. However, if the unexpected
branch was caused by an indirect jump, we add the newly detected jump target to the CFG.
In case the actual execution follows the predicted path π, the monitor will verify whether the
specification items hold along the path (for global invariants) or on certain program locations
(for local assertions).

3 Worked Example

Fig. 2 shows an embedded C code snippet and its CFG. The labels of the CFG nodes relate
to the program counter locations on the left. The code reads a sensor value from an 8-bit
input port and converts the value to its absolute value, storing the result in val. Next, a
while loop is entered sending val times PWM pulses to the output and decrementing val
each iteration. Whenever the predicate val > 0 is violated the assertion is reached and the
loop starts again.

Based on a first intuition, the assertion will hold, regardless of the sensor values. The
presumably positive variable val is decremented towards 0. Interestingly, the assertion does
not hold under all inputs. Consider the binary sensor input b1000000, which corresponds to
−128 in two’s complement. The ABS macro will not alter the value since −(−128) = −128
due to the limited bit-width. It is obvious that the predicate (−128 > 0) at the beginning of
the while loop is false and the assertion does not hold.

Our algorithm starts by negating the predicate in the assertion, which gives (val <

0) ∨ (val > 0) in program location 6. The assertion has a single predecessor, i.e., node 3, for
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# define ABS(a) (((a) <0)? -(a):(a))
char getSensor (void ){ return P1 ;}
void sendPWM (void ){...;}

int main(void ){
char val;

(1) while (1){
(2) val = ABS( getSensor ());
(3) while (val > 0){
(4) sendPWM ();
(5) val --;

}
(6) ASSERT (val == 0);

}
}

va
l≤
0 val>0

entry

1

2

3

4

5

6

exit

Figure 2 Example code (left) and CFG (right)

which we have derived the following transfer function:

(getSensor() ≥ 0 ∧ getSensor() ≤ 127) ⇒ (val′ = getSensor())
(getSensor() ≥ −127 ∧ getSensor() ≤ −1) ⇒ (val′ = −getSensor())
(getSensor() ≥ −128 ∧ getSensor() ≤ −128) ⇒ (val′ = −128)

The third one is examined, which gives us a test trace with inputs that lead to a violation of
the assertion, namely π = 〈1, 2, 3, 6〉; In = 〈2, getSensor()← −128〉 where the input in line
2 is −128. This test trace is executed on the IP core and the runtime monitor confirms that
π is indeed a real counterexample trace.

4 Related Work

Test-case generation using formal methods, is an active area of research. Cousot and Cousot
introduce abstract interpretation based program testing as abstract testing in [9], an approach
closely related to our work. However, we apply abstract interpretation to machine code and
offer a way to automatically rule out spurious counterexamples. Another popular approach is
to use model checkers to derive test suites that comply with industrial coverage criteria [11].
With increasing complexity, these approaches suffer from similar problems as traditional
model checking.

Wenzel et al. [22] describe cross-platform verification of embedded C code. Platform-
specific C code is translated into semantically equivalent C code used by CBMC to generate
counterexamples, which are executed on the host and on the target platform. Thus, their
approach can find errors introduced by the compiler. Our approach is independent of the
high-level implementation and does not require to instrument the code, which is vital for
verifying timing properties. Deriving test data for machine code with a structural coverage
goal is described in [2]. Their tool Osmose translates executable code to a generic assembly
language and uses concolic execution for path exploration.

5 Discussion & Future Work

5.1 Summary
In this paper, we have addressed the question of deriving test cases from microcontroller
binary code. Unlike other techniques, our approach uses abstract interpretation using a
combination of different abstract domains to derive test cases directly from the executable
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program code. The purpose of our work is not necessarily to derive test cases that satisfy
certain coverage criteria, but rather to systematically infer paths that exhibit faulty behavior.

5.2 Future Work
In addition to the global and local assertions (cf. Sect. 2.1), we want to include time-bounded
properties of the form Θ(ϕ1, ϕ2, δ). Such properties state that if the predicate ϕ1 holds then
ϕ2 must hold within δ ∈ N clock cycles. Clearly, future efforts also include a case study
showing the feasibility of our approach when applied to industrial embedded code.
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Abstract
We describe an automated way to generate data for a practical LLVM instruction selector based
on machine-generated description of the target architecture at register transfer level.

The generated instruction selector can handle arbitrarily complex machine instructions with
no internal control flow, and can automatically find and take advantage of arithmetic properties
of an instructions, specialized pseudo-registers and special cases of immediate operands.

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.109

1 Introduction

Application-specific processors are often used in embedded applications with large production
quantities due to the speed and low power consumption they can provide at modest cost
compared to using a generic CPU with higher execution speed. The Lissom project[8] devel-
oped at the Brno University of Technology aims to provide a full development environment
for iterative hardware-software codesign, allowing embedded system developers to rapidly ex-
periment with application-specific architecture facilities by automatically generating software
development tools (assembler, disassembler, linker, simulator, C compiler) and a hardware
prototype. Typically, the embedded system developer would experiment with changing the
CPU, e.g. adding specialized instructions, and evaluate each experiment by using the Lissom
software to regenerate the tool chain, recompile the application, and test its performance on
a simulator.

This effort includes automatic generation of a C compiler. We have decided to base this
work on the open-source LLVM project[6], reusing its existing front-end (which converts
input in C into the LLVM internal representation), its optimization passes, and the provided
infrastructure for implementing back-ends (which convert the internal representation into
assembler or binary code).

In the compiler front-end it is only necessary to provide information about the application
binary interface (ABI) of the target platform; front-ends are already prepared for this, so
we only need to describe data types in a predetermined format. The LLVM optimization
passes work purely on the internal representation without considering the target architecture.
Most of the work therefore involves the compiler back-end, which is described in this article,
focusing primarily on the instruction selection component.

2 Related Work

A full-featured compiler generator is described in [5]: from an architecture description in
a language called LISA, it generates input for the commercial CoSy compiler development
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system. LISA is suitable primarily for accurate simulation, so compiler generation is
not automatic: register properties and instruction scheduling information is extracted
automatically, but the user must manually provide instruction behavior descriptions using
a provided GUI. If the LISA input is changed, the information in the GUI may become
obsolete and needs to be updated manually. In contrast, in our approach the instruction
selector is generated automatically from the same input file used for generating other tools,
shortening the edit-compile-evaluate cycle of architecture design exploration.

An approach that does not ask the user to specify the instruction selector described in
[2]. The necessary instruction operation descriptions are extracted from an architecture
description automatically. After phases that simplify the instruction behavior descriptions,
the descriptions are matched against manually prepared patterns to find instructions that
can be used in the initial instruction selection pass of gcc (gcc does not use a tree pattern
selector, and requires named templates for the atomic operations). Unlike our approach,
instructions that combine several basic operations are not supported.

An entirely different approach is not to try to support arbitrary user-specified archi-
tectures. Such systems are based on a specific CPU architecture, and provide a combined
hardware/software compiler to the user. Given an input program, the compiler produces
description of hardware (e.g. in VHDL) that implements some parts of the program, and
executable code for the base architecture augmented with the described hardware, that
implements the rest.[9] Such systems can produce good results if the base architecture is
suitable, but are difficult to adapt when the base architecture needs to be replaced.

