
12th Workshop on Algorithmic
Approaches for Transportation
Modelling, Optimization, and
Systems

ATMOS’12, September 13, 2012, Ljubljana, Slovenia

Edited by

Daniel Delling
Leo Liberti

OASIcs – Vo l . 25 – ATMOS’12 www.dagstuh l .de/oas i c s

Editors
Daniel Delling Leo Liberti
Microsoft Research Silicon Valley Ecole Polytechnique
Mountain View, CA, USA Palaiseau, France
daniel.delling@microsoft.com liberti@lix.polytechnique.fr

ACM Classification 1998
F.2 Analysis of Algorithms and Problem Complexity, G.1.6 Optimization, G.2.2 Graph Theory, G.2.3
Applications

ISBN 978-3-939897-45-3

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-45-3.

Publication date
September, 2012

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution-NoDerivs (BY-NC-ND) license:
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.
No derivation: It is not allowed to alter or transform this work.
Noncommercial: The work may not be used for commercial purposes.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ATMOS.2012.i

ISBN 978-3-939897-45-4 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-939897-45-3
http://www.dagstuhl.de/dagpub/978-3-939897-45-3
http://dnb.d-nb.de
http://creativecommons.org/licenses/by-nd/3.0/legalcode
http://dx.doi.org/10.4230/OASIcs.ATMOS.2012.i
http://www.dagstuhl.de/dagpub/978-3-939897-45-4
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

www.dagstuhl.de/oasics

http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

Dedicated to the memory of Alberto Caprara.

Contents

Preface
Daniel Delling and Leo Liberti . ix

A Fast Heuristic Algorithm for the Train Unit Assignment Problem
Valentina Cacchiani, Alberto Caprara, and Paolo Toth . 1

Optimal Freight Train Classification using Column Generation
Markus Bohlin, Florian H.W. Dahms, Holger Flier, and Sara Gestrelius 10

Real Time Railway Traffic Management Modeling Track-Circuits
Paola Pellegrini, Grégory Marlière, and Joaquin Rodriguez . 23

Reliability and Delay Distributions of Train Connections
Mohammad H. Keyhani, Mathias Schnee, Karsten Weihe, and Hans-Peter Zorn . . 35

A Direct Connection Approach to Integrated Line Planning and Passenger Routing
Ralf Borndörfer and Marika Karbstein . 47

Multi-Dimensional Commodity Covering for Tariff Selection in Transportation
Felix G. König, Jannik Matuschke, and Alexander Richter . 58

On the Complexity of Partitioning Graphs for Arc-Flags
Reinhard Bauer, Moritz Baum, Ignaz Rutter, and Dorothea Wagner 71

Speedup Techniques for the Stochastic on-time Arrival Problem
Samitha Samaranayake, Sebastien Blandin, and Alex Bayen . 83

Optimal Algorithms for Train Shunting and Relaxed List Update Problems
Tim Nonner and Alexander Souza . 97

A Dynamic Row/Column Management Algorithm for Freight Train Scheduling
Brigitte Jaumard, Thai H. Le, Huaining Tian, Ali Akgunduz, and Peter Finnie . . 108

Train Scheduling and Rescheduling in the UK with a Modified Shifting Bottleneck
Procedure

Banafsheh Khosravi, Julia A. Bennell, and Chris N. Potts . 120

Probabilistic Airline Reserve Crew Scheduling Model
Christopher Bayliss, Geert De Maere, Jason Atkin, and Marc Paelinck 132

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Preface

Transportation networks give rise to very complex and large-scale network optimization
problems requiring innovative solution techniques and ideas from mathematical optimization,
theoretical computer science, and operations research. Applicable tools and concepts include
those from graph and network algorithms, combinatorial optimization, approximation and
online algorithms, stochastic and robust optimization. Since 2000, the series of ATMOS
workshops brings together researchers and practitioners who are interested in all aspects
of algorithmic methods and models for transportation optimization and provides a forum
for the exchange and dissemination of new ideas and techniques. The scope of ATMOS
comprises all modes of transportation.

The 12th Workshop on Algorithmic Approaches for Transportation Modelling, Optim-
ization, and Systems (ATMOS’12) was held in connection with ALGO 2012, hosted by
University of Ljubljana, Slovenia, on September 13, 2012. Topics of interest for ATMOS’12
were all optimization problems for passenger and freight transport, including – but not limited
to – Infrastructure Planning, Vehicle Scheduling, Crew and Duty Scheduling, Rostering,
Routing in Road Networks, Novel Applications of Route Planning Techniques, Demand Fore-
casting, Design of Tariff Systems, Delay Management, Mobile Applications, Humanitarian
Logistics, Simulation Tools, Line Planning, Timetable Generation, and Routing and Platform
Assignment. Of particular interest were: the successful integration of several (sub)problems
or planning stages, algorithms operating in an online/realtime or stochastic setting, and
heuristic approaches (including approximation algorithms) for real-world instances.

In response to the call for papers we received 22 submissions, all of which were reviewed
by at least four referees. The submissions were judged on originality, technical quality, and
relevance to the topics of the conference. Based on the reviews, the program committee
selected the 12 papers which appear in this volume. Together, they quite impressively
demonstrate the range of applicability of algorithmic optimization to transportation problems
in a wide sense. In addition, Matthias Müller-Hannemann kindly agreed to complement the
program with an invited talk entitled Algorithm Engineering of Timetable Information.

We would like to thank all the authors who submitted papers to ATMOS’12, Matthias
Müller-Hannemann for accepting our invitation to present an invited talk, and the local
organizers for hosting the workshop as part of ALGO 2012.

September 2012 Daniel Delling
Leo Liberti

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Organization

Program Committee

Teodor Gabriel Crainic Université du Québec and Montréal, Canada
Daniel Delling (co-chair) Microsoft Research Silicon Valley, USA
Daniele Frigioni University of L’Aquila, Italy
Felix König TomTom, Germany
Gilbert Laporte HEC Montreal, Canada
Leo Liberti (co-chair) Ecole Polytechnique, France
Marco Lübbecke RWTH Aachen University, Germany
Frédéric Meunier Ecole des Ponts ParisTech, France
Giacomo Nannicini SUTD, Singapore
Carolina Osorio MIT, USA
Christian Sommer MIT, USA
Paolo Toth University of Bologna, Italy
Eduardo Uchoa Universidade Federal Fluminense, Brazil
Roberto Wolfler Calvo Paris-Nord University, France

Steering Committee

Alberto Caprara Università di Bologna, Italy
Spyros Kontogiannis University of Ioannina, Greece
Alberto Marchetti-Spaccamela Università di Roma “La Sapienza”, Italy
Rolf Möhring Technische Universität Berlin, Germany
Dorothea Wagner Karlsruher Institut für Technologie, Germany
Christos Zaroliagis University of Patras, Greece

List of Additional Reviewers
Alexander Richter, Alfredo Navarra, Andrea Bettinelli, Britta Peis, Claus Gwiggner,
Darrell Hoy, David Savourey, Dominik Kirchler, Enrico Malaguti, Evdokia Nikolova,
Gianlorenzo D’Angelo, Gionata Massi, Hirotaka Moriguchi, Jannik Matuschke,
Kai-Simon Goetzmann, Lucas Veelenturf, Martin Gross, Mattia D’Emidio,
Maurizio Bruglieri, Paul Bonsma, Rachit Agarwal, Renato Werneck, Roberto Roberti,
Thomas Pajor, Torsten Gellert, Valentina Cacchiani

Local Organizing Committee

Andrej Brodnik (co-chair), Uroš Čibej, Gašper Fele-Žorž, Matevž Jekovec,
Jurij Mihelič, Borut Robič (co-chair), Andrej Tolič

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

A Fast Heuristic Algorithm for the Train Unit
Assignment Problem
Valentina Cacchiani, Alberto Caprara∗, and Paolo Toth

DEIS, University of Bologna,
Viale Risorgimento 2, I-40136 Bologna, Italy
valentina.cacchiani@unibo.it,alberto.caprara@unibo.it,paolo.toth@unibo.it

Abstract
In this paper we study a railway optimization problem known as the Train Unit Assignment
Problem. A train unit consists of a self-contained train with an engine and a set of wagons
with passenger seats. Given a set of timetabled train trips, each with a required number of
passenger seats, and a set of train units, each with a given number of available seats, the problem
calls for the best assignment of the train units to the trips, possibly combining more than one
train unit for a given trip, that fulfills the seat requests. We propose a heuristic algorithm
based on the computation of a lower bound obtained by solving an Integer Linear Programming
model that gives the optimal solution in a “peak period” of the day. The performance of the
heuristic algorithm is computationally evaluated on real-world instances provided by a regional
Italian Train Operator. The results are compared with those of existing methods from the
literature, showing that the new method is able to obtain solutions of good quality in much
shorter computing times.

1998 ACM Subject Classification G.1.6 Integer Programming, G.2.3 Applications

Keywords and phrases Train Unit Assignment, Heuristic Algorithm, ILP model, Real-world
instances

Digital Object Identifier 10.4230/OASIcs.ATMOS.2012.1

1 Introduction

It is well-known that the optimization of a railway system is very hard and is generally
performed in separate phases, each one corresponding to a very difficult problem itself (see
e.g. [11], [12]). In this paper, we focus on the so-called Train Unit Assignment Problem
(TUAP), which is also known as Rolling Stock Planning Problem. A train unit consists of a
self-contained train with an engine and a set of wagons with passenger seats. Given a set of
timetabled train trips, each with a required number of passenger seats, and a set of train
units, each with a given number of available seats, the problem calls for the best assignment
of the train units to the trips, possibly combining more than one train unit for a given trip,
that minimizes the number of used train units and satisfies a set of real-world constraints.
The constraints are the following: covering constraints (i.e. the request of passenger seats
must be satisfied for each trip), maximum combination constraints (i.e., for each trip a
maximum number of train units can be combined in order to cover the trip), sequencing
constraints (i.e. two trips can be performed in sequence by a train unit if and only if there is
enough time for the train unit for traveling from the arrival station of the first trip to the

∗ Alberto Caprara passed away unexpectedly on April 21, 2012. At that time this work was almost
completed. The other two authors wrote the paper finding inspiration in his suggestions and ideas.

© Valentina Cacchiani, Alberto Caprara, and Paolo Toth;
licensed under Creative Commons License ND

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti; pp. 1–9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2012.1
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 A Fast Heuristic Algorithm for the Train Unit Assignment Problem

departure station of the second trip), and availability constraints (i.e. no more units than
the ones available can be used). TUAP is strongly NP-hard, as it has been proven in [8].

1.1 Literature review
There is a considerable amount of literature on Rolling Stock Planning: locomotives and
cars have to be assigned to trips (see e.g. [4], [14], [15], [26], [28]) instead of self-contained
train-units (see e.g. [1], [2], [3], [18], [25], [27]); the order of the train-units assigned to a
trip has to be considered (see e.g. [18], [21], [22], [25]); different objective functions can
be considered for the problem, for example the goal can be to obtain a robust solution in
order to take care of possible disruptions (see e.g. [7], [24]). For surveys on the specific
problem as well as on the use of combinatorial optimization in railway planning see, e.g.,
[5, 9, 11, 12, 13, 16, 17, 20].

1.2 Outline of the paper
We consider the version of TUAP studied in works [6], [8] and [10]. In [8] an Integer Linear
Programming (ILP) model for the problem with one variable for each possible daily schedule
of each train unit is proposed. A diving heuristic based on the Linear Programming (LP)
relaxation of this model is developed, combined with a refinement procedure. In the recent
work [10], a heuristic based on the Lagrangian relaxation of an alternative ILP model is
developed. The relaxed solution is computed by solving a sequence of assignment problems.
In this work we propose a new heuristic algorithm, which is based on the computation of a
lower bound obtained by solving an ILP model that gives the optimal solution in a “peak
period" of the day.

The paper is organized as follows: in Section 2 we formally describe the problem and
in Section 3 we describe the heuristic algorithm we propose. In Section 4 we present
computational experiments on real-world instances and compare the results with those of
existing methods from the literature. Finally, in Section 5 we draw some conclusions and
guidelines for future research.

2 Problem Description

The problem input specifies a set of n timetabled train trips to be executed every day of a
given time period, and a set of p train unit types. Each trip j ∈ {1, . . . , n} is defined by a
required number rj of passenger seats, and a maximum number uj of train units that can be
assigned to the trip. In the specific application we consider, we have uj = 2 for j = 1, . . . , n,
i.e., each trip can be assigned to at most two train units. Each trip is also characterized
by its departure and arrival times and departure and arrival stations. Each train unit type
k ∈ {1, . . . , p} is defined by a number dk of available train units, and an associated capacity
sk (number of available seats). We say that a trip j is covered if the overall capacity of the
train units assigned to the trip is at least rj .

We introduce a directed acyclic graph G = (V, A), where each node corresponds to a trip,
i.e., V = {1, . . . , n}, and arc (i, j) ∈ A exists if and only if a train unit (of any type) can be
assigned to i and then to j within the same day. In other words, arc (i, j) exists whenever
both trips i and j can be assigned to a train unit, and the time between the arrival of trip i

and the departure of trip j allows the train unit to travel from the arrival station of trip i to
the departure station of trip j within the same day. It is to note that there is an overnight
break of a few hours, i.e. no trips have to be covered during the night. In addition, it is

V. Cacchiani, A. Caprara, and P. Toth 3

possible for any train unit to perform a “transfer" (i.e. to travel between any pair of stations)
within the night break. Therefore, it is not necessarily the case that every used train unit
performs the same set of trips every day. Indeed, after having performed a sequence of trips
on one day, a train unit can perform on the following day a trip sequence assigned to another
train unit of the same type (possibly performing a transfer within the night break). In other
words, number the, say, q trip sequences assigned to the train units of a given type as 1, . . . , q

in an arbitrary way. These q trip sequences can be performed by q train units of that type,
all performing a different sequence on each day, and each one performing the q sequences in
the cyclic order 1, . . . , q over a period of q days.

3 Heuristic Algorithm

In this section, we describe the proposed heuristic algorithm. It is composed of a constructive
phase and a local search phase, that are described in Sections 3.2 and 3.3, respectively.
The constructive phase is based on the computation of a lower bound: it is obtained by
solving at optimality the problem restricted to a “peak period". The description of the lower
bound computation is given in Section 3.1. Before starting the constructive phase, we apply
a straightforward preprocessing on the input instance: the seat request for each trip j is
redefined so that it matches the minimum sum of train unit capacities that can cover request
rj . The associated optimization problem, which is a cardinality-constrained bounded subset
sum problem (see, e.g., Martello and Toth [23]), can easily be solved by enumeration given
the small values of p and dk in practical cases.

3.1 Lower Bound

The lower bounding procedure we use is described in [8], but, for sake of clarity, we briefly
recall it. The main idea is to find a set of trips that are pairwise “incompatible”, i.e., that
cannot be performed by the same train unit (of whatever type) in the same day, and then
optimally solve the subinstance restricted to these trips: the obtained optimal value is a
lower bound on the optimal TUAP value. These incompatible trips correspond to a “peak
period" of the day, when many simultaneous trips need to be covered with a large seat
request. In order to determine a set of incompatible trips, we compute a maximum-weight
stable set in the auxiliary undirected graph (V, E) defined by neglecting the arc orientation
in graph G and adding to each node j (corresponding to trip j) a weight equal to rj . The
auxiliary graph is a comparability graph for which a maximum-weight stable set can be
computed efficiently by using flow techniques (see, e.g., [19]). Once the set of incompatible
trips has been determined, we find the optimal solution of the TUAP instance restricted to
these trips, by solving the following ILP model, where S represents the set of trips in the
maximum-weight stable set and wk

j is an integer variable representing the number of times
that trip j is assigned to a train unit of type k:

ATMOS’12

4 A Fast Heuristic Algorithm for the Train Unit Assignment Problem

min
p∑

k=1

∑
j∈S

wk
j , (1)

∑
j∈S

wk
j ≤ dk, k = 1, . . . , p, (2)

p∑
k=1

skwk
j ≥ rj , j ∈ S, (3)

p∑
k=1

wk
j ≤ uj , j ∈ S, (4)

wk
j ≥ 0, integer , k = 1, . . . , p, j ∈ S. (5)

The objective function calls for the minimization of the number of train units needed to
perform the set S of incompatible trips. Constraints (2) impose not to use more than dk train
units of type k. Constraints (3) ensure the covering of the trips in S. Finally, constraints (4)
guarantee to combine at most uj train units for covering trip j.

Of course, the value of the optimal solution of the ILP model (1)-(5) represents a valid
lower bound for the original TUAP instance given in input.

3.2 Constructive Phase
For each train unit type k we impose an upper limit d̄k on the number of available units
equal to the corresponding number of units used in the optimal solution of the ILP model
(1)-(5). I.e. our aim is to construct a feasible solution for the original TUAP instance with
the same value of the lower bound: obviously, if we manage to find it, this is an optimal
solution. Otherwise, we apply the local search phase after the constructive phase.

As observed in [8], TUAP can be solved efficiently if there is a unique train unit type.
This means that, if we have a subset of m trips assigned to a train unit type, the computation
of the best possible sequencing of these trips can be done in polynomial time (O(m3)). In
particular, the problem corresponds to an Assignment Problem that can be solved, for a
train unit of type k, by using a directed graph Ḡk = (V̄ k, Āk). It has a subset V̄ k of nodes
in V corresponding to the trips assigned to the current train unit type k, and the set of arcs
Āk defined as follows: all the arcs in A between nodes in V̄ k belong to Āk and have cost
equal to 0; in addition, we define an arc between any two nodes in V̄ k such that they are not
connected in A and we set its cost to 1. In this way, each arc (i, j) ∈ Āk with cost equal
to 0 (respectively, equal to 1) corresponds to a pair of trips i and j that can be covered in
sequence by a train unit of type k in the same day (respectively, in two consecutive days,
with a night within). As a consequence, the cost of the solution of the Assignment Problem
corresponds to the number of consecutive days (i.e. to the number of different units) required
by the train units of type k to cover all the trips currently assigned to it.

Since the sequencing of the trips for each train unit type can be solved efficiently, the
constructive phase decides how to assign each trip to one or two train unit types and then
solves, for each train unit type, an Assignment Problem to determine the optimal sequence
of the trips. The assignment is accepted only if the corresponding number of units of type k

does not exceed d̄k.
What remains to be determined is a good policy for assigning a trip to the best train

unit type. We consider the trips in the maximum-weight stable set as the first ones to be

V. Cacchiani, A. Caprara, and P. Toth 5

assigned and consider the remaining ones in chronological order. For each trip i, we perform
the following steps:
1. If ri > skmax , where kmax corresponds to the train unit type with the largest capacity,

then assign i to two train unit types k1 and k2 (k1, k2 = 1, . . . , p), possibly with k1 = k2,
such that sk1 + sk2 − ri is minimum and non negative. Otherwise, assign i to a train unit
type k (k = 1, . . . , p) such that sk − ri is minimum and non negative.

2. Compute the optimal solution of the Assignment Problem corresponding to the trips
assigned up to now to the considered train unit type k (or train unit types k1 and k2).
Check if the value of the optimal solution of the Assignment Problem corresponding to
each considered train unit type k does not exceed the number of available train units d̄k.

3. If this is the case, accept the assignment; otherwise try to assign trip i to a train unit
type k (or even to two train unit types k1 and k2) with larger capacity and go to 2.

4. If no train unit type leads to a feasible assignment for trip i, leave trip i uncovered.

At the end of the constructive procedure, either we have a feasible solution with the same
value of the lower bound (i.e. optimal), or we have a set of uncovered trips. In the latter
case, we move to the local search phase described in Section 3.3.

3.3 Local Search Phase
Note that in the proposed heuristic algorithm, the solution of the Assignment Problem
already gives the best sequencing of the trips assigned to a given train unit type. Thus, it
is not useful to exchange a trip from a unit to another one of the same type, but it is only
necessary to consider exchanges of trips to different train unit types.

The local search phase consists of two procedures. The first one applies an exchange
move between a trip that was assigned to a given train unit type (or to two train unit types)
to a different train unit type (or to two different train unit types), with the aim of allowing
the insertion of an uncovered trip. More specifically, for each uncovered trip i, we execute
the following procedure:
1. Consider a trip j that was assigned to a train unit type k (or to two train unit types

k1 and k2), with sk ≥ ri (or sk1 + sk2 ≥ ri) and such that its timetable overlaps the
timetable of trip i.

2. Remove trip j from train unit type k (or k1 and k2), and proceed as in the constructive
phase in order to try to assign the uncovered trip i to the train unit type k (or k1 and
k2).

3. If it is possible to perform this assignment without exceeding the lower bound value
of train unit type k (or k1 and k2), then proceed as in the constructive phase in order
to try to assign trip j to a different train unit type (leaving all the other assignments
unchanged). Otherwise, re-assign trip j to train unit type k (or k1 and k2). If all the
assigned trips have been considered as a possible exchange move for trip i then stop (trip
i remains uncovered), otherwise go to 1.

The second procedure of the local search phase tries to compute a feasible solution taking
into account all the available train units and not only those corresponding to the computation
of the lower bound. The trips that are still uncovered at the end of the exchange phase
are assigned to one or two currently unused train units, by performing steps 1 to 4 of the
constructive phase (see Section 3.2). Note that, in our case study, due to the large number
of train units available (i.e. those used in the practitioners’ solutions), it was always possible
to find a feasible solution with the proposed heuristic algorithm.

ATMOS’12

6 A Fast Heuristic Algorithm for the Train Unit Assignment Problem

Table 1 Comparison of the proposed heuristic algorithm with the LP-diving heuristic presented
in [8] and the Lagrangian heuristic presented in [10] on real-world instances.

New heur. [8] heur. [10] heur.
Inst. n p D LB value time LB value time LB value time
1 85 1 2 2 2 0 2 2 0 2 2 0
2 120 1 4 4 4 0 4 4 0 4 4 0
3 221 1 18 17 17 3 17 17 288 15 17 4
4 127 2 27 25 25 1 25 25 17 20 25 4
5 283 2 22 20 20 4 20 20 1912 17 20 18
A 528 8 72 62 66 28 62 63 1932 27 70 288
B 662 10 76 53 57 31 53 54 2309 19 59 600
C 660 10 75 53 55 31 53 53 1878 16 57 572
D 196 3 19 13 14 1 13 13 280 9 13 12
E 143 4 32 26 27 1 26 26 18 12 26 7
F 366 3 26 23 24 11 23 23 1013 11 24 49
G 348 3 45 39 42 6 39 39 1590 22 45 52
H 137 3 21 20 20 0 20 20 25 13 20 7

Avg. %Gap 2.99 0.26 3.55
Avg. Times 9.00 866.3 124.1

4 Computational Experiments

We present computational experiments on a set of 13 real-world instances provided by a
regional Italian Train Operator, and compare the results of the proposed heuristic algorithm
with those of the approaches presented in [8] and in [10]. The heuristic algorithm presented
in [8] is composed of a fixing phase and a refinement phase and leads to a good improvement
over the practitioners’ solutions but requires large computing times. The heuristic algorithm
presented in [10] is composed of a constructive phase and a local search phase similar to the
one described in Section 3.3. The considered algorithms are coded in C and the tests are
performed on a PC Pentium 4, 3.2 GHz, 2 GB RAM.

In Table 1, we present the comparison of the proposed heuristic algorithm (New heur.)
with the existing methods. For each method we report the lower bound value (LB), the
solution value (value) and the computing time expressed in seconds (time). The first four
columns in the table represent, respectively, the instances name, the number of trips n, the
number of train unit types p and the global number of available train units D. We report
in bold the best solutions found and we underline the values that correspond to optimal
solutions. The last two rows report, for each method, the average percentage gap (computed
by considering for each instance the value of the solution found by the corresponding method
and the best lower bound), and the average computing time on the 13 instances.

Table 1 shows that the proposed heuristic algorithm is very fast in obtaining solutions
of good quality. Compared with the algorithm proposed in [8], the new heuristic has a
larger percentage gap but the average computing time is much shorter. Compared with the
algorithm proposed in [10], the new heuristic has a smaller percentage gap, a computing
time again much shorter, and obtains 4 better solutions (on the larger instances) while the
heuristic proposed in [10] obtains only 2 better solutions.

In Table 2, we present a comparison between the three methods when a time limit of 30
seconds or 1 minute is imposed. For each method we report the solution values found within

V. Cacchiani, A. Caprara, and P. Toth 7

Table 2 Comparison of the proposed heuristic algorithm with the LP-diving heuristic presented
in [8] and the Lagrangian heuristic presented in [10] on real-world instances with a time limit
imposed.

Time limit = 30 seconds Time limit = 1 minute
New heur. [8] heur. [10] heur. New heur. [8] heur. [10] heur.

Inst. n p D value value value value value value
1 85 1 2 2 2 2 2 2 2
2 120 1 4 4 4 4 4 4 4
3 221 1 18 17 17 17 17 17 17
4 127 2 27 25 25 25 25 25 25
5 283 2 22 20 22 20 20 22 20
A 528 8 72 66 - - 66 - -
B 662 10 76 57 - - 57 - 61
C 660 10 75 56 - - 55 - 64
D 196 3 19 14 - 13 14 16 13
E 143 4 32 27 26 26 27 26 26
F 366 3 26 24 25 24 24 25 24
G 348 3 45 42 - - 42 - 45
H 137 3 21 20 20 20 20 20 20

Avg. %Gap w.r.t [8] 0.98 2.14 1.67 3.98
Avg. %Gap w.r.t [10] 1.67 0.46 2.73 3.98

found 13 8 9 13 9 12

the imposed time limit, showing in bold the best solutions found and underlining the optimal
solutions. The last three rows report, for each method, the number of feasible solutions
found, and the average percentage gap, computed by considering only the instances for which
the new heuristic and the method presented in [8] ([10], respectively) were able to find a
feasible solution. The results show that, by imposing a time limit of 30 seconds, the proposed
heuristic is able to find a feasible solution for all the instances, while the approaches proposed
in [8] and in [10] obtain a feasible solution for 8 and 9 instances, respectively. When a time
limit of 1 minute is imposed, the methods proposed in [8] and [10] still fail in finding a feasible
solution for 4 and 1 instances, respectively. We can see that the average percentage gap of
the proposed heuristic is always better than the one obtained by the heuristic presented in
[8]. With respect to the heuristic presented in [10], the new heuristic finds a larger average
percentage gap when a time limit of 30 seconds is imposed (but, with this time limit, the
method presented in [10] is not able to find a feasible solution for 4 instances), while a smaller
average percentage gap is obtained by the new heuristic when a time limit of 1 minute is
imposed.

5 Conclusions and Future Research

We have proposed a heuristic algorithm for the Train Unit Assignment Problem, based on
the computation of a lower bound obtained by solving an Integer Linear Programming model
that gives the optimal solution in a “peak period" of the day. Compared with the results
obtained by existing methods, the new heuristic algorithm is able to obtain solutions of good
quality in much shorter computing times. Therefore, the new heuristic algorithm can also
be used in a real-time setting. Future research will be devoted to improve the performance

ATMOS’12

8 A Fast Heuristic Algorithm for the Train Unit Assignment Problem

of the proposed algorithm, by executing it iteratively, considering, at each iteration, the
unassigned trips (of the previous iteration) as the first to be assigned together with the trips
in the maximum-weight stable set. In addition, larger realistic instances, presented in [10],
will be tested. Finally, variants of the problem, related to Fixed Job Scheduling Problems,
will be considered.

References

1 E.W.J. Abbink, B.W.V. van den Berg, L.G. Kroon, and M. Salomon: “Allocation of Rail-
way Rolling Stock for Passenger Trains”. Transportation Science 38 (2004) 33–41

2 A. Alfieri, R. Groot, L.G. Kroon, and A. Schrijver: “Efficient Circulation of Railway Rolling
Stock”. ERIM Research Report, ERS-2002-110-LIS, Erasmus Universiteit Rotterdam, The
Netherlands, (2002)

3 N. Ben-Khedher, J. Kintanar, C. Queille, and W. Stripling: “Schedule Optimization at
SNCF: From Conception to Day of Departure”. Interfaces 28 (1998) 6–23

4 J. Brucker, J.L. Hurink, and T. Rolfes: “Routing of Railway Carriages: A Case Study”.
Osnabrücker Schriften zur Mathematik, Reihe P, Heft 205 (1998)

5 M.R. Bussieck, T. Winter, and U.T. Zimmermann: “Discrete Optimization in Public Rail
Transport”. Mathematical Programming 79 (1997) 415–444

6 V. Cacchiani: “Models and Algorithms for Combinatorial Optimization Problems arising
in Railway Applications”. 4OR A Quarterly Journal of Operations Research 7(1) (2009)
109–112

7 V. Cacchiani, A. Caprara, L. Galli, L. Kroon, G. Maroti, and P. Toth: “Railway Rolling
Stock Planning: Robustness Against Large Disruptions”. Transportation Science 46(2)
(2012) 217–232

8 V. Cacchiani, A. Caprara, and P. Toth: “Solving a Real-World Train Unit Assignment
Problem”. Mathematical Programming Series B 124 (2010) 207–231

9 V. Cacchiani, A. Caprara, and P. Toth: “Models and Algorithms for the Train Unit Assign-
ment Problem”. In A.R. Mahjoub et al. (Eds.): ISCO 2012„ LNCS 7422, Springer-Verlag
Berlin Heidelberg, (2012) 24–35

10 V. Cacchiani, A. Caprara, and P. Toth: “A Lagrangian Heuristic for a Train-Unit Assign-
ment Problem”. Discrete Applied Mathematics doi: 10.1016/j.dam.2011.10.035

11 A. Caprara: “Almost 20 Years of Combinatorial Optimization for Railway Planning: from
Lagrangian Relaxation to Column Generation”. In Thomas Erlebach and Marco Lübbecke
(eds.), Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS), Schloss Dagstuhl, Germany, (2010) 1–12

12 A. Caprara, L. Kroon, M. Monaci, M. Peeters, and P. Toth: “Passenger Railway Optimiza-
tion”. In C. Barnhart and G. Laporte (eds.). Handbooks in OR & MS 12, Elsevier Science,
(2006)

13 A. Caprara, L. Kroon, and P. Toth: “Optimization Problems in Passenger Railway Sys-
tems”. Wiley Encyclopedia of Operations Research and Management Science 6 (2011) 3896–
3905

14 J.-F. Cordeau, G. Desaulniers, N. Lingaya, F. Soumis, and J. Desrosiers: “Simultaneous
Locomotive and Car Assignment at VIA Rail Canada”. Transportation Research 35 (2002)
767–787

15 J.-F. Cordeau, F. Soumis, and J. Desrosiers: “Simultaneous Assignment of Locomotives
and Cars to Passenger Trains”. Operations Research 49 (2001) 531–548

16 J.-F. Cordeau, P. Toth, and D. Vigo: “A Survey of Optimization Models for Train Routing
and Scheduling”. Transportation Science 32 (1998) 380–404

V. Cacchiani, A. Caprara, and P. Toth 9

17 J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis: “Time Constrained Routing and
Scheduling”, in M.O. Ball et al. (eds.), Handbooks in OR & MS 8, Elsevier Science, (1995)
35–139

18 P.-J. Fioole, L.G. Kroon, G. Maróti, and A. Schrijver: “A Rolling Stock Circulation Model
for Combining and Splitting of Passenger Trains”. European Journal of Operational Re-
search 174 (2006) 1281–1297

19 M. Grötschel, L. Lovász, and A. Schrijver: “Geometric Algorithms and Combinatorial
Optimization”. Springer-Verlag (1988)

20 D. Huisman, L.G. Kroon, R.M. Lentink, and M.J.C.M. Vromans: “Operations Research in
Passenger Railway Transportation”. Statistica Neerlandica 59 (2005) 467–497

21 N. Lingaya, J.-F. Cordeau, G. Desaulniers, J. Desrosiers, and F. Soumis: “Operational Car
Assignment at VIA Rail Canada”. Transportation Research 36 (2002) 755–778

22 G. Maróti: “Operations research models for railway rolling stock planning”. PhD Thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands (2006)

23 S. Martello and P. Toth: Knapsack Problems: Algorithms and Computer Implementations.
John Wiley and Sons (1990)

24 L.K. Nielsen, L. Kroon, and G. Maróti: “A rolling horizon approach for disruption man-
agement of railway rolling stock”. European Journal of Operational Research 220 (2012)
496–509

25 M. Peeters, and L.G. Kroon: “Circulation of Railway Rolling Stock: a Branch-and-Price
Approach”. ERIM Research Report, ERS-2003-055-LIS, Erasmus Universiteit Rotterdam,
The Netherlands, (2003)

26 S. Rouillon, G. Desaulniers, and F. Soumis: “An Extended Branch-and-Bound Method for
Locomotive Assignment”. Transportation Research 40 (2006) 404–423

27 A. Schrijver: “Minimum Circulation of Railway Stock”. CWI Quarterly 6 (1993) 205–217
28 K. Ziarati, F. Soumis, J. Desrosiers, and M.M. Solomon: “A branch-first, cut-second ap-

proach for locomotive assignment”. Management Science (1999) 1156–1168

ATMOS’12

Optimal Freight Train Classification using Column
Generation∗

Markus Bohlin1, Florian Dahms2, Holger Flier3, and
Sara Gestrelius1

1 Swedish Institute of Computer Science
{firstname.lastname}@sics.se

2 RWTH Aachen, Chair of Operations Research, Germany
dahms@or.rwth-aachen.de

3 ETH Zürich, Institute of Theoretical Computer Science, Switzerland
holger.flier@inf.ethz.ch

Abstract
We consider planning of freight train classification at hump yards using integer programming.
The problem involves the formation of departing freight trains from arriving trains subject to
scheduling and capacity constraints. To increase yard capacity, we allow the temporary storage of
early freight cars on specific mixed-usage tracks. The problem has previously been modeled using
a direct integer programming model, but this approach did not yield lower bounds of sufficient
quality to prove optimality. In this paper, we formulate a new extended integer programming
model and design a column generation approach based on branch-and-price to solve problem
instances of industrial size. We evaluate the method on historical data from the Hallsberg hump
yard in Sweden, and compare the results with previous approaches. The new method managed
to find optimal solutions in all of the 192 problem instances tried. Furthermore, no instance took
more than 13 minutes to solve to optimality using fairly standard computer hardware.

1998 ACM Subject Classification G.1.6 Integer Programming, G.1.10 Applications, F.2.2 Se-
quencing and scheduling

Keywords and phrases Column generation, integer programming, scheduling, shunting, classifi-
cation, marshalling, transportation, railways

Digital Object Identifier 10.4230/OASIcs.ATMOS.2012.10

1 Introduction

In this paper, we solve a planning problem from the largest Swedish hump yard, Hallsberg,
to optimality using a column generation approach. In previous papers [4, 5], we have
modeled the problem as a special kind of list coloring problem on interval graphs, proved
the NP-completeness of several variants of the problem, and developed both heuristics and
mixed integer programming formulations for the problem. In this paper, we are for the first
time able to find provably optimal solutions for the problem instances within practical time
limits. We evaluate our results on historical data taken from a five month period of traffic at
Hallsberg.

There are two basic modes of operation in railway freight transportation, namely single
wagon load and full train transportation. In full train transportation, all cars of a train belong

∗ This work was supported by the Swedish Transport Administration under grant TRV 2010/29758 and
by the Swiss National Science Foundation (SNF) under grant 200021-125033/1.

© Markus Bohlin, Florian Dahms, Holger Flier, and Sara Gestrelius;
licensed under Creative Commons License NC-ND

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti; pp. 10–22

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2012.10
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

M. Bohlin, F. Dahms, H. Flier, and S. Gestrelius 11

to the same customer and share a common destination. In single wagon load transportation,
shipments of several customers are transported together in a hub and spoke network, where
trains are typically composed of cars with different destinations. In order to route each car
to its final destination, trains are decoupled into single cars at classification yards (also:
marshalling or shunting yards). New outbound trains are then formed from cars which share
a common intermediate destination.

Classification yards constitute a bottleneck in rail freight transportation. If a car misses
its next train along the route, the incurred delay can be up to several days. In order to
make single wagon load transportation more competitive, it is highly desirable to route cars
through the network as quickly as possible while maintaining all connections.

Since resources at classification yards are usually scarce, production planning is a necessity.
Of particular interest are so called hump yards, the largest class of classification yards where
cars are pushed over a hump in order to roll onto their respective classification track by
means of gravity. The problem we study in this paper is restricted to the scheduling of
the classification bowl of the hump yard, i.e., a set of parallel classification tracks that are
used for the formation of outbound trains from single cars. In particular, we consider the
common case where at any point in time, there is a bijection between outbound trains
and classification tracks, i.e., each track may only contain cars of a single outbound train.
Therefore, we need to decide for each train on which track it will be formed.

Due to the high amount of traffic it is impossible, however, to reserve a whole track for
each outbound train from the time of arrival of its first car to the time of its departure.
Therefore, some of the tracks are used as a buffer area where cars of different trains may be
temporarily stored. We refer to these tracks as mixing tracks. At given points in time, a
pull-out operation is performed which allows to move any subset of cars from the mixing
tracks to the classification tracks, provided that the formation of each such car’s respective
outbound train has started. In all brevity, a pull-out comprises that the cars of each mixing
track are coupled, pulled back over the hump by an engine, to be immediately pushed over
the hump to once more be distributed on the classification tracks. The latter is called a
roll-in operation. A more detailed description of the operations as well as further planning
problems at Hallsberg is given in [5].

Early literature on freight classification considers sorting schemes that essentially perform
the same sorting steps for any input sequence of a given length [13, 14, 10]. More recently,
it has been studied how to utilize the “pre-sortedness” of the input in order to minimize
the number of pull-out operations [8, 12], as well as variants thereof [7]. A recent survey
by Gatto et al. [11] gives an overview of this topic. The problem we study in this paper
however does not require the cars of outbound trains to be sorted in any particular order.

The rest of the paper is structured as follows. We first define the mixing problem formally
in Section 2 and give a direct integer programming model used for comparison in Section 3.
In Section 4 an extended formulation is presented together with a new solution approach
using branch-and-price column generation, a corresponding polynomial pricing problem,
and the branching rules employed. Section 5 describes the experimental setup and results,
including a comparison with previous approaches. Finally, Section 6 concludes the paper
and outlines future research.

2 Problem Definition

We are given a set of classification tracks O, a set of periods P , a set of cars Q, and a set of
outbound trains R. Groups of cars with the same destination arriving at the same time are

ATMOS’12

12 Optimal Freight Train Classification using Column Generation

handled as single units. For each car q ∈ Q, we are given its arrival time t(q), i.e., the time
of its first roll-in into the classification bowl, its length s(q), and its corresponding outbound
train r(q) ∈ R. Each train r ∈ R has a departure time t(r), i.e., the time when it leaves
the classification bowl. We denote by Q(r) ⊆ Q the set of cars that belong to train r. The
length s(r) of a train r is the sum of the lengths of its cars, s(r) :=

∑
q∈Q(r) s(q).

For each classification track o ∈ O we are given its length s(o). Thus, a train r can be
formed on track o if and only if s(r) ≤ s(o). Let R(o) denote the set of trains that can be
formed on track o. At any point in time, a classification track may only contain the cars of
one outbound train, and each train is formed on exactly one classification track. We say that
a train r is active during the time interval in which its corresponding classification track is
used exclusively for the formation of r.

We define the strict partial order ≺ on the set of outbound trains R such that r ≺ r′

if and only if train r ∈ R can be scheduled directly before train r′ ∈ R on the same track.
Whether r ≺ r′ holds or not depends, amongst others, on the departure times of trains r and
r′ as well as on technical setup times (e.g., brake inspection), the details of which we omit
for the sake of clarity. Note that antisymmetry is ensured as no two trains may be formed
on one track at the same time. We denote with r ‖ r′ that r and r′ cannot be formed on the
same track (i.e. they are incomparable by ≺).

In general, there are not enough classification tracks such that each train is active from
the arrival of its earliest car until its departure. Therefore, we are also given a set of mixing
tracks on which one can temporarily store cars of different outbound trains. To simplify our
discussion, we treat these tracks as one concatenated track, called the mixing track. The
mixing track has a given length smix. A car that is stored on the mixing track is said to be
mixed. Whether a car needs to be mixed or not depends solely on the departure time of the
preceding train on the same track. Once a train becomes active, mixed cars of that train
can be retrieved from the mixing track by a pull-out operation on the mixing track, which
is performed once at the beginning of each period. For each period p ∈ P , we are given its
starting time t(p). During the pull-out starting at time t(p) each mixed car of a currently
active train is moved to the allocated classification track. The remaining mixed cars return
to the mixing track and remain there at least until the next period begins.

We seek to avoid the mixing of cars for several reasons. First, for each period during
which a car is mixed, it will be subject to a roll-in operation, which takes effort and time, and
wears down switches and tracks. As an objective function, we therefore choose to minimize
the number of extra roll-in operations performed due to mixing. Second, the limited capacity
smix of the mixing track must be respected in each period. Since no car can leave the mixing
track until the next pull-out is performed, the total length of the mixed cars within a period
is at its maximum at the end of the period. For two trains r ≺ r′ and a period p, let sp(r, r′)
denote the total lengths of all cars of r′ which have to be mixed in p:

sp(r, r′) =


∑

q∈Q(r′):t(q)<min(t(r),t(p+1))
s(q), if t(p) < t(r) ,

0, otherwise.

Furthermore, let c(r, r′) denote the total number of extra roll-ins for two trains r ≺ r′:

c(r, r′) =
∑

q∈r′:t(q)<t(r)

|q| · kqr ,

where |q| is the number of actual cars represented by the car group q and kqr is the number

M. Bohlin, F. Dahms, H. Flier, and S. Gestrelius 13

of periods between the arrival of car group q and the departure of train r:

kqr = #
{
p | p ∈ P ∧ t(q) < t(p+ 1) ∧ t(p) < t(r)

}
.

There are several subtleties in how mixing is performed that are noteworthy. Consider
two consecutive trains r, r′ for which r ≺ r′. Any car of the second train r′ that arrives after
t(r), the time of departure of the first train, may enter the classification track directly, since
r′ can become active immediately after r has departed. However, any car q of r′ arriving
before the departure of r, i.e., t(q) < t(r), has to be send to the mixing track, since the
classification track o may only hold cars of one outbound train at the same time. This also
means that the partial order ≺ actually depends on the given times of periods, trains, and
cars. If r ≺ r′ and the second train r′ has a car q that must be mixed, then in order to
pull back and roll-in of q to o in time before r′ departs, there must also be a period p with
t(r) < t(p) < t(r′). Note also that a train whose earliest car arrival and departure time lie
both within the same period cannot have cars that are mixed, for otherwise such a car could
not be moved in time to the classification track.

c(ri, rj)
ri Car arrivals s t r2 r3 r4

r1 t(q1) = 0 1 5 4 1 0

r2 t(q2) = 1 1 7 1 1
t(q3) = 3

r3 t(q4) = 4 1 8 1

r4 t(q5) = 6 2 11
t(q6) = 10

(a) Problem instance data.

1

p1 p2 p3

320 5 764 9 108

r1

r2

r3

r4

q1

q2 q3

q4

q5 q6

time11

o1

o2

mix

(b) Illustration of problem instance. Downward-
pointing arrows indicate car arrivals.

Figure 1 Example instance with two classification tracks o1, o2, departing trains r1 − r4, car
arrivals q1 − q6, and three periods p1 − p3. The total number of mixed cars if two trains are allocated
on the same track are also shown. Of the two tracks, only o2 can accommodate the longest train r4;
all other trains fit on any track.

An example problem instance is illustrated in Fig. 1. Here, four trains with car arrivals
and departure times as below are to be allocated to two classification tracks o1, o2. All trains
fit on the longest track o2, but only the first three trains fit on the shorter track o1. Mixing
capacity is assumed to be infinite, and pull-outs are performed at time 4, 6 and 9. Traversing
the trains in order, all trains can precede all later trains (as defined by ≺).

2.1 Sequences and Feasible Solutions
We define feasible solutions to our problem in terms of sequences of trains, which can be
allocated to individual tracks. A sequence g is a totally ordered subset of trains. Let us
denote the fact that two trains r, r′ ∈ R appear consecutively in this order in a sequence g
by (r, r′) ∈ g. For example, given a sequence g = 〈r1, r2, r3〉, it holds that (r1, r2) ∈ g and
(r2, r3) ∈ g, but note that (r1, r3) 6∈ g. A sequence which is ordered by ≺ is feasible. Let G
denote the set of feasible sequences. For each g ∈ G and period p ∈ P , let sp(g) be the total
length of the mixed cars for g in p, i.e.,

sp(g) =
∑

(r,r′)∈g

sp(r, r′) .

ATMOS’12

14 Optimal Freight Train Classification using Column Generation

Further, let c(g) be the sum of all extra roll-ins for g:

c(g) =
∑

(r,r′)∈g

c(r, r′) .

A schedule f : O → G is an injective mapping from tracks to feasible sequences. A
feasible sequence g can be scheduled on a track o if and only if all trains of the sequence fit
on the track, i.e., g ⊆ R(o). Let us denote by G(o) the set of all feasible sequences that can
be scheduled on track o. A feasible solution to our problem can now be defined as a schedule
f that

1. assigns each track a feasible sequence,

∀o ∈ O : f(o) ∈ G(o) ,

2. such that each train occurs exactly once in a sequence,

∀r ∈ R : ∃o ∈ O : r ∈ f(o) ∧ ∀o′ ∈ O : o 6= o′ → r 6∈ f(o′) ,

3. and such that in each period, the capacity of the mixing track is respected,

∀p ∈ P :
∑
o∈O

sp(f(o)) ≤ smix .

A feasible solution f is optimal if it minimizes the total number of roll-ins
∑

o∈O c(f(o)).
Figure 2 illustrate one suboptimal solution as well as one optimal solution to the example
problem instance from Figure 1.

1

p1 p2 p3

320 5 764 9 108 time11

o1

o2

mix

r1 r2

r3 r4

q1

q6

q2 q3

q4

(r4)(r2)
q5

(a) Feasible solution, with car q2 and q3 mixed in
two periods each, and q5 in one.

1

p1 p2 p3

320 5 764 9 108

r2q3

time11

o1

o2

mix

r1

r2

r3

r4

q1

q2 q3 q6

q4 q5
(r4)(r3)

(b) Optimal solution, with car q4 and q5 mixed in
one period each.

Figure 2 Two feasible solutions for the problem instance in Fig. 1. Cars are mixed for in total
five periods in 2a and two periods in 2b.

3 A Binary Integer Programming Formulation

In order to evaluate the main contribution of this paper, namely the column generation
approach described in Section 4, we give a brief outline of the binary integer programming
formulation for the problem which we developed in [5].

The model is based on the observation that both the number of extra roll-ins and the
amount of used mixing capacity in each period depends solely on times when trains become
active. Further, only a few points in time turn out to be relevant for a train to become
active, namely each time one of its cars arrives or is pulled-out of the mixing track. Let T (r)
denote the set of all such relevant points in time for train r. We introduce binary variables

M. Bohlin, F. Dahms, H. Flier, and S. Gestrelius 15

xrt that indicate at which time t the reservation of a classification track for outbound train
r starts, i.e., at which time r becomes active. Further, binary variables yro indicate whether
the outbound train r is allocated to track o.

minimize
∑
r∈R

∑
t∈T (r)

c(r, t) · xrt (1)

subject to
∑

o∈O(r)

yro = 1, r ∈ R (2)

∑
t∈T (r)

xrt = 1, r ∈ R (3)

∑
t∈T (r′):t<t(r)

xr′t + yro + yr′o ≤ 2, r ≺ r′, o ∈ O(r) ∩O(r′) (4)

∑
r∈R

∑
t∈T (r)

sp(r, t) · xrt ≤ smix, p ∈ P (5)

x, y ∈ {0, 1} (6)

Objective (1) gives the objective in terms of the number c(r, t) of extra roll-ins due to
mixing, which results from using start time t for train r. Equalities (2) ensures that each
train r ∈ R is allocated to a track on which it fits. Equalities (3) ensures that each train
r ∈ R becomes active at a relevant time point t ∈ T (r). Inequalities (4) states that for each
pair of trains r ≺ r′ that can be scheduled consecutively on the same track, either r and r′

are scheduled on different tracks, or r′ becomes active only after r has departed. Finally,
Inequalities (5) ensures that the mixing capacity is respected in each period, where sp(r, t)
denotes the length of all cars of r that are mixed in period p if r becomes active at time t.

Scheduling problems in general often yield weak LP relaxations, and not surprisingly,
this is true also for the compact problem formulation in the previous section, which have
scheduling properties such as those encoded in Intequalities (4). This is confirmed by the
results in [5] and [4].

4 Extended Formulation Solution

In this section, we introduce an extended formulation, where the variables represent pairings
of entire sequences and tracks. We will see that this formulation can be solved efficiently by
branch-and-price and leads to a strong LP relaxation for our problem instances (see Section
5.1).

For each track o and every possible sequence g ∈ G(o) we use a variable xgo to encode
whether we use g on o or not. As we saw in Section 2, it is sufficient to know the sequence
for each track to calculate the mixing track usage and the number of extra roll ins of a
schedule. Furthermore, each sequence-track pair included in the final solution will add to
these quantities independently of all other pairs, which allows us to use a linear objective
function and linear constraints only. To aid in branching, we also use the variables yro from
the previous section, encoding that train r is assigned to track o. The full integer program
for our extended formulation (EF) looks as follows:

ATMOS’12

16 Optimal Freight Train Classification using Column Generation

min
∑
o∈O

g∈G(o)

c(g) · xgo (7)

s.t.
∑
o∈O

yro ≥ 1 r ∈ R (8)∑
g∈G(o)

r∈g

xgo ≥ yro r ∈ R, o ∈ O (9)

∑
g∈G(o)

xgo ≤ 1 o ∈ O (10)

∑
o∈O

g∈G(o)

sp(g) · xgo ≤ smix p ∈ P (11)

x, y ∈ {0, 1} (12)

Objective (7) counts the total number of extra roll-ins as the sum of the roll-ins for the
sequences selected for each track. Inequalities (8) and (9) ensure that every train appears in
one sequence. We do not have to ensure equality as using a single train several times can
never improve the objective. If a single train occurs several times in an optimal solution,
then it can be removed from all but one sequence. Inequalities (10) state that at most one
sequence per track can be used, and inequalities (11) ensure that we do not use more than the
available mixing capacity in any period. Inequalities (8–11) are equivalent to the conditions
for a feasible schedule in Section 2.

In the model above, there is one x variable for each combination of sequence g ∈ G(o)
and track o ∈ O. As the size of G(o) is of order O(|R|!) only a subset of the x variables are
initially included, and column generation is used to generate new variables as needed. For a
detailed introduction to column generation see [9].

To use column generation, we first look at the dual of the LP relaxation of (EF):

max
∑
r∈R

αr +
∑
o∈O

γo + smix
∑
p∈P

δp (13)

s.t. αr ≤ βro r ∈ R, o ∈ O (14)∑
r∈g

βro + γo +
∑
p∈P

sp(g) · δp ≤ c(g) o ∈ O, g ∈ G(o) (15)

α, β ≥ 0 γ, δ ≤ 0 (16)

The dual variables are chosen as follows: the α variables correspond to primal inequalities
(8), β to (9), γ to (10) and δ to (11). For every primal variable x we get an inequality of the
form (15) and for every y an inequality of the form (14).

As stated above we start off with a reduced set of x variables. This reduced set contains
sequences from a heuristically generated solution. Following the literature we will refer to
this smaller variant of (EF) as the restricted master problem (RMP). We can now solve the
LP relaxation of (RMP) to optimality with regard to the chosen subset of variables using
any LP solver. Note that this solution may or may not be optimal for the relaxed (EF).
From duality theory we know that the optimal solution for the relaxed (EF) will have a
corresponding dual solution that satisfy all inequalities in (15). Further, the inequalities in
(15) corresponding to the x variables in the (RMP) are guaranteed to be satisfied by our
solution.

If our solution to the relaxed (RMP) satisfies all inequalities (15), it is also optimal for the
relaxed (EF). If not, we need to add variables corresponding to violated inequalities to the

M. Bohlin, F. Dahms, H. Flier, and S. Gestrelius 17

(RMP) and start over again until no inequalities are violated anymore. The new sub-problem
is now to identify violated constraints (15) without checking every single one (which would
be inefficient due to their number). This step, called pricing, will be explained in Section 4.1.

When we have reached an optimal LP solution for (EF), the solution might not be integral.
Normal branch-and-bound on (RMP) does not guarantee optimality of the resulting integral
solution, as the LP relaxation of (RMP) is not necessarily a lower bound given the branching
decisions made to reach integrality. Therefore we may have to price in new variables in each
node of the search tree. Furthermore, we must also take care not to include variables which,
given the current branching decisions, represent infeasible train sequences. In Section 4.2 we
will show how we implement a branching rule and how the branching decisions are taken
into account in the pricing step. Algorithms of this type are referred to as branch-and-price
algorithms [3].

4.1 Pricing
We will now discuss how we can efficiently determine variables that can improve (RMP) by
finding violated inequalities from (15). First, as the set O is not too large, we can easily look
at the inequalities for each track separately. Thus for each track o ∈ O we need to find a
sequence g ∈ G(o) for which∑

r∈g

βr,o +
∑
p∈P

sp(g) · δp − c(g) ≤ −γo

is violated. There might be many such inequalities, and we want to search for the inequality
that is violated the most, i.e., we want to maximize the left hand side:

max
g∈G(o)

∑
r∈g

βro +
∑
p∈P

sp(g) · δp − c(g) .

To do so we use the fact that sp(g) and c(g) are calculated as sums over pairs of trains
appearing consecutively in the sequence, i.e. the quantities only depend on the immediate
predecessor for each train (see Section 2).

u r1 r2 r3 r4 v

Figure 3 Longest path graph for the root pricing problem for track o2 from the example in
Figure 1.

First, a directed graph G = (V,E) is constructed with the node set V = R(o) ∪ {u, v},
i.e., one node for each train fitting on o plus two additional nodes. The edge set E includes
an edge (u, r) and (r, v) for every train r ∈ R(o), and an edge (r1, r2) if r1 ≺ r2. Note that
any path from u to v in G corresponds to a feasible sequence g ∈ G(o). Figure 3 shows what
this graph looks like for the example presented in Figure 1, if we search for a new sequence
for track o2.

