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Preface

The International Research and Training Group (IRTG) Visualization of Large and Un-
structured Data Sets – Applications in Geospatial Planning, Modeling and Engineering is a
joint effort of the University of Kaiserslautern (Germany) and the U.S. partners University
of California Davis, Arizona State University and University of Utah. It is funded by the
German research foundation (DFG) under grant DFG GK 1131/2, and is currently in the
last of two 4.5-year stages.

The primary research goal of this graduate program is the enhancement of scientific and
information visualization techniques applied to large and unstructured data sets. Every
visualization task is based on application data; For providing these data, our research inte-
grates applications from the domain Geospatial Planning, Modeling and Engineering, which
produce these huge amounts of unstructured data that are of interest for the visualization
tasks at hand. This integration is necessary to allow a deeper understanding of the provided
data due to the sharing of knowledge through the projects.

Until now, the state of the art has centered on the visualization of large and structured or
small and unstructured data. Dataset that are both large and unstructured are still not very
well understood, especially with respect to visualization. In order to address these questions,
we have defined a set of projects aiming at solving these problems. In detail, we are handling
visualization problems, with respect to modeling, feature detection, and comparison tasks.
For doing this, both the extension of existing techniques and the development of new ones
are investigated. In the application areas there is an increasing need to handle huge amounts
of unstructured data produced either by data from field measurements like environmental
observation stations, from experiments, and from simulation.

For example, environmental monitoring systems are capable of measuring data at a
very high resolution and in a large number of frequency bands. On the other hand, scaled-
down earthquake laboratory experiments within a centrifuge improved sensor technology
permit the measurement of an increased number of participants at higher sampling rates.
Finally, earthquake simulations produce more and more data because of more elaborate
simulation techniques. All these improvements in measurement technology lead to large,
high-dimensional data sets. Visualizing these data is very useful to get new insights into the
problems involved. The visualizations themselves are based on improved or newly developed
visualization techniques like volume modeling, feature detection and visualization, etc.

In this issue of OASIcs – OpenAccess Series in Informatics we present the results of the
annual workshop of this IRTG held in Kaiserslautern on June 10–11, 2011. The aim of the
workshop was to bring together all project partners, PhD students and advisors to report on
the different research projects. After two days of presentations and discussions the graduates
spent their time on writing papers that cover the outcome of the program and give surveys
on related topics.

Kaiserslautern, April 2012

Christoph Garth
Ariane Middel
Hans Hagen
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Virtual Reality supported Visualization and
Evaluation of Noise Levels in Manufacturing
Environments∗

Xiang Yang1, Bernd Hamann2, and Jan C. Aurich1

1 Institute for Manufacturing Technology and Production Systems (FBK)
University of Kaiserslautern, Germany
yang@cpk.uni-kl.de

2 Institute for Data Analysis and Visualization & CS Department
University of California, Davis, USA hamann@cs.ucdavis.edu

Abstract
Virtual Reality (VR) provides users advanced visualization and interaction technology for de-
signing, analyzing and exploring complex data. To address the issue of noise in manufacturing
environments, we developed a VR-supported method allowing users to explore noise behavior.
This method consists of an implementation of acoustic simulation and visualization for both
desktop and Cave Automatic Virtual Environment (CAVE) based VR systems. It enables user-
oriented, interactive analysis of simulated data, where there capability to immerse oneself in the
data is especially valuable. In a real-world factory, the acoustic measurements obtained essential
input data for simulation settings and validation data for simulation results. Furthermore, some
political and legal aspects are addressed to enhance the evaluation of results and the visualization.
By using the implemented software tool, users are able to understand and investigate the noise
issue in manufacturing straightforwardly.

1998 ACM Subject Classification J.6 Computer-Aided Engineering

Keywords and phrases virtual reality, acoustic simulation, visualization, manufacturing

Digital Object Identifier 10.4230/OASIcs.VLUDS.2011.1

1 Introduction

1.1 Virtual Reality
The Virtual Reality (VR) is applied in this paper to support the investigation of noise
issues in manufacturing industry. With a virtual environment, the acoustic simulation and
visualization are implemented. The simulation results and enhanced analysis capabilities in
VR provide a new point of view to fulfill this special requirement during factory planning.
As a comprehensive and widely developed technology, VR is originally defined as: „a system
that can display information to all senses of the user with an equal or bigger resolution than
the one that can be achieved in a natural way so that the user cannot say that the artificial
world is not real” [24].

In recent years the VR technology is improved significantly by increasing demand of
industrial applications and shows following changes, such as increased hardware power,
reduced acquisition costs, integrated methods with simulation and visualization. And on

∗ This work was partially supported by Eduard Deines, Simon Schröder and Tim Biedert.
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2 VR supported Vis. and Eval. of Noise Levels in Manufacturing Environment

implementation level, the Virtual Reality Modeling Language (VRML)/Extensible 3D (X3D)
standard is widely used and further developed.

The VRML standard is originally developed as a modeling language for web applications
and later accepted by the International Organization for Standardization (ISO) [2]. It is
implemented for different applications, e.g. virtual assembly, machining processes simulation,
visualization of facilities, and employee training parallel to the running production [17, 10].
Some web-based applications are also found in literature review. For example, Qiu et
al. demonstrate an implementation of automation animation using VRML and identified
fundamentally their advantages like assembling CAD-objects and their interaction [19]. And
remarkable of Ranga and Gramoll [20] are the introduction and implementation of JavaScript
into VRML and the performance in 3D FE-analysis. They realized a web-based virtual
environment and included a customized user interface. As successor to VRML, X3D is also
standardized by ISO and contains mostly all VRML features. For current applications X3D
has no remarkable advantages comparing VRML. On the other hand, VRML has more
developed Nodes, APIs and extensions. With Java or JavaScript, different programming
solutions like mathematical descriptions can be implemented in VRML. The Nodes offer a
customized link to different positioning and allocations between different objects. Therefore,
VRML is used as modeling language and scene graph standard in this paper. Due to the
internet nature of VRML, in this paper a web-server based concept is developed.

According to different user immersion levels, VR systems are classified into non-immersive
and immersive systems. A non-immersive VR system, such as a desktop-based display system,
is according to some VR definitions not understood as a real VR system. The full-immersive
VR systems, such as the CAVE system, provide most costly and complex solution with unique
benefits. Compared with non-immersive system an immersive VR system has higher sense of
situational awareness, wider field of view, higher scale perception and sense of immersion.
However, a non-immersive VR has advantages of lower costs, shorter development time, and
better implementation conditions. For example, the desktop-based VRML viewer enables
users implementing and viewing the developed virtual environment with simple configuration.

At the Institute for Manufacturing Technology and Production Systems (FBK), we use
the both VR systems to satisfy different demands of research and industrial projects [8, 9].
The proposed concept in this paper is also first developed and tested in a desktop-based
environment and further in CAVE system. The implementation and visualization in both
systems are to be discussed in latter sections.

1.2 Noise in Manufacturing
The factory workers are exposed to any of occupational hazards every day, such as, chemical
solvent, heat, noise, vibration, etc. Noise is becoming one of the most frequent occupational
hazards in manufacturing. The noise in a factory could from machinery, powered tools or
other activities, which influences employees’ health and can even cause diseases. According to
DIN 1320 and VDI 99, the noise is described as unwanted sound causing disorder, harassment
and other health problems. As the noise exceeds specific limits, the risks of hearing loss
or other sicknesses are increasing. According to the investigation of Federal Institute for
Occupational Safety and Health (BAUA), about five million employees are exposed to noise
in Germany. And this number in USA 1991 was over six million [12]. To protect health
and safety of the employees, there are existing laws and guidelines to follow, e.g. the
Federal Ministry of Labour and Social Affairs (BMAS) limits noise and vibration levels
within Germany’s Occupational Safety Law “Arbeitssicherheitsgesetz” (ASiG), German
ordinance “Lärm- und Vibrations-Arbeitsschutzverordnung” (LärmVibrationsArbSchV) and
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other additional guidelines. In the European Union the minimum requirements to protect
the workers from noise is determined with directive 2002/44/EU.

According to the influence effects, the impacts of noise to the workers in manufacturing
systems are classified from three main points of view: occupational safety, negative health
impacts, and preservation of work performance.

The occupational safety: According to regulation ISO 7731 [5], the loudness of a warning
signal in industry must be 15 dB over the ambient noise. The warning signal will not be
effective if the factory is too noisy. Also, communication among workers deteriorates [7]
due to noisy working environment, which causes potential unsafe factors.
The negative health impacts: the health damages can result from exposure to repeated
or very loud noise at work, e.g. permanent hearing loss and heart disease. More noise
related health risks such as physiological effects or the risk of accidents are listed by
[26, 27, 14].
The preservation of work performance: much research work has been done to determine
the influence of noise on workers’ performance. Different authors found a significantly
poorer performance when employees are exposed to noise [22, 11, 16].

The laws and guidelines require the employers to worry about the noise, namely eliminate
or reduce the risks from exposure to noise. The specific duties on employers are also
placed when the average sound pressure level and peak sound pressure level reach certain
limits. Different methods and instruments are deployed in practice [21]. According to the
solution methods, these methods are classified into three categories [18]: reduction of noise
emission, reduction of sound propagation, and reduction of sound pollution. In manufacturing,
the latter two methods are often implemented. Important methods to reduce the sound
propagation are changing the room shape, optimizing division of work areas, and using the
sound absorbing building structures as well as materials. The methods to reduce the sound
pollution are workstation related, such as arrangement of workstations and sound shielding
around workstations.

1.3 Acoustic Simulation
Acoustic simulation enables the investigation of the behavior of sound propagation, which
determines the influences of noise. Nowadays, many established methods for sound simulation
and sound visualization exist, which are widely implemented for computer games, multi-
sensory user interface, or acoustic prototyping. They are mostly wave-based or geometric
methods. Such as the Finite Element Methods (FEM), Boundary Element Methods (BEM),
and Finite Difference Time Domain (FDTD) are widely discussed and compared in [25, 23].

A geometric approach called Phonon Mapping is also developed in [13], which is imple-
mented to achieve the object in this paper. Analogous to seeing light as particles called
photons sound sources emit sound particles called phonons. With each reflection the phonon’s
sound pressure is decreased according to the material’s absorption coefficient. At each reflec-
tion position the current sound pressure of the phonon is stored. Calculating the influence
of all phonons to a particular listener position the information of all reflection positions
is collected and weighted according to their distance to the listener. Tracing the pressure
for different frequency bands and using a Dirac impulse as sound source this calculation
provides the room’s impulse response. Convoluting an anechoic signal with this we get the
exact sound in the simulated room with specific source and listener positions. Furthermore
in [13] acoustic properties of simulated rooms are extracted like understandability of speech
or suitability for concerts.

VLUDS’11



4 VR supported Vis. and Eval. of Noise Levels in Manufacturing Environment

In addition to room acoustic methods, an outdoor acoustic simulation and visualization
method is developed in [15]. It enables the industry to make the assessment of industrial
noise in the neighborhood. However, the outdoor noise issue is not concerned in this paper.

Adjusting or rescheduling a manufacturing system is expensive and time consuming. It is
necessary to take the noise issue into account both during the planning and design stage
of the manufacturing. In this paper, the simulation is used to calculate the sound level at
arbitrary listener positions. Then the simulation and visualization are implemented in a
virtual environment using VR, which enhances the understanding of noise influence in a
factory.

The rest of this paper is organized as follows. Section 2 gives an overview of the
implementation concept and involved tasks.The experimental acoustic measurements are
shown in section 3. In section 4, an interactive sound simulation and visualization approach is
presented. To implement this approach in VR, a web/client structure is introduced. Further,
the simulation results is visualized using a CAVE system. The final section concludes the
paper and gives an outlook of future research.

2 Method and Workflow

The VR-based concept presented in this paper includes several subdivided objectives. They
are design and implementation of acoustic measurements, an investigation of legal regulations,
3D modeling of a virtual environment, modeling of a sound source, parameter setting and
simulation implementation, design of a graphic user interface (GUI), development of a web
server as interface between VR and simulation etc. Figure 1 shows these tasks within a basic
workflow.

Figure 1 Workflow of a VR-based Method.

An acoustic measurement consists of sound level measurement and sound intensity
measurement, which provides input and validation data for simulation. Before simulation
start the parameters are specified according to the acknowledgement from measurement.
However, the validation part will not be included in this paper due to current research status.
At the same time, a mechanical laboratory is rebuilt into a 3D model, which provides a virtual
environment for simulation and visualization. In this process several modeling software are
used, such as SolidWorks and 3ds Max. An interface is made to enable users to change the
simulation settings. An additional interactive 3D user interface is created to navigate and
to control the simulations in a virtual environment. Combined with investigation of legal
regulations for manufacturing, the visualization of simulation results facilitates further the
analysis of noise issue in a factory.

Several requirements are considered, such as, the efficient and safe data transfer and file
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converting, a straightforward user interface, and extendable software structure with function
modules. In this paper not all tasks are discussed, the focuses are acoustic measurements,
acoustic simulation and visualization, and the implementation in VR. These three main issues
ensure the usability and efficiency of intended approach. The design and implementation of
both sound pressure measurement and sound power measurement are firstly shown in the
next section.

3 Acoustic Measurement

The acoustic measurements are classified into sound pressure level measuring and sound
power measuring. The sound pressure level indicates the effective sound pressure relative
to a reference value and the sound power shows the total energy of a sound wave per
unit time and measured in watts. The former allows a sound source description which is
input data for the simulation, and the latter provides the data basis for simulation result
validation. The measurement environment is a mechanical laboratory at the University of
Kaiserslautern. In this laboratory, the employees usually work with two manually operated
lathes, a CNC (Computerized Numerical Control) cutting machine, a CNC tool grinding
machine, a universal milling, a CNC drilling center, and some other small equipment. The
layout of this laboratory is shown latter in Figure 3a.

3.1 Sound pressure level measurement

(a) Measuring pa-
rameter setting

(b) Microphone calibration (c) Measurement configuration

Figure 2 Sound pressure level measurement.

Sound pressure is estimated by the difference between local pressure and atmospheric
pressure caused by a sound wave. This index is often used to identify the impact of sound
to the human. The sound pressure level is measured by using the sound level meter. A
portable computer allows users to make measurement settings, to store the measurement
results, and to view visualized results (shown in Figure 2a). According to regulation ISO
11202 [1], the acoustic pressure level is described by continuous sound pressure level, sound
from foreign sources, and maximal sound pressure level. A combined measurement design is
based on DIN series 45635, in which the measuring requirements for different manufacturing
processes are defined. For example, the measurement for a lathe is based on DIN 43635-1 [3].
A calibration shown in Figure 2b is done before measuring. For each single sound source

VLUDS’11



6 VR supported Vis. and Eval. of Noise Levels in Manufacturing Environment

the measurements are made at 11 different positions (shown in Figure 3a) and at 3 typical
machining procedures: idling, normal machining and high speed machining. During the
measuring, the microphone is positioned using a tripod with extension arm. The microphone
is adjusted 10 cm behind the head position at a height of 1.55m. In Figure 2c, the microphone
is for example placed facing the control panel.

(a) Measuring points in a real factory (b) Measurement results

Figure 3 Position-based sound pressure level measurement.

Figure 3b shows a measurement example of a running lathe (machine “DB1” in Figure
3a) at normal machining speed. Position 4 is directly in front of the lathe and shows the
highest continuous sound pressure level. The sound pressure levels at different positions are
basically proportional to the distance to the running lathe. Using the same analysis method,
the measured maximal sound pressure level is summarized as well. The sound from foreign
sources has no essential influence in this case and therefore not investigated. A validation
between these results and simulation will be made in the future.

3.2 Sound power measurement

A sound power investigation enables the description of a sound source. To describe the
sound power, the sound intensity description is usually implemented. In [4] the measuring
equipment is defined as intensity probe. Prior to measuring, a calibration of the sound
intensity probe is necessary, which is implemented by using a piston phone.

The intensity probe is placed 0.5m from the measured machine surface. The average
during 30 seconds measuring time is determined as measurement result. Based on ISO 9614-
1[6], it is necessary to repeat the measurement at least once per square meter. Therefore, a
grid is used to fix the measurement points on the side of a machine (shown in Figure 4a).
This grid is made by several wood frames and thin cords, which defines the sub-surfaces for
measuring and helps the operator to find the right position to place the intensity probe.

