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Preface

I take real pleasure in seeing the proceedings of the 12th International Workshop on Worst-
Case Execution Time Analysis online already on the day of the workshop. This helps
WCET’12 achieve its goal of facilitating discussion and interaction among participants as
well as of returning value to the authors of the works that were accepted for presentation. I
also feel personal satisfaction in having achieved the production of these proceedings as a
tangible manifestation of the considerable effort that went in making WCET’12 happen, and
successfully so, in fact.

The WCET workshop is a successful series indeed. The research community active in
WCET analysis evidently cares for the event, values its venue and atmosphere, and the
relevance of its proceedings. In that respect, it is a comparatively easy job to be the program
chair for it (hopefully my predecessors would not feel diminished by me saying so!) in as far
as the harvesting of valuable contributions goes. I was very pleased and reassured at seeing
the whole program committee actively help me disseminate the call for papers, scout for
good research projects that would be at the stage of maturity to present their ideas in the
workshop, and turn in very thorough reviews.

We received 23 good-quality submissions, of which we selected 10 for the program and the
proceedings. We had the luxury of being selective, and the opportunity of putting together
a solid program that makes ample room for discussion and interaction, which is what the
workshop is for in the first place.

I welcome all participants to WCET’12 in both the physical event, taking place as usual as
a satellite event to ECRTS12, this year on 10 July at the beautiful venue of Scuola Sant’Anna
in Pisa, Italy, and the online proceedings, which I hope will get the amount of citations that
the authors need for their good work.

In closing, I extend my gratitude for the members of the Program Committee, which you
see listed on the next page.

Padova, 25 June 2012
Tullio Vardanega
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What is a Timing Anomaly?
Franck Cassez1, René Rydhof Hansen∗2, and Mads Chr. Olesen2

1 National ICT Australia
Sydney, Australia
Franck.Cassez@nicta.com.au

2 Department of Computer Science, Aalborg University
Selma Lagerlöfs Vej 300, DK-9220 Aalborg, Denmark
{rrh,mchro}@cs.aau.dk

Abstract
Timing anomalies make worst-case execution time analysis much harder, because the analysis will
have to consider all local choices. It has been widely recognised that certain hardware features
are timing anomalous, while others are not. However, defining formally what a timing anomaly
is, has been difficult.

We examine previous definitions of timing anomalies, and identify examples where they do not
align with common observations. We then provide a definition for consistently slower hardware
traces that can be used to define timing anomalies and aligns with common observations.

1998 ACM Subject Classification C.4 [Performance of systems]: Modelling techniques, Perform-
ance attributes

Keywords and phrases Timing anomalies, worst case execution time (WCET), abstractions

Digital Object Identifier 10.4230/OASIcs.WCET.2012.1

1 Introduction

Developing reliable real-time systems requires that guarantees on the run-time of tasks can
be given, that hold under all circumstances i.e. regardless of the input data and previous
execution history of the system. Typically the Worst-Case Execution Time (WCET) is
the most important guarantee as it can be used to ensure the system responds in a timely
manner.

However, modern processors are not optimized for worst cases, but optimize for improving
the average case performance instead. This often makes their worst-case behaviour much
harder to predict, and thus makes it harder to give absolute guarantees. One often hoped for
property is that local worst-case timing choices will lead to the global worst-case timing —
when this is not the case it is dubbed a timing anomaly. The classic example of a timing
anomaly [6] is shown in Figure 1, where a cache miss for instruction A (bottom) is locally
slower but turns out not to be the globally slowest (the top trace is slower). The example
will be treated in greater detail later.

If an execution platform can be proven to be free of timing anomalies, very efficient
techniques exist for analysing the worst-case timing behaviour [11]. On the contrary, if the
execution platform exhibits timing anomalies there is little hope for using the same efficient
abstraction techniques [6].

∗ Author partially funded by the “Certifiable Java for Embedded Systems” (CJ4ES) project (Danish
Research Council for Technology and Production, grant number 10-083159).
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2 What is a Timing Anomaly?
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Figure 1 The canonical example of a timing anomaly from [6], where a cache miss (locally slower)
leads to a scheduling that is globally faster. LSU, IU and MCIU are the three functional units that
can execute out-of-order, but preference is given to older instructions.

Because of this, identifying timing anomalies has been an area of interest for some time,
and some observations have been broadly recognised as being true:

The LRU cache replacement policy is not timing anomalous.
Other cache replacement policies such as FIFO and MRU exhibit timing anomalies [2, 4].
In-order pipelines (without caches) are not timing anomalous.
Resource allocation decisions (such as those presented by out-of-order execution or cache
replacement) are a necessary condition for timing anomalies [10].

Using efficient abstraction techniques to compute the WCET is at the core of WCET analysis
tools. However, the most powerful abstractions are sound only for timing anomaly free
hardware. This explains why there have been some attempts to formally define timing
anomalies [6, 9], but the various definitions have not been related to each other thus far.

In this work we will argue that the previous attempts are either too coarse or too precise
to be used as universal definitions of timing anomalies. Each of the previous attempts
definitely have their merits for application in connection with different analysis techniques
(abstract interpretation, etc.), but a definition of timing anomalies should be as general as
possible, while still retaining the property that the existence of timing anomalies forces the
WCET analysis to consider more than one local choice.

Our Contribution

Our work is guided by the need for a definition of timing anomalies on the concrete model of
the processor, instead of abstractions thereof. Consequently, in the following we propose a
definition of timing anomalies that can be used in two different directions:
1. on hardware systems that are proven to be free of timing anomalies, the efficient abstraction

techniques used in most WCET analysis tools are sound;
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2. the definition we propose is based on the concrete reference hardware and only relates
comparable hardware traces in order to avoid spurious timing anomalous diagnostics (see
Section 4.2) resulting from abstraction of the hardware and/or of the hardware traces.

Without a definition of timing anomalies on the concrete reference hardware model, it is
impossible to prove that abstraction is sound. Therefore we define timing anomalies as a
property over different traces of the concrete hardware model.

But what traces should be comparable? We will argue that only traces resulting in the
same instruction stream, i.e. the same program execution, should be comparable, in particular
traces produced by different input data should not be comparable. It seems natural that
different input data can result in different control flows, and therefore different instruction
streams, where small changes in the input can result in much longer instruction streams, and
therefore much longer execution times.

Another consideration is what elements of the hardware traces should be compared.
Previous definitions have compared the timing of the first instruction with the timing of the
last instruction in the stream [6], or made comparisons at points where the two traces have
executed the same number of instructions [3]. We will argue that comparisons should be
made on the completion times of each instruction.

Outline of the Paper
This work is divided into five sections: In Section 2 we define hardware systems and execution
of programs on them. In Section 3 we define timing anomalies, and then examine related
work in Section 4. We then compare the different definitions in Section 5, before concluding
in Section 6.

2 Execution of Programs on Hardware

Before turning to timing anomalies, we first need to formalise our notion of hardware systems
and how programs are executed on them. In order for our work to be applicable to a wide
variety of systems, we aim to make as few assumptions about the hardware as possible.
However, it usually consists of a processor and main memory (including caches). As usual,
the hardware can process (machine code) instructions, taken from the set Instructions, with
each instruction located in memory at some address. We let HardwareStates be the (finite)
set of possible hardware states and assume the hardware states contain the state of the
memory.

The semantics of a hardware system is given by a transition system that specifies how
the state of the hardware evolves in order to execute a program on given input data. We
only model transitions between hardware states that take an observable amount of time and
produce an observable result1, e.g., finishing execution of a (set of) instruction(s).

The observable results, in the set Observations, are not strictly necessary but are admitted
as a convenience for later developments. In our work, the typical observations of interest in
a given hardware system are the instructions that finish (in each cycle or time unit). We can
now give the formal definition of a hardware system.

I Definition 1 (Hardware System). A hardware system H is formalised as a stutter-free and
deterministic labelled transition system H = (HardwareStates,Time× Observations,→). The

1 Bus latency, speculative execution, pipeline flushes, etc., are not visible and may generate extra cycles
before an externally visible hardware state occurs.

WCET’12



4 What is a Timing Anomaly?

transition relation →⊆ HardwareStates× (Time× Observations)× HardwareStates describes
the time required to reach the next state and the externally visible observations produced by
a transition.

As usual, a transition (s, (t, o), s′) ∈→ is denoted s (t,o)−−−→ s′. The properties “stutter-free” and
“deterministic” can then be formulated as follows: if s (t,o)−−−−→ s′ then s 6= s′, and if s (t,o)−−−−→ s′

and s (t′,o′)−−−−−→ s′′ then t = t′, o = o′ and s′ = s′′. A run in the hardware system H is defined
to be a sequence σ = s0

(t1,o1)−−−−→ s1
(t2,o2)−−−−→ · · · (tn,on)−−−−→ sn such that for all 1 ≤ i ≤ n − 1 it

holds that si
(ti+1,oi+1)−−−−−−−→ si+1 (in the H transition system) and the length of the run is defined

as length(σ) = n. The trace of the run σ is trace(σ) = (t1, o1) : (t2, o2) : · · · : (tn, on); the time
trace of σ is time(σ) = t1 : · · · : tn, and the observation trace of σ is obs(σ) = o1 : o2 : · · · : on.

I Example 2. Observing the two traces shown in Figure 1 using “just finished instructions”
as observations, we obtain the following run for the first (top) part of the example:

h0
(2,{A})−−−−−→ h1

(1,{B})−−−−−→ h2
(1,{C})−−−−−→ h3

(4,{D})−−−−−→ h4
(4,{E})−−−−−→ h5

and the run below for the second (lower) example in Figure 1:

h0
(3,{C})−−−−−→ h1

(4,{D})−−−−−→ h2
(3,{A})−−−−−→ h3

(1,{B,E})−−−−−−→ h4

Note that the observation on the final transition above shows that the two instructions
labelled B and E finish simultaneously.

2.1 Execution of a Program on Hardware
We assume that all programs terminate. Given a program P and input data d in Data(P )
(the set of admissible input data for P ), the language semantics uniquely determine the
program trace, i.e. the sequence of instructions to be performed to compute the result of
program P on input d. In the following we need to be able to unambiguously identify specific
occurrences of instructions in a program trace (the same instruction can be performed several
times in the trace, for instance when loops are executed). Thus we formalise the program
trace for (P, d) to be a mapping that assigns a unique index to each instruction in the
program trace: ProgramTrace(P, d) : [1..k]→ Instructions where k is the length of the trace
and ProgramTrace(P, d)(j) gives the instruction executed at step j for each index 1 ≤ j ≤ k.

I Example 3. The program trace for the example in Figure 1 is: ProgramTrace(P, d) = [1 7→
A, 2 7→ B, 3 7→ C, 4 7→ D, 5 7→ E].

Given a hardware system H, a program P and input data d ∈ Data(P ), we let I(P, d) ⊆
HardwareStates be the hardware states that contain program P and input data d in memory,
and where the first instruction of P is about to start execution. For h0 ∈ I(P, d), executing
P with input d on H yields a unique sequence2 of transitions in the hardware: h0

(t1,o1)−−−−→
h1 · · ·hn−1

(tn,on)−−−−→ hn. As the hardware is deterministic, each observation oi can be taken to
be a set of indices in {1, . . . , k}: the indices uniquely identify the occurrences of instructions
of ProgramTrace(P, d) being completed at each step. We can now formalise what it means to
execute a program on a hardware system:

2 Which we assume to be correct with regard to the instruction semantics.
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I Definition 4 ((P, d, h0)-run). Let H be a hardware system, P a program, d input data,
and h0 ∈ HardwareStates. Then the run (in H) h0

(t1,o1)−−−−→ h1 · · ·hn−1
(tn,on)−−−−→ hn is called

a (P, d, h0)-run (in H) whenever h0 ∈ I(P, d) and oi is the set of (indices of) instructions
completed during the transition hi−1

(ti,oi)−−−−→ hi for 1 ≤ i ≤ n.

I Definition 5 (Completion Time). Let ProgramTrace(P, d) : [1..k] → Instructions be the
program trace of (P, d) and let σ be the corresponding (P, d, h)-run starting in h ∈ I(P, d)
with trace(σ) = (t1, o1) : · · · : (tn, on). By Ctime(ProgramTrace(P, d)[j], h) we denote the
completion time of instruction 1 ≤ j ≤ k finishing after transition m (i.e., j ∈ om) and define
it as follows Ctime(ProgramTrace(P, d)[j], h) =

∑m
i=1 ti.

We let Ctime(ProgramTrace(P, d), h) = max1≤j≤k Ctime(ProgramTrace(P, d)[j], h) denote
the maximal completion time for all instructions in the program and thus for completing the
entire program.

I Example 6. The first trace in the example in Figure 1 has the following completion times
for the 5 instructions: [2, 3, 4, 8, 12] and for the second trace: [10, 11, 3, 7, 11].

2.2 Exemplary Hardware Models
To be able to exemplify different phenomena we will use three different hardware models:
M1 is a single-stage pipeline with a data-cache. The instructions of interest are the memory

accesses, and the hardware model will be used to demonstrate timing anomalies with
different cache replacement policies such as LRU and FIFO. For this reason we will simply
denote instructions by the memory address they access.

M2 is the simplified PowerPC architecture described in [6]. It is an out-of-order processor
with three functional units: a Load/Store unit (LSU) communicating with a data cache,
a Multi-Cycle Integer Unit (MCIU) and an Integer Unit (IU). For a detailed description
see [6]. It is used for the classic example in Figure 1.

M3 is a single-stage pipeline with no caches, but with a multiplication instruction MUL that
takes 1 cycle if one of the operands is 0, and 2 cycles otherwise. This is a simplified
version of the processor model in [3]. We extend M3 with conditional execution of all
instructions as on the ARM architecture [1].

3 Formalising Timing Anomalies

Slightly simplified, our notion of timing anomaly is based on the idea that timing anomalies
only occur when a program is executed on a hardware system where no initial state gives rise
to worse (slower) execution time than all other initial hardware states (modulo “irrelevant”
parts of the hardware state). This approach requires us to formalise what it means for one
program execution to be slower than, or rather: consistently as slow as, another execution
(of the same program on the same data):

I Definition 7 (Consistently as slow). Let P be a program with input data d and let
ProgramTrace(P, d) : [1..k]→ Instructions be the program trace of (P, d). Let h, h′ ∈ I(P, d)
and σ (respectively σ′) be a (P, d, h)-run (respectively (P, d, h′)-run). Then h′ is said to be
consistently as slow as h, denoted h vtime h

′, if and only if

∀1 ≤ j ≤ k : Ctime(ProgramTrace(P, d)[j], h) ≤ Ctime(ProgramTrace(P, d)[j], h′)

WCET’12



6 What is a Timing Anomaly?

Intuitively the above definition compares the execution time of all prefixes of a program
trace and requires one to be consistently as slow as the other.

I Example 8. Consider the example in Figure 1, where h is the hardware state resulting in
the top run, and h′ the state resulting in the bottom run.

Ctime(ProgramTrace(P, d)[1], h) = 2 ≤ Ctime(ProgramTrace(P, d)[1], h′) = 10

meaning instruction A was slower in the bottom trace, but

Ctime(ProgramTrace(P, d)[5], h) = 12 6≤ Ctime(ProgramTrace(P, d)[5], h′) = 11

meaning instruction E was not slower in the top trace, thus h 6vtime h
′. However instruction

A in the bottom trace is still slower than in the top trace, so h′ 6vtime h.

The “consistently as slow” ordering is a pre-order (see below). However, it is not a partial
order since two hardware states, which differ only in parts that are irrelevant to a given
program, will still give rise to identical instruction completion times:

I Lemma 9. For all programs P and input data d the relation vtime is a pre-order on
I(P, d).

We can now propose a formal definition for timing anomalies:

I Definition 10 (Timing Anomaly Free). A hardware system, H, is said to be free of timing
anomalies with respect to program P and input d, if and only if there exists a maximal
element, W ∈ I(P, d): ∀h ∈ I(P, d) : h vtime W.

Note that the maximal element is not necessarily unique: consider the case of LRU caches
with no useful elements in them, hence all references resulting in cache misses.

The following lemma characterises (the absence of) timing anomalies in terms of upper
bounds for arbitrary pairs of states. As shown in Section 5, this characterisation can be
convenient when proving the presence of timing anomalies.

I Lemma 11. A hardware system H is free of timing anomalies with respect to program P

and input data d if and only if ∀h, h′ ∈ I(P, d) : ∃h′′ ∈ I(P, d) : h vtime h
′′ ∧ h′ vtime h

′′.

Proof. The “only if” direction is trivial and the “if” direction is proved by induction in the
size of I(P, d). J

Note that this does not require all hardware states to be ordered under vtime, but only
requires that for any pair of states a third state exists that gives rise to a consistently as
slow run as both; i.e. it should be an upper bound for the pair of states.

Consider the example in Figure 2 where two runs of a LRU cache are not ordered either
way, but we would still like to characterise LRU as not timing anomalous; there exists a
consistently slower initial state than both, namely the empty cache.

Having defined timing anomaly free-ness for a given program and input data, it is
straightforward to generalise the definition to cover entire hardware systems:

I Definition 12 (Timing Anomaly Free Hardware System). A hardware system, H, is said to
be free of timing anomalies for program P if and only if it is timing anomaly free for each
d ∈ Data(P ). Hardware H if free of timing anomalies if and only if it is timing anomaly free
for all programs P (valid for H).
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Cache contents: {E,C,A}
1 2 3 4 5 6 7 8 9 10

LSU A B (evicts C) C

Cache contents: {B,C,E}
1 2 3 4 5 6 7 8 9 10

LSU A B C

Figure 2 Two runs of the program LD A; LD B; LD C on hardware model M1 with a LRU cache.
The cache contents are ordered sets of data elements, from newest to oldest.

Finally we relate our definition of “consistently as slow as” to the definition of the WCET
for a program P on hardware H.

I Definition 13 (Worst Case Execution Time (WCET)). The worst case execution time for a
program P (on H) is defined as follows:

WCETH(P ) = max
h∈I(P,d),d∈Data(P )

{Ctime(ProgramTrace(P, d), h)}

If H is free of timing anomalies for P , only a maximal element in I(P, d) need be considered.
Indeed, if h vtime h

′, then Ctime(ProgramTrace(P, d), h) ≤ Ctime(ProgramTrace(P, d), h′).
Definition 13 is then reduced to computing maxd∈Data(P ){Ctime(ProgramTrace(P, d), h)|
h maximal in I(P, d)}.

4 Related Work

4.1 Defining Timing Anomalies by Changes in Instruction Latency
Timing anomalies were first discovered by Lundqvist and Stenström in [6, 5]. Their definition
is re-used in [10], and we formulate it here in our framework.

Assume a sequence of instructions π = i1 : · · · : in, with corresponding latencies τπ(ij),
and total execution time C. Consider a situation where there exists a latency variation,
∆t, such that the same sequence of instructions, but with a modified latency for the first
instruction τ ′π(i1) = τπ(i1) + ∆t, results in a different sequence of instruction latencies
τπ(i1) + ∆t : τπ(i2) : · · · : τπ(in) and thus a possible different total execution time C ′, and
thus a timing difference of ∆C = C ′ − C.

I Definition 14 (Timing Anomalies by Changes in Instruction Latency [10]). A timing anomaly
is defined as a situation where according to the sign of ∆t one of the following cases become
true:
a) Increase of the latency: ∆t > 0 =⇒ (∆C > ∆t) ∨ (∆C < 0)
b) Decrease of the latency: ∆t < 0 =⇒ (∆C < ∆t) ∨ (∆C > 0)
This definition has some drawbacks:

As pointed out in [9] there is an underlying assumption that the latency change of the
first instruction does not influence the latencies of the subsequent instructions. This is
not always the case.

WCET’12
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1 2 3 4 5 6 7 8 9 10

A B C

(a)

1 2 3 4 5 6 7 8 9 10

A B

(b)

Figure 3 Example program run on M3. The program is A: MUL R0, R0, R1; B: BRZ R0, C, where
C is a linear, data-independent, subprogram summarised into one instruction. The instruction BRZ
is interpreted as “branch to C if R0 is zero”. The two traces are (a) where R0 = 0, and (b) where
R0 = 1.

In [6] the change in latency can be unrelated to a change in hardware state, resulting in
the definition deeming a hardware platform to suffer from timing anomalies, while the
actual platform does not.

In [10] the second point is alleviated as the change in latency is assumed to be associated
to two different initial hardware states, which are further assumed to be “almost identical”.
However without a formalisation of “almost identical” it could be argued that the two LRU
caches in Figure 2 are almost identical, and thus would be deemed timing anomalous.

4.2 Defining Timing Anomalies by Abstract Models
In [9] a formal definition of timing anomalies is given. It however states that “Non-determinism
– which is necessary for timing anomalies – is only introduced by abstraction”, and goes on to
define timing anomalies in terms of non-deterministic hardware models. We note that timing
anomalies as demonstrated originally in [6] do not involve non-determinism, but instead
involve concrete traces run on the same concrete (deterministic) hardware model.

We will argue that non-determinism is not necessary for timing anomalies to occur.
Indeed, there is a strong link between the presence of timing anomalies and the existence
of a sound deterministic over-approximating model of the timing of the hardware, but the
causality is not both ways. In some cases timing anomalies can even occur as artefacts of the
abstraction, even though they are not present in the concrete hardware.

As an example consider the two traces in Figure 3. Here different input data results in
very different instruction streams, sharing similarities with timing anomalous traces. In our
opinion this should not be characterised as a timing anomaly, as this would render practically
all programs accepting input on all platforms to be timing anomalous. The definition in [9]
requires that the two traces must have the same instruction streams, and thus Figure 3 is
not a timing anomaly by that definition.

We however note that the same instruction stream can still result in two very different
timing behaviours, when given different input data. As an example, the ARM architecture
allows the conditional execution of most instructions. We can thus derive an example where
the same instruction stream gives rise to timing anomalous behaviour on different input data,
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1 2 3 4 5 6 7 8 9 10

A C D

(a)

1 2 3 4 5 6 7 8 9 10

A C D

(b)

Figure 4 The example from Figure 3, but instead of branching it uses conditional execution.
Therefore the two instruction streams are the same, but the processor treats C as a no-op in (b).
The program is A: MUL R0, R0, R1; C: MULNZ R2, R2, R1; D: MULNZ R2, R2, R1 , where we let A set
the condition flags. Thus C and D only gets executed if R0 is not 0.

as seen in Figure 4.
According to the definition in [9] this would be timing anomalous, as there exists a

non-local worst-case path (the A instruction in (a)) resulting in a globally longer path, than
all local worst-case paths (b).

In [8] a slightly relaxed definition from [9] is given, which is used to compute upperbounds
on the the possible error in WCET estimation between two hardware states. However, with
regards to the examples we consider there is no difference.

In the same line [3] describes a method to identify timing anomalies in a processor
using bounded model checking. This is done by comparing the execution time of the
same instruction stream on two different processors: the real processor, and an (abstract)
“always-worst case” performing processor. If the “worst-case” processor can overtake the real
processor, the processor is deemed to have timing anomalies.

However [3] uses abstraction of input data and thus ends up comparing execution traces
which can only result from different input data: The trace given in [3] (a) cannot occur on
the real processor with the same input data as the trace in (b). For trace (a) to occur one
of the operands (R4 and R6 in this case) needs to be 0, that is R4 = 0 ∨R6 = 0. However
for trace (b) to occur none of the operands can be 0, thus R4 6= 0 ∧R6 6= 0. As these two
conditions are the negation of one another, the two traces cannot occur with the same input
data. Since the two traces cannot occur with the same input data, they will be incomparable,
per our Definition 7. Of course, hardware can be viewed abstractly. For timing analysis it is
very important that these abstractions are sound, i.e. overapproximating the timing.

IDefinition 15 (More Favorable Hardware). HardwareH with hardware states HardwareStates
is more favorable than hardware H′ with hardware states HardwareStates′, written H v H′,
if there exists a mapping α : HardwareStates→ HardwareStates′ ∀P,∀d ∈ Data(P ) : h vtime
α(h), where vtime is extended across different hardware systems.

Typically α is an abstraction function. Clearly, if H v H′, then for any program P ,
WCETH(P ) ≤ WCETH′(P ). H′ is thus a sound abstraction for computing the WCET
of any program. The technique presented in [3] is a very valuable tool in finding sound

WCET’12
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abstractions, however, the unsoundness of an abstraction cannot be translated into the real
hardware exhibiting timing anomalies.

5 Results

We will now compare the different definitions of timing anomalies, and how they hold for
and apply to different examples:

Our Definitions 10, 12 Latency change [6, 10] Abstraction [3, 9, 8]
Classic Ex. [6] (Fig. 1) Yes, Lemma 16 Yes Yes
LRU Cache No, Lemma 19 Inapplicable1) No
FIFO Cache Yes, Lemma 20 Inapplicable1) Yes4)

Branching (Fig. 3) No, Lemma 17 Inapplicable2) No4)

Conditional exec. (Fig. 4) No, Lemma 18 Yes Yes4)

MUL 0-speedup [3, Fig. 3] No Yes3) Yes4)

1) Because the latency change can in general not be limited to, or contained within, the first
instruction.

2) Because the sequence of instructions are not the same.
3) If we allow the latency change to occur on the second instruction.
4) Depends on the abstraction.

I Lemma 16. The classic example in Figure 1 is timing anomalous by Definition 10.

Proof. We will show that none of the two initial hardware states is consistently worse than
the other, per Definition 7, and thus no upper bound can exist, per Definition 10. The only
two initial hardware states that are relevant to consider is the cache where the data item
referenced by A is in the cache, and a state where the data item referenced by A is not in the
cache. Since there are only two initial hardware states, one or both of them would have to
be consistently slower than the other. In Example 8 we already showed that none of the two
traces is consistently slower than the other. Therefore, Definition 10 cannot be fulfilled. J

I Lemma 17. The control-flow example in Figure 3 is not timing anomalous by Definition 10.

Proof. Since M3 has no cache, there is actually only one initial hardware state, h0, where
the first instruction is able to enter the processor in the first cycle: the empty pipeline. For
every program P and data d there is therefore only one element in I(P, d). By Definition 10
and the reflexivity of vtime the hardware system is timing anomaly free. J

I Lemma 18. The “branching by conditional execution” example in Figure 4 is not timing
anomalous by Definition 10.

Proof. The argumentation is the same as for Lemma 17. J

I Lemma 19. LRU caches are not timing anomalous by our Definition 12.

Proof. A stronger statement can actually be proven: that the empty cache is always the worst
initial hardware state for LRU caches [7]. By Definition 10 this satisfies Definition 12. J

I Lemma 20. FIFO caches are timing anomalous by our Definition 12.

Proof. Consider the two traces in Figure 5, none of which are consistently slower than the
other. By Lemma 11 an upper bound should exist. An upper bound would have to have
misses for all accesses. By enumeration of all distinct initial caches, none of them have misses
for all accesses, and thus no upper bound for the two traces exist. J
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d e b a
a a d x b a
c c a x c b x
a c a a c x
b b c x b a x
c b c c b x
a a b x a c x
b a b b a x
c c a x c b x

Figure 5 Example of a timing anomaly for the FIFO cache on M1, adopted from [2]. The first
line is the initial state of the cache for the two traces. The first column is the access sequence, and
the x’es indicate cache misses.

6 Conclusion and Future Work

In this work we have looked at previous definitions of timing anomalies, and identified flaws
in them. Specifically in their applicability to various types of known timing anomalies, but
also in what examples they deem to be timing anomalies. We have proposed a definition of
timing anomalies in terms of the existence of a consistently worst initial hardware state, in
the concrete model of the hardware and shown that it coincides with common knowledge
about timing anomalies.

The next step is to provide an operational definition of timing anomalies that enables
us to effectively check whether some hardware is timing anomalous, and if it is, identify a
set of initial hardware states, such that they are consistently worse than all other hardware
states. This would enable a WCET analysis by simulating the execution of these initial
states. The framework we have proposed can also be used to take advantage of the efficient
abstraction techniques to over-approximate WCET on timing anomalous platforms: given
H which is timing anomalous, define H′ that soundly approximates H and show that H′ is
timing anomaly free.
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Abstract
Due to the complexity of today’s micro-architectures, the micro-architectural analysis usually
constitutes the most time-consuming step in worst-case execution time (WCET) analysis.

In this paper, we investigate the influence of the design of the load-store unit (LSU) in the
PowerPC 7448 on WCET analysis. To this end, we introduce a simplified variant of the existing
design of the LSU by reducing its queue sizes. Using AbsInt’s aiT WCET analysis toolchain we
determine the resulting WCET bounds and analysis times.

For the modified version of the LSU with reduced queue sizes, analysis time is reduced by
more than 50% on a set of benchmarks from the Mälardalen suite, while there is little change in
the WCET bound.
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1 Introduction

The increasing complexity of today’s micro-architectures makes the construction of sound
and precise timing models an increasingly time-consuming and error-prone task. Further-
more, the resulting, complex timing models lead to a state-explosion problem in the micro-
architectural (also known as low-level) analysis, drastically increasing overall WCET analysis
times.

Most micro-architectural innovations, causing this increase in complexity, like speculation
and out-of-order execution, are undertaken to improve average-case performance. In the
WCET community it is often argued that many of these innovations do not improve, or
even harm, a processor’s worst-case timing behavior. There is, however, little hard evidence
supporting such claims. This paper intends to contribute some hard evidence by performing
an empirical evaluation using AbsInt’s aiT WCET analysis toolchain.

The PowerPC 7448 is a high-performance microprocessor used in safety-critical real-time
scenarios featuring caches, pipelining, speculation and out-of-order execution. To support
speculation and out-of-order execution, the PowerPC 7448 includes a load-store unit (LSU),
maintaining queues of memory instructions in different execution states. We investigate the
influence of the lengths of these queues on both WCET bounds and WCET analysis times.
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Figure 1 Main components of a timing-analysis framework and their interaction.

To this end, we introduce a simplified variant of the existing LSU, reducing its queue sizes
to a minimum.

We compare the simplified design with the original design on various benchmarks from
the Mälardalen benchmark suite. Surprisingly, we observe slightly decreased WCET bounds,
and, as expected, strongly reduced analysis times.

2 Background

2.1 WCET Analysis Flow
Over roughly the last decade, a more or less standard architecture for timing-analysis tools
has emerged. Figure 1 gives a general view of this architecture. The following list presents
the individual phases and describes their objectives.

1. Control-flow reconstruction [21] takes a binary executable to be analyzed, reconstructs
the program’s control flow and transforms the program into a suitable intermediate
representation. Problems encountered are dynamically computed control-flow successors,
e.g. those stemming from switch statements, function pointers, etc.

2. Value analysis [4] computes an over-approximation of the set of possible values in registers
and memory locations by an interval analysis and/or congruence analysis. The computed
information is used for a precise data-cache analysis and in the subsequent control-flow
analysis. Value analysis is the only one to use an abstraction of the processor’s arithmetic.
A subsequent pipeline analysis can therefore work with a simplified pipeline where the
arithmetic units are removed. There, one is not interested in what is computed, but only
in how long it will take.

3. Loop bound analysis [8, 14] identifies loops in the program and tries to determine bounds
on the number of loop iterations; information indispensable to bound the execution time.
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Problems are the analysis of arithmetic on loop counters and loop exit conditions, as well
as dependencies in nested loops.

4. Control-flow analysis [8, 20] narrows down the set of possible paths through the program
by eliminating infeasible paths or by determining correlations between the number of
executions of different blocks using the results of value analysis. These constraints will
tighten the obtained timing bounds.

