
11th Workshop on
Algorithmic Approaches for
Transportation Modelling,
Optimization, and Systems

ATMOS’11, September 8, 2011, Saarbrücken, Germany

Edited by

Alberto Caprara
Spyros Kontogiannis

OASIcs – Vo l . 20 – ATMOS’11 www.dagstuh l .de/oas i c s

Editors
Alberto Caprara Spyros Kontogiannis
DEIS Computer Science Department
Università di Bologna University of Ioannina
40136 Bologna, Italy 45110 Ioannina, Greece
alberto.caprara@unibo.it kontog@cs.uoi.gr

ACM Classification 1998
F.2 Analysis of Algorithms and Problem Complexity, G.1.6 Optimization, G.2.2 Graph Theory, G.2.3
Applications

ISBN 978-3-939897-33-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-33-0.

Publication date
September, 2011

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs (BY-NC-ND):
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.
No derivation: It is not allowed to alter or transform this work.
Noncommercial: The work may not be used for commercial purposes.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ATMOS.2011.i

ISBN 978-3-939897-33-0 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-939897-33-0
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode
http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.i
http://www.dagstuhl.de/oasics

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

www.dagstuhl.de/oasics

Contents

Preface
Alberto Caprara and Spyros Kontogiannis . vii

Invited Paper

Real-time traffic control in railway systems
Carlo Mannino . 1

Regular Papers

A bilevel rescheduling framework for optimal inter-area train coordination
Francesco Corman, Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo 15

The Lockmaster’s problem
Sofie Coene and Frits C. R. Spieksma . 27

Track Allocation in Freight-Train Classification with Mixed Tracks
Markus Bohlin, Holger Flier, Jens Maue, and Matúš Mihalák . 38

Faster Batched Shortest Paths in Road Networks
Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck . 52

UniALT for regular language contrained shortest paths on a multi-modal transportation
network

Dominik Kirchler, Leo Liberti, Thomas Pajor, and Roberto Wolfler Calvo 64

The Price of Robustness in Timetable Information
Marc Goerigk, Martin Knoth, Matthias Müller-Hannemann, Marie Schmidt, and
Anita Schöbel . 76

Delay Management including Capacities of Stations
Twan Dollevoet, Marie Schmidt, and Anita Schöbel . 88

Stochastic Delay Prediction in Large Train Networks
Annabell Berger, Andreas Gebhardt, Matthias Müller-Hannemann, and
Martin Ostrowski . 100

Comparison of discrete and continuous models for the pooling problem
Mohammed Alfaki and Dag Haugland . 112

On the Smoothed Price of Anarchy of the Traffic Assignment Problem
Luciana Buriol, Marcus Ritt, Félix Rodrigues, and Guido Schäfer 122

On the Utilisation of Fuzzy Rule-Based Systems for Taxi Time Estimations at Airports
Jun Chen, Stefan Ravizza, Jason A. D. Atkin, and Paul Stewart 134

A Hypergraph Model for Railway Vehicle Rotation Planning
Ralf Borndörfer, Markus Reuther, Thomas Schlechte, and Steffen Weider 146

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Preface

Transportation networks give rise to very complex and large-scale network optimization
problems requiring innovative solution techniques and ideas from mathematical optimization,
theoretical computer science, and operations research. Applicable tools and concepts include
those from graph and network algorithms, combinatorial optimization, approximation and
online algorithms, stochastic and robust optimization. Since 2000, the series of ATMOS
workshops brings together researchers and practitioners who are interested in all aspects
of algorithmic methods and models for transportation optimization and provides a forum
for the exchange and dissemination of new ideas and techniques. The scope of ATMOS
comprises all modes of transportation.

The 11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimiza-
tion, and Systems (ATMOS 2011) was held in connection with ALGO 2011, hosted by the
Max Planck Institut für Informatik, Saarbrücken, Germany, on September 8, 2011. Topics of
interest for ATMOS 2011 were all optimization problems for passenger and freight transport,
including – but not limited to – Infrastructure Planning, Vehicle Scheduling, Crew and Duty
Scheduling, Rostering, Routing in Road Networks, Novel Applications of Route Planning
Techniques, Demand Forecasting, Design of Tariff Systems, Delay Management, Mobile Ap-
plications, Humanitarian Logistics, Simulation Tools, Line Planning, Timetable Generation,
and Routing and Platform Assignment. Of particular interest were: the successful integration
of several (sub)problems or planning stages, algorithms operating in an online/realtime
or stochastic setting, and heuristic approaches (including approximation algorithms) for
real-world instances. In response to the call for papers we received 22 submissions, all of
which were reviewed by at least three referees. The submissions were judged on originality,
technical quality, and relevance to the topics of the conference. Based on the reviews, the
program committee selected the 12 papers which appear in this volume. Together, they quite
impressively demonstrate the range of applicability of algorithmic optimization to transport-
ation problems in a wide sense. In addition, Carlo Manino kindly agreed to complement
the program with an invited talk entitled Real-time traffic control in railway systems. We
would like to thank all the authors who submitted papers to ATMOS 2011, Carlo Manino
for accepting our invitation to present an invited talk, and the local organizers for hosting
the ATMOS workshop as part of ALGO 2011.

September 2011 Alberto Caprara
Spyros Kontogiannis

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Organization

Program Committee

Alberto Caprara, Università di Bologna, ITALY (co-chair)
Cynthia Barnhart, MIT, USA
Francesco Corman, Katholieke Universiteit Leuven, BELGIUM
Friedrich Eisenbrand, EPFL, SWITZERLAND
Christoph Helmberg, Technische Universität Chemnitz, GERMANY
Spyros Kontogiannis, University of Ioannina, GREECE (co-chair)
Gabor Maroti, Erasmus Universiteit Rotterdam, NETHERLANDS
Elise Miller-Hooks, University of Maryland, USA
Dario Pacciarelli, Università degli Studi “Roma Tre”, ITALY
Martin Skutella, Technische Universität Berlin, GERMANY
Sebastian Stiller, MIT, USA
Peter Widmayer, ETH Zürich, SWITZERLAND

Steering Committee

Alberto Marchetti-Spaccamela, Università di Roma “La Sapienza”, ITALY
Rolf Möhring, Technische Universität Berlin, GERMANY
Dorothea Wagner, Karlsruher Institut für Technologie, GERMANY
Christos Zaroliagis, University of Patras, GREECE

Organizing Committee

Alberto Caprara, Università di Bologna, ITALY
Spyros Kontogiannis, University of Ioannina, GREECE

List of Reviewers

Adrian Bock, Marco Di Summa, Frank Fischer, Stefan Funke, Frank Goering,
Kai-Simon Goetzmann, Elisabeth Guenther, Tobias Harks, Ebrahim Nasrabadi,
Andreas Wiese

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Real-Time Traffic Control in Railway Systems
Carlo Mannino

Dipartimento di Informatica e Sistemistica, Università di Roma “Sapienza”,
e-mail: mannino@dis.uniroma1.it.

Abstract
Despite the constantly increasing demand of passengers and goods transport in Europe, the share
of railway traffic is decreasing. One major reason appears to be congestion, which in turn results
in frequent delays and in a general unreliability of the system. This fact has triggered the study
of efficient ways to manage railway traffic, both off-line and real-time, by means of optimization
and mathematical programming techniques. And yet, to our knowledge, there are only a few
fully automated real-time traffic control systems which are actually in operation in the European
railway system; in most cases such systems only control very simple lines and actually they
only support the activity of human dispatchers. We describe here two recent optimization based
applications to real-time traffic control which have actually been put into operation in the Italian
railways. One such system has been able to fully control the trains in the terminal stations of
Milano metro system. The other one will be fully operative by the end of 2012, when it will
control the trains on several Italian single-track railways. Both systems heavily rely on mixed
integer programming techniques to elaborate good quality timetables in real time.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems; G.1.6 Optimiza-
tion; I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases Train Timetabling, Real-Time Traffic Control, Integer Linear Program-
ming

Digital Object Identifier 10.4230/OASIcs.ATMOS.2011.1

1 Introduction

The demand of people and freight transportation in Europe is increasing at a rate of 2%
per year: in contrast, the share of railway traffic is decreasing (from 11% in 2000 to an
expected 8% in 2020) (see [5]). Apparently, the major reason for such decrease is a general
unreliability of railway systems when compared with other transport modes. In recent years
this fact triggered the investigation of new mathematical models and approaches to manage
railway traffic, both off-line and real-time. Off-line optimization approaches devoted to
timetabling, routing and train platforming have been implemented and applied successfully
to tackle real-life problems (e.g. [3, 4, 8]). In contrast, and maybe quite surprisingly, there
are very few examples of optimization systems actually in operation to manage railway traffic
in real-time and such systems typically control very simple lines, with their tasks restricted
only to support human dispatchers. One such system ([13]) is managing the Lötschberg
Base Tunnel (operated by the Swiss BLS).

Due to the relevance of the problem, in the past decade there has been a flourishing
of studies and experimental implementations; the literature is quite ample and we refer to
[5] for a recent survey. Nevertheless, most of the algorithms presented in the literature
never went beyond a laboratory implementation and, to our knowledge, they are not yet
operative. This is maybe a consequence of the widespread reluctance of network operators
to rely on automatic systems, also due to a number of unsuccessful attempts to tackle the

© Carlo Mannino;
licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 1–14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Real-Time Traffic Control in Mass Transit and Railway Transport

problem with different techniques, such us expert systems, rule based systems, etc. One
other major obstacle is that real-time systems must be able to suitably model even the
smallest and utmost specific detail of the real network, and, at the same time, response
very quickly when invoked. So, besides representing an extremely challenging mathematical
problem, real-time train traffic control also requires the implementation of intricate software
packages, totally out of the interest (and skill) of scientists and academic staff.

In this paper we describe the basic mathematical ingredients of real-time railway traffic
control systems which have been, or currently are, or will soon be, put in operation in
different Italian railway lines. In particular, the first example concerns the metro terminal
stations of the city of Milano, whereas the second example refers to a number of single-
track railways in different Italian districts, from the very northern line Trento-Bassano to
the multi-line of the Sicilian district. Three major actors were involved in the development
of the systems: the network operator bringing the problem and, in some sense, an entire
railway; the academia, providing the mathematical tools and implementing efficient solution
algorithms; a (large) company of the transport sector, capable to design and implement the
hardware and software components interfacing the mathematics to the real-world. In my
opinion, only this blend of skills allowed for the practical achievement of the tools whose
basic ingredients we describe next.

Stations and railway lines may be seen as sets of track segments, each accommodating
at most one train, which can be accessed from other track segments either directly (as the
two segments are adjacent on a same track) or through switches. The structure of stations
and lines can be suitably represented by the infrastructure digraph, in which both arcs and
nodes represent specific track segments, as we will show in detail in a next section. A train
runs through a specific sequence of track segments, called train route. The official timetable
associates a time with specific track segments of each train-route, namely with the track
entering (arrival time) and leaving (departure time) each station. The (real-time) Railway
Traffic Control problem (RTC) consists in finding a minimum cost real-time plan which is
a suitable route for each train and the time in which the train enters each segment in its
route. The cost of the real-time plan is a function of the deviation from the official timetable.
Observe that trains compete to access the track segments and decisions must be taken in
order to establish which train precedes which on possible conflicting segments.

The (RTC) has long been recognized as a particular job-shop scheduling problem, where
trains correspond to jobs, tracks to machines with unit capacity, and the use of a track
segment by a train corresponds to an operation (see, e.g., [9, 12]). Two major mathem-
atical models were adopted to represent job-shop scheduling problems and railway traffic
control problems. In the first one (see, e.g., [2]), the scheduling variables are continuous real
variables, each representing the time in which a given operation is started. In the second
model (introduced in [6]), often referred to as time-indexed formulation, the time horizon is
discretized into a finite set of time periods, and the main decision variables are 0,1 variables
associated with a given operation and a specific time period.

The second approach has several, relevant advantages w.r.t. the first. The most import-
ant one lies in the way we express the fact that some track segments (distinct or not) cannot
be occupied simultaneously by two distinct trains, such as a passenger platform and the
track segment (interlocking route) to access it. In particular, in time-indexed formulations,
such incompatibility constraints are expressed by simple cardinality inequalities in which at
most one variable can be one. In the time-continuous approach, in contrast, an incompat-
ibility is typically expressed by means of the so called Big-M constraint which requires the
introduction of an additional 0,1 variable and of a large coefficient M . It is a well known

C. Mannino 3

fact that time-indexed formulations provide much stronger relaxations, and, in turn, better
bounds and smaller search trees. In addition, handling additional and heterogeneous con-
straints is in general a much easier task. Also, and quite important, routing and scheduling
can be immediately handled in a unique framework, i.e. by associating the time-indexed
variables to route-segments rather than track segments.

However, time-indexed formulations present a serious inconvenience, that is that the
number of variables and constraints grows very quickly with the time horizon and the dis-
cretization step. This inconvenience appeared to be deadly when solving real-time traffic
control problems, at least in our experience, where the optimization stage must return a
reasonably good solution, possibly optimal, within at most one second. For this reason we
decided to resort to the first and more classical continuous representation.

2 Real-time traffic control in metro stations

In year 2001 the municipal transport company of the City of Milano, Azienda Trasporti
Milanesi (ATM), recognized the potential of applying optimization techniques to control in
real-time the running trains in the terminal stations of the Milano metro system. The task
of implementing the overall software was assigned to a large multinational of the transport
sector, namely Bombardier Transportation, and later the University of Rome Sapienza came
on board to develop the core optimization algorithms.

The main challenge of such algorithms was to generate a real-time plan that optimized
a specific performance indicator, such as punctuality or regularity. In practice, human
dispatchers solve several instances of the (RTC) every minute. To generate an effective plan,
an optimization algorithm (referred to as Optplan) for the (RTC) needed to be embedded in
the traffic control loop(see Fig. 1): The position of the trains and the status of the switches
and of the signals were captured by remote control equipment and input to Optplan, which
returned a real-time plan. The system then signalled to the trains the next move to make
on their assigned routes.

Trains

Operation Control

Centre

OptPlan

Signalling System

Current trains

position

Current status and

reference timetable

Optimal routing

& scheduling

Switches &

signal status

Figure 1 The control loop

An upper limit of five seconds was established for the execution of a complete control
loop, which left fewer than one second available to Optplan. Indeed, the execution of the
traffic control loop had to be designed in a way so as no additional delays to the standard
traffic-management decision process be added. The headway between trains in peak hours is
exactly 90 seconds at Sesto F.S., the Milan metro network main terminal station. This tight

ATMOS’11

4 Real-Time Traffic Control in Mass Transit and Railway Transport

schedule stretches the station capacity to its limits. Consequently, even a few additional
seconds result in an unrecoverable delay. Second, Optplan needed to be able to quickly
re-compute a new plan whenever a dispatcher intervened in real-time. In the case of train
failures, dispatchers can reroute trains, edit the official timetable and modify the available
network infrastructure. Consequently, they need Optplan to do the same: re-compute plans
accordingly and show the new plans immediately on their monitors. The need for quick
and effective re-routing is especially crucial in peak hours when dispatchers are under severe
pressure as they simultaneously control several monitors, interact with other operators, make
radio calls to drivers, and so on. There is no time for a slow system.

After a rigorous and extensive test-campaign, the system proved not only to be able to
control in real-time the trains in the terminal stations, but also to produce better real-time
plans than human operators, significantly improving over all performance indicators. Only
thanks to such positive comparison, as by contractual clause, the automatic route setting
system was accepted by ATM and put into operation on July 2007. In what follows we
give a brief description of the model and the algorithm developed to solve the (RTC). A
comprehensive description of the methodology and of the computational tests can be found
in [10]. We start with some basic definitions.

Stations. A (terminal metro) station is a facility where passengers may board and alight
from trains, and in which trains can reverse direction or perform a number of additional
operations. Such operations are called train services. A metro station can be viewed as a set
of track segments, the minimal controllable rail units, which in turn may be distinguished
into stopping points and interlocking-routes. A stopping point is a track segment in which a
train can stop to execute a service while an interlocking-route is the rail track between two
stopping points, and is actually formed by a sequence of track segments. For our purposes,
a metro station is represented by means of a directed graphM = (P, I) where P is the set of
stopping nodes (points) and I ⊆ P ×P is the set of interlocking arcs (routes). A performable
service is associated with every stopping node p ∈ P .
Trains. Trains enter terminal stations in order to execute a sequence of services; thus trains
are defined as an ordered list of services along with an origin, a destination and a planned
departure time (according to a given master timetable). The set of trains to be scheduled
will be denoted by T = {1, . . . , |T |}, while Dj is the planned departure time of j ∈ T .
Finally, for all i, j ∈ T , we assume Di ≤ Dj whenever i < j, i.e. trains are ordered by
increasing departure times.
Routes. Train movements within a station may be viewed as ordered sequences of stopping
points and interlocking-routes, which in turn correspond to directed paths ofM . Such paths
are called (train) routes. Observe that every route r corresponds to an ordered list of services
(each associated with a node of r). Therefore, a route r will be called feasible for a train j ∈ T
if the ordered list of services associated with j is contained in the ordered list of services
associated with r. A feasible routing for T = {1, . . . , |T |} is a family R = {r1, . . . , r|T |} of
routes such that, for every j ∈ T , rj is feasible for j. The set of the feasible routings of a
station M for a set of trains T will be denoted by R(M,T). Let R ∈ R(M,T), let rj ∈ R,
and let p ∈ P be any stopping point of rj . We associate with p a duration dp(j) which
depends on the service available in p and on the train j associated with rj . In addition,
with every interlocking arc a ∈ rj we associate a travel time da(j).
Scheduling Nodes and arcs of a route r correspond to rail tracks. In order to provide a
complete description of the movements of a train along its route r, we need to establish the
exact time when the train enters each track, or, equivalently, a starting time for all of the
nodes and arcs of r. Now, let a = (u, v) ∈ r, and let tu, tv, ta denote the starting times

C. Mannino 5

of nodes u, v and arc a, respectively: then, since the train enters stopping point u before
running interlocking-route a, it must be ta − tu ≥ du (precedence constraint). Also, since a
train cannot be stopped while running through an interlocking-route (no-wait constraint),
we have tv − ta = da. If R ∈ R(M,T) is a feasible routing, an assignment of starting times
to all nodes and arcs of all routes in R is called a schedule for R.

The problem of computing a schedule for R ∈ R(M,T) falls into the class of job-shop
scheduling problems where trains can be viewed as jobs, tracks are machines and train move-
ments at stopping nodes and through interlocking arcs are operations. Also, observe that a
train cannot move away from a stopping point if the next one on its route is occupied by an-
other train (blocking constraints). Blocking constraints can be expressed by a disjunction of
linear constraints on the starting times. Suppose routes r1, r2 ∈ R share a common stopping
node u and let a1 = (u, v) ∈ r1 and a2 = (u,w) ∈ r2 and let tu1, ta1 (tu2, ta2) be the starting
times of Train 1 (Train 2) associated to u (u) and to a1 (a2). If Train 1 precedes Train 2 in
u, then Train 2 can enter u only when Train 1 has already moved to a1, i.e. tu2 − ta1 ≥ 0.
Analogously, if Train 2 precedes Train 1 in u, then tu1 − ta2 ≥ 0. Therefore, tu1, ta1, tu2, ta2
satisfy the following disjunctive constraint:

(tu2 − ta1 ≥ ε)
∨

(tu1 − ta2 ≥ ε) (1)

where
∨

denotes that at least one of the two constraints of the disjunction must be satis-
fied. Observe that the disjunctive constraint (1) generalizes the standard one for job-shop
scheduling, because distinct machines (tracks) may be involved.

Schedule costs. Costs represent deviations of the actual schedule from the master
timetable. Clearly, early and late trains must be penalized. This is done by introducing a
convex, piecewise linear function gj(sj), for j = 1, . . . , |T |, where sj is the departure time of
train j. Also, the time-lag between the departures of two consecutive trains j−1 and j must
equal the planned one (regularity lag). The corresponding cost fj(sj − sj−1), j = 2, . . . , T
is again a convex, piecewise linear function.

The overall schedule cost c′(s) is computed by summing up the two cost functions, and
only depends upon departure times sj , for j ∈ T :

c′(s) =
|T |∑
j=1

gj(sj) +
|T |∑
j=1

fj(sj − sj−1), (2)

where s0 is the last departure time. We are finally able to state the Metro-Station Traffic
Control Problem (m-RTC).

I Problem 2.1. [Metro Station Traffic Control Problem] Given a set of trains T , a metro-
station M(P, I) and earliness-tardiness and regularity costs gj and fj , for j ∈ T , find a
feasible routing R∗ ∈ R(M,T) and a schedule t∗ for R∗ such that the sum of the earliness-
tardiness and regularity costs is minimized.

In short, the (m-RTC) is tackled by enumerating all feasible routings inR(M,T) and then
by solving, for each R ∈ R(M,T), the associated job-shop scheduling problem. Therefore,
for any R ∈ R(M,T), we have a set of operations N = N(R) = {0, . . . , n}, where 0 is a
dummy operation (called start), while the operations {1, . . . , n} correspond to the stopping
nodes and the interlocking arcs of all of the routes in R. With every i ∈ N we associate
a starting time ti ∈ IR. The vector t ∈ IRn+1 is called a schedule of N , and we assume

ATMOS’11

6 Real-Time Traffic Control in Mass Transit and Railway Transport

ti − t0 ≥ 0, for all i ∈ N . The departure time sj of Train j ∈ T is related to the starting
time of the exit node d(rj) of rj through the equation sj = td(rj) − t0, for j ∈ T .

Feasible schedules must satisfy a number of precedence constraints between pairs i, j ∈ N
of the type tj − ti ≥ lij , where lij ∈ IR is a time-lag. We indicate the precedence constraint
tj − ti ≥ lij by {i, j, lij}, or simply by (i, j) if the time-lag is omitted.

A (unordered) pair of precedence constraints ({i, j, lij}, {h, k, lhk}) is a disjunctive pre-
cedence pair for N if every feasible schedule t satisfies either tj − ti ≥ lij or tk − th ≥ lhk.
I Problem 2.2. [Job-shop Scheduling Problem] Given a set of operations N = {0, . . . , n},
a set of precedence constraints F , a set of disjunctive precedence constraints A and a cost
function c : Rn+1 → R, find a (feasible) schedule t ∈ Rn+1 such that all constraints are
satisfied and c(t) is minimized.

The job-shop scheduling problem is NP-hard and can be formulated as the following
disjunctive program:
I Problem 2.3.

min c(t)
s.t. tj − ti ≥ lij (i, j) ∈ F

(tj − ti ≥ lij)
∨

(tk − th ≥ lhk) ((i, j), (h, k)) ∈ A
t ∈ IRn+1 .

The set of feasible schedules of an instance of the blocking, no-wait job-shop scheduling
problem can be represented by means of the so called disjunctive graph D(N,F,A), where
N is a set of nodes, F a set of directed arcs, A a set of (unordered) pairs of directed arcs.
The arcs in F are called fixed arcs. The arc pairs in A are called disjunctive arcs. Finally,
denoting by Z(A) = {(i, j) : ((i, j), (h, k)) ∈ A} the set of all directed arcs in (the pairs
of) A, a length lij ∈ IR is associated with every (i, j) ∈ F ∪ Z(A). An instance of the
job-shop scheduling problem is thus represented by a triple (D, l, c), where D = D(N,F,A)
is a disjunctive graph, l a weight vector and c : IRn+1 → IR a cost function.

A selection S ⊆ Z(A) is a set of arcs obtained from A by choosing at most one arc
from each pair. The selection is complete if exactly one arc from each pair is chosen. Every
selection S of D(N,F,A) naturally defines a new disjunctive graph D[S] = (N,FS , AS),
where FS = F ∪ S, while AS is obtained from A by removing the pairs containing the arcs
in S. We call D[S] an extension of D under S. Finally, we associate with D(N,F,A) the
weighted directed graph G(D) = (N,F), with length lij associated with every (i, j) ∈ F .

With every instance (D(N,F,A), l, c) of the job-shop scheduling problem, with c con-
vex and piecewise linear, we associate the convex program (SCH(D, l, c)), obtained from
Problem (2.3) by dropping all of the disjunctive constraints. Denoting by z∗(D, l, c) the
optimum value of (SCH(D, l, c)), the original disjunctive problem (2.3) can be restated as
the problem of finding a complete selection S̄ of A such that z∗(D[S̄], l, c) is minimum. Also,
z∗(D, l, c) provides a lower bound for the optimum solution value to SCH(D̄, l, c), where D̄
is any extension of D.

2.1 Solution algorithm and lower bound computation
An instance of the (m-RTC) is solved by our algorithm by enumerating all of the feasible
routings R ∈ R(M,T) and by solving, for each R, the associated instance (DR, l, c) of the
job-shop scheduling problem (2.3). This task is carried out by implicitly enumerating all of
the feasible extensions of DR. However, the enumeration of the (partial) extensions of D
can be limited by the following standard arguments. Let UB be any upper bound to the

C. Mannino 7

optimum solution value of Problem (2.3) - e.g., the cost c(t̂) of any known feasible solution
t̂ - and let S be a (partial) selection of A. If the optimum solution value z∗(D[S], l, c)
to SCH(D[S], l, c) satisfies z∗(D[S], l, c) ≥ UB then no (complete) extension of D[S] can
improve on t̂ and the problem can be disregarded. Now, Problem SCH(D[S], l, c) is an
instance of the so called optimal potential problem with convex costs, which can be shown to
be the dual of a min-cost flow problem with convex costs and can be solved efficiently even
in its integer version ([1]). Since a lower bound computation must be carried out at each
branching, we studied a further relaxation to SCH(D, l, c) which proved to be effective in
reducing the size of the enumeration tree with very little computational effort.

Let D(N,F,A) be a disjunctive graph, with |N | ≥ 1, and suppose G(D) does not contain
a positive dicycle. Denote by l∗ij the length of a maximum path from i ∈ N to j ∈ N in
G(D) (l∗ij = −∞ if no ij-path exists). Let SCH(D, l) ⊆ Rn+1 be the feasible region of
SCH(D, l, c). Since we assume G(D) contains no positive dicycle, then SCH(D, l) 6= ∅; also,
l∗ij <∞ for all i, j ∈ N . In what follows, we denote by tW the sub-vector of t ∈ SCH(D, l)
indexed by W and by projW (D, l) the projection of SCH(D, l) onto the tW -space, that is
t̃ ∈ projW (D, l) iff there exists t̂ ∈ SCH(D, l) such that t̂W = t̃.

I Lemma 1. [10] Let W ⊆ N , with W 6= ∅. Then

projW (D, l) = {t ∈ IR|W | : tj − ti ≥ l∗ij , i, j ∈W} (3)

So, let (D(N,F,A), l, c) be an instance of Problem (2.3) and let W = {d(j) : j =
1, . . . , |T |} ∪ {0} be the set of nodes of G(D) corresponding to the exit operations (one for
each train in T) and to the start. The projection projW (D, l) can be written as:

SCHs(D, l) =

sj − si ≥ l∗d(i),d(j) i, j ∈ T
l∗0,d(j) ≤ sj ≤ −l∗d(j),0 j ∈ T
s ∈ IR|T |,

where, as before, sj = td(j) − t0, j ∈ T . Observe that we have z∗(D, l, c) = min{c(t) :
t ∈ SCH(D, l)} = min{c′(s) : t ∈ SCH(D, l), sj = td(j) − t0, j ∈ T} = min{c′(s), s ∈
SCHs(D, l)}. Also, since node 0 corresponds to the start operation, and we have assumed
t0 ≤ ti for all i ∈ N , then we have l∗0,d(j) ≥ 0, for j ∈ T . Finally, since G(D) does not
contain positive dicycles, we have −l∗d(j),0 ≥ l

∗
0,d(j), for j ∈ T .

An optimum solution to SCH(D, l, c) can be obtained by finding an optimum solution s∗
to min{c′(s), s ∈ SCHs(D, l)}, and then “lifting" s∗ to a solution t∗ ∈ SCH(D, l): the last
task can be carried out by a simple maximum path tree computation. In this way problem
SCH(D, l, c) is reduced to an equivalent problem with much fewer variables.

Now, if we let lj = l∗0,d(j) and uj = −l∗d(j),0, for j = 1, . . . |T |, and we let q1 = l1 and
qj = l∗d(j−1),d(j), for j = 2, . . . , |T |, then the following convex program REL(D, l, c) provides
a relaxation to SCH(D, l, c):

LB(D, l, c) = min
∑
j∈T

gj(sj) +
∑
j∈T

fj(sj − sj−1)

s.t. sj − sj−1 ≥ qj j ∈ T (REL(D, l, c))
lj ≤ sj ≤ uj j ∈ T

s ∈ IR|T |+1

ATMOS’11

8 Real-Time Traffic Control in Mass Transit and Railway Transport

where again s0 denotes the departure time of the last departed train. In fact, the feas-
ible region of REL(D, l, c) is obtained from SCHs(D, l) by dropping some of the defining
constraints. Thus, the optimum LB(D, l, c) to REL(D, l, c) provides a lower bound to the
optimum solution value associated with every (complete) selection of D(N,F,A). Observe
that REL(D, l, c) has only |T | decision variables (the departure times) and few constraints,
again corresponding to the constraints of the dual of a min-cost flow problem. In what
follows we assume qj ≥ 0 for all j ∈ T : this condition is ensured by the no interchange
stipulation on train departures which imposes sj ≥ sj−1 for all j ∈ T , and which in turn
is imposed by including the corresponding precedence constraints into Problem 2.3. In [10]
we show how to reduce the above problem into a convex min-cost flow on a small network,
which in turn can be solved very efficiently (see [7]).

2.2 Computational results
In order to evaluate the overall approach to the (RTC), we performed both static and run-
time (real-life) tests (see [10]). Static tests involve a single trains list, and were carried out
mainly for assessing the quality of the relaxations and of the branch and bound algorithm.
The results clearly show that, when compared to SCH(D, l, c), solving the min-cost flow
reformulation of REL(D, l, c) speeds the computing times up to 2.5 times, a very desirable
feature for real-time applications. Indeed, an instance of REL(D, l, c), particularly in its
min-cost flow reformulation, can be solved (by using the Goldberg and Tarjan code [7])
much more efficiently than the original SCH(D, l, c) instance (solved by CPLEX 10.0); in
contrast, the total number of branching nodes increases only slightly. The results become
even more impressive when compared with other classical approaches, such as those based
on time-indexed reformulations. Run time tests were performed to evaluate the ability of
the system to manage real-time traffic and compare its performances to those obtained by
human dispatchers and were done during an official test-campaign, which lasted several days.
The results show that the dispatchers were in most cases outperformed by the system. This
favorable comparison is confirmed by the average result, which shows an increase of more
than 8% in a cumulative measure agreed with the ATM engineers (see [10]).

3 Single-track railways traffic control

In this section we briefly describe the basic elements of an optimization based automatic
route system for single-track railways. The system here described is already partially in
operation on several lines of the Italian railways, namely Parma – S. Zeno and Trento –
Bassano in North Italy, Siracusa – Gela, extended to Trapani, Siracusa and Caltanisetta
in South Italy and Terontola – Foligno in Central Italy. The full automatic route setting
system, based on the optimal recalculation in real-time of the timetables will be put into
operation by the end of year 2012.

A single-track line is a sequence of stations joined by a unique track. The track segment
between two stations is called block. Blocks are sometimes partitioned into sections, and, for
safety reasons, trains running in a same direction will be separated by a minimum number
of such sections. For brevity we neglect sections in the remainder of the paper but the
extension to such case is immediate.

Trains running in opposite directions or trains running in the same direction but at
different speeds may need to cross each other somewhere in the line. Of course this can
only happen in a station: the exact time and the meeting station is established by the
official timetable. However, due to unpredictable delays, it may become impossible or simply

C. Mannino 9

disadvantageous to accord with the official timetable, and new meeting stations should
be detected. In most railway systems this is performed manually by human dispatchers,
sometimes with the help of a supervising control software which can identify and present
possible meeting points, typically according to some local optimal criteria. In contrast, the
system we are developing will be able to fully control the traffic along single-track railway
lines, by establishing optimal meeting stations and actually controlling train movements in
stations and on the tracks between stations. It is important to remark here that, due to
very rigid routing schemes, the routes followed by trains in stations can be considered as
fixed (as they only depend on the arrival sequence).

Let S = {1, . . . , q} be the set of stations and let B = {1, . . . , q − 1} be the set of blocks,
with block i between station i and station i+ 1. Whereas at most one train can occupy the
block between two stations, each station s ∈ S can accommodate up to us trains, where us

is the station capacity1.
Let R = S ∪ B the set of railway resources and let T be the set of trains. Any train

i ∈ T runs through a sequence of stations and blocks. So, the route of the train i may
be represented by a path P i = {vi

1, (vi
1, v

i
2) . . . , (vi

l(i)−1, v
i
l(i)), vi

l(i)} where node vi
k ∈ R for

1 ≤ k ≤ l(i) is the k-th railway resource used by i. We denote by V i (Ai) the set of nodes
(arcs) of P i. The arcs of P i represent precedence constraints, i.e. the fact that (the resource
corresponding to) node vi

k is visited by the train before node vi
k+1 on its route. With each

arc (vi
k, v

i
k+1) ∈ Ai we associate the weight W i

k,k+1 ≥ 0 representing the minimum time
necessary to train i to move from the k-th resource to the next. Thus, if vi

k is a station
(node), then W i

k,k+1 is the time the train should spend in the station before departing. If
vi

k is a block (node), then W i
k,k+1 is the time necessary to reach next station.

Next, we construct the routes graph GT = (V,A) by letting V = {r} ∪ {v ∈ V i : i ∈ T},
that is V contains all nodes associated with the train routes plus an additional node r (the
root of GT); and A = {(r, vi

1), i ∈ T} ∪ {(u, v) ∈ Ai : i ∈ T}. So the new node r is a
source, connected to the first node of each train route P i. Also, for i ∈ T , we associate with
arc (r, vi

1) the weight Wri which represents the expected number of seconds (from "now")
before the train is expected to start its route (Wri = 0 if the train is already in the line). In
practice, node r represents a common start, which is associated with the origin of the time.

Now, for each node v = vi
k in V − {r} let us denote by tv = tik the minimum time in

which train i can reach the k-th resource on its path. Also, we let tr = 0. Observe that
by definition each arc (u, v) ∈ A with weight Wuv represents the constraint tv ≥ tu +Wuv.
Indeed, if v = vi

k is a station, then tv represents the minimum arrival time for train i in
such station. Similarly, if v = vi

k is a block b, then tv represents the minimum time for train
i to enter such block or, equivalently, the departing time from the station which precedes
block b on P i. Moreover, if such a block b follows station s in P i and the official departure
time from s of train i is Di

s, then we add the arc (r, v) with weight Di
s, representing the

constraint tv ≥ tr +Di
s = Di

s.
For all v ∈ V , the quantity tv can be computed by a longest-path tree computation on

GT with weights W and root r. The vector t ∈ RV
+ is called schedule or actual timetable.

The schedule t approximates the behavior of the trains along the line. However, we need to
take into account other precedence constraints in order to correctly predict the actual train
timetable. In fact, for some pair of trains i and j we need to impose that they meet in a
station s of the railway (we include a fictitious station to represent trains meeting outside

1 The model can be easily extended to the case in which some trains can not be accommodated on sone
given platforms

ATMOS’11

10 Real-Time Traffic Control in Mass Transit and Railway Transport

the line). We show now how to model the effect of such decision on the schedule t by
adding a suitable set of arcs Aij

s to GT . The new schedule is then computed by calculating
the longest path tree on the resulting graph. We distinguish two cases: i and j travel in
opposite directions or they travel in the same direction.

Case 1. Train i and train j, travelling in opposite directions, meet in station s. Clearly,
s belongs to both P i and P j . So, let vi

k and vj
m be the nodes corresponding to station s on

P i and P j , respectively. Since i and j meet in s, then j leaves s after i enters in s, that
is tjm+1 ≥ tik. Similarly, i leaves s after j enters s, that is tik+1 ≥ tjm. This is represented
by adding the arcs Aij

s = {(vi
k, v

j
m+1), (vj

m, v
i
k+1)} with weight 0 to the graph GT . Observe

that these arcs ensure that i and j will not conflict on a block in the resulting schedule,
since trains i and j enter the station from opposite directions (and thus they cannot conflict
before they enter) and they exit in opposite directions (and they cannot conflict after they
meet).

Case 2. Train i and train j, travelling in the same direction, meet in station s. This
may be necessary if, for example, a train should catch up and overtake another train. This
case is a bit more complicated because, for safety reasons, two trains can never be on the
same block, even if running in the same direction. So, again let vi

k and vj
m be the nodes

corresponding to station s on P i and P j , respectively. Let us assume that i precedes j
before reaching station s, and follows j afterwards. This means that, for every station s′

preceding or coinciding with s on P i, train i must enter s′ before train j has entered the
block which immediately precedes s′ on both routes (if such block belongs to P j). This fact
can be represented by adding suitable arcs to GD as shown in the previous case. The roles
of i and j are interchanged after station s, and for every station s′′ following s on P j , train
j must arrive in s′′ before train i has entered the block which immediately precedes s′′ on
both routes (if such block belongs to P i).

Evaluating the actual timetable

As for the (m-RTC), also for the Single-track Railway Traffic Control Problem (s-RTC) the
quality of the actual timetable depends on its conformity to the official timetable. Again,
we suppose that such quality is evaluated by a convex piece-wise linear cost function cv for
each v ∈ V , and the cost of the schedule t is compiuted as c(t) =

∑
v∈V cv(tv).

3.1 A MILP formulation for the real-time traffic control problem in
single-track railways

If two trains can possibly meet on the line, they form a crossing train pair. In principle, all
pair of trains can meet on the line, even if, according to the official timetable or a current
prediction, they are not supposed to do it. However, by simple heuristic considerations,
many such pairs can be excluded in advance. In what follows, the set of possibly crossing
train pairs will be denoted by K = {{i, j} : i ∈ T, j ∈ T, i and j crossing}. For every
{i, j} ∈ K, we let S(ij) be the set of stations where i and j can actually meet - including,
when possible, the fictitious station representing the out-line. For every {i, j} ∈ K and
every s ∈ S(ij), we introduce a binary variable yij

s , with yij
s = 1 if and only if i and j

meet in s. Denote by G(y) the graph obtained from GT by including the arcs of Aij
s when

yij
s = 1, for all {i, j} ∈ K, s ∈ S. Let t(y) be the schedule obtained by a maximum path-tree
computation on G(y). Then the (s-RTC) problem amounts to finding a binary vector y

C. Mannino 11

such that (i) every crossing pair of trains meet in a station, (ii) the stations capacity is not
violated and (iii) the cost c(t(y)) is minimized.

The following is a mathematical formulation for the (s-RTC):

min
∑

v∈V cv(tv)

s.t.

(i) tv − tu ≥Wuv (u, v) ∈ A

(ii) tv − tu ≥M(1− yij
s) {i, j} ∈ K, s ∈ S(ij), (u, v) ∈ Aij

s

(iii)
∑

s∈S(ij) y
ij
s = 1 {i, j} ∈ K

(iv) y, t satisfying capacity us s ∈ S

(v) t ∈ IRV , yij
s ∈ {0, 1}, {i, j} ∈ K, s ∈ S(ij)

(4)

where M is a large suitable constant. Let (t̄, ȳ) satisfying all constraints but the capacity
constrains (iv): ȳ is called a meet-point assignment. Clearly, checking if a meet-point as-
signment is also satisfying all capacity constraints is an easy task, and we will come back on
this later. The above formulation can be strengthen in various ways, but we do not get into
detail here. We instead show how to represent constraint (iv) by introducing suitable vari-
ables and/or linear inequalities. In [11] and [14] we investigated two alternative approaches.
The first is a natural consequence of the definition, but may contain an exponential number
of constraints; the second is a compact, flow based representation of station capacities.

A non-compact formulation for station capacity constraints

Consider a station s ∈ S with capacity us. The station capacity will be violated if and only
if there exists a set of trains C ⊆ T such that |C| = us + 1 and all pairs of trains in C

meet in s. If this last condition is verified, then yij
s = 1 for all i, j ∈ C with i < j. Since

there are
(

us+1
2
)

= (us + 1)us/2 pairs of distinct trains in C, the condition is equivalent to∑
i,j∈C,i<j y

ij
s = 1

2 (us + 1)us.
In other words, the meet-point assignment y does not violate any station capacity con-

straint if and only if, for all s ∈ S, we have:

∑
i,j∈C,i<j

yij
s <= 1

2(us + 1)us − 1 (5)

for all C ⊆ T with |C| = us. The number of inequalities of type (5) grows exponentially with
us. However, in the single-track lines considered, us is almost always ≤ 4. And yet, their
number becomes quite large even for a small number of trains. For this reason we resort
to the classical row generation approach, which amounts in starting with a small subset
inequalities and generating new ones only if necessary.

A compact, flow based representation of station capacity constraints

Let us first fix a meet-point assignment ȳ. For any train j ∈ T , let Su(j, s, ȳ) be the set
of successors of j in station s, that is the set of trains i ∈ T which enters s after j leaves
the station. Remark that since the meet-point assignment is given, Su(j, s, ȳ) is known for
all j ∈ T and s ∈ S (if s is visited by j). Now, we can think at station platforms as unit
resources that can be supplied to trains. Then a train i can receive the platform either

ATMOS’11

12 Real-Time Traffic Control in Mass Transit and Railway Transport

"directly" from the station s, or from a train j such that i ∈ Su(j, s, ȳ), which received the
platform at an earlier stage. Then the assignment ȳ is feasible if every train receives the
required platform, as we will show more formally in the sequel. We represent this feasibility
problem as a network flow problem, where the nodes are associated with the station s and
with the trains.

u1

r

u2
uT

w1 w2
wT

u3

w3

p

N(s,y)

(1,1)

……………

……………

(0,1)

(0,1)

(0,cs)

(0,1)

Er

EU

Ep

EW

Figure 2 The support network

We focus now on a given station s. To simplify the notation, we assume that every train
in T will go through s. Since both s and ȳ are fixed, we let Su(j, s, ȳ) = Su(j). Also, we
assume that trains are ordered by their arrival times in station s. So, j ∈ Su(i) implies
j > i.

Let us introduce a support graph N(s, ȳ) = ({r, p}∪U∪W,E), where U = {u1, . . . , u|T |},
W = {w1, . . . , w|T |}. Let the arc set be E = Er ∪ EU ∪ EW ∪ Ep ∪ {(p, r)}, where Er =
{(r, u) : u ∈ U}, EU = {(uj , wj) : j ∈ T}, EW = {wi ∈W,uj ∈ U, j ∈ Su(i)}, Ep = {(w, p) :
w ∈ W}. With each arc e ∈ E we associate lower bound le and upper bound fe. Namely,
le = 0 and fe = 1 for e ∈ Er ∪ EW ∪ Ep. Then le = fe = 1 for e ∈ EU and finally lpr = 0,
fpr = cs.

We have the following

I Theorem 2. [11] The assignment ȳ is feasible w.r.t. the station capacity constraints if
and only if, for every s ∈ S, the graph N(s, ȳ) has a circulation satisfying all lower and
upper bounds.

The proof is based on Hoffman’s circulation theorem and can be found in [11].

The above result can be used to model the station capacity constraint into our MILP
program. To this end, we introduce two binary variables xij

s , x
ji
s for all stations s ∈ S and

all train pairs {i, j} ∈ K, with the interpretation that xlm
s = 1 if and only if m ∈ Su(l, s, y).

Observe that x can be easily obtained from y by an affine transformation. For example,
consider two trains i and j, with i < j, and assume that i and j travel in opposite directions,
with i running from station 1 to station n and j from station n to station 1. If i and j meet
in station 1 ≤ s ≤ n, then i precedes j in all stations before s and j precedes i in all stations
after s. Thus, xij

s = 1−
∑s

z=1 y
ij
s and xji

s = 1−
∑n

z=s y
ij
s . Remark that xij

s + xji
s = 1− yij

s .
The case of trains running in the same direction is analogous.

Next, we need to represent, for each station s ∈ S, the network flow problem discussed
above on the graph N(s, y). This can be done by considering an extended flow network
N̄ obtained from N by letting EW = {(wi, uj) : i ∈ T, j ∈ T}, leaving all other arc sets

C. Mannino 13

unchanged. So, EW contains all possible arcs from W to U . Observe that N̄ is independent
of x. However, to prevent sending flow on "forbidden" arcs, we will fix the upper capacity
to 0 whenever j /∈ Su(i, s, y) (this in turn depends on x).

Next, we introduce a flow variable ze
s for every arc of N̄ . Then we write the flow

conservation constraints at the nodes of N̄ and lower and upper bounds on the flow variables
ze

s . In particular, lower and upper bounds are defined as for N(s, y) except than for the arcs
in EW . For such arcs we simply let zwiuj

s ≤ xij
s . In this way, the arc (wi, uj) can carry one

unit of flow only if xij
s = 1, that is if j ∈ Su(i, s, y).

3.2 Preliminary implementations and comparisons
The current implementation of the optimization algorithm is rather basic and much can (and
will) be done to make it more efficient. In the current version, e.g., the violated constraints of
the non-compact formulation are generated only when 0,1 solutions are found by the solver
(CPLEX 12.2) (the separation is done by looking at maximal cliques in interval graphs).
The CPLEX default parameters setting is used, and so, for example, no particular branching
scheme is implemented. Nevertheless, both approaches are able to solve real-life instances
corresponding to a 14-hour time window on the Trento-Bassano line, with 30 trains and 23
stations. The non-compact formulation behaved slightly better, namely it took 5.30 sec.
of computing time against 7.35 sec for the compact formulation (with an Intel Core i7 870
2.93GHz under Red Hat Enterprise Linux Client release 5.7). Keep in mind that these results
are obtained by running a very preliminary implementation. Nevertheless, they prove that,
at least for a line of the size of the Trento-Bassano, the (s-RTC) problem can be solved to
optimality within the time required by the application.

References
1 Ahuja, R.K., D.S. Hochbaum, J.B. Orlin, A cut-based algorithm for the nonlinear dual of

the minimum cost network flow problem, Algorithmica 39 (2004) pp. 189–208.
2 Balas, E., Machine sequencing via disjunctive graphs, Operations Research 17 (1969) pp.

941–957.
3 A. Caprara A., L. Galli, P. Toth. Solution of the Train Platforming Problem, Transportation

Science, 45 (2), pp 246-257, 2011.
4 A. Caprara, L. Kroon, M. Monaci, M. Peeters, P. Toth, “Passenger Railway Optimization”,

in C. Barnhart, G. Laporte (eds.), Transportation, Handbooks in Operations Research and
Management Science 14, Elsevier (2007) 129–187.

5 Corman F., Rail-time railway traffic management: dispatching in complex, large and busy
railway networks, Ph.D. Thesis, TRAIL Thesis Seriess T2010/14, the Netherlands TRAIL
Research School.

6 Dyer., M., L. Wolsey, Formulating the single machine sequencing problem with release dates
as a mixed integer program, Discrete Applied Mathematics, no. 26 (2-3), pp. 255-270, 1990.

7 Goldberg, A.V., R. Tarjan, Finding minimum cost circulation by successive approximation,
Math. of Op. Res., 15, pp. 430-466, 1990.

8 L. Kroon, D. Huisman, E. Abbink, P.-J. Fioole, M. Fischetti, G. Maroti, A. Schrijver, A.
Steenbeek, R. Ybema, The New Dutch Timetable: The O.R. Revolution, Interfaces 39 (1),
pp. 6-17, 2009

9 Mascis A., Optimization and simulation models applied to railway traffic. Ph.D. thesis,
University of Rome “La Sapienza", Italy, 1997. (In Italian).

10 C. Mannino, A. Mascis, Real-time Traffic Control in Metro Stations, Operations Research,
57 (4), pp 1026-1039, 2009

ATMOS’11

14 Real-Time Traffic Control in Mass Transit and Railway Transport

11 C. Mannino, T. Nygreen Compact VS non-compact MILP formulations for Railway Traffic
Control in Single-track lines, working paper, University of Oslo, 2011

12 Mascis A., D. Pacciarelli, Job shop scheduling with blocking and no-wait constraints,
European Journal of Operational Research, 143 (3), pp. 498–517, 2002.

13 M. Montigel, em Semi-Automatic Train Traffic Control in the New Swiss Lötschberg Base
Tunnel, IRSA-Apect 2006, www.systransis.ch/fileadmin/2006_Paper_MM.pdf

14 T. Nygreen Real-time Railway Traffic Control in Single-track lines, master Thesis, Univer-
sity of Oslo, in preparation (October 2011)

A Bilevel Rescheduling Framework for Optimal
Inter-Area Train Coordination ∗

Francesco Corman1, Andrea D’Ariano, Dario Pacciarelli2, and
Marco Pranzo3

1 Centre for Industrial Management, Katholieke Universiteit Leuven
Celestijnenlaan 300A, 3001 Heverlee, Belgium
francesco.corman@cib.kuleuven.be

2 Dipartimento di Informatica e Automazione, Università degli Studi Roma Tre
via della Vasca Navale 79, 00146 Roma, Italy
a.dariano@dia.uniroma3.it, pacciarelli@dia.uniroma3.it

3 Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Siena
via Roma 56, 53100 Siena, Italy
pranzo@dii.unisi.it

Abstract
Railway dispatchers reschedule trains in real-time in order to limit the propagation of disturbances
and to regulate traffic in their respective dispatching areas by minimizing the deviation from
the off-line timetable. However, the decisions taken in one area may influence the quality and
even the feasibility of train schedules in the other areas. Regional control centers coordinate
the dispatchers’ work for multiple areas in order to regulate traffic at the global level and to
avoid situations of global infeasibility. Differently from the dispatcher problem, the coordination
activity of regional control centers is still underinvestigated, even if this activity is a key factor
for effective traffic management.

This paper studies the problem of coordinating several dispatchers with the objective of driv-
ing their behavior towards globally optimal solutions. With our model, a coordinator may impose
constraints at the border of each dispatching area. Each dispatcher must then schedule trains in
its area by producing a locally feasible solution compliant with the border constraints imposed
by the coordinator. The problem faced by the coordinator is therefore a bilevel programming
problem in which the variables controlled by the coordinator are the border constraints. We
demonstrate that the coordinator problem can be solved to optimality with a branch and bound
procedure. The coordination algorithm has been tested on a large real railway network in the
Netherlands with busy traffic conditions. Our experimental results show that a proven optimal
solution is frequently found for various network divisions within computation times compatible
with real-time operations.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems; G.1.6 Optim-
ization; I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases Train Delay Minimization, Schedule Coordination, Bilevel Programming

Digital Object Identifier 10.4230/OASIcs.ATMOS.2011.15

∗ This work is partially supported by the Italian Ministry of Research, Grant number RBIP06BZW8,
project FIRB “Advanced tracking system in intermodal freight transportation”.

© Francesco Corman, Andrea D’Ariano, Dario Pacciarelli and Marco Pranzo;
licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 15–26

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.15
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

16 A Bilevel Rescheduling Framework for Optimal Inter-Area Train Coordination

1 Introduction

This paper deals with a multi-area train scheduling problem faced by traffic controllers at
regional railway control centers. Typically, the real-time traffic control at the national level
is organized into a set of regional traffic control centers each coordinating several dispatchers.
For instance, the Dutch network is subdivided into a national center in Utrecht, four regional
centers (Amsterdam, Eindhoven, Rotterdam and Zwolle) and more than sixty dispatching
areas.

The real-time traffic management of each regional area is hierarchically organized into two
decision levels. At the lower level, dispatchers control local areas with knowledge of the traffic
flow limited to their respective areas. When train operations are perturbed, each dispatcher
regulates traffic by minimizing the deviation from the off-line scheduled timetable and by
computing a locally feasible schedule in his/her dispatching area. However, the decisions
taken locally may influence the quality and even the feasibility of the train schedules of
other areas. At the higher level, the coordinator is responsible for the traffic management
over a railway network of k areas with a global overview of the traffic flow and controls the
rescheduling decisions taken by the k dispatchers (see Figure 1). The coordinator goals are to
ensure the global feasibility of train schedules (i.e., the union of all locally feasible schedules
must be feasible) and to pursue the overall quality of the local solutions at the regional level.
To reach these goals, the coordinator may impose constraints to the local solutions provided
by the dispatchers.

Dispatcher of
area 1

Train schedule
constraints

Regional coordinator

Dispatcher of
area k..…

Local
decisions
of area 1

Local
decisions
of area k

Figure 1 Interaction between coordinator and dispatchers.

Due to the complexity of the overall train rescheduling problem, decision support systems
(DSSs) are needed to help dispatchers and coordinators to manage railway traffic under this
two-level hierarchy. As far as the dispatcher problem is concerned, many DSSs are described
in the literature, based on exact and heuristic solution procedures. Recent surveys on models
and algorithms for the dispatcher problem can be found in Ahuja et al. (2005), D’Ariano
(2010) and Lusby et al. (2011). Most of the approaches are based on a macroscopic view
of the network, in which a line between two stations is aggregated into a single resource.
However, the recent trend is to increase the level of detail in the optimization models in order
to ensure that a feasible model solution can also be implemented in practice. In the recent
literature on microscopic models, the train scheduling problem is formulated as a job shop
scheduling problem with additional constraints (see e.g. D’Ariano et al., 2007 and Mannino
and Mascis, 2009).

Differently from the dispatcher problem, the coordinator problem at the regional control
centers has not received much attention in the literature on multi-area train scheduling,

F. Corman, A. D’Ariano, D. Pacciarelli and M. Pranzo 17

although poor coordination between areas may result in poor overall performance, with a
risk of inter-area deadlocks. The few papers existing on the coordinator problem mainly
focus on certifying the global feasibility of the local solutions or detecting global infeasibility
and suggesting possible coordination actions for recovery (Mazzarello and Ottaviani (2007),
Strotmann (2007) and Corman et al. (2011)). A number of important open problems remain
for both academic researchers and practitioners, such as the optimization of coordinator
performance and the definition of general methods to find globally feasible schedules when
infeasibility is detected.

A stream of research on methodologies for railway traffic regulation and coordination
of local areas started with the European project COMBINE 2 (Pacciarelli, 2003). Train
movements in the local dispatching areas are modeled by an alternative graph formulation
(Mascis and Pacciarelli, 2002), while a higher level of control considers aggregate information
about the local solvers. The implementation of these methodologies are reported in Mazzarello
and Ottaviani (2007) for two test cases of the Dutch railway network, and a practical pilot is
also described for one of the two test cases.

In Strotmann (2007), a two-level approach for rescheduling trains between multiple areas
is considered. At the lower level local solutions are computed in each area by greedy heuristic
scheduling procedures while, at the higher level, a coordinator is used to check whether
neighboring areas have consistent solutions. The coordination procedure imposes train
ordering constraints at the borders between areas with an iterative approach until a feasible
schedule to the global problem is found or the procedure fails in finding a globally feasible
schedule.

The coordinator problem has been recently addressed by Corman et al. (2011) on a
complex and busy Dutch railway network divided into two dispatching areas. A coordination
framework is proposed to support distributed scheduling, that combines microscopic modeling
of train movements at the local level with an aggregate view of the situation at the global level.
An exact algorithm by D’Ariano et al. (2007) is used at local level to solve the dispatcher
problem in each area, while heuristic procedures are proposed to solve the coordinator
problem.

So far, to the best of our knowledge no paper addresses the problem of assessing the
performance of the coordinator. This lack of research motivates the current paper. This
work is based on the above-described framework and develops a new coordination procedure
to compute optimal solutions to the coordinator problem or at least to assess the quality of
the feasible solutions found.

With the coordination procedure developed in this paper, the coordinator exchanges
information with each dispatcher. We formally define the border between two or more
dispatching areas as a set of block sections, called border block sections, which are shared
between neighboring areas. The order of the trains traversing a border block section must
therefore be the same in the areas sharing it and in case of conflict between the dispatchers
the coordinator may impose a common order or time windows of passing times for some
trains that must be respected by all dispatchers. Each dispatcher computes a locally feasible
detailed schedule satisfying a given set of constraints at the area border, such as a partial
order of trains passing the border or a time window for the entry/exit event of each train
into/out of the area. The local solution is computed by solving a train scheduling problem
with minimization of train delays. An alternative graph formulation (Mascis and Pacciarelli,
2002) models the dispatcher problem. The blocking time theory is used to compute arc
weights (see, e.g., Hansen and Pachl (2008)) so that train movements are modeled at a
microscopic level of detail compliant with the safety system and the operating rules. The

ATMOS’11

18 A Bilevel Rescheduling Framework for Optimal Inter-Area Train Coordination

exact algorithm of D’Ariano et al. (2007) is then adopted to solve the alternative graph of
each dispatching area.