Next, we add edge weights to G. We choose the following weights:
w(u,r) = βr,o

w(r1,r2) = βr2o +
∑

p∈P sp(r2, r1) · δp − c(r2, r1)
w(r,v) = 0

ATMOS’12

18 Optimal Freight Train Classification using Column Generation

For every sequence g ∈ G(o) there is one equivalent path in G which has a total weight
equal to∑

r∈g

βro +
∑
p∈P

sp(g) · δp − c(g) .

As this is the quantity we want to maximize, we can search for a longest path in G from
u to v. Due to the partial ordering of the trains, G is cycle-free, and calculating a longest
path can be done in O(|V |+ |E|) time (see[6]). In our case, this would be O(|R|2), as the
graph could be close to complete (i.e., complete except for edge (u, v), if ≺ is a total order).

4.2 Branching

When the LP relaxation of (EF) is solved in one of the branch-and-bound trees nodes and
the solution turns out to be fractional, the solution space of the relaxed problem needs to be
further restricted. This is known as branching. However, branching on x is problematic, as
in the xgo = 0 branch just one sequence g on track o will be excluded. The pricing problem
would therefore have to exclude individual paths, which in general is much more difficult
than only computing the longest path. This is a common issue in column generation, see for
example [3].

Fortunately, we can circumvent this problem by branching on allocation of trains r
to tracks o instead, corresponding to the original yro variables in the direct model. In
every fractional node, we will choose a fractional variable yro (such a variable must exist as
otherwise the solution would not be fractional). The problem is then divided into two cases,
one where yro equals 0 and one where it equals 1. Next we need to consider how to make
sure branching decisions are respected in subsequent pricing steps. This can be accomplished
by modifying the graph used in the pricing (see Section 4.1). We look at the two possible
cases:

Case yro = 0: Remove node r from node set V and all edges connected to it. This way the
generation of a sequence which contains train r is prohibited.

Case yro = 1: For all nodes r′ and r′′ where t(r′) ≺ t(r) ≺ t(r′′), remove the edges (r′, r′′),
together with (u, r′′) and (r′, v), from the edge set E. Also remove all nodes r′ for which
it holds that r′ ‖ r along with all their edges. Now all paths from a node before r to one
after r will include r. Therefore no path from u to v can skip node r, forcing r to be
contained in every generated sequence.

To illustrate this, consider the example graph in Figure 3. Figure 4 shows how the
transformed longest path graphs would look like in both branches for variable yr2o2 .

u

yr2o2 = 0

r1 r2 r3 r4 v u

yr2o2 = 1

r1 r2 r3 r4 v

Figure 4 Longest path graphs for the pricing problem for track o2 in the example from Figure 1
after branching on yr2o2 . Dotted nodes and edges are removed from the pricing problem.

M. Bohlin, F. Dahms, H. Flier, and S. Gestrelius 19

5 Experiments

We evaluate the new approach on a historic data set, provided to us by the Swedish Transport
Administration (Trafikverket). The data set is for arriving and departing trains and cars
at the Hallsberg Rangerbangård hump yard in central Sweden, and covers a period of five
months between December 2010 and May 2011. Hallsberg has 8 tracks of length 595 to 693
meters on the arrival yard, two parallel humps, of which only one is in use, 32 available
classification tracks of length between 374 and 760 meters, and 12 tracks with length 562 to
886 meters on the departure yard. The layout of Hallsberg is shown in Figure 5.

Figure 5 Layout of the Hallsberg classification yard in Sweden. The arrival yard is on the left,
followed by the hump, the switching system, classification tracks, and finally the departure yard on
the right. The image is taken from [2], and is scaled to emphasize details.

There are also several other tracks on the yard, for example tracks going to light and
heavy repair facilities. These additional tracks are not considered since they are not normally
used for shunting. Furthermore, arrival and departure tracks as well as hump scheduling is
done in a preprocessing stage to obtain a suitable data set (see [5] for more details). Duration
estimates were taken from [1].

The resulting data set consists of arrival times for 3653 outbound trains and 18366 car
groups. Since operational planning is in practice done for a few days at a time, we split the
resulting data set into separate planning problems, which each contain all car groups and the
corresponding trains which are handled on the yard during the chosen interval. We chose
to evaluate plans of length between two and five days, and assume that the yard is empty
at the beginning of each planning interval. In a deployed implementation, cars which were
already on the yard at the beginning of the planning interval would also have to be handled,
but this is not considered in this paper. In total, 192 problem instances were generated for
evaluation.

To evaluate our approach, we optimized the resulting problems using the improved
heuristic from [5] (Heuristic++), the direct model from Section 3 (D-IP) and the new column
generation approach from Section 4 (CG-IP). When found, heuristic solutions were used as
starting points for both D-IP and CG-IP. CPLEX 12.4.0.0 in deterministic parallel mode
with up to 8 threads was used to solve D-IP. CG-IP uses SCIP 2.1.0 as a branch-and-price
framework with the same CPLEX version as LP solver. Experiments were performed on
Linux workstations running openSUSE 12.1 with two Intel Core i7-2600 quad-core CPUs
running at 3.4 GHz and equipped with 16 GB of RAM. All times are reported as wall-clock
seconds and includes problem setup and post processing. A time limit of 20 minutes was set
for each problem instance, after which the best integer solution found was returned.

ATMOS’12

20 Optimal Freight Train Classification using Column Generation

Table 1 Experimental results for different planning horizons and solution methods. For each
planning horizon, the number of instances in the sample data and the average instance problem
size are included. For the different solution methods the table shows the average number of extra
car-roll-ins due to mixing, the average execution time and the number of instances for which optimal,
feasible and no feasible solutions were found. The average optimality gap is also reported for
instances where feasible solutions with a non-zero lower bound were found. Finally, the number
of times CG-IP generated a schedule with less extra roll-ins is reported along with the average
improvement. Only the schedules that improved the number of extra roll-ins are included in this
average. Only feasible instances are included in the average extra roll-ins and improvement values.

Planning horizon (days)
2 3 4 5

Number of instances 75 50 37 30
Avg. number of trains 48.7 73.0 97.7 121.7
Avg. number of groups 244.9 367.3 492.0 612.2

Heuristic++ Avg. extra roll-ins 8.3 16.1 26.0 31.6
Avg. time (s) 0.0 0.1 0.1 0.2

Inst. classes Feasible solution 73 47 34 27
No feasible solution found 2 3 3 3

D-IP Avg. extra roll-ins 10.1 18.8 29.8 25.2
Avg. time (s) 360.6 530.9 684.1 722.4

Inst. classes

Optimality proven 50 27 14 12
Feasible solution, LB>0 (avg. gap) 3(6.0) 2(16.2) 3(18.9) 1(7.4)
Feasible solution, LB=0 22 21 20 14
No feasible solution found 0 0 0 3

CG-IP Avg. extra roll-ins 10.1 18.2 27.6 39.0
Avg. time (s) 2.0 17.5 76.4 168.2

Inst. classes

Optimality proven 75 50 37 30
Feasible solution, LB>0 (avg. gap) 0(0.0) 0(0.0) 0(0.0) 0(0.0)
Feasible solution, LB=0 0 0 0 0
No feasible solution found 0 0 0 0

Improvement Heur++ No. (Avg. improvement) 19(7.7) 16(15.0) 15(11.7) 13(14.4)
D-IP No. (Avg. improvement) 1(1.0) 8(3.6) 9(9.1) 7(3.4)

5.1 Results

The experimental results are shown in Table 1. The relative MIP gap reported is calculated
as |p− d|/|p|, where p is the primal bound (the objective of the best found integral solution)
and d is the dual bound. Note also that when a method fails to find a feasible solution for
an instance, we exclude that instance from the extra roll-in average. As these instances often
have a lot of traffic this reduces the average number of extra roll-ins for this method. This is
why the heuristic has a lower extra roll-in average than the optimizing methods, and likewise
why D-IP has a lower extra roll-in average than CG-IP for the five day planning horizon.

As we can see, CG-IP manages to prove optimality for all problem instances, compared
to only 54 % of the instances for D-IP. This indicates a quite strong LP relaxation for CG-IP.
In contrast, for D-IP, 90 % of the feasible instances not proven optimal terminates with a
trivial lower bound of zero. For CG-IP, no instance took longer than 13 minutes to solve to
optimality, while D-IP reaches the time limit for approximately 45 % of the instances.

M. Bohlin, F. Dahms, H. Flier, and S. Gestrelius 21

Further, CG-IP always improves the shunting schedules with respect to the number of
extra roll-ins compared to Heuristic++ and D-IP, and the percentage number of improvements
increases as the planning horizon is extended. The reason the comparison between CG-IP
and D-IP gives lower values than expected for the five day planning horizon is that D-IP
fails to return a solution for 3 instances, and these 3 instances are subsequently omitted from
the calculations.

6 Conclusions

We presented a compact IP model alongside an extended IP formulation to solve the train
classification problem arising at (among other) the Hallsberg hump yard. For the extended
formulation we provided all steps necessary to make it solvable in an efficient manner. The
pricing problem was shown to be a longest path problem on a directed acyclic graph. We
provided a branching rule that could easily be incorporated into the pricing problem by
means of modifying this graph.

In the experiments performed on the data from Hallsberg the extended formulation
turns out to provide a strong dual bound. Using the new approach we were able to find
provably optimal solutions to all problem instances in a reasonable amount of time. These
solutions often turn out to be a lot better than the solutions generated by the improvement
heuristic from our previous paper [5, 4]. Therefore the extended IP model seems to be a good
starting point for further research. In particular, the new results open up for a real-world
implementation of the developed models.

6.1 Future Work

Though the results are promising, there are still open questions to be considered in future
research.

The NP-completeness of the problem has been shown by reduction from µ-coloring [5].
The proof inherently needs the existence of differently sized classification tracks. It is still an
open question whether the problem stays NP-complete if all tracks are of equal length.

As can be seen in Section 5.1, all our problem instances could be solved to optimality
within a reasonable amount of time. Still, finding optimal solutions takes too much time
for larger instances. We believe that this is mainly due to symmetry arising in the problem
formulation, since train sequences on equivalent tracks can be interchanged. A possible way
to reduce symmetry could be to aggregate the extended formulation variables and use a more
sophisticated branching rule.

In real-world applications, the exact car lists and times of all incoming and outgoing
trains are normally not known far in advance. Therefore the planning needs to be flexible,
and the shunting schedule should be updated on a regular basis. This suggests possible
further research directions:

Changing the shunting schedule might be complicated as the formation of trains may
already have begun. Therefore it would be preferable if the original schedule was
constructed such that it could easily be recovered. Research from the field of recoverable
robustness might apply here.
Creating the shunting schedule while not possessing all information about the future adds
an online component to the problem. It would be interesting to see if the problem can be
handled as an online problem and if competitive analysis could lead to applicable results.

ATMOS’12

22 Optimal Freight Train Classification using Column Generation

It also appears natural that less shunting would reduce the total load on the yard, implying
a possibility to classify more freight with the same resources. To be consistent with current
practices in Sweden, we however had to assume a fixed timetable and a fixed allocation of
cars to trains. Planning timetables and freight car allocations with optimal yard operation
in mind may yield such positive effects, and should therefore be investigated further.

Acknowledgements

We are grateful to Hans Dahlberg at the Swedish Transport Administration and Stefan
Huss at Green Cargo AB for providing information on the working processes for shunt yard
operation.

References

1 C. Alzén. Handbok BRÖH 313.00700: Trafikeringsplan Hallsbergs rangerbangård. Banver-
ket, May 2006.

2 K.-Å. Averstad. Handbok BRÖH 313.00001: Anläggningsbeskrivning Hallsbergs ranger-
bangård. Banverket, February 2006.

3 C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance. Branch-and-price:
Column generation for solving huge integer programs. Operations Research, pages 316–329,
1998.

4 M. Bohlin, H. Flier, J. Maue, and M. Mihalák. Hump Yard Track Allocation with Tempo-
rary Car Storage. In The 4th International Seminar on Railway Operations Modelling and
Analysis (RailRome), 2011. Available on http://soda.swedish-ict.se/5089/.

5 M. Bohlin, H. Flier, J. Maue, and M. Mihalák. Track Allocation in Freight-Train Classifica-
tion with Mixed Tracks. In 11th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems, volume 20 of OpenAccess Series in Informatics
(OASIcs), pages 38–51, Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

6 T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction To Algorithms. MIT Press,
3rd edition, 2009.

7 E. Dahlhaus, P. Horák, M. Miller, and J. F. Ryan. The train marshalling problem. Discrete
Applied Mathematics, 103(1–3):41–54, 2000.

8 E. Dahlhaus, F. Manne, M. Miller, and J. Ryan. Algorithms for combinatorial problems
related to train marshalling. In Proceedings of the Eleventh Australasian Workshop on
Combinatorial Algorithms (AWOCA), pages 7–16, 2000.

9 J. Desrosiers and M. Lübbecke. A primer in column generation. In G. Desaulniers,
J. Desrosiers, and M. Solomon, editors, Column Generation, pages 1–32. Springer, Berlin,
2005.

10 H. Flandorffer. Vereinfachte güterzugbildung. ETR RT, 13:114–118, 1953.
11 M. Gatto, J. Maue, M. Mihalák, and P. Widmayer. Shunting for dummies: An introductory

algorithmic survey. In Robust and Online Large-Scale Optimization, volume 5868 of LNCS,
pages 310–337. Springer, 2009.

12 R. Jacob, P. Márton, J. Maue, and M. Nunkesser. Multistage methods for freight train
classification. Networks, 57(1):87–105, 2011.

13 K. Krell. Grundgedanken des simultanverfahrens. ETR RT, 22:15–23, 1962.
14 M. W. Siddiqee. Investigation of sorting and train formation schemes for a railroad hump

yard. In Proceedings of the 5th International Symposium on the Theory of Traffic Flow and
Transportation, pages 377–387, 1972.

http://soda.swedish-ict.se/5089/

Real Time Railway Traffic Management Modeling
Track-Circuits
Paola Pellegrini, Grégory Marlière, and Joaquin Rodriguez

Ifsttar – ESTAS
Univ. Lille Nord de France
rue Élisée Reclus 20, 59666 Villeneuve d’Ascq, Lille, France
paola.pellegrini@ifsttar.fr, gregory.marliere@ifsttar.fr,
joaquin.rodriguez@ifsttar.fr

Abstract
The real time railway traffic management seeks for the train routing and scheduling that minimize
delays after an unexpected event perturbs the operations. In this paper, we propose a mixed-
integer linear programming formulation for tackling this problem, modeling the infrastructure
in terms of track-circuits, which are the basic components for train detection. This formulation
considers all possible alternatives for train rerouting in the infrastructure and all rescheduling
alternatives for trains along these routes. To the best of our knowledge, we present the first
formulation that solves this problem to optimality. We tested the proposed formulation on real
perturbation instances representing traffic in a control area including the Lille Flandres station
(France), achieving very good performance in terms of computation time.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases real time railway traffic management, mixed-integer linear programming,
track-circuit, complex junction

Digital Object Identifier 0.4230/OASIcs.ATMOS.2012.23

1 Introduction

Railway infrastructure has a limited physical capacity that is often insufficient to smoothly
accommodate traffic when unexpected events perturb operations. This insufficiency appears
in terms of train conflicts: multiple trains concurrently claim a portion of track. In case
of conflicts, trains must be delayed for sequencing their use of the critical portion of track.
Junctions are the physical locations on which conflicts are most likely to occur. In a junc-
tion, different lines cross and, often, multiple routes can be used for joining an origin to a
destination. Considering the railway network from a macroscopic point of view, junctions
represent nodes and lines are links among these nodes [13]. Terminal stations are junctions
where trains may stop for loading and unloading purposes and where the configuration of
both the rolling stock and the crew may be modified.

Traffic on the railway network is managed by dispatchers. They are in charge of smooth-
ing operations in their control areas. If a control area includes a complex junction, the
dispatcher task may become very challenging. Currently, few automatic tools are available
for rerouting or rescheduling trains in junctions in real time. The available tools, as for
example the ARI system used in the Netherlands, may just reserve routes to trains on the
basis of the timetable scheduling and on arrival time forecasts. Despite the undeniable aid
of these tools, dispatchers must often take decisions autonomously [4].

Several authors have proposed optimization algorithms for tackling the problem faced
by dispatchers. We will refer to the formal problem tackled as the real time railway traffic

© Paola Pellegrini, Grégory Marlière, and Joaquin Rodriguez;
licensed under Creative Commons License ND

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti; pp. 23–34

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/0.4230/OASIcs.ATMOS.2012.23
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

24 Real Time Railway Traffic Management Modeling Track-Circuits

�
�
�

�
�
�

tc1 tc2 tc4

tc3

tc7tc6

tc5 tc8

s1s2

s3

s4

s5

s6

s7

s8 s9

s11s10

Figure 1 Example of the infrastructure present in a control area.

management problem (rtRTMP). In the literature, different variants of the rtRTMP have
been tackled. The first papers that appeared did not considered rerouting possibilities [5, 8],
proposing either optimal or heuristic solutions for the rescheduling problem. In the following,
other algorithms introduced the possibility of rerouting trains [4, 3, 11, 14, 16, 17], finding
heuristic solutions to the rtRTMP. All these algorithms have the characteristic of neglecting
speed variation dynamics: they are fixed-speed algorithms. The main reason for this neglect
is the fact that the consideration of speed variation dynamics (in variable-speed algorithms)
is computationally extremely costly and, then, hardly possible in real time. To the best
of our knowledge, two variable-speed algorithms have been proposed in the literature: for
being able to take into account speed variation dynamics they either neglect [7] or strongly
limit [10] the possibility or rerouting trains. A further possibility that has been explored in
the literature is forbidding the imposition of delays within the control area considered: if
trains are rescheduled simply by imposing a later entrance time in the control area, then there
are no speed variations to be decided, and hence to be accounted for in the optimization [1, 2].
Yet, the drawback of this imposition is the lack of consideration of any constraint outside
the control area: this may cause severe coordination problems among control areas.

In this paper, we propose a fixed-speed algorithm, focusing our attention on the potential
of rerouting: in our model, we consider all the possible routes that physically exist in
the control area. Moreover, we detail the modeling of the control area itself up to the
consideration of track-circuits.

A control area, in fact, is composed by portion of tracks on which the presence of a
train is automatically detected by an electric mechanism. These portions are called track-
circuits. They are typically grouped into block sections started and ended by a light signal.
The aspect of the light signal imposes the behavior to be held by the driver entering the
block section: proceeding at the scheduled speed (green aspect), braking for being able
to stop by the following signal (yellow aspect), or stop (red aspect). Different signaling
systems exist, typically with different number of aspects: three being the most common
configuration, further aspects may separate the green and the red one, with a consequently
larger number of block sections for braking. In general terms, if the signaling system has
n possible aspects, then n − 2 block sections are available for braking. Figure 1 depicts
an example of the infrastructure characterizing a control area. Track circuits are named
tc and signals are named s, both indexed with a progressive number. Signals concern the
availability of block sections in a precise direction: for example, signal s1 concerns block
section s1-s5 including tc1, tc2 and tc3, in this order, and block section s1-s6 including
tc1, tc2 and tc4, in this order. When a train enters a track-circuit, all the following ones
belonging to the same block section are reserved for the train itself.

The algorithms proposed in the literature consider alternatively track-circuits, block
sections or track sections including a number of block sections as smallest decomposition of
the infrastructure. Considering track-circuits allows the full exploitation of the capacity of
the control area: in the example, if a train is known to be in track-circuit tc3, going from
tc1 to tc8, then block section s1-s6 is available only if the model considers track-circuits.
Otherwise, it is not possible to distinguish the presence of a train on tc1, tc2 or tc3, and

P. Pellegrini, G. Marlière, and J. Rodriguez 25

hence both s1-s6 and s1-s5 are unavailable as long as the train has not entered the following
block section.

A further issue that emerges is the realism of the representation: often block sections for
routes in opposite directions do not coincide. For example, consider the routes tc1 to tc8
and tc8 to tc1. In the former, tc1, tc2 and tc3 belong to the first block section and tc5 and
tc8 to the second one. In the latter, tc8, tc5 and tc3 belong to the first block section and tc2
and tc1 to the second one. When representing the control area considering block sections,
it is not clear where track-circuit tc3 should be positioned. Wherever it is positioned, the
model will not represent the real infrastructure.

Our formulation deals with a track-circuit based model, thus allowing the full exploitation
of capacity and the realistic representation of the infrastructure. Of course, the number of
variables to be included in the model increases very fast with the size of the control area.
Yet, in the experimental analysis we propose, we show that our formulation can deal with
instances representing rather large control areas. In particular, it solves in few minutes
instances obtained by perturbing real instances representing the control area including the
Lille Flandre station, in France.

The rest of the paper is organized as follows. Sections 2 and 3 depict the main character-
istics of the rtRTMP and the formulation that we are proposing in this paper, respectively.
Section 4 presents the experimental setup and the instances tackled and Section 5 shows the
results of the analysis. Finally, Section 6 concludes the paper.

2 The real time railway traffic management problem

When an unexpected event occurs, trains suffer a non-negative delay at their entrance in the
control area. This delay is typically named primary delay and it may cause the emergence
of conflicts within the control area itself. The additional delay due to these conflicts is
named secondary delay. According to the literature [5], the objective of the rtRTMP is
the minimization of the maximum secondary delay assigned to trains. Multiple sets of
constraints characterize this problem.

First of all, time concerning constraints: a train cannot be scheduled earlier than
its entry time (if starting within the control area, the planned departure time is considered
as entry time) and it must occupy each track-circuit along one route for a certain amount
of time. In variable-speed models, this time depends on traffic conditions. In fixed-speed
models, it is computed a priori as the running time in absence of conflicts. The time in
which the train occupies two consecutive track-circuits is named clearing time: its rear is
still on the current track-circuit and its front has already entered the following one. Before
a train enters a block section, some time must be allowed for route formation and for taking
into account the signal visibility distance [18]. In the following we will refer to the sum of
these times simply as formation time. After a train exits the block section, some time must
elapse before the block section become available for another train. In this time, the route
is released (release time) [18]. Finally, if the control area includes a station and trains with
passenger transfers (trains in connection) are scheduled, then their arrival and departure
time must be coherent.

Second, some constraints for managing delays may be imposed. Three cases are
possible: no constraints, delay allowed at any signal and delay allowed only out of the
control area. In absence of constraint, delay may be assigned anywhere in the control area:
the underlying hypothesis is that the dispatcher can stop the train in any track-circuit along
the route. The case of delay allowed at any signal represents the fact that, in reality, trains

ATMOS’12

26 Real Time Railway Traffic Management Modeling Track-Circuits

stop in front of signals. If delay can be assigned only out of the control area, no difference
exists between fixed and variable-speed models, but complex coordination issues between
control areas may emerge, as mentioned in the introduction.

Third, constraints due to the change of rolling stock configuration may have
to be imposed. In particular, the arrival and departure time of trains resulting from the
turn-around, join or split of one another must be coherent.

Fourth, capacity constraints require that at most one train occupies a block section at
a time. All track-circuits belonging to a block section must be reserved for a train before it
enters it. When designing timetables, blocking times are considered for having a separation
between consecutive trains that allows them to always encounter green aspect signals [12].
In particular, these blocking times include the approach time that is often set equal to the
total running time of all track-circuits following the first restricted signal (aspect different
from the green one). When applying this concept (blocking time theory) to the rtRTMP,
this translates into a set of constraints imposing that the reservation of a track-circuit starts
as soon as the train enters in the first track-circuit of the preceding block section.

3 Mixed-integer linear programming formulation

In the formulation proposed, for coping with the fact that a track-circuit may require differ-
ent running times depending on the route on which it is used (for example, if a non-negligible
slope characterizes the terrain, then the running time may be much different for trains run-
ning in opposite directions) we consider a set of nominal track-circuits: we duplicate each
real track-circuit as many times as the number of different routes using it. Each nominal
track-circuit belongs to a single route and has a single running time. In the following, we
will distinguish the reference to either nominal or real track-circuits whenever necessary.

Moreover, we introduce two dummy track-circuits: tc0 and tc∞. They represent the
entry and the exit locations of the control area, respectively. The former precedes all actual
entry track-circuits in the control area and the latter follows all actual exit ones. Their
running time is null.

In the following, we describe the objective function and the constraints defining the
formulation through the following notation and variables. The constraints presentation
follows the problem description in Section 2. For sake of brevity, we do not explicitly report
integrality and non-negativity constraints.

T, R set of trains and routes, respectively,
RTC , TC set of real and both nominal and dummy (from here on, nominal) track-circuits,

respectively,
S ⊆ T trains representing shunting movements,
RTC t, TC t set of real and nominal track-circuits that can be used by train t, respectively,
PL ⊂ RTC set of real track-circuits corresponding to platforms,
Rt ⊆ R set of routes that can be used by train t,
RTC r set of real track-circuits composing route r,
rtctc real track-circuit corresponding to the nominal one tc (tc 6∈ {tc0, tc∞}),
r tc, bstc route and block section including nominal track-circuit tc (tc 6∈ {tc0, tc∞}),

respectively,
ptc, stc preceding (tc 6= tc0) and subsequent (tc 6= tc∞) nominal track-circuit of tc,

respectively,

P. Pellegrini, G. Marlière, and J. Rodriguez 27

ebs(tc) indicator function (tc 6∈ {tc0, tc∞}): 1 if nominal track-circuit tc belongs to an
extreme (either the first or the last) block section on its route, 0 otherwise,

ref tc reference nominal track-circuit for the reservation of tc (tc 6∈ {tc0, tc∞}). In a
two-aspect system, it is the first nominal track-circuit of bstc. In a three-aspect
system, it is the first nominal track-circuit of the block section preceding bstc,

runtc, cltc running and clearing time of nominal track-circuit tc, respectively,
form, rel formation and release time, respectively
initt, schedt train t foreseen entry time and scheduled exit time of train t, respectively. If t

is subject to primary delay, schedt is equal to the scheduled exit time plus the
primary delay itself,

I(t, t′) indicator function: 1 if train t′ results from the turn-around, join or split of
train t, 0 otherwise,

RoSt(t, t′) indicator function: 1 if trains t and t′ use the same rolling stock, 0 otherwise,
C(t, t′) indicator function: 1 if trains t and t′ are in connection, 0 otherwise,
ms, msc minimum separation between the arrival of a train and the departure of another

train using the same rolling stock, or of a train in connection, respectively,
M large constant.

We define both continuous and binary decision variables. First of all, we define

D = maximum delay assigned to any train.

Moreover, we define continuous variables for: all pairs of train t ∈ T and nominal track-
circuit tc ∈ TC t:

et,tc = time in which t enters tc, dt,tc = delay assigned to t in tc (defined if bstc 6= bsstc);

all pairs of train t ∈ T and real track-circuit rtc ∈ RTC t:

sRest,rtc = time in which rtc starts being reserved for t,
eRest,rtc = time in which rtc ends being reserved for t.

We define binary variables for: all pairs of train t ∈ T and route r ∈ Rt:

xt,r =
{

1 if t uses r,

0 otherwise;

all triplets of train t, t′ ∈ T and real track-circuit rtc ∈ RTC t ∩ RTC t′ :

yt,t′,rtc =
{

1 if t uses rtc before t′ (t ≺ t′),
0 otherwise (t � t′).

Figure 2 shows the role of these variables in a portion of the example depicted in Figure 1,
corresponding to train t on block section s1-s5 along route s1-s5, s5-s11 (named r1). Nominal
track-circuits along this route are named r1_tc1, for example considering real track-circuit
tc1. We depict track-circuit occupation as a rectangle with solid borders and reservation as
a rectangle with dashed borders: the horizontal dimension represents time. The reservation
of a track-circuit starts form time units before the physical occupation of the first track-
circuit in the block section, and it ends rel time units after the end of the occupation of the
track-circuit itself. Each track-circuit is physically occupied for a running time run plus a
clearing time cl: they both depend on the track-circuit and on the route on which it is used.

3.1 Objective function and constraints
As mentioned in Section 2, the objective of the rtRTMP is the minimization of the maximum
secondary delay imposed to a train: the objective function is

min D.

ATMOS’12

28 Real Time Railway Traffic Management Modeling Track-Circuits

-
time

s5
r1_tc3
r1_tc2
r1_tc1

s1
form runr1_tc1

clr1_tc1?
rel
runr1_tc2

clr1_tc2?
rel

runr1_tc3 + dt,r1_tc3

clr1_tc3?
rel

sRest,tc1
sRest,tc2
sRest,tc3

et,r1_tc1
eRest,tc1

et,r1_tc2
eRest,tc2

et,r1_tc3
eRest,tc3

Figure 2 Graphical representation of data and variables. Subset of nominal track-circuits shown
in Figure 1, belonging to block section s1-s5.

Time concerning constraints

et,tc ≥ initt xt,r tc ∀t ∈ T, tc ∈ TC t, (1)
et,tc ≤Mxt,r tc ∀t ∈ T, tc ∈ TC t, (2)

et,tc ≥ et,ptc + runptc xt,r tc ∀t ∈ T, tc ∈ TC t \ {tc0, tc∞}, (3)∑
r∈Rt

xt,r = 1 ∀t ∈ T, (4)

∑
tc∈TCt′ :
ptc=tc0

et′,tc ≥
∑

tc∈TCt:
stc=tc∞

et,tc + (msc + runtc)xt,r tc ∀t, t′ ∈ T : C(t, t′) = 1, (5)

D ≥ et − schedt ∀t ∈ T \ S. (6)

Constraints (1) state that trains cannot be scheduled earlier than their entry time in the
control area. Constraints (2) impose that the entry time in a nominal track-circuit is set to
0 if the route to which it belongs is not used. Recall that each nominal track-circuit belongs
to one and only one route. Constraints (3) state that a train cannot enter tc if it has not
spent in its preceding track-circuit at least its running time, if they are used. Constraints (4)
ensure that exactly one route is used by each train. If the control area includes a station
and trains in connection are scheduled, then we must impose Constraints (5). They state
that a minimum separation of duration msc must be ensured between trains arrivals and
departures. The spatial coherence is ensured by the routes available for the trains: any
route available for the arriving train terminates at a platform and any route available for
the departing one starts from a platform. Constraints (6) impose the coherence of variable
D. Here we do not consider delay assigned to shunting movements in the objective function,
hence we impose these constraints for all trains in T \ S. For taking into account also
shunting movements, is suffices to impose them for all trains in T .

Constraints for managing delay

dt,tc = et,stc − et,tc − runtcxt,r tc ∀t ∈ T, tc ∈ TC t : bstc 6= bsstc (7)
et,tc = initt xt,r tc ∀t ∈ T \ S : tc ∈ TC t : ptc = tc0, rtctc 6∈ PL. (8)

For each nominal track-circuit tc that can be used by train t and that closes its block
section, delay variable dt,tc assumes value equal to the moment in which train t enters the
nominal track-circuit that follows tc, minus the moment in which it enters tc itself, minus
the running time runtc: Constraints (7) ensure this relation. Constraints (8) impose that
trains are not delayed before entering the control area, unless they depart from a platform
or they represent shunting movements: train t enters the first nominal track-circuit exactly
at time initt along the route selected.

P. Pellegrini, G. Marlière, and J. Rodriguez 29

Constraints due to the change of rolling stock configuration
∑

tc∈TCt:
ptc=tc0

et,tc ≥
∑

tc∈TCt′ :
stc=tc∞

et′,tc + (ms + runtc)xt′,r tc ∀t, t′ ∈ T : I(t′, t) = 1, (9)

∑
tc∈TCt:
ptc=tc0

sRest,rtctc ≤
∑

tc∈TCt′ :
stc=tc∞

eRest′,rtctc ∀t, t′ ∈ T : I(t′, t) = 1, (10)

∑
r∈Rt:rtc∈PL∩RTCt

xt,r =
∑

r∈Rt′ :rtc∈PL∩RTCt′

xt′,r ∀t, t′ ∈ T : I(t′, t) = 1, rtc ∈ PL. (11)

Similarly to Constraints (5), Constraints (9) state that a minimum separation of duration
ms must be ensured between t′’s arrival and t’s departure, if t results form t′’s turn-around,
join or split. Constraints (10) ensure that the real track-circuit where the turn-around, join
or split takes place is reserved by t′ until it arrives at the platform, plus the release time, and
then it is immediately reserved by t. We must impose an inequality for allowing joins: the
reservation of the resulting train starts with the ending of the reservation of the first train
arriving. We manage the capacity issues arising with two trains reserving concurrently a
real track-circuit as described in the next section. Besides the train temporal coherence, we
must ensure local coherence: trains using the same rolling stock must use routes including
the same platform. Constraints (11) guarantee this local coherence. Of course, if the routes
available for the two trains share only one platform, i.e., if the dispatcher is not allowed to
impose platform changes, these constraints will be trivially met.

Capacity constraints

sRest,rtc =
∑

tc∈TCt:rtctc=rtc

et,ref tc − form xt,r tc ∀t ∈ T, rtc ∈ RTC t, (12)

eRest,rtc =
∑

tc∈TCt:rtctc=rtc

et,stc + (cltc + rel) xt,r tc ∀t ∈ T, rtc ∈ RTC t, (13)

yt,t′,rtc + yt′,t,rtc = 1 ∀t, t′ ∈ T, rtc ∈ RTC t ∩ RTC t′ , (14)∑
tc∈TCt:rtctc=rtc,

RoSt(t,t′)ebs(tc)=0

eRest,rtc −M(1− yt,t′,rtc) ≤ (15)

∑
tc∈TCt:rtctc=rtc,

RoSt(t,t′)ebs(tc)=0

sRest′,rtc ∀t, t′ ∈ T : rtc ∈ RTC t ∩ RTC t′

∑
tc∈TCt:rtctc=rtc,

RoSt(t,t′)ebs(tc)=0

eRest′,rtc −Myt,t′,rtc ≤ (16)

∑
tc∈TCt:rtctc=rtc,

RoSt(t,t′)ebs(tc)=0

sRest,rtc ∀t, t′ ∈ T : rtc ∈ RTC t ∩ RTC t′ .

Constraints (12) state that a train’s reservation of a real track-circuit starts as soon as
the train enters the nominal track-circuit ref tc minus the route formation time. For Con-
straints (13), the reservation ends as soon as the train has entered the subsequent track-
circuit, plus the sum of clearing and release time. Constraints (14) to (16) are disjunctive
constraints imposing that real track-circuit reservations do not overlap. Hence, at most

ATMOS’12

30 Real Time Railway Traffic Management Modeling Track-Circuits

-time

t1 sRest1,rtc eRest1,rtc

t2 sRest2,rtc eRest2,rtc

t3 sRest3,rtc eRest3,rtc

t4 sRest4,rtc eRest4,rtc

Figure 3 Overlapping of reservation times forbidden by Constraints (14) to (16), using t1 as
reference train. t1 and t2: for Constraints (15), t1 ≺ t2 and yt1,t2,rtc = 1 ⇒ eRest1,rtc ≤ sRest2,rtc.
t1 and t3: for Constraints (16), t3 ≺ t1 and yt3,t1,rtc = 1 ⇒ eRest3,rtc ≤ sRest1,rtc. t1 and t4: for
Constraints (14) either t4 ≺ t1 ⇒ yt1,t4,rtc = 1, yt4,t1,rtc = 0 or t4 ≺ t1 ⇒ yt1,t4,rtc = 0, yt4,t1,rtc = 1.

one train reserves a track-circuit at any time and capacity constraints are respected. Con-
straints (15) and (16) ensure that, if t ≺ t′ on rtc, then t’s reservation ends before the
reservation of train t′ starts. Instead, if t′ ≺ t on rtc, then t′’s reservation must end be-
fore t’s reservation can start. Remark that, for ensuring the validity of the constraints, M

must be greater than or equal to the maximum time distance between the begin and the
end of two trains’ reservations of the same track-circuit. If two trains use the same rolling
stock, the constraints do not apply to track-circuits belonging to extreme block sections
(RoSt(t, t′)ebs(tc) = 1). Thanks to Constraints (3) and (9), which ensure the time coher-
ence for each train route and for each pair of trains, respectively, any solution imposing a
reservation overlap on a real track-circuit, other than the one where the rolling stock config-
uration change takes place, results infeasible. The fact that a train entering a track-circuit
has still an open reservation of the preceding one (for both the clearing and the release
time) ensures the feasibility of routes assigned to trains going in opposite directions. Fig-
ure 3 shows through three examples how these constraints ensure the feasibility of solutions.

4 Experimental setup

In the experimental analysis, we test our formulation on perturbations of real instances
representing traffic in the control area including the main station of Lille in the North of
France, i.e., the Lille-Flandres station. In particular, we considered a one-day timetable
including 589 trains. Figure 4 shows the temporal distribution of train scheduled entry
times in the control area. We do not have any information on connections, and hence
we do not consider Constraints (5) presented in Section 3. On the other hand, being the
Lille-Flandres station a terminal one, all rolling stocks are used for both an arriving and
a departing train, but for what concerns the first trains departing in the morning (which
arrived the day before to the platform) and the last ones arriving at night (which will leave
the platform the day after): for almost any train t (97.11% of the total) a t′ exists such that
RoSt(t, t′) = 1. Besides 259 turn-arounds, the timetable contains 8 joins and 10 splits.

Figure 5 depicts the infrastructure of the control area: the station is linked to seven
regional, national and international lines and it has 17 platforms. All routes either depart
or arrive at the station: either their initial or their final real track-circuit is a platform. A
total of 2409 routes exist and they are composed by 299 real track-circuits. The consequent
number of nominal track-circuits is 58748. The routes include 9 to 35 track-circuits (mean =
24), 2 to 13 block sections (mean = 5), and they have a total running time of 2 to 12 minutes
(mean = 6) and a total length of 950 to 11500 meters (mean = 4331). More than 85% of
real track-circuits belong to non-coincident block sections in the two directions. Hence, if

P. Pellegrini, G. Marlière, and J. Rodriguez 31

time

nu
m

be
r

of
 tr

ai
ns

0
5

15
25

35

0:00 4:00 8:00 12:00 16:00 20:00 24:00

conventional
high−speed
shunting movement

Figure 4 Original timetable: number of trains entering the control area within consecutive
half-an-hour time intervals.

Haubourdin

Douai

Tournai

Valenciennes

Tourcoing

Comines

Armentières

LGV LGV

Lille Délivrance

Figure 5 Infrastructure of the control area including the Lille-Flandres station. The blue solid
arrow indicates the unavailable track-circuit in the partially disrupted scenario. The red dashed
arrows indicate the further track-circuits unavailable in the severely disrupted scenario.

we did not model track-circuits we could not realistically represent this infrastructure.
Starting from the original timetable, we imposed a delay to 20% of trains that do not

represent shunting movements: we randomly selected the trains to be delayed and we ran-
domly drew their delay in the interval between 5 to 15 minutes [10]. Both these random
selections are based on uniform probability distributions. We replicated the randomly as-
signment of train delay three times, obtaining three different perturbed timetables. The
tackled instances include, for each timetable, all trains arriving in ten half-an-hour intervals
along the day: from 7:30 to 9:30 and 16:00 to 19:00, representing the two peak times of the
day. Hence, we solve a total of 30 instances with a mean number of train equal to 25.43.
In this analysis, we do not consider the existing relation between instances representing
consecutive time intervals. Hence, a further procedure (e.g., the one proposed by D’Ariano
and Pranzo [6]) shall be used for ensuring global consistency in the daily operations.

We tested our model on the perturbed instances, considering three different scenarios
concerning the infrastructure: fully functioning, i.e., all existing routes are operational;
partially disrupted, i.e., one track-circuit is unavailable (indicated with a solid blue arrow
in Figure 5) and hence only 67.66% of routes are operational; severely disrupted, i.e.,
three track-circuits are unavailable (indicated with either solid blue or dashed red arrows in
Figure 5) and hence only 40.51% of routes are operational. We selected these percentages
following the literature [3], and the track-circuit according to the routes they belong to. In
these experiments, we consider the platform assigned to trains as non modifiable. Moreover,
we use a two-aspect signaling system, which often allows better quality solutions than sys-
tems with higher number of aspects, when adopting blocking time theory in a fixed-speed
algorithm and assessing solution quality in simulation [15].

We implemented our formulation using the IBM ILOG CPLEX Concert Technology for
C++ (IBM ILOG CPLEX version 12) [9] and we ran the experiments on an Intel(R) Xeon(R)
quad core 2.93GHz processors with 6 GB RAM, under Linux Ubuntu distribution version

ATMOS’12

32 Real Time Railway Traffic Management Modeling Track-Circuits

●

●

●

●

●

co
m

pu
ta

tio
n

tim
e

(m
in

ut
es

)

fully partially severely
functioning disrupted disrupted

0
2

4
6

●

20
00

0
40

00
0

60
00

0
nu

m
be

r
of

 v
ar

ia
bl

es

fully partially severely
functioning disrupted disrupted

●

50
00

15
00

0
25

00
0

nu
m

be
r

of
 c

on
st

ra
in

ts

fully partially severely
functioning disrupted disrupted

Figure 6 Distribution of the computation time (left), number of variables (center) and constraints
(right) in the TC formulation in the three scenarios.

10.04. We selected IBM ILOG CPLEX parameters after a short preliminary analysis on
different instances representing the Lille Flandre control area. In particular, we set: BrDir
= 0, DiveType = 3, CutsFactor = 1, Probe = 1. For the explanation of the role of these
parameters in the solution process we refer the reader to the IBM ILOG CPLEX parameter
reference manual [9]. Moreover, we started the solution process by providing an initial
solution found by imposing the use of the originally planned routes. The large constant M

is set to 86400, i.e., the length of the time horizon: in our instances this quantity is always
greater than the time distance between two trains’ reservation of a track-circuit, which is
necessary for ensuring the validity of Constraints (15) and (16).

We analyze the results achieved by our formulation with respect to the results achieved
when considering block sections as smallest decomposition of the control area. By adding a
set of constraints imposing that the reservation of all track-circuits belonging to the same
block section terminates concurrently, the formulation presented in Section 3 allows modeling
the block section decomposition. Differently from the algorithms proposed in the literature,
by anyway including track-circuits in the model, we realistically represent the infrastructure
when block sections to be used in opposite directions do not coincide. In the following, we
will refer to the formulation modeling track-circuits and block sections as the TC formulation
and BS formulation, respectively.

5 Computational results

The TC formulation proposed in this paper was able to solve in few minutes all the instances
tackled under the three scenarios, with one exception in which the proof of optimality
required one hour and twenty minutes (the optimal solution was found after 0.3 minutes).

The left plot in Figure 6 shows the boxplot of the distribution of the computation time
needed for finding the optimal solution and proving its optimality (we restricted the margin
of the plot excluding the just mentioned outlier for ease of visualization). Here and in
the following, computation time is computed in minutes of CPU. Each box represents the
observations corresponding to one of the three scenarios studied. The horizontal line within
the boxes represent the median of the distributions, while the extremes of the boxes represent
the first and third quartiles, respectively; the whiskers show the smallest and the largest non-
outliers in the data-set and dots correspond to the outliers. In the great majority of the
cases the computation time is lower than three minutes, which is typically an accepted
time for tackling the rtRTMP in reality [14] (in some cases an even higher time of 4.5
minutes may be accepted [10]). The center and left plots of Figure 6 depict the distribution
of the number of variables and constraints in the TC-formulation. The computation time
increases as a function of the number of variables and constrains, that in turn vary as a
function of the number of available routes for trains and hence of the scenario considered.

P. Pellegrini, G. Marlière, and J. Rodriguez 33

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fully partially severely
functioning disrupted disrupted

re
la

tiv
e

di
ffe

re
nc

e
B

S
 −

 T
C

 fo
rm

ul
at

io
n

B
S

−
T

C
 fo

rm
ul

at
io

n>
0

fully partially severely
functioning disrupted disrupted

20
%

40
%

60
%

Figure 7 Improvement allowed by the TC formulation over the BS one: distribution of the
relative differences (left) and percentage of instances with strictly positive improvement (right).

The difference between the optimal solution values of the BS formulation and of the TC
formulation is always non-negative: the feasible region in the BS formulation is a subset of
the feasible region of the TC formulation. In all the scenarios, the improvement brought by
the TC formulation is statistically significant according to the Wilcoxon rank-sum test with
a confidence level of 0.95. The left plot of Figure 7 shows the boxplots of the distribution of
the relative difference between the results of the two formulations. As expected, the higher
the number of routes available, the larger the improvement allowed by the consideration of
track-circuits. In fact, if two trains need to follow each other for a long portion of their
route, the second one will not be able to reserve a block section until the first one has exit
it, both in the TC and in the BS formulations. Even if in some cases the two formulations
return the same solutions, the more efficient use of the infrastructure allowed by the TC
formulation allows the reduction of the maximum secondary delay assigned to trains in 58%
of the instances. The right plot of Figure 7 depicts the percentage of instances in which the
improvement is strictly positive for each scenario.

6 Conclusions

In this paper, we proposed a mixed-integer linear programming formulation for tackling
the rtRTMP. It allows splitting routes into track-circuits, i.e., it allows the fine realistic
representation of the control area. Moreover, it selects among all possible routes that can
be practically exploited and it considers all possible train orderings.

We applied this formulation to instances obtained by perturbing the real timetable of
a week day in the control area including the Lille Flandres station, in France, and we
considered multiple scenarios in terms of functionality of the infrastructure. The results
show that the formulation modeling track-circuits outperforms the more commonly used
formulation modeling block sections: the difference between the optimal solution values is
statistically significant.

The computation time for solving the instances considered is in line with what is required
to a real time algorithm in reality, even after a rough parameter tuning of the exact solver.
In future research we devote further effort to boost the performance of our formulation,
which anyway already achieves very positive results. We will boost the performance by both
fine-tuning parameters and introducing efficient valid inequalities.

Furthermore, we will insert it in a sliding window framework, also known as traffic
management system [11] or closed-loop optimization [2]. In this framework, the rtRTMP
is solved periodically, considering trains expected to be in the control area during a short
time window; at each solution of the rtRTMP, the set of trains to be considered is updated
thanks to revised forecasts. Periodical applications of the optimization algorithm allow to
solve successive instances and to cover any long time horizon.

ATMOS’12

34 Real Time Railway Traffic Management Modeling Track-Circuits

References
1 G. Caimi, F. Chudak, M. Fuchsberger, M. Laumanns, and R. Zenklusen. A new resource-

constrained multicommodity flow model for conflict-free train routing and scheduling.
Transportation Science, 45(2):212–227, 2011.

2 G. Caimi, M. Fuchsberger, M. Laumanns, and M. Lüthi. A model predictive control
approach for descrete-time rescheduling in complex central railway station approach. Com-
puters & Operations Research, 39:2578–2593, 2012.

3 F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. A tabu search algorithm for
rerouting trains during rail operations. Transportation Research Part B, 44:175–192, 2010.

4 A. D’Ariano, F. Corman, D. Pacciarelli, and M. Pranzo. Reordering and local rerouting
strategies to manage train traffic in real-time. Transportation Science, 42(4):405–419, 2008.

5 A. D’Ariano, D. Pacciarelli, and M. Pranzo. A branch and bound algorithm for scheduling
trains in a railway network. European Journal of Operational Research, 183:643–657, 2007.

6 A. D’Ariano and M. Pranzo. An advanced real-time train dispatching system for minimizing
the propagation of delays in a dispatching area under severe disturbances. Networks and
Spatial Economics, 9:63–84, 2009.

7 A. D’Ariano, M. Pranzo, and I.A. Hansen. Conflict resolution and train speed coordination
for solving real-time timetable perturbations. IEEE Transactions on Intelligent Transport-
ation Systems, 8(2):208–222, 2007.

8 M.M. Dessouky, Q. Lu, J. Zhao, and R.C. Leachman. An exact solution procedure to
determine the optimal dispatching times for complex rail networks. IIE Transactions,
38(2):141–152, 2006.

9 IBM Corporation. Ibm ilog cplex optimizer.
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/, 2012.

10 R.M. Lusby, J. Larsen, M. Ehrgott, and D.M. Ryan. A set packing inspired method for
real-time junction train routing. Computers & Operations Research, 2012.

11 M. Mazzarello and E. Ottaviani. A traffic management system for real-time traffic optim-
isation in railways. Transportation Research Part B, 41:246–274, 2007.

12 J. Pachl. Railway Operation and Control. VTD Rail Publishing, Mountlake Terrace, WA,
USA, 2002.

13 J. Pachl. Timetable design principles. In I.A. Hansen and J. Pachl, editors, Railway
Timetable & Traffic, chapter 2, pages 9–42. Eurailpress | DVV Rail Media, Hambourg,
Germany, 2008.

14 J. Rodriguez. A constraint programming model for real-time train scheduling at junctions.
Transportation Research Part B, 41:231–245, 2007.

15 S. Sobieraj, G. Marlière, and J. Rodriguez. Simulation of solutions of a fixed-speed model
for the real-time railway traffic optimization problem. In RailRome 2011, 4th International
Seminar on Railway Operations Modelling and Analysis, Rome, Italy, 2011.

16 J. Törnquist and J.A. Persson. N-tracked railway traffic re-scheduling during disturbances.
Transportation Research Part B, 41:342–362, 2007.

17 J. Törnquist Krasemann. Design of an effective algorithm for fast response to re-scheduling
of railway traffic during disturbances. Transportation Research Part C, 20:62–78, 2012.

18 U.I.C. Leaflet 406 “capacity”, 2004.

Reliability and Delay Distributions of Train
Connections∗

Mohammad H. Keyhani, Mathias Schnee, Karsten Weihe, and
Hans-Peter Zorn

Darmstadt University of Technology, Computer Science,
Hochschulstraße 10, 64289 Darmstadt, Germany
{keyhani,schnee,weihe,zorn}@algo.informatik.tu-darmstadt.de

Abstract
Finding reliable train connections is a considerable issue in timetable information since train

delays perturb the timetable daily. We present an effective probabilistic approach for estimating
the reliability of connections in a large train network. Experiments on real customer queries and
real timetables for all trains in Germany show that our approach can be implemented to deliver
good results at the expense of only little processing time. Based on probability distributions for
train events in connections, we estimate the reliability of connections. We have analyzed our
computed reliability ratings by validating our predictions against real delay data from German
Railways. This study shows that we are able to predict the feasibility of connections very well.
In essence, our predictions are slightly optimistic for connections with a high rating and pretty
accurate for connections with a medium rating. Only for the rare cases of a very low rating, we
are too pessimistic.

Our probabilistic approach already delivers good results, still has improvement potential, and
offers a new perspective in the search for more reliable connections in order to bring passengers
safely to their destinations even in case of delays.

1998 ACM Subject Classification G.2.2 Graph Theory (Graph algorithms; Network problems)

Keywords and phrases Stochastic Delay Propagation, Timetable Information, Connection Reli-
ability

Digital Object Identifier 10.4230/OASIcs.ATMOS.2012.35

1 Introduction and Motivation

Timetable information systems have the ability to find attractive train connections according
to criteria such as travel time, number of transfers, price, etc. The reliability of the connections
plays a crucial role since the timetable continually gets perturbed because of delays of trains.
Connections, which were found according to the timetable, may get infeasible if a scheduled
transfer is no longer possible due to arriving too late for the transfer.

State-of-the-art commercial systems predict the arrival and departure times of trains by
computing scalar delay values given in minutes. Consequently, the reliability of connections
can be rated based on only one possible delay value for each departure and arrival event in
the connection. The drawback of this approach is that the predicted delays often deviate
from the actual delays. An obviously better approach, which we present in this paper, is
to consider all possible delay values weighted by the probability of occurrence. For each
departure and arrival event of the trains in a connection, we calculate for each possible

∗ This work was partially supported by German Railways Deutsche Bahn AG (RIS).

© Mohammad H. Keyhani, Mathias Schnee, Karsten Weihe, and Hans-Peter Zorn;
licensed under Creative Commons License ND

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti; pp. 35–46

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2012.35
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

36 Reliability and Delay Distributions of Train Connections

delay value the probability that the train has this delay. These probability distributions are
calculated based on timetable data, latest available delay data, and waiting time policies for
transfers between trains.

Our Contribution. We introduce the reliability rating rel, which scores the reliability of
a connection in percentage terms. Our probabilistic approach allows us to calculate delay
distributions for connections and to reasonably estimate their rel-rating in order to advise
passengers against choosing connections tending to break and guide them towards more
robust ones. To our knowledge, we are the first to extend distributions for departure and
arrival events of trains to explicitly model the reliability of transfers and connections. In this
paper, we will not only present the mathematical formula to calculate these distributions
but also a computational study which demonstrates promising run-time behavior and good
quality of the results of a prototype implementation. In the outlook in Section 5.2, we
will also mention how we plan to use these distributions to improve the search for reliable
connections in our existing multi-criteria timetable information system MOTIS [5].

Related work. Delay propagation and prediction has been studied by means of deter-
ministic and stochastic models as well as simulations, especially in the field of decision
support for network dispatchers and timetabling. Experiments with a deterministic model by
Müller-Hannemann and Schnee showed that timetables can be updated with a large amount
of delay and forecast data in real time to allow for up-to-date timetable information. They
continuously adjusted their graph representing the schedule according to the real-time data
to always represent the current situation. In their multi-server architecture each timetable
information server only spends 0.1% of the day with updating and maintenance [6]. Simula-
tions are the basis of the predictions by Lu et al. [3] for various network topologies (single
and multi-track) and Murali et al. in [7]. The latter estimated delays for freight trains only.

Meester and Muns used so-called phase-type distributions in their model for stochastic
delay propagation in railway networks in [4]. Carey and Kwieciński also use approximations
in their model [2]. However, in those papers waiting policies are not respected. A nice
overview of models can be found in Yuan’s PhD thesis [8]. The stochastic model which comes
really close to our approach is due to Berger et al. [1]. They basically have the same model
for train distributions and also respect waiting policies. However, they concentrate on trains,
not on entire connections, and do not investigate reliability. We will enhance their formulas
to calculate probability distributions for connections consisting of several trains and transfers
between them.

Overview. This paper is organized as follows. In the next section, we will briefly introduce
the timetable data and operational concepts. In Section 3, we will describe our probability
distributions and how we calculate them in detail. Our experiments and computational
results will be reported on in Section 4. Finally, we conclude and present an outlook on our
future work.

2 Train Operation

The timetable. For our work we use real-world timetables without simplifying assumptions.
The timetable is the current timetable of German Railways Deutsche Bahn AG. Besides the
scheduled times for arrival and departure events we also respect the transfer times required
to change trains (dependent on the size of the station and the platforms the trains stop at).
There is also the possibility to walk a short distance from one station to another, e.g. from a

M. Keyhani, M. Schnee, K. Weihe, and H-P. Zorn 37

main station to its smaller local train station, called a footpath.

