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Preface

We are happy to present the proceedings of the 2011 Workshop on Predictability and
Performance in Embedded Systems, held in March 2011 in Grenoble, France, as a satellite
event of the Conference on Design, Automation & Test in Europe (DATE).

The PPES workshop is concerned with critical hard real-time systems that have to satisfy
both efficiency and predictability requirements. For example, an electronic controller for a
safety-critical system in an automobile needs to react not only correctly to external inputs
such as rapid deceleration or loss of grip, but also provably within a given time-span. This
topic of reconciling predictability and performance has received much interest in recent years,
in particular considering its growing relevance and complexity with the advent of multi-core
systems with shared resources.

The advancements in these fields, however, have been discussed mostly in the standard
venues (general conferences, workshops, journals). The aim of this workshop is twofold:

to present the results achieved and tools developed by various researchers, in particular
to industrial end users;
and to present the industrial viewpoint on needs and challenges which need to be tackled
for applicability.

To this end, the workshop comprises an invited presentation by Ottmar Bender of Cassidian
Electronics on Predictability and Performance Requirements in Avionics Systems, a panel
discussion on Predictability and Performance in Industrial Practice, and a number of paper
presentations. In this first instance of the workshop, we received 14 submissions. After a
careful review, 7 submissions covering various aspects of predictability and performance
have been selected to appear in these proceedings. We would like to thank all authors for
submitting their work to this first instance of the workshop despite the tight deadlines.

PPES was supported by
ArtistDesign, the European Network of Excellence on Embedded Systems Design
the PREDATOR project (Design for Predictability and Efficiency)
theMERASA project (Multi-Core Execution of Hard Real-Time Applications Supporting
Analysability)

The workshop is organised by: Philipp Lucas (Universität des Saarlandes), Lothar
Thiele (ETH Zürich), Benoît Triquet (Airbus), Theo Ungerer (Augsburg University) and
Reinhard Wilhelm (Universität des Saarlandes; chair). We were supported in the Program
Committee by Pascal Sainrat (University of Toulouse), Sami Yehia (Thales), Wang Yi
(Uppsala University) and Rafael Zalman (Infineon). Additional reviews were provided by
David Black-Schaffer, Unmesh Dutta Bordoloi, Christian Bradatsch, Giorgio Buttazzo,
Mamoun Filali, Mike Gerdes, Claire Maiza, Jörg Mische, Eric Noulard, Christine Rochange
and Sascha Uhrig. Our thanks also go to Nicola Nicolici, the workshop chair of DATE, and
to Bashir M. Al-Hashimi, general chair of DATE, for making this event possible.

Philipp Lucas, Reinhard Wilhelm
Saarbrücken, March 2011
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Software Structure and WCET Predictability∗

Gernot Gebhard1, Christoph Cullmann1, and Reinhold Heckmann1

1 AbsInt Angewandte Informatik GmbH
Science Park 1, D-66123 Saarbrücken, Germany
info@absint.com

Abstract
Being able to compute worst-case execution time bounds for tasks of an embedded software
system with hard real-time constraints is crucial to ensure the correct (timing) behavior of the
overall system. Any means to increase the (static) time predictability of the embedded software
are of high interest – especially due to the ever-growing complexity of such software systems.
In this paper we study existing coding proposals and guidelines, such as MISRA-C, and inves-
tigate whether they simplify static timing analysis. Furthermore, we investigate how additional
knowledge, such as design-level information, can further aid in this process.

1998 ACM Subject Classification B.2.2 [Performance Analysis and Design Aids]: Worst-case
analysis

Keywords and phrases WCET Predictability, Embedded Software Structure, Coding Guidelines

Digital Object Identifier 10.4230/OASIcs.PPES.2011.1

1 Introduction

Embedded hard real-time systems need reliable guarantees for the satisfaction of their timing
constraints. Experience with the use of static timing analysis methods and the tools based
on them in the automotive and the avionics industries is positive. However, both, the
precision of the results and the efficiency of the analysis methods are highly dependent on
the predictability of the execution platform [3] and of the software run on this platform.

In this paper, we concentrate on the effect of the software on the time predictability of
the embedded system. More precisely, we study existing software development guidelines
that are currently in production use and identify coding rules that might ease a static timing
analysis of the developed software. Such coding guidelines are intended to lead the developer
to producing – among others – reliable, maintainable, testable/analyzable, and reusable
software. Code complexity is also a key aspect due to maintainability and testability issues.
However, the coding rules are not explicitly intended to improve the software predictability
with respect to static timing analysis.

Based on our experience of analyzing automotive and avionics software, we provide
additional means to increase software time predictability. Certain information about the
program behavior cannot be determined statically just from the binary itself (or from the
source code, if available). Hence, additional (design-level) knowledge about the system
behavior would allow for a more precise (static) timing analysis. For instance, different
operating modes of a flight control unit, such as plane is on ground and plane is in air, might
lead to mutual exclusive execution paths in the software system. By using this knowledge, a

∗ The research reported herein has received funding from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement No 216008 (PREDATOR).

© AbsInt Angewandte Informatik GmbH;
licensed under Creative Commons License NC-ND
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2 Software Structure and WCET Predictability

static timing analyzer is able to produce much tighter worst-case execution time bounds for
each mode of operation separately.

Section 2 discusses related work. Section 3 briefly introduces static timing analysis and
discusses challenges static timing analysis has to face. Section 4 investigates existing coding
guidelines for their prospects to aid software predictability and discusses further means to
increase the predictability of embedded software systems. Finally, Section 5 concludes this
paper.

2 Related Work

The impact of the source code structure on time predictability has been subject to several
research papers and projects respectively.

For instance, Puschner and Kirner propose a WCET-oriented programming approach [11]
that aims at producing few or no input-data dependent code. Basically, the idea is to
transform the software into a single-path program. To realize input-data dependent behavior
of the code – this cannot be avoided for any piece of complex software – predicated operations
shall be used1. A major drawback of the proposed code transformation is that in every
possible execution context of a function or loop, the processor would have to always fetch
the corresponding instructions, even if they would not be executed. Hence, the single-path
paradigm actually impairs the worst-case behavior.

Thiele and Wilhelm investigate threats to time predictability and propose design principles
that support time predictability [14]. Among others the authors discuss the impact of software
design on system predictability. For example, the use of dynamic data structures should be
avoided, as these are hard to analyze statically.

Wenzel et al. [15] discuss the possible impact of existing software development guidelines
(DO-178B, MISRA-C, and ARINC 653) on the WCET analyzability of the software. Further-
more, the authors provide challenging code patterns, some of which, however, do not appear
to cause problems for binary-level, static WCET analysis. For instance, calls to library
functions do not necessarily impair the software’s time predictability. The implementation
and thus the binary code of the called function determines the time predictability, and not
the fact of the function being part of a library. Nonetheless, the binary code of the library
functions are required to be available to ensure a precise static worst-case execution time
analysis if complex hardware architectures are being used. For ARINC 653 implementations
that are truly modular this might not always be the case.

The purpose of the project COLA (Cache Optimizations for LEON Analyses)2 was to
investigate how software can achieve maximum performance, whilst remaining analyzable,
testable, and predictable. COLA is a follow-on project to the studies PEAL and PEAL2
(Prototype Execution-time Analyzer for LEON), which identified code layout and program
execution patterns that result in cache risks, so called cache killers, and quantified their
impact. Among others, the COLA project produced cache-aware coding rules that are
specifically tailored to increase the time predictability of the LEON2 instruction cache.

The project MERASA aimed at the development of a predictable and (statically) analyz-
able multi-core processor for hard real-time embedded systems. Bonenfant et al. [1] propose
coding guidelines to improve the analyzability of software executed on the MERASA platform.

1 Yet many embedded hardware architectures, as e.g. PowerPC, do not support predicated operations.
2 Funded by the European Space Agency (ESA) under the basic Technology Research Programme (TRP),

ESA/ESTEC Contract AO/1-5877/08/NL/JK.
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Both static analysis and measurement-based approaches are considered. In principle, these
coding guidelines correspond to the MISRA-C guidelines discussed in Section 4.2.

3 Static Timing Analysis

Exact worst-case execution times (WCETs) are impossible or very hard to determine, even
for the restricted class of real-time programs with their usual coding rules. Therefore, the
available WCET analyzers only produce WCET guarantees, which are safe and precise upper
bounds on the execution times of tasks. The combined requirements for timing analysis
methods are:

soundness – ensuring the reliability of the guarantees,
efficiency – making them feasible in industrial practice, and
precision – increasing the chance to prove the satisfaction of the timing constraints.

Any software system when executed on a modern high-performance processor shows a
certain variation in execution time depending on the input data, the initial hardware state,
and the interference with the environment. In general, the state space of input data and
initial states is too large to exhaustively explore all possible executions in order to determine
the exact worst-case and best-case execution times. Instead, bounds for the execution times
of basic blocks are determined, from which bounds for the whole system’s execution time are
derived.

Some abstraction of the execution platform is necessary to make a timing analysis of the
system feasible. These abstractions lose information, and thus are – in part – responsible
for the gap between WCET guarantees and observed upper bounds and between BCET
guarantees and observed lower bounds. How much is lost depends on the methods used
for timing analysis and on system properties, such as the hardware architecture and the
analyzability of the software.

Despite the potential loss of precision caused by abstraction, static timing analysis
methods are well established in the industrial process, as proven by the positive feedback
from the automotive and the avionics industries. However, to be successful, static timing
analysis has to face several challenges, being discussed in the subsequent Section 3.2.

3.1 Tools for Static Worst-Case Execution Time Analysis
Figure 1 shows the general structure of WCET analyzers like aiT, see http://www.absint.
com/aiT – this is the static WCET tool we are most experienced with. The input binary
executable has to undergo several analysis phases, before a worst-case execution time bound
can be given for a specific task3. First, the binary is decoded (reconstruction of the control-
flow). Next, loop and value analysis try to determine loop bounds and (abstract) contents of
registers and memory cells. The (cache and) pipeline analysis computes lower and upper basic
block execution time bounds. Finally, the path analysis computes the worst-case execution
path through the analyzed program (see [3] for a more detailed explanation).

3.2 Challenges
A static WCET analysis has to cope with several challenges to be successful. Basically, we
discern two different classes of challenges. Challenges that need to be met to make the

3 A task (usually) corresponds to a specific entry point of the analyzed binary executable.
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4 Software Structure and WCET Predictability
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Figure 1 Phases of WCET computation.

WCET bound computation feasible at all are tier-one challenges. Tier-two challenges are
concerned with keeping the WCET bounds as tight as possible, e.g., to enable a feasible
schedule of the overall system.

The used coding style is tightly coupled to the encountered tier-one challenges. Section 4
investigates whether coding guidelines that are in production use (indirectly) address such
challenges and whether they ease their handling. Section 4.3 provides means how to cope
with tier-two challenges.

In the following, we discuss tier-one WCET analysis challenges.

Function Pointers. Often simple language constructs do not suffice to implement a certain
program behavior. For instance, user-defined event handlers are usually implemented via
function pointers to exchange data between communication library (e.g., for CAN devices)
and the application. Resolving function pointers automatically is not easily done and
sometimes not feasible at all. Nevertheless, function pointers need to be resolved to enable
the reconstruction of a valid control-flow graph and the computation of a WCET bound.

Loops and Recursions. Loops (and also recursions) are a standard concept in software
development. The main challenge is to automatically bound the maximum possible number
of loop iterations, which is mandatory to compute a WCET bound at all. Whereas often-used
counter loops can be easily bounded, it is generally infeasible to bound input-data dependent
loops without additional knowledge. Similarly, such knowledge is required for recursions.

Irreducible Loops. Usually, loops have a single entry point and thus a single loop header.
However, more complicated loops are occasionally encountered. By using language constructs
like the goto statement from C or by means of hand-written assembly code, it is possible
to construct loops featuring multiple entry points. So far, there exists no feasible approach
to automatically bound this kind of loops [8]. Hence, additional knowledge about the
control-flow behavior of such loops is always required.
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4 Software Predictability

In this section we discuss existing coding standards and investigate rules from the 2004
MISRA-C standard that are beneficial for software predictability. Thereafter, we describe
how design-level information can further aid static timing analysis.

4.1 Coding Guidelines

Several coding guidelines have emerged to guide software programmers to develop code
that conforms to safety-critical software principles. The main goal is to produce code that
does not contain errors leading to critical failure and thus causing harm to individuals or to
equipment. Furthermore, software development rules aim at improved reliability, portability,
and maintainability.

In 1998, the Motor Industry Software Reliability Association (MISRA) published MISRA-
C [9]. The guidelines were intended for embedded automotive systems implemented in the C
programming language. An updated version of the MISRA-C coding guidelines has been
released in 2004 [10]. This standard is now widely accepted in other safety-critical domains,
such as avionics or defense systems. On the basis of the 2004 MISRA-C standard, the
Lockheed Martin Corporation has published coding guidelines that are obligatory for Air
Vehicle C++ development in 2005 [2]. Albeit certain rules tackle code complexity, there are
no rules that explicitly aim at developing better time predictable software.

4.2 MISRA-C

Wenzel et al. [15] reckon that among the standards DO-178B, MISRA-C, and ARINC 653,
only MISRA-C includes coding rules that can effect software predictability. In the following,
we thus take a closer look at the 2004 MISRA-C guidelines. The list partially corresponds to
the one found in [15] (focusing on 1998 MISRA-C), but refers to the potential impact on the
time predictability using binary-level static WCET analysis (e.g., with the aiT tool).

Rule 13.4 (required): The controlling expression of a for statement shall not contain
any objects of floating type. State-of-the-art abstract interpretation based loop analyzers
work well with integer arithmetic, but do not cope with floating point values [5, 4]. Thus, by
forbidding floating point based loop conditions, a loop analysis is enabled to automatically
detect loop bounds.

Rule 13.6 (required): Numeric variables being used within a for loop for iteration count-
ing shall not be modified in the body of the loop. This rule promotes the use of (simple)
counter-based loops and prohibits the implementation of a complex update logic of the loop
counter. This allows for a less complicated loop bound detection.

Rule 14.1 (required): There shall be no unreachable code. Tools like aiT can detect
that some part of the code is not reachable. However, static timing analysis computes an
over-approximation of the possible control-flow. By this, the analysis might assume some
execution paths that are not feasible in the actual execution of the software. Hence, the
removal of unreachable parts from the code base leads to less sources of such imprecision.

PPES 2011



6 Software Structure and WCET Predictability

Rule 14.4 (required): The goto statement shall not be used. The usage of the goto
statement does not necessarily cause problems for binary-level timing analysis. These
statements are compiled into unconditional branch instructions, which are no challenge to
such analyses by themselves. However, the usage of the goto statement might possibly
introduce irreducible loops into the program binary. There is no known approach available to
automatically determine loop bounds for this kind of loops. Consequently, manual annotations
are always required. Even worse, certain precision-enhancing analysis techniques, such as
virtual loop unrolling [13], are not applicable.

Rule 14.5 (required): The continue statement shall not be used. Wenzel et al. [15] state
that not adhering to this rule could lead to unstructured loops (see rule 14.4). However,
continue statements only introduce additional back edges to the loop header and therefore
cannot lead to irreducible loops. Any loop containing continue statements can be trans-
formed into a semantically equivalent loop by means of if-then-else constructs. Hence, the
only purpose of this rule is to enforce a certain coding style.

Rule 16.1 (required): Functions shall not be defined with a variable number of arguments.
Functions with variable argument lists inherently lead to data dependent loops iterating over
the argument list. Such loops are hard to bound automatically.

Rule 16.2 (required): Functions shall not call themselves, either directly or indirectly.
Similarly to using goto statements, the use of recursive function calls might lead to irreducible
loops in the call graph. Thus, a similar impact on software predictability would apply as
discussed above for goto statements (see rule 14.4).

Rule 20.4 (required): Dynamic heap memory allocation shall not be used. Dynamic
memory allocation leads to statically unknown memory addresses. This will lead to an
over-estimation in the presence of caches or multiple memory areas with different timings.
Recent work tries to address this problem by means of cache-aware memory allocation [6].

Rule 20.7 (required): The setjmp macro and the longjmp function shall not be used.
In accordance to the discussion of rule 14.4 and of rule 16.2, the usage of the setjmp and
the longjmp macro would allow the construction of irreducible loops. Hence, similar time
predictability problems would arise.

4.3 Design-Level Information
Coping with all tier-one challenges of WCET analysis (see Section 3.2) is usually not sufficient
in industrial practice. Additional information that is available from the design-level phase
is often required to allow a computation of significantly tighter worst-case execution time
bounds. Here, we address the most relevant tier-two challenges.

Operating Modes. Many embedded control software systems have different operating
modes. For example, a flight control system differentiates between flight and ground mode.
Any such operating mode features different functional and therefore different timing behavior.
Unfortunately, the modes of behavior are not well represented in the control software code.
Although there is ongoing work to semi-automatically derive operating modes from the source
code [7], we still propose to methodically document their behavioral impact.
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Such documentation could include loop bounds or other kinds of annotations specific
to the corresponding operating mode. At best developers should instantly document the
relevant source code parts to avoid a later hassle of reconstructing this particular knowledge.

Complex Algorithms. Complex algorithms or state machines are often modeled with tools
like MATLAB or SCADE. By means of code generators these models are then transferred
into, e.g., C code. During this process, high-level information about the algorithm or the
state machine update logic respectively are lost (e.g., complex loop bounds, path exclusions).

Wilhelm et al. [16] propose systematic methods to make model information available to
the WCET analyzer. The authors have successfully applied their approach and showed that
tighter WCET bounds are achievable in this fashion.

Data-Dependent Algorithms. Computing tight worst-case execution time bounds is a
challenging task for strongly data-dependent algorithms. This is mainly caused by two
reasons. On the one hand, data-dependent loops are hardly bounded statically. However,
for computing precise WCET bounds, it generally does not suffice to assume the maximal
possible number of loop iterations for each execution context. On the other hand, a static
analysis is often unable to exclude certain execution paths through the algorithm without
further knowledge about the execution environment. The following example demonstrates
this problem.