After the computation of local solutions, each dispatcher sends back to the coordinator
aggregate information on the solution found, including lower and upper bounds and a set of
time lags between every pair of entry/exit events at the area border.

The coordinator builds a border graph whose nodes are the entry/exit events at each
border block section plus two dummy nodes 0 and n that are needed to compute the objective
function. Two properties are proved: (i) The first property allows to prove global feasibility
of the union of locally feasible schedules; (ii) The second property allows to prove global
optimality of the union of locally feasible schedules, for a given set of coordination constraints.

Properties (i) and (ii) of the coordinator problem enable the development of a branch
and bound procedure through which the coordinator can guide the search towards a globally
optimal solution. The idea is to define a list of alternative sets of coordination constraints
whose union covers all coordination actions, each associated with a coordinator graph used to
model implications of the constraints set and to compute a lower bound on the optimum. If
for a set of constraints the lower bound is equal to or greater than the current upper bound,
the set is removed from the list. Otherwise, a branch is performed by producing two new sets
of constraints and adding them to the list. The procedure is guaranteed to converge to the
global optimum if the solutions provided by the dispatchers at each step are locally optimal.
Otherwise, an optimality gap is always associated with the current best global solution.

The coordination framework is tested on a large and busy region of the Dutch network
spanning ten dispatching areas. Experimental results show that a near-optimal global solution
is found within the tight time windows required for real-time traffic control. The branch and
bound algorithm for the coordinator problem is also compared with the heuristic proposed by
Corman et al. (2011) and with the centralized approach described in D’Ariano et al. (2007).

2 Mathematical formulation

Following the two-level hierarchy of Vicente and Calamai (1994), in our formulation the
coordinator is the leader of a bilevel program and the dispatchers are the followers. This
hierarchy is adopted also in railway practice, as described in Section 1. We next describe the
models adopted for the problems faced by dispatchers and coordinators. Both problems are
formulated with alternative graphs (Mascis and Pacciarelli, 2002).

The alternative graph is a triple G = (N,F,A), where N = {0, 1, . . . , n} is a set of nodes,
F is a set of directed arcs (fixed) and A is a set of pairs of directed arcs (alternative). The
nodes are associated with events, such as the start or completion of the schedule (nodes 0/n)
or the start of an operation (nodes 1, . . . , n− 1). Each arc (i, j) is either fixed or alternative
and has an associated weight wij . The set A contains pairs of alternative arcs, which model
the sequencing decisions of the problem. If ((k, j), (h, i)) ∈ A, arc (k, j) is the alternative
to arc (h, i). We call ti the start time associated with event i. A selection S is a set of
alternative arcs, at most one arc from each alternative pair. A selection, in which exactly one
arc is chosen from each pair in A, is a feasible schedule (or a solution) if the graph (N,F ∪S)
has no cycles with positive weight (Mascis and Pacciarelli, 2002).

Given a solution S, lS(i, j) denotes the weight of a longest path from i to j in (N,F ∪ S).
A feasible timing ti for operation i is then ti = lS(0, i). Note that t0 is a constant equal to 0.
A feasible schedule is an optimal solution if lS(0, n) is minimum over all the feasible schedules.

F. Corman, A. D’Ariano, D. Pacciarelli and M. Pranzo 19

The general alternative graph formulation can be viewed as the following disjunctive program:

min tn − t0
s.t.

tj − ti ≥ wij (i, j) ∈ F
(tj − tk ≥ wkj) ∨ (ti − th ≥ whi) ((k, j), (h, i)) ∈ A

In the alternative graph formulation of the dispatcher problem (dispatcher graph), each
operation represents the event that a train enters a block section or a platform. Variable ti,
for i = 1, . . . , n − 1, is used to model the start time of operation i, i.e., the entrance time
of the train to the associated block section or platform. A train route corresponds to a
job, i.e., a sequence of operations. Fixed constraints in F must be satisfied by any feasible
timing for each train on its specific route. For each operation i, let σ(i) be the operation
which follows i on the route of the associated train. In a solution, the precedence relation
tσ(i) ≥ ti + wiσ(i) must hold, where wiσ(i) > 0 is the minimum running time for operation
i. Fixed constraints are also used to model time windows of <earliest, latest> entrance
times for the trains running in the dispatching area. The earliest entrance time (release) is
represented by a fixed arc from node 0 to the first node of the corresponding job, while the
latest entrance time (deadline) is a fixed arc from the first node of the job to node 0 with
negative weight. Additional fixed constraints can also model train delays and other railway
constraints, as shown in D’Ariano et al. (2007), D’Ariano (2010), D’Ariano et al. (2008),
Corman et al. (2009) and Corman et al. (2010).

Alternative pairs in A model the train sequencing decisions. For each pair i and j of
operations associated with the entrance of two trains to the same block section, we define
k = σ(i), h = σ(j) and introduce the disjunction (tj − tσ(i) ≥ wσ(i)j) ∨ (ti − tσ(j) ≥ wσ(j)i),
where wσ(i)j > 0 and wσ(j)i > 0 are minimum setup times. With this constraint, the follower
train can enter the block section only after that the feeder train enters the next block section
plus the setup time. The choice of one of the two arcs corresponds to choosing the train
sequence on the associated block section.

A train schedule in the dispatcher graph specifies a value for the start time of each
operation. The schedule is feasible (deadlock-free and conflict-free) if it satisfies all constraints
belonging to the set F and exactly one constraint for each alternative pair belonging to
the set A. The objective function is the minimization of the maximum consecutive delay
of all trains at a set of relevant points, i.e., the scheduled stops and the exit points of the
dispatching area. This objective function corresponds to the quantity tn − t0 by associating
suitable weights with the arcs ending at node n, as in D’Ariano et al. (2008).

2.1 Global feasibility
Let us consider a region divided into k dispatching areas, let Gx = (Nx, F x, Ax) be the
alternative graph associated to dispatching area x = 1, . . . , k, let Sx be a locally feasible
schedule for area x and let S =

⋃k
x=1 S

x be the union of the k selections.
In principle, the feasibility of the global solution S can be checked by building a global

alternative graph G = (∪xNx,∪xF x,∪xAx) of the whole region and then selecting the arcs
for each dispatching area according to the dispatcher decisions. If there are no positive weight
cycles in G(S) the local solutions are globally feasible. However, a drawback of G is its size
that increases linearly with the number of block sections and quadratically with the number
of trains in the network.

In order to reduce the amount of data managed by the coordinator, let us define a set of
border nodes NB composed of the dummy nodes 0 and n and of all the nodes associated with

ATMOS’11

20 A Bilevel Rescheduling Framework for Optimal Inter-Area Train Coordination

the entrance of a train into a border block section and to the entrance in the subsequent
block section (which corresponds to the exit of the train from a border block section), for all
the k dispatching areas. Given a locally feasible selection Sx, its graph compression of Gx(Sx)
is obtained by contracting all the nodes in Nx \ NB and then deleting all the redundant
arcs. By construction, there is an arc (i, j) in the graph compression if and only if there is a
directed path from i to j in Gx(Sx), and (i, j) is weighted with lSx(i, j).

A border graph BG(S) is defined as follows. The set of nodes is composed of the set
of border nodes NB. The set of arcs is obtained by the graph compression of Gx(Sx) for
each dispatching area x = 1, . . . , k, i.e., there is an arc (i, j) with weight wij in BG(S) if the
weight of the longest path from i to j in Gx(Sx) is wij <∞, for some x = 1, . . . , k. Clearly,
redundant arcs in BG(S) can be deleted. The following property holds.
I Theorem 2.1 (Feasibility property). Consider a global area composed of k local areas.
Given a locally feasible schedule Sx for each dispatching area, S =

⋃k
x=1 S

x is a globally
feasible selection if and only if the border graph BG(S) has no positive weight cycles.
I Corollary 2.2 (Global objective function). Consider a global area composed of k local
areas and a locally feasible schedule Sx for each dispatching area x = 1, . . . , k. If the
associated border graph contains no positive weight cycles, the weight of the longest path
from 0 to n in the border graph is the maximum consecutive delay of the corresponding
globally feasible schedule S =

⋃k
x=1 S

x.

2.2 Global optimality
The coordinator problem consists of defining the set of border constraints ϕ to impose on k
dispatchers x = 1, . . . , k at the border of their areas in such a way that the k locally feasible
schedules Sx(ϕ) are globally feasible and the maximum consecutive delay over all trains and
the whole network is minimized. Specifically, ϕ includes constraints of two types:

(i) time windows of <earliest, latest> entrance/exit times of a train into and output of a
border block section, which must be satisfied by the dispatching solutions provided by all
the areas sharing the border block section;

(ii) a sequencing between two trains passing a border block section, which must be satisfied
in all the areas sharing the border block section.

Note that each dispatcher can schedule trains in its dispatching area independently from
the others and is only constrained to compute a solution Sx(ϕ) compliant with the border
constraints ϕ. We assume that each dispatcher pursues the minimization of maximum
consecutive delay in its dispatching area. Moreover, the coordinator may require the
following information from the dispatcher of area x:

(a) a lower bound LBx(ϕ) on the local objective function of area x for a given set of border
constraints ϕ,

(b) a lower bound on the weight of a longest path between any pair of border nodes in area
x in any locally feasible solution for a given ϕ,

(c) the objective function value UBx(Sx) of a locally feasible solution Sx of area x for a
given ϕ or, alternatively, the information that a locally feasible solution does not exist or
cannot be found within the available computation time,

(d) the graph compression of a locally feasible solution Sx(ϕ) for area x and given ϕ, i.e.,
the weights of a longest path for each pair of border nodes in area x.

Information (a) and (b) can be used to define a lower bound on the global optimum for a
given ϕ. In fact, the global objective function is the maximum consecutive delay at a set of
points in the network that includes those of any dispatching area. Thus, LBx(ϕ) is also a

F. Corman, A. D’Ariano, D. Pacciarelli and M. Pranzo 21

lower bound for the global objective function. An additional lower bound can be computed
by the coordinator by building an alternative graph, called the coordinator graph GC(ϕ). In
GC(ϕ) the set of nodes is NB , the set of fixed arcs FC is obtained with information (b) and
the set of pairs of alternative arcs AC is given by all the alternative pairs defining precedences
between each pair of trains at each border block section. Constraints of type (ii) in ϕ define
a partial selection of AC , while constraints of type (i) define release dates and deadlines
constraints for the border nodes.

The weight π(ϕ) of a longest path from 0 to n in GC(ϕ) is also a lower bound on
the global objective function. This can be computed in a fast way by means of existing
graph search algorithms. For example, the algorithm of Floyd and Warshall requires a
computing time O(NB3). We call GLB(ϕ) the global lower bound computed as GLB(ϕ) =
max{π(ϕ), LB1(ϕ), . . . , LBk(ϕ)}.

Information (d) can be used to define an upper bound on the global optimum. In fact,
from Corollary 2.2 the maximum consecutive delay GUB(S) of a globally feasible schedule
S =

⋃k
x=1 S

x(ϕ) is the weight of a longest path on the border graph built with information
(d). The following result holds.

I Proposition 2.3 (Optimality property). A globally feasible schedule S =
⋃k
x=1 S

x(ϕ) is
an optimal solution for a given set of coordination constraints ϕ if GUB(S) = GLB(ϕ).

Proposition 2.3 suggests a branch and bound strategy to find the global optimum to the
coordinator problem. Figure 2 describes the interactions between coordinator and dispatchers
at each node of the branch and bound tree. The procedure is illustrated in Section 3.

L o w e r B o u n d s o n t h e
L o n g e s t P a t h s

L o c a l L B s a n d U B s

G r a p h C o m p r e s s i o n

G U B (S)

B o r d e r A r c s S e l e c t e d

T i m e W i n d o w s

D i s p a t c h e r
G r a p h s

D i s p a t c h e r s

C o o r d i n a t o r
G r a p h

B o r d e r
G r a p h

C o o r d i n a t o r

Figure 2 Exchange of relevant data from the coordinator to the dispatchers and vice versa.

Each dispatching area is controlled by a dispatching algorithm. If no local solution is
found for an area, a local infeasibility is returned. In this case, the human dispatcher is
asked to take some dispatching actions that the dispatching algorithm is not allowed to
take, like rerouting some trains or even cancelling a scheduled service. At a global level,
the dispatching areas are checked by the coordinator using the border graph and controlled
using the coordinator graph. If no global solution is found by the coordination algorithm, a
global infeasibility is found. In this other case of infeasibility, the human regional coordinator

ATMOS’11

22 A Bilevel Rescheduling Framework for Optimal Inter-Area Train Coordination

is asked to recover the situation. This is achieved by imposing further constraints to the
coordinator and/or dispatcher graphs.

3 Branch and bound algorithm

This section describes the branch and bound algorithm to solve the coordinator problem and
describes its main components. This algorithm is based on the data exchange architecture of
Figure 2. At the root node, the dispatchers exchange information (b) of Section 2.2 with the
coordinator, that is used to implicate possible arcs in other areas and to set lower bounds
on the longest paths between border nodes, which are represented as weighted arcs in the
coordinator graph. This exchange of information continues until no value can be increased
and terminates with a coordinator graph GC(∅) that is used in the subsequent computation.

A starting global upper bound GUB is computed with the starting heuristic described in
Corman et al. (2011). The branch and bound procedure starts from the root node ϕ = ∅.
At the generic step of the procedure, the branch and bound nodes contain information ϕ on
the border constraints and are organized in an active node list L. Each element is labeled as:

α if the dispatchers find feasible local schedules with conflicting border decisions;
β if the dispatchers find feasible local schedules without conflicting border decisions;
γ if at least one dispatcher does not find a locally feasible solution within the time limit.

Labels are used to guide the order of node exploration during the search. Priority is given
to nodes labeled α, then β and finally γ. The intuition behind this choice is that good global
upper bounds can be found by first exploring the conflicting border decisions. Nodes labeled
α are explored with the FIFO (First In First Out) criterion, whereas the β and γ nodes are
visited with a LIFO (Last In First Out) criterion.

Let lC(i, j) be the longest path from i to j in the coordinator graph. When a current active
node ϕ is removed from list L, the coordinator applies the following constraint propagation
rules to GC(ϕ) in order to enlarge the selection ϕ as much as possible without branching:

If ((i, j), (h, k)) is an unselected pair of alternative arcs in GC(ϕ), representing a border
decision between areas x and y, and lC(0, h) + whk + lC(k, n) ≥ GUB, then arc (h, k) is
forbidden, and arc (i, j) is implied by ϕ;
If ((i, j), (h, k)) is an unselected pair in GC(ϕ), representing some border decision, and
lC(k, h) + whk > 0, then arc (h, k) is forbidden, and arc (i, j) is implied by ϕ.

In case it is possible to improve the current best upper bound GUB starting from ϕ,
i.e., if GC(ϕ) does not contain positive cycles and π(ϕ) <GUB, the dispatchers are asked
to solve their local problems. The dispatchers data (selected border arcs in Sx, local lower
bounds LBx(ϕ) and upper bounds UBx(Sx), longest path weights) are then sent back to
the coordinator which builds the border graph BG(S). In order to compute LBx(ϕ), the
single machine Jackson preemptive schedule described in D’Ariano et al. (2007) is used
unless the dispatcher x is able to solve the local problem to optimality, in which case
LBx(ϕ) = UBx(Sx). If the maximum local lower bound maxx{LBx(ϕ)} computed by the
dispatchers is greater than π(ϕ) the value of the global lower bound GLB(ϕ) is updated.

If BG(S) does not contain positive cycles a globally feasible schedule exists and GUB
is possibly updated. If GUB> GLB(ϕ), then ϕ may still improve GUB and a branch is
performed. The branch is performed differently for the root node with respect to the other
nodes of list L.

For all nodes in L but the root a binary branching strategy is performed as follows:

F. Corman, A. D’Ariano, D. Pacciarelli and M. Pranzo 23

1. If ϕ is labeled α, branch on an unselected alternative pair ((i, j), (h, k)) ∈ AC that was
selected in a conflicting way by the local dispatchers. Two new nodes (ϕ ∪ {(i, j)}) and
(ϕ ∪ {(h, k)}) are generated and stored in L.

2. If ϕ is labeled β or γ, branch on the time windows. Choose a time window < l, u >

such that (u− l) is minimum over all the time windows in ϕ and generate two nodes by
dividing the time window into two parts of equal size (i.e., < l, b(u+ l)/2c > in the first
node and < d(u+ l)/2e, u > for the second node). The values l, u for all time windows
are integers expressed in minutes, i.e., we consider a minimum size for the time windows
equal to 60 seconds.

The branching strategy is different at the root node only if the starting heuristic finds
a globally feasible schedule and the root node is of type α. Let us call (a1, ā1), . . . , (ap, āp)
the p pairs of alternative arcs of the coordinator graph that are selected in a conflicting
way by the local dispatchers at the root node. Without loss of generality, let us assume
that in the starting feasible schedule the first arc of each pair is selected. The procedure
stores p+ 1 nodes, labeled α, in L with the following constraints. For i = 1, . . . , p, the i-th
node is described by the constraints {a1, . . . ai−1, āi}. The (p+ 1)-th node is described by
the constraints {a1, . . . , ap}. In this way the procedure skips the intermediate nodes with
constraints {a1, . . . , ai} with i < p. The branch and bound procedure stops when L = ∅
(proven optimum) or a time limit of computation is reached (open instance).

4 Description of the test cases

The dispatcher and coordinator procedures have been tested on a large part of the railway
network in the South-East of the Netherlands. The network spans ten dispatching areas of
the Dutch railway network and includes more than 1200 block sections and station platforms.
There are four major stations with complex interlocking systems and dense traffic (Utrecht
Central, Arnhem, Den Bosch and Nijmegen), plus another 40 minor stations. The maximum
distance between borders of the network is approximately 300 km. We consider the timetable
used during operations in 2008, that is an hourly timetable cycle and schedules for local and
intercity services, plus international services from/to Germany. The hourly traffic in this
regional network is around 25% of the all rail traffic in the Netherlands.

Table 1 summarizes the dispatcher and coordinator graphs for the three network divisions
and for the centralized approach. For each delay case, we analyze 30-minute traffic predictions.
Column 1 reports the number of areas for each network division. Columns 2-5 give the
average number of trains, nodes, fixed arcs and alternative pairs of the dispatcher graphs.
Similar information is given for the coordinator graph in Columns 6-9. In the case of 1 area
the dispatcher solves the global alternative graph and there is no coordination graph.

Table 1 Alternative graphs for various network divisions.

Network Dispatcher Graph Coordinator Graph
Division Trains |N | |F | |A| Trains |NB | |F C | |AC |
1 area 99 3081 3508 3019 - - - -
3 areas 40 1055 1477 1026 21 44 124 30
5 areas 29 656 751 634 43 98 291 73
7 areas 23 477 547 456 48 118 347 86

Stochastic entrance perturbations are considered in order to study delay propagation

ATMOS’11

24 A Bilevel Rescheduling Framework for Optimal Inter-Area Train Coordination

in the overall network. For each time network division of Table 1, we generate 40 delay
instances with an average entrance delay of around 280 seconds, and a maximum entrance
delay of around 1650 seconds. In total, 40% of the trains in the hourly timetable are delayed
at their network entrance by more than 5 minutes.

5 Computational results

This subsection reports the performance of the branch and bound algorithm for the coordinator
problem for the four network divisions and for the 40 instances of 30-minute traffic prediction
of the previous section. In the case of 1 area we use the centralized approach described in
D’Ariano et al. (2007). For each instance, a globally feasible solution is always computed in
a few seconds.

The solution procedures have been implemented in C++ using a Linux Operating System
and a high performance computing cluster composed of 8 nodes, each node having 2 Dual
Core, 64 bit, AMD Opteron CPUs running at 1800 Mhz and 8 GB RAM. The nodes are
connected via a Gigabit Ethernet network. A Message Passing Interface (MPI) architecture
(Message Passing Interface Forum, 1994) is adopted in order to achieve efficient inter-process
communication and concurrent parallel execution.

Figure 3 shows the percentage of instances for which an optimal solution has been found
by the algorithms. The 5 and 7 area problem specifications obtain 95% proven optimal
solutions after 30 seconds of computation.

0
10
20
30
40
50
60
70
80
90

100

10 20 30 60 120 300 600

Comp Time (s)

%
 O

p
t

S
ol

u
ti

o
ns

 F
ou

n
d

7 areas

5 areas

3 areas

1 area

Figure 3 Percentage of optimal solutions found for different network divisions.

Regarding the solution quality, Figure 4 shows the optimality gap (UB − LB)/LB (in
percentage) of the solutions for the four network divisions. In the cases with 5 and 7 areas,
an average optimality gap smaller than 2% is achieved in the first 20 seconds of computation.

A trade-off is found between the relative complexity of the dispatcher and coordinator
problems. As the number of dispatching areas increases, the dispatcher problem is reduced
in size for each area, and is therefore easier. At the same time, the complexity of the
coordinator problem increases. After 20 seconds of computation, the approach with 5 local
areas outperforms the other approaches with smaller or larger numbers of areas. In the other
cases there is a larger optimality gap, mostly due to the larger instances to be solved by the
dispatchers, which result in larger local upper bounds and smaller local lower bounds. In

F. Corman, A. D’Ariano, D. Pacciarelli and M. Pranzo 25

0

20

40

60

80

100

120

140

10 20 30 60 120 300 600

Comp Time (s)

%
 (U

B
 -

L
B

) /
 L

B

7 areas

5 areas

3 areas

1 area

Figure 4 Optimality gap for the different network divisions.

fact, a key element of the branch and bound algorithm for the coordinator problem is that
GLB(ϕ) can be set to UBx(Sx) if the dispatcher problem of area x is solved to optimality.
When this occurs frequently, many nodes can be pruned from L thus reducing the optimality
gap.

6 Conclusions

This paper presents a novel approach to solve the problem of coordinating the task of
multiple dispatchers in presence of disturbances. The problem is formulated as a bilevel
program with the objective of minimizing delay propagation. An aggregate coordinator
graph is adopted to model coordination constraints while detailed dispatcher graphs model
the problem in each dispatching area. Mathematical properties of the proposed formulations
allow the development of a branch and bound algorithm to solve the problem. From our
computational results we find that distributed approaches are able to deliver better solutions
than a centralized approach. Good solutions are produced in a short amount of computation
time, compatible with real-time management.

A number of questions remain that require further investigation. We observed that the
network division is important to generate feasible and optimal solutions. However, further
research is needed to establish a relation between the size and shape of dispatching areas
and the effectiveness of the coordinator algorithm. We also observed that the lower bounds
can be improved significantly when some dispatcher problems are solved to optimality. This
observation suggests a new solution approach for huge instances, in which the size of a
dispatching area is artificially reduced only with the aim of obtaining larger lower bounds.
We believe that this idea has potential but we did not explore it, yet. There is also a need for
more effective starting heuristics, capable of finding feasible schedules with a large number of
areas, and effective coordination policies to drive local dispatchers towards global feasibility.

ATMOS’11

26 A Bilevel Rescheduling Framework for Optimal Inter-Area Train Coordination

References
1 R. K. Ahuja, C. B. Cunha, and G. Şahin. Network Models in Railroad Planning and

Scheduling. In H. J. Greenberg and J. C. Smith, editors, TutORials in Operations Research,
pages 54–101. 2005.

2 Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M., 2009. Evaluation of green wave
policy in real-time railway traffic management. Transportation Research, Part C, 17 (6),
607–616.

3 Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M., 2010. A tabu search algorithm for
rerouting trains during rail operations. Transportation Research, Part B, 44 (1), 175–192.

4 Corman, F., D’Ariano, A.,Pacciarelli, D., Pranzo, M., 2011. Centralized versus distributed
systems to reschedule trains in two dispatching areas. Public Transport: Planning and
Operations, 2(3), 219–247.

5 A. D’Ariano. Improving real-time train dispatching performance: Optimization models
and algorithms for re-timing, re-ordering and local re-routing, 4OR: A Quarterly Journal
of Operations Research, 8(4) 429-432, 2010.

6 A. D’Ariano, F. Corman, D. Pacciarelli, and M. Pranzo. Reordering and local rerouting
strategies to manage train traffic in real-time. Transportation Science, 42 (4):405–419, 2008.

7 A. D’Ariano, D. Pacciarelli, and M. Pranzo. A branch and bound algorithm for scheduling
trains in a railway network. European Journal of Operational Research, 183 (2):643–657,
2007.

8 I. A. Hansen and J. Pachl, editors. Railway Timetable and Traffic: Analysis, Modelling
and Simulation. Eurailpress, Hamburg, 2008.

9 R. M. Lusby, J. Larsen, M. Ehrgott, and D. Ryan. Railway track allocation: models and
methods. OR Spectrum, to appear, 2010.

10 A. Mascis and D. Pacciarelli. Job shop scheduling with blocking and no-wait constraints.
European Journal of Operational Research, 143 (3):498–517, 2002.

11 M. Mazzarello and E. Ottaviani. A traffic management system for real-time traffic optim-
isation in railways. Transportation Research, Part B, 41 (2):246–274, 2007.

12 Message Passing Interface Forum. MPI: A message passing interface standard. The Inter-
national Journal of Supercomputer Applications and High Performance Computing, 8 (3),
1994.

13 D. Pacciarelli. Deliverable D3: Traffic Regulation and Co-operation Methodologies - code
wp4ur_dv_7001_d. In project COMBINE 2 “enhanced COntrol centres for fixed and Mov-
ing Block sIgNalling systEms" Number: IST-2001-34705. 2003.

14 C. Strotmann. Railway Scheduling Problems and their decomposition. PhD thesis, Uni-
versität Osnabrück, 2007.

15 L. N. Vicente and P. H. Calamai. Bilevel and multilevel programming: a bibiliography
review. Journal of Global Optimization, 5:291–306, 1994.

The Lockmaster’s Problem
Sofie Coene1 and Frits C. R. Spieksma1

1 Research group Operations Research and Business Statistics (ORSTAT)
Katholieke Universiteit Leuven, Belgium
Sofie.Coene@econ.kuleuven.be

Abstract
Inland waterways form a natural network that is an existing, congestion free infrastructure with
capacity for more traffic. The European commission promotes the transportation of goods by
ship as it is a reliable, efficient and environmental friendly way of transport. A bottleneck for
transportation over water are the locks that manage the water level. The lockmaster’s problem
concerns the optimal strategy for operating such a lock. In the lockmaster’s problem we are given
a lock, a set of ships coming from downstream that want to go upstream, and another set of ships
coming from upstream that want to go downstream. We are given the arrival times of the ships
and a constant lockage time; the goal is to minimize total waiting time of the ships. In this
paper a dynamic programming algorithm (DP) is proposed that solves the lockmaster’s problem
in polynomial time. We extend this DP to different generalizations that consider weights, water
usage, capacity, and (a fixed number of) multiple chambers. Finally, we prove that the problem
becomes strongly NP-hard when the number of chambers is part of the input.

1998 ACM Subject Classification F.4.1 Computability Theory

Keywords and phrases Lock Scheduling, Batch Scheduling, Dynamic Programming, Complexity

Digital Object Identifier 10.4230/OASIcs.ATMOS.2011.27

1 Introduction

Transportation of goods by ship, over sea as well as over waterways, is a promising alternative
for transport over land. Reasons are its reliability, its efficiency (a ship of 1200 tons can
transport as much as 40 train couches and 60 trucks), and its environmental friendliness.
Here, we focus on transport by inland ships over waterways. The European Commission
promotes the better use of inland waterways in order to relieve heavy congested transport
corridors. Carriage of goods by inland waterways is a mode of transport which can make
a significant contribution to sustainable mobility in Europe [6, 1]. Not only is its energy
consumption per km/ton of transported goods approximately 17% of that of road transport
and 50% of rail transport, it also has a high degree of safety and its noise and gas emissions
are modest. This natural network is the only existing infrastructure that is congestion free
and has capacity for more traffic [8]. Typically, these waterways are interrupted by locks such
that higher water levels can be maintained and such that larger and heavier ships are able to
use it. These locks are a bottleneck for transportation over water and hence, operating locks
wisely contributes to the popularity of transportation over water. However, the algorithmic
problem how to operate a lock has not been studied broadly in the scientific literature. We
aim to fill this gap. We now continue with the description of a very basic situation that
will act as our core problem: the lockmaster’s problem. Later, we will discuss extensions to
more realistic settings. Consider a lock consisting of a single chamber. Ships coming from
upstream, wanting to go downstream, arrive at the lock at given times ri, i = 1, . . . , n1 with
r1 ≤ r2 ≤ . . . ≤ rn1 . Other ships, coming from downstream, wanting to go upstream, arrive

© Sofie Coene and Frits C. R. Spieksma;
licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 27–37

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.27
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

28 The Lockmaster’s Problem

at the lock at given times si, i = 1, . . . , n2 with s1 ≤ s2 ≤ . . . ≤ sn2 . Let n = n1 + n2, and
let T denote the lockage duration, this is the time between closing the lock for entering
ships, and opening the lock so that ships can leave. We assume that all data are integral.
Our goal is to find a feasible lock-strategy that minimizes total waiting time of all ships.
In other words, we need to determine at which moments in time the lock should start to
go up (meaning at which moments in time ships that are downstream are lifted), and at
which moments in time the lock should start to go down (meaning at which moments in
time ships that are up are being lowered). Clearly, for such a strategy to be feasible, (i)
going-up moments and going-down moments (referred to as moments) should alternate, and
(ii) consecutive moments should be at least T time-units apart. It is clear that this particular
problem is a simplified version of reality; we will, however, add capacity restrictions and
other extensions in Section 4.

2 Literature

Literature on lock scheduling problems is rather limited. Some recent papers deal with the
optimal sequencing for locking ships when a queue emerges due to some lock malfunction
or accident. Nauss [13] determines an optimal sequence in the presence of setup times and
non-uniform lockage processing times. Smith et al. [15] perform a simulation study on the
impact of alternative decision rules and infrastructures improvement on traffic congestion
in a section of the Upper Mississippi River. Ting and Schonfeld [16] study several control
alternatives, such as sequencing, in order to improve lock service quality. They use heuristic
methods. Verstichel and Vanden Berghe [17] mention the increasing occupation of logistic
infrastructure in ports and waterways. They develop (meta)heuristics for a lock scheduling
problem where a lock has at least one chamber, but often consists of multiple parallel
chambers of different dimensions and lockage times. They deal with capacity restrictions in
the sense that ships have sizes and the lock area is restricted, making this problem at least
as hard as a bin packing problem. None of these papers study the lockmaster’s problem.

The lockmaster’s problem is closely related to a batch scheduling problem. Batch
scheduling involves a machine that can process multiple jobs simultaneously. As far as we are
aware, this connection has not been observed so far. Suppose that, in our problem, we only
have downstream going ships. Then, the lock can be seen as a batching machine and the jobs
are the arriving ships with release dates and equal processing times (i.e. the lockage time T).
Following the notation of Baptiste [2] this is problem 1|p− batch, b = n, ri, pi = p|

∑
wiFi. In

words: we have a single parallel batching machine with unrestricted capacity (b = n), release
dates on the jobs, and uniform processing times. The objective is to minimize the sum of
weighted flow times, however, in the basic lockmaster’s problem there are only unit weights.
Baptiste [2] shows that this problem is polynomially solvable for a variety of objective
functions. Cheng et al. [5] developed an O(n3) algorithm for 1|p− batch, b = n, ri, pi = p|f
where f can be any regular objective function. Condotta et al. [7] show that feasibility of the
same problem with deadlines can be checked in O(n2). Clearly, the lockmaster’s problem is
more general. Indeed, when there are upstream going and downstream going ships, we are
dealing with two families of jobs, and only jobs of the same family can be together in a batch.
Further, in our case, processing a batch of one family needs to be alternated by processing a
(possibly empty) batch containing jobs of the other family; i.e. it is not possible to process two
batches of the same family consecutively. The concept of a “family" of jobs is also described
by Webster and Baker [18], however not in combination with a batch processing machine. In
their paper, Webster and Baker deal with a scheduling problem where scheduling jobs of

S. Coene and F. C. R. Spieksma 29

the same family consecutively reduces setup times. In our problem, dealing with jobs of the
same family consecutively, i.e. in one batch, reduces the total batching time. This type of
problem is also known under the name of batch scheduling with job compatibilities. Jobs
within a batch need to be pairwise compatible, and these compatibilities can be expressed
using a compatibility graph. Boudhar [3] and Finke et al. [9] study different variants of
these batch scheduling problems when the compatibility graph is bipartite or an interval
graph. In our case the compatibility graph is the union of two cliques. Our problem can be
summarized as being 1|p− batch, b = n, ri, pi = p,Φ = 2, sfg|

∑
Fi, with sfg = 2T if f = g

and sfg = T if f 6= g, where Φ refers to the number of families and sfg to the setup times
between batches; we will refer to our problem as the lockmaster’s problem. For a review on
scheduling a batching machine we refer the reader to Potts and Kovalyov [14] and Brucker et
al. [4]. Lee et al. [12] develop dynamic programming algorithms for scheduling a batching
machine with release dates, deadlines, and constant processing times when the goal is to
minimize makespan or minimize the number of tardy jobs. In conclusion, this literature
study reveals that the complexity of our lockmaster’s problem does not follow from results
in literature. Further, we consider the lockmaster’s problem with multiple parallel chambers.
Again, when considering the uni-directional case, the problem is related to parallel batch
scheduling problems. Condotta el al. [7] have developed a polynomial time algorithm in case
of parallel batching machines and deadlines where the objective is minimizing the maximum
lateness.

2.1 Our results
We show that
(1) there is an O(n6) algorithm for the lockmaster’s problem (see Section 3);
(2) this algorithm can be extended to deal with regular objective functions (4.1), non-uniform
lockage times (4.2), settings with a limited number of times that there can be locked (4.3),
capacities (4.4), and with a constant number of parallel chambers (4.5);
(3) if the number of parallel chambers is part of the input, the problem becomes strongly
NP-hard (Section 5).

3 A DP for the lockmaster’s problem

When is a lock likely to start going up or down? Either upon arrival of a ship or immediately
upon arrival of the lock. This suggests that the number of moments the lock starts moving
is limited. Garey et al. [11] and recently Condotta et al. [7] use the concept of “forbidden
regions" in the presence of deadlines to define periods of time in which no job/batch can
start in a feasible schedule. Given that there are no deadlines, the same concept can be used
to define periods of time in which no batch can start in an optimal schedule. We introduce
a set of moments U at which it is possible to go up. These upmoments are referred to as
ui. Similarly, we introduce a set of moments at which it is possible to go down, the set D.
These downmoments are referred to as di. Let us define set S = {si}, set R = {rj} and
Θ = {0, 2T, 4T, . . . , 4nT}; further in the text it will be shown why this set is limited to 4nT .
We use the Minkowski-sum to sum two sets, i.e. the sum of two sets A = {ai} and B = {bj}
as follows:

A+B = {ai + bj |ai ∈ A, bj ∈ B}.

Then, bearing this definition in mind, here is a proposal for U and for D:

U = (S + Θ) ∪ (R+ Θ + {T}),

ATMOS’11

30 The Lockmaster’s Problem

D = (R+ Θ) ∪ (S + Θ + {T}).

For example, suppose we have two ships traveling downstream and two ships traveling
upstream with R = {1, 7} and S = {2, 4} and T = 5. Then,
U = {2, 4, 6, 12, 14, 16, 22, 24, 26, . . . , 162, 164, 166} and
D = {1, 7, 9, 11, 17, 19, 21, 27, 29, . . . , 161, 167, 169}.

We will come back to the cardinality of U and D.

I Lemma 1. There is an optimal lock strategy for the lockmaster’s problem whose upmoments
are contained in U , and whose downmoments are contained in D.

Proof. Contradiction. Suppose there is an instance such that each optimal strategy has
either an upmoment not in U or a downmoment not in D (such a moment is called a failure).
Consider an optimal strategy for this instance for which its earliest failure is minimal, say at
time t. Let us assume for convenience that at time t, the lock went up. Notice that t cannot
be equal to an si. Consider that moment in time t. Let ε > 0 be a very small quantity. There
are two possibilities:
(i) at t − ε the lock was waiting to go up. If, in our optimal strategy, there are ships

transported up at time t, it cannot have been optimal to wait until t, since no downstream
ships arrive at time t (since t is not in S). Hence, there are no ships transported. But
then, we need not have waited, and there is an optimal strategy that immediately went
up after the last time before t we went down.

(ii) at t− ε the lock was going down. Thus, at t− T , the lock started a down-operation. This
moment in time is, by assumption, in D. But then it follows that t is in U . Contradiction.

J

Now, let us further analyze U and D.

I Lemma 2. When, for a given instance for the lockmaster’s problem, during a time period
equal to 4T no ships arrive at the lock, the instance can be divided into two instances. The
solution can then be found by solving these two smaller instances.

Proof. We observe that if during a period of time of length 4T nothing happens (meaning
that there are no ship arrivals), the instance can be subdivided into two instances. Indeed,
suppose the final arriving ship in the instance is an upstream going ship with arrival time sp
(the same analysis can be done when the final ship arriving is going downstream). The latest
possible optimal lockage time for this ship is sp + 2T − ε, with ε > 0 and small. Suppose
that this ship is locked at time t ≥ sp + 2T . Since it was the final ship arriving, it would
have been better to lock the ship at time t− 2kT with k an integer such that t− 2kT is in
[sp, sp + 2T). If this ship is locked at time sp + 2T − ε, then the lock is at upstream level at
sp + 3T − ε and again at downstream level at sp + 4T − ε. This means that, when no ship
arrives in a time interval of 4T , the instance can be split into two separate instances. J

From now on we assume (without loss of generality, due to lemma 2) that each instance of
the lockmaster’s problem has the property that a ship arrives during any 4T interval. This
allows us to bound the cardinality of U ∪D. For each period of time of length 4T , we have
at least one arrival. In a 4T interval there can be at most O(n) elements in U ∪D by the
construction of the sets. Partition the time-axis into consecutive 4T intervals: there can be
at most n of them (since each needs to contain at least one arrival). Thus, there are at most
O(n2) elements in U ∪D.

S. Coene and F. C. R. Spieksma 31

We now define a dynamic programming algorithm (DP) where f(ui, dj) (with ui ≤ dj−T)
represents the minimal costs of a lockage strategy that takes care of all up-requests up to
ui, all down-requests up to dj , which features an upmoment at time t = ui, which features
a downmoment at time t = dj , and such that there are no other up- or downmoments in
between ui and dj .

Here is a recursion. For each ui ∈ U , dj ∈ D, with ui ≤ dj − T we have:

f(ui, dj) = min
dj′≤ui−T
ui′≤dj′−T

{f(ui′ , dj′) +
∑

`:s`∈(ui′ ,ui]

(ui − s`) +
∑

k:rk∈(dj′ ,dj]

(dj − rk)};

for all ui > dj − T we set:

f(ui, dj) =∞.

The recursion is initialized as follows:

f(u1, u1 + T) = 0.

For this recursion to work we set u1 = min{s1, r1 − T}. The optimal value is given
by min{f(ui, dj)|ui ≥ sn2 , dj ≥ rn1 , ui ∈ U, dj ∈ D}. A straightforward way to determine
the complexity of DP is to observe that there are O(n4) states and since for each state
we enumerate over all other states, we arrive at an O(n8) algorithm. To improve the time
complexity of DP, we observe the following.
I Observation. If dj ∈ D \R, then the previous upmoment was dj − T .
Indeed, notice that if the lock goes down at a moment in time (say t) that is not an arrival
moment in R, then the previous upmoment was at t− T . If the lock went up earlier than
t− T , then there is an optimal solution in which the next downmoment is earlier than t; as
no ship is arriving at t, there is no need to wait for t.

I Theorem 3. DP is a polynomial-time algorithm for the lockmaster’s problem.

Proof. Correctness follows from lemma’s 1 and 2 and the following. We argue that the
observation above implies that it is sufficient for DP to consider O(n3) states. Indeed, there
are O(n2) states with dj ∈ D \ R, and O(n3) states with dj ∈ R. The latter fact follows
from the insight that |R| = O(n) (combined with the fact that U and D have cardinality
O(n2)). Computing each state can be done by evaluating O(n3) states, leading to a total
time complexity for this algorithm equal to O(n6). J

4 Extensions

4.1 Regular objective functions
For the analysis above we chose as an objective to minimize the sum of the waiting times,
which is a very natural objective function for this problem. The algorithm, however, works
for any regular, i.e. non-decreasing in (waiting) time, objective function. Such a function can
be for instance minimizing the weighted sum of waiting times or minimizing the maximum
waiting time. Indeed, in the recursion, a cost of a state can be computed by taking the cost of
a previous state and adding the extra cost incurred. These are cost-functions non-decreasing
in t and it is clear how the extra cost can be calculated, independent of the value of the
previous state. Let us consider, for example, the weighted lockmaster’s problem. In practice,
it happens that not all ships are of equal importance, e.g. it is conceivable that the waiting

ATMOS’11

32 The Lockmaster’s Problem

cost for ships transporting goods is higher than the waiting cost of leisure ships or ships
transporting dangerous goods get priority over normal cargo ships. This can be dealt with
by assigning weights to the ships revealing their priority. Taking into account weights w for
the ships in the DP recursion can be done straightforwardly as follows:

f(ui, dj) = min
dj′≤ui−T
ui′≤dj′−T

{f(ui′ , dj′) +
∑

`:s`∈(ui′ ,ui]

w`(ui − s`) +
∑

k:rk∈(dj′ ,dj]

wk(dj − rk)}.

Initialization and determination of the optimal value are identical to the basic DP in the
previous section.

4.2 Non-uniform lockage times
It is not uncommon that lockage times for going up (Tu) and down (Td) are not equal. Then,
for ui ∈ U and dj ∈ D:

f(ui, dj) = min
dj′≤ui−Td

ui′≤dj′−Tu

{f(ui′ , dj′) +
∑

`:s`∈(ui′ ,ui]

(ui − s`) +
∑

k:rk∈(dj′ ,dj]

(dj − rk)}

where Θ, U and D are now:

Θ = {0, Td + Tu, 2(Td + Tu), 3(Td + Tu), . . . , n(2Td + 2Tn)},

U = (S + Θ) ∪ (R+ {Td}+ Θ),

D = (R+ Θ) ∪ (S + {Tu}+ Θ).

It is not difficult to verify that all results from Section 3 apply to this setting. Also,
initialization and the optimal solution are determined equivalently to the basic DP.

4.3 Water usage
Due to organizational/environmental reasons, there could be a limit on the number of times
there can be locked. In this situation, Lemma 2 no longer holds. Indeed, splitting an instance,
would also mean dividing the number of allowed lockage times over the two instances and
it is not straightforward how this should be done. The cardinality of U and D needs to be
reconsidered. Let us define alternative sets U ′ and D′ as follows. For all pairs of consecutive
ships (t, t′) with mt′ −mt ≥ 4T and mt,mt′ ∈ S ∪ R, let U ′ = U\{ui|ui ∈ [mt + 4T,mt′)}
and D′ = D\{dj |dj ∈ [mt + 4T,mt′)}.

I Lemma 4. All optimal up and downmoments are in U ′ and D′ respectively.

Proof. From Lemma 1 we know that all optimal up- and downmoments are contained in
U and D. Suppose a ship arrives at time mt and during a time period of 4T after that no
other ships arrive. Suppose further, without loss in generality, that the ship arriving at mt is
an upward going ship. Then, following the same argument as in the proof of Lemma 2, all ui
and dj later than mt + 4T and earlier than mt′ , the first arrival after mt, will not be part of
an optimal solution and can be deleted from the sets U and D. J

S. Coene and F. C. R. Spieksma 33

What is now the cardinality of U ′ and D′? When, in an instance, there is no gap of 4T , it
holds that every 4T interval at least one ship arrives, and there are at most n such intervals,
yielding size O(n2). When there are x such gaps, cardinality is x times O(n2), with x ≤ n,
yielding size O(n3).
In a dynamic programming recursion for this problem (DPw), an entry is needed to keep
track of the number of times there has been locked before. It still holds that all ships arrived
before or upon lockage time will be handled. Now, we use v for the number of times there
has already been locked and V for the maximum number of times there can be locked. For
ui ∈ U ′, dj ∈ D′,v ≤ V , the algorithm DPw is given by:

f(ui, dj , v) = min
dj′≤ui−T
ui′≤dj′−T

{f(ui′ , dj′ , v − 1) +
∑

`:s`∈(ui′ ,ui]

(ui − s`) +
∑

k:rk∈(dj′ ,dj]

(dj − rk)}.

The initial state is

f(u1, u1 + T, V − 1) = 0

with u1 = min{s1, r1 − T}.
The optimum is given by min{f(ui, dj , v|ui ≥ sn2 , dj ≥ rn1 , v ≤ V)}. In these states all
ships are locked and the maximum number of allowed lockage times is not exceeded.

I Lemma 5. DPw is a polynomial-time algorithm for the water-usage constrained lockmaster’s
problem.

Proof. See also the proof of Theorem 3. There are O(V n4) states, with V ≤ n. Computing
each state can be done by evaluating O(n4) states, leading to a total time complexity for the
algorithm equal to O(V n6). J

4.4 Capacity
Until now we did not take into account any capacity restrictions. Suppose the sizes of the
ships are uniform and the lock can accommodate at most b ships at once. It is easy to
see that Lemma 1 and its proof also hold in this case. Upmoments and downmoments in
an optimal solution will be contained in U and D, respectively. However, Lemma 2 is not
directly applicable. Indeed, it can happen that ships need to wait longer than 4T when the
capacity of the lock is filled. Suppose that during a certain time period no ships arrive at
the lock. Then, the lock will go up and down with full capacity and without waiting until
the waiting queue is empty. In other words, the strategy of the lock is very simple in this
time period. Given that there are n1 + n2 ships in the instance, let η = max{n1, n2}. Then
the following lemma holds:

I Lemma 6. When, for a given instance of the lockmaster’s problem with capacity constraint,
during a time period equal to 2T dηb e no ships arrive at the lock, the instance can be divided
into two instances. The solution can then be found by solving these two smaller instances.

Proof. Suppose η ships are waiting at the lock to go up, then the lock needs to go up and
down until all ships are handled. Given that the lock has a capacity b, the queue will be
empty after at most dηb e upmoments of the lock. 2T time units pass between two upmoments,
such that the last ships go upstream at time 2T (dηb e − 1). Note that the lock does not
spend any time waiting as the ships have already arrived and are waiting to move as soon
as possible. Thus, T time units later the lock is at the upstream level, and another T time

ATMOS’11

34 The Lockmaster’s Problem

units later again at the downstream level. If during 2T dηb e time units no ships arrive, the
instance can be split into two separate instances. J

It follows that we can assume, without loss of generality, that each 2T dηb e time units at least
one ship and at most n ships arrive. In a 2T (dηb e+ 1) interval there can be at most O(n2)
elements in U ∪D for that interval. We have at most n intervals, such that there are at most
O(n3) elements in U ∪D.

Define a dynamic programming algorithm (DPc) with f(ui, dj , p, q) (with ui ≤ dj −T) as
the minimal costs of a lockage strategy that includes the accumulated cost for all up-requests
up to ui and the cost for all down-requests up to dj . Part of these ships is still waiting at
the lock, i.e. p is the number of ships waiting to go upstream and q is the number of ships
waiting to go downstream; the cost for these ships is only partial (indeed, their waiting time
is not completed yet). This state features an upmoment at time t = ui, a downmoment at
time t = dj , and there are no other up- or downmoments in between ui and dj . Let l(ui′ , ui)
be equal to the number of ships i with arrival time si in the interval (ui′ , ui] and k(dj′ , dj)
the number of ships j with arrival time rj in the interval (dj′ , dj].
Then, let:

P =
{
{max{p+ b− l(ui′ , ui), 0}} if p > 0
{0, 1, . . . , b− l(ui′ , ui)} if p = 0

Q =
{
{max{q + b− k(dj′ , dj), 0}} if q > 0
{0, 1, . . . , b− k(dj′ , dj)} if q = 0

and:

f(ui, dj , p, q) = min
dj′≤ui−T
ui′≤dj′−T
p′∈P
q′∈Q

{f(ui′ , dj′ , p′, q′)+

∑
`:s`∈(ui′ ,ui]

(ui − s`) +
∑

k:rk∈(dj′ ,dj]

(dj − rk) + p′(ui − ui′) + q′(dj − dj′)}. (1)

with initial state

f(u1, u1 + T, 0, 0) = 0

and u1 = min{s1, r1 − T}.
When p, q > 0 it means that the lock was operated at full capacity in the previous state.
Just before operating the lock there were thus p + b ships ready to go up, from which
l(ui′ , ui) arrived between the previous upmoment of the lock and the current upmoment.
Thus, after the previous upmoment of the lock there were p+ b− l(ui′ , ui) ships not handled
yet. If this is a negative number it means that all ships are handled up till sl ≤ ui′ and
p′ = 0. When p, q = 0, it means that no ships are waiting and full capacity b was not
necessarily used, meaning that p′ + l(ui′ , ui) ≤ b. It follows that p′ ≤ b + l(ui′ , ui), and
idem for q′. The waiting time of any ship l that arrived between ui and ui′ is at least
ui − sl, which explains the second part of (1). However, for the p′ ships that could not
enter the lock at ui′ , the waiting time increases with (ui − ui′), which is dealt with in the
third part. Analogue arguments hold for the downmoments. The optimal value is given by
min{f(ui, dj , 0, 0)|ui ≥ sn2 , dj ≥ rn1 , ui ∈ U, dj ∈ D}.

S. Coene and F. C. R. Spieksma 35

I Theorem 7. DPc is a polynomial-time algorithm for the lockmaster’s problem with a
capacity restriction.

Proof. The proof is analogue as the proof for Theorem 3. U and D have cardinality O(n3);
p and q have cardinality O(n). It follows that this algorithm will have O(n6) states. For
each state we need to evaluate O(n6) states, yielding a total time complexity of O(n12). J

Notice that when the ships are weighted, ships might no longer be locked in order of
arrival and hence algorithm DP (or an extension of it) might fail to find an optimal solution.
When considering the unidirectional case, Baptiste’s algorithm [2] (see Section 2) yields a
polynomial time procedure.

4.5 Multiple (parallel) chamber lock
In practice a lock often consists in multiple chambers that operate independently such that
ships can be dealt with in parallel. We will show that when the number of chambers is
independent from the input and all chambers have identical lockage times, the problem can
be solved in polynomial time by adapting DP. However, when the number of chambers is
part of the instance and the chambers have arbitrary lockage times, the problem becomes
NP-hard.

First, consider a problem with k < n identical chambers in parallel, lockage time for all
locks is equal to T . All possible lockage times are identical to the single chamber case, such
that Lemma 1 and Lemma 2 are applicable. Indeed, each of the chambers will only move
upon arrival of a ship or immediately after an up- (or down-) movement of the chamber. Let
ūi be a vector of size k containing elements from U , thus ∀l ≤ k : ūi(l) ∈ U ; and d̄j a vector
of size k containing elements from D, thus ∀l ≤ k : d̄j(l) ∈ D.

I Lemma 8. Given that there are k uniform parallel chambers in the lockmaster’s problem,
an optimal solution exists where the lockage sequence of the chambers is ordered as follows
ū∗i (1) < ū∗i (2) < . . . < ū∗i (k) and d̄∗j (1) < d̄∗j (2) < . . . < d̄∗j (k), ∀ū∗i ,∀d̄∗j .

Proof. Suppose the optimal solution is not in accordance to Lemma 8. Then, there is a
moment in time where the lockage sequence alters, let this moment be e.g. d̄j(2) < d̄j(1).
Given that ūi(1) < ūi(2), it holds that chamber 1 is available to go down earlier than
chamber 2. All chambers are identical, thus the solution value will not change when chamber
1 goes down at t = d̄j(2) and chamber 2 at t = d̄j(1), yielding a solution as described in
Lemma 8. J

Let us now define f(ūi, d̄j) with ūi and d̄j ordered and ūi(l) ≤ d̄j(l)−T , ∀l ∈ 1 . . . k, ūi(l) ∈
U, d̄j(l) ∈ D, as the minimal cost of a lockage strategy where all up requests up to t = ūi(k)
and all down requests up to t = d̄j(k) are dealt with. For each l ∈ 1 . . . k, chamber l moves
up at time t = ūi(l) and down at time t = d̄j(k) and there are no other up- or down-moments
in between.

Then, for all ūi and d̄j , ūi(l) ≤ d̄j(l)− T we have

f(ūi, d̄j) = min
ū′

i(k)<ūi(1)
d̄′

j(k)<d̄j(1)

{f(ū′i, d̄′j)+

∑
l=0...k−1

∑
m:

sm∈(ūi(l),ūi(l+1)]

(ūi(l)− sm) +
∑

l=0...k−1

∑
o:

ro∈(d̄j(l),d̄j(l+1)]

(d̄j(l)− ro)},

ATMOS’11

36 The Lockmaster’s Problem

with ūi(0) = ū′i(k) and d̄j(0) = d̄′j(k). The optimal value is given by min{f(ūi, d̄j)|ūi(k) ≥
sn2 , d̄j(k) ≥ rn1 , ūi(l) ∈ U, d̄j(l) ∈ D,∀l ≤ k}.

I Lemma 9. The lockmaster’s problem with multiple identical parallel chambers is solvable
in polynomial time.

Proof. See also the proof of Theorem 3. There are O(n3k) states, computing each state can
be done by evaluating O(n3k) states, leading to a total time complexity for the algorithm
equal to O(n6k). J

5 Non-identical parallel chambers

In this section we prove that in the case of multiple non-identical parallel chambers where
the number of chambers is part of the input, the lockmaster’s problem is NP-hard.

I Lemma 10. The lockmaster’s problem with non-identical parallel chambers is strongly
NP-hard.

Proof. We show that the lockmaster’s problem with multiple non-identical parallel chambers
is at least as hard as numerical matching with target sums (NMTS). In an instance of NMTS
we are given positive integers ai (1 ≤ i ≤ n), bj (1 ≤ j ≤ n) and tκ (1 ≤ κ ≤ n). It holds that∑

κ tκ =
∑
i,j(ai + bj). The question is whether there exists a collection of m triples (i, j, κ)

such that (i) ai + bj = tκ for each triple, and (ii) each integer in the input occurs exactly
once. This problem is proven to be NP-hard by Garey and Johnson [10]. We assume, without
loss of generality, that the ai’s and tκ’s are pairwise different and that minj bj > maxi ai.
We now construct an instance of the lockmaster’s problem as follows. There are 2n ships,
n ships travel upstream and arrive at the lock at sl := ai and n ships travel downstream
arriving at the lock at times rk := tκ. There are n chambers, each with a certain lockage
time bj . Is there a solution for the lockmaster’s problem with total waiting time equal to
0? If there is a solution to NMTS, each triple (ai, bj , tκ) corresponds to a combination of a
chamber with an upstream and a downstream going ship. The upstream going ship arrives
at time ai, enters the chamber that needs bj time units to arrive at the downstream level
and after tκ time units the downstream going ship enters the chamber and spends bj time
units in the lock. Each ship can enter a chamber upon arrival time and total waiting time is
equal to 0. On the other hand, if a solution to the lockmaster’s problem with value 0 exists,
it means that each upstream going ship is assigned upon arrival to exactly one chamber.
Moreover, since minj bj > maxi ai, it follows that each chamber accommodates one upstream
going ship. Since downstream going ships also have waiting time equal to 0, there must exist
triples for which it holds that ai + bj = tκ and we have a solution to NMTS. J

References

1 H. Allaeys. Optimalisering van een sluis (in Dutch), 2010. Master Thesis, Katholieke
Universiteit Leuven.

2 P. Baptiste. Batching identical jobs. Mathematical Methods of Operations Research, 52:355–
367, 2000.

3 M. Boudhar. Scheduling a batch processing machine with bipartite compatibility graphs.
Mathematical Methods of Operations Research, 57:513–527, 2003.