The intensity measurement is repeated in the middle of each sub-surface for all five
machine sides, except the bottom side. Based on the measurement data, a visualization of
power distribution around the sound source is made, which facilitates the understanding of
sound propagation in the vicinity of the sound source (Figure 4b and 4c) and further enhance
the modeling of sound source in a virtual environment.
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(a) Measurement setting (b) Power distribution (c) 3D visualized sound power distribution

Figure 4 Visualization of sound intensity distribution.

4 Sound Simulation and Visualization in VR

4.1 Server/Client structure
The objective of in section 2 discussed concept is to have an application for interactive noise
investigation in a virtual environment. To do this, VRML is used as a front-end to users. It
provides capabilities to render complex scene graph, to animate object motion, or to interact
with the user. VRML a well established standard which supported by any important platform
and operating system. Although VRML provides programming interfaces through JavaScript
and Java. As a server/client concept is used, an existing C++ implementation of the acoustic
simulation can be used and extended for the purposes. Figure 5 shows the method for
interactive acoustic simulation and visualization. The geometric data is transferred firstly
from modeling software to VRML editor, and then loaded into a web server generated viewer
application. All the objects are built with 3ds Max and then exported using the VRML
standard. Using VrmlPad as VRML editor, the Sensors, Events or other interaction Nodes
are constructed in a VRML file. At the same time, Java and JavaScript descriptions are
embedded into VRML directly. It enables interactive user interface, simulation launching, and
data converting. After these steps, the data for the application is prepared. The simulation
application acts as a server, which loads the model of a virtual factory and adds user interface
elements. The resulted VRML code is delivered to VRML compliant VR platform via HTTP.

Figure 5 A web server method for acoustic simulation and visualization.

VLUDS’11
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4.2 Simulation using web server

As the simulation is started, the server loads the VR model (VRML file) and adds additional
VRML script describing basic user interface elements for interaction within the scene. Buttons
and sliders are implemented using simple VRML geometric codes and JavaScript. This
geometry is connected to a TouchSensor for buttons and to a PlaneSensor for sliders. These
sensors emit events which are routed to Script Nodes containing simple interaction logic
written with JavaScript. Commands are sent back then to the server by loading a special
URL which encodes the action. The server computers the simulation and delivers the data
to the VRML viewer again. These communications are done via HTTP connections. The
viewer opens a new connection using an HTTP request asking for a file encoding commands
in the filename. The server does its calculation and answers with a new VRML file delivered
by this existing HTTP connection.

Figure 6 Simulation user interface.

To implement the phonon tracing simulation, several input parameters are required. It
is a geometric approach, the algorithm needs first the geometric model of the room and
the objects inside. Each surface of the objects is assigned to one material with specific
sound absorption property. Usually, the material’s absorption coefficients are taken from the
coefficient tables.

Then the position of sound source and the sound pressure at 1 meter distance to the
sound source are required. The sound pressure can be estimated by using the measurement
data. Better results are achieved by providing an anechoic signal of the sound source, i.e.
the sound pressure at several frequencies. Furthermore, the user may define an arbitrary
number of listener positions. Other settings such as the number of phonons, the speed of
sound wave etc. are also made before simulation. For more details on the simulation and
input settings, refer to [13].

After parameter settings, the model is loaded into the viewer application. The user can
explore the room and place the sound source within the viewer application and starting the
acoustic simulation. In Figure 6, two modules are shown. On the left is the module for sound
source setting and simulation start. Using the right module, one or more listeners are placed
in the room according to common operation positions, and then the phonon collection step
can be performed. In 1.3, the simulation algorithm is already described.
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4.3 Visualization in VR
When the simulation is done, users can investigate the sound propagation inside the room
by view the animated phonon paths. In Figure 7a, the phonons are visualized as green
spheres. A 3D user interface facilitates the user experience. The playback speed can be
adjusted with the “++” and “–” buttons and the current simulation time step can be
specified with a slider. The tool enables the user to place and remove listeners depicted
by workers interactively. Then, a command for the calculation of the sound pressure levels
at the defined listener positions is issued. The scene graph in Figure 7b is updated with
corresponding listener colors according to the sound pressure level: green for low sound
pressure levels <80dB, yellow/orange for critical sound pressure levels <84dB, and red when
the sound pressure level is higher than the upper action value according to German ordinance
LärmVibrationsArbSchV. The visualization of the sound propagation and noise level helps
users to identify possible noise problems/positions and find out the matching solutions. The
effect of different materials on the spectral energy/pressure distribution can be observed
as well. Scene materials of high reflectance can be identified and replaced in the virtual
environment. The potential improvements of the changes can be viewed directly after one
more simulation, thereby reducing the noise level.

(a) Sound propagation (b) Color scaled sound level

Figure 7 Visualization of sound level.

After the successful test with desktop system, the application is implemented in CAVE-
based VR. The CAVE system located at the FBK institute Kaiserslautern consists of 8
projectors, projecting on 4 walls (front, left, right and floor). It offers an immersive virtual
environment more than 17 cubic meters. In this system, the passive stereo technology with
circular polarization is used for stereoscopic rendering of the 3D scene. The CAVE is driven
by a VR cluster, which contains 1 master and 8 clients. Four infrared (IR) cameras from are
used for position/motion tracking. Users interact with the VR system via different input
devices such as a fly stick. “COVISE” is selected as software platform to operate the CAVE,
due to its wide range of hardware support and the variety of different functionality modules.
For wide industrial applications, COVISE enables straightforward integration of different
modules as well as visualization functionalities.

The web server opens a HTTP port for COVISE modules and gets feedback from COVISE.
The two necessary COVISE modules are “VRML renderer” and “VR” modules. The former
enables the VRML visualization of a scene graph in CAVE and the latter provides basic
interaction functions, such as the navigation and user tracking. In Figure 8, the CAVE-
based application is shown. The user explores the virtual factory and simulates the sound
propagation to analyze the noise issue during workstation or layout planning.

VLUDS’11
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(a) IR tracking system (b) Sound pressure level visualization in CAVE

Figure 8 Interactive visualization of sound level using CAVE.

5 Conclusion and Future Work

In this paper, a new method for interactive and fast noise investigation in virtual manufac-
turing is introduced. A software tool is implemented, which can be used to determine the
noise level at operation positions in a factory and test different improvement scenarios in
VR directly. A web server is used as data interface and user interface between simulation
and VR. Users are allowed to set the simulation parameters and view the results through an
interactive user interface. Further, the method provides facilities to check the limits of sound
pressure level against federal laws and regulations. The proposed concept is effective and
produces realistic results.

However, the industrial noise in outdoor area is not considered in this concept, which is
the further research focus. Combining the wave-based simulation algorithm can enhance the
phonon tracing results. However the integration of both methods needs high performance
computing and optimized software structure. Also, this tool provides only basic human-
computer-interaction facilities the sound investigation, which is to be extended in the future.
Changing acoustic properties of the room has to be made in original room model and exported
to VRML again. This process has to be improved to an more intuitive process within VR, e.g.
the interactive adjustment of absorption coefficient for simulation of different floor materials.
And based on the server/client structure, an implementation of web-based collaborative
simulation and visualization is also considered in the future.
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Abstract
We present an interactive spherical terrain rendering system employing a hierarchical subdivision
of the HEALPix coordinate system using quadtrees. Compared to other parameterizations, the
scheme avoids singularities and allows for efficient fusion of mixed-resolution digital elevation
models and imagery. A Level-of-Detail heuristic is used to guarantee both high performance
and visual fidelity. Unified treatment of DEM and imagery data is achieved by performing the
HEALPix projection within a GPU shader. The system is applied to the exploration of Mars,
using both MOLA (NASA) and HRSC (German Aerospace Center) data sets.
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1 Introduction

Three-dimensional visualization of terrain is a well-studied problem with a history of algo-
rithmic approaches. However, most of these solutions assume a “flat-earth” model, where
topography is mapped to a plane. This is acceptable as long as the viewer is close to the
surface but breaks down at distances where planetary curvature becomes relevant. Spherical
terrain rendering aims to solve this problem by representing the planetary surface as a
spheroid to allow for visualization at any scale.

Naive approaches to spherical terrain rendering parametrize the whole surface using a
two-dimensional coordinate system. However, any 2D parametrization of the sphere exhibits
so-called coordinate singularities, which lead to visible sampling and/or rendering artifacts.
For example, in the canonical geographic coordinates (latitude / longitude), singular points
appear at ±90 ◦ latitude (north and south pole).

To avoid these singularities, a 3D parametrization must be used. A common strategy uses
a platonic solid as base geometry which is refined using recursive subdivision and extrusion
to the spheroid surface. Each of the faces of the base geometry can be parametrized using
2D coordinates while the index of the face can be interpreted as a third (integer) coordinate.
To implement Level-of-Detail (LoD) rendering, multi-resolution data structures are used
which assign elevation values to vertices in each subdivision level.
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These strategies have in common that the relation between parametric and euclidean
coordinates is only given implicitly by the subdivision scheme. As euclidean coordinates are
required for rendering, this implies that either the recursive subdivision has to be recomputed
in every frame or that meshes have to be stored in euclidean coordinates in GPU memory.
The former solution is computationally expensive while the latter incurs a high storage cost.

In this paper we propose applying the HEALPix [5] coordinate system to represent
planetary topography for spherical terrain rendering. HEALPix decomposes the sphere into
12 curvilinear quadrilateral base patches of equal area. These are then uniformly subdivided
as necessary to form a sampling grid for representing data on the sphere. Compared to
other spherical rendering approaches which use implicit coordinate systems, the HEALPix
projection is given in a closed form. This property allows for efficient on-the-fly projection
of height fields from parametric to euclidean space within a vertex shader. To enable LoD
rendering a multi-resolution database structure based on a forest of quadtrees is used. A
subset of these trees is kept in GPU memory and updated as the viewer moves by loading
data in the background (data streaming).

In the following, we present other work related to spherical terrain rendering. Then we
describe the data structure used and give an efficient transformation algorithm to convert
geological data sets to this storage scheme. The actual rendering algorithm for DEMs
which is based on a top-down traversal of this data structure is subsequently described,
including aspects of LoD selection, frustum culling, triangulation of tiles and background data
streaming. This algorithm is then extended to also support the visualization of high-resolution
imagery draped on top of the DEM.

The system is applied to the interactive exploration of Mars, using a hybrid of MOLA
(NASA) and HRSC (German Aerospace) data sets. While HRSC is of higher resolution than
MOLA, it does not yet provide full coverage of Mars (as of 2011). We therefore chose to
integrate both data sets into a single database, demonstrating that the storage scheme can
efficiently capture both at their native resolution.

In Section 4 we present our results using these data and give performance measurements
to substantiate the interactivity claim. In the final section, some areas of further research
are identified, focusing on aspects of performance and image quality.

2 Related work

Geometry Clipmaps [7] is a planar terrain rendering approach using rectangular, concentric
rings of geometry centered around the viewer which decrease in resolution with increasing
distance. The algorithm exploits temporal coherence in viewer movement by minimizing
per-frame data structure updates using toroidal addressing.

Spherical Clipmaps [3] extend this scheme to spherical rendering by representing the
planet’s hemisphere which faces the viewer using a set of circular rings. However, due to low
accuracy of the tan−1 function on the GPU, this method can produce visible cracks in the
final triangulation. Furthermore, compared to the original scheme, vertices are no longer
centered on actual height field samples. Due to the additional interpolation required, the
data is essentially low-pass filtered when rendering.

The Planet-Sized Batched Adaptive Meshes (P-BDAM [2]) system also uses a subdivision
of the sphere into a set of curved base patches. These are then further subdivided using
adaptive triangulations. Compared to regular grids, adaptive triangulations require larger per-
vertex storage costs but on the other hand need less vertices to represent smooth topography.
To further reduce storage costs, the authors suggest an efficient packing scheme for per-vertex
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data which is unpacked on the GPU during rendering.
Planetary Scale Composition [6] is an interesting approach in which the composition

of raster input data is deferred to the rendering stage. A base icosahedron is interactively
subdivided and extruded to the sphere surface using a ping-pong buffer scheme on the GPU.
When the desired screen resolution has been achieved, subdivision stops and the resulting
smooth sphere geometry is displaced by a set of given raster DEMs which are represented
using textures. Using this scheme it becomes possible to add new input data on the fly
during a running visualization.

Due to numerical instability, the required texture coordinates cannot be computed in
a closed form. Instead they are maintained for each vertex as the subdivision progresses.
Coordinates for newly generated vertices are interpolated using the haversine geodesic
midpoint method. This method is computationally expensive, especially considering that it
has to be evaluated once for every vertex in every frame. In our approach data is resampled
to the HEALPix grid in an offline preprocessing step. Rendering, however, also requires
generation of spherical coordinates which are computed in a numerically stable fashion using
the closed HEALPix formulae.

Crusta [1] is a terrain rendering framework which uses a 30-sided polyhedron as base
geometry, whose faces are recursively subdivided using a quadtree. Due to the recursive
formulation of this geometric construction there is no closed form projection formula between
parametric and Euclidean coordinates. This prohibits performing the projection on the GPU
and requires computation and storage of Euclidean vertex coordinates for individual tiles at
load time. In contrast, our approach only requires storing a single scalar elevation value for
each vertex at runtime.

Google Earth is a popular tool for exploring the surface of Earth using data streamed over
the internet, which performs well even over low-bandwidth internet connections and provides
a high degree of interactivity. However, the system suffers from degenerate triangulations
close to the north and south pole, leading to visible artifacts. See Section 4 for a visual
comparison with the triangulations generated by our system.

Figure 1 First four levels of the HEALPix sphere tessellation. The root of the hierarchy is formed
by 12 curvilinear base patches which are recursively subdivided into quadrants. In our quadtree
scheme, each patch corresponds to a 255 × 255 grid of samples.

The HEALPix [5] scheme is a general solution for representing data on a sphere. It
decomposes the sphere into 12 curvilinear quadrilateral patches with associated parametric
(u, v) coordinates in [0, 1]2 (see Figure 1). For sampling and data storage, the authors suggest

VLUDS’11
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using a hierarchy of uniform (in parametric coordinates) grids for each patch [5]. Samples
are stored in quadtree order to optimize referential locality.

Our application demands a high-fidelity model of Mars, which requires composition of
multiple data sets with different coverage and resolution. We therefore chose an explicit
quadtree data structure to enable representation of sparse and mixed-resolution data.

3 Approach

To represent terrain we use a database consisting of 12 quadtrees, one for each HEALPix base
patch. Each tree node stores a tile of 255 × 255 samples to improve batching in rendering, to
reduce management overhead and to increase referential locality during disk I/O while still
allowing for 16 bit vertex indices to be used in the representation of the triangle mesh for
rasterization.

While the leaf nodes of the tree contain data resampled at the native input resolution,
the inner nodes store subsampled representations of their children, forming a multi-resolution
data structure suitable for LoD-rendering (see 3.2). Neighboring tiles overlap by one sample
at their shared boundary, which incurs a small storage overhead but allows for gapless C0
continuous rendering without needing to reference neighboring data.

3.1 Data resampling

Figure 2 Embedding of high-res into low-res DEM (left: HRSC, right: MOLA).

Digital Elevation Models (DEMs) are frequently represented as georeferenced raster data.
These data sets consist of a 2D matrix of height values (the raster data) as well as a so-called
georeference which associates samples with their corresponding geographic location.

To transform a given data set to the quadtree database format (described previously), a
bottom-up construction process is used. First, an optimal tree depth (resolution) is chosen
to faithfully represent the input data. Then the subset of leaf nodes at this level which
potentially intersect the data is identified. These nodes are then populated by resampling
the raster input and finally the inner nodes are computed by downsampling. This process is
repeated for each of the 12 base patches.