Message-based communication is usually implemented by means of fixed-size read and
write buffers that are reserved for each scheduling cycle separately. During an interrupt
handler the message data is either copied from or to memory – depending on the current
scheduling cycle. Here, read and write operations can never occur in the same execution
context of the message handler. Without further information both operations cannot be
excluded by a static WCET analysis. Additionally, the analysis has no a-priori information
about the amount of data being transferred. However, the allocation of the data buffers
and the amount of data to transmit is statically known during the software design phase.
Using this information would allow for a much more precise static timing analysis of such
algorithms.

Imprecise Memory Accesses. Unknown or imprecise memory access addresses are one
of the main challenges of static timing analysis for two reasons. First, they impair the
precision of the value analysis. Any unknown read access introduces unknown values into the
value analysis and therefore increases the possibly feasible control-flow paths and negatively
influences the loop bound analysis. In addition, any write access to an unknown memory
location destroys all known information about memory during the value analysis phase.
Second, the pipeline analysis has to assume that any memory module might be the target
of an unknown memory access – the slowest memory module will thus contribute the most
to the overall WCET bound. For architectures featuring data caches, an imprecise memory
access invalidates large parts of the abstract cache (or even the whole cache) and leads to an
over-approximation of the possible cache misses on the WCET path. Such unknown memory
accesses can result from the extensive use of pointers inside data structures with multiple
levels of indirections.

A remedy to this could be to document the memory areas that might be accessed for
each function separately, especially if slow memory modules could be accessed. For example,
memory-mapped I/O regions that are used for CAN or FLEXRAY controllers usually are
only accessed in the corresponding device driver routines. Thus, the analysis would only

PPES 2011



8 Software Structure and WCET Predictability

Iteration Counts Frequency of Occurrence Observed for
0 1 552
1 99 881 801
2 116 421
3 114

4 .. 9 13
10 .. 19 19
20 .. 39 24
40 .. 59 22
60 .. 79 13
80 .. 99 11

100 .. 135 7
156 1 lDivMod (0x ffd9 3580, 0x 107 d228)
186 1 lDivMod (0x fff2 c009, 0x 118 dcc4)
204 1 lDivMod (0x ffe8 70e3, 0x 141 4167)

Table 1 Observed iteration counts for lDivMod.

need to assume for those specific routines that imprecise or unknown memory accesses target
these (slow) memory regions. For all other routines, the analysis would be allowed to assume
that different, potentially faster memory modules are being accessed.

Error Handling. In embedded software systems, error handling and recovery is a very
complex procedure. In the event of an error, great care needs to be taken to ensure safety
for individuals and machinery respectively.

A precise (static) timing analysis of error handling routines requires a lot more than the
maximum number of possible errors that can occur or have to be handled at once. First
of all however, it needs to be decided whether the error case is relevant for the worst-case
behavior or not. If not, all error-case related execution paths through the software may be
ignored during WCET analysis, which will obviously lead to much lower WCET bounds
being computed. This however requires precise knowledge about which parts of the software
are concerned with handling errors.

Otherwise, static timing analysis has to cope with error handling. The assumption that
all errors might occur at once naturally leads to safe timing guarantees. However, in reality
this is a rather uncommon or simply infeasible behavior of the embedded system. Here,
computing tight WCET bounds requires precise knowledge about all potential error scenarios.
An early documentation of the system’s error handling behavior is thus expected to allow for
a quicker and more precise analysis of the overall system.

Software Arithmetic. Under certain circumstances, an embedded software system makes
use of software arithmetic. This is the case if the underlying hardware platform does not
support the required arithmetic capabilities. For instance, the Freescale MPC5554 processor
only supports single precision floating point computations [12]. If higher-precision FPU
operations are required, (low-level) software algorithms emulating the required arithmetic
precision come into play. Such algorithms are usually designed to provide good average-case
performance, but are not implemented with good WCET predictability in mind. This often
causes a static timing analysis to assume the worst-case path through such routines for most
execution contexts.
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An extreme example for a function with good average-case performance and bad WCET
predictability is the library function lDivMod of the CodeWarrior V4.6 compiler for Freescale
HCS12X. The purpose of this routine is to compute quotient and remainder of two 32 bit
unsigned integers. The algorithm performs an iteration computing successive approximations
to the final result. To get an impression on the number of loop iterations, we performed
an experiment in which lDivMod was applied to 108 random inputs. Table 1 shows which
iteration counts were observed in this experiment. The number of iterations is 1 in more
than 99.8% and 0, 1, or 2 in more than 99.999% of the sample inputs. On the other
hand, iteration counts of more than 150 could be observed for a few specific inputs. There
seems to be no simple way to derive the number of iterations from given inputs (other than
running the algorithm). The highest possible iteration count could not yet be determined
by mathematical analysis. Even if it were known that 204 is the maximum, a worst-case
execution time analysis had to assume that such a high iteration number occurs when the
input values cannot be determined statically, leading to a big over-estimation of the actual
WCET.

To tighten the computed WCET bounds, further information would be required to avoid
the cases with high numbers of loop iterations in many or all execution contexts. Making
sure that the used software arithmetic library features good WCET analyzability also helps
to tighten the computed WCET bounds. Another – more radical – approach would be to
employ a different hardware architecture that supports the required arithmetic precision.

5 Conclusion

Our experience with static timing analysis of embedded software systems shows that the
analysis complexity varies greatly. As discussed above, the software structure strongly
influences the analyzability of the overall system. Existing coding guidelines, such as the
MISRA-C standard, partially address tier-one challenges encountered during WCET analysis.
However, solely adhering to these guidelines does not suffice to achieve worst-case execution
time bounds with the best precision possible. We usually suggest to document the software
system behavior as early as possible – desirably during the software design phase – to tackle
the tier-two WCET analysis challenges. Otherwise, achieving precise analysis results during
the software development testing and validation phase might become a costly and time
consuming process.
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Abstract
Current processors are optimized for average case performance, often leading to a high worst-case
execution time (WCET). Many architectural features that increase the average case performance
are hard to be modeled for the WCET analysis. In this paper we present Patmos, a processor
optimized for low WCET bounds rather than high average case performance. Patmos is a dual-
issue, statically scheduled RISC processor. The instruction cache is organized as a method cache
and the data cache is organized as a split cache in order to simplify the cache WCET analysis.
To fill the dual-issue pipeline with enough useful instructions, Patmos relies on a customized
compiler. The compiler also plays a central role in optimizing the application for the WCET
instead of average case performance.
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1 Introduction

Real-time systems need a time-predictable execution platform so that the worst-case execution
time (WCET) can be estimated statically. It has been argued that we have to rethink computer
architecture for real-time systems instead of trying to catch up with new processors in the
WCET analysis tools [21, 3, 23].

However, time-predictable architectures alone are not enough. If we would only be
interested in time predictability, we could use microprocessors from the late 1970s to the
mid-1980s, where the execution time was accurately described in the data sheets. With those
processors it would be possible to generate exact timing in software, e.g., one of the authors
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has programmed a wall clock on the Zilog Z80 in assembler by counting instruction clock
cycles and inserting delay loops and nops at the correct locations.

Processors for future embedded systems need to be time-predictable and provide a
reasonable worst-case performance. Therefore, we present a Very Long Instruction Word
(VLIW) pipeline with specially designed caches to provide good single thread performance.
We intend to build a chip-multiprocessor using this VLIW pipeline to investigate its benefits
for multi-threaded applications.

We present the time-predictable processor Patmos as one approach to attack the complex-
ity issue of WCET analysis. Patmos is a statically scheduled, dual-issue RISC processor that
is optimized for real-time systems. Instruction delays are well defined and visible through the
instruction set architecture (ISA). This design simplifies the WCET analysis tool and helps
to reduce the overestimation caused by imprecise information. Memory hierarchies having
multiple levels of caches typically pose a major challenge for the WCET analysis. We attack
this issue by introducing caches that are specifically designed to support WCET analysis.
For instructions we adopt the method cache, as proposed in [18], which operates on whole
functions/methods and thus simplifies the modeling for WCET analysis. Furthermore, we
propose a split cache architecture for data [20], offering dedicated caches for the stack area,
for constants and static data, as well as for heap allocated objects. A compiler-managed
scratchpad memory provides additional flexibility. Specializing the cache structure to the
usage patterns of its data allows predictable and effective caching of that data, while at the
same time facilitating WCET analysis.

Aside from the hardware implementation of Patmos, we also present a sketch of the
software tools envisioned for the development of future real-time applications. Patmos is
designed to facilitate WCET analysis, its internal operation is thus well-defined in terms
of timing behavior and explicitly made visible on the instruction set level. Hard to predict
features are avoided and replaced by more predictable alternatives, some of which rely on the
(low-level) programmer or compiler to achieve optimal results, i.e., low actual WCET and
good WCET bounds. We plan to provide a WCET-aware software development environment
tightly integrating traditional WCET tools and compilers. The heart of this environment is
a WCET-aware compiler that is able to preserve annotations for WCET analysis, actively
optimize the WCET, and exploit the specialized architectural features of Patmos.

The processor and its software environment is intended as a platform to explore various
time-predictable design trade-offs and their interaction with WCET analysis techniques as
well as WCET-aware compilation. We propose the co-design of time-predictable processor
features with the WCET analysis tool, similar to the work by Huber et al. [9] on caching
of heap allocated objects in a Java processor. Only features where we can provide a static
program analysis shall be added to the processor. This includes, but is not limited to,
time-predictable caching mechanisms, chip-multiprocessing (CMP), as well as novel pipeline
organizations. Patmos is open-source under a BSD-like license.

The presented processor is named after the Greek island Patmos, where the first sketches
of the architecture have been drawn; not in sand, but in a (paper) notebook. If you use the
open-source design of Patmos for further research, we would suggest that you visit and enjoy
the island Patmos. Consider writing a postcard from there to the authors of this paper.

The paper is organized as follows: In the following section related work on time-predictable
processor architectures and WCET driven compilation is presented. The architecture of
Patmos is described in Section 3, followed by the proposal of the software development tools
in Section 4. The experience with initial prototypes of the processor and a compiler backend
is reported in Section 5 and the paper is concluded in Section 6.
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2 Related Work

Edwards and Lee argue: “It is time for a new era of processors whose temporal behavior is as
easily controlled as their logical function" [3]. A first simulation of their PRET architecture is
presented in [12]. PRET implements a RISC pipeline and performs chip-level multi-threading
for six threads to eliminate data forwarding and branch prediction. Scratchpad memories
are used instead of instruction and data caches. The shared main memory is accessed via a
time-division multiple access (TDMA) scheme, called memory wheel. The ISA is extended
with a deadline instruction that stalls the current thread until the deadline is reached. This
instruction is used to perform time-based, instead of lock-based, synchronization for accesses
to shared data. Furthermore, it has been suggested that the multi-threaded pipeline explores
pipelined access to DRAM memories [2]. Each thread is assigned its own memory bank.

Thiele and Wilhelm argue that a new research discipline is needed for time-predictable em-
bedded systems [23]. Berg et al. identify the following design principles for a time-predictable
processor: “... recoverability from information loss in the analysis, minimal variation of the
instruction timing, non-interference between processor components, deterministic processor
behavior, and comprehensive documentation" [1]. The authors propose a processor architec-
ture that meets these design principles. The processor is a classic five-stage RISC pipeline
with minimal changes to the instruction set. Suggestions for future architectures of memory
hierarchies are given in [26].

Time-predictable architectural features have been explored in the context of the Java
processor JOP [19]. The pipeline and the microcode, which implements the instruction set
of the Java Virtual Machine, have been designed to avoid timing dependencies between
bytecode instructions. JOP uses split load instructions to partially hide memory latencies.
Caches are designed to be time-predictable and analyzable [18, 20, 22, 9]. With Patmos we
will leverage on our experience with JOP and implement a similar, but more general, cache
structure.

Heckmann et al. provide examples of problematic processor features in [8]. The most
problematic features found are the replacement strategies for set-associative caches. In
conclusion Heckmann et al. suggest the following restrictions for time-predictable processors:
(1) separate data and instruction caches; (2) locally deterministic update strategies for caches;
(3) static branch prediction; and (4) limited out-of-order execution. The authors argue
for restriction of processor features. In contrast, we also provide additional features for a
time-predictable processor.

Whitham argues that the execution time of a basic block has to be independent of the
execution history [24]. To reduce the WCET, Whitham proposes to implement the time
critical functions in microcode on a reconfigurable function unit (RFU). With several RFUs,
it is possible to explicitly exploit instruction level parallelism (ILP) of the original RISC
code – similar to a VLIW architecture.

Superscalar out-of-order processors can achieve higher performance than in-order designs,
but are difficult to handle in WCET analysis. Whitham and Audsley present modifications
to out-of-order processors to achieve time-predictable operation [25]. Virtual traces allow
static WCET analysis, which is performed before execution. Those virtual traces are formed
within the program and constrain the out-of order scheduler built into the CPU to execute
deterministically.

An early proposal [17] of a WCET-predictable super-scalar processor includes a mechanism
to avoid long timing effects. The idea is to restrict the fetch stage to disallow instructions
from two different basic blocks being fetched in the same cycle. For the detection of basic
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blocks in the hardware, additional compiler inserted branches or special instructions are
suggested.

Multi-Core Execution of Hard Real-Time Applications Supporting Analyzability (MER-
ASA) is a European Union project that aims for multicore processor designs in hard real-time
embedded systems. An in-order superscalar processor is adapted for chip multi-threading
(CarCore) [14]. The resulting CarCore is a two-way, five-stage pipeline with separated address
and data paths. This architecture allows issuing an address and an integer instruction within
one cycle, even if they are data-dependent. CarCore supports a single hard real-time thread
to be executed with several non-real-time threads running concurrently in the background.

In contrast to the PRET and CarCore designs we use a VLIW approach instead of
chip-level multi-threading to utilize the hardware resources. To benefit from thread-level
applications we will replicate the simple pipeline to build a CMP system. For time-predictable
multi-threading almost all resources (e.g., thread local caches) need to be duplicated. There-
fore, we believe that a CMP system is more efficient than chip multi-threading.

Compilers trying to take the WCET into account have been subject of intense research.
A major challenge is to keep annotations, intended to aid the WCET analysis, up-to-date
throughout the optimization and transformation phases of the compiler. So far, techniques
are known to preserve annotations for a limited set of compiler optimizations [4, 10] only.
A more directe approach to WCET-aware optimization is offered by the WCC compiler
of Falk et al. [13, 5, 6]. Here, optimizations are evaluated using a WCET analysis tool
and only applied when shown to be beneficial. A similar approach is taken by Zhao et
al. [27], where a WCET-analysis tool provides information on the critical paths which
are subsequently optimized. These efforts only represent a first step towards developing
WCET-aware compilation techniques by discarding counter productive optimization results.
A disciplined approach for the design of true WCET-aware optimizations is, however, not
known and still considered an open problem.

3 The Architecture of Patmos

Patmos is a 32-bit, RISC-style microprocessor optimized for time-predictable execution of
real-time applications. In order to provide high performance for single-threaded code, a
two-way parallel VLIW architecture was choosen. For multi-threaded code we plan to build
a chip-multiprocessor system with statically scheduled access to shared main memory [15].

Patmos is a statically scheduled, dual-issue RISC microprocessor. The processor does
not stall, except for explicit instructions that wait for data from the memory controller. All
instruction delays are thus explicitly visible at the ISA-level, and the exposed delays from the
pipeline need to be respected in order to guarantee correct and efficient code. Programming
Patmos is consequently more demanding than for usual processors. However, knowing all
delays and the conditions under which they occur simplifies the processor model required for
WCET analysis and helps to improve accuracy.

The modeling of memory hierarchies with multiple levels of caches is critical for practical
WCET analysis. Patmos simplifies this tasks by offering caches that are especially designed
for WCET analysis. Accesses to different data areas are quite different with respect to WCET
analysis. Static data, constants, and stack allocated data can easily be tracked by static
program analysis. Heap allocated data on the other hand demands for different caching
techniques to be analyzable [9]. Therefore, Patmos contains several data caches, one for each
memory area. Furthermore, we will explore the benefits of compiler managed scratchpad
memory.
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The primary implementation technology is in a field-programmable gate array (FPGA).
Therefore, the design is optimized within the technology constraints of an FPGA. Nevertheless,
features such as preinitialized on-chip memories are avoided to keep the design implementable
in ASIC technologies.

3.1 Instruction Set
The instruction set of Patmos follows the conventions of usual RISC machines such as MIPS.
All instructions are fully predicated and take at most three register operands. Except for
branch and accesses to main memory using loads or stores, all instructions can be executed
by both pipelines.

The first instruction of an instruction bundle contains the length of the bundle (32 or 64
bits). Register addresses are at fixed positions to allow reading the register file parallel to
instruction decoding. The main pressure on the instruction coding comes from constant fields
and branch offsets. Constants are supported in different ways. A few ALU instruction can
be performed with a sign-extended 12-bit constant operand. Two instructions are available
to load 16 bits into the lower (with sign extension) or upper half of a register. Furthermore,
a 32-bit constant can be loaded into a register by using the second instruction slot for the
constant. Branches (conditional and unconditional) are relative with a 22-bit offset. Function
calls to a 32-bit address are supported by a register indirect branch and link instruction.

To reduce the number of conditional branches and to support the single-path programing
paradigm [16], Patmos supports fully predicated instructions. Predicates are set with compare
instructions, which itself can be predicated. A complete set of compare instructions (two
registers and register against 0) is supported. The optimum number of concurrently live
predicates is still not settled, but will be at least 8.

Access to the different types of data areas are explicitly encoded with the load and store
instructions. This feature helps the WCET analysis to distinguish between the different data
caches. Furthermore, it can be detected earlier in the pipeline which cache will be accessed.

3.2 Pipeline
The register file with 32 registers is shared between the two pipelines. Full forwarding
between the two pipelines is supported. The basic features are similar to a standard RISC
pipeline. The (on-chip) memory access and the register write back is merged into a single
stage. The data cache is split into different cache areas. The distinction between the different
caches is performed with typed load and store instructions.