Waiting policies. In daily operations, a set of policies, the waiting time rules, describes
the maximum amount of time a train will wait to allow passengers a transfer from a delayed
feeder. Each train may have a number of feeders with different applicable waiting times. The
connecting train will leave delayed if one of its feeders is delayed and the arrival time plus
the required transfer time from the feeder is not later than the scheduled departure time
plus waiting time.

Real-time data. We constantly receive current delay data for German trains in a live-feed
from Deutsche Bahn AG. This delay data is integrated into our representation of the timetable
and used to update our probability distributions. These messages state that a train has
arrived or departed at a certain point in time (either on time or delayed), and are denoted
as is-messages.

3 Probability Distributions

3.1 Our Model
A timetable TT := (TR, S,EC) consists of a set of trains TR, a set of stations S, and a
set of elementary connections EC. Each ec ∈ EC is defined by its events deps1 and arrs2

corresponding to the departure event at station s1 ∈ S and the arrival event at station s2 ∈ S.
Each train tr ∈ TR consists of a set of successive elementary connections eci, where the arrival
event of eci and the departure event of eci+1 are at the same station. Let DEP be the set of
all departure events, ARR the set of all arrival events, and EVENTS := DEP ∪ARR. For
each event event ∈ EVENTS, sched(event) : EVENTS 7→ N is the scheduled time-stamp of
the event given in minutes. A delay d ∈ Z is the difference between the scheduled time-stamp
and the actual time the event occurs. According to a policy in German Railways operation
no train is allowed to depart before its scheduled departure time. Therefore, departure delays
are non-negative.

The minimal standing time stand(tr, s) defines how long train tr has to wait at station s
after its arrival and before its departure. The necessary transfer time from a train tr1 ∈ TR
into another train tr2 ∈ TR is denoted by transfer(tr1, tr2). According to the waiting time
rules, the maximal waiting time of tr2 for tr1 at station s ∈ S is defined by wait(tr2, tr1).
At a given station s, a train f ∈ TR is a potential feeder for another train tr ∈ TR if a
transfer from f into tr is possible, tr would wait for f for at least 1 minute according to
the waiting time rules, and the difference between the scheduled departure time of tr and
the scheduled arrival time of f is not greater than a given parameter γ. Currently, we use
γ = 30, since the transfer times are at most 20 and the waiting times at most 10 minutes.
For each departure event deptr,s of train tr at station s there exists a set of feeder trains
FD(tr, s) ⊂ TR. The maximal waiting time of tr2 at station s for any feeder is defined by
waitmax(tr, s) := maxf∈FD(tr,s){wait(tr, f)}.

Let (Ω, A, P) be a discrete probability space with sample space Ω, σ-algebra A, and
probability measure P . We use discrete random variables X : Ω 7→ N for mapping
train events to time-stamps. We define the discrete random variable Xevent : Ω 7→
{sched(event), sched(event) + 1, . . .} which is the actual time of event ∈ EVENTS given
in minutes.

We assume that the distributions of the arrival times of all feeder trains of a given train
are stochastically independent. This assumption does not hold for all feeder trains, especially
if two feeders have a common feeder or are disturbed by a common reason (e.g. a problem at

ATMOS’12

38 Reliability and Delay Distributions of Train Connections

a certain track). The derived delay distributions may be biased as conjectured by Meester
and Muns [4]. This fact warrants further investigation.

Input distributions. For each elementary connection ec of train tr from deptr,s1 to
arrtr,s2 , there is a set Xtravel = {Xd

travel | d ∈ N} of probability distributions for the travel
time. Xd

travel is the conditional distribution of the travel time of ec given a departure delay
d ∈ N0 in minutes. They represent the potential of making up for the current delay and the
possibility of further delays on ec. We generate these travel time distributions depending on
the scheduled travel time of the elementary connections.

3.2 Distributions for Connections
For each train event, we have already defined the scheduled time sched(event). In fact, the
actual time of an event could be shifted according to delays. We intend to predict the delay
of an event by analyzing the time interval in which the event could take place. For each
minute in this interval, we determine the probability that the train event actually occurs at
this point in time. Hereby, a probability distribution arises and can be used as a prediction
for the event time. In this section, we explain in detail how probability distributions of train
connections are calculated.

Definition of connection. A connection c defines a feasible path s1, s2 . . . sn between
a start station s1 and a target station sn by a set of successive elementary connections
ECc = {ec1, ec2, . . .} ⊂ EC. Two successive elementary connections eci and eci+1 either
belong to the same train tr, or to two different trains tr1 and tr2. In the second case, there
is a feasible transfer between tr1 and tr2 at the corresponding station s. The difference
between the departure time of train tr2 and the arrival time of train tr1 at station s is greater
than or equal to the required transfer time between these two trains, which is denoted by
transfer(tr1, tr2). There also exists a special case of transfers, where after leaving train tr1
at station s1 a footpath is used in order to walk to another station s2 and to enter the
departing train tr2. In this case, the required walking time is used as the required transfer
time between the two trains. A connection is denoted as direct connection if all elementary
connections ECc belong to the same train.

Definition of probability distribution. Let tstart, tend ∈ N be two timestamps defining
the bounds of a time interval. The probability distribution of a departure event is determined
by calculating the probabilities P

(
Xdep = t

)
for all t ∈ [sched(deptr2,s), tend]. The right

bound tend of the interval is chosen so that there is no time t > tend with P
(
Xdep = t

)
> 0.

The probability distribution of an arrival event is determined by calculating the probabilities
P
(
Xarr = a

)
for all a ∈ [tstart, tend], whereby the bounds are chosen so that there is no

time a /∈ [tstart, tend] with P
(
Xarr = a

)
> 0. We denote a distribution of an event by

pd(event) ⊂ Rw where w = (tend − tstart) + 1, and define it as a tuple of probabilities
according to all minutes in the corresponding time interval. The distribution of a connection
pd(c) is equal to the distribution of its last arrival event.

3.2.1 Calculation of Distributions
Considering ECc = {ec1, ec2, . . .}, starting with the first departure of the connection, we
calculate the distribution of each event until we reach the last arrival. We have to distinguish
between departures with and without transfer at the station. In this section, we explain in
detail how the probability distribution for a departure event after a transfer is calculated.
Then, we will mention how this approach is modified for the other cases. Figure 1 illustrates a

M. Keyhani, M. Schnee, K. Weihe, and H-P. Zorn 39

departure of train tr2 after a transfer from train tr1, with FD(tr2, s) = {f1, f2}. Theoretically,
tr1 could also be a feeder of tr2. In that case, it is treated separately in some of the
formulas and not together with the other feeders. Recall that a train has to wait at a
station for a minimal standing time after its arrival to allow boarding and leaving the train.
Therefore, the distribution of the departure event deptr,s depends on the preceding arrival
arrtr,s, on the set of its feeders FD(tr, s), and in case there is a transfer into tr2, also on the
arriving train tr1. The feasibility of the transfer only depends on whether or not the transfer
time transfer(tr1, tr2) from tr1 to tr2 is satisfied. Note that the feeders can only introduce
additional delays.

tr
1

f
1

f
2

arrivals
at station s

dep
tr, s

transfer
2

transfer
1

transfer

tr
2

standing
tr

2

Figure 1 Departure of train tr2 after a transfer from train tr1.

Considering the departure event deptr2,s after a transfer from train tr1, now, we are able
to calculate the probability distribution of this event. The departure takes place in the
interval [sched(deptr,s), tend]. We distinguish between these cases:
1. Train tr2 departs at its scheduled time sched(deptr,s).
2. Train tr2 departs at time t ∈ [sched(deptr,s) + 1, sched(deptr,s) + waitmax(tr, s)]. In this

time interval the train may have to wait for its feeders.
3. Train tr2 departs at t ∈ [sched(deptr,s) + waitmax(tr, s) + 1, tend]. In this time interval the

train does not have to wait for any feeder.
In all three cases, a feasible transfer from tr1 to tr2 has to be ensured. In the following, we
present the formulas to calculate the probabilities for the minutes of each subinterval.

3.2.1.1 Departing at the scheduled time

A departure at time t = sched(deptr2,s) is possible if
tr2 arrives at time t2 ≤ t− stand(tr2, s),
tr1 arrives at time t1 ≤ t− transfer(tr1, tr2),
and tr2 does not have to wait for any other feeder.

We use this formula to calculate the probability:

P
(
Xdep = t

)
= P

(
Xarrtr2,s

≤ t− stand(tr2, s)
)
· P
(
Xarrtr1,s

≤ t− transfer(tr1, tr2)
)

· PnoWaitingForFeeders
(
tr2, s, t

)
The term PnoWaitingForFeeders

(
tr2, s, t

)
corresponds to the probability that the train tr2 does

not have to wait for any other feeder. The formula is omitted due to space restrictions.

ATMOS’12

40 Reliability and Delay Distributions of Train Connections

3.2.1.2 Departing within the waiting interval

Train tr2 departs delayed at time t ∈ [sched(deptr2,s) + 1, sched(deptr,s) + waitmax(tr, s)] in
one of the following cases:
1. The delayed departure at time t is because of a delay of arrtr2,s. This happens if

tr2 has a delay and arrives exactly at time t2 = t− stand(tr2, s),
tr1 arrives at time t1 ≤ t− transfer(tr1, tr2),
and tr2 does not have to wait longer for any other feeder.

2. The delayed departure at time t is only because of waiting time rules. This happens if
tr2 arrives at time t2 < t− stand(tr2, s),
tr2 has to wait for tr1 or for at least one of the other feeders. This probability is
denoted by Pwaiting(tr2, s, t) (formula omitted due to space restrictions).

We use this formula to calculate the probability:

P
(
Xdep = t

)
= P

(
Xarrtr2,s = t− stand(tr2, s)

)
· P
(
Xarrtr1,s ≤ t− transfer(tr1, tr2)

)
· PnoWaitingForFeeders(tr2, s, t)

+ P
(
Xarrtr2,s < t− stand(tr2, s)

)
· Pwaiting(tr2, s, t)

3.2.1.3 Departing after the waiting interval

Train tr2 departs at time t ∈ [sched(deptr,s) + waitmax(tr, s) + 1, tend] if
tr2 is delayed so that it does not have to wait longer for any feeder,
and tr1 arrives at time t1 ≤ t− transfer(tr1, tr2).

To calculate this probability, we simplify the previous formula as follows:

P
(
Xdep = t

)
= P

(
Xarrtr2,s = t− stand(tr2, s)

)
· P
(
Xarrtr1,s ≤ t− transfer(tr1, tr2)

)
By applying the above formulas, we are able to calculate the distribution for a departure

after a transfer. Distributions for normal departure events without transfers can be obtained
by modifying these formulas. Since there is no train tr1 anymore, we only have to consider
the train itself and its feeders. When a departure is the first departure event of a train, the
arrival time of the train at the station is ignored.

3.2.1.4 Arriving at a given time

The probability distribution of the arrival time depends on the distribution of Xdep and the
corresponding Xd

travel distributions. We obtain the probability P
(
Xarr = a

)
analogous to

the Bayes’ theorem:

P
(
Xarr = a

)
=

a∑
d=0

P
(
Xd

travel = a− d
)
· P
(
Xdep = d

)
.

3.2.1.5 Probability of connection break

To calculate the distribution of our connection, we only consider the cases in which all transfers
in the connection are feasible. These probabilities sum up to 1 if there are no transfers in the
connection or if the transfers are feasible in all possible scenarios. After each transfer, this
sum may decrease if a connection break is possible. For each distribution pd, we define the
probability that the connection is not feasible: Pbroken(pd) = 1−

∑
t∈[tstart,tend] P

(
Xdep = t

)
.

M. Keyhani, M. Schnee, K. Weihe, and H-P. Zorn 41

3.2.1.6 Treatment of is-messages

When distributions for events in the past are calculated, it may happen that we already have
received a real-time is-message for an event so that the actual time is already known. In this
case a one-point distribution can be used: pd(event) = {0 . . . p . . . 0}, where the probability p
equals 1− Pbroken(pd) and corresponds to the known actual time of the event.

3.2.2 Reliability-Rating of a Connection
The sum of the calculated probabilities of the last arrival event, excluding Pbroken(pd), equals
the probability that the connection is feasible. It can be used to rate the reliability of the
connection and is defined as rel(c) = 1− Pbroken(pd).

3.3 Distributions for Trains
We have already mentioned that, to calculate the distribution of an event, the distributions of
all preceding events have to be known. For a departure event we need the arrival distributions
of all involved feeders and if there is a transfer at the station also the arrival distribution of
the arriving train we want to change from. All other required distributions will be calculated
according to our approach introduced above. We calculate the probability distributions of the
train events with the same formulas which we use for the events of connections, whereby there
are no transfers over the course of trains. Our approach to calculate probability distributions
for train events is similar to the approach presented in [1]. Since it would be very inefficient
to calculate the distributions of all involved trains for every connection, we calculate for all
train events in the timetable an initial probability distribution at the beginning of the day.
Whenever an is-message for an event is received, its distribution is replaced by a one-point
distribution by setting the probability of the actual event time to 1. Then the distributions
of all of its succeeding events are recalculated. Recursively, for each of these events the
distributions of all their succeeding events have to be recalculated. To restrict the number of
affected nodes, if the distribution of an event changes only negligibly we do not recompute the
distributions of its succeeding events. In order to keep the timetable up to date, is-messages
are introduced into the graph every minute on each day.

4 Computational Study

4.1 Setup
Our computations were carried out on different desktop PCs with Pentium i5-2400 quad-core
CPUs and 16 GB of RAM. We prepared time-expanded graphs for a number of two-day
periods1 as used for our multi-criteria timetable-information system MOTIS when taking
delays into account [6]. A feeder edge is introduced if a train f is a potential feeder for
another train t, the difference between arrival of f and departure of t is at most γ minutes,
and a waiting time rule applies between f and t at the station. Currently, we use γ = 30
minutes. The graphs have between 1.7M event nodes, 0.9M train edges, and 80k feeder edges
(smallest graph for Saturday and Sunday), 1.9M - 2.0M event nodes, about 1.0M train edges,
and 94-100k feeder edges (Sunday and Monday SuMo, respectively Friday and Saturday
FrSa) and 2.2M event nodes, 1.1M train edges, and 111k feeder edges (weekday only graphs).

1 A two-day period is needed to cover long running trains and overnight connections

ATMOS’12

42 Reliability and Delay Distributions of Train Connections

Table 1 Run-times and numbers of processed messages for updating train distributions with
real-time information from is-messages.

Day Messages Run-time
(total) (per min) (total) (per min) peak

Monday 454,325 315 154.88s 108.0ms 630ms
Tuesday 436,379 303 150.25s 104.6ms 540ms
Wednesday 399,073 277 140.15s 97.5ms 560ms
Thursday 436,142 302 161.68s 112.5ms 790ms
Friday 432,574 300 157.49s 109.6ms 650ms
Saturday 431,531 299 145.05s 101.0ms 620ms
Sunday 405,161 281 140.79s 98.0ms 610ms

4.2 Computational Results

Initial distributions. For three weeks in June 2012, we repeatedly calculated the initial
distributions and averaged over three runs per day. The average time required on weekdays
only is 74.7s, for SuMo and FrSa graphs 65.0s resp. 67.7s and for weekend graphs 57.8s. Note
that in daily operations these computations can be executed beforehand and read from a file
at start-up.

Real-time update for train distributions. The run-times and number of processed
is-messages for updating the train distributions for one test week in June is given in Table 1.
Each day we received between 399k and and 454k is-messages. Updating the distributions
each minute with the newly arrived is-messages takes 140s to 162s for the whole day. So
a server is less than 0.2% of the day busy with updates to the distributions. The average
computation time per minute lies between 98ms an 113ms, the peak at 610ms to 790ms, still
below one second.

The minor run-time fluctuations do not only depend on the number of messages or the
different sizes of the timetable graphs (cf. Section 4.1), as we can see in the table. Additionally,
the number of actual delays2, the amount of time a train is delayed, the number of events
dependent on the delayed events, the length of delayed trains, and the distribution over time
of the delay messages3 influence the computation time.

Distributions for connections. We calculated the distributions for 100,000 diverse
connections obtained from answering real customer queries to our timetable information
system MOTIS (see [5]). The average run-time per connection is 0.652ms. The minimum
and maximum run-times are 0.362 ms and 0.916 ms, respectively.

4.3 Evaluation

4.3.1 Test Connections
We evaluated our model by periodically checking real connections. To do so, we queried
MOTIS with a set of real queries combined with the top 100 relations in Germany4, 8948

2 some messages only state that a train is on time
3 delays for earlier events potentially influence more distributions than delays for later events
4 Most highly requested source-destination pairs as provided by Deutsche Bahn AG

M. Keyhani, M. Schnee, K. Weihe, and H-P. Zorn 43

relations in total.
Over 3 days we tracked 223,873 connections with an average of 1.5 transfers and an

average duration of 231 minutes. We used MOTIS to check each connection and recompute
the distributions and rel-ratings according to the up to then known delays a) before departure,
b) every 75 minutes while traveling, and c) after arrival. From this data we created a subset
of 76,095 connections for which we could ensure that the connection checker used real-time
information from is-messages for most of its events at transfer stations. Connections without
transfers do not have a rel-rating worth investigating. Hence, we removed direct connections
from the dataset, leaving 63,524 samples.

We compared the predicted rel-rating before departure (see Section 3.2.2) to the actual
connection feasibility. For this, we used the MOTIS check connection feature to determine
whether all transfers of a connection are indeed feasible.

4.3.2 Evaluating Connection Reliability

Figure 2 compares the predicted rel-rating with the actual outcome. We grouped the
rel-ratings to intervals of 10% plus an extra bin for the interval (99,100] and plotted the
connection check results for each of those bins (see Figure 2). The dark area in bin (a,
b] represents the percentage of feasible connections which had a reliability rating ∈ (a, b].
Analogously, the bright area in bin (a, b] represents the percentage of infeasible connections
which had a reliability rating ∈ (a, b]. The numbers of connections assigned to the bins are
different, and the width of each bin represents the number of connections in it. There are
more connections with a higher rating than connections with a lower rating in the data set.

rel−rating

re
su

lt

[0,10] (50,60] (70,80] (80,90] (90,99] (99,100]

fe
as

ib
le

in
fe

as
ib

le

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2 Predicted rel-rating versus actual outcome. Connections are grouped by their rel-ratings.
Bar width represents number of connections in group. (light=connection infeasible, dark=connection
feasible).

ATMOS’12

44 Reliability and Delay Distributions of Train Connections

Table 2 Different rel-rating intervals with
the share of all connections and the percentage
of feasible ones of all connections in that interval.

Table 3 Properties of the arrival distribu-
tions.

rel- Connections
rating % feasible % of total
0−40 39.67 2.00

40−70 57.12 10.43
70−100 88.20 87.56

Expected Breadth of
Delay Distribution

Min. 0.005 2.00
Median 0.715 9.00
Mean 1.476 13.29
Max. 21.823 61.00

Table 2 summarizes the data illustrated in the figure in larger intervals, corresponding to
low, medium, and high reliability.

We found that of 49,071 connections with a rel-rating between 70% and 100%, the
connection checker marked 6,568 or 11.8% as broken, while with 88.2% of the connections
the passenger arrived at the target destination (Table 2). These connections account for
87.56% of the dataset. Connections with rel-ratings between 40% and 70% (10.4% of the
dataset) were feasible in 57.1% of the cases. We see that for rel-ratings of more than 40%,
the prediction was pretty accurate. In Figure 2 we can see that we are slightly optimistic for
the intervals with a rel-rating higher than 70%. For rel-ratings lower than 40% the prediction
was too conservative: fewer than predicted connections actually broke. This was the case
for only 2% of tracked connections. The small sample size in that region might account for
these results.

4.3.3 Analysis of Arrival Distributions
The evaluation of arrival distributions required us to ensure that the last arrival event of
the connection was backed by an is-message. Also, only feasible connections are taken into
account, further reducing the evaluation set to 31,620 connections.

4.3.3.1 Computed Distributions

Table 3 shows the expected values (interpreted as delays in minutes) and the breadth of
the distributions. We define the breadth of a distribution as the minimal interval covering
all non-zero probability values. A small average breadth distribution limits the necessary
computation steps for estimating the individual arrival distributions. Furthermore, we see
that the expected value for delays averaged over all connections is small but higher than 1,
which is consistent to what we expect from the observed data.

4.3.3.2 Better Input Distributions

The analysis of our distributions and reliability ratings reveals room for improvement. We
are sure that better input distributions will increase the quality of our results.

The travel time distributions play a crucial role in the quality of the arrival distributions.
Presently, we generate synthetic travel time distributions which depend on the possible delays
of departure events and scheduled travel times, in a preprocessing step. Our distributions
already incorporate the potential of trains to catch up delays on driving sections as well
as to get more delayed. The latter case could occur e.g. when delayed trains have to let

M. Keyhani, M. Schnee, K. Weihe, and H-P. Zorn 45

other trains to overtake. In the future, we will use travel time distributions provided by our
cooperation partner, German Railways. These distributions are learned from months of real
delay data.

Currently, we only consider the feeders for the first departure event of each train. In case
the train has no feeders at the first stop or they arrive early enough, the probability that
it departs on schedule equals 1. However, the departure can be delayed because of other
factors like malfunctions, availability of the rails and trains, organizational issues, etc. We
will receive starting distributions from German Railways for the first departures of the trains
respecting these operational reasons. A convolution of our calculated departure distributions
with these start distributions at the first departures would lead to more realistic results.

5 Conclusions and Future Work

5.1 Conclusion
We have presented a probabilistic approach for estimating the reliability of train connections.
Several experiments on real customer queries and real timetables for all trains in Germany
showed good results.

Initial propagation can be precomputed off-line in at most 75s. Updating with real-time
information occupies the server less than 0.2% of the day. To determine the distribution for
one connection takes less than 1ms.

We have shown that the predicted rel-ratings are valid approximations of the relative
frequency of feasible connections. This could be verified by using real-time information for
connection-checking. Only for the rare cases of very low rel-ratings, our predictions are too
pessimistic. They are slightly optimistic for highly reliable connections and pretty accurate
for the remaining ones.

5.2 Future Work

Use of more realistic distributions. We will integrate more realistic travel time
distributions and starting distributions from German Railways to improve the quality of our
predictions. In a later step, we plan to learn travel time distributions from is-messages and
real timetable data regarding influential factors such as travel time, delay at departure, train
category, stations on the route, weekday and daytime, and existing dependencies between
trains.

Investigation of the independence assumptions. As mentioned in Section 3.1, the
independence assumption is not always fulfilled. This implies that a departure distribution
is not calculated correctly if there is a dependency between the arriving feeders. An analysis
of the effect on the computed distributions is not trivial. We plan to further investigate this
aspect with the use of our real timetable and delay data.

Comparison with a non-probabilistic approach. Once more realistic travel time
distributions are used, it will be interesting to compare our model with other approaches.
We plan a comparison with a non-probabilistic model which rates reliability of connections
by analyzing the buffer times at the transfers in the connection.

Improved search for reliable connections. In this paper, we have shown that applying
probability distributions is an effective approach for measuring the reliability of connections
reasonably. We intend to integrate this probabilistic approach into our timetable information

ATMOS’12

46 Reliability and Delay Distributions of Train Connections

system MOTIS [5] in order to provide searching for reliable connections. The first idea is
to integrate the rel-rating as a new criterion in the multi-criteria search. A more complex
approach is to find not only one reliable connection but a connection graph containing
a reference connection and further alternative connections. The idea is to calculate the
distributions not only on the basis of a single connection but considering several possible
connections. The arrival distribution will then be composed of the distributions of the
reference connection and all of its alternatives. Such a connection graph provides highest
reliability for reaching the target station, and allows to reroute the passenger to an alternative
connection if the rel-rating of the reference connection decreases.

Acknowledgments
Two of the authors were supported by German Railways Deutsche Bahn AG (RIS) through
research contracts. We wish to thank Matthias Müller-Hannemann and his group at MLU
Halle-Wittenberg and Christoph Blendinger from RIS for fruitful discussions.

References
1 Annabell Berger, Andreas Gebhardt, Matthias Müller-Hannemann, and Martin Ostrowski.

Stochastic delay prediction in large train networks. In Alberto Caprara and Spyros C.
Kontogiannis, editors, ATMOS, volume 20 of OASICS, pages 100–111. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany, 2011.

2 Malachy Carey and Andrzej Kwieciński. Stochastic approximation to the effects of head-
ways on knock-on delays of trains. Transportation Research Part B: Methodological,
28(4):251 – 267, 1994.

3 Quan Lu, Maged Dessouky, and Robert C. Leachman. Modeling train movements through
complex rail networks. ACM Trans. Model. Comput. Simul., 14(1):48–75, January 2004.

4 L. E. Meester and S. Muns. Stochastic delay propagation in railway networks and phase-
type distributions. Transportation Research Part B, 41:218–230, 2007.

5 Matthias Müller-Hannemann and Mathias Schnee. Finding all attractive train connections
by multi-criteria pareto search. In Frank Geraets, Leo G. Kroon, Anita Schöbel, Dorothea
Wagner, and Christos D. Zaroliagis, editors, ATMOS, volume 4359 of Lecture Notes in
Computer Science, pages 246–263. Springer, 2004.

6 Matthias Müller-Hannemann and Mathias Schnee. Efficient timetable information in the
presence of delays. In Ravindra K. Ahuja, Rolf H. Möhring, and Christos D. Zaroliagis,
editors, Robust and Online Large-Scale Optimization, volume 5868 of Lecture Notes in
Computer Science, pages 249–272. Springer, 2009.

7 Pavankumar Murali, Maged Dessouky, Fernando Ordóñez, and Kurt Palmer. A delay
estimation technique for single and double-track railroads. Transportation Research Part
E: Logistics and Transportation Review, 46(4):483 – 495, 2010. Selected papers from the
Second National Urban Freight Conference, Long Beach, California, December 2007.

8 J. Yuan. Stochastic modeling of train delays and delay propagation in stations. PhD thesis,
Technische Universiteit Delft, The Netherlands, 2006.

A Direct Connection Approach to Integrated Line
Planning and Passenger Routing∗

Ralf Borndörfer and Marika Karbstein

Zuse Institute Berlin

Takustr. 7, 14195 Berlin, Germany

{borndoerfer,karbstein}@zib.de

Abstract

The treatment of transfers is a major challenge in line planning. Existing models either route

passengers and lines sequentially, and hence disregard essential degrees of freedom, or they

are of extremely large scale, and seem to be computationally intractable. We propose a novel

direct connection approach that allows an integrated optimization of line and passenger rout-

ing, including accurate estimates of the number of direct travelers, for large-scale real-world

instances.

1998 ACM Subject Classification G.2.3 Applications in Discrete Mathematics

Keywords and phrases combinatorial optimization, line planning, transfers, passenger routing

Digital Object Identifier 10.4230/OASIcs.ATMOS.2012.47

1 Introduction

Line planning is a classical optimization problem in the design of a public transportation

system: Find, in an infrastructure network, a set of lines with corresponding operation

frequencies, such that a given travel demand can be satisfied. There are two main objectives,

namely, minimization of operation costs (the operator’s point of view) and minimization of

travel and transfer times (the passengers’ point of view).

Since the late nineteen-nineties, the line planning literature has developed a series of

integer programming approaches that try to capture these objectives better and better,

see Odoni, Rousseau, and Wilson [15] and Bussieck, Winter, and Zimmermann [9] for an

overview. A detailed treatment of operation costs is given in the articles of Claessens, van

Dijk, and Zwaneveld [10], Bussieck, Lindner, and Lübbecke [8], and Goossens, van Hoesel,

and Kroon [12, 13]; in this article, however, we focus on travel and transfer times. A first

approach in this direction was taken by Bussieck, Kreuzer, and Zimmermann [7] (see also

the thesis of Bussieck [6]), who proposed an integer programming model that maximizes the

number of direct travelers, i.e., travelers that do zero transfers, on the basis of a “system

split” of the demand, i.e., an a priori distribution of the passenger flow on the arcs of the

transportation network. The direct travelers approach is therefore a sequential passengers-

first lines-second routing method. However, the passenger flow strongly depends on the line

plan which is to be computed. Hence, a number of approaches that integrate line planning

and passenger routing have been developed. Schöbel and Scholl [16, 17] model travel and

transfer times explicitly in terms of a “change-and-go graph” that is constructed on the basis

of all potential lines. This model allows a complete and accurate formulation of travel and

transfer time objectives; its only drawback is its enormous size, which seems to make this

∗ Supported by the DFG Research Center Matheon “Mathematics for key technologies”.

© Ralf Borndörfer and Marika Karbstein;
licensed under Creative Commons License ND

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti; pp. 47–57

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2012.47
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

48 A Direct Connection Approach to Integrated Line Planning and Passenger Routing

model computationally intractable. Nachtigall and Jerosch [14] achieve a graph reduction

with a column generation approach in terms of partial passenger paths between two transfers;

however, the associated integer programming formulation still requires a capacity constraint

for each edge in each line. Borndörfer, Grötschel, and Pfetsch [3, 4] propose an integrated

line planning and passenger routing model with a polynomial number of constraints. This

model ignores transfers between lines of the same mode (transfers between, e.g., bus and

tram lines are considered).

We propose in this paper a novel direct connection approach that encourages direct

connections depending on the line plan to be computed, i.e., an integrated line planning

and passenger routing approach that penalizes non-direct connections. The model can be

interpreted as an advancement of Bussieck, Kreuzer, and Zimmermann’s direct travelers

approach that overcomes the system split. It can also be seen as a computationally tractable

“first order approximation” to the change-and-go approach of Schöbel and Scholl, or as a

“transfer improvement” of the model of Borndörfer, Grötschel, and Pfetsch. As far as we

know, our direct connection approach is currently the only computationally tractable line

planning method that provides good estimates of transfer times.

The paper is structured as follows. Sect. 2.1 starts by deriving a direct connection model

in an extended variable space, that correctly accounts for all direct travelers in the same way

as the change-and-go approach of Schöbel and Scholl. All other passenger paths, however,

receive a uniform penalty, independent of the number of transfers. This model is reduced

in Sect. 2.2 to a much smaller space of purely spatial variables via projection, in fact, via

a partial projection that uses only a small, explicit subset of combinatorially meaningful

inequalities. The resulting direct connection model can overestimate the number of direct

travelers. Our computational results in Section 3, however, show that the model works well

in practice and estimates the number of direct travelers in a surprisingly accurate way.

2 Modeling Direct Connections

We consider a public transportation network with lines of different modes, e.g., bus, tram,

and subway. Passengers travel along these lines from the origins of their trips to their

destinations with or without transfers. The direct connection model distinguishes between

direct connections, i.e., passenger paths without transfers, and passenger paths with one or

more transfers, with which a transfer penalty will be associated. Because of this penalty,

passengers will prefer direct connections, unless routes with transfers are forced by a lack of

transportation capacity. The task is to design a system of lines with associated operation

frequencies such that a weighted sum of operation costs and total traveling time, including

transfer penalties, is minimized. A formal description of our approach is as follows.

We consider a multi-modal transportation network with M modes in terms of an undirected

graph N = (V,E). The nodes consist of M + 1 disjoint sets V0 ∪ V1 ∪ . . . ∪ VM , the edges of

M + 2 disjoint sets E0 ∪ . . . ∪ EM+1. The OD-nodes V0 are the origins and destinations of

passenger trips. Nodes Vi represent stations of lines of transport mode i = 1, . . . ,M . The

OD-edges E0 ⊆ V0 × (V1 ∪ . . . ∪ VM) mark beginnings and ends of trips. The infrastructure

edges Ei denote streets and tracks on which lines of mode i = 1, . . . ,M can be established.

The transfer edges EM+1 ⊆
⋃

1≤i,j≤M Vi × Vj are walking connections between stations of

different or equal modes. Each edge e ∈ E has a travel time τe ∈ Q≥0, including a transfer

penalty σ ∈ Q≥0 for each transfer edge e ∈ EM+1, and each infrastructure edge e ∈
⋃
Ei

has a cost ce ∈ Q≥0. Figure 1 shows the infrastructure networks of the public transportation

system of the city of Potsdam in Germany.

R. Borndörfer and M. Karbstein 49

Figure 1 Multi-modal transportation network in Potsdam. Red: tram, violet: bus, blue: ferry,

large nodes: terminals, small nodes: stations, light blue: rivers and lakes.

A line ` of mode i is a (not necessarily simple) path in the mode infrastructure network

Ni = (Vi, Ei) that starts and ends in a set of terminal nodes Ti ⊆ Vi, i = 1, . . . ,M . It is

operated at a frequency f out of a finite set F ⊆ N. Line ` at frequency f has transportation

capacity κ`,f = κi · f`, where κi is a standard capacity of a line of mode i, e.g., the size of a

standard bus, and operation cost c`,f = ci + f` ·
∑

e∈` ce, where ci is a standard fixed cost

of a line of mode i. Working with standard capacities and costs is a simplification. Note,

however, that a more detailed treatment of different capacities, e.g., depending on bus types

or numbers of vehicles, can be handled by introducing additional modes. We denote by L
the set of all lines which we assume to be given in this paper.

The travel demand is given by an OD-matrix d ∈ QV0×V0
≥0 , i.e., dst is the number of

passengers that want to travel from origin s ∈ V0 to destination t ∈ V0; note that d does

not have to be symmetric. We denote by D = {(s, t) ∈ V 2
0 | dst > 0} the set of all OD-pairs

with positive travel demand. Passengers travel along routes in a directed passenger routing

graph G = (V,A) that arises from the transportation network N = (V,E) by replacing each

edge e ∈ E by two antiparallel arcs a(e) and ā(e); let conversely e(a) be the undirected edge

corresponding to such an arc a ∈ A. Travel times and lengths of the undirected edges carry

over to their directed counterparts. Denote by Pst the set of all (simple) directed st-passenger

paths from origin s to destination t in G and by P =
⋃

(s,t)∈D Pst the set of all passenger

paths.

A direct connection st-passenger path for line ` or an st-dcpath is an st-passenger path p

of the form p = (s, a0, v1, . . . , vr, ar, t) where s, t, vi ∈ V , a0, ai ∈ A, e(ai) ∈ `, i = 1, . . . , r,
r ∈ N0, i.e., passengers can travel along p from origin s directly to destination t via line

AT M O S ’ 1 2

50 A Direct Connection Approach to Integrated Line Planning and Passenger Routing

` without transfers. Let P0,`
st be the set of st-dcpaths for line `, P0,` =

⋃
(s,t)∈D P

0,`
st , and

P0,L =
⋃

`∈L P0,`; note that |P0,`
st | = 1 if ` is simple and |δ+(s)| = |δ−(t)| = 1. Let further

P0,`
st (a) = {p ∈ P0,`

st : a ∈ p} be the set of st-dcpaths for line ` that pass over arc a, and let

L0
st(a) = {` ∈ L : P0,`

st (a) 6= ∅} be the set of all lines that support an st-dcpath via arc a. A

path p is a direct connection st-passenger path (st-dcpath), if it is an st-dcpath for some line

`. Let P0
st be the set of st-dcpaths, and P0 =

⋃
(s,t)∈D P0

st their union. For a dcpath p ∈ P0,

we set the travel time to the sum of the arc travel times τp,0 =
∑

a∈p τa. For an st-passenger

path p ∈ P, we set the travel time to the sum of the arc travel times plus a summand σ(p)
to arrive at a travel time of τp,1 = σ(p) +

∑
a∈p τa, where σ(p) = σ if p does not contain a

transfer arc, and 0 otherwise, since we already incorporated a penalty on transfer arcs.

2.1 Direct Line Connection Model

We will first introduce a model that computes a line plan and a passenger routing minimizing

a weighted sum of line operation costs and passenger traveling times. This model accounts

exactly for the number of travelers on direct connections according to the model assumptions.

Introducing path flow variables z`
p,0 and yp,1 for the number of passengers that travel on

dcpath p on line ` and on path p with at least one transfer, respectively, and x`,f ∈ {0, 1} for

the operation of line ` at frequency f , we state a direct line connection model for integrated

line planning and passenger routing as follows:

(DLC) min λ
∑
`∈L

∑
f∈F

c`,f x`,f + (1− λ)

∑
p∈P0

∑
`∈L:p∈P0,`

τp,0 z
`
p,0 +

∑
p∈P

τp,1 yp,1


∑
`∈L

∑
p∈P0,`

st

z`
p,0 +

∑
p∈Pst

yp,1 = dst ∀ (s, t) ∈ D (1)

∑
`∈L

∑
p∈P0,`:a∈p

z`
p,0 +

∑
p∈P:a∈p

yp,1 ≤
∑

`∈L:e(a)∈`

∑
f∈F

κ`,f x`,f ∀ a ∈ A (2)

∑
p∈P0,`:a∈p

z`
p,0 ≤

∑
f∈F

κ`,f x`,f ∀ ` ∈ L, e(a) ∈ ` (3)

∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (4)

x`,f ∈ {0, 1} ∀ ` ∈ L, f ∈ F (5)

z`
p,0 ≥ 0 ∀ ` ∈ L, p ∈ P0,` (6)

yp,1 ≥ 0 ∀ p ∈ P. (7)

The model (DLC) minimizes a weighted sum of line operation costs and passenger travel

times; 0 ≤ λ ≤ 1 is a weight parameter. Note that the st-passenger path variables yp,1
incur a penalty for each transfer arc and exactly one transfer penalty otherwise, i.e., the

number of transfers may be underestimated. Equations (1) enforce the passenger flow.

Inequalities (2) guarantee sufficient total transportation capacity on each arc. Constraints (3)

ensure sufficient transportation capacity for direct connection passenger paths on each arc of

each line. Inequalities (4) ensure that a line is operated at one frequency at most.

Model (DLC) includes a variable z`
p,0 for the assignment of each direct connection passenger

path p to a direct connection line `. A line of length k is usually a direct connection line for

O(k2) OD-pairs, such that the number of variables is much larger than the number of lines;

moreover, choices between several possible direct connection lines for each dcpath produce

lots of degeneracy. To overcome these problems, we will now compress the model by relaxing

R. Borndörfer and M. Karbstein 51

the explicit assignment of dcpaths to direct connection lines. We describe in the following

Subsection 2.2 an approximative construction, that we will use for computation, and argue

in Subsection 2.3 how it can be made exact.

2.2 Direct Connection Model

To construct a compact approximation of (DLC), we eliminate the assignment of passenger

paths to particular lines by aggregating the dcpath variables as yp,0 =
∑

`∈L z
`
p,0. To this

purpose, consider for each OD-pair (s, t) ∈ D the set P0
st of all st-dcpaths and unite them

to construct what we call a direct connection st-passenger routing graph G0
st = (V 0

st, A
0
st) =⋃

p∈P0
st

(V (p), A(p)), where V (p) and A(p) denote the nodes and arcs of dcpath p, respectively.

Note that G0
st can be constructed in polynomial time. We proceed by considering all st-paths

in G0
st as relaxed st-dcpaths (st-rdcpaths); let P0+

st be the set of all such rdcpaths-paths,

P0+
st (a) = {p ∈ P0+

st : a ∈ p} the set of all st-rdcpaths via arc a, and P0+ =
⋃

(s,t)∈D P
0+
st .

Obviously, P0+
st ⊇ P0

st, i.e., P0+
st overestimates the number of direct connections between

origin s and destination t. We say that OD-pairs (s, t) and (u, v) are dc-equivalent with

respect to arc a, if L0
uv(a) = L0

st(a), i.e., if the st- and the uv-rdcpaths are supported by

the same set of lines. We further say that OD-pair (u, v) is dc-dominated with respect to

arc a by OD-pair (s, t) if L0
uv(a) ⊆ L0

st(a). Denote by [s, t]a and [s, t]≤a the corresponding

equivalence class and domination set, respectively, i.e., (u, v) ∈ [s, t]a if L0
uv(a) = L0

st(a)
and (u, v) ∈ [s, t]≤a if L0

uv(a) ⊆ L0
st(a). Let finally D(a) = {[s, t]a} be the set of equivalence

classes for dc-equivalent OD-pairs w.r.t. a. Introducing line-independent rdcpath variables

yp,0 for the number of direct travelers on path p, this flow must satisfy the following direct

connection constraints for each arc a and each class [s, t]a of equivalent OD-pairs:∑
(u,v)∈[s,t]≤a

∑
p∈P0+

uv (a)

yp,0 ≤
∑

`∈L0
st(a)

∑
f∈F

κ`,f x`,f ∀ a ∈ A, [s, t]a ∈ D(a). (8)

These constraints enforce sufficient transportation capacity to route all uv-rdcpaths, (u, v) ∈
[s, t]≤a , via arc a. Using variables yp,0 instead of z`

p,0, and substituting constraints (3) by the

direct connection constraints (8), we obtain the following direct connection model :

(DC) min λ
∑
`∈L

∑
f∈F

c`,f x`,f + (1− λ)

 ∑
p∈P0+

τp,0 yp,0 +
∑
p∈P

τp,1 yp,1


∑

p∈P0+
st

yp,0 +
∑

p∈Pst

yp,1 = dst ∀ (s, t) ∈ D (9)

∑
p∈P0+:a∈p

yp,0 +
∑

p∈P:a∈p

yp,1 ≤
∑

`∈L:e(a)∈`

∑
f∈F

κ`,f x`,f ∀ a ∈ A (10)

∑
(u,v)∈[s,t]≤a

∑
p∈P0+

uv (a)

yp,0 ≤
∑

`∈L0
st(a)

∑
f∈F

κ`,f x`,f ∀ a ∈ A, [s, t]a ∈ D(a) (8)

∑
f∈F

x`,f ≤ 1 ∀ ` ∈ L (11)

x`,f ∈ {0, 1} ∀ ` ∈ L, f ∈ F (12)

yp,0 ≥ 0 ∀ p ∈ P0+ (13)

yp,1 ≥ 0 ∀ p ∈ P. (14)

AT M O S ’ 1 2

52 A Direct Connection Approach to Integrated Line Planning and Passenger Routing

2.3 Model Discussion

To relate the models (DLC) and (DC), we show now that (DC) is a relaxation of the projection

of model (DLC) onto the space of the dcpath variables. This can be seen as follows. For

each st-dcpath p ∈ P0
st, link the flow variables yp,0 and z`

p,0 via equations

yp,0 =
∑

`∈L:p∈P0,`
st

z`
p,0. (15)

Consider the polytopes

P := {(x, y1, z) ∈ R(L×F)×P×P0,L

≥0 | (DLC)(1)− (4), (6)− (7)}
PQ := {(x, y0, y1, z) ∈ R(L×F)×P0×P×P0,L

≥0 | (15), (DLC)(1)− (4), (6)− (7)}
Q := {(x, y0, y1) ∈ R(L×F)×P0×P

≥0 | ∃z ∈ RP0,L

≥0 s.t. (x, y0, y1, z) ∈ PQ}.

P is the solution set of the LP relaxation of (DLC). PQ extends this set into a higher-

dimensional space by adding the aggregate flow variables (yp,0); hence, P is the projection of

PQ onto the space of (x`,f , yp,1, z
`
p,0) variables. Q is the projection of PQ onto the space of

(x`,f , yp,1, yp,0) variables, i.e., Q describes exactly the feasible combinations of line plans and

aggregate direct connection passenger flows.

Let Q = {Ax+By ≤ b}; then adding constraints Ax+By ≤ b to model (DC) and using

dcpaths instead of rdcpaths produces a strengthening of the direct connection model (DC)

that is equivalent to the direct line connection model (DLC), i.e., that handles all direct

connections correctly. Note that the cuts in the system Ax+By ≤ b can be separated using

Benders decomposition, i.e., this construction is algorithmic. Model (DC) is a relaxation that

considers a larger set of paths P0+
st ⊇ P0

st and replaces the Benders cut system Ax+By ≤ b
by the smaller, explicit, and purely combinatorial set of direct connection constraints (8).

This makes model (DC) algorithmically tractable. One can show that the pricing problem

for passenger path variables is a shortest path problem in G0
st for direct connection passenger

paths, and a constrained shortest path problem in G for paths with at least one transfer.

Indeed, consider the solution of the LP relaxation of model (DC) by column generation,

i.e., consider the pricing problems for the variables. Associate dual variables π (unbounded),

µ ≥ 0, ν ≥ 0, and ψ ≥ 0 with constraints (9), (10), (8), and (11) of program (DC). The dual

of the LP relaxation of (DC) is

max
∑

(s,t)∈D

dstπst −
∑
`∈L

ψ`

πst −
∑
a∈p

µa −
∑
a∈p

νa,[s,t]a
≤ (1− λ)τp,0 ∀ p ∈ P0+

st , (s, t) ∈ D,

πst −
∑
a∈p

µa ≤ (1− λ)τp,1 ∀ p ∈ Pst, (s, t) ∈ D,∑
a:e(a)∈`

κ`,fµa +
∑

a:e(a)∈`

∑
[s,t]a∈D(a)

κ`,fνa,[s,t]a
− ψ` ≤ λc`,f ∀ ` ∈ L, f ∈ F

µa ≥ 0 ∀ a ∈ A
νa,[s,t]a

≥ 0 ∀ a ∈ A, [s, t]a ∈ D(a)
ψ` ≥ 0 ∀ ` ∈ L.

The pricing problem for the passenger variables is twofold: Find an st-rdcpath with negative

reduced cost or find a path from s to t with at least one transfer and negative reduced cost.

R. Borndörfer and M. Karbstein 53

The reduced cost can be computed as follows

τ̄p,0 = −πst +
∑
a∈p

(
µa + νa,[s,t]a

+ (1− λ)τa

)
(16)

τ̄p,1 = −πst +
∑
a∈p

(µa + (1− λ)τa) + (1− λ)σ(p). (17)

In the first case we have to find an (s, t)-rdcpath in Gst with weight smaller than πst. The

arc weights are set to ωa = µa + νa,[s,t]a
+ (1− λ)τa ≥ 0 for a ∈ Ast. This problem can be

solved by Dijkstra’s algorithm.

In the second case we have to find an st-path in G with weight smaller than πst. The arc

weights are set to ωa = µa + (1− λ)τa ≥ 0 for a ∈ A. However, the reduced cost depends

on whether the path p contains a transfer arc or not; if not we have to add (1− λ)σ to the

weight of the path. This problem can be solved by a constrained shortest path algorithm.

Model (DC) can be seen as a “first order approximation” to the change-and-go approach

of Schöbel and Scholl, because (DC) does not consider transfer penalties for the second, third,

etc. transfer in a passenger path that can not be attributed to a transfer arc. It further

relaxes the assignment of direct connection paths to particular lines. Model (DC) can also

be seen a “transfer improvement” of the model of Borndörfer, Grötschel, and Pfetsch [3].

Namely, dropping the direct connection constraints results in a variant of the model of

Borndörfer, Grötschel, and Pfetsch, in which each passenger path is handled as a direct

connection path unless it contains a transfer arc; we will denote this model by (B). The only

difference between (B) and the original model of Borndörfer, Grötschel, and Pfetsch is that

line frequencies are handled explicitly in terms of a finite set of possible integral frequencies

instead of allowing a continuum of values.

3 Computational Results

In this section, we will show that the direct connection model can be used to solve large-scale

line planning problems and that the direct connection constraints strongly improve the

number of direct travelers in comparison to models that ignore transfers, in particular, model

(B), see Section 2.3.

We consider four transportation networks that we denote as China, Dutch, SiouxFalls,

and Potsdam. The instance SiouxFalls uses the graph of the street network with the same

name from the Transportation Network Test Problems Library of Bar-Gera [20]. Instances

China, Dutch, and Potsdam correspond to public transportation networks. The Dutch

network was introduced by Bussieck in the context of line planning [11]. The China instance

is artificial; we constructed it as a showcase example, connecting the twenty biggest cities in

China by the 2009 high speed train network. The Potsdam instances are real multi-modal

public transportation networks for 1998 and 2009.

For China, Dutch, and SiouxFalls all nodes are considered as terminals, i.e., nodes where

lines can start or end. We constructed a line pool by generating for each pair of terminals all

lines that satisfy a certain length restriction. To be more precise, the number of edges of a

line between two terminals s and t must be less than or equal to k times the number of edges

of the shortest path between s and t. For each network, we increased k in three steps to

produce three instances with different line pool sizes. For Dutch and China instance number

3 contains all lines, i.e., all paths that are possible in the network. The line pools for the

Potsdam network of 1998 are generated for different restrictions on the length of the lines

considering the given turning restrictions on crossings. We defined all nodes as terminals that

AT M O S ’ 1 2

54 A Direct Connection Approach to Integrated Line Planning and Passenger Routing

Table 1 Statistics on the line planning instances. The columns list the instances, the number of

non-zero OD pairs, number of OD nodes, number of nodes and edges of the preprocessed passenger

routing graph, the number of considered lines, the number of direct connection constraints, and the

number of all other constraints.

problem |D| |VO| |V | |A| |L| vars dc-cons cons

Dutch1 420 23 23 106 402 1 608 1 832 1 080

Dutch2 420 23 23 106 2 679 10 716 7 544 3 341

Dutch3 420 23 23 106 7 302 29 208 9 736 7 945

China1 379 20 20 98 474 1 896 2 754 1 178

China2 379 20 20 98 4 871 19 484 8 162 5 457

China3 379 20 20 98 19 355 77 420 12 443 19 931

SiouxFalls1 528 24 24 124 866 3 464 4 400 1 779

SiouxFalls2 528 24 24 124 9 397 37 588 16 844 10 197

SiouxFalls3 528 24 24 124 15 365 61 460 21 220 16 145

Potsdam98a 7 734 107 344 2 746 207 776 3 538 9 970

Potsdam98b 7 734 107 344 2 746 1 907 7 572 60 902 11 991

Potsdam98c 7 734 107 344 2 746 4 342 17 313 76 640 14 366

Potsdam2009 4 443 236 851 5 542 3 433 14 140 30 780 12 006

are terminals of operating lines in the year 1998. The Potsdam 2009 instance arose within a

project with the Verkehr in Potsdam GmbH (ViP) [19] to optimize the 2010 line plan [2, 5].

The line pool contains all possible lines that fulfill the ViP requirements. The line pools of

the Potsdam instances contain also lines for regional and commuter trains. These lines are

not operated by ViP and we therefore fix them to given frequencies in our computations.

The other lines can be operated at frequencies 3, 6, 9, and 18; this corresponds to a cycle

time of 60, 30, 20, and 10 minutes in a time horizon of 3 hours. Line costs are proportional to

line lengths plus a fixed cost term that is used to reduce the number of lines. The objective

weighing parameter was set to λ = 0.8 and the transfer penalty was set to σ = 15 minutes.

Table 1 gives some statistics about the test instances. The columns labeled |D|, |VO|,
|V |, |A|, and |L| list the number of OD pairs with non-zero demand, OD nodes, nodes, arcs,

and lines after some preprocessing. The last three columns give the number of variables and

constraints associated with the integer program (DC). Here, “dc-cons” gives the number of

direct connection constraints while “cons” gives the number of all other constraints.

The instances were solved with a column generation algorithm implemented on the basis

of the CIP framework scip, version 2.1.0, see [1, 18], using CPLEX 12.4 as LP-solver (in

single core mode). Line/frequency variables were enumerated, passenger path variables were

priced with Dijkstra’s shortest path algorithm and a labeling algorithm for the constrained

shortest path case. We mainly used the default settings of SCIP. We further implemented

three special rounding heuristics and preprocessing cuts that account for the demand on

single arcs that disconnect at least two OD-nodes as well as the out-going and in-coming

demand of an OD-node. Namely, we scale the capacity constraints associated with these

demand sets by κif , for each f ∈ F , and apply mixed integer rounding. We also added

violated cuts of the form∑
p∈P0+

st (a)

yp,0

dst
≤

∑
`∈L0

st(a)

∑
f∈F

x`,f (s, t) ∈ D, a ∈ Ast (18)

in each branching node. These cuts can be derived from the direct connection constraints (8).

The preprocessing constraints and the cuts (18) improve the root LP value by around 0.1% to

R. Borndörfer and M. Karbstein 55

Table 2 Statistics on the computations for model (DC) and (B). The columns list the instances,

computation time, number of branching nodes, and the integrality gap.

(DC) (B)

problem time nodes gap time nodes gap

Dutch1 15s 329 opt. 10h 5 940 327 0.03%

Dutch2 <1h 11 532 opt. 10h 815 966 0.04%

Dutch3 10h 57 273 0.05% 10h 151 053 0.08%

China1 10h 814 964 0.32% 10h 3 754 582 0.11%

China2 10h 5 366 0.53% 10h 129 217 0.15%

China3 10h 997 0.47% 10h 37 519 0.18%

SiouxFalls1 10h 458 379 0.10% <1h 347 999 opt.

SiouxFalls2 10h 13 868 0.09% 10h 110 836 0.01%

SiouxFalls3 10h 3 230 0.10% 10h 44 713 0.00%

Potsdam98a 10h 7 357 0.09% 10h 6 266 0.12%

Potsdam98b 10h 62 0.28% 10h 2 491 0.26%

Potsdam98c 10h 10 0.27% 10h 661 0.25%

Potsdam2010 10h 2 0.81% 10h 2123 0.41%

0.5% for the Dutch and Potsdam instances (which is much). The improvement for the China

and SiouxFalls instances is in the order of per mill. Finally, we included additional auxiliary

branching variables ha,i ∈ Z≥0, a ∈ A, i ∈ F , that account for the number of lines on arc

a with frequency greater than or equal to i, and the corresponding branching constraints∑
`∈L:e(a)∈`

∑
f∈F :f≥i x`,f = ha,i ∀ a ∈ A, i ∈ F .

Including these branching variables and constraints combines the possibility to branch on

those constraints with the sophisticated branching rules implemented in the SCIP framework.

This works well, e.g., it needs nearly half a million branching nodes to solve instance N1

without the branching variables in comparison to less than 500 nodes with the branching

variables. Instance N2 could not be solved within 10 hours without branching variables.

We also included the branching variables in the computations for model (B) as well as

the preprocessing cuts, and constraints similar to (18) that can be derived from the capacity

constraints for each arc. We set a time limit of 10 hours for all instances. All computations

were done on computers with an Intel(R) Xeon(R) CPU X5672 with 3.20 GHz, 12 MB cache,

and 48 GB of RAM.

Table 2 shows statistics on the number of branching nodes, computation time, and the

integrality gap for model (DC) and model (B). Albeit model (DC) seems to be harder to

solve (the number of solved branching nodes is usually smaller for (DC) than for (B)), the

integrality gaps are similar for (DC) and (B). The Dutch instances 1 and 2 can even be

solved to optimality for model (DC); for those instances the direct connection constraints

improve the optimization process.