4 P. Brucker, A. Gladky, H. Hoogeveen, M. Y. Kovalyov, C. N. Potts, T. Tautenhahn, and
S. L. Van De Velde. Scheduling a batching machine. Journal of Scheduling, 1:31–54, 1998.

S. Coene and F. C. R. Spieksma 37

5 T. C. E. Cheng, J. J. Yuan, and A. F. Yang. Scheduling a batch-processing machine
subject to precedence constraints, release dates and identical processing times. Computers
and Operations research, 32:849–859, 2005.

6 European commission. Promotion of inland waterway transport, January 2011.
http://ec.europa.eu/transport/inland/promotion/promotion-en.htm.

7 A. Condotta, S. Knust, and N. V. Shakhlevich. Parallel batch scheduling of equal-length
jobs with release and due dates. Journal of Scheduling, 13:463–477, 2010.

8 Inland Navigation Europe. Water webletter, November 2010. www.inlandnavigation.org.
9 G. Finke, V. Jost, M. Queyranne, and A. Sebő. Batch processing with interval graph

compatibilities between tasks. Discrete Applied Mathematics, 156:556–568, 2008.
10 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-completeness. Freeman, San Francisco, 1979.
11 M. R. Garey, D. S. Johnson, B. B. Simons, and R. E. Tarjan. Scheduling unit-time tasks

with arbitrary release times and deadlines. SIAM Journal on Computing, 10:256–269, 1981.
12 C. Lee, R. Uzsoy, and L. A. Martin-Vega. Efficient algorithms for scheduling semiconductor

burn-in operations. Operations Research, 40:764–775, 1992.
13 R. M. Nauss. Optimal sequencing in the presence of setup times for tow/barge traffic

through a river lock. European Journal of Operational Research, 187:1268–1281, 2008.
14 C. N. Potts and M. Y. Kovalyov. Scheduling with batching: A review. European Journal

of Operational Research, 120:228–249, 2000.
15 L. D. Smith, D. C. Sweeney, and J. F. Campbell. Simulation of alternative approaches to

relieving congestion at locks in a river transportation system. Journal of the Operational
Research Society, 60:519–533, 2009.

16 C. Ting and P. Schonfeld. Control alternatives at a waterway lock. Journal of Waterway,
Port, Coastal, and Ocean Engineering, 127:89–96, 2001.

17 J. Verstichel and G. Vanden Berghe. A late acceptance algorithm for the lock scheduling
problem. Logistik Management, 5:457–478, 2009.

18 S. Webster and K. R. Baker. Scheduling groups of jobs on a single machine. Operations
Research, 43:692–703, 1995.

ATMOS’11

Track Allocation in Freight-Train Classification
with Mixed Tracks∗

Markus Bohlin1, Holger Flier2, Jens Maue2, and Matúš Mihalák2

1 Swedish Institute of Computer Science, Kista, Sweden
markus.bohlin@sics.se

2 ETH Zürich, Institute of Theoretical Computer Science, Switzerland
{firstname.lastname}@inf.ethz.ch

Abstract
We consider the process of forming outbound trains from cars of inbound trains at rail-freight
hump yards. Given the arrival and departure times as well as the composition of the trains, we
study the problem of allocating classification tracks to outbound trains such that every outbound
train can be built on a separate classification track. We observe that the core problem can be
formulated as a special list coloring problem in interval graphs, which is known to be NP-complete.
We focus on an extension where individual cars of different trains can temporarily be stored on
a special subset of the tracks. This problem induces several new variants of the list-coloring
problem, in which the given intervals can be shortened by cutting off a prefix of the interval. We
show that in case of uniform and sufficient track lengths, the corresponding coloring problem can
be solved in polynomial time, if the goal is to minimize the total cost associated with cutting off
prefixes of the intervals. Based on these results, we devise two heuristics as well as an integer
program to tackle the problem. As a case study, we consider a real-world problem instance from
the Hallsberg Rangerbangård hump yard in Sweden. Planning over horizons of seven days, we
obtain feasible solutions from the integer program in all scenarios, and from the heuristics in
most scenarios.

1998 ACM Subject Classification G.1.6 Optimization; I.2.8 Problem Solving, Control Methods,
and Search

Keywords and phrases Algorithms, Complexity, Graph Theory, Railways, Scheduling, Shunting,
Train Classification, Train Marshalling, Transportation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2011.38

1 Introduction

A rail-freight transportation network is used to transport goods between two points in the
network. Described in a very simplified way, such a network consists of terminals connected
with tracks. Besides freight trains that consist only of cars going from one origin to one
destination (e.g., trains transporting coal or ore), most freight trains consist of cars with
various origins and destinations. In order to transport each car to its destination, the freight
trains are disassembled into individual cars from which new outbound trains are formed.
This process is called classification (also marshalling or shunting), and is conducted in so
called classification yards (also known in the literature as marshalling or shunting yards),
which are intermediate stops (terminals) in the network.

∗ This work was supported by Trafikverket under FUD grant F 09-11546/AL50 and by the Swiss National
Science Foundation (SNF) under grant 200021-125033/1.

© Markus Bohli, Holger Flier, Jens Maue and Matúš Mihalák;
licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 38–51

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.38
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

M. Bohli, H. Flier, J. Maue and M. Mihalák 39

arrival
yard

departure
yard

hump

hump
track

classification tracks

classification bowl

Figure 1 A schematic layout of a typical hump yard.

Train classification is a crucial element in the overall goal of an efficient rail-freight
transportation as this process is often the bottleneck of the freight transportation and
naturally limits the throughput in the network. In this paper, we study one specific process
of forming outbound trains from the cars of inbound trains within a classification yard.

A classification yard typically consists of an arrival yard, a hump track with a hump, a
classification bowl, and a departure yard. Therefore, classification yards with a hump are
often called hump yards. A typical layout of a hump yard is illustrated in Figure 1. The
arrival yard is a composition of tracks used for storing cars of inbound trains, where all
cars of an inbound train are decoupled and stored on a single track. Similarly, a departure
yard is a composition of tracks for storing outbound trains. The outbound trains are formed
in the classification bowl, which consists of classification tracks. The hump is connected
to the classification tracks by a set of switches such that a car or an engine can reach
any classification track from the hump. To form the desired composition of cars on the
classification tracks, two operations are used: the pull-out and the roll-in operation. In the
pull-out operation, the cars of a specified classification track are coupled and pulled by the
engine over the hump onto the hump track; there, the cars are decoupled and are ready for
the subsequent roll-in. During the roll-in operation, the (decoupled) cars on the hump track
are pushed over the hump and roll into the classification bowl by means of gravity only; each
individual car is guided to a desired classification track by appropriately setting the switches
of the classification bowl. In a hump yard, a pull-out operation is always followed by a roll-in
operation. When the formation of an outbound train is finished, its cars are coupled and
moved by an engine to the departure yard.

Given the arrival and departure times of the inbound and outbound trains, respectively,
as well as the cars belonging to these trains, the operational plan of a hump yard needs to
decide the movements of every car in the hump yard by the means of roll-ins and pull-outs
in order to achieve the desired formation of every outbound train before its departure time.
There may be various constraints on the formation of the outbound trains. In particular,
there are situations when the order of cars within a train is important. In this paper we
only consider the case in which no particular order of cars within an outbound train is
required. This is usually the case for freight trains which are not delivering goods to the
final destination but to another classification yard. A general operational plan would also
need to decide the time points when cars enter (from the arrival yard) and leave (to the
departure yard) the classification bowl. In this paper we consider a less ambitious goal, and
only consider the case when these time points have been decided. We thereby focus solely on
planning the movements of the cars within the classification bowl.

In this paper, we restrict ourselves to a particular class of operational plans which is a
generalization of current customs that are used in several hump yards in Europe. In these
operational plans, most classification tracks are reserved for at most one outbound train at
any point in time. Furthermore, a few classification tracks, called mixed tracks, are used
to store a mix of cars (which may arrive long before their planned departure) of different

ATMOS’11

40 Track Allocation in Freight-Train Classification with Mixed Tracks

outbound trains in order to increase the capacity of the classification bowl. These mixed
tracks are pulled-out, e.g., at some fixed time-points per day, in order to distribute cars
onto classification tracks. A car can only go to its track once it is reserved for its outbound
train. The remaining cars go back to the mixed tracks. At present, operational plans are
hand-made. In order to compute such plans automatically, we present several results in
this paper, including our modeling approach, relation to algorithmic theory, and initial
computational results suggesting that operational plans can be found in less than 20 minutes.

The paper is structured as follows. We first define the mixing problem formally in
Section 1.1, and then review the related work and the best practice in Section 1.2. We
connect the mixing problem to various coloring problems of intervals in Section 2, where we
also develop two heuristics for the problem. We then present our mixed-integer program for
the mixing problem in Section 3. The experimental results are discussed in Section 4.

1.1 Problem definition
We consider a classification bowl consisting of k classification tracks θ1, . . . , θk, where a
classification track θ has length `θ. Furthermore, some of the tracks of the classification bowl
are used for mixing cars of different outbound trains. We denote the sum of their lengths
as `mix and refer to them simply as the mixed track. There are nin inbound trains, which
are to be formed into n outbound trains, where each car of an inbound train belongs to
exactly one outbound train. Individual cars having the same inbound and outbound trains
are handled as a single unit, a car group g, which has physical length `g. Hence, an outbound
train j consisting of a set Gj of car groups has length

∑
g∈Gj

`g. For each outbound train
j we need to assign a classification track θ to j on which it will be formed. The track θ
has to have sufficient length, i.e., the length `θ must be at least the length of the outbound
train. Every outbound train j has a fixed time oj when it leaves the classification bowl (to
the departure yard). Thus, by this time, all cars of the train j have to be on its assigned
track. For each outbound train j we need to decide a time interval (sj , oj) during which
the respective assigned track θ is reserved solely for cars of train j. Every inbound train i
has a roll-in time ri at which the cars of the inbound train are rolled in (from the arrival
yard) over the hump (into the classification bowl). Each car group g is rolled-in either to
the mixed track, or to the classification track θ assigned to the outbound train j, to which
group g belongs: if at time ri the assigned track θ is already reserved (i.e., if ri > sj) then
group g is rolled-in to the classification track θ, otherwise it is rolled-in to the mixed track.
A car that is rolled-in to the mixed track needs to be pulled-back from the mixed track over
the hump and rolled-in to the assigned track during the time interval that is reserved for its
outbound train on that track. For this purpose, the mixed track is pulled out at fixed times
p1, . . . , pm. At such a time, all cars of the mixed track are subsequently rolled-in either to
a classification track (if the respective assigned track has been already reserved), or back
to the mixed track (if the respective track has not yet been reserved). We call each time
interval between two consecutive pull-outs a period.

In this paper we consider the problem of assigning a classification track θ to every
outbound train j, as well as deciding the time sj when the assigned classification track should
be reserved for train j, such that all outbound trains can be formed. We will refer to this
problem as the mixing problem. Observe that the schedule of the hump, which specifies the
times of the roll-in and pull-out operations as well as the time oj of each outbound train
j, is fixed. Thus, the set of cars which are stored on the mixed track is determined by the
choice of sj for each outbound train j.

M. Bohli, H. Flier, J. Maue and M. Mihalák 41

1.2 Related work

The particular problem that we consider in this paper has, as far as we know, not been
studied before. There are various papers related to the problem of shunting both freight and
passenger trains, but the solutions techniques are not applicable to the shunting problem
when mixing is taken into account.

Many research efforts related to the operation of classification yards have been put in
sorting schemes for sorting cars inside a classification bowl. Given a sequence of n cars labeled
from 1 to n, the general goal of a sorting scheme is to form, by roll-in and pull-out operations,
a sorted sequence of cars. Early literature considers sorting schemes that essentially perform
the same sorting steps for any input sequence of a given length [11]. More recently, it has
been studied how to utilize the “pre-sortedness” of the input in order to minimize the number
of pull-out operations [6, 10], as well as variants thereof [5]. A recent survey by Gatto et al.
[8] gives an overview of this topic.

A related problem is the parking of trams in the evening on tracks in depots such that the
trams can leave the depot in the morning without any shunting operation [2, 7, 12]. Another
related problem is the train scheduling at yards, i.e., the problem of assigning trains and
train times for a set of rail lines and station stops. This problem was considered by He et
al. [9], together with some operational planning at classification yards in China, although
under different considerations than in our case.

In the problem considered in this paper, we have to decide for each outbound train both
the classification track on and the time at which it will be formed. A related problem for
passenger trains has been considered [4], in which more than one inbound train can be
assigned to a track of a train station. The problem asks for an assignment of tracks to
inbound trains such that the trains do not block each other when departing the train station.

Best Practice Today, the planning of hump yard operations is to a large extent done
manually. In the Hallsberg yard in Sweden, where the data for our experimental evaluation
was collected, detailed planning is done by the hump-yard staff one day at a time, usually
during the morning when fewer trains arrive than in the afternoon. The allocation of tracks
at the arrival yard and departure yard is performed manually, independently from other
operations, and in advance by traffic-planning personnel, who are not directly involved with
hump yard operation and detailed planning. However, frequent communication between
the different groups happens, since the allocation of arrival and departure yards and the
yard operation planning is interdependent and cannot be done in full isolation. The typical
practice at Hallsberg is to use the same roll-in order as the arrival time order and the same
roll-out order (onto the departure yard) as the departure time order. In this paper we follow
this practice in that we assume the roll-in times and roll-out times (into and out of the
classification bowl, respectively) to be given as part of the input. For the experimental
evaluation where we do not have this data, we compute these times as described in Section 4.2.
Also, a common practice is to pull-out all mixed tracks together, although it could be beneficial
to pull-out the mixed tracks independently. For our purposes, we treat these mixed tracks as
one virtual mixed track, where we set the length of the track and the duration of a pull-out
operation accordingly.

ATMOS’11

42 Track Allocation in Freight-Train Classification with Mixed Tracks

timeoirip1 p2 p3 p4 p5

Ii

Ij

Ik

cut-off

Figure 2 Three outbound trains i, j and k induce the (mutually intersecting) intervals Ii, Ij and
Ik, here depicted as rectangles. The pull-out of the mixed tracks happens at times p1, . . . , p5. The
uncuttable part of an interval is defined by the last pull-out time of the mixed track that is contained
in the interval (depicted in gray). If we assume two available tracks, then the three intervals cannot
be assigned to the tracks without cutting off. Here, a cut-off of the interval Ii at the end point of Ik

allows a placement of I ′
i and Ik on the same track. For simplicity, technical setup times have been

omitted in this figure.

2 Relation to interval-coloring problems

The mixing problem can be seen as a family of specific coloring problems of intervals. In this
section, we give complexity results based on these relations and devise two heuristics for our
problem that we experimentally evaluate on real-world data in Section 4.

Recall that in the mixing problem we are asked to determine for each outbound train
i a track θ and a time interval I ′

i, during which the track is reserved exclusively for the
formation of that train. Observing the roll-in times of the inbound trains, we can obtain for
every outbound train i a time interval Ii = (arr, dep) in which cars of the outbound train
arrive to the classification bowl, i.e., arr = ming∈Gi

rg (where rg is the roll-in time of the
inbound train to which car group g belongs, and Gi is the set of car groups of train i), and
dep = oi is the time when the train i leaves from its classification track to the departure
track. Thus, without loss of generality, the time interval I ′

i is a sub-interval of Ii of the form
I ′
i = (arr′, dep), arr′ ≥ arr, i.e., we cut-off a prefix of Ii to obtain I ′

i. We cannot cut-off an
arbitrary prefix: whenever arr′ 6= arr, there has to be a pull-out of the mixed track between
arr′ and dep, because we require that every car that is sent to the mixed track is at some
point brought to the actual track θ (before the train departs). This, together with some
technical setup times which we do not describe here for simplicity, induces for every interval
Ii an uncuttable part of Ii, i.e., a suffix of Ii during which all not yet rolled-in cars of the
outbound train have to be rolled in directly onto its classification track. The requirement
that every track θ is at any time reserved for at most one train translates into the condition
that, whenever trains i and j are assigned the same track θ, the corresponding intervals I ′

i,
I ′
j do not overlap. Here and in the following, two intervals overlap if they intersect in more
than one point. Figure 2 illustrates our discussion.

Our problem thus translates to the problem of assigning a track θ to every outbound
train i and cutting off a prefix of every interval Ii to obtain a cut-off interval I ′

i such that
no two cut-off intervals of two trains assigned to the same track overlap. Assuming the
cutting-off of intervals has been made, the problem of assigning tracks of sufficient length
to the outbound trains can be seen as a list-coloring problem of the intervals: each train i
has a list Li of classification tracks to which it fits, each track represents a color, and we are
asked to color every interval Ii with a color from the list Li such that any two overlapping
intervals I ′

i, I ′
j need to be assigned different colors.

In general, the list-coloring problem of intervals is NP-complete. In our case, the lists
do not have arbitrary structure: Assume w.l.o.g. that the classification tracks θ1, . . . , θk are

M. Bohli, H. Flier, J. Maue and M. Mihalák 43

ordered increasingly by length. For each outbound train i, let µ(i) indicate the smallest track
on which it fits (we assume that every train fits on θk); the list Li is then just {θµ(i), . . . , θk}.
Such a list-coloring problem is called a µ-coloring problem. It is known that the µ-coloring
problem for interval graphs is NP-complete, see [3]. As a consequence we immediately obtain
the following theorem:

I Theorem 1. Finding a feasible track allocation for the mixing-problem is NP-complete even
for instances where the capacity of the mixed track `mix is zero, or where `mix is unlimited
and all intervals may have arbitrary uncuttable parts.

Proof. Observe first that if there is no capacity on mixed tracks then no car can be sent to a
mixed track and thus no interval can be cut-off. If on the contrary `mix is unlimited, we may,
without loss of generality, assume that every interval Ii has been cut-off in a maximal possible
way and I ′

i is thus the uncuttable part of Ii. It is now easy to see by the above discussion
how to transform any instance of the µ-coloring problem for intervals to a corresponding
instance of the mixing-problem. J

Despite its NP-complete core, the practical complexity of the mixing-problem strongly
depends on the distribution of the length of both the classification tracks and the outbound
trains. If, for example, each train fits on each track, and the capacity of the mixed tracks
is zero, then our problem reduces to the problem of coloring an interval graph, which is
well-known to be polynomially solvable by a simple greedy algorithm. The heuristic in the
following section is based on this observation.

If we assume that each train fits on each track and sufficient length of the mixed track, a
natural heuristic for the mixing problem would be to minimize the total number of cars that
are sent to the mixed tracks and that allows a feasible track allocation. In the following we
show that this problem can be solved in polynomial time. Further below, we will use this
result to devise an improvement heuristic for the mixing problem.

I Theorem 2. In case of uniform and sufficient track lengths, the problem of finding a
feasible track allocation that minimizes the sum of all cars sent to the mixed track over all
time periods is solvable in polynomial time.

Proof. Assume there are k tracks and n outbound trains, each with a time interval as
described above. Observe that if the trains are assigned to tracks then computing the
minimum number of cars that need to be sent to the mixed tracks in order to make this
assignment feasible is a trivial task. To see this, consider a classification track θ and train
i with interval Ii = (arri, depi) such that the train is last to leave the track, i.e., for any
other train i′ with time interval (arri′ , depi′) assigned to track θ we have depi′ < depi. The
minimum number of cars of train i that we need to send to the mixed track are the cars that
arrive in time period (arri, depi′) where depi′ is the departure time of train i′ that departs
from the classification track second to last, i.e., just before i. We can proceed similarly with
the cars of train i′ by sending to the mixed track all cars of train i′ that arrive in time
interval (arri′ , depi′′), where i′′ is the train leaving the classification track just before i′. We
can proceed recursively to determine the minimum number of cars that need to be sent to
the classification tracks. Therefore, we can see our problem as finding for every train i its
direct predecessor i′ on its assigned classification track. The actual assignment of a track to
trains is done by introducing a phantom train iθ for every track θ. Thus, if train i is assigned
a phantom train iθ as the direct predecessor of i, then we interpret this as assigning train i
to the classification track θ. In this modified setting where every train is asked to have a
predecessor (a real train or a phantom train), our problem can be reduced to an assignment

ATMOS’11

44 Track Allocation in Freight-Train Classification with Mixed Tracks

problem, i.e., to finding a minimum-weight matching in the following complete bipartite
graph: the (real) trains form one part of the bipartition, and the real trains together with
the phantom trains form the other part of the bipartition; the weight of the edge connecting
train i from the first part with (phantom) train i′ is the minimum number of cars that need
to be sent from i to the mixed tracks in order to allow train i′ to be an immediate predecessor
of train i on a classification track (or the weight is ∞, if i′ cannot be a predecessor of i). J

2.1 A clique-based heuristic
We present a heuristic for the mixing problem in which we will iteratively decide a coloring
of the intervals, and cutting off the (problematic) intervals. The guiding goal will be to keep
the total length of all cars sent to the mixed track, summed over all periods, low. Ideally,
the heuristic would find a solution to the mixing problem that is feasible w.r.t. the capacity
of the mixed track in each period. Recall that for every outbound train i, we need to choose
a suffix I ′

i for each interval Ii and color it with a color from the list Li = {θi | i ≥ µ(i)}. We
assume, again, that every outbound train fits on the largest track θk.

Coloring Intervals We first color the intervals in a greedy way, mimicking the greedy
coloring of interval graphs without lists. We assume that we have infinitely many colors
available (i.e., not only k). We start by sorting the intervals in a non-decreasing order of
their starting time point. We color the intervals in this order and assign each interval Ii the
smallest non-conflicting color that is at least µ(i). At this point, a non-conflicting color is a
color such that no interval that has been colored and overlaps with Ii is colored with it.

In this way, we guarantee that every interval Ii is assigned a color at least µ(i). If we
do not use more colors than k, we have found a list-coloring and can stop the iterations.
Otherwise, the coloring uses more colors than k, and we proceed with the cutting off.

Cutting off Intervals If there is an interval Ii that is colored with a color c > k, then Ii
overlaps with intervals that are together assigned every color in µ(i), µ(i) + 1, . . . , k, . . . , c.
These intervals mutually intersect and thus form a clique K. We find a maximal clique
containing an interval of the largest assigned color c. Let q := c − k, i.e., the number of
intervals of K that use a color c > k. The heuristic tries to reduce the size of the clique by
cutting off q intervals of K, in order to be able to increase the set of available colors for each
of those intervals.

The cut-offs are computed as follows. First, the intersection of all intervals in K is
computed, which is an interval by itself. Let t denote the end of this interval. If possible, cut
off q of the intervals of K at point t. In particular, cut those q intervals of K that minimize
the resulting additional usage of the mixed tracks. We iterate the procedure (coloring and
cutting off) with the newly cut-off intervals.

This heuristic is illustrated in Figure 3. Note that the heuristic does not guarantee to
find an allocation that is feasible with regard to the capacity of the mixed tracks.

2.2 An improvement heuristic
Once a feasible assignment of tracks to outbound trains exists, one can furthermore try to
improve the solution towards a local optimum. In particular, we are interested in minimizing
the total number of cars (over all periods) sent to the mixed track, which we call the extra
roll-ins for short, as will be motivated in Section 3.2.

M. Bohli, H. Flier, J. Maue and M. Mihalák 45

A

B

C

D

E

F

1

2

3

Pull 1 Pull 2 Pull 3 Pull 4

(a) Greedy coloring by start time.

A

C

E

F

1

2

3

Pull 1 Pull 2 Pull 3 Pull 4

B

D

(b) First infeasible maximal clique K. There are
q = 5 − 3 intervals that need to be cut off.

A

B

C

D

E

F

1

2

3

Pull 1 Pull 2 Pull 3 Pull 4

(c) Cut off two intervals at the end of the intersec-
tion.

A

BC

D

E F

1

2

3

Pull 1 Pull 2 Pull 3 Pull 4

(d) Greedy re-coloring by start time. The heuristic
is then repeated for the next clique.

Figure 3 First steps of the interval coloring heuristic involving trains A-F, and three classification
tracks. Gray areas of the intervals indicate allocations which cannot be cut-off, as there is no pull-out
(dotted vertical lines) of the mixed track. The dark grey rectange depicts the intersection of the
respective clique of intervals.

The heuristic is based on two observations. First, when looking at a feasible solution,
one observes that both the tracks and the trains can be partitioned into subsets, called
buckets, such that each train in a bucket fits on all tracks in the same bucket. Secondly,
given a feasible solution, one can minimize the mixed-track usage for each bucket of tracks
independently. Because within a bucket, all assigned trains fit on all tracks, it suffices to
solve an assignment problem for each bucket, as detailed in Theorem 2, in order to find an
optimal reassignment of trains to tracks within that bucket. Note that also this heuristic
does not guarantee feasibility regarding the capacity of the mixed tracks.

3 An integer program for the mixing problem

In order to compute exact solutions for the mixing problem, we design an integer program.
Recall that the mixing problem asks to find an assignment of long-enough classification
tracks to the outbound trains, and for each outbound train a (conflict-free) time reservation
of its assigned track, such that all outbound trains can be formed on time and the capacity
of the mixed track is not exceeded.

In the following model, each train i is associated with binary variables xis for each
possible starting time point s of the reservation of its assigned classification track, and binary
variables yiθ for each possible classification track θ to which it may be assigned.

ATMOS’11

46 Track Allocation in Freight-Train Classification with Mixed Tracks

3.1 Capacity of the mixed tracks

To limit the amount of used mixing capacity, we first note that the set of mixed cars can
only change when a car group is rolled in to the classification bowl, or at a pull-out. In
addition, a car group rolled in to a mixed track at time s will stay mixed at least until the
first pull-out p+

s that is scheduled after s. Therefore, it suffices to ensure feasibility of the
mixed track usage at the end of each period, when the maximum usage within that period is
attained. Let Xis = {g | g ∈ Gi, rg < s} be the set of car groups of an outbound train i that
are mixed as a result of i starting at time s. We now need to consider which group of cars in
train i are mixed at a certain pull-out p, given a start time s for i. To determine this we
will check whether the prefix of Ii that is cut-off contains p, and which groups from Xis are
rolled in before p.

Let Pi be the set of valid pulls for train i, which occur after the first group roll-in and
before the time the train needs to start preparations for departure. Furthermore, let Si be
the set of valid start-times for train i, which is the union of Pi and the set of the roll-in times
{rg | g ∈ Gi}. Now assume we have a train i with a valid start time s and a pull p ≤ p+

s . If
i starts at s, then all groups g ∈ Xis (which have to be mixed when i starts at s) stay on
the mixed track until the pull-out p+

s . Therefore, a group g will be mixed during the period
ending at p if rg < p.

Formally, we let Ap = {(i, s) | 1 ≤ i ≤ n, p ∈ Pi, s ∈ Si, p ≤ p+
s } be the set of pairs of all

trains and start-times possibly affecting a pull-out p, where n is the number of outbound
trains. Given Ap we can now define the mixed capacity constraints as shown below in
Equation (5). Informally, this equation states that for all trains i and start times s affecting
a pull-out p it holds that if the reservation of the classification track of i starts at s then the
total length of the groups that arrive before p may not exceed the mixing capacity `mix.

3.2 Counting extra roll-ins

For the purpose of our research with the Swedish traffic administration authority Trafikverket,
the goal of yard operation planning was to minimize unnecessary labor and infrastructure
wear. The current practice at the yard reflects a policy where the goal is to roll in cars
as soon as possible, and where cars are mixed if they arrive “early” compared to their
planned departure. In practice, this policy leads to many cars being unnecessarily mixed
and subsequently pulled-out.

As the objective of the optimization problem, we chose to minimize the number of extra
roll-ins needed for yard operation, which corresponds to the number of times a car is sent
to the mixed track. This number, cis, can be easily calculated for each train i and each
possible starting time point s as cis =

∑
g∈Xis

ng |Pisg|, where Xis is defined as above and
Pisg = {p ∈ Pi | rg < p ≤ p+

s } is the set of pull-outs between the arrival of g and the first
pull-out p+

s after time s. Given cis we can then form the objective by multiplying each cis
with the variable xis, as described in the following section.

3.3 An integer programming model

We are now ready to formulate the full integer programming model, including sequencing
constraints on the classification tracks. We use binary variables xis that indicate at which
time s the reservation of a classification track for outbound train i starts, as well as binary
variables yiθ that indicate whether the outbound train i is allocated to track θ.

M. Bohli, H. Flier, J. Maue and M. Mihalák 47

minimize
n∑
i=1

∑
s∈Si

cisxis (1)

subject to
∑
θ∈Li

yiθ = 1, 1 ≤ i ≤ n (2)

∑
s∈Si

xis = 1, 1 ≤ i ≤ n (3)

∑
s∈Sj :s<oi

xjs + yiθ + yjθ ≤ 2, (i, j) ∈ IJ , θ ∈ Li ∩ Lj (4)

∑
(i,s)∈Ap

∑
g∈Xis:rg<p

`gxis ≤ `mix, 1 ≤ p ≤ m (5)

Equation (1) gives the objective in terms of the number cis of extra roll-ins due to
mixing, which results from using start time s for train i. Equation (2) ensures that all
trains i are allocated to a track from the set Li of feasible (w.r.t. length) tracks for i, and
Equation (3) ensures that each train i has a start time s from its set of valid start-times Si.
Equation (4) states that for each pair of trains (i, j), where i leaves its classification track
before j, but departs after the first group of cars of j is rolled-in, either i and j are on different
tracks, or j starts its allocation of the common track θ after i has left. Formally, we define
IJ =

{
(i, j) | 1 ≤ i < j ≤ n ∧ming∈Gj

rg < oi
}
, where we assume that the outbound trains

are indexed according to ascending departure times from the classification bowl. Finally,
Equation (5) ensures that the mixing capacity limit is respected in each period.

In order to facilitate finding a feasible solution, we define the feasibility mixing problem as
the mixed integer program consisting of Equations (2) to (5) with an additional continuous
non-negative variable v representing “virtual mixing capacity”. The variable v is then added to
the right-hand side of Equation (5). By replacing the objective Equation (1) with minimize v,
one seeks to obtain mixing feasibility without specifically minimizing the number of extra
roll-ins.

4 Case study

The Swedish traffic administration authority has provided us with historic data for the
Hallsberg Rangerbangård hump yard in central Sweden for validation of our approach.
Hallsberg has 8 tracks of length 595 to 693 meters on the arrival yard, two parallel humps
(of which only one is in use), 32 available classification tracks of varying length (between
374 and 760 meters), and 12 tracks with length 562 to 886 meters on the departure yard.
Although there are several other tracks on the yard (most notably tracks going to light and
heavy repair facilities) they are not normally used for shunting, and we are therefore not
considering them in the model.

We used the following working process to determine a shunting plan: First, preprocess
the data according to Section 4.1. Second, determine suitable roll-in (ri), pull-out (pj) and
roll-out times (oj) for all inbound trains i and outbound trains j by the method described in
Section 4.2. Third, separate the problem data into instances containing all rolled-in trains in
a single week, ranging from Saturday until the next Friday, using the roll-in and pull-out
times obtained in the second step. Fourth, solve the mixing problem instances using the
heuristic algorithm in Section 2.1 and the improvement algorithm in Section 2.2. Fifth, also
solve the feasibility mixing problem instances using the MIP model in Section 3.3, minimizing
the virtual mixing capacity v. Finally, improve the mixing solutions obtained from the MIP
model by fixing v at zero and solving the original integer program (1) to (5).

ATMOS’11

48 Track Allocation in Freight-Train Classification with Mixed Tracks

4.1 Preprocessing traffic data
We collected five months of historic traffic data for the yard, including all inbound trains,
outbound trains, and the set of cars going from each inbound train to each outbound train.
The data was taken from the period from December 11, 2010 to May 10, 2011, which contains
intervals of both high and low activity, such as a longer holiday period and at least one major
traffic disruption. Timing parameters, such as setup times, durations of roll-ins, etc., were
chosen according to [1]. Cars with a local source or destination were not included in the data
set and were therefore not considered.

The data we collected contain for every inbound train only the time when it arrives to
the arrival yard. The time when the cars of the inbound train roll-in to the classification
bowl are not available. Further, the data did not contain the time points when the mixed
tracks were pulled-out. Therefore, we had to compute a hump schedule for all roll-in and
pull-out operations to complete the input for the mixing problem of the previous section.
This will be described in Section 4.2.

The data contain further ambiguity, namely the matching of cars from incoming trains to
outgoing trains: for the same train, there may be several arrival and departure times on the
same day. Further, the same physical car may arrive at the yard repeatedly, having the same
ID in the data. Finally, data for trains arriving or departing outside the period for which the
data was provided are missing. We therefore had to match cars to trains in a sensible manner.
For our experiments, we required a minimum time span of 180 minutes between arrival at
and departure from the shunting yard (i.e., not only the classification bowl). Further, we
required that cars spend at most 48 hours on the yard. Finally, we required that trains do
not exceed the length of the longest available classification track. Car records that could not
be matched this way were discarded. In total, 3594 arrivals, 3654 departures and 17684 car
groups were handled. Inbound trains vary in length between 12.8 and 929 meters, outbound
trains between 12 and 1252 meters. For five outbound trains we had to discard some of their
groups in order to stay below the maximal track length of 760 meters.

4.2 Computing the missing hump schedule
The mixing problem is given by the roll-in times of the inbound trains, by the departure
times of the outbound trains from the classification bowl, and by the times of the pull-outs.
The traffic data provided to us does not contain this information: only the arriving times
to the arrival yard and the departure times from the departure yards are known. For the
experiments, we therefore need to compute the missing data, trying to mimic the current
practice in the yard.

Because the pull-backs as well as the roll-ins occupy the hump, we need to schedule
the roll-ins and pull-backs such that no two such actions on the hump overlap in time.
Additionally, we want to find a set of pull-outs that guarantees a feasible assignment and
reservation of tracks to the outbound trains if we assume infinite capacity of the mixed
tracks. We achieve this by creating a rough assignment of trains to classification tracks in
a round-robin fashion (and ignoring mixing capacities), and computing a minimum set of
pull-outs, such that there is one suitable pull-out for each train that needs to store cars on
the mixed tracks in this round-robin schedule.

We assume that all tracks on the arrival and departure yards can accommodate all
inbound and outbound trains. We determine the roll-in times and pull-out times sequentially
by first considering the roll-ins, and then by inserting pull-outs at suitable time points. Due
to space restrictions, we have to omit a detailed description of the preprocessing. We remark

M. Bohli, H. Flier, J. Maue and M. Mihalák 49

Table 1 Experimental results in maximum mixed track usage (MTU) with a limit of 1217 m,
and the extra car-roll-ins needed due to mixing (ER). x̄ is the arithmetic mean. Infeasible solutions
are shown in italics.

Instance Heuristic Heuristic++ MIP
Trains Groups MTU ER Time MTU ER Time MTU ER Time

(#) (#) (m) (#) (s) (m) (#) (s) (m) (#) (s)
1 188 901 572.7 158 0.1 526.4 150 0.6 377.3 169 1160.8
2 121 423 0.0 0 0.0 0.0 0 0.2 0.0 0 7.9
3 99 322 0.0 0 0.0 0.0 0 0.2 0.0 0 5.4
4 137 469 0.0 0 0.0 0.0 0 0.3 0.0 0 9.3
5 185 862 515.4 80 0.1 499.6 80 0.9 505.4 120 1159.4
6 184 924 249.5 66 0.1 249.5 64 0.5 455.7 111 1062.5
7 157 656 0.0 0 0.0 0.0 0 0.2 0.0 0 13.1
8 179 797 171.5 25 0.0 171.5 25 0.4 245.8 30 1085.4
9 173 856 262.1 56 0.1 262.1 51 0.5 228.9 46 1083.4
10 183 901 598.4 191 0.2 579.7 184 0.6 843.9 204 1156.0
11 185 873 952.7 133 0.1 952.7 133 0.6 374.4 55 1135.1
12 174 918 988.1 184 0.3 836.2 155 0.6 530.7 56 1129.3
13 188 930 286.3 76 0.1 286.3 76 0.4 338.3 107 1155.5
14 201 1100 1003.3 208 0.2 901.9 200 0.5 935.5 210 1157.7
15 194 1053 748.1 211 0.2 748.1 203 0.6 554.5 229 1119.7
16 173 907 1365.6 274 0.2 1249.1 258 0.6 295.7 84 1141.2
17 188 958 640.5 91 0.1 640.5 91 0.4 817.8 121 1145.4
18 199 1047 1063.9 379 0.4 1089.8 340 0.7 589.9 238 1118.5
19 156 801 1159.0 118 0.1 1032.9 106 0.4 428.5 64 1139.6
20 148 778 302.9 32 0.0 302.9 32 0.3 395.5 41 1144.7
21 186 973 1797.9 542 0.4 1726.8 530 0.8 918.6 351 1139.1
x̄ 171.3 830.9 603.7 134.5 0.1 574.1 127.5 0.5 420.8 106.5 917.6

that using this preprocessing we had to delay a small fraction of the trains in the five month
period (0.8 % of the inbound trains for in total 82 minutes and 0.08 % of the outbound
trains for in total 70 minutes). It should be noted, however, that arrival and departure times
can be negotiated with the network provider. Further, in daily operations, the planners do
not strictly follow a fixed rule to determine the roll-in order. In about 90% of the cases,
trains are rolled-in in the same order as they arrive. In the remaining cases, the above rule
of rolling in according to earliest deadline is followed.

4.3 Results

Table 1 shows the results obtained for the problem instances using the above approaches.
The instances are seven days long and cover Saturday until the next Friday. In the table,
Heuristic is the heuristic from Section 2.1, Heuristic++ is the same heuristic improved using
the algorithm in Section 2.2, and MIP is the integer programming model from Section 3,
where we first solve the feasibility mixing problem as described above. The MIP computations
were carried out using Python 2.6 and Gurobi 4.5 on a standard dual-core desktop computer.
A time limit of 10 minutes for feasibility and an additional 10 minutes for optimality was
imposed.

As can be seen in Table 1, both heuristics reach feasibility with regard to the total
mixing capacity of 1217 m in most of the problem instances. The improvement heuristic
from Section 2.2 lowers the mixed track usage and number of extra roll-ins compared to the

ATMOS’11

50 Track Allocation in Freight-Train Classification with Mixed Tracks

original coloring heuristic from Section 2.1 many instances. The MIP model finds feasible
mixing solutions in all instances tried, in many cases with much fewer extra roll-ins compared
to the heuristics. In addition, in 17 out of the 21 cases we could have managed with just
one mixed track of length of 608 or 609 m instead of two. However, it should be noted that
the runtime when optimizing the number of extra roll-ins was terminated after 10 minutes
without finding an optimal solution. The MIP gap for the model minimizing the number of
car roll-ins is almost always 100.0 %. At the same time, the run-time of the heuristics is
negligible, as it is in the order of a fraction of a second. Although the experiments suggest
that the MIP performs fast enough, we remark that faster algorithms would enable other
applications as, e.g., online booking systems, similar to those in passenger traffic, where
customers could make a reservation to book their cars on specific trains.

Worth noting is that instances 2–4 contain both holidays and major disruptions due to
snowfall, which explains the lower load seen in Table 1. In addition, instance 7 contains a
large derailment which occurred on a major line in northern Sweden. As a result, freight
had to be transported on lines with lower capacity than normal, hence the lower volumes at
Hallsberg during this period.

Acknowledgements

We are grateful to Per Danielsson for providing us with the visualization tool for the
classification yard occupation. We would also like to thank Pertti Kuusisto and Patrik
Fritzing at Trafikverket for providing the yard layout and details on shunt yard operation,
and Stefan Huss at Green Cargo AB for verifying timing properties in the model.

References

1 C. Alzén. Trafikeringsplan Hallsbergs rangerbangård. Banverket, May 2006.
2 U. Blasum, M. R. Bussieck, W. Hochstättler, C. Moll, H.-H. Scheel, and T. Winter. Schedul-

ing trams in the morning. Mathematical Methods of Operations Research, 49(1):137–148,
March 1999.

3 F. Bonomo, G. Durán, and J. Marenco. Exploring the complexity boundary between
coloring and list-coloring. Annals OR, 169(1):3–16, 2009.

4 S. Cornelsen and G. D. Stefano. Track assignment. J. Discrete Algorithms, 5(2):250–261,
2007.

5 E. Dahlhaus, P. Horák, M. Miller, and J. F. Ryan. The train marshalling problem. Discrete
Applied Mathematics, 103(1–3):41–54, 2000.

6 E. Dahlhaus, F. Manne, M. Miller, and J. Ryan. Algorithms for combinatorial problems
related to train marshalling. In Proceedings of the Eleventh Australasian Workshop on
Combinatorial Algorithms (AWOCA), pages 7–16, 2000.

7 G. Di Stefano and M. L. Koči. A graph theoretical approach to the shunting problem.
Electronic Notes in Theoretical Computer Science, 92:16–33, February 2004.

8 M. Gatto, J. Maue, M. Mihalák, and P. Widmayer. Shunting for dummies: An introductory
algorithmic survey. In Robust and Online Large-Scale Optimization, volume 5868 of LNCS,
pages 310–337. Springer, 2009.

9 S. He, R. Song, and S. S. Chaudhry. An integrated dispatching model for rail yards
operations. Computers & OR, 30(7):939–966, 2003.

10 R. Jacob, P. Márton, J. Maue, and M. Nunkesser. Multistage methods for freight train
classification. Networks, 57(1):87–105, 2011.

M. Bohli, H. Flier, J. Maue and M. Mihalák 51

11 M. W. Siddiqee. Investigation of sorting and train formation schemes for a railroad hump
yard. In Proceedings of the 5th International Symposium on the Theory of Traffic Flow and
Transportation, pages 377–387, 1972.

12 T. Winter and U. T. Zimmermann. Real-time dispatch in storage yards. Annals of Opera-
tions Research, 96(1-4):287–315, November 2000.

ATMOS’11

Faster Batched Shortest Paths in Road Networks
Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck

Microsoft Research Silicon Valley
Mounatin View, CA, 94043, USA
{dadellin,goldberg,renatow}@microsoft.com

Abstract
We study the problem of computing batched shortest paths in road networks efficiently. Our
focus is on computing paths from a single source to multiple targets (one-to-many queries). We
perform a comprehensive experimental comparison of several approaches, including new ones.
We conclude that a new extension of PHAST (a recent one-to-all algorithm), called RPHAST,
has the best performance in most cases, often by orders of magnitude. When used to compute
distance tables (many-to-many queries), RPHAST often outperforms all previous approaches.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Shortest Paths, Contraction Hierarchies, Many-to-Many, One-to-Many

Digital Object Identifier 10.4230/OASIcs.ATMOS.2011.52

1 Introduction

Motivated by web-based map services and autonomous navigation systems, the problem of
finding shortest paths in road networks has received a great deal of attention recently. The
main focus has been on the point-to-point variant of the problem: finding the best path from
a single source s to a single target t. Years of research have led to very fast algorithms for this
problem—see e.g. [5, 6] for overviews. Queries now need only a few memory accesses [1, 3].

Several applications, however, actually need the distances between sets of vertices. This
has been formalized by Knopp et at. [16] as the many-to-many problem: given two sets of
vertices, S and T , compute an |S| × |T | table with distances between them. They show that
this can be solved much faster than simply running |S| · |T | point-to-point queries.

More recently, Delling et al. [4] considered another extended scenario: one-to-all queries.
In this setting, one must compute the shortest paths from a source s to all other vertices
in the graph. The method proposed by Delling et al. (called PHAST) can be orders of
magnitude faster than Dijkstra’s algorithm, and (unlike Dijkstra) can be easily parallelized.

This paper focuses on the one-to-many variant: given a set of targets T , compute the
distances between a source s and all vertices in T . We assume the set T is given in advance
and allow some extra processing to handle it. Queries (sources) then arrive in on-line fashion.

This version of the problem has several practical applications. It appears, for example,
in algorithms for path prediction, which anticipate the trajectory of drivers using GPS
locations [17, 18]. One must maintain a probability distribution over all possible destinations
(typically any intersection within a metropolitan area). As the car moves, the distribution
is updated accordingly. This is done under the assumption that, whatever the destination
is, the driver wants to get there quickly—along a shortest path. Updating the probabilities
requires computing shortest paths from the current location to all candidate destinations.

One-to-many shortest paths are also needed in mobile opportunistic planning [14]. At
any point during a planned trip from s to t, the system must evaluate a set of potential
intermediate goals (such as gas stations, coffee shops, or grocery stores) that may be suggested

© Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck;
licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 52–63

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.52
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

D. Delling, A. Goldberg, and R. Werneck 53

to the driver. Deciding which waypoint to present depends on several factors, including the
length of the modified route: compared to the original route to t, how much longer is the
route that passes through the waypoint? This can be easily determined with two one-to-many
computations, from s to the waypoints and from t to the waypoints (in the reverse graph).

A related application is ride sharing [11]. Here, one is given a set of offers (s, t), people
driving from s to t who are willing to offer rides. When somebody searches for a ride from s′

to t′, it should be matched to the offer that requires the smallest detour. Taking the s′–t′
path as a waypoint, this can be solved with one point-to-point and two one-to-many queries.

One-to-many queries also appear in some map matching algorithms [9]. In this case, one
must find paths between clouds of points, each representing one (imprecise) GPS or cell
tower reading. Assuming drivers drive efficiently, one can infer the most likely locations of a
user by performing a series of shortest path computations between candidate points.

In this work, we study how existing approaches can be adapted to the one-to-many
problem. More importantly, we introduce RPHAST (restricted PHAST), a new algorithm
for this problem. An extensive experimental evaluation shows that RPHAST often yields the
best running times for one-to-many computations. When the targets are close together, the
speedup over existing algorithms is more than an order of magnitude. Besides being faster,
RPHAST also uses less space than previous approaches. Moreover, our experiments show
that RPHAST is often the best choice for solving the many-to-many problem.

This paper is organized as follows. Section 2 has background information, including
notation, formal problem definitions, and related work. Section 3 is dedicated to the one-to-
many problem; besides introducing our new algorithm, we discuss how existing techniques
can be applied. Section 4 presents a thorough experimental evaluation of all techniques
considered. Final remarks are made in Section 5.

2 Preliminaries and related work

We treat a road network as a graph G = (V,A) where vertices represent intersections and arcs
represent road segments. Let |V | = n and |A| = m. Each arc (v, w) ∈ A has a nonnegative
length `(v, w) representing the time to travel along the corresponding road segment.

The many-to-many shortest path problem takes as input the graph G, a nonempty set
of sources S ⊆ V , and a nonempty set of targets T ⊆ V . Its output is an |S| × |T | table
containing the distances dist(s, t) from each source s ∈ S to each target t ∈ T . Other variants
of the problem are special cases. The standard point-to-point shortest path problem has a
single source s (S = {s}) and a single target t (T = {t}). The one-to-many problem has
a single source s, but multiple targets (|T | ≥ 1). Finally, the one-to-all problem requires
computing the distances from a single source to all vertices in the graph (S = {s}, T = V).

The remainder of this section reviews existing algorithms that are natural building
blocks for the solution of the one-to-many problem: Dijkstra’s algorithm [8], Contraction
Hierarchies [12], Hub Labels [1], bucket-based many-to-many algorithms [16], and PHAST [4].

2.1 Dijkstra’s algorithm
The standard approach to computing shortest paths in networks with nonnegative arc lengths
is Dijkstra’s algorithm [8]. For every vertex v, it maintains the length d(v) of the shortest
known path from the source s, as well as the predecessor (parent) p(v) of v on the path.
Initially d(s) = 0, d(v) =∞ for all other vertices, and p(v) = null for all v. The algorithm
maintains a priority queue of unscanned vertices with finite d values. At each step, it removes
from the queue a vertex v with minimum d(v) value and scans it: for every arc (v, w) ∈ A

ATMOS’11

54 Faster Batched Shortest Paths on Road Networks

with d(v) + `(v, w) < d(w), it sets d(w) = d(v) + `(v, w) and p(w) = v. The algorithm
terminates when the queue becomes empty or (for point-to-point or one-to-many queries)
when all targets in T are scanned.

Dijkstra’s running time is O(m logn) with binary heaps (or k-heaps [15]), and O(m +
n logn) with Fibonacci heaps. When arc lengths are integers in the range [0, C], the algorithm
runs in O(m+n log C

log log C) worst-case time with multi-level buckets [7]. A variant of multi-level
buckets, smart queues [13], gives a linear expected time implementation if arc lengths are
uniformly distributed. Furthermore, on many graph classes (including road networks), the
smart queue implementation is no more than twice as slow as breadth-first search (BFS).

2.2 Contraction hierarchies
For point-to-point queries in road networks, several techniques can be much faster than
Dijkstra (see [5, 6] for overviews). They work in two phases. The preprocessing phase, which
is run offline, takes the graph as input and computes some auxiliary data. The query phase
takes the source s and the target t as inputs, and uses the auxiliary data to speed up the
computation of the shortest s–t path. We focus on Contraction Hierarchies (CH) [12], a
two-phase algorithm that is a crucial building block for all methods we consider.

The preprocessing phase of CH picks a total order among the vertices and shortcuts them
in this order. The shortcut operation, applied to a vertex v, temporarily deletes v from the
graph and adds arcs between its neighbors to maintain the shortest path information. More
precisely, for any pair {u,w} of neighbors of v such that (u, v) · (v, w) is the only shortest
u–w path in the current graph, we add a shortcut (u,w) with `(u,w) = `(u, v) + `(v, w). The
output of the preprocessing phase is the set A+ of shortcut arcs, together with the position
of each vertex v in the order (denoted by rank(v)). The algorithm is correct with any order,
but query times and the size of A+ may vary. In practice, the next vertex to shortcut is
picked using on-line heuristics that try to keep the graph sparse by considering (among other
factors) the number of arcs added and removed in each step [12].

The query phase of CH runs a bidirectional version of Dijkstra’s algorithm on the
graph G+ = (V,A ∪A+), but only looking at upward arcs, i.e., those leading to neighbors
with higher rank. More precisely, let A↑ = {(v, w) ∈ A ∪ A+ : rank(v) < rank(w)} and
A↓ = {(v, w) ∈ A ∪ A+ : rank(v) > rank(w)}. The forward search works on G↑ = (V,A↑),
and the reverse search on G↓ = (V,A↓). Each vertex v maintains (possibly infinite) upper
bounds ds(v) and dt(v) on its distances from s (found by the forward search) and to t (found
by the reverse search). The algorithm keeps track of the vertex u minimizing µ = ds(u)+dt(u),
and stops when the minimum value in either priority queue is at least as large as µ.

Consider the maximum-rank vertex u on the shortest s–t path. As shown by Geisberger
et al. [12], u minimizes ds(u) + dt(u) and the shortest s–t path is the concatenation of the
s–u path (found by the forward search) and the u–t path (found by the backward search).

On continental road networks, CH visits only a few hundred vertices (out of tens of
millions), making it four orders of magnitude faster than Dijkstra’s algorithm [12].

2.3 Hub labels
Hub Labels (HL) [1] is a labeling algorithm [10] for the point-to-point problem. During
preprocessing, it computes two labels for each vertex v ∈ V . The forward label Lf (v) contains
tuples (u, d(v, u)) (for several u), while the reverse label Lr(v) contains tuples (w, d(w, v))
(for several w). (Here d(x, y) denotes an upper bound on dist(x, y).) These labels must have
the cover property: for any pair s, t ∈ V , there is at least one vertex v (called the hub) in

D. Delling, A. Goldberg, and R. Werneck 55

both Lf (s) and Lr(t) such that d(s, v) + d(v, t) = dist(s, t). An s–t query consists of simply
traversing the labels and identifying the vertex v minimizing d(s, v) + d(v, t).

HL uses CH to compute labels during preprocessing. Lf (v) consists of all vertices scanned
during an upward CH search in G↑, and Lr(v) contains all vertices scanned by an upward
CH search in G↓. The cover property follows from the correctness of CH.

Making HL practical on continental road networks requires many optimizations [1]. For
example, removing from the labels all vertices whose distance bounds (given by the CH
search) are too high reduces the average label size by 80%. One can also use shortest path
covers (SPCs) [2] to identify the most important vertices of the graph and improve the CH
order. This slows down preprocessing, but reduces the average label size to less than 100.

HL is the fastest technique for computing point-to-point shortest paths in road networks.
With an efficient representation of the labels, queries need only a few memory accesses. This
is orders of magnitude faster than CH. Unfortunately, preprocessing is one or two orders of
magnitude more costly in terms of time (computing SPCs) and space (storing all labels).

2.4 Buckets
We now consider the computation of many-to-many shortest paths. As already mentioned,
the goal is to fill an |S| × |T | distance table D with the distances between every source s ∈ S
and every target t ∈ T . This problem can be solved by computing |S| · |T | point-to-point
shortest paths, but this can be wasteful. Knopp et al. [16] propose a bucket-based approach
that extends any hierarchical speedup technique (such as CH) and can be much more efficient.

The algorithm starts by setting all entries in D to ∞ and creating an empty bucket
B(v) for each vertex v ∈ V . Then, for each t ∈ T , it runs a reverse CH search (an upward
search in G↓) and adds a tuple (t, d(v, t)) to the bucket of each vertex v scanned. Finally,
the algorithm fills the matrix by running a forward CH search (an upward search in G↑)
from each s ∈ S. When scanning a vertex v, we process its bucket as follows. For every tuple
(t, d(v, t)) ∈ B(v), one checks if d(s, v) + d(v, t) improves the value of D(s, t) and updates the
table accordingly. It is easy to see that the table will eventually have the correct distances.

Knopp et al. [16] observe that, in practice, it is faster to compute buckets in two steps
during preprocessing. First, one runs reverse CH searches to generate an array of triples
of the form (v, t, d(v, t)) (indicating v was reached during a search from t). This array is
then sorted (using a standard comparison-based algorithm) according to the first element in
each triple. Buckets can then be associated with contiguous segments of the array. Because
sorting has good locality, it is not the bottleneck—the CH searches are more expensive.

2.4.1 HL buckets
Our experiments consider a straightforward application of the bucket method that uses HL as
the underlying algorithm (instead of CH): a reverse HL label is a precomputed (and pruned)
version of the reverse CH search space. Using HL leads to somewhat smaller buckets, but its
main advantage is speed: building the array of triples is faster by an order of magnitude.

Sorting the array then becomes the main bottleneck. We make it faster by using bucket
sort instead of a comparison-based algorithm. We cannot use the original vertex IDs as keys
(bucket identifiers), however: since there are much fewer than n buckets (and elements) when
T is small, most of the time would be spent visiting empty buckets. Instead, we temporarily
assign (sequential) IDs to all vertices that appear in at least one of the labels scanned,
ensuring that bucket sort runs in time proportional to the number of triples. With this
approach, sorting the array of k triples takes only twice as much time as creating it—and is

ATMOS’11

56 Faster Batched Shortest Paths on Road Networks

one order of magnitude faster than using a standard O(k log k) comparison-based algorithm.
While this technique could be applied to CH buckets, its effect would not be nearly as
noticeable: the bottleneck is creating the array, not sorting it.

2.5 PHAST
We now discuss the one-to-all problem, in which we must find the distances from a single
source s to all other vertices in the graph. At first sight, it seems one could not do much
better than Dijkstra’s algorithm, which is only twice as slow as a plain BFS [13]. Both
Dijkstra and BFS, however, have very poor locality. Since they grow a ball of increasing
radius around the source, the vertices in their working sets are usually spread over very
different regions of the graph—and in memory, leading to many cache misses. Changing the
graph layout in memory can help, but no single layout works well for all possible sources s.

For road networks, PHAST [4] offers a better solution. Unlike Dijkstra, it works in two
phases. Preprocessing is the same as in CH: it defines a total order among the vertices and
builds G↑ and G↓. A one-to-all query from s works as follows. Initially, set d(s) = 0 and
d(v) = ∞ for all other v ∈ V . Then run an upward search from s in G↑(a forward CH
search), updating d(v) for all vertices v scanned. Finally, the scanning phase of the query
processes all vertices in G↓ in reverse rank order (from most to least important). To process
v, we check for each incoming arc (u, v) ∈ A↓ whether d(u) + `(u, v) improves d(v). If it does,
we update the value. After all updates, d(v) will represent the exact distance from s to v.

