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ATMOS Preface: Algorithmic Methods and

Models for Optimization of Railways

Leo Kroon1,2 and Rolf H. Möhring3,

1 Erasmus University Rotterdam, Rotterdam School of Management
P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands

lkroon@rsm.nl
2 Netherlands Railways, Department of Logistics

P.O. Box 2025, 3500 HA, Utrecht, The Netherlands
lkroon@rsm.nl

3 Technische Universität Berlin, Institut für Mathematik
Straße des 17. Juni 136, 10623 Berlin, Germany

rolf.moehring@tu-berlin.de

This issue contains six papers that were presented in preliminary form at
the 5th Workshop on Algorithmic Methods and Models for Optimization of
Railways (ATMOS 2005), held at Palma de Mallorca, Spain, October 7, 2005 in
conjunction with ALGO 2005.

The authors of the papers in this volume were invited to submit extended
versions of their ATMOS 2005 papers. All papers were accepted after a review
process performed by members of the ATMOS 2005 Program Committee. These
papers are representative of several areas of research within the scope of ATMOS:
rolling stock circulation and engine assignment, station location, line planning,
railway traffic scheduling and dispatching, transfer optimization within network
design, and fast traffic information systems.

The paper “Analysis of the Parameters of Transfers in Rapid Transit Network
Design” by R. Garćıa, A. Garzón-Astolfi, A. Maŕın, J. A. Mesa, and F. A. Ortega
considers the rapid transit network design problem that consists in the location
of train alignments and stations in an urban traffic context. For the first time,
they incorporate into the location model the decisions about the transportation
mode and the route to be chosen for urban trips. These decisions include transfers
between train lines. The objective of the model is to maximize the number of
expected users in the transit network taking limited budgets into consideration,
in addition to location and allocation constraints. Furthermore, the transfer costs
are considered in the generalized public costs when the users change lines. Some
computational experience is included in the paper.

In their paper “Combinatorial Optimization Model for Railway Engine As-
signment Problem”, T. Illés, M. Makai, and Zs. Vaik present an experimental
study for the Hungarian State Railway Company (MÁV). The timetable of pas-
senger trains of a region of Hungary is given, and engines (locomotives) must
be assigned to each passenger train under some operational policies including
maintenance and connection times for linking trains together. The goal is to
minimize the number of engines used. The authors develop an integer program-
ming model for the full problem and use a minimum cost flow algorithm for the
problem without maintenance which reduces to a circulation problem.
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2 L. Kroon, R. H. Möhring

The paper “Computer-based decision support for railway traffic scheduling
and dispatching: A review of models and algorithms”, by J. Törnquist provides
an overview of the research in railway scheduling and dispatching. A distinction
is made between tactical scheduling, operational scheduling and re-scheduling.
Tactical scheduling refers to master scheduling, whereas operational scheduling
concerns scheduling at a later stage. Re-scheduling focuses on the re-planning
of an existing timetable when deviations from it have occurred. 48 approaches
published between 1973 and 2005 have been reviewed according to a framework
that classifies them with respect to problem type, solution mechanism, and type
of evaluation.

In their paper “Line Planning with Minimal Traveling Time”, A. Schöbel
and S. Scholl deal with an important strategic element in the planning process
of public transportation, viz. the development of a line concept, i.e., to find a
set of paths for operating lines on them. So far, most of the models in the liter-
ature aim at minimizing the costs or maximizing the number of direct travelers.
The authors present a new approach minimizing the travel times over all cus-
tomers including penalties for the transfers needed. This approach maximizes
the comfort of the passengers and makes the resulting timetable more reliable.
Their approach is based on integer programming models and uses Dantzig-Wolfe
decomposition for solving the LP-relaxation. Numerical results of real-world in-
stances are presented.

The paper “Paying Less for Train Connections with MOTIS” by M. Müller-
Hannemann and M. Schnee reports on the development of a multi-objective
traffic information system (MOTIS) which finds all attractive train connections
with respect to travel time, number of interchanges, and ticket costs. In contrast,
most servers for timetable information as well as the theoretical literature on
this subject focus only on travel time as the primary objective, and secondary
objectives like the number of interchanges are treated only heuristically. Finding
cheap train connections for long-distance traffic is algorithmically a hard task due
to very complex tariff regulations. Several new tariff options have been developed
in recent years, partly to react on the stronger competition with low-cost airline
carriers. In such an environment, it becomes more and more important that
search engines for travel connections are able to find special offers efficiently. The
authors show in their paper by means of a case study how several of the most
common tariff rules (including special offers) can be embedded into a general
multi-objective search tool. Computational results show that a multi-objective
search with a mixture of tariff rules can be done almost as fast as just with one
regular tariff. For the train schedule of Germany, a query can be answered within
1.9s on average on a standard PC.

The paper by S. Mecke, A. Schöbel, and D. Wagner on “Station Location
– Algorithms and Complexity” investigates the question to add stations to an
existing geometric transportation network so that each of a given set of settle-
ments is not too far from a station. The problem is known to be NP-hard in
general. However, special cases with certain properties have been shown to be
efficiently solvable in theory and in practice, especially if the covering matrix has



Algorithmic Methods and Models for Optimization of Railways 3

(almost) consecutive ones property. In their paper the authors are narrowing the
gap between intractable and efficiently solvable cases of the problem and present
an approximation algorithm for cases with almost consecutive ones property.

We would like to thank the referees for their conscientious and timely work,
and the editors of the Dagstuhl Seminar Proceedings for the opportunity to
publish this special issue in DROPS.
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1 Erasmus University, NL
l.kroon@fbk.eur.nl

2 TU Berlin, D
moehring@math.tu-berlin.de

Abstract. This issue contains six papers that were presented in prelim-
inary form at the 5th Workshop on Algorithmic Methods and Models
for Optimization of Railways (ATMOS 2005), held at Palma de Mal-
lorca, Spain, October 7, 2005 in conjunction with ALGO 2005. These
papers are representative of several areas of research within the scope of
ATMOS: rolling stock circulation and engine assignment, station loca-
tion, line planning, railway traffic scheduling and dispatching, transfer
optimization within network design, and fast traffic information systems.

Keywords. Railway traffic, networks, algorithms, optimization

Combinatorial Optimization Model for Railway Engine
Assignment Problem

Illés, Tibor; Makai, Márton; Vaik, Zsuzsanna

This paper presents an experimental study for the Hungarian State Railway
Company (MV). The engine assignment problem was solved at MV by their ex-
perts without using any explicit operations research tool. Furthermore, the op-
erations research model was not known at the company. The goal of our project
was to introduce and solve an operations research model for the engine assign-
ment problem on real data sets. For the engine assignment problem we are using
a combinatorial optimization model. At this stage of research the single type
train that is pulled by a single type engine is modeled and solved for real data.
There are two regions in Hungary where the methodology described in this paper
can be used and MÁV started to use it regularly. There is a need to generalize
the model for multiple type trains and multiple type engines.

Keywords: Engine assignment, circulation

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/662
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2 L. G. Kroon and R. H. Mhring

Station Location – Complexity and Approximation

Mecke, Steffen; Schöbel, Anita; Wagner, Dorothea

We consider a geometric set covering problem. In its original form it consists of
adding stations to an existing geometric transportation network so that each of
a given set of settlements is not too far from a station. The problem is known to
be NP-hard in general. However, special cases with certain properties have been
shown to be efficiently solvable in theory and in practice, especially if the covering
matrix has (almost) consecutive ones property. In this paper we are narrowing
the gap between intractable and efficiently solvable cases of the problem. We
also present an approximation algorithm for cases with almost consecutive ones
property.

Keywords: Station Location, facility location, complexity, approximation

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/661

Line Planning with Minimal Traveling Time

Schöbel, Anita; Scholl, Susanne

An important strategic element in the planning process of public transportation
is the development of a line concept, i.e. to find a set of paths for operating lines
on them. So far, most of the models in the literature aim to minimize the costs
or to maximize the number of direct travelers. In this paper we present a new
approach minimizing the travel times over all customers including penalties for
the transfers needed. This approach maximizes the comfort of the passengers and
will make the resulting timetable more reliable. To tackle our problem we present
integer programming models and suggest a solution approach using Dantzig-
Wolfe decomposition for solving the LP-relaxation. Numerical results of real-
world instances are presented.

Keywords: Line planning, real-world problem, integer programming, Dantzig-
Wolfe decomposition

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/660
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Computer-based decision support for railway traffic
scheduling and dispatching: A review of models and
algorithms

Törnquist, Johanna

This paper provides an overview of the research in railway scheduling and dis-
patching. A distinction is made between tactical scheduling, operational schedul-
ing and re-scheduling. Tactical scheduling refers to master scheduling, whereas
operational scheduling concerns scheduling at a later stage. Re-scheduling fo-
cuses on the re-planning of an existing timetable when deviations from it have
occurred. 48 approaches published between 1973 and 2005 have been reviewed
according to a framework that classifies them with respect to problem type,
solution mechanism, and type of evaluation. 26 of the approaches support the
representation of a railway network rather than a railway line, but the majority
has been experimentally evaluated for traffic on a line. 94 % of the approaches
have been subject to some kind of experimental evaluation, while approximately
4 % have been implemented. The solutions proposed vary from myopic, priority-
based algorithms, to traditional operations research techniques and the applica-
tion of agent technology.

Keywords: Decision support, railway traffic scheduling, railway traffic dispatch-
ing, overview

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/659

Analysis of the Parameters of Transfers in Rapid Transit
Network Design

Garćıa, Ricardo; Garzón-Astolfi, Armando; Maŕın, Angel; Mesa, Juan A.; Or-
tega, Francisco A.

The rapid transit network design problem consists of the location of train align-
ments and stations in an urban traffic context. The originality of our study is to
incorporate into the location model the decisions about the transportation mode
and the route, to be chosen for urban trips. This paper proposes a new design
model which includes transfers between train lines. The objective of the model is
to maximize the number of expected users in the transit network taking limited
budgets into consideration, in addition to location and allocation constraints.
Furthermore, the transfer costs are considered in the generalized public costs
when the users change lines. Waiting time to take the metro and walking time
to transfer is included in the formulation of the costs. The analysis of transfer
parameters is carried out using a test network. Some computational experience
is included in the paper.

http://drops.dagstuhl.de/opus/volltexte/2006/659


4 L. G. Kroon and R. H. Mhring

Keywords: Parameter analysis, rapid transit network design, trip choice in
urban traffic

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/658

Paying Less for Train Connections with MOTIS

Müller-Hannemann, Matthias; Schnee, Mathias

Finding cheap train connections for long-distance traffic is algorithmically a
hard task due to very complex tariff regulations. Several new tariff options have
been developed in recent years, partly to react on the stronger competition with
low-cost airline carriers. In such an environment, it becomes more and more
important that search engines for travel connections are able to find special
offers efficiently.

We have developed a multi-objective traffic information system (MOTIS)
which finds all attractive train connections with respect to travel time, number of
interchanges, and ticket costs. In contrast, most servers for timetable information
as well as the theoretical literature on this subject focus only on travel time as
the primary objective, and secondary objectives like the number of interchanges
are treated only heuristically.

The purpose of this paper is to show by means of a case study how several
of the most common tariff rules (including special offers) can be embedded into
a general multi-objective search tool.

Computational results show that a multi-objective search with a mixture of
tariff rules can be done almost as fast as just with one regular tariff. For the
train schedule of Germany, a query can be answered within 1.9s on average on
a standard PC.

Keywords: Timetable information system, multi-criteria optimization, shortest
paths, fares, special offers, long-distance traffic

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/657
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Ricardo Garćıa1, Armando Garzón-Astolfi2, Angel Maŕın3, Juan A. Mesa4, and
Francisco A. Ortega5

1 Departamento de Matemática. Universidad de Castilla La Mancha. Ciudad Real,
Spain

ricardo.garcia@uclm.es
2 Departamento de Matemática Aplicada I. Universidad de Sevilla. Sevilla, Spain

agastolfi77@yahoo.es
3 Departamento de Matemática Aplicada y Estad́ıstica. Universidad Politécnica de

Madrid. Madrid, Spain
amarin@dmae.upm.es

4 Departamento de Matemática Aplicada II. Universidad de Sevilla. Sevilla, Spain
jmesa@us.es

5 Departamento de Matemática Aplicada I. Universidad de Sevilla. Sevilla, Spain
riejos@us.es

Abstract. The rapid transit network design problem consists of the lo-
cation of train alignments and stations in an urban traffic context. The
originality of our study is to incorporate into the location model the
decisions about the transportation mode and the route, to be chosen
for urban trips. This paper proposes a new design model which includes
transfers between train lines. The objective of the model is to maximize
the number of expected users in the transit network taking limited bud-
gets into consideration, in addition to location and allocation constraints.
Furthermore, the transfer costs are considered in the generalized public
costs when the users change lines. Waiting time to take the metro and
walking time to transfer is included in the formulation of the costs. The
analysis of transfer parameters is carried out using a test network. Some
computational experience is included in the paper.

1 Introduction

Increasing mobility caused by the growth of cities is the reason why new lines of
rail transit have been constructed. A crucial part of the network design process
consists of the location of stations and alignments between them. In the paper [1]
an approach to the network design problem, based on the previous selection of
the key nodes (those providing a high number of trips) was described. Therefore,
the transit network is defined on the edges which connect the key node set.

The transit system involves the node and edge locations at upper level and
considers the user traffic behavior at lower level. At upper level the main factor

ATMOS 2005 
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to consider is maximum coverage of the demand using public mode, taking con-
straints of our model and the budget constraints into account. Traffic demand
leads to alternative configurations of networks, comparing private trip cost with
public trip cost, the latter depending on previous location decisions.

Customers choose the most convenient routes and modes in order to carry out
their trips. A decisive factor for attracting passengers to the public mode is to
offer direct trips without transfers. Transferring is annoying and it is undesirable
for customers. In our approach, transfers are explicitly considered in accordance
with the central role played by user mentality.

The previous references to the rapid transit network design (RTND), [2] , [3],
[4], [5], [6], [7] consider travel cost as the time spent in travelling without taking
into account any transfer cost.

The layout of the paper is as follows. In Section 2 the RTND is formulated
including transfers between lines. In Section 3 the transfer costs are consistently
introduced into the previous model. In Section 4 a transfer parametric analysis
is implemented. The paper finalizes with conclusions and further research.

2 Rapid Transit Network Design Model with transfers

We assume that a set N = {i : i = 1, . . . , I} of potential locations for the stations
is given. Let E be the set of feasible edges linking the potential stations. Thus,
we have an undirected graph G = (N, E) from which the transit network is going
to be designed. For each node i ∈ N , let N(i) denote the set of nodes adjacent to
it. A matrix of distances D = (dij) between pairs of points of N is also known.
The travel patterns are given by the origin-destination matrix G = (gp), where
gp is the demand of the pair p = (q, r) ∈ P and P is the set of pairs of demand.

The cost structure is as follows. Let cij and ci denote the cost of constructing
a section of an alignment on edge ij and that of constructing a station at node
i, respectively. According to the available budget the length of the public lines
will be bounded; for this purpose, there are bounds lengthl

min, lengthl
max, l =

1, . . . , L, on the length of line l and bounds T lengthmin and T lengthmax on the
total length of the lines of the network.

In regard to the demand, let ucPUB
p be the user’s generalized cost of travelling

within the constructed transit network and let ucPRIV
p be the user’s generalized

cost using the private mode. Observe that this cost does not depend on the final
topology of the transit network.

The problem we are dealing with consists of choosing a number of lines
L = {l : l = 1, . . . , L} covering as much as possible travel demand between the
points of N , subject to the line length constraints and other constraints.

The decision variables are defined as follows:

• The station selection variables: yl
i = 1, if station i of line l is constructed;

and yl
i = 0 otherwise.

• The edge selection variables: xl
ij = 1, if edge ij of the line l is constructed;

and xl
ij = 0 otherwise.
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• The following variables are defined for indicating whether or not the de-
mand would use the transit network in case edge ij is selected. Specifically,
up

ij = 1, if the demand of pair p would use edge ij in the public network,
up

ij = 0 otherwise.

• Mode choice variables: zp = 1 if the generalized cost for the demand of
pair p within the public network A is less than that of the private mode; zp = 0
otherwise.

• Flow routing variables: wpl
ij = 1 if the demand p traverses the edge ij using

line l, 0 otherwise.

• Transfer variables: vpl
i = 1 if demand p transfers to line l in station i.

The RTND model with transfers is stated in the following terms:

• Objective function: Trip coverage
max

∑

p∈P gp zp

• Length constraints
∑

ij∈E dij xl
ij ∈ [lengthl

min, lengthl
max], l ∈ L (1)

∑

l∈L

∑

ij∈E dij xl
ij ∈ [Tlengthmin, Tlengthmax] (2)

• Alignment location constraints
∑

j∈N(ol)
xl

olj
= 1, l ∈ L (3)

∑

i∈N(dl)
xl

idl
= 1, l ∈ L (4)

yl
ol

= yl
dl

= 1, l ∈ L (5)
∑

j∈N(i) xl
ij = 2yl

i, i ∈ N \ {ol, dl}, l ∈ L (6)

xl
ij = xl

ji ij ∈ E, l ∈ L (7)

• Routing demand constraints
∑

j∈N(q) up
qj = 1, p = (q, r) ∈ P (8)

∑

i∈N(q) up
iq = 0, p = (q, r) ∈ P (9)

∑

i∈N(r) up
ir = 1, p = (q, r) ∈ P (10)

∑

j∈N(r) up
rj = 0, p = (q, r) ∈ P (11)

∑

i∈N(j) up
ij −

∑

k∈N(j) up
jk = 0, j ∈ N \ {q, r}, p = (q, r) ∈ P (12)

• Location-Allocation constraints

up
ij + zp − 1 ≤

∑L

l=1 xl
ij , , ij ∈, p = (q, r) ∈ P (13)

• Splitting demand constraints
ucPUB

p − ucPRIV
p − M (1 − zp) ≤ 0 p = (q, r) ∈ P (14)

where ucPRI
p is a data and ucPUB

p will be defined in the next subsection. M is
an enough big number.

3



• Transfer constraints

wpl
ij ≤ xl

ij , ij ∈ E, p = (q, r) ∈ P, l = 1, . . . , L (15)

up
ij + zp − 1 ≤

∑L

l=1 wpl
ij , p = (q, r) ∈ P, ij ∈ E (16)

up
ij − zp + 1 ≥

∑L

l=1 wpl
ij , p = (q, r) ∈ P, ij ∈ E (17)

∑

ij∈E,l∈L wpl
ij ≤ M zp, p = (q, r) ∈ P (18)

∑

j∈N(i) wpl
ij −

∑

j∈N(i) wpl
ji ≥ 2 vpl

i − 1, i ∈ N \ {r},

p = (q, r) ∈ P, l ∈ L (19)
∑

j∈N(i) wpl
ij −

∑

j∈N(i) wpl
ji ≤ 2 vpl

i , i ∈ N \ {r},

p = (q, r) ∈ P, l ∈ L (20)

xl
ij , y

l
i, u

p
ij , zp, w

pl
ij , v

pl
i ∈ {0, 1}.

Constraints (1) and (2) impose lower and upper bounds on the individual
and total line lengths.

Constraints (3) and (4) guarantee that each line starts and ends at its spec-
ified origin and destination. Constraints (5) ensure that all the origins and des-
tinations belong to A. Constraints (6) impose that each line must be a path
between the corresponding origin and destination.

Constraints (7), (8) and (9) guarantee demand conservation. Constraints (10)
and (11) were introduced to ensure that identity zp = 1 implies that the demand
of the pair p goes through the public network and zp = 0 if it uses the private
network. Constraints (12) guarantee that the demand is routed on an edge only
if this edge belongs to the public system.

Constraints (13) ensure that the demand is routed on an edge if it has been
previously constructed. Constraints (14) force the demand to be assigned to
public mode if public cost is less than private cost.

Note that this formulation does not include the common sub-tour elimination
constraints. Therefore, when a solution contains a cycle, additional constraints
can be imposed in order to avoid the presence of cycles in the solution network.
Note that well developed networks (e.g. Paris, London, Moscow, Tokyo and
Madrid) often contain circular lines. It has also been proved by Laporte, Mesa
and Ortega (1997, [?]) that the inclusion of a circle line increases the effectiveness
of the network and thus the inclusion of cycles can be interesting.

Transfer constraints (15) permit the flow to use edge ij of line l only if edge ij
have already been established for public mode. Constraints (16) guarantee that
if the flow of edge ij is carried through any line, the public mode and its flow at
edge ij must already be chosen. Constraints (17) establish that any flow for the
pair p can use any edge of the public network. Constraints (18) impose that if
a transfer is made at node i then the flow leaving from this node is bigger than
the flow coming in. Constraints (19) and (20) impose that if the flow leaving out
is less than the flow coming in at a node i, then a transfer is made at this node.

4



3 Transit costs in transfers

Time spent in transference between lines is characterized by certain cost param-
eters. We have studied different values of the parameters which define transfer
cost in order to conclude how they influence the RTND solution.

The paper is focused on the study of the increase in the cost using the public
mode, assuming that users may transfer from one line to another. The transfer
process has been modeled at RTND through constraints (15) to (20), but now
we will give details about how the public mode cost is influenced by transfers.

The public cost for each demand ucPUB
p is the sum of two terms: one term

relative to travel time spent moving in the transit vehicle on the rapid transit
network and another term related to the transfer time spent in transferring
from one line to another.

The first term has been considered in all the references, and it is computed by
the traveling time, which is calculated by the sum of the travel distance divided
by the average velocity of the lines λ̂. Hence, non-transfer public costs (NTPUB)
are defined as follows:

ucNTPUB
p = 1

λ̂

∑

ij∈E diju
p
ij , p = (q, r) ∈ P (16)

In the concept of vehicle velocity, we include vehicle moving time and the time
spent at the station required to permit boarding and alighting of the passengers.
These values are average values for standard lines. The line velocity may be
considered by taking an average value of 20 kilometers per hour. In that case,
the average velocity, λ̂, is 1/3 kilometers per minute.

As was pointed out below, the demand is very sensible to transfer time. Thus,
the transfer cost of each demand and station is considered as the sum of two
terms: 1) one value fixed for each station i, uci, that represents the average
walking time between line platforms and 2) another value on the waiting time
for taking the next train of a different line.

In our approach we assume uci as a parameter which depends on the travel
time spent for any demand that transfers at station i from the previous board
platform line up to the board platform of the next line. This value is given in
minutes and it can model the cumulative sum of walking times between platforms
and the annoyance associated to the transfers, which depends on the station
characteristics. This value would be in average about 3 to 5 minutes.

The transfer waiting cost depends on the frequency of the line of the train to
take in order to continue the trip towards the destination. The line frequency is
considered fixed and represents a parameter of the model. Considering that the
planning period is of 1 hour, and that the time cost will be given in minutes,
the wait time is assumed equal to one divided by twice the frequency of the
line, 2 ∗ fl. So if the average frequency is of 6 vehicle per hour then the average
waiting time is of 5 minutes. For a line with double frequency, 12 vehicles per
hour, the waiting time will be of 2.5 minutes.

With these considerations, the public cost expression with transfer of a pair
p is:

5



• UserPublic cost

ucPUB
p = 1

λ̂

∑

ij∈E diju
p
ij +

∑

i∈N\{r},l∈Li

(

uci + 1
2fl

)

vpl
i

p = (q, r) ∈ P (17)

where Li is the set of lines that use the node i.
In this context, for a distance of 3 kilometers and for an average velocity of

20 km/h, the travel time is 9 minutes. If the fixed transfer time is of 3 minutes
more, and the wait time of 5 minutes, the total travel time is of 17 minutes.

4 Transfer parametric analysis

The previous model has been tested on the 6-node network shown in Figure 1,
where each node i has an associated cost (variable ci in the model) and each
edge has been weighted by means of a pair (cij , dij) its components respectively
representing the cost of constructing edge ij and the generalized public cost of
using edge ij to connect both nodes.

1

2

3

4

5

6

( 2 )

( 3 )

(2.2)

( 3 )

(2.5 )

( 1.3 )

(3, 1.1)

(2.4, 0.7)

(1.9, 0.5)

(2.8,0.8)

(1.7, 0.5)

(2.1,0.6)

(2.6,1.1)

(1.7, 0.5)

(2.7,0.7)

Fig. 1. Network considered.