We evaluate the quality of the solutions of model (DC) and (B) by computing an optimal

passenger routing, including penalties for all transfers, in a change-and-go graph similar to

that of Schöbel and Scholl [16]. Namely, we construct nodes and arcs for each line individually,

i.e., the change-and-go graph contains a copy of each node and arc for every line that contains

this node and arc. Further transfer arcs are added between two nodes of different lines

whenever a transfer between these two lines is possible on this node. The travel time of

all arcs is set to the travel time of the associated arc in G, transfer arcs are additionally

penalized by σ. We then fix the frequencies of the lines according to the computed line plan

and route the passenger to minimize the total travel and transfer times, i.e., we compute the

AT M O S ’ 1 2

56 A Direct Connection Approach to Integrated Line Planning and Passenger Routing

Table 3 Evaluation of the solutions of (DC) and (B) of Table 2 in the change-and-go graph. The

columns list travel time (in minutes), cost, objective value, number of direct travelers predicted in

the considered model, and number of direct travelers in the change-and-go graph.

problem travel time cost obj. dir. trav. of model exact dir. trav.

Dutch1 (DC) 1.279·107 68 900 2613305 179 496 179 496

Dutch1 (B) 1.333·107 57 800 2711770 183 582 148 924

Dutch2 (DC) 1.279·107 66 900 2612122 180 484 179 384

Dutch2 (B) 1.319·107 57 500 2683071 183 582 156 251

Dutch3 (DC) 1.279·107 66 900 2612122 180 484 179 384

Dutch3 (B) 1.319·107 57 500 2683071 183 582 156 251

China1 (DC) 1.259·107 267 937 2732445 749 736 716 040

China1 (B) 1.559·107 233 268 3304432 759 950 509 526

China2 (DC) 1.258·107 247 241 2714438 759 936 709 145

China2 (B) 1.559·107 233 268 3304432 759 950 509 526

China3 (DC) 1.245·107 244 361 2684860 759 950 714 728

China3 (B) 1.559·107 233 268 3304432 759 950 509 526

SiouxFalls1 (DC) 3.267·106 9 205 660675 360 600 358 888

SiouxFalls1 (B) 3.633·106 8 295 733288 360 600 335 355

SiouxFalls2 (DC) 3.392·106 5 787 682996 360 600 360 178

SiouxFalls2 (B) 3.776·106 5 178 759365 360 600 326 625

SiouxFalls3 (DC) 3.431·106 4 899 690200 360 600 355 068

SiouxFalls3 (B) 3.695·106 4 283 742397 360 600 334 052

Potsdam98a (DC) 5.076·106 27 044 1036865 70 513 71 075

Potsdam98a (B) 5.102·106 29 018 1043617 83 702 68 900

Potsdam98b (DC) 4.836·106 33 484 993938 78 745 79 511

Potsdam98b (B) 4.970·106 28 302 1016610 84 879 73 983

Potsdam98c (DC) 4.829·106 32 544 991772 79 694 79 576

Potsdam98c (B) 4.952·106 29 320 1013779 84 979 74 356

Potsdam2010 (DC) 1.032·106 9 314 213769 38 152 38 001

Potsdam2010 (B) 1.073·106 8 734 221549 41 052 35 285

correct number of transfers for all passengers in a system optimum routing. Table 3 shows

the result of this evaluation for the best solutions computed with model (DC) and model

(B), respectively,

It can be seen that the exact number of direct travelers is very close to the number

of direct travelers predicted by model (DC), which is exactly what we wanted to achieve.

The only bigger differences (of around 7%) are in the China instances. However, the China

instances also display the largest prediction improvement in comparison to model (B), namely,

around 40%. Over all instances, model (DC) significantly improves the number of direct

travelers in comparison to (B); the improvement is around 7% for the Potsdam and SiouxFalls

instances and around 15% to 20% for the Dutch instances.

Acknowledgement: We thank four anonymous referees for their reviews.

References

1 Tobias Achterberg. SCIP: Solving Constraint Integer Programs. Math. Programming

Computation, 1(1):1–41, 2009.

2 Ralf Borndörfer, Isabel Friedow, and Marika Karbstein. Optimierung des Linienplans

2010 in Potsdam. Der Nahverkehr, 30(4):34–39, 2012.

R. Borndörfer and M. Karbstein 57

3 Ralf Borndörfer, Martin Grötschel, and Marc E. Pfetsch. A column-generation approach

to line planning in public transport. Transportation Science, 1(41):123–132, 2007.

4 Ralf Borndörfer, Martin Grötschel, and Marc E. Pfetsch. Models for line planning in pub-

lic transport. In Mark Hickman, Pitu Mirchandani, and Stefan Voß, editors, Computer-

aided Systems in Public Transport, volume 600 of Lecture Notes in Economics and Math-

ematical Systems, pages 363–378. Springer-Verlag, 2008.

5 Ralf Borndörfer and Marika Neumann. Linienoptimierung – reif für die Praxis? In

HEUREKA’11. FGSV Verlag, 2011.

6 Michael R. Bussieck. Optimal lines in public rail transport. PhD thesis, TU Braunschweig,

1997.

7 Michael R. Bussieck, Peter Kreuzer, and Uwe T. Zimmermann. Optimal lines for railway

systems. Eur. J. Oper. Res., 96(1):54–63, 1997.

8 Michael R. Bussieck, Thomas Lindner, and Marco E. Lübbecke. A fast algorithm for

near optimal line plans. Math. Methods Oper. Res., 59(2), 2004.

9 Michael R. Bussieck, T. Winter, and Uwe T. Zimmermann. Discrete optimization in

public rail transport. Math. Program., 79(1–3):415–444, 1997.

10 M. T. Claessens, N. M. van Dijk, and P. J. Zwaneveld. Cost optimal allocation of rail

passanger lines. Eur. J. Oper. Res., 110(3):474–489, 1998.

11 GAMS and Michael Bussieck. lop.gms: Line optimization. http://www.gams.com/

modlib/libhtml/lop.htm.

12 Jan-Willem H. M. Goossens, Stan van Hoesel, and Leo G. Kroon. On solving multi-type

line planning problems. METEOR Research Memorandum RM/02/009, University of

Maastricht, 2002.

13 Jan-Willem H. M. Goossens, Stan van Hoesel, and Leo G. Kroon. A branch-and-cut

approach for solving railway line-planning problems. Transportation Sci., 38(3):379–393,

2004.

14 Karl Nachtigall and Karl Jerosch. Simultaneous network line planning and traffic assign-

ment. In Matteo Fischetti and Peter Widmayer, editors, ATMOS 2008, DROPS. Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2008.

15 Amedeo R. Odoni, Jean-Marc Rousseau, and Nigel H. M. Wilson. Models in urban and

air transportation. In S. M. Pollock et al., editor, Handbooks in OR & MS 6, chapter 5,

pages 107–150. North Holland, 1994.

16 Anita Schöbel and Susanne Scholl. Line planning with minimal traveling time. In Leo G.

Kroon and Rolf H. Möhring, editors, Proc. 5th Workshop on Algorithmic Methods and

Models for Optimization of Railways, 2006.

17 Susanne Scholl. Customer-Oriented Line Planning. PhD thesis, University of Göttingen,

2005.

18 SCIP – Solving Constraint Integer Programs, documentation. http://scip.zib.de.

19 Stadtwerke Potsdam – ViP Verkehrsbetrieb Potsdam GmbH. Website. http://

vip-potsdam.de.

20 Transportation network test problems. http://www.bgu.ac.il/~bargera/tntp/.

AT M O S ’ 1 2

http://www.gams.com/modlib/libhtml/lop.htm
http://www.gams.com/modlib/libhtml/lop.htm
http://scip.zib.de
http://vip-potsdam.de
http://vip-potsdam.de
http://www.bgu.ac.il/~bargera/tntp/

Multi-Dimensional Commodity Covering for Tariff
Selection in Transportation∗

Felix G. König1, Jannik Matuschke2, and Alexander Richter2

1 TomTom International BV
An den Treptowers 1, 12435 Berlin, Germany.
felix.koenig@tomtom.com

2 Technische Universität Berlin, Institut für Mathematik
Straße des 17. Juni 136, 10623 Berlin, Germany.
{matuschke,arichter}@math.tu-berlin.de

Abstract
In this paper, we study a multi-dimensional commodity covering problem, which we encountered
as a subproblem in optimizing large scale transportation networks in logistics. The problem
asks for a selection of containers for transporting a given set of commodities, each commodity
having different extensions of properties such as weight or volume. Each container can be selected
multiple times and is specified by a fixed charge and capacities in the relevant properties. The
task is to find a cost minimal collection of containers and a feasible assignment of the demand
to all selected containers.

From theoretical point of view, by exploring similarities to the well known SetCover prob-
lem, we derive NP-hardness and see that the non-approximability result known for set cover
also carries over to our problem. For practical applications we need very fast heuristics to be
integrated into a meta-heuristic framework that—depending on the context—either provide fea-
sible near optimal solutions or only estimate the cost value of an optimal solution. We develop
and analyze a flexible family of greedy algorithms that meet these challenges. In order to find
best-performing configurations for different requirements of the meta-heuristic framework, we
provide an extensive computational study on random and real world instance sets obtained from
our project partner 4flow AG. We outline a trade-off between running times and solution quality
and conclude that the proposed methods achieve the accuracy and efficiency necessary for serv-
ing as a key ingredient in more complex meta-heuristics enabling the optimization of large-scale
networks.

1998 ACM Subject Classification G.1.6 Optimization, G.2.3 Applications

Keywords and phrases Covering, Heuristics, Transportation, Tariff Selection

Digital Object Identifier 10.4230/OASIcs.ATMOS.2012.58

1 Introduction

One of the most important fields of application of combinatorial optimization is the subject
of transportation logistics. Besides location and routing decisions, the correct choice of
transportation modes and corresponding tariffs plays a crucial role in this context, as real-
world transporation tariffs can be of quite complex nature, often depending on the specific
features of the freight being transported.

∗ This work was supported by the European Regional Development Fund (ERDF) and is part of a joint
research project with 4flow AG, Berlin, Germany.

© Felix G. König, Jannik Matuschke, and Alexander Richter;
licensed under Creative Commons License ND

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti; pp. 58–70

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2012.58
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

F.G. König, J. Matuschke, and A. Richter 59

In this paper, we consider the multi-dimensional commodity covering problem (MDCC),
an extension of the classical SetCover problem, which occurs as an important subproblem
in a transportation model recently developed within a joint research project with supply chain
management consulting company 4flow AG. In this model, commodities are defined by their
extensions w.r.t. various properties, such as weight or volume, and have to be transported
through a network. On each transport link in the network, a collection of different containers
is available for transporting these commodities. The concept of containers models complex
tariff structures and each container type varies in price and capacities for the respective
properties. Compared to the global objective of optimizing the routes of flow in the network,
MDCC takes a local perspective, optimizing transport costs on each individual link: Given
a vector of demand for each commodity to be transported on a particular link, find a
cost-minimal selection of containers and an assignment of the demand, such that all demand
can be transported along the link without violating the capacity of any container.

From a theoretical point of view, MDCC is closely related to classical covering problems.
We will see later that corresponding non-approximability results for these problems carry
over to MDCC. From a practical point of view, analogies to minimum knapsack and multi-
dimensional knapsack problems contributed to the terminology and design of the algorithms
presented. In our algorithmic context, meta-heuristics concerned with optimizing the global
flow pattern in the network are employing MDCC in two different scenarios: First, given
a flow pattern in the network, a good selection of containers has to be found on every
flow-carrying link. Second, while scanning for cost efficient routes to forward flow along, the
meta-heuristics need good estimates on the cost incurred by sending a particular demand
along a link. These latter scanning steps are performed very frequently (easily more than a
million times during the optimization of a single network) and therefore need to be carried
out even faster—however, note that a feasible solution does not need to be computed in
this case. We will address both scenarios with different variants of greedy algorithms that
provide an efficient balance of accuracy and speed.

Contribution and structure of the paper In the remainder of Section 1, we give a formal
definition of MDCC and provide an overview of related work. In Section 2, we show that
MDCC cannot be approximated better than by a factor logarithmic in the number of
properties. In Section 3, we introduce several efficient heuristics for MDCC based on a
unified greedy framework. The variants are tailored for fulfilling different requirements on
solution quality and speed. These methods are evaluated in Section 4 within a computational
study conducted both on an extensive set of instances arising from computations on real-world
transportation networks, as well as an additional set of randomly generated instances. The
results show that our algorithms enable the efficient evaluation of complex cost functions,
which can be used to capture real world tariff systems more precisely in network flow based
transportation models while maintaining the compuational tractability of such models.

1.1 Problem formulation

An instance of the multi-dimensinal commodity covering problem (MDCC) is given by a
set of properties P , commodities K and container types J . Each commodity i ∈ K has a
demand di that has to be transported along the link. Its properties are defined by a vector
αi ∈ QP+, i.e., one unit of commodity i ∈ K requires a capacity of αip for property j ∈ P .
Each container j ∈ J is defined by its capacities βpj ∈ Q+ w.r.t. each property p ∈ P and a
cost cj ∈ Q+ that is incurred for each copy of container j in use.

ATMOS’12

60 Multi-Dimensional Commodity Covering for Tariff Selection in Transportation

The goal is to find a minimum cost selection of container copies together with an
assignment of the total demand to those containers such that the capacity of each container
suffices to carry the shipment it has been assigned. More formally, for each conainer type
j ∈ J , we need to determine the number of containers yj ∈ Z+ to be used, and the amount
xij ∈ Q+ of each commodity i ∈ K to be packed into containers of type j. The solution is
feasible, if all demand d ∈ QK+ is completely assigned, i.e.,∑

j∈J
xij = di ∀i ∈ K (1)

and all capacity constraints∑
i∈K

αipxij ≤ yjβpj ∀j ∈ J, p ∈ P (2)

of each container type are satisfied. Thus, we are looking for an optimal solution to the
following mixed integer linear program (MIP).

min c(y) :=
∑
j∈J

cjyj

s.t. x, y fulfill (1) & (2)
xij ∈ QK×J+ , yj ∈ ZJ+

I Notation. We call a vector x ∈ QK with amounts of commodities a commodity vector.
Similarly, a vector κ ∈ QP with amounts for each property is called property vector.

For x ∈ QK we define the aggregated properties by κp(x) :=
∑
i∈K αpixi for all p ∈ P .

I Remark. We can assume that κp(d) > 0 for all properties p ∈ P since otherwise we could
delete such a property from the problem instance. We also assume w.l.o.g. βpj ≤ κp(d), since
no container needs to have more capacities than demanded. Furthermore, note that due to
the fractional assignment of commodities there are two degrees of freedom w.r.t. scaling:

For some single property p ∈ P , scaling at the same time all αpi and βpj by some factor
µ > 0 yields an equivalent MDCC instance.
For some single commodity i ∈ K, scaling at the same time di by some factor ν > 0 and
all αpi by 1/ν yields an equivalent MDCC instance.

1.2 Related work
The special case of MDCC where each commodity has only one non-zero property is known
as covering integer programming. In this case, the assignment of commodities to containers
can be completely removed from the problem formulation by aggregating Equalities (1) and
Inequalities (2) for each property:∑

j∈J

∑
i∈K

αpixij ≤
∑
j∈J

yjβpj =⇒
(1)

κp(d) =
∑
i∈K

αpidi ≤
∑
j∈J

yjβpj (3)

It then suffices to cover the aggregated properties of the demand with container capacities.
The most prominent special case of this setting is the well-known SetCover problem:

Given a ground set S and a set family S ⊆ 2S with costs c : S→ Q+, find a minimum cost
subset of F ⊆ S such that

⋃
F∈F F = S. In the context of MDCC, this corresponds to the

case where additionally all input data is restricted to be in {0, 1}. We establish a formal
reduction of SetCover to MDCC in Section 2. Chvatal [2] analyzed a greedy algorithm

F.G. König, J. Matuschke, and A. Richter 61

for SetCover that achieves an approximation ratio of H(D) where D is the dilation of the
instance, i.e., the size of the largest set in S, and H(n) denotes the nth harmonic number,
i.e., H(n) :=

∑n
k=1 1/k. Feige [5] showed that this approximation ratio is essentially best

possible from a theoretical point of view, as the existence of an o(ln(|S|))-approximation
algorithm for SetCover implies P = NP.

For general covering integer programs, Dobson [4] devises a combinatorial algorithm that
achieves an approximation factor of maxj∈J

{
log
(∑

p∈P βpj

)
+ 1 +H(nj))

}
, where nj is the

number of nonzero capacities in container j. In [11] and [12], Srinivasan proposes a different
algorithm based on randomized rounding involving the width of the problem defined as
W := minp∈P, j ∈J{κp(d)/βpj : βpj > 0} and an adapted definition of the dilation D as D :=
maxj∈J nj . The author derives a (1+O(max{ln(D+1)/W,

√
ln(D + 1)/W}))-approximation

algorithm and also gives “pessimistic estimators” that allow for derandomization of the
rounding scheme. Exact algorithms based on dynamic programming are known [6] but suffer
from a running time growing exponentially in |P |. Yet more different bounds for variations
of the problem and for further assumptions on input data have been attained in the last
decades, a recent overview is given for example in [8]. In the case of only one property
(|P | = 1) the problem is referred to as a minimum knapsack problem and a greedy algorithm
with performance ratio of 3/2, which can be extended to a (not fully) polynomial time
approximation scheme [3]. Also a primal-dual algorithm with performance ratio 2 has been
recently explored [1]. Note that all these results only apply to the case where each commodity
has only one non-zero property, while for the more general problem studied in this paper, to
the best of our knowledge, no results are known up to this point.

2 (Non-)approximability of MDCC

In this section, we derive NP-hardness and non-approximability for MDCC by reduction
from SetCover. However, we will also show that under certain conditions on the input data
the known results for covering problems can be used to obtain an approximation algorithm
for MDCC with a factor depending logarithmically on the number of properties and on a
particular variance measure for the instance.

2.1 Hardness of MDCC
Given a SetCover instance (S,S), we can construct a corresponding MDCC instance
(K,P, J) such that for any solution for the former instance there is a solution for the latter
one with same cost value and vice versa. Indeed, we can model each ground element by
introducing a commodity that has only one nonzero associated property, i.e., we chose
K = P = S. Furthermore, we can model sets Sj ∈ S by introducing containers j that
have only nonzero capacities for those properties p ∈ P that are associated with those
ground elements contained in Sj . This way, selecting a container j ∈ J and assigning some
commodity i ∈ K to it corresponds to selecting a set Sj ∈ S, that covers ground element
ei ∈ S.

I Theorem 1. There is a constant c > 0 such there is no c ln(|P |)-approximation algorithm
for MDCC unless P = NP.

Proof. Observe that the construction described above is cost preserving, and thus any
f(|P |)-approximation algorithm for MDCC for some function f immediately implies an
f(|S|)-approximation algorithm for SetCover. As shown in [5], there is a constant c > 0

ATMOS’12

62 Multi-Dimensional Commodity Covering for Tariff Selection in Transportation

such that there is no c ln(|S|) approximation for set cover unless P = NP. Accordingly, for
the same c, there also is no c ln(|P |)-approximation for MDCC unless P = NP. J

Approximation with bounds on input data

In order to achieve an approximation guarantee for the MDCC, we again consider the
aggregation of the capacity constraints (3) from Section 1.2. We obtain the following covering
integer program as relaxation of the problem, which we denote by A-MDCC:

min
{
c(y) : y ∈ ZJ+,

∑
j∈J

βpjyj ≥ κp(d) ∀ p ∈ P
}
.

For the special case of each commodity having only one nonzero property discussed Section 1.2,
the aggregation results in a more compact but equivalent formulation of the problem. However,
in the general case, this is no longer true. In fact, it is easy to observe that the relaxation
might allow for feasible solutions even if the original problem is infeasible. Yet we will show
that for a certain class of instances, it is possible to construct a feasible solution of MDCC
from a feasible solution of A-MDCC. To this end, we definde the capacity variance δ of an
instance of MDCC by

δ := max
{
κq(d)βpj
κp(d)βqj

: p, q ∈ P, j ∈ J
}
.

Note that δ ∈ [1,∞] and the capacity variance is only finite if βpj > 0 for all p ∈ P, j ∈ J . In
this case, we can show that the containers selected in a solution of A-MDCC suffice to cover
at least an 1

δ -fraction of the demand of the original MDCC instance. Combining this result
with an (1 + O(ln |P |))-appoximation algorithm for A-MDCC obtained from [12, 11], we
derive an dδe(1 +O(ln |P |))-approximation to MDCC instances with finite capacity variance.

I Lemma 2. For an instance of MDCC with finite capacity variance, let y be a solution to
the corresponding A-MDCC instance. Then there is an x ∈ QK×J+ such that κp(xj) ≤ βpjyj
for all j ∈ J, p ∈ P and

∑
j∈J xij ≥

1
δdi for all i ∈ K.

I Theorem 3. There is an dδe(1+O(ln |P |))-approximation algorithm for MDCC restricted
to instances with finite capacity variance.

A detailed proof of Lemma 2 and Theorem 3 can be found in the extended version of this
paper [9].

3 A heuristic greedy framework

In this section we present a framework of greedy algorithms to heuristically produce near-
optimal solutions for instances of MDCC within very short running-time. Algorithmic
requirements are twofold: Due to the integration into a meta-heuristic framework our
algorithms have to solve up to 2 million MDCC instances or at least estimate their cost
within one meta-heuristic run, which requires them to be extremely fast. Furthermore, our
project partner favors algorithmic variants that run without any third party licensed software,
such as MIP- or LP-solvers. We emphasize that some of our methods are specifically designed
to cope well with the given practice instances: In those instances all properties and capacities
are strictly positive, they are always feasible and the number of properties is small. Though
some of the following algorithms also work with zero-valued properties or capacities and

F.G. König, J. Matuschke, and A. Richter 63

feasibility tests could be easily incorporated, we omit the explicit treatment of these issues
for the sake of readability.

The general outline follows a natural greedy approach that shares similarities with the
concepts applied to integer covering problems as presented for example in [4]. We denote with
d̄ the remaining commodity demand to be covered. The generic greedy algorithm (formally
denoted as Algorithm 1 below) repeatedly selects an “efficient” container j ∈ J to cover
portions of, or the whole remaining demand d̄. It uses generic methods Score and Fill for
which we will devise different variants: Score(j,d̄) returns a value that reflects a measure
of efficiency of container j with respect to the remaining demand d̄, i.e., the amount of
demand covered by the container compared against its cost. Fill(j,d̄) returns a vector ∆ of
commodities 0 ≤ ∆ ≤ d̄ that uses container j at maximal capacity and can then be assigned
to it. These two methods represent the computational bottleneck: Both performance and
efficiency of the generic greedy algorithm depend on the detailed implementation of these
methods. Note that for a given Fill implementation, a corresponding Score method can be
defined as the amount of aggregated properties of covered commodities per container cost:

Score(j,d̄) := 1
cj
·
∑
p∈P

κp(Fill(j,d̄)) .

However, this makes the task of scoring a container as computationally expensive as the task
of filling a container and we will discuss other possibilities in the following paragraphs.

Algorithm 1 repeats until d̄ reduces to zero and all demand is covered. However, at some
point in the execution there might be containers large enough to cover d̄ as well as containers
that cover only fractions of d̄. In such situations both outcomes are considered: we branch
a separate complete solution with a large container selected, if it improves upon the best
known solution (lines 5 to 8), and continue considering the incomplete partial solution with
a smaller container selected, if its cost does not exceed the best known cost. To speed up the
algorithm we can assign the computed mix of commodities ∆ multiple times to copies of
the same container, as long as there is enough remaining demand d̄ to assign ∆ completely
(line 11). This is convenient if the Score function depends on the computed filling but for
heuristic Score functions this might imply that some of the container copies are selected
although there was another container with higher score. To simplify notation we associate a
multiset Y over J with a possible solution vector y ∈ ZJ+ that contains yj copies of container
j ∈ J and denote with c(Y) the respective selection cost c(y). In the following paragraphs
we introduce and discuss different Score and Fill methods including a variant where Score
does not depend on Fill.

3.1 LP-based filling of containers
The most versatile approach for designing a Fill method is to use linear programming. The
objective function for the linear program (LP) is then to minimize the sum of slack in all
capacity constraints. We introduce slack variables sp for each property p ∈ P , and obtain the
following LP-formulation for a fixed container j ∈ J and a given remaining demand vector d̄:

min
∑
p∈P

sp

s.t.
∑
i∈K

αpi∆i + sp = βpj ∀ p ∈ P (4)

0 ≤ ∆i ≤ d̄i ∀ i ∈ K, sp ≥ 0 ∀ p ∈ P

ATMOS’12

64 Multi-Dimensional Commodity Covering for Tariff Selection in Transportation

Algorithm 1: Generic Greedy Algorithm (GGA)
Input: MDCC instance (K,P, J) with initial demand d
Output: assignment commodity vectors x′j ∈ QK+ , j ∈ J, multiset Y ′ over J

1 d̄← d; // remaining uncovered demand
2 (xj)j∈J ← 0; Y ← ∅ ; // current partial solution
3 (x′j)j∈J ← 0; Y ′ ← ∅ ; // current best complete solution
4 while there is uncovered demand d̄ do

// consider separate complete solution
5 if there exists jF = argmin

j∈J:κ(d̄)≤βj

cj then

6 if Y ′ = ∅ or c(Y ∪ jF) < c(Y ′) then // found new best solution?
7 replace Y ′ with Y ∪ jF and (x′j)j∈J with (xj)j∈J ;
8 x′jF

← x′jF
+ d̄; // update new best solution

9 jB ← argmax
j∈J

Score(j, d̄) ; // pick most efficient container

10 ∆ ← Fill(jB , d̄); // compute mix of commodities to assign

11 n ←
⌊
mini∈K:∆i 6=0

d̄i

∆i

⌋
; // compute multiplicity of assignment

12 Y ← Y ∪i=1···n {jB}; // add container copies
13 xjB

← xjB
+ n ·∆ ; // update assigned commodities

14 d̄← d̄− n ·∆ ; // compute remaining uncovered demand
15 if Y ′ 6= ∅ and c(Y) ≥ c(Y ′) then
16 return x′j , Y

′; // complete solution dominates partial solution

This method is the most versatile because it easily copes with properties or capacities of
value 0 and infeasible instances can be detected whenever there is remaining demand and no
container produces a nonzero filling. Furthermore, the minimization of slack leads to efficient
utilization of containers. However, a drawback of the method lies in the computational effort,
since a distinct LP for each container has to be solved in every iteration of Algorithm 1.

3.2 Greedy filling method
In order to achieve good container utilization without solving LPs, we devise a two-phase
greedy method. Both phases successively select and add commodities to a given container j
so as to approximate the capacity vector βj of the container with the aggregated properties
κ(∆) of the assigned commodity vector ∆. While Phase 1 can deal with zero-entries in
property and capacity vectors and can be used to detect infeasible instances, Phase 2 can
only be applied to instances with all nonzero properties and capacities.

The first phase adds commodities that minimize the residual capacity until one of the
capacity constraints becomes tight or the demand of every commodity is depleted. Assuming
that some commodity demands have already been added to ∆ let β̄j be the vector of residual
capacities of container j w.r.t. ∆. For any given vector of commodities δ ∈ QK+ , we denote
with linFrac the maximal fraction of δ that can be feasibly and uniformly assigned to a
container with residual capacities β̄j , defined by:

linFrac(δ, β̄j) := min
p∈P :κp(δ)6=0

β̄pj/κp(δ) .

Now the algorithm successively chooses a commodity i that minimizes the Euclidian norm of

F.G. König, J. Matuschke, and A. Richter 65

the vector of slacks after maximal feasible assignment of this commodity, i.e.,

i = argmin
i′∈K

‖β̄j −min{linFrac(d̄i
′
, β̄j) , 1} · κ(d̄i

′
)‖

where d̄i = (0, . . . , d̄i, . . . , 0), and adds this amount of commodity i to the current vector ∆.
Phase 1 might incur an unnecessary slack in some capacities due to the greedy choice of

commodities. To improve on this, Phase 2 minimizes slack by focusing on a good mix of
assigned commodities: It adjusts the current ∆ so as to approximate the ray induced by the
capacity vector βj ∈ QP with a conic combination of property vectors αi of the available
commodities. More formally, we decompose the property space QP = V (βj)+V (βj)⊥ into the
linear subspace V (βj) spanned by the capacity vector βj and its orthogonal complement and
consider for each commodity i the unique decomposition of its property vector αi = vi + ui
with vi ∈ V (βj) and ui ∈ V (βj)⊥. The current commodity mix ∆ ∈ QK+ induces the
property vector

∑
i∈K ∆iαi =

∑
i∈K ∆ivi +

∑
i∈K ∆iui ∈ QP+. Our goal of approximating

the ray spanned by βj corresponds to minimizing the orthogonal deviation ‖
∑

∆iui‖. For
commodity ` ∈ K, we define λ` := 〈

∑
∆iui, u`〉/‖u`‖2. Note that λ`u` corresponds to

the projection of
∑

∆iui on V (u`). If λ` < 0, we augment ∆ by min{−λ`, d̄`} units of
commodity `, which leads to a decrease of the orthogonal deviation. We iteratively augment
∆ in this way until no additional improvement can be achieved by any commodity. Note
that the resulting vector ∆ might violate container capacities. We therefore scale ∆ down to
feasibility.

3.3 Fraction based scoring
From practical point of view, another computational bottleneck concerning running time is
the Score method, because Score has to be computed for every container in each iteration of
Algorithm 1. As mentioned above, a Score method can be defined depending on any of the
previous Fill methods, making Score as computationally expensive as Fill. Instead one can
define a less accurate but significantly faster method by Score(j,d̄) := (1/cj)linFrac(d̄,βj).
Note that this scoring only makes sense if all container capacities are strictly positive and
recall that linFrac(d̄,βj) is the fraction of the remaining demand d̄ that can be uniformly
assigned to the container. This fraction can be small compared to the maximum assignable
value of a single commodity. We will outline the tradeoff between running time and solution
quality due to a less accurate Score in Section 4.

3.4 Theoretical bound on running time
In order to obtain a theoretical bound on the running time of the heuristic, we again restrict
to instances with finite capacity variance and observe that every of the presented Fill
methods either returns a filling with at least one tight capacity constraint or all remaining
demand d̄ is used. This observation can be used to bound the total number of chosen
containers and to show pseudo-polynomial running time (see [9] for a formal proof).

I Theorem 4. The generic greedy algorithm (Algorithm 1) has pseudo-polynomial running
time for instances finite capacity variance.

Note that this theoretical worst-case bound does not yield any information on the practical
running time of the greedy algorithm on real world instances. In fact, our computational
results in Section 4 reveal this practical running time to be extremely low.

ATMOS’12

66 Multi-Dimensional Commodity Covering for Tariff Selection in Transportation

3.5 Cost estimators
In some applications of MDCC it is not important to compute an assignment of commodities
to containers, but merely an estimate on the incurred cost. Examples include shortest path
type algorithms where nodes are to be labeled with the cost of forwarding a given amount flow
to them. Hence, it is useful to investigate whether an algorithm for MDCC can be accelerated
when setting the actual choice of containers aside and only focusing on (approximate) cost.
Again, both presented estimators rely on all strictly positive properties and capacities, as
present in practice instances.

Covering relaxation (CR) We again consider relaxation A-MDCC from Section 2 to obtain
a very fast cost estimation. Recall its formulation:

min
{
c(y) : y ∈ ZJ+,

∑
j∈J

βpjyj ≥ κp(d) ∀ p ∈ P
}
.

We can heuristically solve this problem very efficiently by adjusting Algorithm 1 to directly
operate on a property vector κ̄ ∈ QP+ of residual uncovered properties instead of on the
residual commodity demand vector d̄, i.e., we reduce κ̄ by βj for each selected container
copy of type j. An appropriate scoring function with respect to κ̄ can be defined by
Score(j, κ̄) := 1/cj · minp∈P

{
βpj/κ̄ : κ̄p > 0

}
. As mentioned before, a solution to A-

MDCC does not necessarily yield a feasible solution for MDCC. However, for many real-
world instances, applying the adjusted variant of Algorithm 1 to CR proves to be a reasonable
estimate (see Section 4).

One dimensional covering restriction (CR1D) Like the covering relaxation, the one dimen-
sional covering restriction eliminates the computational effort arising from flow assignment
to containers. Differently from the above, however, we restrict a container’s filling to the
maximal uniformly assignable fraction of the total demand d. More formally, each container
j ∈ J is assigned a weight wj := min(1, linFrac(d, βj)) and the resulting one dimensional
covering problem, also known as minimum knapsack problem, can be written as:

min
y∈ZJ

+

{∑
j∈J

cjyj |
∑
j∈J

yjwj ≥ 1
}
.

We observe that by the definition of wj , a feasible solution to the above formulation always
yields a feasible solution to MDCC. To quickly obtain a heuristic solution, we can apply
a greedy algorithm given in [3] that is very similar to Algorithm 1 and has performance
guarantee two. Also, we benefit from significant speedups: At first, all containers can be
presorted in order of non-increasing score values defined as cj/wj and therefore need to be
considered exactly once in this order. Second, we omit any calls to Score or Fill methods.
While there also is an approximation scheme for the covering restriction [3], we emphasize
that running time is our major interest here, and therefore restrict to the basic version of
the greedy algorithm.

4 Computational study

We now evaluate the efficiency and solution quality attained by the algorithms presented in
the preceding section within a computational study on both, instances arising from real-world
logistics networks as well as randomly generated instances.

F.G. König, J. Matuschke, and A. Richter 67

4.1 Test instances
As mentioned in the introduction, the real world instances of MDCC considered in this
article arise as subproblems in a fixed charge multi-commodity network flow model for tactical
logistics optimization. Our project partner 4flow AG provided an extensive library comprised
by 145 networks aggregated from four recent and on-going customer projects in three different
industries (automotive, chemical, retail). Given a fixed flow pattern in such a network, an
optimal tariff selection for each link that carries flow has to be found and each such link
contributes an individual MDCC subproblem. Naturally, meta-heuristics consider a vast
amount of different intermediate flow patterns in their solving process, but we could observe
that the final, i.e., locally optimal flow patterns already introduce a representative subset of
those instances. We therefore restrict our study to MDCC instances arising from final flow
patterns obtained by various meta heuristics.

We observed that many of those instances are very easy to solve in the sense that they
allow for an optimal solution with only a single container. Note that for those instances an
optimal solution is always considered (and hence found) in line 5 of Algorithm 1. In order to
prevent numerous easy instances from dominating the outcome of the study we removed these
instances from the test set. The resulting instance sets are called Auto1, Auto2, Chemical
and Retail with 581, 647, 2867 and 4600 MDCC instances respectively. Though the number
of commodities present in the networks varies between 50 and 500, in extracted MDCC
instances only 10 commodities are found in averages. The number of different container
types varies from 6 to 38. In each instance two properties—mass and volume—are present.

We also generated three sets of random instances following some of the steps outlined in
[10] to test the performance of our algorithms on instances with more than two properties
and different other modifications. The main differences in performance are visible when
considering different numbers of properties. We therefore aggregate all instance sets with the
same number of properties and obtain sets “RandP2”, “RandP4” and “RandP8” with 2, 4
and 8 properties respectively, each containing 960 instances (see [9] for more details).

4.2 Tested configurations
We tested three promising configurations of the greedy framework, denoted by 1P/LP, 1P/2P,
and Fr/2P, as well as the two cost estimators CR and CR1D from Section 3.5. From previous
tests we could infer that using either LP-Based filling from Section 3.1 or the two-phase
greedy Fill method described in Section 3.2 for the scoring task exceeds acceptable running
times. Thus, Configurations 1P/LP and 1P/2P employ only the first phase of the greedy filling
algorithm to compute Score from the resulting filling. 1P/LP then computes a feasible filling
using the LP-based method, while 1P/2P uses the two-phase greedy method for this task. The
third configuration, Fr/2P, uses the fraction based scoring method together with two-phase
greedy filling. We compare the solutions computed by our solvers to the corresponding
near-optimal solutions obtained by solving the MIP formulation of MDCC and report the
gap in percent. Note that for the CR configuration, it is possible to underestimate the optimal
cost value. Whenever this happens, we compute the negative gap to the CPLEX solution cost
and consider its absolute value for averaging.

Algorithms have been implemented in C++ and compiled with gcc 4.6.2 on SuSE 12.1
Linux with kernel 3.1.0-1.2. Computations have been performed on a desktop machine with an
Intel Core Duo CPU (3.00GHz, 64 bit) and 4GB of memory (note that our implementations
make use of only one thread). We measure the running time as CPU user time and the
given values denote seconds. Since solving time for each individual instance lies within a few

ATMOS’12

68 Multi-Dimensional Commodity Covering for Tariff Selection in Transportation

Table 1 Optimality gaps and computation times of solvers and estimators on practice instances.

1P/LP 1P/2P Fr/2P CR CR1D
Instance Set Av-Gap Time Av-Gap Time Av-Gap Time Av-Gap Time Av-Gap Time

Auto1 2.144 1.96 3.153 0.73 17.900 0.18 18.695 0.02 28.442 <0.01
Auto2 0.222 1.67 0.228 0.49 0.334 0.13 0.548 0.01 0.801 0.01
Chemical 0.053 6.56 0.053 0.56 0.053 0.43 0.053 0.03 0.053 0.03
Retail 0.074 9.17 0.074 1.72 0.074 1.11 0.074 0.04 0.074 0.05

Table 2 Optimality gaps and computation times of solvers and estimators on random instances.

1P/LP 1P/2P Fr/2P CR CR1D
Instance Set Av-Gap Time Av-Gap Time Av-Gap Time Av-Gap Time Av-Gap Time

RandP2 1.801 63.59 4.176 50.25 3.736 5.56 3.731 0.13 7.341 0.03
RandP4 5.501 70.07 11.140 100.19 9.950 11.28 5.191 0.20 21.016 0.03
RandP8 8.128 102.77 33.751 159.67 33.509 14.83 8.273 0.36 46.291 0.03

hundredths of a second, we measure only the accumulated running time needed to solve a
whole instance set to avoid that inaccuracies distort the outcome. Furthermore, to rule out
possible errors due to system fluctuations we run every test ten times and report the average
time needed. The MIP formulation as well as the filling LP from Section 3.1 are solved with
CPLEX 12.1 [7]. Since proving optimality of MIPs is very time consuming for some of the
given instances, we impose a time limit of 10 seconds per instance which turned out to be
sufficient to achieve optimality gaps close to zero (see [9] for more details).

4.3 Results
Table 1 shows the averages over all gaps achieved by the respective solver for practice instance
sets. We can observe that the 1P/LP configuration achieves best solution quality with an
average gap of less than three percent on any set but has an up to 10 times longer running
time compared to the similar 1P/2P configuration. The latter one performs equally on
practice instances except for the Auto1 set. Fr/2P can yet improve on this running time by
up to 50% but looses significantly in solution quality on Auto1 instances. When looking
closer on Auto1 instances we found a larger variance in the densities of the commodities as
well as the highest average number of container types. While 1P/LP and 1P/2P cope well
with this more challenging setting and still produce reasonably small gaps, the estimators
and Fr/2P are less robust. We also note that all solver configurations perform equally well
on Chemical and Retail instances and the differences on the Auto2 set are marginal. The
two estimators CR and CR1D perform well on Chemical and Retail instances with results close
to the optimum cost value, while they achieve speed up factors of roughly ten compared to
the fastest heuristic solver. Deviations are marginally larger on Auto2 instances, however
they become obvious with average deviation of up to 30% on Auto1.

On the random instance sets (cf. Table 2), again solver 1P/LP achieves best solution
quality and is even faster than 1P/2P for sets with more than two properties. One reason
might be that Phase 2 of the greedy filling employed in 1P/2P considers all commodities
before it chooses one to be added to the current filling and that the average number of
commodities is much larger on random instances than on practice instances. Surprisingly
the roughly ten times faster Fr/2P solver achieves even slightly better solution quality than
1P/2P. We conclude that on random instances the more sophisticated scoring method used

F.G. König, J. Matuschke, and A. Richter 69

for 1P/2P does not pay off compared to heuristic scoring of Fr/2P. But in general, the impact
of less accurate heuristic filling on solution quality compared to the accurate LP based filling
grows with the number of properties. Estimators are significantly faster and achieve speed up
factors between 10 and 100 compared to the fastest heuristic Fr/2P. Despite this enormous
savings in running time, CR still achieves reasonably good cost estimates.

5 Conclusions and outlook

MDCC is a generalized covering problem that serves as a key component in a larger
transportation logistics model. We have studied this problem from theoretical and practical
perspective and developed different algorithmic approaches, whose quality we validated on a
broad set of practice as well as random instances.

By exploring connections to other covering problems, we established both a lower bound
on the achievable approximation factor of this problem, as well as an approximation algorithm
whose factor depends on the numerical structure of the input. In order to solve the problem
in practice, we developed a framework of greedy algorithms that is configurable for various
needs of the meta heuristic solvers it serves as a sub-routine:

If accurate solutions are desired, the configuration 1P/LP has the best performance on
most instance sets but relatively slow running time.
If good solution quality is sufficient, the configurations 1P/2P and Fr/2P run significantly
faster and produce good solutions on most instance sets.
If only estimates of the optimal solution values are needed, CR produces such estimates
with acceptable deviation of cost in very fast running times.

The MDCC in conjunction with our heuristic toolbox enables the design of transportation
models that capture complex tariff structures and at the same time remain accessible to
established optimization procedures.

Outlook While the reduction from SetCover in Section 2 resulted in a high number
of properties, this number is usually low in practical applications. Future research will
investigate the possibility of better—possibly constant factor—approximations for the special
case of a fixed property dimension. In order to capture more complex cost functions such as
graded linear tariffs, we propose two extensions to the model: shipping commodities may
incur an additional linear cost depending on the container they are assigned to, and the
number of copies of a particular container type might be bounded. While we hope that the
algorithms presented in this work are sufficiently robust to be adaptable to this generalized
setting, further experiments are needed to verify this claim.

References
1 T. Carnes and D. Shmoys. Primal-dual schema for capacitated covering problems. In

Integer Programming and Combinatorial Optimization, pages 288–302. Springer, 2008.
2 V. Chvátal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4(3):pp.

233–235, 1979.
3 J. Csirik, J. B. G. Frenk, M. Labbé, and S. Zhang. Heuristics for the 0–1 min-knapsack

problem. Acta Cybern., 10(1-2):15–20, 1991.
4 G. Dobson. Worst-case analysis of greedy heuristics for integer programming with nonneg-

ative data. Math. Oper. Res., 7(4):pp. 515–531, 1982.
5 U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.

ATMOS’12

70 Multi-Dimensional Commodity Covering for Tariff Selection in Transportation

6 Q. Hua, Y. Wang, D. Yu, and F. C. M. Lau. Dynamic programming based algorithms
for set multicover and multiset multicover problems. Theor. Comput. Sci., 411(26–28):pp.
2467–2474, 2010.

7 IBM ILOG CPLEX 12.1. Ref. Manual, 2009. http://www.ilog.com/products/cplex/.
8 S. G. Kolliopoulos and N. E. Young. Approximation algorithms for covering/packing integer

programs. J. Comput. Syst. Sci., 71(4):495 – 505, 2005.
9 F. G. König, J. Matuschke, and A. Richter. A multi-dimensional multi-commodity covering

problem with applications in logistics. Preprint 009-2012, TU Berlin, 2012.
10 J. Puchinger, G. R. Raidl, and U. Pferschy. The multidimensional knapsack problem:

Structure and algorithms. INFORMS J. Comput., 22:250–265, 2010.
11 A. Srinivasan. An extension of the Lovàsz local lemma, and its applications to integer

programming. In Proc. ACM-SIAM Sympos. Discrete Algorithms, pages 6–15, 1996.
12 A. Srinivasan. Improved approximation guarantees for packing and covering integer pro-

grams. SIAM J. Comput., 29(2):648–670, 1999.

http://www.ilog.com/products/cplex/

On the Complexity of Partitioning Graphs for
Arc-Flags∗

Reinhard Bauer, Moritz Baum, Ignaz Rutter, and
Dorothea Wagner

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany
firstname.lastname@kit.edu

Abstract
Precomputation of auxiliary data in an additional off-line step is a common approach towards
improving the performance of shortest-path queries in large-scale networks. One such technique
is the arc-flags algorithm, where the preprocessing involves computing a partition of the input
graph. The quality of this partition significantly affects the speed-up observed in the query
phase. It is evaluated by considering the search-space size of subsequent shortest-path queries, in
particular its maximum or its average over all queries. In this paper, we substantially strengthen
existing hardness results of Bauer et al. and show that optimally filling this degree of freedom
is NP-hard for trees with unit-length edges, even if we bound the height or the degree. On
the other hand, we show that optimal partitions for paths can be computed efficiently and give
approximation algorithms for cycles and trees.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases shortest paths, arc-flags, search space, preprocessing, complexity

Digital Object Identifier 10.4230/OASIcs.ATMOS.2012.71

1 Introduction

In recent years, route planning has become a widely known application of algorithm engineer-
ing. Although Dijkstra’s algorithm [6] is of polynomial-time complexity on arbitrary graphs,
its performance on large realistic graphs is not acceptable for practical applications. Speed-up
techniques that yield improved query times split the work into two parts. In the off-line phase
a precomputation step is executed on the input graph to gain additional information about
the underlying network. The retrieved data is then used during the on-line phase to improve
the performance of shortest-path queries. For a survey of recent approaches exploiting this
pattern we refer to Delling et al. [5]. Here, we focus on one particular technique. The idea of
arc-flags was first introduced by Lauther [9]. The basic approach was exhaustively evaluated
in experimental studies, see for example Köhler et al. [8] and Möhring et al. [11]. Moreover,
it was combined with other techniques in order to gain additional speed-up [2, 3].

We use the following definition of arc-flags. Given a directed graph G = (V,E) and a
partition C = {C1, . . . , Ck} of V into cells, the arc-flags for a directed edge e ∈ E consist of k
binary flags, where the i-th flag is set if and only if e is part of some shortest path to a target
node belonging to the cell Ci. In a query to a node t lying in cell Cj , all edges whose j-th
flag is not set may safely be ignored, as no shortest path to any node in cell Cj contains e.

∗ Partially supported by DFG grant WA 654/16-2, by BMWi grant iZeus, and by the EU FP7/2007-2013
(DG INFSO.G4-ICT for Transport), under grant agreement no. 288094 (project eCOMPASS).

© Reinhard Bauer, Moritz Baum, Ignaz Rutter, and Dorothea Wagner;
licensed under Creative Commons License ND

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti; pp. 71–82

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2012.71
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

72 On the Complexity of Partitioning Graphs for Arc-Flags

Table 1 Complexity of the two examined problems on different graph classes.

Worst Case Average Case
Graph Class directed undirected directed undirected

Paths O(|V |) O(|V |) O(|V |) O(|V |)
Cycles O(|V |) OPT + 1 O(|V |) P 1

Trees (h ≤ 2) NPC NPC NPC NPC
Trees (∆ ≤ 3) NPC NPC ? ?

The preprocessing of the arc-flags algorithm computes a partition C of the input graph into k
cells and detects the corresponding arc-flags. Observe that the flags are uniquely specified by
the partition. In particular, the i-th flag of an edge only depends on the nodes contained in
cell Ci. Thus, the only degree of freedom in the preprocessing is the choice of C.

Although the outstanding performance of the arc-flags algorithm has been substantiated in
many experimental studies, little is known about its theoretical backgrounds. Yet, theoretical
analysis is a vital aspect of algorithm engineering. The choice of the partition C has a large
impact on query times in the on-line phase. Bauer et al. prove that it is is NP-hard to
compute a partition that minimizes the average search-space size (sss) of on-line queries [1].
However, the graph used in their reduction has a number of properties unlikely to be shared
by realistic instances.

1. The graph includes a huge cycle that is an inherent part of the reduction. Since the graph
is not acyclic, it does not apply to time-expanded graphs typically used in time-table
queries [12].

2. The graph contains substantially differing edge weights.
3. The graph is not strongly connected, and for undirected graphs the complexity is still

open.
4. The graph is unusually dense; it contains a quadratic number of edges.

Contributions and Outline. We substantially strengthen known results about the complex-
ity of preprocessing arc-flags. We examine several restricted classes of graphs and establish a
border of tractability for this problem. Besides the previously used average sss as a quality
measure we also consider the worst-case sss for assessing the quality of partitions. Moreover,
we consider directed as well as undirected graphs.

We present preliminaries in Section 2. In Section 3, we show that computing a partition
that minimizes the worst-case sss is NP-hard, both for directed and for undirected unit-
weight trees. These results hold for binary trees as well as trees with limited height of at
most 2. On the other hand, we present an approximation algorithm for general trees with
arbitrary edge weights. For cycles the number of cells k necessary to bound the sss by a
given value W can be approximated within an additive constant of 1. For the average sss, we
show that it is NP-hard to compute an optimal partition both for directed and undirected
trees in Section 4. These results hold for the case of unit-weight edges and restricted height.
For paths an optimal partition can be computed efficiently, and the same holds for cycles if
we force cells to be connected. Table 1 shows an overview of our results. We conclude our
work and discuss open questions in Section 5.

1 We present a polynomial-time algorithm that computes optimal connected cells.

R. Bauer, M. Baum, I. Rutter, and D. Wagner 73

2 Preliminaries

We assume familiarity with basic concepts from graph theory and shortest-path search; see
the book by Cormen et al. [4] for foundations in this area. We consider directed weighted
graphs, denoted by a triple G = (V,E, ω), where ω is a weight function. Our treatment
of undirected graphs is somewhat non-standard, as depending on the direction of traversal,
an undirected edge may have different arc-flags set. Thus, we model undirected edges as a
pair of two separate, oppositely oriented edges of the same weight between the endpoints.
The size of a path P = 〈v1, . . . , vk〉 is the number k of nodes it contains. The length of P
is ω(P) =

∑k−1
i=1 ω(vi, vi+1) and the distance between two nodes s and t is denoted by d(s, t).

We say that a cell C ⊆ V is (strongly) connected if the subgraph induced by C is (strongly)
connected. A directed tree with root node r is a tree in which all edges point away from r

towards the leaves.

Dijkstra’s Algorithm, Arc-Flags, and Search Spaces. Dijkstra’s algorithm [6] solves the
single-source shortest path problem on directed graphs with non-negative edge weights. It
manages a priority queue, which initially contains only the source node. In each step, it
extracts the node u from the queue with smallest distance label. We say that the node u
is settled at this time. We assume that each node has a unique index in {1, . . . , |V |} that
determines the extracted node if there are two or more nodes with minimum key. Next, any
edge (u, v) outgoing from u is relaxed, that is, the distance label of v is updated if this edge
yields a shorter path from the source node to v via u. In an s-t-query, the algorithm may
stop once the target node t is settled (at this point the correct distance as well as a shortest
path is known). The query of the arc-flags algorithm modifies this procedure slightly; it
relaxes only edges whose flag for the target cell is set, while all other edges are ignored.

Given a graph G and a partition C, the search space of an s-t-query is the set of all nodes
settled by the query algorithm and its cardinality is denoted by S(G, C, s, t). As long as
the considered graph is sparse (which holds for realistic instances of street networks), the
query time is proportional to S(G, C, s, t). Therefore, the sss provides a machine-independent
efficiency measure which is also commonly used in experimental studies (see, e.g., Delling et
al. [5]). To assess the quality of C we use either the worst-case efficiency, i.e., Smax(G, C) :=
maxs,t∈V S(G, C, s, t) or the average sss over all queries Savg(G, C) :=

∑
s,t∈V S(G, C, s, t).

To obtain the actual average sss we would need to divide Savg(G, C) by |V |2. Since the
corresponding measure only differs by the fixed factor |V |2, we omit this. If G and C are
clear from the context, we may omit both from the notation.

Algorithmic Problems. All reductions in this work are made from the strongly NP-hard
problem 3-Partition [7]. An instance of 3-Partition is a tuple (S,B), where B is a
positive integer and S = {s1, . . . , s3m} is a set of 3m elements, such that each element si

is associated with a weight B/4 < ωi < B/2 and
∑3m

i=1 ωi = mB. The instance (S,B) is a
Yes-instance if and only if there exists a partition of S into m subsets Sj , j ∈ {1, . . . ,m},
such that for all j it is |Sj | = 3 and the weight of each subset equals B, i.e.,

∑
si∈Sj

ωi = B.
Since the problem is strongly NP-hard, we may use unary encodings of the element weights
in our reductions. The task considered in this work is to find a partition of a graph that
yields low sss. More precisely, given a graph G and a positive integer k, the problems
MinWorstCasePartition and MinAvgCasePartition are to find a partition C with at
most k cells that minimizes Smax or Savg, respectively.

ATMOS’12

74 On the Complexity of Partitioning Graphs for Arc-Flags

3 Minimizing the Worst-Case Search-Space Size

In the following, we examine the problem MinWorstCasePartition on certain restricted
classes of graphs. We present efficient (approximation) algorithms for paths and cycles and
show NP-hardness for directed and undirected trees.

3.1 Paths and Cycles

Observe that on a path, the worst-case sss always occurs in a query between its endpoints,
regardless of the underlying partition. Hence, the worst-case sss is always |V |. A similar
argument holds for directed cycles.

To examine undirected cycles, we consider the following problem that is strongly related to
MinWorstCasePartition. We are given as input an undirected cycle G = (V,E, ω) and a
desired worst-case sss W , and the task is to compute a partition of minimum cardinality such
that the induced worst-case sss is at most W . Observe that solving this problem efficiently
immediately yields a polynomial-time algorithm for MinWorstCasePartition, as we can
use binary search to obtain the minimum bound W that allows a partition with at most k
cells. In what follows, let kopt(G,W) denote the minimum number of cells that is necessary
to achieve a worst-case sss of at most W on G. Clearly, the shortest path of maximum size
yields a lower bound L on the worst-case sss. For W ≥ L, we approximate kopt(G,W).

I Theorem 1. Given an undirected cycle G and a positive integer W ≥ L, a partition C
with kopt(G,W) + 1 cells and Smax(G, C) ≤W can be computed in polynomial time.