5. Micro-architectural analysis [7, 23, 10, 5] determines bounds on the execution time of
basic blocks by performing an abstract interpretation of the program, combining analyses
of the processor’s pipeline, caches, and speculation. Static cache analyses determine
safe approximations to the contents of caches at each program point. Pipeline analysis
analyzes how instructions pass through the pipeline accounting for occupancy of shared
resources like queues, functional units, etc.

6. Path Analysis [17, 22] finally determines bounds on the execution times for the whole
program by implicit path enumeration using an integer linear program (ILP). Bounds of
the execution times of basic blocks are combined to compute longest paths through the
program. The control flow is modeled by Kirchhoff’s law. Loop bounds and infeasible
paths are modeled by additional constraints. The target function weights each basic
block with its time bound. A solution of the ILP maximizes the sum of those weights
and corresponds to an upper bound on the execution times. In the following, we refer to
the kind of path analysis described above as traditional ILP-based analysis.

The commercially available tool aiT by AbsInt, cf. http://www.absint.de/wcet.htm,
implements this architecture. It is used in the aeronautics and automotive industries and has
been successfully used to determine precise bounds on execution times of real-time programs
[10, 9, 24, 15].

S1

S2 S3

S2 S3S2 S3

50 c10 c

S4S4

S4

S5

20 c 50 c 80 c 10 c

10 c

b1: max 50

truefalse

b2: max 50 b3: max 80

b4: max 10

Figure 2 An example illustrating the
differences between traditional ILP-based
path analysis and prediction-file-based
ILP path analysis.

The ILP-based path analysis in aiT comes in
two variants depending on how micro-architectural
state graphs are constructed [2]:

1. Traditional ILP-based analysis, where an ILP
is solved to find the worst-case path through
the program, given worst-case timings of all ba-
sic blocks (possibly in various contexts). This
approach may be imprecise, because the worst-
case timings of some basic blocks may not occur
simultaneously on a single architectural path
through the program.

2. Prediction-file-based ILP analysis, where a
global state graph consisting of micro-archi-
tectural states is constructed, and an ILP is
solved to find the worst-case path. This re-
sults in a more precise WCET bound since
architecturally-infeasible paths are excluded.
However, it comes at the cost of a much larger
ILP to be solved.

To illustrate the difference between the two
path-analysis methods, consider the example anal-
ysis shown in Figure 2. An ILP-based path anal-
ysis computes a global WCET bound solely based
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on the maximum number of execution cycles for each basic block. The WCET is therefore
140 cycles in this case, and the worst-case exeuction path is b1→b3→b4. However, this re-
sult implies an architecturally-infeasible execution trace: s1→s39s2→s4→s5, where trace
discontinuity is marked by 9.

On the other hand, the global state graph constructed in a prediction-file-based ILP
path analysis excludes such paths and produces a WCET bound of 110 cycles, with the
corresponding worst-case execution path: b1→b2→b4, and trace: s1→s3→s4→s5.

2.2 Motorola PowerPC 7448

Instruction Unit

Load/Store Unit

+ Effective Address Calculation 

Instruction Queue

Branch Processing 

Unit

Dispatch Unit

Finished Store Queue

Committed Store Queue

Load Miss Queue

Completion Unit
Completion Queue

Integer 

Units
Floating Point

Unit

Vector

Units

Instruction MMU

Data MMU

Figure 3 PowerPC 7448 Microprocessor Block Diagram.

The PowerPC 7448 is a reduced instruction set computer (RISC) superscalar processor
that implements the 32-bit portion of the PowerPC architecture and the SIMD instruction
set AltiVec architectural extension. It features a two-level memory hierarchy with separate
L1 data and instruction caches (Harvard architecture), a unified L2 cache, four independent
integer and four independent vector units for superscalar execution. It also features static
and dynamic branch prediction, and a sophisticated load-store unit with long buffers.

“The PowerPC 7448 provides virtual memory support for up to 4 PB (252) of virtual
memory and real memory support for up to 64 GB (236) of physical memory. It can dispatch
and complete three instructions simultaneously” [11]. It consists of the following execution
units, depicted in Figure 3:

Instruction Unit (IU): the IU provides centralized control of instruction flow to the
execution units. It contains an instruction queue (IQ), a dispatch unit (DU), and a
branch processing unit (BPU). The IQ has 12 entries and loads up to 4 instructions



Mohamed Abdel Maksoud and Jan Reineke 17

from the instruction cache in one cycle. The DU checks register dependencies and the
availability of a position in the completion queue (described below), and issues or inhibits
subsequent instruction dispatching accordingly. The BPU receives branch instructions
from the IQ and executes them early in the pipeline. If a branch has a dependency that
has not yet been resolved, the branch path is predicted using either architecture-defined
static branch prediction or PowerPC 7448 -specific dynamic branch prediction.
Completion Unit (CU): The CU retires an instruction from the 16-entry completion
queue (CQ) when all instructions ahead of it have been completed. The CU operates
closely with the IU to ensure that the instructions are retired in program order.
Integer, Vector, and Floating-Point Units: the PowerPC 7448 provides nine execution
units to support the execution of integer, fixed point, and AltiVec instructions.
Cache/Memory Subsystem: The PowerPC 7448 microprocessor contains two separate
32-Kbyte, eight-way set-associative level 1 (L1) instruction and data caches (Harvard
architecture). The caches implement a pseudo least-recently-used (PLRU) replacement
policy. In addition, the PowerPC 7448 features an integrated 1 MB level 2 (L2) cache.
Load-Store Unit (LSU): The LSU executes all load and store instructions and provides
the data transfer interface between registers and the cache/memory subsystem. The
LSU also calculates effective address and aligns data. This unit is described in detail in
the following section.

Load-Store Unit

The LSU provides all the logic required to calculate effective addresses, handles data align-
ment to and from the data cache, and provides sequencing for load-store string and load-store
multiple operations [11]. The LSU contains a 5-entry load miss queue (LMQ) which main-
tains the load instructions that missed the L1 cache until they can be serviced. This allows
the LSU to process subsequent loads. Unlike loads, stores cannot be executed speculatively:
a store instruction is held in the 3-entry finished store queue (FSQ) until the completion unit
signals that the store is committed, only then it moves to the 5-entry committed store queue
(CSQ). In order to reduce the latency of loads dependent on stores, the LSU implements
data forwarding from any entry in the CSQ before the data is actually written to the cache.
When a load instruction misses, its address is compared to all entries in the CSQ. On a hit,
the data is forwarded from the newest matching entry. If the address is also found in the
FSQ, however, the LSU stalls since the newest data at this address could be updated should
the store instruction in the FSQ be committed.

Analysis Model of the Load-Store Unit

During static analysis, crucial information on program execution such as register contents,
cache contents and bus clock offset cannot be decided exactly. The bus clock offset is defined
as the number of processor clock cycles until the next rising edge of the bus clock. When the
analysis flow depends on such information, the analysis has to proceed in all possible paths to
ensure a sound WCET bound in the presence of timing anomalies [18]. When the analysis is
to proceed in more than one path, the analysis state has to be split, with the consequence of
increasing the size of the state space during analysis and hence reducing analysis efficiency.
The analysis model of the load-store unit reflects its structure in the concrete processor
architecture, while accounting for non-determinism. In the load-store unit, the addresses of
different memory accesses are represented in terms of intervals, rather than exact numbers.
As we shall see in Section 4, the load-store unit is a significant source of splits in most cases,
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and this is attributed to the long queues in this unit. As described in the previous section,
data forwarding involves a number of comparisons for each missed load instruction. This
number is proportional to the sizes of the load miss queue, committed store queue, and
finished store queue. These comparisons are performed on imprecise addresses, resulting
in potential splits when it cannot be decided whether addresses do alias or not. Moreover,
having long queues in the LSU indicates more pending memory accesses in the core waiting
to be served. Serving more accesses increases the possibility of querying non-exact bus
clock offset, hence representing another source of splits. These observations motivate our
experimental setup described in the following section.

3 Experimental Setup

To the end of reducing the number of splits, and thus improving analysis time, we modified
the PowerPC 7448 by cutting the queue sizes in the load-store unit. The LMQ, CSQ, and
FSQ sizes were reduced to 1, 2, and 1, respectively1. The benchmarks were selected from the
Mälardalen benchmark suite [13]. These are the benchmarks for which the WCET analysis
terminated successfully for both architectures. The analyzed programs are briefly described
in Table 1. The benchmarks marked with * were not found in the official documentation
although they are included in the test-suite distribution.

Table 1 List of benchmarks analyzed in the experiment.

Benchmark Description LOC
bs Binary search for the array of 15 integer elements. 114
cnt Counts non-negative numbers in a matrix. 267

expint Series expansion for computing an exponential integral function. 157
fac Computes the sum of factorials of a set of integers. 28

fibcall Simple iterative Fibonacci calculation, used to calculate fib(30). 72
janne_complex Nested loop program. 64

lcdnum Read ten values, output half to LCD. 64
loop3* Several loop patterns. 240

minmax* Simple program with infeasible paths. 58
qurt Root computation of quadratic equations. 166
sqrt Square root function implemented by Taylor series. 77

The aiT analyzer was configured to use traditional ILP-based path analysis (with the
CLP solver [1]) on all benchmarks and prediction-file based ILP path analysis only on some of
them. Although the latter produces more precise WCET bounds, it is more computationally
demanding as will be seen in the following section, and we were not able to finish the analysis
of all of the benchmarks in time for this submission.

The experiment was performed on a 64-bit AMD Opteron machine with 16 processor
cores at 2500 MHz and 64 GB of RAM. As the WCET analysis is not parallelized, we ran
multiple analyses concurrently on this machine. As performance metrics, we use the micro-
architectural-analysis time and the path-analysis time. On the analyzed benchmarks, these
two metrics constitute on the average about 80% and 75% of the whole analysis time for
the standard and reduced architectures, respectively.

1 This is the strongest simplification we could apply without having to make significant changes to the
micro-architectural analysis.
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4 Experimental Results and Analysis

The analysis results of selected benchmarks using prediction-file-based ILP path analysis
are shown in Table 2. We compute both the average of the relative changes (<average>)
and the relative change of the sum of the respective values (<weighted average>).

Looking first at the analysis performance metrics, we see that the state space in the
reduced architecture is significantly smaller than that of the standard architecture. This
is manifested in the consistently lower number of splits in the micro-architectural analysis
and path analysis time, cf. the janne_complex benchmark. For less memory-demanding
benchmarks, such as fac and fibcall, we do not see significant improvement in the analysis
performance.

Comparing the WCET bounds in both architectures yields a surprise: in half of the cases,
the reduced architecture achieves a WCET bound that is lower than that of the standard
architecture. A closer look at one of the benchmarks featuring this anomaly, minmax, reveals
the following:

There are no ambiguous memory accesses in this simple benchmark (i.e. all addresses
are exact), the effect of data-forwarding on the analysis precision is therefore ruled out.
The benchmark starts with several store instructions followed by a branch instruction.
The standard architecture with its long store queues accomodates more pending stores
and execute further instructions, including the branch. This results in more pending
memory requests, both data and instruction accesses, and hence it is more likely to
query non-exact bus clock offset.
On the other hand, the reduced architecture accomodates fewer pending stores, hence it
stalls on encountering more store instructions. This stalling is beneficial in that it leads
to fewer pending memory accesses and hence reduces the loss of precision caused by the
non-deterministic bus clock offset.

Using the less precise, yet significantly more efficient traditional ILP-based path analysis,
more benchmarks were analyzed. The analysis results and performance metrics are shown
in Table 3.

We observe an increased average speed-up of the micro-architectural analysis for the
reduced architecture compared with the results for the prediction-file-based analysis. The
increased average speed-up is attributed to analyzing more memory intensive benchmarks
such as bs and cnt. The micro-architectural analysis time varies slightly from that in
Table 2 for some benchmarks, likely due to interference on shared resources between multiple
analyses running concurrently on the machine.

The path-analysis contribution to the total analysis performance is insignificant, com-
pared to that of the micro-architectural analysis. In the traditional ILP-based approach,
path-analysis time is expected to be independent of the complexity of the underlying micro-
architecture. Unsurprisingly, we observe little differences between the standard and the
reduced architecture.

The “WCET anomaly”, i.e. lower WCET bounds for the reduced architecture, is more
pronounced using this path-analysis method. This is not surprising since a larger number of
paths with different timings through basic blocks, as is the case for the standard architecture,
makes it more likely for the path analysis to compute an architecturally infeasible worst-case
execution path. This adds up to the precision loss observed in the standard architecture.
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5 Related Work

While there is an abundance of work proposing more predictable or analyzable micro-
architectures, there is not a lot of work that empirically studies the impact of simplifi-
cations of micro-architectures on WCET analysis time. Exceptions include the work of
Grund et al. [12] and Burguière and Rochange [3].

Grund et al. [12] investigate several modifications of the branch target instruction cache
of the PowerPC 56x. They observe that using LRU in place of FIFO replacement reduces
analysis time drastically, as more memory accesses can be classified as hits or misses, thereby
reducing the number of splits.

Burguière and Rochange [3] investigate the modeling complexity of various dynamic
branch prediction schemes. Here, the modeling complexity is measured by the number of
constraints, the number of variables, and the sizes of constraints in an ILP formulation of
the behavior of the respective branch prediction schemes. This analysis is based on the
assumption that the modeling complexity is strongly-correlated with the resulting analysis
complexity. However, the actual analysis times are not analyzed.

Heckmann et al. [15] focus on the difficulty in modeling various architectural components,
including caches and pipelines, and their influence on the precision of the resulting analyses.
From their experience in modeling various processors they derive several recommendations
regarding the design of processors for real-time systems. Later, Wilhelm et al. [26] describe
properties of memory hierarchies, pipelines, and buses, which make timing analysis more
complex and/or reduce its precision. Neither Heckmann et al. nor Wilhelm et al. provide
an empirical evaluation of their recommendations.

Approaches aiming at improving predictability or analyzability include the EU projects
Predator, Merasa [25], the PRET project [6], and the Java-Optimized Processor JOP [19].
These projects present entirely new processor designs. This makes it difficult to evaluate
the impact of individual design choices on WCET analysis times. In the context of the
JOP project, Huber et al. [16] analyze the influence of different object cache configurations on
worst-case execution time estimates, varying several cache parameters and the background
memory. They do not, however, analyze the impact of the design choices on analysis times.

6 Conclusions and Future Work

In this paper, we have investigated the influence of the design of the load-store unit on
WCET analysis, in terms of analysis times and WCET bounds. Reducing the complexity of
the LSU results in significantly shorter analysis times, and, surprisingly, sometimes even in
slightly lower WCET bounds. We plan to investigate the influence of further components
to get a more complete view of how strongly various components and their configurations
influence WCET analysis.

Regarding the “WCET anomaly” found in some benchmarks analyzed in this paper, we
are uncertain whether it is a product of analysis imprecision, or whether it corresponds to
actual behaviors of the respective architectures. It will be future work to shed more light
on this question.
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Abstract
In contrast to the classical cache analysis of Ferdinand, the relational cache analysis does not rely
on precise address information. Instead, it uses same block relations between memory accesses
to predict cache hits. The relational data cache analysis can thus also predict cache hits if fully
unrolling a loop is not feasible during analysis, for example due to high memory consumption or
long computation time. This paper proposes a static analysis based on abstract interpretation
which is able to compute same block relations for relational cache analysis.
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Analysis, Abstract Interpretation

Digital Object Identifier 10.4230/OASIcs.WCET.2012.25

1 Introduction

In his doctoral thesis [4], Ferdinand proposed an analysis based on abstract interpretation to
predict the contents of set-associative caches with LRU replacement policy.

The analysis is split in two parts. One part, the so-called must analysis is used to predict
definite cache hits (“always hit”) by computing an under-approximation of the possible cache
contents at any program point. The other part, called may analysis is used to predict definite
cache misses (“always miss”) by computing an over-approximation of the possible cache
contents. For those memory accesses where neither the must analysis nor the may analysis
are able to predict a definite result, “not classified” is returned.

One requirement of the cache analysis described above is the knowledge of precise address
information for the targets of memory accesses. This information is typically available if
instruction caches are analyzed since the control flow and thus the addresses of instructions
have been computed beforehand. For data caches or unified instruction / data caches, this
requirement cannot always be fulfilled.

Consider for example an array access depending on a loop counter as in listing 1. As a
data-flow analysis computes invariants which hold for each and every execution of a program,
it can only compute a set or an interval of possible addresses. If for example a is the array’s
base address and w the width of an array element, then the address interval would be

Listing 1 Array summation in C.
for (i = 0; i < 128; i++)

sum += arr[i];
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[a, a + 127 · w]. In this case, all abstract cache sets which possibly would handle one of these
addresses must be updated. For the may sets, this means that all the addresses included in
the interval must be added. For the must sets, this means that none of these addresses are
added, but all entries age by one. Ferdinand’s cache analysis thus reacts very sensitively to
imprecise address information.

One way to overcome this obstacle is to fully unroll the loop. Then, the different memory
accesses can be distinguished by the analysis. However, fully unrolling may not be feasible,
for example if the loop iterates several thousand or even million times. No information would
reside in the abstract data cache sets inside such a loop. The memory accesses could then
not be classified as either cache hits or misses.

Recent research [15, 9] studied how the dependency of the cache analysis on precise
address information can be reduced. The result is the so-called relational cache analysis.
There, symbolic names are used to identify memory accesses. Cache hits are predicted with
the help of same block relations. These relations describe sufficient conditions whether two
memory accesses target the same cache line. Ferdinand’s cache analysis can be seen as an
instance of the relational cache analysis framework, with cache address equality as same
block relation.

The goal of this paper is to define additional analyses which can be used to compute
same block relations. These can then be used in the relational cache analysis framework
described in [9] to predict cache hits.

2 Cache Configuration

In the following (and if not stated otherwise), the cache configuration is assumed to be a
write-through, write-allocate 2-way set associative LRU cache with a cache line size of 32
bytes. The whole memory is assumed to be cached. No cache locking takes place. Upon a
miss, a whole line is loaded into the cache.

3 Predicting Cache Hits: Globally Precise Address Information vs.
Locally Precise Address Information

A shortcoming of Ferdinand’s cache analysis is its dependency on globally precise address
information. This dependency on the exact position of a memory access in the whole address
space is quite natural if we look at the definition of a cache hit in the concrete domain:

hit(a) def= ∃i ∈ {1, 2} : cacheset(a)[i].valid ∧ cacheset(a)[i].tag = tag(a)

A memory access is a cache hit if and only if there is an entry in the cache set which is valid
and which stores the tag of the access address a (see also Figure 1). To compute the tag and
the cache address, the exact memory address is needed. If this information is not available,
we cannot evaluate the formula above.

Now recall the array summation example: There, some cache hits will occur after a cache
miss, because a cache miss loads whole cache lines into the cache. The subsequent memory
accesses will then lead to cache hits as long as they target the same cache line. How can we
use this fact to predict cache hits if we do not have the exact address information?

Fortunately, there is a possibility to specify whether two memory accesses target the
same cache line which does not depend on the exact addresses. Let aprev be the address
of the memory access previous to the ongoing access (with address a). Assume that the
distance x = a − aprev between the two access addresses is known as well as the position
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memory
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cache

⋯ ⋯

a

Figure 1 A cache consisting of only one cache line. The tag t maps the cache line to a specific
interval of memory locations. The memory access to a is a hit if tag(a) = t and the valid bit v is set.
The value of t depends on the memory access before the one to a.

aprev
memory

cache

… …

y… …0 31x+y …

a

Figure 2 A cache consisting of only one cache line. a is the address of the ongoing memory access,
aprev is the address of the previous access, x = a − aprev is the distance between the two accesses
and y = aprev mod 32 is the position of the previous access inside the cache line. The memory access
to a is a hit if the cache line offset of aprev plus the distance between a and aprev is smaller than
the cache line size.

of the previous access inside the cache line y = aprev mod 32. Then, the ongoing memory
access is a cache hit if 0 ≤ x + y < 32 (see Figure 2).

The values of x and y can be computed without knowing the exact values of a and aprev

(see section 4). Locally precise address information is thus enough to predict cache hits.

4 Computing Same Block Relations

In this section, the findings from the previous section are formalized and used to build an
analysis which is able to compute same block relations for the relational cache analysis.

4.1 Alignment Information
One information used to compute the same block relation is the relative position of a memory
access inside a cache line. To compute the relative position, we use a static analysis [7] using
arithmetical congruences as abstract domain. Values are identified by the congruence class
to which they belong. The 32-bit address a for example is described by the pair 〈a, 232〉
because a ≡ a (mod 232) holds. The two addresses a and a + 2 are described either by the
pair 〈0, 2〉 or by the pair 〈1, 2〉, depending whether a is even or odd.

Recall the array access example. If an element of the array has a size of four bytes, the
analysis deduces that the address of each memory access inside the loop goes to the same
congruence class (modulo 4). Formally speaking, the analysis computes the pair 〈y, 4〉, that
is, the equation ∃y ∈ {0, . . . , 3} : ∀i ∈ {0, . . . , 127} : ai ≡ y (mod 4). If the array is properly
32-bit aligned, the analysis can even deduce that y = 0.
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However, this information is not precise enough for our needs, because not the whole
cache line is covered by congruence classes, i.e. the modulus is to small. To improve the
precision, some of the addresses must be kept apart (see section 4.2).

4.2 Loop Peeling and Loop Unrolling
The precision problems arise from the the fact that the computed invariants must hold for
each and every loop iteration. Thus only the least common divisor survives as modulus.

Skillful application of loop peeling (listing 2) and loop unrolling (listing 3) can be used to
keep some of the address apart. 4-fold unrolling of the loop in the running example can be
used to improve the alignment information such that the four pairs 〈0, 16〉, 〈4, 16〉, 〈8, 16〉 and
〈12, 16〉 are computed for the four array accesses (assuming a properly aligned array). Loop
peeling is used to control which alignment information pair is computed for what unrolled
array access (see section 6 for more details).

The loop unrolling and loop peeling can be done either directly by using the corres-
ponding loop transformations or virtually by using a specially tailored context mapping
(e.g. VIVUM [15]).

Listing 2 Loop peeling.
sum += arr [0];
sum += arr [1];
sum += arr [2];
for (i = 3; i < 128; i++) {

sum += arr[i];
}

Listing 3 Loop unrolling.
for (i = 0; i < 128; i += 4) {

sum += arr[i];
sum += arr[i + 1];
sum += arr[i + 2];
sum += arr[i + 3];

}

4.3 Distance Relations
Often, a variable is not invariant inside a loop, but changes its value. Thus, static analyses can
only compute an abstraction of the possible values, for example an interval. This abstraction
might be very imprecise. One possibility to improve the results is to check how the value
evolves over time.

In the running example, the address of the memory access is increased by the size of
one element in each iteration. More formally, the equation ∀i ∈ {1, . . . , 127} : ai − ai−1 = x

holds, where x is the size of one array element.
Such linear relations can be expressed with difference bound matrices (or short DBMs).

DBMs have been introduced by Dill [3] to express clock zones for the model-checking of
timed-automata. Miné [13] used them to build an abstract domain which efficiently handles
a restricted form of linear relations, namely those of the form xi − xj ≤ c.

In a DBM, the row / column positions identifies which variables are used in the relation
and the value inside the DBM is the constraining factor (i.e. the c above). The first row /
column is used for the special variable x0 which is used to express the constant zero. Infinity
is used as value if the difference cannot be bounded.

If again 4-fold unrolling is applied to the loop in the example, one gets the four DBM
variables x1, . . . , x4. The analysis computes the DBM in Figure 3, assuming each array
element has a size of 4 bytes.

The DBM analysis is applied to the whole program. However, not every register is covered
in the DBMs but only those that are used to compute the addresses of memory accesses.
This set is identified for each loop independently.
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Figure 3 DBM for the array accesses in the loop in listing 3. The address of each access is exactly
four bytes greater than the address of the previous access.

4.4 Hit Classification

We have now all information available to compute the same block relation sb∼, which in turn
is used to predict cache hits.

Three data structures are needed for the classification: the abstract cache set Ŝ, the map
V̂ containing the relative positions of memory accesses inside a cache line and the map R̂
containing the distances between memory accesses.

The abstract cache set Ŝ is build as an array containing sets of reference memory accesses.
A reference memory access is an access which forces a particular line to be loaded into
the cache.1 To identify such a reference memory access, symbolic names are used, e.g. the
instruction which induced the access.

The map V̂ contains for each memory access the alignment information pairs from
section 4.1.

The map R̂ contains for each memory access a set of tuples, where each tuple consists of
another memory access and the minimal and maximal distance of this memory access to the
one used as index. If the DBM analysis could not derive such information, the set is empty.

Additionally, the width of a memory access is given as wi, as it depends only on the
instruction inducing the memory access.

A reference memory access iref and an ongoing memory access i are same block-related
if one can show that the addresses of the ongoing and the reference access target the same
cache line. For this, adding the access width wi and the maximum distance xmax to the
relative position of the reference access inside the cache line must not exceed the length
of the cache line. The same check has to be done for the lower cache line boundary, too.
Formally speaking:

sb∼ def= {〈i, iref 〉 | ∃xmin, xmax, y, z : 〈iref , xmin, xmax〉 ∈ R̂[i] ∧ 〈y, z〉 = V̂[iref ]
∧ (y mod 32) + xmax + winstr ≤ min(z, 32) ∧ (y mod 32) + xmin ≥ 0}

The information 〈y, z〉 means that the address aref of the reference access satisfies
aref ≡ y (mod z). The remainder is then taken modulo the cache line width as we are only
interested in the relative position inside the cache line. The modulus z is taken as basis of
comparison if it is smaller than the cache line width.

1 In the assumed cache setting, each memory access is also a reference memory access, as both reads and
writes load a line when a cache miss happens. When a cache hit happens, the line is already loaded,
thus the access is again a reference memory access.
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Listing 4 Array summation in PowerPC assembler.
.INIT:

lis r9 , 0 x18880000@h // load base address of arr ...
addi r9 , r9 , -736 // ... into r9
lis r8 , 0 x18880000@h // load first address after arr ...
addi r8 , r8 , -224 // ... into r8

.LOOP:
lwzx r0 , +0( r9) // load arr[i] into r0
add r3 , r3 , r0 // add arr[i] to sum (r3)
addi r9 , r9 , +4 // compute address of arr[i+1]

lwzx r0 , +0( r9) // same for arr[i+1] ...
add r3 , r3 , r0 // ...
addi r9 , r9 , +4 // ... due to loop unrolling

lwzx r0 , +0( r9) // same for arr[i+2] ...
add r3 , r3 , r0 // ...
addi r9 , r9 , +4 // ... due to loop unrolling

lwzx r0 , +0( r9) // same for arr[i+3] ...
add r3 , r3 , r0 // ...
addi r9 , r9 , +4 // ... due to loop unrolling

cmp cr0 , 0, r9 , r8 // check whether we are still ...
blt cr0 , 0 x18002c8 .t <LOOP > // ... in the bounds of arr

If one of the entries of the abstract cache set Ŝ and the ongoing memory access are same
block-related, then the ongoing access is classified as a hit. Otherwise, the access is not
classified.

hit(i, Ŝ) def= ∃j ∈ {1, 2} : ∃ iref ∈ Ŝ[j] : i
sb∼ iref

5 Example

To show the relational must analysis in action, we recall the little example used to show
the shortcomings of the classical must analysis. The little snippet of C code in listing 3 is
compiled to the PowerPC assembler code in listing 4. Note that loop unrolling has been
applied.

The control-flow graph of the loop body together with the alignment information and
the distance relations is given in Figure 4. The lwzx instructions are the only ones which
accesses the data memory. The access width of them is four bytes. To enhance readability,
only the ingoing and outgoing abstract cache sets of the lwzx instructions are shown, because
all other instructions do not change the abstract cache sets.

The analysis starts with an empty abstract cache set Ŝ. Since no distance relations exist
for i1, no cache hit can be predicted. Thus every entry in Ŝ ages by one and i1 is added to
the youngest one.

For i4, there exists a distance relation: the distance between the memory access of
i4 and i1 is four bytes. To check whether the access of i4 is a hit, we have to check
whether i4 and i1 are same block-related. To do so, we evaluate the constraint of relation sb∼,
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[{i10, i7}, {i4, i1}]
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{〈i7, 4, 4〉, 〈i4, 8, 8〉, 〈i1, 12, 12〉}

hit?

no
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Figure 4 Example for the relational must cache analysis.
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namely (y mod 32) + xmax + w ≤ min(z, 32) ∧ (y mod 32) + xmin ≥ 0. Instantiation gives
8 + 4 + 4 ≤ 16 ∧ 8 + 4 ≥ 0. Thus the access of i4 is a predicted cache hit. Therefore no entry
ages, but i4 is inserted into the youngest one.

For i7 there exist also some distance relations. Instantiation of the constraint of relation
sb∼ gives 12 + 4 + 4 ≤ 16 ∧ 12 + 4 ≥ 0 and 8 + 8 + 4 ≤ 16 ∧ 8 + 8 ≥ 0. Both evaluate to
false. Therefore, no hit can be predicted for i7. All entries age by one and i7 is added to the
youngest one.

At i10, the memory access is same block-related to i7. Thus the access is a predicted
cache hit. Again, no entry ages. The youngest entry will consist of i10 and i7 after the
update. The other entry stays the same.

Then the second round of the fixed point iteration starts. This time, we must first join the
two incoming abstract cache sets at i1. Set intersection plus maximal age gives Ŝ = [{}, {}].
This is the same value as the input in the first round, thus the fixed point iteration stabilizes
directly.

6 Precision

In the example above, two of four accesses are classified as cache hits. This is far below the
theoretical maximum of 7

8 .
There are two reasons for that. On the one hand, no relations existed for i1. This is due

to the join of flow from the entry and the recursive loop edge. One possibility would be to
add some kind of partitioning to keep the values apart.

The other possibility is to shift the first loop iteration with loop peeling such that the
first access in the unrolled loop coincides with the one in which the first entry of a cache line
is accessed. Then, the access in which naturally no cache hit is predictable and the one in
which not enough information is available coincide.

The other reason is the length of the unrolled loop. Only half of a cache line is covered
by one iteration of the loop. If the unroll factor is high enough, the congruence information
would cover the whole cache line.

Thus, loop peeling and loop unrolling should be applied in such a way that (a) the peeled
prefix is long enough to shift the start of the unrolled loop to match the cache line boundaries
and (b) the loop is unrolled enough to cover whole cache lines. The former is usually hard to
achieve without a preceding data-flow analysis to determine the right choice. The latter can
easily be computed: the unroll factor must be a multiple of the cache line size divided by the
access width.

For the example, this means a peeled prefix of three array accesses and eight array accesses
inside the unrolled loop. Then, the number of predicted cache hits equals the theoretical
maximum of 7

8 .

7 Correctness

The following section sketches the proof of correctness of the relational must analysis with
same block relation sb∼. We assume that the used data-flow analyses and the relational cache
analysis framework are correct.

I Lemma 1 (Soundness of V̂, R̂). V̂ contains only sound abstractions of the alignment of
memory accesses. R̂ contains only sound abstractions of the linear relations between two
memory accesses.

Proof. Both statements follow from the correctness of the underlying data-flow analyses. J
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I Lemma 2 (Soundness of Ŝ). For any instruction i in a given program, Ŝ contains only
reference memory accesses for cache lines that are in the cache at the point of execution of i.

Proof. Follows from the correctness of the relational cache analysis framework. J

I Lemma 3 (Soundness of sb∼). Two instruction i, iref are same block-related only if the
induced memory accesses of both instructions target the same cache line.

Proof. The proof is carried out by showing that if two accesses target different cache lines,
then they are not same block-related.