The origin-destination demands gp, p = (q, r) ∈ P and the private cost
ucPRIV

p for each demand pair p ∈ P are given in the following matrices:

G =

















− 9 26 19 13 12
11 − 14 26 7 18
30 19 − 30 24 8
21 9 11 − 22 16
14 14 8 9 − 20
26 1 22 24 13 −

















;
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ucPRIV =

















− 1.6 0.8 2 2.6 2.5
2 − 0.9 1.2 1.5 2.5

1.5 1.4 − 1.3 0.9 2
1.9 2 1.9 − 1.8 2
3 1.5 2 2 − 1.5

2.1 2.7 2.2 1 1.5 −

















Bounds on maximum and minimum lengths of the total public network have
been established at 4 and 2, respectively. The solutions presented in the following
scenarios have been obtained by using CPLEX 8.0 on a Pentium IV laptop
computer at 2.56 Mghz, provided by 1 Gbyte of RAM.

Although different parametric analyses can be carried out for the model, we
have emphasized the sensitivity of the solutions with respect to the dispersion
of values associated to transfer costs.

Applying a calibration process to the public costs of the edges, the centralized
value ucPUB

ij = 0.685 was obtained. Taking this result into account, the value
0.75 was considered a central value. Different decrements and increments of size
0.25 have been used to grade the dispersion with respect to the average 0.75.
Therefore, a variation of modulus 0.25 will be identified as low dispersion and if
the difference with respect to the central value is 0.50, then we will say that the
dispersion is high.

4.1 The effect of varying the transfer cost between lines on the

configuration of the optimum network

An average speed of 20 km/h has been assumed for transit on all lines. The cost
for transferring was established at 3 min. Private cost was six times higher than
public cost; this proportion stimulates a desirable competition between trans-
portation modes. The congestion level has been assumed equal to 1.5 remaining
outside of this first parametric analysis.

The following tables show optimum configurations of the rapid transit net-
works for the constraints indicated; namely, the number of lines that will compose
the final network and the range for the maximum length of each line. Each table
deals with a different scenario:

Table 1 : All transfer costs coincide in a central value (0.75).
Table 2 : Low dispersion for the distribution of transfer costs in a 2-line network (0.5

and 1).
Table 3 : Low dispersion for the distribution of transfer costs in a 3-line network (0.5,

0.75 and 1).
Table 4 : High dispersion for the distribution of transfer costs in a 2-line network

(0.25 and 1.25).
Table 5 : High dispersion for the distribution of transfer costs in a 3-line network

(0.25, 0.75 and 1.25).

The analysis of the results lead us to the following conclusions:
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Line Length Optimum Obj. Line Exec.
Num. Range Lines Func. Lengths Time(s)

2
[0.5, 2.5]
[0.5, 2.5]

n1-n2-n3-n4

n3-n5-n6-n4

444
2.2
1.7

57.7

3
[0.5, 1.5]
[0.5, 1.5]
[0.5, 1.5]

n3-n5-n6

n1-n3-n2

n3-n4

404
1

1.3
1.1

1666.72

Table 1. All transfer coefficients are equal to 0.75

Line Length Optimum Obj. Line Exec.
Num. Range Lines Func. Lengths Time(s)

2
[0.5, 2.5]
[0.5, 2.5]

n2-n1-n3-n5-n4

n5-n6-n4

456
2.5
1.2

95.23

2
[0.5, 3]

[0.5, 2.5]
n1-n3-n5-n4-n6

n2-n3

470
2.7
0.6

50.5

2
[0.5, 3.5]
[0.5, 2.5]

n2-n1-n3-n5-n4-n6

n2-n3

470
3.2
0.6

61.2

Table 2. Low dispersion of transfer coefficients (2 lines)

1. A wide range for the line lengths produces better values of the objective
function.

2. When the dispersion of transfer cost increases (i.e., waiting time is very
heterogeneous for all lines), the flow shift is higher. Subsequently, the best
results for a 2-line network are obtained when the dispersion is low and, on
the other hand, the objective function reaches higher values for the 3-line
network when the dispersion is high. This fact does not alter although the
range of the line lengths varies.

3. The required execution time descends when the dispersion of transfer costs
and the range for line lengths increase, which behaves even better on the
3-line network, as the tables show.

4.2 The effect of varying the train frequency of the lines on the

network configuration

The following tables show optimum configurations of the rapid transit networks
for the train frequency indicated.

Table 6 : Low frequency of the train flow on the 2-line network.

Table 7 : High frequency of the train flow on the 2-line network.

8



Line Length Optimum Obj. Line Exec.
Num. Range Lines Func. Lengths Time(s)

3
[0.5, 1.5]
[0.5, 1.5]
[0.5, 1.5]

n1-n3-n2

n3-n5-n4

n3-n5-n6

425
1.3
1.3
1

1252.69

3
[0.5, 2]
[0.5, 2]

[0.5, 1.5]

n1-n3-n5-n4

n2-n3

n5-n6-n4

470
2

1.2
0.6

248.61

3
[0.5, 2.5]
[0.5, 2.5]
[0.5, 1.5]

n1-n3-n5-n4

n5-n6-n4

n2-n3

470
2

1.2
0.6

248.61

3
[0.5, 3]

[0.5, 2.5]
[0.5, 1.5]

n1-n3-n5-n4-n6

n2-n3

n1-n2

470
2.7
0.6
0.5

173.64

Table 3. Low dispersion of transfer coefficients (3 lines)

Line Length Optimum Obj. Line Exec.
Num. Range Lines Func. Lengths Time(s)

2
[0.5, 2.5]
[0.5, 2.5]

n1-n3-n5-n6-n4

n2-n3

447
2.4
0.6

64.63

2
[0.5, 3]

[0.5, 2.5]
n2-n1-n3-n5-n6-n4

n2-n4

456
2.9
1.1

46.81

2
[0.5, 3.5]
[0.5, 2.5]

n1-n3-n5-n4-n6

n2-n3

456
2.7
0.6

38.81

Table 4. High dispersion of transfer coefficients (2 lines)

4.3 The effect of varying the train frequency on the remainder

parameter set

Table 8 contains the results obtained for a 3-line network whose congestion
level is 5, range for line lengths is [0, 2.5] and total network length is less than
5. Moreover, the maximum value for the objective function is 496 (the total
demand) and λ = 0.33.

The main aim of this subsection consists of showing how the solution varies
when the line frequency increases. For this purpose, the first column of Table 8
collects an increasing sequence of values for the frequency while the remainder
columns show the associated values in relation to the objective function, the
total length and the execution time.

As can be noted, when frequency increases, the waiting time for riderships
decreases and, subsequently, the use of public network increases (as shows the
sequence of values corresponding to the objective function).

In relation to the total length of the lines, Table 8 shows, from a frequency
greater than 6, how the system does not require a minimization of the location
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Line Length Optimum Obj. Line Exec.
Num. Range Lines Func. Lengths Time(s)

3
[0.5, 1.5]
[0.5, 1.5]
[0.5, 1.5]

n1-n3-n2

n3-n5-n4

n3-n5-n6

446
1.3
1.3
1

243.13

3
[0.5, 2]
[0.5, 2]

[0.5, 1.5]

n2-n1-n3-n5

n3-n4-n6

n5-n6

456
1.7
1.8
0.5

432.17

3
[0.5, 2.5]
[0.5, 2.5]
[0.5, 1.5]

n1-n3-n5-n6-n4

n2-n3

n3-n5

470
2.4
0.6
0.5

194.06

3
[0.5, 3]

[0.5, 2.5]
[0.5, 1.5]

n5-n3-n2-n4-n6

n1-n2

n5-n6

470
2.9
0.5
0.5

142.63

Table 5. High dispersion of transfer coefficients (3 lines)

Congestion Optimum Obj. Line Exec.
Level Lines Func. Costs Time(s)

1.2
n1-n2-n3-n5-n6-n4

n5-n6

331
23.8
5.7

494.47

1.5
n1-n2-n3-n5-n6-n4

n5-n6

444
23.8
5.7

97.76

2.2
n2-n3-n5-n6-n4

n1-n3

496
20.1
6.9

22.99

Table 6. Frequency interval = (12 trains per hour, 6 trains per hour).

cost and then, takes advantage of all available resources although the improve-
ment in terms of the objective function is minimum.

Calculation times considerably increase from frequencies greater than 10,
due to the options of finding efficient routes inside the public network increase.
Subsequently, since the size of possible solutions is greater, the time for exploring
will become higher.

5 Comparative tests

This section is devoted to the comparison between results obtained in pres-
ence/absence of transfers. The general context for parameter values (network
with 3 lines at most, congestion factor equals to 5 and range for total length
equals to [0, 5]) remains.
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Congestion Optimum Obj. Line Exec.
Level Lines Func. Costs Time(s)

1.2
n1-n2-n3-n5-n6-n4

n5-n6

414
23.8
5.7

253.14

1.5
n2-n3-n5-n4-n6

n1-n3

470
21
6.9

297.95

2.2
n1-n2-n3-n5

n2-n4-n6

496
15.2
12.7

0.63

Table 7. Frequency interval = (20 trains per hour, 10 trains per hour)

Frequency Obj. Function Total length Exec. Time

4 14 4.7 3.51

5 27 3.3 4.87

6 47 4.9 11.63

7 115 4.5 9.95

8 132 4.8 3.75

9 172 4.8 9.4

10 174 4.5 36.52

12 207 4.8 262.07

14 282 4.8 152.81

16 282 4.8 282.51

18 301 4.8 311.2

20 301 4.6 297.96

30 341 4.9 336.03

Table 8. Influence of line frequency on the other parameters

5.1 The effect of varying the maximum lengths of the lines

Assuming a model without transfers where the speed in the public mode of
transportation is 20 km/h, frequency is 10 trains per hour for all lines and an
access time for boarding equals to 3 minutes, Tables 9 and 10 respectively show
the optimum configurations, the objective function values, the line lengths and
the execution times for the model with and without transfers.

As can be observed, when the line capacity in the model with transfers in-
creases, the portion of demand which uses the public network suffers an incre-
ment but limited by a maximum value (174).

For the case without transfers, this upper boundary does not appear due
to all the existing demand chooses the public mode of transportation, once the
capacity of the lines can take values greater.

Computation time is higher in the model with transfers as consequence of its
inherent complexity.
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Max. Line
Length

Lines
Obj.

Function
Line Length Exec. Time

[0.5,1]
n3-n5-n6

n4-n5

n1-n2

89
1

0.8
0.5

9.1

[0.5,1.5]
n1-n3-n5

n3-n5-n6

n4-n5-n6

112
1.2
1.0
1.5

276.2

[0.5,2]
n1-n3-n5-n6

n5-n4-n6

n1-n2-n4

153
1.7
1.5
1.6

271.69

[0.5,3]
n1-n2-n3-n5-n6

n4-n5

n3-n4

174
2.1
0.8
1.1

36.59

[0.5,4]
n1-n2-n3-n5-n6

n4-n5-n6

n3-n4

174
2.1
1.3
1.1

22.23

Table 9. Model with Transfers

5.2 The effect of varying the maximum length of the network

The constraint of maximum length for the total network gives rise to differ-
ent configurations (see Tables 11 and 12) in relation to the line number whose
maximum was assumed 3. Results obtained suggest similar conclusions to the
obtained in the previous test.

5.3 The effect of varying the congestion factor

In this section, models with and without transfers are compared from the point
of view of the congestion influence. Both settings consider networks composed
of three lines at maximum.

The values of the model parameters are the same: an average speed of 20
km/h assumed for the transit on all lines, cost for transferring 3 minutes and
frequency of 10 trains per hour. Line lengths belong to range [0.5, 2.5] and total
length of the network is in interval the [0, 4].

Table 13 states that when the congestion in the private mode with transfers
increases then a higher portion of the demand uses the public network. Specif-
ically, the maximum possible demand (496) is reached for a congestion factor
equals to 15 and a total length of the network close to 4.

The model without transfers (Table 14) has a similar behaviour but the
increasing in the preference of using the public mode is more significative.
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Max. Line
Length

Lines
Obj.

Function
Line Length Exec. Time

[0.5,1]
n3-n5-n6

n1-n3

n4-n6

368
1.0
0.7
0.7

3.73

[0.5,1.5]
n4-n5-n6

n1-n3-n5

n2-n3

496
1.3
1.2
0.6

2.084

[0.5,2]
n2-n1-n3-n5

n4-n6-n5

n2-n3-n4

496
1.7
1.2
1.7

0.24

[0.5,3]
n1-n3-n4-n6

n2-n3-n5-n6

496
2.5
1.6

0.17

[0.5,4]
n1-n3-n4-n6

n2-n3-n5-n6

496
2.5
1.6

0.19

Table 10. Model without Transfers

Max
Length

Lines
Obj.

Function
Line Length Exec. Time

[0,1] n3-n5-n6 38 1 3.78

[1,2] n1-n3-n5-n6 77 1.7 64.05

[1,3]
n1-n2-n3-n5-n6

n4-n5

147
2.1
0.8

271.69

[1,4]
n1-n2-n3-n5-n6

n4-n5-n6

n1-n2

163
2.1
1.3
0.5

75

[1,5]
n1-n2-n3-n5-n6

n3-n4-n5-n6

n3-n5

174
2.1
2.4
0.5

29.36

Table 11. Model with Transfers

6 Conclusions and further research

The influence of transfer cost parameters have been studied for a test network in
the context of the Rapid Transit Network Design problem. It has been established
that an adequate penalization of the transfers has a big influence on travel
behavior demands. Therefore, the public cost variable is sensitive to the transfer
cost, and this variable is basic for network design decisions.

Another parameter analysis carried out in the paper deals with the influence
of the line frequency, which has been assumed as a given fixed parameter which
depends on design variables. Specifically, the line frequency is obtained as a
function of the number of stations and the length of the lines. Again, it has been
shown that these design variables have a direct influence on the time spent by
a user moving along the lines. A more profound parametric analysis is our next
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Max
Length

Lines
Obj.

Function
Line Length Exec. Time

[0,1] n3-n5-n6 95 1 3.86

[1,2] n1-n3-n5-n4 227 2 17.52

[1,3]
n4-n5-n6

n2-n3-n5

n1-n2

496
1.3
1.1
0.5

0.14

[1,4]
n5-n3-n4-n6

n1-n3-n2

496
1.3
2.3

0.06

[1,5]
n4-n3-n5-n6-n4

n1-n3-n2

496
2.8
1.3

0.06

Table 12. Model without Transfers

Congestion
Factor

Lines
Obj.

Function
Line Length Exec. Time

5
n1-n2-n3-n5-n6

n1-n2

n4-n5-n6

163
2.1
0.5
1.3

46.99

7
n1-n3-n5-n6-n4

n1-n2

n1-n2-n3

322
2.4
0.5
1.1

183.18

10
n1-n2-n3-n5-n4

n4-n6-n5

470
2.4
1.2

36.68

15
n4-n3-n5-n6

n1-n2-n3

n1-n2

496
2.1
1.1
0.5

19.91

Table 13. Model with Transfers

objective in order to broaden the research thus gaining more insight into the
rapid transit network design problem.
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M. Pursula and J. Niittymäki (eds.): Mathematical Methods on Optimization in
Transportation Systems. Applied Optimization, Vol. 48. Kluwer Academic Publish-
ers, Dordrecht (2001) 49–79.
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1 Eötvös Loránd University of Sciences, Department of Operations Research,
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Abstract. This paper presents an experimental study for the Hungarian
State Railway Company (MÁV). The engine assignment problem was
solved at MÁV by their experts without using any explicit operations
research tool. Furthermore, the operations research model was not known
at the company. The goal of our project was to introduce and solve an
operations research model for the engine assignment problem on real data
sets. For the engine assignment problem we are using a combinatorial
optimization model. At this stage of research the single type train that
is pulled by a single type engine is modeled and solved for real data.
There are two regions in Hungary where the methodology described in
this paper can be used and MÁV started to use it regularly. There is a
need to generalize the model for multiple type trains and multiple type
engines.

Keywords. Engine assignment, circulation

1 Introduction

The area of railway operation involves a lot of deep optimization problems.
The following real-life optimization problem was addressed by the Hungarian
State Railway Co. Pl., (MÁV). The timetable of passenger trains of a region of
Hungary is given, and engines (locomotives) should be assigned to each passenger
train under some operational policies. The timetable contains all the necessary
data related to the train like departure and arrival stations and times, railway
lines where the trains are operated, etc. In the given region exactly one type of
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train is operated, with one type of locomotives. This information simplifies the
problem. Our goal is to find an assignment of the engines to the trains that uses
a minimum number of engines.

The operational policy of MÁV includes for instance that every engine be-
tween 48 to 60 hours of running must go for maintenance at one station of a
prespecified subset of stations. Furthermore, it is allowed to define an artificial
train with the goal to send a locomotive from a station to another station if
this locomotive is needed to complete the assignment for a day (or a period) at
that station. It can happen that by adding some artificial trains to the timetable
we might find assignments that use less locomotives than the solution of the
problem with the original timetable. Therefore from a practical point of view we
might have different objectives like solving the problem with a minimum number
of locomotives or minimizing the total energy consumption of the locomotives
used in the assignment or minimizing the operational cost of the passenger trains
over that region (with or without some artificial trains included). Currently, for
the experts of the MÁV, solving this problem with the criteria of minimizing
the number of necessary locomotives in the assignment, takes a few days for the
given test region. Our task is to find a mathematical model for the problem and
generate optimal solutions quickly.

After some attempts to collect the necessary data for our modeling purposes
we agreed with the experts of MÁV that the goal of the optimization is to find
the minimum number of necessary locomotives. However, we believe that if we
had all necessary data we could have all the above mentioned objective functions
for optimization.

Therefore the problem is the following: a passenger train timetable for a
region of Hungary and a set of engines are given, and we have to assign an
engine to each train so that each engine can be assigned to at most one train
at a time. The connection of the engine from a train, which has just arrived at
the station to the next train takes about half an hour. This time is known as
connection time and its exact value influences the assignment of engines to the
trains at a given station. The engines must go for maintenance at one station
of a prespecified subset of the stations within a prescribed interval of working
hours. After analyzing the problem it is clear that this maintenance condition
makes the problem NP-complete. The task is again to minimize the number of
used engines.

The MÁV has many different types of engines. For our purpose, we only have
distinguished diesel-engines and electric-engines. As the lines of these two types
are disjoint for technical reasons, we can assume that we have one type of engine,
and each engine can pull each train. This assumption simplifies our model.

The problem refers to the classical engine assignment problem which is one of
the most important problems of railway optimization (see e.g. Ahuja et al. [1]).
Although this seems to be a widely studied problem, the instances with different
extra conditions and specifications require different combinatorial optimization
models and methods. These distinctions appear also in the size of the solvable
instances. So there are locomotive-car assignment problems with different condi-
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tions that can be written as (mixed)-integer programs, see for example Cordeau
et al. [2], [3]. Most of these are solved by general optimization techniques as
LP-relaxation, Branch-and-Bound method or Bender’s decomposition.

We built up a 0-1 programming model, presented in [4], which has a lot of
variables and conditions but it seems to describe the complete problem. This
integer programming model was too large to be used for computations, (and
unfortunately integer programming models and LP solvers are not widely used
at MÁV by their experts). So we consider the engine assignment problem without
the maintenance condition, that is called the weak engine assignment problem
(WEAP). This problem can be modeled as a purely combinatorial optimization
one, that is to find a minimum number of paths in a graph, which are disjoint
and cover the node-set of the given graph. This model is presented in Section 2.

Our goal is not to introduce a model with full mathematical accuracy, rather
to build a model that describes all the important requirements and that can be
solved efficiently. Of course, those important constraints, that are not included,
like maintenance, should be checked. For instance the prescribed maintenance
needs to be placed in the task-list of all locomotives used in the transportation,
by analyzing (and if it is necessary by modifying) the solution of the WEAP.
The weak assignment problem is finally presented as a circulation model and we
used the minimum cost flow algorithm of LEMON [5]. The computational ex-
periments are provided for the Balassagyarmat region. The results are described
in Section 3. Analyzing our computational results, we found out that we can
place the maintenance property into the task list of locomotives. So in the re-
gion, where we have tested our method, this weak problem seemed to be good for
practical purposes. During the computational study we found out that the model
is very sensitive for some parameters like connection times, that we denoted by
µ. According to the operational policy of MÁV, a train can be pulled by more
than one engine (usually by at most two). MÁV allows engines running without
a train between two stations, these are said to be light-travels. Such light-travels
depend on the given timetable of the region and the applied operational rules
and policies. After dispensing with the opportunity of light-travels, other pa-
rameters are included in the circulation model of Section 2. In the practice of
MÁV the task list of any engine should satisfy a return constraint, namely the
engine starts its duty at a given station and after a few days period at the end
of a day it arrives at the same station. Such a task list can be repeated peri-
odically. (Of course there are some special days like weekends or holidays when
these task lists can not be applied.) Using our model and solution method we
can compute such kind of solutions, as well. Taking into consideration that the
timetable is periodic we can solve our model on a week (period) base. Periodicity
means that on each Monday, before the first train departs, we should have the
same number of engines at the departure stations. This condition implies that
we have to guarantee the necessary number of locomotives at the beginning of
the period. This constraint can be included in the circulation model quite easily
without destroying its nice combinatorial properties. In this way we gave a new
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kind of solution to the engine assignment problem that had not been used at
MÁV earlier.

2 Weak Engine Assignment Problem

The integer program presented in [4] describes precisely the engine assignment
problem. But this is an NP-complete problem. The condition of maintenance
makes the problem NP-complete. The goal of this section is to derive the Weak
Engine Assignment Problem (WEAP). The WEAP does not contain the main-
tenance conditions, so it is a simplified model of the engine assignment problem.
Due to these simplifications the WEAP can be solved in polynomial time, based
on combinatorial optimization techniques. First we construct a directed acyclic
graph, in this graph a path will correspond to a train-sequence, which can be
pulled by the same engine. Then we reformulate the problem to a maximum
matching problem in a bipartite graph, and finally to a circulation problem. The
following notations will be used: the set of arcs leaving (resp. entering) the node
v is denoted by δout(v) (resp. δin(v)), the node-set of a graph G is denoted by
V (G) and the arc-set is denoted by A(G).

Let us construct a directed graph G = (V,A), where the nodes one-to-one
correspond to the trains listed in a given timetable. The train v and the corre-
sponding node is referred also by v. There exists an arc from vi to vj , which is
denoted by vivj if and only if vj can be pulled after vi by the same engine, that
is the arrival station of vi equals the departure station of vj , and the train vi

arrives at the station at least µ minutes before the train vj leaves it. Clearly the
graph G = (V,A) is a directed acyclic graph.

We refer to the graph G = (V,A) as a railway graph, if it comes from WEAP
by the above construction. A directed path of this graph corresponds to a train-
sequence that can be pulled by one engine. (A single-node is also considered
as a path.) Each node should be covered by one path. (If we allow only one
engine to be coupled to a train, then each node should be covered by exactly
one path, in the other case each node should be covered by at least one but
at most 2, 3, . . . etc. paths.) A set of path P = {P1, P2, . . . , Pk} is said to be
a disjoint (double, triple) path-cover if V (Pi) ∩ V (Pj) = ∅ for 1 ≤ i < j ≤ k
(or 1 ≤ |Pi : v ∈ Pj | ≤ 2, 3 ∀v ∈ V resp.), and

⋃
1≤i≤k

V (Pi) = V . It is easy to

see that a disjoint path-cover’s composed of t paths corresponds to an engine
assignment, which uses t engines. So the WEAP can be rephrased as follows:

There is a directed acyclic graph G = (V,A), and we want to find a disjoint
path-cover, which has a minimum number of paths. Such a disjoint path-cover
gives the minimum number of engines needed, furthermore it gives the train-
sequences. Let us construct a bipartite graph Ḡ = (V̄ 1, V̄ 2; Ā) from the original
graph G = (V,A). The node-set V̄ 1 consists of nodes v1 for every original node
v ∈ V , and the node-set V̄ 2 consists of nodes v2 for every original node v ∈ V
likewise. Then the arc-set consists of arcs v2

i v1
j for every original arc vivj . A

path-cover of the original graph G which has k disjoint paths corresponds to
a matching of size |V | − k in the bipartite graph Ḡ. So the minimum disjoint
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path-cover problem is equivalent to a maximum matching problem in a bipartite
graph, which is solvable in polynomial time, see Kőnig [6], or Hopcroft and Karp
[7]. But if we want a double or triple path-cover or we have some more conditions,
then there is a circulation model that gives us more features.

2.1 Circulation Model

The path-cover is a good model for the WEAP, but we have special cases when
we need to modify the model. For example if we allow two engines to be coupled
on a train. Then the paths, which correspond to the train-sequences, are not
necessarily disjoint.