Proof. For simplicity, assume that all shortest paths in G = (V,E, ω) are unique. Consider
the shortest-path tree Ts rooted at an arbitrary node s. Since G is a cycle, there is exactly
one undirected edge es that is not in Ts, called the cut edge of s. We assign to each node t
the sss of a Dijkstra search from s to t. Note that each target node t gets a distinct number
in {1, . . . , |V |}, its Dijkstra rank with respect to s. Obviously, nodes on the two branches
of Ts originating at s have ascending ranks. Consider a pair s and t of nodes such that the
Dijkstra rank of t with respect to s is in {W + 1, . . . , |V |} and let Ct be the cell containing t.
Recall that the nodes assigned to Ct completely determine the sss of all arc-flags queries to t.
To make sure that the sss of an s-t-query is at most W , we have to ensure that the arc-flags
query prunes the search at the branch of Ts that does not contain t. This is achieved by
assigning nodes that cause a large sss to cells distinct from Ct. More precisely, we determine
the set Xt of nodes such that maxs∈V S(s, t) ≤W if and only if Ct ∩Xt = ∅.

Assume we traverse the cycle starting at t in both directions. Let eu and ev be the
first edges in the respective direction that are cut edges for some nodes u, v ∈ V . Consider
the backward shortest-path tree of t, i.e., the shortest-path tree of t obtained if edges are
traversed in reverse direction. Edges in this tree have the flag for Ct set. If we omit edge
directions, this tree coincides with Tt. Let et be its cut edge. Removing eu, ev, and et from
G yields three connected components Gu,v, Gu,t and Gv,t with t in V (Gu,v), see Figure 1.

I Claim 1. The set Xt is determined as follows.
(1) V (Gu,t) ⊆ Xt if S(s, t) > W for a node s ∈ V (Gv,t), and V (Gu,t) ∩Xt = ∅ otherwise.
(2) V (Gv,t) ⊆ Xt if S(s, t) > W for a node s ∈ V (Gu,t), and V (Gv,t) ∩Xt = ∅ otherwise.
(3) V (Gu,v) ∩Xt = ∅.

Next, consider the sets Ut = {w ∈ V (Gu,v) | Xw ⊇ V (Gv,t)} and U ′t = {w ∈ Gu,v | Xw ⊇
V (Gu,t)} of nodes in Gu,v whose sets Xw share a subgraph of G.

R. Bauer, M. Baum, I. Rutter, and D. Wagner 75

Gv,t

Gu,t

Gu,v ev

t

eu

et

Figure 1 The three subgraphs Gu,v, Gu,t, and Gv,t with respect to a certain node t.

I Claim 2. If Ut 6= ∅, it contains an endpoint of ev. If U ′t 6= ∅, it contains an endpoint of eu.
Both Ut and U ′t induce connected subgraphs of G.

We omit the proofs of both claims. Because all nodes in Ut lie between two consecutive
cut edges, it follows from Claim 1 that it is either Ut ⊆ Xw or Ut ∩Xw = ∅ for all nodes w
of the graph. Thus, restricting to partitions where all nodes in the set Ut are assigned to the
same cell neither causes the sss to exceed W nor does it increase the number of necessary
cells. The same holds for the set U ′t .

Summarizing the sets of nodes t, t′ where Ut = Ut′ or Ut = U ′t , we obtain a number of
distinct connected subsets Ui ⊆ V (connectivity holds by Claim 2). Each set Ui corresponds
to a set Xi 6= ∅, such that nodes in Xi must not be assigned to the cell that contains Ui. It
is easy to see that at most two sets Ui, Uj with Xi, Xj 6= ∅ can be put into the same cell
(roughly speaking, this is due to the fact that each set Xi blocks one of two branches of
a corresponding shortest-path tree). We can find a minimum number of cells for the sets
Ui if we find a maximum matching of them, where two sets Ui and Uj can be matched if
and only if Ui ∩Xj = Uj ∩Xi = ∅. This can be done in polynomial time [10] and yields a
lower bound k ≤ kopt(G,W) on the necessary number of cells. Finally, we have to assign
all remaining nodes u with Xu = ∅. A sophisticated matching may possibly allow for an
exhaustive assignment of these nodes to cells that are already used. However, this appears
to be difficult to guarantee in general. Instead, we use an extra cell and assign all nodes
u with Xu = ∅ to this cell, and therefore we use at most one more cell than necessary. In
summary, given a bound W on the worst-case sss we can compute a partition that needs at
most k + 1 ≤ kopt(G,W) + 1 cells. J

3.2 Hardness Results for Trees
We prove hardness on trees with uniform edge weights and height 2 in Theorem 2 given
below. Hence, the problem MinWorstCasePartition remains NP-hard even with severe
restrictions to the graph structure.

I Theorem 2. The problem MinWorstCasePartition is NP-hard for rooted directed
trees of height at most 2, even in the case of uniform edge weights.

Proof. We reduce from 3-Partition. Given an instance (S,B) of 3-Partition, we construct
(in polynomial time) an instance (T,m) of MinWorstCasePartition as follows. For each
element sp ∈ S, we create a limb `p consisting of one element node sp, ωp − 1 weight nodes,
and directed edges from sp to all its weight nodes. We add a root node r along with directed
edges connecting r to all element nodes sp; see Figure 2 for an example. We claim that (T,m)
admits a partition with worst-case sss at most B + 1 if and only if (S,B) is a Yes-instance.

ATMOS’12

76 On the Complexity of Partitioning Graphs for Arc-Flags

r
s1

Figure 2 The reduction of an instance with m = 2, B = 11 and weights 3, 3, 3, 4, 4, 5.

Assume (S,B) is a Yes-instance and S1, . . . , Sm a corresponding solution. Let C =
{C1, . . . , Cm} be the partition where Ci consists of all nodes of limbs corresponding to
elements of Si, and additionally r ∈ C1. We have |C1| = B + 1 and |Ci| = B for i ≥ 2. The
sss S(s, t) of an arbitrary s-t-query with s 6= r is bounded by dB/2− 1e, the maximum size
of a limb. Consider queries starting at r. Clearly, a query to an arbitrary target node t never
settles nodes outside the cell of t except for r itself. Hence, for queries into any cell Ci, i ≥ 2,
the sss cannot exceed B + 1, and the same holds for C1, as it already contains r.

Conversely, assume that C = {C1, . . . , Cm} is a partition of T inducing a worst-case
sss of at most B + 1. Without loss of generality, assume that r ∈ C1. We call C balanced
if |C1| = B + 1 and |Ci| = B for i ≥ 2. A limb `j is monochromatic if all its nodes belong to
the same cell. A balanced partition containing only monochromatic limbs is called perfect.
Clearly, a perfect partition corresponds to a solution of 3-Partition and it suffices to show
that C is perfect.

Observe that each cell Ci contains a distinct target node ti such that all nodes of Ci are
settled in an r-ti-query (because the order in which nodes are settled from a fixed source
node is deterministic). Together with the fact that r is settled in every such query, this
implies that |C1| ≤ B+ 1 and |Ci| ≤ B for i ≥ 2. Since the total number of nodes is mB+ 1,
these conditions must be satisfied with equality, and thus C is balanced. Now, assume for a
contradiction that there is a limb `p that is not monochromatic, and let sp be the element
node of `p. Then there exists a weight node of `p that is assigned to a cell Ci different from
the cell of sp. Now, the query from r to ti ∈ Ci settles r, all nodes in Ci and additionally sp,
resulting in a sss of at least B + 2; a contradiction. Hence, all limbs are monochromatic and
the claim follows. J

Modifying the reduction used in Theorem 2, we can also prove hardness if we limit the
maximum outdegree of a tree to a constant greater or equal 2.

I Theorem 3. MinWorstCasePartition is NP-hard for rooted directed trees with a
maximum outdegree of at most 2, even in case of uniform edge weights.

Moreover, we consider undirected trees. Using a very similar reduction compared to the
proof of Theorem 2, we obtain the following result.

I Theorem 4. MinWorstCasePartition is NP-hard for undirected trees with height at
most 2, even in case of uniform edge weights.

Again, this proof carries over to the case where the degree is restricted to 3. Note that a
maximum outdegree of 2 leads to the trivial graph class of paths.

I Theorem 5. MinWorstCasePartition is NP-hard for undirected trees with a maximum
degree of at most 3, even in case of uniform edge weights.

Restricting both the degree and the height of the tree restricts its size, and thus renders
the problem MinWorstCasePartition efficiently solvable. Essentially, the remaining class

R. Bauer, M. Baum, I. Rutter, and D. Wagner 77

of trees that we have not covered so far is the class of stars (i.e., trees with height at most 1).
Considering a directed star, the sss of a query starting at an arbitrary leaf is 1. On an
undirected star, starting from a leaf, the second node that is settled is always the root node.
Hence, in both cases it suffices to minimize the worst-case sss of queries from the root node.
Clearly, this is achieved if the cell sizes are balanced. In total, we obtain a tight border of
tractability for the problem MinWorstCasePartition.

3.3 An Approximation Algorithm for Trees
We present an algorithm that approximates the optimal worst-case sss with a given number of
cells within a factor of 5/2 and 3 for undirected and directed trees, respectively. The essential
task concerning the instances constructed in the proof of Theorem 2 is to find balanced cells
that are almost connected. We exploit this observation to derive an approximation algorithm.
We say that a cell C of a partition C given a graph T = (V,E, ω) is 1-disconnected if there is
a node v ∈ V such that C ∪ {v} induces a connected subgraph of T .

We describe the algorithm TreeApprox that, given an undirected tree T (if T is directed,
we simply ignore edge directions) and a parameter k, computes at most k 1-disconnected cells
of size at most 2d|V |/ke. Starting from the leaves of the tree, we traverse it in a bottom-up
fashion and keep track of the size of the subtree induced by each node. Once a node v
is reached whose subtree contains at least sv ≥ d|V |/ke nodes, we assign all nodes in this
subtree including v to c = max{a ∈ N | a · d|V |/ke ≤ sv} newly introduced cells. For each
descendant w of v, we add the subtree rooted at w to one of the c new cells such that the
cell size does not exceed 2d|V |/ke. The subtree rooted at v is removed and the algorithm
continues recursively until T contains less than d|V |/ke nodes. All remaining nodes are put
into a final new cell, which is added to C as well. The partition C generated by the algorithm
fulfills the following desired conditions.

I Lemma 6. Given input parameters T = (V,E, ω) and k, the algorithm TreeApprox
terminates and computes a partition C = {C1, . . . , Ck′} satisfying the following properties.
(a) All cells Ci ∈ C are 1-disconnected.
(b) For all Ci ∈ C it is |Ci| ≤ 2d|V |/ke.
(c) The number of cells k′ in the computed partition C is at most k.

We prove approximation guarantees for the algorithm TreeApprox. Theorem 7 provides
a first bound, which can be improved for undirected trees.

I Theorem 7. Algorithm TreeApprox is a 3-approximation for MinWorstCaseParti-
tion on directed and undirected trees.

Proof. Let C = {C1, . . . , Ck′} be the output of algorithm TreeApprox given the input
parameters T = (V,E, ω) and k. Let ALG denote the worst-case sss induced by C and OPT
the optimal worst-case sss for T and k. Since all cells in C are 1-disconnected, after entering
the target cell, a query settles at most one more node outside this cell. Moreover, only
edges pointing towards the target cell have the corresponding flag set. Hence, a worst-case
query into a given cell Ci settles at most all nodes in Ci plus an additional node, and the
largest possible path outside Ci leading into this cell. Let Ps,t denote the unique s-t-path for
any s, t ∈ V and let ∆ = maxs,t∈V |Ps,t| be the diameter of T . Clearly, the worst-case sss
is bounded by ALG ≤ max1≤i≤k′{∆ + |Ci|} ≤ ∆ + 2d|V |/ke ≤ 3 ·max{∆, d|V |/ke} (note
that the longest path of size ∆ is at least as large as the longest path outside Ci plus the
additional node possibly settled). On the other hand, an optimal partition contains at least
one cell of size at least d|V |/ke and there is a query that settles all nodes of this cell. Since

ATMOS’12

78 On the Complexity of Partitioning Graphs for Arc-Flags

the diameter is a lower bound on the worst-case sss, the optimal solution for T must be
OPT ≥ max{∆, d|V |/ke} (this holds for directed trees as well, since there must exist a root
node from which all nodes are reachable). It follows immediately that ALG ≤ 3 ·OPT. J

A more sophisticated analysis leads to an improvement of the lower bound on the optimal
solution for undirected trees and yields the following guarantee.

I Theorem 8. Algorithm TreeApprox is a 5/2-approximation for MinWorstCasePar-
tition on undirected trees.

4 Minimizing the Average Search-Space Size

Since MinAvgCasePartition is NP-hard in general [1], we investigate restricted input
instances. Along the lines of Section 3, we examine paths, cycles, stars, and trees.

4.1 Paths and Cycles
First, we consider paths. Given a graph consisting of a single undirected path P and a
parameter k, let the partition Copt consist of k connected cells C1, . . . , Ck of balanced size,
i.e., |Ci| ∈ {b|V |/kc , d|V |/ke} for all 1 ≤ i ≤ k.

I Theorem 9. Let P be an undirected path and k a positive integer. The partition Copt
described above yields an optimal partition if k bounds the number of cells.

The following Theorem 10 shows that the partition Copt optimizes the average sss on
directed paths as well. The proof is very similar to the undirected case.

I Theorem 10. Let P be a directed path and k a positive integer. The partition Copt described
above yields an optimal partition if k bounds the number of cells.

Observe that the sss of queries in a directed cycle is independent of the underlying
partition, rendering the problem trivial for these graphs. On the other hand, we have seen
in Section 3.1 that finding optimal cells on undirected cycles is nontrivial for worst-case
optimization. Since the average-case minimization seems more difficult in general, we make
the following simplification. We present an algorithm that computes optimal connected cells
for cycles. Note that in general, an optimal partition may require disconnected cells, as
shown in Figure 3. Here, x is a large number while all other edge weights are 1. It can be
shown that an optimal partition with at most four cells inherently contains the disconnected
white cell. The rough idea is that making A,B, and C cells of the partition results in a
very small sss of all queries into these comparatively large cells. Since the number of cells is
bounded by four, this leaves the two remaining (disconnected) nodes for the last cell.

The algorithm is based on the following observation. After choosing an orientation of the
cycle G = (V,E, ω), a connected cell Cu,v is uniquely described by two border nodes u and v,
such that Cu,v contains all nodes encountered when traversing the cycle from u to v along
the chosen orientation, including u and v. Recall from the introduction that the flags for the
cell Cu,v only depend on Cu,v. Thus, given Cu,v, the sss SC(u, v) =

∑
s∈V,t∈Cu,v

S(s, t) of all
s-t-queries with an arbitrary source s ∈ V and a target t ∈ Cu,v can be computed efficiently.

Using this observation, we describe a dynamic programming approach to compute optimal
connected cells on undirected cycles. Let V = {v1, . . . , v|V |} be indexed along the orientation
of G and without loss of generality, we assume that v1 is the left boundary of a cell in an
optimal partition (to preserve correctness, we simply consider each node vi as the starting

R. Bauer, M. Baum, I. Rutter, and D. Wagner 79

2x

x

x x

x

CA

B

Figure 3 An example of a cycle with an optimal partition containing a disconnected cell.

point once). We define a two dimensional |V | × k-table T , where T [i, `] is the optimal sss of
all s-t-queries with s ∈ V and t ∈ {v1, . . . , vi} provided that v1, . . . , vi are partitioned into `
distinct cells. We initialize the first row by setting T [i, 1] = SC(v1, vi). Moreover, T satisfies
the following recurrence relation.

T [i, `] = min
1≤j≤i−`+1

T [i− j, `− 1] + SC(vi−j+1, vi), for i ≥ ` ≥ 2.

This follows directly from the fact that the sss of queries into the `-th cell is independent
of the choice of the first `− 1 cells. Using this recurrence, the table entries can be filled in
polynomial time. By definition, T [n, k] is the sss of an optimal partition that contains the
boundary v1. By keeping track of the boundary nodes yielding the table entries, a partition
with this sss can be computed in the same running time. We have the following theorem.

I Theorem 11. The problem MinAvgCasePartition on cycles can be solved in polynomial
time if partitions are restricted to strongly connected cells.

Clearly, replacing SC(u, v) by the corresponding worst-case sss and taking the maximum
instead of the sum in the recurrence yields an algorithm that computes connected cells with
minimum worst-case sss.

4.2 Hardness Results for Trees
We show that provided P 6= NP, there is no efficient algorithm that can guarantee to find
optimal cell assignments on undirected trees.

I Theorem 12. MinAvgCasePartition is NP-hard on undirected trees with uniform edge
weights and a maximum height of 2.

Proof. We use the reduction given in the proof of Theorem 4 to construct a tree T = (V,E, ω)
from an instance (S,B) of 3-Partition. Let the root r have the smallest index in the
ordering that is used for tie breaks in the query, that is, in any s-t-query, r is settled before
all other nodes v with distance d(s, v) = d(s, r). We establish a bound Γ such that (T,m)
admits a partition C with Savg ≤ Γ if and only if (S,B) is a Yes-instance.

Assume (S,B) is a Yes-instance and S1, . . . , Sm a corresponding solution. Consider the
partition C = {C1, . . . , Cm} where Ci contains all nodes of limbs corresponding to elements
in Si, and r ∈ C1. We have |C1| = B + 1 and |Ci| = B for i ≥ 2. We distinguish queries
starting from three different types of nodes.

For a query starting at r, we know that besides r, no nodes outside the target cell are
settled. For every cell Ci and every index 1 ≤ j ≤ |Ci|, there is a distinct node ti,j such

ATMOS’12

80 On the Complexity of Partitioning Graphs for Arc-Flags

that the query from r to ti,j settles exactly j nodes of Ci. Therefore, the total sss of queries
from r to nodes in C1 is

∑
t∈C1

S(r, t) =
∑B+1

j=1 j = (B + 1)(B + 2)/2. For Ci with i ≥ 2, we
obtain

∑
t∈Ci

S(r, t) = B + B(B + 1)/2, because r is additionally settled in each of the B
queries. This yields

γ1 :=
∑
t∈V

S(r, t) = |V |+m · B(B + 1)
2 , where |V | = mB + 1.

Next, consider queries starting at an element node sp. The node sp is settled in every
query. Since r has the least index regarding tie breaks and all flags on all incoming edges of r
are set, the second node settled, if any, is always r. Let S(u, v) denote the set of settled nodes
in an u-v-query. Clearly, we have

∑
t∈V |S(sp, t) ∩ {sp, r}| = 2 |V | − 1 and besides sp and r,

no node outside the target cell is settled in an sp-t-query. For a cell Ci ∈ C, the total number
of nodes in Ci \ {sp, r} settled in queries from sp equals |Ci \ {sp, r}|(|Ci \ {sp, r}|+ 1)/2.
Observe that we have |Ci \ {sp, r}| = B if sp /∈ Ci and |Ci \ {sp, r}| = B − 1 otherwise. For
the sss of all queries originating at sp, this yields

γ2 :=
∑
t∈V

S(sp, t) = 2|V | − 1 + (m− 1)B(B + 1)
2 + B(B − 1)

2 .

Finally, we account for queries from a leaf wp,q of the tree. We know that wp,q is
settled in all |V | distinct queries starting at wp,q. The corresponding element node sp

is the only reachable node from wp,q and is always settled unless we have s = t = wp,q.
As we observed before, the first note settled after sp (if any) is always r, leaving us with∑

t∈V |S(wp,q, t) ∩ {wp,q, sp, r}| = 3 |V | − 3. Along the lines of the argumentation for the
element-node case, we infer a sss for the remaining parts of queries from wp,q that equals
|Ci \ {wp,qsp, r}|(|Ci \ {wp,q, sp, r}|+ 1)/2 for each cell Ci ∈ C. We obtain the following sss
for queries from an arbitrary leaf wp,q.

γ3 :=
∑
t∈V

S(wp,q, t) = 3|V | − 3 + (m− 1)B(B + 1)
2 + (B − 1)(B − 2)

2 .

The tree T consists of one root node, 3m element nodes and mB−3m weight nodes. Thus,
setting Γ = γ1 + 3mγ2 +m(B − 3)γ3, we can assure that the inequality

∑
s,t∈V S(s, t) ≤ Γ

stated above is fulfilled by the partition C.
For the other direction, assume we are given a partition C = {C1, . . . , Cm} of T such that

the resulting sss is at most Γ. We show that T corresponds to a Yes-instance of 3-Partition.
Again, we divide the sss into three components and distinguish queries with respect to their
source nodes. Without loss of generality, assume that r ∈ C1. Then it suffices to show that C
is perfect (cf. Theorem 2). To this end, we show that Γ in fact yields a tight lower bound
on the total sss of T that is only reached if C is perfect. For every source node s ∈ T we
determine a subset U ⊆ V such that

∑
t∈V |S(s, t) ∩ U | is independent of the underlying

partition C. Observe that we actually did this before in order to obtain the values of γ1,
γ2, and γ3. To account for the remaining parts of the search spaces, consider the subgraph
induced by the nodes in V \ U . For each target cell Ci ∈ C, there are ci := |Ci ∩ (V \ U)|
distinct s-t-queries with t ∈ Ci ∩ (V \ U) and these ci nodes are settled in a deterministic
order. Thus, the overall sss of queries from s into the cell Ci within the considered subgraph
must be at least

∑
t∈Ci\U |S(s, t) \ U | ≥ ci(ci + 1)/2. In order to reach this lower bound,

one has to ensure that in no such query, nodes from another cell are additionally settled.
Following this approach, we can show the following claim.

R. Bauer, M. Baum, I. Rutter, and D. Wagner 81

I Claim 3. The terms γ1, γ2, and γ3 are tight lower bounds on the average sss of queries
from the root node, an element node, or a leave of the tree, respectively. To reach the lower
bound γ1, the underlying partition must be perfect.
We omit the rather technical proof here. Since only a Yes-instance admits a perfect partition,
this completes the proof. J

The next theorem shows that the problem MinAvgCasePartition is NP-hard for
directed trees, a subclass of directed acyclic graphs. Since directed acyclic graphs occur in
the form of time-expanded graphs in time-dependent scenarios [12], this result is of vast
importance for practical applications.

I Theorem 13. MinAvgCasePartition is NP-hard on directed trees with uniform edge
weights and a maximum height of 2.

The outline of the proof of Theorem 13 is similar to the proof of Theorem 12. Replacing
undirected edges by directed ones in the reduction, we first examine the sss of a perfect
partition. Then we can show that this bound yields a tight lower bound on the sss that is
reached if and only if the partition of the graph is perfect.

Finally, we mention that MinAvgCasePartition on stars can be solved efficiently.
Using arguments similar to the worst-case analysis at the end of Section 3.2, it is easy to see
that balanced cell sizes yield optimal partitions. Thus, we have established a border between
hard instances and those solvable in polynomial time for the average case as well.

5 Conclusion

We investigated the complexity of the computational problems MinWorstCasePartition
and MinAvgCasePartition concerning graph partitioning for arc-flags on several classes
of graphs. It turned out that in both cases, solving even very restricted classes of trees
is NP-hard. This yields a substantial improvement of the known general hardness result.
Together with the efficiently computable partitions on paths and stars, our results also
provide a tight border of tractability for both problems. In addition to that, it seems that
the introduction of cycles, and thus ambiguity of shortest paths, vastly increases the difficulty
of the problems. In fact, the complexity of both problems remains unknown on cycles.

As an insight from the analysis of trees, a major difficulty seems to be the computation of
connected cells of balanced size. Both the reductions used and the approximation algorithm
presented support this hypothesis. One may take this as a theoretical approval of practical
heuristics, which essentially aim at finding cells that have such structure. The obtained
hardness results were similar for both problems on all examined graph classes. Since the
worst-case sss seems to allow for a much simpler examination, the investigation of the problem
MinWorstCasePartition provides a reasonable alternative to gain further insights into
the complexity of preprocessing arc-flags or speed-up techniques in general.

Besides the complexity of cycles, the primary open question would be whether there
exist better approximation algorithms or inapproximability results for trees as well as more
general classes of graphs.

References
1 Reinhard Bauer, Tobias Columbus, Bastian Katz, Marcus Krug, and Dorothea Wagner.

Preprocessing Speed-Up Techniques is Hard. In Proceedings of the 7th Conference on
Algorithms and Complexity (CIAC’10), volume 6078 of Lecture Notes in Computer Science,
pages 359–370. Springer, 2010.

ATMOS’12

82 On the Complexity of Partitioning Graphs for Arc-Flags

2 Reinhard Bauer and Daniel Delling. SHARC: Fast and Robust Unidirectional Routing.
ACM Journal of Experimental Algorithmics, 14(2.4):1–29, August 2009. Special Section on
Selected Papers from ALENEX 2008.

3 Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes,
and Dorothea Wagner. Combining Hierarchical and Goal-Directed Speed-Up Techniques for
Dijkstra’s Algorithm. ACM Journal of Experimental Algorithmics, 15(2.3):1–31, January
2010. Special Section devoted to WEA’08.

4 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT Press, Cambridge, MA, USA, 2nd edition, 2001.

5 Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineering Route
Planning Algorithms. In Jürgen Lerner, Dorothea Wagner, and Katharina A. Zweig, editors,
Algorithmics of Large and Complex Networks, volume 5515 of Lecture Notes in Computer
Science, pages 117–139. Springer, 2009.

6 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271, 1959.

7 Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, San Francisco, CA, USA,
1979.

8 Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Acceleration of Shortest Path and
Constrained Shortest Path Computation. In Proceedings of the 4th Workshop on Experi-
mental Algorithms (WEA’05), volume 3503 of Lecture Notes in Computer Science, pages
126–138. Springer, 2005.

9 Ulrich Lauther. An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static
Networks with Geographical Background. In Geoinformation und Mobilität - von der
Forschung zur praktischen Anwendung, volume 22, pages 219–230. IfGI prints, 2004.

10 Silvio Micali and Vijay V. Vazirani. An O(
√
|V | · |E|) algorithm for finding maximum

matchings in general graphs. In Proceedings of the 21st Annual Symposium on Foundations
of Computer Science (FOCS’80), pages 17–27, 1980.

11 Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas Willhalm.
Partitioning Graphs to Speedup Dijkstra’s Algorithm. ACM Journal of Experimental Al-
gorithmics, 11(2.8):1–29, 2006.

12 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient Models
for Timetable Information in Public Transportation Systems. ACM Journal of Experimental
Algorithmics, 12(2.4):1–39, 2007.

Speedup Techniques for the Stochastic on-time
Arrival Problem
Samitha Samaranayake1, Sebastien Blandin2, and Alex Bayen3

1 PhD student, Systems Engineering, University of California Berkeley
samitha@berkeley.edu

2 Research Scientist, IBM Research Collaboratory – Singapore
sblandin@sg.ibm.com

3 Associate Professor, Electrical Engineering and Computer Science, and
Civil and Environmental Engineering, University of California Berkeley
bayen@berkeley.edu

Abstract
We consider the stochastic on-time arrival (SOTA) routing problem of finding a routing policy
that maximizes the probability of reaching a given destination within a pre-specified time budget
in a road network with probabilistic link travel-times. The goal of this work is to provide a
theoretical understanding of the SOTA problem and present efficient computational techniques
to enable the development of practical applications for stochastic routing. We present multiple
speedup techniques that include a label-setting algorithm based on the existence of a minimal
link travel-time on each road link, advanced convolution methods centered on the Fast Fourier
Transform and the idea of zero-delay convolution, and localization techniques for determining
an optimal order of policy computation. We describe the algorithms for each speedup technique
and analyze their impact on computation time. We also analyze the behavior of the algorithms
as a function of the network topology and present numerical results to demonstrate this. Finally,
experimental results are provided for the San Francisco Bay Area arterial road network to show
how the algorithms would work in an operational setting.

1998 ACM Subject Classification F.2.0 General

Keywords and phrases Stochastic routing, Dynamic programming, Traffic information systems

Digital Object Identifier 10.4230/OASIcs.ATMOS.2012.83

1 Introduction

Optimal routing strategies in many practical settings require taking into account some no-
tion of route reliability or travel-time variance in addition to simply considering the ex-
pected travel-time of a trip. However, most commercially available routing algorithms do
not present this as an option due to the computational time complexity of determining short-
est paths with reliability constraints. This work aims at extending the state of the art in
computational tractability for a particular type of stochastic shortest path problem known
as the stochastic on-time arrival (SOTA) problem. In this problem, we wish to determine a
routing policy that maximizes the probability of on-time arrival, given an origin destination
pair and a desired travel-time budget. Fan et al. [3] formulated the SOTA problem as a
stochastic dynamic programming problem and solved it using a standard successive approx-
imation (SA) algorithm. In an acyclic network, the SA algorithm converges in a number
of steps no greater than the maximum number of links in the optimal path. However, in a
network that contains cycles, as is the case with all road networks, there is no finite bound

© Samitha Samaranayake, Sebastien Blandin, and Alex Bayen;
licensed under Creative Commons License ND

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti; pp. 83–96

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2012.83
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

84 Speedup Techniques for the Stochastic on-time Arrival Problem

on the maximum number of iterations required for the algorithm to converge [3]. This is
due to the fact that the optimal solution can contain loops, as will be explained later. As an
alternative, Nie et al. [7] propose a discrete approximation algorithm for the SOTA problem
that converges in a finite number of steps and runs in pseudo-polynomial time.

Samaranayake et al. [10] showed how the SOTA problem can be solved exactly in a finite
number of steps, even in cyclic networks when there is a minimum realizable link travel-time
on every link. As with Fan et al.[3], this algorithm requires computing a continuous-time
convolution product, which is one of the main computational challenges of the method. In
general, this convolution cannot be solved analytically when routing in general networks,
and therefore a discrete approximation scheme is required. The solution presented in [10]
allows for batch computation of the convolution product and thus more efficient computation
methods than the standard (brute force) discrete time approximation algorithm used in [7].
In this formulation, the order in which the nodes of the graph are considered when solving
the underlying dynamic program greatly impacts the running time of the proposed solution.
Therefore, an optimal ordering algorithm that determines the best order in which to solve
the dynamic program is also proposed.

The contributions of this article are as follows. First we give a concise description of the
existing optimization techniques for the SOTA problem, which form the basis for the exten-
sions proposed in this work. We then present a new algorithm that combines the ideas of
a minimum realizable travel-time and optimal ordering from [10] and the idea of zero-delay
convolution [1, 4] to create a even more efficient solution to the SOTA problem. Complexity
results are given for all the optimization techniques presented. We also analyze the compu-
tation time of the algorithms as a function of the network topology. The algorithms perform
best on networks with long road segments and a limited number of loops. Road networks in
general consist of arterial networks with short segments and many loops that are connected
via a highway network that contains long segments and fewer loops. The implications of this
structure for efficient computation of stochastic shortest paths is discussed. Experimental
results are provided both for synthetic networks with varying levels of structural complexity
and for the San Francisco Bay Area arterial network using the Mobile Millennium [11] traffic
information system.

2 Stochastic On-Time Arrival (SOTA) problem

We consider a directed network G(N,A) with |N | = n nodes and |A| = m links. The weight
of each link (i, j) ∈ A is a random variable with probability density function pij(·) that
represents the travel-time on link (i, j). The link travel-time distributions are assumed to
be independent1. Given a time budget T , an optimal route is defined to be a policy that
maximizes the probability of arriving at a destination node s within total travel-time of T .
A routing policy is an adaptive set of instructions that determines the optimal path at each
node (intersection in the road network) based on the cumulative travel-time that has already
been realized. This is in contrast to a-priori solutions [8, 9] that determine the entire path
prior to departure. Given a node i ∈ N and a time budget t, let ui(t) denote the probability
of reaching the destination node s from a given node i in less than time t when following
the optimal policy. At each node i, the traveler should pick the link (i, j) that maximizes
the probability of arriving on time at the destination. If j is the next node being visited

1 See [10] for a formulation that considers localized correlations.

S. Samaranayake, S. Blandin, and A. Bayen 85

after node i and ω is the time spent on link (i, j), the traveler starting at node i with a time
budget t has a time budget of t− ω to travel from j to the destination2.

I Definition 1. The optimal routing policy for the SOTA problem can be formulated as
follows:

ui(t) = max
j:(i,j)∈A

∫ t

0
pij(ω)uj(t− ω) dω ∀i ∈ N, i 6= s, 0 ≤ t ≤ T (1)

us(t) = 1 0 ≤ t ≤ T.

The functions pij(·) are assumed to be known and can be obtained for example using
historical data or real-time traffic information.

One approach to solving this problem would be to use a successive approximations (SA)
algorithm as in [3], which solves the system of equations (1) repeatedly until convergence and
gives an optimal routing policy. At each iteration k, uki (t) gives the probability of reaching
the destination node s from a given node i within a travel-time of t, using a path that has
no more than k links, when following the policy computed by the algorithm. This is an
approximation to the optimal solution that limits the total number of road links in a path
to k. The approximation error decreases monotonically with k and the solution eventually
reaches an optimal value when k is equal to the number of links in the longest optimal path
contained in the policy. However, since an optimal routing policy in a stochastic network
can have loops [10] (see Figure 1), the number of iterations required to attain convergence
is not known a-priori.

Path Travel-time Probability
{(a, b), (b, c)} 4 0.9
{(a, c)} 1 0.1
{(a, b), (b, a), (a, c)} 4 0.01

Figure 1 A simple network with an optimal routing policy that may contain a loop. Links
(b, c) and (b, a) have deterministic travel-times of respectively 3 and 1 time units. Link (a, b) has a
travel-time of 1 with probability 0.9 and a travel-time of 2 with probability 0.1. Link (a, c) has a
travel-time of 5 with probability 0.9 and a travel-time of 1 with probability 0.1. Assume that we
wish to find the optimal path from node a to node c with a total travel-time budget of 4. The table
presents on-time arrival probabilities for all feasible paths. The optimal solution clearly is to first
take link (a, b). However, if the realized travel-time on (a, b) is 2, the only feasible path is to return
back to node a and then proceed on link (a, c).

3 Label-setting algorithm

Samaranayake et al. [10] presented an algorithm for finding the optimal solution to the
continuous time SOTA problem in a single pass through the time-space domain of the
problem when the travel-time on each link is lower bounded by a strictly positive constant,
and uniformly bounded on the network. Additionally, the complexity of this algorithm does

2 In this formulation of the problem, the traveler is not allowed to wait at any of the intermediate nodes.
See [10] for the conditions under which travel-time distributions from traffic information systems satisfy
the first-in-first-out (FIFO) condition, which implies that the on-time arrival probability can not be
improved by waiting at a node.

ATMOS’12

86 Speedup Techniques for the Stochastic on-time Arrival Problem

not depend on the number of links in the optimal path. Let β be the minimum realizable
link travel-time across the entire network. β is strictly positive since speeds of vehicles
have a finite uniform bound, and the network contains a finite number of links with strictly
positive length. Therefore, given ε ∈ (0, β), δ = β − ε is a strictly positive travel-time such
that pij(t) = 0 ∀ t ≤ δ, (i, j) ∈ A. Given a time budget T discretized in intervals of size δ,
let L = dT/δe. The SOTA problem can be solved using Algorithm 2.

Algorithm 2 Single iteration SOTA algorithm [10]

Step 0. Initialization.
k = 0
uki (t) = 0, ∀i ∈ N, i 6= s, t ∈ [0, T)
uks(t) = 1, ∀ t ∈ [0, T)

Step 1. Update
For k = 1, 2, . . . , L
τk = kδ

uks(t) = 1, ∀ t ∈ [0, T)
uki (t) = uk−1

i (t), ∀i ∈ N, i 6= s, t ∈ [0, τk − δ]
uki (t) = maxj:(i,j)∈A

∫ t
0 pij(ω)uk−1

j (t− ω) dω, ∀i ∈ N, i 6= s, t ∈ (τk − δ, τk]

In this formulation of the SOTA problem, the functions uki (·) are computed on [0, T] by
increments of size δ. The proposed algorithm relies on the fact that for t ∈ (τk−δ, τk], uki (t)
can be computed exactly using only uk−1

j (·), (i, j) ∈ A, on (τk − 2 δ, τk − δ], where τk is the
budget up to which uki (·) is computed at the kth iteration of Step 1. See [10] for proof.

The main computational challenge of this algorithm is calculating the convolution prod-
uct at each update of ui(·). It can not be computed analytically since, ui(·) is the point-wise
maximum of the convolution products of the link travel-time distribution pij(·) with the
cumulative distributions of all of its neighboring downstream links uj(·), (i, j) ∈ A, and
the resulting function does not have an analytical expression in general. Since ui(·) is a
continuous monotone increasing function, one solution is to approximate it by a low degree
polynomial [2]. However, once again since ui(·) is a point-wise maximum of multiple func-
tions and its complexity depends on the traffic conditions and the topology of the network,
it is in general not well suited for being approximated by a low degree polynomial.

An alternative to computing the convolution by polynomial approximation or other simi-
lar methods, is to solve the convolution product via a time discretization of the distributions
involved [7], which results in a computational time complexity that is independent of the
shape of the optimal cumulative travel-time distributions ui(·). In the discrete setting, the
SOTA problem can be solved using a discretized version of Algorithm 2 [10]. Let ∆t (≤ δ)
be the length of the discretization interval and T be the time budget. The functions ui(·)
and pij(·) are now vectors of length L = d T∆te. For notational simplicity, we assume that
T is a multiple of ∆t. We also assume that the link travel-time distributions are available
either as discrete or continuous time distributions. If the link travel-time distributions are
discrete and the length of the discretization interval d is not equal to ∆t or the distribution
is continuous, the probability mass needs to be redistributed to intervals of ∆t.

Obtaining the appropriately discretized probability mass functions can be done in time
O(mT∆t), since there are m links and each link travel-time distribution function is of length
T
∆t . Initializing n vectors (one for each node i) of length T

∆t takes O(nT∆t) time. As in Al-

S. Samaranayake, S. Blandin, and A. Bayen 87

gorithm 2 for each link (i, j) the algorithm progressively computes a set of convolutions of
increasing length from x = 1 to x = Lδ

d = T
∆t . Therefore, the time complexity of the sum-

mation for each link is O((T∆t)
2). The assignment uki (x) = uk−1

i (x) can be done in constant
time by manipulating pointers instead of a memory copy or by simply having one array for
all ui(·) that keeps getting updated at each iteration of the loop. Since there are m links,
the total time complexity is O(m(T∆t)

2), which dominates the complexity of the algorithm.
The drawback of this method is the numerical discretization error in the representation of
the probability density function. A smaller discretization interval leads to a more accurate
approximation, but increases the computation time quadratically. Thus, this method still
turns out to be computationally intractable for practical settings [10].

A common strategy for speeding up computing convolutions is to use the Fast Fourier
Transform (FFT). The FFT is an algorithm that computes the convolution of two vectors of
length n in O(n logn) time. Notice however that the proposed algorithm does not compute
the entire convolution at once. The computation is required to be done in blocks of length
δ for correctness as explained previously. Therefore, L separate convolution products of
increasing lengths δ, 2δ, . . . , Lδ need to be computed. FFT based convolution is inefficient
in terms of complexity in this setting since successive convolutions recompute results that
have already been obtained in previous convolutions. For each link, the time complexity of
the sequence of FFTs is O(

∑L
k=1

δk
∆t log(δk∆t)), where L = dTδ e. Since there are m links, the

total time complexity is:

O

m dTδ e∑
k=1

δk

∆t log
(
δk

∆t

) . (2)

As T →∞, the complexity of the FFT based approach is O(T∆t
2 log(T∆t)) and asymptotically

larger than the run-time of the brute force approach
∑ T

∆t
k=1 k = O((T∆t)

2). However, in
practice the running time of the FFT based approach can be smaller than the brute force
approach in the time range of interest for most practical applications [10]. Furthermore,
the idea of batch computing the convolution integral can be extended with the localization
and optimal ordering techniques presented in the next section to obtain order of magnitude
gains in the runtime performance of the algorithm.

4 Localization and optimal ordering algorithm

As shown in Section 3, the runtime of the FFT based solution is a function of minimum
realizable link travel-time, δ, and decreases as the value of δ increases. The value of δ that
is used in the algorithm is bounded by the minimum realizable link travel-time across the
entire network. However, in general, road networks are extremely heterogeneous and contain
a large range of minimum realizable link travel-times, which can be treated individually to
improve the runtime. We show that the maximum update interval at each step is actually a
function of the travel-time of the smallest loop the link belongs to and not its local δ value.

I Proposition 1. Let βij be the minimum realizable travel-time on link (i, j), δij = βij − ε
(0 < ε < βij) and τi be the budget up to which the cumulative distribution function ui(·)
has been computed for node i. For correctness, the following invariant must be satisfied
throughout the execution of the algorithm. See [10] for proof.

τi ≤ min
j

(τj + δij) ∀(i, j) ∈ A (3)

ATMOS’12

88 Speedup Techniques for the Stochastic on-time Arrival Problem

Figure 2 Simple example of a situation where the order in which the dynamic program is solved
can have a significant impact of the runtime of the algorithm. The δ value for each link is given
along the link.

Table 1 τi values when
computing ui from values at
the previous iteration.

Iter. a b c d
1 1 2 5 10
2 11 3 7 15
3 16 13 8 17
4 18 18 18 18

Table 2 τi values when
computing ui by updating the
nodes in the order (a, b, c, d).

Iter. a b c d
1 1 3 8 18
2 19 21 26 36
3 37 39 44 54
4 55 57 62 72

Table 3 τi values when
computing ui by updating the
nodes in the order (d, c, b, a).

Iter. d c b a
1 10 5 2 11
2 15 7 13 16
3 17 18 18 18
4 28 23 20 29

When computing the cumulative density function ui(·) using local δij values, the growth
of τi is different across the nodes i, unlike in the previously presented algorithms where τi
grows at the constant uniform rate δ. Furthermore, it turns out that when ui(·) is updated
asynchronously using the invariant τi ≤ minj(τj + δij), (i, j) ∈ A, the order in which the
nodes are updated can impact the runtime of the algorithm.

To illustrate how the order in which the nodes are updated impacts the runtime of the
SOTA algorithm, consider the network in Figure 2. The value of τi at each step and the
total computation time of the FFT depends on the order in which the nodes are considered.
Table 1 shows the sequence of updates for four iterations when the nodes are updated using
the invariant constraint from the previous update iteration. Table 2 shows the sequence of
updates when the nodes are considered in the topological order (a, b, c, d). Table 3 shows
the sequence of updates when the nodes are considered in the order (d, c, b, a). The highest
speedup is achieved when the nodes in the loop are considered in topological order. As seen
in Table 2, the τi value for each node i can be incremented by the length of the shortest
loop node i belongs to when the nodes are updated in this order. The optimal order can
be determined easily in this simple example, but is non-trivial in complex transportation
networks.

Given that the runtime of the SOTA algorithm depends on the update order, we would
like to find an optimal ordering that minimizes the runtime of the algorithm. The first step
in finding such an optimal ordering is to formalize the runtime of the FFT SOTA algorithm.

S. Samaranayake, S. Blandin, and A. Bayen 89

I Definition 2. The computation time of the cumulative density function ui(·) can be
minimized by finding the ordering that solves the following optimization problem [10].

minimize(τki
i
,Ki)

∑
(i,j)∈A

Ki∑
ki=1

τkii
∆t log τ

ki
i

∆t (4)

subject to τkii ≤ τ
kj
j + δij ∀τkii , τ

kj
j s.t. (i, j) ∈ A,

C(i, ki) < C(j, kj + 1)
τKrr ≥ T, τ1

s ≥ T
τ1
i ≥ ∆t ∀i ∈ N, i 6= s

τk+1
i > τki ∀i ∈ N

where τkii is the budget up to which ui(·) has been computed in the kthi iteration of
computing ui(·), C(·, ·) is an index on the order in which nodes are updated such that
C(i, ki) denotes when node i is updated for the kthi time and Ki is the total number of
iterations required for node i.

Note that the optimal order in which ui(·) is computed might result in updating some set
of nodes multiple times before updating another set of nodes. Samaranayake et al. [10]
showed how an algorithm very similar to Dijkstra’s shortest path algorithm can be used
to find this optimal update order and the size of the updates at each step. The algorithm
works by initially considering the source node r and the time budget T to which it needs to
be updated, and then recursively updating the set of constraints that need to be satisfied
before ur(T) can be computed. At the first iteration, the source and its terminal value in
the algorithm (the budget) are added to a stack χ, and the constraints that are required
for updating the source to that value are stored in a heap ψ. At each iteration, the largest
value in the heap is extracted and added to the stack, since it is the most constrained node
in the current working set. The optimal order of updates (node and value) that computes
the cumulative distribution function ur(T) at the origin r most efficiently is stored in the
stack χ at the termination of the algorithm. A more detailed description of the algorithm
including the pseudocode and proof of correctness can be found in [10].

5 Efficient convolutions

As explained in Section 3, the major computational overhead of the SOTA algorithm is the
computation of the convolutions in the dynamic program. While the use of localization with
the optimal ordering algorithm, as explained above minimizes the total computation time
spent on convolutions, the complexity of the FFT based convolution for each link remains
O
((

T
∆t
)2 log

(
T
∆t
))

. This is due to the fact that each cumulative density function ui(·) is
recomputed at each update step, as described in Section 3. We assume that ∆t = 1 in the
rest of this section for notational simplicity.

Gardner [4] proposed an algorithm called zero-delay convolution (ZDC) to compute con-
volutions more efficiently when the input signal is only available in an online fashion, as
is the case in our problem. The complexity of convolving two vectors of length n can be
reduced from O(n2 logn) to O(n log2 n). ZDC works by constructing the convolution via a
series of sub-convolutions and thereby eliminating the need to recompute sub-sections that
have already been computed. Figure 3 illustrates the algorithm. Dean [1] showed that ZDC
can be applied to the standard SOTA problem to reduce the computational time complexity
of the convolutions in each link from O(T 2 log T) to O(T log2 T).

ATMOS’12

90 Speedup Techniques for the Stochastic on-time Arrival Problem

u[1]p[1] u[2]p[1] u[3]p[1] u[4]p[1] u[5]p[1] u[6]p[1] u[7]p[1] u[8]p[1] … O(T)

u[1]p[2] u[2]p[2] u[3]p[2] u[4]p[2] u[5]p[2] u[6]p[2] u[7]p[2] … O(T)

u[1]p[3] u[2]p[3] + u[2]p[4] u[5]p[3] u[6]p[3] + …

u[1]p[4] u[5]p[4]

u[1..2] * p[3..4] u[5..6] * p[3..4] O(T log 2)

u[3]p[3] u[4]p[3] + u[4]p[4] …

u[3]p[4]

u[3..4] * p[3..4] u[7..8] * p[3..4]

u[1]p[5] u[2]p[5] + u[3]p[5] + u[4]p[5] +

 u[1]p[6] u[2]p[6] + u[3]p[6] + …

u[1]p[7] u[2]p[7] +

 u[1]p[8]

u[1..4] * p[5..8] O(T log 4)

 …

u[5..8] * p[5..8]

Output :

u[2] = u[3] = u[4] = u[5] = u[6] = u[7] = u[8] = u[9] = …

 u[1]p[1] u[2]p[1] + u[3]p[1] + u[4]p[1] + u[5]p[1] + u[6]p[1] + u[7]p[1] + u[8]p[1] + O(T log
2
 T)

 u[1]p[2] u[2]p[2] + … … … … …

 u[1]p[3]

Figure 3 Illustration of the zero-delay convolution algorithm from [1]. The convolutions are
computed in blocks and reassembled to avoid recomputation. This is in contrast to the standard
sequential convolution that repeatedly computes larger and larger convolutions as more of the input
signal becomes available. The ZDC algorithm computes sub-convolutions one column at a time in
sequence. Notice that all the sub-components needed to construct u(k+1) are available by the time
column k is computed. Some sub-components are computed in advance to exploit the efficiency of
block convolutions. The size of the blocks increases exponentially as we proceed through the vectors
with the final block having size T . The total computation time is 2T+

∑logT
i=1 T log 2i = O(T log2 T).

.

In our setting, ZDC can be combined with the idea of localization to achieve a compu-
tational time complexity of O(Tδ2 log2(T)), which can significantly reduce the computation
time for networks with large δ values. We call this algorithm δ-multiple ZDC. The process
is as follows. First the optimal ordering algorithm is executed to obtain the update steps
for all links. Let τki be the time ui(·) has to be calculated to at the kth update for node i.
For ease of explanation, without loss of generality we assume that the update interval δki is
constant over all updates and that both the budget T and update interval δ are powers of
two. Without ZDC, u(·) is updated at each step k by convolving two vectors of length kδ
at a cost of O(kδ log(kδ)). This sums to a total computation time of O(T 2 log T) as shown
in Section 3. With δ-multiple ZDC, as with the standard ZDC, the convolution is done
in sub-components that are reassembled to create the entire convolution. Figure 4 shows
an example with δ=2. Each block is now twice as large as it was with standard ZDC and
the computational time complexity can be shown to be O

(
T
4 log2(T)

)
. More generally, the

complexity for each link is:

d(logT)/δe∑
i=1

O
(
T log

(
2i · δ

))
= O

(
T

δ2 log2 (T)
)
. (5)

Since the optimal ordering algorithms pre-computes the maximum update values for each
link, the δ-multiple ZDC algorithm can be run with the most efficient δ value for each link,
while preserving correctness invariant given in Equation 3.

S. Samaranayake, S. Blandin, and A. Bayen 91

u[1]p[1] u[2]p[1] + u[2]p[2] u[5]p[1] u[6]p[1] + u[6]p[2] …

u[1]p[2] u[5]p[2]

u[1..2] * p[1..2] u[5..6] * p[1..2] O(T log δ) = O(T log 2)

u[3]p[1] u[4]p[1] + u[4]p[2] u[7]p[1] u[8]p[1] + …

u[3]p[2] u[7]p[2]

u[3..4] * p[1..2] u[7..8] * p[1..2]

u[1]p[3] u[2]p[3] + u[3]p[3] + u[4]p[3] +

u[1]p[4] u[2]p[4] + u[3]p[4] + …

u[1]p[5] u[2]p[5] +

u[1]p[6]

u[1..4] * p[3..6] O(T log 2δ) = O(T log 4)

u[5]p[3] u[6]p[3] +

u[5]p[4] …

u[5..8] * p[3..6]

u[1]p[7] u[2]p[7] +

u[1]p[8] … O(T log 4δ) = O(T log 8)

u[1..8] * p[7..14]

Output :

u[2] = u[3] = u[4] = u[5] = u[6] = u[7] = u[8] = u[9] = …

 u[1]p[1] u[2]p[1] + u[3]p[1] + u[4]p[1] + u[5]p[1] + u[6]p[1] + u[7]p[1] + u[8]p[1] + O(T/δ log T log δ + T log
2
 (T/δ))

 u[1]p[2] u[2]p[2] + … … … … … = O(T log
2
 (T/δ))

 u[1]p[3] = T log
2
 (T/2))

Figure 4 Illustration of the δ-multiple zero-delay convolution algorithm used in the SOTA prob-
lem. The convolution is now computed using block sizes that are multiples of δ making the process
more efficient than the standard ZDC. Incorporating localization reduces the computational time
complexity from O(T log2(T)) to O(T

δ2 log2(T)).

6 Numerical results

In this section we present numerical results on the performance of the speed-up techniques
for the SOTA algorithm presented in the previous sections for two types of networks. First
we create a set of synthetic networks to illustrate the relative performance of the base
algorithm and its optimizations as a function of the structure of the network. Then we
provide some numerical results from implementing the algorithms in a traffic information
system for the San Francisco Bay Area. The performance of the algorithm is measured as a
function of the total budget T . The algorithms are programmed in Java and executed on an
Apple Macbook computer with a 2.4Ghz Intel Core 2 Duo processor and 4GB of RAM. We
use the open source Java libraries JTransforms [12] and SSJ [6] for FFT computations and
manipulating probability distributions. We consider the following combinations of speed-up
techniques3:

• SOTA-Brute force: convolution as a point-wise shifted product.

• SOTA-FFT: convolution using the Fast Fourier Transform algorithm.

• SOTA-FFT-Opt: convolution using the FFT algorithm, policy updates according to
the optimal ordering algorithm.

• SOTA-FFT-ZeroDelay: convolution using the Fast Fourier Transform algorithm in a
zero delay framework.

• SOTA-FFT-ZeroDelay-Opt: convolution using the Fast Fourier Transform algorithm
in a zero delay framework, policy updates according to the optimal ordering algorithm.

3 The successive approximations algorithm from [3] is not considered, since SOTA-Brute force has been
shown to outperform it in [7].

ATMOS’12

92 Speedup Techniques for the Stochastic on-time Arrival Problem

Figure 5 Manhattan Grid with n arcs along the edge of the grid, and minimal link travel-
time δ.

6.1 Synthetic network
In this section we analyze the performances of the speed-up techniques proposed on a Man-
hattan grid (see Figure 5), parameterized by n, the number of arcs on each of the four sides
of the grid, δ, the minimal link travel-time, and ∆t, the discretization time. We consider
the following instantiations of a Manhattan grid:

Graph A: n=60, δ = 5, ∆t = 1
Graph B: n=30, δ = 10, ∆t = 1
Graph C: n=30, δ = 20, ∆t = 1
Graph D: n=30, δ = 5, ∆t = 1

The link travel-times are chosen as shifted Gamma distributions, with the left support
boundary at δ, mean travel-time µ = 2 δ, and variance σ = 0.5 δ. The origin is defined as
the node with coordinates (0, 0) in the grid and the destination is defined as the node with
coordinates (n, n) in the grid. Consequently, on algorithm instantiations for which search
pruning is used (implicitly via the optimal ordering algorithm in this case), an inflexion
point in the runtime can be observed at the budget corresponding to the minimal origin-
destination travel-time, corresponding to the fact that the whole graph has been explored
by the SOTA policy computation method proposed at this point.

As detailed in the previous section, the runtime of the algorithm depends on the graph
size, and on the discretized minimal loop size. In an operational setting, typical nation-wide
road networks are composed of two fundamentally different network types, which differ by
the inherent structure of their associated graphs, characterized by their minimal graph loop
size. Highway networks exhibit large loop sizes, whereas arterial networks are character-
ized by small loop sizes. Figure 6 illustrates the impact of the network structure over the
performances of the proposed speed-up techniques for the SOTA algorithm. For a given
budget, and fixed discretized loop size, the runtime on a highway network, with large loop
travel-times (Figure 6, right), is significantly reduced compared to the runtime on a arterial
network, with small loop travel-times (Figure 6, left). Over hybrid nation-wide networks
composed of highway and arterial components, the performance of the algorithm is con-
strained by the policy computation on arterial networks.