3 ISAC and Instruction Semantics Extraction

ISAC is an architecture description language (ADL) based originally on LISA.[7] It is a
mixed ADL, meaning that it allows to describe both architecture and microarchitecture.

The architectural description consists of registers, memories, and instruction set descrip-
tion. Registers and memories are described as global C language variables. Instruction set is
described hierarchically, because most instructions can use the same register or immediate
operands. Two main constructs are used to describe the instruction set: The OPERATION
construct allows to describe parts of instruction’s syntax, binary encoding, and semantics.
Instances of other operations or groups may be used in an operation specification. GROUP is
used to describe situations where an instance used in an operation can be one of a set of
operations or groups. An example of a “store byte” instruction is in listing 1.

Listing 1 Example of a “store byte” instruction with indirect adressing mode
# This is an simplified example , an operation usually represents
# multiple instructions (e.g. also "store half -word", and
# "store word ").
OPERATION instr_direct_loadstore {

INSTANCE register ALIAS {rt , base };
INSTANCE signed_imm16 ALIAS { offset };
ASSEMBLER { "SB" rt "," offset "(" base ")" }; # Syntax
CODING { 0 b100100 base rt offset }; # Binary encoding
BEHAVIOR { # Instruction behavior

int addr = regs[base] + offset ; # regs is an array of
char val = regs[rt] & 0xFF; # general - purpose registers
mem[addr] = val; # mem represents memory address space

};
}
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The compiler back-end needs to identify each particular target instruction, but there
is no notion of an instruction in the ISAC language. What can be used here, is that the
assembly syntax description is based on context-free grammars. If we generate all words of
the assembly language, we get a list of instructions. For each instruction the corresponding
behavior in C is generated as well. This C code representing instruction semantics is then
converted to a common format, a few simple optimizations that simplify the semantics are
performed, and this result is passed to the back-end generator. The result for the example
“store byte” instruction can be seen in listing 2.

Listing 2 Instruction semantics example, corresponding to listing 1
# Temporary variable names were changed to make the example easier to
# follow .
instr instr_direct_loadstore__op_sb__gpr_std__simm16__gpr_std__ ,

%imm = i16 immop (1);
%Rx = i32 regop(cl0 , 0);
% Rx_trunc = trunc (%Rx , i32 8);
% imm_ext = sext (%imm , i32 32);
%Ry = i32 regop(cl0 , 2);
%addr = add (%Ry , % imm_ext );
store (% Rx_trunc , %addr );

, "SB" 0 "," 1 "(" 2 ")", 1 # Assembler syntax

4 Instruction Selector Generation

Instruction selection is the largest component of a LLVM compiler back-end. Its purpose
is to convert an input program from a target-independent internal representation into a
lower-level representation that deals with instructions of the target architecture instead of
generic operations.

4.1 Instruction Semantics Format
The primary result of the instruction semantics extraction process described in section 3 is
a list of instructions. In contrast to the human concept of a “single instruction”, where all
binary formats that use the same assembler mnemonics are considered a single instruction,
we define a single instruction as a maximal set of binary encodings within which semantics
and binary encoding can change only by substituting one register by another register from the
same register class, or one constant by another constant of the same bit width and format.

For example, load R1 = [R1 + R2] and load [R1 + imm] are different instructions
although they share the “load” mnemonics. Also, add R1 = R2 + R3 and add R1 = R2 + R0
(where R0 denotes a read-only pseudo-register with zero value) are different instructions:
they share the same binary format, but the semantics of one is “add values of two registers”,
and the semantics of the other is “copy a register value.” In contrast, cmov if(R1) R2 = R3
is (necessarily) considered a single instruction, where the semantics depends on the value of
a register, not on its identity.

The extracted semantics is a sequence of atomic operations, using an unbounded number
of temporary variables. Only limited control flow is supported: an if operation can be
used to delineate a conditionally-executed set of atomic operations, but control flow can not
return to the “main path” after executing the if body. Loops are not supported, so the
control flow graph can form at most a tree rooted at entry of the semantics. In this control
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flow format, it is easy to arrange temporary variables to form the industry-standard SSA
representation[4]. In contrast, the semantics can modify a single physical register repeatedly,
so physical registers are not in SSA form.

4.2 Basic LLVM Instruction Selector
LLVM uses a tree pattern matching instruction selector, which can take advantage of complex
instructions, as long as they have only one result. In contrast to research in this area,
which suggests using bottom-up analysis with dynamic programming and generating globally
optimal instruction selections (within the assumed cost model)[1, 3], LLVM uses a top-down,
only locally optimal selector, sacrificing code quality for flexibility and speed. The selector is
automatically generated from instruction descriptions, but it also allows adding additional
C++ code to handle more complex cases.

Description of each instruction in LLVM includes its assembler format, (variable) operands,
effects on other (fixed) registers, and other information, e.g. flags describing important
behavior, and optionally binary format of the instruction. Instructions that should be
handled by the generic instruction selector must also include semantics description in an
expression tree form.

Instructions for which the extracted semantics naturally describe an expression tree (single
externally-observable output—either register assignment or a side effect, no conditionals)
can be converted to the LLVM format by treating the use-def links in the linear instruction
semantics description as parent-child links in an expression tree. Instructions that change a
register value conditionally can be converted into a corresponding LLVM operation as well,
by implicitly constructing the C “?:” operator within the semantics.

An example LLVM instruction description is provided in listing 3.

Listing 3 LLVM instruction description example, corresponding to listing 2
def instr_direct_loadstore__op_sb__gpr_std__simm16__gpr_std__ :

LissomInst
<(outs), (ins cl0:$op0 , cl0:$op2 , Si32i16imm :$op1), # Operands

"SB $op0 , $op1 ( $op2 )", # Assembler
[( truncstorei8 cl0:$op0 , # Expression

(add cl0:$op2 , (i32 sextimm16 :$op1 )))] >{}

This approach can handle a large number of instructions, including instructions that
combine several operations. On the other hand, this alone is insufficient on almost all
architectures, because many architectures do not provide some of the “atomic” operations
in a pure form, and if the “atomic” operations are not available to the instruction selector,
there are likely to be programs that cannot be compiled.

4.3 Instructions with Multiple Outputs
Many architectures support instructions that provide more than one output (in this section,
“output” means storing a value in a register, or a side effect). These instructions are
often primarily used for only one of the outputs. This includes almost all instructions on
architectures that use a flags register. To handle these cases, any instruction that has more
than one output is cloned. One clone is created for each output, and in each clone, the other
outputs are made invisible to LLVM (setting of a register is replaced by an annotation that
the register is clobbered by an indeterminate value). If one of the outputs can not safely
be made invisible (e.g. a jump), the clone is discarded. Thus, a single xor Rx = Ry ^ Rz
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instruction on an architecture with a flags register is cloned into xor_reg, which sets Rx and
clobbers the flags register, and xor_flags, which sets the flags register and clobbers Rx. The
LLVM instruction selector can use the xor_reg clone and thus automatically take advantage
of the instruction.

4.4 Specialized Instruction Outputs
On many architectures some atomic operations are available only as a part of a more
generic instruction. For example, an architecture might provide only a single flexible load
instruction: load Rx = [Ry + Rz * imm1 + imm2] (where values of imm1 and imm2 are
often limited in range). By choosing imm1 = 1, imm2 = 0, or imm1 = imm2 = 0, we can
get the simpler load Rx = [Ry + Rz], and load Rx = [Ry], respectively. To handle these
cases, we attempt to specialize each instruction with chosen constant values.