Let us construct the graph G̃ from the railway graph G = (V,A), with
node-set Ṽ = V ′ ∪ V ′′ ∪ {s, t}, where V ′ and V ′′ are two copies of the original
node-set V . Nodes v′, u′′ ∈ Ṽ \ {s, t} mean that there exist trains v and u in
the given timetable, namely every train is represented twice in G̃. The arc-set is
Ã = {v′v′′ : v ∈ V } ∪ {u′′v′ : uv ∈ A} ∪ {v′′t : v ∈ V } ∪ {sv′ : v ∈ V } ∪ {ts}, (see
Figure 1 ).

s t·
·
·

·
·
·

v′
1

v′
2

v′
3

v′
n

v′′
1

v′′
2

v′′
3

v′′
n

V ′ V ′′

Fig. 1. Circulation

Define the lower bounds and the upper bounds f, g : Ã → N by

f(e) =
{

1 if e = v′v′′ for some v ∈ V ,
0 otherwise, g(e) =

{
1 is e = v′v′′ for some v ∈ V ,
∞ otherwise.

A function x : Ã → R, for which f(e) ≤ x(e) ≤ g(e) for every e ∈ Ã is said to
be a circulation if

∑
e∈δout(v)

x(e) =
∑

e∈δin(v)

x(e) for each v ∈ Ṽ . If the upper and
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lower bounds are integer then the existence of a circulation implies the existence
of an integer circulation as in our case. Furthermore the integer circulations
correspond to the solutions of the WEAP. Moreover, if we define a cost-function
c : Ã → R by

c(e) =
{

1 if e = ts,
0 otherwise.

then the solutions of the WEAP correspond to minimum cost circulations.
The previous circulation model describes the WEAP completely. The situ-

ation when more than one engines are coupled to a train can be described by
simple modifications. If for any train v it is allowed to be coupled to at most two
engines then g(e) = 2 for e = v′v′′. Similarly we can change the upper bounds
for 3 or more engines as well.

·
·
·

·
·
·

v′
1

v′
2

v′
3

v′
n

v′′
1

v′′
2

v′′
3

v′′
n

sak
tak

sa1

sa2

sal

ta1

ta2

tal

V ′ V ′′

Fig. 2. Circulation for the Periodic Model

For periodic solutions further modification of the above model is needed. The
timetable is periodic, so it is a natural aim to look for solutions such that for
each station the number of engines is the same at the beginning and at the end
of the period. Then let us modify G̃ as follows: replace the nodes s and t by
|N | = l pieces of node-pairs, sa, ta for each station a. Replace the arc v′t by arc
v′ta if the arrival-station of the train v′ is a, and similarly replace the arc sv′′

by arc sav′′ if the departure-station of the train v′′ is a, and finally let us put
one arc tasa for each a ∈ N . (See Figure 2.)
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If we define the lower bounds as zero and the upper bounds as infinity on the
new arcs, then the solutions of the circulation problem in this new directed graph
correspond to the solutions of the engine assignment problem with periodicity
constraint. The periodicity constraint ensures that the same solution can be
applied for the next period as well.

The minimum cost circulation problem can be solved in strongly polynomial
time, see Goldberg and Tarjan [8], [9].

3 Computational results

We have got data for two regions of Hungary, one is the East-Hungarian Region,
and the other is the region of Balassagyarmat. For the East-Hungarian Region
we have got the freight-train timetable with 689 trains, 488 trains running with
electric engines, and 201 trains running with diesel engines. While these data give
two disjoint problems, we considered only the problem, where electric engines
are used. The timetable of the freight trains is less dense, so the corresponding
railway graph has many disjoint paths. The computations gave a very large
number of engines, if we assume that passenger trains are pulled by different
sets of engines. This computational experiment shows that there is a strong
relation between the minimum number of necessary engines and the density of
the railway graph. Certainly in real life the experts of MÁV solve the problem
with fewer engines, but the engines pull freight trains and also passenger trains,
so the corresponding railway graph is different. If it is necessary then the experts
of MÁV define single-engine-runs (light-travels) to make the railway graph more
connected. The current procedure of MÁV is purely heuristical.

Let us analyze the currently used timetable of the region of Balassagyarmat.
(This timetable is available on http://www.elvira.hu.) In this region we have
got a weekly timetable for the passenger trains, with 521 trains and 9 depar-
ture/arrival stations. We divided the problem into two parts, with and without
the return-back constraint. The program that we have developed controls several
parameters like the length of the modeling period (1, 2, 3, 4, 5, 6, 7, 14, 21 days),
the connection time, µ, and the maximal number of engines that can be cou-
pled to a train. The starting day of the period can have unexpected effects, for
instance the number of necessary engines is different for a one week model if we
start the period on Monday or on Tuesday. The tables show the computational
results.

Some computational experiences follow: according to the definition of the
railway graph, the size of this graph’s node-set depends on the length of the
period. The size of the edge-set depends on the value of µ, that is if we increase
the value of the connection time the graph has less arcs, so the graph would be
less dense. Certainly by the growth of the graph we will need more time both
to build up the graph, and to solve the problem. The number of engines that
can be coupled to a train influences the total number of needed engines. If we
increase this number, the number of needed engines will decrease in our case.

http://www.elvira.hu
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The problem with periodicity constraint would become infeasible if we allowed
only one engine to be assigned to a train.

Table 1. One-day period without return-condition for the region of Balassag-
yarmat, when we allow two engines to be assigned to a train

The value of µ 1min 5min 10min 15min 20 min 30min

|V (G̃| 81 81 81 81 81 81

|A(G̃)| 611 602 589 574 567 558

Time to build the graph (s) 0.187 0.141 0.14 0.14 0.141 0.203

Time to solve the problem (s) 0.406 0.437 0.484 0.546 0.547 0.516

Number of needed engines 11 13 14 15 18 19

Number of trains which use 2 engines 2 0 2 2 2 1

Table 2. One-day period with return-condition for the region of Balassag-
yarmat, when we allow two engines to be assigned to a train

The value of µ 1min 5min 10min 15min 20 min 30min

|V (G̃)| 81 81 81 81 81 81

|A(G̃)| 611 602 589 574 567 558

Time to build the graph (s) 0.219 0.188 0.141 0.172 0.156 0.141

Time to solve the problem (s) 0.406 0.484 0.391 0.375 0.375 0.453

Number of needed engines 11 13 14 15 18 19

Number of trains which use 2 engines 2 7 5 5 11 9

Table 3. One-week period without return-condition for the region of Balassag-
yarmat, when we allow one engine to be assigned to a train

The value of µ 1min 5min 10min 15min 20 min 30min

|V (G̃)| 521 521 521 521 521 521

|A(G̃)| 28824 28772 28695 28610 28563 28508

Time to build the graph (s) 6.266 6.281 6.296 5.141 6.296 6.281

Time to solve the problem (s) 10.828 10.25 10.36 12.141 10.297 10.235

Number of needed engines 12 19 21 21 24 25
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Table 4. One-week period without return-condition for the region of Balassag-
yarmat, when we allow two engines to be assigned to a train

The value of µ 1min 5min 10min 15min 20 min 30min

|V (G̃)| 521 521 521 521 521 521

|A(G̃)| 28824 28772 28695 28610 28563 28508

Time to build the graph (s) 6.328 6.234 6.25 6.281 6.109 6.203

Time to solve the problem (s) 11.422 10.765 10.844 10.953 10.938 11.016

Number of needed engines 12 13 14 15 18 19

Number of trains which use 2 engines 21 23 38 38 29 23

To solve the problem we use the circulation model (Figure 2) that we ex-
tended for different parameters of the problem. (For example the model includes
the value of µ, the number of engines that can be coupled to a train, and so on.)
The computarial model and solver use extended routines of LEMON. LEMON is
an open source library written in C++, developed for combinatorial optimization
algorithms by the Department of Operations Research, ELTE [5].

Summarizing our results we can say that a simplified model, WEAP, for the
engine assignment problem has been introduced. The reason for simplification
was that the maintenance constraints make the model NP-complete, therefore it
becomes practically non-tractable. Among the advantages of WEAP is its pure
combinatorial nature and that it is polynomially solvable. On the other hand
several operational policies can be built into the circulation model (eg. coupling
constraints of engines) keeping its nice optimization property. Our computations
show that WEAP for small sizes of real life problems can be solved fastly. Further
computational investigations are needed for larger problems.

WEAP can be extended for the case when we have several types of trains
and several types of engines too. This is ongoing research now.
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Abstract. This paper provides an overview of the research in railway 
scheduling and dispatching. A distinction is made between tactical scheduling, 
operational scheduling and re-scheduling. Tactical scheduling refers to master 
scheduling, whereas operational scheduling concerns scheduling at a later stage. 
Re-scheduling focuses on the re-planning of an existing timetable when 
deviations from it have occurred. 48 approaches published between 1973 and 
2005 have been reviewed according to a framework that classifies them with 
respect to problem type, solution mechanism, and type of evaluation. 26 of the 
approaches support the representation of a railway network rather than a 
railway line, but the majority has been experimentally evaluated for traffic on a 
line. 94 % of the approaches have been subject to some kind of experimental 
evaluation, while approximately 4 % have been implemented. The solutions 
proposed vary from myopic, priority-based algorithms, to traditional operations 
research techniques and the application of agent technology. 

1 Introduction 

In most countries, the railway traffic system is a significant part of the backbone 
transport system as it is a major service provider for passenger traffic and freight 
transportation. Traffic and transport policies are striving towards decreasing road 
traffic pollution by e.g. increasing railway usage when appropriate. At the same time, 
the available railway systems are partly oversaturated creating bottlenecks on major 
links. An important issue is thus how to best use the existing capacity while ensuring 
sustainability and attractiveness. 

Railway traffic scheduling is often considered a difficult problem primarily due to 
its complexity regarding size and the significant interdependencies between the trains. 
A railway network is generally far from as fine-grained as a road traffic network. The 
options to overtake and meet are very limited and depend on e.g. available side-
tracks, switches, signalling facilities and the characteristics of the trains. Furthermore, 
in many countries the traffic is heterogeneous with trains carrying different types of 
cargo (commuters, long-distance passengers with connections, express freight, bulk 
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goods, etc) with different preferences, destinations and speed functions. All these 
specific attributes make the trains highly interdependent and their interplay complex 
to plan, overview and execute. In addition, the organisation of the railway traffic 
management differs between countries. In some, the operator and traffic manager are 
one and the same company while in some European countries the railway market is 
partly or fully deregulated with a separate authority governing the infrastructure and 
traffic management while several privatised and competing operators are using the 
tracks. The challenge is thus to comply with relevant preferences based on the 
available capacity to achieve and execute a robust and attractive timetable. This 
review surveys the research carried out within the area of railway scheduling and 
dispatching. Even though this is a rather well-known and studied problem domain, the 
number of reviews dealing with this topic is limited. In 1980, Assad [1] presented a 
survey of different models for rail transportation including optimisation, queuing, 
simulation approaches, etc. Later, a survey by Cordeau et. al. [17] was published and 
with a specific focus on various optimisation models for the most commonly studied 
railway problems.  

The aim of this paper is to classify and compare the various approaches for railway 
traffic scheduling in more detail than previous surveys which instead have had a 
wider scope. Furthermore, new methodologies such as agent technology have 
appeared during the last years and these need to be taken into account and be 
compared to more traditional approaches. The next chapter will present the scope of 
this paper, followed by a description of the problem domain. The classification and 
review framework that has been applied is then presented. A discussion of the results 
from the review and some observations are later provided, followed by conclusions 
and directions for future research.  

2 Scope 

The focus here is railway traffic scheduling with an emphasis on slot allocation (i.e. 
the assignment of entry and exit times for trains on track sections) but also to some 
extent route allocation (i.e. which track sections to use to get from origin to final 
destination). That is, if we have a set of trains with individual and possibly competing 
requests for track capacity, how should the trains be scheduled to reach the scheduling 
objective(s)? Thus, primarily the perspective of an infrastructure provider that may 
schedule trains of several train traffic operators (rather than an operator scheduling its 
services exclusively on its own tracks) is in focus. Hence, rail transport scheduling, 
i.e. primarily scheduling of the available resources such as fleets of vehicles and staff 
for specific railway services, is not explicitly considered even if there are some 
common aspects. For these types of problems we refer to [1], [18], [6], [19], and [17]. 
Furthermore, approaches which focus on periodic timetabling, timetable 
synchronisation and sensitivity and robustness analysis of timetables are not reviewed 
explicitly either and we refer instead to e.g. [50], [58] and [48]. Even though the task 
of analysing and predicting the effects of a disturbance is a part of solving 
disturbances, research specifically focusing on that is not included, but can instead be 
found in e.g. [28]. 
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A distinction is here made between tactical scheduling, operational scheduling and 
re-scheduling of railway traffic. Scheduling (or timetabling) is the process of 
constructing a schedule from scratch, while re-scheduling (or dispatching) indicates 
that a schedule already exists and will be modified. The scheduling can also been 
carried out with different time perspectives, i.e. on a tactical or operational (real-time) 
level. In Europe, there is a tradition of creating master schedules that specify a strict 
route and timetable for each train on a tactical level with the intention to execute it in 
real-time. The scheduling may thus involve both route choice and slot allocation, 
where a slot the time window a certain train is planned to use a specific track section. 
For obvious reasons, scheduling of passenger traffic is often carried out on a tactical 
basis.  

Operational scheduling is commonly used for example in North America (and for 
freight transport scheduling). Instead of creating a master schedule a long time before 
it is actually put into action, the operational scheduling takes place not long before 
departure. The routes are then generally already fixed but not the slots. Re-scheduling 
is related to disturbance handling, i.e. assigning new slots to the trains to minimise 
their deviations from the established timetable.  

This review does not include an explicit survey of the tools used by the railway 
authorities or other stakeholders. Included are 48 approaches that have been published 
during the time period 1973-2005. Some approaches have been described in several 
publications, but only the references to the most recent and detailed descriptions are 
included here.        

3 Domain description 

Tactical scheduling, operational scheduling and re-scheduling have the basic problem 
and limitations in common. The kernel of the problem is the conflicts that arise when 
two or more trains want to occupy the same part of the network simultaneously. The 
railway network is usually divided into blocks (i.e. separate track sections) where 
each block can normally hold only one train at a time in order to maintain the required 
safety level (referred to as line blocking). Conflicts could appear when a train is too 
close behind another train travelling in the same direction, or when two trains are 
travelling in opposite directions and would meet within the same block. Due to the 
line blocking, trains are not allowed to get too close and not to meet within a block. 
The conflicts need to be solved not only taking into consideration one isolated 
conflict, but also the effect it will have on the surrounding traffic later on in time. 
Conflicts may thus be interdependent and nested. Solving one may consequently 
create additional conflicts or resolve others. The number of possible solutions can 
become very large depending on e.g. the network structure, the amount of traffic and 
type of trains. 

Fig. 1 provides an illustration of a bi-directional (two-way traffic) single-tracked 
railway line with line blocking, and where a conflict has emerged due to a deviating 
train (i.e. Train 1). When Train 1 departs from Station E, it malfunctions temporarily 
and becomes significantly delayed. Since the schedule of Train 1 interferes with 
foremost Train 2, Train 2 becomes delayed as well due to the restriction of not 

 

3



allowing two trains to use a block (i.e. between Station E and F) simultaneously. The 
circle indicates the violation of the restriction that would take place if the initial 
schedule of the trains was to be followed. Instead, Train 2 must wait for Train 1 
which causes additional conflicts and possibly delays Train 3 and 4 as well depending 
on how the situation is resolved.  

 
 

 

Fig. 1. A time-distance graph describing the railway traffic network between Station I and 
Station C and the scheduled traffic. 

 
Even though the three types of scheduling problems have the main kernel in common, 
there are some significant differences regarding context, time frame and objective(s). 
Tactical scheduling usually involves scheduling for a large traffic network for a long 
time horizon (sometimes up to a year, but on a day-to-day basis) and the time 
available for creating the timetable may be several months. Operational scheduling 
has a shorter time frame and is initiated closer in time to the departure of the trains. 
The objective of tactical scheduling may be more complex reflecting the demand of 
several stakeholders and taking into account infrastructure maintenance. Operational 
scheduling balances also competing requests, but time is more of an issue and some 
new constraints such as definite time windows and connections may have been 
introduced.  

Re-scheduling is initiated when a deviation from an initial schedule occurs with the 
aim to minimise the overall delays. The re-scheduling may need to carried out within 
a short time frame (minutes or seconds) and not be able to or have time to explicitly 
consider the interests of all stakeholders. However, connections and the consequential 
importance of pairing slots, platforms and tracks are introduced; see e.g. [76], [44] 
and [12]. Those considerations are partly also taken into account when creating the 
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initial timetable but the liberties are fewer during timetable execution and re-
scheduling since some parameters cannot be changed (i.e. rolling stock is already 
allocated, timetables for passengers are published and platforms announced, track 
maintenance is planned or have already started, etc). 

In practice, tactical and operational scheduling are often carried out using a 
combination of computational tools and human expertise while for re-scheduling, 
human expertise and rules of thumb often is the dominating procedure. 

4 Classification framework 

The framework applied classifies the approaches according to the scheme in Table 1. 

Table 1. Classification and review framework. 

CONTROL 
Centralised (C) 
Hierarchically distributed (H) 
Distributed (D) 
Localised (L) 

PROBLEM  FORMULATION 

  SOLUTION MECHANISM 
EVALUATION LEVEL 
1.Conceptual approach 
2.Simulated experiments with artificial data  
3.Simulated experiments with real data 
4.Field experiments 
5.Implemented (deployed) 

PROBLEM TYPE 
 

PLANNING PERSPECTIVE:  
Tactical scheduling  
Operational scheduling   
Re-scheduling 

INFRASTRUCTURE REPRESENTATION:  
Line (L), Network (N) 
Single- (S), Double- (D), (N)-tracked,  
Uni- (U), or Bi-(B)directional 

OBJECTIVE(S) 
 
SPECIAL CONSIDERATION(S)  

PROBLEM INSTANCE AND SIZE 

 
Problem type specifies which problem the reviewed approach is assigned to handle 
regarding the planning perspective, infrastructure representation, objective(s), and 
special considerations in mind. As previously described, tactical scheduling is the 
most long-term planning perspective, whereas operational scheduling concerns 
scheduling close in time to departure. Re-scheduling focuses on the real-time re-
planning of an existing timetable when deviations from it have occurred. 
Infrastructure representation describes what kind of railway infrastructure that the 
approach can be applied to. A line is a sequence of segments between two major 
stations with possibly several intermediate stations, while a network is composed of 
one or several junctions of lines. The classification of whether an approach can 
represent a line or also a network is based upon its problem formulation. E.g. if the 
problem formulation assumes that the segments and/or stations are sequenced into a 
line and that the traffic traverses them in that certain order, a network can not be 
represented by that approach.  

Each segment is composed of one or several parallel track sections (i.e. blocks). 
The maximum number of tracks within a segment that an approach can represent is 
referred to as single, double or N. If an approach can handle tracks permitting traffic 
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in one direction, it is denoted ‘U’ (uni-directional), while if also (or instead) two-way 
traffic is accounted for it is denoted ‘B’ (bi-directional). Fig. 2 provides an illustration 
of the terminology used. Double-tracked segments are often in practice uni-
directional, where one side of the segment is allocated to traffic in one direction and 
the other allows traffic in the other direction. The reason behind this restriction is that 
it facilitates the traffic management, or the signalling infrastructure is limited to show 
signals in only one direction per track section. However, in dense traffic areas, the 
tracks may need to be used for traffic in either direction (if the signalling 
infrastructure permits) since there may be an imbalance in the traffic volume during 
some parts of the day or some express trains may need to overtake slower trains. 
Allowing trains to run in both directions obviously increases capacity and flexibility 
but also increases the complexity.  
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Network with single-tracked, bi-directional
(A-C; C-G) block segments and double-tracked,
uni-directional (C-E) block segments.

..

Line with n-tracked, uni-directional
segments. Thus classified as L,N,U

 

Fig. 2. Illustration of terminology used for types of infrastructure representation.  

 
Objective(s) state the purpose and goal of the solution mechanism (e.g. minimising 
travel time, operating costs or maximising utility). Special considerations (e.g. 
connecting trains, platform assignment, and train preferences) specify if the approach 
account for other characteristics and constraints beside line blocking and logical 
relations.  

Besides classifying the problem type, we consider the problem formulation, the 
control strategy and solution mechanism applied. The formulation refers to the 
representation of the solution space. Most common are mathematical models such as 
MIP (Mixed Integer Programme), CSP (Constraint Satisfaction Problem), CP 
(Constraint Programme) and other models based on e.g.  graph theory and network 
modelling.  The control strategy represents how to search through the solution space 
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defined by the problem formulation. Four main control strategies for solving the 
problem can be found; centralised (C), hierarchically distributed (H), distributed (D) 
and localised (L). A centralised approach refers to when the problem is solved as one 
instance. That is, the full problem is considered simultaneously such as during some 
form of enumeration as in classical Branch and Bound, see e.g. [57]. A distributed (or 
decentralised) approach divides the main problem into sub-problems with the aim of 
solving them partly in parallel. The relation between the sub-problems (i.e. how they 
together form the main problem) needs then to be formulated and the solution 
processes need to be synchronised. If there is a hierarchy and some kind of central 
and synchronising control of the sub-problem solving, this is referred to as 
hierarchically distributed (e.g. classic Lagrangian relaxations, see [23]). If the sub-
problems instead are solved independently, this is referred to as a distributed strategy. 
Sub-problems are usually solved in either a cooperative or competitive environment. 
In the cooperative environment, the sub-problems have a common goal and adjust to 
the overall best actions. In a competitive environment, all or some of the sub-
problems are solved with individual and sometimes competing interests. A commonly 
used competitive environment is auctions, which often is referred to as a market-
based mechanism. For more information see e.g. [74]. The localised strategy is very 
similar to the distributed; the problem is divided and its parts allocated to e.g. the 
stations, but the stations do not synchronise their behaviour in any way.  

Examples on solution mechanisms are different types of heuristics such as Local 
Search (LS), Tabu Search (TS, see [27]) or Simulated Annealing (SA, see [39]). 
Branch and Bound (B&B), Lagrangian relaxations, expert systems and more straight-
forward tailored methods such as full or partial enumeration or priority-based conflict 
resolution are other examples. For further information on related terminology, we 
refer to [62] and [57].   

The evaluation level of an approach refers to how developed and evaluated it is 
with regard to what is stated in the publication(s). That is, if it is a conceptual 
description, has been experimentally applied to a problem instance of a real or 
fictional setting, been evaluated in a real setting (field experiments), or has been 
implemented. By implemented, we mean that the approach has been, or is, a deployed 
system. The problem instance and size specifies the maximum size (number of 
stations, segments and trains) of the problem instance that the approach has been 
applied to (while the size of the practical problem in mind may be larger but not 
considered experimentally).  

Finally, we have also tried to compare the advantages and disadvantages of the 
suggested modelling and solution approaches, considering the varying set of 
prerequisites during the publication year and the context. Generally, it would be 
interesting to have a quantitative benchmark that compares e.g. the speed and 
optimality measure of the approaches reviewed. However, due to lack of information 
on those attributes and the overall dominating use of individual data instances, such 
an analysis has not been possible.  
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5 Discussion of review results 

The publications reviewed were published during the time period 1973-2005 and a 
summary of the approaches is presented in the Appendix. The terminology used 
differs between the publications reviewed. When discussing the problem size by 
means of number of stations, segments and trains in the tables in the Appendix, we 
have taken the liberty to translate the given settings into number of stations and 
segments, when possible. Table 2 and Table 3 present the number of approaches that 
considers the different types of infrastructure. ‘Unclassified’ means that the 
publication(s) did not provide enough information for a complete classification. Since 
the objectives and premises for tactical and operation scheduling and re-scheduling 
vary, different special side-constraints are applied. As can be seen in Table 4, more 
details of the infrastructure are considered during scheduling while preferences 
related to trains and operators are more commonly considered during re-scheduling. 
The vast majority of the approaches adopts a quite simplified representation of 
stations and do not consider the potential crossing of train paths and allocation of 
tracks within stations.   

Table 2. Frequency of infrastructure representation per problem type, where U = uni-
directional, B = bi-directional, S=single-tracked, D=double-tracked, and N=n-tracked refer to 
the segment structure (the non-station segments).  

Infrastructure Tactical 
scheduling 

Operational 
scheduling 

Re-
scheduling Total 

US Line 2 0 2 4 

US Network 1 0 0 1 

UD Line 1 0 2 3 

UN Network 0 0 1 1 

BS Line 4 4 3 11 

BS Network 1 2 1 4 

BS,UD Line 3 0 0 3 

BN Line 1 0 0 1 

BN Network 7 1 8 16 
(Unclassified)  
Network 0 0 4 4 

Total 20 7 21 48 
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Table 3. Frequency of infrastructure representation per problem type referring to the segment 
structure (the non-station segments). 