S. Samaranayake, S. Blandin, and A. Bayen 93

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600
Runtime for graph A

Budget

R
u

n
ti
m

e
 (

s
)

Brute force

FFT

FFT−Opt
FFT−ZeroDelay

FFT−Opt−ZeroDelay

0 200 400 600 800 1000 1200
0

20

40

60

80

100
Runtime for graph B

Budget

R
u

n
ti
m

e
 (

s
)

Brute force

FFT

FFT−Opt
FFT−ZeroDelay

FFT−Opt−ZeroDelay

Figure 6 Runtime as a function of budget for different graph structures: Runtime for
computing the optimal policy for graph A, left, with n = 60, δ = 5, ∆t = 1, and graph B, right,
with n = 30, δ = 10, ∆t = 1. The brute force method is represented in dotted line, SOTA-FFT
using star markers, SOTA-FFT-OPT using circle markers, SOTA-FFT-ZeroDelay in dashed line,
and SOTA-FFT-OPT-ZeroDelay in solid line.

The runtime difference presented in Figure 6, in a practical context from the standpoint
of network structure between highway and arterial networks, illustrates both the dependency
of the algorithm to the number of nodes in the graph and the discretized loop size. Numerical
results on the impact of only the discretized loop size are presented in Figure 7. The impact
of the real physical loop size, which cannot be controlled numerically, is illustrated by the
difference between the runtime on graph B in Figure 6 and the runtime on graph C in
Figure 7.

0 500 1000 1500 2000 2500
0

100

200

300

400

Runtime for graph C

Budget

R
u
n
ti
m

e
 (

s
)

Brute force

FFT

FFT−Opt
FFT−ZeroDelay

FFT−Opt−ZeroDelay

0 100 200 300 400 500 600
0

5

10

15

20

25

30
Runtime for graph D

Budget

R
u
n
ti
m

e
 (

s
)

Brute force

FFT

FFT−Opt
FFT−ZeroDelay

FFT−Opt−ZeroDelay

Figure 7 Runtime as a function of budget for different graph size: Runtime for com-
puting the optimal policy for graph C, left, with n = 30, δ = 20, ∆t = 1, and for graph D, right,
with n = 30, δ = 10, ∆t = 2. The brute force method is represented in dotted line, SOTA-FFT
using star markers, SOTA-FFT-OPT using circle markers, SOTA-FFT-ZeroDelay in dashed line,
and SOTA-FFT-OPT-ZeroDelay in solid line.

6.2 San Francisco Arterial Network
This section presents experimental results comparing the various versions of the SOTA
algorithm on a real network from the San Francisco Bay Area. The algorithms are im-
plemented within the Mobile Millennium [11] traffic information system and we test them
on the San Francisco arterial sub-network. The network contains 1069 nodes and 2644

ATMOS’12

94 Speedup Techniques for the Stochastic on-time Arrival Problem

links. The travel-time distributions are estimated using the statistical learning algorithm
described in [5] using a mixture of real-time and historical probe-generated travel-times.
Time-varying link travel-time distributions are obtained a-posteriori from the traffic estima-
tion model. The link travel-time distributions are assumed to be independent. We present
the actual run-times (in CPU time) for a sample origin-destination (OD) pair (see Figure 8,
right), when computing the optimal policy over a range of travel-time budgets.

As illustrated in table 4, the speed-up techniques introduced in this article provide a sig-
nificant gain in runtime for the SOTA algorithm. The consideration of batch computation
via FFT-based convolution (SOTA-FFT), presented in section 3, increases the runtime com-
pared to the brute force method (SOTA-Brute force) due to the inefficiency of computing
multiple convolutions products for the same link, however it allows the use of a localiza-
tion technique (SOTA-FFT-OPT), introduced in section 4, providing an order of magnitude
speed-up compared to SOTA-FFT overall, and a factor 2 speed-up, for a budget of 30
minutes compared to SOTA-Brute force. Additionally, the zero-delay convolution method,
introduced in section 5, provides an order of magnitude speed-up (SOTA-FFT-ZeroDelay-
OPT) compared to the localized algorithm (SOTA-FFT-OPT). Overall, the combination of
the localization technique and the zero-delay convolution bring the runtime on a standard
laptop from values comparable to the travel budget, to values below the minute for city-level
trips, which fall into the practical range for real-time transportation applications.

The three best combinations of the speed-up techniques are also illustrated in Figure 8,
left. The impact of the localization technique, which induces a pruning of the graph and leads
to policy updates only for vertices that are feasible given the travel budget, is visible in the
typical shape of the curves corresponding to SOTA-FFT-OPT and SOTA-FFT-ZeroDelay-
OPT, which illustrate that for large budget, the marginal increase in computation time is
limited when using the localization technique because fewer additional vertices are feasible.
On the other hand the computation time curve for SOTA-FFT-ZeroDelay has a convex
shape. The complexity reduction by a factor log(T)/Tδ2, provided by the zero-delay method
combined with localization is also clearly visible by comparing the computation times for
SOTA-FFT-OPT and SOTA-FFT-ZeroDelay-OPT, which decrease from around 15 minutes
to around 1 minute for a budget of 30 minutes.

Table 4 Runtime (in minutes) for different budgets.

Algorithm Budget 10 minutes Budget 20 minutes Budget 30 minutes
SOTA-Brute force 3.3 13.0 29.2
SOTA-FFT 19.1 73.2 154.9
SOTA-FFT-OPT 2.7 9.8 15.0
SOTA-FFT-ZeroDelay 0.8 2.7 5.2
SOTA-FFT-ZeroDelay-OPT 0.3 0.8 1.1

7 Conclusions and future work

This article presents a collection of optimization techniques that can be used to improve
the tractability of the SOTA problem and move closer to the eventual goal of implementing
a real-time stochastic router in an operational setting. All the optimization techniques are
based on the existence of a minimum realizable link travel-time on each road segment of

S. Samaranayake, S. Blandin, and A. Bayen 95

0 5 10 15 20 25 30
0

5

10

15

Arterial network (San Francisco)
C

o
m

p
u

ta
ti
o

n
 t

im
e

 (
m

in
u

te
s
)

Budget at the origin (minutes)

Figure 8 Left: Runtime for computing the optimal policy for a route from the Fi-
nancial District (Columbus and Kearny) to the Golden Gate Park (Lincoln and 19th)
Comparison of run-times (CPU time) for SOTA-FFT-OPT (dotted line), SOTA-FFT-ZeroDelay
(dashed line), SOTA-FFT-ZeroDelay-OPT (solid line). The time discretization (∆t) is 0.4 sec-
onds. Right: Illustration of the San Francisco Arterial network Cumulated probe data
measurements from the San Francisco arterial network for a single day.

the network. This allows us to compute the SOTA solution using a label-setting algorithm
instead of a label correcting successive approximations scheme. It also allows for batch
computation of the convolution integrals that are a key component for the optimization
techniques. It is seen that the heterogeneity of the minimum link travel-times on a network
can make the SOTA algorithm very sensitive to the order in which the nodes are treated.
An optimal ordering algorithm is then presented to find the update order that minimizes the
computational time complexity. Finally, a technique to compute convolutions for stream-
ing signals efficiently, zero-delay convolution (ZDC), is extended to create a new δ-multiple
ZDC algorithm that reduces the time complexity of each convolution product by a fac-
tor of logn/nδ2. Experimental results are provided to numerically justify the theoretical
contributions.

While all the results presented here focus on exact solutions to the SOTA problem, prac-
tical routing applications rarely require the problem to be solved exactly. The tractability of
the problem has the potential to be improved significantly using approximation algorithms.
Additional improvements could also be archived via heuristic search pruning algorithms and
pre-processing methods similar to those used in the deterministic shortest path problem to
reduce the computation times by multiple orders of magnitude. Even though we have pre-
sented techniques for order of magnitude improvements in solving the exact SOTA problem,
further runtime reductions via approximation algorithms and heuristics will hold the key to
being able to implement stochastic shortest path algorithms in mainstream vehicle routing
systems.

References

1 B.C. Dean. Speeding up stochastic dynamic programming with zero-delay convolution.
Algorithmic Operations Research, 5(2), 2010.

2 Y.Y. Fan, R.E. Kalaba, and J.E. Moore. Arriving on time. Journal of Optimization Theory
and Applications, 127(3):497–513, 2005.

3 Y.Y. Fan and Y. Nie. Optimal routing for maximizing travel time reliability. Networks and
Spatial Economics, 3(6):333–344, 2006.

ATMOS’12

96 Speedup Techniques for the Stochastic on-time Arrival Problem

4 W.G. Gardner. Efficient convolution without input-output delay. Journal of the Audio
Engineering Society, 43(3):127–136, 1995.

5 R. Herring, A. Hofleitner, and A. Bayen. Estimating arterial traffic conditions using
sparse probe data. In 13th International Conference on Intelligent Transportation Sys-
tems, Madeira Island, Portugal, 2010.

6 P. L’Ecuyer. Stochastic simulation in java, http://www.iro.umontreal.ca/~simardr/
ssj/indexe.html, 2008.

7 Y. Nie and Y. Fan. Arriving-on-time problem. Transportation Research Record, pages
193–200, 2006.

8 Y. Nie and X. Wu. Reliable a priori shortest path problem with limited spatial and temporal
dependencies. In International Symposium on Transportation and Traffic Theory, Hong
Kong. Springer, 2009.

9 E. Nikolova. Optimal route planning under uncertainty. In Proceedings of International
Conference on Automated Planning and Scheduling. Citeseer, 2006.

10 S. Samaranayake, S.Blandin, and A. Bayen. A tractable class of algorithms for reliable
routing in stochastic networks. Transportation Research Part C, 20(1):199–217, 2011.

11 Mobile Millennium. http://traffic.berkeley.edu, 2008.
12 P. Wendykier. Jtransforms, http://sites.google.com/site/piotrwendykier/

software/jtransforms, 2009.

http://www.iro.umontreal.ca/~simardr/ssj/indexe.html
http://www.iro.umontreal.ca/~simardr/ssj/indexe.html
http://sites.google.com/site/piotrwendykier/software/jtransforms
http://sites.google.com/site/piotrwendykier/software/jtransforms

Optimal Algorithms for Train Shunting and
Relaxed List Update Problems
Tim Nonner1 and Alexander Souza2

1 IBM Research Zurich, Switzerland, tno@zurich.ibm.com
2 Apixxo AG, Switzerland, alex.souza@apixxo.com

Abstract
This paper considers a Train Shunting problem which occurs in cargo train organizations: We
have a locomotive travelling along a track segment and a collection of n cars, where each car has
a source and a target. Whenever the train passes the source of a car, it needs to be added to
the train, and on the target, the respective car needs to be removed. Any such operation at the
end of the train incurs low shunting cost, but adding or removing truly in the interior requires
a more complex shunting operation and thus yields high cost. The objective is to schedule the
adding and removal of cars as to minimize the total cost. This problem can also be seen as a
relaxed version of the well-known List Update problem, which may be of independent interest.

We derive polynomial time algorithms for Train Shunting by reducing this problem to
finding independent sets in bipartite graphs. This allows us to treat several variants of the
problem in a generic way. Specifically, we obtain an algorithm with running time O

(
n5/2) for

the uniform case, where all low costs and all high costs are identical, respectively. Furthermore,
for the non-uniform case we have running time of O

(
n3). Both versions translate to a symmetric

variant, where it is also allowed to add and remove cars at the front of the train at low cost. In
addition, we formulate a dynamic program with running time O

(
n4), which exploits the special

structure of the graph. Although the running time is worse, it allows us to solve many extensions,
e.g., prize-collection, economies of scale, and dependencies between consecutive stations.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.1.6 Optim-
ization, G.2.1 Combinatorics

Keywords and phrases Train shunting, optimal algorithm, independent set, dynamic program-
ming

Digital Object Identifier 10.4230/OASIcs.ATMOS.2012.97

1 Introduction

This paper considers a Train Shunting problem where we are given a set of n cars and a set
of stations, and each car has a source station and a later target station. Moreover, we have a
locomotive which visits the stations in a predefined order, and once the locomotive passes
the source of a car, it needs to be added to the current train configuration. On the other
hand, once its target is passed, it needs to be removed. Any such action is called a shunting
operation. Adding or removing a car at the end of the train is called an outer shunting
operation and incurs low cost, but adding or removing truly in the interior requires a more
complex inner shunting operation and thus yields high cost. The objective is to schedule the
adding and removal of cars as to minimize the total shunting cost. This problem actually
originated from a discussion at the Deutsche Bahn AG. Thus, even though it is simple and
stated cleanly mathematically, it has a concrete practical application. We will explain later
that we can also think of Train Shunting as a relaxed version of the well-known List
Update problem.

© Tim Nonner and Alexander Souza;
licensed under Creative Commons License ND

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti; pp. 97–107

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2012.97
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

98 Optimal Algorithms for Train Shunting

Contributions. We derive polynomial time algorithms for Train Shunting by reducing
this problem to finding an independent set in bipartite graphs. Our approach, described
in Section 2, works as follows: We first observe that any two cars exclude each other from
using a cheap outer shunting operation if they overlap, a term which will be explained later.
The key observation is then that these overlap dependencies can be captured in a bipartite
constraint graph, and our main theorems states that any maximal (with respect to inclusion)
independent set in this graph corresponds to a set of cars that can be served with cheap
outer shunting operations, and vice versa. The proofs show how to convert any maximal
independent set into a solution for Train Shunting algorithmically in O

(
n2) running

time. It is well-known that the weighted and unweighted Independent Set problem is
polynomially solvable in the case of bipartite graphs.

This allows us to treat several variants of the problem in a generic way, see Section 3.
Specifically, we obtain an algorithm with running time O

(
n5/2) for the uniform case, where

all low costs and all high costs are identical, respectively. Furthermore, for the non-uniform
case we have running time of O

(
n3). Both versions translate to a symmetric variant, where

it is also allowed to add and remove cars at the front of the train at low cost. In addition, in
Section 4, we formulate a dynamic program with running time O

(
n4), which exploits the

special structure of the graph. Although the running time is worse, it allows us to solve many
extensions, for instance, economies of scale, dependencies between consecutive stations, and
price-collection. Specifically, in the economies of scale variant, we provide a discount if many
inner shunting operations are performed at the same station. Dependencies between stations,
for example, occur if we want to avoid that two consecutive stations need to perform inner
shunting operations. Finally, in the price-collection variant, we get paid for transporting
cars, and the goal is find the best tradeoff between profit and shunting operation cost.

Related work. Shunting problems are usually considered in the context of a single
hump-yard or shunting-yard which serves as a central facility to rearrange trains. Specifically,
a standard hump-yard has a single incoming track where the trains arrive and leave and
several classification tracks. When a car wants to change its current classification track, it
always needs to be pulled first to the central incoming track via a pull-out operation, and
then pushed back to the destination classification track via a roll-in operation. For a more
detailed description, we refer to the survey of Gatto et al. [8]. This is the most basic variant
of this problem, but there are many variants depending on the allowed shunting operations or
topologies [12]. For instance, the case of two incoming tracks, also called a marshalling-yard.
Di Stefano and Koci [5] use a graph coloring approach to deal with this topology, including
overnight operations. This is also the paper the most related to ours, but their constraint
graph still differs significantly and they do not provide customized algorithms as our quite
flexible dynamic program. For an NP-hard version of the problem, Beygang, Dahms, and
Krumke [2] gave lower bounds on the optimal objective value and derived approximation
algorithms for offline and online variants. However, all these variants consider hub-and-
spoke-systems where a central facility is used to perform all shunting operations [18, 3]. A
multistage variant was considered by Jacob et al. [14], where an encoding of classification
schedules was introduced, which allows characterizing train classifcation methods as classes of
schedules and yields simpler and more precise analysis of well-known classification methods.

By contrast, our problem considers shunting from a more global perspective since the
evolution of a train is treated from its origin to its destination. Already in 2006, a similar
perspective was taken in a seminal operations research paper by Kroon et al. [16], in which
the construction of the dutch timetable is explained. A novel property of this timetable
is that it features robustness in spite of growing passenger and cargo demands. One key

T. Nonner and A. Souza 99

challenge to achieving this was to be able to treat train scheduling problems in a global
manner. The robustness of timetables continues to be an active area of research, e.g., by
Cicerone et al. [4].

Relations to list update. In the List Update problem, we are given a linked list,
which supports the operations put and get. A call of Put(i, x) stores a data item x at
position i in the list, yielding access cost of i. A call of Get(x) returns and removes x (if
present) from the list, at access cost equal to the position of x. Recall that this classical
List Update problem was introduced in a seminal paper by Sleator and Tarjan [21]. It
was shown by Ambühl et al. [1] that the offline List Update problem is NP-hard. Being a
fundamental problem in computer science, many variants have been proposed for the List
Update problem: For example, Martinez and Roura [17] and Munro [19] defined the MRM
model with an alternative cost model. There, it is allowed that the ordering of the elements
preceeding the one which is accessed can be changed free of charge. Golynski and López-Ortiz
[10] were able to give a polynomial time algorithm for the MRM list update model.

The Relaxed List Update problem, which we introduce here, features the following
cost model: An access at the head of the list encounters low cost c ≥ 0. Otherwise, we are
charged a high cost of c′ > c. That is, the access is either cheap, if it is at the head of the
list, or expensive, if it is not. Observe that each sequence of put/get operations translates
directly into an instance of Train Shunting with uniform low cost c and high cost c′ > c.
This model is more crude than the classical one, but it has the desireable property that the
corresponding offline problem can be solved in low order polynomial time as we show in this
paper.

Preliminaries. We denote the set of cars by J = {1, 2, . . . , n} and the set of stations
by I = {1, 2, . . . } which are passed by the locomotive in this order. For each car j ∈ J , we
associate two events, the source sj and the target tj , which induces the set S = {s1, . . . , sn}
of sources and the set T = {t1, . . . , tn} of targets. Moreover, for each event e ∈ S ∪ T , there
is an associated station i(e) where this events takes place such that i(sj) < i(tj) for each car
j. A solution for the problem is a schedule which defines the change of the train configuration
at each event e, from which we can derive the exact positions where to add cars over time.
If a car j is added to the exact end of the train, then only an outer shunting operation
with low cost cj ≥ 0 is required, but otherwise, if j is to be added to some other position,
and hence the train needs to be split, an inner shunting operation with high cost c′j > cj is
necessary. Similarly, removing a car from the end of the train results in an outer shunting
operation with low cost cj , but removing it from any other position requires high cost c′j . Let
wj := c′j − cj denote the additional cost of an inner shunting operation. The goal is hence
to find a schedule that minimizes the additional cost due to inner shunting operations. We
refer to the case where all c′j and cj are identical as Uniform Train Shunting, and we
may then assume that c′j = 1, cj = 0, and hence wj = 1.

2 Train Shunting and Bipartite Independent Sets

In this section, we give a construction reducing Train Shunting to finding independent sets
in bipartite graphs. To this end, let us assume for the moment that we have a strict ordering
< of the events S ∪ T which defines the temporal order in which these events are executed.
Clearly, this strict ordering needs to be consistent with the natural ordering of the stations
such that e < e′ implies i(e) ≤ i(e′) for any pair of events e, e′. We will expose in Lemma 5
an algorithm how to find an optimal such ordering. Using this, if sj < sj′ < tj < tj′ , then
we say that the cars j, j′ are overlapping, and otherwise, we say that they are independent.

ATMOS’12

100 Optimal Algorithms for Train Shunting

Now that we are given the ordering of the shunting events, it turns out that only the
overlapping pairs of cars j, j′ are problematic: Either the addition of car j′ or the removal of
car j can not be a (cheap) outer shunting operation. Therefore, we have to decide which car
encounters an outer and which an inner shunting operation. Motivated by this observation,
we define the following bipartite graph G = (S ∪ T,E) with vertices S ∪ T and edges E,
which is called the constraint graph of the Train Shunting problem and can trivially be
constructed in O

(
n2) time. For any two overlapping cars j, j′, we add the edge {sj′ , tj} to

the set E of edges of the graph G.
For a graph G = (V,E) with vertices V and edges E, a subset U ⊆ V is called an

independent set in G, if u, v ∈ U imply {u, v} 6∈ E. An independent set U is called maximal
if it is maximal with respect to inclusion. It is called maximum, if it is maximal with respect
to total weight.

Now we formally define the solution of Train Shunting as follows: Any sequence C
over elements of J is called a configuration, and the left-most element in C is called the end.
Using this, a solution C defines a configuration C(e) for each event e such that j ∈ C(e) for
sj ≤ e < tj and j 6∈ C(e) for e < sj and e ≥ tj .

The following two theorems establish an equivalence between solutions for Train Shunt-
ing and independent sets in bipartite graphs.

I Theorem 1. Let C be any solution of the Train Shunting problem and let U be the
events having outer shunting operations. Then U is an independent set in G.

Proof. Let sj′ , tj ∈ U and assume {sj′ , tj} ∈ E. Then there is an overlapping pair of cars
j, j′, i. e., with sj < sj′ < tj < tj′ . In the solution C, both events sj′ and tj have low cost
since they are both members of U . When the event tj occurs, i.e., the removal of car j, the
car is at the end. However, at event sj′ , the car j′ is added at the end, while car j is still in
the configuration. Thus, car j can not be at the end at event tj , which is a contradiction. J

I Theorem 2. Let U be a maximal independent set in G. Then there is a solution C for
Train Shunting such that exactly the events U have outer shunting operations.

The proof of the theorem follows immediately from Lemma 3 and Lemma 4 and is
organized as follows: The graph G and the independent set U induce an acyclic digraph H.
This digraph yields an ordering π of J . Finally, π yields a solution C, such that exactly the
events in the independent set U yield an outer shunting operation.

Let U be any independent set in G. We construct H = H(U) = (W,A) as follows:
Associate a vertex in H with every car, i.e., W = J . For an event e, let j = j(e) be the
associated car, i.e., e = sj or e = tj . Let j be any car and consider the events e′ with
sj < e′ < tj and associated car j′ = j(e′). If e′ = sj′ and sj′ ∈ U , add the edge (j, j′) to H,
but if e′ = tj′ and tj′ ∈ U , add the edge (j, j′) to H. The graph H can be constructed in
O
(
n2) time.

I Lemma 3. Let U be any independent set in G. Then the induced digraph H is acyclic and
can be constructed in O

(
n2) time.

Proof. Assume, for sake of contradiction, that H contains a directed cycle C, say. First
observe that any car j with sj , tj 6∈ U , by construction of H, does not have any incoming
edges (·, j) in H. Thus, such a car can not occur in a cycle. Hence we may assume that each
car j in a cycle satisfies sj ∈ U or tj ∈ U (or both).

Now let C = (j1, . . . , jk) be any directed cycle in H. We may assume that car j1 has the
smallest source. Since the edge (jk, j1) must exist in H we must have s1 < sk < t1 < tk and

T. Nonner and A. Souza 101

t1 ∈ U . This implies sk 6∈ U since the graph G contains the edge {s1, tk} as the cars 1 and
k overlap. Therefore tk ∈ U . The graph H must also contain the edge (jk−1, jk). Hence
we must have sk−1 < tk < tk−1 by construction. Thus we have s1 < sk−1 < t1 < tk−1 or
sk < sk−1 < tk < tk−1. As t1, tk ∈ U we can not have sk−1 ∈ U since the car k − 1 overlaps
with car 1 or k. Hence tk−1 ∈ U . We continue this reasoning and deduce tk < tk−1 < · · · < t2,
tk, . . . , t2 ∈ U , and sk, . . . , s2 6∈ U . Since the edge (j1, j2) must exist in H we must have
s1 < s2 < t1 < tk < t2 and s2 ∈ U , which is a contradiction. J

I Lemma 4. Let U be any maximal independent set in G and H be the induced acyclic
digraph. Then H induces a solution C for Train Shunting such that exactly the events U
yield an outer shunting operation and which can be constructed in O

(
n2) time.

Proof. First we construct an ordering π on J . Recall from Lemma 3 that the digraph H
is acyclic, and moreover recall that a vertex without outgoing edges is called a sink. Every
directed acyclic graph has a sink. Initially, π is the empty sequence. Let j be a sink in H,
append j to π, and remove j from H. Continue analogously removing sinks until H is empty.
This takes running time of O

(
n2).

Let I = (e1, . . . , e2n) be the sequence of events with e1 < e2 < . . . < e2n. For the sequence
Ik = (e1, . . . , ek), the set of active cars Ak is the set of cars j such that sj ∈ Ik but tj 6∈ Ik.
For any set J ′ ⊆ J define by π(J ′) the subsequence of π induced by J ′. We define the
following family of configurations C: C(ek) = π(Ak) for k = 1, . . . , 2n.

Now we have to show that exactly the events in U incur an outer shunting in C. Let
sj ∈ U be the source of some car j. Let A be the set of active cars at event sj , i.e., the cars
j′ with sj′ < sj < tj′ . By construction, the graph H contains the edge (j′, j) and hence
j precedes j′ in π. In particular, at the event sj , the sequence π(A) begins with the car
j and the car incurs an outer shunting. Analogously, if tj ∈ U . Now let sj 6∈ U . Since
U is a maximal independent set, the vertex sj in G is incident with an edge {sj , tj′} and
tj′ ∈ U . We hence have sj′ < sj < tj′ < tj . By construction, H contains the edge (j, j′) and
j′ precedes j in π. In particular, at the event sj , the car j′ is a member of the active set A
of cars and hence π(A) does not begin with car j. Hence the car j incurs an inner shunting
in the configuration at event sj . Analogously, if tj 6∈ U . J

Having established the correspondence between independent sets and solutions for Train
Shunting, we are in the position to remove the assumption that we have an explicit ordering
< over the events. Assume that there are events e, e′ with associated stations i(e) = i(e′).
In this case we are free to choose the ordering of the events, provided that this ordering is
consistent. There are two ways to break the tie: Either e < e′ or e′ < e. However, the two
orderings may yield different optimal objective values and it is questionable which one to
choose. The following result gives the answer.

I Lemma 5. An optimal consistent ordering can be constructed using the following rule:
Whenever we need to break a tie for two events, break the tie such that the two corresponding
cars become independent. This ordering can be computed in O(n2) time.

Proof. Observe that the two constraint graphs of two orderings that break any fixed tie
have the property that one is a subgraph of the other. Hence any independent set in the
supergraph is also one in the subgraph. Further, it is easy to see that the claimed ordering
yields the smallest number of edges in a constraint graph which is consistent with the input
instance, hence proving the claim. J

ATMOS’12

102 Optimal Algorithms for Train Shunting

3 Generic Algorithms

Theorems 1 and 2 give rise to a polyomial time algorithm Generic, which solves Train
Shunting optimally: Construct the constraint graph G, find a maximum independent set U
in G, construct the graph H, and deduce the sequence π, which yields an optimal solution C.

I Corollary 6. Generic solves Train Shunting optimally and can be implemented to
run in time O

(
n2 + τ(n)

)
, where τ(n) denotes a polynomial time for finding a maximum

independent set.

Proof. The optimality of the algorithm follows from Theorems 1 and 2. For the running time,
we have already argued that all the steps, except for the construction of the independent set U ,
can be done in O

(
n2) time. For general graphs, it is NP-complete to decide on the existence

of an independent set of a certain size or weight, see Garey and Johnson [7]. However, it
is well known that, for bipartite graphs, maximal independent sets with minimal weight
can be constructed in polynomial time, e.g., with the Ellipsoid method, see Grötschel,
Lóvász, and Schrijver [11]. This is due to the fact that the constraint matrix in the canonical
integer linear program is the incidence matrix of a bipartite graph. Such matrices are totally
unimodular and it is well known that the extreme point solutions of the linear programming
relaxation are integral. Thus the Ellipsoid algorithm already yields that Generic has
polynomial running time. J

Depending on the weight structure of the constraint graph, we can obtain low order
polynomial running times by using combinatorial algorithms.

3.1 Uniform Cost
Recall that in Train Shunting with uniform cost, which is identical to Relaxed List
Update, we may assume that wj = 1. Thus, the reduction derived in Section 2 gives an
unweighted bipartite graph G, and hence the goal is to simply find an independent set of
maximum size.

I Corollary 7. Generic solves Uniform Train Shunting optimally and can be imple-
mented to run in time O

(
n5/2).

Proof. The problem can be reduced to finding a minimum cut in the following auxiliary
network G′ = (S ∪ T ∪ {u, v}, A) with the following set A of arcs: For each edge {s, t} ∈ E
with s ∈ S and t ∈ T introduce (s, t) and add (u, s) for all s ∈ S and (t, v) for all t ∈ T .
All capacities are equal to one. Now, a minimum u− v-cut (X,Y) with u ∈ X and v ∈ Y
in G′ corresponds to a maximum independent set U = (S ∩ Y) ∪ (T ∩X) in the original
graph. In the present special case, the algorithm Even-Tarjan [6] finds a solution in time
O
(
n5/2). J

Alternatively, there is a similar reduction to Bipartite Matching, which also solves the
problem in time O

(
n5/2) with the Hopcroft-Karp [13] algorithm. For further details on

the well-known equivalence between Independent Set, Matching, and Vertex Cover
in case of bipartite graphs, see standard textbooks like, e.g., [15].

3.2 Non-Uniform Cost
Here we treat the general Train Shunting problem with non-uniform additional cost wj

for inner shunting operations.

T. Nonner and A. Souza 103

I Corollary 8. Generic solves Train Shunting optimally and can be implemented to run
in time O

(
n3).

Proof. Here, the reduction used in Corollary 7 is modified with respect to capacities: The
capacity of any arc (s, t) for s ∈ S and t ∈ T is unbounded, any arc (u, s) for s ∈ S has
capacity wj for the car j with sj = s, and any arc (t, v) for t ∈ T has capacity wj for the car
j with tj = t. These are the weights defined in the constraint graph defined above. For this
case, e.g., the algorithm Goldberg-Tarjan [9] solves the problem in time O

(
n3). J

3.3 Symmetric Train Shunting
In the Symmetric Train Shunting problem, the low cost for an outer shunting apply
at the front or end of the train. This variant reduces to the ordinary Train Shunting
problem as follows:

I Corollary 9. The Generic algorithm can be modified to solve (Uniform) Symmetric
Train Shunting with the same respective asymptotic running time as in the ordinary
variant.

Proof. Let G = (S ∪ T,E) be the constraint graph for (Uniform) Train Shunting.
Introduce a new graph G′′ as follows. Let G′ = (S′ ∪ T ′, E′) be a copy of G. Now define
G′′ = ((S ∪T ′)∪ (T ∪S′), E ∪E′ ∪F), with the following set F = {{s, s′} | s ∈ S}∪ {{t, t′} |
t ∈ T}. That is, the left side of G′′ consists of the vertices S∪T ′, while the right side consists
of the vertices T ∪ S′. Observe that the edges in F only connect vertices on different sides.
Hence G′′ is bipartite and we are interested in a maximum independent set therein.

The vertices of G′ correspond to the events that occur at the front of the train, while
the vertices of G, as usual, correspond to the events that occur at the end. The edges
F ensure that no event occurs at the same time at the beginning and at the end of the
train. Observe that the construction of deriving a solution of (Uniform) Train Shunting
from an independent set in G′′ transfers analogously to (Uniform) Symmetric Train
Shunting.

As we have only at most tripled the set of vertices and edges, the asymptotic running
times remain the same. J

4 Dynamic Programming

In this section, we give a dynamic programming approach to solve Train Shunting. For
the sake of exposition, we only explain the dynamic program in detail for Uniform Train
Shunting with wj = 1, general Train Shunting and several extensions are then sketched
in the contained subsections.

Recall the strict temporal ordering < of the events from Lemma 5 which extends the
ordering induced by the stations. Because ties are here broken in favor of generating
independent car pairs, it follows for each overlapping pair of cars j, j′ that even i(sj) <
i(sj′) < i(tj) < i(tj′). We then say that j left-overlaps with j′, and analogously, we say that
j′ right-overlaps with j. Moreover, the reduction of Uniform Train Shunting to finding
a maximum independent set in Section 2 can be interpreted such that the goal is to mark
as many events as possible subject to the constraint that, for any overlapping pair of cars
j, j′ with i(sj) < i(sj′) < i(tj) < i(tj′), at most one of the events sj′ and tj is marked. Thus,
marking an event corresponds to adding this event to the independent set, and therefore,
marking the source and target event of a car means that we use a cheap outer shunting

ATMOS’12

104 Optimal Algorithms for Train Shunting

Figure 1 Subinstance.

operation to add and remove it to the train, respectively. Finally, note that we can also think
of a car j as an interval [sj , tj] with left endpoint sj and right endpoint tj . We will use this
interpretation in the figures throughout this section.

We will now outline the dynamic program. To this end, consider a dynamic programming
array Π with entries of the form Π(i1, i2, i3), where the i1 ≤ i2 ≤ i3 are stations from the set
I. Since we may assume that I = {1, 2, . . . , 2n}, the array Π has thus polynomial size O(n3).
The goal is to fill Π such that each entry Π(i1, i2, i3) gives the maximum number of events
which can be marked in the subinstance consisting of the cars j with

(1) i2 ≤ i(sj) < i(tj) ≤ i3, in which case we call j an internal car, or
(2) i1 ≤ i(sj) < i2 ≤ i(tj) ≤ i3, in which case we call j an external car,
where we are only allowed to mark target events of external cars. An example subinstance is
schematically depicted in Figure 1, where jext is an external car and jint is an internal car.

To see how to fill Π, consider a fixed entry Π(i1, i2, i3). Note that it always holds that the
latest target event of some car is marked, since there is no other car which might right-overlap
with this car. Therefore, since there is hence always some car whose target event is marked,
we may distinguish the following cases:

Case 1. The only cars j whose target events tj are marked are the ones with i(tj) = i3.
In this case, Π(i1, i2, i3) = |A(i1, i2, i3)| + |R(i1, i2, i3)|, where A(i1, i2, i3) denotes the
set of internal cars and R(i1, i2, i3) denotes the set of internal or external cars j with
i(tj) = i3. We add A(i1, i2, i3) since we may assume that all source events of internal
cars are marked.

Case 2. There is an external car j whose target event tj is marked and i(tj) < i3. In
this case, pick the external car j with marked target event tj and latest target station
i(tj) < i3, where ties are broken arbitrarily. We collect several facts:

(1) There is no internal car j′ whose source event is marked which right-overlaps with j.
(2) If there is an internal car j′ which right-overlaps with j and whose target event tj is not

marked, then there is another internal car j′′ with i(sj′′) ≥ i(tj) which right-overlaps
with j′ whose source event is marked. First, there must be such an interval j′′, since
we would otherwise mark tj . Moreover, if i(sj′′) < i(tj), and hence j′′ right-overlaps
with j, then it is not possible that tj is marked.

(3) By the selection of j, there is no external car j′ with marked target event tj′ and
i(tj′) > i(tj).

This shows that we get the decomposition Π(i1, i2, i3) = Π(i1, i2, i(tj)) + Π(i2, i(tj), i3),
as schematically depicted in Figure 2, where the dot on the target event of car j indicates
that this event is marked.

Case 3. There is no external car whose target event is marked, but an internal car j with
i(tj) < i3, see Figure 3. In this case, pick the internal car j with marked target event tj ,
i(tj) < i3, and earliest source station i(sj), where ties are broken arbitrarily. Note that
the facts (1) and (2) from the last case also hold in this case. We moreover obtain the
following fact:

T. Nonner and A. Souza 105

Figure 2 Marked external car.

Figure 3 Marked internal car.

It holds for each internal car j′ with i(sj′) < i(sj) that its target event is not marked,
but its source event is marked. The first fact follows from the selection of j. To see the
second fact, assume that its source event is not marked. In this case, there must be a
car which left-overlaps with j′ whose target event is marked. However, this would be a
better selection for j, leading to a contradiction as well.
This gives the decompositon Π(i1, i2, i3) = Π(i(sj), i(sj), i(tj)) + Π(i(sj), i(tj), i3) +
|L(i2, i(sj), i3)|, where L(i2, i(sj), i3) denotes the set of internal cars j′ with i2 ≤ i(sj′) <
i(sj).

Summarizing these cases gives the following recurrence relation:

Π(i1, i2, i3) = max
{
|A(i1, i2, i3)|+ |R(i1, i2, i3)|,

max
j external

{Π(i1, i2, i(tj)) + Π(i2, i(tj), i3)},

max
j internal

{Π(i(sj), i(sj), i(tj)) + Π(i(sj), i(tj), i3) + |L(i2, i(sj), i3)|}
}

Hence, applying this recurrence relation takes O (n) time, which shows that Π can be
filled in O

(
n4) time if we compute all values |A(i1, i2, i3)|, |R(i1, i2, i3)|, and |L(i2, i(sj), i3)|

beforehand. However, this can be done in time O(n3). We conclude with the following
theorem.

I Theorem 10. The described dynamic programming scheme solves Uniform Train Shunt-
ing in O

(
n4) time.

4.1 Non-Uniform Cost
The dynamic programming scheme can be easily extended to general Train Shunting with
arbitrary wj . Specifically, we only need to replace the term |A(i1, i2, i3)| by

∑
j∈A(i1,i2,i3) wj ,

|R(i1, i2, i3)| by
∑

j∈R(i1,i2,i3) wj , and |L(i2, i(sj), i3)| by
∑

j∈L(i2,i(sj),i3) wj in the recurrence
relation. Note that the asymptotic running time of the dynamic program is not affected by
this change.

4.2 Economies of Scale
It is natural to assume that there are economies of scale when performing shunting operations.
For instance, if we do an inner shunting operation for some car j at some station, then

ATMOS’12

106 Optimal Algorithms for Train Shunting

doing an additional inner shunting operation for another car j′ 6= j at the same station
should not matter much more. To this end, consider a monotone increasing concave function
x 7→Wi(x) which indicates the cost savings when doing x outer shunting operations at station
i. Using this, we need to replace the term |A(i1, i2, i3)| by

∑i3
i=i2

Wi(|Ai(i1, i2, i3)|) where
Ai(i1, i2, i3) := {j ∈ A(i1, i2, i3)|i(sj) = i}, the term |R(i1, i2, i3)| by Wi3(|R(i1, i2, i3)|),
and the term |L(i2, i(sj), i3)| by

∑i(sj)
i=i2

Wi(Li(i2, i(sj), i3)) where Li(i2, i(sj), i3) := |{j′ ∈
L(i2, i(sj), i3)|i(sj′) = i}|. This allows us to treat economies of scale in the recurrence
relation. Also this extension does not increase the asymptotic running time of the dynamic
program.

4.3 Station-Dependencies
There might be constraints regarding the sequence of shunting operations. For instance, in
order to evenly distribute delays, it might be convenient to avoid expensive inner shunting
operations at two consecutive stations. To incorporate this into the dynamic programming
array, for each entry Π(i1, i2, i3), we need to distinguish the cases that there is a shunting
operation at station i2−1 or not. We can do this by extending such an entry as Π(i1, i2, i3, x),
where x is a boolean variable that indicates whether there is a shunting operation at station
i2 − 1, and if x is true, then Π(i1, i2, i3, x) gives the maximal number of events we can mark
without marking any events with associated station i2, and if x is false, then there is no
such constraint. This case distinction can be easily incorporated into the recurrence relation.
Since this only doubles the size of Π, the running time remains asymptotically the same.
However, more complicated constraints regarding the sequence of shunting operations can be
added in a similar way.

4.4 Prize-Collection
Consider the scenario that each delivered car j gives us some integral profit pj . In this
case, we need to find a trade-off in between profit and shunting cost. For the case that
the profits pj are encoded as unaries, and hence pj = O(n), this price-collection scenario
can be incorporated into the dynamic programming array by adding one additional price
bound. That is, the entries then have the form Π(i1, i2, i3, p) for some integer p, and this
entry indicates the minimum shunting cost for the case that the sum of the collected profits
is at least p. If the profits are bounded by O (n), then this increases the size of the array to
O
(
n5). Moreover, since each recurrence relation can then be implemented in O(n2) time,

the total running time is O
(
n7).

References

1 Christoph Ambühl. Offline list update is np-hard. In Paterson [20], pages 42–51.
2 Katharina Beygang, Florian Dahms, and Sven O. Krumke. Train marshalling problem:

Algorithms and bounds. Technical report, pages 1 – 25, 2010.
3 Alberto Ceselli, Michael Gatto, Marco E. Lübbecke, Marc Nunkesser, and Heiko Schilling.

Optimizing the cargo express service of swiss federal railways. Transportation Science,
42(4):450–465, November 2008.

4 S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra. Recoverable robust-
ness for train shunting problems. Algorithmic Operations Research, 4(2):102–116, 2009.

5 Gabriele Di Stefano and Magnus Love Koci. A graph theoretical approach to the shunting
problem. Electr. Notes Theor. Comput. Sci., 92:16–33, 2004.

T. Nonner and A. Souza 107

6 S. Even and R. E. Tarjan. Network flow and testing graph connectivity. SIAM Journal on
Computing, (4):507–518, 1975.

7 M. R. Garey and D. S. Johnson. Computers and Intractability – A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, CA, 1979.

8 Michael Gatto, Jens Maue, Matús Mihalák, and Peter Widmayer. Shunting for dummies:
An introductory algorithmic survey. In Ravindra K. Ahuja, Rolf H. Möhring, and Chris-
tos D. Zaroliagis, editors, Robust and Online Large-Scale Optimization, volume 5868 of
Lecture Notes in Computer Science, pages 310–337. Springer, 2009.

9 Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum flow problem.
Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC ’86),
pages 136–146, 1986.

10 Alexander Golynski and Alejandro López-Ortiz. Optimal strategies for the list update
problem under the mrm alternative cost model. Inf. Process. Lett., 112(6):218–222, 2012.

11 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer Verlag, 1988.

12 R.S. Hansmann. Optimal Sorting of Rolling Stock. Cuvillier, 2010.
13 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in

bipartite graphs. SIAM Journal on Computing, 2(4):225 – 231, 1973.
14 R. Jacob, P. Marton, J. Maue, and M. Nunkesser. Multistage methods for freight train

classification. Networks, 57(1):87–105, 2011.
15 Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.

Springer Verlag, 2000.
16 Leo Kroon, Dennis Huisman, Erwin Abbink, Pieter-Jan Fioole, Matteo Fischetti, Gábor

Maróti, Alexander Schrijver, Adri Steenbeek, and Roelof Ybema. The new dutch timetable:
The or revolution. Interfaces, 39(1):6 – 17, 2009.

17 Conrado Martínez and Salvador Roura. On the competitiveness of the move-to-front rule.
Theor. Comput. Sci., 242(1-2):313–325, 2000.

18 Marc Nunkesser Michael Gatto, Riko Jacob. Optimization of a railway hub-and-spoke
system: Routing and shunting. In WEA, 2005.

19 J. Ian Munro. On the competitiveness of linear search. In Paterson [20], pages 338–345.
20 Mike Paterson, editor. Algorithms - ESA 2000, 8th Annual European Symposium, Saar-

brücken, Germany, September 5-8, 2000, Proceedings, volume 1879 of Lecture Notes in
Computer Science. Springer, 2000.

21 Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202 – 208, 1985.

ATMOS’12

A Dynamic Row/Column Management Algorithm
for Freight Train Scheduling∗

Brigitte Jaumard1, Thai H. Le1, Huaining Tian1, Ali Akgunduz2,
and Peter Finnie3

1 Concordia University, CSE – Computer Science and Software Eng., Concordia
University, Canada, bjaumard@cse.concordia.ca

2 Concordia University, MIE - Mechanical and Industrial Eng., Concordia
University, Canada

3 CPR, Canadian Pacific Railway, Calgary, Canada

Abstract
We propose a new dynamic row/column management algorithm for freight train scheduling in a
single track railway system. While many papers have already been devoted to train scheduling,
previously published optimization models still suffer from scalability issues, even for single track
railway systems. Moreover, very few of them take into account the capacity constraints, i.e., the
number of alternate tracks in the railway stations/sidings in order for the trains to meet/bypass.
We propose an optimization model which takes such constraints into account, while still handling
efficiently the other meaningful constraints. We design an original solution scheme with iterative
additions/removals of constraints/variables in order to remain with a manageable sized mixed
integer linear program at each iteration, without threatening to reach the optimal solution.

Numerical results are presented on several data instances of CPR (Canadian Pacific Railway)
on the Vancouver-Calgary corridor, one of the most busy corridor in their railway system. Therein,
the proposed model and algorithm are used as a planning tool to evaluate the network capacity,
i.e., how much the number of trains can be increased without impacting significantly the average
travel times between the source and destination stations of the various trains in the corridor.
Larger data instances than those previously published are solved accurately (ε-optimal solutions)
for the schedule of freight trains.

1998 ACM Subject Classification G.1.6 Integer Programming, G.2.3 Applications

Keywords and phrases Railway optimization, Train scheduling, Single track

Digital Object Identifier 10.4230/OASIcs.ATMOS.2012.108

1 Introduction

Train scheduling has already received a lot of attention, whether for passenger or freight
trains. While passenger train schedules are relatively static and cyclic, and can be planned
months ahead, freight train schedules are designed with a much shorter planning time period,
sometimes even one day or few hours before train departures. Moreover, passenger train
schedules must obey some strict time window constraints as trains must arrive and depart
from stations in order for passengers to get off/on the trains according to the posted schedule.
On the opposite, the schedule of the freight trains may vary according to the train lengths
or loads, i.e., freight trains have a much greater variability in their speed. Lastly, the track
configuration of the freight trains does not have a dedicated direction as it is often the case

∗ This work was partially supported by CPR, NSERC and FQRNT.

© Brigitte Jaumard, Thai Hoa Le, Huaining Tian, Ali Akgunduz, and Peter Finnie;
licensed under Creative Commons License ND

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti; pp. 108–119

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2012.108
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

B. Jaumard, T. H. Le, H. Tian, A. Akgunduz, and P. Finnie 109

for passenger trains. For all those reasons, the scheduling of freight trains is more complex
than for passenger trains. While the volume of goods transport has increased over the years,
extensions of railway systems are very rare because they represent major investments for
railway companies or governments. Accordingly, the railways are often operating freight
trains in a system that is close to saturation. It follows that a very effective planning and
optimization of the rail network is needed. From now on, we focus on freight train scheduling,
and refer the interested reader to, e.g., the following surveys for passenger train scheduling
[1] [3].

Several optimization models, exact and heuristic algorithms have been proposed for freight
train scheduling. We will now review the most recent ones. Kraay and Harker [7] proposed a
Mixed Integer Linear Program (MILP) with only a subset of the constraints (dwell times,
train meets and overtakes, time windows on the departure/arrival times) which does not
include any capacity constraint, i.e., limit on the number of available tracks at a given
station/siding. Moreover, they use heuristics in order to solve their model as their solution
process is not able to scale with the large number of constraints and variables. Experiments
are very limited (less than 11 stations/sidings along a single line track). A very similar
MILP model was developed by Higgins, Kozan and Ferreira [5] and tested against a Tabu
Search heuristic on data instances with up to 30 trains and 12 sidings. As for [7], the MILP
model could not scale properly. Consequently, the authors only solve the linear relaxation of
their MILP model, and use the lower bound it provides in order to evaluate the quality of
their heuristic solutions. Depending on the papers, the objective varies from minimizing the
tardiness of the trains or the fuel consumption for the most commonly considered ones.

A similar MILP model has been reused in [4, 9, 8, 2]. In [9], Zhou and Zhong design
a branch-and-bound based heuristic and a Lagrangian relaxation lower bound in order to
solve data instances with up to 30 trains and 18 stations. In [8, 2], the authors propose a
vertical decomposition algorithm in order to overcome the scalability issues, i.e., dispatching
the trains one by one, or one train cluster at a time in the MILP model. However, the size of
successive MILP models to be solved is constantly increasing, and therefore the size of solved
data instances is not much larger than those of previous studies. Note also that, in the first
algorithm (FixedPath) of [8] and in [2], the definition of the route of a train includes whether
to travel or not to travel a siding, and routes are defined at the outset (i.e, no optimization
is made on which trains should travel the sidings). Track capacity constraints are enforced
with flow conservation constraints which require the introduction of additional variables. In
the second algorithm (FlexiblePath) of [8], routes are no more defined at the outset, however,
several restrictions apply, in particular, two trains travelling in the same direction cannot be
running at the same time on an identical segment, one train behind the other one (under
some headway constraints). The authors solved data instances with 4 trains using their exact
models, and then larger data instances with the help of heuristics and a parallel algorithm,
i.e., data instances with up to 10 sidings and 24 trains.

The paper is organized as follows. In Section 2, we present the problem statement of the
train scheduling in a single track freight train railway system, as that of CPR - Canadian
Pacific Railway. The newly proposed optimization model is detailed in Section 3, with the
inclusion of the capacity constraints. Solution of the optimization model, an original dynamic
row and column generation/removal exact algorithm is described in Section 4. Numerical
results are presented in Section 5 on several data set instances in order to evaluate the
performance of the optimization model, as well as an estimation of the network capacity of a
railway system, i.e., how many trains can run simultaneously in the system without unduly
increasing the average travel times. Conclusions are drawn in the last section.

ATMOS’12

110 A Dynamic Row/Column Management Algorithm for Train Scheduling

2 Problem Statement

This study considers a rail system with a single two-way track between stations or sidings,
associated with a mesh network. Each track is divided into segments which are separated
by sidings or stations. Tracks can be used by trains running in both directions, and trains
can meet and pass at stations or sidings. Sidings are typically added to a railway line in
order to allow two trains to pass one another and are the most common method used to
expand capacity. Sidings are typically built long enough to permit trains to come to a full
stop inside the siding while remaining clear of the switches at either end.

The proposed optimization model, which will be detailed in the next section, builds a
freight train scheduling with all meaningful constraints. The input is the topology of the
network as described by its set of segments and the list of trains that need to be scheduled,
with their characteristics: origin/destination stations, expected departure/arrival times,
average and maximum train speed. Moreover, each train has a specific priority which
depends on the train series, i.e., the types of goods. It may also depend on the customer
contract agreements and the train loads. We assume that the given railway network is a
single track mesh network. Two trains in opposite directions are not allowed to be on the
same track segment and they can meet each other only at a siding or a station. Two trains
in the same direction can be running on a segment at the same time but they must maintain
a safety distance, and they can pass each other only at a siding or a station.

The output of the model is a schedule for each train that specifies the departure and
arrival times at each siding/station, and consequently the earliness/tardiness on the expected
departure time with respect to the objective which has been set. In this study, we focus on
the objective of minimizing the average travel times between departure/destination stations,
while restricting the standard deviation to be below some threshold throughout a limit on
the train end-to-end travel times.

3 Optimization Model

3.1 Input Parameters

Railway network parameters
P = P stations ∪ P sidings, indexed by p, where P stations is the set of station locations and P sidings

is the set of siding locations.
S Set of segments in the railway network, indexed by s. A segment is a single track between

two successive locations of elements (either a station or a siding) of P . A segment s =
[p, p′]corresponds to an ordered pair of locations, with p traversed before p′.

Train parameters
T Set of trains, indexed by t
Tp Set of trains which go through location p
Ts Set of trains which go through segment s
T⇒

s Set of (t, t′) pairs of trains that travel segment s = [p, p′] ∈ S in the same
direction

T�
s Set of (t, t′) pairs of trains that travel segment s = [p, p′] ∈ S in the opposite

directions
src(t) Departure station of train t
dst(t) Destination/arrival station of train t
St List of segments defining the route of train t from src(t) to dst(t)

B. Jaumard, T. H. Le, H. Tian, A. Akgunduz, and P. Finnie 111

d
t
src(t) Expected (planned) departure time of train t at its origin location
at

dst(t) Expected (planned) arrival time of train t at its destination location
πt Priority (e.g., series number) of train t in the network
penalt

offset_d Penalty if train t leaves the origin station before/after the planned departure
time

Location and train parameters
dwt

p Minimum dwell time of train t at location point p. If p is only a location that train t
is passing through, then dwt

p = 0.
vt

s Average speed of train t on segment s. It depends on many parameters, e.g., the
number of locomotives, the length of the train, the series number of the train, the
load of the cars, the slope of the track, etc.

capp The capacity, in terms of the number of tracks, of the siding located at p, i.e., the
number of parallel tracks, excluding the main track. For the time being, we do not
take into account the length of the sidings vs. the length of the trains, and therefore
assume that each track in a siding can host any train, one at a time.

We assume that all times are expressed in minutes. In order to simplify the expression of the
constraints, we assume that all constraints are expressed in terms of times, meaning that
the average/maximum speeds are translated into times it takes for a train to travel a given
distance (e.g., segment):
rt

s Average time for train t to travel segment s = [p, p′] with p, p′ ∈ P , i.e., rt
s =

Distance(p, p′)/(Average speed of t on s = [p, p′]).
rt

s Minimum time for train t to travel segment s = [p, p′] with p, p′ ∈ P , i.e., rt
s =

Distance(p, p′)/(Speed Limit of t on s = [p, p′]).
τ t

s Time required for train t to travel the safety distance on segment s = [p, p′].

3.2 Variables
The first set of variables are related to the arrival and departure times of the trains.

dt
p Departure time of train t from location p

earlyt
d Earliness of train t at departure station

latet
d Lateness of train t at departure station

at
p Arrival time of train t at location p

offsett
d = max {earlyt

d, latet
d}

All the above variables are real valued variables. Both arrival and departure time values will
be rounded to the closest minute in practice. We use real valued variables to model them to
simplify the solution of the model.
A train schedule is characterized by its arrival/departure time at every station/siding along
its way from origin to destination:

schedule(t) = [(at
src(t), d

t
src(t)), . . . , (at

p, d
t
p), . . . , (at

dst(t), d
t
dst(t))].

The next set of variables corresponds to decision variables, which takes their values in {0, 1}.
For any t, t′ ∈ T⇒

p : t < t′; s = [p, p′] ∈ S; p, p′ ∈ P :
θtt′

p = 1 if t leaves station/siding p before t′, 0 otherwise.
For any t, t′ ∈ T�

s : t < t′; s = [p, p′] ∈ S; p, p′ ∈ P :
δtt′

s = 1 if t leaves p before t′ towards p′, 0 otherwise.
For any t, t′ ∈ Tp : t < t′; p ∈ P :
αtt′

p = 1 if train t arrives after train t′ at point p, 0 otherwise.
βtt′

p = 1 if train t′ departs after the arrival of train t at point p, 0 if train t departs after
the arrival of train t′ at point p.

For any t, t′ ∈ Tp; p ∈ P :
γtt′

p = 1 if the arrival time of t in p is between the arrival and the departure times of t′,
i.e., if at′

p ≤ at
p ≤ dt′

p .