Let c be the size of the cache, b the size of one cache line. Let instruction i induce a
memory access to address a with width w > 0. Let instruction iref induce a memory access
to address aref . Let a− aref = x.

Assume furthermore that 〈y, z〉 ∈ V̂[iref ] and 〈iref , xmin, xmax〉 ∈ R̂[i]. The last two
assumptions are safe as otherwise the constraint of sb∼ evaluates to false. From lemma 1, it
follows that y = aref mod z and xmin ≤ x ≤ xmax.

Let a go into a cache line after aref , that is, a mod c > aref mod c. Then (aref mod b)+x ≥
b because the offsets of the original cache line lie in the interval [0, b−1] and (aref mod b)+x

points to a later cache line.
Two cases must be distinguished: (1) b ≤ z and (2) b > z.
If (1) holds, then y mod b = aref mod b. Thus (y mod b) + xmax ≥ b. From w > 0, it
follows directly that the constraint evaluates to false.
If (2) holds, then y mod b = y. Moreover, k′ · z + y + x ≥ k · z holds with k = b

z > 1
and 0 ≤ k′ = (aref mod b)−y

z < k. Thus y + x ≥ (k − k′) · z and k − k′ ≥ 1. Thus
(y mod b) + xmax ≥ z. From w > 0, it follows directly that the constraint evaluates to
false.
Let a go into the same cache line as aref , a mod b > aref mod b and w such that the
access crosses the cache line boundary. Then (aref mod b) + x + w > b.
Two cases must be distinguished: (1) b ≤ z and (2) b > z.
If (1) holds, then y mod b = aref mod b. Thus (y mod b) + xmax + w > b. It follows
directly that the constraint evaluates to false.
If (2) holds, then y mod b = y. Moreover, k′ · z + y + x + w > k · z holds with k = b

z > 1
and 0 ≤ k′ = (aref mod b)−y

z < k. Thus y + x + w > (k − k′) · z and k − k′ ≥ 1. Thus
(y mod b) + xmax + w > z. It follows directly that the constraint evaluates to false.
Let ma go into a cache line before aref , that is, a mod c < aref mod c. Then (aref mod b)+
x < 0 because the offsets of the original cache line lie in the interval [0, b − 1] and
(aref mod b) + x points to an earlier cache line.
Two cases must be distinguished: (1) b ≤ z and (2) b > z.
If (1) holds, then y mod b = aref mod b. Thus (y mod b) + xmin < 0. It follows directly
that the constraint evaluates to false.
If (2) holds, then y mod b = y and y ≤ (aref mod b). Thus (y mod b) + xmin < 0. It
follows directly that the constraint evaluates to false.

J

I Theorem 4 (Soundness of the relational must cache analysis with same block relation sb∼).
For any instruction in a given program, a cache hit is only predicted if it would happen in
every concrete run of the program.
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Proof. From lemma 2, it follows that at any instruction, Ŝ contains only reference memory
accesses for cache lines that are currently in the cache. A hit is only predicted, if the given
instruction is same block-related to a reference memory access in Ŝ. From lemma 3 follows
that two memory accesses are only same block-related if they target the same cache line.
Thus a hit is only predicted if a memory access targets a cache line that is currently in the
cache. J

8 Experimental Results

A prototype implementation of the relational cache analysis with same block relation sb∼
has been integrated into the aiT WCET analyzer [1]. With this prototype, the Mälardalen
WCET Benchmark [8] has been analyzed. The results of both the classical cache analysis
and the relational cache analysis are shown in table 1. For the classical cache analysis, the
loops have been 1-fold peeled. For the relational cache analysis, the loops have been 1-fold
peeled and 8-fold unrolled.

One interesting property is the data cache hit prediction ratio on the critical path. For
most tests, the prediction ratio increased as expected.

A closer look has been taken for those tests where the relational cache analysis did not
show the desired improvements. Three tests performed particularly bad: insertsort, fir
and cover. They all have in common that no relations could be computed. This is because
of the strange control flow generated by the compiler. In insertsort for example, two loops
are merged into one. On one join point, the relation r7 = r0 comes from one edge and the
relation r7 = r5 from another. As r0 and r5 have different values, no relation remains after
the join. A similar thing happens in fir. In cover, some of the loops are split into two
nested ones.

Another programming pattern that is bad for relational cache analysis is unveiled in crc.
Here, the computation depends heavily on bit operations. These destroyed the relational
information since the DBMs only handle linear relations.

One particular interesting test is lcdnum. The results of this test show a much higher
data cache prediction ratio for the classical cache analysis than for the relational one. This
seems counterintuitive at first glance, but there is no error. The reasons for this behaviour
are the paths which could be proven infeasible due to the loop unrolling. On these paths are
lots of loads which induce cache hits. Thus the data cache prediction ratio is higher than for
the relational cache analysis.

Another point of interest is the performance of the relational cache analysis. For most
tests, the additional runtime for performing the relational value analysis with difference
bound matrices is only a few seconds. The biggest exception is lms, where the runtime
increased from 3 to 127 seconds. However, the data cache prediction ratio increased from 56%
to 78% and the WCET bound decreased by about a quarter. Thus the decreased performance
is justified by the increased precision.

9 Related Work

Both Grewe [7] and Flexeder [5] propose to use alignment information to improve the
prediction of cache hits. However, they do not work out the details of their ideas.

Hahn and Grund [9] use global value numbering [2] in combination with interval analysis
to compute the same block relation. This technique, however, is not powerful enough to
relate the changing addresses of the array accesses inside the loop.
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Table 1 Results for the Mälardalen WCET benchmark. For both the relational cache analysis
and the classical cache analysis, it is given the computed WCET bound in cycles, the predicted data
cache hit ratio on the critical path and the analysis time in seconds.

Relational Classical
program WCET ratio time WCET ratio time

adcpm 407360 .68 6 569195 .21 4
bs 1230 .08 1 1234 .08 1
bsort100 1827484 .86 14 3205665 .00 2
cnt 20007 .91 5 28668 .51 1
compress 4254976 .30 17 4281933 .30 2
cover 31196 .04 6 43102 .00 8
crc 175060 .17 3 228931 .01 2
duff 13039 .70 2 18425 .00 1
edn 541462 .42 12 836568 .04 3
expint 9999 .72 2 59291 .72 1
fac 824 .33 1 898 .33 1
fdct 11192 .93 2 22740 .15 1
fft1 57139 .93 14 66627 .87 5
fibcall 715 .00 1 715 .00 1
fir 32102 .04 6 36381 .01 1
insertsort 17887 .00 1 17887 .00 1
janne_complexa 12633 — 2 12633 — 1
jfdctint 17021 .91 2 32266 .08 1
lcdnum 2339 .57 1 5658 .78 1
lms 3575657 .78 127 4599643 .56 3
ludcmp 13129 .93 6 495695 .01 2
matmult 1570041 .43 44 2225727 .04 2
minver 13283 .70 2 36194 .10 3
ndes 644343 .57 17 759276 .54 3
ns 9744 .86 6 84442 .00 1
nsichneu 292027 .85 14 292027 .85 11
prime 27515 .76 2 27518 .76 1
qsort-exam 497534 .01 34 644161 .00 2
qurt 21101 .73 3 24002 .69 1
recursion 10972 .37 5 12308 .05 1
select 104532 .03 7 111912 .00 1
sqrt 9140 .50 2 20446 .50 1
stb — — — — — —
statemate 138338 .97 10 146960 .96 7
ud 9850 .93 3 104877 .01 2

a This program contains no loads.
b This program could not be compiled.
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Lundqvist and Stenström [12] proposed a method to classify data structures as predictable
or unpredictable. Unpredictable data structures should then be moved into some uncached
memory areas to prevent the eviction of cache entries which buffer parts of the predictable
data structures to reduce the overestimation caused by imprecise address information.

Vera and Xue [14] use cache miss equations [6]. They try to relate memory accesses, too,
but instead of using an abstract interpretation based data-flow analysis, they compute linear
equation systems to count the number of accesses between the reference and the ongoing
access. If at least k such accesses exist, they assume a sure miss. Their analysis is restricted
to precise address information.

Li, Malik and Wolfe [10, 11] expressed the cache behaviour through integer linear programs.
In case of imprecise address information, they add a constraint to the ILP that only one
of the addresses is taken. This allows the ILP solver to choose the worst case. This may
lead to huge ILPs with unacceptable solving times. Moreover, they do not express mutually
exclusive cache misses.

10 Conclusion and Future Work

This paper presented a method to compute same block relations for relational cache analysis.
The relational cache analysis is a novel cache analysis which is able to predict cache hits even
if precise address information is unavailable. It relates memory accesses and checks whether
they go to the same cache line. Thus it forms a substantial improvement over Ferdinand’s
cache analysis which needs precise address information for its predictions.

Using the analyses presented in the work at hand, a same block relation sb∼ is computed
which – in contrast to the one in [9] – is powerful enough to relate memory accesses with
changing addresses, for example if array accesses happen inside a loop.

First experiments on the Mälardalen WCET Benchmark [8] show that the presented
same block relation works well. In the mean, about 52% of the memory accesses have been
predicted as cache hits by the relational cache analysis. The classical cache analysis predicts
only about 27% cache hits if the loops are not unrolled, and about 64% cache hits if the
loops have been fully unrolled to compute globally precise address information.

While loop peeling and loop unrolling are needed to increase the precision of sb∼, loop
fusion and loop fission may hamper the precision as the experimental results show.

Further improvements are possible: At the moment, only cache hits are predicted by the
relational cache analysis, i.e. it is a must analysis. Finding the right congruence analyses to
support precise relational may analysis is still an open research question. Moreover, using
only sb∼ as same block relation, the relational cache analysis cannot distinguish between the
different cache sets, and all collapse into one, effectively decreasing the achievable precision.
To overcome this obstacle, same set, different set relations need to be computed, too. Both
will be targeted in future work.
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Abstract
The current trend within computer, and even real-time, systems is to incorporate parallel hard-
ware, e.g., multicore processors, and parallel software. Thus, the ability to safely analyse such
parallel systems, e.g., regarding the timing behaviour, becomes necessary. Static timing analysis
is an approach to mathematically derive safe bounds on the execution time of a program, when
executed on a given hardware platform. This paper presents an algorithm that statically ana-
lyses the timing of parallel software, with threads communicating through shared memory, using
abstract interpretation. It also gives an extensive example to clarify how the algorithm works.

1998 ACM Subject Classification F.3.2 [Logics and Meanings of Programs]: Semantics of Pro-
gramming Languages–Program Analysis

Keywords and phrases Parallelism, BCET, WCET, Static analysis, Abstract interpretation

Digital Object Identifier 10.4230/OASIcs.WCET.2012.38

1 Introduction
Many safety-critical embedded systems have hard real-time requirements. For these, safe
bounds on the Best- and Worst-Case Execution Times (BCET/WCET) of the tasks in
the system are key measures. Together, they define an interval in time within which the
execution of the task is guaranteed to finish. In particular WCET bounds are needed by,
e.g., schedulability analyses.

For reasons of energy consumption and performance, development in hardware today
strives toward massively parallel architectures, like many-core, GPU and even special purpose,
heterogeneous platforms. Thus, it is very likely that software tasks in future real-time systems
will be parallel in order to utilise the provided computing power. Therefore, efforts must be
made in providing WCET analyses for such systems.

This paper focuses on analysing the timing behaviour of parallel software with dependent
sub-tasks, using a programming model with threads, shared memory, and locks. This kind
of programming model is commonly used in parallel software today. It is assumed that an
arbitrary underlying timing model, which can predict safe bounds on the BCET and WCET
of individual instructions given a certain system state, is provided. An algorithm to statically
derive the BCET and WCET of parallel software using abstract interpretation is presented.
A technical report [8] covers the details and correctness proofs of the algorithm.

The rest of this paper is organised as follows. Section 2 presents related work on static
timing analysis for parallel systems. Section 3 introduces a small model parallel language,
with threads, thread-local and global memory, and locks. We also give a formal semantics for
the language, including time, and we then present an analysis based on abstract interpretation.
Section 4 clarifies how the analysis works by instantiating it for a given example program.
Section 5 concludes the presentation with some discussion and directions for the future.
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2 Related Work
As far as we know, there have not been many attempts to statically analyse the execution
time of explicitly parallel software. The parMERASA project provides a timing analysable
multicore CPU with a system level software (c.f., operating system). In [11], a case study is
performed in which the WCET of a parallel 3D multigrid solver, executing on the MERASA
platform, is derived. In [7], model-checking is used to derive the WCET of a minimal
parallel program. It is shown that, since model-checking is based on exhaustive exploration
of concrete states, it is difficult to achieve scalability using only the presented approach. In
[9], abstract interpretation is combined with model-checking to avoid the found scalability
problems. This work does not focus on explicitly parallel (e.g., threaded) software, though.

In [3], an approach to directly calculate the BCET and WCET for sequential programs
using abstract execution [6] is presented. Our work takes basically the same approach, but
for explicitly parallel programs.

There is also some research on static low-level analysis of parallel systems. In [1] and [12],
static methods for analysing multicores with a shared L2 instruction cache are presented. In
[1], effects from timing anomaly influenced pipelines are also taken into account.

3 Timing Analysis
In this section, an algorithm for timing analysis of programs containing dependent parallel
threads will be defined. It is assumed that the underlying architecture consists of both
thread-private and global memory, referred to as registers, r ∈ Reg, and variables, x ∈ Var,
respectively, and that arithmetical operations etc. can be performed using values of registers.
It will also be assumed that shared resources that can be acquired in a mutually exclusive
manner by the threads are provided, and that the operations provided by the instruction
set (statements) may have variable execution times. (C.f., multicore CPU:s, where you have
local and global memory, a shared memory bus and mutual exclusion operations.) No further
assumptions on the underlying architecture, e.g., the number of CPU:s, the memory hierarchy
or whether an operating system is used, are made. Timing effects from such features should
not be considered in the software model but in the model of the underlying architecture.

3.1 Abstract Interpretation
In general, a timing analysis based on the concrete semantic of a program is infeasible due to
the enormous number of states that must be explored. Abstract interpretation [2, 4, 10] is a
method for safely approximating the concrete program semantics and can be used to obtain
a set of possible abstract states for each point in a program. An abstract state describes,
and sometimes over-approximates, the information given by a set of concrete semantic states.
This means that an analysis based on abstractly interpreting the semantics of a program can
become less complex and more efficient, but might suffer from imprecision, compared to an
analysis based on the concrete semantics.

The concrete semantics of a programming language can be abstracted in many different
ways. The choice of abstraction is done by defining an abstract domain. An abstract domain
is essentially the set of all possible abstract states that fit the definition of the domain.
It is often shown that the abstract domain is a safe over-approximation of the concrete
domain by deriving a Galois connection (an abstraction function, α, and a concretisation
function, γ) between the two domains [10]. An example of an abstract value domain is
Intv = {[z1, z2] | intmin ≤ z1 ≤ z2 ≤ intmax ∧ z1, z2, intmin, intmax ∈ Z}, i.e., the set of
all intervals that “fit in” [intmin, intmax]. This domain can be used to over-approximate

WCET’12



40 Toward Static Timing Analysis of Parallel Software

P ::= T
∣∣P ‖ T

T ::= (N, s)

s ::= [halt]l
∣∣[skip]l

∣∣[r := a]l
∣∣[if b goto l′]l

∣∣ s1;s2
∣∣

[load r from x]l
∣∣[store r to x]l

∣∣[lock lck]l
∣∣[unlock lck]l

a ::= n
∣∣ r ∣∣ a1 + a2

∣∣ a1 - a2
∣∣ a1 * a2

∣∣ a1 / a2

b ::= true
∣∣ false

∣∣!b ∣∣ b1 && b2
∣∣ a1 == a2

∣∣ a1 <= a2

Figure 1 The parallel programming language.

stm(T , pc) 〈pc′, r′,x′, l′〉 Condition
[halt]pc 〈pc, r,x, l〉 −
[skip]pc 〈pc + 1, r,x, l〉 −
[r := a]pc 〈pc + 1, r[r 7→ A[[a]]r],x, l〉 −

[load r from x]pc 〈pc + 1,R(r, r, x,x),x, l〉 −
[store r to x]pc 〈pc + 1, r,x[x 7→ (x x)[T 7→ {(r r, t)}]], l〉 −
[if b goto l]pc 〈pc + 1, r,x, l〉 ¬B[[b]]r
[if b goto l]pc 〈l, r,x, l〉 B[[b]]r
[lock lck]pc 〈pc, r,x, l〉 own(l lck) 6= T
[lock lck]pc 〈pc + 1, r,x, l[lck 7→ (locked,T)]〉 own(l lck) = T

[unlock lck]pc 〈pc + 1, r,x, l[lck 7→ (unlocked,⊥thrd)]〉 −
where R(r, r, x,x) = r[r 7→ v] and {(v, t′)} =

⋃
T′∈Thrd((x x) T ′)

Figure 2 Semantics of concrete axiom transitions: 〈T , pc, r,x, l, t〉−−→
ax
〈pc′, r′,x′, l′〉.

the concrete domain {z | intmin ≤ z ≤ intmax ∧ z, intmin, intmax ∈ Z}, i.e., the set of all
integers between (and including) intmin and intmax. It is easy to show that there exists a
Galois connection between the domains Intv and P(Z) (see e.g., [4, 8, 10]), and thus the
approximation is safe, given the abstraction function αint(Z) = [min(Z),max(Z)] and the
concretisation function γint([z1, z2]) = {z ∈ Z | z1 ≤ z ≤ z2}.

3.2 A Parallel Programming Language
The analysis will be based on the parallel programming language defined in Fig. 1, which is
a set of operations using the discussed architectural features. P ∈ Prg denotes a program,
which simply is a number of threads, denoted by T ∈ Thrd. A thread is a pair of a
statement, s ∈ Stm, and a unique identifier, N ∈ ThrdID. This makes every thread unique
and distinguishable from other threads, even if several threads contain the same statement.
To increase the readability of the semantics, it will be assumed that the axiom-statements (all
statements except the sequentially composed statement, s1;s2) of each thread are uniquely
labelled with consecutive labels, l ∈ Lbl, and stored in an array-like fashion in ascending order
of their labels. a ∈ Aexp and b ∈ Bexp denote an arithmetic and a boolean expression,
respectively, n ∈ Val is an integer value, and lck ∈ Lck denotes a lock. Locks can be
acquired in a mutually exclusive manner using lock and released using unlock. Values can
be transferred between variables and registers using load and store. Conditional branching
is performed using if, a register is assigned a value using :=, a no-operation is performed
using skip, and halt stops the execution of the issuing thread. The arithmetical, boolean
and relational operators are self-explanatory and will not be discussed further.

The semantics of the language is formally defined in Fig. 2 (individual axiom statements)
and 3 (system of threads). x ∈ Var → Thrd → P(Val × Time), l ∈ Lck → (Lckstt ×
Thrd ∪ {⊥thrd}), where Lckstt = {unlocked, locked}, and t ∈ Time are the states for
variables and locks, and the current time. For each thread, T , in the program, there is also
pcT ∈ LblT , rT ∈ RegT → Val, tr

T ∈ Time and ta
T ∈ Time, which are the states of the

program counter and registers of T , the relative execution time of T ’s active statement,
stm(T , pcT), and the accumulated execution time for T , respectively. The tuple collecting
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∀T ∈ Thrdexe : 〈T , pcT , rT ,x, l
′′, ta

T
′〉−−→

ax
〈pc′

T , r
′
T ,x

′
T , l

′
T〉

〈{(T , pcT , rT , tr
T , ta

T ) | T ∈ Thrd},x, l, t〉−−→
prg

〈{(T , pc′
T , r

′
T , tr

T
′, ta

T
′) | T ∈ Thrd},x′, l′, t′〉

where

tr
T

′ =
{

finTime(〈{(T , pcT , rT , tr
T , ta

T ) | T ∈ Thrd},x, l, t〉,T) if t = ta
T

tr
T otherwise

t′ = min({ta
T + tr

T
′ | T ∈ Thrd})

ta
T

′ =
{

ta
T + tr

T
′ if t′ = ta

T + tr
T

′

ta
T otherwise

Thrdexe = {T ∈ Thrd | t′ = ta
T

′}

(x′ x) T =


{

(x′
T x) T

∅
for some T ∈ Thrdexe : ∃r ∈ RegT : stm(T , pcT ) = [store r to x]pcT

for T ′ ∈ Thrd \ {T}, if such a T exists
(x x) T otherwise

l
′′ lck =

(unlocked,T) for some T ∈ Thrdexe : stm(T , pcT ) = [lock lck]pcT , if such
T exists, stt(l lck) = unlocked and own(l lck) = ⊥thrd

l lck otherwise

l
′ lck =

l
′
T lck for some T ∈ Thrdexe : (stm(T , pcT ) = [unlock lck]pcT ∨

(own(l′′ lck) = T ∧ stm(T , pcT ) = [lock lck]pcT )), if such T exists
l lck otherwise

Figure 3 Semantics of concrete program transitions: 〈Ts,x, l, t〉−−→
prg
〈Ts′,x′, l′, t′〉.

T1

T2

T3

4 8 12 timet t′

ta
T3

ta
T2

ta
T1

ta
T3 + tr

T3
′

ta
T2 + tr

T2
′

ta
T1 + tr

T1
′

(a) c1: Thrdexe = {T2,T3}

T1

T2

T3

4 8 12 timet t′

ta
T3

ta
T2

ta
T1

ta
T3 + tr

T3
′

ta
T2 + tr

T2
′

ta
T1 + tr

T1
′

(b) c2: Thrdexe = {T1,T3}

Figure 4 Illustration of how Thrdexe is determined (c1−−→
prg

c2).

all these states will be referred to as a configuration, c, i.e., c = 〈{(T , pcT , rT , tr
T , ta

T ) | T ∈
Thrd},x, l, t〉. Note that states are updated on transitions, i.e., when pc is updated.

The state for locks keeps track of the state and owner of each lock. The owner is ⊥thrd if
no thread currently has the lock acquired. The state for registers of thread T simply keeps
track of the current value of each register within T . The state for variables is not as intuitive.
To be precise, the abstraction of the state for variables will need to save write history, i.e.,
what abstract writes (a pair of value and time) have been performed by each thread on each
variable (see Section 3.3). Therefore, to derive a Galois connection (and hence implicitly get
a safe approximation), the concrete state for variables has to be defined accordingly. In the
concrete semantics, only one single write is saved for each variable, though. This write is
non-deterministically chosen from one of the threads, if any, writing the variable at any given
point in time (see Fig. 3). R is defined to return the value of the saved write (see Fig. 2).
A : Aexp → (Reg → Val) → Val and B : Bexp → (Reg → Val) → Bool evaluate

arithmetic and boolean expressions, respectively, given a particular register state. The details
of these functions are straightforward and can be found in [8]. finTime is assumed to be
provided by a timing-model of the underlying hardware. It should return a relative execution
time for the statement of thread T , i.e., stm(T , pcT ), based on the current system state. The
set of threads to execute, Thrdexe, is determined based on t, tr ′ and ta. It simply consists
of the threads that will update their pc:s at the nearest point in time, t′. An illustration of
how tr

T
′, ta

T , t and t′ are used to determine Thrdexe is given in Fig. 4. For the arbitrary
configuration c1 in Fig. 4a, t′ = 6 and hence Thrdexe = {T2,T3}. For c2 (note that c1−−→prg

c2)
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stm(T , pc) 〈pc′, r̃′, x̃′, l′〉 Condition

[halt]pc 〈pc, r̃, x̃, l〉 −
[skip]pc 〈pc + 1, r̃, x̃, l〉 −
[r := a]pc 〈pc + 1, r̃[r 7→ Ã[[a]]r̃], x̃, l〉 −

[load r from x]pc 〈pc + 1, r̃[r 7→ read(x̃, x,T , t̃)] x̃, l〉 −
[store r to x]pc 〈pc + 1, r̃,write(T , x̃, x, (r̃ r, t̃)), l〉 −
[if b goto l]pc 〈pc + 1, B̃R[[!b]]r̃, x̃, l〉 B̃R[[!b]]r̃ 6= ⊥̃reg

[if b goto l]pc 〈l, B̃R[[b]]r̃, x̃, l〉 B̃R[[b]]r̃ 6= ⊥̃reg

[lock lck]pc 〈pc, r̃, x̃, l〉 own(l lck) 6= T
[lock lck]pc 〈pc + 1, r̃, x̃, l[lck 7→ (locked,T)]〉 own(l lck) = T

[unlock lck]pc 〈pc + 1, r̃, x̃, l[lck 7→ (unlocked,⊥thrd)]〉 −
where B̃R[[b]]r̃ = αreg({r ∈ γreg(r̃) | B[[b]]r})

Figure 5 Semantics of abstract axiom transitions: 〈T , pc, r̃, x̃, l, t̃〉−̃−→
ax
〈pc′, r̃′, x̃′, l′〉.

in Fig. 4b, t′ = 10 and hence Thrdexe = {T1,T3}.
The behaviour of locks needs to be explained. Assume that some threads in Thrdexe

execute a lock-statement on some lock, lck, and that lck is unlocked in the given configuration.
In the resulting configuration, stt(l′ lck) = locked and the owner will be one of the threads
that tried to acquire lck. The chosen thread is given by own(l′′ lck); note that l′′ is only used
to control the behaviour of the rules for lock in Fig. 2. This thread will have incremented
its pc and thus moved on to executing its next statement. All other threads that tried to
acquire lck will again try to acquire lck since their pc:s are not changed. Note that the latter
would also be the case for all threads in Thrdexe that try to acquire an already locked lock
that is not owned by themselves. Also note that a thread who owns a lock is allowed to
repeatedly acquire this lock any number of times.

3.3 Abstractly Interpreting the Language Semantics
First, it must be decided what parts of the system state to interpret in an abstract way. To
allow for the hardware timing-model to be abstracted as well, Time will be approximated
using the interval domain, i.e., Tim̃e = Intv. This approach is also taken by Chattopadhyay
et al. [1] to approximate the execution time of pipeline stages in order to deal with timing
anomalies in multicore platforms. Val will also be abstracted using intervals, i.e., Vãl = Intv,
to allow for an efficient handling of data flow. Since Thrd, Lbl, Var, Reg, Lck, Aexp
and Bexp are defined by the software, it does not make any sense to abstract them for the
defined analysis (see Section 3.4). And, since Lckstt is comparable to Bool, an abstraction
of it would not be very beneficial. The states implicitly affected by the abstractions of
Time and Val are r, x, tr , ta, t, and thus c. The abstraction of these will be referred
to as r̃, x̃, t̃r, t̃a, t̃ and c̃, respectively. In [8], it is shown that Galois connections (with
the corresponding abstraction and concretisation functions) can be established between the
concrete and abstract domains for these states, and thus, that the approximations are safe.
It is also shown that the abstract axiom transition rules (including the abstract version of A,
i.e., Ã) in Fig. 5 are safe approximations of the concrete rules in Fig. 2, and that the boolean
restriction function, B̃R, is safe. Note that the concretisation of B̃R[[b]]r̃ will always contain
(at least) the concrete stores, derived from r̃, in which b evaluates to true.

x̃ ∈ Var→ Thrd→ P(Vãl×Tim̃e) can save any number (i.e., the history) of abstract
writes, w̃ ∈ Vãl × Tim̃e, for each thread that occur on some variable. This is done to
increase the precision in the analysis, since then, sequence (within each thread) and timing
information (between threads) can be used to get a tight value when reading a variable.
write(T , x̃, x, w̃) is thus defined to simply add the write, w̃, to the set of write-history for
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T1

T2

t̃1 t̃2 time
Figure 6 The time-stamps of the writes considered by read(x̃, x,T1, t̃1) and read(x̃, x,T2, t̃2).

∀T ∈ Thrdexe : 〈T , pcT , r̃T , x̃, l
′′, t̃a

T
′〉−̃−→

ax
〈pc′

T , r̃
′
T , x̃

′
T , l

′
T〉

〈{(T , pcT , r̃T , t̃r
T , t̃a

T ) | T ∈ Thrdc̃}, x̃, l, t̃〉 ˜−−→
prg

〈{(T , pc′
T , r̃

′
T , t̃r

T
′, t̃a

T
′) | T ∈ Thrdc̃}, x̃′, l′, t̃′〉

where

t̃r
T

′ =
{

AbsFinTime (〈{(T , pcT , r̃T , t̃r
T , t̃a

T ) | T ∈ Thrdc̃}, x̃, l, t̃〉,T) if t̃ ũt t̃a
T 6= ⊥̃t

t̃r
T otherwise

t̃′ = αt({tmin, tmax}) where tmin = min{min(γt(t̃a
T +t t̃r

T
′)) | T ∈ Thrdc̃}

tmax = min{max(γt(t̃a
T +t t̃r

T
′)) | T ∈ Thrdc̃}

t̃a
T

′ =
{

t̃a
T +t t̃r

T
′ if t̃′ ũt(t̃a

T +t t̃r
T

′) 6= ⊥̃t

t̃a
T otherwise

Thrdexe = {T ∈ Thrdc̃ | t̃′ ũt t̃a
T

′ 6= ⊥̃t}
(x̃′ x) T = (x̃′

T x) T
l

′′ lck = . . . (same as in Fig. 3)
l

′ lck = . . . (same as in Fig. 3)

Figure 7 Semantics of abstract program transitions: 〈T̃s, x̃, l, t̃〉−−→
prg
〈T̃s′, x̃′, l′, t̃′〉.

thread T , i.e., to ((x̃ x) T ). Using the sequence and timing information, read(x̃, x,T , t̃) is
defined to only take the writes that might be valid at t̃ (the point in time when T issues the
read) into consideration for its returned value ṽ ∈ Vãl. These writes, w̃ = (ṽ′, t̃′), come
from two categories. The first category covers the writes on x for threads T ′ 6= T whose
“time-stamps” overlap in time with t̃, i.e., t̃ ũt t̃′ 6= ⊥̃t. The second category covers the most
recent write on x for all threads (including T) such that its time-stamp overlaps with the
overall most recent write of any write, not belonging to the first category. Note that any
write for thread T with a time-stamp that begins after the beginning of t̃ is discarded. So is
any write for T ′ 6= T such that its time-stamp completely succeeds t̃. This is because such
writes can simply not have occurred at the time of the read (and will thus usually not be
included in x̃ at all). An illustration of the time-stamps of the writes on x, by some threads
T1 and T2, stored in x̃, that must be considered by read(x̃, x,T1, t̃1) (lines with arrow heads
pointing left) and read(x̃, x,T2, t̃2) (lines with arrow heads pointing right) is given in Fig.
6. The returned value, ṽ, is the least upper bound of the values of the considered writes.

The abstract transition rule for program configurations in Fig. 7 is an approximation
of the concrete rule in Fig. 3. The abstract rule now defines a window in time, t̃′, that
determines which threads are included in Thrdexe. The window reaches from the earliest
point in time when some thread might update its pc, to the earliest point in time when some
pc must be updated. AbsFinTime is assumed to be a safe approximation of finTime.