The choice of tree depth depends on the resolution of the input data. Due to the equal
area property of HEALPix, the grid resolution for a given subdivision level is constant
everywhere on the sphere. To faithfully represent the input data, we therefore chose a tree
depth d such that the sample density of the leaf nodes is at least as high as in the input data.
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In our application individual high-resolution data sets generally only cover a small fraction
of the surface. Therefore the set of leaf nodes considered is limited to a subset which is
likely to intersect the data. To approximate this set, we construct the boundary curve of
the data by projecting each boundary pixel location to geographic coordinates (using the
supplied georeference) and then to HEALPix coordinates. We select those leaf nodes which
are located inside an axis-aligned box containing all of these points.

For each of the selected leaf nodes, we then iterate over all of the 255 × 255 sample
positions, projecting each sample position first to geographic and then to raster coordinates.
Bilinear interpolation within the raster data is used to compute the resampled value. After
all intersecting leaf nodes have been populated in this manner, the inner nodes of the tree
are derived by iterative downsampling.

Note that raster data sets can designate a special NODATA value, which is assigned
to samples having no meaningful measurement. If any of the four input samples used in
bilinear interpolation contain this value, the resulting interpolated sample is also marked as
NODATA. This value is also assigned if the sampling coordinate (after projection) is not
within the bounds of the raster image. If all samples of a node contain NODATA values after
resampling, the node is not stored at all.

To support merging multiple data sets, it is also possible to insert data into an existing
quadtree database. Already existing nodes are combined with newly generated ones by
replacing their sample values. However if an incoming pixel is marked as NODATA, the
previous value is kept. This treatment is required because the actual definition domain of
many data sets is much smaller than their sampling support, with the difference areas being
filled with NODATA samples. Using this scheme, it is possible to insert sparse high-resolution
data into an existing low-res DEM database as shown in Figure 2.

The construction process can be trivially parallelized over the 12 base patches, as the
quadtrees are mutually independent. By running 12 instances of the construction tool
(possibly on different machines) and limiting each instance to only consider tiles within the
associated base patch, a database file is generated for each base patch. A separate tool is
then used to merge these files into a single database. While this is not optimal in terms of
speed up (mainly due to the required I/O for merging the databases), it allows us to generate
the hybrid MOLA and HRSC databases within a single day.

The input data sets have a size of 2 GiB for the MOLA DEM, 24 GiB for the HRSC
DEM, 54 GiB for red, green and blue channels (HRSC) and 386 GiB for the high resolution
B/W nadir channel (HRSC), for a total size of 466 GiB. This data is processed to a set of
five databases (DEM, R, G, B, B/W) with a total size of 1.7 TiB.

3.2 Rendering
To render the terrain representation, each of the 12 base-patch quadtrees is recursively
traversed in top-down fashion. Recursion stops at a tree node in any of three cases:

1. The node and therefore all of it’s children are outside of the viewing frustum. Recursion
returns without rendering.

2. The node is sufficiently subdivided to meet the screen space quality requirements (see
3.2.2). The node is rendered and recursion returns.

3. The LoD heuristic decides that further refinement is necessary, however the immediate
child nodes are not in memory. In this case, the background I/O thread is instructed to
load the four child nodes from disk and the current node is rendered as a placeholder
until that data is available.
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These cases are tested for in the order given. If none of these occur, recursion continues
with the four children of the visited node. This rendering process is stateless in the sense that
no information is kept about the set of nodes rendered in the previous frame, minimizing
management complexity. In the following, the individual components of this architecture
will be described in detail.

3.2.1 Frustum culling
Frustum culling is a technique to eliminate geometry which is located outside of the field-
of-view of the camera and therefore guaranteed not to be visible. For performance reasons,
bounding geometries are usually employed as proxy objects for this visibility test. Specifically,
we follow the classical approach of maintaining an axis-aligned bounding box for each node
which is resident in memory. In computing this bounding box, minimum and maximum
height values within the node as well as any user-specified height exaggeration factor have to
be considered.

Given the geometry of the view frustum, which is a pyramid truncated by two parallel
planes, and the extents of the node’s bounding box, the separating axis theorem is used to
test the two bodies for intersection. This theorem states that, given two convex shapes, an
axis exists onto which their projections are separate (non-intersecting) if and only if they are
not intersecting.

When testing two polygonal meshes A and B for intersection, the set of axes which need
to be tested in this manner is small. Specifically, only the set of face normals and the cross
products of all pairs of edges where one edge is taken from A and the other is taken from B

need to be considered (see [4]). If the projections of A and B onto any of these axes do not
intersect, the original meshes do not intersect either.

The advantage of using axis-aligned bounding boxes is that the set of projection axes
is constant for a given view-frustum as the set of face normals and edge directions of the
bounding boxes are always the three canonical axes. Therefore, it needs to be computed only
once per frame. Furthermore, the bounds of the projection of the view frustum onto this set
of axes can likewise be pre-computed, accelerating the test.

3.2.2 LoD heuristic
Level-of-Detail rendering takes advantage of the limited resolution of raster displays by
reducing geometric complexity depending on the apparent size of the geometry on the screen.
In the visualization of large data sets, LoD techniques are often mandatory to achieve
interactive rendering performance. We apply the following conservative approach using the
screen-space area of bounding boxes.

One of the goals of the LoD scheme used in this work is guaranteeing maximum visual
fidelity. When rendering polygon meshes, this translates into maintaining a geometric
resolution of about one vertex per pixel when rasterizing. As our data-structure only allows
to select between discrete resolution levels, nodes are refined during rendering until at least
the desired level of resolution is reached. A node’s bounding box is used to compute a
conservative estimate of its screen coverage.

In order to estimate the number of pixels occupied by a node on the screen, the node’s
bounding box vertices are projected into screen space using the same projection and modelview
matrices as used during rendering. Then for each of the six faces of the bounding box the
signed area is computed. If the area of a face is negative, it is facing away from the viewer
and ignored. All the positive areas are summed up to give the total screen area of the box in
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Figure 3 Distance-dependent LoD selection.

pixels, which is always greater or equal to the pixel area of the actual geometry if it were
rasterized.

Finally, the estimated pixel area is compared with the number of mesh vertices, which is
constant and equal to the number of height samples per node (255 × 255). If it is smaller,
the subdivision level is adequate for the current view and the node is rendered. Otherwise,
the recursion continues and the heuristic is applied again to the children.

As a guaranteed resolution of one vertex per pixel is excessive in most use-cases, we
provide a user-selectable scaling factor which specifies the desired average number of vertices
per pixel. In our experience, a choice of 0.2 provides high visual quality while maintaining
good interactive performance.

Figure 3 shows how tree nodes close to the viewer are rendered at a high resolution which
decreases with distance. Note that in this example the pixel area threshold was chosen very
large for illustration purposes.

3.2.3 Data streaming
In order to guarantee interactivity, it is mandatory to perform slow disk operations asyn-
chronously. For each database we maintain a separate I/O thread which performs these
operations in parallel to the render thread. A job queue is used to store read-requests while
a result queue contains the loaded data. If during rendering the LoD heuristic decides to
refine a node but it’s children are not yet in memory, a request is posted onto this queue to
load the four child nodes. The I/O thread takes jobs out of this queue and processes them,
appending the loaded data to the result queue.

At the beginning of each frame, before starting the actual rendering traversal, the render
thread inspects the result queue and inserts any newly loaded nodes into the in-memory
quadtree. These nodes are then available for subsequent rendering. This strategy restricts
access to the quadtree to the render thread, reducing the complexity of thread synchronization,
which is only required for shared access to the job and result queues.

3.2.4 Rasterization
Individual nodes are rendered using triangle meshes interpolating the height field. Each
node represents a square sub-region in the parameter space of its associated HEALPix
patch. The coordinates of individual mesh vertices are derived by equidistant interpolation
within this region. For rendering, mesh vertices are projected to geographic coordinates
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(latitude / longitude) using the HEALPix formulae. These coordinates are then combined
with the corresponding height samples (radii) to form polar coordinates which are eventually
converted to Euclidean coordinates. Storing vertex coordinates in Euclidean coordinates for
each resident node would be expensive, however. Instead, we perform the coordinate system
conversion on the fly during rendering using a vertex shader.

Our approach uses a single 2D proxy mesh which is a uniform tessellation of the [0, 1]2
unit square. As this mesh is re-used for rendering each tree node, it’s memory footprint is
negligible. Per-node elevation data is stored in a 255 × 255 scalar texture. For each node,
the vertex shader implements the following four steps to transform the proxy mesh to the
final geometry:

1. Transform mesh to proper sub-region in parameter space
2. Convert parametric coordinates to geographic (latitude, longitude)
3. Read height values out of texture and generate spherical coordinates (r, φ, θ)
4. Convert to Euclidean coordinates (x,y,z)

Texture coordinates are centered on the height samples (texels), guaranteeing that the
sample points are interpolated by the geometry. To implement shading, normal vectors are
estimated using central differencing of the height field. To avoid analytical computation of
the u, v direction vectors necessary for the normal estimation, we pre-compute them for the
corners of each tile and pass these so-called tangent space matrices to the shader, which
interpolates them across the patch.

3.3 Imagery overlay

(a) Shaded DEM (wireframe vs. opaque) (b) DEM with high-res BW imagery

Figure 4 Shading vs. Texturing.

In the following we extend the approach previously presented for rendering DEMs to
incorporate imagery. Imagery data is processed in the same way as DEMs, producing parallel
quadtree databases. The advantage of not combining DEM and imagery into a single database
is that both can be arbitrarily mixed and matched at runtime.

In the rendering traversal, DEM and imagery database nodes are now visited in parallel.
A straightforward approach to render each pair of data is to extend the vertex shader to
assign vertex colors from an imagery texture. However, this is not sufficient due to the fact
that imagery data in our applications is of higher resolution than the DEM. These additional
levels of resolution are never displayed in this scheme, as the visualization is constrained by
the DEM resolution.

Therefore, we chose a different approach which is illustrated in Figure 5. We introduce a
parameter ∆h which specifies the maximum resolution difference between a DEM node and
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Figure 5 Merging multiple imagery nodes into single texture (∆h = 1).

the corresponding imagery. When rendering, the DEM and imagery tree are traversed in
parallel as described above. However, instead of displaying the imagery node at the same
resolution level as the DEM node, we recurse further into the imagery database and collect
all child nodes of degree ∆h. We then merge the corresponding tiles into a single large
texture. Figure 5 shows an example for ∆h = 1. Regular (fragment stage) texture mapping
is then used to provide additional visual detail without increasing geometric primitive count.

The selection of which databases to display can be made at runtime. To simplify switching
to another set of channels, we simply delete the resident quadtrees from memory and let the
rendering traversal (re-)load any nodes required for the current view, which usually takes
less than a second.

4 Results

Figure 6 shows the triangulation quality in the vicinity of the poles, comparing Google
Earth to our approach. Google Earth produces a bad triangulation consisting of long,
skinny triangles due to an obvious coordinate singularity at the pole. In contrast, using a
uniform sampling of the parametric HEALPix coordinates yields a well-behaved triangulation
consisting of equal-area triangles with good aspect ratios.

(a) Google Earth (b) Our system

Figure 6 Comparison of triangulations at the north pole.
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(a) LoD-threshold 0.005, 105 fps (b) 113 fps

(c) LoD-threshold 0.01, 75 fps (d) 77 fps

(e) LoD-threshold 0.2, 24 fps (f) 26 fps

(g) LoD-threshold 1.0, 9 fps (h) 10 fps

Figure 7 Visual quality and rendering performance at different LoD-thresholds (left: shaded
DEM, right: DEM textured with high-res B/W channel (∆h = 2)).
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Figure 7 shows the surface of Mars, visualized at different LoD-thresholds. Window size
is 1024 × 768 pixels in each case. While rendering performance is not fully interactive
at a threshold of 1.0 (min. 1 triangle per pixel), visual quality at 0.2 is not noticeably
worse while providing interactive frame rates. The fact that adding imagery textures does
not significantly affect the results indicates that performance is limited by GPU geometry
processing performance.

While image quality degradation is obvious when comparing the shaded DEMs at thresh-
olds 0.2 and 0.01, it is hardly noticeable when the same geometries are compared with
imagery texturing. Therefore, very low LoD-thresholds can be used when imagery is present,
resulting in highly interactive frame rates.

5 Conclusion and future work

We have presented an interactive terrain rendering architecture using the HEALPix coor-
dinate system to provide spherical rendering without singularities. By performing critical
computations on the GPU, both memory consumption and management complexity are
reduced compared to other schemes.

Possible future extensions including incorporation of LiDAR data by using scattered
data interpolation schemes to resample data to our uniform grids, locally refining the tree
depending on sample spacing.

In the algorithm presented, normal vectors at tile boundaries are discontinuous, resulting
in small rendering artifacts. To solve this problem and to provide additional visual detail a
low LoD-thresholds, we want to implement normal mapping at a higher resolution than the
topography, using the same scheme currently used for imagery overlays.
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Abstract
Software systems are an integral component of our everyday life as we find them in tools and
embedded in equipment all around us. In order to ensure smooth, predictable, and accurate
operation of these systems, it is crucial to produce and maintain systems that are highly reliable.
A well-designed and well-maintained architecture goes a long way in achieving this goal. However,
due to the intangible and often complex nature of software architecture, this task can be quite
complicated. The field of software architecture visualization aims to ease this task by providing
tools and techniques to examine the hierarchy, relationship, evolution, and quality of architecture
components. In this paper, we present a discourse on the state of the art of software architecture
visualization techniques. Further, we highlight the importance of developing solutions tailored
to meet the needs and requirements of the stakeholders involved in the analysis process.
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Keywords and phrases Sofware architecture visualization, software comprehension, software
maintenance, software evolution, human perception
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1 Motivation

The field of software visualization is centered on visual representations aimed at making
the software more comprehensible. These representations are a necessity for analysts to
examine software systems due to their “complex, abstract, and difficult to observe” nature
[53]. These difficulties are further compounded in large-scale software systems where it
becomes increasingly difficult for analysts to examine the systems’ behavior and properties,
due to the systems’ scale.

Software visualization focuses on various aspects of software systems, such as source
code, software structure, runtime behavior, component interaction, or software evolution, to
unravel patterns and behaviors through the different software development stages [1]. Due
to the diverse nature of these data sets, different types of visualizations can be found in
literature. However, for the focus of this research we highlight the visualization of software
architecture as well as software architecture evolution.

The visualization of software architecture is an essential component of software visualiza-
tion. “Not only are architects interested in this visualization but also developers, testers,
project managers, and even customers” [32]. From the perspective of a software analyst,
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(a) General node-link diagram (b) As found in SAVE [23]

Figure 1 General and tool specific node-link diagram.

software architecture focuses on the structure of a software system – the focal point of
which is to examine composing entities, their metrics, and relationships [11]. Additionally,
recent studies have shown an increased interest in not only the visual exploration of software
modules, their structure, and interrelations, but also in the evolution of these modules [19].
The key feature of software architecture visualization is to uncover visual metaphors that are
both efficient and effective in depicting the software architecture of a system and to encode
software code metrics within these representations. Several questions need to be addressed in
finding such solutions, such as: who is the end-user of the architecture visualization [50], what
needs to be analyzed through the visualization [52], and how can appropriate visualization
metaphors and interaction techniques be chosen [2].

2 Visualizing Software Architectures

One of the core topics in the field of software visualization is a means to effectively visualize,
navigate, and explore the software architecture of a system [31, 32, 34]. Generally, object-
oriented software tends to be structured hierarchically – with packages containing sub-
packages, which in turn contain classes that hold methods and attributes. It is this hierarchy
and relationships between software components that are of interest when it comes to software
architecture visualization [15].

In this section, we explore representations of the global architecture of a system, such as
tree, graph, and diagram model depictions. Further, we also investigate representations that
highlight relationships between components as well as the importance of visualizing software
metrics.

2.1 Architecture Representations
Tree structures are an ideal way of representing the hierarchical structure of software
architecture. However, research in this area has shown the need to move forward from well-
known techniques such as node-link layouts to more sophisticated ones to handle the larger
hierarchies found in software systems nowadays [70]. Fig. 1 shows both a generic node-link
diagram as well as one found in a commercial tool. Inspection of these representations shows
that they quickly become too large and utilize available screen space far too poorly for proper
investigation. Further, the amount of textual information represented in the nodes as well as
the way relationships are depicted should be revisited to avoid visual clutter and information
overload [41].