First, promising values of immediate operands are collected: Basic dominator optimiza-
tions (dead code deletion, copy propagation, constant folding, arithmetic simplification) are
performed on the semantics, and each atomic operation that refers to an immediate operand
is examined for values of the operand that could allow constant folding the operation. For
example, values 0 and 1 are used for multiplication operands, or values 0 and ~0 (of correct
width) are used for operands of bit-wise operations. Other atomic operations, including other
arithmetic operations, comparisons, and if, are handled similarly. Finally, the value 0 is
always added, simply because it so often leads to simplification.

After all candidate values are collected for each immediate operand, the instruction is
cloned: one clone is created for each possible assignment of candidate values to respective
immediate operands (including the cases when a specific value is not assigned to some of
the operands). Each clone is then re-optimized: if the optimization does not simplify the
instruction semantics, the clone is discarded. The remaining clones are treated exactly the
same as “native” instructions (e.g. an LLVM description is generated for them).

4.5 The Instruction Set as a Whole
In addition to cooperating with the LLVM instruction selector, LLVM needs some information
about the overall structure of the instruction set.

Most important is the LLVM “legalization” pass, whose purpose is to modify the input
program to only use operations that are available in the target architecture, e.g. converting a
64-bit multiplication into a sequence of 32-bit multiplications and additions. Unfortunately
LLVM is not able to extract the required information about available instructions from the
individual instruction descriptions, so this information has to be generated separately.

Second, the LLVM instruction selector build process can not handle instructions sets
in which two or more instructions match the same expression subtree; the backend author
must explicitly select the instruction that the instruction selector will use for the subtree.
(The other instructions can still be made available to LLVM—and used perhaps through
specialized built-in functions—but their description must not contain the expression subtree,
making them unavailable to the instruction selector.) To do this, structurally identical
expression subtrees are identified in the backend generator, and a single instruction is chosen
from each set of duplicates.

Finally, LLVM needs to generate some target instructions after instruction selection has
finished, notably instructions for moves and memory accesses necessary for register allocation
and spilling. These instructions are located by looking for instructions matching a specific
form of atomic operations that do not have any unwanted side effects.
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5 Other Backend Tasks

In addition to instruction selection, a LLVM backend needs to provide information to the
register allocator, mainly description of register classes and lists of registers unavailable for
allocation. This information is already provided in the extracted instruction semantics, based
primarily on user’s annotations in the source ISAC file.

We do not currently extract enough information about the pipeline and usage of functional
units by instructions to implement effective instruction scheduling.

Finally, a back-end must implement handling of function frames, function calls, parameter
passing, and other ABI-dependent transformations. We handle this by looking for instructions
matching a specific form of atomic operations, similar to the case of target instructions used
after instruction selection. The specific ABI can not be automatically determined, and means
to allow the user to specify it are currently being added to ISAC. Without such information,
the backend generator automatically generates a reasonable ABI by examining the existing
instructions (e.g. looking for “return” or “call”), or, on very regular architectures with little
built-in function call support, by looking for indirect addressing modes suitable for managing
a stack manually.

6 Experimental Results

We have used the back-end generator on a restricted model of the MIPS architecture developed
for the purpose. The semantics extraction implementation resulted in a description of 139
individual instructions (using the definition of “instruction” given in section 4.1). Out of
these 139 instructions, 62 could be directly used by the LLVM instruction selector, remaining
instructions required additional handling and conversion. Because the architecture includes
a R0 pseudo-register equal to a immediate value of 0, the instruction extraction process
recognized a large number of instruction variants involving the R0 register that ultimately
resulted in the same LLVM semantics: in particular, semantics of 17 instructions was Rx = 0,
and semantics of 11 instructions was Rx = Ry.

In our model, the only cloned instructions with multiple outputs were variants of division
and multiplication.

Specializing instructions using specific values of immediate operands based on the original
139 instructions resulted in 26 new instruction clones, with 17 distinct classes of semantics for
the purpose of the LLVM instruction selector. Similarly to the handling of the R0 register in
semantics extraction, the most frequent specializations resulted in simple register-to register
copy and register assignment, but this process also identified ways to provide the primitive
load/store operations (e.g. LW Rx, 0(Ry) - load a 16-bit value from address given by register
Ry to register Rx), which are necessary both to guarantee ability of the instruction selector
to handle arbitrary programs, and to implement register spilling in the register allocator.

7 Conclusion and Future Work

In this article we have presented primarily our approach to automatic generation of a
LLVM instruction selector. While the other components of the LLVM backend generator
are sufficient to create a working MIPS backend, implementation experience with more
architectures is necessary before we can be confident in the viability of our approach and
before we can present it in detail.

Our goals for future work include extracting enough information for instruction scheduling,
which will also allow choosing the best possible instruction for the instruction selector when
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there are several alternatives. Extensions of LLVM to take advantage of SIMD instructions
and WLIW architectures are already under development. We also intend to test performance
of code created by the generated backend using industry-relevant benchmarks, and improve
our backend generator based on detailed analysis of the compiled code for these benchmarks.
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Abstract
Continually increasing demands for high-quality videoconferencing have brought a problem of fully
automated environment setup. A media streams planning problem forms an important part of
this issue. As the multimedia streams are extremely bandwidth-demanding, their transmission
has to be planned with respect to available capacities of network links and the plan also needs to
be optimal in terms of data transfer latencies. This paper presents an integer programming solu-
tion of the problem and its implementation. The implementation achieved very promising results
in performance-evaluating measurements. Compared to previous constraint-based solver, it is
capable of finding optimal solution significantly faster, allowing for real-time planning of larger
problem instances.

Digital Object Identifier 10.4230/OASIcs.MEMICS.2010.116

1 Introduction

Modern computer networks allowing high-bandwidth transmissions have become more and
more widespread recently. Their increasing availability heavily supports deployment and
user-adoption of advanced collaborative environments. These environments frequently
require transmission of very high-bandwidth data streams. Smoothness and enjoyability of
synchronous remote collaboration also crucially depends on a low-latency transmission of the
data streams.

Setting up an advanced collaborative environment might be a difficult and tedious
task, probably undesirably hard for end-users. The setup often comprises configuring
of potentially high number of individual components (e. g., data producers, processors,
distributors, or consumers), and also data distribution paths in a network. As a bandwidth
needed for transmission of the data streams is frequently close to capacities of state-of-the-art
backbone links, finding out correct and latency-minimal distribution paths also becomes
a very complicated task.

In order to automate the process of the environment setup, the CoUniverse framework
has been proposed in [5]. The problem of deciding the data distribution paths has been
formally defined as a media streams planning problem (MSPP) in [3]. The MSPP is a network
optimization problem close to a multicommodity network flows problem [1]. A survey of
network optimization problems can be found in [9]. The MSPP is also strongly related
to a multicast routing problem [6] for multiple multicast groups (called multicast packing
problem). Unfortunately the multicast service is not proper for our purpose since it is not
continuously deployed over the whole Internet, and lacks performance needed for high-speed
transmissions. Still methodologies applied to solve this problem can provide an inspiration
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for our work. Heuristics for this problem were presented in [2, 10, 8] and an optimal solution
using linear programming is known for single multicast problem even if data streams are
allowed to split [4].