The abstract rule in Fig. 7 is a safe approximation of the concrete rule in Fig. 3 only
if some certain conditions are met. It is safe given that |Thrdc̃| = 1, or if a load-,
lock- or unlock-statement is not executed by any thread in Thrdexe [8]. This is easy
to see since if these conditions are met, the threads in Thrdexe execute independently
from each other. If some thread in Thrdexe would execute for example a load-statement,
dependencies are introduced between the threads, and the read function could return a
value for which all possible writes have not been taken into account. Let’s assume that
Thrdexe = {T1,T2}, stm(T1, pcT1) = [load r from x]pcT1 , stm(T2, pcT2) = [skip]pcT2
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1: function abstractExecution(c̃, t̃to)
2: workset ← {c̃}, finalset ← ∅
3: repeat
4: c̃@〈{(T , pcT , r̃T , t̃r

T , t̃a
T ) | T ∈ Thrdc̃}, x̃, l, t̃〉 ← choose(workset)

5: workset ← workset \ {c̃}
6: if isTimeout(c̃, t̃to) ∨ isFinal(c̃) then
7: finalset ← finalset ∪ {c̃}
8: else
9: Thrdload ← loadThrd(c̃)
10: if Thrdload 6= ∅ ∧ |Thrdc̃| > 1 then
11: for all T ′ ∈ Thrdload do
12: t̃r

T′
′ ← AbsFinTime(c̃,T ′)

13: x← getVarLoad(stm(T ′, pcT′ )), r ← getRegLoad(stm(T ′, pcT′ ))
14: ṽ ← ⊥̃val, c̃′ ← 〈{(T , pcT , r̃T , t̃r

T , t̃a
T ) | T ∈ Thrdc̃ \ {T ′}}, x̃, l, t̃〉

15: C̃f
T′ ← abstractExecution(c̃′, (t̃a

T′ +t t̃r
T′

′) ũt t̃to)
16: for all 〈T̃s, x̃′, l′, t̃′〉 ∈ C̃f

T′ do
17: ṽ ← ṽ t̃val read(x̃′, x,T ′, t̃a

T′ +t t̃r
T′

′)
18: end for
19: pc′

T′ ← pcT′ + 1, r̃
′
T′ r′ ←

{
ṽ if r = r′

r̃T′ r′ otherwise
20: end for
21: c̃′ ← 〈{(T , pcT , r̃T , t̃r

T , t̃a
T ) | T ∈ Thrdc̃ \Thrdload} ∪

{(T , pc′
T , r̃

′
T , t̃r

T
′, t̃a

T +t t̃r
T

′) | T ∈ Thrdload}, x̃, l, t̃〉
22: workset ← workset ∪ {c̃′}
23: else
24: C̃ ← {c̃′ | c̃ ˜−−→

prg
c̃′}

25: C̃′ ← {〈T̃s,trim(x̃, t̃), l, t̃〉 | 〈T̃s, x̃, l, t̃〉 ∈ C̃}
26: workset ← workset ∪ C̃′

27: end if
28: end if
29: until workset = ∅
30: return finalset
31: end function

Figure 8 An algorithm for abstract execution.

and stm(T2, pcT2 + 1) = [store r′ to x]pcT2 +1. When a transition occurs, the load- and
skip-statements are considered. However, if the execution time of the store-statement (the
abstract “point” in time when the thread’s pc is updated) overlaps with the execution time
of the load-statement, the resulting value of r in T1 should be affected by the value of r′ in
T2, but this will not be the case. A similar reasoning holds for lock- and unlock-statements.

3.4 Analysis by Abstract Execution
Since the abstract transition rule, ˜−−→

prg
, of Fig. 7 is not safe, one cannot simply use fixpoint-

iterations [4, 10] on the abstract semantic rules to find a safe approximation to the concrete
program semantics. Instead, a worklist algorithm will be defined that uses ˜−−→

prg
in a safe

way and handles the unsafe cases explicitly. The function abstractExecution in Fig. 8
defines such an algorithm; the ‘@’ symbol is used for denoting two ways of expressing the
same thing (c.f., the “read as” operator in Haskell). Given a configuration, c̃, and a timeout,
t̃to, the function explores all the possible abstract transitions, until only final (all threads are
standing on a halt-statement) and timed-out (all threads will update their pc:s at a point in
time succeeding t̃to) configurations remain. The function returns a set containing all the final
and timed-out configurations. If a configuration is not final or timed-out, a transition will be
performed. The threads executing load-statements are extracted and handled separately.
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thread T_1: thread T_2: thread T_3:
[load r from x]1;[1 ,5] [load r from y]1;[1 ,6] [if r <=3 goto 3]1;[1 ,3]
[store r to y]2;[1 ,3] [store r to z]2;[2 ,3] [store r to x]2;[2 ,3]
[halt ]3 [halt ]3 [halt ]3

Figure 9 Example program.

This is done by recursively using abstractExecution for each such thread to simulate
how the rest of the threads in the configuration can affect the read value. When the effects
have been derived, they are merged and put in the target register for the thread that issues
the load -statement. Next, a new configuration, in which the load:s have been performed, is
added to the worklist. Note that trim is used to remove parts of the history from x̃ that
cannot affect a load-statement in any thread at time t̃. This is to lower the space complexity
of abstractExecution. Further details on the algorithm, definitions of the used functions
and correctness proofs can be found in [8]. Note that this algorithm cannot safely analyse
programs acting on locks. The algorithm will be extended with this ability (see Section 5).

Assuming that abstractExecution has been applied to some c̃ and that t̃to = [0,∞],
safe bounds on the corresponding concrete BCET and WCET can be extracted from the
resulting set of configurations (details can be found in [8]).

4 Example
In this section, the program in Fig. 9 is analysed (the results of AbsFinTime are given after
the non-halt-statements). Initially, let c̃ = 〈{(T1, 1, r̃T1 , [0, 0], [0, 0]), (T2, 1, r̃T2 , [0, 0], [0, 0]),
(T3, 1, r̃T3 , [0, 0], [0, 0])}, x̃, l, [0, 0]〉, where r̃T3 r = [2, 4], ((x̃ x) T2) = ((x̃ x) T3) = ∅ and
((x̃ x) T1) = {([1, 1], [0, 0])}, ((x̃ y) T1) = ((x̃ y) T2) = ∅ and ((x̃ y) T3) = {([5, 5], [0, 0])},
and ((x̃ z) T2) = ∅, is analysed. abstractExecution(c̃, [0,∞]) is summarised in Fig. 10.

The tuples in the chart represent program points, defined as 〈pcT1 , pcT2 , pcT3〉. As can
be seen, for 〈1, 1, 1〉, T1 and T2 both execute a load-statement. This means that two new
instances of abstractExecution are created, one for each thread in Thrdload. Within
each of these instances, a new instance is created since one other thread also executes a
load-statement. A ‘_’ within the tuple indicates that the corresponding thread is removed
from the configuration to evaluate the effects it might see. Next to each tuple and transition
arrow, there is a comment stating what happens at the corresponding step. The found
bounds on the BCET and WCET are 3 and 9, respectively. Note that AbsFinTime is
assumed to be defined somewhere outside the scope of this paper. Also note that programs
containing loops can be analysed, but due to space reasons, this is not illustrated here.

5 Discussion & Future Work
The algorithm in Fig. 8 is based on synchronously advancing the threads of a program
between their respective program points. This, together with the defined abstract domain for
variables, has the advantage that the analysis result will be the same as for the sequential case
[6], when P = T . Another advantage is that the complexity of the algorithm becomes more
dependent on the number of program points than on the timing behaviour of the program.
To further reduce the time complexity of the algorithm, merging of configurations could be
performed. Using the control flow graph (CFG) of the program, suitable merge-points within
each thread can be found [5]. Typically, such points have multiple incoming edges.

A drawback for the algorithm in Fig. 8 is that termination is not guaranteed if a program
consists of infinite loops. This could be resolved by adjusting the initial timeout, though.

Our current focus is to extend the algorithm to support programs using locks and then to
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abstractExecution(c̃, [0,∞])
〈1, 1, 1〉 Thrdload = {T1,T2}, t̃r

T1 = [1, 5], t̃r
T2 = [1, 6], t̃r

T3 = [1, 3]

abstractExecution(c̃1, [1, 5])
〈_, 1, 1〉 Thrdload = {T2}, t̃r

T2 = [1, 6], t̃r
T3 = [1, 3]

abstractExecution(c̃1.2, [1, 5])
〈_,_, 1〉 Thrdload = ∅
↙ ↓ r̃T3 r← [2, 3] (B̃R[[r <= 3]]r̃T3 6= ⊥̃reg)
↓ 〈_,_, 3〉 final (t̃a

T3 = [1, 3]), no effects
↘ r̃T3 r← [4, 4], t̃a

T3 ← [1, 3] (B̃R[[!(r <= 3)]]r̃T3 6= ⊥̃reg)
〈_,_, 2〉 Thrdload = ∅, t̃r

T3 = [2, 3]
↓ ((x̃ x) T3)← {([4, 4], [3, 6])}

〈_,_, 3〉 final (t̃a
T3 = [3, 6]), x affected

↓ r̃T2 r← [5, 5] (no effects on y from T3), t̃a
T2 ← [1, 6]

〈_, 2, 1〉 Thrdload = ∅, t̃r
T2 = [2, 3], t̃r

T3 = [1, 3]
↙ ↓ r̃T3 r← [2, 3], ((x̃ z) T2)← {([5, 5], [3, 9])},
↓ 〈_, 3, 3〉 final (t̃a

T2 = [3, 9], t̃a
T3 = [1, 3]), z affected

↘ r̃T3 r← [4, 4], ((x̃ z) T2)← {([5, 5], [3, 9])}, t̃a
T2 ← [3, 9], t̃a

T3 ← [1, 3]
〈_, 3, 2〉 Thrdload = ∅, t̃r

T3 = [2, 3]
↓ ((x̃ x) T3)← {([4, 4], [3, 6])}

〈_, 3, 3〉 final (t̃a
T2 = [3, 9], t̃a

T3 = [3, 6]), x and z affected

abstractExecution(c̃2, [1, 6])
〈1,_, 1〉 Thrdload = {T1}, t̃r

T1 = [1, 5], t̃r
T3 = [1, 3]

abstractExecution(c̃2.1, [1, 5])
〈_,_, 1〉 Thrdload = ∅
↙ ↓ r̃T3 r← [2, 3]
↓ 〈_,_, 3〉 final (t̃a

T3 = [1, 3]), no effects
↘ r̃T3 r← [4, 4], t̃a

T3 ← [1, 3]
〈_,_, 2〉 Thrdload = ∅, t̃r

T3 = [2, 3]
↓ ((x̃ x) T3) = {([4, 4], [3, 6])}

〈_,_, 3〉 final (t̃a
T3 = [3, 6]), x affected

↓ r̃T1 r← [1, 4] (effects on x from T3), t̃a
T1 ← [1, 5]

〈2,_, 1〉 Thrdload = ∅, t̃r
T1 = [1, 3], t̃r

T3 = [1, 3]
↙ ↓ r̃T3 r← [2, 3], ((x̃ y) T1)← {([1, 4], [2, 8])},
↓ 〈3,_, 3〉 final (t̃a

T1 = [2, 8], t̃a
T3 = [1, 3]), y affected

↘ r̃T3 r← [4, 4], ((x̃ y) T1)← {([1, 4], [2, 8])}, t̃a
T1 ← [2, 8], t̃a

T3 ← [1, 3]
〈3,_, 2〉 Thrdload = ∅, t̃r

T3 = [2, 3]
↓ ((x̃ x) T3)← {([4, 4], [3, 6])}

〈3,_, 3〉 final (t̃a
T1 = [2, 8], t̃a

T3 = [3, 6]), x and y affected
↓ (T1 sees effects on x and z, and T2 sees effects on x and y.)
↓ r̃T1 r← [1, 4], r̃T2 r← [1, 5], t̃a

T1 ← [1, 5], t̃a
T2 ← [1, 6]

〈2, 2, 1〉 Thrdload = ∅, t̃r
T1 = [1, 3], t̃r

T2 = [2, 3], t̃r
T3 = [1, 3]

↙ ↓ r̃T3 r← [2, 3], ((x̃ y) T1)← {([1, 4], [2, 8])}, ((x̃ z) T2)← {([1, 5], [3, 9])}
↓ 〈3, 3, 3〉 final (t̃a

T1 = [2, 8], t̃a
T2 = [3, 9], t̃a

T3 = [1, 3]), y and z affected
↘ r̃T3 r← [4, 4], ((x̃ y) T1)← {([1, 4], [2, 8])}, ((x̃ z) T2)← {([1, 5], [3, 9])}
〈3, 3, 2〉 Thrdload = ∅, t̃r

T3 = [2, 3]
↓ ((x̃ x) T3)← {([4, 4], [3, 6])}

〈3, 3, 3〉 final (t̃a
T1 = [2, 8], t̃a

T2 = [3, 9], t̃a
T3 = [3, 6]), x, y and z affected

Figure 10 The steps taken by abstractExecution when analysing the program in Fig. 9.
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implement and evaluate it. Allowing the use of locks introduces a risk for deadlocks (both in
the analysed program and thus the algorithm). However, deadlocks could easily be detected
and handled by the algorithm, because all threads, not standing on a halt-statement, would
be waiting to acquire a lock that is locked and not owned by themselves. Thus, this detection
allows termination of the analysis (with a resulting WCET of ∞) even if deadlocks occur.
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Abstract
Future embedded systems for performance-demanding applications will be massively parallel.
High performance tasks will be parallel programs, running on several cores, rather than single
threads running on single cores. For hard real-time applications, WCETs for such tasks must be
bounded. Low-level parallel programming models, based on concurrent threads, are notoriously
hard to use due to their inherent nondeterminism. Therefore the parallel processing community
has long considered high-level parallel programming models, which restrict the low-level models
to regain determinism. In this position paper we argue that such parallel programming models
are beneficial also for WCET analysis of parallel programs. We review some proposed models,
and discuss their influence on timing predictability. In particular we identify data parallel pro-
gramming as a suitable paradigm as it is deterministic and allows current methods for WCET
analysis to be extended to parallel code. GPUs are increasingly used for high performance ap-
plications: we discuss a current GPU architecture, and we argue that it offers a parallel platform
for compute-intensive applications for which it seems possible to construct precise timing models.
Thus, a promising route for the future is to develop WCET analyses for data-parallel software
running on GPUs.
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Keywords and phrases Real-Time System, WCET analysis, Parallel Program, Data Parallelism

Digital Object Identifier 10.4230/OASIcs.WCET.2012.48

1 Introduction

There is an ever growing need for advanced functionality in embedded systems. As hardware
becomes more capable, new intelligent applications will emerge: some possible examples are
real-time image processing and object recognition, multiple-sensor information fusion, and
online spectral analysis for state-based maintenance. Some of these applications will have
hard real-time constraints, and these constraints will then have to be verified. This requires
a WCET analysis for the involved tasks.

High performance hardware is today invariably parallel, as this is the only way to meet
the demands for computational power. A high performance task will also have to be a parallel
program, thus utilizing the available computational resources. This raises the issue how to
estimate the WCET of a parallel program, consisting of a number of cooperating threads
synchronizing and exchanging data in some manner.

WCET analysis of parallel programs has hardly been studied up to now. Preliminary
work on such a WCET analysis, for a simple language with parallel threads communicating
through a shared memory and synchronizing with locks, is reported in [8]. A conclusion to
be drawn from this work is that while it certainly is possible to define such an analysis, and
prove its soundness, there will be issues to handle. One issue is that, since the functional
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semantics of the program now may be dependent on the timing, due to race conditions, it
is no more possible to divide the analysis into a distinct program flow analysis, low-level
analysis, and final calculation: the calculation has to be intertwined with the other phases to
find the possible outcomes of race conditions, which may in turn affect the possible orders
of writes, or acquirements of locks. Another issue is that the potentially many possible
executions of such a program, especially in the presence of potential race conditions, may
make the precision of the analysis sensitive to approximations. An overapproximated timing
interval for a write, for instance, may introduce a “false” order of writes in the analysis that
may in turn affect the estimated value of, say, a loop counter. This can in turn yield a very
poor precision for the resulting WCET bound.

Thus, it is interesting to investigate programming models for parallel computers that avoid
the nondeterminism of low-level, thread-based models, and that provide a more structured
way to write parallel programs for high performance applications. Such models have been
studied in the parallel computing community for the last 25 years, for two reasons: they
provide easier and less error-prone programming, and they yield the possibility to attach
abstract cost (performance) models to the parallel programming constructs. Both properties
should be of interest also for embedded real-time software, in particular if the cost models
can be sharpened to safe timing models.

In this position paper we argue that some of these parallel programming models provide
a suitable parallel programming discipline for time-critical applications as well. In particular,
we review the data parallel model, and we show how it restricts the patterns of parallelism
in such a way that a WCET analysis can be done in a more or less traditional fashion if
timing models are provided for the parallel constructs in this model. We identify for which
constructs it may be problematic to find tight timing bounds – methods to find good bounds
for them is a target for future research. We conclude by indicating how the data parallel
constructs can be mapped to the CUDA Graphics Processing Unit (GPU) architecture.

The rest of the paper is organized as follows: in Section 2 we review the background:
present and expected future development in embedded parallel computing, and the problems
with unrestricted thread- and process based parallelism. Section 3 introduces the Bulk
Synchronous Parallel model [21], which allows cost models that are valid over a wide range of
parallel architectures, and in Section 4 we review the data parallel model and discuss timing
models for the typical data parallel primitives. Section 5 introduces GPUs, and NVIDIA’s
CUDA model, and in Section 6 we discuss how the data parallel primitives can be mapped
to CUDA. Section 7 provides a discussion of related work. In Section 8, finally, we conclude
the paper and present future work.

2 Background

At this moment, multi-core processors are conquering the world. Current multi-cores have
a traditional shared-memory architecture with a few cores sharing a common memory,
connected via a shared bus. This architecture works reasonably well performance-wise for
concurrent, independent tasks, or moderately parallel computing, but it does not scale since
the shared bus and memory quickly become bottlenecks. As we go for higher performance,
the number of cores will have to increase, distributed memory must be provided, and the
bus must be replaced by a Network-on-Chip (NoC) that provides a wider communication
channel. Tilera already offers general purpose many-cores with up to 100 cores, a distributed
cache, and a mesh network1.

1 http://www.tilera.com/products/processors
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Another strand of development is provided by GPUs. Originally designed to accelerate
graphics, they are now rapidly turning into parallel general-purpose computational co-
processors. We can expect them to be integrated on chip. Thus, a future processor
architecture may have one part that is a conventional multi-core, with a few, relatively
powerful processors, and a powerful computational co-processor with many relatively simple
cores, connected through a NoC, and with local memories at different levels.

Now consider a time-critical, computationally intensive application, implemented by a
parallel program, whose timing constraints must be verified. How can we obtain safe WCET
estimates? Current practice in high performance computing it to write parallel software with
explicit threads or processes, either using a shared memory, synchronizing through locks or
semaphores (Pthreads [1], OpenMP [4]) or distributed memory, with synchronization and
communication effectuated through message-passing (MPI [6]). Unfortunately such low-level
parallel programming models are inherently nondeterministic, and race conditions create
dependencies between timing and functional behaviour. This makes WCET analysis hard.
Consider, for instance, the following example with parallel threads T1 and T2, sharing the
variable n:

T1: p; n = 100000000; halt
T2; q; n = 10; for i = 1 to n do r; halt

Here, there is a potential race condition for the assignment to n. If we know that
WCET (p) = 150 and BCET (q) = 200, however, then T2 will always “win” and the loop will
always iterate ten times. But if an imprecise timing analysis yields a WCET bound for p
that is greater than the BCET bound for q, then the analysis must assume that the loop can
iterate 108 times. This example demonstrates that it is no more possible to perform a loop
bounds analysis separately from the timing bounds calculation.

If we add synchronization through locks, then an imprecise analysis might even falsely
detect deadlocks. If BCET (p) > WCET (q) below then no deadlock is possible, but again an
imprecise timing analysis might fail to verify this and must then assume that a deadlock can
occur.

T3: p; lock l; halt
T4; q; lock l; r; unlock l; halt

Also an imprecise program flow analysis might yield similar problems, like false deadlocks.
Consider the two threads below, sharing a barrier b:

T5: m = expr1; for i = 1 to n do { a; barrier(b); c }
T6; m = expr2; for i = 1 to m do { x; barrier(b); y }

Assume that expr1 amd expr2 are such that they always evaluate to the same value.
However, a value analysis may fail to detect this: a WCET analysis using the results from
that value analysis for its loop bounds analysis will then have to assume that there is a
possibility that one thread will attempt to execute its barrier statement one time more
than the other one which then would cause it to deadlock. Thus, the analysis will have to
assume that a deadlock might appear. (In fact, any loop bounds analysis that only detects
upper loop bounds will not be strong enough to prove absence of deadlock for this example.)

These examples may be a bit contrived, but they are constructed to make a point. In
reality, the kind of problems exemplified above may appear in much more subtle ways, in
seemingly unproblematic code. The conclusion is that timing analysis of parallel software
will be difficult as long as the programs are written on this level. To alleviate the problem,
more disciplined parallel programming practices are needed that eliminate race conditions
and the risk of deadlock.
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Figure 1 A BSP superstep (following [20]).

3 Bulk Synchronous Programming

Bulk Synchronous Programming (BSP) [20, 21] is a model for parallel computing allowing
some performance analyzability over a wide range of target parallel architectures. The
BSP model assumes a hardware model of components that are connected by a router (a
network). The components can be processors or memories, and part of the router can connect
single processors locally with memories: thus, the model covers both distributed memory
architectures as well as shared (global) memory architectures, possibly with the memory
structured into different memory banks.

BSP has a concept of virtual processors, where a physical processor in each computation
step will execute the instructions of several virtual processors. In each computation step, the
virtual processors execute independent tasks. To hide communication latencies it is assumed
that there are considerably more virtual processors than actual processors, i.e., that the
computation is massively parallel.

A BSP program executes in supersteps. In each superstep each component performs a
task consisting of an initial phase of local computation steps, followed by a communication
phase, followed by a final barrier synchronization. See Fig. 1.

The separation of computation, communication, and synchronization has some interesting
consequences for the performance analyzability. For the computation phase, it is easy to
estimate the execution time since the processors execute in an entirely local fashion. Similarly,
the execution time for barrier synchronization should be easy to bound. Also note that the
restriction to global barrier synchronization eliminates the risk of deadlock provided that all
local supersteps terminate.

The communication phase is the hardest to analyze, since its performance is very dependent
on the communication/access pattern, network topology, and distribution of processors and
memories. The BSP model assumes that the router has a permeability g such that if each
component (memory or processor) sends or receives at most h messages within a superstep,
then the time for the communication phase is O(gh). This assumption is easily violated
in real parallel systems due to hotspots and similar. But assuming random (or hashed)
distribution of data and computations such hotspots will be unlikely for a wide range of
network topologies, and the permeability model can be applied to average case complexity
calculations.

For WCET analysis it is clear that the separation into supersteps, with separate phases
for computation, communication, and synchronization, should be beneficial. If the time for
a superstep can be bounded, as well as the number of supersteps, then a coarse WCET
estimate can be found by multiplying these bounds. The most serious remaining hurdle is
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Elementwise application for all k in parallel do B[k] = f(A1[k],...,An[k])
Get communication for all k in parallel do X[k] = Y[G[k]]
Send communication for all k in parallel do X[G[k]] = Y[k]
Replication for all k in parallel do X[k] = Y
Masking for all k where B[k] in parallel do X[k] = ...k...
Reduce reduce(op, X) = X[0] op · · · op X[n − 1]
Scan scan(op, X) = [X[0], X[0] op X[1], . . . , X[0] op · · · op X[n − 1]]

Figure 2 Data parallel operations.

the communication phase, which will require a much more detailed analysis for bounding
the worst case tightly. Also, BSP does not preclude race conditions in this phase. Thus,
parallel programming models that provide more predictable and deterministic communication
primitives can be desirable from a timing analysis point of view.

4 The Data Parallel Programming Model

Data Parallel Programming is an instance of Collection-Oriented Programming [19], with roots
in APL [10]. Collection-oriented programming emphasizes programming with homogenous
data structures, such as arrays, lists, or sets. The core of the paradigm is a set of operations
that work directly on such structures rather than on the elements one by one. This has two
consequences: first, many loops can be replaced by such operations, rendering the programs
more succinct and easier to understand, and second these primitives often have highly
parallel implementations, with large numbers of small, independent computations. Thus,
collection-oriented languages are interesting candidates for programming parallel hardware.

Data parallel languages take the collection-oriented approach one step further by asso-
ciating each element in a data structure (often an array) with one virtual processor. The
implementation will then map the virtual processors to physical processors, creating a par-
tition of the data structure, and even effectuating a physical distribution in the case of a
distributed memory machine.

The data parallel primitives can be classified in six groups: elementwise application
applies a “scalar” function to each element in a data structure; get communication creates
a new data structure by reading (pulling) each element from a source location in another
data structure; send communication does likewise, but by sending (pushing) each element
to a destination; replication creates a data structure whose elements are copies of a “scalar”
value; masking will select part of a data structure for computation, using a boolean mask;
reduce, and scan, finally, are generalized “sums” (or arrays of partial sums) where a binary,
associative operator is successively applied to all elements in a data structure. See Fig. 2
for an informal definition, using a “for all . . . in parallel do” syntax ranging over all
virtual processors of the data structures.

If the elementwise applied functions are side effect-free, then all data parallel operations
except send communication are deterministic. (For send communication there are write
conflicts if G[k] = G[k’] for some k 6= k’: however, if G specifies a permutation then this
operation is also deterministic.) Thus, a deterministic language that is extended with data
parallel operations is still deterministic (with the small proviso above).

It follows that a sequential language extended with data parallel primitives allows a
conventional WCET analysis, with separate flow- and low-level analysis and calculation
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phases, provided that the execution times for the data parallel operations can be bounded.
The timing bounds for the data parallel operations will depend strongly on how well the

pattern of communication for an operation matches the communication capabilities of the
network. This pattern in turn depends strongly on how the memory is organized, and how
data is allocated in memory. Assume there are n virtual processors being executed on k

physical processors. If communication can be done in unit time, then the execution time
for elementwise application is O(n/k) since the individual applications can be done in any
order, on any processor. This bound will hold in particular if the data accessed by each
virtual processor already resides in local memory for its physical processor. Under similar
conditions reduce and scan can be done in O(n/k + log k) time, given that the network
provides efficient support for tree-balanced summation. Masking will not add more than a
small constant cost, and can be implemented for instance with predicated instructions. The
remaining operations all concern general communication, for which a more detailed analysis
of the actual access and communication patterns will be needed to bound the execution time
reasonably well. However data parallel languages tend to offer specialized communication
primitives, like array shifts, which provide efficient and predictable communication on a wide
range of parallel hardware. For such primitives it will be easier to find tight timing bounds,
and a parallel program that can use them instead of the general communication operations
will likely be more timing predictable.

As for BSP, the strict division into communication, computation, and synchronization
helps formulating the timing models. The data parallel paradigm has the additional advantage
that it provides a set of distinct deterministic parallel operations: this helps timing analysis
since timing bounds for these operations can be used directly in a conventional WCET
calculation.

5 GPUs: the CUDA Model

GPUs have rapidly emerged as computational co-processors that provide high performance
computing capabilities at low cost. A GPU is typically designed to run many similar,
independent threads at high speed, using massive parallelism (up to hundreds of cores). It
will have several levels of local memory, distinct from the host memory. Data is moved from
host to local memory, and between different levels of local memory, by explicit operations.
The host will issue jobs, consisting of a number of threads to execute to completion, to the
GPU. The jobs can either block the host until completion, or allow that the host continues
to execute concurrently.

Two rather similar application programming interfaces have emerged for GPUs: OpenCL,
and NVIDIA’s CUDA [14]. Both also provide a computation model. We now review CUDA
and we also discuss briefly the current underlying execution model for NVIDIA GPUs.

The basic units of execeution in CUDA are threads. The threads are grouped into thread
blocks. A multithreaded CUDA program logically specifies a number of thread blocks: these
are then scheduled in some unspecified, possibly parallel order on the GPU cores, where
the execution of a thread block is done by executing its threads on a single core in some
unspecified, possibly interleaved order. If there are no dependencies between the threads in
a set of thread blocks, then the semantics will be independent of the order in which they
are executed. This yields considerable flexibility in how thread blocks are executed, and the
execution can easily adapt to the number of available cores in the GPU.

A thread within a block has a local unique ID within that block, and the block itself has
a global unique ID: both can be accessed by the thread, and thus it can decide, e.g., which

WCET’12



54 Towards Parallel Programming Models for Predictability

part of an array that it will work on.
There is no synchronization available between thread blocks. Threads within a block can,

however, synchronize through local barriers.
CUDA has a memory hierarchy, with memory at different levels of locality. Each thread

has its own private memory. Each thread block has shared memory, with the same lifetime
as the block, which is visible to all the threads in the block: variables residing in this memory
are explicitly declared. There is also global, shared memory visible in all thread blocks. Local
shared memory can be expected to be much faster than global shared memory. Furthermore,
the CUDA model assumes that the GPU executes as co-processor to a host, and that their
memories are distinct. Transfers between host and co-processor memory are done explicitly,
through calls to the CUDA runtime system. A thread executing on the co-processor can only
access memory that is located on that processor: data to be processed thus has to be copied
from the host to the co-processor, and results must be copied back.

CUDA C extends C with kernels. These are C functions for which, when called, N

instances are executed in parallel in N different CUDA threads. A special call to the kernel
will issue the execution of the threads on the GPU.

A CUDA C program will alternatingly execute in sequential and parallel phases. In a
sequential phase, the C program is executing as usual on the host. A call to a kernel invokes
a parallel phase where the kernel is executed in parallel, in a number of thread blocks, on the
co-processor (the GPU). When the kernel call returns, the sequential execution will resume.

Under some circumstances the co-processor can execute concurrently with the host.
Control is then returned to the host before the call has completed. This includes asynchronous
kernel calls, and certain memory transfers.

NVIDIA’s underlying hardware architecture is called SIMT (Single-Instruction, Multiple-
Thread), and it can be seen as a hybrid of SIMD and MIMD with separate threads but
strong coherence locally between their execution. Threads are executed on a scalable array
of multithreaded Streaming Multiprocessors (SMs). The execution of threads is organized
in groups of 32 threads called warps. A number of warps will make up a thread block. All
threads in a warp will execute on the same SM: they will start at the same address, but they
have their own program counters. Threads in a warp can therefore take different execution
paths through the code. However, different threads in a warp can execute simultaneously
only if they execute the same instruction: thus, diverging threads will force the warp to
execute the instructions on each path separately, disabling threads that are not on that path.
This can affect the performance very adversely. Instructions can be predicated, though.

The warps are scheduled by a warp scheduler. This scheduler will always pick a warp
with an instruction ready to execute, if available. Since there typically will be considerably
more warps than cores to execute them on, this will help mask the memory latencies as it
allows memory fetches issued by instructions to complete in parallel with instructions for
other warps being executed.

The current SM cores have a fairly simple architecture: instructions are pipelined, but
they are executed in order and there is no branch prediction or speculative execution. Each
SM has a set of registers, and local memory partitioned among the thread blocks: on some
GPU models this is a partitioned cache, whereas for others it is explicitly addressed. A GPU
also has global memory that is shared among the SMs.

The conclusion is that overall, the NVIDIA architecture with the CUDA model should
be quite amenable to timing analysis. The processors are simple. Memory access times
vary strongly with the degree of locality, but for the most part it is explicit which part
of memory is being accessed. GPU models with local caches will need a cache analysis,
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though. Although threads are executed concurrently, it is done in a very controlled fashion.
Also the interaction with the host is very explicit, with calls for submitting kernels and
transferring memory contents. Overlaps in execution between GPU and host should be
possible to estimate. Finally, since the GPU executes requests in sequence there will not be
the same competition for shared resources within the GPU, between unrelated activities, as
in a bus-based multi-core processor.