The correctness of PHAST follows from the correctness of CH [4]. Take any vertex v, and
let w be the highest-ranked vertex on the shortest s–v path. PHAST finds the s–w subpath
during the upward CH search from s, and the w–v subpath during the scanning phase.

The main advantage of PHAST over Dijkstra is that only the (cheap) upward CH search
depends on the source s. The (more costly) scanning phase visits vertices and arcs in the
same order for any source. Permuting vertices appropriately during preprocessing ensures the
scanning phase accesses the lists of vertices and arcs sequentially, minimizing cache misses.
This alone makes PHAST about 15 times faster than Dijsktra in large road networks.

Delling et al. obtain even greater speedups by computing trees from multiple sources at
once (in applications that require it). To process a vertex v, the standard scanning phase
updates d(v) by looking at incoming arcs (u, v). Although the arc itself and d(v) are accessed
sequentially, reading d(u) may lead to a cache miss. Keeping k > 1 distance labels for each
vertex (one for each of k sources) allows us to amortize the cost of such a miss. When
processing (u, v), we read an array of distances to u ([d1(u), d2(u), . . . , dk(u)]), and use it
to update an array of distances to v ([d1(v), d2(v), . . . , dk(v)]). A cache miss will bring an
entire cache line from memory; setting k appropriately (typically to 16) ensures this data
is immediately useful. We can even use instruction-level parallelism (SSE instructions) to
process up to four entries at once. This makes it two orders of magnitude faster than Dijkstra.

This speedup is still obtained on a single core. PHAST can easily be parallelized, and is
orders of magnitude faster than Dijkstra for road networks when run on an NVIDIA GTX 580
GPU. For simplicity, however, this paper considers only single-core CPU implementations.

3 The one-to-many problem

We now study one-to-many shortest paths, the main focus of our paper. In its simplest
version, this is the problem of computing the distances from a single source s to all vertices
in a target set T . Given our motivating applications, however, we consider a slightly more
involved scenario. We are given a fixed set of targets T in advance, and are then required to

D. Delling, A. Goldberg, and R. Werneck 57

answer multiple one-to-many queries for different sources s. Unlike in the many-to-many
problem, the sources are revealed one at a time, and only after the set of targets. We therefore
consider algorithms with three phases: preprocessing (same as before), target selection (run
once T is known), and query (run for each s). We first consider straightforward applications
of the methods presented so far, then introduce a novel approach.

3.1 Straightforward approaches
Section 2 suggests three natural approaches to the one-to-many problem.

First, one can perform a single one-to-many query (from s to T) as a series of |T | point-
to-point queries. For every target t ∈ T , we perform an independent s–t query. Being the
fastest point-to-point algorithm, HL is the obvious candidate here. Note that there is no
need for a target selection phase.

The second approach is to consider the one-to-many problem a special case of many-to-
many, and use a bucket-based algorithm. The target selection phase builds the buckets from
the reverse search spaces of all elements in T . The query phase looks at the forward search
space from the source s, and processes the appropriate buckets. In our experiments, we test
both CH and HL as the underlying methods.

The third basic approach is to consider one-to-many a special case of one-to-all. One can
simply run a one-to-all algorithm from the source s to compute the distances to all vertices,
then extract only the distances to vertices in T (and discard all others). If the underlying
algorithm is Dijkstra’s, it can stop as soon as all vertices in T are scanned, which can lead to
significant speedups when s and T are restricted to a small area. In general, given its speed,
one would prefer to use PHAST instead. Because it does not visit vertices in increasing order
of distance, however, it is not clear how to have an early termination criterion.

3.2 Restricted PHAST
We now discuss a new algorithm that extends PHAST to handle the one-to-all scenario much
more efficiently. We call this extension restricted PHAST (or RPHAST).

RPHAST leaves the preprocessing phase untouched: it assigns ranks to all vertices and
builds the upward (G↑) and downward (G↓) graphs. Unlike PHAST, however, RPHAST has
a target selection phase. Once T is known, it extracts from the contraction hierarchy only
the information necessary to compute the distances from any source s ∈ V to all targets T ,
creating a restricted downward graph G↓

T . RPHAST has the same query phase as PHAST,
but using G↓

T instead of G↓. It still uses G↑ for the forward searches from the source.
The challenging aspect of this algorithm is ensuring correctness: the graph built by the

target selection phase must include all the information necessary to compute paths from any
vertex in the graph to any vertex in T . Since the forward search is done on the full graph
(G↑), we only need to ensure that G↓

T contains the reverse search spaces of all vertices in T .
We could compute this explicitly by running a separate CH search on G↓ from each vertex

in T and marking all vertices visited, but this would be slow. Instead, we perform a single
search from all vertices in T at once. More precisely, the target selection phase builds a set
T ′ of relevant vertices. It initializes both T ′ and a queue Q with T . While Q is not empty,
we remove a vertex u from it and check for each downward incoming arc (v, u) ∈ A↓ whether
v ∈ T ′. If not, we add v to T ′ and Q. This process scans only vertices in T ′, and each only
once. Finally, we build G↓

T as the subgraph of G↓ induced by T ′. This can also be done by
scanning only the vertices in T ′.

I Lemma 1. RPHAST is correct.

ATMOS’11

58 Faster Batched Shortest Paths on Road Networks

Proof. We must show that, for any pair of vertices s ∈ V and t ∈ T , RPHAST will compute
the shortest path from s to t. We claim that RPHAST will indeed find the same s–t path
(in G+ = G↑ ∪G↓) as a standard CH query would. Let u be the highest-ranked vertex on
this path. The shortest s–u path will be found by the forward CH search from s in G↑,
which RPHAST runs during the query phase (this follows from the correctness of CH). We
only need to show that the shortest u–t path in G↓ will be found by the scanning phase
of the RPHAST query. By definition, vertices on this path have monotonically decreasing
rank. Since the target selection phase of RPHAST works in this order (from most to least
important arc), it will find the path. This concludes the proof. J

If T changes, we must rerun only the target selection phase, which is much faster than
the full PHAST preprocessing. Although we only consider a single-core implementation in
this paper, all acceleration techniques for PHAST [4] can be applied to RPHAST as well.

We note that Eisner et al. [9] propose a target selection phase similar to ours for performing
one-to-many queries: they start a (backward) BFS in G↓ from all targets t ∈ T at once, and
mark all arcs scanned during this search. Queries are much different from RPHAST, however:
they run a forward CH search from the source s, but allow it to go downward on marked
arcs. We call this approach CH top-down (CTD). Because it is Dijkstra-based, CTD queries
should be much slower than RPHAST. This is confirmed by our experiments in Section 4.

3.2.1 Full shortest paths
So far, we have assumed one only needs to compute the distances to T . RPHAST (and all
other CH-based algorithms) could be trivially extended to maintain parent pointers, allowing
easy retrieval of actual shortest paths in G+ (which usually contain shortcuts). If the original
graph edges are needed, one can use well-known path unpacking techniques [12] to expand
the shortcuts. Since each shortcut is a concatenation of two arcs (or shortcuts), storing its
“middle” vertex during preprocessing is enough for fast recursive unpacking during queries.

In certain applications, however, the set S of possible sources is known in advance—for
example, when running path prediction algorithms within a single metropolitan area or state.
In such cases, RPHAST does not need to keep the entire graph (and all shortcuts) in memory:
we can modify its target selection phase to keep only the data needed for unpacking.

The main idea is to extend T ′ by all vertices that can be on shortest paths to T . We call
this set T ′′. For simplicity, assume S ⊆ T (if not, just extend T by S). The main issue here
is that shortest paths between two vertices in T may actually contain vertices outside T .

We start by computing T ′ as in standard RPHAST. We must build the transitive shortest
path hull of T , consisting of all vertices on shortest paths between all pairs {u, v} ∈ T . To
do so, we first identify all boundary vertices BT of T , i.e., all vertices in T with at least one
neighbor u /∈ T in the original graph G. (If a shortest path ever leaves T , it must do so
through a boundary vertex.) From each b ∈ BT , we run an RPHAST query to compute
all distances to T . We then mark all vertices and arcs in G↑ and G↓ that lie on a shortest
path to any t ∈ T . This procedure marks the shortest path hull in G+. We obtain T ′′ by
unpacking all marked shortcuts and marking their internal vertices as well. This can be done
by a linear top-down sweep over all marked vertices: for each vertex, we mark the middle
vertex of each marked incident shortcut, as well as its two constituent arcs (or shortcuts).
T ′′ is the set of all marked vertices at the end of this process.

The query phase performs the downward sweep on G↓
T ′′ (the subgraph of G↓ induced by

T ′′). To query the parent vertex of a vertex u ∈ T ′′, we simply iterate over all incoming
(original) arcs (v, u) and check whether d(v) + `(v, u) = d(u).

D. Delling, A. Goldberg, and R. Werneck 59

Note that this approach is only practical when S ∪ T is a clustered set. In such cases,
query times hardly increase because T ′′ is not much bigger than T ′. The selection phase is
about an order of magnitude slower than for standard RPHAST, however.

4 Experiments

We implemented all algorithms in C++ and compiled them with Microsoft Visual C++ 2010.
We use smart queues [13] for Dijkstra’s algorithm and binary heaps for all other methods
(because the priority queues are small in such cases, they have little impact on performance).

Our evaluation was done on a dual Intel Xeon 5680 running Windows Server 2008R2
with 96GB of DDR3-1333 RAM. Each CPU has six cores clocked at 3.33 GHz. Preprocessing
algorithms use multiple cores, but target selection and queries are sequential. Our benchmark
instance is the European road network, with 18 million vertices and 42 million arcs, made
available by PTV AG [19] for the 9th DIMACS Implementation Challenge [6]. To improve
locality [4], we reorder the vertices of the graph in DFS order. The length of an arc represents
the travel time between its endpoints. We represent lengths and distances as 32-bit integers.
We do not test more road networks here due to space limitations, but note that RPHAST
should work well on any input on which pure PHAST (or CH) works well [4].

We tested all algorithms mentioned in Section 3. We used the fastest single-core imple-
mentation of PHAST described by Delling et al. [4]. Our implementation of RPHAST is
based on it, with the same ranking function. For HL, we used the “local” version proposed
by Abraham et al. [1], as it is better suited for the application than the more complicated
version optimized for long-range queries. CTD uses the same ranking function as PHAST.
We implemented the bucket-based algorithm using both HL (also the “local” version) and
CH as building blocks; we refer to the resulting algorithms as BHL and BCH. BCH uses the
same ranking function as PHAST, and applies full stall-on-demand [20] when performing the
upward searches to populate the buckets. As mentioned in Section 2.4.1, target selection
uses bucket sort for BHL, but comparison-based sorting for BCH. All algorithms compute
only distances, not the full shortest path descriptions.

4.1 One-to-many
In some applications of the one-to-many problem, such as finding nearby airports, the targets
may be spread over the whole graph. In others, such as path prediction, the targets may
be all vertices within a certain region (a city or metropolitan area). To model this, our
experiments take into account both the number of targets and their distribution.

To generate our test problems, we pick a center c at random and run Dijkstra’s algorithm
from it until reaching a predetermined number of vertices. Let B be the set of vertices thus
visited. We then pick our targets T as a random subset of B. The input parameters are |B|
(the size of the ball) and |T | (the number of targets). Note that |T | ≤ |B|. By varying these
parameters, we can simulate the different scenarios described above.

In our first experiment, we fix the number of targets |T | at 16 384 (214) and consider
two different ball sizes, |B| = |T | (the targets are all vertices in a contiguous region) and
|B| = 64 · |T | (the targets are spread over a larger region). We pick sources uniformly at
random from B. (Picking sources from the entire graph would hurt Dijkstra significantly,
with almost no effect on the other algorithms.) For each set of parameters, we test 100
different sets of targets, each with 100 different sources.

Table 1 shows the results. For each algorithm, it first reports the total space required
by the preprocessed data (including the original graph, if applicable) and the preprocessing

ATMOS’11

60 Faster Batched Shortest Paths on Road Networks

Table 1 Performance of various algorithms.

|T | = |B| = 214 |T | = 214, |B| = 220

preprocessing selection query selection query
space time space time time space time time

algorithm [GB] [h:m] [MB] [ms] [ms] [MB] [ms] [ms]
Dijkstra 0.4 — — — 7.43 — — 457.70
HL 20.1 2:39 — — 6.27 — — 6.94
BCH 0.4 0:05 15.65 943.3 1.72 15.44 991.0 2.81
BHL 20.1 2:39 11.21 50.9 1.40 11.35 80.0 1.85
CTD 0.4 0:05 0.43 2.4 2.39 3.36 37.3 23.95
PHAST 0.4 0:05 — — 136.92 — — 136.92
RPHAST 0.4 0:05 0.43 1.8 0.17 3.36 27.5 1.02

time (using all cores). Then, for each value of |B|, it shows the total target selection space
(the amount of additional data it generates), the target selection time, and the average query
time. Selection and query times for a wider range of |B| are also shown in Figure 1.

The running time of Dijkstra’s algorithm is proportional to |B|; it performs reasonably
when |B| = |T |, but poorly when |B| � |T |. For |B| = 220 it is slower than PHAST, which
solves the one-to-all problem.

RPHAST improves on PHAST by restricting the search space based on the target set.
The improvement is bigger when the targets are close together, since there is less intersection
between their search spaces. Changing |B| from 214 to 220 increases the selection space by
a factor of 7.3, from 0.43MB to 3.36MB. This corresponds to an increase in the average
number of vertices in G↓

T from 18 009 to 117 419. Query times increase slightly less (because
the cost of the forward CH search does not depend on |B|), but selection times increase more
(due to worse locality). Even for |B| = 220, however, RPHAST remains the fastest algorithm.

CTD and RPHAST share the same target selection phase, and work on the same graph
during queries. CTD queries are much slower than RPHAST queries, however, due to poor
locality: RPHAST performs a linear sweep, while CTD must run a Dijkstra-based search.
For CTD, queries take about as much time as target selection, since both phases process
about the same amount of data with similar access patterns.

HL and the bucket-based algorithms become only slightly slower as |B| gets larger, mostly
due to worse locality. The total number of elements in all buckets (and therefore the number
of operations) does not depend on |B|. BHL has slightly smaller buckets than BCH, since
HL labels correspond to smaller search spaces. Selection times do increase slightly with |B|,
however, since elements are spread over more buckets. Because of its better initial locality,
BHL selection is more affected, but is always an order of magnitude faster than BCH (thanks
in part to the acceleration proposed in Section 2.4.1). Preprocessing, however, is much more
expensive (in terms of both time and space) for HL than for CH.

The bucket-based methods have comparable query performance, with a slight advantage
to BHL due to smaller buckets. For large |B|, however, BCH can be faster because it assigns
vertex IDs in a more cache-friendly way.

HL queries are less than five times slower than the bucket-based approaches, which is
surprisingly competitive for a simple application of a point-to-point algorithm. The fact that
HL is slower than BCH is consistent with the findings of Geisberger et al. [12], who considered
label-like structures to compute many-to-many queries, but ended up using buckets instead.

Figure 1 shows the results of varying |B| with |T | fixed at 214. When |B| is small,

D. Delling, A. Goldberg, and R. Werneck 61

Ball Size

Q
ue

ry
 T

im
e

[m
s]

214 215 216 217 218 219 220 221 222 223 224

0.
1

1
10

10
0

10
00

0.
1

1
10

10
0

10
00

●

+
x

●

●

Dijkstra
HL
PHAST

RPHAST query
RPHAST select
BCH query

BCH select
BHL query
BHL select

●

●

●

●

●

●

●

●

●
●

●

+ + + + + + + + + + +

x x x x x x x x x x x

● ● ● ● ● ●
● ● ● ●

●

● ● ● ● ● ●
● ●

● ● ●

Figure 1 Running times of one-to-many algorithms with |T | = 214 targets picked from a ball of
varying size |B|.

RPHAST outperforms other algorithms by an order of magnitude or more. (We omit CTD
for clarity: both selection and query times would closely follow the RPHAST selection curve.)
As |B| increases, bucket-based algorithms become more competitive. The figure shows that,
for |T | = 214, BHL and BCH become faster than RPHAST when |B| is between 222 and
223. The crossover point depends on |T |. Additional experiments show that it happens at
|B| ≈ 214 for |T | = 210, and not at all for |T | = 218, when RPHAST queries are always faster.
Similarly, BHL can have faster target selection than RPHAST when |T | is small and |B| is
large. Target selection is always faster for RPHAST than BCH, however.

4.2 Many-to-many

In light of these new results, we now reexamine the many-to-many problem. Recall that its
input is a set S of sources and a set T of targets, and the goal is to compute an |S| × |T |
table of distances between them. To solve this problem with one-to-many algorithms, we run
the target selection phase on T followed by one-to-many queries from each vertex in S. In
fact, this is exactly what the original many-to-many bucket-based algorithms do [16].

As in the previous experiment, we grow Dijkstra balls B from random points, and pick
both S and T from B. For simplicity, we consider only the symmetric case, where |S| = |T |.

Figure 2 shows the running times for |S| = |T | = 214 and varying |B|. For all algorithms,
running times include both target selection and the subsequent one-to-many queries. It
excludes preprocessing times, which are the same as in Table 1. Each point is the average of
100 balls, each with a single {S, T} pair. Note that we use a linear scale in the vertical axis
(not logarithmic, as in Figure 1). The plot contains all one-to-many algorithms studied in
the previous section, except Dijkstra, CTD, and PHAST, which are much worse. In addition,
it includes results for SSE RPHAST, a variant of RPHAST that processes 16 trees at once
and uses SSE instructions, as described in Section 2.5. Note that, like all other algorithms
tested, RPHAST still uses a single CPU core.

ATMOS’11

62 Faster Batched Shortest Paths on Road Networks

Ball Size

Q
ue

ry
 T

im
e

[s
]

214 215 216 217 218 219 220 221 222 223 224

0
20

40
60

80
10

0

0
20

40
60

80
10

0

●

+
x

HL
BCH
BHL
RPHAST
SSE RPHAST

●
●

●

●
●

●

●

●
●

●

●

+ +
+

+
+

+
+

+ + +
+

x x x x x x
x x

x x
x

Figure 2 Running times of many-to-many algorithms with |S| = |T | = 214 picked from a ball of
varying size |B|.

Because |T | is rather large in the experiment, one-to-many queries are collectively much
more expensive than target selection. As a result, the relative query times of HL, BCH,
BHL, and RPHAST do not change much. HL is somewhat slower than the bucket-based
methods; RPHAST is an order of magnitude faster when the sources are concentrated, but
eventually becomes slower. Better cache utilization and instruction-level parallelism make
SSE RPHAST about five times faster than RPHAST, and always faster than the bucket-based
algorithms. If |B| = |T |, SSE RPHAST (0.95ms) is 30 times faster than BCH (28.76ms),
the best previously known algorithm for this problem.

Of course, varying |T | may change the relative order a bit. In particular, with |T | = 210,
BHL eventually becomes faster than SSE RPHAST (for |B| ≈ 222), but only slightly. In
contrast, BCH never catches up, due to its much slower target selection phase.

5 Conclusion

We have studied the problem of computing one-to-many shortest paths on road networks
with travel times. We observed that a new algorithm, RPHAST, can answer queries an order
of magnitude faster than any previous solution when targets are numerous or concentrated in
a restricted area. When targets are few and spread out, existing many-to-many algorithms
can be faster, as long as there are enough queries to amortize their much higher cost of target
selection. Because target selection is much cheaper than in previous solutions, our algorithm
is particularly useful for applications such as path prediction, where there are many targets
but relatively few queries (sources). When applied to the many-to-many problem, RPHAST
usually outperforms existing bucket-based solutions, often by a significant margin.

Acknowledgements. We thank John Krumm for pointing us to applications of the one-to-many
problem, and the anonymous referees for suggestions that helped improve the paper.

D. Delling, A. Goldberg, and R. Werneck 63

References
1 I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A Hub-Based Labeling Algo-

rithm for Shortest Paths on Road Networks. In SEA, LNCS 6630, pp. 230–241. Springer,
2011.

2 I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway Dimension, Shortest
Paths, and Provably Efficient Algorithms. In SODA, pp. 782–793. SIAM, 2010.

3 H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. In Transit to Constant
Shortest-Path Queries in Road Networks. In ALENEX, pp. 46–59. SIAM, 2007.

4 D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F. Werneck. PHAST: Hardware-
Accelerated Shortest Path Trees. In IPDPS. IEEE Computer Society, 2011.

5 D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering Route Planning Algo-
rithms. In Algorithmics of Large and Complex Networks, LNCS 5515, pp. 117–139. Springer,
2009.

6 C. Demetrescu, A. V. Goldberg, and D. S. Johnson, editors. The Shortest Path Problem:
Ninth DIMACS Implementation Challenge, DIMACS Book 74. AMS, 2009.

7 E. V. Denardo and B. L. Fox. Shortest-Route Methods: 1. Reaching, Pruning, and Buckets.
Operations Research, 27(1):161–186, 1979.

8 E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische Mathe-
matik, 1:269–271, 1959.

9 J. Eisner, S. Funke, A. Herbsty, A. Spillnery, and S. Storandt. Algorithms for Matching
and Predicting Trajectories. In ALENEX, pp. 84–95. SIAM, 2011.

10 C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance Labeling in Graphs. J. Algorithms,
53(1):85–112, 2004.

11 R. Geisberger, D. Luxen, P. Sanders, S. Neubauer, and L. Volker. Fast Detour Computation
for Ride Sharing. In ATMOS, OASIcs, 2010.

12 R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction Hierarchies: Faster
and Simpler Hierarchical Routing in Road Networks. In WEA, LNCS 5038, pp. 319–333.
Springer, 2008.

13 A. V. Goldberg. A Practical Shortest Path Algorithm with Linear Expected Time. SIAM
Journal on Computing, 37:1637–1655, 2008.

14 E. Horvitz, P. Koch, and M. Subramani. Mobile Opportunistic Planning: Methods and
Models. In User Modeling, pp. 238–247, 2007.

15 D. B. Johnson. Efficient Algorithms for Shortest Paths in Sparse Networks. Journal of the
ACM, 24(1):1–13, 1977.

16 S. Knopp, P. Sanders, D. Schultes, F. Schulz, and D. Wagner. Computing Many-to-Many
Shortest Paths Using Highway Hierarchies. In ALENEX, pp. 36–45. SIAM, 2007.

17 J. Krumm and E. Horvitz. Predestination: Inferring destinations from partial trajectories.
In UbiComp, pp. 243–260, 2006.

18 J. Krumm and E. Horvitz. Predestination: Where Do You Want to Go Today? IEEE
Computer Magazine, 40(4):105–107, 2007.

19 PTV AG - Planung Transport Verkehr. http://www.ptv.de.
20 D. Schultes and P. Sanders. Dynamic Highway-Node Routing. In WEA, LNCS 4525, pp.

66–79. Springer, 2007.

ATMOS’11

http://www.ptv.de

UniALT for Regular Language Constrained
Shortest Paths on a Multi-Modal Transportation
Network
Dominik Kirchler1,2,3, Leo Liberti1, Thomas Pajor4, and
Roberto Wolfler Calvo2

1 LIX, Ecole Polytechnique
{kirchler,liberti}@lix.polytechnique.fr

2 LIPN, Université Paris 13
roberto.wolfler@lipn.univ-paris13.fr

3 Mediamobile, Ivry sur Seine, France
4 Karlsruhe Institute of Technology

pajor@kit.edu

Abstract
Shortest paths on road networks can be efficiently calculated using Dijkstra’s algorithm (D). In
addition to roads, multi-modal transportation networks include public transportation, bicycle
lanes, etc. For paths on this type of network, further constraints, e.g., preferences in using
certain modes of transportation, may arise. The regular language constrained shortest path
problem deals with this kind of problem. It uses a regular language to model the constraints.
The problem can be solved efficiently by using a generalization of Dijkstra’s algorithm (DRegLC).
In this paper we propose an adaption of the speed-up technique uniALT, in order to accelerate
DRegLC. We call our algorithm SDALT. We provide experimental results on a realistic multi-modal
public transportation network including time-dependent cost functions on arcs. The experiments
show that our algorithm performs well, with speed-ups of a factor 2 to 20.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Time-Dependency, ALT, Regular Language, Shortest Path, Multi-Modal

Digital Object Identifier 10.4230/OASIcs.ATMOS.2011.64

1 Introduction

Shortest paths on road networks can be efficiently calculated using Dijkstra’s algorithm [8].
In addition to roads, multi-modal transportation networks include public transportation,
walking paths, bicycle lanes, etc. Paths on this type of network may require a number of
restrictions and/or preferences in using certain modes of transportation. Passengers may
be willing to take trains, but not buses. Whereas distances can be covered by walking at
almost any point during an itinerary, some transportation modes such as private cars and
bikes, once discarded, might not be available again at a later point in the itinerary. More
general constraints, such as passing by any pharmacy or post office on the way to the target
destination, may also arise.

In order to deal with this problem, appropriate labels are assigned to the arcs of the
network and the additional constraints are modeled as a regular language. A valid shortest
path minimizes some cost function (distance, time, etc.) and, in addition, the word produced
by concatenating the labels on the arcs of the shortest path must form an element of the

© Dominik Kirchler, Leo Liberti, Thomas Pajor and Roberto Wolfler Calvo;
licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 64–75

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.64
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

D. Kirchler, L. Liberti, T. Pajor and R. Wolfler Calvo 65

regular language. The problem is called regular language constrained shortest path problem
(RegLCSP). An in-depth theoretical study of a more general problem, the formal language
constrained shortest path problem, as well as a generalization of Dijkstra’s algorithm (DRegLC)
to solve RegLCSP can be found in [3].

In recent years much effort has been spent to produce speed-up techniques for Dijkstra’s
algorithm (D) and shortest paths on continental sized road networks can now be found in a
few milliseconds [6]. DRegLC has received less attention. First attempts to adapt speed-up
techniques of D to DRegLC have been described in [1].

Our Contribution In this paper, we propose an adaption of the speed-up technique uniALT
[9], in order to accelerate DRegLC. UniALT uses preprocessed data to guide D faster toward
the target. The idea is to adapt uniALT to DRegLC by transferring information of the
regular language of the RegLCSP instance into the preprocessing phase of uniALT. For each
instance of RegLCSP, we produce specific preprocessed data which guides DRegLC. We call
this algorithm SDALT (State Dependent uniALT). We provide experimental results on a
realistic multi-modal public transportation network. It is composed of the road and public
transportation network of the French region Ile-de-France which includes the city of Paris
and consists of five layers: private bike, rental bike, walking, car (including changing traffic
conditions over the day), and public transportation. To our knowledge, this is the first work
to consider a multi-modal network in this configuration and on this scale. The experiments
show that our algorithm performs well, with speed-ups of a factor 2 to 20, in respect to plain
DRegLC, in networks where some transportation modes tend to be faster than others or the
constraints cause a major detour on the non-constrained shortest path.

2 Related work

Early works on the use of regular languages as a model for constrained shortest path problems
include [21, 15, 23], with applications to database queries. A finite state automaton is used
in [14] to model path constraints (called path viability) on a multi-modal transportation
network for the bi-objective multi-modal shortest path problem. Algorithmic and complexity-
theoretical results on the use of various types of languages for the label constrained shortest
path problem can be found in [3]. The authors prove that the problem is solvable in determ-
inistic polynomial time when regular languages are used and they provide a generalization
of Dijkstra’s algorithm (DRegLC). Experimental data on networks including time-dependent
edge cost can be found in [2, 22].

In recent years, much focus has been given on accelerating the mono-modal shortest
path problem on large road graphs. There are three basic ingredients to most modern
speed-up techniques: bi-directional search, goal-directed search, and contraction. See [6] for
a comprehensive overview.

ALT is a bi-directional, goal directed search technique based on the A∗ algorithm [11]
and has been first discussed in [9]. It uses lower bounds on the distance to the target to guide
Dijkstra’s algorithm. UniALT is the uni-directional version of ALT. Efficient implementations
of uniALT and ALT as well as experimental data on continental size road networks with
time-dependent edge cost are given in [16]. A∗ and ALT can be easily adapted to dynamic
networks. Efficient algorithms including contractions can be found in [17, 4].

In [1], bi-directional and goal-directed speed-up techniques have been applied to DRegLC
on a multi-modal network. Results vary in function of the regular language used. The authors
of [19, 5] observe that ALT in combination with contraction yields only mild speed-ups in

ATMOS’11

66 UniALT for Regular Language Constrained Shortest Paths on a . . .

a multi-modal context. They propose a method called Access Node Routing to isolate the
public transportation network from road networks so that they can be treated individually.

Overview This paper is organized as follows. Section 3 will give more details about the
graph model, uniALT, and the generalisation of Dijkstra’s algorithm which is used to solve
the RegLCSP. Section 4 presents SDALT and its implementation. Its application to a
multi-modal transportation network and computational results are presented in section 5.
Section 6 concludes our work along with directions for future research.

3 Preliminaries

Consider a directed graph G = (V,A) consisting of a set of nodes v ∈ V and a set of arcs
(i, j) ∈ A with i, j ∈ V . Arc costs are positive and represent travel times. They may be
time-independent or time-dependent. Time-independent costs for arc (i, j) are given by cij .
To model time-dependent arc costs, we use a positive function cij : R+ → R+. We only use
functions which satisfy the FIFO property as the time-dependent shortest path problem in
FIFO networks are polynomially solvable [13], whereas it is NP-hard in non-FIFO networks
[18]. FIFO means that cij(x) + x ≤ cij(y) + y for all x, y ∈ R+, x ≤ y, (i, j) ∈ A or, in other
words, that for any arc (i, j), leaving node i earlier guarantees that one will not arrive later
at node j (also called the non-overtaking property).

A path p in G is a sequence of nodes (v1, . . . , vk) such that (vi, vi+1) ∈ A for all
1 ≤ i < k. The cost of the path in a time-independent scenario is given by c(p) =∑k−1

i=1 cvivi+1 . We denote as d(r, t) the cost of the shortest path between nodes r and
t. In time-dependent scenarios, the cost or travel time γ(p, τ) of a path p departing
from v1 at time τ is recursively given by γ((v1, v2), τ) = cv1v2(τ) and γ((v1, . . . , vj), τ) =
γ(v1, . . . , vj−1, τ)) + cvj−1,vj (γ(v1, . . . , vj−1, τ)).

3.1 A∗ and uniALT algorithm
The A∗ algorithm [11] is a goal directed search used to find the shortest path from a source
node r to a target node t on a directed graph G = (V,A) with time-independent, non-negative
arc costs. A∗ is similar to Dijkstra’s algorithm [8], which we shall denote as D throughout our
paper. The difference lies in the order of selection of the next node v to be settled. A∗ employs
a key k(v) = dr(v) + π(v) where the potential function π : V → R gives an under-estimation
of the distance from v to t. dr(v) gives the tentative distance from r to v. At every iteration,
the algorithm selects the node v with the smallest key k(v). Intuitively, this means that it
first explores nodes, which lie on the shortest estimated path from r to t. In [12], it is shown
that A∗ is equivalent to D on a graph with reduced arc costs cπvw = cvw − π(v) + π(w). D
works well only for non-negative arc costs, so not all potential functions can be used. We
call a potential function π feasible, if cπvw is positive for all v, w ∈ V . π(v) can be considered
a lower bound on the distance from v to t, if π is feasible and the potential π(t) of the target
is zero. Furthermore, if π′ and π′′ are feasible potential functions, then max(π′, π′′) is a
feasible potential function [9].

Good bounds can be produced by using landmarks and the triangle inequality [9]. The
main idea is to select a small set of nodes ` ∈ L ⊂ V , spread appropriately over the
network, and precompute all distances of shortest paths d(`, v) and d(v, `) between these
nodes (landmarks) and any other node v ∈ V , by using D. By using these landmark
distances and the triangle inequality, d(`, v) + d(v, t) ≥ d(`, t) and d(v, t) + d(t, `) ≥ d(v, `),
lower bounds on the distances between any two nodes v and t can be derived. π(v) =

D. Kirchler, L. Liberti, T. Pajor and R. Wolfler Calvo 67

max`∈L(d(v, `)− d(t, `), d(`, t)− d(`, v)) gives a lower bound for the distance d(v, t) and is
a feasible potential function. The A∗ algorithm based on this potential function is called
uniALT [9]. As observed in [7], potentials stay feasible as long as arc weights only increase
and do not drop below a minimal value. Based on this, uniALT can be adapted to the
time-dependent scenario by selecting landmarks and calculating landmark distances by using
the minimum weight cost function cmin

ij = minτ (cij(τ)). A crucial point is the quality of
landmarks. Finding good landmarks is difficult and several heuristics exist [9, 10]. UniALT
provides a speed-up of about factor 10 on road graphs with time-dependent arc costs [7].

3.2 Solving the RegLCSP
Consider a labeled graph GΣ = (V,A). It is produced by associating a label l of a set of
labels Σ to each arc (e.g., f to mark foot-paths or b to mark bicycle lanes). A is a set of
triplets in V × V × Σ. (i, j, l) represents an arc from node i to node j having label l. The
RegLCSP consists in finding a shortest path from a source node r to a target node t with
starting time τstart on GΣ by minimizing some cost function (in our case travel time) and, in
addition, the concatenated labels along the shortest path must form a word of a given regular
language L0. This language can be described by a non-deterministic finite state automaton
A0 = (S,Σ0, δ, s0, F), consisting of a set of states S, a set of labels Σ0 ⊆ Σ, a transition
function δ : Σ0 × S → 2S , an initial state s0, and a set of final states F . E.g., consider
a labeled graph which consists of arcs with labels Σ = {b, c, f, p, v, t} representing each a
different transportation mode. The automaton in Figure 3 describes a regular language with
five states S = {s0, s1, s2, s3, s4}, an initial state s0, a set of final states F = {s2, s4}, and an
alphabet Σ0 = {b, f, p, v, t}.

To efficiently solve RegLCSP, a generalization of Dijkstra’s algorithm (which we denote
DRegLC throughout this paper) has first been proposed in [3]. The DRegLC algorithm can
be seen as the application of D to the product graph P = GΣ × S with nodes (v, s) for
each v ∈ V and s ∈ S such that there is an arc ((v, s)(w, s′)) between (v, s) and (w, s′) if
there is an arc (i, j, l) ∈ A and a transition such that s′ ∈ δ(l, s). To reduce storage space
DRegLC works on the implicit product graph P by generating all the neighbors which have
to be explored only when necessary. Similarly to D, DRegLC can easily be adapted to the
time-dependent scenario as shown in [2].

4 State Dependent uniALT: SDALT

To speed up DRegLC, the authors of [1] employ A∗ and bidirectional search. In this work,
we extend uniALT to speed-up DRegLC on a graph GΣ with time-dependent arc costs and
call the resulting algorithm SDALT. It consists of a preprocessing phase and a query phase
(see Figure 1). The key of the performance of the algorithm lies in the proposed constrained
landmark distances, which are used to calculate the potential function.

Preprocessing phase A set of landmarks ` ∈ L ⊂ V is selected by using the avoid heuristic
[9]. Then the costs of the shortest paths between all v ∈ V and each landmark ` on GΣ

where arcs are weighted by the minimum weight cost function are determined. Here lies one
of the major differences between SDALT and uniALT. Differently from uniALT, SDALT does
not use D to determine landmark distances but uses instead the DRegLC algorithm. In this
way, it is possible to constrain the cost calculation by some regular languages which we will
derive from L0. We refer to these costs as constrained landmark distances d′(i, j, s), which is
the travel time of the shortest path from (i, s) to (j, sj) for some sj ∈ F constrained by the

ATMOS’11

68 UniALT for Regular Language Constrained Shortest Paths on a . . .

landmark
distances d

landmarks

π(v)

A∗-type algo.
based on D

r, t, τstart

1) Preprocessing
phase on G with
min. weight function

2) Query phase
on G

(a) UniALT

constrained
landmark dis-
tances d′

landmarks
L0

π(v, s)
4 strategies

A∗-type algo.
based on
DRegLC

r, t, τstart, L0

1) Preprocessing
phase on labeled
graph GΣ with
min. weight function

2) Query phase
on labeled graph GΣ

(b) SDALT

Figure 1 Comparison uniALT and SDALT

v

`

t
d′(`, v, s), L`→v

s

d′(`, t, s), L`→t
s

d′(v, t, s), Lv→t
s

v

`

t

d′(v, `, s), Lv→`
s

d′(t, `, s), Lt→`
s

d′(v, t, s), Lv→t
s

Figure 2 Landmark distances for SDALT

regular language Li→js . In the next section, we will provide four different methods on how
to choose L`→ts , L`→vs , Lv→`s , Lt→`s used to constrain the calculation of d′(`, t, s), d′(`, v, s),
d′(v, `, s), d′(t, `, s) (see Figure 2).

Potential function π(v, s) The constrained landmark distances determined during the
preprocessing phase are used to calculate the potential function π(v, s) given in Equation (1)
and to provide a lower bound on the distance d′(v, t, s) of the shortest path from (v, s) to
(t, st) for some st ∈ F . Note that d′(v, t, s) is constrained by Lv→ts = Ls0. Ls0 is equal to L0
except that the initial state s0 of L0 is replaced by s. Intuitively, it represents the remaining
constraints of L0 to be considered for the shortest path from an arbitrary pair (v, s) to the
target.

π(v, s) = max
`∈L

(d′(`, t, s)− d′(`, v, s), d′(v, `, s)− d′(t, `, s)) (1)

Query phase The query phase deploys a DRegLC algorithm enhanced by the characteristics
of the A∗ algorithm. For each pair (v, s), the query maintains a tentative distance label
dr(v, s) and a parent pair p(v, s). At every iteration, it selects the pair (v, s) with the
smallest key k(v, s) = dr(v, s) + π(v, s) and relaxes all outgoing arcs of (v, s). DRegLC, in
contrast, uses key k(v, s) = dr(v, s). Relaxing an arc (v, w, l) means calculating tmp =
dr(v, s) + cvwl(τstart + dr(v, s)), checking cost labels dr(w, s′) > tmp, and if that is the case,
to set dr(w, s′) = tmp and p(w, s′) = (v, s) for all states s′ ∈ δ(l, s). Note that the cost of
arc (v, w, l) might be time-dependent and thus has to be evaluated for time τstart + dr(v, s).
The query terminates when a pair (t, s) with s ∈ F is settled. See Listing 1.

Note that if π(v, s) is feasible, all characteristics that we discussed before for uniALT
also hold for SDALT. SDALT can be seen as an A∗ search on the product graph P using
potential function π(v, s). Hence, SDALT is correct and terminates always with the correct
constrained shortest path.

D. Kirchler, L. Liberti, T. Pajor and R. Wolfler Calvo 69

Listing 1 Pseudo-code SDALT
func t i on SDALT(GΣ ,r ,t ,τstart ,L0)

dr(v, s):= ∞ , p(v, s):= −1, path_found:= f a l s e
dr(r, s0):= 0 , k(r, s0):= dr(r, s0) + π(r, s0)
i n s e r t (r, s0) in p r i o r i t y queue Q

whi le Q i s not empty :
ex t r a c t (v, s) with sma l l e s t key k from Q

i f v = t and s ∈ F0 :
path_found:= true , break

f o r each (w, s′) o f (v, s) where (v, w, l) ∈ A , s′ ∈ δ(l, s) :
tmp:= dr(v, s) + cvwl(τstart + dr(v, s)) // time−dependency
i f tmp < dr(w, s′) :

dr(w, s′):= tmp
k(w, s′):= dr(w, s′) + π(w, s′)
p(w, s′):= (v, s)
i f (w, s′) not in Q : i n s e r t (w, s′) in Q

e l s e : r eo rde r Q

end f o r
end whi l e

4.1 Constrained landmark distances
The only open question now is how to produce good bounds which are capable to guide
SDALT efficiently toward the target while considering the constraints given by L0. More
formally, how to choose the regular languages L`→ts , L`→vs , Lv→`s , Lt→`s used to constrain
the calculation of d′(`, t, s), d′(`, v, s), d′(v, `, s), d′(t, `, s) in order that d′(`, t, s)− d′(`, v, s),
d′(v, `, s)− d′(t, `, s) are valid lower bounds for d′(v, t, s) (see Figure 2) and that π(v, s) is
feasible. Proposition 1 partially answers this question. Note that the concatenation of two
regular languages L1 and L2 is the regular language L3 = L1 ◦L2 = {v ◦w|(v, w) ∈ L1×L2}.
E.g., if L1 = {a, b} and L1 = {c, d} then L1 ◦ L2 = L3 = {ac, ad, bc, bd}.

I Proposition 1. For all s ∈ S, if the concatenation of L`→vs and Lv→ts is included in L`→ts

(L`→vs ◦ Lv→ts ⊆ L`→ts), then d′(`, t, s)− d′(`, v, s) is a lower bound for the distance d′(v, t, s).
Similarly, if Lv→ts ◦ Lt→`s ⊆ Lv→`s then d′(v, `, s)− d′(t, `, s) is a lower bound for d′(v, t, s).

This is derived from the observation that the distance of the shortest path from ` to t (v
to `) must not be greater than the distance of the shortest path from ` to v to t (v to t to `).
Now we proceed to present four methods on how to set L`→ts , L`→vs , Lv→`s , Lt→`s . We name
these four methods standard (std), basic (bas), advanced (adv), and specific (spe).

(std) In the standard method, the landmark distance calculation is not constrained by any
regular language. (std) represents the application of plain uniALT to DRegLC.

(bas) The motivation for the basic method comes from the observation that if L0 totally
excludes the use of some fast transportation modes, these modes should not be considered
when calculating the landmark distances. This means that (bas) uses L`→vs = L`→ts =
Lv→`s = Lt→`s = Lbas = {Σ∗0}, which is the language consisting of all words over Σ0. E.g.,
for the RegLCSP with L0 represented by automaton in Figure 3a the landmark distances
calculation would be constrained by using automaton in Figure 3b. In an ideal scenario
where one transportation mode, which is excluded by L0, dominates any other (e.g., bike
over foot), it can be proven that (bas) produces better bounds than (std).

ATMOS’11

70 UniALT for Regular Language Constrained Shortest Paths on a . . .

I Proposition 2. Given a labeled graph GΣ
bas = (V,A1 ∪A2) with Σ = {`1, `2}, where for

any two shortest paths p1 ⊆ A1, p2 ⊆ A2 between two arbitrary nodes, there exists an α > 1
such that c(p1) > αc(p2). Arcs in A1 are labeled `1 and arcs in A2 are labeled `2. For a
RegLCSP on GΣ

bas exclusively allowing arcs with label `1, L0 = {`∗1}, bounds calculated by
using (bas) are at least a factor α greater than bounds calculated using (std).

(adv) The advanced method consists in calculating separate constrained landmark distances
for each pair (v, s) by using the regular language L`→vs = L`→ts = Lv→`s = Lt→`s = Ladv,s =
{Σ(s,A0)∗}. Σ(s,A0) returns all labels of Σ0 except those of fast transportation modes
which use is no longer allowed from state s onward. This means that for s0 it includes all
transportation modes present in Σ0, equally to (bas). For the calculation of the constrained
landmark distances for the other states s ∈ S it excludes fast transportation modes of Σ0, if
from s onward on A0 these transportation modes may not be used anymore for the remaining
path to reach the target. E.g., consider the RegLCSP with L0 represented by automaton
in Figure 3a. By applying (adv) the landmark distances calculation would be constrained
be using automata in Figures 3b, 3c, and 3d. From state s2 onward, private bike cannot
be used any more (dominates walking, and sometimes even public transport), from state
s4 also private transport is excluded. Note that by using (adv), π(v, s) may be infeasible,
so we change it to: πadv(v, s) = max{π(v, sx)|sx ∈ Ω(s,A0)}, where Ω(s,A0) returns the set
containing all states sx ∈ S from which s is reachable by some sequence of transitions on
A0, including s. E.g., in reference to the automaton in Figure 3a, Ω(s0,A0) = {s0} whereas
Ω(s2,A0) = {s0, s1, s2}. In an ideal scenario where transportation modes hierarchically
dominate each other (car over taxi over trains over biking over walking) and in which they are
excluded in decreasing order of speed by advancing on A0 it can be proven, by generalizing
Proposition 2, that (adv) produces better bounds than (bas).

(spe) Besides using L0 for gradually excluding transportation modes, it can also be used
to impose further restrictions, for example to not allow transfers from one vehicle of public
transportation to another. L0 can also be used to force the shortest path to pass by any
arc marked with a certain label. Suppose we are looking for the shortest foot path to a
target which also passes by the nearest pharmacy. To handle this problem, we can label
all arcs of the foot layer which represent streets on which a pharmacy is located not with
f but with z. E.g., L0, represented by automaton in Figure 4a, imposes the use of the
foot layer and that an arc with label z has to be obligatorily visited. (spe) is capable of
anticipating such constraints in the preprocessing phase by inserting these constraints in the
languages used during the landmark distance calculations. We define four different regular
languages L`→vs , L`→ts , Lt→`s , Lv→`s to calculate the constrained landmark distances for each
pair (v, s). Consider the following rules to determine L`→vs , L`→ts , Lv→`s , Lt→`s , which are
here represented as automata, and Proposition 3.

Rule 1 A`→vsx
is the sub-automaton of A0 consisting of sx, all the states from which sx is

reachable, and the transitions between these states. Any s which is an initial state in A0,
is also an initial state in A`→vsx

, sx is a final state.
Rule 2 A`→tsx

is the sub-automaton of A0 consisting of all states reachable from sx and all
states from which these states are reachable, including all transitions between these states.
Any s which is an initial state in A0 is also an initial state in A`→tsx

. Any s which is
reachable from sx and is final in A0 is also final in A`→tsx

.
Rule 3 Av→`sx

is the sub-automaton of A0 consisting of sx, all the states which are reachable
from sx, and the transitions between these states. Any s which is a final state in A0, is

D. Kirchler, L. Liberti, T. Pajor and R. Wolfler Calvo 71

also a final state in A`→tsx
. Mark sx as initial state.

Rule 4 At→`sx
consists of one final/initial state whose set of self-loops is equal to the intersec-

tions of self-loops of all final states of Av→`sx
.

Rule 5 If A`→vsx
(At→`sx

) consists of one state with no self-loops, then add an auto-loop to sx
in A0 to be used in rules 1 and 2 (rules 3 and 4) with arbitrary transitions so that node
(v, sx) is reachable from landmark ` (so that landmark ` is reachable from node (t, sx)).

I Proposition 3. By using the regular languages, described by the automata constructed
by applying rules 1 to 5, for the constrained landmark distance calculation for all pairs (v, s),
the potential function π(v, s) in Equation (1) is feasible.

An example of the application of (spe) can be found in Table 4b where rules 1 to 5 have
been applied to the automaton in Figure 4a. Under weak conditions it can be proven that
(spe) succeeds in providing better bounds in comparison to (bas) and (adv), for RegLCSP
similar to the one discussed in the example.

Performance and memory consumption Finally note that the number of bounds to be
calculated grows linearly to the number of relaxed arcs in (std), (bas), and (spe). For (adv),
the number of calculated bounds in worst case scenario is an additional factor |S| higher.
Memory requirement for (bas) is equal to (std). It grows linearly in respect to |S| and may
be up to |S| times higher in (adv). Memory requirement for (spe) may grow by a constant
factor of 4 in the worst case with respect to (adv).

5 Experimental evaluation

We consider a multi-modal graph composed of the road and public transportation network
of the French region Ile-de-France, which includes the city of Paris. It consists of five
layers: private bike (b), rental bike (v), walking (f), car (c), and public transportation (p).
Layers are connected by transfer arcs (t) which model the time needed to transfer from one
transportation mode to another. The cost of transfer arcs is set uniformly to 20sec. Each arc
has exactly one associated label l ∈ Σ = {b, v, f, c, p, t}. The graph consists of circa 3.7mil
arcs and 1.2mil nodes. Dimensions of the single layers are summarized in Table 1. See [20, 19]
for more information about graph models of a multi-modal network and time-dependency.

The private bike, walking, and rental bike layers are based on OpenStreetMap1 data. Arc
cost equals travel-time. Bikes have been considered to move at 12km/h, pedestrians at a
speed of 4km/h. The private bike layer is connected to the walking layer at common street
intersections. The bike rental layer is connected to the walking layer at the locations of bike
rental stations2. In addition, we introduced ten arcs with label z between nodes of the foot
layer. They represent foot paths close to locations of interest and are used to simulate the
problem of reaching a target and in addition passing by any pharmacy, supermarket, etc.

Data for the public transportation layer has been provided by STIF3. It includes geo-
graphical and timetable data on buses, tramways, subways and regional trains. Our model is
similar to the one presented in [20]: A trip of a public transportation vehicle is defined as a
sequence of route nodes. Route nodes can be pictured as station platforms and are connected
to station nodes, which model public transportation stations, such as those pictured on

1 See www.openstreetmap.org
2 Vélib’, www.velib.paris.fr
3 Syndicat des Transports d’Ile de France, www.stif.info, data for scientific use from 01/12/2010

ATMOS’11

72 UniALT for Regular Language Constrained Shortest Paths on a . . .

subway network maps. Trips consisting of the same sequence of route nodes are grouped
into routes. Travel times are modeled according to timetable information by time-dependent
cost functions. They include waiting times at stations.

The car layer is based on geographical road data and traffic information provided by
Mediamobile4. It is connected to the walking layer by transfer arcs at station nodes. Arc
cost equals travel time which depends on the type of road. Circa 10% of the arcs have a
time-dependent cost function to represent changing traffic conditions throughout the day.

SDALT is implemented in C++ and compiled with GCC 4.1. We merged and adapted
the implementations of uniALT described in [16, 9] and DRegLC described in [19]. As priority
queue, we use a binary heap. As in the case of uniALT, periodical additions of landmarks
(max. 6 landmark) and refresh cycles of the priority queue take place. We use an Intel Xeon,
2.6 Ghz, with 16 GB of RAM. Source node r, target node t, and start time τstart are picked at
random. r and t always belong to the walking layer. We use 32 landmarks which are placed
exclusively on the walking layer. Preprocessing takes less than a minute. We compare SDALT
employing the different methods (bas), (adv), and (spe), with DRegLC and (sta). SDALT has
been evaluated by running 500 test instances for five RegLCSP scenarios, see Figures 3a,
4a and 5. They have been chosen with the intention to represent real-world queries, which
may often arise when looking for constrained shortest paths on a multi-modal transportation
network. See Table 2 for experimental results. Runtime is the average running time of the
algorithm over 500 test instances. SettNo, touchNo and reInsNo give the average of the
number of settled, touched and reinserted nodes. MaxSett gives the maximum number of
settled nodes. TouchEd and calcPot give the average number of touched edges and calculated
potentials.

layer arcs nodes time-dependent PT-transfer stations transfer
Walking (f) 601 280 220 091 - - - -

Private Bike (b) 600 952 220 091 - - - 440 182
Rental Bike (v) 600 952 220 091 - - 1 198 2 396

Car (c) 1 112 511 514 331 111 641 - - 37 906
Public Transportation (p) 259 623 109 922 82 833 176 790 21 527 37 944

Special Arcs (z) 10 - - - - -
Tot 3 731 700 1 284 526 194 474 (9 803 812 Time Points) 556 372

Table 1 Dimensions of the graph

5.1 Discussion of experimental results
SDALT, in comparison to DRegLC, succeeds in directing the constrained shortest path search
faster toward the target in situations where L0 is likely to introduce a detour from the
unconstrained shortest path. This is the case when the use of fast transportation modes is
excluded or limited, or if arcs with infrequent labels have to be obligatorily visited.

(bas) works well in situations where L0 excludes a priori fast transportation modes. This
can be observed in scenario C and in scenario D, where shortest paths are limited to the
walking and rental bike layer, both being much slower than the car or public transportation
layer, which are excluded. (adv) gives a supplementary speed-up in cases where initially
allowed fast transportation modes are excluded from a later state on A0 onward. This can be
observed in scenario B, where by transition from the initial state s0 toward s1 or s2, either

4 www.v-trafic.fr, www.mediamobile.fr

D. Kirchler, L. Liberti, T. Pajor and R. Wolfler Calvo 73

s0

s2

s1

s3

s4

t

f

t

t

p

t

f

b ftv

(a) A0 scenario A

s0

fbtpv

(b) Abas,
Aadv,s0 ,
Aadv,s1

s0

ftpv

(c) Aadv,s2 ,
Aadv,s3

s0

ftv

(d)
Aadv,s4

Figure 3 Automata for scenario A. Shortest path must start either by walking (f) or by private
bike (b). Once the private bike is discarded, the path can be continued by walking or by taking
public transportation (p). The trip may then be continued by using bike rental (v) or by walking.
Transfer arcs (t) are used to change between transportation modes. The automata in Figure 3b and
Figures 3b, 3c, and 3d are used during the pre-processing phase for (bas) and (adv), respectively.

s0 s1
z

f fz

(a) A0 scenario D

L`→v
sx

Lv→`
sx

sx L`→t
sx

Lt→`
sx

s0
s0

f

s0 s1
z

f fz

s0 s1
z

f fz

s0

fz

s1
s0 s1

z

f fz

s0

fz

s0 s1
z

f fz

s0

fz

(b)

Figure 4 Automata for scenario D. Automata used for (spe) on the right. Landmark distance
calculation of d′(`, v, s0) is constrained by language L`→v

s0 described by the top-left automaton in
row s0, d′(`, t, s1) is constrained by L`→t

s1 described by the bottom-left automaton in row s1, etc.

s0

s1

s2 s3

f t

fptv

t
c

t

f

(a) A0 scenario B

s0 s2s1
t t

f v f

(b) A0 scenario C

s0

s1 s2

s3 s4

s5 s6

ft

ft

ft

fpt

bft

cft

z

z

z

fptz

bftz

cftz

(c) A0 scenario E

Figure 5 Automata of scenarios

ATMOS’11

74 UniALT for Regular Language Constrained Shortest Paths on a . . .

scenario algo space runtime settNo maxSett touchNo touchEd calcPot
[MB] [ms]

scenario A DRegLC 0 529 542 914 1 397 414 547 643 1 998 610 -
sta 310 486 376 527 1 376 485 381 081 1 405 720 1 750 580
bas 310 427 333 121 1 350 973 337 528 1 244 450 1 591 770
adv 930 361 139 635 688 616 183 104 516 746 2 133 710
spe 1 660 262 162 982 861 574 224 389 617 503 598 707

scenario B DRegLC 0 509 446 279 1 576 407 453 835 1 303 320 -
std 310 243 176 971 1 387 476 182 469 511 462 861 436
bas 310 138 117 549 894 842 121 489 337 650 510 982
adv 1 240 114 66 100 409 027 71 174 149 285 619 147
spe 1 550 198 165 105 612 247 177 596 387 361 368 139

scenario C DRegLC 0 355 456 674 865 722 457 957 1 649 190 -
std 310 431 406 837 865 395 408 279 1 491 630 1 608 090
bas 310 17 20 252 220 571 22 217 76 099 68 880
adv 620 18 14 536 159 146 18 020 51 665 93 915
spe 1 240 16 13 195 210 208 17 510 48 228 69 609

scenario D DRegLC 0 160 235 943 417 117 236 854 944 596 -
std 310 209 224 408 415 861 225 384 899 874 940 876
bas 310 38 45 151 223 726 46 192 185 620 147 207
spe 930 8 8 389 59 073 9 181 35 210 32 180

scenario E DRegLC 0 1 995 1 430 230 4 231 958 1 447 310 4 570 860 -
sta 310 1 174 723 364 3 169 152 737 249 2 342 480 3 578 470
adv 1 240 902 487 880 1 600 241 497 815 1 564 900 4 593 790
spe 2 480 511 395 947 1 565 563 406 472 1 256 090 960 304

Table 2 Experimental results

the public transportation network or the car network is excluded. However, speed-ups are
mild as the number of potentials which have to be calculated for (adv) is much higher as it is
for (bas). Finally, (spe) has a positive impact on running times for scenarios where the visit
of some infrequent labels, which would generally not be part of the unconstrained shortest
path, is imposed by L0, see scenario D and scenario E.