Infrastructure Tactical 
scheduling 

Operational 
scheduling 

Re-
scheduling Total 

Line 11 4 7 22 

Network 9 3 14 26 
     
Uni-directional 4 0 5 9 

Bi-directional 16 7 12 35 

Undefined 0 0 4 4 
     
Single-tracked 8 6 6 20 

Double-tracked 4 0 2 6 

N-tracked 8 1 9 18 

Unclassified 0 0 4 4 

 

Table 4. Special side-constraints and the number of approaches that considers them. 

Special consideration Tactical 
scheduling 

Operational 
scheduling 

Re-
scheduling Total 

Switches, track 
connections 1 - 1 2 

Station and platform 
characteristics 4 - - 4 

 Time windows 1 - 1 2 

Rolling stock/ Crew 
schedules - 1 1 2 

Train connections - - 3 3 

Platform allocation - - 3 3 

 
Regarding the problem formulations adopted, the infrastructure and traffic are 
modelled in a few main ways. It is common to formulate an explicit MIP using binary 
variables to represent the sequence of trains on the segments, and continuous 
variables for the entry and exit times of each train on each segment or specific track. 
The line or network is then explicitly composed of segments, while the nodes between 
the segments (intersections, meet points, stations, etc.) are implicitly modelled. A 
second formulation models instead the stations explicitly and the segments between 
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implicitly. The binary variables and their values specify then in which order the trains 
enter and exit the stations (i.e. their tracks) and according to that continuous variables 
specify when a train arrives at and leaves the corresponding stations and tracks.  

It is difficult to assess what the advantages and disadvantages of each alternative 
are. The second formulation (i.e. modelling stations and meet-points explicitly) seems 
to be less flexible to extend and use for a network since a station may be connecting 
several segments (e.g. main stations that serve as junctions for several lines) while a 
segment only has two end points. The first formulation seems to handle such an 
increased complexity better than the second formulation, but the advantage of the 
second formulation is that constraints related to station attributes (e.g. usage of 
platforms and switches) are easier to handle. A combination of the two formulations 
is to model both stations and non-station segments explicitly. That facilitates the 
specification of detailed restrictions for all elements, but the number of variables will 
consequently increase.  

Another common formulation is to have a graph model of arcs and nodes 
representing the binary variables that specify the order of trains on the segments in the 
MIP. A sequence of arcs then needs to be created while considering a set of 
constraints. Using an object-oriented or a discrete-event formulation of the problem is 
another common representation.  

The formulations previously described use variables to represent the start and end 
times of the slots. The majority uses continuous variables for the times, while a few 
discretisize the time into time units of one or several minutes. Each time unit per train 
and block is then represented by a binary variable where the value ‘1’ specifies that 
the time unit for that block is used by the specific train. This way, the sequence of 
trains on the blocks does not have to be explicitly modelled but is implicitly 
considered already. On the other hand, discretisizing time may result in a significant 
amount of binary variables if small time units are used. For re-scheduling and 
scheduling dense traffic, it may be may be necessary to use small time units in order 
to utilise the infrastructure to the full extent. Five approaches have used discrete time 
units where four of them address tactical scheduling, i.e. [5], [51], [8] and [35], and 
one re-scheduling, i.e. [64]. 

The slots can also be discretized into a set of fixed slots (block- and time-
dependent) where the objective then is to create the optimal and feasible combination 
of slots for each and all trains. This formulation can be seen foremost in combination 
with the use of MAS and auctions. Auctioning is becoming more commonly used 
within scheduling and the use of agent technology is more commonly adopted in the 
traffic and transport domain [21]. There are several other mechanisms of allocating 
track capacity and a detailed discussion about the different principles can be found in 
[26]. One of the problems that hamper the use of auctions and its applicability in the 
railway domain is the need to have a discrete set of subjects to bid for. Railway slots 
are to some extent an infinite and continuous set of options and are thereby difficult to 
effectively translate into a discrete set. The main challenges for these approaches are 
the formulation of the bid generation (including handling multiple interdependencies) 
and the set-up for negotiation and communication within the auctions. Since several 
of the publications do not outline these parts of their approach (only the general 
bidding procedure and objective) and apply the proposals on relatively small data sets, 
it is difficult to assess the general applicability. 
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Difficulties in handling large problems and scalability issues are sometimes used as 
arguments to apply distributed (including hierarchically distributed) methods such as 
auctions instead of centralised ones. Even though the vast majority of the publications 
reviewed use a centralised approach, there is a significant usage of distributed 
problem solving (see Table 5). Tactical scheduling has a comparably less time 
restriction and favours solution quality rather than algorithmic speed. Consequently 
centralised solution methods are dominating while five of the 20 approaches reviewed 
apply a distributed solution mechanism. Three of them ([4], [2], [3] and [35]) use 
agent technology and MAS to solve the problem and two approaches ([4] and [35]) 
apply a market-based strategy. Three approaches apply Lagrangian relaxations.  

Only two approaches for re-scheduling consider a distributed mechanism and four 
adopt a localised strategy. The main difference between having a distributed (and 
hierarchically distributed) and a localised strategy is that the synchronisation of the 
distributed approach may require significant computational effort for the overhead 
communication and is (like the centralised approach) sensitive to an increase in 
problem size and set-up of the problem structure while the more localised strategy is 
(time-wise) not as dependent on the problem size. However, the localised strategy 
may result in a sub-optimisation and less robust and reliable solutions. There is thus 
an obvious trade-off that needs to be made. 

Table 5.  Frequency of control strategy used per scheduling problem. *One approach for 
tactical scheduling evaluates both a hierarchically distributed control strategy and a centralised 
one. 

Planning perspective Centralised Hierarchically 
distributed* Distributed Localised 

Tactical scheduling 16 3 2 0 

Operational scheduling 7 0 0 0 

Re-scheduling 15 0 2 4 

Total 38 3 4 4 

     
The use of context-dependent and tailored solution methods are more common for 
operational scheduling and re-scheduling purposes than for tactical scheduling.  
Several approaches apply myopic mechanisms that do not consider the secondary 
effects of a decision and thus this may make them less appropriate for the general 
scheduling problem. Some approaches propose enumeration techniques, which for 
small problem instances may be sufficient and successful but for a larger problem, 
interdependent conflicts and secondary effects will arise. It is also quite common, 
especially for the re-scheduling problem, to use expert systems and priority rules. 
Those approaches incorporate the current work process of the dispatchers in many 
ways by translating tacit knowledge and rules of thumb into computerised systematic 
reasoning. This differs from the all-human decision-making process as it has a larger 
capability to consider a longer time horizon with more complex and nested decisions. 

In Table 6, the number of approaches per evaluation level and scheduling problem 
is presented and Table 7 presents the frequency of infrastructure type used in the 
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evaluations. As can be seen, many of the approaches reach the stage of being 
experimentally evaluated but several for rather modest problem instances. An increase 
in the railway traffic volume in several countries as well as the increase of 
computational capacity would make one expect a trend towards increasing size of the 
problem instances used in experiments. However, no significant relation between 
infrastructure type and problem size used for evaluation and publication year can be 
seen for tactical or operational scheduling. The focus on re-scheduling seems to have 
increased the past years and the size of the problem instances used to evaluate the 
approaches for tactical scheduling and re-scheduling are interesting enough similar in 
size and type.  

Table 6. Overview of the number of approaches on the different evaluation levels. 

Planning  
perspective 

Conceptual 
approach 

Simulated 
w. artificial 

data 

Simulated w. 
real data 

Field 
experiment Implemented 

Tactical  
scheduling 1 6 13 0 0 

Operational 
scheduling 0 3 2 1 1 

Re-scheduling 0 3 13 4 1 

Total 1 12 28 5 2 

 
In railway networks, the demand for slots is sometimes larger than the available 
capacity and the different trains have varying characteristics and use different parts of 
the network. Hence, the traffic interplay may be too complex to schedule 
operationally and needs to be scheduled on a tactical level. Despite the complexity of 
the tactical scheduling and that nine out of those 20 approaches are able to represent a 
network structure, only two of them have been evaluated for a network structure, see 
Table 7. 

Table 7. Overview of the number of approaches that has used a certain infrastructure 
representation in the evaluation. 

Planning perspective Line Network Not classified 

Tactical scheduling 17 2 1 

Operational scheduling 7 0 0 

Re-scheduling 14 6 1 

Total 38 8 2 
 
The variety of solution methods applied is impressive, providing innovative ideas 
which often have been quantitatively evaluated (see a summary of the review in the 
Appendix). Unfortunately, the choice of method is rarely motivated. Some 
publications state that the problem in focus is NP-hard and too difficult to solve to 
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optimality and instead apply a heuristic approach. The reason is claimed to be the 
growing complexity of the problem due to an exponentially increasing number of 
solutions with the increase in problem size and binary variables. Theoretically, a 
problem with n binary variables could generate a search space of 2n possible 
solutions. That may very well be true for a certain problem size and formulation. 
However, most publications make no attempt to show this for their problem or try 
solve the problem instance to optimality, but just assume it is too difficult. Due to the 
interdependencies (infeasibility and transitivity relations) between the binary 
variables, a large number of constraints are present and reduce the solution space 
significantly. Additional trains and segments may add increased complexity due to an 
increase in number of variables, but they may also decrease the search space since the 
number of restrictions may increase as well. Therefore, general conclusions on the 
proportional relation between the number of binary variables, size of solution space 
and computation time are difficult to make. In addition, the complexity of the problem 
is also dependent on the input data and the objective function. For tactical scheduling 
six approaches have conducted an optimality check and one compares its results to the 
Nash Equilibrium. Three approaches for operational scheduling have been subject to 
an optimality check and five of the re-scheduling approaches. The presence of 
optimality checks is not strictly related to publication year, i.e. approaches in the early 
1990’s as well as recently published approaches have been evaluated, while several of 
the recently published are non-evaluated. Several of the approaches that have been 
subject to an optimality check have used comparably large problem instances.         

It is difficult to assess the applicability of the different formulations and solution 
mechanisms. Obviously, it depends on the practical problem characteristics. Earlier 
models of the railway scheduling problems are to a great extent still applicable, since 
the structure of the railroad has not changed much. However, whether simplifications 
and assumptions made earlier are valid today with respect to changes in traffic flows 
and density is not clear. Moreover, the solution methods have been developed 
significantly since the access to computational capacity has increased dramatically 
along with the opportunity to solve larger problems than possible before. The trend of 
favouring standardised techniques gives an indication of this.  

6 Conclusions and future research 

The variety of proposals is large, and many researchers have evaluated their approach 
with simulation experiments using real data. However, few incorporate previous work 
but instead create own mechanisms. That is, many publications mention related work 
while few seem to really consider whether it is relevant for their context. Furthermore, 
the choice of problem formulation and solution mechanism is often neither motivated 
nor compared to alternative approaches. However, a quantitative benchmark requires 
the researchers to have access to and use the same problem instances as previous 
researchers of earlier work. There is thus a need to have and to use publicly available 
and acknowledged problem instances for the railway scheduling problems as in 
several problem areas within the operations research community. To our knowledge 
there are currently none available. Furthermore, several publications do not provide 
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computational results related to speed or size of problem instance and possible 
scalability issues. An extended description of the size and characteristics of the 
practical problem in mind would also facilitate the comparison to other approaches 
and its applicability for a different setting. As mentioned earlier, it is common to 
assume that optimality is hard to achieve, while few attempts to do so are described. 
A comparison of computational results with results from an attempted optimisation 
(i.e. a lower bound or a gap) would be of interest whether it has been successful or 
not. 

As we could see in the review, new techniques are arising, such as the use of 
auctions and agent technology. However, the challenges regarding synchronising the 
(partial) parallel solving of a distributed problem and how to generate and handle the 
selection of slots need to be presented further as does the impact on computational 
efficiency.  

To conclude; researchers are encouraged to use well-known, common problem 
instances so that the research community can benchmark approaches. That assumes, 
however, that such are available. Furthermore, experiments should be carried out with 
respect to different problem sizes (and related to the practical problem size) and the 
corresponding computational-efficiency of the mechanism should be presented. 
Several approaches seem promising, and further experimentation and development 
would be of great interest. In addition, any attempts to achieve optimum solutions are 
recommended and the results should be presented. Finally, an extended discussion of 
the practical viability of the suggested approaches, motivation of the simplifications 
made and description of the real problems in mind would support conclusions and 
research results even further. 

7 Acknowledgements 

Prof. Peter Värbrand at Linköping University and Prof. Paul Davidsson and Dr. Jan 
A. Persson at Blekinge Institute of Technology have provided important comments 
and inspiring ideas while the Swedish National Rail Administration (Banverket), 
Blekinge Institute of Technology and the municipality of Karlshamn, Sweden have 
financed this work.   

References 

1. Assad, A.: Models for rail transportation. Transportation Research Part A, Vol. 14A. (1980) 
205- 220 

2. Blum, J., Eskandarian, A.: Domain-specific genetic agents for flow optimization of freight 
railroad traffic. Proceedings of the 8th International Conference on Computers in Railways, 
June 12-14, Wessex Institute of Technology, Lemnos, Greece (2002a) 

3. Blum, J., Eskandarian, A.: Enhancing Intelligent Agent Collaboration for Flow Optimization 
of Railroad Traffic. Transportation Research Part A, Vol. 36. (2002b) 919-930 

4. Brewer, P.J., Plott, C.R.: A binary conflict ascending price (BICAP) mechanism for the 
decentralized allocation of the right to use railroad tracks. International Journal of Industrial 
Organization 14. (1996) 857–886 

 

14



5. Brännlund, U., Lindberg, P.O., Nõu, A., Nilsson, J-E.: Railway timetabling using 
Lagrangian relaxation. Transportation Science, Vol. 32, No. 4, (1998) 358-369 

6. Bussieck, M.R., Winter, T., Zimmermann, U.T.: Discrete optimization in public rail 
transport. Mathematical Programming, Vol. 79, (1997) 415-444 

7. Cai, X., Goh, C.J., Mees, A.I.: Greedy heuristics for rapid scheduling of trains on single 
tracks. IIE Transactions 30. (1998) 481-493 

8. Caprara, A., Fischetti, M., Toth, P.: Modeling and solving the timetabling problem. 
Operations Research, Vol. 50, No. 5. (2002) 851-861  

9. Carey, M.: Extending a train pathing model from one-way to two-way track. Transportation 
Research Part B, Vol. 28B, No. 5. (1994a) 395-400 

10. Carey, M.: A model and strategy for train pathing with choice of lines, platforms and routes. 
Transportation Research Part B, Vol. 28B, No. 5. (1994b) 333-353   

11. Carey, M., Lockwood, D.: A model, algorithms and strategy for train pathing. Journal of the 
Operational Research Society 46. (1995) 998-1005 

12. Carey, M., Carville, S.: Scheduling and platforming trains at busy complex stations. 
Transportation Research Part A, Vol. 37. (2003) 195 –224 

13. Chang, S-C., Chung, Y-C.: From timetabling to train regulation-a new train operation 
model. Information and Software Technology, Vol. 47. (2005) 575-585 

14. Cheng, Y.: Hybrid simulation for resolving resource conflicts in train traffic rescheduling. 
Computers in Industry, Vol. 35. (1998) 233–246 

15. Chiang, T-W., Hau, H-Y., Chiang, H-M., Ko, S-Y., Hsieh, C-H.: Knowledge-based system 
for railway scheduling. Data and Engineering 27. (1998) 289-312 

16. Chiu, C.K., Chou, C.M., Lee, J.H.M., Leung, H.F., Leung, Y.W.: A Constraint-Based 
Interactive Train Rescheduling Tool. Constraints 7. (1996) 167-198 

17. Cordeau, J-F., Toth, P., Vigo, D.: A survey of optimization models for train routing and 
scheduling. Transportation Science, Vol. 32, No. 4. (1998) 380-404 

18. Crainic, T.G., Laporte, G.: Planning models for freight transportation. European Journal of 
Operational Research 97. (1997) 409-438 

19. Crainic T.G.: A survey of optimization models for long-haul freight transportation, 
Publication CRT-98-67. Centre de recherche sur les transports. Université de Montréal., 
Canada (1998) 

20. D'Ariano, A., Pranzo, M.: A real time train dispatching system based on blocking time 
theory. Proceedings of the 8th TRAIL 8th Annual Congress 2004 - A world of transport, 
infrastructure and logistics. Delft, DUP Science. ISBN 90-407-2555-1. (2004) 129-152 

21. Davidsson, P., Henesey, L., Ramstedt, L., Törnquist, J., Wernstedt, F.: An analysis of agent-
based approaches to transport logistics. Transportation Research Part C: Emerging 
Technologies, Vol. 13, Issue 4. (2005) 255-271 

22. Dorfman, M.J., Medanic, J.: Scheduling trains on a railway network using discrete-event 
model of railway traffic. Transportation Research Part B, Vol. 38. (2004) 81-98 

23. Fischer, M.L.: The Lagrangian relaxation method for solving integer programming 
problems. Management Science 27. (1981) 1-18 

24. Fukumori, K.: Fundamental scheme for train scheduling: Application of range-constriction 
search. A.I. Memo No. 596. Massachusetts Institute of Technology Artificial Intelligence 
Laboratory, USA (1980)  

25. Ghoseiri, K., Szidarovszky, F., Asgharpour, M.J.: A multi-objective train scheduling model 
and solution. Transportation Research Part B, Vol. 38. (2004) 927-952 

26. Gibson, S.: Allocation of capacity in the rail industry. Utilities Policy 11. (2003) 39–42 
27. Glover, F., Laguna, M.: Tabu Search, Kluwer Academic Publishers, Dordrecht, Netherlands 

(1997) 
28. Hallowell, S., Harker. P.: Predicting on-time performance in scheduled railroad operations: 

Methodology and application to train scheduling. Transportation Research Part A, Vol. 32, 
No. 4. (1998) 279-296 

 

15



29. Hellström, P.: Analysis and evaluation of systems and algorithms for computer-aided train 
dispatching. Licentiate thesis, Uppsala University, Sweden (1998) 

30. Hellström, P., Sandblad, B., Frej, I., Gideon, A.: An evaluation of algorithms for Computer-
Aided Train Dispatching. In: Hellström, P.: Analysis and evaluation of systems and 
algorithms for computer-aided train dispatching. Licentiate thesis, Uppsala University, 
Sweden (1998) 

31. Higgins, A., Kozan, E.: Heuristic techniques for single line train scheduling. Journal of 
Heuristics 3. (1997) 43-62 

32. Ho, T.K., Yeung, T.H.: Railway junction traffic control by heuristic methods. IEEE 
Proceedings Electr. Power Appl., Vol. 148, No. 1. (2001) 77-84 

33. Ingolitto, L., Barber, F., Tormos, P., Lova, A., Salido, M., Abril, M.: An Efficient Method to 
Schedule New Trains on a Heavily. In: (eds.) Reyes, C.A., Gonzales, J.A.): Proceedings of 
Advances in Artificial Intelligence - IBERAMIA 2004, 9th Ibero-American Conference on 
AI, Puebla, Mexico, November 22-26, 2004. Lecture Notes in Computer Science. Springer 
Verlag. (2004) 164-173 

34. Isaai, M.T., Singh, M.G.: Hybrid applications of constraint satisfaction and meta-heuristics 
to railway timetabling: A comparative study. IEEE Transactions on Systems, Man and 
Cybernetics – Part C: Applications and Reviews, Vol. 31, No. 1. (2001) 87-95  

35. Isacsson, G., Nilsson, J-E.: An experimental comparison of track allocation mechanisms in 
the railway industry. Journal of Transport Economics and Policy, Vol. 37, No. 3. (2003) 
353-381 

36. Iyer, R.V., Gosh, S.: DARYN – A distributed decision-making algorithm for railway 
networks: Modeling and Simulation. IEEE Transactions on Vehicular Technology, Vol. 44, 
No. 1. (1995) 180-191 

37. Jia, L-M., Zhang, X-D.: Distributed intelligent railway traffic control based on fuzzy 
decisionmaking. Fuzzy Sets and Systems, Vol. 62, Issue 3. (1993) 255-265    

38. Jovanovic, D.: Improving railroad in-time performance: models, algorithms and 
applications. Ph. D. thesis, Decision Science Department, Wharton School, University of 
Pennsylvania, USA (1989 

39. Kirkpatrick, S.: Optimization by Simulated Annealing - Quantitative Studies. Journal of 
Statistical Physics 34. (1984) 975-986 

40. Kitahara, F., Kera, K., Bekki, K.: Autonomous decentralized traffic management system. 
Proceedings of International workshop of Autonomous Decentralized Systems 2000. (2000) 
87-91 

41. Koch, W.: A low cost tool for rescheduling in regional public transport systems. 
Proceedings of the 9th IFAC Symposium on Control in Transport Systems 2000. June 13-15. 
Braunschweig, Germany (2000)   

42. Komaya, K., Fukuda, T.: A knowledge-based approach for railway scheduling. Proceedings 
for the Seventh IEEE Conference on Artificial Intelligence for Applications. IEEE Comput. 
Soc. Press. (1991) 404-411 

43. Kraay, D., Harker, P.: Real-time scheduling of freight railroads. Transportation Research 
Part B, Vol. 29B, No. 3. (1995) 213-229 

44. Kroon, L.G., Romeijn, H.E., Zwaneveld, P.J.: Routing trains through railway stations: 
complexity issues. European Journal of Operational Research 98. (1997) 485-498 

45. Lamma, E., Mello, P., Milano, M.: A distributed constraint-based scheduler. Artificial 
Intelligence in Engineering 11. (1997) 91-105 

46. Larroche, Y., Moulin, R., Gauyacq, D.: SEPIA: a real-time expert system that automates 
train route management. Control Engineering Practice, Vol. 4, Issue 1. (1996) 27-34 

47. Lee, T.S, Gosh, S.: Stability of RYNSORD – A decentralized algorithm for railway 
networks under perturbations. IEEE Transactions on Vehicular Technology, Vol. 50, No.1. 
(2001) 287-301 

 

16



48. Liebchen, C., Moehring, R.: The Modeling Power of the Periodic Event Scheduling 
Problem: Railway Timetables - and Beyond. Proceedings of the 9th International Conference 
on Computer-Aided Scheduling of Public Transport (CASPT). San Diego, USA (2004)  

49. Lin, H-C., Hsu, C-C.: An interactive train Scheduling workbench based on Artificial 
Intelligence. Proceedings from International Conference on Tools with Artificial 
Intelligence (ICTAI) 1994. (1994) 42-48 

50. Lindner, T.: Train Schedule Optimization in Public Rail Transport. Ph.D. thesis. Technische 
Universität Braunschweig, Germany (2000) 

51. Mackenzie S.: Train timetabling on complex networks. Proceedings from the Conference on 
Railway Engineering 2000 (CORE2000), Adelaide, Australia (2000) 

52. Missikoff, M.: An object-oriented approach to an information and decision support system 
for railway traffic. Proceedings for the 1997 First International Conference on Knowledge-
Based Intelligent Electronic Systems - KES '97, Vol. 2. (1997) 633-641 

53. Nilsson, J-E.: Allocation of track capacity: Experimental evidence on the use of priority 
auctioning in the railway industry. International Journal of Industrial Organization 17. 
(1999) 1139–1162 

54. Oliveira, E., Smith, B. M.: A hybrid constraint-based method for single-track railway 
scheduling problem. Report 2001:4, Research report series. School of Computing, 
University of Leeds, UK (2001) 

55. Pacciarelli, D., Pranzo, M.: A Tabu Search algorithm for the railway scheduling problem. 
Proceedings of MIC ‘2001- 4th Metaheuristics International Conference, Porto, Portugal. 
(2001) 159-163 

56. Pacciarelli, D., Mascis, A., Pranzo, M.: Scheduling Models for Short-Term Railway Traffic 
Optimization. Proceedings of the 9th International Conference on Computer-Aided 
Scheduling of Public Transport (CASPT). San Diego, USA (2004)  

57. Pardalos, P.M., Resende, G.C.: Handbook of applied optimization. Oxford University Press, 
N.Y, USA (2002) 

58. Peeters, L.: Cyclic Railway Timetable Optimization. Ph.D. thesis. ERIM, Rotterdam School 
of Management, Erasmus University Rotterdam, Netherlands (2003) 

59. Petersen, E., Taylor, A.: A structured model for rail line simulation and optimization. 
Transportation Science, Vol. 16, No. 2. (1982) 192-206 

60. Ping, L., Axin, N., Limin, J., Fuzhang, W.: Study on intelligent train dispatching. IEEE 
Intelligent Transportation Systems Conference Proceedings. Oakland, USA (2001) 

61. Pudney, P., Wardrop, A.: Generating train plans with Problem Space Search. Proceedings of 
the 9th International Conference on Computer-Aided Scheduling of Public Transport 
(CASPT). San Diego, USA (2004) 

62. Reeves, C.R. (ed.): Modern heuristic techniques for combinatorial problems. McGraw-Hill, 
London, UK (1995) 

63. Şahin, İ.: Railway traffic control and train scheduling based on inter-train conflict 
management. Transportation Research Part B, Vol. 33. (1999) 511-534 

64. Şahin, G., Ahuja, R.K., Cunha, C.B.: New approaches for the train dispatching problem. 
submitted to Transportation Science (2005) 

65. Salim, V., Cai, X.: A genetic algorithm for railway scheduling with environmental 
considerations. Environmental Modeling & Software, Vol. 12, No. 4. (1997) 301-309 

66. Sauder, R., Westerman, W.: Computer aided train dispatching: Decision support through 
optimization. Interfaces 13. (1983) 24-37  

67. Schaefer, H., Pferdmenges, S.: An expert system for real-time train dispatching. Computers 
in Railway (COMPRAIL) 94. Madrid, Spain (1994) 

68. Shoji, S., Igarashi, A.: New trends of train control and management systems with real-time 
and non real-time properties. Proceedings for ISADS 97 - the Third International 
Symposium on Autonomous Decentralized Systems 1997. IEEE Comput. Soc. Press. (1997) 
319-326  

 

17



69. Spzigel, B.: Optimal train scheduling on a single track railway. In: Ross, M. (ed.): OR'72. 
North Holland Publishing Co. (1973) 343-352 

70. Törnquist, J., Persson, J.A.: N-tracked railway traffic re-scheduling during disturbances: 
theoretical and practical implications. Presented at INFORMS Annual Conference and 
RASIG session November 13, 2005, San Francisco, USA. Accepted for publication in 
Transportation Research Part B during 2006 (2005).  