ATMOS’12

112 A Dynamic Row/Column Management Algorithm for Train Scheduling

Indeed,

γtt′

p = αtt′

p βtt′

p ; γt′t
p = (1− αtt′

p) (1− βtt′

p) = 1− (αtt′

p + βtt′

p) + γtt′

p . (1)

Using (1), we can eliminate half of the γtt′

p variables, defining them only for, e.g., t < t′.

3.3 Minimize the Train Travel Times
We look at the objective of minimizing the train travel times in order to estimate the network
capacity, i.e., the maximum number of trains which can be running on the tracks without
deteriorating too much the average travel times between source/destination stations. Indeed,
when a railway network is overloaded, waiting times for crossing or bypassing trains at
sidings, are increasing. The analytical expression of the objective can be written:

1
|T |
∑
t∈T

(
πt (at

dst(t) − d
t
src(t))

)
= 1
|T |
∑
t∈T

(
πt (at

dst(t) − d
t

src(t))
)
, (2)

assuming departure times are fixed (dt
src(t) = d

t

src(t)). A possible drawback of the above
objective (2), i.e., the average of the train travel times, is not to be able to distinguish
between, e.g., 5+5 and 2+8 (same average), resulting in large variance values in the second
case. In order to overcome a possible large variance, we may impose some limit on the travel
time of all or on some of the trains:

at
dst(t) − d

t
dst(t) ≤ max_travel_timet, (3)

where max_travel_timet may depend on the train priorities.
In order to evaluate the network load of a train system, it might be of interest to allow

some offset times on the planned departure times. In such a case, we keep the same objective
(left-hand side of inequality (2)), but add the following constraints (similar constraints could
be added with respect to some arrival offset times):

For each train t ∈ T ,

dt
src(t) = d

t

src(t) + latet
d − earlyt

d ; earlyt
d ≤ earlyt,max

d ; latet
d ≤ latet,max

d . (4)

3.4 Constraints
In order for a train schedule to be feasible, each train must satisfy constraints, namely travel
and dwell time constraints, safety distance constraints, segment conflict constraints, and
capacity constraints. We next describe in detail these constraints.

3.4.1 Travel and Dwell Time Constraints
A train may have to stop at a location point p ∈ P for a given dwell time dwt

p (e.g., time
for loading/unloading goods or train refuelling and crew shift). Inequality (5) guarantees
that the difference between the departure and arrival times should not be smaller than the
minimum dwell time.

dt
p − at

p ≥ dwt
p t ∈ T, p ∈ P. (5)

In any case, dt
p − at

p ≥ 0 for a location p ∈ P where t ∈ T passes trough.
Since the speed of each train t is limited, it requires a minimum amount of time rt

s to
travel segment s = [p, p′]. Inequality (6) ensures that the time travel of segment s, which is

B. Jaumard, T. H. Le, H. Tian, A. Akgunduz, and P. Finnie 113

at
p′ − dt

p, must be at least the minimum rt
s time required for this segment (i.e., train must

observe the speed limit).

at
p′ − dt

p ≥ rt
s t ∈ T, s = [p, p′] ∈ St, p ∈ P, p′ ∈ P. (6)

3.4.2 Safety Distance Constraints
Due to safety regulation, two trains that travel the same segment s = [p, p′] (in the same
direction) must maintain a safety distance (or headway) between them. We express this
safety distance in time terms, using the average speed of the train. In order to ensure that
safety distances are respected, we need to ensure that arrival and departure times are spaced
far enough apart from each other. It leads to the following set of constraints:

For all s = [p, p′] ∈ St ∩ St′ ; t, t′ ∈ T⇒
s : t < t′; p, p′ ∈ P

dt′

p − dt
p ≥ τ t′

p −M(1− θtt′

p) at′

p′ − at
p′ ≥ τ t′

p −M(1− θtt′

p) (7)

dt
p − dt′

p ≥ τ t
p −Mθtt′

p at
p′ − at′

p′ ≥ τ t
p −Mθtt′

p . (8)

Indeed, if train t departs from p before t′ (i.e., θtt′

p = 1), then we must have dt′

p − dt
p ≥ τ t′

p , as
well as at′

p′ − at
p′ ≥ τ t′

p , see (7) when the speed of t′ is higher than the speed of t over segment
s, as otherwise the constraint is always satisfied as long as departure times are sufficiently
spaced out. In such a case, constraints (8) are redundant. On the other hand, if train t′
departs from p before t (i.e., θtt′

p = 0), the meaningful constraints are (8) , while constraints
(7) are redundant.

3.4.3 Segment Conflict Constraints
For two trains t and t′ which need to go through a given single track segment in opposite
directions, we must ensure that one train at most is running on the segment. This is the
purpose of the next set of constraints:
For all s = [p, p′] ∈ S; t, t′ ∈ T�

s : t < t′; p, p′ ∈ P

at′

p ≤ dt
p +M(1− δtt′

s) ; at
p ≤ dt′

p +Mδtt′

s . (9)

Indeed, for a given segment s = [p, p′], with s ∈ St and s′ = −s = [p′, p] ∈ St, and two
trains t, t′ such that t < t′, then either train t reaches p′ before train t′ departs from p′ (i.e.,
δtt′

s = 1), or train t′ reaches p before train t departs from p (i.e., δtt′

s = 0). In the former case,
we must ensure that at′

p ≤ dt
p, while in the latter case, we must ensure that at

p ≤ dt′

p .

3.4.4 Capacity constraints
Note that in order to reduce the number of variables and constraints, we define αtt′

p and βtt′

p

for t < t′, but γtt′

p , for all pairs of t, t′. Capacity constraints are expressed as follows. For all
p ∈ P ; t, t′ ∈ Tp : t < t′, we have:

−Mαtt′

p ≤ at′

p − at
p ≤M(1− αtt′

p) (10)

−M(1− αtt′

p + βtt′

p) ≤ at
p − dt′

p ≤M(1− βtt′

p) (11)

−M(1− βtt′

p + αtt′

p) ≤ at′

p − dt
p ≤Mβtt′

p (12)

(αtt′

p − 1) + βtt′

p ≤ γtt′

p ≤ min{αtt′

p ;βtt′

p } (13)

−
(

(αtt′

p − 1) + βtt′

p

)
≤ γt′t

p ≤ min{1− αtt′

p ; 1− βtt′

p }. (14)

ATMOS’12

114 A Dynamic Row/Column Management Algorithm for Train Scheduling

In addition, we have:∑
t′∈Tp

γtt′

p =
∑

t′∈Tp:t<t′

γtt′

p +
∑

t′∈Tp:t>t′

γtt′

p ≤ capp p ∈ P ; t ∈ Tp. (15)

Each station/siding point p has a limited capacity, i.e., number of side tracks capp, for
trains to meet, overtake or platform. We need to make sure that at any given time, no
more than capp + 1 (with one train on the main track) trains, regardless of their directions,
can be at p. Recall that a train t stays at p during the interval [at

p, d
t
p]. Constraints (10)

determine the value of variables αtt′

p , i.e., the order of train arrival, between t and t′, at
station/siding p. Constraints (11)-(12) determine the value of variables βtt′

p . Constraints
(13) - (14) determine the values of variables γtt′ and γt′t, and correspond to linearization of
the following quadratic terms defined in (1). Finally, inequality (15) ensures that at anytime,
at most capp + 1 trains in any direction can be at the same crossing point p.

4 Solving the stts_m (Single Track Train Scheduling) Model

In order to overcome the large number of constraints and variables, we propose a row and
column generation algorithm, called stts_a and depicted in Figure 1, in which we iteratively
add/remove some rows and columns until we reach an ε-optimal train schedule. Indeed, the
idea is to start with a rather small optimization model made of constraints (4) - (6) only, i.e.,
of the constraints involving only continuous variables: the earliness and tardiness constraints
(4), the dwell constraints (5), and the travel time constraints (6). Note that this first group
of constraints only involves continuous variables, as it does not involve any of the decision
(integer) variables δtt′

s , αtt′

p , βtt′

p , γtt′

p , θtt′

p , and therefore is an easy problem to solve as it is a
linear program (LP).

The resulting LP model is then solved, and then we check the feasibility of the solution,
examining the constraints involving the interaction between two (or more) train schedules.
Note that those last constraints, namely, constraints (7) up to (15), each involves one or two
binary variables (with some constraints sharing the same binary variable(s)), so that their
addition to the incumbent mathematical program will often entail the addition of one or
two new 0-1 variables. A compromise has to be found for the number of added constraints
and variables at each iteration between the following two extreme strategies: adding one
violated constraint at a time or adding all violated constraints. With the first strategy, the
convergence might be too slow, while with the second strategy, we might end up very quickly
with an unnecessary large set of constraints and variables. Once we have added some or all
violated constraints, the optimization model becomes a MILP model, which is solved again,
and we keep adding violated constraints until all constraints are satisfied. Note that, in
practice, it does not require solving the MILP stts_m model with the explicit embedding of
all possible constraints, but with a quite small fraction of the overall set of variables and
constraints, as will be seen in Section 5.

For the addition of the violated constraints, we consider the following strategy. Trains
are ordered according to a given criterion. In this study we order the trains according to
the departure times, alternating between westbound trains and eastbound trains (as the
rail network we consider is an East ↔ West one). Remaining ties, if any, are arbitrarily
broken. At iteration iter ≥ 2, after solving the current MILP, we revisit the constraints
for all the train interaction constraints, namely, (7) up to (15) with respect to the first iter
trains, identify the ones which are violated and add them to the current MILP. Once we

B. Jaumard, T. H. Le, H. Tian, A. Akgunduz, and P. Finnie 115

reach iteration iter = |T |, we may need several iterations before reaching a feasible schedule,
i.e., train schedules which satisfy all constraints.

After conducting some experiments, we found out that, rather than adding all violated
constraints at each iteration, it was more efficient (with respect to the overall computing
times) to only add the first 100 violated constraints.

Note that in the course of the iterations, we may have too many constraints and variables,
so that the scalability of the current MILP is impaired. In such a case, except for constraints
(4) - (6), we remove all the other constraints which are not binding constraints in the last
computed MILP solution.

Figure 1 Flowchart of the Solution Process.

5 Numerical Results

5.1 Data Instances
We evaluated the performance of the stts_m model and stts_a algorithm proposed in
the previous sections on the Canadian Pacific Railway (CPR) network between Calgary and
Vancouver [6]. It is a single track railway system, which we divided into 5 subdivisions. The
number of sidings/stations in each subdivision (including the endpoints) is:

Subdivision 1: Calgary - Field - 16 stations or sidings
Subdivision 2: Field - Revelstoke - 13 stations or sidings
Subdivision 3: Revelstoke - Kamloops - 14 stations or sidings
Subdivision 4: Kamloops - Mission - 14 stations or sidings
Subdivision 5: Mission - Vancouver - 16 stations or sidings

In terms of capacity (number of alternate tracks), we assume 2 alternate tracks at every
location which is the endpoint of a subdivision, and 1 otherwise. The algorithm stts_a was
run on 1 to 5 subdivisions with a variable number of trains in order to evaluate its performance,
but also the network capacity of the railway system. Indeed, there is a compromise between
the number of trains in the railway system and the overall travel times of the trains: if
the number of trains is too large, then the overall travel times of the trains increase with
significant waiting times, which is undesirable.

ATMOS’12

116 A Dynamic Row/Column Management Algorithm for Train Scheduling

We use a set of a 16 to 30 trains, with 61 sidings/stations, (with the same number of
trains from Vancouver towards Calgary as from Calgary towards Vancouver) with departure
times uniformly distributed over a time period of 24 hours. Consequently, when the number
of trains increases, their departure times are less spaced.

5.2 Efficiency of the stts_a Algorithm
Following the description of the stts_a algorithm in the previous section, the algorithm
iteratively adds trains to be taken into account in the overall train schedule, and alternates
between adding violated constraints and removing non binding constraints. First set of
experiments was done with the objective 2, i.e., non flexibility on the departure times.

In Figure 2, we plot the number of constraints and variables at each major iteration
(i.e., when we add a new train to be taken into account in the schedule) of the stts_a
algorithm for train scheduling with 30 trains. We remove non binding constraints before
inserting the constraints (4)-(6) related to an additional train, so we plotted the number of
variables/constraints before/right after the removal of the non binding constraints for the
curves associated with their overall number. Those plots correspond to the saw-tooth curves
in Figure 2. In addition, we added the plots related to the number of constraints/variables
for each set of constraints, but plotted only the numbers after the removal of the non binding
constraints. In Figure 2, the dash lines correspond to the overall number of constraints in
the MILP model: we observe that it goes beyond several tens of thousands constraints while
the number of considered constraints never exceed 10,000 for 30 trains. The legend indicates
the different groups of constraints.

1

10

100

1000

10000

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

overall # of var # conflict var

safety var # capacity var

continuous var

4 #	
 continuous	
 constraints8 #	
 overall	
 constraints28 20 	
 #	
 safety	
 constraints10 #	
 overall	
 safety	
 constraints52 	
 #	
 conflict	
 constraints2 	
 #	
 overall	
 conflict	
 constraints104 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints1064 #	
 total	
 overall	
 constraints1228
4 #	
 continuous	
 constraints8 #	
 overall	
 constraints20 20 	
 #	
 safety	
 constraints10 #	
 overall	
 safety	
 constraints52 	
 #	
 conflict	
 constraints2 	
 #	
 overall	
 conflict	
 constraints104 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints1064 #	
 total	
 overall	
 constraints1228
5 #	
 continuous	
 constraints10 #	
 overall	
 constraints47 27 	
 #	
 safety	
 constraints13 #	
 overall	
 safety	
 constraints104 	
 #	
 conflict	
 constraints4 	
 #	
 overall	
 conflict	
 constraints156 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints1750 #	
 total	
 overall	
 constraints2020
5 #	
 continuous	
 constraints10 #	
 overall	
 constraints27 27 	
 #	
 safety	
 constraints13 #	
 overall	
 safety	
 constraints104 	
 #	
 conflict	
 constraints4 	
 #	
 overall	
 conflict	
 constraints156 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints1750 #	
 total	
 overall	
 constraints2020
6 #	
 continuous	
 constraints12 #	
 overall	
 constraints90 18 	
 #	
 safety	
 constraints 0 #	
 overall	
 safety	
 constraints156 	
 #	
 conflict	
 constraints6 	
 #	
 overall	
 conflict	
 constraints234 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints2604 #	
 total	
 overall	
 constraints3006
6 #	
 continuous	
 constraints12 #	
 overall	
 constraints18 18 	
 #	
 safety	
 constraints 0 #	
 overall	
 safety	
 constraints156 	
 #	
 conflict	
 constraints6 	
 #	
 overall	
 conflict	
 constraints234 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints2604 #	
 total	
 overall	
 constraints3006
7 #	
 continuous	
 constraints14 #	
 overall	
 constraints131 22 	
 #	
 safety	
 constraints 0 #	
 overall	
 safety	
 constraints234 	
 #	
 conflict	
 constraints8 	
 #	
 overall	
 conflict	
 constraints312 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints3626 #	
 total	
 overall	
 constraints4186
7 #	
 continuous	
 constraints14 #	
 overall	
 constraints22 22 	
 #	
 safety	
 constraints 0 #	
 overall	
 safety	
 constraints234 	
 #	
 conflict	
 constraints8 	
 #	
 overall	
 conflict	
 constraints312 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints3626 #	
 total	
 overall	
 constraints4186
8 #	
 continuous	
 constraints16 #	
 overall	
 constraints189 31 	
 #	
 safety	
 constraints 0 #	
 overall	
 safety	
 constraints312 	
 #	
 conflict	
 constraints15 	
 #	
 overall	
 conflict	
 constraints416 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints4816 #	
 total	
 overall	
 constraints5560
8 #	
 continuous	
 constraints16 #	
 overall	
 constraints31 31 	
 #	
 safety	
 constraints 0 #	
 overall	
 safety	
 constraints312 	
 #	
 conflict	
 constraints15 	
 #	
 overall	
 conflict	
 constraints416 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints4816 #	
 total	
 overall	
 constraints5560
9 #	
 continuous	
 constraints18 #	
 overall	
 constraints223 38 	
 #	
 safety	
 constraints 2 #	
 overall	
 safety	
 constraints416 	
 #	
 conflict	
 constraints18 	
 #	
 overall	
 conflict	
 constraints520 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints6174 #	
 total	
 overall	
 constraints7128
9 #	
 continuous	
 constraints18 #	
 overall	
 constraints38 38 	
 #	
 safety	
 constraints 2 #	
 overall	
 safety	
 constraints416 	
 #	
 conflict	
 constraints18 	
 #	
 overall	
 conflict	
 constraints520 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints6174 #	
 total	
 overall	
 constraints7128
10 #	
 continuous	
 constraints20 #	
 overall	
 constraints264 45 	
 #	
 safety	
 constraints 1 #	
 overall	
 safety	
 constraints520 	
 #	
 conflict	
 constraints24 	
 #	
 overall	
 conflict	
 constraints650 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints7700 #	
 total	
 overall	
 constraints8890
10 #	
 continuous	
 constraints20 #	
 overall	
 constraints45 45 	
 #	
 safety	
 constraints 1 #	
 overall	
 safety	
 constraints520 	
 #	
 conflict	
 constraints24 	
 #	
 overall	
 conflict	
 constraints650 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints7700 #	
 total	
 overall	
 constraints8890
11 #	
 continuous	
 constraints22 #	
 overall	
 constraints277 55 	
 #	
 safety	
 constraints 4 #	
 overall	
 safety	
 constraints650 	
 #	
 conflict	
 constraints29 	
 #	
 overall	
 conflict	
 constraints780 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints9394 #	
 total	
 overall	
 constraints10846
11 #	
 continuous	
 constraints22 #	
 overall	
 constraints55 55 	
 #	
 safety	
 constraints 4 #	
 overall	
 safety	
 constraints650 	
 #	
 conflict	
 constraints29 	
 #	
 overall	
 conflict	
 constraints780 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints9394 #	
 total	
 overall	
 constraints10846
12 #	
 continuous	
 constraints24 #	
 overall	
 constraints331 97 	
 #	
 safety	
 constraints 2 #	
 overall	
 safety	
 constraints780 	
 #	
 conflict	
 constraints32 	
 #	
 overall	
 conflict	
 constraints936 	
 #	
 capacity	
 constraints39 	
 #	
 overall	
 capacity	
 constraints11256 #	
 total	
 overall	
 constraints12996
12 #	
 continuous	
 constraints24 #	
 overall	
 constraints97 97 	
 #	
 safety	
 constraints 2 #	
 overall	
 safety	
 constraints780 	
 #	
 conflict	
 constraints32 	
 #	
 overall	
 conflict	
 constraints936 	
 #	
 capacity	
 constraints39 	
 #	
 overall	
 capacity	
 constraints11256 #	
 total	
 overall	
 constraints12996
13 #	
 continuous	
 constraints26 #	
 overall	
 constraints278 68 	
 #	
 safety	
 constraints 8 #	
 overall	
 safety	
 constraints936 	
 #	
 conflict	
 constraints34 	
 #	
 overall	
 conflict	
 constraints1092 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints13286 #	
 total	
 overall	
 constraints15340
13 #	
 continuous	
 constraints26 #	
 overall	
 constraints68 68 	
 #	
 safety	
 constraints 8 #	
 overall	
 safety	
 constraints936 	
 #	
 conflict	
 constraints34 	
 #	
 overall	
 conflict	
 constraints1092 	
 #	
 capacity	
 constraints0 	
 #	
 overall	
 capacity	
 constraints13286 #	
 total	
 overall	
 constraints15340
14 #	
 continuous	
 constraints28 #	
 overall	
 constraints681 161 	
 #	
 safety	
 constraints 6 #	
 overall	
 safety	
 constraints1092 	
 #	
 conflict	
 constraints38 	
 #	
 overall	
 conflict	
 constraints1274 	
 #	
 capacity	
 constraints89 	
 #	
 overall	
 capacity	
 constraints15484 #	
 total	
 overall	
 constraints17878
14 #	
 continuous	
 constraints28 #	
 overall	
 constraints161 161 	
 #	
 safety	
 constraints 6 #	
 overall	
 safety	
 constraints1092 	
 #	
 conflict	
 constraints38 	
 #	
 overall	
 conflict	
 constraints1274 	
 #	
 capacity	
 constraints89 	
 #	
 overall	
 capacity	
 constraints15484 #	
 total	
 overall	
 constraints17878
15 #	
 continuous	
 constraints30 #	
 overall	
 constraints743 132 	
 #	
 safety	
 constraints 6 #	
 overall	
 safety	
 constraints1274 	
 #	
 conflict	
 constraints52 	
 #	
 overall	
 conflict	
 constraints1456 	
 #	
 capacity	
 constraints44 	
 #	
 overall	
 capacity	
 constraints17850 #	
 total	
 overall	
 constraints20610
15 #	
 continuous	
 constraints30 #	
 overall	
 constraints132 132 	
 #	
 safety	
 constraints 6 #	
 overall	
 safety	
 constraints1274 	
 #	
 conflict	
 constraints52 	
 #	
 overall	
 conflict	
 constraints1456 	
 #	
 capacity	
 constraints44 	
 #	
 overall	
 capacity	
 constraints17850 #	
 total	
 overall	
 constraints20610
16 #	
 continuous	
 constraints32 #	
 overall	
 constraints428 137 	
 #	
 safety	
 constraints 6 #	
 overall	
 safety	
 constraints1456 	
 #	
 conflict	
 constraints42 	
 #	
 overall	
 conflict	
 constraints1664 	
 #	
 capacity	
 constraints57 	
 #	
 overall	
 capacity	
 constraints20384 #	
 total	
 overall	
 constraints23536
16 #	
 continuous	
 constraints32 #	
 overall	
 constraints137 137 	
 #	
 safety	
 constraints 6 #	
 overall	
 safety	
 constraints1456 	
 #	
 conflict	
 constraints42 	
 #	
 overall	
 conflict	
 constraints1664 	
 #	
 capacity	
 constraints57 	
 #	
 overall	
 capacity	
 constraints20384 #	
 total	
 overall	
 constraints23536
17 #	
 continuous	
 constraints34 #	
 overall	
 constraints1201 349 	
 #	
 safety	
 constraints12 #	
 overall	
 safety	
 constraints1664 	
 #	
 conflict	
 constraints53 	
 #	
 overall	
 conflict	
 constraints1872 	
 #	
 capacity	
 constraints250 	
 #	
 overall	
 capacity	
 constraints23086 #	
 total	
 overall	
 constraints26656
17 #	
 continuous	
 constraints34 #	
 overall	
 constraints349 349 	
 #	
 safety	
 constraints12 #	
 overall	
 safety	
 constraints1664 	
 #	
 conflict	
 constraints53 	
 #	
 overall	
 conflict	
 constraints1872 	
 #	
 capacity	
 constraints250 	
 #	
 overall	
 capacity	
 constraints23086 #	
 total	
 overall	
 constraints26656
18 #	
 continuous	
 constraints36 #	
 overall	
 constraints1391 409 	
 #	
 safety	
 constraints13 #	
 overall	
 safety	
 constraints1872 	
 #	
 conflict	
 constraints59 	
 #	
 overall	
 conflict	
 constraints2106 	
 #	
 capacity	
 constraints301 	
 #	
 overall	
 capacity	
 constraints25956 #	
 total	
 overall	
 constraints29970
18 #	
 continuous	
 constraints36 #	
 overall	
 constraints409 409 	
 #	
 safety	
 constraints13 #	
 overall	
 safety	
 constraints1872 	
 #	
 conflict	
 constraints59 	
 #	
 overall	
 conflict	
 constraints2106 	
 #	
 capacity	
 constraints301 	
 #	
 overall	
 capacity	
 constraints25956 #	
 total	
 overall	
 constraints29970
19 #	
 continuous	
 constraints38 #	
 overall	
 constraints1730 493 	
 #	
 safety	
 constraints20 #	
 overall	
 safety	
 constraints2106 	
 #	
 conflict	
 constraints60 	
 #	
 overall	
 conflict	
 constraints2340 	
 #	
 capacity	
 constraints375 	
 #	
 overall	
 capacity	
 constraints28994 #	
 total	
 overall	
 constraints33478
19 #	
 continuous	
 constraints38 #	
 overall	
 constraints493 493 	
 #	
 safety	
 constraints20 #	
 overall	
 safety	
 constraints2106 	
 #	
 conflict	
 constraints60 	
 #	
 overall	
 conflict	
 constraints2340 	
 #	
 capacity	
 constraints375 	
 #	
 overall	
 capacity	
 constraints28994 #	
 total	
 overall	
 constraints33478
20 #	
 continuous	
 constraints40 #	
 overall	
 constraints2189 824 	
 #	
 safety	
 constraints24 #	
 overall	
 safety	
 constraints2340 	
 #	
 conflict	
 constraints62 	
 #	
 overall	
 conflict	
 constraints2600 	
 #	
 capacity	
 constraints698 	
 #	
 overall	
 capacity	
 constraints32200 #	
 total	
 overall	
 constraints37180
20 #	
 continuous	
 constraints40 #	
 overall	
 constraints824 824 	
 #	
 safety	
 constraints24 #	
 overall	
 safety	
 constraints2340 	
 #	
 conflict	
 constraints62 	
 #	
 overall	
 conflict	
 constraints2600 	
 #	
 capacity	
 constraints698 	
 #	
 overall	
 capacity	
 constraints32200 #	
 total	
 overall	
 constraints37180
21 #	
 continuous	
 constraints42 #	
 overall	
 constraints3140 907 	
 #	
 safety	
 constraints36 #	
 overall	
 safety	
 constraints2600 	
 #	
 conflict	
 constraints65 	
 #	
 overall	
 conflict	
 constraints2860 	
 #	
 capacity	
 constraints764 	
 #	
 overall	
 capacity	
 constraints35574 #	
 total	
 overall	
 constraints41076
21 #	
 continuous	
 constraints42 #	
 overall	
 constraints907 907 	
 #	
 safety	
 constraints36 #	
 overall	
 safety	
 constraints2600 	
 #	
 conflict	
 constraints65 	
 #	
 overall	
 conflict	
 constraints2860 	
 #	
 capacity	
 constraints764 	
 #	
 overall	
 capacity	
 constraints35574 #	
 total	
 overall	
 constraints41076
22 #	
 continuous	
 constraints44 #	
 overall	
 constraints3226 623 	
 #	
 safety	
 constraints25 #	
 overall	
 safety	
 constraints2860 	
 #	
 conflict	
 constraints71 	
 #	
 overall	
 conflict	
 constraints3146 	
 #	
 capacity	
 constraints483 	
 #	
 overall	
 capacity	
 constraints39116 #	
 total	
 overall	
 constraints45166
22 #	
 continuous	
 constraints44 #	
 overall	
 constraints623 623 	
 #	
 safety	
 constraints25 #	
 overall	
 safety	
 constraints2860 	
 #	
 conflict	
 constraints71 	
 #	
 overall	
 conflict	
 constraints3146 	
 #	
 capacity	
 constraints483 	
 #	
 overall	
 capacity	
 constraints39116 #	
 total	
 overall	
 constraints45166
23 #	
 continuous	
 constraints46 #	
 overall	
 constraints4119 1115 	
 #	
 safety	
 constraints36 #	
 overall	
 safety	
 constraints3146 	
 #	
 conflict	
 constraints77 	
 #	
 overall	
 conflict	
 constraints3432 	
 #	
 capacity	
 constraints956 	
 #	
 overall	
 capacity	
 constraints42826 #	
 total	
 overall	
 constraints49450
23 #	
 continuous	
 constraints46 #	
 overall	
 constraints1115 1115 	
 #	
 safety	
 constraints36 #	
 overall	
 safety	
 constraints3146 	
 #	
 conflict	
 constraints77 	
 #	
 overall	
 conflict	
 constraints3432 	
 #	
 capacity	
 constraints956 	
 #	
 overall	
 capacity	
 constraints42826 #	
 total	
 overall	
 constraints49450
24 #	
 continuous	
 constraints48 #	
 overall	
 constraints4044 1134 	
 #	
 safety	
 constraints56 #	
 overall	
 safety	
 constraints3432 	
 #	
 conflict	
 constraints74 	
 #	
 overall	
 conflict	
 constraints3744 	
 #	
 capacity	
 constraints956 	
 #	
 overall	
 capacity	
 constraints46704 #	
 total	
 overall	
 constraints53928
24 #	
 continuous	
 constraints48 #	
 overall	
 constraints1134 1134 	
 #	
 safety	
 constraints56 #	
 overall	
 safety	
 constraints3432 	
 #	
 conflict	
 constraints74 	
 #	
 overall	
 conflict	
 constraints3744 	
 #	
 capacity	
 constraints956 	
 #	
 overall	
 capacity	
 constraints46704 #	
 total	
 overall	
 constraints53928
25 #	
 continuous	
 constraints50 #	
 overall	
 constraints4817 1470 	
 #	
 safety	
 constraints42 #	
 overall	
 safety	
 constraints3744 	
 #	
 conflict	
 constraints79 	
 #	
 overall	
 conflict	
 constraints4056 	
 #	
 capacity	
 constraints1299 	
 #	
 overall	
 capacity	
 constraints50750 #	
 total	
 overall	
 constraints58600
25 #	
 continuous	
 constraints50 #	
 overall	
 constraints1470 1470 	
 #	
 safety	
 constraints42 #	
 overall	
 safety	
 constraints3744 	
 #	
 conflict	
 constraints79 	
 #	
 overall	
 conflict	
 constraints4056 	
 #	
 capacity	
 constraints1299 	
 #	
 overall	
 capacity	
 constraints50750 #	
 total	
 overall	
 constraints58600
26 #	
 continuous	
 constraints52 #	
 overall	
 constraints5277 1223 	
 #	
 safety	
 constraints52 #	
 overall	
 safety	
 constraints4056 	
 #	
 conflict	
 constraints91 	
 #	
 overall	
 conflict	
 constraints4394 	
 #	
 capacity	
 constraints1028 	
 #	
 overall	
 capacity	
 constraints54964 #	
 total	
 overall	
 constraints63466
26 #	
 continuous	
 constraints52 #	
 overall	
 constraints1223 1223 	
 #	
 safety	
 constraints52 #	
 overall	
 safety	
 constraints4056 	
 #	
 conflict	
 constraints91 	
 #	
 overall	
 conflict	
 constraints4394 	
 #	
 capacity	
 constraints1028 	
 #	
 overall	
 capacity	
 constraints54964 #	
 total	
 overall	
 constraints63466
27 #	
 continuous	
 constraints54 #	
 overall	
 constraints3299 603 	
 #	
 safety	
 constraints113 #	
 overall	
 safety	
 constraints4394 	
 #	
 conflict	
 constraints39 	
 #	
 overall	
 conflict	
 constraints4732 	
 #	
 capacity	
 constraints397 	
 #	
 overall	
 capacity	
 constraints59346 #	
 total	
 overall	
 constraints68526
27 #	
 continuous	
 constraints54 #	
 overall	
 constraints603 603 	
 #	
 safety	
 constraints113 #	
 overall	
 safety	
 constraints4394 	
 #	
 conflict	
 constraints39 	
 #	
 overall	
 conflict	
 constraints4732 	
 #	
 capacity	
 constraints397 	
 #	
 overall	
 capacity	
 constraints59346 #	
 total	
 overall	
 constraints68526
28 #	
 continuous	
 constraints56 #	
 overall	
 constraints5070 1329 	
 #	
 safety	
 constraints103 #	
 overall	
 safety	
 constraints4732 	
 #	
 conflict	
 constraints82 	
 #	
 overall	
 conflict	
 constraints5096 	
 #	
 capacity	
 constraints1088 	
 #	
 overall	
 capacity	
 constraints63896 #	
 total	
 overall	
 constraints73780
28 #	
 continuous	
 constraints56 #	
 overall	
 constraints1329 1329 	
 #	
 safety	
 constraints103 #	
 overall	
 safety	
 constraints4732 	
 #	
 conflict	
 constraints82 	
 #	
 overall	
 conflict	
 constraints5096 	
 #	
 capacity	
 constraints1088 	
 #	
 overall	
 capacity	
 constraints63896 #	
 total	
 overall	
 constraints73780
29 #	
 continuous	
 constraints58 #	
 overall	
 constraints6762 1782 	
 #	
 safety	
 constraints99 #	
 overall	
 safety	
 constraints5096 	
 #	
 conflict	
 constraints88 	
 #	
 overall	
 conflict	
 constraints5460 	
 #	
 capacity	
 constraints1537 	
 #	
 overall	
 capacity	
 constraints68614 #	
 total	
 overall	
 constraints79228
29 #	
 continuous	
 constraints58 #	
 overall	
 constraints1782 1782 	
 #	
 safety	
 constraints99 #	
 overall	
 safety	
 constraints5096 	
 #	
 conflict	
 constraints88 	
 #	
 overall	
 conflict	
 constraints5460 	
 #	
 capacity	
 constraints1537 	
 #	
 overall	
 capacity	
 constraints68614 #	
 total	
 overall	
 constraints79228
30 #	
 continuous	
 constraints60 #	
 overall	
 constraints6390 1967 	
 #	
 safety	
 constraints77 #	
 overall	
 safety	
 constraints5460 	
 #	
 conflict	
 constraints95 	
 #	
 overall	
 conflict	
 constraints5850 	
 #	
 capacity	
 constraints1735 	
 #	
 overall	
 capacity	
 constraints73500 #	
 total	
 overall	
 constraints84870
30 #	
 continuous	
 constraints60 #	
 overall	
 constraints1967 1967 	
 #	
 safety	
 constraints77 #	
 overall	
 safety	
 constraints5460 	
 #	
 conflict	
 constraints95 	
 #	
 overall	
 conflict	
 constraints5850 	
 #	
 capacity	
 constraints1735 	
 #	
 overall	
 capacity	
 constraints73500 #	
 total	
 overall	
 constraints84870

1	

10	

100	

1000	

10000	

100000	

4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	
 25	
 26	
 27	
 28	
 29	
 30	

overall	
 #	
 MILP	
 constraints	
 #	
 MILP	
 capacity	
 constraints	
 #	
 MILP	
 conflict	
 constraints	

#	
 MILPsafety	
 constraints	
 overall	
 #	
 constraints	
 #	
 capacity	
 constraints	

#	
 safety	
 constraints	
 #	
 conflict	
 constraints	
 #	
 conAnuous	
 constraints	

(a) Number of Variables (b) Number of Constraints

Figure 2 Evolution of the number of variables and constraints (1 subdivision).

We observe that the stts_a algorithm allows remaining with a highly manageable
set of constraints and variables, in spite of the theoretical huge number of variables and
constraints of the model, in particular when the number of trains increases. For instance, the
complete MILP model contains 45,405 binary variables and 84,870 constraints for 30 trains.
As expected, the dominant group of constraints corresponds to the capacity constraints as
soon as the number of trains increase, while the safety constraints are much less critical (due
to the distribution of train departure times).

5.3 Travel Times vs. Number of Trains
We now investigate the network capacity of the Calgary - Vancouver corridor, using objective
(2), i.e., the average travel times. The goal is to investigate the increase of the travel times

B. Jaumard, T. H. Le, H. Tian, A. Akgunduz, and P. Finnie 117

from source to destination vs. the number of trains running in the railway network. To do
so, we use the following statistics:

Average travel times (mean - µ, lower bound - LB, standard deviation - σ):(∑
t∈T

(at
dst − dt

src)
)
/|T | ;

Average waiting times (mean - µ, standard deviation - σ):(∑
t∈T

∑
p∈P

(at
p − dt

p − dwt
p)
)
/|T | ;

Number of train meetings out of the overall number of possible ones ;
Accuracy (εout) of the ε-optimal solution (relative value of the difference between the
incumbent value and a lower LP bound) vs. initial requested accuracy (εin when solving
the MILP with the CPLEX solver).

Table 1 Travel times vs. network load – No flexibility on departure times.

All
|T |

Average Average Number
εin εout travel

cpu
times travel waiting of
are times times train h:m

in hours µ LB σ µ σ meetings
1 subdivision: 16 7:08 6:59 1:03 0:45 0:53 29/64 10 2.2 7:12 00:01

18 7:22? 7:22 0:54 1:01 0:40 39/81 10 0.0 7:24 00:01
Kamloops 20 7:33 7:22 0:51 1:12 0:37 50/100 15 2.4 7:35 00:00
l 22 10:46? 10:46 5:52 3:59 5:05 90/121 15 0.0 10:54 00:08

Revelstoke
24 11:39? 11:39 6:30 4:26 5:40 107/144 15 0:0 11:54 00:22
28 11:40 11:32 6:26 4:35 5:46 141/196 15 1.2 11:48 01:48
30 12:16 11:54 6:22 5:29 5:54 167/225 15 3.0 12:35 04:54

3 subdivisions: 16 21:58 20:47 1:16 2:35 1:16 59/64 15 5.4 22:00 00:01

Kamloops
18 22:02 20:59 1:38 2:18 1:29 75/81 15 4.8 22:06 00:03

l
20 21:53 20:55 0:55 2:30 0:48 94/100 15 4.4 22:11 00:06

Calgary
22 22:15 21:06 2:36 1:05 2:36 115/221 15 5.1 22:18 00:06
24 22:16 20:31 4:42 3:22 1:19 129/144 15 7.9 24:00 00:23
26 24:19 22:08 2:00 4:07 1:47 165/169 15 8.9 24:30 00:25
28 23:51 21:47 1:46 3:31 1:36 192/196 10 8.7 26:48 11:57
30 26:38 22:53 2:44 5:34 2:03 221/225 15 14.1 29:00 19:41

5 subdivisions: 16 30:08 29:27 0:54 1:22 0:53 64/64 15 2.3 30.26 00:02

Vancouver
18 30:54 29.46 1:15 2:21 1:19 81/81 10 3.7 31:06 00:05

l
20 31:00 29:38 1:12 2:29 1:08 100/100 15 4.4 31:06 00:03

Calgary
22 31:18 29:50 1:38 2:42 1:36 121/121 15 4.7 31:30 00:04
24 31:45 30:03 1:32 2:31 1:12 144/144 15 5.4 31:48 00:09
26 31:50 30:09 1:48 2:58 1:34 169/169 15 5.3 32:24 02:21
28 32:24 30:17 1:49 3:31 1:48 196/196 15 6.5 34:00 02:04
30 34:07 31:16 2:10 4:37 1:44 225/225 15 10.4 35:47 10:57

Table 2 Travel times vs. network load – Some flexibility around the planned departure times.

Average travel Number of
εout

travel

∑
t∈T

earlyt
d

|T |

∑
t∈T

latet
d

|T |
times train

Trains µ σ meetings
Trains depart on planned departure times

16 7:08 1:03 29/64 2.2 7:12 0. 0.
18 7:22 0:54 39/81 0.0 7:24 0. 0.
20 7:33 0:51 50/100 2.4 7:35 0. 0.

Trains can be up to 30 mn early and 30 mn late with respect to planned departure times
16 6:50 0:51 27/64 7.0 7:00 0:03 (4) 0:16 (12)
18 6:52 0:35 37/81 7.5 7:00 0:10 (7) 0:14 (11)
20 6:50 0:32 49/100 3.8 7:00 0:08 (9) 0:11 (11)

ATMOS’12

118 A Dynamic Row/Column Management Algorithm for Train Scheduling

Statistics are reported for 1, 3 and 5 subdivisions, i.e., for 14, 37 and 61 sidings/stations
respectively. The requested precision at the outset ε varies between 10% and 15% in order
not to spend too much time solving the first MILP models. As can be observed in the column
entitled εout, the final precision is often much better than the requested one (? means that
the optimal value has been obtained, i.e., εout = 0). However, the obtained precision varies
with the number of trains and partially explains why the average times are not always strictly
increasing when the number of trains is increasing for a given number of subdivisions. The

optimal value is however guaranteed to lie in the interval
[
LB,

∑
t∈T

(at
dst − dt

src)/|T |
]
, and

there is a clear trend of increasing LB and average travel times values. The increase of the
average travel and waiting times are consistent due to train meetings, as expected. Note
that there is no guarantee that average travel times are always increasing when the number
of trains is increasing. Consider the example with 4 stations p1, p2, p3, p4 evenly spaced (40
miles for each segment), and 2 trains, one eastbound (t1) and one westbound (t2) running at
40mph. Assume t1 leaves at 8:05am from p1 and t2 leaves p4 at 8:00am. The average travel
times is then 3:28 hours. Add a new westbound train leaving p4 at 7:55am with the same
speed, then the average travel times becomes 3:18 hours.

In order to illustrate the train scheduling, we represented one of them with the so-called
string graph for an instance with 5 subdivisions, i.e., the entire Vancouver - Calgary corridor
with 20 trains. String graphs are used to display spatial and temporal information of track
occupancy: the vertical axis contains the distances between the Eastern and Western stations
(or the location of the intermediate sidings/stations) while the horizontal axis is a time axis.

Figure 3 String graph (Vancouver – Calgary – 20 trains – 5 subdivisions).

In Table 2, we report results on how much we can improve the average travel times when
allowing some flexibility on the departure times. We consider two scenarios, the first one
where the trains depart on time, and a second one where trains depart with no more than
30mn early/late. Results are given for 16, 18 and 20 trains on one subdivision (Revelstoke ↔
Kamloops). We observe that a shift of a few minutes is often sufficient to reduce the number
of train meets and therefore to reduce the average travel times. Numbers in parenthesis
indicate the number of trains leaving earlier/later than expected.

B. Jaumard, T. H. Le, H. Tian, A. Akgunduz, and P. Finnie 119

6 Conclusions

Following the scarce resources of freight train companies, efficient scheduling tools are required
in order to optimize the track usage, minimize the train travel times and evaluate/anticipate
the saturation of a railway network. In this study, we propose an enhanced optimization
model which includes the siding/station capacities, as well as an algorithm which allows a
proper management of the constraints and variables in order to remain scalable even for large
data instances. Indeed, it is able to solve accurately instances for up to 61 siding/stations
and 30 trains within few hours.

Acknowledgements B. Jaumard was supported by NSERC (Natural Sciences and Engi-
neering Research Council of Canada) and by a Concordia University Research Chair (Tier I).
T.H. Le and H. Tian were each supported by a FQRNT-NSERC-CPR fellowship.

References
1 A. Caprara, L.G. Kroon, M. Monaci, M. Peeters, and P. Toth. Passenger railway opti-

mization. In C. Barnhart and G. Laporte, editors, Handbooks in Operations Research and
Management Science, volume 14, chapter 3, page 129–187. Elsevier, 2007.

2 M. Carey and D. Lookwood. A model, algorithms and strategy for train pathing. Journal
of Operation Research Society, 46(8):988–1005, 1995.

3 J.-F. Cordeau, P. Toth, and D. Vigo. A survey of optimization models for train routing
and scheduling. Transportation Science, 32:380 – 404, April 1998.

4 M. Dessouky, Q. Lu, J. Zhao, and R.C. Leachman. An exact solution procedure for deter-
mining the optimal dispatching times for complex rail networks. IIE Transactions, 38:141–
152, 2006.

5 A. Higgins, E. Kozan, and L. Ferreira. Optimal scheduling of trains on a single line track.
Transportation Research B, 30(2):147–161, 1996.

6 P. Ireland, R. Case, J. Fallis, C. Van Dyke, J. Kuehn, and M. Meketon. The Canadian
Pacific Railway transforms operations by using models to develop its operating plans. In-
terfaces, 34(1):5–14, 2004.

7 D. Kraay and P.T. Harker. Real-time scheduling of freight railroads. Transportation
Research, 29B(3):213–229, 1995.

8 S. Mu and M. Dessouky. Scheduling freight trains traveling on complex networks. Trans-
portation Research Part B: Methodological, 45:1103–1123, 2011.

9 X. Zhou and M. Zhong. Single-track train timetabling with guaranteed optimality: Branch-
and-bound algorithms with enhanced lower bounds. Transportation Research Part B,
41:320–341, 2007.

ATMOS’12

Train Scheduling and Rescheduling in the UK with
a Modified Shifting Bottleneck Procedure∗

Banafsheh Khosravi1, Julia A. Bennell1, and Chris N. Potts2

1 School of Management, CORMSIS Research Group, University of
Southampton
Southampton, SO17 1BJ, UK
B.Khosravi@soton.ac.uk, J.A.Bennell@soton.ac.uk

2 School of Mathematics, CORMSIS Research Group, University of
Southampton
Southampton, SO17 1BJ, UK
C.N.Potts@soton.ac.uk

Abstract
This paper introduces a modified shifting bottleneck approach to solve train scheduling and
rescheduling problems. The problem is formulated as a job shop scheduling model and a mixed
integer linear programming model is also presented. The shifting bottleneck procedure is a well-
established heuristic method for obtaining solutions to the job shop and other machine scheduling
problems. We modify the classical shifting bottleneck approach to make it suitable for the types
of job shop problem that arises in train scheduling. The method decomposes the problem into
several single machine problems. Different variations of the method are considered with regard to
solving the single machine problems. We compare and report the performance of the algorithms
for a case study based on part of the UK railway network.

1998 ACM Subject Classification G.1.6 Optimization, Integer programming

Keywords and phrases Train Scheduling and Rescheduling, Job Shop Scheduling, Shifting Bot-
tleneck Procedure

Digital Object Identifier 10.4230/OASIcs.ATMOS.2012.120

1 Introduction

Meeting the ever-increasing demand for additional rail capacity is a key issue for many train
companies. There are two ways of providing the additional capacity for passengers and
freight users. One way is to construct new sections of track and another is through the
release of capacity on the current rail network. Whereas first option is very costly, the latter
is linked to train scheduling which reduces the loss of capacity of the network through better
scheduling decisions. The applications of operational research methodologies in combination
with advances in technology can provide great incentives for the rail industry.

After the pioneering publication of Szpigel [17], formulating the train scheduling problem
as a job shop scheduling problem offered a promising new research direction. However,
there have been several job shop scheduling approaches such as mathematical programming
techniques by Szpigel [17] and Sahin [16], constraint programming approaches by Oliveira
and Smith [12] and Rodriguez [14], and the alternative graph formulation by D’Ariano et

∗ This work was partially funded and supported by School of Management, former LASS Faculty of the
University of Southampton and the LANCS Initiative.

© Banafsheh Khosravi, Julia A. Bennell, and Chris N. Potts;
licensed under Creative Commons License ND

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti; pp. 120–131

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2012.120
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

B. Khosravi, J.A. Bennell, and C.N. Potts 121

al. [6], Corman et al. [5] and Liu and Kozan [9]. There are two main lines of research with
regard to the complexity of the railway infrastructure. In the first category, Szpigel [17],
Sahin [16] and Oliveira and Smith [12] each address a single line railway with single and
multiple track segments. More realistic networks are considered in the second category of
studies. Rodriguez [14] schedules trains in a terminal station, whereas D’Ariano et al. [6]
and Corman et al. [5] provide solutions for a dispatching area of a railway network with
passengers and freight. Further, Liu and Kozan [9] investigate a case study of a railway
network for the transport of coal.

A decomposition of the railway planning process into strategic, tactical and operational
levels is proposed by Huisman et al. [8], Caprara et al. [4] and Lusby et al. [10] as dealing
with the whole problem is hard and complicated. Train scheduling and rescheduling are the
subtasks of the planning process in tactical and operational levels, respectively. For a general
overview of operations research models and methods in railway transportation, see Huisman
et al. [8], Caprara et al. [4], Lusby et al. [10] and Cacchiani and Toth [2].

This paper aims to refine existing models for train scheduling and rescheduling problems
with the goal of obtaining a more generic model that includes important additional constraints.
The model is customised to the UK railway network and is evaluated through a case study.
The train scheduling and rescheduling problems are addressed in Section 2. Section 3 contains
the development of our proposed model. In Section 4, we adapt the shifting bottleneck
solution approach for the particular job shop problems that arise in train scheduling. The
performance of the proposed methods on a real-world case study based on London and South
East area of the UK that is a dense and complex network of interconnected lines is reported
in Section 5. Finally, Section 6 presents some conclusions and suggestions for future work.

2 Problem definition

Depending on the level of detail about track topology and train dynamics, the train scheduling
and rescheduling problems can be classified as microscopic or macroscopic problems [3]. This
paper investigates the train scheduling and rescheduling problems at the micro level including
detailed information about the tracks and train movements. Our experimental evaluation is
based on a bottleneck area in the South East of the UK where the network has a complicated
structure including several junctions and stations.

The movement of a train on the network is controlled for safety reasons by signals
which divide the network to track sections called blocks. Given predetermined routes from a
given origin to a given destination, a schedule determines starting times of trains entering
each block and the order of trains on each block. Each train needs a minimum specified
running time to travel on a block. If there is a scheduled stop at a station, the train needs a
minimum dwell time for the passengers or freight to board/load and alight/unload. Also,
safety considerations impose a headway, which is the minimum time between two consecutive
trains travelling on the same block. Various signalling systems are used in different countries.
In this study, we consider four-aspect signalling which is common for the main lines of the
UK network, as shown in Figure 1: red for stop (danger), yellow for approach (caution),
double yellow for advance approach (preliminary caution) and green for clear. Each aspect
gives information for 4 blocks ahead, thus enabling the train driver to adjust the speed
and to keep sufficient separation between trains to allow safe braking. According to the
safety principles, only one train can travel on a block at a time and a conflict occurs when
more than one train is assigned to a block. Another issue is the deadlock that arises when
certain trains are currently positioned in a way that none can move further without causing

ATMOS’12

122 Train Scheduling and Rescheduling in the UK

Block section

T1 T2

Green Double Yellow Yellow Red

Figure 1 4-aspect signalling system.

a collision. A deadlock happens usually in complicated networks with bidirectional travels.
Thus, being conflict-free and deadlock-free are essential characteristics of a feasible schedule.
The above-mentioned operational and safety issues are treated as constraints in our problem.

It is also important to take into account the possibility of delay propagation in a railway
network which is due to the high interdependency of the trains. Thus, the objective of our
problem is to minimize delay propagation. In summary, the aim of train scheduling is to
make the best usage of the existing capacity by allocating trains to blocks. In this study,
timetable components including scheduled running time, dwell time and headway and their
buffer times or margins are assumed to be fixed and we try to minimize the delay by selecting
efficient timings and ordering of trains on blocks. Train scheduling can be performed at a
tactical level, which can take up to a year. When trains are operated according to a plan,
disruptions can cause deviations to that plan due to various causes such as train delays,
accidents, track maintenance, no-shows for crew, weather conditions, etc. Train rescheduling
responds to disruptions in an operational level, where a new schedule is required in a matter
of minutes or seconds. The same scheduling technique can be implemented for real-time
traffic management if the solution method is fast enough.

3 Problem formulation

In this study, we make use of the similarity between train scheduling problem and the
well-known job shop scheduling problem. Job shop scheduling assigns jobs to machines in a
way that a machine can process only one job at a time. Likewise, a block can be occupied
by only one train at a time according to the line blocking which is a safety principle for
train movement. Thus, a train traversing a block is analogous to a job being processed on a
machine, and is referred to as an operation.

The following notation is used for parameters and decision variables in the mathematical
programming formulation for the train scheduling problem.

I: set of jobs/trains
i,j: indices for jobs (i = 1, . . . , I and j = 1, . . . , I)
ri: non-negative release time of job i/scheduled departure time of train i

from its origin
di: non-negative due date of job i/scheduled arrival time of train i at its

destination
wi: non-negative importance weight of job i/train i

(mi1, . . . , mi,li): sequence of machines to be visited by job i/sequence of blocks to be
traversed by train i

(i, m): job, machine indices/train, block indices, for m = mi1, . . . , mi,li

O: set of operations defined by indices (i, m), for i ∈ I, m = mi1, . . . , mi,li

B. Khosravi, J.A. Bennell, and C.N. Potts 123

pim: operation time for job i on machine m/running time for train i on
block m

si(m): the index of its immediate successor operation (index of its third suc-
cessor operation) for two-aspect signalling (four-aspect signalling) of
(i, m)

Si(m): a set containing index (i, m) for two-aspect signalling, and additionally
containing the indices of its immediate and second successor operation
for four-aspect signalling

hijm: required time delay (headway) between the start of operations (i, m)
and (j, m) when job i precedes job j on machine m

xijm:

{
1, if job i precedes job j on machine m

0, otherwise
tim: starting time of job i on machine m

Ti: tardiness of job i

To minimize delay propagation of trains with different priorities, the objective is to
minimize total weighted tardiness. The tardiness of a job is calculated from the due date
of the job, which is equivalent to the pre-defined time that a train should reach its final
destination and therefore leave the network. The release time of a job is similarly defined
as the pre-defined time that the train should leave its origin and thus enter the network.
Weights can be determined from train priorities. Thus, the train scheduling problem can be
formulated as a job shop scheduling problem with additional constraints, and a corresponding
mixed integer linear programming (MILP) model is specified below.

Minimize z =
∑
i∈I

wiTi (1)

subject to
Ti ≥ ti,mi,li

+ pi,mi,li
− di i ∈ I (2)

ti,mi,1 ≥ ri i ∈ I (3)
ti,mk

− ti,mk−1 ≥ pi,mk−1 i ∈ I, k = 2, . . . , li (4)
tjm − tim + B(1− xijm) ≥ max{pim, hijm} (i, m), (j, m) ∈ O (5)
tim − tjm + B(1− xjim) ≥ max{pjm, hjim} (i, m), (j, m) ∈ O (6)

tjm − tisi(m) + B(1− xijm) ≥
∑

(i,k)∈Si(m)

pik (i, m), (j, m) ∈ O (7)

tim − tjsj(m) + B(1− xjim) ≥
∑

(j,k)∈Sj(m)

pjk (i, m), (j, m) ∈ O (8)

xijm + xjim = 1 (i, m), (j, m) ∈ O (9)
xijm ∈ {0, 1} (i, m), (j, m) ∈ O (10)

In this formulation, the total weighted tardiness objective function is defined in (1). The
tardiness of a job is defined in (2) by considering its starting time on the last machine of its
sequence, its processing time on that machine and the due date of the job; this is equivalent
to defining a train’s delay. Ensuring that the starting time of a job on the first machine of its
sequence is no earlier than its release time is achieved through (3), which means a train can
start only after it is ready on the first block. Constraints (4) are called the set of conjunctive

ATMOS’12

124 Train Scheduling and Rescheduling in the UK

constraints to ensure the processing order of a job on consecutive machines. It determines
the running and dwell time constraints for trains. Modified disjunctive constraints (5) and
(6) specify the ordering of different jobs on the same machine, and they are adapted to define
the minimum headway between consecutive trains. Alternative constraints (7) and (8) force
a job to remain on a machine after completing its process until the next machine becomes
available. This pair of constraints can represent the signalling system of the network.