Speed-ups for scenarios including labels of arcs with time-dependent arcs costs (public
transportation, car) are lower then speed-ups for scenarios considering only arcs with time-
independent arcs costs. This is due to the fact that bounds are calculated by using the
minimum weight cost function. Bounds are especially bad for public transportation at night
time, as connections are not served as frequently as during the day.

6 Conclusions

We presented a method on how to apply the speed-up technique uniALT to the generalized
Dijkstra’s algorithm (DRegLC) which is used to solve the RegLCSP. SDALT uses preprocessed
data to anticipate the impact of the given regular language on the shortest path. We
proposed four different methods on how to produce this preprocessed data and explained in
which situations they are likely to work best. We implemented our algorithm and produced
different versions which differ only slightly in terms of coding but differ in terms of memory
requirements and performance. We ran experiments on a real-world public transportation
network. The results showed that SDALT succeeds in providing speed-ups of a factor 2
to 20 in respect to DRegLC. Among the possible improvements, we believe that there is
space to reduce memory consumption. A logical direction for future research would be the
investigation of the impact of a bi-directional search on SDALT and the applicability and
effects of contraction. Another question is how to adapt SDALT efficiently to multi-objective
versions of DRegLC. It would also be interesting to test its performance on dynamic networks.

D. Kirchler, L. Liberti, T. Pajor and R. Wolfler Calvo 75

References
1 Chris Barrett, Keith Bisset, Martin Holzer, Goran Konjevod, Madhav Marathe, and

Dorothea Wagner. Engineering label-constrained shortest-path algorithms. Algorithmic
Aspects in Information and Management, pages 27–37, 2008.

2 Chris Barrett, Keith Bisset, Riko Jacob, Goran Konjevod, and M. V. Marath. Classical and
contemporary shortest path problems in road networks: Implementation and experimental
analysis of the TRANSIMS router. Proc. ESA, pages 126–138, 2002.

3 Chris Barrett, Riko Jacob, and Madhav Marathe. Formal-Language-Constrained Path
Problems. SIAM Journal on Computing, 30(3):809, 2000.

4 Daniel Delling and Giacomo Nannicini. Bidirectional core-based routing in dynamic time-
dependent road networks. Algorithms and Computation, 0(2):812–823, 2008.

5 Daniel Delling, Thomas Pajor, and Dorothea Wagner. Accelerating Multi-Modal Route
Planning by Access-Nodes. Algorithms-ESA 2009, 2, 2009.

6 Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineering route
planning algorithms. Algorithmics of large and complex networks, 2:117–139, 2009.

7 Daniel Delling and Dorothea Wagner. Time-Dependent Route Planning. Online, 2, 2009.
8 E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,

1(1):269–271, 1959.
9 Andrew V Goldberg and C. Harrelson. Computing the shortest path: A search meets graph

theory. In Proceedings of the 16th annual ACM-SIAM Sym. on Discrete algorithms, 2005.
10 Andrew V Goldberg and R Werneck. Computing point-to-point shortest paths from ex-

ternal memory. US Patent App. 11/115,558, 2005.
11 Peter Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic Determ-

ination of Min. Cost Paths. IEEE Trans. on Sys. Science and Cybern., 4(2), 1968.
12 T. Ikeda, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto, K. Tenmoku, and K. Mitoh.

A fast algorithm for finding better routes by AI search techniques. IEEE, 1994.
13 David Kaufman and Robert Smith. Fastest paths in time-dependent networks for intelligent

vehicle-highway systems applications. Journal of Intelligent Transportation Systems, 1(1):1–
11, 1993.

14 Angelica Lozano and Giovanni Storchi. Shortest viable path algorithm in multimodal
networks. Transportation Research Part A: Policy and Practice, 35(3):225–241, 1999.

15 Alberto O. Mendelzon and Peter T. Wood. Finding Regular Simple Paths in Graph Data-
bases. SIAM Journal on Computing, 24(6):1235, 1995.

16 Giacomo Nannicini, Daniel Delling, Leo Liberti, and Dominik Schultes. Bidirectional A*
search for time-dependent fast paths. Experimental Algorithms, 2(2):334–346, 2008.

17 Giacomo Nannicini and Leo Liberti. Shortest paths on dynamic graphs. International
Transactions in Operational Research, 15(5):551–563, 2008.

18 Ariel Orda and Raphael Rom. Shortest-path and minimum-delay algorithms in networks
with time-dependent edge-length. Journal of the ACM, 37(3):607–625, 1990.

19 Thomas Pajor. Multi-Modal Route Planning. Master thesis, Univ. Karlsruhe (TH), 2009.
20 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient mod-

els for timetable information in public transportation systems. Journal of Experimental
Algorithmics, 12(2):1–39, 2007.

21 J.F. Romeuf. Shortest path under rational constraint. Information processing letters,
28(5):245–248, 1988.

22 Hanif Sherali, Antoine Hobeika, and Sasikul Kangwalklai. Time-Dependent, Label-
Constrained Shortest Path Problems with Applications. Transp. Science, 37(3), 2003.

23 Mihalis Yannakakis. Graph-theoretic methods in database theory. ACM Press, 1990.

ATMOS’11

The Price of Robustness in Timetable
Information∗

Marc Goerigk1, Martin Knoth2, Matthias Müller-Hannemann2,
Marie Schmidt1, and Anita Schöbel1

1 Institut für Numerische und Angewandte Mathematik
Georg-August Universität Göttingen, Germany
{m.goerigk,m.schmidt,schoebel}@math.uni-goettingen.de

2 Institut für Informatik
Martin-Luther-Universität Halle-Wittenberg, Germany
martin.knoth@student.uni-halle.de; muellerh@informatik.uni-halle.de

Abstract
In timetable information in public transport the goal is to search for a good passenger’s path
between an origin and a destination. Usually, the travel time and the number of transfers shall
be minimized. In this paper, we consider robust timetable information, i.e. we want to identify
a path which will bring the passenger to the planned destination even in the case of delays. The
classic notion of strict robustness leads to the problem of identifying those changing activities
which will never break in any of the expected delay scenarios. We show that this is in general a
strongly NP-hard problem. Therefore, we propose a conservative heuristic which identifies a large
subset of these robust changing activities in polynomial time by dynamic programming and so
allows us to find strictly robust paths efficiently. We also transfer the notion of light robustness,
originally introduced for timetabling, to timetable information. In computational experiments
we then study the price of strict and light robustness: How much longer is the travel time of a
robust path than of a shortest one according to the published schedule? Based on the schedule
of high-speed trains within Germany of 2011, we quantitatively explore the trade-off between the
level of guaranteed robustness and the increase in travel time. Strict robustness turns out to be
too conservative, while light robustness is promising: a modest level of guarantees is achievable
at a reasonable price for the majority of passengers.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems; G.2.2 Graph
Theory (Graph algorithms; Network problems)

Keywords and phrases Strict and Light Robustness; Delay Scenarios; Experimental Study

Digital Object Identifier 10.4230/OASIcs.ATMOS.2011.76

1 Introduction

Robust optimization takes into account that the input for optimization problems is uncer-
tain to some extent. Many real-world applications share that there will be some kind of
disturbance, e.g. input data changes, disruptions, delays or any other unforeseen event. To
overcome such difficulties and make solutions applicable for real-world problems, researchers
are working on various concepts of robustness. The goal of these concepts is not to find

∗ Partially supported by grants MU 1482/4-2 and SCHO 1140/3-1 within the DFG programme Algorithm
Engineering. The authors wish to thank Deutsche Bahn AG for providing us with test data for scientific
use.

© Marc Goerigk, Martin Knoth, Matthias Müller-Hannemann, Marie Schmidt, Anita Schöbel;
licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 76–87

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.76
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

M. Goerigk, M. Knoth, M. Müller-Hannemann, M. Schmidt, and A. Schöbel 77

the best solution to the (undisturbed) problem but to calculate a robust solution which is
still ‘good’ in case of a disturbance. There are many promising concepts on how to define
robustness of a solution. Strict robustness was introduced by Soyster [14] and significantly
extended by Ben-Tal, El Ghaoui and Nemirovski, see [1, 2] and references therein. A solution
to an optimization problem is called strictly robust if it is feasible for all possible scenarios.
The idea of light robustness (see [7]) is to require a certain nominal quality and to look for
a solution satisfying this quality and maximizing the robustness. In this paper we develop
and evaluate the concepts of strict and light robustness for a real-life problem, namely the
problem of determining a best path for traveling in a public transportation network.

Related work. The classical timetable information problem is usually modelled as a
shortest path problem in either a time-expanded event-activity network or a time-dependent
graph, see [12] for a survey. The “reliability” of a path has been considered as an additional
search criterion within a multi-criteria timetable information system by Disser et al. [6].
Müller-Hannemann and Schnee [11] and Schnee [13] study timetable information in the
presence of delays. They show that a massive stream of delay information and schedule
changes can be efficiently incorporated into the search for optimal paths. The robust shortest
path problem has found quite some attention in the literature [9]. Uncertainties are modeled
by a set of known scenarios, where each scenario corresponds to a set of arc lengths (or
weights). The robust shortest path problem is to find among all paths the one that minimizes
the path length in the worst case over all scenarios. To the best of our knowledge, robust
timetable information has not been studied before. State-of-the-art practical solutions allow
to specify minimum transfer times, but usually they come without any guarantee of robustness.

Our contribution. The classical notion of strict robustness asks to find a solution which
is feasible for any scenario. Translated to timetable information this leads to the problem
of identifying those transfers which will never break subject to the specified set of delay
scenarios. Surprisingly it turns out that already this problem of determining strictly robust
changing activities is strongly NP-hard. Due to this hardness result, we use a conservative
approximation, i.e. we forbid slightly more changing activities than necessary to guarantee
strictly robust solutions. To this end, we compute the maximum amount of delay which can
be accumulated for any arrival event. We succeed in developing a dynamic programming
approach for this delay accumulation problem which runs in polynomial time for a realistic
model of delay scenarios. We also transfer the concept of light robustness to timetable
information and develop a solution approach. A light robust path is a path which may
exceed the minimum travel time in the nominal scenario by not more than a certain specified
amount but contains as few as possible changing activities which are not strictly robust under
these restrictions. For both concepts we study the price of robustness, originally mentioned
in [4]: How much longer is the travel time for a robust solution than for a shortest path
according to the published schedule? We parametrize the set of considered delay scenarios by
the maximum size and number of (large) delays which may occur. Each fixed parameter set
can be interpreted as a level of robustness. In computational experiments with the schedule
of high-speed trains within Germany of 2011, we explore the trade-off between the level of
guaranteed robustness and the increase in travel time for both concepts. Strict robustness
turns out to be too conservative, while light robustness is promising: a modest level of
guarantees is achievable at a reasonable price for the majority of passengers.

Overview. In Section 2, we formally introduce event-activity networks as models for
timetable information and introduce and discuss delay scenarios. To provide passengers
with strictly robust timetable information, that is to find paths that are maintained in every

ATMOS’11

78 The Price of Robustness in Timetable Information

Figure 1 Detail of an event-activity network.

scenario, we need to identify the connections that cannot break. In Section 3, we study
the computational complexity of finding these connections and prove NP-hardness of this
problem. Due to this hardness result, we afterwards study the related delay accumulation
problem which provides us with a subset of the connections that are always maintained.
We derive a dynamic programming based algorithm to solve this problem. In this way
we can solve the NP-hard problem of strictly robust timetable information heuristically in
polynomial time. The concepts are extended to light robustness in Section 5. We present
results of our computational study in Section 6 and finally conclude with remarks on future
work. Due to the lack of space all proofs are omitted and can be found in the technical
report [8].

2 Timetable information and delay models

Graph Model. In our paper we represent the timetable as an event-activity network
N = (E ,A). This is defined as follows: For every arrival and every departure of a train at
a station we define an event. We also have two virtual events, to be described below. The
events E = Earr ∪ Edep ∪ Evirt are the nodes in the event-activity network. The edges are
called activities. There are three groups of activities we consider: Adrive contains driving
activities of a train between a departure and an arrival event. Await contains waiting of
a train within a station (i.e. between an arrival and its following departure event), and
Achange contains possible changing activities, i.e. transfers between the arrival of a train
and the departure of another train (at the same station). Figure 1 shows an example for an
event-activity network.

For each event i ∈ E the timetable provides a time πi ∈ IN, usually in minutes. For each
activity a ∈ A a length la ∈ IN is given. This length represents the minimal duration the
activity has, i.e. the minimal time that is required to drive between two stations (for driving
activities). A feasible timetable hence satisfies that πj − πi ≥ la for all a = (i, j) ∈ A. The
slack time of an activity a = (i, j) ∈ A is defined as sa := πj − πi − la. For our timetable
information problem we furthermore have a request Req of a passenger. Such a request is
specified by an origin station, a destination station and a time trequest ∈ IN specifying when
the passenger can start her journey. In order to model such a request in the event-activity
network we add two virtual events, an origin event iorg and a destination event idest and the
following set of virtual activities Avirt: We connect the origin event to all events i ∈ Edep
starting at the origin station and having πi ≥ trequest, and we connect all events j ∈ Earr
belonging to the destination station and having πj ≥ trequest to idest. If the passenger is
interested in a path with earliest arrival time at her destination, we can solve this problem
by determining a shortest path from iorg to idest with respect to the following weights

ca :=

πj − πi if a = (i, j) ∈ A
πi − trequest if a = (iorg, i) ∈ Avirt
0 if a = (j, idest) ∈ Avirt .

(1)

M. Goerigk, M. Knoth, M. Müller-Hannemann, M. Schmidt, and A. Schöbel 79

Summarizing, we denote the timetable information problem as P(E ,A, π,Req) and call it
the nominal problem. The output is a shortest path P ∗ specified by its sequence of events,
and the arrival time at idest denoted by f(P).
Delay scenarios. If everything runs smoothly the passenger would be satisfied with such
a shortest path. Unfortunately, delays are unavoidable. This is in particular annoying if
a connection on such a path may be missed. The passenger hence may wish to have a
reliable connection. To model the uncertainty we define a set of possible exogenous delays,
called source delays, each of them increasing the lower bound of some activity duration la.
Examples are obstacles on the tracks that have to be cleared before the train can pass or
signalling problems. A scenario is hence given by a vector d ∈ IN|Await∪Adrive|. In real world
scenarios one often observes many small source delays, but only a few large ones (which have
a direct or indirect effect on a passenger’s path). Similar to Bertsimas and Sim [4], we take
this into account and introduce a vector ε ∈ IN|Await∪Adrive|, specifying for each driving or
waiting activity a an upper bound εa for a “small delay”. Moreover, we assume that each
source delay is bounded by dmax

a and that the total number of “large” source delays (i.e.,
those with da > εa) is bounded by K for given values of dmax

a for all a ∈ A and an integer K.
More precisely, the uncertainty set we consider is given as

U := UKε := {d ∈ IR|Await∪Adrive| : 0 ≤ da ≤ dmax
a for all a ∈ Await ∪ Adrive,

|{a ∈ A : da > εa}| ≤ K}.

Delay propagation. When a scenario of source delays d ∈ U occurs, it spreads out through
the network and results in new times πi(d) for the events i ∈ E . The basic rule how delays
spread is the following: If the start event of an activity a = (i, j) is delayed, also its end
event j will be delayed, where the delay can be reduced by the slack time sa. I.e. we require
π(d) ≥ π and

πj(d) ≥ πi(d) + la + da (2)

for all activities a = (i, j) ∈ Await ∪ Adrive. For changing activities we have the following
situation: If (2) holds for a changing activity we say that the connection is maintained.
If (2) does not hold, the connection is broken and passengers cannot transfer between the
corresponding events. This leads to a new set of changing activities which is denoted as
Achange(d). In our paper we assume that the decision whether a connection should be
maintained or not is specified by a fixed waiting time rule: Given a number wta ∈ IN for any
changing activity, the connection should be maintained if the departing train has to wait at
most wta minutes compared to its original schedule.

Given these waiting time rules for a given delay scenario d we can propagate the delay
through the network and thus calculate the corresponding adapted timetable according to
the following propagation rule:

πj(d) = max
{
πj , max

i:(i,j)∈A; πi(d)+lij≤πj+wtij

{πi(d) + lij + dij}
}

(3)

where we set wta =∞ ∀a ∈ Await ∪ Adrive and dmaxa = 0 ∀a ∈ Achange.
For the sake of tractability, this delay propagation model does not take microscopic

conflicts like blocked tracks or platforms into account. However, these kind of secondary
delays are captured by the small delays εa which may occur everywhere.

Timetable information under uncertainty. Both A and π are uncertain parameters
for finding the required timetable information since they both depend on the set of source

ATMOS’11

80 The Price of Robustness in Timetable Information

delays d. We hence specify the timetable information problem under uncertainty as

P(E ,Adrive,Await,Achange(d), π(d),Req), d ∈ U .

3 Strictly robust timetable information

Applied to timetable information the concept of strict robustness requires that the path
is “feasible” for all delay scenarios, i.e. that all its connections are maintained for any
of the scenarios d ∈ U . The set of strictly robust paths hence is SR = {P : for all d ∈
U we have P ∩ Achange ⊆ Achange(d)}. In order to determine the set of robust paths, we
have to analyze for every changing activity whether it is maintained in all scenarios:

(TT): Transfer-test. Given a changing activity a = (i, j) ∈ Achange, does there exist a
delay scenario d ∈ U such that a is not maintained?

The set of changing activities that are maintained for all scenarios d ∈ U is called the set
of strictly robust activities and denoted by ASR. Note that given ASR, a robust path that
has shortest travel time in the nominal case again can be easily computed using a shortest
path algorithm in N SR = (E ,Await ∪ Adrive ∪ ASR ∪ Avirt).

I Theorem 1. For the uncertainty set UKε , (TT) is strongly NP-complete, even if εa = 0
for all a ∈ A.

An intuitive explanation why transfer test is computationally hard is the following:
whether a changing activity a = (i, j) is maintained or not depends on the time values πi(d)
and πj(d). Both values may or may not be influenced by the same source delay of some
earlier event. So the core difficulty is to decide whether there is no delay scenario that
simultaneously delays event i by a certain amount but does not delay event j by too much.
We are not aware of any reasonable way to solve (TT) exactly.

Still, we can calculate a subset of the strictly robust connections using the following
observation: Let a = (i, j) be a changing activity. Then, if πi(d) ≤ πi+sa+wta for all d ∈ U ,
a is maintained for every delay scenario and thus a ∈ ASR. Thus the set of connections Aacc
having this property is a subset of the strictly robust connections. Then, every path in the
network N (Aacc) = (E ,Adrive ∪ Await ∪ Aacc ∪ Avirt) that contains only connections from
Aacc is a strictly robust path. Note that to check the above-mentioned property, we only
have to check whether the delay in i can exceed sa +wta or not. As we do not have to mind
the consequences of the delay in j, this problem turns out to be much easier than (TT) as
we will see in Section 4.

Slightly generalizing, this leads to the related problem:

(DA): Delay accumulation. Given an event j∗ ∈ E , an uncertainty set U and an integral
number D, does there exist a delay scenario d ∈ U such that πj∗(d) = πj∗ +D ?

Let us explain how we can apply (DA). Consider again a changing activity a = (i, j∗) ∈
Achange. If we solve (DA) for the event j∗ and corresponding D = sa + wta + 1, then the
answer “no” proves that a ∈ ASR. This is sufficient because of the following monotonicity
property: If there is a delay scenario which accumulates a delay of D at some event j∗, then
it is also possible to generate every smaller delay at j∗ (the latter is a consequence from
Lemma 4 below). Hence, solving (DA) for every a = (i, j∗) ∈ Achange and corresponding
D = sa + wta + 1, we obtain a subset of the strictly robust connections Aacc ⊂ ASR. Every
path in the network N (Aacc) that contains only connections from Aacc is a strictly robust
path. Thus given the network N (Aacc), we can solve the strictly robust timetable information

M. Goerigk, M. Knoth, M. Müller-Hannemann, M. Schmidt, and A. Schöbel 81

problem heuristically in polynomial time. A small observation that might be of theoretical
interest is the following. (DA) is equivalent to (TT) if the underlying undirected graph of
the event-activity network N = (E ,A) is acyclic or if wta = 0 holds for all a ∈ Achange.

4 Efficiently solving delay accumulation

In the following we will show how problem (DA) can be solved in polynomial time. To this
end we will derive properties of the delays that allow us to restrict to only a subset of delay
scenarios when solving (DA). Due to this result we are able to develop Algorithm 1 that
solves (DA) in polynomial time and can hence be used to determine Aacc. As before, we will
consider an event-activity network N = (E ,A) and delay scenarios d on N . For an event i ∈ E
and a delay scenario d we will denote by d(i) the delay in node i, that is d(i) = πi(d)− πi,
where πi(d) can be calculated successively for all nodes i using (3). Furthermore, by N (i)
we will denote the events and activities of the network N from which a directed path to i
exists in N . We will refer to N (i) also as the “network preceding i”.

The following lemma shows that it suffices to consider only the preceding network of a
node i when calculating the possible delay at this node.

I Lemma 2. Consider an event j∗ ∈ E and a delay scenario d with d(j∗) = D. Then it
holds that d′(j∗) = d(j∗) for the delay scenario d′ defined as

d′a :=
{
da, if a ∈ N (j∗)
0, if a ∈ N \ N (j∗).

Note that if d ∈ UKε for a given K, also d′ ∈ UKε . Thus when trying to solve (DA) for a
node j∗ in N , from now on we will restrict to delay scenarios having only delays in N (j∗).

In particular, we show in the following lemmata that we can assume that all delays lie on
one single path toward j∗. This property is crucial for solving (DA).

I Lemma 3. If for an event j∗ ∈ E and a delay scenario d it holds that d(j∗) > 0, then
there is at least one directed path P toward j∗ such that for every (i, j) ∈ P

πj(d) = πi(d) + lij + dij and (4)
wtij ≥ πi(d)− πi − sij . (5)

P contains at least one source delay.

We will call such a path P a “critical path for j∗ and d”. The next lemma shows that
when we have a delay scenario causing a delay of D at a node j∗, we can also produce any
amount of delay smaller than D at j∗ by reducing the source delays in an appropriate way.

I Lemma 4. Let d be a delay scenario and j∗ a node with d(j∗) = D for a D ∈ IN. Then
there is a delay scenario d′ with d′a ≤ da for every a ∈ A and d′(j∗) = D − 1.

The following Lemma 5 allows us to consider only delay scenarios where all delays lie on
a critical path toward the considered node in (DA). In cases where we are interested in the
delay in a specific node j∗, we will refer to delay scenarios where all occurring source delays
lie on a critical path toward j∗ as path delay scenarios.

I Lemma 5. Let j∗ be an event in E and d a delay scenario. Then there is a delay scenario
d′ with d′a ≤ da∀a ∈ A and all arcs a with d′a > 0 lying on a critical path P ′ toward j∗ such
that d′(j∗) = d(j∗).

ATMOS’11

82 The Price of Robustness in Timetable Information

Considering only path delay scenarios is the basic idea behind the dynamic algorithm.
Note that when d ∈ UKε for given K and ε, also the path delay scenario d′ constructed like
in Lemma 5 is contained in UKε . Thus every feasible delay scenario can be turned into a
feasible path delay scenario causing the same delay in the regarded node. Consequently, in
the following for solving the problem (DA) we will only look at path delay scenarios. Based
on these observations, we can build a polynomial time dynamic-programming algorithm that
for a given node j∗ and a number D determines whether there is a path delay scenario that
causes a delay of D at j∗. Starting with j∗, the algorithm goes backwards in the network
and successively sets the node labels d(j, k) which indicate how much delay is needed at node
j to cause a delay of D at j∗ under the assumption that at most K − k large source delays
on arcs succeeding j are set. Algorithm 1 summarizes this in pseudo code.

I Theorem 6. For a given node j∗, an uncertainty set UKε and a number D ∈ N, Algorithm 1
solves the problem (DA) in time O(|A|K):
- If there is a delay scenario d ∈ UKε with d(j∗) = D, Algorithm 1 returns d.
- Otherwise, Algorithm 1 returns “No”.

The set Aacc can now be obtained by using Algorithm 1 for every a ∈ Achange with
D := sa + wta + 1. The total complexity to do so is therefore O(|A||Achange|K).

5 Light robust timetable information

Allowing only strictly robust solutions will often lead to paths with very long travel time that
will probably not be accepted by the passengers. A promising alternative is light robustness.
In our setting this means that the output for the passenger should be a path with reasonable
length, that is, its length should not exceed the length of a nominal optimal path by too
much. Among all solutions satisfying this criterion one looks for the “most robust” one,
which we define as the one with the fewest number of unreliable transfers, i.e. such not
contained in ASR. If additional information like probabilities for the unreliable transfers is
given, weights can be introduced to differ between the grade of unreliability for these arcs.

For the robust timetable information problem we hence allow that the path gets longer
in order to make it more robust: Let f∗ := f(P ∗) denote the length of a shortest path for a
request Req = (u, v, trequest) in the undisturbed scenario, and B a parameter bounding the
allowed increase in travel time.

(Light-robust-path) Given a network N = (E ,A) a timetable π, a request Req
consisting of an origin u, a destination v and a time trequest, and the set of strictly robust
changing activities ASR, find a path P with length smaller or equal to f∗ +B that contains
as few as possible changing activities not contained in ASR.

Given the set of strictly robust changing activities ASR as defined in Section 3, we can find
such a path using a shortest path algorithm minimizing the number of changing activities
classified as being not strictly robust in an event-activity network where we exclude all events
that take place later than f∗ +B. This leads to the following lemma:

I Lemma 7. Given the set of strictly robust connections ASR, (Light-robust-path) can be
solved in polynomial time.

Note that we assumed in the problem formulation of (Light-robust-path) that the set of
strictly robust activities ASR is given. As we have seen in Theorem 1, determining the set
ASR is strongly NP-hard in general. For finding a heuristic solution we can again consider
the subset Aacc instead of ASR.

M. Goerigk, M. Knoth, M. Müller-Hannemann, M. Schmidt, and A. Schöbel 83

Algorithm 1 (Delay accumulation)
Require: Event-activity network N = (E ,A) with A topologically sorted (backwards),

uncertainty set UKε , event j∗, number D
Ensure: A delay scenario d ∈ UKε that causes a delay of at least D in j∗ if that is possible.

“No” otherwise.
1: Set d(j, k) =∞, succ(j, k) = ∅ for all k = 1, . . . ,K, j ∈ E .
2: d(j∗,K) = D

3: for a ∈ A, topologically sorted backwards do
4: Let (i, j) = a.
5: for k = K,K − 1, . . . , 1 do
6: if a ∈ Adrive ∪ Await then
7: if d(i, k) > min{d(j, k) + sij − εij , d(j, k + 1) + sij − dmaxij } then
8: d(i, k) = min{d(j, k) + sij − εij , d(j, k + 1) + sij − dmaxij },
9: set succ(i, k) := (j, k) or succ(i, k) := (j, k + 1) respectively.
10: end if
11: else if a ∈ Achange and d(j, k) < wtij and d(i, k) > d(j, k) + sij then
12: d(i, k) = d(j, k) + sij and succ(i, k) := (j, k)
13: end if
14: if d(i, k) ≤ 0 then
15: For (j, l) = succ(i, k) set dij := d(j, l) and set (i′, k′) := (j, l).
16: while succ(i′, k′) 6= ∅ do
17: Set (j, l) = succ(i′, k′)
18: if l < k′ then
19: Set di′j := dmaxi′j

20: else if (i′, j) ∈ Adrive ∪ Await then
21: Set di′j = εij .
22: end if
23: Set (i′, k′) := succ(j, l)
24: end while
25: Stop and return d.
26: end if
27: end for
28: end for
29: return “No”.

Compared to the approach of strictly robust timetable information, light robust paths
are not necessarily maintained under disruptions. But taken into account that passengers do
not only wish to have a guaranteed travel route, but are willing to sacrifice some robustness
for shorter travel times, this trade-off may be beneficial.

6 Empirical evaluation

Test instances and delay scenarios. Our computational study is based on the German
train schedule of January 25-26, 2011, restricted to high-speed trains of the train categories
intercity express ICE, intercity IC, and eurocity EC. Our event-activity network includes 771
trains, and 36588 events. We generated transfer arcs between pairs of trains at the same
station, if the departing train is scheduled to depart not later than 120 minutes after the
arrival time of the feeding train. Note that this gives us an implicit bound of 120 minutes for

ATMOS’11

84 The Price of Robustness in Timetable Information

Figure 2 The number of transfer arcs which are infeasible according to delay accumulation for
different parameter sets of the delay scenarios.

the maximum delay that robust paths can compensate for. However, we believe that this is
sufficient for any reasonable strategy of robust pre-trip timetable information in practice.
This leads to 51385 changing activities in our model. We applied the following standard
waiting rule: Trains wait for each other at most 3 minutes. Passenger path requests have been
generated by randomly chosen origins and destinations. Start times are chosen randomly in
the interval of the first 12 hours of the day. To avoid trivial requests, we included only those
requests for which the distance between start and destination is at least 150km and which
require in the nominal scenario at least one transfer. In our experiments, we consider the
scenario set UKε . Our artificial delay scenarios are characterized by three parameters, ε, K,
and A (with 80 different parameter settings in total):

The parameter ε controls the maximal size of “small delays” which can occur in our
model on every arc. This parameter has been varied between {0.01la, 0.02la, . . . , 0.1la},
i.e., small delays are chosen as a fraction of the nominal length la of waiting and driving
arcs.
The second parameter K specifies the maximum number of “large delays” which may
occur on some path. We assume that a passenger will be affected only by a small number
of such “large delays”, therefore we have K varied among {0, 1, 2, 3}.
Finally, our third parameter A specifies the size of a maximal “large delay” if it occurs.
Here we add the constant A to the maximal small delay of the arc. In our experiments,
we used A ∈ {10, 20} (in minutes).

Each parameter set can be interpreted as defining a certain “level of guaranteed reliability”:
Strict robust timetable information will deliver only paths for which all changing activities
are immune against all delay scenarios described by this parameter set. Hence, the larger we
choose these parameters, the stronger guarantees we obtain.
Test environment. All experiments were run on a PC (Intel(R) Xeon(R), 2.93GHz, 4MB
cache, 47GB main memory under ubuntu linux version 10.10). Only one core has been used
by our program. Our code is written in C++ and has been compiled with g++ 4.4.3 and
compile option -O3.
Experiment 1 — strictly robust transfer arcs. In our first experiment, we want to study
how many transfer arcs which exist in the nominal scenario are not strictly robust? And how
does the number of prohibited transfer arcs depend on the parameters of the delay scenario?
Given an overall number of 51385 changing activities, we observe that a considerable fraction
becomes infeasible with increasing size of the delay parameters, see Figure 2. To determine

M. Goerigk, M. Knoth, M. Müller-Hannemann, M. Schmidt, and A. Schöbel 85

Figure 3 The average increase of travel time (in %) for quickest robust paths over optimal paths
in the nominal scenario for different parameter sets of the delay scenarios.

Figure 4 The absolute increase of travel time for quickest robust paths over optimal paths in the
nominal scenario for different parameter sets of the delay scenarios.

strictly robust transfer arcs, we use our conservative over-approximation Algorithm 1 to
compute the set Aacc. The CPU time to compute Aacc is about 13 minutes per parameter set.

Experiment 2 — price of strict robustness. With this experiment we want to study
quantitatively by how much the planned travel time increases when we compare strictly
robust paths with nominal optimal paths. To this end, we have built 1000 random requests
(the same set for each parameter setting; in our evaluations we always average over these
requests). As a basis for our comparison, we determine for each request the earliest arrival
time with respect to the planned schedule (nominal scenario). Among all paths with earliest
arrival time we determine the minimum number of transfers. To solve these requests, we use
a (standard) multi-criteria, time-dependent shortest path algorithm. Our implementation
reuses the approach described in [3]. For the strictly robust requests the code has been
extended to handle “forbidden transfers”. More precisely, it is now possible to specify a
list of forbidden transfers between pairs of trains, as computed in Experiment 1 by delay
accumulation.

Figure 3 shows the average relative increase in travel time induced by strictly robust
paths in comparison with optimal paths in the nominal scenario. The average travel time
for the nominal paths is 456 minutes. This implies that the absolute average increase
of the travel time in minutes becomes quite large — even for moderate parameter sets,

ATMOS’11

86 The Price of Robustness in Timetable Information

Figure 5 Light robustness: The increase of strict robust paths (in %, upper left), the increase
in minimum slack times on the chosen light robust path in comparison with the nominal scenario
(upper right), the average increase of travel time in minutes (lower left) and the corresponding
percentage increase (lower right) for different parameter sets of delay scenarios.

see Figure 4. As expected, Figure 3 clearly shows that the price of robustness increases
monotonously for increasing levels of guaranteed reliability, it grows roughly linearly with
respect to parameter ε.
Experiment 3 — price of light robustness. Reusing the same set of random requests
from Experiment 2, we analyzed the price of light robustness. The maximum increase of
travel time over the nominal fastest one was bounded from above by the parameter B (in
minutes), with B ∈ {60, 120}. The added value of a light robust solution in comparison with
an optimal solution in the nominal scenario can be measured in two ways:
1. How often is the solution of the light robust optimization problem even a strictly robust

one?
2. What is the effect on the minimum slack time for changing activities? This number tells

us for each passenger the minimum buffer time available for his transfers.

Figure 5 shows the percentage increase of the number of cases where the light robust
solution turns out to use only transfer arcs that have been recognized as strictly robust. The
price to achieve this is a relatively moderate average increase of travel time — much more
acceptable than for strict robustness (see lower part of the figure). We also evaluated by how
much the minimum slack time for changing activities increases (upper right part of Figure 5)
for light robust paths in comparison with the nominal case. This measure also clearly shows
the added reliability achievable by light robustness.

7 Conclusion and future work
Two concepts for calculating robust passenger paths in public transportation networks are
proposed: One that searches for routes that will never fail for a given set of delay scenarios,
and one that finds the most reliable route within a given extra time. Both problems can be

M. Goerigk, M. Knoth, M. Müller-Hannemann, M. Schmidt, and A. Schöbel 87

solved efficiently when the set of strictly robust changing activities ASR is known. However,
determining this set is strongly NP-complete. We propose a dynamic programming algorithm
to find an approximation of this set. In an experimental study, we quantitatively evaluated
both robustness concepts using the approximate set of robust transfers. The trade-off between
the wish to have more robust paths and the resulting travel time is shown for different levels
of protection against delays.

Further research includes to improve our algorithms and to apply other robustness
concepts, such as recovery robustness [5, 10] to the problem of finding robust passenger
paths. Here, a solution does not need to be feasible for all scenarios, but whatever is going
to happen, we want to have a recovery algorithm at hand which is able to repair the solution
if the scenario becomes known.

References
1 A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University

Press, Princeton and Oxford, 2009.
2 A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Operations

Research, 23(4):769–805, 1998.
3 A. Berger, M. Grimmer, and M. Müller-Hannemann. Fully dynamic speed-up techniques

for multi-criteria shortest paths searches in time-dependent networks. In P. Festa, editor,
Proceedings of SEA 2010, volume 6049 of LNCS, pages 35–46. Springer, Heidelberg, 2010.

4 D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53, 2004.
5 S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, A. Navarra, M. Schachtebeck, and

A. Schöbel. Recoverable robustness in shunting and timetabling. In Robust and Online
Large-Scale Optimization, volume 5868 of LNCS, pages 28–60. Springer, Heidelberg, 2009.

6 Y. Disser, M. Müller-Hannemann, and M. Schnee. Multi-criteria shortest paths in time-
dependent train networks. In C. C. McGeoch, editor, WEA 2008. 7th International Work-
shop on Experimental Algorithms, Provincetown, MA, USA, volume 5038 of LNCS, pages
347–361. Springer, Heidelberg, 2008.

7 M. Fischetti and M. Monaci. Light robustness. In R. K. Ahuja, R.H. Möhring, and C.D.
Zaroliagis, editors, Robust and online large-scale optimization, volume 5868 of LNCS, pages
61–84. Springer, Heidelberg, 2009.

8 M. Goerigk, M. Knoth, M. Müller-Hannemann, M. Schmidt, and A. Schöbel. The price
of robustness in timetable information. Technical report, University Halle-Wittenberg,
Institute of Computer Science, 2011.

9 P. Kouvelis and G. Yu. Robust Discrete Optimization and its applications. Kluwer, 1997.
10 C. Liebchen, M. Lübbecke, R. H. Möhring, and S. Stiller. The concept of recoverable

robustness, linear programming recovery, and railway applications. In R. K. Ahuja, R.H.
Möhring, and C.D. Zaroliagis, editors, Robust and online large-scale optimization, volume
5868 of LNCS, pages 1–27. Springer, Heidelberg, 2009.

11 M. Müller-Hannemann and M. Schnee. Efficient timetable information in the presence of
delays. In R. Ahuja, R.-H. Möhring, and C. Zaroliagis, editors, Robust and Online Large-
Scale Optimization, volume 5868 of LNCS, pages 249–272. Springer, Heidelberg, 2009.

12 M. Müller-Hannemann, F. Schulz, D. Wagner, and C. Zaroliagis. Timetable information:
Models and algorithms. In Algorithmic Methods for Railway Optimization, volume 4395 of
LNCS, pages 67–89. Springer, Heidelberg, 2007.

13 M. Schnee. Fully realistic multi-criteria timetable information systems. PhD thesis,
Fachbereich Informatik, Technische Universität Darmstadt, 2009. Published in 2010 by
Südwestdeutscher Verlag für Hochschulschriften.

14 A.L. Soyster. Convex programming with set-inclusive constraints and applications to inex-
act linear programming. Operations Research, 21:1154–1157, 1973.

ATMOS’11

Delay Management including Capacities of
Stations
Twan Dollevoet1,2, Marie Schmidt3, and Anita Schöbel3

1 Econometric Institute and ECOPT, Erasmus University Rotterdam
P.O. Box 1738, NL-3000 DR Rotterdam, the Netherlands
dollevoet@ese.eur.nl

2 Process quality & Innovation, Netherlands Railways
P.O. Box 2025, NL-3500 HA Utrecht, the Netherlands

3 Institute for Numerical and Applied Mathematics, Georg-August University
Lotzestr. 16 - 18, D-37083 Göttingen, Germany
{m.schmidt,schoebel}@math.uni-goettingen.de

Abstract
The question of delay management (DM) is whether trains should wait for delayed feeder trains
or should depart on time. Solutions to this problem strongly depend on the capacity constraints
of the tracks making sure that no two trains can use the same piece of track at the same time.
While these capacity constraints have been included in integer programming formulations for
DM, the capacity constraints of the stations (only offering a limited number of platforms) have
been neglected so far. This can lead to highly infeasible solutions. In order to overcome this
problem we suggest two new formulations for DM both including the stations’ capacities. We
present numerical results showing that the assignment-based formulation is clearly superior to
the packing formulation. We furthermore propose an iterative algorithm in which we improve the
platform assignment with respect to the current delays of the trains at each station in each step.
We will show that this subproblem asks for coloring the nodes of a graph with a given number
of colors while minimizing the weight of the conflicts. We show that the graph to be colored is
an interval graph and that the problem can be solved in polynomial time by presenting a totally
unimodular IP formulation.

1998 ACM Subject Classification G.2.2 Network Problems

Keywords and phrases Delay Management, Station Capacities

Digital Object Identifier 10.4230/OASIcs.ATMOS.2011.88

1 Introduction and motivation

Passenger railway transport plays an important role in the European mobility. Especially
during peak hours and for distances between 20 and 800 kilometers, passengers often choose
to travel by train. In highly connected train systems passengers often have to change trains
since it is impossible to give a direct connection between all origin-destination pairs. In order
to minimize the inconvenience of changing from train A to train B, the timetable is often
constructed in such a way that train B departs shortly after train A arrives. However, if train
A has a delay during the operations, the question is whether train B should wait for train A
or depart on time. Such decisions are called delay management. Delay management (DM)
deals with (small) source delays of a railway system as they occur in the daily operations. In
case of such delays, the scheduled timetable is not feasible any more and has to be updated
to a disposition timetable. Note that since delays are often transferred if a connecting train
waits for a delayed feeder train it is not clear in advance if it is an overall improvement for

© Twan Dollevoet, Marie Schmidt and Anita Schöbel;
licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 88–99

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.88
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

T. Dollevoet, M. Schmidt and A. Schöbel 89

the system to maintain such connections. In order to ensure safe operations and to take the
limited capacity of the track system into account, also priority decisions are necessary. They
determine the order in which trains are allowed to pass a specific piece of track.

There exist various models and solution approaches for DM. The main question, which
has been treated in the literature so far, is to decide which trains should wait for delayed
feeder trains and which trains better depart on time (wait-depart decisions). A first integer
programming formulation for this problem has been given in [15] and has been further
developed in [6] and [17]. The complexity of the problem has been investigated in [8] where
it turns out that the problem is NP-hard even in very special cases. Recently, re-routing of
passengers has been tackled in [7].

In railway transportation an important issue concerns the limited capacity of the track
system. This has been taken into account, see [16] for modeling issues and [14, 13] for an
integer programming formulation and heuristic approaches solving capacitated DM problems.
The idea is to add headway constraints which make sure that there is enough distance between
two train departures and hence prevent two trains from using the same piece of track at the
same time. A similar approach has been used in [3], where capacity constraints for tracks and
stations have been modelled in an alternative graph. In this paper, we additionally consider
the possibility of re-optimizating the assignment of trains to platforms in the stations.

Our first example shows, that it is important to take station capacities into account. As
a station only offers a given number of platforms, its capacity is limited. Ignoring the station
capacity leads to solutions that might not be feasible in practice since it is implicitly assumed
that infinitely many trains can wait in a station until there is room on the tracks such that
they can continue their journeys.

I Example 1. Assume a busy piece of track consisting of stations S1, S2 and S3 along which
every 10 minutes a train is running, and no shorter interval than 10 minutes between two
such trains is allowed. The original schedule can be read off in the following table where the
planned departure time in S1, the planned arrival time in S2, the planned departure time in
S2 and the planned arrival time in S3 are given for 5 trains.

station S1 S2 S3
dep arr dep (planned) dep (delayed) arr (planned)

train 1 00 15 17 17 32
train 2 10 25 27 57 42
train 3 20 35 37 67 52
train 4 30 45 47 77 62
train 5 40 55 57 87 72

Now assume that train 1 gains a delay of say 30 minutes due to technical problems
directly after leaving station S2. Without taking station capacities into account all trains
following this delayed one would wait in S2 until the track is free again and would then leave
one after another as can be seen in the column dep (delayed) in the above table. This means
that train 2, 3, and 4 need to wait in the station simultaneously, since they all arrive before
the track is freed. However, if there is only capacity for two trains in station S2, only trains
2 and 3 can enter station S2. Train 4 can therefore not enter the station at its planned time
45, but has to wait until either train 2 or train 3 has departed from station S2. This means
that train 4 will not arrive before 57 and thus arrives at station S2 with a delay. This arrival

ATMOS’11

90 Delay Management including Capacities of Stations

delay (which would be ignored if the station capacity is not taken into account) may even
force train 4 to stay longer in station S1 and hence effect other trains at earlier stations.

Note that the problem of taking station capacities into account is also relevant in
timetabling. Here one has to check for a given timetable if the capacity in every station is
sufficient. Instead of considering the number of platforms as the capacities of the stations it
is even more realistic to look at the train pathing problem, i.e., to find routes through the
stations for any of the trains using the detailed track topology. This feasibility problem has
been extensively studied. In [9] a set of inbound and outbound routes is given for each train.
If a train chooses one of these routes, all track sections of it are reserved at once but released
section-wise. It is shown that deciding whether a feasible schedule exists is NP-complete
already for three possible routes per train. Another line of research aiming at real-time
solutions is based on the alternative graph formulation [12], originally used to model job shop
variants. A branch-and-bound algorithm for finding a conflict-free train schedule, minimizing
the largest delay, is developed in [5, 1]. In [4], the authors suggest a tabu search to solve
both the train sequencing and train routing problem, where a set of possible routes is given
as input. The problem has been modeled using a set packing approach in [11]. In [2] the
problem is modelled as an ILP using clique inequalities in a conflict graph. For a recent
survey on railway track allocation problems, see [10].

2 Integer programming formulation

In this section we will present two different integer programming formulations that take the
capacities within stations into account. As basis for both models we will use the integer
programming formulation which describes the delay management problem including capacities
of the tracks as it was introduced in [14]. Note that other formulations of the DM problem
can analogously be extended to take the stations’ capacities into account.

For modelling DM problems as integer programs usually an event-activity network N =
(E ,A) is used as underlying directed graph. Its set of nodes E corresponds to all arrival and
departure events of all trains at all stations. The set A consists of the following activities:
Between the arrival i and the departure j of a train in the same station, there is a waiting
activity a = (i, j) ∈ Await, between a departure i of a train in a station and its arrival j in the
next station there is a driving activity a = (i, j) ∈ Adrive. The set A furthermore contains
changing activities Achange linking an arrival of a train in a station to a (later) departure of
another train in the same station. Finally, headway activities Ahead are needed for any pair
of trains competing for the same infrastructure after their departures. We will denote the
minimal duration of an activity a as La.

The most important decision is which connections need to be kept alive. For each changing
activity a ∈ Achange we thus introduce a binary decision variable za, which is defined as
follows.

za =
{

0 if connection a is maintained,
1 otherwise.

In order to take the capacity constraints on the tracks into account one defines a binary
decision variable gij for each (i, j) ∈ Ahead given as

gij =
{

0 if event i takes place before event j,
1 otherwise.

For each event i ∈ Earr ∪ Edep, we define xi ∈ N as the rescheduled time when event i takes
place. The variables x = (xi) therefore define the disposition timetable. If the wait-depart

T. Dollevoet, M. Schmidt and A. Schöbel 91

decisions za and the priority decisions gij are fixed, the values of xi, i ∈ E can easily be
calculated.

Given the original timetable πi, i ∈ E and a set of exogenous source delays di at events
and da at activities (being zero if there is no delay), the integer programming formulation
(DM) without station capacities reads as follows:

(DM) min f(x, z, g) =
∑

i∈Earr

ci(xi − πi) +
∑

a∈Achange

zacaT (1)

such that

xi ≥ πi + di ∀i ∈ E , (2)
xj − xi ≥ La + da ∀a = (i, j) ∈ Await ∪ Adrive, (3)

Mza + xj − xi ≥ La ∀a = (i, j) ∈ Achange, (4)
Mga + xj − xi ≥ La + da ∀a = (i, j) ∈ Ahead, (5)

gij + gji = 1 ∀(i, j) ∈ Ahead, (6)
xi ∈ N ∀i ∈ E , (7)
za ∈ {0, 1} ∀a ∈ Achange, (8)
gij ∈ {0, 1} ∀(i, j) ∈ Ahead. (9)

The objective function in this model counts the sum of delays of all events (weighted
with the number of passengers ci who arrive at their final destination at event i) and adds
a penalty of T for every passenger who misses a connection. In a periodic timetable, T is
often chosen as its cycle time. Also here we weight the changing activity a with the number
of passengers ca who planned to use it as a transfer. The objective is an approximation
for the overall delay of all passengers and rather commonly used in DM. It gives the exact
value if the never-meet property for headways holds (see [14]). A more realistic model taking
into account the real paths passengers would use in case of delays has been developed in
[7]. It can also be used as basis for our extension, but is technically more difficult and
computationally harder to solve. The interpretation of the constraints is as follows: (2)
makes sure that no train departs earlier than planned and that source delays at events are
taken into account. (3) propagates the delay along waiting and driving activities while (4)
propagates the delay along maintained changing activities. For each pair of events competing
for the same infrastructure (6) makes sure that exactly one of the two headway constraints
is respected and (5) propagates the delay along this headway activity.

2.1 A packing-based integer programming formulation
In order to take the limited capacity of the stations into account, the first integer programming
approach counts the number of trains in a station at a certain time and restricts this number
by the number of platforms Cs. To this end, let τ be the largest possible time an event can
take place in a reasonable timetable. We introduce binary variables yit for all events i ∈ E
and times t = 1, . . . , τ , that are defined as

yit =
{

1 if event i takes place before or at time t,
0 otherwise.

The following constraints ensure that yit takes the correct value for all events i and times t
where M is a sufficiently large number, e.g., M ≥ τ + 1.

yit ≥
t− xi + 1

M
and 1− yit ≥

xi − t
M

. (10)

ATMOS’11

92 Delay Management including Capacities of Stations

For xi ≤ t, the left equation forces yit to 1, while the right constraint is redundant. On
the other hand, for xi > t, the right constraint forces yit to zero while the left constraint is
redundant.

In order to limit the number of trains at station s at time t, we now count the number
of trains that are present at the station for each time t. It should be noted that a train
starts entering a station at a time hi before it stops there at time xi and passengers can
board. The time the train starts to enter the station will be called enter time. In the same
way, the departure time xi′ of a train is smaller than the leave time hi′ , which is the time
the last car of the train leaves the platform and hence the time the next train can start
to enter. Thus [hi, hi′] denotes the interval during which a platform is occupied. Define
li = xi − hi for arrival events and li′ = hi′ − xi′ for departure events. By construction, li
and li′ are non-negative. When counting the number of trains, we should not consider the
time xi that the arrival event i takes place, but the time hi that the train starts using the
platform. Observing that hi ≤ t⇔ xi ≤ t+ li, this can be done by shifting the y variables.
A similar remark holds for departure events. This leads to the following constraints, that
limit the number of trains in the stations.∑

i∈Es
arr

yi(t+li) −
∑

i∈Es
dep

yi(t−li) ≤ Cs ∀s ∈ S, t ∈ {1, . . . , τ}, (11)

where Es
arr and Es

dep denote the set of arrival and departure events at station s, respectively
and Cs represents the number of platforms in station s.

Adding the new constraints (10),(11), and yit ∈ {0, 1} for all i ∈ E , t ∈ {1, . . . , τ} to the
formulation (1)-(9) we obtain our first integer programming formulation (DM-Cap-1) for the
DM problem with capacity constraints.

2.2 An assignment-based integer programming formulation
The second integer programming formulation views a station as a set of platforms, and
introduces headway constraints for trains that make use of the same platform. As a
consequence, this formulation determines an explicit allocation of the events to the available
platforms.

In order to allocate the trains to the platforms, we first define the set Ps of platforms at
station s ∈ S. Then, we introduce binary decision variables yip for each event i ∈ Es

arr and
p ∈ Ps, that are defined as

yip =
{

1 if arrival i and corresponding departure are assigned to platform p,

0 otherwise.

Of course, each arrival event must be assigned to exactly one platform.∑
p∈Ps

yip = 1, ∀s ∈ S, i ∈ Es
arr. (12)

In order to model the limited capacity of the stations, we determine the order in which
the trains arrive at a certain platform. Consider two trains t1 and t2 that arrive at the
same station corresponding to two events i and j. If the two trains are assigned to the same
platform, we must determine the order in which the events i and j take place. To this end,
we introduce a pair of binary variables ḡij and ḡji that are defined as follows

ḡij =
{

0 if arrival i takes place before arrival j on the same platform,
1 otherwise.

T. Dollevoet, M. Schmidt and A. Schöbel 93

If the trains are assigned to the same platform, either t1 must have departed before
t2 arrives, or t2 must have departed before t1 arrives. Denoting ai = (i, i′) as the waiting
activity of train t1 and aj = (j, j′) as the waiting activity of train t2 this is modelled by the
following set of constraints.

xj − xi′ +Mḡij ≥ Lij = li′ + lj , (13)
xi − xj′ +Mḡji ≥ Lji = lj′ + li, (14)

ḡij + ḡji ≤ 3− yip − yjp ∀p. (15)

li is defined as in Section 2.1, hence Lij describes the time during which the platform is
occupied after the departure of i′ and before the arrival of train j (i.e., when it opens its
doors). These constraints can be interpreted in the following way: Assume first that trains
t1 and t2 are not assigned to the same platform. Then 3 − yip − yjp ≥ 2 for all p. Hence,
both ḡij and ḡji can be set to 1. On the other hand, if trains t1 and t2 are assigned to the
same platform p, then 3− yip − yjp = 1 for that p, forcing either ḡij or ḡji to zero. In that
case, one of the headway constraints must be satisfied.

The above constraints must be introduced for each pair of trains t1, t2 that dwell at a
common station s ∈ S. Note that this type of constraints has also been used to model
alternative graphs (see [12]).

Adding the constraints (12)-(15), and yip ∈ {0, 1} for all stations s ∈ S and i ∈ Es
arr, p ∈ Ps

to the formulation (1)-(9) we obtain our second integer programming formulation (DM-Cap-2)
for the DM problem with capacity constraints. Note that this formulation reduces to a
problem of type (DM) if the assignment of events to platforms is determined in advance.

I Lemma 2. For fixed variables yip for all i ∈ Es
arr, p ∈ Ps the formulation (DM-Cap-2)

reduces to an instance of (DM), i.e., can be solved as DM problem with headway constraints.

Proof. If all yip variables are fixed we have two possibilities for (15): Either both yip variables
are 1, then ḡij + ḡji ≤ 1 and (13)-(14) reduce to a headway constraint of type (5)-(6), or at
least one of the yip variables is 0, then (13)-(15) becomes redundant. J

Note that for a fixed assignment of trains to platforms this result can be interpreted as if
we introduced a track for each platform within the stations. This give rise to the following
two bounds which can easily be calculated using an algorithm that solves problem (DM).

First, it is clear that (DM) is a relaxation of (DM-Cap-2) (and of (DM-Cap-1)), hence its
objective value zDM is a lower bound. On the other hand, if we fix the assignment y of trains
to stations in (DM-Cap-2) we obtain an upper bound z∗(y) which can also be calculated by
any algorithm for (DM) according to Lemma 2. Hence we can compute an upper and a lower
bound, i.e., zDM ≤ z∗ ≤ z∗(y). We will denote the model with a fixed platform assignment
by DM-Fix.

2.3 Computational results
We have performed a computational test to see which of the above formulations performs
best. Our test considers the railway network in the Randstad, which is the mid-Western part
of the Netherlands, where the railway network is very dense. We have created two cases,
that contain all long distance trains on this network during a period in the evening. For each
case, we generated 100 delay scenarios and solved the corresponding DM problem with both
formulations. Table 1 gives an impression of the sizes of the instances and of the resulting

ATMOS’11

94 Delay Management including Capacities of Stations

Size of the program (DM-Cap-1) (DM-Cap-2)
Case Stations Trains |E| |Ahead| |Aplat| Bin. Con. Bin Con

I 10 117 344 623 3836 166323 172048 9927 23492
II 16 168 576 986 6265 266608 810188 16316 38457

Table 1 Some characteristics of the case and the resulting integer programs. Aplat denotes the
set of train pairs (t1, t2) that dwell at a common station. Bin. and Con. give the number of binary
variables and constraints in the integer program, respectively.

Case I Case II
Formulation Obj. Value Time (s) Obj. Value Time (s)

DM Neglecting capacity 248210 0.42 888908 0.65
DM-Cap-1 Packing-based 277959 781.9 - -
DM-Cap-2 Assignment-based 277959 9.95 1013300 54.46

DM-Fix Fixed platforms 330415 1.76 1146420 5.27

Table 2 The objective values and solution times for the various formulations.

integer programs for both formulations. It can be observed from the table that the second
formulation requires less variables and constraints than the first one. This suggests that the
second formulation will solve the problem much faster.
We have used Cplex 12.2 on an Intel Core i5-2410M with 4 GB of RAM to solve the integer
programs. We set the maximal running time of the algorithm to 20 minutes. As objective
value for a formulation, we take the average objective value over all 100 delay scenarios. Table
2 shows these objective values and the solution times for both formulations. For comparison,
we also included the objective value and solution time of the model that neglects the limited
station capacity. We see in the table that the objective value increases if we explicitly model
the limited capacity of the stations. This implies that the model that ignores the station
capacity finds a solution that is infeasible in practice. For Case I, we see that the second for-
mulation is much faster than the first one. For Case II, Cplex could not solve all instances with
the first formulation within the available computation time. Only in 63 instances, the optimal
solution is found. In 15 instances, a feasible solution was found but not a provably optimal one.
Finally, in the remaining 22 instances no solution was found at all. These results are in line
with what can be expected based on the number of binary variables, which is much smaller for
the second formulation. Finally, if the platform assignment is fixed as in the timetable, worse
solutions are found. This shows that it pays off to schedule the trains in a station dynamically.