The largest sources of uncertainty seem to be (1) the fact that a warp can only execute
threads executing the same instruction in parallel, and (2) uncertainty about exactly how
the warps are scheduled. (1) will be alleviated if the executed kernels have a predictable,
indata-independent program flow: if not, then an analysis may have to assume that all 32
instances of the kernel in a warp will diverge, and thus must have their respective instructions
sequentially executed in each step. As for (2), uncertainties about warp scheduling means
that it will be harder to estimate the overlaps between warp execution and memory fetches.

6 Mapping Data Parallel Primitives to GPUs

It should be evident from the preceding discussion that data parallel programming and
GPUs is a good match. GPUs are designed to execute a large number of similar threads,
executing in the same fashion with little or no synchronization, in parallel. The data parallel
operations described in Section 4 can be implemented by such threads. For elementwise
applied operations this is obvious. Parallel read operations, and replication, can also be
implemented by threads reading data to local shared memory, and parallel writes will copy
data in parallel from local memories to global shared memory. Masking can be implemented
efficiently by predicated execution of instructions. A compiler can coalesce sequences of such
data parallel operations into kernel code implementing them on the GPU: these kernels will
execute efficiently and predictably since all threads will execute the same path. Operations
like reduce and scan, finally, also have efficient GPU implementations [18]. Thus, data parallel
languages implemented on GPUs should provide an interesting alternative for implementing
high performance applications with stringent timing constraints.

7 Related Work

Most work regarding WCET analysis for parallel systems concern single-threaded programs
running on single cores in multi-cores. Here, the challenge is to find tight WCET bounds
when different activities can compete for shared resources like buses and memories [2, 3]. A
common assumption is that the system bus uses TDMA to provide predicable bandwidth
for the different cores [17]. Various cache analyses have also been considered for multi-
cores [9, 11, 12].

Current multi-core architectures have poor timing predicability due to the presence of
shared resources under loose control. Principles for designing timing-predictable multi-core
hardware and software have been devised [22]. A multi-core architecture providing timing
predictability for hard real-time tasks was suggested in [15].

WCET analysis of parallel programs, running on parallel hardware, has not been much
studied. A case study using timed automata was reported in [7]. Another case study is found
in [16]. In [8], a general WCET analysis for parallel programs with threads, shared memory,
and locks is devised and its correctness is proved for the restricted class of programs that do
not use locks. This analysis integrates flow analysis and WCET calculation using abstract
execution in a manner similar to [5].

WCET’12



56 Towards Parallel Programming Models for Predictability

In [13], a simple cost model for a GPU program was estimated from measurements and
used in a subsequent WCET calculation. No systematic WCET analysis was defined, though.

8 Conclusions and Further Research

WCET analysis of parallel software can easily become very difficult. Sources of unpredict-
ability are shared hardware resources, providing channels for different activities to affect
each others’ timing, and low-level concurrent programming models that are inherently
nondeterministic.

We discuss the use of restricted parallel programming models to make parallel software
more amenable to timing analysis, with a focus on models for performance-demanding
real-time applications. Such models have been proposed in the past, as means to make
parallel programming easier and to allow general performance models. We review BSP and
data parallel programming, and we conclude that especially the latter provides a promising
model for writing timing-predictable parallel software.

We furthermore review a common current GPU architecture and computation model,
and conclude that it seems to provide a reasonably timing-predictable platform for high
performance computing applications. The combination of data parallel programming and
GPU execution seems especially interesting, since the data parallel primitives can be translated
into kernels that will make timing-predictable use of the streaming multiprocessors in the
GPUs.

A possible development of future hardware architecture is that we will see heterogenous
processors with a few general purpose multi-cores, and an on-chip massively parallel co-
processor, building on GPU technology, for computationally demanding applications. Already
now Broadcom offers the BCM2835 System-on-Chip with an ARM11 processor and a
Videocore 4 GPU. Such future processors will surely find their way into various embedded
real-time applications. This means that we will need timing analysis for these systems. In this
paper, we have laid out a path how to get there. However, other directions are also possible:
we may also see future many-core processors along the lines of the Tilera architecture, with
a large number of general purpose cores equipped with distributed memory and connected
by a NoC. The data parallel paradigm also provides good support for such architectures
due to its deterministic primitives, and their separation into primitives for computation and
communication. It seems likely that good timing models should be possible to develop for
these primitives also when implemented on such architectures.

Future work will include designing suitable timing models and low-level analyses for
future parallel architectures, and design WCET analyses that that can use these to provide
tight and safe WCET bounds.
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Abstract
Worst-case execution time analysis of multi-threaded software is still a challenge. This comes
mainly from the fact that the number of thread interleavings grows exponentially in the number
of threads and that synchronization has to be taken into account. In particular, a suitable
graph based model has been missing. The idea that thread interleavings can be studied with
a matrix calculus is a novel approach in this research area. Our sparse matrix representations
of the program are manipulated using Kronecker algebra. The resulting graph represents the
multi-threaded program and plays a similar role for concurrent systems as control flow graphs
do for sequential programs. Thus a suitable graph model for timing analysis of multi-threaded
software has been set up. Due to synchronization it turns out that often only very small parts of
the resulting graph are actually needed, whereas the rest is unreachable. A lazy implementation
of the matrix operations ensures that the unreachable parts are never calculated. This speeds up
processing significantly and shows that our approach is very promising.
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1 Introduction

Since concurrent programs may contain blocking because of synchronization between threads,
the terms execution time and worst-case execution time (WCET) do not apply directly to
concurrent systems. Anyway, we stick to the term WCET for concurrent systems. The
reader, however, has to be aware of the fact that the WCET includes blocking time.

With the advent of multi-core processors scientific and industrial interest focuses on
analysis and verification of multi-threaded applications. The scientific challenge comes from
the fact that the number of thread interleavings grows exponentially in a program’s number
of threads. All state-of-the-art methods suffer from this so-called state explosion problem.

The idea that thread interleavings of concurrent programs can be studied with a matrix
calculus is novel in this research area. Our sparse matrix representations of the program are
manipulated using a lazy implementation of Kronecker algebra. Similar to [3] we describe
synchronization by Kronecker products and thread interleavings by Kronecker sums. The
first goal is the generation of a data structure called Concurrent Program Graph (CPG)
which describes all possible interleavings and incorporates synchronization while preserving
completeness. CPGs play a similar role for concurrent systems as control flow graphs (CFGs)
do for sequential programs.

In this paper CPGs are used to calculate the WCET of the underlying concurrent system.
In [12] it is shown that CPGs in general can be represented by sparse adjacency matrices.

Thus the number of entries in the matrices is linear in their number of lines. In the worst-
case the number of lines increases exponentially in the number of threads. The CPG,
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however, contains many nodes and edges unreachable from the entry node. If the program
contains a lot of synchronization, only a very small part of the CPG is reachable. Our lazy
implementation of the matrix operations computes only this part. This optimization speeds
up processing significantly and shows that our approach is very promising.

The outline of our paper is as follows. In Section 2 Refined CFGs and Kronecker algebra
are introduced. Our model of concurrency, its properties, and our lazy approach are presen-
ted in Section 3. Section 4 is devoted to WCET analysis of multi-threaded programs. In
Section 5 we survey related work. Finally, we draw our conclusion in Section 6.

2 Preliminaries

In this paper we refer to both, a processor and a core, as a processor. Our computational
model can be described as follows. We model concurrent programs by threads which use
semaphores for synchronization. We assume that on each processor exactly one thread is
running and each thread immediately executes its next statement if the thread is not blocked.
Blocking may occur only in succession of semaphore calls.

Threads and semaphores are represented by slightly adapted CFGs. Edge Splitting has
to be applied to the edges containing semaphore calls. Each CFG is represented by an
adjacency matrix. We assume that the edges of CFGs are labeled by elements of a semiring.
Definitions and properties of the semiring can be found in [10, 12]. A prominent example
for such semirings are regular expressions describing the behavior of finite state automata.
Our semiring consists of a set of labels L which is defined by L = LV ∪LS, where LV is the
set of non-synchronization labels and LS is the set of labels representing semaphore calls
(LV and LS are disjoint).

Usually two or more distinct thread CFGs refer to the same semaphore to model syn-
chronization. The other labels are elements of LV and model ordinary program statements.
The operations on the basic blocks are ·,+, and ∗ from a semiring (cf. [15]). Intuitively, ·,+,
and ∗ model consecutive program parts, conditionals, and loops, respectively.

2.1 Refined Control Flow Graphs

Usually CFG nodes represent basic blocks. Because our matrix calculus manipulates the
edges we need to have basic blocks on the (incoming) edges. To keep things simple we refer
to edges, their labels and the corresponding entries of the adjacency matrices synonymously.
A basic block consists of multiple consecutive statements without jumps. For our purpose
we need a finer granularity which we achieve by splitting edges. We apply it for sema-
phore calls (e.g. p1 and v1) and require that a semaphore call referred to as si has to be
the only statement on the corresponding edge. Edge splitting maps a CFG edge e whose
corresponding basic block contains k semaphore calls to a subgraph ◦ e1→ ◦ s1→ ◦ e2→ ◦ s2→
◦ · · · ◦ ek→ ◦ sk→ ◦ ek+1→ ◦, such that each si represents a single semaphore call, and ei and ei+1
represent the consecutive parts before and after si, respectively (1 ≤ i ≤ k). Applying this
procedure and edge splitting we result in a Refined Control Flow Graph (RCFG).

In Fig. 1a and 1b a binary and a counting semaphore are depicted. The latter allows two
threads to enter at the same time. In a similar way it is possible to construct semaphores
allowing n non-blocking p-calls (n ∈ N, n ≥ 1).
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(a) Binary Semaphore (b) Counting Semaphore

Figure 1 Semaphores.

(a) C (b) D

Interleavings

a · b · c · d

a · c · b · d

a · c · d · b

c · a · b · d

c · a · d · b

c · d · a · b

(c) Interleavings (d) C ⊕ D

Figure 2 A Simple Example.

2.2 Modeling Synchronization and Interleavings
Kronecker product and Kronecker sum form Kronecker algebra. In the following we define
both operations. Proofs, additional properties, and examples can be found in [1, 5, 6, 12].
From now on we use matrices out ofM = {M = (mi,j) |mi,j ∈ L} only.

I Definition 1 (Kronecker product). Given a m-by-n matrix A and a p-by-q matrix B, their
Kronecker product denoted by A⊗B is a mp-by-nq block matrix defined by

A⊗B =

a1,1 ·B · · · a1,n ·B
...

. . .
...

am,1 ·B · · · am,n ·B

 .

The Kronecker product is also being referred to as Zehfuss product. Kronecker product
allows to model synchronization (cf. [3, 12, 13]).

I Definition 2 (Kronecker sum). Given a matrix A of order1 m and matrix B of order n, their
Kronecker sum denoted by A⊕B is a matrix of ordermn defined by A⊕B = A⊗In+Im⊗B,
where Im and In denote identity matrices of order m and n, respectively.

Note that Kronecker sum calculates all possible interleavings (see e.g. [11] for a proof)
even for general CFGs including conditionals and loops. The following example illustrates
interleaving of threads and how Kronecker sum handles it.

I Example 3. Let the matrices C =

0 a 0
0 0 b

0 0 0

 and D =

0 c 0
0 0 d

0 0 0

 . The CFGs of

matrices C and D are shown in Fig. 2a and Fig. 2b, respectively. The regular expressions

1 A k-by-k matrix is known as square matrix of order k.
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associated with the CFGs are a · b and c · d. All possible interleavings by executing C and
D in an interleavings semantics are shown in Fig. 2c. In Fig. 2d the graph represented by
the adjacency matrix C ⊕D is depicted. It is easy to see that all possible interleavings are
generated correctly. It is worth noting that ⊕ provides correct results even if the operands
contain branches and loops.

3 Concurrent Program Graphs

Our system model consists of a finite number of threads and semaphores which are repres-
ented by RCFGs. The RCFGs are stored in form of adjacency matrices. The matrices have
entries which are referred to as labels l ∈ L as defined in Sect. 2.

Formally, the system model consists of the tuple 〈T ,S,L〉, where T is the set of RCFG
adjacency matrices describing threads, S refers to the set of RCFG adjacency matrices
describing semaphores, and the labels in T ∈ T and S ∈ S are elements of L and LS,
respectively. The matrices are manipulated by using Kronecker algebra.

A Concurrent Program Graph (CPG) is a graph C = 〈V,E, ne〉 with a set of nodes V , a
set of directed edges E ⊆ V × V , and a so-called entry node ne ∈ V . The sets V and E
are constructed out of the elements of 〈T ,S,L〉. Details on how we generate the sets V and
E follow below. Similar to RCFGs the edges of CPGs are labeled by l ∈ L.

3.1 Generating a Concurrent Program’s Matrix
Let T (i) ∈ T and S(i) ∈ S refer to the matrices representing thread i and semaphore i,
respectively. According to Fig. 1a we have for binary semaphore i the adjacency matrix

S(i) =
(

0 pi
vi 0

)
of order two. We obtain the matrix T representing k interleaved threads

and the matrix S representing r interleaved semaphores by

T =
k⊕
i=1

T (i), where T (i) ∈ T and S =
r⊕
i=1

S(i), where S(i) ∈ S.

Note that the associativity properties (cf. [12]) of the operations ⊗ and ⊕ imply that the
corresponding n-fold versions are well defined. In the following we define the Selective
Kronecker product which we denote by �L. This operator synchronizes only labels identical
in the two input matrices.

I Definition 4 (Selective Kronecker product). Given two matrices A and B we call A�L B
their Selective Kronecker product. For all l ∈ L ⊆ L let A�LB = (ai,j)�L (bp,q) = (ci·p,j·q),
where

ci·p,j·q =
{
l if ai,j = bp,q = l, l ∈ L,
0 otherwise.

I Definition 5 (Filtered Matrix). We call ML a Filtered Matrix and define it as a matrix of
order o(M) containing entries l ∈ L ⊆ L of M = (mi,j) and zeros elsewhere:

ML = (mL;i,j), where mL;i,j =
{
l if mi,j = l, l ∈ L,
0 otherwise.

The adjacency matrix representing program P is referred to as P . In [12] it is proved
that P can be computed efficiently by

P = T �LS S + TLV ⊗ Io(S).
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In addition, it is shown in [12] that the resulting CPG has at most nk nodes and at most 2k nk
edges, if k is the number of threads and each thread has n nodes in its RCFG. Hence CPGs
have a sparse adjacency matrix, i.e., |E| = O

(
|V |
)
. Thus memory saving data structures

and efficient algorithms suggest themselves. In the worst-case, however, the number of CPG
nodes increases exponentially in k.

3.2 Lazy Implementation of Kronecker Algebra

In general, a CPG contains unreachable parts if a concurrent program contains synchroniz-
ation (cf. [12]). If a program contains a lot of synchronization, the reachable parts may be
very small. This observation motivates the lazy implementation described in this subsec-
tion. In the following we denote the subgraph of a CPG, whose nodes are reachable from
the entry node, by RCPG. An empirical analysis of our approach showed that the runtime
complexity of generating a RCPG is linear in the number of RCPG nodes [12].

The reasons why parts of the CPG are unreachable can be summarized as follows: Kro-
necker product limits the number of possible paths such that the p- and v-operations are
present in correct p-v-pairs in the RCPG. In contrast T =

⊕k
i=1 Ti contains all possible

paths even those containing semantically wrong uses of the semaphore operations.
Choosing a lazy implementation (cf. [9]) for the matrix operations ensures that, when

extracting the reachable parts of the underlying graph, the overall effort is reduced to exactly
these parts. By starting from the RCPG’s entry node and calculating all reachable successor
nodes our lazy implementation [12] exactly does this. Thus, for example, if the resulting
RCPG’s size is linear in terms of the involved threads, only linear effort will be necessary to
generate the RCPG.

Our implementation distinguishes between two kind of matrices: Sparse matrices are
used for representing threads and semaphores. Lazy matrices are employed for representing
all the other matrices, i.e., those resulting from the operations of Kronecker algebra. Besides
the employed operation, a lazy matrix simply keeps track of its operands. Whenever an entry
of a lazy matrix is retrieved, depending on the operation recorded in the lazy matrix, entries
of the operands are retrieved and the recorded operation is performed on these entries to
calculate the result. In the course of this computation, even the successors of nodes are
calculated lazily. Retrieving entries of operands is done recursively if the operands are again
lazy matrices, or is done by retrieving the entries from the sparse matrices, where the actual
data resides. The lazy implementation has proven to be very space and time efficient.

4 Worst-Case Execution Time Analysis on RCPGs

In order to calculate the WCET of a concurrent program we apply a dataflow based approach
introduced in [2]. Dataflow equations are set up and solved according to [14]. Details can
be found in [2, 14].

Each node of the RCPG is assigned a dataflow variable and a dataflow equation is set up
based on the predecessors of the RCPG node. A dataflow variable is represented by a vector.
Each component of the vector reflects a processor and is used to calculate the WCET of the
corresponding thread. Recall that only a single thread is allocated to a processor.

Synchronizing nodes, introduced below, are nodes where blocking occurs. These nodes
have an incoming edge labeled by a semaphore v-operation, an outgoing edge labeled by a
p-operation of the same semaphore, and these edges are part of different threads. In this case
the thread with the p-operation has to wait until the other thread’s v-operation is finished.
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Let the vector X = (X1, . . . , X`, . . . , Xp)ᵀ. We write X(`) = X` to denote the `th
component of vector X.

I Definition 1. Let X = (X1, . . . , Xp)ᵀ and Y = (Y1, . . . , Yp)ᵀ. Then we define

max(X,Y) := (max(X1, Y1), . . . ,max(Xp, Yp))ᵀ.

I Definition 2. A synchronizing node is a RCPG node s such that
there exists an edge ein = (i, s) with label vk and
there exists an edge eout = (s, j) with label pk,

where k denotes the same semaphore and ein and eout are mapped to different processors,
i.e., P(ein) 6= P(eout).

I Definition 3 (Setting up dataflow equations). If n is a non-synchronizing node, then

Xn = max
k∈Pred(n)

(Xk + t(k → n)) ,

where the `th component of vector t(k → n) is the time assigned to edge k → n and edge
k → n is mapped to processor `. The other components of t(k → n) are zero. The set of
predecessor nodes of node n is referred to as Pred(n).

Let s be a synchronizing node. In addition, let πi and πj be the processors which the
edges i → s and s → j are mapped to, i.e, πi = P(i → s) and πj = P(s → j). Then for
` 6= πj

X(`)
s = max

k∈Pred(s)

(
X

(`)
k + t(k → s)(`)

)
and

X(πj)
s = max

(
X

(πi)
i + t(i→ s)(πi), max

k:P(k→s)=πj

(
X

(πj)
k + t(k → s)(πj)

))
where the first term considers the incoming v-edge and the second term takes into account
all incoming edges of the blocking thread running on processor πj .

The system of dataflow equations can be solved by applying an algorithm presented
in [14]. It relies on two operations: inserting one equation into another and solving recursions
by so-called loop breaking. The order of these operations is completely determined by the
DJ graph introduced in [14].

In contrast to [2] where CFGs are studied, RCPGs contain several copies of basic blocks
in different places. Thus, during a loop breaking operation the number of loop iterations
cannot be determined immediately. Instead we postpone the assigning of loop iterations
and indicate this by "∗" which denotes a number of loop iterations to be assigned later.

After the system of dataflow equations has been solved, we distribute the known number
of loop iterations among all terms labeled by "∗" such that the timing values achieve their
maxima.

Example
We study an example consisting of two threads T1 and T2. Their RCFGs are depicted
in Figures 3a and 3b, respectively. The behaviors of T1 and T2 are (p · a · v · b)∗ and
(p · c · v · d)∗, respectively. The RCPG of the T1-T2-system together with a simple binary
semaphore (depicted in Fig. 1a) is shown in Figure 3c. Note that the node numbers are
generated by our implementation. Missing node numbers refer to unreachable nodes. The
dashed nodes 7 and 25 are the only synchronizing nodes.
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(a) RCFG of thread T1
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(c) RCPG of example program

Figure 3 RCFGs of threads T1 and T2 and the resulting RCPG.

According to Definition 3 the following equations are set up. For simplicity we do not
distinguish between edge labels and the execution time of the corresponding basic blocks,
i.e., the execution time of a basic block x is denoted by x.

X1 = max
(
X7 +

(
0
d

)
,X25 +

(
b

0

))
, X10 = max

(
X1 +

(
p

0

)
,X16 +

(
0
d

))
X18 = max

(
X10 +

(
a

0

)
,X24 +

(
0
d

))
, X25 =

(
X

(1)
18 + v

max
(
X

(1)
18 + v,X

(2)
31 + d

))

X28 = X25 +
(

0
p

)
, X30 = X28 +

(
0
c

)
X4 = max

(
X1 +

(
0
p

)
,X28 +

(
b

0

))
, X6 = max

(
X4 +

(
0
c

)
,X30 +

(
b

0

))

X7 =
(max

(
X

(2)
6 + v,X

(1)
31 + b

)
X

(2)
6 + v

)
, X16 = X7 +

(
p

0

)
X24 = X16 +

(
a

0

)
, X31 = max

(
X24 +

(
v

0

)
,X30 +

(
0
v

))

We solve the above equations by using the DJ-graph [14] of our RCPG. For a concise
presentation we use α = p+ a+ v, γ = p+ c+ v, T1 = α+ b, T2 = γ + d, M2 = α+ γ + T ∗2 ,
and M1 = max(T1,M2). We perform the following insertions and loop breaking operations:

24→ 18 : X18 = max
(
X10 +

(
a

0

)
,X16 +

(
a

d

))
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24, 30→ 31 : X31 = max
(
X16 +

(
a+ v

0

)
,X28 +

(
0

v + c

))
30→ 6 : X6 = max

(
X4 +

(
0
c

)
,X28 +

(
b

c

))
16→ 18 : X18 = max

(
X10 +

(
a

0

)
,X7 +

(
a+ p

d

))
16→ 31 : X31 = max

(
X7 +

(
α

0

)
,X28 +

(
0

v + c

))
16→ 10 : X10 = max

(
X1 +

(
p

0

)
,X7 +

(
p

d

))
28→ 31 : X31 = max

(
X7 +

(
α

0

)
,X25 +

(
0
γ

))
28→ 6 : X6 = max

(
X4 +

(
0
c

)
,X25 +

(
b

c+ p

))
28→ 4 : X4 = max

(
X1 +

(
0
p

)
,X25 +

(
b

p

))
10→ 18 : X18 = max

(
X1 +

(
p+ a

0

)
,X7 +

(
p+ a

0

))

18→ 25 : X25 =
( max

(
X

(1)
1 ,X

(1)
7

)
+ α

max
(

max
(
X

(1)
1 ,X

(1)
7

)
+ α,X

(2)
31 + d

))

25→ 4 : X4 = max

X1 +
(

0
p

)
,

( max
(
X

(1)
1 ,X

(1)
7

)
+ T1

max
(

max
(
X

(1)
1 ,X

(1)
7

)
+ α,X

(2)
31 + d

)
+ p

)
25→ 31 : X31 =

( max
(
X

(1)
7 + α,X

(1)
1 + α

)
max

(
X

(2)
7 ,X

(1)
1 + α+ γ,X

(1)
7 + α+ γ,X

(2)
31 + T2

))

4, 25→ 6 : X6 =
( max

(
X

(1)
1 ,X

(1)
7

)
+ T1

max
(
X

(2)
1 + p+ c,X

(1)
1 + α+ γ,X

(1)
7 + α+ γ,X

(2)
31 + d+ p+ c

))

6→ 7 : X7 =
(max

(
X

(2)
1 + γ,X

(1)
1 + α+ γ,X

(1)
7 + α+ γ,X

(2)
31 + T2,X

(1)
31 + b

)
max

(
X

(2)
1 + γ,X

(1)
1 + α+ γ,X

(1)
7 + α+ γ,X

(2)
31 + T2

) )

31 6�: X31 =
( max

(
X

(1)
7 + α,X

(1)
1 + α

)
max

(
X

(2)
7 ,X

(1)
1 + α+ γ,X

(1)
7 + α+ γ

)
+ T ∗2

)

31→ 7 : X7 =
(max

(
X

(2)
1 + γ,X

(1)
1 +M2,X

(1)
1 + T1,X

(2)
7 + T ∗2 ,X

(1)
7 +M2,X

(1)
7 + T1

)
max

(
X

(2)
1 + γ,X

(1)
1 +M2,X

(2)
7 + T ∗2 ,X

(1)
7 +M2

) )

7 6�: X7 =
(max

(
X

(2)
1 + γ,X

(1)
1 +M2,X

(1)
1 + T1

)
+M∗1

max
(
X

(2)
1 + γ,X

(1)
1 +M2

)
+M∗1 +M2

)

7→ 31 : X31 =
( max

(
X

(2)
1 + γ,X

(1)
1 +M2,X

(1)
1 + T1

)
+M∗1 + α

max
(
X

(2)
1 + γ,X

(1)
1 +M2,X

(1)
1 + T1

)
+M∗1 +M2

)
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7, 31→ 25 : X25 =
(max

(
X

(2)
1 + γ +M∗1 ,X

(1)
1 +M2 +M∗1 ,X

(1)
1 + T1 +M∗1

)
+ α

max
(
X

(2)
1 + T2,X

(1)
1 + α+ T ∗2 ,X

(1)
1 + T1 + d

)
+M∗1 +M2

)

7, 25→ 1 : X1 =
(max

(
X

(2)
1 + γ +M∗1 ,X

(1)
1 +M2 +M∗1 ,X

(1)
1 + T1 +M∗1

)
+ T1

max
(
X

(2)
1 + T2,X

(1)
1 + α+ T ∗2 ,X

(1)
1 + T1 + d

)
+M∗1 +M2

)

1 6�: X1 =
(

M∗1 + T ∗1
M∗1 + T ∗1 + T ∗2 + α

)
Finally we obtain the following formula for the WCET of our T1-T2-system

WCET = max(X(1)
1 ,X

(2)
1 ) = M∗1 + T ∗1 + T ∗2 + α.

Assuming the execution times p = v = a = c = d = 1, b = 10, and the number of
loop iterations of T1 and T2 to be r and s, respectively, we are left with distributing the
number of loop iterations among the "∗"-terms of our WCET formula. In this case we have
M2(k) = max(13, 6 + 4k) where the number 6 already includes one execution of a and c.
Thus we write M2(k) = max(13, 2 + 4k) and we have to choose k such that M2(k) = 2 + 4k
andM2(i) = 13 for i < k. This is a consequence of our system model presented in Section 2.
We get k = 3, i.e., T2 is executed three times while M1 is executed once. Hence we obtain

WCET =
{

14
⌊
s−1

3
⌋

+ 13
(
r −

⌊
s−1

3
⌋)

+ 3 if r >
⌊
s−1

3
⌋
,

14(r − 1) + 4(s− 3(r − 1)) + 3 if r ≤
⌊
s−1

3
⌋
.

A schedule of this case is shown in Fig. 4. It is easy to verify that the derived formula is a
correct upper bound for the execution time of this T1-T2-system.

If we set b = 1 and d = 10, we get a similar result, but in this case M2 is iterated once
and M1 three times where M2 is started during the first iteration of M1. During the second
and third iteration of M1, M2 is still executing basic block d.

Figure 4 A Simple Schedule.

5 Related Work

Multiple data-flow-based WCET analysis frameworks are discussed in [2]. In this paper we
adopt a dataflow approach and extend it in order to support concurrent programs.

Our Kronecker algebra based approach can be used for further analysis. In [12] we
showed how to detect deadlocks.

In terms of how we generate a graph model for concurrent programs the closest work to
ours was probably done by Buchholz and Kemper [3]. It differs from our work as follows.
Our approach uses RCFGs and semaphores to model concurrent programs. Buchholz and
Kemper worked on generating reachability sets in composed automata. In addition, we
propose lazy calculation of matrix entries to optimize running time. Both approaches employ
Kronecker algebra.
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In [8] a method based on model checking of multi-core applications modeled as timed
automata is investigated. The tool box UPPAAL is used and synchronization is modeled
by using spinlock-like primitives.

Although not closely related we recognize the work done in the field of stochastic auto-
mata networks which is based on the work of Plateau [13] as related work. Basic operators
are shared and some properties of Kronecker algebra were integrated into this paper.

6 Conclusion and Future Work

We established a framework for WCET analysis of concurrent systems based on Kronecker
algebra. Thread synchronization is modeled by semaphores. Our graph representation of
multi-threaded programs plays a similar role for concurrent systems as control flow graphs do
for sequential programs. Thus a suitable graph model for timing analysis of multi-threaded
software has been set up.

We consider optimizations like partial order reduction (cf. [4]) as future work. A stand-
ardized benchmark suite (similar to [7]) including concurrency would enable comparison of
different approaches.
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Abstract
Time composability is a guiding principle to the development and certification process of real-
time embedded systems. Considerable efforts have been devoted to studying the role of hardware
architectures – and their modern accelerating features – in enabling the hierarchical composition
of the timing behaviour of software programs considered in isolation. Much less attention has
been devoted to the effect of real-time Operating Systems (OS) on time composability at the
application level.

In fact, the very presence of the OS contributes to the variability of the execution time
of the application directly and indirectly; by way of its own response time jitter and by its
effect on the state retained by the processor hardware. We consider zero disturbance and steady
behaviour as those characteristic properties that an operating system should exhibit, so as to
be time-composable with the user applications. We assess those properties on the redesign of
an ARINC compliant partitioned operating system, for use in avionics applications, and present
some experimental results from a preliminary implementation of our approach within the scope
of the EU FP7 PROARTIS project.
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1 Introduction

The increasing complexity in the design, development and validation of real-time embedded
systems can be tackled only is best responded by compositional, incremental software
development. The other side of the coin in a compositional approach is that the properties
ascertained for individual components in isolation should allow reasoning on the properties of
the system that results from their composition (composability). Whereas compositionality and
composability are consolidated concepts when looking at a system from a purely functional
perspective, they are much more difficult to understand and to guarantee when applied to
extra-functional concerns and to timing in particular [10]. By the principle of composability,
in fact, the timing behaviour of a system should be simply determined as a summation over the
execution times of its building blocks; moreover, by composability, a software module should
exhibit the same timing behaviour independently of the presence and operation of any other
component in the system. Unfortunately, even guaranteeing just timing compositionality on
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current hardware and software architectures is difficult. Although timing analysis frameworks
typically characterise the timing behaviour of a system compositionally, a truly composable
timing behaviour is not generally provided at the lower levels of a system. The main
obstacle to time composability is that modern hardware architectures include a score of
advanced acceleration features (e.g., caches, complex pipelines, etc.) that bring an increase in
performance at the cost of a highly variable timing behaviour. Since those hardware features
typically exploit execution history to speed up average performance, the execution time of
a software module is likely to (highly) depend on the state retained by history-dependent
hardware, which in turn is affected by other modules. The incurred dependence wrecks
composability in the timing dimension as the execution history becomes a characteristic of
the whole system and not that of a single component.

For timing compositionality and composability to hold, stringent constraints are imposed
on how the system should be conceived and built, in both hardware and software dimensions
[9]. Whereas several studies focused on the importance of hardware architectures in enabling
compositional timing analysis [6], less attention has been devoted to the role played by
other layers in the execution stack. Timing composability is in fact a system property that
originates from the underlying hardware and must be preserved across other layers, including
the operating system. In this paper we address the role of the operating system layer in
preserving timing composability in Integrated Modular Avionics (IMA) systems, where timing
composability is a fundamental assumption behind temporal and spatial isolation among
software partitions. In particular, we report on our attempt in redesigning part of POK [2],
an open-source ARINC653-compliant real-time kernel with a view to timing composability.