A constraint-programming based solver of the MSPP has been implemented in the
CoUniverse [3]. This solver is only capable of solving medium-sized instances of the problem
quickly enough, i. e., in a few seconds. With the aim to solve larger problem instances, we
propose a new solver based on integer programming. We have rewritten the previous constraint
programming model to a form of an integer programme, reformulating some improper
disjunctive constraints. The IP model was implemented in the CoUniverse framework and
evaluated in terms of performance. Results of the evaluation show that our solver is capable
of solving larger instances of the problem for real-world network topologies, e. g., those used
for distributed lectures.

2 Problem description

Generally said, the media streams planning problem is a network optimization problem of
computing data distribution paths in a network. Given a topology of the network, a set of
data sources, and destinations for the data delivery, the goal is to find a distribution tree for
each of the data sources. The data distribution paths are required to be optimal in terms
of overall transmission latency. Media streaming network applications usually require all
data transmissions to occur at the same time, e. g., in a videoconference. Hence no temporal
parameters are considered in the MSPP. In order to handle changes in the network (e. g.,
link outage), the CoUniverse monitors the environment and may invoke a replanning, i. e.,
a new call of the solver.

Main entity of the network is a node v ∈ V . Since we abstract from physical network
devices such as switches or routers, the nodes represent computers (servers as well work-
stations), each of them running one or possibly more applications. The applications either
produce a data stream (called producers, p ∈ P ), consume the stream (consumers, c ∈ C), or
distribute it (distributors, d ∈ D), possibly creating multiple copies of received data. The
applications are capable of processing one data stream at most, i. e., a single application
can neither produce, consume, nor distribute more than one stream. If an application
a ∈ P ∪D∪C is running on a node v, we write a ∈ v. The distributors are server applications
providing a multicast functionality on an application layer of the ISO/OSI model. UDP
packet reflectors and Active Elements are examples of such applications.

If there is a distributor running on a network node, no other application is allowed to run
there, i. e., no producers and/or consumers may run on that node, neither may any other
distributor. If there is no distributor on a node, there may be running several producers
and consumers together. Their number is not limited as long as they all process different
streams. Yet, this model targets primarily on CPU-intensive multimedia applications that
might cause overload of the node when run simultaneously. Nodes are organized into sites,
which generally represent geographical collocation of the nodes. There are typically several
nodes at a site, each of them running a single application.

Each network node has several network interfaces i ∈ I configured. We denote by i ∈ v

that the interface i is configured on the node v. An interface has a limited transmission
capacity capI (i). Every interface belongs to a subnetwork. We consider each interface
reachable from all other interfaces in the same subnetwork and vice versa.

In other words, there is a link l ∈ L between each ordered pair of interfaces, i. e.,
it is strictly directional. Links together with nodes form a directed graph N = (V, L)
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corresponding to the underlying network. The links represent a network infrastructure which
facilitates the data transfer between the pair of network nodes. Although links formally
interconnect interfaces, we often speak about them as connecting nodes. Naturally, a link
between interfaces (i1, i2) connects nodes (v1, v2) if and only if i1 ∈ v1 ∧ i2 ∈ v2. Source
and target nodes of a link l are denoted begin(l) and end(l), respectively. We also denote
a set of links connected to an interface i as links(i).

For an application a ∈ P ∪D∪C on a node v, we define inlinks(a) as a set of links ending
in the node v, i. e., l ∈ inlinks(a) ⇐⇒ a ∈ end(l). We extend this notation on a set of
applications A ⊆ P ∪D ∪C: l ∈ inlinks(A) ⇐⇒ a ∈ end(l) for some a ∈ A. We also define
outlinks(a) and outlinks(A) analogously.

Each network link l has two attributes: its maximum capacity cap(l) and transfer delay
latency(l). Since the links do not represent physical topology of a network, several links in
our model might share one physical network link. Consequently, whole bandwidth of cap(l)
might not be actually available for transmission. A static configuration of capacity of the
links is augmented by a real-time monitoring in the CoUniverse, similarly as latency of the
links needs to be also monitored.

The goal of media streams planning is to determine paths for the distribution of the
data streams (s ∈ S). We use the term stream since motivation for the MSPP lies in
continuous multimedia transmissions. We denote a bandwidth required for transmission of
the stream s as bw(s). Each stream s is produced by a single application producer(s) ∈ P

and is required to be delivered to a set of consumers consumers(s) ⊆ C. There is exactly one
producer of the stream s and at least one consumer of the stream, i. e., consumers(s) 6= ∅.
Transmission of the streams and possibly creation of multiple data copies is performed by
the distributors. More precisely, each stream is transferred from a producer to a set of
consumers by a communication tree with the producer in its root, consumers at leafs, and
media distributors at internal nodes. Therefore, the problem may be considered as a tree
placement [3] in contrast to classical path placement [9] where no data multiplication is
processed. On the other hand, all packets of each stream from its producer to a single
consumer have to be transferred along the same path. If the packets would be transferred
along more than one path, unfavourable reordering of the packets would occur due to different
latencies of the paths. The distributors are therefore not allowed to send data between any
producer—consumer pair from a node through more than one link (e. g., for load balancing
purposes).

3 Integer Programming Model

For each stream s and network link l, we introduce a binary decision variable xs,l, further
denoted as streamlink. The streamlink xs,l equals to 1 if the stream s is transmitted over the
link l, otherwise it corresponds to 0.

We also call a streamlink xs,l active if and only if xs,l = 1, or inactive otherwise. Since
our aim is to minimize overall transmission latency, we formulate the objective function as
a sum of latencies of all active streamlinks.

min
∑
s∈S

∑
l∈L

xs,l · latency(l)

The three following constraints implement network capacity limitations. By constraint (1),
it is not allowed to transfer a stream s through a link l of insufficient capacity. We set
the decision variable directly to zero when the link does not have sufficient capacity for
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transmission of the stream. This constraint is a redundant one and follows from the consequent
constraint (dependent on decision variables). Constraint (2) guarantees that the capacity
of a link l cannot be exceeded by a total bandwidth of the streams transferred over the
link. Constraint (3) states that the capacity of an interface i cannot be exceeded by a total
bandwidth of the streams transferred over all links connected to this interface. The presented
variant of the constraint is used for interfaces which do not support full duplex. On full
duplex interfaces, incoming and outgoing links are treated separately, since they do not
interfere with each other.

xs,l = 0 ∀s ∈ S ∀ l ∈ L s.t. bw(s) > cap(l) (1)∑
s∈S

bw(s) · xs,l ≤ cap(l) ∀l ∈ L (2)∑
s∈S

∑
l∈links(i)

bw(s) · xs,l ≤ capI (i) ∀i ∈ I (3)

A network node cannot send a stream s over arbitrary outgoing links. To allow transmis-
sion of the stream s over a link l, either consumer of this stream or a distributor must reside
on the target node of the link l (4). A similar rule holds for receiving of the stream. To allow
transmission of the stream s over a link l, either producer of this stream or a distributor
must reside on the source node of the link l (see constraint (5)).

xs,l = 0 ∀s ∈ S ∀ l 6∈ inlinks(D ∪ consumers(s)) (4)
xs,l = 0 ∀s ∈ S ∀ l 6∈ outlinks({producer(s)} ∪D) (5)

Each producer is capable of producing a stream and sending it to another network node
and does not have any additional data distribution capabilities. Consequently any producer
is required to send the stream over exactly one link.∑

l∈outlinks(producer(s))

xs,l = 1 ∀s ∈ S (6)

If there is more than one consumer of a stream s, its producer is not allowed to send
the stream directly to any consumer. We disable all direct links from the producer to all
consumers of the stream s. We introduce the constraint (7) for each stream s such that
‖consumers(s)‖ > 1.

xs,l = 0 ∀l ∈ L s. t. l ∈ outlinks(producer(s)) ∩ inlinks(consumers(s)) (7)

This constraint is redundant, since any directlink form producer(s) to any consumer of
the stream would leaverequests of the other consumers unsatisfied without breaking the
constraint (6).