Figure 1 shows an overview of Patmos’ pipeline. To simplify the diagram, forwarding and
external memory access data paths are omitted and not all typed caches are shown. The
method cache (M$), the register file (RF), the stack cache (S$), the data cache (D$), and
the scratchpad memory (SP) are implemented in on-chip memories of an FPGA. All on-chip
memories of Patmos use registered input ports. As the memory internal input registers
can not be accessed, the program counter (PC) is duplicated with an explicit register. The
instruction fetched from the method cache is stored in the instruction register (IR) and also
used in the register file to fetch the register values during the decode stage.

For a dual-issue RISC, the RF needs four read ports and two write ports. Current FPGAs
offer on-chip memories with one read and one write port. Additional read ports can be
implemented by replicating the RF on several on-chip memories. However, to implement the
dual write ports, the RF needs to be double clocked. To save resources, double clocking is
also used for the read ports. The resulting RF needs only two block RAMs. As read during
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Figure 1 Pipeline of Patmos with fetch, decode, execute, and memory/write back stages.

write at the same address in the on-chip memories of current FPGAs either delivers the old
value on the read or an undefined value the RF contains an internal forwarding path.

At the execution stage up to two operations are executed and the address for a memory
access is calculated. Predicates are set on a compare instruction. The last stage writes back
the results from the execution stage or loads data from one of the data cache areas.

The PC manipulation depends on three pipeline stages, as sketched with the dashed line
in Figure 1. At the fetch stage the single bit that determines the instruction length is fed
to the PC multiplexer. Unconditional branches are detected at the decode stage and the
branch offset is fed to the multiplexer from IR. The predicate for a conditional branch is
available as a result from the execution stage and the PC multiplexer also depends on the
write back stage.

3.3 Memory and Caches

Access to main memory is done via a split load, where one instruction starts the memory read
and another instruction explicitly waits for the result. Although this increases the number of
instructions to be executed, instruction scheduling can use the split accesses to hide memory
access latencies deterministically. For instruction caching a method cache is used where
full functions/methods are loaded at call or return [18]. This cache organization simplifies
the pipeline and the WCET analysis as instruction cache misses can only happen at call
or return instructions. For the data cache a split cache is used [20]. Data allocated on the
stack is served by a direct mapped stack cache, heap allocated data in a highly associative
data cache, and constants and static data in a set associative cache. Only the cache for heap
allocated data and static data needs a cache coherence protocol for a CMP configuration of
Patmos. Furthermore, a scratchpad memory can also be used to store frequently accessed
data. To distinguish between the different caches, Patmos implements typed load and store
instructions. The type information is assigned by the compiler (e.g., the compiler already
organizes the stack allocated data). To simplify Figure 1, only the stack and data cache are
shown as an example of the split cache.
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4 Software Development with Patmos

The architecture design of Patmos adopts ideas from the RISC and VLIW design-philosophies.
In particular, the idea that architecture design is interdependent on the software development
environment. The first RISC machines made some architectural constraints visible on the
instruction set level in order to push complexity from the hardware design to the software
tools or programmer. The VLIW philosophy took this idea even further and assigned the
compiler a central role in exploiting the available hardware resources in the best possible
way [7].

We make the case that this architecture philosophy is particularly suited to address the
problems encountered in today’s real-time system design. Time-predictable architectures
following this approach, such as Patmos, not only unveil optimization potential to the
compiler, but more importantly provide the opportunity for developing more accurate
program analyses, e.g., in order to derive tighter bounds for the WCET. The compiler and
the program analysis tools are thus first class citizens of the real-time system engineer’s
toolbox and need to be accounted for in the architecture design. As a side-effect the use of
high-level programming languages is facilitated or even favored, since the necessary software
tools are readily provided.

4.1 WCET-aware Compilation
The Patmos approach relies on a strong compiler in order to optimally exploit the available
hardware resources. Traditionally, compilers seek to optimize the average execution time by
focusing the effort on frequently executed hot paths. For other, rarely executed, code paths a
performance degradation is usually acceptable. This view of a compiler and its optimizations
is not valid in our context. But, what is the compiler supposed to optimize then? And how
could such a compiler look like?

The WCET is an important metric in order to determine whether a real-time program
can be scheduled and meets its deadlines. The actual WCET is in fact rarely known but
instead approximated by a WCET bound, which is usually provided by a program analysis
tool independent from the compiler. The WCET or its bound are suitable candidates as
a primary optimization goal for our compiler. Their optimization, however, poses some
difficult problems that need to be addressed in the future, opening up a new field for compiler
researches and architecture designers.

Foremost, the compiler has to be aware of the WCET. We will consequently integration the
WCET analysis tools tightly with the compiler. In practice, we expect synergetic effects from
this integration, as both tools usually share a great deal of infrastructure. Most importantly,
the WCET analysis is likely to profit from additional information that is available from the
compiler throughout the translation process from a high-level input program to its machine
form. The preservation of relevant information required by the WCET analysis, in particular
annotations provided by the programmer, is a major challenge that has only been solved for
selected code transformations [10].

In addition, a new approach to compilation is needed that focuses on optimizing the
critical paths of a program instead of its hot paths [6, 27]. However, the critical paths may
change during the optimization process, either because the previous critical path has been
sped-up or because the optimization adversely affected another path slowing it down. This
gives rise to phase-ordering problems throughout the optimization process. The problem
here is to decide which code regions are to be optimized and in which order. In addition,
optimizations may adversely effect each other, such that the relative ordering of optimizations
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needs to be accounted for in a WCET-aware compiler. Defining a sound optimization strategy
for a WCET-aware compiler is still considered to be an open problem. A key insight is that
a time-predictable architecture is mandatory for defining such an optimization strategy. It
becomes otherwise impossible to asses the impact of a given transformation on the WCET,
resulting in the application of undesirable optimizations, inefficient code, and consequently
conservative WCET-bounds.

4.2 Exploiting Patmos’ Features

Some design decisions for Patmos are based on a pragmatic assumption that the engineer
best knows the system under development. It is thus important to enable the programmer to
fine tune the system. Care has been taken that those features are accessible from high-level
programming languages. The typed memory loads and stores are a good example of such
a feature, which allows the programmer to explicitly assign variables and data structures
to specific storage elements. The typed memory operations are a natural match to named
address spaces in Embedded C, an extension of the traditional C language. The computation
of tight WCET bounds is simplified, since the target memory is apparent from the operation
itself. The tedious tracking of possible pointer ranges is thus avoided.

The stack cache provides a time-predictable and analyzable way to reduce the penalty for
accessing objects residing on the stack frame of the current function. For most functions it is
trivial for the compiler to immediately exploit the stack cache. Special care has to be taken
that function-local variables accessible through pointers are not placed in the cache, because
the cache’s memory is not accessible using regular memory operations. Those variables need
to be kept in a shadow stack residing in general purpose memory. Note that other variables
of the same function are nevertheless assigned to the stack cache.

Exploiting the method cache is more involved and requires a global analysis of the
complete real-time program, including all external modules and libraries linked to it. Using
a regular call graph we can determine function calls potentially leading to conflicts in the
cache and adopt the placement of the involved functions accordingly. Similar techniques have
successfully been applied in the context of scratchpad memories and overlay memories [5].
The design of Patmos’ method cache, however, combines the predictability of a static code
layout in a scratchpad memory with the flexibility of a cache.

The predicated instructions supported by Patmos allow the elimination of branches. This
idea was first applied for wide-issue VLIW machines in order to keep the parallel execution
units busy and avoid the expensive branch penalty. The single-path programing paradigm [16]
adopts the very same idea to compute tighter WCET bounds. While it is true that for a
given single-path program the WCET bound is generally closer to the actual WCET, the
absolute WCET and its computable bound is not guaranteed to be better than for regular
programs. The problem arises from the blind elimination of branches independent from
their relevance to the final WCET. We thus propose WCET-aware if-conversion and global
scheduling in order to eliminate branches and exploit the parallel execution units of Patmos
to actively reduce the absolute WCET.

5 Evaluation

To evaluate Patmos we are working in parallel on the following pieces: a SystemC simulation
model, a VHDL-based FPGA implementation, a port of the GNU Binutils and the LLVM
compiler [11].



M. Schoeberl et al. 19

A VHDL hardware prototype was implemented to get an idea on the speed of the system
and to evaluate the feasibility of a time division multiplexed register file. For that reason two
parallel RISC pipelines, with common instruction fetch stage and shared register file and
data cache were implemented. The single pipelines are based on a load/store architecture
that uses write back.

Modern FPGAs contain extensive memory resources in terms of block RAMs. Those
SRAM-blocks can often be clocked with frequencies higher than 500 MHz. The register file
in a VLIW architecture requires a multi-port RAM that provides simultaneous access to four
read and two write ports. Previous soft core implementations have shown that the resulting
system clock frequency is far below the clocking capabilities of block RAMs. For that reason
it seems natural to access memory time division multiplexed. This allows making use of the
fast clocking capabilities of the block RAMs and is less hardware resource demanding than a
classical multi-port memory implementation.

On the downside, using multiple clocks in a pipeline implies timing problems that might
require a slowdown of the system clock frequency. Simulation on the hardware model showed
that the performance of the system greatly depends on the quality of the clocks. When the
two clocks were derived from an accurate PLL unit, a maximum pipeline clock frequency of
more than 200 MHz on a Xilinx Virtex 5 (speed grade 2) can be reached. The ALU unit
remained the critical path.

It can be concluded that the use of double-clocked block RAM for the register file in
VLIW architectures is an appropriate solution to exploit the available resources of modern
FPGAs. The promising results motivate to pursue the chosen track and to implement the
remaining functionality of the Patmos soft core.

As compiler we adapted LLVM [11] to support the instruction set of Patmos. For most
parts of the compiler backend, the proposed architecture can be treated as plain RISC
architecture. Due to the open-source nature of LLVM, it is possible to reuse code from
existing backends with similar characteristics. A first rough port for Patmos has been
implemented within a few days, by picking appropriate code from the other backends. A
feature that differs from other instruction sets is the splitting of memory accesses. However,
LLVM provides means to customize the instruction selection in the backend appropriately,
without changing the core code.

Where a VLIW does differ significantly from a RISC architecture is instruction scheduling.
Two instructions can be scheduled per cycle, and appropriate markers to separate instruction
bundles have to be inserted. Due to the simplicity of the proposed architecture, we believe
that one of the existing instruction schedulers in LLVM can be reused for our architecture
with modest customization.

6 Conclusion

In this paper we presented the time-predictable processor Patmos. We believe that future
embedded real-time systems need processors designed to minimize the WCET and implement
architectural features that are WCET analyzable. To provide good single thread performance
Patmos implements a statically scheduled, dual-issue pipeline. With a first prototype we
have evaluated the feasibility to implement a dual-issue processor in an FPGA without
hurting the maximum clock frequency. Patmos will serve as platform for future research on
co-development of time-predictable architecture features and their WCET analysis.
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Abstract
In real-time systems, timing behavior is as important as functional behavior. Modern archi-
tectures turn verification of timing aspects into a nightmare, due to their “unpredictability”.
Recently, various efforts have been undertaken to engineer more predictable architectures. Such
efforts should be based on a clear understanding of predictability. We discuss key aspects of and
propose a template for predictability definitions. To investigate the utility of our proposal, we
examine above efforts and try to cast them as instances of our template.

Digital Object Identifier 10.4230/OASIcs.PPES.2011.22

1 Introduction

Predictability resounds throughout the embedded systems community, particularly through-
out the real-time community, and has lately even made it into the Communications of the
ACM [12]. The need for predictability was recognized early [25] and has since been inspected
in several ways, e.g. [3, 26, 10]. Ongoing projects in point try to “reconcile efficiency and
predictability” (Predator1), to “reintroduce timing predictability and repeatability” by ex-
tending instruction-set architectures (ISA) with control over execution time (PRET [7, 13]),
or “guarantee the analyzability and predictability regarding timing” (MERASA [27]).

The common tenor of these projects and publications is that past developments in sys-
tem and computer architecture design are ill-suited for the domain of real-time embedded
systems. It is argued that if these trends continue, future systems will become more and
more unpredictable; up to the point where sound analysis becomes infeasible — at least in
its current form. Hence, research in this area can be divided into two strands: On the one
hand there is the development of ever better analyses to keep up with these developments.
On the other hand there is the exercise of influence on system design in order to avert the
worst problems in future designs.

We do not want to dispute the value of these two lines of research. Far from it. However,
we argue that both are often built on sand: Without a better understanding of “predictabil-
ity”, the first line of research might try to develop analyses for inherently unpredictable
systems, and the second line of research might simplify or redesign architectural components
that are in fact perfectly predictable. To the best of our knowledge there is no agreement —
in the form of a formal definition — what the notion “predictability” should mean. Instead
the criteria for predictability are based on intuition and arguments are made on a case-
by-case basis. In the analysis of worst-case execution times (WCET) for instance, simple
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in-order pipelines like the ARM7 are deemed more predictable than complex out-of-order
pipelines as found in the PowerPC755. Likewise static branch prediction is said to be
more predictable than dynamic branch prediction. Other examples are TDMA vs. FCFS
arbitration and static vs. dynamic preemptive scheduling.

The agenda of this article is to stimulate the discussion about predictability with the
long-term goal of arriving at a definition of predictability. In the next section we present key
aspects of predictability and therefrom derive a template for predictability definitions. In
Section 3 we consider work of the last years on improving the predictability of systems and
try to cast the intuitions about predictability found in these works in terms of this template.
We close this section by discussing the conclusions from this exercise with an emphasis on
commonalities and differences between our intuition and that of others.

2 Key Aspects of Predictability

What does predictability mean? A lookup in the Oxford English Dictionary provides the
following definitions:

predictable: adjective, able to be predicted.
to predict: say or estimate that (a specified thing) will happen in the future or will
be a consequence of something.

Consequently, a system is predictable if one can foretell facts about its future, i.e. deter-
mine interesting things about its behavior. In general, the behaviors of such a system can be
described by a possibly infinite set of execution traces (sequences of states and transitions).
However, a prediction will usually refer to derived properties of such traces, e.g. their length
or a number of interesting events on a trace. While some properties of a system might be
predictable, others might not. Hence, the first aspect of predictability is the property to be
predicted.

Typically, the property to be determined depends on something unknown, e.g. the input
of a program, and the prediction to be made should be valid for all possible cases, e.g. all
admissible program inputs. Hence, the second aspect of predictability are the sources of
uncertainty that influence the prediction quality.

Predictability will not be a boolean property in general, but should preferably offer shades
of gray and thereby allow for comparing systems. How well can a property be predicted? Is
system A more predictable than system B (with respect to a certain property)? The third
aspect of predictability thus is a quality measure on the predictions.

Furthermore, predictability should be a property inherent to the system. Only because
some analysis cannot predict a property for system A while it can do so for system B does
not mean that system B is more predictable than system A. In fact, it might be that the
analysis simply lends itself better to system B, yet better analyses do exist for system A.

With the above key aspects we can narrow down the notion of predictability as follows:

I Proposition 1. The notion of predictability should capture if, and to what level of precision,
a specified property of a system can be predicted by an optimal analysis.

Refinements

A definition of predictability could possibly take into account more aspects and exhibit
additional properties.
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Figure 1 Distribution of execution times ranging from best-case to worst-case execution time
(BCET/WCET). Sound but incomplete analyses can derive lower and upper bounds (LB, UB).

For instance, one could refine Proposition 1 by taking into account the complexity/cost
of the analysis that determines the property. However, the clause “by any analysis not
more expensive than X” complicates matters: The key aspect of inherence requires a
quantification over all analyses of a certain complexity/cost.
Another refinement would be to consider different sources of uncertainty separately to
capture only the influence of one source. We will have an example of this later.
One could also distinguish the extent of uncertainty. E.g. is the program input completely
unknown or is partial information available?
It is desirable that the predictability of a system can be determined automatically, i.e.
computed.
It is also desirable that predictability of a system is characterized in a compositional way.
This way, the predictability of a composed system could be determined by a composition
of the predictabilities of its components.

2.1 A Predictability Template
Besides the key aspect of inherence, the other key aspects of predictability depend on the
system under consideration. We therefore propose a template for predictability with the
goal to enable a concise and uniform description of predictability instances. It consists of
the above mentioned key aspects

property to be predicted,
sources of uncertainty, and
quality measure.

In Section 3 we consider work of the last years on improving the predictability of systems.
We then try to cast the possibly even unstated intuitions about predictability in these works
in terms of this template. But first, we consider one instance of predictability in more detail
to illustrate this idea.

2.2 An Illustrative Instance: Timing Predictability
In this section we illustrate the key aspects of predictability at the hand of timing pre-
dictability.

The property to be determined is the execution time of a program assuming uninter-
rupted execution on a given hardware platform.
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The sources of uncertainty are the program input and the hardware state in which execu-
tion begins. Figure 1 illustrates the situation and displays important notions. Typically,
the initial hardware state is completely unknown, i.e. the prediction should be valid for
all possible initial hardware states. Additionally, schedulability analysis cannot handle a
characterization of execution times in the form of a function depending on inputs. Hence,
the prediction should also hold for all admissible program inputs.
Usually, schedulability analysis requires a characterization of execution times in the form
bounds on the execution time. Hence, a reasonable quality measure is the quotient of
BCET over WCET; the smaller the difference the better.
The inherence property is satisfied as BCET and WCET are inherent to the system.

To formally define timing predictability we need to first introduce some basic definitions.

I Definition 2. Let Q denote the set of all hardware states and let I denote the set of all
program inputs. Furthermore, let Tp(q, i) be the execution time of program p starting in
hardware state q ∈ Q with input i ∈ I.

Now we are ready to define timing predictability.

I Definition 3 (Timing predictability). Given uncertainty about the initial hardware state
Q ⊆ Q and uncertainty about the program input I ⊆ I, the timing predictability of a
program p is

Prp(Q, I) := min
q1,q2∈Q

min
i1,i2∈I

Tp(q1, i1)
Tp(q2, i2) (1)

The quantification over pairs of states in Q and pairs of inputs in I captures the uncertainty.
The property to predict is the execution time Tp. The quotient is the quality measure:
Prp ∈ [0, 1], where 1 means perfectly predictable.