3 An iterative approach

The integer programming formulation (DM-Cap-2) yielded a big improvement concerning the
running time. Still, for large instances, making wait-depart-decisions, priority decisions and
platform assignments simultaneously is intractable. We thus propose an iterative approach:
We first fix the assignment of trains to platforms as given in the original timetable. This
results in a problem of type (DM) which can be solved according to [14]. For the resulting

T. Dollevoet, M. Schmidt and A. Schöbel 95

solution we then try to improve the platform assignment within the stations and iterate until
no further improvement is found. Using formulation (DM-Cap-2) we obtain:

1. Fix the station assignment yip in (DM-Cap-2) according to the planned timetable.
2. Solve the resulting problem (DM-Cap-2) with fixed yip and obtain solution with disposition

timetable xi, wait depart decisions za and priority decisions gij and ḡij

3. For every station find a new platform assignment yip and new priority decisions ḡij within
the station such that (x, z, y, g, ḡ) is feasible.

4. Go to Step 2. Stop if no further improvement has been found.

If for big instances of DM decomposing the problem into two steps still results in long
running times, we can use the approach of [13] to decompose Step 2 of the algorithm further
into two smaller subproblems making first the priority decisions and the wait-depart decisions
afterwards.

In Step 3, a natural idea would be to adjust not only the platform assignment but also the
timetable locally. Unfortunately, this can lead to infeasible solutions. Therefore, in Step 3 of
the algorithm, we leave the timetable unchanged and adjust only the platform assignment in
a way that allows the subsequent DM step to shift events forward in time, if possible.

In the following we will discuss Step 3, i.e., how to find an assignment of trains to
platforms at a given station s which is feasible for the given disposition timetable x and will
hopefully yield a better disposition timetable in the next iteration of Step 2. Recall from
(13) and (14) that the headway times Lij between two trains are the sum of a headway time
li′ that is needed for the first train to leave the station after its departure event i′ and a
headway time lj representing the time that the second train needs to completely enter the
station before its arrival event j can take place, i.e., Lij = li′ + lj . Thus instead of scheduling
the arrival and departure events xi, we can instead schedule the enter time hi = xi − li for
arrival events i and the leave time hi′ = xi′ + li′ for departure events i′ in a way that the
intervals (hi, hi′) and (hj , hj′) do not overlap for two trains with arrival and departure events
i, i′ or j, j′, respectively, that are assigned to the same platform.

We process every station separately as follows: In a first step we identify for which arrivals
i ∈ E in this station a new assignment might be beneficial. These are arrivals of delayed
trains that directly follow another delayed train. For these train arrivals we determine their
wish (enter) times wi. In a second step we find a new assignment for all trains together
with new enter times qi ≥ wi for these trains which should be as close to the wish times as
possible. We first show how the wish times are identified:

Let Ps be the set of platforms and Es
arr be the set of arrival events in station s. Note that

every such event corresponds to one train. Let i′ be the departure event following i (i.e.,
(i, i′) ∈ Await describes the waiting activity of the train in the station). From the timetable
and the headway times we know that the train will be occupying the station during the time
interval (hi, hi′). If a train is delayed, we distinguish two cases:

There is another train which occupies the interval (hj , hj′) with hj′ = hi and which is on
the same platform p, i.e., yip = yjp = 1. In this case, a new assignment might help to
reduce the delay of i. Assuming that (k, i) ∈ Adrive is the preceding driving activity of
the train we define the wish time of i as wi := xk + Lki + dki − li.
If no other train is on the same platform directly before xi, the delay of i is not due to
the station assignment, and hence wi := hi.

Also if the train is not delayed we set wi := hi. The platform assignment problem (PA) can
now be formulated as follows:

ATMOS’11

96 Delay Management including Capacities of Stations

(PA) Given a set of platforms Ps = {1, . . . , P} and for every arrival event i ∈ Es
arr an

interval [hi, hi′] and a wish time wi ≤ hi as well as a weight ci corresponding to the affected
customers on the train, find numbers qi ∈ [wi, hi] for all i ∈ Es

arr and a new assignment yip

such that for all i, j ∈ Es
arr and p ∈ Ps

qj ∈ (qi, hi′) =⇒ yip + yjp ≤ 1 (16)

and
∑

i∈Es
arr
ciqi is minimal.

Note that qj ∈ (hi, hi′) or qi ∈ (hj , hj′)⇐⇒ (qi, hi′)∩ (qj , hj′) 6= ∅, i.e., if and only if the
two trains belonging to i and j cannot be scheduled on the same platform. This problem
can be formulated as mixed-integer program as it is but the formulation does not seem to be
promising due to condition (16). Instead we will show that (PA) is polynomially solvable
by first identifying a finite dominating set C for the qi variables. We then notice that for
every choice of the qi variables, we can check feasibility by solving a coloring problem. Since
checking all possible q ∈ C|Es

arr| would lead to an exponential number of coloring problems,
we will use that the considered graph is an interval graph and code the solvavability of the
coloring problem in the constraints of an IP formulation for which we are able to show that
its coefficient matrix is totally unimodular. Our first result concerns the finite dominating
set.

I Lemma 3. Let C :=
⋃

i∈Es
arr
{wi, hi, hi′} be the set of all given wish and planned arrival and

departure times. Then there exists an optimal solution (q, y) to (PA) with qi ∈ Ci := C∩[wi, hi]
for all i ∈ Es

arr.

Proof. Let (q, y) be a feasible solution to (PA). Clearly, wi ≤ qi ≤ hi for all i. Furthermore,
with p the platform for which yip = 1, qi ≥ max{hj′ : yj′p = 1 and hj′ ≤ qi}. Now assume
that qi 6∈ C for some i ∈ Es

arr. Let p the platform with yip = 1. Define

q̃i := max {wi,max{hj′ : yj′p = 1 and hj′ ≤ qi}} . (17)

Then q̃i ∈ [wi, hi] and for all j condition (16) is still satisfied. Hence, replacing qi by q̃i is
a feasible solution to (PA) with better objective value and with q̃i ∈ Ci. Doing this for all
values q shows the result. J

Now assume that some values qi ∈ Ci, i ∈ Es
arr are given. How can we check whether q

is feasible? This means we have to check if there is a platform assignment y such that (16)
is satisfied. To this end we transform our problem into a coloring problem in the following
graph G(q) = (Es

arr, E): For every i ∈ Es
arr we draw a node. We add an edge {i, j} between

two nodes if (qi, hi′) ∩ (qj , hj′) 6= ∅, i.e., if the two corresponding trains cannot be assigned
to the same platform. In order to find out whether there is a feasible platform assignment for
q we thus have to find out whether G(q) is P -colorable. Note that by construction this graph
is an interval graph and thus perfect (see e.g. [18, Chapter 65]). Thus χ(G(q)) = ω(G(q))
with χ(G(q)) denoting the chromatic number of G(q) and ω(G(q)) the number of nodes in
the biggest clique of G(q). We hence have to check whether the number of nodes in the
biggest clique in G(q) is not greater than P .

Let us order the values in C = {q1, . . . , q|C|} in increasing order and let us define intervals
Ik := (qk, qk+1) for k = 1, . . . |C| − 1. For a given q we define a matrix A(q) = (ail) with
|Es

arr| rows and |C| − 1 columns and entries

ail =
{

1 if (qi, hi′) ∩ Il 6= ∅,
0 otherwise. (18)

Then we can determine the chromatic number of G(q) as follows.

T. Dollevoet, M. Schmidt and A. Schöbel 97

I Lemma 4.
ω(G(q)) = max

l=1,...,|C|−1

∑
i∈Es

arr

ail.

Proof. Due to Lemma 3 we can assume that all values of qi are in C, hence there is an edge
between i and j in G(q) if and only if there exists an interval Il such that ail = ajl = 1. Now
let E ′ ⊆ Es

arr. As G(q) is an interval graph, E ′ is a clique in G(q) if and only if there exists
one interval Il such that ail = 1 for all i ∈ E ′. J

Now we can finally rewrite (PA) as an integer program in which we look for a choice of
q-values from the set C checking feasibility by Lemma 4 in the constraints. Denote by qk

i

the entries of the set Ci = {q1
i , q

2
i , . . . , q

|Ci|
i }. Then for every arrival event i and every choice

qk
i ∈ Ci we define the variables:

ηk
i =

{
1 if candidate qk

i ∈ Ci is chosen,
0 otherwise.

These will be the variables of our integer program. In order to directly see properties of
the resulting constraint matrix, we order our variables such that all variables ηk

i having the
same index i stand together. We need to extend the matrix defined in (18) to all possible
choices of q. To this end for every qk

i ∈ Ci we define a row with

ãk
il =

{
1 if (qk

i , hi′) ∩ Il 6= ∅,
0 otherwise.

Doing this for all i = 1, . . . , |Es
arr| we obtain a matrix Ã = (ãk

il) with
∑

i∈Es
arr
|Ci| rows and

|C| − 1 columns. Note that qk
i = qk′

j with qk
i ∈ Ci, qk′

j ∈ Cj is possible but would lead to two
(maybe different) rows in Ã. (PA) can hence be rewritten as

min
∑

i∈Es
arr

ci

|Ci|∑
k=1

qk
i η

k
i (19)

such that
|Ci|∑
k=1

ηk
i = 1 for all i ∈ Es

arr, (20)

∑
i∈Es

arr

|Ci|∑
k=1

ãk
ilη

k
i ≤ P for all l ∈ 1, . . . , |C| − 1, (21)

ηk
i ∈ {0, 1} for all ∀i ∈ Es

arr, ∀k ∈ Ci. (22)

I Lemma 5. The constraint matrix A′ defined by the inequalities (20)-(21) is totally unim-
odular.

Proof. We will show that A′ is totally unimodular by showing that every subset J of
rows of A′ can be partitioned into two sets J1, J2 with J1 ∩ J2 = ∅, J1 ∪ J2 = J and∑

j∈J1
a′jl −

∑
j∈J2

a′jl ∈ {−1, 0, 1} for all columns l (see for example [18, Chapter 5]). The
columns of A′ are associated to the variables of our integer program. For every i = 1, . . . , Es

arr
we will denote by C(i) the indices of the columns of A′ associated to a variable ηk

i . The rows
represent the constraints. For the first rows i = 1, . . . , |Es

arr| we thus have

a′il =
{

1 if the column l belongs to variable ηk
i for a k,

0 otherwise.

ATMOS’11

98 Delay Management including Capacities of Stations

Starting from row |Es
arr|+ 1, the matrix A′ consists of the matrix ÃT . We notice that Ã has

the consecutive ones property and that for a given i = 1, . . . , |Ci|, all columns of ÃT with
index in C(i) have their last 1-entry in the row that represents the constraint for the interval
with end point hi′ .

Let J be an index set of rows of A′ and JA = J \ {1, . . . , |Es
arr|}, that is the part of the

chosen subsets that is contained in ÃT . For each subset J of rows, we now define

S(J, l) =
∑
j∈J

a′jl.

We then alternately assign the rows JA to two sets JA
1 and JA

2 . Then for every i and every
column associated to a variable ηk

i either

S(JA
1 , l)− S(JA

2 , l) ∈ {0, 1} or S(JA
1 , l)− S(JA

2 , l) ∈ {−1, 0}, (23)

because of the consecutive ones property and because for every i the last 1-entry of C(i) is
in the same row. We set J1 := JA

1 and J2 := JA
2 and add the indices of the first |Es

arr| rows
in the following way to these sets: If for row i the left inclusion in (23) holds, we assign the
i-th row to J2, if the right inclusion holds, we assign it to J1. We obtain

S(J1, l)− S(J2, l) ∈ {−1, 0} or S(J1, l)− S(J2, l) ∈ {0, 1},

respectively. This proves total unimodularity. J

I Corollary 6. (PA) can be solved by linear programming.

4 Conclusion and further research

In this paper, we introduced a DM model that incorporates the limited capacity of railway
stations. We have given two approaches that can be used to extend any integer programming
formulation for the DM problem. Our first approach determines the number of trains in a
station at each time and requires this number to be smaller than the station capacity. The
second approach views a station as a set of parallel tracks and determines an assignment
of trains to platforms explicitly. In a computational test, the second formulation strongly
outperforms the first one.
As solutions to the DM models should be available within a very short computation time, we
also proposed an iterative solution method for the DM model with station capacities. This
heuristic iterates between solving the DM problem with a given platform assignment and
optimizing the platform assignment given the timetable and wait-depart decisions. We show
that determining an improving platform assignment can be done in polynomial time. Two
main directions for further research should be considered. First, the second integer program
should be tested on larger real-world instances and the performance of the iterative heuristic
should be evaluated. Also other heuristics, e.g., exchange heuristics, could be implemented
and compared. Second, after assigning platforms to the trains, a route through the station
has to be determined for each train. Solving the DM and routing problem simultaneously
might be computationally intractable. However, we plan to integrate the routing decisions in
the platform assignment step of the iterative heuristic.

References
1 G. Caimi, F. Chudak, M. Fuchsberger, M. Laumanns, and R. Zenklusen. A New Resource-

Constrained Multicommodity Flow Model for Conflict-Free Train Routing and Scheduling.
Transportation Science, 45(2):212–227, 2011.

T. Dollevoet, M. Schmidt and A. Schöbel 99

2 A. Caprara, L. Galli, and P. Toth. Solution of the train platforming problem. Transportation
Science, 45(2):246–257, 2011.

3 F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. Bi-objective conflict detection
and resolution in railway traffic management. Transportation Research Part C: Emerging
Technologies, In Press, 2010.

4 F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. A tabu search algorithm for
rerouting trains during rail operations. Transportation Research Part B: Methodological,
44(1):175–192, 2010.

5 A. D’Ariano, D. Pacciarelli, and M. Pranzo. A branch and bound algorithm for scheduling
trains in a railway network. European Journal of Operat. Research, 183(2):643–657, 2007.

6 L. De Giovanni, G. Heilporn, and M. Labbé. Optimization models for the single delay
management problem in public transportation. European Journal of Operational Research,
189(3):762–774, 2008.

7 T. Dollevoet, D. Huisman, M. Schmidt, and A. Schöbel. Delay management with re-routing
of passengers. Transportation Science, 2011. to appear.

8 M. Gatto, R. Jacob, L. Peeters, and A. Schöbel. The computational complexity of delay
management. In Graph-Theoretic Concepts in Computer Science: 31st International Work-
shop (WG 2005), volume 3787 of Lecture Notes in Computer Science, 2005.

9 L. G. Kroon, H. E. Romeijn, and P. Zwaneveld. Routing trains through railway stations:
complexity issues. European Journal of Operational Research, 98(3):485–498, 1997.

10 R. Lusby, J. Larsen, M. Ehrgott, and D. Ryan. Railway track allocation: models and
methods. OR Spectrum, pages 1–41, 2009. in press.

11 R. Lusby, J. Larsen, D. Ryan, and M. Ehrgott. Routing trains through railway junctions:
A new set packing approach. Transportation Science, 45(2):228–245, 2011.

12 A. Mascis and D. Pacciarelli. Job-shop scheduling with blocking and no-wait constraints.
European Journal of Operational Research, 143(3):498–517, 2002.

13 M. Schachtebeck. Delay Management in Public Transportation: Capacities, Robustness,
and Integration. PhD thesis, Universität Göttingen, 2010.

14 M. Schachtebeck and A. Schöbel. To wait or not to wait and who goes first? Delay
management with priority decisions. Transportation Science, 44(3):307–321, 2010.

15 A. Schöbel. A model for the delay management problem based on mixed-integer program-
ming. Electronic Notes in Theoretical Computer Science, 50(1), 2001.

16 A. Schöbel. Capacity constraints in delay management. Public Transport, 1(2):135–154,
2009.

17 A. Schöbel. Integer programming approaches for solving the delay management problem. In
Algorithmic Methods for Railway Optimization, number 4359 in Lecture Notes in Computer
Science, pages 145–170. Springer, 2007.

18 A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency, volume 24 of Al-
gorithms and Combinatorics. Springer-Verlag, Berlin Heidelberg New York, 2003.

ATMOS’11

Stochastic Delay Prediction in Large Train
Networks∗

Annabell Berger1, Andreas Gebhardt1,
Matthias Müller-Hannemann1, and Martin Ostrowski1

1 Institut für Informatik
Martin-Luther-Universität Halle-Wittenberg, Germany
{berger,gebhardt,muellerh}@informatik.uni-halle.de
martin.ostrowski@student.uni-halle.de

Abstract
In daily operation, railway traffic always deviates from the planned schedule to a certain extent.
Primary initial delays of trains may cause a whole cascade of secondary delays of other trains
over the entire network. In this paper, we propose a stochastic model for delay propagation and
forecasts of arrival and departure events which is applicable to all kind of public transport (not
only to railway traffic). Our model is fairly realistic, it includes general waiting policies (how
long do trains wait for delayed feeder trains), it uses driving time profiles (discrete distributions)
on travel arcs which depend on the departure time, and it incorporates the catch-up potential
of buffer times on driving sections and train stops. The model is suited for an online scenario
where a massive stream of update messages on the current status of trains arrives which has to be
propagated through the whole network. Efficient stochastic propagation of delays has important
applications in online timetable information, in delay management and train disposition, and in
stability analysis of timetables.

The proposed approach has been implemented and evaluated on the German timetable of
2011 with waiting policies of Deutsche Bahn AG. A complete stochastic delay propagation for
the whole German train network and a whole day can be performed in less than 14 seconds on a
PC. We tested our propagation algorithm with artificial discrete travel time distributions which
can be parametrized by the size of their fluctuations. Our forecasts are compared with real data.
It turns out that stochastic propagation of delays is efficient enough to be applicable in practice,
but the forecast quality requires further adjustments of our artificial travel time distributions to
estimates from real data.

1998 ACM Subject Classification G.2.2 Graph Theory (Graph algorithms; Network problems)

Keywords and phrases Stochastic Delay Propagation, Timetable Information, Delay Manage-
ment, Train Disposition, Stability Analysis

Digital Object Identifier 10.4230/OASIcs.ATMOS.2011.100

1 Introduction

Motivation. Train delays occur for various reasons: Disruptions in the operations flow,
accidents, malfunctioning or damaged equipment, construction work, repair work, and
extreme weather conditions like snow and ice, floods, and landslides, to name just a few.
Initial delays of these types are called primary delays. They usually induce a whole cascade

∗ This work was supported by the DFG Focus Program Algorithm Engineering, grant MU 1482/4-2. We
wish to thank Deutsche Bahn AG for providing us timetable data for scientific use.

© Annabell Berger, Andreas Gebhardt, Matthias Müller-Hannemann, and Martin Ostrowski;
licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 100–111

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.100
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

A. Berger, A. Gebhardt, M. Müller-Hannemann, and M. Ostrowski 101

of secondary delays of other trains which have to wait according to certain waiting policies
between connecting trains. On a typical day of operation of German Railways, an online
system has to handle millions of forecast messages about (mostly small) changes with respect
to the planned schedule and the latest prediction of the current situation. Thus, a graph
model representing the current schedule has to be updated at a high rate [9]. Delay cascades
cannot be forecast exactly due to several stochastic influences. For example, trains can drive
faster than planned or stay shorter at stations than scheduled and so catch up some of their
delay. In fact, to make the schedule more robust, certain slacks are usually integrated into
the planned schedule. Stochastic forecasts can be used for several purposes:
1. Ontrip timetable information: The arrival and departure time distribution can be

used to evaluate the reliability of a planned transfer and then used in a multi-criteria
setting as an additional objective.

2. Delay management and train disposition: Dispatchers have to decide whether a
train should wait for another delayed train. These decisions are quite complex, and so
it is helpful to evaluate the reliability of forecasts of arrival and departure times as a
decision aid. This information can be used for explicit human decisions or in an automatic
disposition system which tries to find globally optimal waiting decisions.

3. “Stability analysis” of the planned schedule: Stochastic simulations of delays allow
for a quantitative evaluation how small delays propagate through the system. They help
to study the robustness of the schedule.

Related Work. Efficient deterministic propagation of primary and secondary delays has
been done by Müller-Hannemann and Schnee [9]. They demonstrated that even massive
delay data streams can be propagated instantly, making this approach feasible for real-time
multi-criteria timetable information. Goverde [6] recently presented an efficient deterministic
delay propagation algorithm for periodic timetables. Train event networks are similar to
project networks. In stochastic project networks (PERT-networks), the vertices are project
events and arcs correspond to activities. The duration of each activity has an associated
probability distribution. One is typically interested in critical paths or in the distribution
function of the overall project completion time. The computation of the distribution function
is computationally hard, even the evaluation at a single point is #P-complete in general [7].
Stochastic models for the propagation of delays have been studied intensively, most im-
portantly by Carey and Kwieciński [3, 4] and Meester and Muns [8]. They propose to use
approximations of delay distributions to reduce the computational effort and study the
error propagation for such approximations. However, they do not model waiting policies for
connecting trains. For the computation of propagated delays, the distributions are treated
as if they were independent. Although it is difficult to bound the consequences of the
independence assumption quantitatively, Meester and Muns argue that the effect of their
approximations is small. The experimental evaluation of [8] has been conducted on a “toy
network” of ten stations and four train lines. A similar approach has been taken by Büker [2].
Compared to our work, his experiments are only based on relatively small subnetworks.
Goverde [5] uses a max-plus algebra approach for stability analysis of railway timetables. See
also the PhD-thesis of Yuan [10] for further references and an in-depth discussion of models.

Our Contribution. We present in the following section a concise and realistic stochastic
model for delay propagation and calculation of arrival and departure time distributions in
public transport. Our model is formulated with respect to an event graph which models the
train schedule and the waiting conditions between planned transfer possibilities. It includes
general waiting policies (how long do trains wait for delayed feeder trains), it uses driving

ATMOS’11

102 Stochastic Delay Prediction in Large Train Networks

time profiles (discrete distributions) on travel arcs which depend on the departure time, but
also on train category or track conditions. Moreover, our model incorporates the catch-up
potential of buffer times on driving sections and at train stops. We believe that the resulting
model is quite elegant which made it possible to implement it with a reasonable effort.

Discrete distributions of travel times on travel arcs can be chosen arbitrarily which allows
to test different scenarios, in particular to stress the system to its limits. A crucial property
of our approach is that it allows dynamic updates with respect to new delay messages. Given
incoming messages (new delays or updates of existing delays, and current effective status
messages of trains) from some external source, we immediately propagate these messages
through the whole network. The event graph is a directed acyclic graph. Therefore, delay
propagation can be done in topological order of events. For start up it is necessary to
propagate once the initial distributions over the whole event graph. Afterwards new forecasts
and effective status messages are only propagated in the forward cone of the corresponding
event, i.e. in the part of the network which can be reached from it. We work with two types
of distributions: one-point distributions of already realized events and arbitrary discrete
distributions of events which still lie in the future.

Although stochastic delay propagation is computationally quite expensive, we managed
to implement a version which is fast enough to be used in an online system. Experiments
with a prototypal implementation on the whole German train network and realistic waiting
rules between connecting trains require less than 14s to propagate all discrete distributions
for a full traffic day. Simulations with several distributions of travel times on travel arcs yield
interesting insights into the robustness of the planned schedule against small fluctuations. We
compare our predictions with realized event times for two different types of days, a mid-week
day and a weekend day and perform experiments with four different sets of waiting rules
between connecting trains.

Overview. In the following section we describe in detail the event graph, our stochastic
model, and its underlying assumptions. Afterwards we explain, how arrival and departure
probabilities can be computed for all events. In Section 4, we report on experimental results
with a prototypal implementation. A full version of this paper is available as a Technical
Report [1].

2 The stochastic model

2.1 The timetable and its corresponding event graph
A time table TT := (P, S,C) consists of a tuple of sets. Let P be the set of trains, S the set of
stations and C the set of elementary connections, that is C := {c = (p, s, s′, td, ta) | train p ∈
P leaves station s at time td. The next stop of p is at station s′ at time ta}.

We define with respect to the set of elementary connections C sets of departure eventsDepv
and arrival events Arrv for each station v ∈ S. Let Dep = ∪v∈SDepv and Arr = ∪v∈SArrv.
Each event depv := (time, train) ∈ Depv and arrv := (time, train) ∈ Arrv represents
exactly one departure or arrival event which consists of the two attributes time and train.
Staying times at a station v can be lower and upper bounded by minimum and maximum
staying times minstay(arrv, depv),maxstay(arrv, depv) ∈ Z+ which have to be respected
between different events in v. Staying times ensure the possibility to transfer from one train
(the so-called feeder train) to the next. We denote by G := (V,A) the event graph with
V := Dep ∪ Arr and the arc set A := Atravel ∪ Atransfer consisting of the travel arc set
Atravel :=

A. Berger, A. Gebhardt, M. Müller-Hannemann, and M. Ostrowski 103

{(depv, arrw)| there exists c ∈ C with td = depv(time), ta = arrw(time),
v = s, w = s′ ∧ p = depv(train) = arrw(train)}

and the transfer arc set

Atransfer := {(arrv, depv)| arrv ∈ Arr, depv ∈ Dep,minstay(arrv, depv) ≤
depv(time)− arrv(time) ≤ maxstay(arrv, depv)}.

Furthermore, we define waiting times waittransfer : Atransfer 7→ Z+ ∪ {∞} where we de-
note by waittransfer(arrv, depv) the number of time units which train(depv) may depart
later than the planned time time(depv) with respect to its feeder train train(arrv). Clearly,
waittransfer(arrv, depv) = ∞ if train(arrv) = train(depv), because a train cannot depart
before its arrival. We define a further waiting time wait : Dep 7→ Z+ with wait(depv) :=
max{waittransfer(arrv, depv)| (arrv, depv) ∈ Atransfer ∧ train(arrv) 6= train(depv)}. If
some train is delayed by more than wait(depv), then its departure time depends on no
other train, irrespectively of their delays. Each travel arc (depv, arrw) ∈ Atravel pos-
sesses a scheduled travel time arrw(time) − depv(time) and a minimum possible travel
time mintt(depv, arrw) ∈ Z+ with mintt(depv, arrw) ≤ arrw(time) − depv(time). If train
train(depv) departs too late at v there exists the possibility to regain some time. We define
a realization time tr(event) for each event and call the current time point update time tupdate.
Note that scheduled time points (see the attributes attached to departure or arrival events)
are denoted as ‘time’.

2.2 Model assumptions
In the following, we specify and discuss our model assumptions. The general scenario is
that we obtain a stream of online messages about the delay status of trains (so-called status
messages) from the railway company, i.e., for each train, the difference between the scheduled
and the realization time for departure and arrival events is measured and reported.

I Assumption 1. With respect to status messages, a train can arrive or depart at any time
after the planned arrival or departure time, respectively.

Of course, a train shall never depart before its scheduled departure time. In reality, a
train may arrive somewhat early, but then its waiting time at the station will be increased.
Thus our model assumption does not make a difference for delay propagation, but simplifies
the mathematical model. For compatibility to Assumption 1, we demand the following.

I Assumption 2. With respect to our forecasts of arrival and departure time distributions,
no train departs before its scheduled time or arrives at a station before its planned arrival
time.

I Assumption 3. We assume that the distributions of arrival times of all feeder trains of a
given train are stochastically independent.

In other words, we postulate that the delay distributions of any two feeder trains are
mutually independent. Note that the same independence assumption has also been used
in the previous studies mentioned in the related work section above. However, we would
like to emphasize one crucial point in online delay propagation: as soon as a delay of some
train has been realized, the corresponding departure or arrival time distribution of this
event is replaced by a one-point distribution, and this update is propagated through the

ATMOS’11

104 Stochastic Delay Prediction in Large Train Networks

network. Hence, the contribution of realized delays is fully reflected in our estimates of
future arrival and departure time distributions. Nevertheless, our independence assumption
may be violated to a certain extent, for example, because of limited track capacities for
incoming trains at a station. However, this simplification enables us to keep stochastic delay
propagation tractable.

I Assumption 4. Waiting rules are defined for any pair of arriving and departing trains
for which a transfer arc is defined.

For simplicity, we do not model new transfer possibilities due to other delayed trains
(although it would not change our model, only the implementation is slightly more complic-
ated).

3 Departure and arrival probabilities
3.1 Travel time, departure and arrival random variables
Let (Ω,A, P) be a discrete probability space with sample space Ω, σ-algebra A and probability
measure P . Furthermore, let T ⊂ Z+ be a discrete set of time points. We define with respect
to a current time tupdate for each event event ∈ Dep∪Arr a discrete random variable Xevent :
Ω 7→ {event(time), event(time) + 1, . . . }. We call a variable departure random variable if
event = depv and arrival random variable for event = arrv where depv, arrv ∈ Dep ∪ Arr.
The range of Xevent(Ω) is {event(time), event(time) + 1, . . . } by our Assumption 2. With
respect to Assumption 3, we state that all arrival random variables Xarrv with arrv ∈ Arr
for a single station s ∈ S are pairwise stochastically independent with respect to probability
measure P . This means that for all pairs (t, t′) ∈ {arrv(time), . . . } × {arr′v(time), . . . } it
follows that

P (X−1
arrv

({t}) ∩X−1
arr′

v
({t′})) = P (X−1

arrv
({t})) · P (X−1

arr′
v
({t′})).

Furthermore, we distinguish between realized and not realized random variables. For all
realized events we state P (X−1

event(tr(event))) := 1 (in such cases tr(event) ≤ tupdate).
Non-realized events are in general not ‘one-point-distributed’.

We also need a random variable which describes possible travel times on each arc
(depv, arrw) ∈ Atravel. Generally, we want to model the case that a train can regain some time
with a smaller travel time as the planned travel time arrw(time)−depv(time). Assumption 2
ensures that we may not arrive at an earlier time as arrw(time). Hence, we need for each
arc (depv, arcw) ∈ Atravel a sequence of discrete travel time variables (Xt

(depv,arcw))t∈TP for
each possible departure time point t ∈ TP := {depv(time), depv(time) + 1, . . . } with

Xt
(depv,arrw) : Ω 7→ {mintt(depv, arrw), . . . , arrw(time)− depv(time) + k}.

To satisfy Assumption 2, we have to distinguish random variables for different times with
respect to their time distance to the scheduled times. That means that the probability
for time t must be zero if the distance between a forecasted time and the scheduled arrival time
arrw(time) is more thanmintt(depv, arrw).We set P ((Xt

(depv,arrw))−1({mintt(depv, arrw), . . . ,
arrw(time) − t − 1})) := 0 for all t ∈ {depv(time), . . . , d} because our Assumption 2 pro-
hibits to arrive earlier than planned. Clearly, it is necessary to model for all points in
time t a distinct random variable Xt

(depv,arrw). In theory, we are able to distinguish infin-
itely many of such random variables. In our experiments, we restrict ourselves to the case
where all random variables are identical from a certain point of time d onwards. We set
d := arrw(time)−mintt(depv, arrw)− 1 and define

Xt
(depv,arrw) := Xd+1

(depv,arrw)

A. Berger, A. Gebhardt, M. Müller-Hannemann, and M. Ostrowski 105

0.125

0.25

0.375

0.5

travel time

min

probability

scheduled

possible departure

travel time of
0.125

0.25

0.375

0.5

travel time

min

probability

scheduled+2

min

td d d + 5 times t of depv

(depv , arrw)

scheduled+2

Figure 1 Possible travel times on an arc (depv, arrw) depending on the actual departure time.
We use the the abbreviations t := depv(time), d := arrw(time) − mintt(depv, arrw), min :=
mintt(depv, arrw) and scheduled:= arrw(time) − depv(time). The allowed fluctuation above the
scheduled travel time is here chosen as k = 2. The data points connected by lines represent all travel
times which lead to the same arrival time at w. The points in the same column td correspond to all
possible travel times for a fixed distribution Xt

(depv,arrw).

for all t > d. Consider Figure 1 for an example of travel time distributions.

3.2 Departure random variables and departure probabilities
When we reach the current time point tupdate, we replace for all events with a realization
time tr(event) ≤ tupdate their discrete departure or arrival random variables with the above
defined ‘one-point-distribution’ (if the data is available). Afterwards, we can compute —
following a topological ordering of the acyclic event graph — all succeeding random variables.
In a next step we want to describe how one can compute the departure random variable
for an event which has not yet been realized. For the determination of a departure random
variable we distinguish between three cases.
1. Train train(depv) departs at its scheduled time depv(time).
2. Trains train(depv) departs at t ∈ {depv(time) + 1, . . . , depv(time) + wait(depv)}.
3. Train train(depv) departs at t ∈ {depv(time) + wait(depv) + 1, . . . }.
We denote the set of all arrival events of feeder trains by F := {arriv| (arriv, depv) ∈
Atransfer, train(arriv) 6= train(depv)}. Case (1) occurs if train train(arrv) arrives at
t ∈ {arrv(time), . . . , depv(time)−minstay(arrv, depv)} and for each feeder trains arriv ∈ F
with i ∈ N|F | one of the following holds: (a) either it arrives early enough so that the
train can depart on time, i.e., it arrives in time interval {arriv(time), . . . , depv(time) −
minstay(arriv, depv)}, or (b) it arrives so late that the departing train does not need to
take care of it. This happens in the interval {depv(time) − minstay(arriv, . . . , depv) +
wait(arriv, depv) + 1, . . . }. Let l := |F |+ 1 the number of ingoing transfer arcs for departure
event depv and arrlv := arrv.We define for all feeder trains i ∈ Nl−1 and t ∈ {depv(time), . . . }
possible arrival intervals Ii(t) depending on possible departure times of train train(arrv) with
Ii(t) := {arriv(time), . . . , t−minstay(arriv, depv)−1} ∪{depv(time)−minstay(arriv, depv)+
wait(arriv, depv) + 1} and Il(t) :=

ATMOS’11

106 Stochastic Delay Prediction in Large Train Networks

{arrv(time), . . . , t−minstay(arrv, depv)− 1}. Furthermore, we need slightly different index
sets Ji(t) := {arriv(time), . . . , t−minstay(arriv, depv)} ∪{depv(time)−minstay(arriv, depv)+
waittransfer(arriv, depv) + 1, . . . } and Jl(t) := {arrv(time), . . . , t − minstay(arrv, depv)}.
Finally, we denote mi := minstay(arriv, depv). For case (1) we compute the preimages of a
departure random variable with

X−1
depv

({depv(time)}) =
l⋂
i=1

X−1
arri

v
(Ji(depv(time))).

By Assumption 3, and if we denote parri
v
(t) := P (X−1

arri
v
({t})) and pdepv

(t) := P (X−1
depv

({t}))
we get

pdepv
(depv(time)) =

λ∏
i=1

∑
λ∈Ji(depv(time))

parri
v
(λ).

We call pdepv
the departure probability and parrv

the arrival probability.
Case (2) occurs if train train(arrv) arrives in interval {arrv(time), . . . ,

t − minstay(arrv, depv)} and at least one feeder train train(arri0v) with arri0v ∈ F ar-
rives exactly at time point t − minstay(arri0v , depv). We define with respect to possible
departure times t ∈ {depv(time) + 1, . . . , depv(time) +wait(depv)} the set of all ‘exact’ time
point tuples as

At := {(t1, . . . , tl)| (t1, . . . , tl) ∈ (×li=1Ji(t)) ∧ ∃i0 < l with ti0 = t−mi0}.

For a departure random variable in case (2) we get

X−1
depv

({t}) =
⋃

(t1,...,tl)∈At

(
l⋂
i=1

X−1
arri

v
({ti})

)
.

This formulation is compact but we have to consider exponentially many disjoint subsets
of Ω leading to a non-efficient algorithm for computing Xdepv

. Instead, we rearrange these
preimages by applying the well-known ‘De Morgan-rules’ such that we get only polynomially
many disjoint subsets of Ω. Then, we get

X−1
depv

({t}) =
l−1⋃
j=0

(
j⋂

i=1

X−1
arri

v
(Ii(t)))

⋂
(X−1

arr
j+1
v

({t−mj+1}))
l⋂

i=j+2

X−1
arri

v
(Ji(t))) =:

l−1⋃
j=0

Sj .

Using σ-additivity to compute the elementary probabilities pdepv (t) := P (X−1
depv

({t})) we
have to show that for all pairs j, j′ ∈ {0, . . . , k−1} the sets Sj , Sj′ are disjoint. It is sufficient
to prove that for an arbitrary j0 the sets Sj0 and Sj0+1 are pairwise disjoint. Assume there
exists an ω ∈ Ω with ω ∈ Sj0 ∩ Sj0+1. Then it follows that X

arr
j0+1
v

(ω) = t −mj0+1 and
X
arr

j0+1
v

(ω) ∈ Ij0+1. Because t−mj0+1 /∈ Ij0+1 this is a contradiction. Hence, we can apply
σ-additivity and use Assumption 3 that our random variables are stochastically independent.
For case (2) we obtain

pdepv (t) =
l−1∑
j=0

 j∏
i=1

 ∑
λ∈Ii(t)

parri
v
(λ)

 · parrj+1
v

(t−mj+1) ·
ł∏

i=j+2

 ∑
λ∈Ji(t)

parri
v
(λ)

 .

Case (3) is much simpler because the departure time of train train(depv) only depends
on its arriving time arrv(time). That is X−1

depv
({t}) = X−1

arrv
({t − ml}) and results in

pdepv
(t) = parrv

(t−ml).

A. Berger, A. Gebhardt, M. Müller-Hannemann, and M. Ostrowski 107

The case that train train(depv) starts at station v ∈ S is also simpler. Obviously, its
departure time only depends on feeder trains. We can take all above computations but
ignore the arrival event arrkv in case (1) and case (2). For case (3) we set pdepv

(t) := 0 for all
t ∈ {depv(time) + waittransfer(depv) + 1, . . . }.

3.3 Arrival random variables and arrival probabilities
Let (depv, arrw) ∈ Atravel be a travel arc. The arriving time on w depends on the departure
time at v ∈ S and all possible travel times on this travel arc at this time. We denote the
possible travel time set by PTT := {mintt(depv, arrw), . . . , arrw(time)− depv(time) + k}
with k ∈ N. Formally, we get for each t ∈ {arrv(time), . . . }

X−1
arrw

({t}) =
⋃

j∈PTT
(X−1

depv
({t− j})

⋂
(Xt−j

(depv,arrw))
−1({j}).

We can apply σ-additivity to probability measure P . We set pt(depv,arrw)(λ) :=
P (Xt

(depv,arrw))(λ) and get the arrival probability for an arrival event arrw at time t as

parrw (t) =
∑

j∈PTT
pdepv (t− j) · pt−j(depv,arrw)(j).

4 Experiments

Test instances and environment. Our computational study is based on the German
train schedule of 2011, with actual data of realized departure and arrival times for days in
February and March 2011. Each day of operation has about 300,000 departure and arrival
events per day. All experiments were run on a PC (Intel(R) Xeon(R), 2.93GHz, 4MB cache,
47GB main memory under ubuntu linux version 8.10). Only one core has been used by our
program. Our code is written in C++ and has been compiled with g++ 4.4.3 and compile
option -O3.

Delay distributions on travel arcs. For our simulation experiments we use two types
of distributions: a uniform distribution and a kind of unimodal distribution with a peak at
the scheduled travel time. Our unimodal distribution is parametrized by k which controls
the support size. For parameter k the support has width 2k + 1, and the distribution
assigns the probabilities 1

2k+1 ,
1

2k , . . . ,
1
22 , 1 −

∑k
i=1

1
2i ,

1
22 ,

1
23 . . . ,

1
2k+1 to the travel times

mintt,mintt+ 1, . . . , s, s+ 1, . . . , s+ k, where s denotes the scheduled travel time.
We select the travel time distribution of a travel arc depending on the actual departure

time depv(time). If the departure time at departure event depv is between the scheduled
time depv(time) and arrw(time)−mintt(depv, arrw) we apply the uniform distribution. If
the actual departure time is above arrw(time) −mintt(depv, arrw), we always apply the
unimodal distribution.
Waiting rules. For the waiting times waittransfer we use four different scenarios:

1. rule-based: We use the standard waiting rules from German Railways.
2. always: Each train has to wait for all of its feeder trains.
3. never: No train has to wait for another train.
4. static: Whenever necessary, a train has to wait for a feeder train exactly x minutes. We

set x := 5 and waittransfer(arrv, depv) = 5.

ATMOS’11

108 Stochastic Delay Prediction in Large Train Networks

k = 1 k = 2 k = 3 k = 4 k = 5
never 3.72s 6.23s 6.07s 6.98s 11.32s

rule-based 3.73s 6.30s 6.93s 7.02s 11.52s

static 4.12s 6.32s 7.01s 8.95s 11.94s

always 5.12s 7.29s 8.57s 10.99s 13.78s

Table 1 Running times in seconds for the different waiting strategies and travel time distributions.

Experiment 1: Efficiency. In our experiments we use the fluctuation parameter k ∈
{1, 2, 3, 4, 5} for travel times, i.e., the maximum permitted additional travel time for each
train between two stops. The exact definition can be found in Subsection 3.1. The running
time for the computation of all arrival and departure distributions of a whole day takes only
a few seconds, see Table 1. Hence, we are able to determine forecasts in real time. Two
trends are obvious: the wider the travel time distributions (increasing fluctuation parameter
k), the larger the running time. Likewise, when we compare the rules among each other,
we observe that the more trains have to wait for each other, the larger the running time.
However, in all cases the absolute running times are below 14s.

Experiment 2: Width of distributions over time. Our second experiment has been
guided by the following questions:
1. How precise are our forecasts, i.e. how narrow or wide are the computed distributions?

The smaller the support of the distribution, the more meaningful is our forecast.
2. To which extent does the distribution width (support) depend on the chosen waiting

rule? This gives us insight into the stability of a rule and also may explain the observed
differences in CPU time. The wider a distribution becomes during propagation, the more
work has to be done and the less stable a waiting rule will behave.

3. Do the distribution widths grow over time, and how does this depend on the chosen
waiting rule? For the extreme waiting rule “always” we may expect a cascading effect,
while for the other three rules the slack times within the schedule and the bounds on
the maximum waiting time may have a weakening and stabilizing effect on the support
widths.

In Figure 2, we investigate the widths of all supports with respect to the time horizon
and all four waiting rules on Thursday, 10.03.2011. For the delay distributions on travel arcs
we used the fluctuation parameter k = 2. For the waiting strategies “rule-based”, “never”
and “static”, we observe that the width of the supports of event distributions stays relatively
narrow over time, while for the extreme waiting policy “always” the widths of supports grow
fast with an increasing time horizon. These findings also partially explain the observed
running times for the different waiting rules as shown in Table 1.

Experiment 3: Predictions vs. realized data. This experiment investigates how well
our predictions fit to realized data. In this experiment, we computed our predictions without
using any information about actual delays. Since real operations have been conducted
approximately according to the “rule based” waiting rule, we compare our predictions with
this rule.

For the comparison of our predictions with realized data we use two different test days,
namely a Thursday and a Sunday. In Table 2, we give an overview about the data availability
for both days. This is necessary, because we did not get all realized event times from
German Railways. For about 30% of the regional trains we have no information about their
realized departure or arrival times. For the 10.03.2011 we have collected 289, 459 messages

A. Berger, A. Gebhardt, M. Müller-Hannemann, and M. Ostrowski 109

rule-based, k=2

n
u
m

b
e
r

o
f
e
n
ti
ti
e
s

hours

width of distribution

 20
 40

 60
 80

 100
 120

 140
 160

 180
 200

 5

 10

 15

 20

 0
 5000

 10000
 15000
 20000
 25000
 30000

always, k=2

n
u
m

b
e
r

o
f
e
n
ti
ti
e
s

hours

width of distribution

 20
 40

 60
 80

 100
 120

 140
 160

 180
 200

 5

 10

 15

 20

 0
 5000

 10000
 15000
 20000
 25000
 30000

never, k=2

n
u
m

b
e
r

o
f
e
n
ti
ti
e
s

hours

width of distribution

 20
 40

 60
 80

 100
 120

 140
 160

 180
 200

 5

 10

 15

 20

 0
 5000

 10000
 15000
 20000
 25000
 30000

static, k=2

n
u
m

b
e
r

o
f
e
n
ti
ti
e
s

hours

width of distribution

 20
 40

 60
 80

 100
 120

 140
 160

 180
 200

 5

 10

 15

 20

 0
 5000

 10000
 15000
 20000
 25000
 30000

Figure 2 The three-dimensional plots show how the predicted arrival and departure time
distributions change over time, from early morning to midnight for the traffic day 10.03.2011 (24
hours). For each point in time, the z-axis gives the number of events which have a distribution with
a certain support width. We compare the different waiting rules for the fluctuation parameter k = 2.
Waiting rules: “rule based” (upper left) and “always” (upper right), “never” (lower left) and “static”
(lower right).

about realized event times and for the 20.02.2011 we got 193, 461 messages. According to
information from German Railways, we may assume that the rest of non-available messages
were “in due time”, what here means that all these trains have at most 1 minute of delay.
With respect to this data situation, we determined the absolute difference between realized
timestamps (of observed real world data) and the planned schedule time to measure the
“strength of delays” on these days, see Figure 3.

In Figure 4, we display the absolute differences between the expectation values and the
realized times for 289459 available events on Thursday 10.03.2011 and for 193461 available
events on Sunday, 20.02.2011. With respect to expectation values, the difference to the
realized values is less than 5 minutes in about 66% of all available events on both investigated
days. However, a significant number of forecasts is wide off (by 2 hours or more in some
cases). In order to interpret the results of this experiment, recall that our computation of
arrival and departure time distributions is based on the pure published schedule only, it does
not incorporate actual delays. Without information about actual delays these heavy tails of

available non-available but presumably non-available event
date event data in due time event data data without any information

20.02.2011 45 38 17
10.03.2011 51 44 5

Table 2 Data availability with respect to all events. Percentage of available and non-available
data. A fraction of non-available data can be assumed to be “in due time” (3rd column.)

ATMOS’11

110 Stochastic Delay Prediction in Large Train Networks

� �� ��� ����
�

��

��

��

��

��

��

��

	�

�

���

�������������������������������

������������������

���������������

�
�
�
�
��
�
�
��
�
�
�
�
�
�
�
��
��
�
�
�
�
��
�

Figure 3 The cumulative curves show the percentage fraction of events with a realized delay of
at most x minutes for two different days, 10.03.2011 (above, dotted line: a Thursday) and 20.02.2011
(below: a Sunday).

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160

n
u
m

b
e
r

o
f
e
n
ti
ti
e
s

absolute differences

realized versus expected event times

rule-based, k=2

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160

n
u
m

b
e
r

o
f
e
n
ti
ti
e
s

absolute differences

realized versus expected event times

rule-based, k=2

Figure 4 Comparison of the absolute differences from the expected and realized timestamps
on 10.03.2011 (left) and on 20.02.2011 (right) with fluctuation parameter k = 2 for travel time
distributions.

large differences between expectation values for predictions and the corresponding realized
values are more or less unavoidable. The travel time distributions used in our model are
designed to capture small delays, they are not capable to predict large source delays (for
example, that a trains is delayed by two hours because of a defect of the engine). On the
positive side, small fluctuations are seemingly captured quite well.

Experiment 4: Predictions over time. In contrast to the previous experiment, we now
incorporate all delays which occurred before 11:59 a.m. on several test days and make on
this basis predictions for the next four hours. These predictions are then compared with the
realized data. Our hypothesis is that the fit of our predictions should decrease the further in
the future we look, which is confirmed in Figure 5. On five test days, we observe a small
average increase, ranging from 4 minutes difference when looking 30 minutes ahead to less
than 7 minutes 4 hours ahead. Thus, the accuracy of prediction is already quite good and
degrades only slowly when we look into the forthcoming hours. We believe that this is good
news for applications in real-time timetable information.

A. Berger, A. Gebhardt, M. Müller-Hannemann, and M. Ostrowski 111

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

30 60 90 120 150 180 210 240

a
v
e

r.
 d

if
fe

re
n

c
e

 i
n

 m
in

.

time horizon in minutes

k=1

28.01.2011
01.02.2011
20.02.2011
10.03.2011
11.03.2011

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

30 60 90 120 150 180 210 240

a
v
e

r.
 d

if
fe

re
n

c
e

 i
n

 m
in

.

time horizon in minutes

k=2

28.01.2011
01.02.2011
20.02.2011
10.03.2011
11.03.2011

Figure 5 Based on actual delays before 11:59 a.m., we compute the distributions of events
occurring in the next four hours. We show how the average distance of the expectation values of our
predicted event time distributions from the realized delay data evolves over time.

5 Conclusions

We have presented a stochastic model for delay propagation in large transportation networks.
This model turns out to be fast enough for an online scenario with massive streams of
update messages. In our experiments we worked with simple artificial distributions for
travel time fluctuations (in the absence of real distributions). The next step is to replace
these distributions by empirical distributions from collected statistical data over several
months. We expect that empirical distributions will enable us to generate significantly tighter
predictions.

References
1 A. Berger, A. Gebhardt, M. Müller-Hannemann, and M. Ostrowski. Stochastic delay pre-

diction in large train networks. Technical Report 2011/1, Institut für Informatik, Martin-
Luther-Universität Halle-Wittenberg, 2011.

2 T. Büker. Ausgewählte Aspekte der Verspätungsfortpflanzung in Netzen. PhD thesis, RWTH
Aachen, Germany, 2010.

3 M. Carey and A. Kwieciński. Stochastic approximation to the effects of headways in knock-
on delays of trains. Transportation Research Part B, 28:251–267, 1994.

4 M. Carey and A. Kwieciński. Properties of expected costs and performance measures
in stochastic models of scheduled transport. European Journal of Operational Research,
83:182–199, 1995.

5 R.M.P. Goverde. Railway timetable stability analysis using max-plus system theory. Trans-
portation Research Part B, 41:179–201, 2007.

6 R.M.P. Goverde. A delay propagation algorithm for large-scale railway traffic networks.
Transportation Research Part C, 18:269–287, 2010.

7 J. N. Hagstrom. Computational complexity of PERT problems. Networks, 18:139–147,
1988.

8 L. E. Meester and S. Muns. Stochastic delay propagation in railway networks and phase-
type distributions. Transportation Research Part B, 41:218–230, 2007.

9 M. Müller-Hannemann and M. Schnee. Efficient timetable information in the presence of
delays. In R. K. Ahuja, R. H. Möhring, and C. D. Zaroliagis, editors, Robust and Online
Large-Scale Optimization, volume 5868 of LNCS, pages 249–272. Springer, 2009.

10 J. Yuan. Stochastic modeling of train delays and delay propagation in stations. PhD thesis,
Technische Universiteit Delft, The Netherlands, 2006.

ATMOS’11

Comparison of Discrete and Continuous Models
for the Pooling Problem∗

Mohammed Alfaki1 and Dag Haugland1

1 Department of Informatics, University of Bergen,
P.O. Box 7803, N-5020 Bergen, Norway.
mohammeda@ii.uib.no and dag@ii.uib.no

Abstract
The pooling problem is an important global optimization problem which is encountered in many
industrial settings. It is traditionally modeled as a bilinear, nonconvex optimization problem, and
solved by branch-and-bound algorithms where the subproblems are convex. In some industrial
applications, for instance in pipeline transportation of natural gas, a different modeling approach
is often made. Rather than defining it as a bilinear problem, the range of qualities is discretized,
and the complicating constraints are replaced by linear ones involving integer variables. Conse-
quently, the pooling problem is approximated by a mixed-integer programming problem. With
a coarse discretization, this approach represents a saving in computational effort, but may also
lead to less accurate modeling. Justified guidelines for choosing between a bilinear and a dis-
crete model seem to be scarce in the pooling problem literature. In the present work, we study
discretized versions of models that have been proved to work well when formulated as bilinear
programs. Through extensive numerical experiments, we compare the discrete models to their
continuous ancestors. In particular, we study how the level of discretization must be chosen if a
discrete model is going to be competitive in both running time and accuracy.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases Global Optimization, Industrial Optimization, Graphs and Networks,
Pooling Problem

Digital Object Identifier 10.4230/OASIcs.ATMOS.2011.112

1 Introduction

The pooling problem is an important industrial optimization problem that originates from
the petroleum refineries. It can be considered as an extension of the minimum cost flow
problem on networks of three sets of nodes, referred to as sources, pools and terminals. From
each source, a raw material is supplied to the network. The qualities of the raw materials
depend on the source from which they are supplied. At the pools, raw materials of possibly
unequal qualities are mixed to form intermediate products. In their turn, the intermediate
products are blended again to form end products at the terminals. The resulting qualities of
end products thus depend on what sources they originate from, and in what proportions.
Restrictions, which may vary between the terminals, apply to these qualities.

Earlier work on the optimization of the pooling problem can be traced back to Haverly
[12] in 1978, and since then there has been a continuous interest in the problem. Mainly,

∗ This research was sponsored by the Norwegian Research Council, Gassco, and Statoil under contract
175967/S30.

© Mohammed Alfaki and Dag Haugland;
licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 112–121

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.112
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

M. Alfaki and D. Haugland 113

the literature focuses on formulations, solution methods, applications, and experimental
evaluations.

The problem is often formulated as a non-convex, continuous optimization problem,
and many solution methods have been proposed to solve it. The ambition of the earliest
approaches was to find a good local optimum. This includes the popular method of [12],
which solves a sequence of linear programs approximating the problem. Based on Benders
decomposition, Floudas and Aggarwal [2] proposed an algorithm to search for the global
solution. Building on this, Floudas and Visweswaran [10] developed an algorithm based on
Lagrangian relaxation techniques. Other Lagrangian-based algorithms were proposed by
Adhya et al. [1] and Almutairi and Elhedhli [6]. Foulds et al. [11] developed a branch-and-
bound algorithm based on linear relaxations of bilinear programs as suggested by McCormick
[14] and Al-Khayyal and Falk [3].

Several continuous formulations have been proposed for the pooling problem. In addition
to traditional network flow variables, the models also need some representation of product
quality. The most straightforward approach [12], is to introduce a decision variable for each
pool, and to let the variable be defined as the quality of the product at the given pool. As
an alternative, Ben-Tal et al. [8] proposed a formulation where the quality variables are
replaced by variables representing the proportions in which the pool receives flow from various
sources. Tawarmalani and Sahinidis [19] strengthen this formulation by the application of
reformulation-linearization technique (RLT) suggested by Sherali and Adams [18]. Following
the idea of proportion variables, Alfaki and Haugland [4] proposed two formulations: In the
first model, the source proportions introduced in [8] are replaced by terminal proportions.
By combining source and terminal proportions, the second model becomes stronger than the
first and also stronger than the model in [19].

In its traditional form, the pooling problem is defined on tripartite networks where all
arcs connect a source to a pool, a pool to a terminal or a source to a terminal. Contrary
to formulations with quality variables, formulations based on proportion variables cannot
easily be generalized to arbitrary networks. Audet et al. [7] considered the case where there
are connections between pools, and suggested a hybrid formulation involving both quality
and proportion variables. Using only flow and proportion variables, Alfaki and Haugland
[5] proposed a multi-commodity flow formulation for arbitrary networks, and proved that it
dominates the hybrid formulation and a quality based formulation.

The above mentioned continuous formulations all have bilinear constraints. For the models
with quality variables, this can be explained by the fact that the quality at a pool is defined as
the weighted average of entering qualities, where the flow constitutes the weights. Reflecting
the NP-hardness of the problem [4], bilinear constraints seem inescapable in continuous
formulations, and represent a serious challenge to solution algorithms. Consequently, there is
a need for easy-to-use and well studied solution strategies, such as mixed integer programs.
This can be seen from the work of Faria and Bagajewicz [9], who discretized the quality
variables of the wastewater treatment problem, which is closely related to the pooling
problem, and replaced the bilinear constraints by "big M" constraints. Pushing in the same
direction, Pham et al. [16] and Pham [15] eliminated the bilinear terms by discretizing the
quality variables. Consequently, the pooling problem is approximated by a mixed-integer
programming problem.

In this paper, we generalize the discretization approach proposed in Pham [16] to arbitrary
networks. Through numerical experiments on large scale instances, we compare our discrete
formulation with a continuous formulation. The purpose of this is to investigate whether
discrete models are more suitable for finding good solutions when the global optimum is out

ATMOS’11

114 Comparison of Discrete and Continuous Models for the Pooling Problem

of reach. By lower bounding techniques, we also aim to estimate the error introduced by
discretizing the solution space.