The remainder of this paper is organised as follows: in Section 2 we address time
composability as a property within the abstraction layers of a typical architecture and discuss
a possible approach to enable composability between OS and application layers. Section 3
explains how our approach has been implemented in a partitioned real-time kernel, while
Section 4 provides experimental evidence to our arguments. Finally, Section 5 draws some
conclusions.

2 Timing composability: a layered approach

Seeking incrementality in the development life-cycle advocates the adoption of an incremental
development approach from the system perspective, where incrementality should naturally
emerge as a consequence of guaranteeing composability to the elementary constituents (i.e.,
software modules) of the system. However, in practice, real-time software development can
only strive to adopt such discipline, as the supporting methodology and technology are still
immature.

We were given the opportunity to study the issues above in the context of the EU FP7
PROARTIS [3] project: this initiative aims at defining a novel, probabilistic framework for
timing analysis of critical real-time embedded systems. As an industrial trait, the main project
focus is set on partitioned applications, commonly encountered in avionics systems, and
particularly on the IMA architecture and its ARINC 653 [1] incarnation. These industrial
standards encourage the development of partitioned applications, where the concept of
composability is strictly related to the fundamental requirement of guaranteeing spatial and
temporal segregation of applications sharing the same computational resources within a
federated architecture.

Hardware acceleration features, speculative execution and complex software architectures
prevent systems from achieving a composable timing behaviour. Dependence on the execution
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history, in particular, is one of the main hurdles to timing composability. Removing or at
least minimising the effects of history dependence is thus a reasonable approach to achieve
a time-composable architecture. Breaking down the execution platform into three classic
layers – the hardware layer (HW PLATFORM), an operating system layer (KERNEL) in the middle,
and, finally, a user application layer (APPLICATION SW) running on top – makes it possible
to address history independence and thus timing composability as a bottom-up property
that must be first accomplished by the underlying hardware, then preserved across the OS
primitives and services, and finally exhibited by the user application.

In this paper, we do not focus on HW-related composability issues, although we are
perfectly aware of their relevance, especially with respect to the possible occurrence of timing
anomalies [12]. We will assume, instead, the availability of a HW PLATFORM where interference
from execution history on the timing behaviour has been proactively countered. This is
not an unrealistic assumption since it can be achieved by means of simplified hardware
platforms [6] or novel probabilistic approaches, as suggested in PROARTIS [3]. Conversely,
we consider the APPLICATION SW layer, the space within which user applications run, the
only level at which (application-logic related) timing variability should be allowed. Ideally,
time-composable hardware and kernel layers should be able to remove all history-dependent
timing variability so that state-of-the-art timing analysis approach should be able to account
for the residual variability at the application level.

The KERNEL layer, which is the main focus of our investigation, actually provides an
abstraction layer for the operating system primitives and services. From the timing analys-
ability standpoint, the role played by this layer is possibly as important as that played by
the HW PLATFORM. As a fundamental enabler to compositional analysis approaches, in fact,
this layer should preserve the independence property exhibited by the underlying hardware
and should not introduce additional sources of timing variability in the execution stack.

Figure 1 Structural decomposition of POK.

In the scope of our investigation, we focused on the PowerPC processor family, and the
PPC 750 model [4] in particular, by reason of its widespread adoption in avionic platforms.
We also selected POK [2] as our reference OS kernel because of its lightweight dimensions, its
availability in open source and its embryonic implementation of the ARINC specification. We
redesigned part of its services with a view to time-composability and analysability. Figure 1
shows a structural breakdown of the POK framework: the KERNEL layer provides an interface
to a set of standard libraries (e.g., C standard library) and core OS services (e.g., scheduling
primitives) to the APPLICATION SW layer. In addition, the POK kernel also provides an
implementation of a subset of the ARINC Application Executive (APEX).

Enabling and preserving time-composability at the KERNEL layer poses two main require-
ments on the way an OS or ARINC service should be delivered:
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Zero-disturbance: in the presence of hardware features that exhibit history-dependent
timing behaviour, the execution of an OS service should not have disturbing effects on the
application. Some kind of separation is needed to isolate the hardware from the polluting
effects of OS or ARINC services. The kind of hardware-level isolation that we seek can
be provided by means of techniques similar to those adopted for cache partitioning [8]: a
relatively small cache partition should be reserved for the OS so that the execution of OS
services would still benefit from the cache acceleration but would not affect the cache state
of the user code. However, implementing software cache partitioning (mapping of code to
configure separate address spaces) in conjunction with a partitioned OS may result quite
cumbersome in practice. An alternative (and easier to implement) approach consists
in giving up any performance benefit and simply inhibiting all the history-dependent
hardware at once when OS services are executed. This approach, however, comes at the
cost of a relevant performance penalty that, though not being the main concern in critical
real-time systems, could be still considered unacceptable. Also the execution frequency of
a service is relevant with respect to disturbance: services triggered on timer expire (such
as, for example, the PowerPC DEC interrupt handler) or an event basis can possibly have
even more disturbing effects on the APPLICATION SW level, especially with respect to the
soundness of timing analysis. The deferred preemption mechanism in combination with
the selection of predetermined preemption points [13] could offer a reasonable solution
for guaranteeing minimal uninterrupted executions while preserving feasibility.

Steady timing behaviour : jittery timing behaviour of an OS service complicates its timing
composition with the user-level application. Timing variability at the OS layer depends
on a combination of multiple interacting factors: (i) the hardware state, as determined
by history sensitive hardware features; (ii) the software state, as determined by the
contents of its data structures and the algorithms used to access them; and, (iii) the
input data. Whereas the first aspect can be treated similarly and contextually with the
specular phenomenon of disturbance, the software state instead is actually determined
by more or less complex data structures accessed by OS and ARINC services and by
the algorithms implemented to access and manipulate them. The latter should thus be
re-engineered to exhibit a constant-time – O(1) – and steady timing behaviour, like, for
example, constant-time scheduling primitives (e.g., O(1) Linux scheduler [7]). Besides
the software state, the timing behaviour of an OS service may be influenced by the input
parameters to the service call (so-called input data dependency). This is the case, for
example, of ARINC IO services that read or write data of different size. This form of
history dependence is much more difficult to attenuate as the algorithmic behaviour
(e.g., application logic) cannot be completely removed, unless we do not force an overly
pessimistic constant-time behaviour. We will get back to this issue in the next Section.

An OS layer that meets the above requirements is time-composable in that it can be seam-
lessly composed with the user-level APPLICATION SW without affecting its timing behaviour.
In the following we present the implementation of a set of KERNEL-level services that exhibit
a steady timing behaviour and do not disturb the timing behaviour of the user-level code.
Our approach seeks for a general reduction in the effects of the OS layer on the application
code and is expected to ease the analysis process, regardless of the timing analysis technique
of choice.



A. Baldovin, E. Mezzetti, and T. Vardanega 73

3 Time-composable kernel layer

So far we reasoned on time composability between the OS and the user application layer.
The original POK was not developed with time composability in mind, but rather aimed
at the optimisation of the average-case performance. This section describes an alternative
design and implementation aimed at injecting time composability in the POK framework.
We start our discussion with the basic kernel design choices on time management and system
scheduling an then proceed with considerations on some ARINC services we studied. In doing
so, we refer to ARINC-specific concepts such as processes, partitions, scheduling slots, etc.,
whose detailed description is out of the scope of this paper: the interested reader is referred
to [1]. Interestingly, similar ideas and solutions can be transposed to different execution
platforms.

3.1 Time management

Time management, as one of the core OS services, is exploited by the operating system
itself to perform back office activities, and by the application, which may have to program
time-triggered actions. Most common time-management approaches adopted in real-time
systems rely on either a tick counter or programmable one-shot timers. The original
POK implementation provides a tick-based time management where a discrete counter is
periodically incremented according to a frequency consistent with the real hardware clock
rate1. Unfortunately, in tick-based approaches the operations involved in time management
are periodically executed, regardless of the application logic; this is likely to incur timing
interference on user applications, commensurate to the tick frequency.

For this reason we implemented a less intrusive time management mechanism based on
interval timers, where clock interrupts are not necessarily periodic and can be programmed
according to the specific application needs. Intuitively, a timer-based implementation can
be designed to incur less interference in the timing behaviour of the user application as
it guarantees that the execution of a user application is interrupted only when strictly
required (i.e., partition switch, process activation, etc.). Making a step further, interval
timers also enable to control and possibly postpone timing events at desired points in time
and possibly in a way such that user applications are not interrupted. In particular, in
an ARINC context we can program timers to expire only at partition switches, so that no
overhead is introduced during application execution. Within each scheduling slot we enforce
a variant of the fixed-priority deferred scheduling policy [13], in which preemption is enabled
only at the end of a job (i.e., run-to-completion semantics).

3.2 Scheduling primitives

We implemented a lightweight constant-time – O(1) – fixed-priority scheduler exploiting
an extremely compact representation of task states, that can be quickly updated through
fixed-latency bitwise operations. In our implementation we assume all processes2 defined in
the same partition to have distinct priorities, to overcome the variability from linear-time
insertion in FIFO priority queues. Since hard real-time operating systems typically define 255

1 POK in its architectural-dependent implementation for PowerPC exploits the decrementer register and
the TBU to periodically increment the tick counter.

2 It should be noted that process is the ARINC equivalent of a task in classic real-time theory.
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distinct priority levels, requiring distinct priorities poses no restriction on ARINC applications
which are required to support up to 128 processes per partition [1].

Basically, we exploit a set of bit masks MASKstate, one for each state a process can
assume (i.e., dormant, waiting, ready and running in ARINC speak), which collectively
describe the current state of all application processes. A similar set of bit masks MASKstate

slot

is associated to each scheduling slot in a major frame, to describe process state changes.
State updates are performed by bitwise OR-ing those masks. A simple priority-driven
thread selection is done in a similar way by exploiting an ordered bitmask to represent
priorities: selecting the runnable process with higher priority thus requires to identify the
most significant bit in such mask. Such operation can be performed in constant time with
built-in processor instructions (e.g., count-trailing zeros on PowerPC) or using perfect hashing
with De Bruijn sequences [5].

Process activation events, however, can be dynamically programmed by the user ap-
plication to occur within a scheduling slot, and thus outside of partition switches. This is
the case, for example, when a synchronous kernel service requires a scheduling event to be
triggered as a consequence of a timeout3. This kind of timeout can be used to enforce, for
example, a timed self-suspension (i.e., with “delay until” semantics) or a phased execution
of a process. Since we want to ensure that every process is run to completion, preemption
is necessarily deferred at the end of process execution, which therefore becomes the next
serviceable dispatching point, as shown in Figure 2; dispatching is performed using the same
method presented above. A similar mechanism is used for aperiodic processes (i.e., sporadic
tasks): in this case, the deferred scheduling event is triggered by a synchronous activation
request, which does not involve the use of timers.

Figure 2 Deferred dispatching mechanism within a time slot.

3.3 Time-composable ARINC APEX
With respect to the subset of ARINC services we have implemented so far, the main
timing-composability issues arise from the IO communication between partitions. The basic
message-based communication mechanisms provided by the ARINC SAMPLING and QUEUING
services is based on channels, as logical links between one source port and one or more
destination ports. The timing-composability issues raised by IO services, either through

3 The DELAYED_START and TIMED_WAIT ARINC services are representative examples of requests
for a timed-out process activation.
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sampling or queuing ports are mainly due to the variability induced by the amount of data to
be read or written. Whereas ports are characterised by a maximum size, forcing the exchange
of the maximum amount of data would obtain a constant-time behaviour at the cost of an
unacceptable performance loss. Moreover, the potential blocking incurred by queuing port
could further complicate the disturbing effects of inter-partition communication. Also the
natural countermeasure of isolating the effects of the service execution on the hardware state
cannot be seamlessly applied in this context. Inhibiting the caches for example is likely to
kill performance since the read and write operations are inherently loop intensive and greatly
benefit from both temporal and spatial locality.

To counter this unstable and disturbing behaviour we separate the variable (loop-intensive)
part of the read/write services and accommodate such variability so that it incurs less
disturbing effects on the execution of the application code. The concrete specification of
an ARINC system typically takes a static configuration (e.g., configuration tables) that
provides insightful information on the system functional behaviour. We exploit the available
information on the inter-partition communication patterns to perform some sort of preventive
IO in between partition switch, as depicted in Figure 3.

Figure 3 Inter-partition IO management.

We postpone all port writes to the slack time at the end of a partition scheduling slot.
Similarly, we preload the required data into the destination partition in a specular slack time,
at the beginning of a scheduling slot. The information flow is guaranteed to be preserved as
we are dealing with inter-partition communication: (i) the state of all destination (input)
ports is already determined at the beginning of a partition slot; (ii) the state of all source
(output) ports is not relevant until the partition slot terminates and another partitions gets
scheduled for execution. This way, we should not worry about the disturbing effects on the
hardware state as no optimistic assumption should ever be made on partition switching;
moreover, the input-dependent variability can be analysed within some sort of end-to-end
analysis. We are currently implementing a similar approach with respect to intra-partition
communication (i.e., via ARINC blackboards, buffers etc.).

4 Experimental assessment

In our experiments we wanted to assess whether and to what extent our preliminary imple-
mentation of kernel primitives and services achieve time composability between OS and user
application. We performed our analysis on the basis of the timing information collected by
uninterrupted and consecutive end-to-end runs of software units at the granularity level of
kernel primitives, ARINC services and application main procedures. Measurements were
perfectly suited to meet our objectives as the set of properties we wanted to prove on the OS
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layer (steady timing behaviour and zero-disturbance) can be arguably assessed by means of a
small number of selective examples. In fact, in the absence of history dependence, the timing
behaviour of the analysed procedures rapidly fall into predictable behavioural patterns.

The PROARTIS Sim tool, a SocLib based simulator of a PowerPC 750 platform developed
within the PROARTIS project, was used to collect timing traces that were later fed to
RapiTime [11], a hybrid measurement-based timing analysis tool from Rapita Systems Ltd.
The adopted simulator is highly configurable and has been designed to guarantee fixed-latency
execution of each processor instruction, except for memory accesses whose latency depends
on the current cache state. Since caches are the only residual source of history dependence we
were able to exclude, when needed, any source of interference in the execution time by simply
enforcing a constant response of the cache, either always miss (i.e., inhibition) or always
hit (i.e., perfect cache). The simulator tracing capabilities allowed us to collect execution
traces without actual software instrumentation, thus avoiding the so-called probe effect. The
baseline PROARTIS Sim configuration in our experiments included the perfect cache option,
which corresponds to enforcing the latency of a cache hit on every memory access. In the
lack of a fine-grained control over the cache behaviour, this parametrisation was meant to
exclude the variability stemming from caches without incurring the peformance penalty of
thoroughly disabling them. According to our overall approach, in fact, the majority of our
experiments address those services that are executed outside of the user application and
there is no need to execute them with acceleration features disabled. It is worth noting that
the raw numbers obtained under the always hit option are directly proportional to those
obtainable under an always miss policy; thus, providing both would not add to our reasoning.

Our experiments were conducted over a relevant set of OS services, which we considered
to be the most critical ones from the timing composability standpoint: time management,
scheduling primitives, and sampling port communication. All of them were measured under
different inputs or different task workloads (i.e., for kernel primitives).

We wanted to first measure whether and to what extent the basic time-management
primitives may affect the timing behaviour of a generic user application. We evaluated first
the performance of a selective application within the original POK implementation, which
uses the decrementer register as a tick counter. Subsequently, we set up a new scenario where
no interference arises from the time management service, as the latter was implemented
by interval timers set to fire outside the execution boundaries of the examined procedure.
Caches have been enabled for this experiment and configured with Least Recently Used
(LRU) replacement policy.

MinET MaxET Delta
Tick-based 785825 789888 4063
Timer-based 642076 643472 1396

Figure 4 Execution under tick-based and interval-timer time management.

The experimental results shown in Figure 4 are not surprising. The tick-based time
management mechanism (upper band in the plot) should be discarded in favour of the
interval timer, since its disturbance on the application code is clearly higher, due to the set
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of useless time-management activities performed on every tick. Interestingly, as highlighted
by the different areas between the straight lines, the cache-induced variability experienced by
the application under a tick-counter policy is considerably greater than that suffered under
interval-based timer, as a consequence of increased pollution of cache states.

Moving on to scheduling primitives, we observe that inattentive implementation and
design choices may affect both the latency and jitter incurred by scheduling primitives such
as partition switch, process dispatching or state update. To provide experimental evidence
of the steady timing behaviour of our implemented scheduling primitives, as opposed to
the standard ones in the original version of POK, we focus on task status update and task
election. These activities are performed in a single operation in tick-based approaches,
whereas they execute separately in our approach: this is because status update is performed
only at partition switch, whereas thread dispatching occurs at the end of every job execution,
according to the run-to-completion semantics. We enforced a perfect cache behaviour so
that no overhead from the hardware is accounted for in measured execution times. We also
concocted our experiments to follow a strictly deterministic periodic pattern, which allowed us
to restrain our observations to a limited number of runs. Figure 5 shows observed execution
times for the thread selection routine (that is part of the larger scheduling primitive). The
workload in the top chart is two partitions, with three and two threads respectively, while
the bottom chart reports a larger example comprises three partitions with ten, five and two
threads each.

Figure 5 FPPS thread selection under different workloads.

The original POK scheduler always performs the same operations at every clock tick,
mainly checking whether the current partition or thread should be switched to the next ones.
Under those premises, two potential sources of variability originate from the possibility that
a partition/thread needs to be actually switched at a particular scheduling point, and from
the number of threads to be managed in the executing partition, respectively. The graphs in
Figure 5 illustrate this situation clearly: higher peaks correspond to partition switches, when
the state of all threads in the new partition changes to ready and they must be therefore
inserted in the appropriate scheduler queues. For our constant-time scheduler, instead, we
must distinguish two cases, since its behaviour is different at partition and thread switch.
Figure 6 shows the execution time of the routine invoked at partition switch, which only
needs to update thread states4. Though the settings are exactly the same as Figure 5 above,
status updates are performed in constant time thanks to the bitwise operations on thread
masks (Section 3.2).

Figure 7 shows that our constant-time scheduler is capable of detecting the highest-
priority thread to be dispatched with fixed overhead, by using De Bruijn sequences. Lower

4 Except for inter-partition communication overhead.

WCET’12



78 A Time-composable Operating System

Figure 6 Constant-time thread status update under different workloads.

peaks in Figure 6 correspond to the selection of the system idle thread. From the raw
numbers, reported in Table 1, we note that the small delta exhibited by our thread switch
implementation is actually due to the difference between the selection of any thread (95) and
the idle thread5 (45). The delta measured on the standard POK implementation, instead,
represents real jitter.

Figure 7 Constant-time thread selection in a test case with three partitions and seventeen threads.

Table 1 Execution times for a user application with tick-based and interval-timer scheduling.

FPPS O(1) scheduler O(1) scheduler
(standard POK) (partition switch) (thread switch)
Min Max Delta Min Max Delta Min Max Delta

2 partitions
5 threads 255 714 459 232 232 0 45 95 50

3 partitions
17 threads 259 1759 1500 232 232 0 45 95 50

When it comes to ARINC APEX, we focused on inter-partition communication to start
with. Inter-partition communication via sampling ports have been specifically redesigned for
the sake of time composability6: our implementation is based on posted writes and prefetched
reads that permits to remove the sources of variability and disturbance from the service itself
and serve them out at partition switch. We forced the simulator to resemble a perfect cache
when measuring this services as we wanted to exclude the variability stemming from the
cache behaviour without incurring the peformance penalty of a disabled cache: a positive
effect of relocating the message management in between the execution of two partitions is in
fact that of being able to exploit the caches without any side-effect on the user application.
Having excluded the cache variability causes the analysed service to exhibit a steady timing
(actually constant) behaviour where the execution time only varies as a function over the
input (message) size. We triggered the execution of the sampling services with different sizes
of the data to be exchanged. The dependence of READ and WRITE services on the input size

5 The idle task is elected for execution when no other task is runnable.
6 The implementation of a similar mechanism for queuing ports is work in progress at the time of writing.
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is shown in Table 2: the increase in the execution time of each service is related to an increase
in the input data size, here ranging from 1 to 256 Bytes. The redesigned implementations of
both services (newWRITE and newREAD in Table 2) are instead constant, as the invocation
of the services themselves does actually execute neither a read nor a write operation, whose
execution is instead deferred at the begin and end of a partition switch respectively.

Table 3 shows the partition switch overhead (observed under different input sizes) that is
the penalty that has to be paid for relocating the message passing mechanism on partition
switch. From what we observed in our experiments, the incurred time penalty is quite limited
and, more importantly, when summed to the time previously spent in the READ or WRITE
service, it does not exceed the execution time of the standard implementation with the same
input.

Table 2 Execution times for the READ and
WRITE services.

WRITE NewWRITE READ NewREAD
1B 523 436 618 448
4B 580 436 794 448
32B 1112 436 1383 448
64B 1720 436 1758 448
96B 2024 436 2086 448
128B 2936 436 2974 448
256B 5368 436 5406 448

Table 3 Maximum observed parti-
tion switch overhead.

Partition Switch Read+Write
(standard) Overhead

32 B 27674 + 661
64 B 29498 + 1269
96 B 32224 + 1973
128 B 33146 + 2485
192 B 37686 + 3807
256 B 41619 + 5118
384 B 48630 + 7455

5 Conclusion

Composability in the time dimension is a fundamental enabler for the hierarchical decompos-
ition of large complex systems into smaller, tractable units. Whereas hardware platform are
widely acknowledged to have great influence on the timing composability, in this paper we
focus the role of the real-time operating system in enabling timing composability in IMA
systems and identified the properties that make an operating system timing-composable with
user applications. In that light, we redesigned a real-time partitioned kernel and provided
experimental evidence that the degree of time composability may greatly benefit from proper
design choices in the implementation of the operating system.
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Abstract
This paper describes a case study in WCET analysis of an on-board spacecraft software system.
The attitude control system of UPMSat-2, an experimental micro-satellite which is scheduled
to be launched in 2013, is used for an experiment on analysing the worst-case execution time
of code automatically generated from a Simulink model. In order to properly test the code, a
hardware-in-the-loop configuration with a simulation model of the spacecraft environment has
been used as a test bench. The code has been analysed with RapiTime, with some modifications
to the original instrumentation routines, in order to take into account the particularities of the
test configuration. Results from the experiment are described and commented in the paper.
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1 Introduction

UPMSat-2 is a project aimed at developing an experimental micro-satellite that can be used
as a technology demonstrator for several research groups at UPM, the Technical University
of Madrid. The Real-Time Systems Group at UPM (STRAST)1 is responsible for designing
and building all the on-board and ground-segment software for the satellite. The software
is being coded in Ada with the Ravenscar profile tasking restrictions [4], and runs on a
LEON3 [9] computer board. The GNATforLEON compilation chain [14], including the Open
Ravenscar Real-time kernel (ORK) [5], is being used for software development.

Software standards for on-board spacecraft software [8, 7] require schedulability analysis
to be used in the verification process. This kind of analysis, in turn, requires the worst case
execution time (WCET) of each task to be known. Therefore, WCET measuring methods and
tools [16] must be used as a first step in performing timing analysis on embedded on-board
systems.

This paper describes the approach that the authors have taken to calculate the WCET of
the UPMSat-2 Attitude Determination and Control System (ADCS) subsystem. The ADCS
functional code has been automatically generated from a Simulink2 engineering model, and
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then integrated with concurrent, real-time container code following a model-driven approach.
The WCET of the resulting code has been analysed using RapiTime3, a well-known tool for
hard real-time systems analysis.

The rest of the paper is organised as follows: Section 2 describes the ADCS subsystem
and its relationship to other components of the UPMSat-2 software. Section 3 presents the
methodological approach to WCET analysis and the details of the analysis process. Section 4
summarizes the results obtained so far. Finally, section 5 presents the conclusions of the
analysis and some ideas for future work.

2 System description

2.1 Hardware platform
All the computer-related functions on board of the UPMSat-2 satellite will be executed on a
single computer platform, called the On-Board Computer (OBC) [6]. The OBC hardware
will be based on a LEON computer with SRAM main memory and a solid state disk (SDD),
as well as a number of peripherals for interaction with the satellite sensors and actuators.

The LEON family of processors4 is a 32-bit synthesizable VHDL processor core that
implements the SPARC V8 architecture [15]. The flight version of the OBC, which will be
based on LEON3, is still under development. For this reason, an engineering model has
been used for this experiment. The engineering model is based on a GR-XC3S1500 Spartan3
development board5 with a LEON2 processor at 40 MHz clock frequency and 64 MB of
SDRAM. Cache memory is not used in this implementation. The main difference between
the LEON2 processor used in the engineering model and the envisaged production LEON3
are that the latter has a 7-stage pipeline instead of the 5-stage pipeline of LEON2. Other
differences, such as the presence of an MMU and SMP support in LEON3, are not significant
as these features are not used in this project. Since the purpose of this work is to validate
the WCET calculation methodology, it can be assumed that the engineering model is a
representative instance of the flight computer.

2.2 Software architecture
The on-board software system is composed of the following subsystems (figure 1):

Platform monitoring: this subsystem is in charge of assessing the state of the satellite
by periodically reading housekeeping sensor data (battery and solar panel voltages and
currents, temperatures at various points of the spacecraft, etc.)
Telemetry and telecommand (TMTC): this subsystem interacts with the telecommunica-
tions hardware (TMC) in order to send messages (telemetry) to a ground-based station
and receive telecommands from it.
Attitude determination and control system (ADCS): this subsystem computes the orienta-
tion (attitude) of the satellite with respect to the Earth, and takes corrective actions in
order to keep it within the specified values. The attitude is derived from 3-axis measure-
ments of the Earth magnetic field made with special sensors called magnetometers (MM).
Control actions are performed by means of magnetorquers (MT), which are electromagnets

3 http://www.rapitasystems.com/rapitime
4 http://www.gaisler.com/leonmain.html
5 http://www.pender.ch/products_xc3s.shtml

http://www.rapitasystems.com/rapitime
http://www.gaisler.com/leonmain.html
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Figure 1 UPMSat-2 software architecture.

that can develop a magnetic field that is used to change the attitude of the satellite as
needed.

In addition to the above main subsystems, there is another software component which
manages the operation of the satellite payload. In this case, the payload consists of a series
of experiments to be performed when ordered by specific telecommands.

The code for the UPMSat-2 software is written in Ada [1], and is being produced
using a model-driven approach which was first developed in a previous project [11]. Under
this approach, a software system is made of a number of components with well-defined
interfaces. The internals of a component have three main parts, which implement separation
of concerns between the functional, concurrent, and synchronisation aspects of the component.
In particular, functional code generated with high-level modelling tools such as Simulink
can be incorporated in the functional part of a component, leaving the complexity of
concurrency, timing and synchronization to the other parts (figure 2). Concurrency and
synchronization are implemented by Ada tasks as restricted by the Ravenscar profile, i.e.
the number of tasks if fixed, the scheduling method is fixed-priority pre-emptive scheduling
(FPPS), and communication among tasks is limited to shared data objects accessed with an
immediate ceiling priority protocol (ICPP) [4]. The concurrent constituents of components
are automatically generated from a reduced set of archetypes [3, 12]. Since the code of the
concurrent elements is derived from a few simple patterns, the key issue for analysing the
timing behaviour of the system is to get accurate estimates of the WCET of the functional
code. This code can be rather complex, depending on the particular functions that are
executed by each component. In the following, we will centre on the functional code of the
ADCS subsystem as a representative example of the issues involved.

2.3 The Attitude Determination and Control System (ADCS)
The attitude of the satellite is represented by three angles measuring the orientation of the
spacecraft with respect to an Earth-based reference frame. The attitude angles are computed
from the readings of three magnetometers, which measure the intensity of the Earth magnetic
field on the platform reference axes. There are also three magnetorquers that are used as
actuators in order to adjust the attitude to the required angle values.

WCET’12
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Figure 2 Structure of a software component.

The angular orientation of the satellite may change due to perturbations originated at
the environment, mainly by the fluctuation of the Earth magnetic field, but also by the drag
of residual atmosphere and the solar radiation pressure. There are three magnetorquers
that are used as actuators in order to adjust the attitude to the required angle values in the
presence of perturbations. A control algorithm is used to compute the appropriate values for
the magnetorquers intensity signals.

The attitude control algorithm is designed by aerospace engineers based on a mathematical
model of the spacecraft dynamics and the torque perturbations. Due to the complexity
of the model, a simulation model has been created using Simulink in order to design, test
and validate the structure of the control algorithm and to tune its parameters to the most
appropriate values.

Figure 3 shows the general structure of the simulation model. The blocks represent the
spacecraft dynamics and the environment elements that are relevant for the design, including
the Earth magnetic field, environmental perturbations, and the changes in the gravitational
acceleration. The variables in the model represent different torques acting on the spacecraft,
the quaternions representing the attitude of the satellite with respect to a vertical reference
frame, the rotation matrix from the vertical reference frame to the satellite reference frame
(CBV), and the angular velocity of the body with respect to the vertical reference frame
(pqr).

The block labelled “controller” represents the control algorithm, which has as inputs the
measurements of the magnetic field provided by the magnetometers (Bb_T) and its derivatives
(Bdot). The outputs of the control block are the intensity supplied to the magnetorquers
(IA) and the corresponding actuator torques (TNm). It must be noted that the sensor and
actuator models are included in the controller model.

The functional code of the attitude controller is automatically generated using the Simulink
code generation tools. In order to do this, and to properly model the interface elements
as well, a discrete-time model of the attitude controller is required. While a discrete-time
model could be obtained from a continuous-time controller model, a direct approach using
discrete-time blocks in the whole model has been followed. A sampling frequency of 1Hz
has been used for this purpose, based on the control engineers’ knowledge of the spacecraft
dynamics.

The current version of the controller functional code is comparatively simple, with no loops
or conditional control structures. It has about 50 lines of C code, which are integrated with
the concurrent and control constituents of the ADCS subsystem by means of the Ada interface
facilities. The code implements the well-known PID (proportional-integral-derivative) control
algorithm [2]. Further developments in the control algorithm are expected to produce longer
and more complex code.
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Figure 3 ADCS simulation model.

3 Analysis of the ADCS execution time

3.1 Object of the analysis

The code that has been analysed is the ADCS functional code automatically generated by
the above described simulation model. While using a purely static code analysis could be
feasible, a measurement-based approach has been used in order to get accurate estimates on
the WCET on real hardware [16]. The hardware platform is the engineering version of the
OBC that was introduced in section 2.1. As it has already been discussed, this platform is
representative of the final flight computer hardware which is still to be built.

An important aspect of the analysis is the software context in which the code runs.
In this work we have chosen to execute the ADCS functional code on its own, with only
the underlying ORK kernel in place. The only active interrupt source is the system clock
interrupt, which has a fairly low frequency, about 0.59Hz. The execution of the interrupt
handler would only add a few tens of microseconds to the measured value of execution time
in the rare case that the interrupt occurs while the ADCS task is executing.

It could be argued that measuring the execution time in isolation does not account
for cache interference and other effects that may result from preemption in a concurrent
execution environment. Since the current configuration of the OBC does not include a cache,
we can still consider that executing the code in isolation provides realistic measurements of
the execution time, at least for the engineering model. Further development of the flight
version of the OBC are open to using the LEON3 cache, though, which should be taken
into account in future measurements. Another question is the possible effects of control flow
breaks on the processor pipeline. The SPARC V8 architecture does not perform branch
prediction, using delayed branching instead. Therefore, in this case such effects can be safely
ignored.
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3.2 Test environment
As it frequently happens in real-time embedded system projects, it is not possible to test the
satellite software in its real environment. Hardware-in-the-loop (HIL) techniques provide
a useful testing framework in such cases. The basic idea is to test the embedded system
against a simulation model instead of the real environment. The test environment is built
from the simulation model depicted in figure 3 above, replacing the controller block by the
real computer and controller software. Some additional components have been included as
well, in order to model the sensors and actuators that carry out the interaction between the
computer and the modelled environment.