Refinements

The above definitions allow analyses of arbitrary complexity, which might be practically
infeasible. Hence, it would be desirable to only consider analyses within a certain complexity
class. While it is desirable to include analysis complexity in a predictability definition it
might become even more difficult to determine the predictability of a system under this
constraint: To adhere to the inherence aspect of predictability however, it is necessary to
consider all analyses of a certain complexity/cost.

Another refinement is to distinguish hardware- and software-related causes of unpre-
dictability by separately considering the sources of uncertainty:

I Definition 4 (State-induced timing predictability).

SIPrp(Q, I) := min
q1,q2∈Q

min
i∈I

Tp(q1, i)
Tp(q2, i)

(2)

Here, the quantification expresses the maximal variance in execution time due to different
hardware states, q1 and q2, for an arbitrary but fixed program input, i. It therefore captures
the influence of the hardware, only. The input-induced timing predictability is defined
analogously. As a program might perform very different actions for different inputs, this
captures the influence of software:

I Definition 5 (Input-induced timing predictability).

IIPrp(Q, I) := min
q∈Q

min
i1,i2∈I

Tp(q, i1)
Tp(q, i2) (3)
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Example for state-induced timing unpredictability

A system exhibits a domino effect [14] if there are two hardware states q1, q2 such that
the difference in execution time of the same program starting in q1 respectively q2 may be
arbitrarily high, i.e. cannot be bounded by a constant. For instance, the iterations of a
program loop never converge to the same hardware state and the difference in execution
time increases in each iteration.

In [22] Schneider describes a domino effect in the pipeline of the PowerPC 755. It
involves the two asymmetrical integer execution units, a greedy instruction dispatcher, and
an instruction sequence with read-after-write dependencies.

The dependencies in the instruction sequence are such that the decisions of the dispatcher
result in a longer execution time if the initial state of the pipeline is empty than in case
it is partially filled. This can be repeated arbitrarily often, as the pipeline states after the
execution of the sequence are equivalent to the initial pipeline states. For n subsequent
executions of the sequence, execution takes 9n+ 1 cycles when starting in one state, q∗1 , and
12n cycles when starting in the other state, q∗2 . Hence, the state-induced predictability can
be bounded for such programs pn:

SIPrpn(Q, I) = min
q1,q2∈Q

min
i∈I

Tpn
(q1, i)

Tpn(q2, i)
≤ Tpn

(q∗1 , i∗)
Tpn(q∗2 , i∗)

= 9n+ 1
12n (4)

3 Supporting Evidence?

In recent years, significant efforts have been undertaken to design more predictable architec-
tural components. As we mentioned in the introduction, these efforts are usually based on
sensible, yet informal intuitions of what makes a system predictable. In this section, we try
to cast these intuitions as instances of the predictability template introduced in Section 2.1.

We summarize our findings about how existing efforts fit into our predictability template
in Tables 1 and 2. For each approach we determine the property it is concerned with,
e.g. execution time, the source of uncertainty that makes this property unpredictable,
e.g. uncertainty about program inputs, and the quality measure that the approach tries to
improve, e.g. the variation in execution time. Whenever the goals that are explicitly stated in
the referenced papers do not fit into this scheme, we determine whether the approach can still
be explained within the scheme. In that case, we provide appropriate characterizations in
parentheses. In the following sections, we supplement the two tables with brief descriptions
of the approaches.

3.1 Branch Prediction

Bodin and Puaut [5] and Burguière and Rochange [6] propose WCET-oriented static branch
prediction schemes. Bodin and Puaut specifically try to minimize the number of branch
mispredictions along the worst-case execution path, thereby minimizing the WCET. Using
static branch prediction rather than dynamic prediction is motivated by the difficulty in
modeling complex dynamic schemes and by the incurred analysis complexity during WCET
estimation. The approaches are evaluated by comparing WCET estimates for the generated
static predictions with WCET estimates for the dynamic scheme, based on conservative
approximations of the number of mispredictions.
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Table 1 Part I of constructive approaches to predictability.

Approach Hardware unit(s) Property Source of uncertainty Quality measure

WCET-oriented static branch
prediction [5, 6]

Branch predictor Number of branch
mispredictions

Analysis imprecision
(Uncertainty about
initial predictor state)

Statically computed
bound (Variability
in mispredictions)

Time-predictable execu-
tion mode for superscalar
pipelines [21]

Superscalar out-of-
order pipeline

Execution time of
basic blocks

Analysis imprecision
(Uncertainty about the
pipeline state at basic
block boundaries)

Qualitative: analy-
sis practically fea-
sible (Variability in
execution times of
basic blocks)

Time-predictable Simultane-
ous Multithreading [2, 16]

SMT processor Execution time of
tasks in real-time
thread

Uncertainty about execu-
tion context, i.e., other
tasks executing in non-
real-time threads

Variability in execu-
tion times

CoMPSoC: a template for com-
posable and predictable multi-
processor system on chips [9]

System on chip in-
cluding network on
chip, VLIW cores
and SRAM

Memory access
and communica-
tion latency

Concurrent execution of
unknown other applica-
tions

Variability in laten-
cies

Precision-Timed Architec-
tures [13]

Thread-interleaved
pipeline and
scratchpad memo-
ries

Execution time Uncertainty about initial
state and execution con-
text

Variability in execu-
tion times

Predictable out-of-order execu-
tion using virtual traces [28]

Superscalar out-of-
order pipeline and
scratchpad memo-
ries

Execution time of
program paths

State of features such
as caches, branch predic-
tors, etc. and input val-
ues of variable latency in-
structions

Variability in execu-
tion times

Memory Hierarchies, Pipelines,
and Buses for Future Architec-
tures in Time-Critical Embed-
ded Systems [29]

Pipeline, memory
hierarchy, and
buses

Execution time,
memory access la-
tencies, latencies
of bus transfers

Uncertainty about the
pipeline state, the cache
state, and about concur-
rently executing applica-
tions

Variability in execu-
tion times and mem-
ory access latencies

3.2 Pipelining and Multithreading
Rochange and Sainrat [21] propose a time-predictable execution mode for superscalar pipe-
lines. They simplify WCET analysis by regulating instruction flow of the pipeline at the
beginning of each basic block. This removes all timing dependencies within the pipeline
between basic blocks. Thereby it reduces the complexity of WCET analysis, as it can be
performed on each basic block in isolation. Still, caches have to be accounted for globally.
The authors take the stance that efficient analysis techniques are a prerequisite for pre-
dictability: “a processor might be declared unpredictable if computation and/or memory
requirements to analyse the WCET are prohibitive.”

Barre et al. [2] and Mische et al. [16] propose modifications to simultaneous multithread-
ing (SMT) architectures. They adapt thread-scheduling in such a way that one thread, the
real-time thread, is given priority over all other threads, the non-real-time threads. As a
consequence, the real-time thread experiences no interference by other threads and can be
analyzed without having to consider its context, i.e., the non-real-time threads.

3.3 Comprehensive Approaches
Hansson et al. [9] propose CoMPSoC, a template for multiprocessors with predictable and
composable timing. By predictability they refer to the ability to determine lower bounds
on performance. By composability they mean that the composition of applications on one
platform does not have any influence on their timing behavior. Predictability is achieved by
VLIW cores and no use of caches or DRAM. Composability is achieved by TDM arbitration
on the network on chip and on accesses to SRAMs.
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Lickly et al. [13] present a precision-timed (PRET) architecture that uses a thread-
interleaved pipeline and scratchpad memories. The thread-interleaved pipeline provides
high overall throughput and constant execution times of instructions in all threads, at the
sacrifice of single-thread performance. PRET introduces new instructions into the ISA to
provide control over timing at the program level.

Whitham and Audsley [28] refine the approach of Rochange [21]. Any aspect of the
pipeline that might introduce variability in timing is either constrained or eliminated:
scratchpads are used instead of caches, dynamic branch prediction is eliminated, variable
duration instructions are modified to execute a constant number of cycles, exceptions are
ignored. Programs are statically partitioned into so-called traces. Within a trace, branches
are predicted perfectly. Whenever a trace is entered or left, the pipeline state is reset to
eliminate any influence of the past.

Wilhelm et al. [29] give recommendations for future architectures in time-critical em-
bedded systems. Based on the principle to reduce the interference on shared resource, they
recommend to use caches with LRU replacement, separate instruction and data caches, and
so-called compositional architectures, such as the ARM7. Such architectures do not have
domino effects and exhibit little state-induced variation in execution time.

3.4 Memory Hierarchy
In the context of the Java Optimized Processor, Schoeberl [23] introduces the so-called
method cache: instead of caching fixed-size memory blocks, the method cache caches entire
Java methods. Using the method cache, cache misses may only occur at method calls and
returns. Due to caching variable-sized blocks, LRU replacement is infeasible. Metzlaff et
al. [15] propose a very similar structure, called function scratchpad, which they employ
within an SMT processor.

Schoeberl et al. [24] propose dedicated caches for different types of data: methods (in-
structions), static data, constant, stack data, and heap data. For heap data, they propose a
small, fully-associative cache. Often, the addresses of accesses to heap data are difficult, or in
case of most memory allocators, impossible to predict statically. In a normal set-associative
cache, an access with an unknown address may modify any cache set. In the fully-associative
case, knowledge of precise memory addresses for heap data is unnecessary.

Puaut and Decotigny [18] propose to statically lock cache contents to eliminate intra-

Table 2 Part II of constructive approaches to predictability.

Approach Hardware unit(s) Property Source of uncertainty Quality measure

Method Cache [23, 15] Memory hierarchy Memory access
time

(Uncertainty about initial
cache state)

Simplicity of analysis

Split Caches [24] Memory hierarchy Number of data
cache hits

Among others, uncertainty
about addresses of data ac-
cesses

(Percentage of ac-
cesses that can be
statically classified)

Static Cache Locking [18] Memory hierarchy Number of in-
struction cache
hits

Uncertainty about initial
cache state and interference
due to preempting tasks

Statically computed
bound (Variability in
number of hits)

Predictable DRAM Con-
trollers [1, 17]

DRAM controller in
multi-core system

Latency of DRAM
accesses

Occurrence of refreshes and
interference by concurrently
executing applications

Existence and size of
bound on access la-
tency

Predictable DRAM Re-
freshes [4]

DRAM controller Latency of DRAM
accesses

Occurrence of refreshes Variability in laten-
cies

Single-path paradigm [19] Software-based Execution time Uncertainty about program
inputs

Variability in execu-
tion times
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task cache interference and inter-task cache interferences (in preemptive systems). They
introduce two low-complexity algorithms to statically determine which instructions to lock
in the cache. To evaluate their approach, they compare statically guaranteed cache hit rates
in unlocked caches with hit rates in locked caches.

Akesson et al. [1] and later Paolieri et al. [17] propose the predictable DRAM controllers
Predator and AMC, respectively. These controllers provide a guaranteed maximum latency
and minimum bandwidth to each client, independently of the execution behavior of other
clients. This is achieved by predictable access schemes, which allow to bound the latencies
of individual memory requests, and predictable arbitration mechanisms: CCSP in Predator
and TDM in AMC, allow to bound the interference between different clients.

Bhat and Mueller [4] eliminate interferences between DRAM refreshes and memory ac-
cesses, so that WCET analysis can be performed without considering refreshes. Standard
memory controllers periodically refresh consecutive rows. Their idea is to instead execute
these refreshes in bursts and refresh all lines of a DRAM device in a single or few bursts.
Such refresh bursts can then be scheduled in periodic tasks and taken into account during
schedulability analysis.

3.5 Discussion
The predictability view of most efforts can indeed be cast as instances of the predictability
template introduced in Section 2.1. Also, different efforts do require different instantia-
tions: Properties found include: execution time, number of branch mispredictions, number
of cache misses, DRAM access latency. Sources of uncertainty include: initial {proces-
sor|cache|branch predictor} state, but also program inputs, and concurrently executing ap-
plications. Most disagreement between the predictability template and the views taken in
the analyzed efforts arises at the question of the quality measure: Many approaches use ex-
isting static analysis approaches to evaluate the predictability improvement. This does not
establish that an approach improves predictability. However, as the inherent predictability
is often hard to determine, this is still useful. Designers of real-time systems need analysis
methods that will provide useful guarantees. So, from a practical point of view, system A
will be considered more predictable than system B if some analysis for A are more precise
than for B. In such cases, further research efforts should clarify whether A is indeed more
predictable than B. Overapproximating static analyses provide upper bounds on a system’s
inherent predictability. Few methods exist so far to bound predictability from below.

4 Related Work

Here we want to discuss related work that tries to capture the essence of predictability or
aims at a formal definition.

Bernardes [3] considers a discrete dynamical system (X, f), where X is a metric space
and f describes the behavior of the system. Such a system is considered predictable at
a point a, if a predicted behavior is sufficiently close to the actual behavior. The actual
behavior at a is the sequence (f i(a))i∈N and the predicted behavior is a sequence of points
in δ-environments, (ai)i∈N, where ai ∈ B(f(ai−1), δ), and the sequence starts at a0 ∈ B(a, δ).

Stankovic and Ramamritham [25] already posed the question about the meaning of
predictability in 1990. The main answers given in this editorial is that “it should be possible
to show, demonstrate, or prove that requirements are met subject to any assumptions made.”
Hence, it is rather seen as the existence of successful analysis methods than an inherent
system property.
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Henzinger [10] describes predictability as a form of determinism. Several forms of non-
determinism are discussed. Only one of them influences observable system behavior, and
thereby qualifies as a source of uncertainty in our sense. There is also a short discussion
how to deal with such nondeterminism: Either avoid it by building systems bottom-up us-
ing only deterministic components or achieve top-level determinism by hiding lower-level
nondeterminism by a deterministic abstraction layer. [25] discusses a similar approach.

Thiele andWilhelm [26] describe threats to timing predictability of systems, and proposes
design principles that support timing predictability. Timing predictability is measured as
difference between the worst (best) case execution time and the upper (lower) bound as
determined by an analysis.

In a precursor of this article, Grund [8] also attempts to formally capture predictability. It
is argued, as opposed to almost all prior attempts, that predictability should be an inherent
system property.

Kirner and Puschner [11] describe time-predictability as the ability to calculate the dura-
tion of actions and explicitly includes the availability of efficient calculation techniques. Fur-
thermore, a “holistic definition of time-predictability” is given. It combines the predictability
of timing, as given in [8] and in Equation 1; and the predictability of the worst-case timing,
as given in [26].

[20] does not aim at a general definition of predictability. Instead the predictability
of caches, in particular replacement policies, is considered. Two metrics are defined that
indicate how quickly uncertainty, which prevents the classification of hits respectively misses,
can be eliminated. As these metrics mark a limit on the precision that any cache analysis
can achieve, they are inherent system properties.

5 Summary and Future Work

The most severe disagreement between our opinion on predictability and those of others
concerns the inherence property. We think that the aspect of inherence is indispensable to
predictability: Basing the predictability of a system on the result of some analysis of the
system is like stating that sorting takes exponential time only because nobody has found a
polynomial algorithm yet!

Modern computer architectures are so complex that arguing about properties of their
timing behavior as a whole is extremely difficult. We are in search of compositional notions of
predictability, which would allow us to derive the predictability of such an architecture from
that of its pipeline, branch predictor, memory hierarchy, and other components. Future work
should also investigate the relation of predictability to other properties such as robustness,
composability and compositionality.
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Abstract
In order to meet performance/low energy/integration requirements, parallel architectures (multi-
threaded cores and multi-cores) are more and more considered in the design of embedded systems
running critical software. The objective is to run several applications concurrently. When applic-
ations have strict real-time constraints, two questions arise: a) how can the worst-case execution
time (WCET) of each application be computed while concurrent applications might interfere?
b) how can the tasks be scheduled so that they are guarantee to meet their deadlines? The second
question has received much attention for several years [4, 8]. Proposed schemes generally assume
that the first question has been solved, and in addition that they do not impact the WCETs. In
effect, the first question is far from been answered even if several approaches have been proposed
in the literature. In this paper, we present an overview of these approaches from the point of
view of static WCET analysis techniques.
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1 Introduction

Parallel architectures, including multithreaded processors (MT) and multi-cores (MC), are
being increasingly used in embedded systems because they fulfill various requirements like high
performance, reduced energy consumption and thermal dissipation, and high integration. This
is achieved through resource sharing among tasks: space sharing in instruction queues (MT)
or caches (MT&MC), and time sharing in the pipeline (MT) or on the shared bus to the
memory hierarchy (MC).
Now, in hard real-time systems, some tasks have strict deadlines and they must be carefully
scheduled to meet them. Task scheduling algorithms rely on the knowledge of the WCET of
each task. Research on timing analysis has been carried out for more than fifteen years. The
proposed approaches range from testing techniques, that estimate the worst-case execution
time from observed execution times (either on the target hardware or on a cycle-accurate
simulator) which is clearly unsafe for critical software, to solutions based on static software
analysis techniques that compute safe WCETs provided the model of the target hardware is
correct. In this paper, we focus on static WCET analysis which is the most appropriate when
considering hard real-time tasks but also the most sensible to non deterministic instructions
timings.

Until recently, static WCET analysis has assumed that the task under analysis could
not be impacted by any external event (either related to another task or to hardware-level
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devices like timer interrupts or memory refreshes). Unfortunately, resource sharing in a
parallel architecture questions this assumption since it induces tasks interferences that are
likely to impact instructions timings. Such interferences include conflicts to access a shared
resource, which are solved by stalling all the requesting tasks but one, as well as corruption
in memories when a task invalidates part of the contents that was used by another task.

Recent work has focused on these issues and different kinds of approaches have been
proposed: some intend to take the possible interferences into account when computing the
WCET of a task, others aim at controlling the interactions to make the WCET analysis
easier. In the latter category, some solutions require detailed knowledge of all the tasks that
may execute concurrently to the task to be analyzed, while other solutions make it possible
to determine the WCET without knowing anything about the concurrent tasks. In this
paper, we review all these approaches and we discuss their relevance from the point of view
of static WCET analysis.

The paper is organized as follows. Section 2 gives a short overview of static WCET
analysis techniques with special focus on hardware-specific parts and shows how resource
sharing may impact instruction timings. A general overview of the approaches that have
been proposed to deal with inter-task interferences is given in Section 3. In Sections 4
and 5, techniques related to handling storage and bandwidth resource sharing respectively
are presented. Concluding remarks are given in Section 6.