Modelling a job shop scheduling problem with a disjunctive graph is introduced firstly by
Roy and Sussman [15] and has thereafter been extensively used in solving job shop scheduling
problems. In this study, we also make use of a disjunctive graph G = (N, A, B, C) to
formulate the train scheduling problem. Despite of the fact that the original graph considers
makespan as the objective function, we employ a modified disjunctive graph of Pinedo and
Singer [13] which minimizes total weighted tardiness. Figure 2 shows an example of 3 jobs
and 4 machines. Set N contains a node for each operation (i, m), a dummy source U and
m dummy sinks Vi for each job i. A is the set of conjunctive arcs that connects the pair
of consecutive operations on the same job in order to take into account running and dwell
time constraints. Set B is the set of disjunctive arcs that are represented by two arcs in
opposite directions for every pair of operations (i, m) and (j, m). To represent headway for
both following and opposite trains, the length of a disjunctive arc is simply modified as
max{pjm, hijm} to consider the higher value between the running time and the headway.

2, 4

1, 2 1, 3

U

1, 4

2, 1

1, 1

5

2, 2 2, 3

3, 3 3, 2 3, 1 3, 4

V 1

V 2

V 3

i, j : Job (Train) i, Machine (Block) n

: Conjunctive arc (Running Time)

: Pair of disjunctive arcs (Headway)

: Pair of alternative arcs (Signalling)

0

5 1 4 8

2 6 5

0

5

4

3 7 9

Figure 2 Modified disjunctive graph.

Another limitation of the disjunctive graph to be addressed here is that it cannot model
the buffer capacity between consecutive machines properly. This is an important issue in
many real-life scheduling problems. In our problem, a job needs to stay on a machine after
its processing time until the next machine becomes free. So set C includes the pairs of
alternative arcs (i, si(m)) and (j, m) which are added according to the alternative graph
of Mascis and Pacciaiarelli [11]. As shown in Figure 2, these arcs are slightly adapted to
have alternative arcs of the length

∑
(i,k)∈Si(m) pik to keep following trains moving on green

signals with a fixed speed under four-aspect signalling.

4 Solution method

The train scheduling problem is known to be NP-hard (see [7] and [18]) and a practical size
problem can easily result in a huge job shop problem with numerous nodes and arcs. As
we cannot solve the proposed MILP model optimally in a reasonable amount of time, it is

B. Khosravi, J.A. Bennell, and C.N. Potts 125

preferable to employ local search methods for which computational time is more predictable.
The shifting bottleneck (SB) procedure of Adams et al. [1] is a well-known heuristic for

solving a classical job shop scheduling problem that is formulated as a disjunctive graph.
The success in applying the SB procedure on benchmark instances in job shop scheduling
literature has led to a number of studies that employ the SB approach. It can be also used
as a framework for other heuristics such as tabu search, simulated annealing and genetic
algorithms. Although there is no theoretical performance guarantee for SB, its empirical
performance has a good track record.

The SB procedure is a deterministic decomposition approach to solve multiple machine
problems by selecting each machine in turn and using the solution of the single machine
problem to define the processing order of jobs on that machine. According to Pinedo and
Singer [13], the solution method includes three main steps of sub-problem formulation,
sub-problem optimization and bottleneck selection (Figure 3). To find a feasible solution, we
need an acyclic order of operations by selecting exactly one arc of each pair of disjunctive
and alternative arcs. Mascis and Pacciarelli [11] provide some key properties and feasibility
analysis of a blocking job shop problem. In this paper, a modified SB procedure is proposed
for the train scheduling and rescheduling problems. It is inspired by Pinedo and Singer [13]
but modified for train scheduling to include additional constraints.

Yes

No

Sub-problem

Formulation

Sub-problem

Optimization

All Machines

Scheduled?

Bottleneck

Selection Start End

Figure 3 Shifting Bottleneck (SB) flowchart, adapted from Pinedo and Singer [13].

In general, the proposed SB differs from the conventional SB in solving the single machine
problem and finding the bottleneck. While the original SB considers an exact method to
solve the single machine problem of minimizing the maximum lateness of jobs having release
dates on a single machine (problem 1|rj |Lmax), the new SB employs a heuristic to solve the
single machine problem of minimizing the total weighted tardiness of jobs having release
dates on a single machine (problem 1|rj |

∑
wjTj). Bottleneck selection is based on maximum

lateness calculations in original SB, whereas the proposed SB makes use of total weighted
tardiness evaluations. The proposed SB procedure uses the following notation.

j, k: job indices
(j, m) job, machine indices for the operation that processes job j on machine

m

rjm: local release date for operation (j, m)
pjm: processing time of operation (j, m) of job j

dk
jm: local due date of operation (j, m) with respect to the due date of job k

L((j, m), Vk): the longest path from operation (j, m) to Vk, the sink corresponding to
job k

Cjm: completion time of job j on machine m

Ck: completion time of job k

T k
jm: tardiness of operation (j, m) with respect to the due date of job k

In the following, we introduce three main steps of the new SB algorithm. In the first

ATMOS’12

126 Train Scheduling and Rescheduling in the UK

algorithm, we develop a heuristic based on a well-known priority rule for 1|rj |
∑

wjTj which
is called the apparent tardiness cost (ATC) rule. The ATC is a dynamic rule that calculates
a ranking index for each job to be sequenced next on a machine. Under this rule, the highest
ranking job is selected among the remaining jobs to be processed next. Here, the single
machine heuristic embeds an adaptation of the ATC rule developed by Pinedo and Singer [13].
Because of the ATC index, we refer to our first SB algorithm as SB-ATC.

SB-ATC algorithm
Generate an instance of 1|rj |

∑
wjTj and for each operation calculate

rjm = L(U, (j, m)), (11)

dk
jm =

{
max{Ck, dk} − L((j, m), Vk) + pjm if L((j, m), Vk) exists,
∞ otherwise.

(12)

Select the operation (j, m) with the highest index

Ijm(t) =
n∑

k=1

wk

pjm

(
−

(dk
jm − pjm + (rjm − t))+

Kp̄

)
, (13)

where t is the time that the machine becomes available, p̄ is the average processing time of
jobs assigned to machine m, and K is a scaling parameter whose value can be determined
through computational tests.
Choose a machine m with its corresponding sequence of operations that minimizes

n∑
k=1

wk

(
max

(j,m)∈Nm

T k
jm

)
, T k

jm = max{Cjm − dk
jm, 0}. (14)

where Nm is the set of nodes corresponding to the operations processed on machine m.

The second SB algorithm is based on an active schedule generation (ASG) heuristic to
solve the single machine problems. The so-called SB-ASG selects the job with the smallest
release date among potential candidates with rjm < ECT, where ECT is the smallest possible
completion time of the job to be scheduled next. The third SB algorithm is developed on
the basis of the Schrage scheduling heuristic and is therefore named SB-SCH. In SB-SCH,
among potential candidates with rjm ≤ EST, where EST is the smallest possible starting
time of the job to be scheduled next, it selects the job with d∗jm = minkdk

jm.
Within the SB solution process, arcs are added gradually to the problem through sub-

problem optimization step. We need to ensure that the disjunctive and alternative arcs to be
added do not lead to infeasible solutions. Assume that machine m is selected in the bottleneck
selection step. All jobs on that machine are sequenced by using one of the mentioned single
machine heuristics. The disjunctive arcs can be added based on the sequence of the jobs
on machine m. Consequently, we add an alternative arc from (i, si(m)) to (j, m) if there is
a disjunctive arc from (i, m) to (j, m). The next step is to use the static implication rules
of D’Ariano et al. [6] to add implied alternative arcs for the following trains running on
common blocks. Further, we fix the implied arcs among the jobs on a machine for all trains
on common blocks. Through this process, the main characteristics of a timetable to be
conflict-free and deadlock-free are guaranteed.

B. Khosravi, J.A. Bennell, and C.N. Potts 127

A First Come First Served (FCFS) algorithm is also implemented, which is a simple
dispatching rule. It is close to the dispatcher’s behaviour in a real-time decision-making
environment. Our proposed SB algorithms are tested against FCFS in terms of the solution
quality.

5 Computational results

In this section, we discuss a real-world implementation of the proposed SB algorithms. The
experiments are based on the London Bridge area in the South East of the UK, chosen
because it is a dense and complicated network of interconnected lines for passengers in and
out of London, East Sussex and the Channel Tunnel. Figure 4 shows the configuration of
the network. It is a critical corridor with known capacity and performance issues, which
are made more complex by the addition of a new high speed line. The partial network we
consider is about 15 km long including busy stations like London Charing Cross, London
Waterloo, London Cannon Street, New Cross and Deptford, and a total of 28 platforms.
The network includes 135 blocks with unidirectional and bidirectional traffic. Passenger
trains start their journey from either Charing Cross or Cannon street and travel through 75
blocks in order to leave the network, or they enter the network and travel through 76 blocks
terminating at one of the mentioned stations.

Charing Cross

D

C

A

B

Waterloo East

London Bridge

Cannon Street

Metropolitan Junction

Borough Market

Junction

New Cross

Deptford North Kent East

Junction

Blue Anchor

Junction

Spa Road

Junction

6

5

4

3

2

1

1

2

3

4

5

6

A

B

C

D

1 2 3 4 5 6 7

Figure 4 London Bridge diagram.

Our experimental data focus on the off-peak services because there is an on-going strong
growth in off-peak period commuters. The timetable cycles every 30 minutes for the passenger
trains and includes 27 trains. The train timetables, running times and track diagrams are
provided by the primary train operator for this region of the UK. Using this data we simulate
real-life traffic conditions in one cycle under different types of disruptions in the network by
perturbing the known running times on certain blocks. Disruptions are classified into three
types as follows. A minor disruption is where no individual delay is more than 15 minutes.
A general disruption is where multiple services are running with delays between 15 to 30
minutes. A major disruption is where the majority of train services are delayed by over 30
minutes. All algorithms are developed in MS Visual C++ 2010 and run on a PC with a dual
core, 3.00GHz and 4GB RAM. Computational experiments compare the total delay for the
schedule arising from the FCFS dispatching rule and the SB algorithms.

ATMOS’12

128 Train Scheduling and Rescheduling in the UK

In the first set of experiments, we generate 18 problem instances across three types of
disruptions on single and multiple blocks. Note that we need the running times of at least two
blocks to be perturbed to create a major disruption. Random perturbations are generated on
the most common blocks and/or bidirectional blocks which tend to be the most critical ones.
An instance is classified as a minor, general or major disruption based on its FCFS output.
If FCFS results in a deadlock, we put the instance in the same class as the most similar
instance, in terms of perturbation, with no deadlock. We denote each type of disruption with
a code. M and MM show minor disruptions on a single block and multiple blocks respectively.
Similarly, G and GG represent general disruptions on a single block and multiple blocks.
Major disruptions on two and multiple blocks are indicated by A and AA.

Table 1 summarizes the results of our first set of experiments comprising a single run
for each of 18 generated instances. In the first and second columns of the table, we define
the disruption type and the instance code. The third, fourth and fifth columns indicate
which block(s) and train(s) are affected and the size of the perturbation, respectively. The
remaining columns display the results of the FCFS, SB-ATC, SB-ASG and SB-SCH delays
in minutes. The best result(s) for an instance among all algorithms are shown in bold. If we
consider the minimum value among three types of SB algorithms, they clearly outperform
FCFS as FCFS ends up with either a worse result or a deadlock in 16 out of 18 instances.
SB results are as good as FCFS in G3 and they are slightly worse than FCFS only in MM1.
As we expected, FCFS algorithm results in a deadlock in many instances as the network is
complicated with bidirectional travels. So FCFS schedules trains in a way that they cannot
move further without causing a collision, whereas feasibility is guaranteed by SB algorithms
no matter what type of disruption occurs. There is no special trend among the results of
three types of SB algorithms and none of them leads to better results for all instances.

As deadlocks arise in many instances solved by FCFS algorithm, we generate many more
instances and only retain the cases where FCFS does not result in deadlock. Table 2 provides
the results for these new instances and for the no-deadlock instances in Table 1. It also
provides the delay for the original timetable where there is no disruption. As before, each
row shows a single run of the instance and the best result(s) for each instance are displayed
in bold. As expected, the minimum delay among all SB algorithms is lower than FCFS in
10 out of 13 instances. Only in the second instance of general disruption, SB algorithms
perform as well as FCFS. In the last instance of minor disruption and the first instance
of general disruption, FCFS has slightly better results. Comparing the results of three SB
variants, it appears that SB-SCH is the weakest as it is either as good as or worse than the
other SB variants. No strong conclusion can be made about the performance of SB-ATC and
SB-ASG. The reason for the varied performance is not clear, but it seems that the search
space is difficult to navigate and applying different dispatching decisions at certain critical
points constrains the search space leading to sometimes better and sometimes worse results.

In general, our experiments show that SB procedure is a promising approach for solving
disruptions with less delay compared to FCFS and avoids deadlock. However, more detailed
analysis is needed to understand the impact of the dispatch rule. SB also suffers from
long computational times, that are not practical for real-time decision. For complex cases
run times are up to 26 minutes, whereas FCFS computation time is less than a minute.
Computational times for all three versions of SB are similar. However, there is scope for
developing a more efficient implementation of SB.

B. Khosravi, J.A. Bennell, and C.N. Potts 129

Table 1 Performance of SB algorithms vs FCFS for 3 types of disruption.

Instance
Affected Affected

Increase
Delay (mins)

block(s) train(s) FCFS SB-ATC SB-ASG SB-SCH

Minor M1 120 22, 23 5 63.50 52.08 62.50 73.00

disruption on M2 4 4, 6, 18, 20 4 102.33 98.67 87.42 114.08

a single block M3 24 2, 3, 5 5 157.17 136.427 62.50 155.92

Minor MM1 15/24 15, 16/2, 5 4.5/4.5 97.83 120.42 105.58 105.58

disruption on MM2 52/71 10, 24/8, 13 4/4 deadlock 124.58 92.67 92.67
multiple blocks MM3 20/58 2, 3/13, 22 4.5/4.5 deadlock 184.42 171.17 171.17

General G1 58 9, 12, 25 5 deadlock 291.67 293.58 230.75
disruption on G2 71 11, 13, 14 10 deadlock 170.33 184.50 204.92

a single block G3 132 22, 24, 25 6 124.92 147.83 124.92 124.92

General GG1 20/120 3, 6/23, 25 10/10 315.75 169.33 283.42 283.42

disruption on GG2 15/47 2, 15, 16/1, 4, 7 5/5 190.50 227.42 189.25 189.25
multiple blocks GG3 56/120 12, 13, 26/22, 24, 27 10/10 deadlock 321.58 466.25 466.25

Major A1 52/47 8-11, 22-25/1-7 30/30 deadlock 1103.42 1342.17 1621.67

disruption on A2 4/59/ 4-7, 18-21/8-14 30/30 deadlock 3216.08 3919.25 3269.25

two blocks A3 58/94 8-14, 22-27/15-21 30/30 deadlock 5753.58 4477.67 4477.67

AA1

14 2, 3, 16, 17 25

deadlock 2478.25 2657.00 2657.00
56 12-14, 26, 27 25

71 8-14 25

120 22-27 25

Major

AA2

4 4-7,18-21 25

deadlock 5472.25 5647.00 5323.67
disruption on 15 1-3,15-17 25

multiple blocks 58 8-14,22-27 25

94 15-21 25

AA3

24 1-7 25

deadlock 3504.58 3475.00 3475.00
47 1-7 25

94 15-21 25

132 22-27 25

Table 2 Performance of SB algorithms vs FCFS for deadlock-free instances.

Delay (mins)
FCFS SB-ATC SB-ASG SB-SCH

Timetable 32.17 27.67 30.92 30.92

Minor disruption

63.50 52.08 62.50 73.00
102.33 98.67 87.42 114.08
157.17 136.42 155.92 155.92
97.83 120.42 105.58 105.58

General disruption

96.00 119.67 99.92 99.92
124.92 147.83 124.92 124.92
315.75 169.33 283.42 283.42
190.50 227.42 189.25 189.25

Major disruption

5977.80 6463.38 5368.97 6161.47
3557.42 3288.50 3288.00 3289.50
3527.58 3422.00 3390.83 3390.83
3504.58 3475.00 3475.00 3475.00

ATMOS’12

130 Train Scheduling and Rescheduling in the UK

6 Conclusions and future work

In this paper, the train scheduling and rescheduling problems are modelled as a job shop
scheduling problem with additional constraints. The problem is formulated as a MILP using
a modified disjunctive graph. We describe a new optimization framework based on the
SB procedure to solve the problem. Three variants of the SB algorithm are suggested and
compared with the most commonly used FCFS dispatching rule. Our experiments focus
on a section of the UK rail network that is dense, complicated and congested. It provides
a problem instance that is among the most computationally difficult job shop problems
where the graph is extremely large. It is clear that simply finding a feasible solution is
nontrivial, since the FCFS algorithm frequently results in a deadlock. Hence, the proposed
optimization algorithm, which found feasible solutions to all instances, is very promising to
model and solve this large and complex problem with all the practical constraints. Further
research to improve the solution time and quality of the algorithm includes investigating
more efficient heuristics that can be embedded in the current framework and exploiting
potential computational speedups.

Acknowledgements We thank the School of Management, the former LASS Faculty of the
University of Southampton and the LANCS Initiative for partially funding and supporting
this project. We are also grateful to Southeastern, the train operating company, for providing
data.

References
1 J. Adams, E. Balas, D. Zawack. The shifting bottleneck procedure for job shop scheduling.

Management Science, 34(3):391-401, 1988.
2 V. Cacchiani, P. Toth. Nominal and robust train timetabling problems. European Journal

of Operational Research, 219(3):727–737, 2012.
3 G. Caimi. Algorithmic decision support for train scheduling in a large and highly utilised

railway network. PhD thesis, Swiss Federal Institute of Technology Zurich, 2009.
4 A. Caprara, L. Kroon, M. Monaci, M. Peeters, P. Toth, Passenger Railway Optimization,

in: C. Barnhart, G. Laporte (eds.), Transportation, Handbooks in Operations Research
and Management Science 14, Elsevier, 129–187, 2007.

5 F. Corman, A. D’Ariano, D. Pacciarelli, M. Pranzo. A tabu search algorithm for rerouting
trains during rail operations. Transportation Research Part B, 44(1):175–192, 2010.

6 A. D’Ariano, D. Pacciarelli , M. Pranzo. A branch and bound algorithm for scheduling
trains in a railway network. European Journal of Operational Research, 183(2):643–657,
2007.

7 M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to Theory of NP-
Completeness. Freeman, San Franscisco, 1979.

8 D. Huisman, L. Kroon, R. Lentink, M. Vromans. Operations Research in passenger railway
transportation. Statistica Neerlandica 59(4):467–497, 2005.

9 S.Q. Liu, E. Kozan. Scheduling trains as a blocking parallel-machine shop scheduling prob-
lem. Computers and Operations Research 36(10):2840-2852, 2009.

10 R. Lusby, J. Larsen, M. Ehrgott, and D. Ryan. Railway track allocation: models and
methods. OR Spectrum, 33(4):843-883, 2011.

11 A. Mascis, D. Pacciarelli. Job shop scheduling with blocking and no-wait constraints.
European Journal of Operational Research 143(3):498-517, 2002.

12 E. Oliveira, B.M. Smith. A job-shop scheduling model for the single-track railway scheduling
problem. Technical Report No. 21, School of Computing, University of Leeds, UK, 2000.

B. Khosravi, J.A. Bennell, and C.N. Potts 131

13 M. Pinedo, M. Singer. A shifting bottleneck heuristic for minimizing the total weighted
tardiness in a job shop. Naval Research Logistics 46(1):1–17, 1999.

14 J. Rodriguez. A constraint programming model for real-time trains scheduling at junctions.
Transportation Research Part B 41(2):231–245, 2007.

15 B. Roy, R. Sussman. Les problèmes d’ordonnancement avec contraintes disjonctives. Tech-
nical Report No. 9, SEMA, Paris, 1964.

16 I. Sahin. Railway traffic control and train scheduling based on inter-train conflict manage-
ment. Transportation Research Part B 33(7):511–534, 1999.

17 B. Szpigel. Optimal train scheduling on a single track railway. In M. Ross (Ed.). Operational
Research ’72, Amsterdam, The Netherlands, 343–352, 1973.

18 J. Ullman. NP-complete scheduling problems. Journal of Computer and System Science,
10(3):384–393, 1975.

ATMOS’12

Probabilistic Airline Reserve Crew Scheduling
Model∗

Christopher Bayliss1, Geert De Maere1, Jason Atkin1, and
Marc Paelinck2

1 ASAP Group, School of Computer Science, University of Nottingham,
Jubilee Campus, U.K
{cwb,gdm,jaa}@cs.nott.ac.uk

2 KLM Decision Support, Information services department
KLM Royal Dutch Airlines, KLM Headquarters, The Netherlands
Marc.paelinck@klm.com

Abstract
This paper introduces a probabilistic model for airline reserve crew scheduling. The model can
be applied to any schedules which consist of a stream of departures from a single airport. We
assume that reserve crew demand can be captured by an independent probability of crew absence
for each departure. The aim of our model is to assign some fixed number of available reserve
crew in such a way that the overall probability of crew unavailability in an uncertain operating
environment is minimised. A comparison of different probabilistic objective functions, in terms
of the most desirable simulation results, is carried out, complete with an interpretation of the
results. A sample of heuristic solution methods are then tested and compared to the optimal
solutions on a set of problem instances, based on the best objective function found. The current
model can be applied in the early planning phase of reserve crew scheduling, when very little
information is known about crew absence related disruptions. The main conclusions include the
finding that the probabilistic objective function approach gives solutions whose objective values
correlate strongly with the results that these solutions will get on average in repeated simulations.
Minimisation of the sum of the probabilities of crew unavailability was observed to be the best
surrogate objective function for reserve crew schedules that perform well in simulation. A list
of extensions that could be made to the model is then provided, followed by conclusions that
summarise the findings and important results obtained.

1998 ACM Subject Classification G.1.6 Optimization, G.3 Probability and Statistics

Keywords and phrases airline reserve, crew scheduling, probabilistic model

Digital Object Identifier 10.4230/OASIcs.ATMOS.2012.132

1 Introduction

This paper is related to the airline industry and in particular reserve crew scheduling. Much
time and effort is put into improving the quality of airline schedules, mainly to minimise
the cost of operations and improve the schedules’ ability to recover from delays and can-
cellations. Outlines of the airline scheduling process are given in [3, 4, 6, 5]. The process
starts with schedule design, in which airlines determine sets of origins and destinations
and the corresponding departure and arrival times for the flights they will fly. These are
called the flight legs. Following schedule design, fleet assignment determines which types

∗ This work was partially supported by the LANCS initiative.

© Christopher Bayliss, Geert De Maere, Jason Atkin, and Marc Paelinck;
licensed under Creative Commons License ND

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti; pp. 132–143

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2012.132
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

C. Bayliss, G. De Maere, J. Atkin, and M. Paelinck 133

of aircraft will be assigned to each flight leg. Maintenance routing then assigns particular
aircraft (tail numbers) to each flight leg in such a way that each aircraft spends sufficient
time at maintenance stations. Crew scheduling can be performed once aircraft schedules are
determined. Crew scheduling is typically solved sequentially as two sub-problems, firstly crew
pairing in which anonymous feasible crew schedules are generated, and then the assignment
of crew pairings to individual crew as the second sub problem. Crew schedules rarely go
according to plan due to unforeseen disruptions, including crew absence, delays (ground and
airside), unexpected maintenance requirements and delays due to the knock on effects of
these. Crew constitute a large cost for airlines, second only to fuel costs [2], this coupled
with the fact that crew schedules rarely go according to plan means that in order to keep
airline operations running as smoothly as possible, reserve crew have to be scheduled so as
to be ready to absorb crew related disruptions.
An outline of this paper is as follows: section 2 presents the probabilistic reserve crew
scheduling model which forms the basis for the whole paper; section 3 discusses how input
data for the model can be derived from the real world; section 4 gives results from experiments
as to the best surrogate objective function for yielding reserve crew schedules that absorb
large amounts of crew disruption; section 5 discusses solution methods that can be used to
solve the model concentrating on the balance between solution quality and speed of solution;
section 6 summarises the findings presented in the paper and discusses some extensions to
the basic model to make it more realistic.

2 Probabilistic Reserve Crew Scheduling Model

2.1 Problem description
The problem is to assign duty start times to a fixed number of reserve crew. Reserve crew
requirement is subject to the uncertainty of crew absence. This model schedules reserve
crew start times such that the overall probability of crew unavailability for a sequence of
departures from a single airport is minimised. A feature of this model is that possible reserve
crew start times correspond to scheduled departure times, this step is based on the idea that
standard duty start times are an inefficient approach, because many reserve crews beginning
duty periods simultaneously leads to reserve capacity that cannot possibly be used.

2.2 Assumptions
The probabilistic reserve crew scheduling model is based on the following simplifying assump-
tions;

1. The reserve crew scheduling problem consists of a set of departures from a crew base
where each departure has probabilities of crew absence and therefore the need for reserve
crew.

2. The maximum demand for crew per departure is 1. This could be interpreted as a single
team of reserve crew rather than an individual.

3. The chance of crew absence is captured accurately by independent probabilities for each
departure.

4. Reserve crew cover for the first crew absence that occurs within their fixed length duty
period, if more than one reserve crew member is available then the crew member who
started their duty period first is used.

ATMOS’12

134 Probabilistic Airline Reserve Crew Scheduling Model

5. Reserve crew can undertake a maximum of a single duty within any one duty period.
This can be justified by the fact that when reserve crew are used they typically adopt
the remainder of the pairing (string of flight duties) of the absent crew member they are
covering for.

6. Reserve crew duties begin at times corresponding to scheduled departures.

Assumptions 1 and 3 mean that the base problem can be represented as a vector of
probabilities (P) where pi represents the probability that the crew scheduled for departure
i will be absent. Assumption 2 means that the problem can be represented as a vector as
opposed to a matrix for specifying the probabilities of different numbers of crew for each
departure (see section 6). Assumptions 4 and 5 state the way that reserve crew are to be used:
reserve crew duties are fixed in length equal to some integer number of departures (L) (note
that the constant L can be replaced by Li for the case where departures are not at equal
intervals as assumed in the following), reserve crew cover for the first disruption that occurs
within their duty period, they can only cover one flight and therefore once they undertake a
cover duty they cannot cover for any of the remaining departures that occur within their duty
period (see section 6 for the extension). They also state the precedence ordering for the use of
reserve crew in the event that more than one reserve crew is available for a departure, which
is to use the reserve crew who has been on duty the longest. Another assumption that could
have been added is that no more than one reserve crew can be assigned to begin a reserve
crew duty at the same time, but this is just a way of restricting the solution space to rule out
solutions that will definitely be sub-optimal for this model. The reason being that if two or
more reserve crews begin a duty at the same time, at least one of them will not be utilised in
that period unless you have two flights at the same time and starting one later would cover at
least one extra departure. Assumption 6 tries to minimise wasting reserve crew duty time by
not scheduling them before the first time at which they may be required to cover crew absence.

2.3 Parameters and Variables
The parameters and variables are as follows;

P: vector containing the probabilities of crew absence for each departure
X : reserve crew schedule (solution)
L: length of a reserve crew duty period
R: number of reserve crew available for scheduling
N : number of departures

2.4 Probability calculations
The problem can be represented as a vector of probabilities P , where each element denotes
the probability of crew absence for a particular departure. A reserve crew schedule X can be
represented as a list of reserve crew duty start times, or equivalently departure numbers.

P = {p1 p2 p3 p4 ...} (1)
X = {x1 x2 x3 x4 ...} (2)

For a given set of departures with associated probabilities of crew absence and a reserve
crew schedule, we can determine the effect the given reserve crew schedule has on the

C. Bayliss, G. De Maere, J. Atkin, and M. Paelinck 135

probabilities of crew unavailability. The vector of probabilities of crew unavailability is
denoted by P ′ and is a function of the reserve crew schedule and the probabilities of crew
absence of the originally scheduled crew, P ′ = f(P, X). The procedure for finding P ′ for a
given reserve crew schedule is as follows and reflects the assumptions given in section 2.

Algorithm for calculating the effects of reserve crews on the
probabilities of crew unavailability for a sequence of departures
In words the following pseudo code states that, for each reserve crew that begins a duty (i
loop), initialise the probability of that reserve crew’s availability (pr) to 1, set the probability
of crew unavailability (pd) to 0 for that departure number. Then for each departure that
occurs (j sub loop) in a reserve crew’s duty update the probabilities that they are still
available having not been used in previous departures and update the probability that no
crew are available for that departure. The first line of the pseudo-code sets P ′ equal to P

because P represents the initial problem and P ′ represents the probabilities after the reserve
crew schedule has been taken into account.

P ′ = P

for i = 1 to R do
pd = 0, pr = 1
if xi < N then

for j = 2 to min (1 + N − xi, L) do
pr = pr(1− p

′

xi+j−2)
p

′

xi+j−2 = pd

pd = p
′

xi+j−1(1− pr)
end for

end if
end for

2.5 Non Linearity of P ′

Section 2 so far gives a method for measuring the quality of a given reserve crew schedule,
ideally we would like to minimise the vector P ′, to minimise the probability of crew unavail-
ability. As a result P ′ can be used as an objective function which has to be minimised in
some way and X is the variable. The first reaction would be to try to solve for the reserve
crew schedule (X) as a MIP (mixed integer programming model), however the probabilistic
model is nonlinear to a polynomial degree of R, the number of reserve crew to be scheduled.
The reason is due to the possibility of overlapping reserve crew duties, this interaction of
reserve crew duties means that the probabilities of reserve crew being required depends on
whether a reserve crew was assigned previously.

2.6 Solution space
The size of the solution space is given by all combinations of R reserve crew in N positions.

Number of feasible solutions = N !
R!(N −R)! (3)

The structure of the solution space is such that the natural definition of neighbouring solutions
is that of moving a reserve crew’s start time to a start time with no reserve crew assigned.

ATMOS’12

136 Probabilistic Airline Reserve Crew Scheduling Model

3 Input probabilities

The method for calculating the effect that a reserve crew schedule has on the probabilities of
crew unavailability outlined in section 2 is underpinned by estimates of probabilities for crew
absence for each departing aircraft. The accuracy of the model being put forward in this
paper is therefore influenced by the accuracy of the input probabilities. Accurate estimates
of crew absence probabilities can be derived from large sets of historic data and regression
models can be used to estimate the systematic influence of factors such as origin-destination
pairs, the time of day, month or year, and the potential interactions between them. In
addition to probabilities for crew absence derived from historic data, characteristics from
the schedule that increase the probability that a delay will propagate through the schedule
could also be taken into account. Examples thereof include crew duty times close to the
legal maximum (little slack) and delay propagation trees that model resource connections [1].
Finally, crew availability is influenced by the flexibility within a schedule to recover from
delays, and thereby prevent delay propagation. Examples of such recovery patterns include
crew swaps or move-up crews [9] and aircraft swaps.

4 Experimental results

4.1 Input probabilities for experiments
For the current investigation of the probabilistic mathematical model, probabilities of crew
absence (P) will be generated randomly from a uniform distribution for each sequence of
departures from a crew base. Due to the use of uniform random numbers the expected
number of crew absences will usually be approximately half the number of departures (N)
considered and this can be used as a reference point when interpreting solutions derived
from the probabilistic model. For example if N is 25, 12.5 crew absences can be expected,
now if 9 reserve crew are available and a given reserve crew schedule gives simulation results
with an average crew shortage of 4.5, this can be interpreted as reserve crew utilisation of
0.88 ((12.5− 4.5)/9), where higher reserve crew utilisation indicates superior reserve crew
schedules. Equation 4 shows how to calculate expected reserve crew utilisation for any given
instance of P .

4.2 Comparison of objective functions
The best reserve crew schedule will be the one that covers most of the potential for crew
absence. This can be achieved by seeking to minimise the vector P ′ in some way as this
is equivalent to minimising the average probability of crew unavailability. The following
experiment is designed to find the best surrogate objective function involving P ′ that leads
to the reserve crew schedule with the most desirable properties in terms of covering possible
crew absences under simulation.
Nine alternative objective functions are considered (table 1), all minimisation based i.e.
minimise the, A) sum of P ′, B) max of P ′, C) standard deviation of P ′, D) coefficient of
variation of P ′, E) product of the mean and standard deviation of P ′, F) weighted sum of
mean and max of P ′ and finally G), H) and I) with mean absolute deviation replacing standard
deviation in C), D) and E) respectively. The reasoning is as follows, A) minimising the sum
of P’ is equivalent to minimising the average probability of crew absence. B) minimising the
maximum which is equivalent to reducing the variation among P’ as well as suppressing max
P ′. C) minimising the standard deviation of P ′ will act to minimise the difference between

C. Bayliss, G. De Maere, J. Atkin, and M. Paelinck 137

Table 1 Objective functions.

Symbol Objective function Equation
A Sum of P ′

∑N

k=1 p
′
k

B Max P ′ maxk=1..N (p
′
k)

C Standard deviation of P ′ s =

√∑N

k=1
(p

′
k
−P̄

′)
N

D Coefficient of variation of P ′ s

P̄ ′

E Product of mean and standard deviation of P ′ sP̄ ′

F Weight sum of mean and max P ′ aP̄ ′ + b maxk=1..N (p
′
k)

G Mean absolute deviation of P ′ m

H D with mean absolute deviation m

P̄ ′

I E with mean absolute deviation mP̄ ′

the lowest probabilities (guaranteed to be zero) and the higher probabilities, the easiest way
to do this is to try to minimise the largest members of P ′, which is similar to minimising
the maximum probability. The only difference is that calculating the standard deviation is
computationally more demanding on computer resources. Also, its probability minimising
properties are implied rather than direct as they rely on the problem/model structure. D to
I) are based on similar reasoning.
The experimental method is to generate and store 20 example problem instances based on
N = 25, R = 9, L = 3 and P generated using uniform random numbers (section 4.1), then
enumerate the 2042975 feasible solutions (equation 3) to find and store the optimal reserve
crew schedules for each objective function and problem instance. After this, the optimal
reserve crew schedules for each objective function will be tested in simulations in order to
find which objective function leads to reserve crew schedules which have the highest reserve
crew utilization.
The simulations use random numbers in conjunction with the initial input probabilities to
generate realisations of crew absences for each of the 25 departures in each problem instance.
Reserve crew are used in the way specified in assumptions 4, 5 and 6 in section 2. 100 repeat
simulations are performed for each problem instance (2000 simulations in total). Reserve
crew schedules corresponding to each objective function for each problem instance will be
tested by the same 100 repeat simulations (each objective being tested simultaneously). 100
repeated simulations are thought to be enough to sample a wide range of possible outcomes
and also to get some feel for the average outcome for each problem instance. The results
are summarised in tables 2 and 3 which give reserve crew utilisation and flight cancellation
totals from 2000 simulations for each objective function.

Table 2 shows that the sum of P objective function has the fewest unused reserve crew
over 2000 simulations and therefore is the probabilistic surrogate objective function with
highest reserve crew utilisation. The fourth column gives the ranks of the objective functions
in terms of reserve crew utilisation. Note the the reserve crew utilisation values are calculated
by the number of reserve crew scheduled in 2000 simulations (18000) minus unused reserve
crew divided by 18000.
Table 3 gives the total number of flights that were cancelled in the simulations as the
originally assigned crew were absent and no reserve crew were available. The sum of P

objective gave the highest number of legal flights followed closely by objective function I
(product of mean and mean absolute deviation). The results of table 3 make it clear that in
order to guarantee feasibility of all departures a number of reserve crew equal to the number

ATMOS’12

138 Probabilistic Airline Reserve Crew Scheduling Model

Table 2 Overall reserve crew utilisation results from 2000 simulations.

Objective function Total unused reserve crew Reserve crew utilisation Rank
A 981 0.9455 1
B 1255 0.9303 7
C 1009 0.9439 4
D 2255 0.8747 9
E 1004 0.9442 3
F 1062 0.9410 6
G 1017 0.9435 5
H 1951 0.8916 8
I 1000 0.9444 2

Table 3 Total cancellations in 2000 simulations (50000 flights).

Objective function Total cancellations Cancellation rate Rank
A 9242 0.1848 1
B 9515 0.1904 7
C 9319 0.1864 5
D 12374 0.2475 9
E 9296 0.1859 3
F 9354 0.1871 6
G 9301 0.1860 4
H 11891 0.2378 8
I 9278 0.1856 2

of departures would be required, which would be very costly. So ideally a balance between
the cost of the reserve crews and the cost of cancelling flights is required. This gives rise to a
possible multiple objective optimisation formulation. However, in reality airlines have the
ability to call out freelance reserve crew as well as other possibilities, so the balance has to
include these as well.
Tables 2 and 3 give two very important simulation derived measures of the quality of reserve
crew schedules in comparison to other reserve crew schedules. High reserve crew utilisation
means that airlines are paying for reserve crew that will be used. Secondly cancellation rates
indicate what proportion of flights are infeasible in relation to a given reserve crew schedule.
Another interesting point from tables 2 and 3 is that there is a close connection between
the performance each objective demonstrates for each measure of solution quality, this can
be seen in the similarity of the rank ordering of objective functions in both tables 2 and 3.
In conclusion it has been found that minimising the sum of P is the best surrogate objective
function for deriving quality reserve crew schedules from this probabilistic model.

5 Solution methods

5.1 Comparison of solution methods

In this section it is shown that the objective function value for a given reserve crew schedule
implies the average reserve crew utilisation level and cancellation rate that the reserve crew
schedule will give in simulation. This conclusion is based upon applying a variety of heuristic
solution techniques in order to minimise P ′. The same 20 problem instances which were used

C. Bayliss, G. De Maere, J. Atkin, and M. Paelinck 139

in section 4 are used again here because the optimal solutions to these have already been
enumerated. Table 4 gives the average objective values and solution times1. Additionally
table 4 compares simulation results with expected results derived theoretically from the
surrogate objective values for the criteria of reserve crew utilisation and cancellation rates.
The objective function in each case is sum of P ′ as this was found to be the most effective
surrogate objective function in section 4. The first row contains the results found from
enumeration in section 4 and correspond to the optimal solution, this gives a benchmark for
judging the effectiveness of the various search and optimisation techniques. The solution
methods tested include local search, population based algorithms, greedy algorithms, pruned
dynamic programming algorithm and problem specific heuristics. The pruned dynamic
programming algorithm was the only method which identified all optimal solutions. Note
that this is not guaranteed to occur because the pruned dynamic programming algorithm
does allow the possibility that a partial solution corresponding to an optimal solution might
be pruned at an early stage of the search due to the use of heuristics for estimating upper
and lower bounds of partial solutions (see section 5.2).

5.2 Description of solution methods
Pruned dynamic programming algorithm
The method referred to as a pruned dynamic programming algorithm (DP) is based on
dynamic programming in that it uses the idea of states (number of reserve crew assigned)
and stages (departure number). It is also a branch and bound algorithm because entire
branches can be eliminated early during the search. The algorithm constructs and searches a
binary tree in a breadth first manner where each level of branching represents a departure
time and each path from the root of the tree to a leaf represents a partial solution. Each
iteration of the algorithm considers the next departure and adds a layer of depth to the
tree. The algorithm branches on each leaf remaining from the end of the previous iteration
until all departures have been considered. To cut down the amount of the complete binary
tree of feasible solutions that needs to be searched in order to find a good solution upper
and lower bounds corresponding to each partial solution are estimated. Lower bounds and
upper bounds are heuristically estimated, the lower bound heuristic is such that it always
gives a solution of better quality (quality here means lower objective value) than the upper
bound heuristic both starting from the same partial solution. Partial solutions are than
eliminated if their lower bound is greater than the minimum upper bound of partial solutions
in an equal or higher state. The use of upper and lower bound heuristics for pruning partial
solutions makes this method a heuristic, but a heuristic with a tunably high probability of
obtaining optimal solutions. The choice of upper and lower bound solutions influences how
ruthless the pruning strategy is. The algorithm can be made faster or more accurate by
using (respectively) lower or higher quality upper bound heuristics, provided that the lower
bound heuristic is always the best and most intelligent possible.

Population based heuristics
Genetic algorithm and ant-colony algorithms were investigated. The implementation of
a genetic algorithm (GA) uses a binary vector representation of candidate reserve crew
schedules, two-competitor tournament selection, single point crossover and a mutation rate

1 Matlab, dual core 1.86ghz, 2gb, windows vista

ATMOS’12

140 Probabilistic Airline Reserve Crew Scheduling Model

of 0.001 applied to every chromosome. The constraint on using a fixed number of reserve
crew means that crossover can lead to infeasible solutions with either more or less than the
required number of reserve crew. This issue was dealt with by applying greedy heuristics
(backwards and forwards heuristics, see the constructive heuristics subsection of section 5.2)
to obtain candidate reserve crew schedules with the required number of reserve crew. Table
4 shows that the backwards heuristic alone performs better than the genetic algorithm which
actually makes use of the same constructive heuristic. Due to the stochastic nature of genetic
algorithms this outcome varies from run to run. The reason for this result is that the best
and worst case results for the genetic algorithm span those of the constructive heuristics.
In the ant colony approach each of the 100 ants visits R positions of N , for each move
made by an ant a cumulative distribution corresponding to the ant’s next possible moves is
created from the pheromone vector, then a random input is compared with the cumulative
distribution to determine where the ant will move to. The sum of P ′ is computed for each
ant’s tour, an evaporation factor of 0.9 is applied to the pheromone vector, then the ant
with the smallest objective value is used to lay pheromone in such a way that replenishes the
amount evaporated.

Constructive heuristics

The backwards heuristics starts with the (optimal) infeasible solution of reserve crew assigned
to each period, reserve crew are removed one at a time choosing the one that increases the
objective value the least.
The forwards heuristic starts with no reserve crew assigned and adds one at a time choosing
the one that decreases the objective value the most.
The basic greedy approach positions reserve crew corresponding to the R highest probabilities
in the original probability of crew absence vector P .
The even distribution heuristic allocates reserve crews evenly across departures so that the
number of reserve crew on duty for each departure remains constant.

Local search based methods

Hill climbing searches the local neighbourhood and takes the best move only if it is better than
the current best. The hill climbing algorithm uses the neighbourhood structure described in
section 2.6.
The simulated annealing implementation (SA) is based on: a temperature reduction being
applied every 4 iterations (epoch=4); an initial temperature of 500; a final temperature of
0.001 and a geometric temperature reduction factor=0.9.
The tabu search implementation maintains a recency tabu list in which swapping of reserve
crew between two positions in the schedule is prevented for a tenure of 50 iterations after the
swap was last made. The method uses 100 iterations, always accepting the best non-tabu
move.
The variable neighbourhood search method (VNS) uses 5 neighbourhoods (in order): single
swap, cut and swap, single point crossover, sideways shift and random. If a neighbourhood
contains a better solution the solution is accepted as the current solution and a new iteration
begins, starting from neighbourhood one. If a better solution is not found the next neighbour-
hood is tested, if no improving solution is found after cycling through all neighbourhoods
the procedure is terminated.

C. Bayliss, G. De Maere, J. Atkin, and M. Paelinck 141

Table 4 Percentage of optimal, simulation coverage levels and solution times for a variety of
solution methods.

Solution Objective Reserve Expected Cancellation Expected Solution
method value crew reserve rate cancellation time

utilisation crew rate (s)
utilisation

Enumeration 4.5315 0.9455 0.9433 0.1848 0.1813 1296
Even distribution 5.1054 0.8783 0.8795 0.2061 0.2042 0.0160
Basic greedy 4.8258 0.9220 0.9106 0.1917 0.1930 0.0470
Forwards H 4.6125 0.9408 0.9343 0.1877 0.1845 0.1250
Backwards H 4.5655 0.9429 0.9395 0.1841 0.1826 0.1410
Hill climbing 4.5340 0.9464 0.9430 0.1823 0.1814 1.6540
SA 4.5517 0.9411 0.9410 0.1852 0.1821 0.6080
Tabu search 4.5316 0.9422 0.9433 0.1784 0.1813 16.2650
VNS 4.5338 0.9483 0.9430 0.1851 0.1814 18.7040
GA 4.5814 0.9433 0.9377 0.1844 0.1833 31.6070
Ant colony 4.5957 0.9369 0.9361 0.1853 0.1838 12.0900
DP 4.5315 0.9452 0.9433 0.1820 0.1813 38.0480

Expected value calculations

Expected reserve crew utilisation rate =

(∑N
i=1 pi)− (

∑N
i=1 p′i

)
R

(4)

Intuitively equation 4 means that the average probability of each reserve crew being used
is the expected total reduction in crew absence due to reserve crew availability divided by
the number of reserve crew available.

Expected cancellation rate =
∑N

i=1 p′i
N

(5)

The expected cancellation rate is simply the expected number of flights without crew
divided by the number of flights.

Table 4 shows that three of the local search methods came very close to optimality,
namely hill climbing, tabu search and variable neighbourhood search, of these tabu search
came closest to optimality. Of the greedy heuristics the method called backwards heuristic
performed best followed by the forwards heuristic, both of these give good solutions fast, as a
result these heuristics could be used as part of a more complex algorithm such as the pruned
dynamic programming method discussed in the pruned dynamic programming subsection of
section 5.2. Of the population based methods, the genetic algorithm (GA) performed the best
but still worse that the backwards heuristic. The methods highlighted in bold are solution
methods that have desirable properties in terms of either objective value and speed or both.
From these results more complex algorithms can be built using quality building blocks. For
example, one possibility is to begin a hill climbing algorithm seeded with the backwards
heuristic method. The fastest method of solution (solution times include repeat simulations
for each of 20 problem instances) was the even distribution heuristic which allocated reserve
crew evenly across departures, however, the objective value attained via this method was the
worst.

ATMOS’12

142 Probabilistic Airline Reserve Crew Scheduling Model

Observations
Table 4 indicates that the topology of the solution space for the probabilistic crew absence
model has many local optima that are close to the global optimum solution. Table 4 also
shows that there is a clear negative correlation between expected reserve crew utilisation
and cancellation rate and the utilisation and cancellation rates achieved in simulation, this
indicates that the probabilistic objective function approach gives results that will perform
as expected over a large number of trials. The strong correlation between expected and
simulation results is a result of the law of large numbers (averages) and says nothing about
the full range of possible behaviours, that is, this method does not guarantee a minimum
worst case performance, it only maximises the average expected performance. The results
also demonstrate that the step from good solutions to optimal solutions requires either long
computation times or intelligent search techniques and that a short cut to optimal solutions
is yet to be found for this particular model.

6 Conclusion

6.1 Main findings
We have introduced a probabilistic reserve crew scheduling model based on departures from
a single airport and the mathematics of this model have been introduced. Through an
investigation of possible objective functions for the model it was found that the sum of
P objective function leads to reserve crew schedules with the most desirable properties
(lowest cancellation rate and highest reserve crew utilisation rate). A multiple objective
optimisation approach was considered where the number of reserve crew to assign is a variable
along with the corresponding reserve crew schedule itself. Then, using the best objective
function for the single objective model, an investigation of solution methods was carried
out because enumeration typically takes a very long time. We found that with a pruned
dynamic programming based algorithm it was possible to obtain optimal solutions, although
this result is not guaranteed to happen because this method uses heuristics to estimate upper
and lower bounds of partial solutions in order to prune the search tree. The main problem is
that the heuristic bounds may not correctly reflect the potential quality of a partial solution,
which introduces a risk of pruning partial solutions corresponding to optimal solutions. Local
search techniques tended to perform very well compared to population based algorithms, with
tabu search obtaining solutions very close to optimality. A constructive heuristic (backwards
heuristic) was found to obtain good solutions very rapidly and as a result will be considered
for use in the pruned dynamic programming approach as a lower bound estimation heuristic
in order to improve the reliability of the pruned dynamic programming method.

6.2 Future directions
The current work can be made more detailed in several ways, including: a real time framework,
multiple crew absences possible per departure, inclusion of the effects of disruptions other than
crew absence, and other recovery actions. A real time framework would allow determination
of whether reserve crew can feasibly begin and end flight duties within their duty period. A
real time framework can easily be incorporated by making duty length (number of departures
covered by a duty) a function of the departure number, this would require some preprocessing.
Allowing the number of crew absent per departure to vary is a step towards a realistic model
because airlines always require more than one crew member per flight, in fact they always
require several crew of varying ranks [8]. This model extension would lead to the vector P

C. Bayliss, G. De Maere, J. Atkin, and M. Paelinck 143

being replaced by a matrix describing the probabilities of different numbers of crew being
absent for each departure (note that the model described in this paper could be used to
schedule teams of reserve crew rather than single crew members).
The inclusion of delayed flights would make the problem more complicated because there
is then the chance that reserve crew might become unavailable for covering a flight if it is
delayed for too long.
Including other recovery actions such as aircraft swaps, crew swaps and delays means that
costly reserve crew may not even be required if a cheaper recovery action is feasible.
Another area for improvement in the current model is to emphasise the feasibility of the crew
schedule.
All of the areas for improvement suggested in this section are based on considering the
feasibility of crew operations and airline operations in general. The current approach of
using uniform random numbers as probabilities of crew absences leads to unrealistically high
cancellation rates (tables 3 and 4), real data could be used to derive realistic probability
values, which would have to be representative of the actual probabilities of absence.
One of the underlying assumptions of the model is that reserve crew can cover any of the
departures occurring within their duty period (provided they have not already been used), in
reality this will not always be the case because some departures might represent the beginning
of long pairings that encroach upon the reserve crew’s scheduled time off (or subsequent
schedule [7]). To account for this, some preprocessing could be performed to find which
departures can be feasibly considered for each individual reserve crew member.

References
1 Shervin AhmadBeygi, Amy Cohn, and Yihan Guan. Analysis of the potential for delay

propagation in passenger airline networks. Journal of air transport management, 2008.
2 Micheal Ball, Cynthia Barnhart, George Nemhauser, and Amedeo Odoni. Air transporta-

tion: Irregular operations and control, 2007.
3 Cynthia Barnhart, Peter Belobaba, and Amadeo R Odoni. Applications of operations

research in the airline industry. Transportation Science, 2003.
4 Cynthia Barnhart, Amy M. Cohn, Diego Klabjan Ellis L. Johnson, George L. Nemhauser,

and Pamela H. Vance. Airline crew scheduling. Handbook and Transportation Science,
1999.

5 Ram Gopalan and Kalyan T. Talluri. Mathematical models in airline schedule planning.
Annals Of Operations Research, 1998.

6 Diego Klabjan. Large-scale models in the airline industry. Business and Economics journal,
2005.

7 KLM. Private communication.
8 Marc Paelinck. KLM cabin crew reserve duty optimisation. In Agifors proceedings, 2001.
9 Sergey Shebalov and Diego Klabjan. Robust airline crew pairing: Move–up crews. Trans-

portation science, 2006.

ATMOS’12

	p000-frontmatter
	Table of Contents
	Preface
	Organization

	p001-cacchiani
	Introduction
	Literature review
	Outline of the paper

	Problem Description
	Heuristic Algorithm
	Lower Bound
	Constructive Phase
	Local Search Phase

	Computational Experiments
	Conclusions and Future Research

	p010-bohlin
	Introduction
	Problem Definition
	Sequences and Feasible Solutions

	A Binary Integer Programming Formulation
	Extended Formulation Solution
	Pricing
	Branching

	Experiments
	Results

	Conclusions
	Future Work

	p023-pellegrini
	Introduction
	The real time railway traffic management problem
	Mixed-integer linear programming formulation
	Objective function and constraints

	Experimental setup
	Computational results
	Conclusions

	p035-keyhani
	Introduction and Motivation
	Train Operation
	Probability Distributions
	Our Model
	Distributions for Connections
	Calculation of Distributions
	Reliability-Rating of a Connection

	Distributions for Trains

	Computational Study
	Setup
	Computational Results
	Evaluation
	Test Connections
	Evaluating Connection Reliability
	Analysis of Arrival Distributions

	Conclusions and Future Work
	Conclusion
	Future Work

	p047-borndoerfer
	Introduction
	Modeling Direct Connections
	Direct Line Connection Model
	Direct Connection Model
	Model Discussion

	Computational Results

	p058-koenig
	Introduction
	Problem formulation
	Related work

	(Non-)approximability of MDCC
	Hardness of MDCC

	A heuristic greedy framework
	LP-based filling of containers
	Greedy filling method
	Fraction based scoring
	Theoretical bound on running time
	Cost estimators

	Computational study
	Test instances
	Tested configurations
	Results

	Conclusions and outlook

	p071-bauer
	Introduction
	Preliminaries
	Minimizing the Worst-Case Search-Space Size
	Paths and Cycles
	Hardness Results for Trees
	An Approximation Algorithm for Trees

	Minimizing the Average Search-Space Size
	Paths and Cycles
	Hardness Results for Trees

	Conclusion

	p083-samaranayake
	Introduction
	Stochastic On-Time Arrival (SOTA) problem
	Label-setting algorithm
	Localization and optimal ordering algorithm
	Efficient convolutions
	Numerical results
	Synthetic network
	San Francisco Arterial Network

	Conclusions and future work

	p097-nonner
	Introduction
	Train Shunting and Bipartite Independent Sets
	Generic Algorithms
	Uniform Cost
	Non-Uniform Cost
	Symmetric Train Shunting

	Dynamic Programming
	Non-Uniform Cost
	Economies of Scale
	Station-Dependencies
	Prize-Collection

	p108-jaumard
	Introduction
	Problem Statement
	Optimization Model
	Input Parameters
	Variables
	Minimize the Train Travel Times
	Constraints
	Travel and Dwell Time Constraints
	Safety Distance Constraints
	Segment Conflict Constraints
	Capacity constraints

	Solving the stts_m (Single Track Train Scheduling) Model
	Numerical Results
	Data Instances
	Efficiency of the stts_a Algorithm
	Travel Times vs. Number of Trains

	Conclusions

	p120-khosravi
	Introduction
	Problem definition
	Problem formulation
	Solution method
	Computational results
	Conclusions and future work

	p132-bayliss
	Introduction
	Probabilistic Reserve Crew Scheduling Model
	Problem description
	Assumptions
	Parameters and Variables
	Probability calculations
	Non Linearity of P'
	Solution space

	Input probabilities
	Experimental results
	Input probabilities for experiments
	Comparison of objective functions

	Solution methods
	Comparison of solution methods
	Description of solution methods

	Conclusion
	Main findings
	Future directions