Spacecraft model!

sensors!

actuators!

ADCS controller!

Simulation computer! On-board computer!

interface!

Figure 4 ADCS test configuration.

Figure 4 shows the architecture of the ADCS test configuration. The simulation model
is implemented in Simulink on a PC-based platform, whereas the system under test is the
ADCS code running on an engineering version of the satellite computer board. The interface
between them is built on a serial line during the first stages of the development cycle, to
be replaced with actual analog lines as the OBC implementation is advanced enough. This
interface is modelled by replacing the original controller model (controller block in figure 3)
with two new blocks: one than sends magnetic field data from the simulation model to the
computer by means of the serial line, and another one that receives actuator data from the
computer and inputs them to the attitude simulation block.

3.3 WCET measurement
We have chosen RapiTime6 for WCET measurements as we are interested in on-target
execution time measurements, using the above described test configuration. The version
used is RVS 3.0.

RapiTime collects execution traces to generate time measurement statistics, among which
worst case execution time measurements as required for schedulability analysis. In order to
do this, RapiTime analyses the structure of the source code and adds instrumentation points
at relevant places. The instrumentation points are calls to a procedure that records the
execution time at which the point is reached. The instrumented code is repeatedly executed
long enough to acquire relevant statistical information about the executions. Once this is
done, the generated trace is checked for the correct format and compliance with previously
extracted structural information, and a statistics report is generated.

In our case, the ADCS functional code has been instrumented with the RapiTime tools.
In a first step, only the auto-generated controller code has been analysed, leaving out the

6 http://www.rapitasystems.com

http://www.rapitasystems.com
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Listing 1 Instrumentation procedure
procedure Ipoint ( Id : Natural ) is
begin

trace_buffer ( trace_idx ). ident := Id ;
trace_buffer ( trace_idx ). timestamp := Ada. Real_Time .Clock ;
trace_idx := trace_idx + 1;

end Ipoint ;

interface code that is required for reading the magnetometers, which is simulated in the test
platform.

The default setup for the RapiTime instrumentation, in which the trace is output to
a serial line during the execution, is not suitable for our test platform, due to the bias
that the serial communication would add to the measurement. Therefore, we changed the
instrumentation code so that it writes the traces to an array instead. The trace elements are
pairs of system time values and instrumentation point identifiers. The Ada.Real_Time.Clock
function provided by ORK was used for system time measurements. The clock granularity is
100ns, and the time type representation is 64 bits long. RapiTime uses natural number values
as instrumentation point identifiers, which were mapped to 32 bit Ada integers. Consequently,
trace values use 12 bytes for each instrumentation point. The trace array is stored in the
target computer memory, and later extracted to the developer workstation with the GRMON7

debugging tool. Listing 1 shows the code of the instrumentation procedure.
In order to have enough data for the results to be relevant, the simulation should cover at

least one complete orbit. The reason for it is the need to cover different values of the Earth
magnetic field at different orbital positions. Since the devised orbital period for the satellite
is about 1.64 hours, 5930 iterations of the control method have to be executed to cover a full
orbit at the specified 1Hz rate. The size of the trace array, considering that there are two
instrumentation points for each iteration, is thus 140 KB, which can be easily stored in the
64 MB RAM of the target computer.

The final step is to process the data on the development workstation. The results are
described in the next section.

4 Results

In addition to WCET measurements, RapiTime generates a large amount of data about the
ADCS code. The most relevant data refer to code coverage. RapiTime reports the number of
times that each instrumentation point has been reached, which can be easily used to derive
the execution count for every possible execution path.

For our purposes, the main results refer to statistics of time measurements. Figure 5
shows the minimum (Min-ET), average (A-ET), high water mark (H-ET), and maximum
(Max-ET) execution time registered for the ADCS controller function, together with an
estimate of the worst case execution time (W-ET) [13]. The term “Self” in the figure means
that subprogram calls are not included, which is all right in this case as the code user test
does not make any such calls. WCET estimation, which does not necessarily match the
worst execution time registered in the experiments, is one of the features that make this tool

7 http://www.gaisler.com/
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really powerful for systems validation. “Over” refers to measurements including function
calls. “Freq” refers to the number of times the code has been executed during the test.

Figure 5 Execution time results for the ADCS control function.

In our case, the WCET estimate has a value of 2100 (210µs). Since the controller task
period is 1s, the processor utilization is 0.21%, which is a fairly low value leaving time for
more complex control algorithms if needed, and for the rest of the subsystems as well.

As can be seen from figures 5 and 6, the difference between the minimum and the worst
case execution time is just 8.7µs, and the mode is 207µs with a probability of 0.147. With
such a small difference, the distribution spans a very narrow range. However, the most
interesting point is that, although the actual WCET might be greater than the estimated
value of 210µs, the probability of such a situation is very low, 1.69 · 10−4. We can take
this result as an indication that we can safely use the estimated WCET for response time
analysis.

Figure 6 Probability distribution of execution time.
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5 Conclusions and future work

The UPMSat-2 project provides an excellent testbed for many of the results obtained by
UPM researchers over the recent years. In spite of being an experimental satellite, it is still
a relevant project in terms of size and complexity. In particular, using the ORK technology
developed by the real-time systems group, together with timing analysis methods such as
implemented by RapiTime and other tools, provides an opportunity to validate the technology
on a real satellite mission and consolidate our approach to embedded software development.

Hardware in the loop, supported by RapiTime and Simulink tools, has proved to be
a successful approach to WCET analysis in terms of time, cost and results. Accordingly,
it will be one of the techniques used for the final validation of the attitude determination
and control system of the UPMSat-2, as well other subsystems of the spacecraft on-board
software. Although the current implementation of the controller function is very simple and
consequently does not require some of the advanced WCET techniques implemented by the
tool, the experiment has shown that the testing infrastructure is valid and can be used to
analyse the execution time of other, more complex functions as the development advances.

Future work includes adding real sensors and actuators to the test environment. This
will allow us to get real and complete timing measurements on the whole system and not
just the auto-generated code. The next step is to perform measurements with all the OBC
subsystems in place, and use response time analysis tools to estimate the time behaviour of
the full system, including interference among different tasks and blocking due to access to
common resources. This may require optimizing the instrumentation routine in order to get
a more efficient implementation of measurements.

The flight version of the OBC will include a LEON3 processor with cache memory. The
issue of the effects of multitasking on cache affinity will have to be further investigated. A
possible way to improve timing predictability may be freezing the cache during the execution
of interrupt handlers, so that the interrupted task preserves its cache affinity, at the possible
cost of increasing the execution time of interrupt handlers. It is also possible to disable the
cache during the execution of critical application tasks, making the cache control registers
part of the task context. This technique has been implemented in an extension to ORK that
has been used in a related project [10].

On-going work also includes higher-level modelling of the on-board software using some
of the tools developed in the CHESS project.8
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Abstract
Parametric worst-case execution time (WCET) formulas are a valuable tool to estimate the im-
pact of input data properties on the WCET at design time, or to guide scheduling decisions at
runtime. Previous approaches to parametric WCET analysis either provide only informal ad-
hoc solutions or tend to be rather pessimistic, as they do not take flow constraints other than
simple loop bounds into account. We develop a formal framework around path- and frequency
expressions, which allow us to reason about execution frequencies of program parts. Starting
from a reducible control flow graph and a set of (parametric) constraints, we show how to obtain
frequency expressions and refine them by means of sound approximations, which account for
more sophisticated flow constraints. Finally, we obtain closed-form parametric WCET formulas
by means of partial evaluation. We developed a prototype, implementing our solution to para-
metric WCET analysis, and compared existing approaches within our setting. As our framework
supports fine-grained transformations to improve the precision of parametric formulas, it allows
to focus on important flow relations in order to avoid intractably large formulas.
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1 Introduction

In hard real-time systems, it is crucial to guarantee that timing constraints are met. Con-
sequently, determining the maximum time it might take to execute a task, its so called
Worst-Case Execution Time (WCET), is both a necessary task in certification, and an
important metric in the design of hard real-time systems. Since the early days of WCET
analysis, there is a vital interest in parametric WCET analysis, which attempts to calculate
a closed-form formula for the WCET, parametrized over an abstraction of the input space.

Formulas describing the WCET are particularly interesting during development. For
example, formulas are well-suited to specify the timing behavior of components, or to classify
the impact of input on the timing behavior [9]. Furthermore, WCET formulas can be used to
determine the WCET depending on the actual input at runtime [18, 7, 15], which can guide
dynamic scheduling, or facilitate the early detection of timing problems. We are particularly
interested in the application of these techniques to optimization and the classification of the
impact of architectural parameters.
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In recent years, there has been active development on techniques for determining symbolic
flow facts, which characterize possible execution paths depending on the input data and
reduce the search space for the worst-case execution path. Interesting examples include the
automated computation of symbolic loop bounds [19] and solving of recurrence relations
derived from abstract programs [1]. However, as already noted in the article of Chapman [6]
in 1994, parametric WCET formulas are often not precise enough to allow for the derivation
of tight bounds, if they fail to take additional flow facts (besides loop bounds) into account.

Flow facts of particular interest are bounds of inner loops in nested loops, where the
bound of an inner loop varies with the iterations of the outer loop. Infeasible pairs model
that two statements are mutually exclusive with respect to an execution context, and are
common in embedded system code, especially in auto-generated code from synchronous
languages or MATLAB Simulink [5].

The Implicit Path Enumeration Technique (IPET, [13, 16]) currently is the most widely-
used technique for calculating the WCET. It generates an integer linear program (ILP), for
which sophisticated solvers are available. In ILP, it is relatively easy to model flow facts
besides loop bounds, improving the precision of the WCET bound. There is a parametric
variant of the ILP problem called Parametric Integer Programming [14]; experiments with
solvers for this powerful problem description language have been disappointing though
[4, 3]. A function generating ILPs for each concrete input data configuration can also be
viewed as a form of parametric ILP. While this approach has some interesting applications
[5], its applicability is limited as the number of concrete ILP problems to solve increases
exponentially in the number of input bits.

1.1 Motivating Example

The motivating example in Figure 1 illustrates the problem of taking additional flow facts
into account, in this case a so-called triangle loop.

B1
i = 0

B2
i < N ?

B3
rand(1) ?

B9
return

B4
work

B5
work
j = 0

B6
j < i ?

B7
work
j++

B8
i++

f

L1

L2

/* Nested loops */
void f(int N) {
  /* Loop Bound: N */
  for (i = 0; i < N; i++)
    if rand()
      B4();
    else
      B5();
      /* Loop Bound: i (N-1) */
      for (j = 0; j < i; j++)
        /* Global Bound: N (N-1) / 2 */
        B7();
      end
    end
  end
}

/* Symbolic Frequency Bounds depending on N */

fB4 + fB5 ≤ N fB1    (1)

fB7 ≤ (N-1) fB5      (2)

fB7 ≤ ½ N (N-1) fB1  (3)

Figure 1 Example: Triangle Loop

In order to simplify the presentation, we will assume that the cost of all nodes but B4,
B5 and B7 is zero. Considering each iteration of the outer loop in turn, it is not difficult to
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see that a precise bound for the WCET of f is

WCET(f,N) =
N∑
i=0

max(B4, B5 + iB7) . (1)

While automatically calculating a closed formula for the exact parametric WCET of
f is hard, it is interesting to investigate different approximations.1 If no flow facts but
symbolic loop bounds are taken into account [6, 2], the formula closely corresponds to a
regular expression describing the set of paths, replacing concatenation by addition, and set
union by the max operator. For loops, the loop body is multiplied by the symbolic loop
bound, in this case N for the outer loop, and N − 1 for the inner loop. After simplification,
we thus obtain

WCET(f,N) = max(NB4, NB5 +N(N − 1)B7) . (2)

For larger values of N or B7, the quadratic term dominates, leading to a WCET overesti-
mation of up to 100%. Another recent approach is that of [4], which propagates constraints
for each node, and then computes the sum of all nodes, multiplied by their symbolic execution
bound. In this case, this would lead to the approximation

WCET(f,N) = NB4 +NB5 + N(N − 1)
2 B7 . (3)

This approach works well for single-path programs, but is rather pessimistic otherwise,
as choice is mapped to addition instead of the maximum. Both of the previous approaches
are easy to model in our framework. The techniques presented in this article allow to derive
the following approximation, and prove it correct:

WCET(f,N) = max(NB4, NB5) + N(N − 1)
2 B7 . (4)

This leads to a slight over-approximation if B4 is expensive, but is a better approximation
than the first one in the common case. In order to further improve the preciseness of the
formula, one may introduce a case distinction, and either use Equation 2, if B4 is executed
at least N

2 times, or Equation 4 if it is executed less often. This approach increases the size
of the formula, however, and thus in general may lead to intractably large formulas.

We believe that there is no single optimal strategy for constructing parametric formulas,
and thus lobby for a formal framework, presented next, which allows to selectively refine
formulas. In contrast to the related framework of Colin and Bernat [8], we chose an algebraic
approach which is decoupled from the semantics of the analyzed program, and permits
relatively simple correctness proofs. In Section 4, we describe the construction of formulas,
the refinement of formulas using given, symbolic constraints, as well as the simplification
and evaluation of formulas. Our experiments are described in Section 5, followed by our
conclusion in Section 6.

1 For this particular problem, the exact WCET can be computed manually, by determining the smallest
integer k, such that if i = k, executing the nested loop is more expensive than executing B4. With
k = min(N, max(0, dB4−B5

B7
e)), the WCET is then given by WCET(f, N) = kB4 + (N − k)B5 +

N(N−1)−k(k−1)
2 B7 .
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2 Background

In this work, we are mainly concerned with the construction of parametric WCET formulas
from a given program representation, and the refinement of formulas using given program
flow constraints. Therefore, we briefly review control flow representation and flow constraints,
but do not address other relevant issues here, such as program-flow or processor-behavior
analysis.

2.1 Control Flow Representation
The representation of programs in our analysis closely follows the machine code representation
in the LLVM compiler framework2, which is a central component of our evaluation framework.

A control flow graph (CFG) G = 〈V,E〉 models the possible execution sequences of a
function. Each node v ∈ V corresponds to the execution of a sequence of instructions, and an
edge (v, v′) from E ⊆ V × V to a possible change of control from the last instruction of v to
the first instruction of v′. The successors of a node v are given by succ(v) = {v′ | (v, v′) ∈ E},
the predecessors by pred(v) = {v′ | (v′, v) ∈ E}. A node vd dominates a node v (denoted as
vd dom v) if every path from the start node to v must go through vd. vd strictly dominates
v if vd dom v and vd 6= v.

We require several properties of the CFG representation, which are established in a
preprocessing step. Each CFG G has a unique entry node sG , the only node where the set of
predecessors is empty, and a unique exit node tG , with succ(tG) = ∅.

We only consider reducible CFGs [11] and thus irreducible loops need to be eliminated
before WCET analysis. In a reducible CFG, loops L ⊆ V are identified by a unique header
node hL, which dominates all loop members v ∈ VL. A back edge is an edge from a member
of a loop L to its loop header hL. The acyclic forward CFG is obtained from a CFG by
removing all back edges. Loops may be nested: The loop L2 is an inner loop of L1, if the
header hL2 is a member of loop L1.

2.2 Flow constraints
In order to be WCET-analyzable, the maximum number of iterations of any loop in a
program must be statically determinable. Applying to the CFG representation of a program,
we define the loop bound of a loop L to be the maximum number of times the loop header
node hL of L is entered via any of its backedges in every execution.

Considering only the control-flow structure of the program together with simple numeric
loop bounds will in most cases lead to an imprecise WCET bound. A reason for this are
infeasible paths, i.e., structurally possible program paths that are not taken in any execution
due to functional dependencies of program variables. Most prominent examples are mutually
exclusive statements, and triangle loops, i.e., nested loops in which the loop bound of the
inner loop depends on the iteration counter of the outer loop.

Linear flow constraints are the basis for IPET-based WCET calculation methods. In the
corresponding ILP problem, the control-flow structure is expressed by means of linear relations
between execution frequencies of CFG edges. Additional restrictions, for example to express
relations between edge execution frequencies in different loop scopes, can easily be added
into the system of linear constraints. Linear flow constraints have the form

∑
i ai · fei ≤ C,

where fei
is the execution frequency of edge ei, and ai, C ∈ Z are constants.

2 http://www.llvm.org

http://www.llvm.org
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In case of symbolic ai or C, the ILP problem is parametric and cannot be solved by
standard IPET methods. Flow facts are either provided through manual annotations by the
programmer or automatically derived by static program analysis.

3 Formal Framework

3.1 Path Expressions
Based on the work of [17], we can regard any path π in a directed graph G = 〈V,E〉 as a
string over E. A path expression P of type (v, w) with v, w ∈ V (denoted as P (v, w)) is a
regular expression over E such that every string π in the language σ(P ) is a path from v

to w. Let P (v, w) be a path expression of type (v, w). Then, all subexpressions P1 and P2
of path expression P are also path expressions, whose type can be defined recursively as
follows [17]:

1. If P = P1 ∪ P2, then P1 and P2 are of type (v, w) (alternative paths).
2. If P = P1 · P2, there must be a unique vertex u such that P1 is of type (v, u) and P2 is of

type (u,w) (path concatenation).
3. If P = P ∗1 , then v = w and P1 is of type (v, v) (loop).

We call a path expression complete iff σ(P (v, w)) is the set of all paths from v to w in G.
For any given CFG G with entry node s and exit node t, the set of all structurally feasible
(possibly infinite) paths through the CFG is defined by a complete path expression P (s, t).

The underlying algebraic structure of path expressions is a Kleene algebra, i.e., an
idempotent semiring (dioid) over E with the two binary operations of alternative paths ∪
as addition with neutral element ∅ and path concatenation · as multiplication with neutral
element ε (empty string), and the additional unary operation of repetition ∗ (cf. Table 1).

a∗ is equivalent to the infinite expansion to (ε ∪ a ∪ aa ∪ aaa ∪ . . .). We exploit the
algebraic structure to keep the a path expression P compact, as equivalence transformations
on P do not change the language σ(P ).

Due to the associativity of both (binary) operations ∪ and · and by assigning operator
precedences in the order ∗ , · , ∪ (starting with the highest), we can omit most brackets in
path expressions. We also omit · in the notation, as usual for multiplication.

3.2 Frequency Expressions
Instead of calculating a cost formula directly from path expressions, we first introduce an
abstraction from the set of paths to node frequencies. This abstraction lies at the heart of the
successful IPET analysis, and is the basis for the concept of linear flow constraints. In our
context, it permits us take flow constraints into account, to reason about node frequencies
and prove the correctness of formula transformations.

The frequency fπ(e) of an edge e on a path π is defined as the number of occurrences of
e in π; that is, fπ is a function mapping edges to their occurrence count in π. A frequency
constraint is a predicate on the frequencies of edges on a path, and acts a filter selecting
valid paths from the set of all structurally possible ones. Formally, given a path expression
P (v, w), and a set of frequency constraints C, the set of valid paths for P (v, w, C) is given by
σ(P, C) = {π ∈ σ(P ) | ∀C ∈ C : C(fπ)}.

An expression P ′ is a sound approximation of P (v, w, C), if σ(P ′) ⊇ σ(P, C), that is, each
valid path is included in the language described by P ′. An approximation of an expression
P ′ is called exact with respect to C, if σ(P ′) = σ(P, C).
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Frequency expressions are syntactically similar to path expressions; we just introduce a
bounds notation P [L,U ] which is equivalent to the expansion

⋃
L≤i≤U P

i, with P i = P [i,i] =
PP · · ·P (i times) and P 0 = ε. Consequently we replace a path expression P ∗ by P [0,∞] to
simplify notation during constraint refinement (see Section 4.2). However, concatenation
is commutative for frequency expressions. For example, while P1 = e1e2 and P2 = e2e1 are
different path expressions, they are equivalent if interpreted as frequency expressions.

Frequency expressions are useful for two reasons. First, they allow us to take non-local
constraints into account, as discussed in Section 4.2. Second, frequency expressions allow us
to limit the growth of a formula when splitting subexpressions. For example, suppose that ei
and ej are mutually exclusive, that is {¬(fei

> 0 ∧ fej
> 0)} ∈ C. Then P = ei ·Q · ej can

be refined to (ei ∪ ej) ·Q, while for path expressions we would be stuck with (ei ·Q)∪ (Q · ej).

3.3 Cost Expressions
Let c : E → N ∪ {−∞} be a cost function, which assigns to each edge e ∈ E of a CFG
G = 〈V,E〉 its maximum execution cost ce. 3 Then we can derive a symbolic expression for
the (possibly approximated) maximum cost c(P (s, t)) over all paths from the entry node s
to the exit node t from the frequency expression P (s, t) (or a sound approximation thereof),
by replacing the underlying algebraic structure with 〈N ∪ {−∞},max,+,−∞, 0〉, which
we denote as Nmax in the following. Nmax is also a commutative dioid like the algebra of
frequency expressions, with a total order defined on its elements by the order of the natural
numbers, or equivalently, using the max operation: a ≤ b if max(a, b) = b.

While in general for the frequency expression (a∪ b)N =
⋃N
k=0 a

k bN−k, the total order of
the elements in Nmax allows for following simplification due to monotonicity: N ∗max(a, b) =
max(N ∗ a,N ∗ b). Furthermore, as max(N ∗ a, (N + 1) ∗ a) = (N + 1) ∗ a, only the upper
bound U in a frequency expression P [L,U ] needs to be considered when calculating the
maximum cost. As a consequence, in Nmax we cannot conveniently reason about edge (or
node) frequencies, but only about (possibly approximated) path costs.

Table 1 provides a comparison of path-, frequency- and cost expressions.

4 Construction and Evaluation of WCET Formulas

In this section, we first give a concise description on how to construct path expressions in
our framework, then present the refinement of frequency expressions to account for flow
constraints, and finally describe the normalization of frequency expressions and our partial
evaluation framework.

4.1 Building Path Expressions
We first consider an acyclic CFG G = 〈V,E〉 with entry node s and exit node t. We want to
obtain a complete path expression P (s, t), approximating the set of valid paths from s to t.
We recursively define P (v, w) as

P (v, w) =
{
ε if v = w⋃

(w′,w)∈E (P (v, w′) · (w′, w)) if v 6= w

3 Given execution costs cv of basic blocks v ∈ V of the CFG, edge costs can be derived by attaching cv

either to all of its incoming edges or all of its outgoing edges.
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Table 1 Comparison of path expressions, frequency expressions and cost expressions.

Path expressions
Interpretation Language of structurally possible program paths
Algebraic structure Kleene algebra 〈E,∪, ·,∗ , ∅, ε〉 (idempot. semiring with Kleene closure)

∪ is associative, commutative and idempotent; · is associative
· is distributive w.r.t. ∪: (a∪b)·c = (a·c)∪(b·c) , a∪(b·c) = (a·b)∪(a·c)
Zero element: a ∪ ∅ = ∅ ∪ a = a; Identity element: a · ε = ε · a = a

∅ annihilates E w.r.t. · (a · ∅ = ∅ · a = ∅)
∅∗ = ε∗ = ε

Example (e3,4e4,8) ∪ (e3,5e5,6(e6,7e7,6)∗e6,8)

Frequency expressions
Interpretation Execution frequencies of edges in the CFG
Algebraic structure Similar to path expr., but comm. dioid: · is commutative (a · b = b · a)

Bounds notation for P [L,U ] repetition bounds, P ∗ 7→ P [0,∞]

∅[0,U ] = ∅[0,0] = ε, while ∅[1,U ] = ∅
Example (e3,4e4,8) ∪ (e3,5e5,6e6,8(e6,7e7,6)[0,N ])

Cost expressions
Interpretation Formula for (maximum) execution cost
Algebraic structure Commutative dioid 〈N∪{−∞}, max, +,−∞, 0〉

Due to total order and monotonicity: N ∗max(a, b) = max(N ∗a, N ∗b)
Example max(NB4, NB5) + N(N−1)

2 B7

As we assumed the CFG to be acyclic, there is a partial order ≺ on the nodes of the
graph with w ∈ pred(v)⇒ w ≺ v, for all v, w ∈ V . By determining this topological order,
and representing each expression P (s, v) only once in memory, we obtain a closed form for
P (s, t) in time and space linear in the size of the CFG.

Now consider a CFGs G = 〈V,E〉 with reducible loops. We observe that the set of
cycle-free paths (i.e., those which do not include back edges) is generated by calculating
P (s, t) for the forward CFG GF = 〈V,EF 〉. Furthermore, all cycles are composed of paths
starting from a loop header and ending at the corresponding back edge. Therefore, in the
general case we recursively define P (v, w) as

P (v, v) =
{
ε if v is not a loop header⋃

(v′,v)∈E\EF P (v, v′) · (v′, v) if v is header of loop L

P (v, w) =
⋃

(w′,w)∈EF

(P (v, w′) · (w′, w)) · P (w,w)∗ if v 6= w

The construction of path expressions simply takes the union of all paths leading to
predecessors. However, those paths will often have a common prefix, namely the path
expression from the entry to the dominator of predecessors. Therefore, we factor out
common prefixes during construction, using the equivalence

⋃
j (P (s, d) · P (d, j)) = P (s, d) ·(⋃

j P (d, j)
)
.

I Example 1. Consider the example presented in Section 1.1. Let ei,j denote the edge from
Bi to Bj . Then applying the construction algorithm, and factoring out the common prefix
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P (B2, B3) leads to the following path expressions:

P (B1, B9) = e1,2P (B2, B2)∗e2,9

P (B2, B2) = e2,3P (B3, B8)e8,2

P (B3, B8) = (e3,4e4,8) ∪ (e3,5e5,6P (B6, B6)∗e6,8)
P (B6, B6) = e6,7e7,6

4.2 Constraint Refinement of Frequency Expressions
The formulas derived so far express possible paths constrained only by the program structure
as obtained from the CFG. In order to calculate a (precise) WCET bound, we need to take
flow constraints into account. As argued before, frequency expressions are a well-suited
formalism for this task. Therefore, we interpret the initial path expression as frequency
expression before constraining the formula.

4.2.1 Constraint Refinement
The following observation illustrates how to take local frequency bounds into account.
I Observation 1 (Constraint Refinement). Given a a frequency expression P (s, t) = R ·
Q(u, v)[A,B], and a frequency constraint C =

∑
(u′,u)∈E f(u′,u) ≤ N , C ∈ C. Then the

frequency expression P ′(s, t) = R ·Q(u, v)[A,N ] is a sound approximation of P (s, t, C).
Due to the way frequency expressions are constructed, it is thus always possible to account

for constraints which limit the frequency of a node relative to its immediate dominator. For
non-empty frequency expressions Q(v, v), corresponding to the body of a loop, the constraint
only needs to refer to total frequency of the loop’s back edges. Local constraints, in particular
simple loop bounds, should always be applied to frequency expressions, in order to facilitate
the calculation of a numeric WCET bound.

I Example 2. Consider the path expressions presented in Example 1, interpreted as frequency
expressions. In the motivating example, we have f(e8,2) ≤ N ∈ C for all paths from B1 to
B9. Applying Observation 1, we thus get

P ′(B1, B9, C) = e1,2P (B2, B2)[0,N ]e2,9

4.2.2 Global Bounds
Frequency expressions also allow us to take non-local frequency bounds into account. We
start with the following two observations:
I Observation 2. Given a frequency expression P (s, t) = (Q ·R)[A,B], the expression P ′(s, t) =
Q[A,B] ·R[A,B] is a sound approximation of P (s, t).
I Observation 3. Given a frequency expression P (s, t) = ((Q ·R) ∪ S)[A,B]. Then P ′(s, t) =
Q[0,B] · (R ∪ S)[A,B] is a sound approximation of P (s, t).

These observations allow to move subexpressions to an outer scope, which in turn enables
the inclusion of non-local loop bounds. The following example illustrates this technique.

I Example 3. Consider the frequency expression from Example 2. Applying both transfor-
mations presented above to lift P (B6, B6) gives

P ′′(B1, B9) = e1,2P
′′(B2, B2)[0,N ]P (B6, B6)[0,N(N−1)]e2,9

P ′′(B2, B2) = e2,3 ((e3,4e4,8) ∪ (e3,5e5,6e6,8)) e8,2
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Then applying constraint refinement to P (B6, B6) results in

P ′′′(B1, B9) = e1,2P
′′(B2, B2)[0,N ]P (B6, B6)[0, 1

2N(N−1)]e2,9

Note, that while using the first observation might improve the WCET bound, applying
the second or third one may make it worse. Thus it is necessary to devise a heuristic which
decides whether a non-local constraint should be applied. Another alternative to overcome
possible degradation is to mimic the IPET approach and split the formula, distinguishing
the case when the non-local constraint is useful, and the one when the local one is better.

4.2.3 Infeasible Pairs
An infeasible node x ∈ V is a node that does not lie on any feasible path from s to t. Given a
frequency expression P (s, t) and an infeasible node x, the set of valid paths σ(P, C) satisfies
the constraint C = {fe = 0 | e ∈ Ex} , C ⊆ C, where Ex is the set of edges incident to x, i.e.,
the frequency of all incoming edges and all outgoing edges of x is zero.

The frequency expression P (s, t)[e 7→ ∅], e ∈ Ex is a sound approximation for P (s, t, C).4
Recall that ∅[0,U ] = ∅[0,0] = ε, while ∅[1,U ] = ∅. With this transformation, every subexpression
P ′ of the form P ′ =

∏
k Pk where some Pk = ∅ will thus be annihilated in P , i.e., any path

that formerly contained x at least once, is pruned from the set σ(P ), while all other paths
are preserved.

An infeasible pair (x, y) is a pair of nodes x, y ∈ V such that any path from s to t that
contains both x and y is infeasible. We can restrict the set of valid paths by taking the union
of the path set in which x is infeasible and the path set in which y is infeasible. Formally, we
obtain a sound approximation for P (s, t, C) where C = {¬

(
fex

> 0 ∧ fey
> 0
)
, ex ∈ Ex, ey ∈

Ey}, C ⊆ C by the frequency expression P (s, t)[ex 7→ ∅] ∪ P (s, t)[ey 7→ ∅], ex ∈ Ex, ey ∈ Ey.
The resulting expression describes the set of paths pruned only of paths that contain both
nodes x and y, and hence is an exact approximation.

Obviously, the size of the formula increases when taking infeasible pairs into account.
Indeed, as WCET calculation is NP-complete in the presence of infeasible pairs5, it is
not possible to obtain a compact formula in the general case. However, by exploiting
commutativity in frequency expressions to reduce the size of the duplicated part of the
formula, and by taking only those infeasible pairs into account which improve the WCET
significantly, we hope keep the size of the formula in reasonable limits.

4.3 Simplification and Partial Evaluation
We use the properties of the frequency expression algebra to normalize frequency and cost
expressions, which provides the basis for the partial evaluation described at the end of this
section.