71. Vernazza, G., Zunino, R.: A distributed intelligence methodology for railway traffic control. 
IEEE Transactions on Vehicular Technology, Vol. 39, Issue 3. (1990) 263-270  

72. Vieira, P., Neto, L.E., Bessa, E., Gomide, F.: Railway dispatch and control. Proceedings for 
the 18th International Conference of the North American Fuzzy Information Processing 
Society (NAFIPS99). New York, USA. (1999) 134-138  

73. Wegele, S., Schnieder, E.: Dispatching of train operations using genetic algorithms. 
Proceedings of the 9th International Conference on Computer-Aided Scheduling of Public 
Transport (CASPT), San Diego, USA (2004) 

74. Wooldridge, M.: An introduction to MultiAgent Systems. John Wiley and Sons Ltd, 
Chichester, England, UK (2002) 

75. Zhou, X., Zhong, M.: Bicriteria train scheduling for high-speed passenger railroad planning 
applications. European Journal of Operational Research, Vol. 167. (2005) 752-771 

76. Zwaneveld, P.J., Kroon, L.G.,  Romeijn, E.H., Salomon, M., Dauzère-Pérès, S., van Hoesel, 
S. P.M., Ambergen, H.W.: Routing Trains Through Railway Stations: Model Formulation 
and Algorithms. Transportation Science 30. (1996) 181-194 

 

 

18



Appendix 

Table 8. Summary of approaches for tactical scheduling, where each line represents an 
approach. The first parenthesis in the second column specifies if the approach considers a line 
(L) or can represent a network (N). The second parenthesis specifies what type of non-station 
segments that can be handled, i.e. if the segments can have bi-directional (B) tracks or only uni-
directional (U) and the maximum number of tracks that are possible for a segment to include; 
single (S), double (D) or an arbitrary number (N). The third parenthesis specifies in the same 
way how segments that represent stations may look like. ‘–’ means that information is missing 
and ‘∞’ means that the capacity (number of tracks) is unrestricted. 

 

Approach Infrastructure 
representation Objective Solution mechanism Control Evaluation 

level
Problem instance and 

size

Petersen, Taylor 
(1982) (L)(B:BN)(S:BN) Max performance Heuristic solving one conflict at a time based 

on rules/priorities C 2 Line: 20 segments, 51 
trains

Salim, Cai (1997) (L)(B:BS)(S:B∞) Min waiting and 
stopping costs Determine meets w. GA C 3 Line: 12 segments, 14 

trains

Nilsson (1999), 
Isacsson, Nilsson 

(2003)
(L)(B:BS)(S:B∞) Max profit Select a feasible combinations of slots via 

auctions D 2
Line: 2 stations, 1 block 

forming 11 slots 
(markets) and 6 bidders

Blum, Eskandarian 
(2002a, 2002b) (L)(B:BS)(S:B∞) Max profit

Reserve tracks for trains in order of highest 
profit using MAS and heuristics (GA, critical 

path analysis)
C 3 Line: 200 segments, 64 

trains

Isaai, Singh (2001) (L)(B:BS)(S:BN) Min waiting times
Determine the visiting order of trains on 

stations based on e.g. the earliest time of 
resource release principle. 

C 3

Line: 51 stations, 40 
single-, 10 double-

tracked segments, 22 
trains

Ingolotti et.al (2004) (L)(B:BS,UD)(S:B∞)
Min average traversal 

time for each new 
scheduled train

Determine visiting order on segments using a 
CSP formulation where new trains are added 
to an existing timetable and each conflicting 
track request is solved according to priority 

values and a back-tracking algorithm.

C 3 Line: 65 segments, 81 
trains

Lin, Hsu (1994) (L)(B:BS, UD)(S:BN)
Min delay (of sacrificed 
train) when solving a 

local conflict

Start with infeasible schedule and apply a 5-
rule-based conflict solver w. earliest-conflict 

first that shift the slots (i.e. arrival and 
departure to stations)

C 3 Line: 102 stations, 350 
trains

Fukumori (1980) (L)(B:UD)(S:UN) Min total weigted delay 
penalty 

Depth-first search branching on train priority 
to shift departure times from stations allowing 

overtaking and determine order of trains
C 1 -

Chiang et. al. (1998) (L)(B:BS,UD)(S:BN) Valid timetable
Repair non-conflict free timetable by set of 
repair-methods and earliest-first principle to 

modify overtakes and meets
C 3 Line: 102 stations, 350 

trains

Caprara et.al (2002) (L)(B:US)(S:B∞)
Min travel time 

exceeding ideal run 
time

Modify train order and overtakes by 
Lagrangian relaxations and subgradient 

optimization
H 3 Line: 16 or 48 stations, 

221 or 54 trains
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Table 9. Continued summary of approaches for tactical scheduling, where each line 
represents an approach. The first parenthesis in the second column specifies if the 
approach considers a line (L) or can represent a network (N). The second parenthesis 
specifies what type of non-station segments that can be handled, i.e. if the segments 
can have bi-directional (B) tracks or only uni-directional (U) and the maximum 
number of tracks that are possible for a segment to include; single (S), double (D) or 
an arbitrary number (N). The third parenthesis specifies in the same way how 
segments that represent stations may look like. ‘–’ means that information is missing 
and ‘∞’ means that the capacity (number of tracks) is unrestricted. 

 

Approach Infrastructure 
representation Objective Solution mechanism Control Evaluation 

level
Problem instance and 

size

Chang, Chung 
(2005) (L)(B:US)(S:US)

Min total time in system,
passenger travel times 

and deviation from 
initial schedule

Decide visiting order of trains on stations 
using GA C 3 Line: 30 stations, 100 

trains

Oliviera, Smith 
(2001) (N)(B:BN)(S:B∞) Min total tardiness Determine order of trains using B&B and hill 

climbing C 3 Line: 14 segments, 49 
trains

Brewer, Plott (1996) (N)(B:BN)(S:B∞) Max profit Select a feasible combinations of slots using 
auctions D 2 Line: 2 blocks, 9 train 

slots, 10 agents

Brännlund et.al. 
(1998) (N)(B:BN)(S:BN) Max profit Allocate discrete time units of segment to 

trains using Lagrangian relaxations H 3 Line: 17 stations, 16 BS 
segments, 26 trains 

Ghoseiri et.al. 
(2004) (N)(B:BN)(S:BN)

Multiple objectives: 1) 
Min fuel consumption, 
2) Min passenger time

Determine visiting order on segments and 
stations allowing meets and overtakes w. an 

e-constraint method and distance-based 
method

C 2 Line: 24 segments, 6 
trains

Mackenzie (2000) (N)(B:BN)(S:BN) Min weighted tardiness 
penalty function

Allocate discrete time units of blocks to trains 
using (1) Lagrangian relaxations, (2) Problem 

Space Search local search heuristics
H, C 2 Line: 60 segments, 34 

trains

Pudney, Wardop 
(2004) (N)(B:BN)(S:BN) Min total lateness cost

Allocate start times at segments by a sorting 
algorithm and Problem space search 

pertubating the data
C 3 Network: 35 meet 

points, 260 trains

Pacciarelli, Pranzo 
(2001) (N)(B:BN)(S:BN) Min total travel time Decide visiting order of trains on segments 

and stations using TS C 3 Network: -

Carey and 
Lockwood (1995), 
Carey (1994a-b)

(N)(B:BS)(S:B∞) Minimise travel and 
waiting time costs

Decide visiting order of trains on segments 
and branching on which train to next path C 2 Line: 10 stations, 28 

segments, 10 trains

Zhou, Zhong (2005) (N)(B:US)(S:B∞) Min interdeparture time, 
total travel time Modify overtakes by B&B and Beam search C 3 Line: 17 segments, 36 

trains  
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Table 10. Summary of approaches for operational scheduling, where each line represents an 
approach. The first parenthesis in the second column specifies if the approach considers a line 
(L) or can represent a network (N). The second parenthesis specifies what type of non-station 
segments that can be handled, i.e. if the segments can have bi-directional (B) tracks or only uni-
directional (U) and the maximum number of tracks that are possible for a segment to include; 
single (S), double (D) or an arbitrary number (N). The third parenthesis specifies in the same 
way how segments that represent stations may look like. ‘–’ means that information is missing 
and ‘∞’ means that the capacity (number of tracks) is unrestricted. 

 

Approach Infrastructure 
representation Objective Solution mechanism Control Evaluation 

level
Problem instance and 

size

Jovanovic (1989) (L)(B:BS)(S:BD) Min tardiness costs 

Fixating where trains overtake and order of 
trains in each direction, while deciding where 
trains in opposite direction meet using B&B 

incorporating heuristics

C 4 Line: 130 meet points, 
200 trains

Cai et.al(1998) (L)(B:BS)(S:BD) Min stopping and 
waiting costs

Modify train order and times on tracks using 
a Greedy algorithm w. a set of conflict-

dependent subroutines
C 2 Line: 10 segments, 99 

trains

Sauder, Westerman 
(1983) (L)(B:BS)(S:BS)

Trains reach destination 
within a time interval 

and min total delay cost 

Meet-plan decisions tree constructed by a 
branching algorithm solving conflicts by 

arranging meets (one at a time) 
C 5 Line:

Higgins et.al (1997) (L)(B:BS)(S:UD) Min total weighted 
travel time

Solve conflicts by set of routines (LS, GA,TS, 
and hybrids). C 3 Line: 14 UD stations, 13 

US segments, 49 trains.

Dorfman, Medanic 
(2004) (N)(B:BN)(S:BN) Min energy costs Determine next slot to occupy track resource 

w. a Greedy heuristic C 2 Line: 8 segments, 36 
trains

Szpigel (1973) (N)(B:BS)(S:B∞) Min weighted travel 
times

Determine visiting order of trains on 
segments w. various branching procedures C 2 Line: 5 segments, 10 

trains

Kraay and Harker 
(1995) (N)(B:BS)(S:B∞) Min tardiness costs

Column generation to find a bound, Applying 
local search heuristics to an LP-model 
(fixating/ignoring) the binary variables 

specifying where trains meet and overtake.

C 3 Line: 11 meet points, 16 
segments
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Table 11. Summary of approaches for re-scheduling, where each line represents an approach. 
The first parenthesis in the second column specifies if the approach considers a line (L) or can 
represent a network (N). The second parenthesis specifies what type of non-station segments 
that can be handled, i.e. if the segments can have bi-directional (B) tracks or only uni-
directional (U) and the maximum number of tracks that are possible for a segment to include; 
single (S), double (D) or an arbitrary number (N). The third parenthesis specifies in the same 
way how segments that represent stations may look like. ‘–’ means that information is missing 
and ‘∞’ means that the capacity (number of tracks) is unrestricted. 

 

Approach Infrastructure 
representation Objective Solution mechanism Control Evaluation 

level
Problem instance and 

size

Hellström 
et.al(1998) (L)(B:BS)(S:BD) Min tardiness costs

Fixating where trains overtake and order of 
trains in each directions, while deciding 

where trains in opposite direction meet using 
a B&B procedure

C 3 Line: 23 single-tracked 
segments, 20 trains

Sahin (1999) (L)(B:BS)(S:BD) Min delay of the two 
local conflict resolutions 

Solve each conflict (pair of conflicting track 
requests) by applying an approximative look-
ahead heuristic comparing the effectiveness 
of the two alternative solutions (delaying train 

i or train j)

C 2 Line: 19 stations/meet 
points, 20 trains

Cheng (1998) (L)(B:UD)(S:BN) Solve conflicts based 
on priority

Decide order of use of resources w. priority-
based sorting and simulation C 2

Line: 3 stations, 2 uni-
directional double-

tracked segments, 8 
trains

Chiu et.al. (1996) (L)(B:BS)(S:BS) Min largest delay per 
train

With varying heuristic strategies such as 
"choose smallest delay change first" the 

order of trains on segments are modified.
C 3 Line: several stations, 

BS segments

Ping et.al (2001) (L)(B:UD)(S:B∞) Min total delay Determine vistiting orders on segments and 
start times using GA C 3

Line: Double-tracked 
with 14 stations, 250 

trains

Komaya, Fukuda 
(1991) (L)(B:US)(S:-) Min total accumulated 

delay for all trains
Decide order of trains on segment between 
two ordered stations using an expert system C 4 Line: 14 stations, 40 

trains

Jia, Zhang (1993) (L)(B:US)(S:US) Based on priorities Decide order of trains on stations w. priority-
based sorting L 3 Line: 12 stations, 12 

trains

Vernazza, Zunino 
(1990) (N)(B:-)(S:-) Most urgent conflicts 

dealt with first

Allocate tracks to trains by trains "bidding" 
the capacity to the local DCs that handles 
and allocates based on local urgency and 

priority rules 

L 3 Network:

Shoji, Igarashi 
(1997), Kitahara 

et.al. (2000)
(N)(B:-)(S:-) - - D 5 Network: 17 lines, 250 

stations, 6200 trains

Iyer, Gosh 
(1995);Lee, Gosh 

(2001)
(N)(B:-)(S:-) Each train minimises its 

total travel time

Each train requests for N tracks ahead and 
negotiates with resp. infrastructure owner 

(.i.e. stations) to grant or refuse the request
L 3 A network: 50 stations, 

84 segments.

Viera et. al. (1999) (N)(B:B-)(S:B-) Several objectives Decide meets and overtakes based on 
priorities from a fuzzy rule-base C 4 Line: Single-tracked 

segments w. 43 sidings.  
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Table 12. Continued summary of approaches for re-scheduling, where each line represents an 
approach. The first parenthesis in the second column specifies if the approach considers a line 
(L) or can represent a network (N). The second parenthesis specifies what type of non-station 
segments that can be handled, i.e. if the segments can have bi-directional (B) tracks or only uni-
directional (U) and the maximum number of tracks that are possible for a segment to include; 
single (S), double (D) or an arbitrary number (N). The third parenthesis specifies in the same 
way how segments that represent stations may look like. ‘–’ means that information is missing 
and ‘∞’ means that the capacity (number of tracks) is unrestricted. 

 

Approach Infrastructure 
representation Objective Solution mechanism Control Evaluation 

level
Problem instance and 

size

Hellström 
et.al(1998) (L)(B:BS)(S:BD) Min tardiness costs

Fixating where trains overtake and order of 
trains in each directions, while deciding 

where trains in opposite direction meet using 
a B&B procedure

C 3 Line: 23 single-tracked 
segments, 20 trains

Missikoff (1997) (N)(B:BN)(S:-) Min local weighted 
delay costs

Heuristics (Hillclimbing, A-search) that finds a 
conflict, solves it locally with respect to the 
local delay cost and approximative cost for 

global costs  

L 3 Line: double-tracked  

Wegele, Schnieder 
(2004) (N)(B:BN)(S:BN)

Min passenger 
annoyance for platforms 

changes and delays

Determine train visiting times at nodes 
(signals and switches) using B&B improved 

by GA
C 3 Network: 104 stations, 

1000 trains

Törnquist, Persson 
(2005) (N)(B:BN)(S:BN) Min total delay, min 

total delay costs
Determine train visiting order on segments 

using B&B (of IP solver CPLEX) C 3 Network: 130 stations, 
136 segments, 93 trains

Ho, Yeung (2001) (N)(B:BN)(S:BN) Min total weighted delay Decide order of track usage using TS, SA, 
GA. C 2 -

Lamma et.al. (1997) (N)(B:BN)(S:BN) Min train delays Local schedulers allocate resources to train 
by using priority rules D 3 Line: 

Schaefer, 
Pferdmenges (1994) (N)(B:BN)(S:BN) Min weighted delays

 An expert-system w. rule-based greedy 
algoritm buidling a decision-tree w. breadth-
first search and primary conflicts on top level

C 3

Line: Single- and double-
tracked segments for 

traffic between 3 and 24-
hours

Sahin et.al(2005) (N)(B:BN)(S:BN) Min total delay
IP-based heuristics limiting max allowed 
delay/train, "local" rule-based simulation 
heuristic, Greedy enumeration heuristic

C 3

Line: 25 stations, 24 
single-tracked 

segments, 25 trains 
over 24-hours

D'Ariano, Pranzo 
(2004), Pacchiarelli 

et.al (2004)
(N)(B:BN)(S:BN) Min the maximum 

secondary delay

Create a non-valid timetable, apply a greedy 
conflict resolution algorithm that chooses high

priority conflicts first and solves them 
according to "most affected train gets 

priority", finally a pre-processing phase takes 
over.

C 3 Line: 21 US segments, 
4 trains

Koch (2000) (N)(B:BS)(S:-) Min total delay cost A* search C 4
Line: 23 stations, single-

tracked segments, 23 
trains

Larrouche 
et.al.(1996) (N)(B:UN)(S:-)

Multiple, context-
dependent, tacit and 
subjective objectives 

Search for a resource for each train slot 
using an expert system C 4 Network: 250 trains
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Abstract. An important strategic element in the planning process of
public transportation is the development of a line concept, i.e. to find
a set of paths for operating lines on them. So far, most of the models
in the literature aim to minimize the costs or to maximize the number
of direct travelers. In this paper we present a new approach minimizing
the travel times over all customers including penalties for the transfers
needed. This approach maximizes the comfort of the passengers and will
make the resulting timetable more reliable. To tackle our problem we
present integer programming models and suggest a solution approach
using Dantzig-Wolfe decomposition for solving the LP-relaxation. Nu-
merical results of real-world instances are presented.

Keywords. Line planning, real-world problem, integer programming,
Dantzig-Wolfe decomposition

1 Motivation and related literature

In the strategic planning process of a public transportation company one im-
portant step is to find a suitable line concept, i.e. to define the routes of the
bus or railway lines. Given a public transportation network PTN = (S, E) with
its set of stations S and its set of direct connections E, a line is defined as a
path in this network. The line concept is the set of all lines offered by the public
transportation company, together with their frequencies, where the frequency
fl of a line l contains the number of vehicles serving line l within the planning
period considered. The frequency of an edge e, on the other hand, is the number
of vehicles running along the edge.

The line planning problem has been well studied in the literature. For an early
contribution we refer to Dienst, see [1]. The many models given after this time
can be roughly classified into the following two types. In a cost-oriented approach
the goal is to find a line concept serving all customers and minimizing the costs
for the public transportation company. The basic cost model has been suggested
in Claessens et al., see [2], where a binary (linear) programming formulation has
been given. A solution approach by branch and cut has been developed in [3].
In [4] an alternative formulation with integer variables has been proposed. In [5]
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Bussieck et al. present a fast solution approach combining nonlinear techniques
with integer programming.

In [6] and [7] the authors get rid of the assumption that the passengers are
assigned a priori for example by modal split to different types of trains. This
is done by assigning a certain type to every node in the PTN, representing for
example the size of the station.Then the type of a line determines the stations
they pass. For example a line of type 1 stops at every station it passes, a line
of type 2 will not halt at a station of type 1 but at every station of type 2 or
higher. Several models, correctness and equivalence proofs are presented.

Recently, a fast heuristic variable fixing procedure which combines nonlinear
techniques with integer programming is proposed in [5].

[6] presents a model that reconsiders the stations at which the trains stop
for a given line plan. This model is used to determine the halting stations in
such a way that the total travel time of passengers is minimized. Lagrangian
relaxation is used to find lower bounds on this problem. Preprocessing and tree
search techniques augment the efficiency of the branch&bound framework.

A second class of models are the customer-oriented approaches. In the direct
travelers approach by Bussieck et al. [8] (see also [4]) the goal is to maximize
the number of direct travelers (i.e. customers that need not change the line to
reach their destination). As constraint, the number of vehicles running along an
edge is restricted for each edge in the PTN, i.e. upper and lower bounds on the
allowed frequencies on each edge are taken into account. The model maximizes
the amount of one group of customers but without considering the remaining
ones which might have very many transfers during their trips. It also does not
take into account the travel times for the customers: Sometimes it is preferable
to have a transfer but reach the destination earlier instead of sitting in the same
line for the whole trip but having a large detour. This is done in recent models by
[9,10,11,12] in which the goal is to design lines in such a way that the traveling
time of the customers is minimized. The special case of locating one single line
so as to maximize the number of passengers is treated in [13]. None of these
models includes the number of transfers of customers in the objective function,
which will be the basic feature of the model presented in this paper.

Another approach is to take into account that the behavior of the customers
depends on the design of the lines. A first cost-oriented model including such
demand changes was treated with simulated annealing in two diploma theses in
cooperation with Deutsche Bahn, see [14,15]. Finally, we want to mention the
work by Quak [16] in which lines are not taken out of a given line pool as done
by all other publications mentioned here, but constructed from the scratch.

In our work we develop a new model which allows to sum over all travel times
over all customers including penalties for the transfers needed. The first ideas
for this model have been presented in [17]. Here, we also show how different
frequencies of the lines can be taken into account. The remainder of the paper
is organized as follows. In Section 2 we introduce the new line planning model,
discuss its complexity in Section 3 and then describe and discuss five integer pro-
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gramming models in Section 4. We present two ways to solve the LP-relaxation,
one based on Dantzig-Wolfe decomposition (see Section 5). Finally, we present
numerical results based on a real-world application of German Rail (DB).

2 Basic definitions

A public transportation network is a finite, undirected graph PTN = (S, E) with
a node set S representing stops or stations, and an edge set E, where each edge
{u, v} indicates that there exists a direct ride from station u to station v (i.e., a
ride that does not pass any other station in between). For each edge {u, v} we
assume that the driving time tuv is known.

We assume the PTN as given and fixed. We further assume that a line pool
L is given, consisting of a set of paths in the PTN. Each line l ∈ L is specified
by a sequence of stations, or, equivalently, by a sequence of edges. Let E(l) be
the set of edges belonging to line l. Given a station u ∈ S we furthermore define
L(u) = {l ∈ L : u ∈ l} as the set of all lines passing through u.

Moreover, let R ⊆ S × S denote the set of all origin-destination pairs (s, t)
where wst is the number of customers wishing to travel from station s to station
t.

The line planning problem then is to choose a subset of lines L ∈ L, together
with their frequencies, which

– allows each customer to travel from its origin to its destination,
– is not too costly, and
– minimizes the “inconvenience” for the customers.

In the literature, the main customer-oriented approach dealing with the in-
convenience of the customers is the approach of [4] (see also [8]) in which the
number of direct travelers is maximized. In our paper, however, we deal with
the sum of all transfers over all customers. On a first glance, the problem to
minimize the number of transfers seems to be similar to maximizing the number
of direct travelers, but it can easily be demonstrated that both models are in
fact different.

Note that considering the number of transfers only would lead to solutions
with very long lines, serving all origin-destination pairs directly but having large
detours for the customers. To avoid this we determine not only a line concept,
but also a path for each origin-destination pair and count the number of transfers
and the length of the paths in the objective function. This is specified next.

Given a set of lines L ⊆ L, a customer can travel from its origin s to its
destination t, if there exists an s-t-path P in the PTN only using edges in {E(l) :
l ∈ L}. The “inconvenience” of such a path is then approximated by the weighted
sum of the traveling time along the path and the number of transfers, i.e.

inconvenience(P ) = k1TimeP + k2TransfersP .
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On the other hand, the cost of the line concept L ⊆ L is calculated by
adding the costs Cl for each line l ∈ L, assuming that such costs Cl are known
beforehand.