This section inspects several 2D visual representations [10] that may not be specific to just
software visualization, but have been effectively applied to highlight the hierarchal structure
of a software system [70, 4]. Here, it is important to note that a lot of these representations
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(a) Rectangular TreeMap (b) Circular TreeMap

Figure 2 Rectangular and Circular TreeMaps from [57].

have been extended to 3D visualizations [2, 6, 49]. While 3D approaches have been shown to
display larger hierarchies and minimize clutter [58], they have also suffered from the well
documented drawbacks of 3D visualizations, such as: object occlusion, cumbersome view
adjustments, performance issues, as well as poor readability of 3D texts [48, 17]. Due to
these drawbacks and the requirements of our stakeholders, this survey focuses mostly on 2D
representations.

The Treemap visualization (Fig. 2a), first introduced by Johnson and Schneiderman [39],
is an effective means to visualize an entire software hierarchy. It is essentially a space-filling
technique that displays hierarchical data as a set of nested rectangles. This is usually
performed by a tiling algorithm that slices a box into smaller boxes for each level of the
hierarchy, recursively, alternating between horizontal and vertical slices. “The resulting
visualization displays all the elements of the hierarchy, while the paths to these elements
are implicitly encoded by the Treemap nesting” [15]. In the context of software architecture
visualization, Treemaps are used to represent methods as elementary boxes and classes as
composed boxes. Several modifications of Treemaps appear in literature and in practise –
some improve readability by enforcing an aspect ratio as close as possible to 1, while others
have used irregular shapes such as Voronoi instead of rectangles to show more information
[8]. Typically, designers are limited to the encoding of a single metric – the box color. While
this provides a symbolic idea of how such a metric value is spread through the hierarchy, it
is not simple to determine or represent metrics of enclosing entities [22]. Treemaps provide
an extremely compact layout, however, they are limited by mainly showing the leaves of the
software structure. Similarly, the circular Treemap visualization (Fig. 2b) and variations
of it have been researched in order to have circles fill the available space [74]. However, as
shown in Fig. 2b circular treemaps are not efficient with respect to the used space.

The Icicle Plot principle of Fig. 3a is where a line represents a tree level and each line is
split according to its number of children [10]. While Icile Plots provide better understanding
of structural relationships as packages can be used as root and classes and methods as tree
elements, scalability and navigation may be an issue with hierarchies of large systems [22].
Typically, two metrics maybe encoded in the visual representations: node size and color.

An alternative space-filling technique to nested geometry is the use of a Sunburst visual-
ization that focuses on adjacencies instead [62]. This technique was first proposed by Stasko
and Zhang [65], where they utilized a circular or radial display to depict the hierarchy rather
than a rectangular layout (Fig. 3b). In a sunburst, the hierarchy is laid out radially with the
root at the center and dics or portions of discs as deeper levels further away from this center
[3]. In contrast to the Treemap techniques mentioned earlier and similar to the Icile Plot,
designers have the added flexibility to encode two distinct metrics: the angle swept out by
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(a) Icicle Plot (b) Sunburst Tree Layout (c) Hyperbolic Tree Layout

Figure 3 Icicle Plot [10], Sunburst Tree Layout [57], and Hyperbolic Tree Layout [57].

an item and its color [22]. Studies have shown the performance of localization, comparison,
and identification tasks in Treemap and Sunburst visualizations to be comparable, however
the Sunburst is found to be easier to learn and more pleasant [64]. While screen-space is
better utilized as compared to node-link diagrams, scalability and navigation may still be an
issue in larger systems.

Another approach is to make use of the hyperbolic space, which intrinsically provides more
space than a layout that employs Euclidean coordinates. This well-established technique is
more commonly referred to as the hyperbolic tree layout (Fig. 3c) and was first introduced
in the context of information visualization by Lamping et al. [43]. Essentially, it lays out
the hierarchy in a uniform manner on a hyperbolic plane and maps the results back on to
the Euclidean space. The resulting hierarchy is laid out on a circular display region and
may be complemented with focus and context techniques such as fisheye distortion [40],
where components tend to diminish in size as they move outwards. This leads to a larger
representation of the center or focused area while still displaying the overall structure of the
tree. Hyperbolic trees show detail and context at once; initially the root of the hierarchy is
placed in the center, however, the display can be transformed to bring another node into
focus through interaction. It would probably be best to encode metrics through the use of
color alone, as varying the node size would adversely affect the layout algorithm. When the
graph is deemed too large to be rendered effectively, nodes are pruned together and may be
interactively expanded to reveal the subtree structure.

2.2 Visualizing Relationships
In contrast to visualizing the software hierarchy of a system, visualizing relationships of
the software system is a more complex task. This is due to both the higher amount and
the different types of relations that exist in a system, such as: inheritance, method calls,
dynamic invocation, accesses, etc.

Generally, graphs have all the characteristics required to represent relationships of a
software system. This is typically done by expressing software components as nodes and
relationships between them as edges [63]. However, this often leads to the visualization of
an extremely large graph due to the high interconnectivity between the large amount of
components found in software systems nowadays. Thus, the resulting visualization tends to
be extremely confusing and cluttered – it becomes difficult to discern between nodes and
edges due to the cluttering, overlapping, and occlusion of edges (Fig. 4).

A well-known approach to remedy this clutter issue is to replace node-link diagrams with
a square matrix that has matching row and column labels. The matrix then highlights the
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Figure 4 Cluttered Software Architecture [23].

number of relations between row and column elements within each matrix entry, possibly
through some visual representation [78]. This well-known technique is often referred to as the
Dependency Structure Matrix [59] in literature and provides a compact and uncomplicated
representation of relations in a complex system. However, keeping a mental map of the
system hierarchy can still be an issue in these visualizations.

The most accepted graph-based software visualization in the field of object-oriented
software engineering are UML class diagrams. This modeling language was created and
developed by the Objected Management Group and has since become the industry standard
for modeling software systems [28]. Its main purpose is to portray inter-class relations, such
as: composition, inheritance, generalizations, aggregations, and associations. However, due
to the amount of textual information depicted by each component such as the listing of
methods and variables, these graphs grow exponentially with each additional component or
class notation and are highly prone to information overload. Some researchers have looked
at reducing the visual complexity associated with such graphs by reducing the number of
overlapping edges, the use of orthogonal layouts, the horizontal writing of the labels, and
edge bundling [24, 56, 68]. While some success in reducing the complexity has been achieved,
the drawbacks associated with node-link diagrams such as poor screen-space management
and information overload still need to be tackled.

Some researchers have experimented with different layout and filter techniques in order to
resolve the clutter issue. An example of this is the work of Pinzger et al. [55] that focuses on
the creation of condensed and aesthetically pleasing graphs that show information relevant
to solve a given program comprehension task. Their solution was to use nested graphs and
a feature that allowed to add and filter appropriate nodes and edges. Other researchers
such as Holten [36] have chosen to implement better space-filling techniques in combination
with improved edge representations. Holten’s approach was to place software elements on
concentric circles according to their depth in the hierarchical tree and then to display edges
above the hierarchical visualization (Fig. 5). Further, he extended the work of Fekete et al.
[26] that used spline edges to replace explicit arrow directions, in order to reduce the visual
clutter and edge congestion by allowing edges to bundle together according to a parameter
(Fig. 5a and 5b). Similarly, techniques displaying, clustering, and filtering edges on top of
structural representations can be utilized in other visualizations (Treemaps, circular trees,
etc.) to represent the hierarchical graph structure of a software system.

Another approach to resolve the issues of cluttered 2D graphs is the use of 3D visualizations
[29], where the user can access a view without occlusions. However, 3D representations of
large graphs have their own problems, such as: navigation can not only be difficult but
also disorienting [60], object occlusion, performance issues, and text illegibility [48]. For the
purpose of completion it would be prudent to mention some of the more prominent work in
the area of 3D software architecture visualization. Some researchers in this field experimented
with real-world metaphors to take advantage of the intuitiveness of these representations [51].
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(a) β = 0 (b) β = 0.75

Figure 5 Hierarchical Edge Bundles [36].

Figure 6 Clustered graph layout [7].

For example, the City or Cities metaphors are often used to depict relationships through a
visually understandable metaphor [2, 52], where cities (packages) are connected via streets
(two-directional calls) and water (uni-directional calls). Similarly, researchers have realized
the Solar System [33], Island [52], and Landscape [6, 9] metaphors, where the respective
relationships between each contributing element is exploited to depict packages, classes, and
their relationships. Another interesting approach towards handling large and complex graphs
is the clustered graph layout (Fig. 6), where clustering, dynamic transparency, and edge
bundling are used to visualize a graph without altering its structure or layout [7].

2.3 Visualizing Software Metrics
The incorporation of software metrics is an important component in the analysis of a software
systems architecture, as they not only provide an insight into the quality of the software
design [14, 27] but also a means to monitor this quality throughout the design process [12].
Typical static software metrics express different aspects of a complex system, such as: design
complexity, resource usage, and system stability.

The idea behind metric-centered visualizations is to transform numerical statistical data
into a visual representation that is easier to understand and grasped far more intuitively
and instantaniously [75]. Here, the greatest challenge is to find an effective mapping from a
numerical representation to a graphical one that enhances the structural visualization [38].

In this section, selected visualization techniques that implement static software metrics
are highlighted – the purpose of which is to provide an idea of the implemented approaches.
One such approach is to combine them with UML class diagrams. An example of this is
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(a) Metric View (b) Areas of Interest

Figure 7 Metric View [71] and Areas of Interest Visualizations [13].

the MetricView (Fig. 7a) visualization that displays metric icons on top of UML diagram
elements [71].

An extension of this approach is the areas of interest (Fig. 7b) technique developed by
Byelas and Telea [13]. They apply a layout algorithm that groups software entites with
common properties, encloses these entities with a contour, and adds colors to depict software
metrics. In order to distinguish overlapping areas, each area is given its own texture, such as:
horizontal lines, vertical lines, diagonal lines, and circles. Further, shading and transparency
techniques are used to improve the distinction between several areas.

In visual representations other than UML Diagrams, similar approaches have to be
implemented in order to combine metrics and structural information. An example of this is
the work of Holten et al., where they used texture and color to show two different software
metrics on a Treemap [35]. Their results show that the combination of color and texture
provides high information density, assists in finding correlations between metrics, and can
reveal patterns and potential problem areas.

To visualize multiple aspects of a software system, Lanza et al. introduced the concept
of polymetric views, where the visualization of a software is enriched with software metrics
[46]. Essentially, they propose a node representation that encodes up to five distinct metrics;
node width, height, x and y-coordinates and color, and edge width and color. They applied
this to an inheritance tree where nodes represent classes and edges depict the inheritance
relationship between them. Node width and height is used to encode the number of attributes
and the number of methods. Further, a color tone is applied to represent the number of lines
of code.

Similarly, in 3D visualizations the encompassing visual entities have been encoded with
software metrics [33, 76]. Another technique that may be applied in the analysis of system
metrics is the use of filters. An example of this can be found in the Solar system metaphor,
where filters may be applied to the overall system to visualize planets with metric values
that lie within a chosen interval [33].

3 Visualization of Architecture Evolution

A general obstacle with regards to software evolution visualization is coping with the
complexity that emerges from the huge quantity of evolution data; it is quite common to
have hundreds of versions of thousands of files [72]. The technical challenges associated with
extrapolating these historical data are deemed out-of-context with respect to this paper,
instead, the focus will be on visualizing the evolution of the software architecture.
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(a) Code Flow (b) Visual comparison of hier-
archically organized data

Figure 8 Code Flow technique [69] and structural comparison of two source code versions [37].

Real software solutions undergo continuous change to meet new requirements, adapt to
new technology, and to repair errors [47]. Inevitably, the software in question magnifies in
both size and complexity, often leading to a situation where the original design gradually
decays unless proper maintenance is performed [20]. As such, visualizing the evolution of the
software architecture is one of the key topics in the field of software evolution visualization
[15]. It is essential to have a global overview of the entire system evolution in order to
explain and document how a system has evolved to its present state and to predict its future
development [18].

This section follows the same pattern as the previous one, where we first focus on how
the global architecture of the software changes with each release and then examine how
relationships and metrics evolve within each version.

3.1 Visualizing Hierarchical Changes

Since software maintenance is performed mainly at code level, most visualizations have
implemented a 2D line-based approach to represent the software evolution [25, 69, 73].
Generally, the adopted approach is to visually map a code line to pixel line, where color
is typically used to show the age of a code fragment [25]. Additional focus has been to
develop interaction techniques that allow users to effectively navigate and explore the data
[73]. In order to highlight the state of the art in this traditional approach, the Code flows
visualization technique [69] is briefly examined. Fig. 8a shows an evolution from left to right
of four versions of a source code class. This technique employs an icile layout and bundled
edges to show how a source code line changes over subsequent versions. Source code lines that
do not change from one version to another are colored black, while code lines that changed
are highlighted using different colors. In general, these tools are successful in tracking the
line-based structure of software systems and reveal change dependencies at given moments
in time [73]. However, they lack the sophistication to provide insight into attribute changes
and more so the structural changes made throughout the development process.

In contrast, there are only few visualizations aimed at representing structural changes
of a system architecture over time [15]. As explained earlier, there definitely exists a
requirement to monitor the evolution of a systems architecture, however, current graph
animation algorithms are limited and need to mature further to handle this requirement [21].

One such approach is the work of Holten et al. [37] that presents a technique aimed
at comparing the software hierarchies of two software versions . To better compare the
two versions, the algorithm tries to position matching nodes opposite to each other. This
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(a) Inheritance graph of successive versions

(b) Evolving Cities

Figure 9 Successive Inheritance graphs [16] and development stages of CrocoCosmos [66].

technique is presented in Fig. 8b, where the source code of Azureus v2.2 is displayed on the
left and v2.3 is portrayed on the right. Nodes that are present in one version but not the
other are highlighted via red shading. Further, the Edge Bundles technique of Section 2.2 is
used to highlight and track the selected hierarchy.

Collberg et al. [16] describe a system that visualizes the evolution of a software system
using a graph drawing technique that handles a temporal component for the visualization of
large graphs. They accomplish this by utilizing a force-directed layout to plot call graphs,
control-flow graphs, and inheritance graphs of Java programs. Changes that the graphs have
gone through since inception are highlighted through the use of color. Nodes and Edges are
initially given the color assigned to its author (red, yellow, or green) and progressively age to
blue (Fig. 9a).

Lately, there has been some effort by researchers to extend known metaphors to handle
the evolution of software systems. Steinbrückner et al. [66] have an interesting approach
that implements the city metaphor for the representation of large software systems in the
form of evolving software cities. Their work is illustrated in Fig. 9b, where a system grows
from an initial 389 classes to 439 classes in revision 100 and 466 classes in revision 200. In
this implementation of the city metaphor, streets represent Java packages and building plots
represent Java classes. The sequence of visual depictions aims to highlight basic changes
in the software structure, how elements may be added, removed, and moved within the
software hierarchy. Further, they extend this general representation to address the needs of
two distinct application scenarios by: 1) applying an evolution map that uses contour lines to
show different versions of each subsystem and 2) using a modification history map that uses
a contour line map combined with property towers that depicts the number of modifications
as height and modification date as color.
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3.2 Visualizing Software Metrics Evolution
As covered in Section 2.2, visualizing relationships is an extremely complex task that is
further compounded in the case of software evolution. Typically, researchers and practitioners
focus more on the logical coupling between source code artifacts, as it can be encoded easily
into metric values [30].

Software metrics are an ideal abstraction as they encapsulate, summarize, and provide
essential quality information about source code [44]. As such, they are essential in providing
a continual understanding and analysis of the quality of a system during all phases of the
product life cycle. Instead of tedious, inefficient, and hard to grasp numerical representations,
metrics tend to be mapped to graphical characteristics so that they may be intuitively
interpreted. In this section, we explore the state of the art in the visualization of software
metrics across different software versions.