4.3.1 Normalized Frequency Expressions
In the normalized form, every frequency expression is either a single node, a union

⋃
i Pi of

normalized frequency expressions, or a product
∏
i P

[Li,Ui]
i . The normalized form of frequency

expressions has the following properties:

4 P [e 7→ e′] denotes the frequency expression P , with all occurrences of the subexpression e replaced by
e′.

5 As can be shown by a polynomial-time reduction of W2SAT.
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Subsumption (Unions): Given two products P =
∏
i P

[Li,Ui]
i and Q =

∏
j Q

[Lj ,Uj ]
j , if for

every Q[Lj ,Uj ]
j there is a P [Li,Ui]

i with Pi = Qj , Li ≤ Lj and Uj ≤ Ui, then P subsumes
Q (σ(Q) ⊆ σ(P )) and thus P ∪Q = P . For every normalized frequency expression

⋃
i Pi,

each Pi is a product, and if Pi subsumes Pj , Pj is not present in the union.
Frequency Product (Products): The product P [L1,U1] ·P [L2,U2] simplifies to P [L1+L2,U1+U2],
and (

∏
i P

[L1,U1]
i )[L2,U2] simplifies to

∏
i P

[L1L2,U1U2]
i . Furthermore, we apply P ·

⋃
∅ =

⋃
∅

whenever possible. Therefore, in every frequency expression
∏
i P

[Li,Ui]
i , all Pi are distinct,

and each Pi is either a non-empty union of frequency expressions or a single node.

4.3.2 Partial Evaluation

Given a frequency expression P (s, t) for a control flow graph, we perform partial evaluation
to obtain a numeric or parametric formula for the WCET. We call this step partial evaluation,
as the evaluation functions c and f are allowed to be partial.

For evaluation purposes, we introduce a special node c, which represents one unit of
cost. The evaluation algorithm takes a frequency expression P (s, t), a partial cost function
c (assigning costs to edges), and a frequency evaluation function f , transforming symbolic
frequencies (either into numeric ones or different symbolic frequencies, e.g. to reflect some
parameter of interest, like size of an input array).

First, all edges e where c(e) is defined are replaced by cc(e), and all expressions P [L,U ] are
simplified to P [f(L),f(U)]. The actual evaluation then corresponds to the normalization of
the frequency expression, as described before. This is sufficient for full evaluation, while for
partial evaluation the size of the formula can be further reduced by additional simplifications,
which exploit the total order of numeric cost values.

Given the result of the partial evaluation, we would like to obtain information on node
frequencies in the evaluated formula. In principle, this can be achieved by keeping references
to original expressions during simplifications, and keeping track of selected branches in unions,
though this has not been elaborated yet.

5 Experiments

In order to validate the applicability of our parametric execution time formula framework, we
implemented a prototype on top of the Open Timing Analysis Platform [12]. This evaluation
framework is based on the LLVM compiler framework, and extracts description of machine
code CFGs from the internal compiler representation. Flow facts are provided by the SWEET
[10] analysis tool, developed at the Mälardalen Real-Time Research Center (MRTC) which
is integrated in our evaluation framework.

For our preliminary experiments, we generate machine code for the ARM instruction set
and use a simple cost model (one cycle per instruction). In Table 2, we present results for
three benchmarks which feature triangle loops. One is adapted from the motivating example
in Section 1.1, and two are taken from the MRTC benchmark set.

In these experiments, formulas are parametric with respect to loop bounds (first column).
Local bounds Li constrain the loop iteration count relative to the loop entry frequency,
global bounds Gi are relative to the function entry. The fourth column displays the result of
evaluating the formulas with the specified numeric loop bounds.

We compare the standard approach which only uses simple loop bounds (local bounds
only), the result which only uses bounds relative to the function entry (global bounds only),
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Table 2 Results of the comparison of different approaches to parametric analysis.

approach formula cycles

intro_example local bounds only 6 + 12L1 + L1 ∗max(28, 19L6) 1836
L1 = 10, L6 = 9, global bounds only 6 + 45L1 + 19G6 1311
G6 = 45 lifting inner loops 6 + 40L1 + 19G6 1261

IPET — 1121
insert_sort local bounds only 29 + 14L1 + 11(L1 L3) 1046
L1 = 9, L3 = 9, lifting, global 29 + 14L1 + 11G3 650
G3 = 45 IPET — 650
janne_complex local bounds only 32 + 14L4 + 22L2 + 14(L2 L4) 1216
L2 = 8, L4 = 8, global bounds only 18 + 8L2 + 15G4 262
G4 = 12 lifting inner loops 18 + 8L2 + 14G4 250

IPET — 250

and the transformation moving nested loops to the outer scopes (lifting inner loops), described
in Section 4.2.2.

6 Conclusion

We presented a framework for the calculation of symbolic execution time formulas, which
provides a solid foundation for parametric WCET analysis. We construct path expressions
from control flow graphs, and then add commutativity to obtain frequency expressions. The
key idea is that while frequency expressions are easier to work with than path expressions,
they still represent a sound approximation to the set of possible execution paths. By the
virtue of this property, it is possible to selectively include additional flow constraints, for
example global loop bounds or infeasible pairs, and prove this refinements correct.

The preliminary experiments have been encouraging, and the resulting formulas indeed
reflect our intuition, and suggest that this approach is not only theoretically sound, but
also works well in practice. We are eager to extend it to a fully-featured implementation,
supporting context-sensitive supergraphs, feedback on worst-case frequencies, and additional
formula refinements. There are many interesting applications to parametric WCET analysis,
especially at design time, and we believe that this framework provides a good basis for further
improving the state-of-the art in this area.
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Abstract
Estimating the worst-case execution time (WCET) of real-time programs is pivotal in their veri-
fication. WCET estimation either yields a numeric value that represents the maximum execution
time of the program when executed on a specific hardware platform; or yields a parametric ex-
pression in the form of some function of the input which when instantiated with a particular
input value, gives a WCET estimation of the program when triggered by this input specifically
(on a specific hardware platform). Parametric WCET analysis provides extra accuracy as the
WCET estimation can be tuned to particular input values at runtime; and is usually of interest
to dynamic-scheduling schemes.

In this paper we use genetic programming as an alternative method to approach the prob-
lem of parametric WCET analysis. Parametric expressions are captured automatically by the
genetic program based on end-to-end executions of the program under analysis. The technique
is complementary to static parametric WCET analysis and more amenable to industrial prac-
tice. Experimental evaluation shows that the presented technique computes accurate parametric
expression in an almost negligible time.

1998 ACM Subject Classification D.2.5 Testing and Debugging

Keywords and phrases real-time systems, parametric worst-case execution-time analysis, end-
to-end testing, genetic programming

Digital Object Identifier 10.4230/OASIcs.WCET.2012.103

1 Introduction

WCET analysis can result in two types of WCET estimations: numeric values or parametric
expressions. WCET estimations in the form of numeric values are the predominant in the
literature; in this case the WCET analysis returns a single constant value that indicates the
maximum number of clock cycles (or other time-measurement units) that the program can
potentially spend during its lifetime execution on a specific hardware platform. On the other
hand, parametric WCET estimations come in the form of mathematical functions of the
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expression wp(v) each time p consumes a new input vector v = vi, by instantiating the input
vi inside the parametric expression wp(v).

Parametric WCET analysis has been the subject of several research works whose most
common factor with respect to our work is that they are based on static analysis of program
code to determine the parametric expressions. In this paper, we present a novel approach for
the problem of parametric WCET estimation based on genetic programming, and is more
suitable for end-to-end WCET analysis used in the industry.

This paper is structured as follows. Section 2 introduces genetic programming. Section 3
explains the problem of parametric WCET analysis from the paper’s point of view. Section 4
explains the use of genetic programming to approach the problem of parametric WCET
analysis. Section 5 describes the experimental evaluation of our approach. Section 6 describes
related work in parametric WCET analysis. Section 7 contains concluding remarks and
directions for future work.

2 Genetic Programming

Genetic programming (GP) [8] is a bio-inspired computer algorithm that mimics natural
evolution of living organisms. It is similar to genetic algorithms with the exception that
individuals are computer programs as opposed to vectors of values.

The objective of GP is to evolve a computer program that solves a given problem. In order
to do so, a population of computer programs called individuals — that are randomly generated
initially — is evolved across a number of generations. The evolution of the population involves
the exchange of genetic material between the individuals through cross-over operations, and
the alteration of the genetic material of single individuals through mutation operations. A
selection strategy is applied to the individuals of a population in a given generation to decide
which ones are allowed to proceed to the next generation. Such selection is based on the
fitness of the individuals which is a problem-dependent value that specifies the goodness of
an individual in solving the problem at hand. The evolution continues until a good-enough
individual that solves the problem adequately is found, or until a maximum number of
generations is reached.

Each individual in the population is a program represented by its abstract-syntax tree
(AST). All non-leaf nodes of the AST represent operators, and leaf nodes represent problem
variables or constant values. Crossing-over two programs means taking one or more subtrees
from the first program and inserting them into the second program, and taking one or more
subtrees from the second program and inserting them into the first program (cross-overs can
be single-point or multiple-point). Mutating means changing the content of one or more
nodes in the AST.

GP can be used to solve a variety of optimization problems amongst which is symbolic
regression that we shall describe here because it is the essence of our approach. To solve a
symbolic-regression problem (also known as function-discovery problem), the genetic program
(GP1) takes as input a set of m observations of values of some variable x, a set of observations
of values of some variable y, and tries to identify the function f0 such that y = f0(x) is
true for all pairs (x, y) in the m observations — and also true outside the m observations.
The function f0 to be determined is a computer program that will be evolved by the GP.
The initial population of the GP contains a number of n randomly-generated functions
f1, f2, · · · , fn — each represented as an AST e.g. Figure 1 shows the AST representation of

1 We use GP to refer to both “genetic programming” and “genetic program”.
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Figure 1 An example abstract-syntax tree corresponding to some function fi(x) = x3 + 2x + 5.

some function fi(x) = x3 + 2x + 5 in the GP. The functions will be crossed over and mutated
over generations to produce new fitter functions. The fitness of a function fi is calculated as
the sum of differences (|x− y|) for all pairs (x, y) in the m observations. At the end, the GP
either discovers f0 during evolution or another function of equal or inferior fitness. Notice
that the GP can derive some function f ′0 that satisfies y = f ′0(x) for all observed data pairs
(x, y) but does not satisfy y = f ′0(x) in the general case i.e. for some unobserved pairs (x, y)
the relation (y = f0(x) ∧ y 6= f ′0(x)) holds. This is a classic case of over-fitting and is usually
(partially) tackled by dividing the m observations into a training part used during evolution,
and a testing part used after evolution to give an indication of how well the derived function
f ′0 generalizes to new unseen data. Should the derived function not generalise well enough,
evolution is restarted with the derived function f ′0 injected in the initial population of the
new GP run.

3 Parametric WCET Analysis

The objective of parametric WCET analysis is to derive a function that expresses the WCET
of some program in terms of its input. These parametric expressions contain constant
factors and terms, and variable factors and terms. The constant factors and/or terms in the
parametric WCET expression refer to known entities in the analysis such as program-segment
execution times and program-segment execution counts. These are derived by (i) the WCET
analysis through its flow analysis (execution counts) or processor-behaviour analysis/runtime
measurements (execution times), (ii) input by the user (usually as execution counts in
the form of loop and recursion bounds, and sometimes as execution times of black-box
components or libraries not available for the analysis), or (iii) a mixture of analysis-derived
and user-input execution times and execution counts. We use the term program segment to
refer to program entities of interest to parametric WCET analysis e.g. a loop body whose
number of iterations is controlled by the input and which appears as a term ajxj in the
parametric expression — where aj is the execution time of the loop body and xj is its
execution count.

The variable factors and terms in the parametric expression can refer to the whole input,
parts of the input, and/or some of the input’s properties of interest. For example, in a
program that returns the factorial of a nonnegative integer, the whole input i.e. the integer
whose factorial is of interest becomes a variable in the parametric expression; and in a
program that sorts integers, the size of the input (which is a property of the input) becomes

WCET’12
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a variable in the parametric expression. Here we use the word input to mean the type of the
input as opposed to a single instantiation of it e.g. an input is an array of n integers, is a
real number, etc.

Input can influence the execution time of the program in two different ways: by altering
the execution times of the program’s segments, and/or altering their execution counts. For
example, if part of the input is passed as one of the operands of some variable-latency
instruction such as multiplication, the WCET estimation will change according to the value
passed to the variable-latency instruction. In this case, input affects the execution time of
the program segment that contains the variable-latency instruction, and consequently affects
the overall program’s execution time. If part of the input contributes directly or indirectly to
the value of some variable that controls the number of iterations of some loop, the execution
time of the program will also change according to the value of this input. In this case, the
input affects the number of times a set of program segments executes, and consequently
affects the overall program’s execution time. Figure 2 shows example scenarios of how input
affects the execution time of the program. In line 32, input variable c affects the flow of the
program and consequently affects the execution time. Including c in the parametric WCET
expression of foo() will be in the form of a conditional statement. Formula (1) shows (a
very simplified) parametric WCET expression of function foo() of Figure 2. The function
fmul(a, b) gives the execution time of the multiplication operation in terms of its operands a

and b. Formula (1) is the ultimate form of WCET parameterization as it accounts for the
diverse ways by which the input affects the execution time.

wfoo =
{

n + m + fmul(x, x) + 1 if c = TRUE

n + fmul(x, x) + 2 if c = FALSE
(1)

In the parametric-WCET literature, the derived parametric expressions are in the form of
polynomial functions where the variables refer to input parts or properties that influence loop
iteration numbers. The derived parametric expressions are usually expressed conditionally
over subdomains of the input space. In the literature, if the derived parametric WCET of
some program p has the form wp = akxk + ak−1xk−1 + · · ·+ a0, it means that the program
have parts that have execution times ai, i ∈ [0..k] and are repeated xi, i ∈ [0..k] times where
x is a part or a property of the input to program p. In these types of expressions, x is a
variable that will control the iteration number of one or more loops in the program under
analysis. In this paper, we will focus on deriving parametric WCET expressions where the
final expression is polynomial. Deriving more complex parametric expressions that account
for variable-latency instructions or those that are expressed conditionally over input space is
left for future work.

4 Parametric WCET Analysis using Genetic Programming

Parametric WCET analysis requires knowledge about the input parts or properties that
affect the execution time of the program — and which will appear in the final parametric
expression. We assume in this paper that knowledge about the exact parts or properties
of the input that influence the WCET is available to us through some third-party analysis
or user-input; and we exclusively consider those that affect loop bounds and/or recursion
depths as we have discussed. We will refer to the input parts and properties that appear in
the final parametric expression as parameters.

The problem of deriving parametric WCET expressions reduces to a problem of symbolic
regression. Let p be the program under analysis. Program p is executed for a number of m
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1 // The input to this program is composed of the following fields:
2 // 1. two integer arrays,
3 // 2. an integer variable,
4 // 3. and a boolean variable.
5 private static int foo (Integer[] A, Integer[] B, int x, boolean c)
6 {
7 // The size of the array (n/m) is a property of the input.
8 // Assume that execution time of the following segment is l.
9 int n = A.length;

10 int m = B.length;
11
12 // This is a part of the program whose execution time depends on
13 // some property of the input. This is a case where the input
14 // affects execution counts.
15 for(int i=0; i<n; i++)
16 {
17 // Do something.
18 // Assume that execution time of this body is l.
19 }
20
21 // This is a part of the program whose execution time depends on
22 // some part of the input. This is a case where the input affects
23 // execution times directly assuming multiplication is variable-
24 // latency instruction in the target hardware.
25 // Assume that execution time of multiplication of a and b is
26 // f_{mul}(a,b).
27 int y = x*x;
28
29 // This is a part of the program whose execution time depends on
30 // some part of the input. This is a case where the input affects
31 // execution counts in a conditional manner.
32 if(c)
33 {
34 for(int i=0; i<m; i++)
35 {
36 // Do something.
37 // Assume that execution time of this body is l.
38 }
39 }
40 else
41 {
42 // Do something.
43 // Assume that execution time of this part is l.
44 }
45 return 0;
46 }

Figure 2 Some function foo() that illustrates different scenarios of how input influences the
execution time of a program.

inputs: in each run i ∈ [1..m] the values x1,i, x2,i, · · · , xn,i of all n parameters x1, x2, · · · , xn

are recorded together with p’s end-to-end execution time ti. After all runs have completed, we
obtain a m-by-(n + 1) matrix of real numbers. The objective then is to find the function wp

that satisfies ti = wp(Xi), i ∈ [1..m] where X is a vector defined as X =< x1, x2, · · · , xn >

and Xi is the value of X in run i i.e. Xi =< x1,i, x2,i, · · · , xn,i >. Let Xk be the vector that
contains the parameters x1, x2, · · · , xn raised to the power k i.e. Xk = xk

1 , xk
2 , · · · , xk

n.
The parametric expression wp is just a function that expresses the execution time of the

program p in terms of its parameters. It becomes a parametric WCET expression once the
m runs exercise different program segments in their worst-case execution scenarios. This
means that if the expression wp has the form wp = AkXk + Ak−1Xk−1 + · · · + A0 where
Ai, i ∈ [0..k] is a vector of constants, then wp is WCET expression if the values in the vectors
Ak, Ak−1, · · · , A0 — which correspond to program-segment execution times — are maximum.
This depends on the quality of testing which is a common issue in all measurement-based
and end-to-end WCET analyses. Here we will focus on using the GP’s symbolic regression to
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learn a parametric expression as opposed to trying to prove that the factors Ak, Ak−1, · · · , A0
have their maximum-possible values — which is a separate problem to solve outside this
paper.

In order to discover the parametric expression, the GP is informed with the types of
operators and terminals (variables and constants) that can potentially appear in the derived
parametric expression. As we have discussed before, the operators will appear in the non-leaf
nodes and the terminals will appear in the leaf nodes of the AST representation of the
parametric expression. In our case, we have limited our attention to polynomials; which
by their mathematical definition allow addition and subtraction of terms, each term can be
composed by multiplying variables by variables or variables by constants, raising a variable to
the power of a constant, or dividing a variable by a constant. Therefore the set of operators
to consider is {addition, subtraction, multiplication, division}.

In addition to this, depending on implementation, the GP can benefit from knowledge
about the shape, depth, and size of the ASTs that represent the target parametric expressions.
A binary AST is usually the choice for symbolic regression problems where the target
expression is a polynomial. The depth of the binary AST will influence the order of the
polynomial. For example, the parametric expression of Figure 1 requires an AST of depth 5
(assuming root depth is 0) for a polynomial of order 3.

Notice that two runs of the GP (based on the same data set) that are performed to derive
the parametric expression wp of some program p are not guaranteed to derive the same
parametric expression i.e. they will potentially result in two expressions wp and w′p such that
wp 6= w′p. However, if the two runs of the GP are given the same resources (time, processing
power, memory, etc.) it is unlikely that the structure of the parametric expressions will be
different; but their constant factors are likely to differ slightly. The reason for this is that
GP is a search-based method that is based on some element of randomness in the genetic
operations such as cross over. The GP converges towards a solution of some fitness — after
a number of generations — which is often almost the same in different runs of the GP on
the same problem instance — as long as the GP has access to the same resources in these
different runs. Here, “almost the same” is seen in the form of parametric expressions that
have the same AST but have slightly-different constant factors.

5 Evaluation

To evaluate our approach, we use the Mälardalen WCET benchmarks [10] which have
historically been used to evaluate parametric WCET approaches in the literature. The
benchmarks have been modified to make them amenable to end-to-end testing — basically by
allowing the function main() to take input arguments, processing them using the function
atoi(), and passing them to the function of interest (e.g. factorial, insertion_sort,
etc.). The benchmarks we used are described in Table 1 and they include all benchmarks
used in [3, 16, 9, 11, 15, 6, 2, 5, 1] except those not available in [10]. The benchmark
janne_complex has been augmented with a new parameter c that substitutes the constant
value 30 used in the outermost loop — to make it more interesting to analyse.

Each benchmark program in Table 1 is compiled for the ARM architecture using a gcc
cross compiler and executed on Simplescalar [4] using the configuration shown in Figure 3.
The reason behind using Simplescalar instead of actual hardware is that we don’t have access
to actual hardware and accompanying execution-time measurement equipment. The reason
behind using the configuration of Figure 3 is to top the most complex hardware platform
used in parametric WCET analysis by [2] where the authors use MPC565 for evaluating
their work.
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Table 1 The benchmark programs used in the evaluation.

Benchmark Description Parameters and Ranges
bsort100 Bubble Sort (Triangular Loop) Size n of array to be sorted

n ∈ [1..100]
cnt Matrix Count Size n of side of square matrix

n ∈ [1..30]
crc Cyclic Redundancy Check Size n of input string

n ∈ [1..200]
fac Factorial Integer n

n ∈ [1..100]
fir Finite Impulse Responder Variables in_len, coef_len, and scale

in_len, coef_len, scale ∈ [1..700]
insertsort Insertion Sort Size n of array to be sorted

n ∈ [1..100]
janne_complex Nested Loop Program Variables a, b, and c

a, b, c ∈ [1..100]
matmult Matrix Multiplication Size n of side of square matrix

n ∈ [1..20]
sqrt Square Root Computation Integer n

by Taylor Series n ∈ [1..100]
st Statistics Program Size n of arrays to be processed

n ∈ [1..300]

# Pipeline -res:imult 1 -cache:il2 none
-fetch:ifqsize 4 -res:memport 2 -cache:dl2 none
-decode:width 1 -res:fpalu 1
-issue:width 1 -res:fpmult 1 # Branch Predictor
-issue:inorder false -bpred taken
-issue:wrongpath true # Cache
-lsq:size 2 -cache:il1 il1:128:16:2:1 # Default settings are used
-res:ialu 1 -cache:dl1 none # for everything else.

Figure 3 Configuration of the Simplescalar architecture used in the experiments.

The experimentation setup is straightforward. Each benchmark program p is executed
m = 10, 000 times using randomly generated inputs. The number m was chosen to be at
the same time large enough to allow more input diversity, and small enough not to affect
the GP’s runtime too severely — since the fitness function computes a sum of differences
of complexity Θ(m). In each run, the value Xi of the parameters of interest X and the
end-to-end execution time ti, i ∈ [1..m] of p are captured by reading the value sim_cycle
generated by Simplescalar at the end of each execution of the program under analysis. It
is worth noting that the end-to-end execution time corresponds to the entire program, not
just the function of interest and consequently the parametric timing expression corresponds
to the function main() — including the use of the function atoi() and all initializations
such as array initialization; and the function of interest. Measuring the end-to-end execution
time of the actual function of interest inside the benchmark program reduces to parsing
the Simplescalar trace (generated via -ptrace). This adds an unnecessary overhead to
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Table 2 The results of the experimental evaluation.

Benchmark p Expression wp by Eureqa Error ep Time to find wp

bsort100 35n2 + 917n + 5.55e4 ±0.20 2 minutes
cnt 988n2 + 100n + 5.82e4 ±0.22 2 minutes
crc 180n + 2.04e5 ±0.20 1.5 minute
fac 52n + 5.60e4 ±0.0012 10 seconds

fir (*) 1706in_len + 4.45e4 ±0.57 10 minutes
insertsort 13n2 + 970n + 5.54e4 ±0.28 2.5 minutes

janne_complex 20.78c− 17.46a + 5.80e4 ±0.05 10 seconds
matmult 189n3 + 1753n2 + 74n + 6.24e4 ±0.02 4 minutes

sqrt 31n + 5.76e4 ±0.13 5 seconds
st 2302n + 5.93e4 ±0.26 2.5 minutes

the experiment because the parametric expression can be derived regardless of whether the
end-to-end execution times are measured at the function level, or the whole-program level.

After the m executions, we pass the resulting m-by-(n + 1) data matrix Mp of data to the
GP to perform symbolic regression. We use the rows [1..0.9m] for training i.e. evolution, and
the remaining [0.9m + 1..m] for testing i.e. measuring the error of the derived parametric
expression when applied to unseen data. For the GP, we used both Eureqa Formulize v0.96
(a standalone application based on [12] and freely downloadable from [7]) and gptips v1.0
(a library for MATLAB based on [14] and freely downloadable from [13]). The results we
show in this paper are those obtained by Eureqa because it runs faster than the MATLAB-
based gptips, and it also comes with the paid option of using a cloud cluster to accelerate
computation. However we did not use the cloud cluster in our experiments, but it would be
interesting to use it for future work. It is worth noting that gptips is open-source and allows
more customization of the GP such as introducing specialized functions to use in symbolic
regression, and also user-crafted genetic operators. Such customization ought to accelerate
evolution, but we have not tested this. The experiments took place in a desktop computer
of the specifications Intel(R) Core(TM)2 Duo CPU @2.80 GHz running 32-bit Windows 7
Professional with 4Gb of RAM.

Table 2 summarizes the findings. The GP is run for each benchmark program’s data
matrix for 10 minutes. Notice that the GP can be left running indefinitely over some data
matrix Mp until an optimal symbolic expression wp is obtained. We argue that 10 minutes
is a reasonable time to leave the GP running for the relatively-small problems dealt with in
this work — which (i) have small numbers n of independent variables that affect the size of
the ASTs generated by the GP, (ii) have small numbers of observations m that affect the cost
of the fitness operation, and (iii) have a known polynomial structure and consequently the
GP’s search space is pruned because only relevant operators are used during evolution. The
best solution after 10 minutes is the one shown in Table 2. The error ep in the parametric
expression wp is also computed and it is the average of the sum of |wp(Xi)− ti| in the 0.1m

unseen runs. So if the error in the parametric expression is ep = 0.01, it means that the
average value for the difference |wp(Xi)− ti| per unseen run is 0.01. The recorded execution
time of the GP in Table 2 is the first instant in time in which the best solution is found. For
example, for the benchmark program bsort100, the derived expression that is shown in
Table 2 has been found after 2 minutes, and did not improve over the remaining 8 minutes
during the 10-minute execution of the GP.

The sources of the errors ep in the table come from the execution-time variations imposed
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by the hardware architecture. For example, let program p contain a flat loop — and no
other loop — that iterates x times where x is some input variable to p; then its parametric
expression has the shape wp = ax + b where a is the execution time of the body of the loop,
and b is the execution time of everything else outside the loop. In this case, it is perfectly
possible to witness the following scenarios during execution: (i) when x = 2, a = 100; (ii)
when x = 3, a = 95; and (iii) when x = 4, a = 110. This could happen if x controls some
conditional statement before the execution of the loop, and hence alters the execution history
prior to the execution the loop which leads to different values of the execution time a of
the loop’s body. In cases like this, it is very hard if not impossible for the GP to derive an
expression wp with error ep = 0 because of the complex program-hardware interaction that
creates what can be referred to as “noise” in the data matrix Mp.

The GP was unable to find an accurate parametric expression for the benchmark program
fir with the three parameters specified in Table 1 (error had average magnitude efir = 52)
because of the complex interactions between these variables and their effect on program flow
— which cannot be captured by a polynomial. The set of parameters was reduced to one
element namely in_len while the other two parameters were fixed to their original values 35
and 285 in [10]. The one-parameter expression is the one shown in Table 2 which still has
the worst accuracy.

Other than that, the GP was able to approximate the parametric expressions of the
benchmark programs with great accuracy despite the hardware exhibiting variations in
execution times due to the presence of out-of-order execution, cache, and branch prediction.
The expressions were derived in a record time which never exceeded few seconds/minutes per
benchmark program. The shape of the parametric expressions corresponds to loops and loop
nests in the benchmark programs, and their ASTs are isomorphic with the ASTs derived for
the same programs using static parametric WCET in the literature. The obvious differences
are in the constant terms and factors which correspond to execution times — which are
expected to be different because (i) the hardware platform is different, and (ii) end-to-end
testing is used instead of static analysis.

6 Related Work

A relatively recent review on WCET analysis is provided by [17] where different analysis
methods, calculation techniques, and available tools are described and compared. In this
section we shall exclusively review parametric WCET analysis which has been the topic of
research in [3, 16, 9, 11, 15, 6, 2, 5, 1].

Bernat and Burns [3] present a tree-based approach for parametric timing analysis where
they derive algebraic expressions for parts of the code, link them together according to
the tree structure to build larger expression, and then use software tools such as Maple to
simplify the parametric expressions. The technique is manual as no tool was implemented
for it, it takes information about the parameters affecting the WCET through a system of
code annotation, and uses a timing model supplied by the user or a third-party analysis.

Vivancos et al. [16] use a path-based approach where parametric expressions are derived
using fixed-point caching behaviour. The technique is not described in great detail because
of the focus on applications of parametric timing analysis. However, the authors do mention
limitations in their technique namely the ability to only handle well-structured non-recursive
code, and inability to handle cases where there are nested parametric expressions inside loop
nests.

Van Engelen et al. [15] introduce a method for parametric WCET analysis using Newton-
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Gregory formulae that handles rectangular and non-rectangular loop nests of seemingly
arbitrary structures. Unfortunately, the work is purely theoretical and lacks evaluation on
actual benchmark programs with the exception of small code snippet. The work here is
included in the review for the sake of completeness only.

Coffman et al. [6] use a summation solver called Emtadel that automatically derives the
number of times the body of a traingular loop nest executes; in the form of a polynomial
expression involving the use of min/max operators. The use of Emtadel comes as the answer
to the problem of nested parametric loops the authors encountered in [16]. The main problem
with this approach is that there is no reference to where to download Emtadel or similar
software to reproduce the results obtained by the approach.

Altmeyer et al. [2] present an automatic technique for performing parametric WCET
analysis of executable code based on dependency analysis between program variables and
parameters. The technique identifies the parameters automatically by performing a simple
read/write analysis of memory cells and CPU registers, and using the variables that are read
from before written to as the analysis parameters. The dependency analysis is used to form
relationships between the variables that control loop iterations and the parameters of the
program.

Althaus et al. [1] present a parametric-analysis technique that exploits the usually-regular
structure of code written for critical real-time applications — in particular where loops have
single entries. They present an algorithm of polynomial-time complexity in practice and
exponential-complexity in theory which works on executable code and derives the parametric
expressions of loops. For code that does not satisfy the single-entry loop property, they
present transformation techniques to force the property which unfortunately adds to the
complexity of the approach.

Lisper et al. [9, 5] use polyhedral flow analysis together with symbolic integer-linear
programming to derive parametric WCET expressions. The analysis is very accurate but
at the cost of prohibitive complexity: the derived parametric-WCET expressions are too
complicated to be evaluated instantly during runtime — unless manual simplifications are
applied to them. In addition to this, the analysis requires extensive resources as it failed for
some problem instances.

The technique we present is different from all previous techniques in the sense that
it is based on end-to-end runtime measurements as opposed to static analysis, and uses
off-the-shelf GP tools which gives it the advantage of amenability to industrial use. Table 3
shows a comparison of our technique with the techniques in the literature using the following
metrics (columns in Table 3).

Input. This metric refers to the way by which the parametric analysis identifies the
variables that appear in the parametric expression i.e. they are derived automatically,
semi-automatically, or manually.

Automation. This metric refers to whether or not the parametric analysis (excluding
input information) is fully-automatic, semi-automatic, or manual.

Operators. This metric refers to the operators supported in the final parametric
expression namely arithmetic operators (+, −, ×, ÷), the conditional operator, and the
max/min operators.

Limitations. This metric refers to the main drawbacks of the method that might hinder
its use in practice.
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7 Conclusions and Future Work

In this paper we have shown how to perform parametric timing analysis using genetic
programming. End-to-end execution times of the program are recorded together with values
of parameters that trigger them, and are then input to the genetic program which performs
symbolic regression to discover the parametric expressions. The technique has been successful
in deriving accurate parametric expressions.

Genetic programming can be used in conjunction with static-analysis methods for para-
metric timing analysis to validate their results, and should be of great interest to industry
where end-to-end measurements are the way forward to performing WCET estimation. The
technique can be explored further in the the following directions (to list but a few): (i)
investigate the use of the method on more substantial case studies, (ii) augment the proposed
technique by automatic identification of parameters that affect the WCET, (iii) apply the
method on programs that run on actual hardware, and (iv) incorporate variable-latency
instructions in the parametric expressions.
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