The remainder of the paper is organized as follows: Section 2 introduces the pooling
problem and one of its continuous formulations, and gives a brief description of the traditional
solution methods. In Section 3, we present our discrete model and its extension to arbitrary
networks. The numerical experiments are reported in Section 4, and major conclusions are
summarized in Section 5.

2 Problem statement and formulation

We consider a directed graph (network) G = (N, A) with node set N and arc set A. For each
node i ∈ N , let N−i = {j ∈ N : (j, i) ∈ A} and N+

i = {j ∈ N : (i, j) ∈ A} denote the set of
in- and out-neighbors of i, respectively. We assume that G has non-empty sets S, T ⊆ N of
sources and terminals, respectively, where N−s = ∅ ∀s ∈ S and N+

t = ∅ ∀t ∈ T . We refer to
all nodes in I = N \ (S ∪ T) as pools. We define a finite set of quality attributes K. With each
i ∈ S ∪ T , we associate a real constant qk

i for each k ∈ K. If s ∈ S, qk
s is referred to as the

quality parameter of attribute k at that source, and if t ∈ T , qk
t is referred to as the quality

bound of attribute k at terminal t. For each i ∈ N , we define the constant flow capacity bi,
and for each arc (i, j) ∈ A, we define the constant unit cost cij . This is slightly more general
than defining costs and revenues only at the sources and the terminals, respectively, which
is common practice in the pooling problem literature. For each i ∈ N , let Si be the set of
sources from which there exists a path to i in G.

Define fij as the flow along the arc (i, j) ∈ A, and wk
i (k ∈ K) as the quality of flow

leaving pool i ∈ I. The pooling problem is to assign flow values to all arcs in the pooling
network such that each flow capacity bi is respected at all nodes i ∈ I, and such that the
total flow cost is minimized. Besides that, the quality of the flow leaving any pool is given as
the weighted average of the quality of entering flow, where the flow values constitute the
weights. More precisely, the matrix of qualities satisfies∑

s∈N−
i
∩S

qk
s fsi +

∑
j∈N−

i
\S

wk
j fji = wk

i

∑
j∈N−

i

fji, i ∈ N \ S, k ∈ K, (1)

if
∑

j∈N−
i

fji > 0. Otherwise, wk
i is given an arbitrary value. In addition, the flow arriving

at terminal t ∈ T must for all attributes k ∈ K satisfy the quality bounds qk
t . Assuming that

the qualities also at the terminals are given as weighted averages of entering flow, we arrive
at the constraints:∑

s∈N−t ∩S

qk
s fst +

∑
j∈N−t \S

wk
j fjt ≤ qk

t

∑
j∈N−t

fjt, t ∈ T, k ∈ K. (2)

Instead of defining quality variables, we associate a flow commodity with each source s ∈ S,
where at most bs units of the commodity can enter the network, and the commodity can leave
the network at any t ∈ T . At all other nodes, the commodity neither enters nor leaves the
network. Now, the variable fij defines the total flow of all commodities along arc (i, j) ∈ A.
Relative to the total flow leaving node i ∈ S ∪ I, let the variable ys

i denote the proportion of
commodity s (define ys

i = 0 if s /∈ Si and ys
s = 1). Therefore, the quantity ys

i fij defines the
flow of commodity s (meaning the commodity associated with source s, we simply refer to s

as a commodity whenever convenient) along the arc (i, j). Based on the multi-commodity
flow formulation, Alfaki and Haugland [5] proposed the following formulation to the pooling
problem:

M. Alfaki and D. Haugland 115

z∗ = min
∑

(i,j)∈A

cijfij (3)

s.t.
∑

j∈N+
i

fij ≤ bi, i ∈ S ∪ I, (4)

∑
j∈N−t

fjt ≤ bt, t ∈ T, (5)

∑
j∈N−

i

ys
j fji −

∑
j∈N+

i

ys
i fij = 0, s ∈ Si, i ∈ I, (6)

∑
j∈N−t

∑
s∈Sj

qk
s ys

j − qk
t

 fjt ≤ 0, t ∈ T, k ∈ K, (7)

∑
s∈Si

ys
i = 1, i ∈ I, (8)

∑
s∈Si

ys
i fij = fij , (i, j) ∈ A, i ∈ I, (9)

∑
j∈N+

i

ys
i fij ≤ ys

i bi, s ∈ Si, i ∈ I, (10)

fij ≥ 0, (i, j) ∈ A, (11)
0 ≤ ys

i ≤ 1, s ∈ Si, i ∈ I. (12)

The formulation (3)–(12) generalizes the PQ-formulation [19] for networks without directed
paths connecting two pools. Constraints (4)–(5) impose the flow capacity constraints at all
nodes, while (6) ensures that ys

i is the proportion of the flow leaving pool i that originates
from source s. The definition of ys

i also implies (8). The desired quality at the terminals is
achieved by (7). Constraints (9)–(10) are redundant RLT cuts [18] that contribute to stronger
relaxations. They are derived respectively by multiplying (8) by fij , and by multiplying (4)
by ys

i .

2.1 Traditional solution methods
Because of the bilinear constraints (6)–(7) and (9)–(10), the feasible region of (3)–(12) is
generally non-convex. Traditional solution approaches to such problems are typically based
upon linear relaxation, which is embedded into a branch-and-bound procedure. Linear
relaxations for the pooling problem are constructed by replacing each occurrence of the
bilinear terms with its convex and concave envelopes [3, 14].

In the root node of a branch-and-bound algorithm, this relaxation is solved. In this
way, the solution to the linear relaxation provides a lower bound on the global minimum.
Convergence can then be attained through partitioning of the domain within a branch and
bound framework.

3 Discrete formulation

To linearize the bilinear term ys
i fij , we discretize the proportion variable ys

i into n + 1 known
points, i.e. we divide the interval [0, 1] to n ≥ 1 intervals. For simplicity, we assume that the
number of discretization points is equal for all i and s, and that the discretization points are

ATMOS’11

116 Comparison of Discrete and Continuous Models for the Pooling Problem

uniformly distributed on [0, 1]. However, the methodology suggested in this work does not
rely on these assumptions.

3.1 Computing a set of discretized proportion vectors

Consider any pool i ∈ I and the corresponding set of sources Si that can feed the
pool. By the suggested discretization of ys

i for all s ∈ Si, we get (n + 1)|Si| differ-
ent combinations of discretized proportions. However, many of these violate (8). Let
Ωi =

{
Y ∈ RSi : nY s ∈ {0, 1, . . . , n},

∑
s∈Si

Y s = 1
}
be the set of discrete values of yi that

satisfy (8). For the purpose of simple notation, let the sources in Si be identified by the
integers 1, . . . , |Si|.

For any Y ∈ Ωi, the components of nY define a unique composition of n into |Si| parts.
As demonstrated by Knuth [13, Section 7.2.1.3], there is hence a bijection between Ωi and
the set of (|Si| − 1)-combinations of {1, . . . , n + |Si| − 1}. Let any such combination be
denoted

(
a1, . . . , a|Si|−1

)
, where 1 ≤ a1 < · · · < a|Si|−1 ≤ n + |Si| − 1. It follows from

[13, Section 7.2.1.3] that the corresponding Y ∈ Ωi can be written Y s = (as − as−1 − 1) /n

(s = 1, . . . , |Si|), where a0 = 0 and a|Si| = n + |Si|. The above reference also suggests an
algorithm for enumerating all (|Si| − 1)-combinations of {1, . . . , n + |Si| − 1}, and thereby
also the set Ωi. This is outlined in Algorithm 1.

Algorithm 1 Discretization(i,n)
Ωi ← ∅, as ← s ∀s = 0, 1, . . . , |Si| − 1, a|Si| ← n + |Si|
repeat

Y s ← (as − as−1 − 1) /n ∀s = 1, . . . , |Si|
Ωi ← Ωi ∪ {Y }
s← 1
while as + 1 = as+1 do

as ← s, s← s + 1
if s < |Si| then

as ← as + 1
until s = |Si|
return Ωi

It is shown in [13] that the while-loop of Algorithm 1 is executed |Si|−1
n+1 |Ωi| times. The

while-loop thus implies that enumerating |Ωi| by use of Algorithm 1 does not run in O (|Ωi|)
time.

3.2 The discrete model defined in an extended graph

We introduce an extension of G where each pool i is replaced by a set Ii consisting of
|Ωi| duplications of i. Each new pool j ∈ Ii, corresponds to a unique Yj ∈ Ωi with
components Y s

j s ∈ Si. We refer to these vectors as the discretized proportions. The set
of pools in the extended network hence becomes In = ∪i∈IIi, and the extended network
will be represented by the directed graph Gn = (Nn, An), where Nn = S ∪ In ∪ T and
An = A ∩ (S × T) ∪ {(j, l) : l ∈ Ii, (j, i) ∈ A} ∪ {(l, j) : l ∈ Ii, (i, j) ∈ A}. For any j ∈ In, let
i(j) denote the parent pool in G. That is, i(j) is the unique pool satisfying j ∈ Ii(j). For
completeness, let i(j) = j for all j ∈ S ∪ T .

M. Alfaki and D. Haugland 117

For the selection of proportions at pool i ∈ I, define the binary variables pj for each
j ∈ Ii such that,

pj =
{

1, if ys
i = Y s

j for all s ∈ Si,
0, otherwise,

and impose the constraint
∑

j∈Ii pj = 1 for each i ∈ I, to ensure compatibility with the
original problem. In the extended network, the flow can pass through at most one j ∈ Ii,
leading to the constraints

∑
l∈N+

j
fjl ≤ bipj for all j ∈ Ii, where f now denotes flow in the

extended network. The number of pools in the extended graph Gn increases exponentially
with n. To reduce |In|, we identify pairs of pools i, i′ ∈ I such that N+

i = N+
i′ and N−i = N−i′ .

For all such pairs, we do not introduce Ii′ .
The MILP formulation approximating the continuous formulation (3)–(12), can hence be

stated as follows

z(n) = min
∑

(j,l)∈An

ci(j),i(l)fjl (13)

s.t.
∑

l∈N+
s

fsl ≤ bs, s ∈ S, (14)

∑
l∈N+

j

fjl ≤ bi(j)pj , j ∈ In, (15)

∑
l∈N−t

flt ≤ bt, t ∈ T, (16)

∑
l∈N−

j

Y s
l flj −

∑
l∈N+

j

Y s
j fjl = 0, s ∈ Si(j), j ∈ In, (17)

∑
l∈N−t

 ∑
s∈Si(l)

qk
s Y s

l − qk
t

 flt ≤ 0, t ∈ T, k ∈ K, (18)

∑
j∈Ii

pj = 1, i ∈ I, (19)

pj ∈ {0, 1}, j ∈ Ii, i ∈ I, (20)
fjl ≥ 0, (j, l) ∈ An. (21)

Any feasible solution to (13)–(21) is a feasible solution to the original problem, and produces
thereby an upper bound on z∗. The sequence z(n) converges to z∗ as n → ∞, but even
for instances of moderate size the computational burden represented by the MILP becomes
prohibitively large for large values of n. However, with a coarse discretization, the optimal
solution to (13)–(21) may be computable for instances where a global optimization algorithm
based on a continuous formulation fails to converge within a reasonable time limit. In such
instances, it is relevant to compare the optimal MILP-solution to the best solution obtained
by an interrupted global optimization procedure.

3.3 Example

To illustrate the network extension outlined above, consider the first instance in Haverly
[12], denoted Haverly1, depicted in Figure 1. Observe that node 4 is the unique pool in the

ATMOS’11

118 Comparison of Discrete and Continuous Models for the Pooling Problem

network, and that S4 = {1, 2}. Let n = 2, which implies that

(Y s
j) =

 0 1
1/2 1/2
1 0

 . (22)

Each row of the matrix in (22) represents a possible combination of the flow proportions.
Therefore, we replace pool 4 with 3 new pools (I4 = {4, 5, 6} and I2 = I4), and we change
the numbering of the terminals accordingly.

(qk
i , bi)

cij

1
(3,300)

2
(1,300)

3
(2,300)

4
6

16

5
-9

1

6
-5

-15

(2.5,100)

(1.5,200)

Figure 1 The Haverly1 pooling problem instance [12].

The set I4 has the same set of neighbors as the original pool in Figure 1. The new
network structure for Haverly1 instance is shown in Figure 2.

1
(3,300)

2
(1,300)

3
(2,300)

46

16

5
6

16

6

6

16

7-9
-9
-9

1
8-5

-15
-15
-15

(2.5,100)

(1.5,200)

Figure 2 The discretized version of Haverly1 pooling problem instance with n = 2.

4 Computational experiments

For computational comparison of the discrete and the continuous formulations, we have used
the 35 large-scale instances, with 15 arbitrary instances from [5] and 20 standard instances
taken from [4]. The instances are divided into six groups, three groups with arbitrary

M. Alfaki and D. Haugland 119

networks (arbC, arbD and arbE) and the other three groups (stdA, stdB and stdC) with
standard instances. The instances in the former three groups can be downloaded from
the web page http://www.ii.uib.no/~mohammeda/gpooling/ and the other instances can
be downloaded from http://www.ii.uib.no/~mohammeda/spooling/. Table 1 reports the
network sizes and number of arcs range in the network for each group.

Table 1 Instance characteristics

Group #instances
Size of node and quality sets

#arcs range
|S| |I| |T | |K|

arbC 5 8 6 6 4 57 – 82
arbD 5 12 10 8 5 114 – 166
arbE 5 10 10 15 12 181 – 248
stdA 10 20 10 15 24 171 – 407
stdB 6 35 17 21 34 384 – 1044
stdC 4 60 15 50 40 811 – 1451

Computational experiments were conducted by submitting these instances using the
formulation (3)–(12) to the global solver BARON [17] version 1.8.5. The same instances
were submitted to ILOG CPLEX version 10.2 using the discretized formulation (13)–(21)
with n = 1, 2, 4. For both strategies, we set the time limit of each run to one CPU-hour, and
set the relative optimality tolerance to 10−3. Experiments reported here are conducted on a
computer equipped with quad-core 3.00GHz processors where each group of four cores share
8GB of memory.

The results of the computational experiments are reported in Table 2. The first column
gives the instance name, columns 2–3 report the lower and the upper bound provided by
BARON with the continuous formulation. Column 4–5 give, for each value of n, the best
feasible solution to the discrete model that CPLEX could find within the time limit. In
instances where CPLEX could not prove optimality within the time limit, the best solution
is written in parentheses. A stroke (—) in the table means that no feasible solution was
found. For each instance, unless both of the formulations give the same solution, the best
solution found is written in bold.

BARON computed the global optima for 14 instances. In the other hand, the feasible
solutions for 9 instances with the discretized formulation are the true optimal solutions. Eight
instances were solved to optimality by both of the formulations. Comparing the upper bounds
(the feasible solutions) provided by both the continuous and the discretized formulations,
we observe that the discrete formulation found the best upper bound in 21 instances out
of 35. Even for n = 1, which means that all pools receive flow from at most one source,
the best solution from the discrete model tends to outperform the best solution obtained
by the continuous one. However, increasing the number of discretization points beyond 2
seems appropriate only in the smaller instances, and failed to produce feasible solutions
in the remaining ones. For the more complicated instances, no better results are obtained
by extending the search from solutions with no blending at the pools (n = 1) to solutions
allowing blending of at most two streams in equal proportions (n = 2).

ATMOS’11

http://www.ii.uib.no/~mohammeda/gpooling/
http://www.ii.uib.no/~mohammeda/spooling/

120 Comparison of Discrete and Continuous Models for the Pooling Problem

Table 2 Comparison between continuous and discrete models for the pooling problem.

Inst.
Continuous model Discrete model

lb ub z(n = 1) z(n = 2) z(n = 4)

arbC0 -1352.72 -1352.72 -1262.38 -1348.83 -1350.30
arbC1 -673.86 -673.86 -508.00 -615.50 -655.62
arbC2 -1716.62 -1716.62 -1688.69 -1705.81 (-1710.76)
arbC3 -1512.10 -1512.10 -1489.70 -1505.43 (-1508.92)
arbC4 -1071.81 -1071.81 -1071.81 -1071.81 -1071.81
arbD0 -1994.00 -1571.11 -1833.33 -1911.35 —
arbD1 -1356.51 -1356.51 -1346.54 -1356.51 —
arbD2 -2071.00 -2065.85 -2069.06 -2070.16 —
arbD3 -637.86 -637.86 -637.86 -637.86 —
arbD4 -1641.80 -1641.80 -1641.43 -1641.80 —
arbE0 -463.23 -463.23 -463.23 -462.23 —
arbE1 -556.00 -556.00 -556.00 -556.00 —
arbE2 -78.68 -78.68 -78.68 -78.68 —
arbE3 -891.25 -891.25 -891.25 -891.25 —
arbE4 -221.35 -221.35 -221.35 -221.35 —
stdA0 -37402.74 -5383.70 -31990.52 -34175.71 (-34853.43)
stdA1 -30362.74 -29276.56 -24590.16 -25179.84 (-28389.31)
stdA2 -23044.16 -23044.16 -19846.94 -20666.60 (-21795.71)
stdA3 -41113.10 -31258.05 -36233.75 -37116.64 (-38624.98)
stdA4 -42999.89 -8770.94 -38126.91 (-39331.58) (-39345.90)
stdA5 -28257.75 -6369.59 -26447.07 (-27008.30) (-26729.51)
stdA6 -42463.05 -9555.82 -41777.00 (-42022.93) (-41829.91)
stdA7 -44682.25 -5762.08 -42582.29 (-43309.48) (-42227.89)
stdA8 -30666.87 -6576.76 -30341.61 (-30435.00) (-30265.99)
stdA9 -21933.99 -14059.98 -21887.77 (-21891.96) (-21527.08)
stdB0 -45441.79 -9075.24 -40171.43 (-41036.54) (-40600.32)
stdB1 -65468.81 -34069.43 -60720.54 (-62445.97) (-61858.06)
stdB2 -56512.64 -11149.29 -53261.82 (-53355.55) —
stdB3 -74050.47 -11469.84 (-73572.52) (-73469.63) —
stdB4 -59469.66 -13145.64 (-59399.63) (-59233.59) —
stdB5 -60696.36 -10313.90 (-60080.85) (-59486.56) —
stdC0 -98792.76 -2400.00 (-77517.74) (-79384.25) —
stdC1 -119006.17 -12114.75 (-97290.27) (-91215.32) —
stdC2 -135916.19 -6342.08 (-117024.36) (-115594.77) —
stdC3 -130315.02 -8770.86 (-122570.51) (-114675.85) —

5 Conclusion

In this paper, we have given a mixed integer programming model serving as an approximation
to the pooling problem. The model makes no assumption about the network structure,
and admits for example directed paths intersecting more than one pool. Computational
experiments on a set of large-scale instances show that a discrete model is superior to
its continuous ancestor, even when a very coarse discretization is applied. With a fine

M. Alfaki and D. Haugland 121

discretization, the model implies a large computational effort. To cope with this, a topic for
future research is to develop an adaptive discretization rule. Computations can be saved if
the number of discretization points can be kept small, while gradually focusing the search on
solution sets of decreasing size.

References
1 N. Adhya, N. Sahinidis, and M. Tawarmalani. A Lagrangian approach to the pooling

problem. Industrial & Engineering Chemistry Research, 38(5):1956–1972, 1999.
2 A. Aggarwal and C. Floudas. A decomposition strategy for global optimization search in

the pooling problem. OSRA Journal on Computing, 2(3):225–235, 1990.
3 F. Al-Khayyal and J. Falk. Jointly constrained biconvex programming. Mathematics of

Operations Research, 8(2):273–286, 1983.
4 M. Alfaki and D. Haugland. Strong formulations for the pooling problem. Journal of Global

Optimization, 2010. Submitted for publication.
5 M. Alfaki and D. Haugland. A multi-commodity flow formulation for the pooling problem

in arbitrary networks. Journal of Global Optimization, 2011. Submitted for publication.
6 H. Almutairi and S. Elhedhli. A new Lagrangian approach to the pooling problem. Journal

of Global Optimization, 45:237–257, 2009.
7 C. Audet, J. Brimberg, P. Hansen, S. Le Digabel, and N. Mladenović. Pooling problem:

Alternate formulations and solution methods. Management science, 50(6):761–776, 2004.
8 A. Ben-Tal, G. Eiger, and V. Gershovitz. Global minimization by reducing the duality gap.

Mathematical Programming, 63(1):193–212, 1994.
9 D.C. Faria and M.J. Bagajewicz. A new approach for the design of multicomponent wa-

ter/wastewater networks. Computer Aided Chemical Engineering, 25:43–48, 2008.
10 C.A. Floudas and V. Visweswaran. A global optimization algorithm (GOP) for certain

classes of nonconvex NLPs–I. Theory. Computers & chemical engineering, 14(12):1397–
1417, 1990.

11 L. Foulds, D. Haugland, and K. Jörnsten. A bilinear approach to the pooling problem.
Optimization, 24(1):165–180, 1992.

12 C. Haverly. Studies of the behavior of recursion for the pooling problem. ACM SIGMAP
Bulletin, 25:19–28, 1978.

13 D. E. Knuth. The Art of Computer Programming, Volume 4A: Combinatorial Algorithms,
Part 1. Addison-Wesley, Reading, Massachusetts, 2011.

14 G. McCormick. Computability of global solutions to factorable nonconvex programs: part
I - convex underestimating problems. Mathematical Programming, 10(1):147–175, 1976.

15 V. Pham. A Global Optimization Approach to Pooling Problems in Refineries. Master’s
thesis, Department of Chemical Engineering, Texas A&M University, Texas, USA, 2007.

16 V. Pham, C. Laird, and M. El-Halwagi. Convex hull discretization approach to the global op-
timization of pooling problems. Industrial & Engineering Chemistry Research, 48(4):1973–
1979, 2009.

17 N. Sahinidis. BARON: A general purpose global optimization software package. Journal
of Global Optimization, 8(2):201–205, 1996.

18 H.D. Sherali and W.P. Adams. A Reformulation-Linearization Technique for Solving Dis-
crete and Continuous Nonconvex Problems. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1999.

19 M. Tawarmalani and N.V. Sahinidis. Convexification and Global Optimization in Con-
tinuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and
Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.

ATMOS’11

On the Smoothed Price of Anarchy of the Traffic
Assignment Problem
Luciana Buriol1, Marcus Ritt1, Félix Rodrigues1, and
Guido Schäfer2

1 Universidade Federal do Rio Grande do Sul, Informatics Institute, Theoretical
Computer Science Department
{buriol,mrpritt,fcrodrigues}@inf.ufrgs.br

2 CWI Amsterdam, Algorithms, Combinatorics and Optimization Group and
VU University Amsterdam, Department of Econometrics and Operations
Research
g.schaefer@cwi.nl

Abstract
We study the effect of perturbations on the Price of Anarchy for the Traffic Assignment Problem.
Adopting the smoothed analysis approach, we randomly perturb the latency functions of the
given network and estimate the expected Price of Anarchy on the perturbed instances. We
provide both theoretical and experimental results that show that the Smoothed Price of Anarchy
is of the same order of magnitude as the original one.

1998 ACM Subject Classification G.2.2 Network Problems

Keywords and phrases Traffic Assignment Problem, Smoothed Analysis, Price of Anarchy

Digital Object Identifier 10.4230/OASIcs.ATMOS.2011.122

1 Introduction

The Traffic Assignment Problem [5, 12] models applications in which traffic participants
(also called users) choose routes in a given road network so as to minimize their individual
travel times. Each arc of the network has an associated latency function that expresses the
flow-dependent delay that users experience if they travel along that arc. The goal of every
user is to choose a path from his origin to his destination such that the total delay to travel
along this route is minimized. Because the delay of each user also depends on the choices
made by the others, this problem can also naturally be interpreted as a strategic game in
which players (users) compete for resources (roads) and every player acts selfishly in the
sense that he attempts to choose a route of minimum delay.

Wardrop’s first principle of equilibrium [12] states that each user seeks non-cooperatively
to minimize his own travel time. A route assignment satisfying this first principle is also
called a Wardrop equilibrium or user equilibrium (see Section 2 for formal definitions). Said
differently, in a Wardrop equilibrium no user has an incentive to switch to another path
because he travels along a shortest latency path from his origin to his destination. Wardrop’s
second principle of equilibrium [12] states that all users cooperatively choose their routes in
order to minimize the average travel time of all users. A route assignment satisfying this
second principle is called a system optimum. That is, a system optimum corresponds to
the best possible route assignment that one could enforce if a global authority were able to
control all users, regardless of their interests. It is a well-known fact that selfish route choices
may lead to suboptimal outcomes (see, e.g., [4]).

© Luciana Buriol, Marcus Ritt, Félix Rodrigues, Guido Schäfer;
licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 122–133

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.122
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

L. Buriol, M. Ritt, F. Rodrigues and G. Schäfer 123

In recent years, the study of the inefficiency of equilibria has received a lot attention. The
Price of Anarchy (PoA) [8] is an inefficiency measure that refers to the maximum ratio (over
all possible input instances) of the cost of a worst possible equilibrium outcome and the cost
of an optimal outcome. In a seminal work, Roughgarden [9] analyzed the Price of Anarchy of
the Traffic Assignment Problem and revealed that it is independent of the network topology
and only depends on the type of latency functions. For example, for polynomial latency
functions of degree at most p the Price of Anarchy grows like Θ(p

ln p). Researchers have
investigated several “mechanisms” to reduce the Price of Anarchy for the Traffic Assignment
Problem. One such example is the use of road tolls (see, e.g., [2, 7]).

In this paper, we start the investigation of the Smoothed Price of Anarchy of the Traffic
Assignment Problem. Our motivation originates from the observation that in practical
applications delays are hardly ever exact but usually subject to (small) fluctuations. Such
fluctuations might be caused by various reasons such as roadworks, accidents, weather
conditions, varying driver behavior, etc. In our studies we adopt the smoothed analysis
approach introduced by Spielman and Teng [11]. The idea is to perturb each input instance
by adding some random noise to the latency functions and to study the Price of Anarchy
on the perturbed instances. The hope is that the Smoothed Price of Anarchy of the Traffic
Assignment improves quickly as the magnitude of random perturbation increases. Such a
result would provide some evidence that the worst-case point of view adopted in the studies
of the Price of Anarchy is overly pessimistic in the context of the Traffic Assignment Problem.
In a way, it suggests that the (high) Price of Anarchy is due to artificial worst-case instances
that hardly occur in practice.

We propose a simple smoothing model in which the latency function of every arc is
perturbed by a factor (1 + ε), where ε is chosen uniformly at random out of the range
[0, σ] (see Section 2.3 for details). We provide both theoretical and experimental results
that show that the Price of Anarchy is rather invariant under these random perturbations.
For Pigou instances with polynomial latency functions we derive a closed-form expression
for the Smoothed Price of Anarchy (see Section 3). Even for perturbations in the order
of the maximum degree of the polynomial, the Smoothed Price of Anarchy does not differ
significantly from the Price of Anarchy. We observe a similar effect in our experiments.
We consider some real-world instances from the Transportation Network Test Problems [1]
incorporating latency functions as suggested by the U.S. Bureau of Public Roads [3] (see
Section 4). Our experiments suggest that random perturbations only have a moderate effect
on the Price of Anarchy.

2 Preliminaries

2.1 Traffic Assignment Problem
The Traffic Assignment Problem (TAP) that we consider in this paper in defined as follows.
We assume that the road network is given by a directed multigraph G = (V,E), where V is
the set of vertices and E is the set of arcs. The users are modeled by a set of commodities
K with each commodity i ∈ K having an associated vertex pair (si, ti) ∈ V × V . Users that
have the same origin-destination pair (si, ti) are said to belong to the same commodity i. For
each commodity i ∈ K we are given a demand di which specifies the total flow (corresponding
to the users of commodity i) that has to be sent from si to ti.

The set of paths from si to ti is denoted as Pi. Let P = ∪i∈KPi. A flow f specifies
for each path P ∈ P a non-negative flow value that is sent along P , i.e., f is a function
f : P → R+. The flow on arc e ∈ E is defined as fe =

∑
P :e∈P fP , where P ∈ P . A flow f is

ATMOS’11

124 Smoothed Price of Anarchy of the Traffic Assignment Problem

feasible if it satisfies the demand for every commodity, i.e.,
∑
P∈Pi

fP = di for every i ∈ K.
For each arc e ∈ E we are given a latency function le : R+ → R+ which maps the flow fe

of an edge e to the traversal time le(fe). The latency of a path P ∈ P is defined as the sum
of the edge latencies in the path, i.e., lP =

∑
e∈P le(fe). Subsequently, we use (G, d, l) to

refer to an instance of the Traffic Assignment Problem.
We assume that all latency functions are nonnegative, differentiable and nondecreasing.

For real-world instances, the most common type of latency functions originates form the U.S.
Bureau of Public Roads [3], which can be expressed as

le(fe) = te

(
1 + α

(
fe
ce

)β)
. (1)

Here te is the free-flow travel time of edge e, i.e., the time it takes to travel through road
e if there is no congestion. The constant ce stands for the capacity of edge e and α and β
are tuning parameters, usually set to 0.15 and 4, respectively (all variables are greater than
zero).

In order to evaluate the total travel time of the network, we define a cost function
c(f) =

∑
e∈E le(fe)fe. The system optimum refers to a feasible flow that minimizes this cost

function. Computing an optimal flow can be described by the following program:

minimize
f

c(f) =
∑
e∈E

le(fe)fe

subject to
∑
P∈Pi

fP = di ∀i ∈ K

∑
P∈P:e∈P

fP = fe ∀e ∈ E

fP ≥ 0 ∀P ∈ P.

(2)

A feasible flow f is a Wardrop flow (or user equilibrium) if the flow of every commodity
i travels along a minimum latency path available. That is, for every commodity i all flow-
carrying paths have the same latency and all other paths have no smaller latency. More
formally, a flow f is a Wardrop flow if

∀i ∈ K, ∀P1, P2 ∈ Pi, fP1 > 0 : lP1(f) ≤ lP2(f). (3)

An optimal flow corresponds to a Wardrop flow with respect to marginal cost functions.
In order for this equivalence to hold we further need to assume that all latency functions
are standard [9], i.e., x · l(x) is convex. The marginal cost function of edge e is defined as
l∗e(x) = le(x) + x d

dx (le(x)). Now, a feasible flow f∗ is an optimal flow for (G, d, l) if and only
if it is a Wardrop flow for the instance (G, d, l∗) (see [9] for details).

The problem of computing a Wardrop flow can be described by the following program:

minimize
f

c(f) =
∑
e∈E

∫ fe

0
le(x) dx

subject to
∑
P∈Pi

fP = di ∀i ∈ K

∑
P∈P:e∈P

fP = fe ∀e ∈ E

fP ≥ 0 ∀P ∈ P.

(4)

L. Buriol, M. Ritt, F. Rodrigues and G. Schäfer 125

We note that the cost c(f) of a Wardrop flow f is unique (see [9]).
In this form, computing a Wardrop flow as well as an optimal flow can be done by using

the Frank-Wolfe algorithm [6]. The algorithm starts by finding a feasible solution to the
linear constraints of the problem. Then in each iteration it finds a descent direction and
a distance to descend, thereby reducing the objective function value. The algorithm stops
when no improvement can be made to the objective function value.

2.2 Price of Anarchy
The Price of Anarchy (PoA) is a measure of the inefficiency of equilibria that was introduced
by Koutsoupias and Papadimitriou [8]. It measures how well players in a game perform when
they are at a Nash equilibrium, compared to an optimum outcome that could be achieved if
all players cooperated.

Suppose we are given a strategic game G with n players, a set of strategies Si for each
player i and a cost function ci : S → R, where S = S1 × · · · × Sn. Further assume that we
are given a social cost function C : S → R that maps every strategy profile s ∈ S to some
non-negative cost of the game. Given an instance I = (G, (Si), (ci)), let NE(I) be the set
of strategy profiles s ∈ S that are a Nash equilibrium for I. The Price of Anarchy of I is
defined as

PoA(I) =
maxs∈NE(I) C(s)

mins∈S C(s)

The Price of Anarchy of a class of games G is defined as PoA(G) = maxI∈G PoA(I).
In the context of the Traffic Assignment Problem (TAP), the above definition simplifies

to the following: Let I = (G, d, l) be an instance of TAP. The Price of Anarchy of I
is PoA(I) = c(f)/c(f∗), where f and f∗ are a Wardrop flow and an optimal flow of I,
respectively. (Recall that the cost of a Wardrop flow is unique.) The Price of Anarchy of
TAP is defined as PoA = maxI PoA(I), where the maximum is taken over all possible input
instances.

The Price of Anarchy depends on which types of latency functions we allow our instances
to have. Roughgarden and Tardos [10] proved that for linear latencies the Price of Anarchy
is 4

3 . Furthermore, Roughgarden proved that the Price of Anarchy is independent of
network topology [9]. Besides other results, these studies reveal that the Price of Anarchy
for polynomial latency functions is admitted on very simple single-commodity instances
consisting of two parallel arcs, also known as Pigou instances.

s t

Figure 1 Pigou instance with polynomial latency functions.

Consider the instance I = (G, d, l) depicted in Figure 1. There is one unit of flow that
has to be sent from s to t. The respective latency functions of the upper edge e1 and the
lower edge e2 are l1(x) = xp and l2(x) = 1. The Wardrop flow f sends the entire flow on e1,
i.e., f1 = 1 and f2 = 0, and has a cost c(f) = 1. In order to compute an optimal flow, we

ATMOS’11

126 Smoothed Price of Anarchy of the Traffic Assignment Problem

exploit the equivalence that an optimal flow is a Wardrop flow with respect to marginal cost
functions l∗1(x) = (p+ 1)xp and l∗2(x) = 1. Equalizing these latency functions, we obtain that
f∗1 = (p+ 1)−1/p and f∗2 = 1− (p+ 1)−1/p. The cost of this flow is

c(f∗) = (p+ 1)−1/p
(

(p+ 1)−1/p
)p

+ 1− (p+ 1)−1/p = (p+ 1)(p+ 1)1/p − p
(p+ 1)(p+ 1)1/p .

The Price of Anarchy of this instance I is therefore

PoA(I) = c(f)
c(f∗) = (p+ 1) p

√
p+ 1

(p+ 1) p
√
p+ 1− p . (5)

This Pigou instance actually leads to the worst possible Price of Anarchy for polynomial
latency functions: Roughgarden [9] showed that the Price of Anarchy of multi-commodity
instances with polynomial latency functions of degree at most p is at most PoA(I) as stated in
(5), independently of the network topology. The Price of Anarchy thus grows asymptotically
as Θ(p

ln p). It is also shown in [9] that various other types of latency functions admit their
worst case Price of Anarchy on a Pigou instance.

2.3 Smoothed Price of Anarchy
Smoothed analysis was introduced by Spielman and Teng [11] in order to overcome the
pessimistic viewpoint adopted in worst-case analyses. It is a relatively new approach that
can be seen as a hybrid of worst-case and average-case analysis. It was originally introduced
to study the smoothed complexity of algorithms. But the concept naturally extends to other
performance criteria.

We extend the idea to the Price of Anarchy measure. The idea is to randomly perturb
a given input instance and to analyze the expected Price of Anarchy on the perturbed
instances. Suppose we are given a class of games G. Given an instance I = (G, (Si), (ci)) ∈ G,
we randomly perturb I by adding some random noise to the input data. (Note that there
might be several ways to perturb the input instance. How this should be done depends on
the underlying application.) Let Ī be an instance that can be obtained from I by random
perturbations and let σ be a parameter for the magnitude of perturbation. The Smoothed
Price of Anarchy (SPoA) of I is then defined as

SPoA(I, σ) =
E[maxs∈NE(Ī) C̄(s)]

E[mins∈S C̄(s)]
,

where the expectation is taken over all instances Ī that are obtainable from I by random
perturbations of magnitude σ. Here C̄ refers to the cost of the perturbed instance. The
Smoothed Price of Anarchy of G is then SPoA(G, σ) = maxI∈G SPoA(I, σ).

Perturbation Model for TAP Instances: In our context, we perturb TAP instances
by adding some random noise to the latency functions. Our perturbations thus reflect
fluctuations in the travel times of the edges. More specifically, suppose we are given an
instance I = (G, d, l) of TAP. We then define perturbed latency functions l̄ as follows:

∀e ∈ E : l̄e = (1 + εe)le, εe
i.u.r←− [0, σ]. (6)

Note that εe is chosen independently uniformly at random out of the range [0, σ] for every
edge e ∈ E. Let fI and f∗I denote a Wardrop flow and an optimal flow, respectively, for a

L. Buriol, M. Ritt, F. Rodrigues and G. Schäfer 127

given instance I. The Smoothed Price of Anarchy of I is then defined as

SPoA(I, σ) = E[c̄(fĪ)]
E[c̄(f∗

Ī
] ,

where c̄ refers to the total cost with respect to the perturbed latency functions, i.e., c̄(f) =∑
e∈E l̄e(fe)fe for a given flow f . As before, the expectation is taken over all instances Ī that

are obtainable from I by perturbations as defined in (6). The Smoothed Price of Anarchy of
G is defined as SPoA(G, σ) = maxI∈G SPoA(I, σ).

Clearly, other smoothing models are conceivable as well. However, here we have chosen
the one above because of its good trade-off between simplicity and relevance. Note that a
consequence of our relative perturbation model is that the effect of random perturbations is
more severe on edges that are sensitive to variations in traffic rate while it is less severe on
edges which are rather insensitive to changes in traffic rate.

Note that for our real-world instances, whose latency functions are of the form indicated
in (1), the above perturbation is equivalent to substituting the free-flow travel time te with
(1 + ε)te.

3 Smoothed PoA of Pigou instances

We consider Pigou instances with polynomial latency functions. We will derive exact bounds
on the Smoothed Price of Anarchy under our random perturbations for these instances.
These bounds also establish lower bounds on the Smoothed Price of Anarchy for general
multi-commodity instances. These bounds are in the same order of magnitude as the worst
case Price of Anarchy for polynomial latency functions stated in Section 2.2. We leave it as
an important open problem to derive upper bounds on the Smoothed Price of Anarchy for
multi-commodity instances and polynomial latency functions.

I Theorem 1. The Smoothed Price of Anarchy of the Pigou instance with polynomial latency
functions of degree p is

SPoA(I, σ) = 3 + σ

3 + 3σ
2 +

3p3((1+p)(1+σ))−1/p

(
−1+(1+σ)2+ 1

p

)(
−1−σ+(1+σ)

1
p

)
(1+2p)(−1+p2)σ2

(7)

Figure 2 Smoothed Price of Anarchy of Pigou instances with polynomial latency functions.

Figure 2(a) illustrates the POA bound for Pigou instances for p = 2, 3, 4 as a function of
σ, while Figure 2(b) shows the POA bound as a function of p, with fixed σ = 0, 0.1, 0.5 and 1.

ATMOS’11

128 Smoothed Price of Anarchy of the Traffic Assignment Problem

Proof of Theorem 1. Let I be the original Pigou instance as introduced in Section 2.2. After
perturbing the latency functions of I as described above, we obtain the instance depicted in
Figure 3 with latency functions

l1(x) = (1 + ε1)xp and l2(x) = 1 + ε2,

where ε1, ε2 ∈ [0, σ] are random variables.

s t

Figure 3 Pigou instance with polynomial latency functions and perturbations ε1, ε2 ∈ [0, σ].

We first determine a Wardrop flow. With the addition of perturbation, edge e1 is used as
long as its latency is lower than the latency of e2. Therefore

f1 ≤ p

√
1 + ε2

1 + ε1
.

Since this can be greater than our maximum flow,

f1 = min
(

p

√
1 + ε2

1 + ε1
, 1
)

and f2 = 1−min
(

p

√
1 + ε2

1 + ε1
, 1
)
.

The flow f1 is going to be 1 as long as ε2 ≥ ε1. If this is the case, then c(f) = 1 + ε1.
If ε2 ≤ ε1, then

c(f) = p

√
1 + ε2

1 + ε1
(1 + ε1)

(
p

√
1 + ε2

1 + ε1

)p
+
(

1− p

√
1 + ε2

1 + ε1

)
(1 + ε2) = 1 + ε2.

In order to determine E[c(f)] for ε1, ε2 chosen uniformly at random from [0, σ], we need
to solve the following double integral. (Note that the combined probability density function
is 1

σ2).

E[c(f)] =
∫ σ

0

∫ ε2

0

1 + ε1

σ2 dε1dε2 +
∫ σ

0

∫ σ

ε2

1 + ε2

σ2 dε1dε2

= 3 + σ

6 + 3 + σ

6 = 1 + σ

3

In order to compute the system optimum flow, we exploit the fact that an optimal flow is
a Wardrop flow with respect to the marginal cost functions l∗1(x) = (p+ 1)(ε1 + 1)xp and
l∗2(x) = 1 + ε2. Then

f∗1 = p

√
1 + ε2

(p+ 1)(ε1 + 1) and f∗2 = 1− p

√
1 + ε2

(p+ 1)(ε1 + 1) .

L. Buriol, M. Ritt, F. Rodrigues and G. Schäfer 129

Note that σ must at most p for the optimum flow f∗1 to remain below the maximum flow.
The cost of f∗ is

c(f∗) = p

√
1 + ε2

(p+ 1)(ε1 + 1)(1 + ε1)
(

p

√
1 + ε2

(p+ 1)(ε1 + 1)

)p
+
(

1− p

√
1 + ε2

(p+ 1)(ε1 + 1)

)
(1 + ε2)

= 1 + ε2 − p(1 + p)−1− 1
p (1 + ε1)−

1
p (1 + ε2)1+ 1

p .

Taking the expectation over the random choices ε1, ε2 ∈ [0, σ], we obtain

E[c(f∗)] =
∫ σ

0

∫ σ

0

1 + ε2 − p(1 + p)−1− 1
p (1 + ε1)−

1
p (1 + ε2)1+ 1

p

σ2 dε1dε2

= 1 + σ

2 +
p3((1 + p)(1 + σ))−1/p

(
−1 + (1 + σ)2+ 1

p

)(
−1− σ + (1 + σ)

1
p

)
(1 + 2p) (−1 + p2)σ2

Thus

SPoA(I, σ) = 3 + σ

3 + 3σ
2 +

3p3((1+p)(1+σ))−1/p

(
−1+(1+σ)2+ 1

p

)(
−1−σ+(1+σ)

1
p

)
(1+2p)(−1+p2)σ2

(8)

J

Recall that the Pigou instance is the worst-case instance for the Price of Anarchy. Clearly,
the Smoothed Price of Anarchy either stays the same or improves (i.e., decreases). As our
bound shows, it improves but the decrease is rather low. Even for perturbations of the
magnitude σ = 1, the decrease is about 10% only (see Figure 4). Note that in this case
we may double the latency functions. With increasing degree, this decrease becomes more
significant. If we restrict σ to be less than or equal to 1

p , then the Smoothed Price of Anarchy
asymptotically remains Θ(p

ln p) as in the deterministic case (see Figure 4).

Figure 4 Smoothed Price of Anarchy of Pigou instances shown to remain Θ(p
ln p

)

ATMOS’11

130 Smoothed Price of Anarchy of the Traffic Assignment Problem

4 Computational results

4.1 Experimental setup
In order to evaluate if real world instances behave in a different manner in relation to the
worst case instances for the Price of Anarchy, we tested a few benchmark instances freely
available for academic research from the Transportation Network Test Problems [1].

In these instances, the latencies follow the U.S. Bureau of Public Roads’ definition, shown
in (1), with α = 0.15 and β = 4. We chose a few instances to compare and perturb, with
both big and small instances evaluated. The instances details can be seen in Table 1.

Table 1 List of benchmark instances used in the experiments.

Instance Name |V| |E| |K| |E|·|K|
Sioux Falls 24 76 528 40,128

Friedrichshain 224 523 506 264,638
Chicago Sketch 933 2,950 83,113 245,183,350
Berlin Center 12,100 19,570 49,689 972,413,730

To find the user equilibrium and system optimum, we used the Frank-Wolfe algorithm [6].
The algorithm was implemented in C++ and compiled in 64 bit gcc version 4.4.5, in a Linux
kernel version 2.6.35. The machine used for the tests has an Intel® Core™ i7 CPU with 4
cores, with 12 GB of RAM memory.

4.2 Benchmark instances results
We perturbed the instances with σ ∈ {10−9, 10−8, ..., 10−2}. We also evaluated instances
with a greater perturbation, with σ ∈ {0.1, 0.2, ..., 0.9}. The algorithm was stopped when it
reached a relative gap less then of 0.00001, except the Sioux Falls instance which the minimum
relative gap was set to 0.000001. For each perturbation magnitude σi, 10 runs were executed
and the average value was considered. Then, the Price of Anarchy of the unperturbed
instances are presented in Table 2. Also, for among all averages for the different values of σ,
the mean, the standard variation, the minimum and maximum values are presented.

Table 2 Price of Anarchy and related measures found for each instance.

Instance Name POA Mean Minimum Maximum Standard Deviation
Sioux Falls 1.039682 1.039689 1.039676 1.039707 8.049609× 10−6

Friedrichshain 1.086374 1.086422 1.086345 1.086599 4.996005× 10−5

Chicago Sketch 1.023569 1.023567 1.023561 1.023572 2.137639× 10−6

Berlin Center 1.006141 1.006142 1.006133 1.006155 3.831177× 10−6

In Table 3 we can see the average time that the perturbed instances executed. It is clear
that for these instances the perturbations did not significantly alter their execution time.
Note that the Sioux Falls instance takes longer than the Friedrichshain instance due to the
smaller relative gap used on the Sioux Falls instance.

Both the smoothed and the original Price of Anarchy are close to one for all tested
instances, which gives some empirical evidence that the worst case is not so likely to occur
in real world instances. Furthermore, when we look at the Smoothed Price of Anarchy for all
instances, as is shown in Figure 5, we notice that even for relatively large σ, the Smoothed
Price of Anarchy remains almost constant and very close to the original Price of Anarchy.

L. Buriol, M. Ritt, F. Rodrigues and G. Schäfer 131

Table 3 Execution time found for original instances and the average for the perturbed instances,
in seconds.

Instance Name UE time SO time Average UE time Average SO time
Sioux Falls 1.58 1.6 1.5935 1.613314

Friedrichshain 0.43 0.92 0.431411 0.963976
Chicago Sketch 27.99 36.89 27.347117 36.568070
Berlin Center 233.91 360.07 220.975359 360.644545

The small trend that the Smoothed Price of Anarchy tends to follows on these instances
seems to be related more with the particular instance than with a more general rule. This
can be seen on the difference between the Friedrichshain instance and the Chicago instance,
while in the Berlin instance it appears to remains constant.

The fact that the Smoothed Price of Anarchy does not drop significantly from the original
Price of Anarchy, allied with these experimental results, shows that while perturbation does
occur frequently in real world scenarios, it does not have a great influence on the actual
distance from users equilibrium to the overall system optimum.

5 Conclusions

The Traffic Assignment Problem concerns the choice of routes in a road network given a set
of users with an origin and a destination. It is of extreme importance for traffic planning
and in real world cases perturbation occurs frequently, therefore it is useful to have a notion
of how much can this perturbation affect its instances. It is of particular interest how the
Price of Anarchy is affected in these situations, since the goal in road network planning is
usually to approximate the user equilibrium to the system optimum.

We propose a perturbation model and a measure of perturbation of the Price of Anarchy
based on the smoothed analysis for algorithms, the Smoothed Price of Anarchy. We give a
lower bound for the Smoothed Price of Anarchy that is in the same order as the worst case
Price of Anarchy for polynomial latencies.

Finally, we show experimentally that the effects of perturbation on the Price of Anarchy
of real world instances, at least for the known instance benchmarks in the literature present
in the Transportation Network Test Problems, are severely limited and show no general
trend.

Acknowledgements This work was partially supported by the “European South American
Network for Combinatorial Optimization under Uncertainty”, programme acronym/reference
FP7-People/247574.

ATMOS’11

132 Smoothed Price of Anarchy of the Traffic Assignment Problem

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
σ

0.00000

0.00005

0.00010

0.00015

0.00020
P
o
A

+1.0396
Sioux Falls

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

σ

0.00000

0.00005

0.00010

0.00015

0.00020

P
o
A

+1.0396
Sioux Falls

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
σ

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

P
o
A

+1.086
Friedrichshain

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

σ

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

P
o
A

+1.086
Friedrichshain

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
σ

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

P
o
A

+1.0235
Chicago

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

σ

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

P
o
A

+1.0235
Chicago

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
σ

0.00000

0.00005

0.00010

0.00015

0.00020

P
o
A

+1.006
Berlin

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

σ

0.00000

0.00005

0.00010

0.00015

0.00020

P
o
A

+1.006
Berlin

Figure 5 Experimental Smoothed Price of Anarchy for the Sioux Falls (first), Friedrichshain
(second), Chicago sketch (third) and Berlin Center (forth). On the left σ ∈ {0.1, ..., 0.9} while on
the right side σ ∈ {10−9, ..., 10−2}.

L. Buriol, M. Ritt, F. Rodrigues and G. Schäfer 133

References
1 Hillel Bar-Gera. Transportation network test problems. http://www.bgu.ac.il/

~bargera/tntp/, June 2011.
2 Pia Bergendorff, Donald W. Hearn, and Motakuri V. Ramana. Congestion Toll Pricing

of Traffic Networks, pages 51–71. Lecture Notes in Economics and Mathematical Systems.
Springer-Verlag, 1996.

3 Bureau of Public Roads. Traffic assignment manual. U.S. Department of Commerce, Urban
Planning Division, Washington, DC., 1964.

4 Pradeep Dubey. Inefficiency of Nash equilibria. Math. Oper. Res., 11:1–8, February 1986.
5 Michael Florian and Donald Hearn. Network Equilibrium Models and Algorithms, volume 8.

1995.
6 Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval

Research Logistics Quarterly, 3(1-2):95–110, 1956.
7 Donald W. Hearn and Motakuri V. Ramana. Solving congestion toll pricing models. Equi-

librium and Advanced Transportation Modeling, pages 109–124, 1998.
8 Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In In Proceedings Of

The 16Th Annual Symposium On Theoretical Aspects Of Computer Science, pages 404–413,
1999.

9 Tim Roughgarden. The price of anarchy is independent of the network topology. J. Comput.
Syst. Sci., 67:341–364, September 2003.

10 Tim Roughgarden and Éva Tardos. How bad is selfish routing? Journal of the ACM
(JACM), 49(2):259, 2002.

11 Daniel A. Spielman and Shang Hua Teng. Smoothed analysis of algorithms: why the
simplex algorithm usually takes polynomial time. In Journal of the ACM, pages 296–305,
2001.

12 John G. Wardrop. Some theoretical aspects of road traffic research. Proceedings of the
Institution of Civil Engineers, Part II, 1(36):352–362, 1952.

ATMOS’11

http://www.bgu.ac.il/~bargera/tntp/
http://www.bgu.ac.il/~bargera/tntp/

On the Utilisation of Fuzzy Rule-Based Systems
for Taxi Time Estimations at Airports
Jun Chen1, Stefan Ravizza2, Jason A.D. Atkin2, and Paul Stewart1

1 School of Engineering, University of Lincoln
Brayford Pool, Lincoln, LN6 7TS, UK
juchen@lincoln.ac.uk, pstewart@lincoln.ac.uk

2 School of Computer Science, University of Nottingham
Jubilee Campus, Nottingham, NG8 1BB, UK
smr@cs.nott.ac.uk, jaa@cs.nott.ac.uk

Abstract
The primary objective of this paper is to introduce Fuzzy Rule-Based Systems (FRBSs) as a re-
latively new technology into airport transportation research, with a special emphasis on ground
movement operations. Hence, a Mamdani FRBS with the capability to learn from data has been
adopted for taxi time estimations at Zurich Airport (ZRH). Linear regression is currently the
dominating technique for such an estimation task due to its established nature, proven mathem-
atical characteristics and straightforward explanatory ability. In this study, we demonstrate that
FRBSs, although having a more complex structure, can offer more accurate estimations due to
their proven properties as nonlinear universal approximators. Furthermore, such improvements
in accuracy do not come at the cost of the model’s interpretability. FRBSs can offer more ex-
planations of the underlying behavior in different regions. Preliminary results on data for ZRH
suggest that FRBSs are a valuable alternative to already established linear regression methods.
FRBSs have great potential to be further seamlessly integrated into the taxiway routing and
scheduling process due to the fact that more information is now available in the explanatory
variable space.

1998 ACM Subject Classification G.1.2 Approximation, I.2.1 Applications and Expert Systems,
I.5.1 Models – Fuzzy Set

Keywords and phrases Fuzzy Rule-Based System, Taxi Time Estimation, Airport Ground Move-
ment

Digital Object Identifier 10.4230/OASIcs.ATMOS.2011.134

1 Introduction

There has been little study of the problem of predicting taxi times at airports prior to the last
decade [1, 3, 9, 11, 19], since accurate taxi times were not often needed in advance. However,
the increasing use of automated decision support tools more recently has tremendously
increased the value of having accurate taxi time predictions. It has been common practice
for airports to use standard mean taxi times for specific source/destination pairs, perhaps
further broken down into aircraft sizes but usually with no further discrimination. Any
variances from the means were usually considered irrelevant and replaced by the addition of
slack time when needed. More recent attempts to work towards a connected system, linking
airspace and airports, mean that landing time information is becoming available much sooner
and the taxi time can become the main uncertainty in on-stand time predictions. From a
departures point of view, increasingly accurate ready time predictions from airlines can

© Jun Chen, Stefan Ravizza, Jason A.D. Atkin and Paul Stewart;
licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 134–145

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.134
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

J. Chen, S. Ravizza, J.A.D. Atkin and P. Stewart 135

mean that taxi times become the main uncertainty in the predictions for when aircraft
can/will reach the runway. In some cases this can make the difference between being able
to predict take-off times (or even perform take-off sequencing) or not before aircraft even
leave the stands. Taxi time prediction, of course, becomes even more important when
automated decision support is desired for ground movement optimisation, since relatively
small deviations from predictions can have increasing knock-on effects.

Due to the number of factors which can influence taxi times, until recently they have been
considered to be very unpredictable. Although accurate taxi time prediction for individual
aircraft could still be considered to be in its infancy, various researchers have had some
success in using linear regression-type approaches to both identify the factors which are more
heavily correlated to taxi times and in producing functions which are much more effective
at predicting taxi times. The research in this paper moves the taxi time prediction research
another step forward by utilising the correlating factors which have been previously identified
in [1] and applying a non-linear fuzzy rule-based prediction approach to find functions which
make even more accurate taxi time predictions. Obviously, linear regression approaches can
cope with non-linear behaviour providing that an appropriate mapping function is utilised
in advance, but the ability to cope with non-linearity without an a-priori production of a
mapping function is a distinct advantage of the Fuzzy Rule-Based System (FRBS) approach.

The relative sparsity of the research and the concentration of researchers upon linear
methods seem to be at odds with the importance of the problem, given the fact that airport
ground movement serves as a link between the other airport operations, such as departure
sequencing, arrival sequencing and gate/stand allocation [2, 6]. Any analysis requires data,
however the previous lack of detailed utilisation of historic data, and the difficulty in cap-
turing certain types of data have meant that it has not always been recorded. As can be
seen in [8], even if the correct equipment is available to record the needed information, the
installation positions and the way in which different taxiing stages are categorised (such as
straight, turn and stop segments) can still induce different options, leading to substantial
uncertainties. This explains why the emphasis of the previous work has been upon identify-
ing the significant explanatory variables from the recorded data via a combined statistical
approach and linear regression [1, 9, 11, 19], rather than exploring different regression meth-
ods. Idris et al. [9] performed a statistical analysis of the taxi-out process for Boston Logan
International Airport and concluded that the take-off queue size is the most important factor
affecting taxi time. In order to more realistically decide the departure queue lengths, Zhang
et al. [19] proposed an iterative algorithm to improve the prediction accuracy of the linear
regression models. A sequential forward floating subset selection method was developed in
[11] with the aim of selecting the most influential ones from a set of candidate explanatory
variables. Finally, Atkin et al. [1] identified in their work that take-off queue size is not
the dominating variable for some of the European airports, such as Stockholm-Arlanda Air-
port (ARN) and Zurich Airport (ZRH). Unlike Boston Logan International Airport, these
European hub airports do not have long queues for take-off. Hence, to improve the estim-
ation accuracy for this kind of airport, one has to include information about the surface
layout. Their model works for both departure and arrival aircraft and furthermore, can
predict taxi time for unimpeded aircraft to be used in routing approaches.