The Evolution Matrix is a visualization technique that provides an exploratory view of
an object-oriented systems evolution, both at the system and class granularity levels [45].
In this work, Lanza et al. combine software visualization and software metrics by using
two-dimensional boxes to represent classes and encoding metric measurement of the classes
to the width and height of the boxes. In the example of Fig. 10a, they use the metric
number of methods for the width and number of instance variables for the height, columns to
represent different versions of the software, and rows to depict different versions of the same
class. At the system level, this technique recovered the following characteristics regarding
the evolution of a system: size of the system, addition and removal of classes, and growth
and stagnation phases in the evolution. While at the class level, it shows if the class grows,
shrinks, or stays the same from one version to another. These features allow the expert to
analyze a number of interesting aspects, such as a class growing and shrinking repeatedly, a
class suddenly exploding in size, or a class that had a certain size but lost its functionality.

The visualization framework by Langelier et al. also facilitates the analysis of software
over many versions [44], albeit in a slightly different manner. Instead of employing a technique
that displays the entire system evolution in one picture [45], they rely on animated transitions
from one version to another. As Fig. 10b shows, there are different static representations for
each subsequent version; the image on the left is a previous version and the image on the
right is the next. The user controls forward and backward navigation in time, which in turn
animates three graphical characteristics that are mapped to metric values – color, height, and
twist. While the animations are of a short duration, they are well-designed and help attract
the attention of the viewer towards program modifications [44]. This work of Langelier et al.
contains references to extensive case studies aimed at detecting both evolution patterns and
known anomalies. With respect to evolution patterns, users were able to identify constantly
growing classes, quick birth and death of classes, and explosions in complexity in a short
time-span. On the other hand, while looking for common anomalies, patterns such as the
God Class or Shotgun Surgery were observed. The former is detected when a class constantly
grows in complexity and coupling, while the latter occurs when a class constantly grows in
terms of coupling and whose complexity increases globally but with an up-and-down local
pattern.

Wettel and Lanza present interactive 3D visualizations in their CodeCity tool that
examines the structural evolution of large software systems at both a coarse-grained and a
fine-grained level [77]. At a coarse-grained level of granularity, classes are shown as monolithic
blocks that lack details of the internal structure. At the fine-grained level, the focus is on
methods that appear as building bricks. Fig. 11a shows this fine-grained representation,
where classes are illustrated as buildings located in districts that represent the packages in
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(a) Evolution Matrix

(b) Two frames of RSSSowl using VERSO

Figure 10 Evolution Matrix [45] and two frames from VERSO [44].

which the classes are defined. Metric values are then encoded in the visual properties of the
city artefacts; class properties such as the number of methods and number of attributes are
mapped on to the buildings’ height and base size, package depth is mapped on the districts’
color saturation. Further, the age distribution of classes is represented through an Age Map
color mapping, where the color scheme ranges from light-yellow for recent entities to dark
blue for earlier versions. Similar to the work of Langelier et al., back and forth transitions
through the history of the system allow the city to update itself and reflect the currently
displayed version. Additionally, at a finer level-of-detail the entire evolution of a single class
or package may be tracked (Fig. 11b).

Pinzger et al. introduced a multivariate visualization technique that can display the
evolution of numerous software metrics related to modules and relationships [54]. This is
accomplished through a combination of graphs and Kiviat diagrams to graphically represent
several metric values by plotting each value on its corresponding line (Fig. 12). The individual
Kiviat diagrams present quantitative metrics, where low values are placed near the center of
the Kiviat diagram and high values are found further away from the center. Dependency
relationships between source code entities are highlighted by the layout of the diagram and
the relationship between modules. Furthermore, this approach encodes the temporal aspects
of multiple versions through a rainbow color gradient, where different colors indicate the time
period between subsequent releases. Finally, the amount of coupling between two modules
is represented by the width of edges connecting Kiviat diagrams. While this visualization
contains lots of informations and can help identify critical source code entities or critical
couplings, it requires a good knowledge of software metrics. A positive feature of this
technique is that all information regarding metrics and evolution is represented in a single
static view that requires no animation. However, at times the color stripes overlap, making
it futile to discern the corresponding metric values. This problem of overlapping has been
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(a) A fine-grained CodeCity Age Map (b) Timeline of a single class

Figure 11 Fine-grained CodeCity Age Map and Timeline of a single class [77].

Figure 12 Kiviat graph with 20 metrics, 7 modules, and 7 subsequent releases [54].

solved using 3D Kiviat diagrams that displays each version of the software on a different
level of elevation [42].

4 Tools

There are a number of tools available both in academia and industry that cater to the various
needs of stakeholders. On the one side, vendors have developed commerical Architecture
Visualization Tools (AVTs): Lattix, Enterprise Architect, NDepend, Klockwork Architect,
IBM Rational Architect, Bauhaus [70], etc. On the other hand, the research community
has also produced numerous tools: SHriMP [67], BugCrawler [19], DiffArchViz [61], etc.
Commercial tools are generally designed to be used as-is, while research tools are open-source
that allow users to customize them.

The main aim of these tools is to employ a combination of metaphors and techniques
presented in this paper to assist technical users, project managers, and researchers in analyzing
software architectures. The study of Telea et al. shows that the mainstream masses are
starting to realize the potential of these visualization techniques. For example, tools such
as Lattic and NDepend have incorporated newer diagram-layout techniques, realizing the
limitations of traditional node-link diagrams [70]. However, this modernization of AVTs is
much slower than the advent of cutting-edge visualization solutions.
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AVTs typically support a combination of the following tasks: “comparing desired and
actual architectures, identifying architecture violations, highlighting architecture patterns or
layers extracted from code bases, assessing architecture quality, and discovering evolutionary
patterns such as architectural erosion” [70]. However, no single tool can satisfy all these
needs and requirements, as they differ in the features they provide, the audience they cater
to, and the tasks they support [50, 70].

The reader may refer to the work of Babu et. al [5] for a thorough comparison of AVTs
according to the taxonomies they support. A closer inspection of these taxonomies is required,
as it is imperative that visualizations are constructed to address problems and issues faced by
the users of the system, rather than just provide ’pretty pictures’. The challenge often is that
different stakeholders, such as: architects, developers, maintainers, and managers, require
contrasting tools and techniques to delve into different levels of details. In the context of
software architecture, several researchers, such as: McNair et al. [50] and Panas et al. [52],
have conducted in-depth analysis of what to visualize and how best to achieve it. A good
synopsis of these findings can be found in the survey of Ghanam et al. [32].

The most significant lesson learnt from the above-mentioned surveys is not to lose sight
of the audience and to conduct appropriate evaluations where possible to determine the true
worth of a proposed software architecture visualization; does it allow for a more thorough
analysis (number of issues detected) or for a more efficient one (task completion time).

5 Conclusion

In this paper, we provided a comprehensive and up-to-date review of both literature and
mainstream practices in the field of software architecture visualization. Our research shows
that the architecture visualization domain has evolved significantly in recent years giving
developers new tools to better understand, evaluate, and develop software and helping
managers to monitor design and refactoring issues. However, there remains the need to
incorporate these cutting-edge tools and techniques with standard software development and
maintenance practices.

Some visualization techniques like parallel coordinates and bundled diagram layouts are
less known in industry, while other techniques such as node-link layouts are well known.
The software architecture community has not made widespread use of these recent advances.
There is a definite need to bridge this gap, as software systems are getting far too large to
be analyzed through traditional means alone. This delay in adopting new technology may be
due to the stakeholders not having enough time to try out every new tool, lack of knowledge
with respect to technical visualization terms often used in marketing these tools, or simply a
reluctance to try unknown visualization metaphors and techniques.

The way forward is for researchers to work closely with experts, tailor tools to meet
specific requirements, and to conduct comprehensive evaluations. This would lead to research
prototypes making their way into mainstream tools and a widespread adoption. It is
envisioned that this transition would improve quality and reduce the time and cost factors.
Lastly, we would like to point out the need for both industry and academia to look into
the evolution of software at higher level of abstraction than current linebased methods; this
remains an open area for future research.
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Abstract
The importance analysis provides a means of analyzing the contribution of potential low-level sys-
tem failures to identify and assess vulnerabilities of safety-critical systems. Common approaches
attempt to enhance the system safety by addressing vulnerabilities using an iterative analysis
process, while considering relevant constraints, e.g., cost, for optimizing the improvements. Typ-
ically, data regarding the analysis process is presented across several views with few interactive
associations among them. Consequently, this hampers the identification of meaningful informa-
tion supporting the decision making process. In this paper, we propose a visualization system
that visually supports engineers in identifying proper solutions. The visualization integrates
a decision tree with a plot representing the cause-effect relationship between the improvement
ideas of vulnerabilities and the resulting risk reduction of system. Associating a component fault
tree view with the plot allows to maintain helpful context information. The introduced visual-
ization approach enables system and safety engineers to identify and analyze optimal solutions
facilitating the improvement of the overall system safety.
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In order to improve the system safety, engineers usually carry out an iterative risk reduction
approach consolidating importance and sensitivity analysis. As a result of the approach,
engineers may identify an improvement solution consisting of a group of modifications with
respect to system design. By a solution, the failure probability of top event is reduced to
an acceptable level. In many cases, engineers may identify multiple possible solutions by
various alternative design modifications in the analysis process. Thus, the safety improvement
process consists of the determination of modifications and the review of solutions by taking
the essential questions into account:

Aspects of modifications:
What are the most important basic events contributing to a system failure?
What are possible modifications of the system design?
What are the impacts of the modifications regarding system safety?
Which modifications are optimal taking certain constraints into consideration?

Aspects of solutions:
How good are the improvement solutions?
What is the best solution?

Usually, the data related to the questions is separated across individual views having various
representation forms, e.g., fault trees, tables, histograms, plots, and decision trees. However,
there are few interactive associations among the views. Mostly, engineers need to frequently
switch views for accessing meaningful data during the analysis process. Additionally, there
is no sufficient context information when engineers focus on a specific view. For example,
modifications are organized using a decision tree and the detailed data of the queried modifi-
cation is represented in a separate table. When focusing on the table of detail information,
the context with respect to the overview of modifications may be lost. Furthermore, when
analyzing the basic event corresponding to this modification, engineers need to manually
locate the basic event in the fault tree view because the decision tree does not provide this
information. Engineers spend more additional efforts for switching views and identifying
significant information.

In this paper, we propose a visualization system that effectively integrates data which
is essential for the analysis of the safety improvement process. To support the information
access within different contexts, we additionally provide suitable interaction possibilities.
The proposed visualization system facilitates to identify and analyze vulnerabilities of safety-
critical systems, as well as determine the optimal/appropriate solution(s) by simulating
system design modifications on an abstract level.

The remainder of the paper is organized as follows: Section 2 describes the basic principles
of the (component) fault tree analysis, importance and sensitivity analysis, as well as the
related representation concepts. We introduce our visualization system in Section 3. We
review the proposed methods on the basis of a short application example in Section 4. The
conclusion is subject to Section 5.

2 Background

2.1 Safety Analysis
The term safety often refers to a state of a system where the danger of a personal injury
or property damage lies within an acceptable level [15, 13, 4, 24]. A failure is defined as an
inconsistent behavior that deviates from the given specification of a system or a component
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(a) Fault tree (b) Component fault tree

Figure 1 Fault tree and component fault tree. (a) A fault tree consisting of four basic events
connected by an AND-gate and two OR-gates. (b) The component fault tree model based on the
fault tree in (a), which contains a main component and sub component “C1” and “C2”. “C2” inputs
its failure to “C1” via ports.

[4, 24]. In this context a system is said to be safety-critical if the failure of the system could
cause consequences that harm people [18, 13, 31, 24]. Risk is a combination of the frequency
of a harmful failure and the severity of the harm caused by that failure [13, 24]. When
talking about safety analysis we often refer to a process whose goal is to provide a reliable
assessment and improvement of the risk of a safety-critical system [19, 20, 24]. To achieve
this a variety of methods and techniques exist, e.g., fault tree analysis.

2.2 Fault Tree Analysis

Fault tree analysis (FTA) [13, 36, 35, 12] is a deductive method allowing to trace the causes
of an undesired system state back to its roots. The method is based upon the usage of so
called fault trees (FTs). A fault tree is a tree-like structure composed of different types of
nodes. The root of the tree termed top event represents the undesired system state (e.g.,
system failure or outtake). The leaves are basic events (BEs) that represent the low-level
failures which are connected by logic gates, such as “AND-gate”and “OR-gate”. The way
the leaf nodes are connected reflects how the low-level failures logically contribute to the
undesired system state (see Figure 1(a)).

The ordinary modularization concept of fault tree allows to partition the independent
sub-trees as modules. However, these modules are not be mapped to identify technical
components of the system design. To solve this issue, Kaiser et al. [17] proposed an advanced
modeling concept called component fault trees (CFTs). Technical components of a system
are represented as the corresponding CFT components in the component fault tree model.
The influences between technical components are transferred via in- and out-ports of CFT
components. In this way, engineers may treat each CFT component as a black-box. Figure
1 (b) shows an example of the concept of component fault tree. The component fault tree
modularizes the sub-trees as CFT components and replaces the sub-trees with rectangles in
the main component. The detailed sub-trees are separately represented in individual views.
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(a) Procedure of single solution construction

(b) Multiple solutions construction

Figure 2 Construction of improvement solutions.

2.3 Importance and Sensitivity Analysis
Importance analysis and sensitivity analysis are quantitative approaches for evaluating
(component) fault trees. Vesely et al. [35] suggested that, in general, more than 90% of the
failure probability of a top event is due to less than 20% of the basic events. This implies
that we only need to focus on a small subset of basic events having major contribution. To
identify those, we determine the importance of each basic event with regard to the failure
probability of the top event. Importance analysis considers both the failure probability and
the logical relations of basic events. The Fussell-Vesely (FV) importance measure [11, 27]
assigns each basic event an importance value between zero and one: the larger the value,
the more important the basic event in terms of influence on the top event. The sum over
the importance of all basic events of a system may be greater than one since, in some cases,
simultaneous failures of multiple sub-systems may cause the system failure [10]. On the
other hand, the sensitivity analysis investigates the resulting impact of changes applied to
the basic events on the top event [14, 35, 23]. It is used for analyzing the accuracy of basic
events as well as the effects of safety improvements [25, 7, 9].

2.4 Improvement of Safety-Critical Systems
The improvement of the system safety may necessitate design modification involving the
replacement of critical parts of the system by elements having a better failure performance
(substitution concept) or introduction of identical redundant parts (redundancy concept).
Finding a satisfying solution in general is a non-trivial task underlying constraints and
restriction for which formal methods are not always available. Generally, the procedure
associated with this approach iteratively applies a set of alternative modifications until the
complete solution is found, which reduces the risk of a system to an acceptable level. Taking
the results obtained from the improvement analysis into account, it is possible to derive such
solutions in a more guided fashion [7, 9, 8, 35, 25]. Each iteration consists of mainly three
steps (see Figure 2 (a)):
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Figure 3 Ordinary representations used by the analysis of safety improvement process. Im-
provement solutions are arranged by a decision tree [9]. The relevant data is distributed across
several views [1, 7, 32, 9]. Commonly used representations are fault trees, charts or tables to
show importance of basic events, and the summary of possible solutions, design modifications, and
individual risk reductions.

1. Perform the importance analysis to identify the basic event having the largest contribution.
2. Find the hardware component related to that basic event. Modify the system design

by replacing the component by another one featuring a better quality or by introducing
identical ones in order to increase redundancy.

3. Update the (component) fault tree model and assess the modification with respect to the
impact on the top event in terms of reduction of failure probability. If required, engineers
may determine the optimal modification under consideration of additional constraints,
e.g., the costs of the modifications. If a complete solution is found, i.e., the failure
probability of the top event is reduced to the goal value, stop the process, otherwise start
next iteration from step 1.

Constructing a solution necessitates to choose the proper basic event, and to decide for a
suitable design alternative. In many cases, multiple improvement solutions exist because
of multiple important basic events or/and various alternative design modification ideas
corresponding to the identical basic event (see Figure 2 (b)). After constructing solutions,
engineers may additionally identify the optimal one. An important assumption of the safety
improvement process is that basic events are stochastically independent so that the change
of a basic event does not influence other basic events.