The line planning problem hence is to find a feasible set of lines L ⊆ L
together with a path P for each origin-destination pair, such that the costs of
the line concept do not exceed a given budget B and such that the sum of all
inconveniences over all paths is minimized.

Since the capacity of a vehicle is not arbitrarily large, we have to extend the
basic problem to include frequencies of the lines. This makes sure that there
are enough vehicles along each edge to transport all passengers. If each origin-
destination pair can be served, the line concept is called feasible. We remark that
often the number of vehicles running along the same edge is also bounded from
above, e.g., for safety reasons.

3 Complexity Results

In this section we first show that the line planning problem as defined above
is NP-hard, even in a very simple case, corresponding to k1 = 0 in the above
definition.

Theorem 1. The line planning problem is NP-complete, even if

– we only count the number of transfers in the objective function,
– the PTN is a linear graph.
– all costs Cl are equal to one.

Proof. In the decision version, the line planning problem in the above case can
be written as follows:

Given a graph PTN =(S, E) with weights ce for each e ∈ E, origin-destination
pairs R, and a budget B, does there exist a feasible set of B lines with less than
K transfers?

We reduce the set covering problem to the line planning problem: Given a
set covering problem in its integer programming formulation

min{1nx : Ax ≥ 1m, x ∈ {0, 1}n}

with an 0-1 m×n matrix A, and 1k ∈ IRk the vector with a 1 in each component,
we construct a line planning problem as follows:

We define the PTN as a linear graph with 2m nodes S = {s1, t1, s2, t2 . . . , sm, tm}
and edges E = {(s1, t1), (t1, s2), (s2, t2), (t2, s3), . . . , (sm, tm)}. We define an origin-
destination pair for each row of A,

R = {(si, ti) : i = 1, . . . ,m}.

For column j of A we construct a line lj passing through nodes si and ti if
aij = 1.
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As an example, Figure 1 shows the line planning problem obtained from a
set covering problem with

A =


1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 1 0



s1 t1 s2 t2 s3 t3 s4 t4 s5 t5 s6 t6

l1 l2

l3

l4

Fig. 1. Construction of the line planning problem in the proof of Theorem 1.

Setting K = 0 we hence have to show that a cover with less than B elements
exists if and only if the line planning problem has a solution in which all pas-
sengers can travel without changing lines. Due to our construction this is true
and hence the theorem holds.

A question that might arise in this context, is what happens if the lines need
not be chosen from a given line pool, but can be constructed as any path. Some
of the basic cost models become very easy in this case, but unfortunately, the
complexity status of the line planning problem treated in this paper does not
change which can be shown by reduction to the Hamiltonian path problem (see
[18]).

4 Models for the line planning problem

To model the line planning problem as integer program we use the PTN to
construct a directed graph, the so-called change&go network GCG = (V, E) as
follows:

We extend the set S of stations to a set V of nodes with nodes representing
either station-line-pairs (change&go nodes: VCG) or the origins and destinations
of the customers (origin-destination nodes: VOD), i.e. V := VCG ∪ VOD with

– VCG := {(s, l) ∈ S × L : l ∈ L(s)} (set of all station-line-pairs)
– VOD := {(s, 0) : (s, t) ∈ R or (t, s) ∈ R} (origin-destination nodes)
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The new set of edges E consists of directed edges between nodes of the same
stations (representing that customers board or unboard a vehicle or change lines)
and edges between nodes of the same line (representing the driving activities):

E := Echange ∪ EOD ∪ Ego

with

– Echange := {((s, l1), (s, l2)) ∈ VCG × VCG} (changing edges)
– El := {((s, l), (s′, l) ∈ VCG × VCG : (s, s′) ∈ E} (driving edges of line l ∈ L)
– Ego :=

⋃
l∈L El (driving edges)

– EOD := {((s, 0), (s, l)) ∈ VOD×VCG and ((t, l), (t, 0)) ∈ VCG×VOD : (s, t) ∈
R} (origin-destination edges)

We define weights on all edges e ∈ E of the change&go network representing
the inconvenience customers have when using edge e. Given a set of lines L ⊆ L
we then can determine the lines the customers are likely to use by calculating a
shortest path in the change&go network for each single origin-destination pair.
Therefore the choice of the edge costs ce is very important. We give two examples:

1. Customers only count transfers:

ce =
{

1 : e ∈ Echange

0 : else

Note that in this case, it is possible to shrink the change&go network to a
network with |L|+ |S| nodes and |Echange|+ |EOD| edges.

2. Real travel time:

ce =

0 : e ∈ EOD

travel time in minutes : e ∈ Ego

time needed for changing platform : e ∈ Echange

More specific, to model the line planning problem as defined in Section 2,
we set

ce =

0 if e ∈ EOD

k1tuv if e = ((u, l), (v, l)) ∈ Ego

k2 if e ∈ Echange

Since we assume that customers behave selfish we need an implicit calculation of
shortest paths (with respect to the weights ce) within our model. This is obtained
by solving the following network flow problem for each origin-destination pair
(s, t) ∈ R.

θxst = bst,

where

– θ ∈ ZZ|V|×|E| is the node-arc-incidence matrix of GCG,
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– bst ∈ ZZ|V| is defined by

bi
st =

 1 : i = (s, 0)
−1 : i = (t, 0)

0 : else

– and xe
st ∈ {0, 1} are the variables, where xe

st = 1 if and only if edge e is used
on a shortest dipath from node (s, 0) to (t, 0) in GCG.

To specify the lines in the line concept we introduce variables yl ∈ {0, 1} for
each line l ∈ L, which are set to 1 if and only if line l is chosen to be in the line
concept. Our model, Line Planning with Minimal Travel Times (LPMT) can
now be presented.

(LPMT1)

min
∑

(s,t)∈R

∑
e∈E

wst ce xe
st (1)

s.t.
∑

(s,t)∈R

∑
e∈El

xe
st ≤ |R||E l|yl ∀ l ∈ L (2)

θxst = bst ∀ (s, t) ∈ R (3)∑
l∈L

Clyl ≤ B (4)

xe
st, yl ∈ {0, 1} ∀ (s, t) ∈ R, e ∈ E , l ∈ L (5)

Constraint (2) makes sure that a line must be included in the line concept if
the line is used by some origin-destination pair. Constraint (3) models the selfish
behavior of the customers, i.e., that customers use shortest paths according to
the weights ce.

Having only constraints (2) and (3), the best line concept from a customer-
oriented point of view would be to introduce all lines of the line pool. This is
certainly no option for a public transportation company, since running a line is
costly. Let Cl be an estimation of the costs for running line l and let B be the
budget the public transportation company is willing to spend. Then the budget
constraint (4) takes the economic aspects into account.

The objective function we use is customer-oriented: We sum up the costs∑
e∈E

wst ce xe
st

of a shortest path from s to t for each origin-destination pair (s, t) ∈ R, i.e., we
minimize the average costs of the customers.
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We get three alternative formulations of this problem by substituting con-
straints (2) by one of the following constraints∑

(s,t)∈R

xe
st ≤ |R|yl ∀ l ∈ L, e ∈ E l (6)

∑
e∈El

xe
st ≤ |E l|yl ∀ l ∈ L, (s, t) ∈ R (7)

xe
st ≤ yl ∀ (s, t) ∈ R, e ∈ E l : l ∈ L (8)

We denote the formulation using constraints (6) (LPMT2), using (7) (LPMT3),
and using (8) (LPMT4). As shown in [19], these formulations are equivalent, i.e.
they are valid IP formulations for the same integer set X of feasible solutions of
the line planning problem. Nevertheless the bounds provided by the correspond-
ing LP-relaxations differ. This will be analyzed next.

Let X ⊆ Zn be a set of feasible solutions, and let two polyhedrons PA and
PB be valid formulations for X, i.e., X = PA ∩ Zn = PB ∩ Zn. Then PA. is said
to be a stronger formulation than PB if PA ⊂ PB , see, e.g., [20]. In this case,

min
x∈X

cx ≥ min
x∈PA

cx ≥ min
x∈PB

cx,

i.e., the bound provided by the stronger formulation PA is better than the bound
provided by PB .

We can use this theory to analyze the strengthness of the four formulations
presented for the line planning problem.

Theorem 2. The convex hull of the integer set described by formulation (LPMT1)
is denoted by P1. The corresponding polyhedra described by formulation (LPMT2),
(LPMT3), and (LPMT4) are denoted by P2, P3, and P4, respectively. Then, the
following holds:

– P4 is stronger than P1, P2, and P3.
– P3 is stronger than P1.
– P2 is stronger than P1.
– Comparing P3 and P2, none of them is stronger than the other.

The proof can be found in [19]. Note that in real world instances (LPMT3)
comes out to be in most cases stronger than (LPMT2), see Section 5.1.

In (LPMT) we implicitly assume that all customers traveling from station s
to station t choose the same path in the change&go network, i.e., the same set of
lines. This can be done if edge capacities are neglected in (LPMT). In practice,
this is usually not the case, since each vehicle only can transport a limited
number of customers and usually there is only a limited number of vehicles
possible along each line (e.g. due to safety rules). In the following, we therefore
present an extension of (LPMT) taking into account the number of vehicles on
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each line in a given time period. Consequently, this formulation allows to split
customers along different paths from s to t in the change&go network GCG.

Let N denote the capacity of a vehicle and let the new variables fl ∈ IN
contain the frequency of line l, i.e., the number of vehicles running along line
l within a given time period. Furthermore we choose variables xe

st ∈ IN and
change the vector bst to

bi
st =

 wst if i = (s, 0)
−wst if i = (t, 0)

0 else

Then the Line Planning Model with minimal transfers and frequencies (LPMTF)
is the following:

(LPMTF)

min
∑

(s,t)∈R

∑
e∈E

ce xe
st (9)

s.t.
1
N

∑
(s,t)∈R

xe
st ≤ fl ∀ l ∈ L, e ∈ El (10)

θxst = bst ∀ (s, t) ∈ R (11)∑
l∈L

Clfl ≤ B (12)∑
l∈L:k∈El

fl ≤ fmax
k ∀ k ∈ E (13)

xe
st, fl ∈ IN ∀ (s, t) ∈ R, e ∈ E , l ∈ L (14)

Constraints (10) make sure that the frequency of a line is high enough to
transport the passengers. If fl = 0, the line l is not chosen in the line concept.
Constraints (11) are flow conservation constraints routing the passengers on the
shortest possible paths. Note that the xe

st variables can take integer values, such
that passengers may choose different paths for the same origin-destination pair.
Constraint (12) is again the budget constraint but with costs for each vehicle of
a line (which are multiplied by the frequency to get the costs of the line).The
capacity constraint (13) may be included if upper bounds for the frequencies are
present.

5 Solving the LP-relaxation

As we have shown in Section 3 the line planning problem is NP-hard, and,
moreover in real-world instances, gets huge. But fortunately the formulations of
(LPMT) and (LPMTF) have block diagonal structure with only few coupling
constraints. Moreover, in both models, all blocks are totally unimodular since
they represent network flow problems.
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In Section 5.1 we identify cases in which the solution of the LP-relaxation
can be found by solving shortest path problems. If this does not work we have
to take advantage of the block diagonal structure by using a Dantzig-Wolfe
decomposition, which is shown in Section 5.2.

5.1 Using the trivial solution

Definition 1. A trivial solution (x̄, ȳ1), (x̄, ȳ2), (x̄, ȳ3), (x̄, ȳ4) of (LPMT1),
(LPMT2), (LPMT3), (LPMT4), respectively, is defined as the solution x̄e

st of
the shortest path problems

θxst = bst ∀ (s, t) ∈ R

on the change&go-network constructed of all lines of the line pool and

ȳ1
l :=

∑
(s,t)∈R

∑
e∈El x̄e

st

|E l||R|
∀ l ∈ L (for (LPMT1))

ȳ2
l :=

maxe∈El

∑
(s,t)∈R x̄e

st

|R|
∀ l ∈ L (for (LPMT2))

ȳ3
l :=

max(s,t)∈R
∑

e∈El x̄e
st

|E l|
∀ l ∈ L (for (LPMT3))

ȳ4
l := max

(s,t)∈R
max
e∈El

x̄e
st ∀ l ∈ L (for (LPMT4))

It is in general not unique and need not to be feasible in the sense that it fulfills
the budget constraint.

In real world instances it appears quite often that a trivial solution is an opti-
mal solution of the LP-relaxation of (LPMT1). This is clear since the right hand
sides |R||E l| of the coupling constraints (2) are chosen such that all passengers
could use all edges of all lines. In real world only few edges of the network are
used and so Kl :=

∑
(s,t)∈R

∑
e∈El xe

st is much smaller than |R||E l|, hence∑
l∈L

Clȳ
1
l =

∑
l∈L

Cl
Kl

|E l||R|
≤ B

is often satisfied.
The following Lemma generalizes this for the other formulations. The proof

can be found in [19].

Lemma 1. Let i ∈ {1, 2, 3, 4} and let (x̄, ȳi) be a trivial solution of (LPMTi),
as defined in Definition 1. If

Ti :=
∑
l∈L

Clȳ
i
l ≤ B

is satisfied, the trivial solution (x̄, ȳi) is an optimal solution of (LPMTi).
Note that for i = 4 the solution (x̄, ȳ4) of the LP-relaxation of (LPMT4) is
integer and thus if T4 ≤ B holds, the trivial solution is an optimal solution to
the original problem.
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In Table 1 we see the Ti-values for different line pool sizes, where the line
costs are set to one. Note that in this case a value below one means that the
trivial solution is always the optimal solution independently of the choice of
the budget. Only if the given budget is smaller than the Ti value, the trivial
solution is not a feasible solution of the LP-relaxation of (LPMTi). Thus, table
1 demonstrates the difference of the strength of the formulations. The higher the
Ti-value, the better the lower bound provided by the corresponding formulation.

We see that in real world instances the bound provided by (LPMT3) is much
stronger than (LPMT2) even if we could not show this in general. This is due
to the fact that there exists an instance in which (LPMT2) is stronger than
(LPMT3) but in real world this hardly ever happens.

Regarding the T4-values, we recall that in this formulation the ȳ4
l are integer

valued and since all Cl = 1 this means that if we are allowed to choose more
than T4 lines out of the line pool, every passenger can travel on shortest path. If
our budget is smaller, some passengers have a detour. In this case we have to use
other methods to solve the problem like the Dantzig-Wolfe approach explained
in the next section.

No. |L| obj.val. T1 T2 T3 T4

1 10 2271.3 0.69 0.99 9.53 10
2 50 9459.9 0.20 0.35 25.31 48
3 100 24780.0 0.13 0.29 41.83 96
4 132 31654.2 0.11 0.26 53.12 129
5 200 15128.9 0.07 0.19 54.89 197
6 250 19096.0 0.05 0.16 61.07 235
7 275 20118.2 0.04 0.15 63.47 252
8 300 26598.3 0.06 0.19 72.35 282
9 330 26817.7 0.04 0.16 74.44 302

10 350 26450.0 0.07 0.23 90.04 331
11 375 27517.8 0.06 0.20 90.75 345
12 400 34781.3 0.06 0.20 100.05 370
13 423 35135.5 0.06 0.20 102.19 389

Table 1. Minimal budgets such that trivial solution is an optimal solution of the

LP-relaxation of the different formulations of the (LPMT), see Lemma 1.

5.2 Using Dantzig-Wolfe decomposition

In this section we present an approach for solving the LP-relaxation of the
(LPMT) formulations using Dantzig-Wolfe decomposition. The method can also
be applied for solving (LPMTF) since the model structure is very similar. How-
ever, the numerical results deal with (LPMT). We will present two different
decompositions. Since the blocks in both decompositions are totally unimodu-
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lar, we know that the bound provided by the Master formulations is as good as
the bound of the LP-relaxation (see [20]).

One block for each origin-destination pair (LPMT1(LP))

min
∑

(s,t)∈R

∑
e∈E

ce
stx

e
st (15)

∑
(s,t)∈R

∑
e∈l x

e
st ≤ |R||E l|yl ∀ l ∈ L∑

l∈L Clyl ≤ B
coupling constraints

Xs1,t1

Xs2,t2

. . .

Xsr,tr

 |R| blocks

where Xst := {xst ∈ IR|E| : θxst = bst, 0 ≤ xe
st ≤ 1, ∀ e ∈ E}

The coupling constraints can be written as

−AY y +
∑

(s,t)∈R AX xst ≤ 0
Cy ≤ B

where

– AX is an |L|×|E| matrix given by elements ale = 1, if e ∈ El, zero otherwise.
It is equal for each origin-destination pair.

– AY is an |L| × |L| diagonal matrix containing |R||E l| as its lth diagonal
element.

– C is the line cost vector (C1, . . . , C|L|).

So, we get the following coefficient matrix of (LPMT1):
−AY AX . . . AX

C
θ

. . .
θ


Defining the weight-cost-parameters ce

st := wstce, we get the following Master
Problem corresponding to decomposition (15):



Line Planning with Minimal Traveling Time 13

(Master 1)
z = min

∑
(s,t)∈R

∑
i(cst x

(i)
st )αi

st

s.t.
∑

(s,t)∈R
∑

i(AX x
(i)
st )αi

st −AY y + Iv = 0∑
l∈L Clyl ≤ B∑
i αi

st = 1 ∀ (s, t) ∈ R
yl ≥ 1 ∀ l ∈ L
vl, α

i
st, yl ≥ 0

where the |L|-vector v are slack variables, and x
(i)
st are the extreme points of Xst.

This problem has |L|+ 1 coupling constraints and |R| convexity constraints.

For each (s, t) ∈ R we obtain the following subproblem:

zst = min (cst − πAX)xst − µst

s.t. xst ∈ Xst

where {πi}i∈L are the dual variables of the coupling constraints, and {µst}(s,t)∈R
are the dual variables of the convexity constraints.

The Xst blocks correspond to shortest path problems which are known to
be totally unimodular, hence the x

(i)
st -values are in {0, 1}|E|. The formulations

(LPMT2), (LPMT3), (LPMT4) as well as (LPMTF) can be reformulated anal-
ogously.

One block for all origin-destination pairs If we treat the Xst-blocks as one
block we get the following reformulation:

(LPMT1(LP))

min
∑
e∈E

cexe (16)

∑
e∈l x

e ≤ |R||E l|yl ∀ l ∈ L∑
l∈L Clyl ≤ B

coupling constraints

X 1 block

with X := {x ∈ IR|E| : xe =
∑

(s,t)∈R xe
st ∀e ∈ E , xst ∈ Xst} and ce :=∑

(s,t)∈R ce
st.

The Master Program corresponding to decomposition (16) is

(Master 2)

z = min
∑

i(c x(i))αi

s.t.
∑

i(AX x(i))αi −AY y + Iv = 0∑
l∈L C(l)yl ≤ B∑
i αi = 1

vl, α
i, yl ≥ 0
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where the |L|-vector v are slack variables, and x(i) are the extreme points
of X. This problem has |L|+1 coupling constraints and one convexity constraints.

The subproblem of the X-block is

z = min
∑

(s,t)∈R(cst − πAX)xst − µ

s.t. xst ∈ Xst

where xe :=
∑

(s,t)∈R xe
st and {πi}i∈L are the dual variables of the coupling

constraints, µ is the dual variable of the convexity constraint.

As in the previous formulation, the x(i)-values are integer because they are
the component wise sum over shortest path problem solution which are in {0, 1}.
In this decomposition we loose the information of the exact paths of the cus-
tomers which are needed in (LPMT3), (LPMT4) and (LPMTF) and thus this
Master cannot be adapted to these formulations.

Implementation We implemented the Dantzig-Wolfe decomposition approach
of (LPMT) using Xpress MP 2003 and Microsoft Visual C++ 6.0. The CPU
times of this section are based on a 3.06 GHz Intel4 processor with 512 MB
RAM. The subproblems where solved with Dijkstra´s shortest path algorithm.

In column ‘CPU1’ of table 2 we see the CPU times in seconds for solving
the LP-relaxation of (LPMT1) using Dantzig-Wolfe approach with (Master2)
for different line pool sizes of the network of German long distance trains. In
column ‘CPU2’ we see the CPU times in seconds for solving the LP-relaxation
of (LPMT3) using Dantzig-Wolfe approach with (Master1). We have mentioned
that the lower bound provided by (LPMT3) is stronger than (LPMT1) and so
the computation times increase in this case. We see, that using our approach it
is possible to solve the LP-relaxation of (LPMT3) for medium sized networks
within reasonable time. Note that the size of the problem not only depends on
the size of the line pool but on the number of origin-destination pairs and the
size of the PTN which may be much smaller e.g. in urban underground networks.
Solving the LP-relaxation of the weaker (LPMT1) formulation is possible even
for big real world instances like the long distance network of German railway
within two and a half hours.

As we have seen, the main problem of our approach is the size of the change&go-
network depending mainly on the size of the line pool. A wise choice of a possibly
small line pool is therefore advisable. On the other hand it makes sense to an-
alyze the underlying PTN. For example if two lines go parallel for a long time,
it is sufficient to add changing edges only at the first and the last station. Also
arcs between stations without changing possibility can be shrunken to decrease
the size of the network.
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No. |L| |R| CPU1 CPU2

0 3 2 0.05 0.1
1 10 2602 1 228
2 50 4766 3 606
3 100 11219 16 8706
4 132 18238 48 M
5 200 10126 78 M
6 250 13246 329 M
7 275 14071 691 M
8 300 17507 1171 M
9 330 18433 1911 M

10 350 17095 1814 M
11 375 18350 2727 M
12 400 22191 4789 M
13 423 22756 8715 M

Table 2. CPU times of the LP-relaxation of (LPMT1) and (LPMT3) using Dantzig-

Wolfe approach with (Master2) and (Master1), respectively, for different line pool sizes.

M denotes ”‘out of memory”’.

6 Conclusions

We developed integer programming models for the line planning problem with
the goal to minimize the travel times over all customers including penalties for
the transfers needed and proposed an extension that includes frequencies. We
showed that the problem is NP-hard. Since the problem gets huge, a straight-
forward solution of the LP relaxation is not possible. We showed that in many
real world cases the trivial solution is optimal or, if it is infeasible, it can be
found by a solution approach based on Dantzig-Wolfe decomposition. Computa-
tional results for various real world instances and different decompositions were
presented.

We are currently working on a branch&price algorithm and heuristics to get
an integer solution.
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16 A. Schöbel, S. Scholl
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im öffentlichen Nahverkehr”. (2003) 69–89 http://server3.winforms.phil.tu-
bs.de/gor/tagung34/.
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Abstract. Finding cheap train connections for long-distance traffic is
algorithmically a hard task due to very complex tariff regulations. Several
new tariff options have been developed in recent years, partly to react
on the stronger competition with low-cost airline carriers. In such an
environment, it becomes more and more important that search engines
for travel connections are able to find special offers efficiently.
We have developed a multi-objective traffic information system (MO-
TIS) which finds all attractive train connections with respect to travel
time, number of interchanges, and ticket costs. In contrast, most servers
for timetable information as well as the theoretical literature on this sub-
ject focus only on travel time as the primary objective, and secondary
objectives like the number of interchanges are treated only heuristically.
The purpose of this paper is to show by means of a case study how
several of the most common tariff rules (including special offers) can be
embedded into a general multi-objective search tool.
Computational results show that a multi-objective search with a mixture
of tariff rules can be done almost as fast as just with one regular tariff.
For the train schedule of Germany, a query can be answered within 1.9s
on average on a standard PC.

Keywords: timetable information system, multi-criteria optimization,
shortest paths, fares, special offers, long-distance traffic

1 Introduction

In recent years, there has been strong interest in efficient algorithms for timetable
information in public transportation systems (with emphasis on public railroad
systems). For a given customer query, the problem is to find all attractive train
connections with respect to several objectives. We concentrate on travel time,
number of interchanges, and ticket costs.

Most work has considered optimization subject to a single criterion, namely
to find the fastest connection. Such a problem can easily be modeled as a short-
est path search in a graph where the edge lengths correspond to travel times.
Likewise it is not difficult to extend these graph models so that also the min-
imum number of train interchanges can be solved as a shortest path problem
with {0, 1}-lengths on the edges.

ATMOS 2005 
5th Workshop on Algorithmic Methods and Models for Optimization of Railways
http://drops.dagstuhl.de/opus/volltexte/2006/657
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However, difficulties arise with fares as objectives. Pricing systems of railway
companies are very complex and actual fares depend on many parameters. In
recent years, railway companies faced higher competition caused by the strong
increase of low-cost airlines. As a reaction on this development, marketing de-
partments of railway companies answer with the introduction of different types
of special offer tariffs. For origin-destination pairs with a low-cost competitor
the relation-based prices are occasionally decreased.

For this and several other reasons, the fare of a connection cannot be modeled
in an exact way as an additive function on the edges of a graph which can
simultaneously be used for a fastest connection search.