2 Static WCET analysis and impact of resource sharing

2.1 Static WCET analysis
Techniques for static WCET analysis have been investigated for the last fifteen years. The
proposed solutions rely on a number of assumptions: the WCET is computed for a task
considered alone, that is not impacted by any other task or external event, that cannot be
preempted by the system scheduler (except for specific works on the effects of preemptions,
like [3]) and that cannot be interrupted.

Static WCET analysis typically requires three steps. The flow analysis builds the Control
Flow Graph of the application from its executable code, and determines flow facts like
loop bounds and infeasible paths from the source code [10, 15, 21]. The low-level analysis
computes the worst-case execution costs of basic blocks taking into account the specifications
of the target hardware and will be detailed below. Finally the WCET computation combines
the flow facts and the execution costs to find out the longest path and its execution time: one
popular method for this computation is the Implicit Path Enumeration Technique (IPET) [17]
based on integer linear programming techniques.

The low-level analysis step breaks down into two sub-steps. The first one examines the
behavior of history-based components, mainly the instruction and data caches: the most
popular approaches are based on abstract interpretation techniques [6] and assign a category
to each access to the cache (ALWAYS_MISS, ALWAYS_HIT, PERSISTENT or NOT_CLASSIFIED).
Existing solutions consider set-associative instruction and data caches [11], or multi-level
cache hierarchies [13]. The second part of low-level analysis computes the execution cost of
each basic block when executed in the pipeline [34, 18, 32]. When examining the way a basic
block is processed through the pipeline, any possible context (initial pipeline state) must be
considered. The existing algorithms differ in how this context is expressed: as a worst-case
pipeline state [18], as an abstract state built by abstract interpretation [34] or as a set of
parameters that represent the availability of every pipeline resource [32]. But they are in
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agreement on the fact that they derive block costs from relative (instead of absolute) start
and finish times. The impact of the cache latencies (related to the previously determined
categories) may be taken into account when estimating the block costs or considered globally
in the WCET computation step (which is likely to be less precise, and even unsafe for
processors that make timing anomalies [20, 31] possible).

2.2 Impact of resource sharing on instructions timings

Simultaneous multithreading (SMT) processors execute several threads concurrently to
improve the usage of hardware resources (mainly functional units) [38]. Common resources
(instruction queues, functional units, but also instruction and data caches and branch pre-
dictor tables) are shared between concurrent threads. Some of these resources (instruction
queues and buffers, caches) are referred to as storage resources because they keep information
for a while, generally for several cycles. On the contrary, bandwidth resources (e.g. functional
units or commit stage) are typically reallocated at each cycle [5]. A similar terminology can
be used for the shared resources in a multicore architecture: a cache that is shared among
the cores is a storage resource while a common bus to the memory hierarchy is a bandwidth
resource.

Resource sharing is likely to impact the instructions timing. For a bandwidth resource,
possible conflicts between concurrent threads to access the resource may delay some of the
threads. As a result, some instruction latencies are lengthened. In an SMT core, delayed
instructions may spend more time than expected in some of the pipeline stages. In a multicore,
the latency of an access to the main memory may be increased because of the waiting time
to the bus.
The effects of sharing storage resources are two-fold. On the one hand, the resource capacity
that is usable by a thread may be less than expected since some entries may be occupied by
other threads. In an SMT core, this may result in instructions being stalled in a pipeline
stage because their destination queue is full. On the other hand, shared memories like
caches or branch predictor tables may have their contents corrupted by other threads which
could produce either destructive or constructive effects. A destructive effect is observed
when another thread degrades the memory contents from the point of view of the thread
under analysis: for example, another thread replaces a cache line that had been loaded by
the analyzed thread and is still useful. On the contrary, a constructive effect improves the
situation for the thread under analysis: for example, a cache line that it requires has been
brought into the cache by another thread (this may happen when the threads share parts of
code or data). However, even what is seen as constructive in the average case might impair
the results of WCET analysis if the processor suffers from timing anomalies [20, 31] (in that
case, a miss in the cache does not always lead to the worst-case execution time).

It is absolutely unsafe to ignore the effects of resource sharing when computing WCETs.
Although we focus on static WCET analysis throughout this paper, we also insist that it is at
least equally unsafe to rely on measurement-based timing analysis on a parallel architecture
since it is very unlikely that all the possible threads interferences can be observed. In the
next section, we review various approaches that have been investigated to cope with these
difficulties.
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3 General approaches to WCET analysis/analysability of concurrent
applications

We have found three kinds of approaches to the problem of accounting for parallel tasks
interferences when computing the WCET of one of these tasks. They differ from each other
by the way they consider that the impact of concurrent tasks should be taken into account.
In the following, τ represents a task under WCET analysis while T stands for the set of its
concurrent tasks.

In this section, we give the main principles of these approaches. How they have been
instantiated in the literature is described later in the paper.

3.1 Joint WCET analysis of tasks
A first category of approaches to the WCET analysis of a task executed in parallel to other
tasks includes the solutions that consider the set of tasks altogether in order to determine
their possible interactions. As far as storage resources are concerned, this means analyzing
the code of each task in T ∪ {τ} to determine possible conflicts, and then accounting for
the impact of these conflicts on τ ’s WCET. For bandwidth resources, identifying conflicts
generally requires considering all the possible task interleavings which is likely to be complex
with fine-grained interleavings (e.g. at instruction- or memory access-level).

The feasibility of joint analysis techniques relies on all the co-running tasks being known
at analysis time. This might be an issue when considering a mixed-criticality workload for
which non critical tasks are dynamically scheduled (then any non critical tasks in the system
should be considered as a potential opponent). In addition, it may happen that the non
critical tasks have not been developed with WCET-analysis in mind and they may not be
analyzable, e.g. due to tricky control flow patterns. Also, even with an homogeneously
critical workload, the set of tasks that may be co-scheduled with the task under analysis
depends on the schedule which, in turn, is determined from the tasks WCETs. This issue
might be tackled through an iterative process but we are not aware of any work on this topic.

3.2 Statically-controlled resource sharing
Acknowledging the difficulty of analyzing storage and bandwidth conflicts accurately, a
number of solutions have been proposed to statically master the task interferences so that
they might be more easily taken into account in the WCET analysis. The techniques in this
category all require having knowledge of the complete workload.

Controlling interferences in storage resources generally consists in limiting such inter-
ferences by restricting accesses to the shared resource. As we will see in the next sections,
the proposed techniques of this kind really tend to meet the requirements of static WCET
analysis techniques in terms of reduced complexity, but the solutions basic on static control
proposed for bandwidth resources do not fit the principles of static WCET analysis.

3.3 Task isolation techniques
The third category of approaches includes all those that intend to make it possible to analyze
the WCET of a task/thread without any knowledge about the concurrent tasks/threads.
This is achieved through the design of hardware schemes that exhibit predictable behavior
for shared resources. For storage resources, a common approach is to partition the storage
among the tasks, so that each critical task has a private partition. For bandwidth resources,
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an appropriate arbitration is needed, that guarantees upper bound delays independently of
the workload.

In the following, we review the techniques that have been proposed so far and that belong
to these three categories.

4 Approaches to analyze storage resource sharing

4.1 Joint analysis of memories
Several recent papers focus on the analysis of the possible corruption of L2 shared instruction
caches by concurrent tasks [40, 41, 12]. The general process is the following: L1 and L2
instruction cache analysis is first performed for each task in T ∪ {τ} independently, ignoring
interferences, using usual techniques [11]; then the results of the analysis of the L2 cache for
task τ are modified considering that each cache set used by another task in T is likely to be
corrupted. For a direct-mapped cache, as studied by Yan and Zhang [40], any access to a
conflicting set is classified as ALWAYS_MISS (should be NOT_CLASSIFIED if timing anomalies
may occur). For a set-associative cache, as considered by Li et al. [41] and Hardy et al. [12],
possible conflicts impact the ages of cache lines.

The main concern with this general approach is its scalability to large tasks: if the
number of possible concurrent tasks is large and if these tasks span widely over the L2
cache, we expect most of the L2 accesses to be NOT_CLASSIFIED which may lead to an
overwhelmingly overestimated WCET. For this reason, Li et al. [41] refine the technique by
introducing an analysis of tasks lifetimes, so that tasks that cannot be executed concurrently
(according to the scheduling algorithm, which is non-preemptive and static priority-driven
in this paper, and to inter-tasks dependencies) are not considered as possibly conflicting.
Their framework involves an iterative worst-case response time analysis process, where each
iteration (i) estimates the BCET and WCET of each task according to expected conflicts in
the L2 cache; (ii) determines the possible tasks schedules, which may show that some tasks
cannot overlap (the initial assumption is that all tasks overlap). This approach is likely to
reduce pessimism but may not fit independent tasks with a more complex scheduling scheme.
Another solution to the complexity issue has been proposed by Hardy et al. [12]: they
introduce a compiler-directed scheme that enforces L2 cache bypassing for single-usage
program blocks. This sensibly reduces the number of possible conflicts. Lesage et al. [16]
have recently extended this scheme to shared data caches.

4.2 Storage partitioning and locking schemes
Cache partitioning and locking techniques have first been proposed as a means to simplify
the cache behavior analysis in single-core non-preemptive systems [27, 26, 30, 25]. Recently,
these techniques have been investigated by Suhendra and Mitra [37] to assess their usability
in the context of shared caches in multicore architectures. They consider combinations of
(static or dynamic) locking schemes and (core-based or task-based) partitioning techniques.
They find out that (i) core-based partitioning strategies (where each core has a private
partition and any task can use the entire partition of the core it is running on) outperform
task-based algorithms; (ii) dynamic locking techniques, that allow reloading the cache during
execution, lead to lower WCETs than static approaches.

Paolieri et al. [23] investigate software-controlled hardware cache partitioning schemes.
They consider columnization (each core has a private write access to one or several ways in a
set-associative cache) and bankization (each core has a private access to one or several cache
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banks) techniques. In both cases, the number of ways/banks allocated to each core can be
changed by software, but it is assumed to be fixed all along the execution of a given task.
They show that bankization leads to tighter WCET estimates.

Techniques to achieve timing-predictability in SMT processors are also based on parti-
tioning instructions queues [1, 22].

5 Approaches to analyze bandwidth resources sharing

5.1 Joint analysis of conflict delays
Crowley and Baer have considered the case of a network processor running pipelined packet
handling software [7]. The application includes several threads, each one implementing one
stage of the computation. The processor features fine-grained multithreading: it provides
specific hardware to store the architectural state of several threads, which allows fast context
switching, and switches to another thread whenever the current thread is stalled on a long-
latency operation. The time during which a thread is suspended depends on the time the
other threads can execute before, in turn, yielding control so that the first thread can resume
its execution. The proposed approach consists in determining the overall WCET of the
application (set of concurrent threads) by considering the threads altogether. The Control
Flow Graphs used for static WCET analysis are augmented with yield nodes at the points
where the threads will yield control. Yield edges link each yield node of a given thread to
all the return-from-yield nodes of any other thread that is likely to be selected when it is
suspended. This results in a complex global Control Flow Graph which, in addition to the
control flow of each thread, expresses the possible control flow from one thread to another.
From this CFG, an integer linear program is built and used to determine the overall WCET
of the application, using the IPET method [17]. Our feeling is that such an approach is not
scalable and cannot handle complex applications.

5.2 Statically-scheduled access to shared bandwidth resources
To improve the analysability of latencies to a shared bus in a multicore architecture,
Rosén et al. [33] introduce a TDMA-based bus arbiter. A bus schedule contains a number of
slots, each allocated to one core, and is stored in a table in the hardware. At run-time, the
arbiter periodically repeats the schedule and grants the bus to the core the current slot has
been assigned to. The idea behind this scheme is that a predefined bus schedule makes the
latencies of bus accesses predictable for WCET analysis. This relies on the assumption that
it is possible, during the low level analysis, to determine the start time of each node (basic
block) in the CFG so that it can be decided whether an access to the bus is within a bus slot
allocated to the core or is to be delayed. This assumption does not hold for static WCET
analysis techniques. It would require unrolling all the possible paths in the CFG which
clearly goes against the root principles of static analysis. Moreover, in the case of multiple
possible paths (which is the common case), a block is likely to exhibit a large number of
possible start times which will noticeably complicate the WCET computation. Alternatively,
the delay to get access to the bus could be upper bounded by the sum of the other slots
lengths. This would come to the simple round-robin solution discussed below if slots are as
short as the bus latency, but would probably severely degrade the worst-case performance
with longer slots. For these reasons, we believe that static WCET analysis can get advantage
of static bus scheduling only for applications that exhibit a very limited number of execution
paths, as targeted by the single-path programming paradigm [28].

PPES 2011



38 Timing analysability of parallel architectures

5.3 Task-independent bandwidth partitioning schemes
Solutions to make the latencies to shared bandwidth resources predictable reside in bandwidth
partitioning techniques. This is what we call task isolation: an upper bound of the shared
resource latency is known (it does not depend on the nature of the concurrent tasks) and
can be considered for WCET analysis.

Mische et al. [22] introduce CarCore, a multithreaded embedded processor that supports
one hard real-time thread (HRT) together with non critical threads. Temporal thread
isolation is ensured for the HRT only, in such a way that its WCET can be computed as if it
was executed alone in the processor (i.e. its execution time cannot be impacted by any other
thread).

When considering multiple critical threads running simultaneously either in an SMT
core or in a multi-core architecture (with one hard real-time thread per core), most of the
approaches are based on Round-Robin-like arbitration which allows considering an upper
bound on the latency to the shared resource: D = N × L− 1 where L is the latency of the
resource and N is the number of competing tasks. Barre et al. [1] propose an architecture
for an SMT core supporting several critical threads: to provide time-predictability, the
storage resources (e.g. instruction queues) are partitioned and the bandwidth resources (e.g.
functional units) are scheduled by such a round-robin scheme. Paolieri et al. [23] propose a
round-robin-like bus arbiter to the shared memory hierarchy in a multi-core architecture. This
scheme is completed by a time-predictable memory controller [24] that also guarantees upper
bounds on the main memory latencies. Bourgade et al. [2] introduce a multiple-bandwidth
bus arbiter where each core is assigned a priority-level that defines its upper-bound delay to
get access to the bus. This scheme better fits workloads where threads exhibit heterogeneous
demands to the main memory.

The MERASA project [39] funded by the European Community (FP7 program) has
designed a complete time-predictable multicore architecture with SMT cores, that implements
some of the mechanisms mentioned above.

The PRET architecture [19] is built around a thread-interleaved pipeline: it includes
private storage resources for six threads and each of the six pipeline stages processes an
instruction from a different thread. To prevent long-latency instructions from stalling the
pipeline and thus impacting the other threads, these instructions are replayed during the
thread’s slots until completion. Each thread has private instruction and data scratchpad
memories and the off-chip memory is accessed through a memory wheel scheme where each
thread has its own access window.

6 Conclusion

Parallel architectures are more and more frequently used in embedded system designs.
However, they raise timing-analysability issues for critical applications for which worst-case
execution time must be computed. Recent research on WCET analysis techniques and
real-time systems design address this topic.

We have found three kinds of approaches in the literature. Some of them intend to consider
the concurrent tasks altogether to get insight into their possible interferences. Unfortunately,
these techniques would probably not be feasible for a real-size system. The second category
of approaches includes those that exploit the knowledge of the whole set of concurrent tasks
to statically partition accesses to storage and bandwidth resources. This seems to be sound
for storage resources, even if it requires a preliminary analysis of conflicts that may be
costly in time. But fine-grained static-scheduling schemes for bandwidth resources do not
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fit static WCET analysis techniques. For these reasons, approaches belonging to the third
category, that aim at making the WCET of one task computable independently of the nature
of concurrent tasks, seem to be the most relevant today. However, existing schemes probably
do not scale well and will have to be improved to allow wider parallelism.

Research on WCET analysis and WCET-aware design of parallel architectures is still in
early stages. We expect these topics to receive more and more attention in the next years. We
believe that future critical system designs will favor task isolation at various levels to keep the
problem of determining the WCETs of tasks tractable even on large-scale architectures. Task
isolation may be enforced using hardware arbitration schemes in a hierarchical architecture
where each resource is shared by only a limited number of nodes. In addition, the software
should be designed in such a way that conflicts can only occur in well-delimited parts of
the task codes. Such a behavior can be achieved considering appropriate resource access
models, where a task can access a shared resource only in dedicated phases, as proposed
in [36]. Provided the hardware and software conjunctly limit the conflicts between tasks, the
techniques that have been proposed to analyse the WCETs considering the possible task
interaction may be usable and useful to take into account the remaining possible conflicts.
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Abstract
Recent theoretical studies have shown that partitioning-based scheduling has better real-time
performance than other scheduling paradigms like global scheduling on multi-cores. Especially,
a class of partitioning-based scheduling algorithms (called semi-partitioned scheduling), which
allow to split a small number of tasks among different cores, offer very high resource utilization,
and appear to be a promising solution for scheduling real-time systems on multi-cores. The major
concern about the semi-partitioned scheduling is that due to the task splitting, some tasks will
migrate from one core to another at run time, and might incur higher context switch overhead
than partitioned scheduling. So one would suspect whether the extra overhead caused by task
splitting would counteract the theoretical performance gain of semi-partitioned scheduling.

In this work, we implement a semi-partitioned scheduler in the Linux operating system, and
run experiments on a Intel Core-i7 4-cores machine to measure the real overhead in both par-
titioned scheduling and semi-partitioned scheduling. Then we integrate the obtained overhead
into the state-of-the-art partitioned scheduling and semi-partitioned scheduling algorithms, and
conduct empirical comparison of their real-time performance. Our results show that the extra
overhead caused by task splitting in semi-partitioned scheduling is very low, and its effect on the
system schedulability is very small. Semi-partitioned scheduling indeed outperforms partitioned
scheduling in realistic systems.