2.5 Related Representation Concepts
Fault tree analysis tools provide the view on fault trees using standardized graphical symbols
(see Figure 1 (a)). The data of the fault tree, e.g., failure probability of the top events and the
basic events are represented by text or data-aggregated forms. Most fault tree analysis tools
[16, 28, 1, 7, 32, 9] summarize the importance of basic events using a data table. Faulttree+
[16] shows importance values in a table associated with table presenting the properties of
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events, e.g., failure probability. Relex Architect [28] provides a table in which users may filter
and show the importance of basic events belonging to a specific sub tree. RAMCommander
[1] additionally provides charts for the importance values, e.g., histogram, pie-chart, and
2D/3D scatter plot. BlockSim [29] assigns colors to the histogram according to the failure
probability of basic events. Additionally, BlockSim proposed a variant of pie-chart called
“square pie-chart” that anti-clockwise arranges the basic events in descending order with
respect to the importance values. Project CISA [7, 9] arranges data of design modifications
in separate views and logically links them to a decision tree that represents the summary of
improvement solutions (Figure 3).

A decision tree is a tree-based predictive model that is widely used for facilitating the
decision-making in many domains. It partitions a data set into subsets according specific
rules. The root represents the original data, the edges represent the partitioning rules,
and the non-root nodes represent the outcomes of different rules. To construct a decision
tree, the users need to quickly identify the nodes to be partitioned by navigating through
the tree. Decision tree is a good way to provide overviews about complex decision-making
process. Ankerst et al. [2, 3] applied an indentation diagram to represent a decision tree
for arranging the partitioning steps in data mining. The work [34] integrated decision trees
and data visualizations of attributes of each node for purposes at data classification. Pham
et al. [26] presented a decision tree using the sunburst layout to visualize machine-learning
algorithms. The decision trees represented by an icicle diagram were provided by the work
[21, 3, 6]. The icicle concept represented tree hierarchies without wasting display space.
Project PaintingClass [33] integrated parallel coordinates and star coordinates with a decision
tree for exploring classified multi-dimensional data. Barlow et al. [6] proposed a visualization
system that linked views of various decision tree layouts to represent the decision data of
data mining process.

3 Visualization for Safety Improvement

3.1 Requirements of Analysis Process
The safety improvement process of a system concentrates on two phases: construction of
solutions and review of solutions. Requirements of the analysis (in short “R”) are summarized
as follows:

Construction of solutions: A solution comprising a sequence of design modifications. It is
constructed by performing an iterative analysis procedure (see Figure 2). The steps are:

Step 1: identify the the important basic events (R1).
Step 2: apply and test the risk reduction hypothesis by different modifications.
∗ R2: identify the type of modification: substitution or redundancy.
∗ R3: identify the value of modification: change of failure probability of the initial

basic event.
∗ R4: identify the cost of modification.
Step 3: evaluate the results of risk reduction:
∗ R5: evaluate the update of the component fault tree model.
∗ R6: evaluate the impact of top event by design modification.
∗ R7: evaluate the cost-effectiveness of modification.
∗ R8: evaluate the gap between updated failure probability of top event and the goal

value.
Review of solutions: Reviewing the constructed solutions may facilitate the understanding
of solutions and determining the optimal ones resulting from the following requirement.
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Figure 4 Risk-state node for a design modification. (0) Risk state of top event. Color indicates the
level of failure probability of the top event. (1) Type of the modification. Circle indicates substitution
concept, while small triangle indicates redundancy concept. (2) Change of failure probability of
the corresponding important basic event. (3) Cost of the modification. (4) Cost-effectiveness of
the modification. (5) An edge connecting the node with its predecessor node. The vertical part
represents the resulting reduction of failure probability of the top event.

3.2 Visual Support for Construction of Solutions
3.2.1 Representing Design Modification
Along with performing the safety improvement process, the design modifications are sequen-
tially connected as a decision tree to construct one or more solutions (see Figure 3). A
branch of the decision tree is caused by either multiple important basic events or multiple
modification ideas. We finally apply the node-link diagram for representing the decision tree
by taking two points into consideration: readability and data integration. Barlow et al. [5]
evaluated the readability of the treemap layout, the sunburst layout, the node-link diagram,
and the icicle diagram. The authors conducted that the node-link diagram and the icicle
diagram were the most favorable for representing the tree structure data. The node-link
diagram has the sufficient space to integrate the visual attributes in nodes. However, the
icicle diagram (as well as treemap and sunburst layout) is a compact layout in which the
aspect ratio needs to be maintained for the semantic meaning. In this case, the nodes on the
deeper hierarchy of the tree do not have sufficient space for representing the attributes. In
sum, the node-link diagram is more appropriate for our decision tree than other layouts.

For understanding a modification, the cause (i.e., corresponding basic event) and the
effect (i.e., resulting risk state of system) is the primary information. In order to represent the
cause-effect relation, we place the modification nodes of the decision tree in a risk-reduction
plot (see Figure 5 (2)) where x-axis represents ordinal basic events, while the achieved change
in risk (in terms of failure probability) is projected along the y-axis that represents a range
from the initial failure probability of a top event to the goal value in a top-down direction.

We then introduce the visualization properties of the node-link decision tree. In order
to represent the associated significant data, for each modification, we propose a risk-state
node that consists of a central triangle icon and four attached visual items representing data
associated with the modification (see Figure 4).

Triangle icon: shows the risk state of the system corresponding to the modification.
This is the most significant data based on the updated component fault tree (with respect
to R5). In many cases, the safety and system engineers intend to quickly and roughly
estimate the change of risk of a system, e.g., by which step the failure probability is
reduced from critical level to moderate level. The shape of triangle is applied because
it is consistent with the shape of the top event of the component fault tree. Color is
recommended for representing the ordinal data by the work at [22]. The color of the
triangle depends on the level of failure probability described in Section 3.2.3. Using colors,
one may quickly estimate the criticality of the top event, and decide whether the failure
probability is acceptable or not. When the color becomes green, the risk reduction can
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Figure 5 Visualization system for improving system quality with respect to safety. (1) The
associated component fault tree view. (2) The risk-reduction plot. (3) The solution overview plot.
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be finished and the corresponding solution is complete. Additionally, the label of the
corresponding modification is presented below the icon.
Item 1: the type of modification (with respect to R2). The types are nominal data that
may be effectively represented by the graphical properties of position, color, texture,
connection, density, and shape. The graphical properties of position, color and connection
are already used in our visualization. Taking the size of the triangle icon into account, the
graphical property of density is not suitable, too. Thus, we apply shape for representing
the basic types of design modifications: a circle represents a component substitution
whereas a small triangle represents the introduction of redundant components.
Item 2: the reduction of the failure probability of the original basic event (with respect to
R3). If engineers replace the initial hardware, the value of the new part becomes current.
If engineers apply the redundancy concept, the new value is the failure probability of
the new sub-tree of the redundant parts. The difference between the failure probability
of the original basic event and the new basic event (or sub-tree) introduced represents
the improvement of the vulnerability being addressed. To present this information in an
intuitive way we have designed a bar graph using the graphical property of length that
is recommended for representing the quantitative data [22]. The bottom line of the bar
indicates the failure probability of the initial basic event. The filled part shows the new
value. The item provides information about the context under which the modification
has been applied. For example, following the substitution approach, it is possible to
intuitively compare the existing with the new part in terms of failure probability.
Item 3: the cost of modification (with respect to R4). In our work, the cost is an
value representing a quantity consumed for the modification, e.g., money, time, and
human-resources. The type of the cost needs to be defined at the beginning of the safety
improvement process. It is an important information for evaluating design modifications
(see Section 3.2.2) and solutions (see Section 3.3). We propose a scale bar to visualize the
cost not only for the comparison of cost of modifications but also for the investigation of
the absolute cost value. Engineers are allowed to define the scale of the bar, e.g., each
box represents 10 dollars.
Item 4: the cost-effectiveness ratio of a modification (with respect to R7). In cases where
multiple design modifications exist it is important to choose those providing the proper
balance between risk reduction and cost (see Section 3.2.2). We use the graphical property
of length to represent the quantitative cost-effectiveness. Thus, a bar is introduced to
represent the cost-effectiveness ratio for a given design modification. The larger the bar,
the more cost-effective the modification.

There are two possible ways to composite the central icon and the visual items: the inside
strategy and the outside strategy. When placing the visual items inside the central icon, the
icon needs to be enlarged. In this case, the large icon cannot exactly indicate its position
in the plot that represents significant semantic meaning of the analysis process. Thus, we
apply the outside composition strategy. We place the four visual items closely around the
central icon. The visualization properties corresponding to the method of the modification
(items (1) and (2)) are placed at the left; the factors of evaluation of the modification are
represented at the right (items (3) and (4)). This way, engineers may investigate the method
and evaluation of modification in the corresponding side.

We connect a new risk-state node with its direct predecessor using a two-part orthogonal
edge. A line between the predecessor node and the horizontal position of the new risk-state
node represents the subsequent design modification. The vertical part of that line represents
the reduction of the failure probability resulting from modification (with respect to R6).
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This provides a reliable basis for guiding the analysis process. When there are alternative
modifications for a basic event, multiple risk-state nodes are created. Between two nodes,
there is an even distance dividing the width of the x-axis scale of the basic event (see Figure
5: “M2” and “M3”). This may address the overlapping issues of edges as well as of nodes.

To conveniently identify important basic event(s) in each iteration of the analysis procedure
(with respect to R1), we present bars on a list of indicators of basic events along the x-axis
on top of the risk-reduction plot (the more important a basic event, the longer the bar).
Additionally, we provide a horizontal green line in the lower part of the plot for indicating
the goal value. This enables us to assess the distance from the goal (with respect to R8).

3.2.2 Identifying optimal Modifications
The decision tree of the analysis process may exponentially grow because of its number of
branches. Consequently, engineers might spend much efforts for analyzing a large set of
modifications. In this case, engineers need to identify the optimal design modification(s) in
each iteration of the process in order to effectively construct adequate solutions (with respect
to the step 3 of the analysis procedure). The commonly used criterion is the maximal cost-
effectiveness of the modification (referring to visual item (4)). Engineers may alternatively
apply the criteria with respect to the largest reduction of failure probability of the top event
(referring to the vertical position of risk-state node). The non-optimal modifications may
be refused leading to the termination of the corresponding branches. We assign black color
to fill up the risk-state node of the modification. This way, one can easily realize that the
modification was considered and has been refused.

3.2.3 Adapting Component Fault Trees
Fault trees provide meaningful information for the safety improvement process. We apply the
component fault tree in our visualization system instead of the ordinary fault tree because
the component fault tree additionally provides the possibility to link failure mechanisms with
the elements/components of the system design. According to the definition of the component
fault tree, a CFT component reflects an architectural component of the system model in
the design phase. This supports the identification of the vulnerable parts of the system
design corresponding to the important basic events identified. Additionally, the structure of
component fault tree supports the understanding of the effects of modifications along the
way a failure propagates through the system when reviewing solutions.

We provide a visually enhanced component fault tree view for supporting the safety
improvement process (see Figure 5 (1)). In order to associate the component fault tree view
with the risk-reduction plot, we project the ordinal data of the x-axis of the plot (i.e., basic
event list) according to their locations within the component fault tree view. This allows
to link information from both views. We provide interaction mechanism on the component
fault tree view in order to dynamically show the sub-trees of the desired CFT components.
Each sub-tree is arranged inside a gray blob that indicates the scope of the CFT component.
Our system automatically updates the component fault tree model in the background during
the analysis process. In order to quickly assess the updated failure probabilities of nodes of
the modified component fault trees, we propose a qualitative estimation method to classify
failure probabilities into three levels and assign them colors: critical level (red), moderate
level (yellow), and acceptable level (green).

In order to preserve the overview about the vulnerable basic events addressed in a solution,
we maintain the initial structure of the component fault tree during the safety improvement
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Figure 6 Pop-up window shows the updated logical structure of the CFT component with respect
to the modification “M1”. The new created sub-tree is arranged in a scope having a dotted border.
Two basic events were added and connected with the initial basic event using an AND-gate.

process. That means, by modification performed according to the redundancy concept, the
identified important basic events are not directly replaced by sub-trees. Instead, we adapt
the color of the initial basic event node with respect to the failure probability of either the
substitutional part or the new sub-tree of redundant parts. This can avoid disturbances
caused by subsequently updating the component fault tree.

In case engineers intend to review the modified structure of the component fault tree of
the specific design modification, our visualization system allows them to show a pop-up view
representing the updated logical structure by a right-click on a risk-state node. Instead of
displaying the whole component fault tree, the view only presents the structure of the CFT
component that contains the basic event related to the design modification. The adapted part
of the component fault tree is arranged in a scope indicated by a dashed border. This enables
us to intuitively and flexibly view the adapted structures of the component fault tree. This
is particularly useful for reviewing design modifications utilizing the concept of redundancy.
For example, Figure 6 shows the adaption of a CFT component by a modification. A parallel
redundancy is applied by adding two new homogeneous parts and connecting with the initial
basic event by an AND-gate.

3.3 Visual Support for the Review of Solutions
While the risk-reduction plot supports the construction of improvement solutions, the
overview of the solutions is not intuitive for analyzing the cost-related patterns of the
proposed solutions. Such as the trend of risk reduction and of cost increase. It is not suitable
for identifying the optimal solutions having the minimum total cost. Thus, we provide
a simple and effective plot to present an overview about these quantities (Figure 5 (3)).
The x-axis and the y-axis respectively represent the cost of modifications and the failure
probability of the top event. We present a triangular node on the overview plot for each
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modification. We provide a brushing-and-linking interaction between the risk-reduction plot
and the overview plot in order to simultaneously highlight the information associated with
the same design modification. Engineers may obtain an intuitive summary of solutions and
identify the optimal ones.

We focus on the reduction up to the goal value rather than the exhaustive risk reduction.
The overloaded reduction may lead to a large improvement, however, simultaneously also
take large costs. In our work, we assume that all complete solutions reduce the initial risk to
the same goal value. In this case, for estimating a solution, we consider the total costs of a
solution instead of the total cost-effectiveness because this has the identical risk reduction
effects to other complete solutions.

4 Application Example

We provide an example intended to illustrate the use of our system with respect to two
important aspects: construction of solutions and the review of existing solutions. The applied
data originates from a component fault tree of a safety-critical sub-system of an autonomous
mobile robot [30]. This model contains 30 basic events and 4 CFT components. The goal is
to identify the most cost-effective solution. The initial failure probability of the top event
amounts “1.2e-13”, the specified acceptable value is “1e-14”.

4.1 Construction Process
The construction process of the improvement solutions consists of three iterations that are
illustrated in Figure 5 and described as follows:

Iteration 1:
Step 1: Identifying of the important basic event(s). We identify the important basic
event by examining the bars on the indicators of the risk-reduction plot. The basic
event “E32” proves to be more important than others.
Step 2: Applying design modifications. By viewing the labels of the blobs in the
component fault tree view, we know that the basic event belongs to the CFT component
“SC1”. According to this, we may easily identify the corresponding hardware component
of the system. Based on experience, we decide to replace the identified hardware
component with a new part. The cost of this modification amounts to 10 units
(see Figure 5: modification “M1”). The structure of the component fault tree is
automatically updated according to the modifications performed and a new risk-state
node appears on the risk-reduction plot. A solution “S1” is being constructed starting
from this modification. By having a closer look at the solution, we come to the
conclusion that the overall failure probability is not acceptable yet because the color
of the node is not green. Thus, we start the next iteration.

Iteration 2:
Step 1: Identifying of the important basic event(s). The basic event “E3” is identified
as the important one.
Step 2: Applying design modifications. There are two possible ways to modify the
system design for addressing this basic event. One is to add an homogeneous redundant
component causing the costs of 11 units (see Figure 5: “M2”). Another one is to use a
substitute causing the costs of 34 units (see Figure 5: “M3”). Because of the branches
of the modification ideas, a new solution “S2” appears for the branch of “M3”.
Step 3: Evaluating the modifications. We compare the cost-effectiveness bars of both
created risk-state nodes (referring to item (4)). The modification “M2” is obviously
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Figure 7 Qualitative evaluation.

more cost-effective. Hence, we abandon “M3” and terminate the corresponding solution
“S2” (the last modification step of the solution “M3” is filled with black). The failure
probability resulting from the updated component fault tree is not acceptable yet.
Thus, we still need to perform the next iteration of risk reduction.