Previous work. Two main approaches have been proposed for modeling time
table information as a shortest path problem: the time-expanded [1,2,3,4,5,6,7],
and the time-dependent approach [6,8,9,10,11,12,13,14]. The common character-
istic of both approaches is that a query is answered by applying some shortest
path algorithm to a suitably constructed graph. These models and algorithms
are described in detail in a recent survey [15]. The time-expanded model is much
more flexible than the time-dependent model. It is therefore preferred if all side
constraints of a real-world scenario have to be respected.

As mentioned above, most of the cited papers consider fastest connections
only. Multi-criteria search for train connections in a fully-realistic environment
has been studied in [7]. The latter paper already used a simplified model to
search for regular fares. Apart from initial work in [7], we are not aware of any
previous work which takes fares as an optimization criterion into account.

Contribution of this paper. Usually, marketing experts design a new tariff
with respect to expected sales but without considering how such an offer can
be searched for in an efficient way. It seems that Germany has one of the most
complicated tariff systems of the world, providing us with the most challenging
task to find cheap connections systematically.

In this paper, we analyze the different tariff options with respect to search-
ability. We show that a systematic, simultaneous search for different tariffs can
be integrated into a suitable graph model and a generalized version of Dijkstra’s
algorithm.

In particular, we focus on tariff options which are based on the availability
of contingents, yielding either a fixed price or a certain discount.

Currently we develop the information server MOTIS (multi objective traffic
information system) in cooperation with datagon GmbH, Waldems, Germany.
The main features of MOTIS are the following:

– It contains a Dijkstra-based multi-objective search algorithm (travel time,
number of interchanges, ticket costs).

– It provably yields exact minimization of travel time and number of inter-
changes. In contrast, the electronic timetable information system HAFAS [16],
which is used by many European railway companies provides only heuristic
solutions.
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– It delivers many attractive alternatives by using the concept of relaxed
Pareto optimality [7].

– MOTIS is extensible to add further criteria like the possibility of seat reser-
vation or to incorporate safety margins for train changes in case of delays.

An extensive computational study shows that the computational cost in-
creases only very slightly when we combine the search with respect to regular
fares and other tariff options. On average, a query can be answered within 1.9s
on a standard PC.

Overview. The rest of the paper is organized as follows. In Section 2, we
first give a brief description of MOTIS. Afterwards, in Section 3, we present
a systematic overview on fare regulations. For each tariff class we analyze the
algorithmic consequences for efficient searchability of connections which fall into
this class. Thereafter we explain more details on the search algorithm of MOTIS
in Section 4. Then, we provide computational results based on a large test set of
real customer queries. Finally, we conclude with a summary and directions for
future work.

2 The Information Server MOTIS

This section is intended to give a brief introduction to MOTIS and the main ideas
behind it. In the following subsections we first explain what kind of queries can
be handled, and define what we understand by “finding all attractive connec-
tions”. Then we briefly touch upon the graph model used and the general search
algorithm.

2.1 Queries

A query to a timetable information system usually includes:
The (start or) source station of the connection, the target station and an in-

terval in time in which either the departure or the arrival of the connection has
to be, depending on the search direction, the user’s choice whether to provide
the interval for departure (“forward search”) or arrival (“backward search”).
Additional query options include:

Vias and duration of stay. A query may contain one (or more) so called vias,
stations the connection has to visit and where at least the specified amount of
time can be spent, e.g. from Cologne to Munich via Frankfurt with a stay of at
least two hours for shopping in Frankfurt.

Train class restrictions. Each train has a specific train class assigned to it. These
classes are high-speed trains such as the German ICE and French TGV; ICs and
ECs; Interregios and the like; local trains, “S-Bahn” and subway; busses and
trams. The query may be restricted to a subset of all train classes. Certain train
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tariffs exclude some of the higher-valued train classes. Hence, by excluding high
speed trains one can search for special tariffs.

Attribute requirements. Trains have attributes describing additional services they
provide. Such attributes are for example: “bike transportation possible”, “sleep-
ing car”, “board restaurant available”. A user can specify attributes a connection
has to satisfy or is not allowed to have. We allow Boolean operators for specifying
attribute requirements like: (a restaurant OR a bistro) AND bike transportation.

Passenger related attributes. Additional attributes are relevant for the fare cal-
culation. One has to choose the desired comfort class (i.e. first or second class).
In order to determine possibilities for discounts, the query has to provide the
number of passengers, and for each passenger the type of discount card which
is available (if any). Families with children also have to specify the age of each
child.

2.2 Attractive Train Connections

A simple measurement for the “attractiveness” of a connection does not ex-
ist. Different kinds of costumers have differing (and possibly contrary) prefer-
ences. Key criteria for the quality of a connection are travel time, ticket cost
and convenience (number of interchanges, comfort of the used trains, time for
train changes). In order to build a traffic information system that can provide
attractive connections we avoid the drawbacks of weighted target functions or
“preference profiles”. Instead we want to serve each possible costumer by pre-
senting him a selection of highly attractive alternatives with one single run of
the algorithm.

When dealing with multiple criteria a standard approach is to look for the
so-called Pareto set. For two given k-dimensional vectors x = (x1, . . . , xk) and
y = (y1, . . . , yk), x dominates y if xi ≤ yi for 1 ≤ i ≤ k and xi < yi for at least
one i ∈ {1, . . . , k}. Vector x is Pareto optimal in set X if there is no y ∈ X
that dominates x. Here, we assume for simplicity that all cost criteria shall be
minimized. In our scenario we compare 3-dimensional vectors (travel time, ticket
costs, number of interchanges) for our connections.

We argued in [7] that the set of Pareto optima still does not contain all
attractive connections and proposed to apply the concept of relaxed Pareto op-

timality. It provides more alternatives than Pareto optimality can give. Under
relaxed Pareto dominance

– connections that are nearly equivalent but differ slightly do not dominate
each other;

– the bigger the difference in time between start or end of two connections the
less influence they have on each other;

– traveling longer needs to yield a fair hourly wage (i.e. the amount of money
saved divided by the extra time in hours) to make a cheaper alternative
attractive. The latter also excludes irrelevant Pareto optima.
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We used the following rules to compare connections A and B which have
departure times dA, dB , arrival times aA, aB, travel times tA, tB (all data given in
minutes), iA, iB interchanges and associated costs cA, cB in Euros, respectively.
Connection A dominates connection B

– with respect to the criterion travel time if B does not overtake A and

tA + α(tA) · min{|dA − dB|, |aA − aB|} + β(tA) < tB,

where, α(tA) := tA/360 and β(tA) := 5 +
√

tA/4;
– with respect to the number of interchanges only if iA < iB;
– with respect to the cost criterion only if

cA +
tA − tB

60
· ∆ < cB ,

where the required hourly wage ∆ is set to 5 Euros.

2.3 Time-Expanded Graph Model

The basic idea of a so-called time-expanded graph model is to introduce a directed
search graph where every node corresponds to a specific event (departure, arrival,
change of a train) at a station.

A connection served by a train from station A to station B is called elemen-

tary, if the train does not stop between A and B. Edges between nodes represent
either elementary connections, waiting within a station, or changing between two
trains. For each optimization criterion, a certain length is associated with each
edge.

Traffic days, possible attribute requirements and train class restrictions with
respect to a given query can be handled quite easily. We simply mark train edges
as invisible for the search if they do not meet all requirements of the given query.
With respect to this visibility of edges, there is a one-to-one correspondence
between feasible connections and paths in the graph.

More details of the graph model can be found in [7].

2.4 The Search Algorithm in MOTIS

Our algorithm is a “Pareto-version” of Dijkstra’s algorithm using multi-dimensio-
nal labels. See Möhring [2] or Theune [17] for a general description and correct-
ness proofs of the multi-criteria Pareto-search.

Each label is associated with a node v in the search graph. A label contains
key values of a connection from a start node up to v. These key values include
the travel time, the number of interchanges, a ticket cost estimation and some
additional information. For every node in the graph we maintain a list of labels
that are not dominated by any other label at this node. Every time a node is
extracted from the priority queue, its outgoing edges are scanned and (if they
are not infeasible due to traffic days, attributes and train class restrictions etc.)
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labels for their head nodes are created. Such a new label is compared to all labels
in the list at the head node. It is only inserted into that list and the priority
queue if it is not dominated by any other label in the list. On the other hand,
labels dominated by the new label are removed.

As a further means of dominance we keep a short list of Pareto-optimal
labels at the terminal station and compare each new label to these labels. To
compare labels at an intermediate node v with a node at the terminal, we use
lower bounds on the key values of a shortest, a most convenient, and a cheapest
path from v to the terminal station. We increase the criteria of the label at v
by lower bounds on the according values. If the label with its increased values is
dominated by any label at the terminal, it is excluded from further search.

To make lower bounds available, we determine a guaranteed fastest connec-
tion from source to target using a goal-directed single criterion search in an
initialization phase before the actual multi-criteria search. This search is by or-
ders of magnitude faster than the multi-criteria search and can be performed in
less then 50ms on average.

2.5 Black-Box-Pricing Component

As noted in the introduction, the fare regulations are extremely complex. Fur-
thermore, the system undergoes rapid change. Therefore, it is reasonable to have
a black-box pricing component (BPC) that can be used to calculate the exact
ticket cost for some connection. Unfortunately, one call to this black-box routine
is very costly. Hence, it is impossible to calculate the correct price for every label
and achieve a bearable running time.

As a consequence, we use fast to compute price estimates in the labels that
are updated during the search. To this end, we associate an estimated base fare
with each travel edge in our search graph. (How we derive these estimations will
be described in more detail in Section 3.1.)

This simplified model provides helpful estimates for the search. In order not
to loose low cost connections due to this approximation we need a safety margin
which is incorporated into the corresponding relaxation function for the relaxed
Pareto dominance. After a search is completed, all connections are correctly
priced by the BPC and relaxed Pareto dominance can be applied to true fares.

3 Modeling Regular Fares and Special Offers

The purpose of this section is to provide an overview on the many different
classes of tariffs commonly used by train companies.

As the number of different tariffs being in use is very large, tariffs differ
considerably from country to country, and they are subject to frequent changes,
this overview is far from being comprehensive. However, we try to group the
most commonly used tariffs into certain classes. For each tariff class, we analyze
how a search for connections which fall under this class can be modeled and
incorporated into our general framework of MOTIS.
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In some rare cases it might be profitable to partition the desired connection
into smaller connections. To each partial connection a different tariff option may
apply, yielding an overall saving if several tickets are bought. However, this is
very impractical and potentially confusing for the customer. In this paper, we
therefore restrict our discussion to a single tariff for each connection. 1

3.1 Regular Fares

Regular fares apply at any time to everyone without any restrictions. To calculate
regular fares, two main principles are in use: distance-based and relation-based
fares.

Distance-based fares. For this type, regular fares are modeled by piecewise
affine-linear functions which depend on the number of kilometers of the connec-
tion and the used train classes. These functions are encoded in tables and the
calculation of fares is done with a table look-up. For example, regular fares in
France (SNCF) follow this scheme. 2

Relation-based fares. For long-distance travel in a highly connected network
like that of Germany the regular fare is more often based on relations, i.e. origin-
destination pairs associated with a regional corridor. The corridor of a relation
describes what is considered as a common route. A relation can only be applied
to a connection if the connection passes stations from a relation-specific set which
specifies the corridor.

If a connection leaves the corridor of a relation, the fare has to be determined
by partitioning the entire connection into smaller connections. The details of this
procedure are beyond the scope of this paper.

Marketing considerations influence the price for each relation. In general, the
fare of a relation is derived from the travel distance, but it may be changed for
marketing reasons in either direction.

Properties of regular fares. In most cases, we can assume that regular fares
are monotonously increasing and subadditive. That is, for a connection c from
station s to station t via station v, the price pc(s, t) satisfies

pc(s, t) ≤ pc(s, v) + pc(v, t).

Distance-based fares are degressive functions in the travel kilometers. Hence,
they are always strictly subadditive.

In dominance tests, good lower bounds are of crucial importance for the effi-
ciency of the search. Hence, we need a lower bound on the price of a connection.
With distance-based fares, we get a lower bound on the distance of a connection

1 Note that a combination of tariffs is necessary in multi-vendor systems.
2 http://www.voyages-sncf.com/info resa/guide du voyageur/Calcul PT.htm
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from the distance traveled from s to v plus a lower bound on the distance from
v to t.

In sharp contrast, valid lower bounds are hard to obtain for relation-based
fares as these may even violate our subadditivity assumption. But even if we
assume subadditivity, it is not clear how to get a lower bound on the price of a
connection from s to t given the prices from s to v and from v to t.

Frequent user cards. For holders of frequent user cards (like “BahnCard”) a
general x% discount applies to the regular fare. As this kind of discount yields
the same reduction rate for all connections, our price estimation merely needs a
flag indicating whether such a card is available or not. Such a flag is necessary
for a comparison with other tariff options.

Approximation of regular fares. We use a very simple but efficiently com-
putable model to approximate regular fares. Basically, we simulate a distance-
based fare and associate a travel distance with each edge. The distance between
the two stations of a train edge is taken as the straight line distance obtained
from the coordinates of the stations. During the search, we add for each train
edge the travel distance times a constant factor (in Euros/km) depending on the
train class used. If true regular fares are based on relations, we have to incor-
porate relatively large safety margins in order not to loose too many attractive
connections.

3.2 Surcharges

An additive surcharge applies to certain trains (night trains, ICE sprinter) or
train classes (IC,EC). It has to be paid once, if such a train is used. If a connection
uses several trains to which a surcharge applies, then usually only the highest
surcharge has to be paid once.

During the search, the amount of the surcharge is added to the price estima-
tion when a partial connection first enters a train with a surcharge. In order to
guarantee that a surcharge is paid only once, the labels characterizing a partial
connection store in flags which surcharges have already been applied.

3.3 Contingent Based Discount Fares

Contingent-based offers are intended to increase the average passenger load on
high-speed trains. For each train in a connection for such an offer, a contingent
of available seats must not be exceeded by previous bookings. For high-speed
trains the contingent may be something like 10% of all seats. For local trains,
there is typically no contingent restriction, i.e. the contingent is regarded as
being unlimited. As a consequence, such offers are only valid for connections
which contain at least one contingent-restricted train.

Many train companies offer discounted fares on long-distance travel under
certain restrictions. These restrictions typically include that
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– the ticket has to be bought a certain time in advance (for example, at least
three days in advance);

– passengers restrict themselves to a particular day and a certain connection
which has a contingent available;

– passengers make a return journey to and from the same station.

Discount rates may also be subject to weekend restrictions. For example,
Deutsche Bahn AG offers “Savings Fare 50” (“Sparpreis 50”) only if the following
restrictions apply: For trips starting from Monday to Friday, the return trip
cannot be any sooner than the following Sunday. If you travel on Saturday or
Sunday you may return that same day.

To incorporate such types of offers into the search, we add and maintain a
contingent flag in our labels. The contingent flag is a Boolean flag which is set
to true if and only if all previous train edges of this connection have a contingent
available.

3.4 Fixed Price Offers

Contingent-Based Restrictions. Certain special tariffs offer fixed price tick-
ets within a limited time period (of several weeks or even months, like “Summer
Special”) subject to the availability of contingents.

A further restriction is that the itinerary of a connection from station A to
B must use a “common route”. This rule is to prevent from possible misuse by
making round-trips or stop-overs during the travel for which one usually would
have to buy several tickets or at least to pay for the deviation.

The easiest way to model common routes is to impose the restriction that
the length of an itinerary of a connection has to be at most a certain percentage,
say 20%, longer than the shortest route from A to B. Alternatively, the travel
time should not be more than a certain percentage longer than the fastest route
from A to B.

The modification of our model for this kind of tariff is similar to the previous
case. We also maintain a contingent flag in each label indicating whether a
contingent has been available on all previous edges. As contingents for discounts
and for fixed prices may be different, we use different kind of contingent flags. At
each intermediate station, we also check whether the partial connection up to this
station can still be extended in such a way that it stays on a “common route”.
To this end, we use lower bounds for the remaining path from this intermediate
station to the final destination.

Time Interval Restrictions. Tickets allowing unlimited travel may be avail-
able for a fixed price provided the time of the trip falls into a certain time
interval.

For example, Deutsche Bahn AG offers a “Happy-Weekend-Ticket” which can
be used on all trains except high-speed trains on Saturdays or Sundays between
12 a.m. until 3 a.m. of the following day for a fixed price. Another example would
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be a fixed price ticket valid from 7 p.m. until the end of the same business day
(“Guten-Abend-Ticket”).

Such offers can be handled in the following way. For a given query, we first
check whether the given start interval falls into the interval of a special offer.
If not, the corresponding tariff is definitely not applicable. If the offer has no
train class restrictions, we can use the standard multi-objective search. For each
alternative found by this search, we finally have to check whether the complete
connection falls into the time interval. If this is the case, the price for this
connections is the minimum of the regular fare and the fixed price.

If train class restrictions apply, we could use two independent searches, one
with train class restriction and one without. However, it is more efficient to treat
train class restrictions as a further criterion in the multi-criteria search and to
run just a single simultaneous search for both cases.

Rail Passes. Many train companies also offer different kinds of so-called rail

passes which allow unlimited travel. Prices depend on country and number of
days. Rail passes may be restricted to special user groups (students, disabled,
unemployed), restrictions may be based on the age (children, seniors), or restric-
tions on the place of permanent residence apply.

Further restrictions may be imposed on the set of allowed train classes. For
example, a regional rail pass like “Hessenticket” offered by Deutsche Bahn AG
is only valid for local trains.

Passengers with rail passes can use the standard multi-objective search on
the basis of regular fares which delivers, in particular, all attractive connections
with respect to travel time and convenience. The price information can simply
be ignored. The search has only to make sure that the whole connection lies
within the region where the rail pass is valid.

3.5 Discounts for Groups

Groups of 2 or more passengers either get an x% discount on the regular tariff
which can be applied to all trains, or they get an even larger discounts of y > x%
based on the availability of certain contingents. During the search, both options
can be handled in the same way as for single passengers.

3.6 Further Possibilities for Discounts

Discounts for single passengers or groups may also be restricted to certain
Boolean conditions which depend only on properties of the travelers but not on
the particular trip they are going to make. For example, if the group is a family
with children below a certain age, then special discounts apply. Another example
would be discounts for employees of certain companies (corporate clients).
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4 More Details on the Search Algorithm

4.1 Simultaneous Search

The aforementioned modeling of the various tariffs allows the search for combina-
tions of tariffs simultaneously. This is preferable over having individual searches
for each of the tariff rules that apply in a scenario and - as we will show in the
subsequent section - can be done without sacrificing search speed.

However, as the number of tariff rules increases, more and more labels be-
come mutual incomparable. For example, consider two labels representing partial
connections that can gain a fixed price or discounted fare, respectively. Either
connection might not be extendable to a connection from source to target with
contingents available on all edges. So neither of them can dominate the other
depending on an estimate of the special price. Furthermore, they cannot even be
compared regarding the estimation for the regular price, as the final price may
differ substantially if a special tariff is applicable.

The dominance test between a connection that has already reached the ter-
minal station and a partial connection has to compare the lowest possible price
reachable by extending the partial connection to the actual price of the complete
connection. So it is even more important to have a fast and cheap connection at
the terminal fairly early in the search process (compare Section 4.2).

4.2 Fast Search for the Fastest Fixed Price Connection

For several reasons we implemented a specialized version of our algorithm to
search for fixed price connections. Our motivation was

1. to have a stand alone tool to find one fixed price connection, and
2. to strengthen our dominance with terminal labels, or
3. to have a certificate that no fixed price connection is available at all. In the

latter case, we can turn off our fixed price search.

Our specialized algorithm for fixed price search (“fixed price Dijkstra”) is a
single-criterion goal-directed search algorithm. It determines a fastest connection
among all connections using only available contingent edges and edges without
contingent restrictions.

4.3 Determining Lower Bounds in the Preprocessing Phase

The initialization phase now consists of up to two searches: First we use the
standard single-criterion goal-directed search algorithm to determine a fastest
connection from source to target. It keeps track of the contingent information
and

– either finds a connection with a fixed price (it includes a high-speed train
and contingents are available on all contingent edges),
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number of stations 8,861
number of trains 45,370
number of high-speed trains 1,006
number of nodes 1,427,726
number of edges 2,395,703

Table 1. Size parameters of the time-expanded graph.

– or finds a connection without high-speed train (therefore no fixed price is
possible for it). As it is the fastest connection, we may use it for dominance
testing later on. It is also quite often cheaper than the fixed price (see Sec-
tion 5.4).

– Otherwise, it triggers the specialized algorithm for fixed price search.

If triggered, the “fixed price Dijkstra” algorithm

– either finds a connection with a fixed price (it includes a high-speed train,
contingents are available on all contingent edges, and it is within the allowed
margin (here 20% more travel time) compared to the fastest connection),

– or finds a connection without high-speed train (therefore no fixed price is
possible for it). If a fixed price connection exists, it must be slower than this
connection. Such a connection is also quite often cheaper than the fixed price
(see Section 5.4) and therefore very useful for later dominance testing.

– Otherwise it finds a connection with contingents available on all contingent
edges but that does not stay within the allowed margin. In this case no fixed
price connection exists (as all other connections with contingents available
are even slower).

In the latter case the following multi-criteria search is performed with the op-
tion to search for fixed price connections turned off. Note, that the algorithm
sometimes fails to compute a connection with a fixed price although one may
exist. However, it delivers an alternative connection for dominance testing that
is faster than any fixed price connection, if there are any, and in most cases
cheaper than the fixed price (see Section 5.4).

5 Computational Results

5.1 Test Cases

We took the train schedule of trains within Germany from 2003. For our experi-
ments, we used a snapshot of about 5000 real customer queries of Deutsche Bahn
AG falling within the week January 13-19, 2003. For all queries, we searched for
valid connections within a two-hours time interval. This schedule and the derived
time-expanded graph have sizes as shown in Table 1.

Ticket contingents exist for high-speed trains (like ICE, Thalys, TGV, IC,
EC) or night trains. Each train t has a certain capacity cap(t) (depending on the
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average average average average
scenario CPU time extract min # of Pareto # of relaxed

in msec. operations optima Pareto optima

MOTIS 1,702 169,114 3.93 7.26
C10 1,889 176,861 4.22 8.05
C20 1,839 175,221 4.13 7.92
C40 1,776 170,976 3.90 7.73
C60 1,734 167,114 3.67 7.46
C80 1,676 161,446 3.43 7.32
C100 1,605 155,219 3.19 7.06

Table 2. Computational results for simultaneous search of several tariff types
(minimum of regular fare, contingent-restricted special offer and contingent-
restricted 50% discount.)

train type). We do not have access to real pre-booking data for trains. Therefore,
we simulate the booking status for each train.

A random number of passengers uses each train with contingent restrictions.
This number is based on the train class and some other criteria (number of
stops, importance of the served stations, etc.). For each of the passengers a
random station for entering and leaving the train is chosen evenly distributed
from the stations the train visits. We then set thresholds xA(t) for the number of
passengers required to exhaust the contingent on a train edge of train t according
to the desired level of availability A = x%. A travel edge which may have a
contingent restriction is called contingent edge. For two availabilities A, A′ with
A < A′ we require xA(t) ≥ xA′(t) for all trains t. So the contingent edges that
are not available for some availability A are not available for every availability
A∗ < A.

We consider the following scenarios for the availability of contingents: C10,
C20, C40, C60, C80 and C100, where Cx has an availability of A = x% on the
contingent edges. For comparison we also include the numbers for the search for
regular fares (denoted by MOTIS).

For all queries, we assume the same type of passenger, namely a single adult
booking early enough to get a 50% discount if a contingent is available. The
fixed price for special offers is assumed to be 29 Euros.

5.2 Computational Environment

All computations are executed on a standard Intel P4 processor with 3.2 GHz
and 4 GB main memory running under Suse Linux 9.2. Our C++ code has been
compiled with g++ 3.x and compile option -O3.

5.3 Searching for Multiple Tariffs

In the following, we compare computational results for running our code with
regular fares only (this version is called MOTIS in the following) and a simulta-
neous search of several tariff types for different scenarios of available contingents.
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In the simultaneous search, we finally select the relaxed Pareto-optimal connec-
tions where the fare is taken as the minimum of the regular fare, a contingent-
restricted special offer and a contingent-restricted 50% discount on the regular
fare if the contingent is available. Table 2 summarizes the key figures obtained in
our experiment. In the first column of numbers we present the average CPU time
in milliseconds for a single query. The average CPU running time lies within the
relatively small range of 1.6s and 1.9s for all scenarios.