1998 ACM Subject Classification C.3 [Special-purpose and application-based systems]: Real-
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1 Introduction

It has been widely believed that future real-time systems will be deployed on multi-core pro-
cessors, to satisfy the dramatically increasing high-performance and low-power requirements.
There are two basic approaches for scheduling real-time tasks on multiprocessor/multi-core
platforms [3]: In the global approach, each task can execute on any available processor at
run time. In the partitioned approach, each tasks is assigned to a processor beforehand and
during the run time each task can only execute on this particular processor. Recent studies
showed that the partitioned approach is superior in scheduling hard real-time systems, for
both theoretical and practical reasons. However, partitioned scheduling still suffers from
resource waste similar to the bin-packing problem: a task would fail to be partitioned to any
of the processors when the total available capacity of the whole system is still large. When
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the individual task utilization is high, this waste could be significant. In the worst-case only
half of the system resource can be utilized in partitioned scheduling.

To overcome this problem, recently researchers proposed semi-partitioned scheduling
[1, 2, 4, 5, 6, 7], in which most tasks are statically assigned to a corresponding fixed processor
as in partitioned scheduling, while a few number of tasks are split into several subtasks, which
are assigned to different processors. Theoretical studies have shown that semi-partitioned
scheduling can significantly improve the resource utilization over partitioned scheduling, and
appears to a promising solution for scheduling real-time systems on multi-cores.

While there have been quite a few works on implementing global and partitioned scheduling
algorithms in existing operating systems and studying their characterizations like run-time
overheads, the study of semi-partitioned scheduling algorithms is mainly on the theoretical
aspect. The semi-partitioned scheduling has not been accepted as a mainstream design
choice due to the lack of evidences on its practicability. Particularly, in semi-partitioned
scheduling, some tasks will migrate from one core to another at run time, and might incur
higher context switch overhead than partitioned scheduling. So one would suspect whether
the extra overhead caused by task splitting would counteract the theoretical performance
gain of semi-partitioned scheduling.

In this work, we consider the implementation and characterization of semi-partitioned
scheduling in realistic systems. We implement a semi-partitioned scheduler in Linux 2.6.32.
Then we measure its realistic run-time overhead on an Intel Core-i7 4-cores machine. Fi-
nally we integrate the measured overhead into empirical comparison of the state-of-the-art
partitioned scheduling and semi-partitioned scheduling algorithms. Our experiments show
that semi-partitioned scheduling indeed outperforms partitioned scheduling in the presence
of realistic run-time overheads.

2 Implementation of Semi-Partitioned Scheduler

Several semi-partitioned algorithms have been proposed [4]. In this work we adopt a
recent developed algorithm FP-TS [4], which is based on Rate-Monotonic Scheduling. FP-
TS has both high worst-case utilization guarantees (can achieve hight utilization bounds)
and good average-case real-time performance (exhibits high acceptance ratio in empirical
evaluations). A detailed description of FP-TS can be found in [4]. Our semi-partitioned
scheduler implementation can be easily extended to support a wide range of semi-partitioned
algorithms based on both fixed-priority and EDF scheduling.

Now we introduce our semi-partitioned scheduler implementation in Linux 2.6.32. The
basic framework of our semi-partitioned scheduler is as follows: Each core has its own Ready
queue, which records the tasks have been released but not finished on this core. When a task
is released, it will be inserted into the ready queue, and trigger the scheduler. The scheduler
decides the task to be executed according to the priority order. The timing parameters of
each task are stored in the date structure task_struct when the task is created.

There are two types of tasks in the system: (1) normal tasks, which execute on a fixed
core, and (2) split tasks, which will migrate among different cores. The main challenge of
the semi-partitioned scheduling is to support splitting tasks to correctly execute on different
cores, and to migrate from one core to another core with the timing constraint (obtained
from the partitioning algorithm) with as small as possible run-time overhead.

In our implementation, each core maintains its own sleep queue, which records tasks on
this core that are currently not active, and its own ready queue, which records tasks on this
core that are currently active. The ready queue is implemented by a binomial heap and the
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Figure 1 An example to illustrate the run-time overhead.

sleep queue is implemented by a red-black tree. For a split task, we need to control when a
subtask on one core will migrate to another. This is done by recording the time budget in
the split task’s task_struct data structure. The main difference between normal tasks and
split tasks is in the scheduling action after their budgets on this core are run out. If it is a
normal task, the scheduler will put this task to the sleep queue of this core. If it is a split
task, the scheduler will: (1) if it is a body subtask, the scheduler will insert the next subtask
into the ready queue of the migration destination core, and trigger the scheduling on the
destination core; (2) if it is a tail subtask, the scheduler will put this task back to the sleep
queue of the core hosting the first subtask of this split task.

3 Overhead Measurement

We use the example in Figure 1 to illustrate the overhead that may happen at runtime. We
assume at time a a lower-priority task τ2 is executing, and at time b, a higher-priority task
τ1 is released. The time between b and e is the overhead due to the release of τ1 and context
switch from τ2 to τ1. Task τ1 finishes its execution at time f , and the time between f and i
is the overhead due to the context switch from τ1 and τ2. From time i, τ2 continue to execute
the unfinished work. Now we introduce different parts of the overhead one by one.

rls: This is the overhead due to the task release: When a task is released, the function
release() is invoked to insert this task into the ready queue. rls includes the delay from
requesting the access to getting access to the ready queue, and the time of doing the
insert operation on the ready queue.
sch: This is the overhead due to the scheduling actions, which is in the function sch().
It may happen in two cases: (1) Task release. In this case, sch() will select the highest-
priority task from the ready queue. If there happens a preemption, sch() will put the
current running back to the ready queue. (2) Task finish. In this case, sch() will select
the highest-priority task from the ready queue.
cnt1 : This is the overhead due to the context switch from the preempted task to the
preempting task, which is in the function cnt_swth(). It will store the preempted task’s
context and load the preempting tasks’s context.
cnt2 : This overhead is also in the function cnt_swth(). It may happen in three cases:
(1) The current task is a normal task, and has finished its work. In this case, cnt_swth()
will load the context of the task to run (the highest-priority task selected by sch()), then
insert the finished task into the sleep queue. (2) The current task is a split task, and it has
run out of its budget on this core and will migrate to another. In this case, cnt_swth()
will reload the context of the task to run next, then insert this task to the ready queue of
the destination core. (3) The current task is a split task, and it has finished its execution.
In this case, cnt_swth() will reload the context of the task to run next, then insert this
task into the sleep queue of core which hosts the first subtask of this split task.
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Operation local (N = 4) remote (N = 4) local (N = 64) remote (N = 64)
sleep queue – add 2.5 2.9 4.3 4.4
sleep queue – delete 3.3 N/A 5.8 N/A
ready queue – add 1.5 3.3 4.4 4.6
ready queue – delete 2.7 N/A 4.6 N/A
Table 1 The measured queue operation durations, all in µs

.

cache: The preempted task’s working space would be (partially) replaced out from the
cache, and when it resumes execution, it needs to reload its working space.

The table shows the maximal measured duration of a single ready queue operation and
sleep queue operation. We set θ and δ to be the worst-case value among them: when N = 4,
δ = 3.3µs and θ = 3.3µs; when N = 64, δ = 4.6µs and θ = 5.8µs (N is the maximal number
of tasks in the queue, i.e., the number of tasks on this core). Apart from the delay due to
the access to the ready and sleep queues, we also measure the pure execution time of the
functions relase(), sch() and cnt_swth(), they are 3µs, 5µs and 1.5µs respectively.

The last overhead we measured is the cache-related overhead. This overhead is highly
dependent on the application memory characters. An important issue is the difference
between local context switches and task migrations between cores. Our measurement shows
that in general the cache-related overhead due to task migrations and local context switches
is in the same order of magnitude. This is due to the shared lower-hierarchy caches (L3 cache
in our case): in both local context switches and task migrations, most of the working space
of the preempted/to-migrate task will be replaced out from the private cache (L1 and L2
cache in our case), and stay in the shared lower-hierarchy caches. Of course, if an application
has generally very small working space (much smaller than the size of private cache, which is
rather rare in realistic applications), the cache-related delay of local context switches would
be significantly smaller than task migrations, since there is a better chance for the working
space of the preempted task to stay in the private cache, until it resumes execution.

4 Results and Conclusion

We conduct comparison of the performance in terms of acceptance ratio of FP-TS and two
widely used fixed-priority partitioned scheduling algorithm FFD (first-fit decreasing size
partitioning) and WFD (worst-fit decreasing size partitioning), with randomly generated task
sets, taking into account the measured overheads shown in last section. Our experiments
show that semi-partitioned scheduling indeed outperforms partitioned scheduling in the
presence of realistic run-time overheads.
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Abstract
This paper describes a design flow to map throughput constrained applications on a Multi-
processor System-on-Chip (MPSoC). It integrates several state-of-the-art mapping and synthesis
tools into an automated tool flow. This flow takes as input a throughput constrained application,
modeled with a synchronous dataflow graph, a C-based implementation for each actor in the
graph, and a template based architecture description. Using these inputs, the tool flow gener-
ates an MPSoC platform tailored to the application requirements and it subsequently maps the
application to this platform. The output of the flow is an FPGA programmable bit file. An eas-
ily extensible template based architecture is presented, this architecture allows fast and flexible
generation of a predictable platform that can be synthesized using the presented tool flow. The
effectiveness of the tool flow is demonstrated by mapping an MJPEG-decoder onto our MPSoC
platform. This case study shows that our flow is able to provide a tight, conservative bound
on the worst-case throughput of the FPGA implementation. The presented tool flow is freely
available at http://www.es.ele.tue.nl/mamps.
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1 Introduction

New applications for embedded systems demand complex multiprocessor designs to meet real-
time deadlines while achieving other critical design constraints like low energy consumption
and low area usage. Multiprocessor Systems-on-Chip (MPSoCs) have been proposed as
a promising solution for such problems but the design space exploration of such systems
typically involves many parameters. Higher abstraction levels, possibly combined with early
and accurate performance predictions, of the designed system are therefore required to
make good design choices. Several tool-flows [6, 10, 13] have been proposed to solve this
problem, but these solutions still require manual design steps which are time consuming and
error-prone. Combining existing tools into a common design flow has proven non-trivial [12]
without careful planning and coordination of the tool development.

In this paper, we present a design flow (see Figure 1) which bundles the strengths of both
the SDF3 [14] tool set and the MAMPS [8] platform. The SDF3 tool set supports analyzing
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and mapping synchronous data-flow (SDF) graphs [9]. SDF3 uses a graph representation
of the application and a set of models of the hardware platform to calculate the worst-case
throughput of the application for a given mapping of tasks on the platform. MAMPS
provides a tool to generate MPSoC projects for a Xilinx FPGA platform including software
and hardware synthesis based on a SDF description of one or more applications and a
task mapping. MAMPS has been almost completely rewritten as part of this work, new
communication options have been added and the generated hardware and software have
been modeled into SDF3. This ensures that the MAMPS implementation of any mapping
produced by SDF3 can be guaranteed to meet or exceed the throughput guarantee provided
by SDF3 and thus produce a predictable system.

Application Model

actor.c

Architecture Model

PE PE

PE PE

NoC

SDF3

Mapping

MAMPS
Platform
generation

Xilinx
Platform
Studio

Architecture
Template

FPGA

Figure 1 Design flow overview.

The remainder of this paper is organized as follows. Section 2 reviews the related work for
automated MPSoC generation and performance prediction. Section 3 provides an overview of
application modeling using SDF graphs. Section 4 gives an overview of the architecture of the
MAMPS platform. The design flow is presented in Section 5 and the implementation changes
to both SDF3 and MAMPS are explained in this section. Section 6 presents an experiment
used to validate the design flow and analyzes the design effort and design overhead of the
flow. Section 7 concludes the paper and gives a direction for future work.

2 Related work

The problem of mapping an application to an architecture has been widely studied in literature.
One of the recent works most related to our research is CA-MPSoC [13]. CA-MPSoC extends
the MAMPS platform with a hardware communication assist (CA) which is responsible for
the communication between the processing elements of the platform. The paper presents a
SDF model for this CA controller and uses this model for performance prediction. However,
the presented model has been simplified and lacks modeling of the communication channel.
This paper improves the model by a) including the fragmentation of communicated tokens
into words that can be sent over a network, and b) including a model for the communication
channel on the network itself. The flow presented in [13] introduces options for deciding on a
mapping of the application onto the generated platform but the method requires the user
to manually translate the output format of the mapping tool into the interchange format
of the platform generation tool. The flow presented in this paper automates this step by
introducing a common input format for both the mapping and platform generation tools,
circumventing possible user introduced errors during the translation step.
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ESPAM [10, 11] presents a similar design flow as the flow presented in this paper. The
ESPAM flow uses Kahn Process Networks (KPNs) to model the application. In our approach,
we use SDF graphs in stead. SDF graphs are a subset of KPN graphs and therefore have a
limited expressiveness when compared to KPN graphs. The disadvantage of using pure KPN
for application modelling however is the limited possibilities for analyzing pure KPN graphs.
It is, for example, impossible to analyze buffer requirements in a generic way when using
KPN graphs but this analysis is possible for SDF graphs [2]. Another disadvantage of KPN
over SDF is that KPN requires run-time buffer management and scheduling which make
performance prediction difficult while SDF graphs can be completely analyzed at design
time [14]. Our approach produces a predictable, throughput constrained solution whereas
ESPAM is limited to an estimation of the performance. The PeaCE approach presented in
[6] provides another method for hardware and software co-design. PeaCE uses two different
extended versions of the SDF model and three different types of tasks for representing
different parts of the application, requiring a relatively complex operating system. Our
approach uses a pure SDF representation of the application and implements only a single
task type resulting in a minimal implementation overhead. This comes however at the cost
of a reduced expressiveness and therefore potentially an over dimensioning of our platform.
The experimental results show however that this effect is limited.

3 Application Modelling

Figure 2 shows an example of an SDF graph. There are three actors in this graph. As in a
typical data flow graph, a directed edge represents the dependency between actors. Actors
consume input data from their input edges and/or produce output data on their output
edges; such information is referred to as tokens. Tokens are shown in an SDF graph as dots
on the edges, a number is added to these dots to show that multiple tokens are available.
The number of tokens consumed by an actor is constant and can be read from the SDF graph
next to the incoming vertex. An actor is called ready when it has sufficient input tokens on
all its input edges. Actor execution is called firing, an actor can only fire when it is ready.
An actor also produces a constant amount of tokens per firing denoted next to the outgoing
end of each edge. SDF actors are stateless (i.e. no internal actor state is preserved between
actor firings) so any actor state need to be modelled explicitly. Actor A in Figure 2 is an
example of an actor which keeps state, implemented as the static variable in Listing 1, this
state variable is modeled explicitly in Figure 2 by the self-edge of actor A.

Listing 1 Implementation of actor A
s t a t i c int local_variable_A ;

void actor_A_init ( typeAtoB ∗ , typeAtoC ∗) {
local_variable_A = 0 ;

}

void actor_A ( typeAtoB ∗toB , typeAtoC ∗toC ) {
// c a l c u l a t e something
// and wri te the output tokens
toB [ 0 ] = calcu late_valueB1 ( ) ;
toB [ 1 ] = calcu late_valueB2 ( ) ;
∗toC = calculate_valueC ( local_variable_A ) ;

}

A

B

C

2

1 1

2

1 1

1

1

1

Figure 2 Example of an SDF graph together with the implementation of one of the actors.

An application is described using a graph. Edges may contain initial tokens as is shown
on the self-edge of actor A in Figure 2. In the above example, only A can fire in the initial
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state, since the required number of tokens are present on all of its incoming edges. Once A
has finished firing it will produce 2 tokens on its edge to B, 1 token on its edge to C and
1 token on its self-edge. B can then fire as it has enough tokens on its incoming edge to
execute twice, each time producing 1 token on its edge to C.

Implementing an application using its SDF graph requires an implementation for each
actor. Actor implementations consist of one actor implementation function which takes up
to one parameter per edge connected to the actor. Not every edge needs to be explicitly
implemented as a parameter to the actor implementation function. The self-edge of actor
A is an example of an edge which is not explicitly implemented. Therefore we make a
distinction between explicitly and implicitly implemented edges. Explicitly implemented
edges implement connections between two actors which are transferring data. Implicitly
implemented edges include, but are not limited to, the self-edges as shown above, but can
also be used to model restrictions like limited buffer sizes on the edges connecting multiple
actors as well as modeling a specific firing order as imposed by static order scheduling [14].
Only explicit edges are implemented as parameters of the actor implementation function.
Listing 1 shows an example implementation of actor A. Two functions are created in this
listing, an initialization function and the actor implementation. The actor implementation
function actor_A() has two parameters, one for the edge to B and one for the edge to C, note
that there are no parameters supplied for the implicit self-edge of A. Output tokens are
written to the buffers provided as parameters. The initialization function, actor_A_init, is
responsible for producing the initial tokens that are expected on the output edges of actor
A, in this case the self-edge of A. The initialization function has the same signature as the
main actor implementation but no space is reserved for edges that do not produce initial
tokens and no input tokens are provided.

The application graph and the relation between the graph elements and their respective
implementations are joined into the application model. The application model also specifies a
set of metrics of the actor implementations. These metrics include the Worst-Case Execution
Time (WCET), required memory sizes, and the size of communicated tokens. Memory size
requirements are specified separately for both instruction and data memories in order to
facilitate processing elements that use a Harvard architecture. The memory size requirement
is used in the tool flow to automatically determine the memory requirements for each
processing element. The WCET metrics and token sizes are used by the SDF3 tools to
calculate a lower bound on the throughput of the application. A good WCET estimate of
each actor implementation is therefore important for the performance of the presented tool
flow. Many different approaches exist for determining the WCET of (a part of) a program,
either from the source code or some intermediate form. WCET tool challenges [5, 7] present
insightful information about existing WCET analysis tools and techniques and [16] gives an
in-depth analysis of the available methods as well as a survey of existing tools for WCET
analysis. Any of these tools can be used to provide the WCET of actors for the presented
design flow. It is possible that different (optimal) implementations of the same actor exist for
the different types of processing element or tile configuration in the platform template. The
application model can specify multiple implementations for each actor. Each implementation
specification defines the relation between the function arguments of the implementation and
the edges of the graph, the WCET and memory requirements of that specific implementation,
and the type of processing element this implementation can be mapped to. This allows the
tool flow to map the actors on a heterogeneous platform where actor implementations for
different processing elements are likely to have different metrics.
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4 Architecture Modelling

The second input of the design flow is the architecture model (see Figure 1). This model
describes the various components available in the hardware platform and how these com-
ponents are connected. The MAMPS platform allows two types of components in the
architecture; tiles and interconnect. Tiles form the processing elements of the architecture
and the interconnect is limited to connecting tiles together. A standardized network interface
(NI) has been defined for connecting tiles to the interconnect. All tile and interconnect
variants use this same network interface which makes it easy to compose a platform by
using elements from an architecture template. Figure 3 shows an example of the MAMPS
platform architecture. This example shows four different variations of a tile connected
together through an interconnect. Tiles 1 and 2 in the example show simple tile architectures
using a processing element (PE) which is connected to the network interface (NI), a local
memory and some optional peripherals (i.e. IO, timers, etc.). Tile 3 shows a similar tile
which has been extended with a communication assist (CA) which handles the memory
management and serialization, sending, and receiving of tokens. The last tile, Tile 4, shows
another option where a hardware implementation of an actor (IP) is connected directly to
the interconnect using only a network interface.