Iteration 3:
Step 1: Identifying of the important basic event(s). We identify two important basic
events having similar values.
Step 2: Applying design modifications. We apply redundancy-related modifications
(“M4” and “M5”) for the both basic events. A new solution “S3” appears for the
branch generated by “M5”.
Step 3: Evaluating the modifications. We decide to approve both modifications because
the bars of the cost-effectiveness have similar length. The colors of both of the newly
created risk-state nodes are now green. This indicates that the risk of the component
fault tree is reduced to an acceptable level by applying either “S1” (ending in “M4”)
or “S3” (ending in “M5”). Because all the possible solutions are identified, we stop the
construction process at this iteration.

4.2 Review Process
In this section, we review the solutions in the overview plot (see Figure 5 (3)) for identifying
the optimal one. The fact that the total costs of solution “S3” is less than those of “S1”
yields that “S3” is the more optimal way to improve the system safety.

5 Evaluation

We have performed an informal evaluation for our visualization approach. We invited four
experts of the safety domain from the University of Kaiserslautern, all having profound
proficiencies in the field of (component) fault tree analysis. We first introduced our approach
to the participants, and then they were allowed to personally experience the visualization
functionalities. Tasks with respect to the safety improvement process were provided for
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the experience. Finally, the participants filled a Likert scale questionnaire for a qualitative
evaluation.

The results (see Figure 7) showed that the feedback was mostly positive. The risk-
reduction plot was preferred because this visually provided a sequence of modifications, while
intuitively presenting the important data of each modification in the same view. When
comparing modifications or analyzing patterns, using the plot was more intuitive than
investigating data in separate views. The bars for the importance of BEs also had good
reviews because they were easy to understand and dynamically linked to the visualization of
the modifications.

The risk-state node visualizing the modification data had got a little different opinions.
Most complaints concentrated on the small size of the node. The graphic properties attached
to the node was too small to be effectively used, particularly the comparison of the cost-
effectiveness bars. A suggestion was to apply an interactive fish-eye zoom for the interesting
node. A participant commented that a small risk-state node with all graphic properties
looked crowded. For example, although the attributes of modifications (i.e., the modification
cost, modification type, and modification value) provided significant information for analysis
of the existing modifications, the graphical representations of the data did not play an
important role when identifying a modification. He suggested to dynamically represent the
data: show specific graphic properties only when requested.

The representations for the effects of modifications had good comments. Participants
could clearly understand how much the risk reduced by a modification is and how much
the actual risk still needed to be reduced. Considering the different points of the analysis
view, participants also positively commented the overview plots of the solutions. For the
adaptation of the CFT structure, participants commonly thought that the views for showing
CFT structure was relative small, whether for the pop-up view or for the main CFT view.
The suggestions included a size adjustable pop-up view, and space-efficient alignment between
the main CFT view and the risk-reduction plot.

In sum, the invited domain experts preferred our approach because they believed that the
proposed visualization methods and interactions could effectively facilitate the identification
and analysis of the improvement solutions.

6 Conclusion

A safety-critical system may be improved by a set of design modifications developed by
using a component fault tree-based safety improvement process. In case, where multiple
design solutions exist the proposed method allows to identify appropriate solutions by taking
the actual costs into account. Traditional representation methods separate the information
generated in the safety improvement process across individual views which hampers the
identification of solutions. We propose a visualization system that integrates all information
that is relevant in a risk-reduction plot associated together with a component fault tree view.
This allows to quickly identify and review individual design modification steps in the context
of different solutions, while considering the optimization of solutions with respect to the
cost of modifications. An assumption of our approach is that design modifications do not
introduce new critical failures. Otherwise, we would need to apply additional modification
steps for the newly introduced important basic events. We also assume that engineers address
a vulnerability by only one design modification in a solution. In general, our visualization
system supports engineers to identify a series of design modifications leading to an significant
improvement of the overall system safety.
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Abstract
In this joint work, a complete framework for modeling, simulating and visualizing multiphase
fluid flow within an extraction column is presented. We first present a volume-of-fluid simulation,
which is able to predict the surface of the droplets during coalescence. However, a fast and efficient
model is needed for the simulation of a liquid-liquid extraction column due to the high number
of occurring droplets. To simulate the velocity and droplet size in a DN32 extraction column, a
coupled computational fluid dynamic-population balance model solver is used. The simulation
is analyzed using path-line based visualization techniques. A novel semi-automatic re-seeding
technique for droplet path-line integration is proposed. With our technique, path-lines of fluid
droplets can be re-initialized after contact with the stirring devices. The droplet breakage is
captured, allowing the engineer to improve the design of liquid-liquid columns layout.

1998 ACM Subject Classification I.6.6 Simulation Output Analysis

Keywords and phrases computational fluid dynamics, multiphase fluid, droplet collision, Eule-
rian, path-line
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1 Introduction

In chemical industry, liquid-liquid extraction is an important separation technique based on
the relative solubilities of the compounds in two different immiscible liquids. It is mainly
applied when distillation is impractical (similar boiling points of the materials) or the
mixtures contain temperature sensitive compounds. The efficiency of the column is mainly
influenced by the choice of the solvent and by the hydrodynamics inside the column. The
characterization of the hydrodynamics without experiments was made possible through the
use of computational fluid dynamics (CFD). Multiphase flow is commonly simulated by the
use of the volume-of-fluid (VOF) model, Euler-Euler model or Euler-Lagrange model. VOF
allows a tracking of the dispersed phase surface but requires a detailed resolution of the
droplet and its curvature by the computational mesh. Due to this, it is mainly used for the
investigation of single droplet interactions. The Euler-Lagrange method is limited by the
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phase fraction and requires a higher computational load compared to the Euler-Euler model.
Therefore, the Euler-Euler model still is the workhorse for dispersed multiphase simulations.

The simulation of extraction columns with CFD started with Rieger et al. [3], who
used the CFD Code Fire for single-phase simulations of an extraction column of type
rotating disc contactor (RDC). Modes & Bart [4] used the code FIDAP to perform two-phase
simulations. The droplet size change in an RDC column was accounted by Vikhansky &
Kraft [5] and Drumm & Bart [6] using population balance models. Whereas Drumm & Bart
[6] mainly focuses on the moment based population balances, Vikhansky & Kraft [5] used
the Monte Carlo method. Hlawitschka et al. [7] transferred the results of Drumm [8] to a
three-dimensional test case of a Kühni extraction column. For population balance modeling,
a one-group model (OPOSPM) is used which guarantees a low computational time and a
good prediction of the hydrodynamics and flow field [9]. An adaption of the coalescence and
breakage kernels using models from Martínez-Bazán et al. [10], Prince & Blanch [11] and
Luo & Svendsen [12] was investigated by Hlawitschka & Bart [13].

In this paper, the volume-of-fluid method is used to illustrate a binary droplet coalescence
and to show up the challenges for a whole column simulation. In a next step, a coupled
CFD-population balance code is used to simulate a section of a Kühni Miniplant column
using the Eulerian model coupled with a population balance model. In the output of our
presented simulation, the interface is not directly tracked and the dispersed phase is only
represented by the phase fraction and droplet size within each computational cell. Therefore,
a direct analysis of the simulation output (e.g. droplet position) is not possible with the
current visualization techniques. The Eulerian model requires an adequate representation
scheme of the dispersed phase, which couples both the cell volume fraction as well as the
particle size. Recent research on stochastic modeling [14] gives us a pointer on how those
two fields can be negotiated and brought together. Apart from droplet distribution in each
time step, the dynamic behavior of sets of droplets is of great interest among engineers and
researchers. Recent research in fluid visualization has shown that line integrals have been
helpful visual tools in tracking fluid particles [15, 16, 17]. Aside from accurate computation
of line integrals, the start and end points of a droplet path should be handled with special
care in the extraction column, since fluid droplet break or merge along their path. A novel
re-seeding approach for capturing droplet path-lines for time-varying multiphase flow field is
proposed.

2 Binary Droplet Coalescence

2.1 Numerical Background
To illustrate the basic droplet coalescence, we simulate a binary droplet coalescence using
the open source CFD tool OpenFOAM. In our implementation, we used a volume-of-fluid
type of solver, called multiphaseInterFoam. This method is combined with dynamic mesh
refinement for a better resolution of the droplet interface. Due to the VOF model theory, a
direct contact of the droplets leads to a direct coalescence of the droplets. The VOF model
was applied by several groups to simulate bubble coalescence [18, 19, 20] and also applied for
droplet coalescence [21]. A droplet in the VOF method is represented by the volume fraction
α, which is given by:

surrounding phase for α = 0
droplet for α = 1
existence of an interphase when 0<α<1
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The transport of mass is described by the continuity equation

∂

∂t
α+∇ (αu) = 0, (1)

where the velocity is given by u. In addition, a single momentum equation is used for the
mixture of two-phase-fluid. The viscosity and the density of the mixture is expressed by

µ = α2µ2 + (1− α2)µ1

ρ = α2ρ2 + (1− α2) ρ1 (2)

The momentum equation hence is described by

∂

∂t
(ρu) +∇ · (ρuu) +∇u · ∇ [µ] = −∇p+ F, (3)

where F is the surface tension force F = σκ(x)n. κ is the curvature of the interface and n is
a unit vector normal to the interface.

2.2 Numerical Setup
The grid is generated using the open source grid generator blockMesh creating a total
simulation area of size x=0.01 m, y= 0.006 m and z=0.006 m. The initial mesh is generated
with 200 cells in x-axis, 120 cells in y-axis and 120 cells in z-axis. The boundaries of the mesh
are defined by a zero gradient boundary condition. The two toluene droplets (ρ=866 kg/m3,
ν=6.3· 10−7m2/s) are defined by spherical set functions defining a phase fraction of 1 in a
radius of 0.002m around the locations (-0.004,0,0) and (0.004,0,0) that represent the center
of the droplets. The surrounding liquid is defined as water. The surface tension between the
droplets and the water is set to 35 mN. A dynamic mesh refinement is used to refine the
interface of the droplets in advance of the simulation and during the simulation. The upper
refine level based on the volume fraction is set to 0.999, while the lower is set to 0.1. Forty
buffer layers were used to generate a smooth mesh. In each refinement step, the maximum
refinement is set to 20 resulting in an initial mesh of 3 million cells. The time step is set
to 10−5 s and the simulation is run to simulate 0.25 s until the droplets coalesce and a new
round droplet is formed. Each of the two droplets has an initial velocity of 0.1 m/s in the
direction towards the other droplet. Gravity is neglected in order to ensure droplet motion
only in the x-axis direction.

2.3 Binary Droplet Coalescence Result
The simulated droplet coalescence is shown in Fig. 1. The droplets come in touch with each
other after 42 ms and a liquid bridge is formed. The formed droplet changes its shape from
a bar-bell at 50 ms (b), to a citrus form at 62 ms (c), over a sphere form at 70 ms (d) to a
dented form at 75 ms (e). The droplet is elongated again in x-axis to a cylindrical form at
(100 ms) (f) and changes to an oval droplet at 0.12 s (g) and back to the round sphere form
at 160 ms (g). The droplet is stretched again at 180 ms (h) forms a round droplet at 200 ms
(i). The periodic elongation in x-axis decreases with time until the newly generated droplet
is stable.

The droplet coalescence can be described in good agreement with literature data [22].
However the first contact of the droplet is still a challenging task. Repulsion effects and
delayed coalescence, which describes a coalescence that does not directly start after the
initial contact, is still simulated using simplified models based on a contact time and contact
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(a) 0 s (b) 50 ms (c) 62 ms (d) 70 ms (e) 75 ms

(f) 100 ms (g) 120 ms (h) 160 ms (i) 180 ms (j) 200 ms

Figure 1 Droplet coalescence of two 4mm droplets simulated using the VOF method.

area [21]. In a pilot plant column with diameters of 150 mm, several 100,000s of droplets
exist. To model a full column, the number of mesh cells will increase dramatically and
exceed the computational resources. Moreover, droplet breakage is becoming problematic to
model, because they heavily rely on the mesh size and quality. Hence, a simulation without
describing the droplet interface directly is preferred.

While VOF focuses on single droplet boundaries, Eulerian models provide the possibility
to simulate complex scenarios with large number of dispersed droplets. In the next section,
we present a Eulerian model combined with population balance modeling to simulate the
hydrodynamics in a section of a Kühni Miniplant column.

3 Eulerian Modeling

The Eulerian model is part of the Euler-Euler approach, where the phases are treated as
interpenetrating continua. The occurring phases are represented by the volume fraction α,
which is identical to a statistical probability of the droplets being at a specific position. The
sum of the phase fractions of the continuous (c) and dispersed phase (d) has to be 1:

αc + αd = 1. (4)

The transport of the phases is described by the conservation equations and is solved for each
phase. The continuity equation consists of the storage term and the convective term on the
left hand side of the equation and of a source term on the right hand side of the equation.

∂(αcρc)
∂t

+∇ · (αcρcuc) = ρcSc. (5)

The momentum balance of the continuous phase is given by:

∂(αcρcuc)
∂t

+∇ · (αcρcucuc) = −αc∇p+∇τl + αcρcg + Fc + ρcucSc. (6)

The first term on the left hand side is the rate of change of momentum and the second
term is the conservation of momentum. On the right hand side the effect of pressure and
stress-strain is given by the first two terms. The interaction of phases is taken into account
by the resistance forces Fc. The source term S is set to 0. The momentum balance and
continuity equation is formed for the dispersed phase respectively. Analogous to the work of
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[23] only the drag force is taken into account as interphase resistance. The mass force and
the buoyancy force for liquid-liquid systems can be neglected. The resistance between the
continuous phase and the dispersed phase is calculated with the help of the model of Schiller
& Naumann [24] for the drag coefficient CD

Fc,d = 3ρcαcαdCd|ud − uc|(ud − uc)
4dd

(7)

where

CD =
{

24(l + 0.15Re0.678)/Re, Re ≤ 1000
0.44 Re > 1000.

(8)

3.1 Droplet Size Calculation
Since the dispersed phase surface is not directly tracked, events such as droplet coalescence
and droplet breakage as well as droplet growth cannot be accounted for directly. In the last
decade, population balance models in combination with breakup and coalescence kernels
became popular to account for these effects. The variable droplet size can be accounted for
different models, as represented by the class method or the Quadrature Method of Moments
(QMOM). In this work, however, a one group model, the One Primary One Secondary
Particle Method, is used [9]. The model calculates the mean droplet size in each cell based
on the volumetric diameter and is calculated by the third moment and the zeroth moment:

d30 = 3

√
m3

m0
= 3

√
6α
πm0

. (9)

The third moment refers to the total volume of the droplets, where the zeroth moment gives
the total number of droplets. The number of droplets increases due to breakage and decreases
due to coalescence. In addition to the Eulerian modeling, only one additional transport
equation has to be added to the solver for the number concentration of the dispersed phase
d:

∂(αdm0ρd)
∂t

+∇ · (αdρdm0ud) = αdρdSd. (10)

The source term on the right hand side describes the generation and reduction of the number
of droplets. For this description, the coalescence model of Coulaloglou & Tavlarides [2] and
the breakage model of Andersson & Andersson [1] are used in this work. The coalescence of
two droplets is described by the coalescence efficiency τ and by the coalescence rate h:

τ(d1, d2) = exp(−C1
µcρcε

σ2 ( d1d2

d1 + d2
)4)

h(d1, d2) = C2
ε1/3

1+α (d1 + d2)2(d2/3
1 + d

2/3
2 )1/2

(11)

The constants C1 and C2 are adjusted to the system of butyl acetate/water. The breakage
kernel consists of the breakup rate g, which is given by:

g(d) =
10d0∫

d0/10

ωs(d0, λ)P (d0, λ) dλ (12)

The interaction frequency ωs between a droplet of size d0 and an eddy of size λ is:

ωs(d0, λ) = C3πd
3
0ε

1/3

6λ14/3 . (13)
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(a)
!

(b)

Figure 2 Column geometry (left) and a visualization of the generated mesh of a single compartment
containing the moving reference frame around the stirrer (right).