As CPU times are very hardware-dependent, we prefer to add representa-
tive operations counts for the performance evaluation of algorithms. Previous
studies [7] indicated that a suitable parameter for operation counts of a multi-
criteria version of Dijkstra’s algorithm is the number of extract minimum op-
erations from the priority queue. This parameter is highly correlated with the
CPU running time for the corresponding query. Therefore, we display in the
second column of numbers in Table 2 also the average number of these extract
operations.

The computational effort increases with decreasing availability of contingents
mainly due to two reasons: On the one hand, very few available contingent edges
force the algorithm to take longer detours to find cheap contingent prices. On
the other hand, a high availability of contingent edges leads to many cheap
connections. These help in dominance. There are actually less connections to
explore to find cheap alternatives. If about half or more of the contingent edges
are available, the contingent version has less operations than the version MOTIS
not considering different tariffs.

We note that dominance rules are faster to evaluate if only regular fares are
considered (case MOTIS) as less connections are mutually incomparable, see
Section 4.1. Therefore, the workload per extract minimum operation is smaller
in this version. For all versions using contingent information the correlation
between running time and number of extract min operations is plain to see.

In Figure 1, we also show a histogram on the distribution of extract mini-
mum operations. Case MOTIS mostly lies between the easiest (C100) and most
difficult (C10) contingent scenario. The overall distribution looks very similar
for all versions of our algorithm. It turns out that about half of all test cases
require less than 50,000 extract operations. Such queries are very easy and take
only a few milliseconds.

The two remaining columns of Table 2 display the average number of true
Pareto optima and the number of relaxed Pareto optima, respectively. These
numbers are visualized in Figure 2.

MOTIS offers about 7-8 attractive connections on average, i.e. about four
additional connections in comparison to standard Pareto filtering. The more
contingents are available, the smaller is the number of Pareto optima, since
more fast connections have a cheaper price.

Figure 3 shows the distribution of the number of Pareto optima and relaxed
Pareto optima over the test cases for MOTIS and the most difficult contingent
version C10.
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Fig. 1. Histogram showing the distribution of the number of extract min op-
erations from the priority queue. We compare MOTIS (search only for regular
fares) with a new version which simultaneously searches for a mixture of fare
types.

5.4 Fast Search for Fixed Price Connections

We also evaluated the results of the preprocessing phase with our test set. In this
experiment, we have run the subroutines “fastest travel time Dijkstra” (FTTD)
and our “specialized fixed price Dijkstra” (SFPD). Recall that the purpose of
these routines is to find either a fixed price connection, a suitable connection for
dominance testing or a certificate, that no fixed price connection exists.

Table 3 shows the average running time, the number of calls to the SFPD, the
number of different types of connections and the number of certificates that no
fixed price connection exists. The connections are either fixed price connections

average # calls # fixed price # certificate # non high-speed conn.
scenario CPU time to SFPC conn. from no fixed price total too expensive

in msec. FTTD SFPD conn. exists

C10 204 3641 82 317 2790 1811 373
C20 153 3502 221 841 2224 1714 321
C40 111 3101 622 1490 288 2450 256
C60 90 2579 1144 1742 194 1920 216
C80 70 1534 2189 1275 59 1477 171
C100 45 0 3723 - 0 1277 152

Table 3. Results for the fast search for fixed price connections. Either a fixed
price connection was found, a certificate that no fixed price connection exists
was computed, or a non high-speed connection was found which is cheaper than
the fixed price in most cases.
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Fig. 2. Distribution of the average number of Pareto optima and relaxed Pareto
optima for different scenarios of contingent availability.

found by either of the algorithms or non-high-speed connections. In the last
column we give the number of cases where such a non-high-speed connection
was more expensive than the fixed price. These cases are the only ones, where
we have neither a connection to use in dominance testing (either a fixed price
connection or a connection without high-speed train that is faster than any fixed
price connection) nor the knowledge that no fixed price connection exists. This
only happens in 152 to 373 cases, which is 3.04% to 7.5% of the cases, depending
on the availability of contingent edges. This is acceptable for a heuristic that runs
in at most a fifth of a second on average.

Not surprisingly the total number of fixed price connections increases with
the availability of contingents. With decreasing availability the running time, the
number of calls to the SFPD and the number of certificates that no fixed price
connection exists increase. As the availability of contingent edges increases, the
number of fixed price connections determined by the FTTD increases and the
number of calls to the SFPD decreases, therefore the running time improves. The
number of fixed price connections SFPD determines increases with the availabil-
ity but decreases if many fixed price connections have already been found by
FTTD.

Fixed price search in MOTIS becomes harder the less contingent edges are
available (as more detours have to be investigated). Fortunately, with decreasing
availability of contingents the number of queries increases significantly for which
we can turn off the tariff option fixed price search in the multi-criteria search
due to the preprocessing phase.
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Fig. 3. Histogram showing the distribution of the number of Pareto optima and
relaxed Pareto optima.

6 Conclusion and Outlook

The focus of this paper was to demonstrate how a large variety of different tariff
classes can be incorporated into a multi-objective shortest path framework for
travel information. We successively integrated a combined search for regular tar-
iffs and contingent-based tariffs into MOTIS. In our computational experiments
we observed that the computational cost of this advanced search increases only
slightly over the regular fare search. Sometimes the contingent-restricted ver-
sions run even faster. The computational time for a query is less than 1.9s on
average. This is significantly more than for a single-criteria search, and further
speed-up is desirable.

We also observed that our simple model to represent regular fares within
Germany is not as accurate as desired. Hence, future work should concentrate on
improved approximations of regular fares. A tighter approximation would allow
stricter dominance rules. We do expect significant savings of computational time
from stricter dominance rules.

Within this paper we did not consider a specialized search for night trains.
Night train search differs from ordinary search in one of the main objectives.
A night train passenger typically does not wish to have the fastest connection.
Instead, he wishes to have a long sleeping period without interruptions caused
by train changes.
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2. Möhring, R.H.: Verteilte Verbindungssuche im öffentlichen Personenverkehr:
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Abstract We consider a geometric set covering problem. In its original
form it consists of adding stations to an existing geometric transporta-
tion network so that each of a given set of settlements is not too far from
a station. The problem is known to be NP-hard in general. However,
special cases with certain properties have been shown to be efficiently
solvable in theory and in practice, especially if the covering matrix has
(almost) consecutive ones property. In this paper we are narrowing the
gap between intractable and efficiently solvable cases of the problem. We
also present an approximation algorithm for cases with almost consecut-
ive ones property.

Keywords. Station Location, facility location, complexity approxima-
tion

1 Introduction

The Station Location problem consists of placing new stops along a given
public transportation network in order to reach all potential customers. Building
and maintaining new stops causes, of course, additional costs to the maintainers
of the network. So the goal is to minimize the number of new stations to be
built. The problem has arisen from a project with the largest German railway
company with the goal of improving attractiveness of the public transportation
network. A formal definition of the problem is the following:

Problem 1 (Station Location, cf. Fig. 1). Given a geometric graph G =
(V,E), i.e. a set V of vertices in the plane (stations, switches, bends) and a
set E of edges ( tracks or lines) represented as straight line segments, a set P
of points in the plane ( settlements or demand points), and a fixed radius R.
Find minimum set of vertices S (new stops) on the edges that cover P, i.e. P ⊆
cov(S), where cov(S) = {x ∈ R2 : d(x,S) ≤ R}. In the weighted version there
are costs associated with the edges, and the goal is to minimize the sum of costs.

This NP-hard problem has, in the form presented here, been brought up in
[1] while similar problems have been studied already before. The authors of [2]
consider a variant of station location with similar structural properties. Some of

ATMOS 2005 
5th Workshop on Algorithmic Methods and Models for Optimization of Railways
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switch or bend

line

demand point

new station

covered area

covering radius R

Figure 1. Problem example

the special cases mentioned there are also of interest in our case. Station Loc-
ation is closely related to several other hard optimization problems, especially
k-median, k-center, and facility location problems, as well as the Covering by
Discs problem (see [3,4]). It can also be seen as a Set Covering problem which
has many applications and has been widely studied. For an overview of work on
Set Covering problem see [5].

Experimental studies have shown that most practical instances of the prob-
lem can be solved rather quickly ([6]). Many (sub-)instances of the Set Cover-
ing problem occurring in practice have the so called consecutive ones property,
that is, the ones in each row of the matrix of the set covering problem occur
consecutively (see Def. 2). This property is often fulfilled due to the geometric
setting of Station Location. It plays an important role in explaining the re-
latively well-behaved nature of real-world instances of the Station Location
problem. In [7] and [8] this topic is further illuminated. In this paper we try to
further converge with theoretical results to the practical findings by identifying
specializations of the Station Location problem that are still hard on the one
hand, and giving efficient algorithms for approximating and solving quite general
variants of the problem on the other hand. Note that our “positive” algorithmic
results are usually valid for the more general Set Covering problem while the
“negative” hardness results concern the more special Station Location.

Overview of the paper: Section 2 gives some basic definitions and summarizes
the negative results, namely the NP-completeness of special cases of the prob-
lem. Section 3 describes an approximation algorithm based on a block-based
reformulation of the integer linear program of the Set Covering problem. And
Section 4 shortly describes an approach to get a grip on the hardness of the
problem by means of parameterized complexity.
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2 NP-Hardness Results

It was shown in [9] that there exists a finite set C of candidate locations for new
stops which contains an optimum solution and which can be computed by an
algorithm which is polynomial in the sizes of G and P . In the following we will
assume that such a set of candidates is given.

Definition 1. Let P := {1, . . . ,M} and C := {1, . . . , N}. The matrix Acov =

(apc) with apc :=

{
1 if c covers p

0 otherwise
(for all p ∈ P, c ∈ C) is called the covering

matrix of an instance of Station Location.

We will sometimes use the terms “demand points” and “rows” (resp. “can-
didates” and “columns”) as synonyms.

Given the above, Station Location can be seen as a special case of the
well-studied Set Covering (aka. Hitting Set) problem. We use the following
notation to describe it as a linear problem:

min cx

s.t. Acovx ≥ 1M

x ∈ {0, 1}N ,

(SCP)

where 1M ∈ RM denotes the vector consisting of M ones, c ∈ RN contains the
costs of the columns, and Acov is an M ×N -matrix with elements amn ∈ {0, 1}.
We may assume, without loss of generality, that all rows and columns of Acov

have at least one non-zero entry and that the costs cj are positive.
The goal is to find an optimal solution x∗, i.e. a solution with minimal costs,

or equivalently, an optimal set C∗ ⊆ C = {1, . . . , N} of columns of Acov, where
C∗ = {n ∈ C : x∗n = 1}.
Theorem 2 ([1]). Station Location is NP-hard.

Definition 2. 1. A matrix Acov over {0, 1} has the strong consecutive ones
property (strong C1P) if all of its rows m ∈ {1, . . . ,M} satisfy the fol-
lowing condition for all j1, j2 ∈ {1, . . . , N}:

amj1 = 1 and amj2 = 1 =⇒ amj = 1 for all j1 ≤ j ≤ j2.

2. A matrix has the consecutive ones property (C1P) if there exists a
permutation of its columns such that the resulting matrix has the strong
consecutive ones property

3. If Acov
m is a row of Acov let blm be its number of blocks of consecutive ones.

If a matrix has the consecutive ones property the permutation of the columns
making the ones appear consecutively can be found by using the algorithm of
[10,11]. This algorithm can be performed in O(MN). Without loss of generality
we can therefore assume that a matrix with consecutive ones property is already
ordered, i.e. we assume that its ones already appear consecutively in all of its
rows, i.e. blm = 1 for m = 1, . . . ,M . We say that a Set Covering problem has
C1P if its covering matrix Acov has C1P.
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Theorem 3 ([9]). Station Location is polynomially solvable if the covering
matrix has C1P.

Proof. It can be shown that a covering matrix with C1P is totally unimodular.
Now remember the well-known fact that a linear program with totally unimod-
ular matrix has an integer optimal solution. Hence, the Set Covering problem
can be solved by relaxing the integer constraints and solving the (non-integer)
linear program in polynomial time. ut

More efficient approaches for solving Set Covering problems with C1P can
be found in [12,7]. As an example, it is easy to show that the covering matrix of
a Station Location problem has C1P if no settlement can be covered by new
stops on more than one line. One the negative side we have

Theorem 4. Station Location is NP-hard in the strong sense (with unit
costs), even for the case that no settlement can be covered from more than two
lines.

Proof. By reduction from PLANAR VERTEX COVER (i.e., given a planar
graph G = (V,E), find a minimum set of nodes V ′ ⊂ V such that for every edge,
at least one of its end nodes is in V ′). In [13] it has been shown that this problem
remains NP-complete even for planar graphs with maximum degree 6. This can
be further constrained to maximum degree 3 (which has been shown already in
[14]). To this end we replace every vertex of degree 6 by the gadget of eleven
vertices shown in Fig. 2. A very similar procedure works for vertices of degree 4
and 5. The resulting graph G′ has |V | + 10v6 + 8v5 + 6v4 vertices, maximum
degree 3, and it is still planar (v6, v5, and v4 are the numbers of vertices of
degree 6, 5, and 4, resp., in the original graph G). It follows almost immediately
that a vertex cover of size K in G exists if and only if a vertex cover of size
K ′ := K + 5v6 + 4v5 + 3v4 exists in G′. We will call this restricted problem
PD3VC.

Figure 2. PLANAR DEG-6 VERTEX COVER ∝ PLANAR DEG-3 VERTEX
COVER

The next step is the reduction PD3VC ∝ Station Location. There ex-
ists a planar orthogonal unit grid drawing of G′ with O(n2) area and at most
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2n + 4 bends which is constructible in polynomial time (cf. [15], Theorem 4.16).
We construct an instance of Station Location as follows: Let R = 1/4 and
construct the settlements and candidates as follows. Each edge consists of a se-
quence of segments of unit length in the grid. Each such segment has either
two, one, or zero vertices of G′ at its ends. First, replace every vertex in V by a
candidate. Then, replace the segments by settlements and candidates according
to the gadgets shown in Fig. 3. An example is sketched in Fig. 4.

Figure 3. Three gadgets (right) for the three different types of segments (left).
Settlements are depicted by squares, candidates for stations as small discs; the
big circles indicate the covering radius; the grid is dashed.

Figure 4. PD3VC ∝ Station Location (with vertex cover resp. station cover
in grey; candidates omitted)

Note that, after all segments have been replaced, there are exactly |V |+2|S|
candidates and 3|S| settlements. Further note, that settlements are covered from
candidates from different segments if and only if the corresponding segments are
adjacent and no settlement is covered by more than two candidates. Finally, let
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K ′′ := K ′ + |S|. A vertex cover of cardinality K ′ in G′ exists if and only if
there is a solution with cardinality K ′′ for the constructed instance of Station
Location. As the construction works in polynomial time, this implies the NP-
hardness of this variant of Station Location. ut
Corollary 1. The (unweighted) Station Location problem remains NP-com-
plete even for the case that the covering matrix can be split into to submatrices A
and B such that Acov = (A|B), and A and B have the consecutive ones property
(even if (A|B) has exactly two 1s per row, A has no more than one 1 per row
and B has no more than two 1s per row).

Proof. Consider the instance of Station Location and the graph G′ construc-
ted in the above proof. There are two classes of candidates: Candidates cor-
responding to vertices of G′ and candidates on edges of G′. Assign columns
corresponding to candidates of the first class to A and columns corresponding
to candidates of the second class to B. Order the columns of B in the natural
way, namely corresponding to their order on the edges between two vertices of
G′ (cf. Fig. 4). Then the following properties hold:

1. No row of A has more than one entry, because every station can only be
reached by one class-A vertex. It follows that A has C1P.

2. An ordering of the columns of B following the above rule exists. For every row
covered by columns of B the (up to two) columns covering it are consecutive.

It follows that A and B have C1P, and no row of (A|B) has more than two
non-zero entries. ut

Note, however, the following result:

Definition 3. Let lm (rm) be the index of the leftmost (rightmost) 1 in the m-
th row of Acov. A matrix Acovwith strong C1P is strictly monotone if the
sequence (lm)1≤m≤M and (rm)1≤m≤M are strictly increasing.

Lemma 1 ([7]). Let A = (A1|A2) where A1 and A2 both are strictly monotone
matrices. Then the Set Covering problem with coefficient matrix A can be
solved in polynomial time. ut

3 Approximation

It is shown in [16,17] that Set Covering cannot be approximated within a
factor of O(log(n)) unless some likely assumption on complexity classes holds.
Using the so called shifting technique of [18], however, it was proven in [19] that
a PTAS exists for Covering by Discs, which is similar to Station Location
except for the fact that the locations for new stations are not restricted but
can be chosen anywhere in the plane. The authors of [20] find a PTAS for a
version of Station Location where stations cannot be arbitrarily close to
each other. However, it seems that their techniques cannot be adapted to our
problem (although they would probably work well in practice).

We therefore followed a different approach for approximating more general
instances, especially those having only a few blocks of consecutive ones per row.
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3.1 A Block-based Reformulation

Since Set Covering problems with C1P can be solved efficiently, our idea is
to split each row m with more than one block of consecutive ones (i.e. blm > 1)
into blm rows, each of them satisfying C1P. We then require that at least one of
these rows needs to be covered.

Now consider a zero-one matrix Acov with M rows, such that blm = 1 for
m = 1, . . . , p, and blm > 1 in the remaining rows p + 1, . . . ,M .

For the ith block of consecutive ones in row m let

– fm,i be the column of the first 1 of block i, and
– lm,i be the column of its last 1.

This means that

amn =

{
1 if there exists i ∈ {1, . . . , blm} such that fm,i ≤ n ≤ lm,i

0 otherwise.

Consider a row Acov
m of Acov with blm > 1. According to the transformation

introduced in [8] we replace Acov
m by blm rows Bm,1, Bm,2, . . . , Bm,blm , each of

them containing only one single block of row Am, i.e., we define the jth element
of row Bm,i as

(Bm,i)j =

{
1 if fm,i ≤ j ≤ lm,i

0 otherwise.

Hence, due to [8], the Set Covering problem (SCP) is equivalent to

min cx

s.t. Acov
m x ≥ 1 for m = 1, . . . , p

Bm,ix ≥ ym,i for m = p + 1, . . . ,M, i = 1, . . . , blm
blm∑
i=1

ym,i ≥ 1 for m = p + 1, . . . ,M

ym,i ∈ {0, 1} for m = p + 1, . . . ,M, i = 1, . . . , blm

x ∈ {0, 1}N .

(SCP′)

It is more convenient to rewrite (SCP′) in matrix form. To this end, we define

– the matrix A as the first p rows of Acov,
– bl =

∑M
m=p+1 blm as the total number of blocks in the “bad” rows of Acov,

i.e., in rows of Acov without C1P,
– I as the bl × bl identity matrix,
– B as the matrix containing the bl rows Bm,i, m = p+1, . . . ,M , i = 1, . . . , blm,
– C as a matrix with M − p rows and bl columns, with elements

cij =

{
1 if

∑p+i−1
m=p+1 blm < j ≤

∑p+i
m=p+1 blm

0 otherwise.
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(SCP′) can hence be reformulated as

min cx

s.t. Ax ≥ 1p

Bx − Iy ≥ 0bl

Cy ≥ 1M−p

x ∈ {0, 1}N ,

y ∈ {0, 1}bl.

(SCP′′)

The constraint Cy ≥ 1M−p makes sure that at least one block of each row
Acov

m with m ≥ p + 1 is covered.
Note that all three matrices A, B, and C have C1P. Unfortunately, the

coefficient matrix of (SCP′′) does not have C1P and is in general even not totally
unimodular.

3.2 Approximation

From Cor. 1 we know the complexity status of Set Covering problems with
at most k blocks of consecutive ones per row: Let k be an upper bound on the
number of blocks in each row of A, i.e., such that blm ≤ k for all m = 1, . . . ,M .

Corollary 2. For k = 1 the Set Covering problem is polynomially solvable,
for all fixed k ≥ 2 the problem is NP-hard.

Proof. For blm = 1 the problem has the consecutive ones property and is thereby
totally unimodular. For k = 2 one can use a reduction to min vertex cover (see
[3]) to obtain a set covering problem with exactly two nonzero elements in each
row; hence a set covering problem with at most two blocks per row.

To solve (SCP) we suggest Alg. 1, for which we will show that it provides a
k-approximation, if k is an upper bound on the number of blocks of consecutive
ones per row.

Note that Alg. 1 can be solved by linear programming, since in line 5, the
coefficient matrix has C1P.

Theorem 5. Algorithm 1 is a k-approximation algorithm, where

k = max
m=1,...,M

blm.

Proof. Let (x∗, y∗) be an optimal solution, and (x′, y′) be an optimal solution of
the linear programming relaxation of (SCP′′). This means that

cx′ ≤ cx∗. (1)

Now note that
ky′m,i ≥ ỹm,i. (2)
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Algorithm 1: k-approximation
Input: M ×N matrix A
Output: approximate solution x̃
Solve LP-Relaxation of the reformulation (SCP′′) to obtain a solution (x′, y′);1

for m := 1, . . . , M do2

Find an index i(m) with y′
m,i(m) ≥ y′

m,i for all i = 1, . . . , blm;3

Define4

ỹm,i =

(
1 if i = i(m)

0 otherwise.

Solve min{cx : Bx ≥ ỹ, x ∈ {0, 1}N} to obtain x̃;5

return x̃;6

This trivially holds for ỹm,i = 0, while for ỹm,i = 1 we know that

y′m,i = max
k=1,...,blm

y′m,k

≥ 1
blm

∑
k=1,...,blm

y′m,k

≥ 1
blm

since Cy ≥ 1M−p

≥ 1
k

Moreover, min{cx : Bx ≥ ỹ} = min{cx : Bx ≥ ỹ, x ∈ {0, 1}N}, since in any
optimal solution of the latter, x ≤ 1, and the integrality constraint x ∈ NN

can be deleted since B has C1P and hence is totally unimodular. Now estimate
B(kx′) as

B(kx′) = kBx′ ≥ ky′ ≥ ỹ,

where the last inequality is due to (2). In other words, kx′ is feasible for {x : Bx ≥
ỹ}, and hence we get

kcx′ ≥ min{cx : Bx ≥ ỹ}
= min{cx : Bx ≥ ỹ, x ∈ {0, 1}N} = cx̃

Combining the latter with (1) we finally obtain cx̃ ≤ kcx′ ≤ kcx∗. ut

4 Further Issues

Parameterized Complexity. A further means of tackling Station Location is
to apply parameterized complexity techniques. It does not make much sense
in our context to take the “canonical” parameter, the number of stops of the
solution. We want a parameter that is small but there are usually many stops
in a solution. Instead, we choose the maximum distance k between the first and
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Algorithm 2: FPT Algorithm
Input: Covering Matrix Acov

Output: Optimal solution OPT ∈ S
Data: S, a collection of partial solutions covering rows 1, . . . , r
Sort columns of Acov lexicographically.;1

Initialize S with the partial solution ∅, covering no row of Acov;2

forall rows r of Acov do3

forall partial solutions s ∈ S that do not cover r do4

forall columns g of Acovthat cover r do5

Add a solution s ∪ {g} to S;6

Remove s from S;7

Remove from S all duplicate partial solutions (covering the same set of8

rows) except the smallest such solution;

the last non-zero entry of the covering matrix in every column. We have found
the following result which is especially useful for instances which have a fairly
“linear” structure and therefore their covering matrix is almost a band diagonal
matrix.
Theorem 6. Station Location is solv-
able in O(poly(m,n) · 2k) if the distance
between the first and last non-zero entry is
not greater than k for every column of Acov.
If k = Ω(m) this leads to an exponential
running time. But for small values of k it
can be quite efficent.


1

110001101

0

0 1

1 1



 k

Proof (sketch). In each iteration, after step 8, S contains the optimal solution
covering rows 1, . . . r. The correctness follows from this property. The running
time follows from the fact that after each iteration all solutions in S cover rows
1, . . . r, and no solution covers any row after r + k, so |S| ≤ 2k. ut

Outlook. We are not aware of a constant factor approximation algorithm for
Station Location nor a PTAS. There is no FPTAS for Station Location
since it is strongly NP-complete (see [21] for a comprehensive introduction to
approximation algorithms). The relatively nice behaviour of practical instances
can be explained by several factors. First, the geometric nature of the problem
along with the fact that most settlements can be reached by only a few lines
results in covering matrices that are close to having C1P. This and reduction
techniques described in [6] allow large portions of the instances to be solved
efficiently, resulting in relatively small problem kernels. Secondly, the distribution
of settlements allows to apply the shifting technique even if it’s effectiveness has
not been proven theoretically for our version of the problem.

A further approach not mentioned so far could be to use techniques applied
to unit disc graphs as many hard problems are easy if restricted to unit disc
graphs.
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