Although previous research efforts have led to a number of promising results, none of
them explored the potential in other modeling methods. As pointed out in [1], it is important
to be able to accurately estimate taxi times if more realistic ground movement decision
support systems are desired. And given the fact that nonlinearity is present in airport data,
nonlinear modeling approaches, such as FRBSs with proven ability to approximate any real

ATMOS’11

136 FRBSs for Taxi Time Estimations at Airports

continuous function on a compact set to an arbitrary accuracy [12, 16], should be very
competent for this type of taxi time estimation task.

In this paper, a Mamdani FRBS [5, 13], which can learn from data, has been employed
to further improve the estimation accuracy. However, the aim of the introduction of FRBSs
into airport transportation research is for more than estimation accuracy improvement. One
distinctive characteristic of FRBSs lies in their explanatory ability, distinguishing FRBSs
from other nonlinear modeling techniques, such as artificial neural networks [7]. The em-
phasis of this work is not placed on data pre-processing or analysis, but rather, this work
is based on the data which has been prepared and analysed by Atkin et al. [1]. We would
like to explore the possibility of including FRBSs as an alternative for consideration by the
practitioners in this field, and we consider both the feasibility of using FRBSs and the extra
benefits that one could gain from using FRBSs.

Based on such an understanding, the rest of the paper is organised as follows: Section
2 briefly describes the problem of airport taxi time estimation and the data set from ZRH;
Section 3 introduces the Mamdani FRBS and its revised version, which is used in this
work; experimental results on ZRH and its analysis are presented in Section 4; and finally,
conclusions and future directions are given in Section 5. In order to promote the adoption
of FRBSs in the field of airport research, we also point out several important issues which
could see this approach being accepted by the practitioners and maturing into a systematic
approach in this field.

2 Problem description

The problem considered in this paper involves eliciting an aircraft taxi time model using
the available historic data from ZRH. In the following two sections, we first emphasise the
importance of the airport ground movement problem, and then we briefly describe the data
set which was used with an emphasis upon discussing the explanatory variables.

2.1 The airport ground movement problem

Airport ground movement plays a major role in the ever increased annual average delays
for flights, as it serves as a link between other airport operations [6, 14]. The problem
is basically a routing and scheduling problem. As stated by Atkin et al. [1], “it involves
directing aircraft on the surface of an airport to their destinations in a timely manner,
with the aim to reduce the overall travelling time, to meet target time windows and/or to
absorb the delay at the preferred time.” For this reason, it is crucial that one can accurately
estimate taxi times for aircraft, since this forms the basis not only for optimal allocation of
airport ground resources within a single airport at the tactic level, but also for the optimal
flow management across multiple airports at the strategic level [6, 9]. Interested readers
in this problem are referred to a recently published survey showing the state-of-the-art in
this research area [2]. In this paper, we are interested in building up an approximate model
which can not only reproduce taxi times for the past events but also predict them for the
future.

2.2 ZRH Airport data

Zurich Airport is the largest airport in Switzerland. The sketch of its layout is shown in
Figure 1. As can be seen from the figure, the airport operates with 3 runways [1].

J. Chen, S. Ravizza, J.A.D. Atkin and P. Stewart 137

Figure 1 Sketch of airport layout for ZRH (source: [1])

It was confirmed by the field staff that, as long as no heavy winds occur, ZRH operates
with three operational modes: a) before 7am, runway 34 is used for arrivals and 32 and 34
for departures; b) during the day, runways 14 and 16 are used for arrivals and 28 and 16 for
departures c) after 9pm, only runway 28 is used for arrivals and runways 32 and 34 are used
for departures. The mentioned rules only apply on weekdays and outside the holiday times
of Baden-Württemberg. In collaboration with Flughafen Zürich AG, we had access to the
data for an entire day’s operation for the 19th of October 2007. No extraordinary events
happened during that day. The data set consists of 679 movements and contains information
about each aircraft, the stand and the runway, the start and end time of taxiing, the aircraft
type and the information about whether the aircraft was arriving or departing [1]. A rigorous
statistical analysis was conducted in [1] and a set of significant explanatory variables were
extracted from the original data set. In this work, we are investigating the 14 explanatory
variables, listed below, and their relationships with the taxi time.

Distance: This is the approximate distance (in meters) that an aircraft was taxiing.
Since only the stand and the runway (source and destination) were available in the
supplied data, this factor was calculated by assuming that the shortest route was taken.
Log(Distance): This is the logarithmic transformation of the Distance.
Log(Angle): The angle is calculated as the total angular deviations between adjacent
arcs on the shortest path. Taxiing speed is confined by the total amount of turning which
an aircraft had to achieve. The larger the total is, the slower the taxiing speed. In the
modeling, we take the logarithmic transformation of the turning angle rather than the
angle itself.
LAN: This is a binary variable, fixed to 1 for arrival aircraft and 0 for departure aircraft.
Q and N values: These values indicate the amount of other traffic on the airport
surface while the aircraft under consideration is taxiing. The N value counts the number
of other aircraft which are already taxiing on the airport surface at the time that the
particular aircraft starts to taxi. The Q value counts the number of other aircraft which
cease taxiing during the time that the particular aircraft is taxiing. In order to be able to
account for both arrivals and departures, these values are further differentiated into the
combinations of arrivals and departures, which leads to eight integer variables in total.
Operational Modes: There are three operational modes at ZRH, provided that no
heavy winds occur, as discussed before. Hence, the two dummy variables OMorning and
OEvening are used to represent the operational modes, with the former set to 1 for the

ATMOS’11

138 FRBSs for Taxi Time Estimations at Airports

morning period and the latter set to 1 for the evening period. Both of these variables
are set to 0 for the day period.

Details regarding how the aforementioned variables were extracted from the available
data set can be found in [1].

3 Fuzzy Rule-Based Systems (FRBSs)

In the real world, many systems contain extremely nonlinear, time-varying and uncertain
behaviour. This prevents the development of computerised systems for them from being
a straightforward algorithmic solution because of the inherent uncertainty which arises as
a natural occurrence in these types of applications. In addition, the human operators can
often be an adequate controller by being able to construct acceptable models of processes
in their own minds. Models which do not include any mathematical equations and more
closely match those which humans may mentally develop are, therefore, easier to handle.
In other words, the human operator has the ability to interpret linguistic statements about
the process and to think in a qualitative rather than in a quantitative fashion. Fuzzy logic
theory is inspired by these observations and was first introduced by Zadeh [17]. One strong
point of fuzzy inference systems is that they can combine human expertise together with
sensory measurements and mathematical models. In this section, a special case of fuzzy
inference systems, namely the Mamdani FRBS and its revised version, will be discussed
first. The emphasis is then placed on the distinctive features of FRBSs which make them
competent candidates for this particular estimation task.

3.1 A Mamdani FRBS and its revised version
Fuzzy inference is the process of formulating the mapping from a given input to an output
using fuzzy logic [18]. The mapping then provides a basis from which decisions can be made,
or patterns discerned. The general process of the fuzzy inference and its schematic diagram
is shown in Figure 2.

Figure 2 Fuzzy Inference Systems (source: [10])

The ‘rule base’ contains a number of fuzzy if-then rules in the following form:

Ri : If x1 is A1
i and x2 is A2

i , . . . , and xj is A
j
i , . . . , and xn is Ani Then yi = Zi,

where Ri represents the ith rule in the rule base, xj is the value of the jth explanatory
variable (j = 1, . . . , n) and is defined over the universe of discourse fj , yi is the output of

J. Chen, S. Ravizza, J.A.D. Atkin and P. Stewart 139

the ith rule, Aji is the linguistic value (fuzzy set) for the jth linguistic (explanatory) variable
xj of this ith rule, defined over the universe of discourse fj , and Zi is the consequence, or
output, of the rule and is discussed below.

For each Aji , there is a membership function µAj
i
(xj) associated with it which maps fj

to [0, 1]. In this work, Gaussian membership functions are used for all of the explanatory
variables as described in (1).

µAj
i
(xj) = exp

[
−1

2 · (xj − cji)2

(σji)2

]
, (1)

where cji denotes the centre of the bell-shape curve and σ
j
i denotes the standard deviation.

For illustration, Figure 3 shows an example of a Gaussian membership function with its
centre at 0.5 and its standard deviation being 0.2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Universe of Discourse

T
h

e
D

eg
re

e
o

f
M

em
b

er
sh

ip

Figure 3 The shape of a Gaussian membership function for the explanatory variables

With the link between Aji and µAj
i
(xj), each rule can be expressed to the end user using

linguistic terms without showing the mathematical details, so, for example, Ri, could also
be rewritten as follows:

Ri : If x1 is big and x2 is small, . . . , and xj is big, . . . , and xn is medium Then yi = Zi,

where ‘big’, ‘small’ and ‘medium’ are linguistic values defined by µAj
i
(xj).

The ‘database’ in Figure 2 contains all such membership functions for the fuzzy sets
used in the fuzzy rules. Usually, the rule base and the database are jointly referred to as the
‘knowledge base’. The ‘decision-making unit’ performs the inference operations on the rules
and two interfaces perform fuzzification and defuzzification respectively. Defuzzification is
an important module since it converts a set of output values or output membership functions
from different fuzzy rules into a single crisp output value.

There are many types of fuzzy inference systems. The two most popular types of fuzzy
inference systems are the Mamdani-type [13] and Sugeno-type [15] FRBSs. These two types
vary in the form of the consequence part Zi. The consequence part of the Mamdani-type
FRBS is a fuzzy set while the consequence part of the Sugeno-type FRBS is a set of functions
with the arguments that are the explanatory variables of the antecedent (input) part. In
this work, we concentrate on a Mamdani FRBS due to its ability to approximate nonlinear
systems and its unique property to interpret the underlying system via linguistic terms, in
both the outputs and inputs rather than only the inputs.

ATMOS’11

140 FRBSs for Taxi Time Estimations at Airports

The output membership function (fuzzy set) is also a bell-shaped function, and is defined
as follows:

µBi
(y) = 1

1 +
(
y−cy

i

σy
i

)2 . (2)

For a Mamdani FRBS with r rules, the defuzzification method used in this work is fully
defined in (3).

ycrisp =
∑r
i=1 c

y
i · µi(X) ·

∫
y
µBi

(y)dy∑r
i=1 µi(X) ·

∫
y
µBi(y)dy

, (3)

where µi(X) is defined as µA1
i
(x1) × µA2

i
(x2) × . . .× µAn

i
(xn) and represents the degree

of certainty for a data sample associated with the ith rule.
For a Mamdani FRBS, the predominant approach in the traditional design is highly

dependent upon human experts who will decide upon the values of cji , σ
j
i , c

y
i and σ

y
i according

to their domain experience. Hence, learning components are not necessarily required in the
traditional Mamdani FRBS, making it unsuitable for a data-driven modeling task such as
the one studied in this work. In [5], the authors utilised a combined k-means clustering
algorithm and genetic algorithms to automatically identify the initial values of cji , σ

j
i , c

y
i

and σyi from the historic data set and then fine-tune these values through a back-error
propagation algorithm to further improve the estimation accuracy of the Mamdani FRBS.
With the help of automatic knowledge induction and learning, the revised Mamdani FRBS
becomes very appealing for the data-driven estimation task that we are investigating in this
work.

3.2 Distinctive features of FRBSs
From the above description, we conclude that the following points are the distinctive features
of a Mamdani FRBS, and argue that FRBSs deserve more attention in airport operations
research:

Ability to approximate complex nonlinear systems. When several rules concur-
rently describe a system under investigation, a FRBS decomposes the system into several
sub regions, modeling these via different combinations of rules in the rule base. For this
reason, and because of the nonlinearity embedded within membership functions, a FRBS
is suitable for modelling complex nonlinear systems. Linear regression methods tend to
need manual intervention to tune, for example by applying transformations to explanat-
ory variables. For illustration, [1] found that it was necessary to use log(Distance) rather
than Distance in order to get linear correlations. If logarithmic transformations were not
used, then the resulting system would have had a poorer estimation performance. In
contrast, this kind of learning is already a part of the FRBS approach. Box-Cox [4] star-
ted to look at automating the determination of transformation functions of polynomial
form, but this type of automation is not yet standard practice in linear regression.
Ability for rules to differ in different regions. FRBS will utilise different rules for
different parts of the explanatory variable space, which makes it easier to understand
how the effects of different explanatory variables change according to the values of other
explanatory variables. For instance, how the effects of the distance or turning angle differ
depending upon the runway which is in use.

J. Chen, S. Ravizza, J.A.D. Atkin and P. Stewart 141

Ability to integrate human expertise. The main advantage of using a Mamdani
FRBS as a regression tool for airport ground movements over other regression methods
lies in its additional ability for integrating human expertise in the form of vague or
imprecise statements rather than crisp mathematical representations. This is useful
since the knowledge of many real-world systems can only be described by experts using
natural language rather than mathematics. The rule-based structure makes it possible
to update a FRBS model by adding new rules elicited from experts or extra data without
the need to rebuild the whole model. In particular, experts can specify initial rules which
apply over specific regions (value ranges for explanatory variables), which can then be
refined by the system if data is available in that region. This is a very promising property
if one requires a model to have online adaptive ability or the ability to synergise different
types of models.
Ability to interpret the underlying system. Because of the linguistic terms involved
in each rule, it is possible to interpret the meaning of the rules.

We will revisit some of these features in Sections 4 and 5 after presenting the preliminary
experimental results.

3.3 Automatic induction of the rules from the data
As mentioned in Section 3.1, a genetic algorithm based k-means clustering algorithm is
used to first categorise the data set into different clusters. Each of these clusters is then
represented by a rule in the rule base. The projections of the centres and disperses of these
clusters on each explanatory variable dimension and the output dimension provide the initial
values of cji , σ

j
i , c

y
i and σyi in (1) and (2). In this way, an initial FRBS can be automatically

determined from the historical data. A back-error propagation learning algorithm is then
used to adjust the values of cji , σ

j
i , c

y
i and σyi in order to further improve the estimation

accuracy of an FRBS. Interested readers are referred to [5] for more details.

4 Results

In this section, the introduced Mamdani FRBS was applied to the problem of estimating
taxi times for the data from ZRH. The following two measures were utilised:

R2: The R-square value is used to evaluate how well the model fits the data and is
defined by:

R2 = 1 −
∑m
k=1 (yk − ŷk)2∑m
k=1 (yk − ȳ)2 , (4)

where yk is the observed output of the kth data sample; ŷk is the estimated output for
the kth data sample; ȳ is the mean of the observed outputs; and m is the total number
of the data samples.
Prediction accuracy: The accuracy of the predictions is measured as the percentage
of predictions which are within a specified number of minutes of the actual taxi times.
3 and 5 minute accuracy [3] are the most common measures for taxi times and the two
values ± 3 minutes and ± 5 minutes measure the ability of the model to predict taxi
times to this accuracy.

ATMOS’11

142 FRBSs for Taxi Time Estimations at Airports

4.1 Comparison to linear regression
In this experiment, the prediction accuracy of a Mamdani FRBS is compared against a linear
regression approach for the same data set from ZRH. The same 14 explanatory variables,
as introduced in Section 2.2, are used to estimate taxi times for both methods. A Mamdani
FRBS with twelve rules has been used throughout the experiments. Table 1 summarises the
average results of 20 runs of a Mamdani FRBS. The comparative results of linear regression
were obtained from [1].

Table 1 Comparison of prediction accuracy of the Mamdani FRBS and linear regression

± 3 minutes ± 5 minutes
Linear regression 95.6% 99.4%
Mamdani FRBS 98.8% 100%

As can be seen from Table 1, taxi time estimations from the Mamdani FRBS were more
accurate than the results which were obtained by linear regression. Such improvement in
the estimation accuracy is largely attributed to the fact that a FRBS approach decomposes
the system into sub regions and tackles each region with a set of cooperative rules. Hence, it
provides an extra degree of freedom to fine-tune a fuzzy model in order to fit more accurately
into the data. Also, the learning capability of the Mamdani FRBS provides an extra power
to learn the hidden transformation functions which may not be included within an a priori
transformation. Figure 4 shows the fit of the taxi time estimation of the Mamdani FRBS.

0 5 10 15 20 25
0

5

10

15

20

25

Predicted Taxi Time [minutes]

O
b

se
rv

ed
 T

ax
i T

im
e

[m
in

u
te

s]

Figure 4 The scatterplot showing the fit of a Mamdani FRBS for taxi times for Zurich Airport

4.2 Validity of approach without explicit transformations
As mentioned before, one distinctive benefit of FRBSs lies in their ability to approximate
complex nonlinear systems without the need to explicitly identify transformation functions
for explanatory variables and the output. To test the nonlinear approximation power of
the Mamdani FRBS, logarithmic transformations for the explanatory variables (such as the
ones for the distance and turning angles) were not included in this experiment. Similarly,
Angle was used rather than log(Angle). All other explanatory variables were kept the same

J. Chen, S. Ravizza, J.A.D. Atkin and P. Stewart 143

as those mentioned in Section 2.2. Again, a Mamdani FRBS with twelve rules was utilised
for taxi time estimations based upon the same data set for Zurich Airport. The results
presented in Table 2 are the average results from 20 independent runs.

Table 2 The results from the Mamdani FRBS with and without explicit input transformations

± 2 minutes ± 3 minutes ± 5 minutes R2

With log transformations 93.4% 98.8% 100% 0.894
Without log transformations 92.9% 98.7% 100% 0.890

As shown in Table 2, the results are similar for both configurations, which suggests that
the Mamdani FRBS can cope with nonlinearity even without explicit transformations. In
fact, the Mamdani FRBS can automatically learn such hidden transformation functions from
historic data. This is useful for practitioners who are not familiar with statistical analysis
and do not know how to choose appropriate transformation techniques.

4.3 Explanatory ability via linguistic terms
Another distinctive feature of FRBS lies in its explanatory ability via linguistic terms, which
can facilitate their comprehension by airport staff and allow analysis of the airport ground
movement in a qualitative way. Figure 5 illustrates how linguistic terms can be associ-
ated with membership functions. Three rules out of twelve are presented due to the space
limitation and the membership functions for Q and N values are also omitted.

The linguistic terms attached to the membership functions are obtained by investigating
their positions in the corresponding variable intervals. Hence, Rule 1 in Figure 5 can be
interpreted as follows: if the aircraft is taxiing during the ‘day period’ and the total turning
angle is ‘medium small’, and the distance is ‘medium long’, then taxi time is going to take
‘long’. In a similar way, one can interpret the other rules. By investigating the whole
rule base one can actually gain an understanding of the general principles of the ground
movement, e.g.:

LAN is an important correlating factor with the taxi time; generally arrivals tend to taxi
quicker than departing aircraft, due to the departure queue time.
Distance and Angle are also two important correlating factors, with a positive impact
on the taxi time.
Evening Mode tends to be more efficient in terms of taxing.

We examined the generated rules and found that the knowledge presented by the fuzzy
rules for the ZRH data is consistent with the conclusions which were made in [1], but in a
more qualitative way. We believe this unique property will be appealing to some airport
operators who do not need detailed quantitative interpretation of the taxiing process.

5 Conclusions and future research directions

To our knowledge, this paper represents the first attempt to introduce the Mamdani FRBS
into the airport research field, especially in the area of the ground movement. Preliminary
results for taxi time estimations for Zurich Airport are very promising and show that FRBSs
can produce more accurate estimations given similar explanatory variables compared to
linear regression for this particular data set. Furthermore, FRBSs do not necessarily need
to include explicit transformation functions since those mappings can be learnt automatically

ATMOS’11

144 FRBSs for Taxi Time Estimations at Airports

Figure 5 Three fuzzy rules extracted from the data for Zurich Airport

from historic data. Unlike other black-box nonlinear regression techniques, FRBSs can also
interpret the underlying systems via linguistic terms which can be understood by humans.
We believe that, with all of these distinctive features, the FRBS approach could very well
be an alternative for the practitioners in this field.

Building upon this work, we believe that the Sugeno FRBS also deserves more attention
in future research for taxi time estimation problems. As discussed in Section 3.1, the con-
sequence part of a Sugeno FRBS is a set of functions of explanatory variables. Hence, if one
takes a linear combination of the explanatory variables as the function for the consequence
part, the Sugeno FRBS could in some ways be viewed as an extension of multiple linear
regression. In such a case, each rule in the rule base resembles a multiple linear regression
model for a decomposed explanatory variable region. It is worth highlighting that all these
rules are not independent. They work cooperatively to produce estimations. While in the
case of multiple linear regression, even if one can build different multiple linear regression
models for different regions, they are isolated and cannot deal with the transition behaviour
between different sub regions. It is this cooperativeness in FRBSs that may also bring more
accurate estimations. Although one could lose certain linguistic meanings in the output
compared to the Mamdani FRBS, a function form should be able to approximate the sub
region far more accurately than a fuzzy set.

J. Chen, S. Ravizza, J.A.D. Atkin and P. Stewart 145

Acknowledgements The authors would like to thank EPSRC for their financial support
for this project under grant EP/H004424/1 and Flughafen Zürich AG who provided the real
data set.

References
1 Atkin J. A. D., Burke E. K., Maathuis M. H., Ravizza S.: A Combined Statistical Ap-

proach and Ground Movement Model for Improving Taxi Time Estimations at Airports.
Submitted.

2 Atkin J. A. D., Burke E. K., Ravizza S.: The Airport Ground Movement Problem: Past and
Current Research and Future Directions. Proceedings of the 4th International Conference
on Research in Air Transportation (ICRAT), Budapest, Hungary (2010) 131-138.

3 Balakrishna P., Ganesan R., Sherry L.: Application of Reinforcement Learning Algorithms
for Predicting Taxi-Out Times. Proceedings of the 8th ATM R&D Seminars, Napa, USA
(2009).

4 Box G. E. P., Cox D. R.: An Analysis of Transformations. Journal of the Royal Statistical
Society, Series B (Methodological), 26 (2) (1964) 211-252.

5 Chen J.: Biological Inspired Optimisation Algorithms for Transparent Knowledge Extrac-
tion Allied to Engineering Materials Process. PhD Thesis, Department of Automatic Con-
trol and Systems Engineering, The University of Sheffield, UK, (2009).

6 Chen J., Stewart P.: Planning Aircraft Taxiing Trajectories via a Multi-Objective Immune
Optimisation. Proceedings of the 7th International Conference on Natural Computation
(ICNC), Shanghai, China (2011).

7 Cybenko G.: Approximations by Superpositions of A Sigmoidal Function. Mathmatics of
Signals and Systems, 2 (1989) 303-314.

8 Gong C.: Kinematic Airport Surface Trajectory Model Development. Proceedings of 9th
AIAA Aviation Technology, Integration, and Operations Conference (ATIO), South Caro-
lina (2009) 1-11.

9 Idris H., Clarke J. P., Bhuva R., Kang L.: Queuing Model for Taxi-Out Time Estimation.
Air Traffic Control Quarterly, 10 (1) (2002) 1-22.

10 Jang J.-S.R.: ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions
on Systems, 23(3) (1993) 665-685.

11 Jordan R., Ishutkina M. A., Reynolds T. G.: A Statistical Learning Approach to the
Modeling of Aircraft Taxi-Time. Proceedings of the 29th IEEE/AIAA Digital Avionics
Systems Conference, Salt Lake City, UT (2010) 1.B.1-1-1.B.1-10.

12 Kosko B.: Fuzzy Systems as Universal Approximators. IEEE Transactions on Computers,
43 (11) (1994) 1329-1333.

13 Mamdani E. H.: Applications of Fuzzy Algorithm for Control a Simple Dynamic Plant.
Proceedings of Inst. Electr. Eng., 121 (12) (1974) 1585-1588.

14 Marín Á. G.: Airport management: taxi planning. Annals of Operations Research, 143
(2006) 191-202.

15 Sugeno M., Yasukawa T.: A Fuzzy-Logic-Basic Approach to Qualitative Modeling. IEEE
Transactions on Fuzzy Systems, 1 (1) (1993) 7-31.

16 Wang L. X., Mendel J. M.: Fuzzy Basis Functions, Universal Approximation, and Or-
thogonal Least-Squares Learning. IEEE Transactions on Neural Netowrks, 3 (5) (1992)
807-814.

17 Zadeh L.: Fuzzy Set. Information and Control, 8 (3) (1965) 1414-1427.
18 Zadeh L.: Outline of a New Approach to the Analysis of Complex Systems and Decision

Process. IEEE Transactions on Systems, Man, and Cybernetics, 3 (1973) 28-44.
19 Zhang Y., Chauhan A., Chen X.: Modeling and Predicting Taxi out Times. Proceedings of

4th International Conference on Research in Air Transportation, Budapest (2010) 31-35.

ATMOS’11

A Hypergraph Model for Railway Vehicle Rotation
Planning∗

Ralf Borndörfer1, Markus Reuther1, Thomas Schlechte1, and
Steffen Weider1

1 Zuse-Institute Berlin (ZIB), Takustr. 7, 14195 Berlin, Germany, Email
{borndoerfer, reuther, schlechte, weider}@zib.de

Abstract

We propose a model for the integrated optimization of vehicle rotations and vehicle compositions
in long distance railway passenger transport. The main contribution of the paper is a hyper-
graph model that is able to handle the challenging technical requirements as well as very general
stipulations with respect to the “regularity” of a schedule. The hypergraph model directly gen-
eralizes network flow models, replacing arcs with hyperarcs. Although NP-hard in general, the
model is computationally well-behaved in practice. High quality solutions can be produced in
reasonable time using high performance Integer Programming techniques, in particular, column
generation and rapid branching. We show that, in this way, large-scale real world instances of
our cooperation partner DB Fernverkehr can be solved.

1998 ACM Subject Classification G.1.6 Optimization, G.2.3 Application

Keywords and phrases Rolling Stock Planning, Hypergraph Modeling, Integer Programming,
Column Generation, Rapid Branching

Digital Object Identifier 10.4230/OASIcs.ATMOS.2011.146

1 Introduction

Vehicle rotation planning is concerned with the assignment of vehicles to trips of a timetable
and the concatenation of these trips to rotations. A ICE railcar, as operated by Deutsche
Bahn, is a very expensive asset. Therefore, the integrated mathematical optimization of
vehicle resources and deadhead trips1 is of enormous interest. However, despite intense
research efforts of the railway optimization community in the past decades, see [1], [2],
[4], [6], and [8], the solution of large-scale scenarios that integrate vehicle scheduling, train
composition, and regularity aspects remains a mathematical and computational challenge
until today.

A high level description of the vehicle rotation planning problem is as follows. A timetabled
trip can be operated by several alternative vehicle configurations. A vehicle configuration
is a composition of a multiset of single vehicles. It is a planning decision which vehicle
configuration is used for timetabled and moreover for deadhead trips. The choice of vehicle
configurations is governed by a set of rules.

∗ This research was funded by DB Fernverkehr AG.
1 A deadhead trip is a trip without passengers transferring vehicles between passenger trips.

© Ralf Borndörfer, Markus Reuther, Thomas Schlechte and Steffen Weider;
licensed under Creative Commons License NC-ND

11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems.
Editors: Alberto Caprara & Spyros Kontogiannis; pp. 146–155

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.146
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

R. Borndörfer, M. Reuther, T. Schlechte and S. Weider 147

We focus in this paper on strategic rolling stock decisions by considering a cyclic planning
horizon over one standard week. The structure of the timetable, which is our input schedule,
is almost periodic. Only few trips or parts of the trips differ over the single week days of the
standard week. In view of this structure, it is desirable to also construct a regular vehicle
rotation plan. Such a plan is compactly representable, easy to communicate, and easy to
operate. We propose a novel concept to define and optimize regularity.

The above mentioned requirements of a vehicle rotation plan, i.e., train composition and
regularity, can be handled by constructing a suitable dense directed hypergraph, that rep-
resents a compact formulation for the train composition and regularity requirements. Based
on this hypergraph, the vehicle rotation planning problem can be modeled by an integer
program. The structure of this IP resembles a classical network flow problem (although
the problem is NP-hard in general). It can be solved by column generation and large scale
Integer Programming techniques. To our best knowledge there is no standard approach in
the literature which can handle all of these technical requirements from practice in a fully
integrated way.

The paper is organized as follows. In Section 2 we describe the Vehicle Rotation Planning
Problem from a practical point of view. Section 3 explains the developed graph-theoretic
and Integer Programming model. The solution method is described in Section 4. We use
an adaption of the arc generation LP solving technique, see [7], as well as a specialization
of the well known IP branching heuristic – called rapid branching, see [9]. We work in a
close cooperation with our partner DB Fernverkehr AG, who is one of the largest intercity
railway companies in Europe. We have extensively evaluated our model and algorithm on a
large set of real world problem instances. In Section 5 we present computational results for
a large set of real-world instances.

2 The vehicle rotation planning problem

In this section we give a formal description of the considered vehicle rotation planning
problem (VRP) by introducing major technical concepts of our railway application at DB
Fernverkehr.

As mentioned above we focus on a cyclic planning horizon of one week. A date is a certain
point in time in our standard week specified by a week day and a time of the day. The
duration from date a to date b is the minimal time needed to wait from a until b. Therefore,
the duration is well defined since, by definition, a duration is always less the duration of the
week.

Consider a set of timetabled trips T . A trip t ∈ T consists of a list of successive stops. A
stop has a location, an arrival date, and a departure date. The first stop of a trip has no
arrival date, the last stop has no departure date.

A vehicle group is the most basic type of the physical vehicle resources. In other contexts this
is called vehicle type, fleet, or even commodity. It is called “group“ because it can represent
a traction unit, an aggregated composition of wagons or locomotives, or even single rail cars.
The set of vehicle groups is denoted by F . The amortization costs for one week for a vehicle
group f ∈ F are denoted by c(f).

A vehicle configuration (or short configuration) is a non-empty multiset of vehicle groups. It
represents a temporary coupling of its vehicle groups. A trivial configuration is a configur-

ATMOS’11

148 Vehicle Rotation Planning

ation of cardinality one. The set of vehicle configurations is denoted by C. The operational
cost per kilometer of a configuration c ∈ C is denoted by c(c). Note that the operational
costs are per vehicle configuration and not per vehicle group. This is because the costs for
allocating a track – for passenger and also for deadhead trips – are per trip and not per rail
car. It is much cheaper to allocate a track for two vehicles in a non-trivial configuration
than for two vehicles in trivial configurations individually.

For each trip t ∈ T there exists a set of feasible vehicle configurations C(t) ⊆ C which can
be used to operate t. A vehicle configuration can be changed at the departure of the first
stop and at the arrival of the last stop of a trip but not inside a trip. A change of a vehicle
configuration is called coupling2. For t ∈ T and c ∈ C(t) we have a special technical time –
called turn time for cleaning and maintaining the involved vehicle resources after the trip t
is done. Note that this time depends on the used vehicle configuration:

I Example 1. Consider a set of two vehicle groups F = {f1, f2} and a trip t ∈ T which has
three feasible vehicle configurations C(t) = {c1, c2, c3} ⊆ C. Let c1 = {f1}, c2 = {f1, f2},
and c3 = {f1, f1}. This can be interpreted as follows. It is possible to operate t with a
trivial and two non-trivial configurations. Moreover it is sufficient to cover t by the trivial
configuration c1. But in addition it is possible to haul two alternative vehicle groups by
operating t. Another point of view for the feasible vehicle configurations of t is that c2 and
c3 are two alternatives for c1. Both can be used to enforce the passenger capacity of c1.

Let t1, t2 ∈ T be two trips with vehicle configurations c1 ∈ C(t1) and c2 ∈ C(t2). We denote
by d(t1, t2) the duration from the arrival date of t1 to the departure date of t2. In order to
check if it is feasible to connect t1 with t2 several technical requirements must be fulfilled.
I Rule 1. If c1 = c2 we check if the turn time after operating t1 with c1 plus the driving
time from the arrival location of t1 to the departure location of t2 is smaller or equal than
d(t1, t2).
I Rule 2. If c1 6= c2 we first decouple c1 and c2 into trivial configurations and consider all
connections between two equal trivial configurations of t1 and t2. We proceed as in the first
rule using the turn time of c1 for these connections.

A vehicle rotation is a cyclic concatenation of trips which are operated by a vehicle group.
The number of physical vehicle groups needed to operate a vehicle rotation is the number of
times the cycle passes the whole standard week. It is not decidable whether a single rotation
is feasible or not without knowing the vehicle configurations of the involved trips.

A vehicle rotation plan is an assignment of vehicle configurations, timetabled trips, and a
set of feasible connections between these configurations such that each used vehicle group
rotates in a vehicle rotation.

As motivated in Section 1 regularity in vehicle rotation planning is an important aspect of
the VRP. A train is a non-empty set of at most seven trips having the same departure time,
departure location, arrival time, and arrival location but pairwise different days. The set of
all trains is denoted by T.

The main aim of regularity is to construct the vehicle rotation plan such that the connections

2 We consider only coupling activities that can be made on the fly, i.e., without the need of special
machines and crews.

R. Borndörfer, M. Reuther, T. Schlechte and S. Weider 149

of trains are preferably repeating on the seven week days like the trips of an almost periodic
timetable repeating on the seven week days.

The vehicle rotation problem is to find a cost optimal vehicle rotation plan.

3 Hypergraph based Integer Programming model

The considered vehicle rotation planning problem can be modeled by using a hypergraph
based Integer Programming formulation. First of all, we describe how all the technical
aspects from Section 1 are handled in our graph theoretic model. Second, we introduce an
Integer Programming model which integrates the whole VRP.

3.1 Hypergraph model

Since a vehicle configuration c ∈ C is a multiset, we denote the number of elements – called
multiplicity – in c of a vehicle group f ∈ F by m(f, c). In order to clearly identify the
elements of a vehicle configuration c ∈ C we index all elements of vehicle group f ∈ F in c
by natural numbers {1, . . . ,m(f, c)} ⊂ N.

We define a directed hypergraph G = (V,H,A) with node set V , hypernode set H and
hyperarc set A. Our definition of a directed hypergraph is slightly different to definitions
from the literature (see [5]) and therefore we define the sets V , H, and A as follows:

A node v ∈ V is a four-tuple v = (t, c, f,m) ∈ T × C × F × N and represents a trip t ∈ T
operated with a vehicle configuration c ∈ C(t) and with vehicle group f ∈ c of multiplicity
m ∈ {1, . . . ,m(f, c)}.

The set V (t, c) = {(t, c, f,m) | t = t, c = c} denotes all nodes belonging to a trip t ∈ T

operated with a vehicle configuration c ∈ C(t). Each V (t, c) with t ∈ T and c ∈ C(t)
is a hypernode h ∈ H. A hypernode can been seen as a feasible assignment of a vehicle
configuration to a trip.

A link is a tuple (v, w) ∈ V ×V . A hyperarc a ∈ A – or short arc – is a non-empty set of links,
thus a ⊆ V × V . For a ∈ A we define the tail component of a by tail(a) = {v ∈ V | ∃w ∈
V : (v, w) ∈ a} and the head component by head(a) = {v ∈ V | ∃u ∈ V : (u, v) ∈ a}. Note
that in contrast to [5] we assume that the tail set and head set of a hyperarc must be not
empty and of equal cardinality. In addition we do not assume that the tail set and head set
have to be disjoint.

The arcs A of the graph G can be partitioned in three sets. In the following we describe the
construction:
I Step 1. We construct all configuration conserving arcs – all arcs without a coupling
activity. This means that we iterate over all pairs of trips t1, t2 ∈ T having a common
feasible vehicle configuration c ∈ C(t1) ∩ C(t2). Then we apply Rule 1 to check if this
connection is possible. If so, we add a hyperarc a to the arc set A of our graph G. The arc a
consists of |V (t1, c)| = |V (t2, c)| links. Each link (v, w) ∈ a with v ∈ V (t1, c) and w ∈ V (t2, c)
connects nodes with the same vehicle group and multiplicity and so a is well-defined.
I Step 2. Regular hyperarcs are conjunctions of configuration conserving arcs as introduced
in Step 1. For each tail train t1 ∈ T, head train t2 ∈ T, vehicle configuration c ∈ C, and
number of overnights o ∈ {0, . . . , 6} we create a regular hyperarc as follows. We collect all

ATMOS’11

150 Vehicle Rotation Planning

arcs a ⊆ A connecting t1 ∈ t1 and t2 ∈ t2 with configuration c, such that midnight is passed
o times if one waits from the arrival date of t1 until the departure date of t2. The set a can
be seen as maximal “hyper-connection“ of t1 and t2 with configuration c. In the non-trivial
case, i.e., |a| ≥ 2, we add a regular hyperarc a = {(u, v) ∈ V × V | ∃ a? ∈ a : (u, v) ∈ a?} to
the arc set A of our graph G.
I Step 3. The last step constructs all arcs that implement a coupling activity, called coupling
arcs. We apply Rule 2 to all links (v, w) ∈ V × V having the same vehicle group and which
have not been considered in Step 1. If the link (v, w) fulfills Rule 2 we add a simple arc
a = {(v, w)} to the arc set A of our graph G.
I Example 2. Figure 1 gives an example of our construction of regular hyperarcs. It shows
two trains t1, t2 ∈ T connected by configuration conserving arcs a1, . . . , a7 ∈ A and regular
hyperarc ar ∈ A. For the sake of simplicity all nodes have only trivial configurations.

Let a ∈ A be an arc of G with vehicle configuration c(a) ∈ C. The deadhead distance of
a is denoted by l(a) ∈ Q+. Let v(a) ∈ Q+ be the duration of the tail trip of a plus the
duration from the arrival of the tail trip of a to the departure of the head trip of a divided by
the duration of the standard week. Thus v(a) is the fractional number of physical vehicles
“consumed“ by a.

For example, if the tail trip of a departs on Monday at 12 p.m., arrives on Monday at 18
p.m., and the head trip of a departs on Tuesday at 12 p.m., we have v(a) = 1/7. Note that
v(a) can be greater than one if the departure of the head trip of a is between the departure
and arrival of the tail trip of a.

If a is a coupling arc then p(a) ∈ Q+ is a constant penalty for the involved coupling activities,
otherwise p(a) is zero. Finally, if a is not a regular arc r(a) ∈ Q+ is a constant penalty for
violating regularity. In case of a regular arc r(a) is zero. The objective function c : A 7→ Q+

is defined as follows:

c(a) := ca := r(a)︸︷︷︸
(ir-)regularities

+ p(a)︸︷︷︸
couplings

+ c(c(a)) · l(a)︸ ︷︷ ︸
deadheads

+
∑
f∈c(a)

m(f, c(a)) · c(f) · v(a)

︸ ︷︷ ︸
vehicles

.

As denoted above, the multi-objective function, which minimizes vehicle cost, minimizes
deadhead cost, minimizes coupling cost, and maximizes regularity is combined in a single
objective function c.

3.2 Integer Programming formulation

Let G = (V,H,A) be a hypergraph modeling the VRP as described above. We introduce
binary decision variables xa ∈ {0, 1} and yh ∈ {0, 1} for each hyperarc a ∈ A and each
hypernode h ∈ H of G. Those variables take value one if the corresponding nodes and
hyperarcs are used in the vehicle rotation plan and otherwise zero. The set of all hypernodes
h ∈ H for trip t ∈ T is denoted by H(t) and H(v) denotes the set of all hypernodes of G
containing v. By definition, the set H(v) for v ∈ V has cardinality one. The set of all
ingoing hyperarcs of v ∈ V is defined as δin(v) := {a ∈ A | ∃(u,w) ∈ a : w = v} ⊆ A, in
the same way δout(v) := {a ∈ A | ,∃(u,w) ∈ a : u = v} ⊆ A denotes the set of all outgoing
hyperarcs of v.

R. Borndörfer, M. Reuther, T. Schlechte and S. Weider 151

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

a1

a2

a3

a4

a5
a6

a7

ar

t1 ∈ T t2 ∈ T

Figure 1 Hyperarc model for regularity.

Our hyperflow based Integer Programming formulation states:

min
∑
a∈A

caxa (HFIP)

∑
h∈H(s)

yh = 1, ∀t ∈ T (covering)

∑
a∈δin(v)

xa −
∑

h∈H(v)

yh = 0, ∀v ∈ V (in-flow)

∑
a∈δout(v)

xa −
∑

h∈H(v)

yh = 0, ∀v ∈ V (out-flow)

xa ∈ {0, 1}, ∀a ∈ A
yh ∈ {0, 1}, ∀h ∈ H.

Our objective function minimizes the total cost. The covering constraints assign one hyper-
node of graph G to each trip of the VRP. This models the configuration assignment of vehicle
configurations to trips. Constraints in-flow and out-flow can be seen as flow conservation
constraints for each node v ∈ V . If one interprets an in-flow equation as a departure and
the out-flow equation as an arrival node, a hypernode h ∈ H can be even seen as a hyperarc
between these departure and arrival nodes. With this interpretation the in-flow and out-flow
constraints become constraints conserving hyperflow on the trips and connections between
trips.

I Example 3. Figure 2 shows a part of our hypergraph. The set of nodes is V = {v1, . . . , v18}.
The pair of red and blue circles for each v ∈ V indicates the in-flow and out-flow accordingly
the departure and arrival of a node. The colors of the circles indicating two vehicle groups –
a red and a blue one. The set of hypernodes is H = {h1, . . . , h11}. Trips t1 ∈ T and t2 ∈ T
have both two trivial and two non-trivial configurations, trip t3 ∈ T has only one possible

ATMOS’11

152 Vehicle Rotation Planning

h1

h2

h5

h6

h7

h8

h9

h10

h11

v1, h1

v2, h2

v3

v4

v5

v6

v7

v8,h5

v9,h6

v10

v11

v12

v13

v14

v15,h9

v16

v17

v18,h11

h3

h4

t1 ∈ T

h8

t2 ∈ T t3 ∈ T

a4

a6

a5

a2

a1

a3

Figure 2 Hypernodes and hyperarcs of the hypergraph.

non-trivial configuration. Arc a1 ∈ A implements a coupling activity after the arrival of t1.
The hyperarcs a2, a3, a4, a5 ∈ A are configuration conserving hyperarcs.

Note that the pure row representation of model HFIP does not directly involve any vehicle
composition or regularity requirements. This is because vehicle composition and regularity
is solely modeled by the underlying hypergraph. Thus, the main aspects of the VRP are
modeled by columns.

4 Solving the vehicle rotation planning problem

In case of only trivial configurations and without regular hyperarcs the hypergraph is a
standard graph. In this case our problem reduces to the Integer Multi-Commodity-Flow
problem, which is known to be NP-hard, see [7]. Furthermore, if all trip configurations are
fixed, problem VRP is a simple assignment problem and hence an optimal solution of the LP
relaxation of model HFIP is already integral.

Due to the NP-hardness of problem VRP, we propose in this section a heuristic Integer
Programming approach to solve model HFIP. We are mainly utilizing two general techniques.

First we use a column generation approach to solve the LP-relaxation of model HFIP. Note,
that the number of variables is very large, i.e., one for each hyperarc and hypernode. We
start with all rows of model HFIP and add all y-variables and a few x-variables representing
arcs with a duration from the departure to the arrival smaller or equal 90 Minutes in advance.
The remaining pricing problem is to decide whether there is a hyperarc left with negative
reduced cost – we simply answer this question by enumeration. The best outgoing arc of
each node v ∈ V and the best outgoing arc of each hypernode h ∈ H with negative reduced
cost are priced in each column generation round. Furthermore, this allows us to compute in
each column or arc generation round a valid global lower bound.

Second, we apply the rapid branching method introduced in [9] and [3] for integrated vehicle
and duty scheduling in public transport and for railway track allocation to produce high

R. Borndörfer, M. Reuther, T. Schlechte and S. Weider 153

quality integral solutions. We adapt this heuristic to consider only a subset of the variables
– in our case the y-variables for the hypernodes assigning the vehicle configurations to the
trips. The reason is the observation that the model is almost integral and rather easy to
solve if the configurations for the trips are fixed.

After the arc generation and rapid branching we use CPLEX 12.2 to solve the generated
model so far, i.e., a restricted variant of model HFIP, as a static IP. By means of this
approach we can provide valid global lower bounds, as well as high quality solutions as we
will see in the next section.

5 Computational results

We tested the hypergraph based model HFIP and our algorithmic approach on a large set of
real world instances that are provided by our project partner DB Fernverkehr. The problem
set contains small and rather easy instances, e.g., instance vrp019 and vrp028 with only 8
trains, as well as very large scale ones, e.g., instance vrp011 and vrp014 with more than
24 million hyperarcs. We consider instances for the current operated high speed intercity
vehicles (ICE) of DB Fernverkehr as well as instances of conceptional studies for future rolling
stock fleets. Today, there are some fleets in operation that can not be coupled on the fly
and some of the conceptional studies also consider only scenarios with trivial configurations.
Therefore half of the instances contain only trivial configurations. Those instances with
non-trivial configurations contain up to 19 configurations of 10 vehicle groups. However,
most of them do not contain as many as this. This is because a vehicle group represents a
whole traction with engine car and passenger wagons and only a few of them can be coupled
together to ensure some constraints about the length of the passenger platform. Note that
due to the regularity requirements an instance with only trivial configurations does not
reduce to an other problem class.

Table 1 gives some statistics on the number of trains |T|, the number of vehicle groups |F |,
and the number of vehicle configurations |C|. In addition, the number of nodes |V | and
the total number of hyperarcs |A| of the hypergraphs associated with model VRP are listed.
The number of regular arcs constructed in Step 2 is denoted by |Ar|. Column |H| gives
the number of hypernodes. In case of only trivial configurations this number equals |V |,
otherwise it has to be smaller because H is a partition of V .

All our computations were performed on computers with an Intel Core 2 Extreme CPU
X9650 with 3GHz, 6MB cache, and 16GB of RAM. CPLEX Barrier was running with 4
threads as well as the CPLEX MIP solver. We were able to solve all 31 instances to nearly
optimality by the solution approach presented in Section 4. Table 2 shows the detailed
results, i.e., the number of vehicles v to operate the |T| trains, the total objective value
of the solutions, the optimality gap3, and the total running time in seconds. We marked
5 instances which are solved to proven optimality. Except for instance vrp005 the gap
is considerably below 1%. This demonstrates that our solution approach can be used to
produce high quality solutions for large-scale vehicle rotation planning problems.

3 The relative gap is defined between the best integer objective UB and the objective of the best lower
bound LB as 100 · UB−LB

UB+10−10 .

ATMOS’11

154 Vehicle Rotation Planning

test case |T| |C| |F | |V | |H| |A| |Ar|

vrp001 410 8 8 10913 10913 19372792 2421599
vrp002 61 1 1 310 310 109480 15290
vrp003 288 6 4 2433 2038 1687668 118097
vrp004 298 6 6 7379 7379 10706855 1614334
vrp005 298 24 24 26396 26396 34414338 5191325
vrp006 298 2 2 2753 2753 4327785 634147
vrp007 298 8 8 9896 9896 14016078 2059788
vrp008 298 18 18 7474 7474 8078048 1217626
vrp009 298 8 8 3619 3619 3932239 590485
vrp010 298 7 7 2913 2913 3312612 486636
vrp011 443 16 16 13538 13538 24996096 3124512
vrp012 443 16 16 9275 9275 10314664 1289333
vrp013 252 1 1 406 406 167231 8434
vrp014 443 24 24 20124 20124 24278320 3498895
vrp015 19 4 2 534 387 47542 2236
vrp016 19 4 2 534 387 47542 2236
vrp017 19 2 1 534 387 90973 2267
vrp018 11 4 2 323 232 16688 669
vrp019 8 4 2 288 204 12119 393
vrp020 19 4 2 534 387 47535 2236
vrp021 61 1 1 310 310 109317 15267
vrp022 288 6 4 2435 2040 1685008 118054
vrp023 137 7 3 2373 1815 1397044 69337
vrp024 19 5 2 486 360 40948 2208
vrp025 19 2 1 486 360 74052 2233
vrp026 11 5 2 305 224 14985 656
vrp027 8 5 2 270 196 10879 380
vrp028 19 5 2 486 360 40948 2208
vrp029 556 19 10 6145 4753 4659823 243805
vrp030 135 6 3 1848 1288 1747578 51761

Table 1 Characteristics of the VRP test instances.

test case |T| v objective value gap in % run time in seconds

vrp001 410 175 22846 0.14 2755
vrp002 61 17 1742 0.41 19
vrp003 288 104 5571434 0.14 410
vrp004 298 117 5875729 0.55 33564
vrp005 298 118 5979407 1.72 74946
vrp006 298 116 6442855 0.00 634
vrp007 298 116 6472379 0.00 42558
vrp008 298 117 5949035 0.43 6529
vrp009 298 117 6270215 0.18 2551
vrp010 298 117 6533280 0.02 478
vrp011 443 187 26378130 0.34 45438
vrp012 443 190 26390306 0.00 757
vrp013 252 127 9266682 0.00 84
vrp014 443 192 26033013 0.80 28125
vrp015 19 13 792806 0.08 24
vrp016 19 13 1064958 0.06 20
vrp017 19 13 1090950 0.05 27
vrp018 11 9 692496 0.04 18
vrp019 8 7 580740 0.05 16
vrp020 19 14 1112983 0.05 20
vrp021 61 17 1102914 0.00 22
vrp022 288 105 5700622 0.31 197
vrp023 137 66 4013914 0.38 3639
vrp024 19 13 792670 0.09 28
vrp025 19 13 819773 0.09 26
vrp026 11 8 483145 0.09 25
vrp027 8 7 437217 0.10 29
vrp028 19 13 792670 0.09 23
vrp029 556 230 21078623 0.38 9916
vrp030 135 60 7244557 0.67 3995

Table 2 Results for all 31 instances.

R. Borndörfer, M. Reuther, T. Schlechte and S. Weider 155

6 Conclusions

We proposed a novel model for the integrated optimization of vehicle rotations, vehicle com-
positions, and regularity requirements in long distance railway passenger transport. Our
main contribution is a new hypergraph based IP formulation that is able to handle challen-
ging technical requirements of railway optimization in a very compact model. We introduced
an associated large-scale method to solve the model and we showed that the overall approach
can be used to produce near optimal and sometimes proven optimal solutions for large-scale
real world problem instances of our cooperation partner DB Fernverkehr.

In the near future, we must calibrate the regularity part of the model in a way that is most
useful in practice. Many possible variants of our regularity approach must be considered,
varying the cost for regularity and alternatives for “partial regularity“. At present it has
already become clear that ignoring regularity leads to solutions that are not accepted by
the practitioners. In the long run, we have to integrate further constraints and optimization
goals, e.g., maintenance and robustness.

References

1 Ravindra K. Ahuja, Jian Liu, James B. Orlin, Dushyant Sharma, and Larry A. Shughart.
Solving Real-Life Locomotive-Scheduling Problems. Transportation Science, 39:503–517,
November 2005.

2 Luzi Anderegg, Stephan Eidenbenz, Martin Gantenbein, Christoph Stamm, David Scot
Taylor, Birgitta Weber, and Peter Widmayer. Train Routing Algorithms: Concepts, Design
Choises, and Practical Considerations. In ALENEX, pages 106–118, 2003.

3 Ralf Borndörfer, Thomas Schlechte, and Steffen Weider. Railway track allocation by rapid
branching. In Thomas Erlebach and Marco Lübbecke, editors, Proceedings of the 10th Work-
shop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems,
volume 14 of OpenAccess Series in Informatics (OASIcs), pages 13–23, Dagstuhl, Germany,
2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

4 Valentina Cacchiani, Alberto Caprara, Laura Galli, Leo Kroon, and Gábor Maróti. Re-
coverable Robustness for Railway Rolling Stock Planning. In Matteo Fischetti and Peter
Widmayer, editors, ATMOS 2008 - 8th Workshop on Algorithmic Approaches for Transport-
ation Modeling, Optimization, and Systems, Dagstuhl, Germany, 2008. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany.

5 R. Cambini, G. Gallo, and M.G. Scutellà. Flows on hypergraphs. Mathematical Program-
ming, Series B, 78(2):195–217, 1997.

6 Jean-François Cordeau, François Soumis, and Jacques Desrosiers. Simultaneous Assignment
of Locomotives and Cars to Passenger Trains. Oper. Res., 49:531–548, July 2001.

7 Andreas Löbel. Optimal Vehicle Scheduling in Public Transit. Shaker Verlag, Aachen, 1997.
Ph.D. thesis, Technische Universität Berlin.

8 G. Maróti. Operations Research Models for Railway Rolling Stock Planning. PhD thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands, 2006.

9 Steffen Weider. Integration of Vehicle and Duty Scheduling in Public Transport. PhD thesis,
TU Berlin, 2007.

ATMOS’11

	1
	Preface
	Organization

	2
	Introduction
	Real-time traffic control in metro stations
	Solution algorithm and lower bound computation
	Computational results

	Single-track railways traffic control
	A MILP formulation for the real-time traffic control problem in single-track railways
	Preliminary implementations and comparisons

	3
	Introduction
	Mathematical formulation
	Global feasibility
	Global optimality

	Branch and bound algorithm
	Description of the test cases
	Computational results
	Conclusions

	4
	Introduction
	Literature
	Our results

	A DP for the lockmaster's problem
	Extensions
	Regular objective functions
	Non-uniform lockage times
	Water usage
	Capacity
	Multiple (parallel) chamber lock

	Non-identical parallel chambers

	5
	Introduction
	Problem definition
	Related work

	Relation to interval-coloring problems
	A clique-based heuristic
	An improvement heuristic

	An integer program for the mixing problem
	Capacity of the mixed tracks
	Counting extra roll-ins
	An integer programming model

	Case study
	Preprocessing traffic data
	Computing the missing hump schedule
	Results

	6
	Introduction
	Preliminaries and related work
	Dijkstra's algorithm
	Contraction hierarchies
	Hub labels
	Buckets
	HL buckets

	PHAST

	The one-to-many problem
	Straightforward approaches
	Restricted PHAST
	Full shortest paths

	Experiments
	One-to-many
	Many-to-many

	Conclusion

	7
	Introduction
	Related work
	Preliminaries
	A* and uniALT algorithm
	Solving the RegLCSP

	State Dependent uniALT: SDALT
	Constrained landmark distances

	Experimental evaluation
	Discussion of experimental results

	Conclusions

	8
	Introduction
	Timetable information and delay models
	Strictly robust timetable information
	Efficiently solving delay accumulation
	Light robust timetable information
	Empirical evaluation
	Conclusion and future work

	9
	Introduction and motivation
	Integer programming formulation
	A packing-based integer programming formulation
	An assignment-based integer programming formulation
	Computational results

	An iterative approach
	Conclusion and further research

	10
	Introduction
	The stochastic model
	The timetable and its corresponding event graph
	Model assumptions

	Departure and arrival probabilities
	Travel time, departure and arrival random variables
	Departure random variables and departure probabilities
	Arrival random variables and arrival probabilities

	Experiments
	Conclusions

	11
	Introduction
	Problem statement and formulation
	Traditional solution methods

	Discrete formulation
	Computing a set of discretized proportion vectors
	The discrete model defined in an extended graph
	Example

	Computational experiments
	Conclusion

	12
	Introduction
	Preliminaries
	Traffic Assignment Problem
	Price of Anarchy
	Smoothed Price of Anarchy

	Smoothed PoA of Pigou instances
	Computational results
	Experimental setup
	Benchmark instances results

	Conclusions

	13
	Introduction
	Problem description
	The airport ground movement problem
	ZRH Airport data

	Fuzzy Rule-Based Systems (FRBSs)
	A Mamdani FRBS and its revised version
	Distinctive features of FRBSs
	Automatic induction of the rules from the data

	Results
	Comparison to linear regression
	Validity of approach without explicit transformations
	Explanatory ability via linguistic terms

	Conclusions and future research directions

	14
	Introduction
	The vehicle rotation planning problem
	Hypergraph based Integer Programming model
	Hypergraph model
	Integer Programming formulation

	Solving the vehicle rotation planning problem
	Computational results
	Conclusions