Interconnect

Tile 1

PE

Memory

Periph.

NI

Tile 2

Memory

PE

NI

Tile 3

CA

PEInst.

Data.

NI

Tile 4

IP

NI

Figure 3 MAMPS platform architecture example showing different variations of a tile.

Running realistic applications on a system requires that one or more actors have access
to peripherals. Predictability of the MAMPS platform is guaranteed by avoiding the sharing
of peripherals over tiles. Another option for maintaining predictability while using shared
peripherals is to use a predictable arbiter. [1] presents such an arbiter for SDRAM memories.
The technique presented in [1] can be extended to include different types of resources and is
easy to implement.

4.1 Network interface
A clear definition of the network interface is critical for the functioning of the template
based architecture generation. The MAMPS platform defines the Xilinx Fast Simplex Link
interface as network interface. This limits the network interface to communicating 32-bit
words but also makes sure there is a trivial point-to-point solution for the interconnect by
using Xilinx Fast Simplex Links (FSL) [15]. In order to translate arbitrarily sized tokens into
one or more 32-bit words and back again requires serialization and de-serialization. These
operations can either be performed by the processing element of the tile (i.e. the PE block
in Tile 1 of Figure 3), or by the addition of some dedicated communication hardware (i.e.
the CA block of Tile 3 in Figure 3).

The advantage of using the processing element for the serialization and de-serialization
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of tokens is the simplicity of the generated hardware. This simple hardware comes at the
cost of extra processing time used on the processing element which can not be spent on
running actor code. Using dedicated communication hardware like the CA described in [13]
increases hardware complexity but also relieves the processing element from the serialization
and de-serialization of tokens which improves the actor response-time.

4.2 Communication model
The communication introduced in MAMPS has been modeled in an SDF graph. This graph
is used in SDF3 to predict the behaviour of edges mapped to the interconnect. Figure 4
shows the parameterized model of communication via the interconnect. Three boxes divide
this model into the parts representing the various phases in the communication of a token.
The dashed edge in this graph shows the original connection in the SDF graph.

asrc adst

p

n

q

Tile A

s1 s2

s3

p

n

αsrc − n

p

N

N

Tile B

d1d2

d3

q

q

αdst

N

N

Interconnect

c1 c2

w

αn

Figure 4 Parameterized model for communication over the interconnect. Missing port rates and
token counts are to be interpreted as 1.

The central box models the interconnect behaviour, the model allows pipelined sending
of words over the interconnect where the number of initial tokens w is equal to the maximum
number of words in simultaneous transmission. The connections on the interconnect are
also capable of buffering a number of αn words in transmission. Actors c1 and c2 form a
latency-rate model for the communication. Actors s1, s2 and s3 model the serialization of the
token into N 32-bit words by the network interface. The execution time of s1 is dependant
on the design of the serialization code while the execution times for s2 and s3 are set to 0
because these actors are only required for the modeling of the serialization of the tokens.
Actors d1, d2 and d3 model the de-serialization of the transmitted words into tokens at the
receiving end and are assigned values in the same way as the serialization actors. Finally,
αsrc and αdst model the available buffer space on the sending and receiving ends of the
connection. The model in Figure 4 can be used for modeling communication over many
different forms of interconnect by changing w, αn, and the execution times of s1, c2, and d1
to appropriate values.

5 Design flow

The design flow, as depicted in Figure 1 can be divided in three steps. The application
should first be mapped onto the architecture. This mapping can then be combined with
the original application and architecture specifications into a FPGA design which can, as a
third step, be synthesized into a working system using out of the box FPGA development
software. The goal of this flow is to produce a working implementation of the application
on a given platform, capable of achieving the throughput as required for the application.
The throughput of an application is defined in [3] as the long term average number of graph
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iterations per time unit. The long term average is used to avoid initialization effects from
influencing the throughput. The design flow defines the system clock of the platform as its
base time unit. This section provides a more in-depth description of the SDF3 tool set, the
MAMPS platform generation, and the currently available architecture components.

5.1 SDF3

The SDF3 tool set consists of several tools that allow automatic mapping of an application
described as a SDF graph to a given platform. SDF3 also verifies if such a mapping is deadlock
free, calculates buffer distributions, and predicts which throughput can be guaranteed for
this mapping. SDF3 uses generic cost functions to steer the binding of the application to
the architecture based on; processing, memory usage, communication, and latency. Buffer
distributions, task mapping and static-order schedules are determined and gathered in the
mapping output of SDF3. The virtual platform of the SDF3 tool set was modified to match
the architecture and model of the MAMPS platform. The algorithms used during mapping
have not been changed from those presented in [14].

5.2 MAMPS
The MAMPS tool set was completely rewritten as part of this research but the architecture
and ideas remain the same. The platform is now generated by combining the information from
the application and architecture models with the mapping output from SDF3. Information
from the architecture model and mapping are used to generate the hardware platform.
Template components are instantiated and connected as required by the application. Memory
sizes are calculated for each tile based on the mapped buffers, actors and the size of the
scheduling and communication layer. The interconnect components are instantiated to match
the specified communication architecture. Connections are routed and the VHDL code
and peripheral driver for the interconnect are also generated when required. The software
platform is generated next. This includes generating wrapper code for each actor, translating
the static-order schedule provided by SDF3 into C code, and generating initialization code
for the communication. The generated code is combined with a template project which
already includes an implementation of the scheduling and communication libraries. The XPS
TCL script interface is then used to complete the project and to add the required hard and
software targets for the implementation. Using the script interface ensures compatibility over
many different versions of XPS and greatly simplifies the generated code.

5.3 Currently available in the architecture template
Not all blocks shown in Figure 3 are currently available in the tool flow. The MAMPS
platform currently offers two forms of interconnect and two different tiles. The currently
available architecture components are all targeted for the Xilinx Virtex6 FPGA using the
Xilinx ML605 evaluation board. The subsections below discuss the available options.

5.3.1 Interconnect
Either point-to-point connections using Xilinx Fast Simplex Links (FSL) [15] or a Spatial
Devision Multiplex (SDM) NoC based on [17] can be used for connecting the tiles. Both
interconnects comply to the network interface definition but the NoC interconnect provides
more flexibility at the cost of a larger implementation and a higher latency while the FSL
interconnect simply uses the FSL implementation provided by Xilinx.
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The NoC consists of one router per tile in the design. Each router connects through a set
of wires to its neighbours. Each router can also be connected to the network interface of
a single tile. The routers are arranged in a 2-dimensional mesh network. The dimensions
of this network are based on the number of tiles required in the design and the network is
kept as close to square as possible to reduce the maximum distance between two tiles since
this distance relates directly to the latency of the network connections. The NoC allows
the user to program connections on a point-to-point basis, each connection can be assigned
a certain bandwidth through the number of wires assigned to that connection but wires
can only be assigned to a single connection at a given time allowing an efficient usage of
network resources. The original NoC presented in [17] already complied with the network
interface requirements for the MAMPS platform but missed flow-control for connections in
the network. Flow-control was added as part of the integration of the NoC in the MAMPS
platform. The changes to the NoC required approximately 12% more slices on the FPGA
when compared to the original implementation.

5.3.2 Tile template
As shown in Figure 3, a tile consists of a processing element (PE), an optional instruction
and/or data memory, and a network interface (NI). MAMPS currently provides only two
types of tiles. The first type is the master tile, this tile is similar to Tile 1 in Figure 3. It
uses a Xilinx Microblaze soft-core as processing element, includes up to 256kB memory in a
Modified Harvard configuration and has direct access to the peripherals on the FPGA board.
The FSL ports of the Microblaze and a software library implementing (de-)serialization are
used to implement the network interface. The second type of tile is the slave tile, this tile
is the same as the master tile but does not have access to the peripherals and therefore is
similar to Tile 2 in Figure 3.

6 Case study

The application used in the case study is the MJPEG decoder shown in Figure 5. The
VLD actor parses the input file and decompresses the Minimal Coded Unit (MCU) blocks.
MCUs consist of up to 10 blocks of frequency values, depending on the sampling settings
used when creating the input file. Each block of frequency values is passed through the
inverse quantization and zig-zag reordering (IQZZ) and IDCT actors which transform the
frequency values into color components. The color conversion (CC) actor translates the color
component blocks of one MCU to pixel values and the rasterization (Raster) actor puts
the pixel values at the correct location in the output buffer. The subHeader1 and subHeader2

edges in the SDF graph forward information from the file header (i.e. frame size and color
composition) to the CC and Raster actors. One graph iteration of the MJPEG decoder
decodes a single MCU. This causes the throughput of the application to be defined in MCUs
per clock cycle of the generated platform. A method based on [4] combined with execution
time measurement was used to determine the WCET of the actors in this case study.

VLD IQZZ IDCT CC Raster
110

vld2iqzz

1 1

iqzz2idct

101

idct2cc

1 1

cc2raster
1

1
subHeader11 1

subHeader2

1

1

1
vldState

1

1

1
rasterState

Figure 5 The SDF graph for the MJPEG decoder.
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6.1 Throughput analysis
An important aspect of the presented design flow is the early throughput analysis of the
designed application. The throughput of the MJPEG decoder was therefore measured on
the FPGA implementation and compared to the predicted throughput of SDF3. Figure 6
shows the worst-case throughput obtained by running the MJPEG decoder on 5 different test
sequences and a synthetic sequence containing random data for two different architectures.
The worst-case analysis line in both graphs shows the SDF3 prediction based on the WCET
of the actors. The expected values were calculated using SDF3 by using WCET metrics
obtained through execution time measurement of the actor code using the test-data used
for the FPGA measurement. The difference between the expected throughput (blue) and
measured throughput (yellow) shown in Figure 6 shows the margin of the used models (less
than 1% for the synthetic data) when using actors with low variation in the execution time.
Throughput at the worst-case analysis line is guaranteed by the flow.
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Figure 6 Measured and predicted worst-case throughput for a synthetic test-sequence and a
set of real-life test-sequences for two different forms of interconnect compared to the worst-case
prediction of SDF3

6.2 Designer effort
Table 1 lists the required designer effort in creating and mapping the MJPEG decoder as
this was done by the authors of the paper. This implies a working understanding of the
application as well as previous experience in writing applications for the design flow and
platform. The top part of the table represents manual labour performed by the designer
and the bottom part (marked with a) is automated by the presented design flow. Manually
implementing the overall system would cost at least another 2–5 days depending on the
complexity of the hardware (i.e. number of tiles) and the number of application mappings
tried.

6.3 Overhead
The overhead of the generated system when compared to a manually developed system can
be characterized in two categories, modeling and implementation overhead. The primary
source of modeling overhead are the fixed output rates of the SDF actors. This can be
seen in the MJPEG example at the output rate for the VLD actor which produces up
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Table 1 Designer effort, steps marked with a are automated.

Step Time spent

Parallelizing the MJPEG code < 3 days
Creating the SDF graph 5 minutes
Gathering required actor metrics 1 day
Creating application model 1 hour
Generating architecture model 1 second a
Mapping the design (SDF3) 1 minute a
Generating Xilinx project (MAMPS) 16 seconds a
Synthesis of the system 17 minutes a
Total time spent ∼ 4 days

to 10 frequency blocks per MCU depending on the format of the input stream. Another
source of modeling overhead can be found in communicating the initialization values on
the subHeader1 and subHeader2 channels in the example. A manual implementation of the
algorithm could communicate these values separately from the main program flow during
an initialization phase, it is not possible to model this using a single SDF graph. However,
these initialization tokes are relatively small and use only 1% of the communication. The
implementation overhead of SDF is also very small. Scheduling on the MAMPS platform
is done through a static order schedule which reduces the scheduler to a lookup table. A
manual implementation is likely to implement the same schedule in its main loop which is
similar in efficiency. Communication would also be solved in a similar way and therefore
does not influence the implementation overhead. The scheduling overhead will be similar
for other applications but the modeling overhead and communication overhead will vary
depending on the nature of the application.

A short second experiment was performed to study the overhead incurred by the
(de-)serialization code in the current tile implementation. In this experiment, the worst-case
execution time of the (de-)serialization functions was replaced with the execution time of the
communication assist as presented in [13] and the WCET of the (de-)serialization routine
was no longer counted towards the execution time of the processing element. This resulted in,
according to SDF3, an increased throughput for our case-study by up to 300% when actors
were mapped to the same resources as in the original experiment. This suggests that the use
of a CA will greatly improve the usability of the MAMPS platform, but this result could not
be verified on hardware because there is currently no support for tiles using a CA.

7 Conclusions

In this paper, we present an automated design flow that is capable of generating an im-
plementation of a given application on a MPSoC and correctly predicting the worst-case
performance of the generated implementation. The design flow provides a method for auto-
matically instantiating different architectures using a template based architecture model.
This template based architecture is easy to extend and allows the automated selection
of the correct implementation when heterogeneous systems are designed. This allows the
designers to perform a very fast design space exploration for real-time embedded systems.
Together with the publication of this paper the whole flow will be made publicly available to
the research community at http://www.es.ele.tue.nl/mamps. For future work we would
like to offer an improved automated design space exploration and more variation in the

http://www.es.ele.tue.nl/mamps
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architecture template. Adding a predictable arbiter could enable multiple tiles in accessing
peripherals while keeping a predictable system. Finally, we plan to add the communication
assist presented in [13].
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Abstract
This work presents a preliminary evaluation of the use of the CompCert formally specified and
verified optimizing compiler for the development of level A critical flight control software. First,
the motivation for choosing CompCert is presented, as well as the requirements and constraints
for safety-critical avionics software. The main point is to allow optimized code generation by
relying on the formal proof of correctness instead of the current un-optimized generation required
to produce assembly code structurally similar to the algorithmic language (and even the initial
models) source code. The evaluation of its performance (measured using WCET) is presented and
the results are compared to those obtained with the currently used compiler. Finally, the paper
discusses verification and certification issues that are raised when one seeks to use CompCert for
the development of such critical software.
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1 Introduction

As “Fly-By-Wire” controls have become standard in the aircraft industry, embedded software
programs have been extensively used to improve planes’ controls while simplifying pilots’
tasks. Since these controls play a crucial role in flight safety, flight control software must
comply with very stringent regulations. In particular, any flight control software (regardless
of manufacturer) must follow the DO-178/ED-12 [1] guidelines for level A critical software:
when such software fails, the flight as a whole (aircraft, passengers and crew) is at risk.

The DO-178 advocates precise well-defined development and certification processes for
avionics software, with specification, design, coding, integration and verification activities
being thoroughly planned, executed, reviewed and documented. It also enforces traceability
among development phases and the generation of correct, verifiable software. Verification and
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tooling aspects are also dealt with: the goals and required verification levels are explained in
the standard, and there are guidelines for the use of tools that automate developers’ tasks.

In addition to the DO-178 (currently, version B) regulations, each airplane manufacturer
usually has its own internal constraints: available hardware, delivery schedule, additional
safety constraints, etc. Additionally, as programs tend to get larger and more complex,
there is a permanent desire to use optimally the available hardware. Such a need is not
necessarily in line with the aforementioned constraints: indeed, meeting them both is usually
very challenging because performance and safety may be contradictory goals.

This paper describes the activities and challenges in an Airbus experiment that ultimately
seeks to improve the performance of flight control software without reducing the level of
confidence obtained by the development and verification strategy currently used. This
experiment is carried around a very sensitive step in software development: assembly code
generation from algorithmic language. A compiler may have a strong influence on software
performance, as advanced compilers are able to generate optimized assembly code and such
optimizations may be welcome if, for some reason, the source code is not itself optimal – in
high level programming languages, the source code is unlikely to be optimal with respect
to low level memory management (especially register and cache management). This work
presents the performance-related analyses that were carried out to assess the interest of using
an optimizing, formally-proved compiler, as well as the first ideas to make it suitable for
application in certifiable software development.

The paper is structured as follows: Section 2 presents the fundamentals and challenges
in the development of flight control software, and describes the methods used in this work
to evaluate software performance, as well as the elements that weigh most in this aspect.
Section 3 presents the CompCert compiler, the results of its performance evaluation and
some ideas to use it confidently in such critical software. Section 4 draws conclusions from
the current state of this work.

2 Flight Control Software and Performance Issues

2.1 An Overview of Flight Control Software
Since the introduction of the A320, Airbus relies on digital electrical flight control systems
(“fly-by-wire”) in its aircraft [2]. While older airplanes had only mechanical, direct links
between the pilots’ inputs and their actuators, modern aircraft rely on computers and electric
connections to transmit these inputs. The flight control computers contain software that
implement flight control laws, thus easing pilots’ tasks – for example, a “flight envelope
protection” is implemented not to let aircraft attain combinations of conditions (such as
speed and G-load [2]) that are out of their specified physical limits and could cause failures.