Each producer is required to send the data to each consumer along a single path. This
means that any consumer does not need to receive a stream from more than one node unless
there is some redundant transmission. The consumer is therefore required to receive the
stream over exactly one link.∑

l∈inlinks(c)

xs,l = 1 ∀s ∈ S ∀c ∈ consumers(s) (8)

The following constraints are aimed to make each stream s transferred along a tree
rooted at a node where producer(s) resides. A distributor d is allowed to distribute one
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stream at most, and the stream has to be transferred to any network node only by a single
network link. In addition, each node containing a distributor cannot contain any other
application. Following these rules, there may be at most one active streamlink incoming
in the distributor’s node (see (9)). Constraints (10) and (11) guarantee that a stream s is
sent by a distributor d if and only if it is also received by d. Contrary to the constraint (9),
they have to be formulated on a per-stream basis. In this case, summing all streamlinks
would allow the distributor to send further arbitrary stream no matter which stream it
receives. Since corresponding constraints of the constraint programming model [3] are not
suitable for the integer programming due to their improper statement with disjunctions, their
reformulation was necessary. Constraint (10) states that there are not less active outgoing
links than active incoming links, i. e., the distributor d is forced to forward an incoming
stream. Next, a distributor d is not allowed to forward any stream it does not receive. As the
distributor may only distribute a single stream, ‖outlinks(d)‖ corresponds to the maximum
possible number of streamlinks over which the distributor may send any data (11).∑

s∈S

∑
l∈inlinks(d)

xs,l ≤ 1 ∀d ∈ D (9)

∑
l∈inlinks(d)

xs,l ≤
∑

l∈outlinks(d)

xs,l ∀s ∈ S ∀d ∈ D (10)

‖outlinks(d)‖ ·
∑

l∈inlinks(d)

xs,l ≥
∑

l∈outlinks(d)

xs,l ∀s ∈ S ∀d ∈ D (11)

A distribution tree of each stream s is limited in size by the number of consumers of s

and the number of available distributors. There are three redundant constraints (12),
(13), and (14) to support that. First, the distribution tree may include at most 1 +
‖D‖ + ‖consumers(s)‖ nodes. Since cycles among nodes are not allowed (see constraint
(15)), maximum number of links over which the stream s may be transferred is equal to
‖D‖ + ‖consumers(s)‖ (see (12)). Next, if there is only a single consumer of a stream s,
one link may be sufficient for transmission (13). Otherwise, the stream has to be trans-
mitted through at least one distributor, setting the minimal number of needed links to
1 + ‖consumers(s)‖ (see (14)).∑

l∈L

xs,l ≤ ‖D‖+ ‖consumers(s)‖ ∀s ∈ S (12)∑
l∈L

xs,l ≥ 1 ∀s ∈ S s. t. ‖consumers(s)‖ = 1 (13)∑
l∈L

xs,l ≥ 1 + ‖consumers(s)‖ ∀s ∈ S s. t. ‖consumers(s)‖ > 1 (14)

The last constraint eliminates cycles that might occur among nodes with distributors.
The previous constraints allow existence of a cycle in which each distributor may receive
a stream from another distributor, potentially forwarding the stream on a path to one or
more consumers. The cycle-avoidance constraints are derived from the graph theory results.
If a graph with k vertices has more than k − 1 edges, there is a cycle in the graph. Further,
if there is not a cycle in any subgraph of a graph then the graph does not contain any
cycle either. We denote the number of distributors ‖D‖ as n. To avoid cycles among the
distributors, we put an upper bound on the number of edges in each k-tuple of distributors
for 2 ≤ k ≤ n. For n distributors, there are

(
n
k

)
subsets of k elements in total, i. e., k-tuples of

distributors. We denote a set of all distributor k-tuples as Dk, and its i-th member as Dk(i).
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For each stream s and each k-tuple of distributors, we introduce the following constraint.∑
j1,j2∈Dk(i) ∧

vj1 =begin(l) ∧ vj2 =end(l)

xs,l ≤ k − 1 ∀s ∈ S ∀k ∈ {2, . . . , n} ∀i ∈ {1, . . . ,
(

n
k

)
} (15)

This formulation is similar to cycle-avoidance constraints in subtour formulation of cycle
elimination in the travelling salesman problem (TSP) [7]. The main difference is that we
need to apply the constraint even for cycles containing more than n/2 nodes. In the TSP,
occurrence of larger cycle would necessarily enforce occurrence of another cycle with less
than n/2 nodes; yet, this assumption does not hold in the MSPP.

Redundant Constraints

The redundant constraints were kept in the model although they do not strengthen the for-
mulation. On the other hand, they may improve performance of the MIP solvers significantly.
Evaluation of their influence on the solver performance will be part of our follow-up work.

4 Evaluation and Results

We modified an MSPP solving module in the CoUniverse to implement the integer program-
ming model. The module is written in the Java programming language and uses the Gurobi
Optimizer1 version 3.0.0 as a backend MIP solver.

Three topologies simulating typical data distribution patterns in advanced collaborative
environments were chosen for evaluation of the solver performance:
(a) 1:n topology: one site si transmits a stream to all other sites through a single distributor,

and each of the other sites transmits a stream back to si. Further denoted 1:n-s.
(b) 1:n topology: it is similar to the previous one with an exception of higher number of

distributors— there is one for each site except si. The topology is further denoted 1:n-r.
(c) m:n topology: each site transmits a stream to all other sites through its own distributor(s).
These topologies were taken from [3] to compare with their results (see this paper for more
detailed description of the topologies and their relation to real-world problems).

All measurements were performed on a PC equipped with Intel Xeon 5160 @ 3.0GHz
quadcore processor and 6GB RAM, running Linux 2.6.22-17 and Java SDK 1.6.0 in a virtual-
ized Xen environment. Options for java were set to -server -da -dsa. Each measurement
was continuously repeated 20 times, and only the last 5 runs were taken into account. A meas-
urement timer had 4ms resolution. We did not limit the number of processor cores available
to the Gurobi optimizer. Unfortunately, we did not observe any significant performance
differences when compared to single-thread runs.

Numbers of nodes and links in instances of the topologies (parametrized by number of
sites) are shown in Table 1. The number of links is presented after an elimination process
(same as the one applied in [3]).

Results of the performance measurements are shown in Table 2. The measured times
(in milliseconds) are split in two parts: preparation (creation of variables and constraints,
elimination of the links), and optimization, which is performed by the backend solver solely.
The largest instances of each topology represent current limitation of the solver for real-time
application. In case of the 1:n-s topology, the preparation phase is the bottleneck. The 1:n-
r-12 topology is already above interactivity requirements. Steep growth in the computation

1 http://www.gurobi.com
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Table 1 Parameters of topologies used for performance measurement

Topology 1:n-s-2 1:n-s-4 1:n-s-8 1:n-s-16 1:n-s-32
Nodes 5 11 23 47 95
Edges 10 44 184 752 3,040
Topology 1:n-r-2 1:n-r-4 1:n-r-6 1:n-r-8 1:n-r-10 1:n-r-12
Nodes 5 13 21 29 37 45
Edges 10 78 210 406 666 990
Topology m:n-2 m:n-3 m:n-4 m:n-5 m:n-6 m:n-7
Nodes 6 12 20 30 42 56
Edges 18 60 140 270 462 728

Table 2 Times in milliseconds required to solve the topologies

Topology 1:n-s-2 1:n-s-4 1:n-s-8 1:n-s-16 1:n-s-32
Preparation 4.0 ± 0 5.6 ± 2 51 ± 2 950 ± 30 24, 000 ± 200
Optimization < 4.0 < 4.0 2.4 ± 2 33 ± 2 370 ± 5
Topology 1:n-r-2 1:n-r-4 1:n-r-6 1:n-r-8 1:n-r-10 1:n-r-12
Preparation 4.0 ± 0 9 ± 2 39 ± 2 140 ± 6 410 ± 8 1, 300 ± 20
Optimization < 4.0 5 ± 2 17 ± 3 120 ± 2 970 ± 10 7, 900 ± 18
Topology m:n-2 m:n-3 m:n-4 m:n-5 m:n-6 m:n-7
Preparation < 4.0 5.6 ± 2 16 ± 0 46 ± 3 120 ± 5 270 ± 2
Optimization < 4.0 < 4.0 7.2 ± 2 18 ± 2 39 ± 3 100 ± 2

time is primarily caused by corresponding steep increase in the number of cycle-avoidance
constraints (15). These were needed due to the increasing number of distributors. Similarly,
the m:n topology can be solved for seven sites at most, as the m:n-8 topology requires many
more distributors and consequently also cycle-avoidance constraints.

Compared to the previous CP-based solver [3], limitation in solving the 1:n-s topologies
stays roughly the same. However, most of the time is spent by the preparation phase, not by
the IP solving. We will further pursue this issue to improve performance of the preparation
phase for larger instances. The IP solver allows to solve the 1:n-r topology for ten sites in
real-time. This is a significant improvement compared to the CP-based solver, which allows
for five sites at most. We also achieved an improvement for the m:n topologies, shifting from
five to seven sites. The results might possibly be improved by a different formulation of
cycle-avoidance.

5 Conclusions

Aiming to develop faster solver for the media streams planning problem, we presented
the solution based on the integer programming model. Measured performance of the new
solver shows promising results, shifting size of the problem instances which can be solved in
real-time.

In our future work, we will evaluate performance of the solver more elaborately. We will
also evaluate influence of the redundant constraints on performance of the backend solver.
Further, we will explore another formulations of the cycle-avoidance constraints and the
problem as a whole. Finally, we intend to explore various problem extensions to consider
more general problems.
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Abstract
Increasing integration densities and the emergence of nanotechnology cause issues related to reli-
ability and power consumption to become dominant factors for the design of modern multi-core
systems. Since the arising problems are enforced by high circuit temperatures, monitoring and
control of on-chip temperature profiles need to be considered during design phase as well as during
system operation. Hence, in this paper different approaches for the realization and integration of
a monitoring system for temperature in multi-core systems based on Networks-on-Chip (NoCs)
in combination with Dynamic Frequency Scaling (DFS) are investigated. Results show that both
combinations using event-driven and time-driven forwarding more than double overall execution
time and considerably reduce throughput of application data. Regarding performance of noti-
fication and reaction to temperature development event-driven forwarding clearly outperforms
time-driven forwarding.

Keywords and phrases Network-on-Chip, Reliability, Monitoring, Temperature, Control
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1 Introduction

Aggressive downscaling of device sizes and ever increasing integration densities result in a
fast growing number of processing and storage components per chip. This development gives
rise to quickly growing systems with exceedingly high complexity, as it is well reflected in
Systems-on-Chip (SoCs) combining multiple Intellectual Property (IP) cores. Against this
background, NoCs provide an enabling solution to fulfill the communication requirements
of such very-large-scale integrated systems [1]. However, this development causes issues
related to reliability and robustness to become critical aspects for chip design. On the
course of miniaturization, the transistor count per die increases, causing a generally higher
probability of system failures on the one hand. On the other hand, probability for an
individual transistor to fail is also raised, since the decreasing structural size of Integrated
Circuits (ICs) leads to higher susceptibility to environmental influences and deterioration.
Several physical mechanisms contributing to the these effects are known to be abetted by
high temperatures. This leads to on-chip temperature distribution having considerable
influence on various parameters of ICs like failure rate, lifetime, performance and power
consumption. The correlation between temperature and deterioration is established by the
Arrhenius model, describing the velocity of chemical reactions depending on temperature
[10]. Two important mechanisms redounding to deterioration are Time Dependent Dielectric
Breakdown (TDDB) and Electromigration (EM). TDDB describes the formation of charge
traps in the gate oxide of a transistor and ultimately leads to gate oxide breakdown [9]
rendering the transistor inoperative [3]. EM is defined as the transport of material caused by
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ion movement in conductors and leads to the formation of locations of material loss (voids)
and material accumulation (hillocks) [2]. Thus, current paths might be interrupted or short
circuits might arise between adjacent wires.
The presented facts reason that adequate mechanisms for monitoring and control of on-chip
temperature distribution are vitally important in order to mitigate the named effects and to
delay failures caused by deterioration. Hence, in this paper methods to track temperature
profiles of on-chip components and to react to temperature changes are examined with respect
to the impact on performance of NoC-based multi-core systems, area costs and performance
of temperature monitoring and control. More in detail, investigations are carried out for
event-driven as well as time-driven forwarding of packets for temperature monitoring. Packets
are sent to a Central Control Unit (CCU), which replies by giving instructions for DFS if
necessary to lower the activity of the concerned IP core and thus relax its temperature.

2 Related Work

There has been a lot of work towards monitoring methods for NoC-based SoCs and manage-
ment strategies for on-chip temperature, but little on the combination of the two delivering
conclusions on the strengths and weaknesses of certain approaches. The concept of an
event-based online monitoring service for NoCs is proposed in [4]. This service is based
on reconfigurable event-based hardware probes attached to the NoC components (i.e. the
routers) and offers runtime observability of the NoC behavior. In [5] the concept depicted
above is examined on system level. Three different alternatives to integrate the monitoring
service into a NoC are proposed and evaluated with respect to selected aspects. In [6] a NoC
design flow, which takes monitoring into account at design time, is proposed. The paper
focuses on the integration of monitoring into the overall NoC design process and makes
proposals for the placement and the number of probes based on the underlying application.
Moreover, design flow and system architecture for hierarchical power monitoring of on-chip
networks are outlined in [7]. Thereto, a hierarchy of adaptive and scalable modules is used to
handle various power monitoring services with different granularities. The hierarchy consists
of multiple cell and cluster agents as well as a platform and an application agent. Similarly,
in [8] a hierarchical agent-based concept is used to provide for reconfigurable NoCs with an
increased fault tolerance on the architectural level. In case of a failure, communication and
application execution are dynamically relocated based on given latency requirements.
In this paper the idea of a modular monitoring concept is adopted in order to monitor and
control temperature in NoC-based SoCs. For this purpose, hardware probes, attached to all
IP cores, forward the temperature to a CCU, which takes appropriate actions if necessary.
Furthermore, values for area costs, system performance and performance of temperature
monitoring and control are provided for both event-driven and time-driven temperature
forwarding.