It is clear that the dependability of such a system is tightly coupled with the dependability
of its software, and the high criticality of a flight control system implies an equally high
criticality of its software. As a result, flight control software are subject to the strictest
recommendations (Software Level A) of the DO-178 standard: in addition to very rigorous
planning, development and verification, there are “independence” guidelines (the verification
shall not be done by the coding team) and the result of every automated tool used in the
software development process is also subject to verification whenever it is used. These
systematic tool output verification activities can be skipped if the tool is “qualified” to
be used in a given software project. Tool qualification follows an approach similar to the
certification of a flight software itself, as its main goal is to show that the tool is properly
developed and verified, thus being considered as adequate for the whole software certification
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process. The DO-178B makes a distinction between development and verification tools;
development tools are those which may directly introduce errors in a program – such as a
code generator, or a compiler – whereas verification tools do not have direct interference over
the program, although their failure may also cause problems such as incorrect assumptions
about the program behavior. The qualification of a development tool is much more laborious
and requires a level of planning, documentation, development and verification that can be
compared to the flight control software itself.

The software and hardware used in this work are similar to those described in [10]. The
application is specified in the graphical formalism SCADE, which is then translated to C
code by a qualified automatic code generator. The C code is finally compiled and linked
to produce an executable file. The relevant hardware in the scope of this work currently
comprises the PowerPC G3 microprocessor (MPC755), its L1 cache memory and an external
RAM memory. The MPC755 is a single-core, superscalar, pipelined microprocessor, which is
much less complex than modern multi-core processors but contains enough resources not to
have an easily predictable time behavior.

In order to meet DO-178B guidelines, many verification activities are carried out during
the development phases. While the code generator itself (developed internally) is qualified as
a development tool, the compiler1 is purchased and its inner details are not mastered by the
development team. As a result, its qualification cannot be conducted and its output must be
verified. However, verifying the whole generated code would be prohibitively expensive and
slow. Since the code is basically composed of many instances of a limited set of “symbols”,
such as mathematic operations, filters and delays, the simplest solution is to make the compiler
generate constant code patterns for each symbol. This can be achieved by limiting the code
generator and compiler optimizations, and the code verification may be accomplished by
verifying the (not very numerous) expected code patterns for each symbol with the coverage
level required by the DO-178B, and making sure every compiled symbol follows one of the
expected patterns. Other activities (usually test-based) are also carried out to ensure code
integration and functional correctness.

2.2 Estimating Software Performance
The DO-178B requires a worst-case execution time (WCET) analysis to ensure correctness
and consistency of the source code. Hardware and software complexity make the search for
an exact WCET nearly impossible; usually one computes a time which is proved higher than
the actual WCET, but not much higher, in order to minimize resource waste - for software
verification and certification means, the estimated/computed WCET must be interpreted as
the actual one.

As explained by Souyris et al in [10], the earlier method of calculating the WCET of
Airbus’s automatically generated flight control software was essentially summing the execution
times of small code snippets in their worst-case scenarios. The proofs that the estimated
WCET was always higher than the actual one did not need to be formal, thanks to the
simplicity of the processor and memory components available at that time - careful reviews
were proved sufficient to ensure the accuracy of the estimations. On the other hand, modern
microprocessors have several resources – such as cache memories, superscalar pipelines,
branch prediction and instruction reordering – that accelerate their average performance but
make their behavior much more complicated to analyze.

1 For confidentiality reasons, the currently used compiler, linker and loader names are omitted.
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While a WCET estimation that does not take these resources into account would make
no sense, it is not feasible to make manual estimations of a program with such hardware
complexity. The current approach at Airbus [10] relies on AbsInt2’s automated tool a3
[5] (which had to be qualified as a verification tool) to compute the WCET via static
code analysis. In order to obtain accurate results, the tool requires a precise model of the
microprocessor and other influent components; this model was created during a cooperation
between Airbus and AbsInt. In addition, sometimes it is useful (or even essential) to give a3
some extra information about loop or register value bounds to refine its analysis. Examples
of these “hints”, which are provided in annotation files, are shown in [10]. As the code is
generated automatically, an automatic annotation generator was devised to avoid manual
activities and keep the efficiency of the development process. In order to minimize the need
for code annotations, and to increase overall code safety, the symbol library was developed
so as to be as deterministic as possible.

2.3 Searching for performance gains
In a process with so many constraints of variable nature, it is far from obvious to find
practical ways to generate “faster” software: the impact of every improvement attempt must
be carefully evaluated in the process as a whole - a slight change in the way of specifying the
software may have unforeseen consequences not only in the code, but even in the highest-level
verification activities. It is useful to look at the V development cycle (which is advocated by
the DO-178B) so as to find what phases may have the most promising improvements:

Specification: Normally, the specification team is a customer of the development team.
Specification improvements may be discussed between the two parts, but they are not
directly modifiable by the developers.
Design: In an automatic code generation process, the design phase becomes a part of the
specification and is thus out of the development team scope.
Coding: The coding phase is clearly important for the software performance. In the
pattern coding level, there are usually few improvements to be made: after years of
using and improving a pattern library, finding even more optimizations is difficult and
time-consuming. However, the code generators and the compilers may be improved by
relaxing this pattern-based approach in the final library code.
Verification: In the long run, one must keep an eye on the new verification techniques that
arise, because every performance gain is visible only if the WCET estimation methods
are accurate enough to take them into account – sub-optimal specification and coding
choices might have been made due to a lack of strong verification techniques at one time.

This work presents the current state of some experiments that are being performed in order
to improve the compilation process.

3 A new approach for compiler verification

3.1 Qualification constraints for a compiler
The DO-178B states that a compiler is deemed acceptable when the overall software verifica-
tion is successfully carried out. Specific considerations with respect to compilers include:

Compiler optimizations do not need to be verified if the software verification provides
enough coverage for the given criticality level.

2 www.absint.com
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Object code that is not directly traceable to source code must be detected and verified
with adequate coverage.

Thus, an optimizing compiler must be qualified, or additional verification activities must be
carried out to ensure traceability and compliance of the object code.

Section 2.1 states that the trust in a development process that includes a “black-box”
compiler is achieved by banning all compiler optimizations in order to have a simple structural
traceability between source and binary code patterns. Traceability is used to attain Multiple
Condition Decision Coverage (MC/DC) over the code structure of each symbol of the library.
The coverage of the whole automatically-generated code is ensured, as it is a concatenation of
such separately tested patterns. Other goals are also achieved with predictable code patterns:

It is possible to know exactly what assembly code lines of the automatically-generated
code require annotations to be correctly analyzed by a3, as there are relatively few library
symbols that require annotations, each one with just a few possible patterns.
Compiler analyses can be done automatically, as its correctness is established by a simple
code inspection: every generated pattern for a given symbol must match one of the
unit-tested patterns for the same symbol. Compiler, assembler and linker are also tested
during the integration tests: as the object code is executed on the actual target computer,
the DO-178B code compliance requirements would not be fulfilled if there were wrong
code or mapping directives.

Thus, several objectives are accomplished with a non-optimized code, and a different approach
would lead to many verification challenges. COTS compilers usually do not provide enough
information to ensure their correctness, especially when taking optimizations into account. If
developers could actually master a compiler behavior, the DO-178B tool qualification might
give way to a more flexible (albeit laborious) way of compiling.

3.2 CompCert: Towards a trusted compiler
One can figure out that traditional COTS (Commercial off-the-shelf) compilers are not
adapted to the rigorous development of flight control software – the notion of “validated by
experience” tool is not acceptable for highly critical software development tools. However,
there have been some advances in the development of compilers, with interesting works that
discuss the use of formal methods to implement “correct” compilers3, either by verifying the
results of their compilation [7] or by verifying the compiler semantics [12, 6]. In the scope of
this work, a most promising development is the CompCert4 compiler. Its proved subset is
broader in comparison to other experimental compilers, it compiles most of the C language
(which is extensively used in embedded systems), and it can generate Assembly code for the
MPC755.

As explained in [6], CompCert is mostly programmed and proved in Coq, using multiple
phases to perform an optimized compilation. Its optimizations are not very aggressive, though:
as the compiler’s main purpose is to be “trustworthy”, it carries out basic optimizations such
as constant propagation, common subexpression elimination and register allocation by graph
coloring, but no loop optimizations, for instance. As no code optimizations are enabled in
the currently used compiler, using a few essential optimization options could already give
good performance results.

3 In this work, the term “certifying compilation”, found in previous works such as [7], is not used in order
to avoid confusion with avionics software certification.

4 http://compcert.inria.fr
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3.3 Performance evaluation of CompCert

In order to carry out a meaningful performance evaluation, the compiler was tested on a
prototype as close as possible to an actual flight control software. As this prototype has its
own particularities with relation to compiler and mapping directives, some adaptations were
necessary in both the compiler and the code. To expedite this evaluation, CompCert was
used only to generate assembly code for the application, while the “operational system” was
compiled with the default compiler. Assembling and linking were also performed with the
default tools, for the same reason. Figure 1 illustrates the software development chain.

Figure 1 The development chain of the analyzed program

About 2500 files (2.6MB of assembly code with the currently used compiler) were compiled
with CompCert (version 1.7.1-dev1336) and with three configurations of the default compiler:
non-optimized, optimized without register allocation optimizations, and fully optimized. A
quick glance at some CompCert generated code was sufficient to notice interesting changes:
the total code size is about 26% smaller than the code generated by the default compiler.
This significant improvement has its roots in the specification formalism itself: a potentially
long sequential code is composed by a sequence of mostly small symbols, each one with
its own inputs and outputs. Thus, a non-optimizing compiler must do all the theoretically
needed load and store operations for each symbol. For traceability purposes, the register
allocation is done manually for the non-optimized code and CompCert manages to generate
more compact Assembly code by ignoring the user-defined register allocation. Listing 1
depicts a non-optimized simple symbol that computes the sum of two floating-point numbers.
As this symbol is often in sequence with other symbols, it is likely that its inputs were
computed just before and its output will be used in one of the next scheduled instructions.
If there are enough free registers, CompCert will simply keep these variables inside registers
and only the fadd instruction will remain, as shown in Listing 2.

Listing 1 Example of a symbol code
lfd f3 , 8(r1)
lfd f4 , 16( r1)
fadd f5 , f4 , f3
stfd f5 , 24( r1)

Listing 2 Its optimized version
fadd f5 , f4 , f3

As the local variables are usually kept on a stack located in the cache, analyses showed
that CompCert generates code with about 76% fewer cache reads and 65% fewer cache writes.
Table 1 compares these results with those of the default compiler in optimized configurations,
with the default non-optimized code as the reference.

In order to see the effects of this code size reduction, a3 was used to compute the WCET
for all analyzed nodes – we do not seek interprocedural optimizations or a register allocation
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Code Size Cache Reads Cache Writes
CompCert -25.7% -76.4% -65.1%

Default (optimized without register allocation) +0.8% +19.9% +23.4%
Default (fully optimized) -38.2% -81.8% -76.6%

Table 1 Code size and memory access comparison

that goes beyond one single node, hence individual WCET computations are meaningful in
this context. The results are encouraging: the mean of the WCET of the CompCert compiled
code was 12.0% lower than the reference. Without register allocation, the default compiler
presented a reduction of only 0.5% in WCET, while there was a reduction of 18.4% in the
WCET of the fully optimized code. The WCET comparison for each of the analyzed nodes
is depicted in Figure 2. The WCET improvement is not constant over all nodes: some of

Figure 2 WCET for all analyzed program nodes

them do not have many instructions, but they do have strong performance “bottlenecks”
such as hardware signal acquisitions, which take considerable amounts of time and are not
improved by code optimization. In addition, CompCert’s recent support for small data areas
was not used in the evaluation, while it is used by the default compiler. Nonetheless, the
overall WCET is clearly lower.

The results of these WCET analyses emphasizes the importance of a good register
allocation and how other optimizations are hampered without it.

3.4 Generating annotations for WCET analysis
As mentioned in Section 2.2, annotations over automatically-generated code are mandatory to
increase the WCET analysis precision whenever an accessed memory address or a loop guard
depends on the value of a floating-point variable, or a static variable that is not updated
inside the analyzed code. We have prototyped a minor extension to the CompCert compiler
that supports writing annotations in C code, transmitting them along the compilation process,
and communicating them to the a3 analyzer. The input language of CompCert is extended
with the following special form:

__builtin_annotation("0 <= %1 <= %2 < 360", i, j);

which looks like a function call taking a string literal as first argument and zero, one or more
C variables as extra arguments. Semantically and throughout the compiler, this special form
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is treated as a pro forma effect, as if it were to print out the string and the values of its
arguments when executed. CompCert’s proof of semantic preservation therefore guarantees
that control flows through these annotation statements at exactly the same instants in
the source and compiled code, and that the variable arguments have exactly the same
numerical values in both codes. At the very end of the compilation process, when assembly
code is printed, no machine instructions are generated for annotation statements. Instead,
a special comment is emitted in the assembly output, consisting of the string argument
("0 <= %1 <= %2 < 360" in the example above) where the %i tokens are substituted by the
final location (machine register, stack slot or global symbol) of the i-th variable argument.
For instance, we would obtain “# annotation: 0 <= r3 <= @32 < 360” if the compiler
assigned register r3 to variable i and the stack location at stack pointer plus 32 bytes to
variable j. The listing generated by the assembler then shows this comment and the program
counter (relative to the enclosing function) where it occurs. From this information, a suitable
annotation file can be automatically generated for use by the a3 analyzer.

Several variants on this transmission scheme can be considered, and the details are not yet
worked out nor experimentally evaluated. Nonetheless, we believe that this general approach
of annotating C code and compiling these annotations as pro forma effects is a good starting
point for the automatic generation of annotations usable during WCET analysis.

3.5 CompCert and the avionics software context
After the successful performance evaluation, the feasibility of the use of CompCert in an
actual flight control software development must be studied more thoroughly. Given all the
constraints and regulations explained in this paper, this task will take a significant amount of
time, as all constraints from several actors (customers, development, verification, certification)
must be taken into account.

When an automatic code generator is used, it is clear that the customers want a highly
reactive development team. A million-line program (with a great deal of its code being
generated automatically) must be coded and verified in a few days; with such a strict schedule,
little or no manual activities are allowed.

The development team also has its rules, in order to enforce correct methods and increase
development safety. Thus, the compiler must generate a code that complies to an application
binary interface (in this case, the PowerPC EABI) and other standards, such as IEEE754 for
floating-point operations. Although this work used two compilers to build the whole software,
CompCert will have to deal with all the program parts (the ACG-generated code is much
bigger, but also simpler than the rest); it will also have to do assembling and linking.

The verification phase will be significantly impacted, given all the assumptions that were
based on a code with predictable patterns:
Unit verification The unit verification of each library symbol will have to be adapted. With

no constant code patterns, there is no way to attain the desired structural coverage
by testing only a number of code patterns beforehand that then appears in sequence
in the generated software. It would be too onerous to test the whole code after every
compilation. A possible solution is to separate the verification activities of the source
and object code. The verification of the source code can be done using formal methods,
using tools that are already familiar inside Airbus, such as Caveat5 and Frama-C 6 [11].

5 http://www-list.cea.fr/labos/gb/LSL/caveat/index.html
6 http://frama-c.com



R. B. França, D. Favre-Felix, X. Leroy, M. Pantel and J. Souyris 67

Object code compliance and traceability can be accomplished using the formal proofs
of the compiler itself, as they intend to ensure a correct object code generation. In this
case, only one object code pattern needs to be verified (e.g. by unit testing) for each
library symbol and the test results can be generalized for all other patterns, thanks to
the CompCert correctness proofs.

WCET computation A new automatic annotation generator will have to be developed, as
the current one relies on constant code patterns to annotate the code. The new generator
will rely on information provided directly by CompCert (Section 3.4) to correctly annotate
the code when needed.

Compiler verification It is clear that the CompCert formal proofs shall form the backbone
of a new verification strategy. An important point of discussion is how these proofs
can be used in an avionics software certification process. The most direct approach is
qualifying the compiler itself as a development tool, but it is far from a trivial process:
the qualification of a development tool is very arduous, and qualifying a compiler is a new
approach that will require intensive efforts to earn the trust of certification authorities.
Thus, CompCert has to meet DO-178B level A standards for planning, development,
verification and documentation, and these standards largely surpass the usual level of
safety achieved by traditional compiler development processes. An alternative method of
verification, which is also being discussed, is using its correctness proofs in complementary
(and automatic) analyses that will not go in the direction of qualifying CompCert as a
whole, but should be sufficiently well-thought-out to prove that it did a correct compilation.

4 Conclusions and Future Work

This paper described a direction to improve performance for flight control software, given
their large number of development and certification constraints. The motivation for using a
formally proved compiler is straightforward: certifying a COTS compiler to operate without
restrictions (such as hindering every possible code optimization) would be extremely hard,
if not impossible, as information related to its development are not available. While the
largest part of the work – the development of an appropriate development and verification
strategy to work with CompCert – has just started, the performance results are rather
promising. It became clear that the “symbol library” automatic code generation strategy
implies an overhead in load and store operations, and a good register allocation can mitigate
this overhead.

Future work with CompCert include its adaptation to the whole flight control software
and the completion of the automated mechanism to provide useful information that can help
in the generation of code annotations. Also, discussions among development, verification and
certification teams in Airbus are taking place to study the needed modifications throughout
the development process in order to use CompCert in a development cycle at least as safe as
the current one. Parallel studies are being carried out to find new alternatives for software
verification, such as Astrée [3], and evaluate their application in the current development
cycle [11].

Another direction for future work is to further improve WCET by deploying additional
optimizations in CompCert and proving that they preserve semantics. The WCC project of
Falk et al [4] provides many examples of profitable WCET-aware optimizations, often guided
by the results of WCET analysis. Proving directly the correctness of these optimizations
appears difficult. However, equivalent semantic preservation guarantees can be achieved
at lower proof costs by verified translation validation, whereas each run of a non-verified
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optimization is verified a posteriori by a validator that is proved correct once and for all. For
example, Tristan and Leroy [13] show a verified validator for trace scheduling (instruction
scheduling over extended basic blocks) that could probably be adapted to handle WCC’s
superblock optimizations. Rival has experimented the translation validation approach on a
wider scope in [8] but, currently, the qualification and industrialization of such a tool seems
more complex.

In addition, the search for improvements in flight control software performance is not
limited to the compilation phase. The qualified code generator is also subject to many
constraints that limit its ability to generate efficient code. Airbus is already carrying out
experiments in order to study new alternatives, such as the Gene-Auto project [9].
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