3 The Monitoring and Control System

In this section the monitoring system consisting of probes attached to every IP core and
the CCU are introduced. The probes track the temperature of the associated IP core and
the CCU gives instructions for DFS to the probes if necessary. Here, it is assumed that
the temperature values are already available to the probes. Hence, this paper does not
focus on the physical capture of the temperature value but on its further processing. The
targeted NoC uses wormhole switching in combination with distributed XY-routing and

MEMICS’10



126 Monitoring and Control of Temperature in Networks-on-Chip

deploys a packet-based communication protocol, in which packets consist of a varying number
of flow control digits (flits) representing the basic unit of flow control in the NoC. The target
SoC is expected to be a general purpose system. This renders further assumptions on the
incorporated applications dispensable. First, an event-driven and a time-driven solution
for forwarding temperature values to the CCU are described. The targeted temperature
range is from 20 to 127 °C. Furthermore, to ensure timely monitoring and control probe- and
CCU-generated packets are prioritized over regular packets.
The event-driven probe design is based on [4]. The basic concept is that if the predefined
conditions of an event are satisfied, further actions are triggered. The conditions here account
for a maximum temperature or a large change within a given interval. The subsequent action
is the forwarding of the received temperature value. In detail, the flow works as follows. The
probe periodically reads temperature values and compares them to the value lastly reported to
the CCU (Told). If temperature forwarding is triggered, the temperature value Tcurr is saved
and a packet is generated containing Tcurr as well as the address of the related IP core. This
packet is then forwarded to the CCU. Figure 1 (a) depicts this flow exemplarily for a variation
limit of ∆T ≥ 10 °C, which can be freely chosen at design time in order to adapt the probe to
different requirements and application settings. Relaxed conditions for ∆T will result in fewer
monitoring packets less affecting regular traffic but leading to more intermittent temperature
monitoring. If small changes of temperature shall be detected though, the conditions need
to be more stringent leading to more packets potentially interfering with regular traffic. In
general, a trade-off between quality and quantity (granularity of temperature forwarding
versus number of generated packets) of event-driven temperature monitoring has to be
made. Since packet generation for this approach depends on temperature gradients and
therefore is non-deterministic, making statements about the optimal value for ∆T is nearly
impossible. In contrast, the time-driven probe forwards an incoming temperature value
periodically to the CCU based on a given period of time ∆t. This is done independently
from the current temperature, thus potentially causing redundant packets. The packet to be
forwarded is identical to that from the event-driven approach. Figure 1 (b) illustrates the
time-driven scheme of forwarding, in which ∆t can be chosen at design time. This renders the
time-driven approach deterministic as the amount of probe-generated traffic can be predicted
in advance independently from temperature gradients. Therefore, ∆t might be adopted to
the prospective requirements.

∆T=|Tcurr– Told|
curr

curr

∆T

∆t
curr

curr

Figure 1 (a) Event-driven and (b) Time-driven temperature forwarding

All probe-generated packets are sent to the CCU, which is responsible for providing control
instructions to the probes based on the reported temperatures. The frequency adjustment
for an IP core is executed by the probe associated to this component once the probe has
received instructions. Due to the fact that a considerable part of power consumed by ICs
is dissipated as thermal energy, control instructions given by the CCU focus on methods
to primarily reduce dynamic power consumption Pdyn. Based on the well-known equation
Pdyn = α ∗ CL ∗ V 2

DD ∗ f , Dynamic Voltage and Frequency Scaling (DVFS) are the most
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commonly used approaches. However, for the sake of simplicity, DVS is not implemented.
Basically, the CCU waits until a packet arrives containing the temperature Tn of an IP
core n. The desired operating frequency fn,new is then calculated based on the received
temperature Tn and the current frequency fn,curr. In case fn,new and fn,curr are identical,
no action is taken. Otherwise, a packet containing DFS instructions is sent to the probe
observing IP core n in order to reduce its activity and thus its temperature. Currently,
the control mechanism is a simple reaction to temperature changes (DFS with five levels
of frequency) to test the functionality of the probes. More advanced algorithms might be
integrated prospectively considering the sophisticated correlations of temperature, reliability
and further design metrics. The impacts on execution time of applications and operation
conditions are not considered by the current simple DFS algorithm, which implies frequency
reduction in case of raised temperatures as well as an incremental return to the maximum
operating frequency in case of temperature normalization.
Since the probe is designed as an independent module, it has to be integrated accordingly
into the NoC. Basically, three noteworthy possibilities exist. The probe’s integration into an
IP core promises to be the most straightforward and inexpensive solution as the probe uses
the existing interface of the core for communication purposes (see Fig. 2 (a)). However, this
precludes simultaneous packet transmission of probe and IP core. Furthermore, in case the
IP core is unavailable (e.g. power down mode, failure), the probe becomes inaccessible and is
no longer able to operate as it lacks of communication resources. Moreover, the integration
of a probe into an IP core conflicts with the principle of strict modularity, which is one
of the main intentions of NoCs. For the second approach the probe is placed outside the
associated IP core (see Fig. 2 (b)). Here, both the probe and the IP core possess a dedicated
communication interface, thus eliminating the effect of a probe being inoperable in case of
core unavailability. Only the port of the router connecting the IP core to the NoC is shared
among the probe and the core by using a Mux/Demux module. This module is responsible
for correctly forwarding the traffic from and to the port of the router and always prioritizes
probe-generated packets (current transmission of a packet containing multiple flits is finished
first). Unfortunately, the Mux/Demux module and the additional interface induce extra
area. As still only one router port is used, parallel communication of the IP core and the
probe is not supported. The third alternative adds an extra port to the router in order to
connect a probe to the NoC (see Fig. 2 (c)). Thereby, the probe is connected to the NoC
completely independent from the IP core allowing full parallel communication, sustainment
of modularity and operational readiness of the probe in case of IP core outage. The extra
port and the raised complexity are supposed to induce the biggest area overhead though.

IP core

R

P

R

P
IP core

R
P

IP core

Figure 2 Integration of a probe (P) into the NoC: (a) Integration into the IP core, (b) Using the
router port of the IP core, (c) Using an extra router port
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4 Results and Discussion

All introduced proposals for probe design, the CCU and the integration into the NoC were
synthesized with Xilinx Ise 10.1 for a Virtex5-FPGA to be comparable regarding area costs
and frequency (see Tab. 1). Values for area and frequency of an unmodified NoC router
serve as reference. Note that the required area is calculated as the number of pairs consisting
of Look-Up Tables (LUT) and Flip-Flops (FF).
On the one hand, synthesis results for the temperature forwarding show that event-driven
forwarding (66 LUT/FF pairs) occupies 17,5% less area than the time-driven method (80
LUT/FF pairs). This is due to the fact that although more combinational logic is required by
the event-driven probe, total area usage of the time-driven approach is dominated by the size
of the counter that is necessary to trigger the periodic packet generation. To provide for a
reasonable period, this results in a relatively large counter, which represents an area penalty
compared to the event-driven scheme (e.g. ∆t = 2,5ms requires 18 bit wide counter based on
a frequency of 100MHz). Note that also existing trigger signals might be used for periodic
packet generation. However, in this paper it is assumed that no such signals are available.
On the other hand, reduced effort for combinational logic yields an operating frequency for
the time-driven probe (338MHz) that is 48,9% faster with respect to the event-driven probe
(227MHz). From a cost-oriented point it can be concluded, that in case maximum frequency
and determinism of packet-generation are the major design criteria, time-driven forwarding is
the better choice. In case that minimal area and traffic overhead are required, event-driven
forwarding is favored. Synthesis results for the CCU reveal that this module (507 LUT/FF
pairs) requires only 28,6% of the area needed for an router. Since an IP core is expected
to require a multiple of this area, feasibility of positioning the CCU in a location regularly
reserved for an IP core is affirmed. Admittedly, the CCU could also be implemented in
software so that the kind of control could be adapted at runtime. However, the CCU is
required to be implemented in hardware since the performance of communication between
probes and CCU and its impact on system performance are of major interest in this paper.
Due to its nature, the integration of a probe into an IP core causes no area overhead, whereas
the maximum frequency of the network remains constant. Furthermore, the integration using
the IP core’s router port causes an area overhead of 7,34% with respect to an unmodified
router. Although the maximum frequency remains unchanged, the Mux/Demux module
causes additional latency for packet transmission. The extra router port and the resulting
raised complexity of the router not only cause the biggest area growth of 30,55% but also
lower the frequency to 112MHz. Unfortunately, the most inexpensive method with the
probe being integrated into the IP core cannot always be considered feasible, because IP
cores often remain black boxes to the system designer when they are IP of third parties or
fixed down to the layout. Regarding the two remaining possibilities, both methods do not
necessitate IP core modification and guarantee probe operability in case the associated IP
core becomes unavailable. However, the integration via an extra port causes unacceptable
area overhead without delivering advantages (except parallel communication of probe and IP
core) compared to the integration using the IP core’s router port. Since the number of packets
sent from and to the probe is comparatively small, the need for parallel communication is
expected to be marginal. Therefore, the integration of a probe using the IP core’s router
port can be identified as the method delivering the best compromise between performance,
overhead and feasibility.
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Table 1 Synthesis results for monitoring, control as well as integration
(unmodified NoC router: 1771 LUT/FF pairs, 122MHz)

Component Integration method
Event-
driven
probe

Time-
driven
probe

Central
Control
Unit

Into IP
core

Using IP
core port

Extra
port

Frequency
[MHz] 227 338 165 122 119 112

Area
[LUT/FF

pairs]
66 80 507 1901 1896 2312

In order to investigate the impact of the examined methods on selected parameters of
regular system operation, an 8×8 NoC was simulated both with and without enhancements
for monitoring and control. Simulation was performed using both event-driven forwarding
(with ∆T = 5 °C and 10 °C) and time-driven forwarding (with ∆t = 0,1ms and 0,2ms).
The monitoring and control mechanisms were integrated using the approach proposed in
Fig. 2 (b). During simulation 200000 regular packets with a maximum packet length of
5 flits were generated and sent to random destination addresses. Packet generation was
uniformly distributed over all IP cores with an initial packet injection rate of 20%. For
simulation including monitoring and control the CCU replaced the most centric IP core at
address 3,3 in the NoC. From Fig. 3 (a) it can be seen that mean packet delay of regular
packets traversing the NoC is considerably decreased both for event-driven (up to 9,72%)
and time-driven (8,53%) temperature forwarding combined with DFS. At first sight, this
seems to be incorrect, since packets for monitoring and control additionally stress the NoC
and therefore should have negative impact. Considering the overall execution time, which is
drastically extended by at least 125,16% for all tests, this phenomenon can be explained.
In contrast to the reference, the applied DFS mechanism reduces the injection rate of the
IP cores if necessary. Therefore, the overall number of packets (monitoring and control
packets included) simultaneously crossing the NoC is reduced, yielding relaxed conditions for
packet transmission. Thus, a lower utilization of the communication resources is traded off
against an extension of overall execution time. This conforms to the principle of algorithms
like DFS of maintaining operability at the expense of reduced performance. As expected,
with a reduction of more than 55%, integration of monitoring and control has a negative
impact on the throughput of regular data, since fewer packets located in the NoC lead to
a smaller number of flits that can be transmitted per clock cycle. Concluding, concerning
effects on performance event-driven and time-driven forwarding do not differ notably from
each other when combined with DFS. Furthermore, variation of ∆T (event-driven) and ∆t
(time-driven) has only minor influence on performance parameters. Concerning the results
for notification delay (time for packet transmission from probes to CCU) and response delay
(notification delay + time for packet transmission from CCU to probes) the event-driven
approach outperforms the time-driven approach (see Fig. 3 (b)). In the former packets for
notification arrive about 83% faster than in the latter and response packets arrive about
77% faster. This is due to the fact that for event-driven forwarding notification packets are
only generated when temperature exceeds or goes below defined thresholds. This leads to
a relatively even distribution of monitoring packets over time avoiding congestions around
the CCU. In contrast, in the time-driven approach all probes simultaneously transmit a
packet to the CCU after ∆t has expired. As a consequence, bursty occurrence of monitoring
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packets causes congestions within the area containing the CCU. To solve this issue the
probes’ counters for ∆t might be reset at different points in time resulting in timely staggered
generation of monitoring packets. Although delays for time-driven triggering might be
significantly reduced hereby, the risk of transmitting identical temperature values repeatedly
and causing unnecessary traffic remains. Therefore, the event-driven approach promises to
be the more practicable method.
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Figure 3 (a) Performance results for a NoC enhanced by monitoring and control in comparison

with an unmodified NoC, (b) Delay results for notification (packets from probes to CCU) and
response (packets from probes to CCU and back to probes)

5 Conclusion

In this paper the idea of a modular monitoring concept for NoCs is adopted for temperature
monitoring in NoC-based SoCs and combined with DFS for control. For this purpose, probes
inherit the function of monitoring temperature of the System-on-Chip, consisting of IP cores,
and a CCU assumes the task of applying DFS to the IP cores. Regarding the integration of
monitoring and control into the NoC we argued that using an IP core’s router port poses the
best trade-off between feasibility, performance and additional costs. Furthermore, an event-
driven and a time-driven approach for forwarding temperature values from probes to CCU
in combination with DFS were examined regarding their impact on performance of regular
system operation and monitoring and control. Results show that both approaches similarly
extend overall execution time by up to 127,1% and reduce throughput of application data by
up to 55,99%. In return NoC utilization is reduced and mean packet delay is decreased by
up to 9,85%. Using the event-driven approach packet delay from probes to CCU is shortened
by almost 83% and response delay (packet from probe to CCU back to probe) is abbreviated
by 77% with respect to time-driven forwarding.
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