The constant C3 is taken from the model of Luo & Svendsen [12] and is 0.822. The probability
of an eddy breaking up a fluid particle of size d is given by the integral of the normalized
energy distribution φ(χ):

P (d0, λ) =
∞∫

χmin

φ(χ) dχ. (14)

χ is defined by the ratio of the eddy viscosity to the average eddy viscosity. In addition
to the breakup rate, the available energy by turbulence must be larger than the increase
in interfacial energy due to deformation that breakup occurs. In comparison to the direct
simulation of a droplet coalescence and breakage, the breakup kernel and coalescence kernel
has to account for the fluctuations (e.g. elongation) of the droplets taking place in the real
column. Furthermore, surfactants can have an influence to the coalescence and breakage and
have to be accounted by the adjustable parameters of the models.

3.2 Mesh and Boundary Conditions
In this section, we describe the geometry of our extraction column, the numerical mesh for
simulation and the boundary conditions for solving PBM. For the simulation of a seven-
compartment section of a Kühni Miniplant column, a corresponding mesh is built in Gambit
resulting in over 500 000 cells. The simulated column geometry is shown in Fig. 2a. An in-
an outflow section are added to the numerical mesh at the bottom and top of the column. A
closer look inside a single compartment is given in Fig. 2b, where the part around the stirrers
is treated as moving reference frame (MRF). In the middle of each compartment, a six-baffled
stirrer is installed. Neighboring compartments are separated by two stators, which in this
case consist of two metal rings. Three stream-breakers are orientated in an angle of 120◦ to
each other. The volume stream of each phase (water and butyl acetate) is set to 8 l/h and
the stirring speed is set to 300 rpm. The constants in the model of Coulaloglou & Tavlarides
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[2] are set adequate to the results of Drumm & Bart [6] to 0.005 and 1.0 · 1011 to fulfill the
coalescence and breakage characteristics of the used system. The simulation is performed
for 20 000 time steps using a time step size of 0.05 s, where the standard relaxation factors
of the commercial CFD code FLUENT are used. A converged and steady state solution is
reached at the end of the simulation.

4 Visualization and Results of the Eulerian Simulation

A novel approach in visualizing the Eulerian multiphase fluid simulation dataset is presented
with the aim of demonstrating the dynamics of droplet movement. The simulated droplet
distribution is visualized in Fig. 3a [25] based on a stochastic modeling combining the
information of phase fraction and droplet size. The simulated droplet size is homogeneous
for the whole compartment. Slightly smaller droplets can be seen due to numerical diffusion.
Compared to literature data [26], the droplet size is slightly over-predicted by the used
breakage and coalescence models. A further reduction of the coalescence kernel could lead to
a better prediction of the measured droplet size data. The velocity field of the continuous
phase in Fig. 3b indicates the swirl structure inside the compartment, where the velocity
has its highest values at the stirrer tip. For a better understanding of the flow structure, a
visualization of the droplet path through the compartment is needed.

(a) Droplet distribution (b) Velocity field

Figure 3 Visualization of the simulation result gained by the Eulerian CFD-PBM simulation.

4.1 Path-Line Based Flow Visualization
Line integrals, such as streamlines and streak-lines are well-known representations for flow
visualization [16, 17]. In the case of our particular simulation, domain experts benefit from
path-lines that indicates the trace of a droplet movement over time.
A path-line denotes the trace/path of a droplet and is defined mathematically as:{

∂
∂t l(x, y, z) = u(l, t),
l(t0) = l0.

(15)
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u is the droplet velocity and l is the position of the particle. However, conventional path-line
computation suffers two main deficits:

Path-line hits mesh boundaries around stirrers and no longer continues.
Path-line computation continues even if a droplet vanishes after a certain time point.

For simulation experts, it is important to identify flow regions with the following features:
1. regions where a droplet breaks
2. regions where droplets collide and merge.

In order to visualize these features based on a path-line representation, we propose the
following coalescence and breakage detection and re-seeding method to incorporate more
information into path-lines:

Re-seeding near stirrers: if a path-line is interrupted at a mesh point near the stirrer,
take another point which is near the stirrer, and start a new path-line integral from this
point.
Path-line termination after droplet interaction: Physically a trace of a droplet vanishes
while the droplet itself disappears. Therefore, further integration should also be stopped
after a larger droplet break. We incorporate this breakage detection into path-line
integration, in order to record the life span of the droplet along its path-line.

1st International Symposium on Multiscale Multiphase Process Engineering (MMPE) 
4-7 October, 2011, Kanazawa, Japan 
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We will elaborate on the path-line termination process in detail (see Algorithm 1). Suppose
a droplet has position P0 at point t0, after time t1, the droplet moves over to P1, see Fig. 4.
Volume fraction and particle size at each time step are given as αi , di. With the help of the
following detection, we test if t1 is a time frame where a larger droplet breaks:

Algorithm 1 Adaptive path-line integration with breakup detection.
for each path-line do

for t = 0→ ti do
if di/di+1 >

3
√

2 and αi > αthreshold then
terminate current path-line integration,
take a neighboring point, start a new path-line

end if
end for

end for

A droplet breakage is detected by the condition di/di+1 >
3
√

2. We assume that each droplet
is a sphere with diameter di. Thus the volume of a droplet is given by 4

3π(di

2 )3. We further
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assume a droplet will break in to two or more equal parts. Due to volume conservation,
the diameter of the resulting droplet children r di+1 is smaller than 3

√
( 1

2 )di. The threshold
checking on volume fraction αi > αthreshold ensures that a droplet exists in this region. If a
droplet breaks up, we terminate the path-line calculation at this break point. We re-seed
a new point randomly within a given neighborhood. In the future, we plan to extend this
re-seeding idea with further droplet breakage model, in order to provide a better location of
the children droplets. Furthermore, the re-seeding of a boundary point is done by flipping
the velocity vector. We assume if a particle hits the boundary, it bounces back with the
same velocity magnitude and a reflecting direction.
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(b) Path-lines with collision and bifurcation detection

Figure 5 Comparison of straight forward integration method and the particle reseeding method.

The example in Fig. 5a shows a straightforward integration without feature detection and
line re-seeding. Apparently all the impaired particle paths were interrupted once they reach
the stirrers. Furthermore, following all path-lines reveals the fact that no droplet breakage
can be recorded. We implement our proposed re-seeding and termination criteria with a
Runge-Kutta4 integration method in C++. Integration length was set smaller than the
average cell size in order to obtain a smoother line output. Fig. 5b shows an example of
our algorithm whose path-lines are re-seeded after droplet breakage, and integration can
be continued after an interruption at the stirrer. From the presented path-line technique,
the path of the droplets through the column can be visualized. Thereby, the typical double
vortex structure of the flow can be seen [27].
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5 Conclusions

In this paper, we presented different modeling techniques for the simulation of the hydrody-
namics in extraction columns. We have shown that a full resolution of the droplet coalescence
is only possible for two droplets or small number of droplets due to the required compu-
tational resources. The simulation of dispersed phase systems with thousands of droplets
requires the use of simplified models. Therefore, the Eulerian model is used combined with
population balance modeling to simulate the flow field as well as the changing droplet size
in extraction columns. The used breakage and coalescence model for population balance
modeling showed a slight over-prediction of the droplet size. Compared to the VOF method,
the droplet surface is not directly tracked. Therefore, the droplets were visualized using
a stochastic positioning based on the phase fraction and the droplet size. Furthermore,
detection and re-seeding algorithms for droplet interactions and tracing were presented that
enable the engineer to detect points of breakage and are the basis for further improvements.
As future work, we will use a multi-group model that allows us the consideration of more
than one droplet size in a cell. With that model, the effect of small satellite droplets that
are generated during breakage can be studied. Therefore, the positioning of the droplets
based on the phase fraction and droplet size will be extended to account for a stochastic
visualization of the multi-group data set, which allows a direct comparison of real pictures
with the visualization. In addition, a visualization of elongated droplets will help to identify
these points based on the shear rate of the fluids. A visualization of the droplet movement
(transient visualization) will lead to a better understanding of the start-up phase of the
column. The visualization of the multi-group data will show up the position of the smaller
sized droplets compared to larger sized droplets inside the compartments at one time (without
using slides or probes) to reveal dead zones. Finally, the visualization of mass transfer specific
data together with the droplet size data will allow combined analyses of both the interacting
properties. Further investigations of different column designs (e.g. height of a compartment)
will be done. Therefore, a script based mesh generation tool will be developed. The presented
algorithms were only used for liquid-liquid flows, but could also be applied for the simulation
and visualization of bubbly flows as it is given in bubble column reactors.
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A Nomenclature

c continuous phase
d dispersed phase
C1 − C3 model constants
CD drag coefficient
d30 volumetric diameter
d1, d2 droplet diameter
f probability density distribution function
F surface tension force
Fr resistance force
g(d) breakup rate
g gravity constant
h coalescence rate
l location of a point
m0 zeroth moment
m3 third moment
n unit vector normal to the interface
N number of droplets
p pressure

P probability of an eddy breaking up
P0, P1 position 0, position 1
S source term
t time
u velocity
V volume
x, y, z coordinates
α phase fraction
ε energy dissipation
κ curvature of the interphase
λ length of an eddy
µ viscosity
δ surface tension
φ energy distribution function
χ eddy viscosity/average eddy viscosity
ω interaction frequency
τ phase strain stress tensor
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Abstract
Feature-based visualization of flow fields has proven as an effective tool for flow analysis. While
most flow visualization techniques operate on vector field data, our visualization techniques make
use of a different simulation output: Particle Tracers. Our approach solely relies on integral lines
that can be easily obtained from most simulation software. The task is the visualization of dense
integral line data. We combine existing methods for streamline visualization, i. e. illumination,
transparency, and halos, and add ambient occlusion for lines. But, this only solves one part
of the problem: because of the high density of lines, visualization has to fight with occlusion,
high frequency noise, and overlaps. As a solution we propose non-automated choices of transfer
functions on curve properties that help highlighting important flow features like vortices or tur-
bulent areas. These curve properties resemble some of the original flow properties. With the new
combination of existing line drawing methods and the addition of ambient occlusion we improve
the visualization of lines by adding better shape and depth cues. The intelligent use of transfer
functions on curve properties reduces visual clutter and helps focusing on important features
while still retaining context, as demonstrated in the examples given in this work.
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1 Introduction

Flow simulation has a long history in scientific computing. For several decades simulation
was limited to 2D because of symmetry or for computational considerations. Hence, a lot
of excellent methods for integral flow visualization have been developed, e. g. LIC (Line
Integral Convolution). Now, with the availability of more computational power, simulations
have expanded to three dimensions. This leaves the scientific visualization community with
new challenges for the visualization of flows in 3D. Existing techniques from two dimensions
cannot be easily adapted for 3D as most display devices are still 2D.
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Integral lines, i. e. streamlines and pathlines, are a common way to show the structure of
a flow. Several techniques like illuminated lines, halos, and tube-like rendering have been
developed to enhance rendering of these lines. In many cases there are too few or too many
lines showing a lot of unnecessary information instead of focusing on important flow features.

For our visualization we solely use integral lines as output from simulations without the
need of the underlying flow field. This makes it easy to use our visualization approach as a
post-processing step with any common flow simulation software that can produce integral
lines as output. There also are some tools available for visualizing integral lines. In contrast
to these existing methods we require a dense sampling of integral lines. The idea behind this
is that we are then able to provide high resolution visualization results in important regions
and adaptively dim out unwanted information.

Visualization of dense lines has two major problems: overlapping of lines and occlusion
of lines. These problems are even more severe with our requirement of dense sampling of
integral lines. There are already solutions to these two problems: (1) halos around lines
reduce overlap and provide visual separation, and (2) transparency reduces occlusion and
reveals hidden lines.

In this paper we combine illuminated lines, transparency, and halos for an improved line
visualization. To stress the spatial relationship of lines we introduce an ambient occlusion
technique that is suitable for dense line data sets. Transparency is mainly used to highlight
interesting flow features. The second contribution of our work is the definition of interactive
transfer functions on curve properties that allow to extract otherwise hidden structures, e. g.
vortices and turbulent regions. In addition, transfer functions on colors or standard color
maps can be applied for illustrative purposes or deeper insight into the flow.

In the next section we start by discussing existing related work. Section 3 motivates
the two problems that we are solving: improvement of visual quality and feature extraction.
Section 4 lays the mathematical foundation for the calculation of curve properties, e. g.
curvature and torsion. Section 5 picks up on this and explains how to use curve properties to
extract flow features. Ambient occlusion is described in Section 6. Here, we discuss ambient
occlusion in more detail, including the theoretical background, and explain the structure of
our voxel based algorithm. Section 7 details all necessary parts of the visualization: we shortly
describe lighting and transfer functions. In the results section we show some examples of
feature-based visualization of integral lines. In a separate subsection we investigate different
parameter settings of our algorithm for ambient occlusion computation. We conclude the
paper in the last section and suggest areas for future research.

2 Related Work

2.1 Lines
The basis for illuminated lines has been laid out by Zöckler et al. [30]. They introduced new
techniques for the calculation of Phong illumination for line primitives. Later, Schussman and
Ma used this approach in volume rendering [23]. Also, the techniques for basic illuminated
streamlines have been updated to current graphics hardware using shaders [11].

In many cases, line data is not rendered as line primitives on graphics cards at all.
Instead, visualization is achieved by either drawing tubes or, more often, self-orienting
surfaces [22, 10, 3]. The latter technique has been enhanced introducing bump mapping [10],
where the surfaces are rendered like tubes.

A common problem, especially when introducing transparency, is a lack of depth perception
for the entire scene. This problem has been addressed using halos [13]. Special operations on
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the graphic card depth buffer can improve depth perception through halos by making their
width depth-dependent [3]. In this paper, we discuss an implementation which has the same
properties, but uses OpenGL’s line primitives instead of self-orienting surfaces.

There are further approaches connected to our visualization that we discuss in the
following. The method of Mattausch et al. [13] provides means for additional seeding of
streamlines in regions of interest. As already mentioned, we do not make use of the vector
field and hence are able to develop methods that work on arbitrary line input. Hence, we
will not discuss the differences of other methods [6, 9, 28].

Another approach developed for pathlines is provided by Shi et al. [24]. They imple-
mented methods for querying of pathline attributes. Interactive brushing and focus+context
visualization methods provide new means for investigation of pathlines.

In a two-dimensional setting, a number of methods for enhancing streamline visualization
were discussed previously. Most common are methods for streamline clustering [1], or
intelligent seeding of streamlines (cf. [27] and [8]). Some newer approaches extend such
techniques to 3D (cf. [12]). We will not use any of these approaches in our visualization.

A further application for line visualization is rendering of white matter fibers of the
human brain (e. g. [2]). Visual grouping and distinction of homogeneous paths can again
be achieved by clustering. Otten et al. [15] used a combination of hint lines, colored halos,
silhouettes, and outlines to enhance cluster visualization for illustrative output.

2.2 Ambient Occlusion

Ambient occlusion is a well established area of research. Ray tracing techniques do not need
ambient occlusion as calculation of physically accurate lighting already includes shadows.
Ambient occlusion mimics some of this behavior for arbitrary illumination models. Most
non-real-time approaches use object space techniques, but for real time rendering Screen
Space Ambient Occlusion (SSAO) can be applied. A short overview of the results of different
approaches can be found in [14].

For rendering of hair or fur there exist no real ambient occlusion methods yet. Usually,
the problem can be solved by depth-based approaches [29, 7]: Hair under the surface, for
instance, is occluded and hence darker.

A commonly used approach to accelerate the calculation of ambient occlusion is to
voxelize the scene [18]. This approach easily boosts ray tracing for the occlusion calculation
by approximation of the scene.

2.3 Flow Features

Flow features have been extensively investigated. A good overview over existing methods
is provided by Post et al. [17]. Related to our selection of flow features is the approach by
Salzbrunn and Scheuermann [21]. The problem of vortex detection/vortex core extraction
has not been solved entirely. Good approaches to this can be found in [20] and [5].

3 Motivation

The visualization of dense integral line data has many challenges. They can be split into the
visualization problems and problems concerning the data directly, i. e. extraction of important
flow features.
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(a) Using transparency
of 40% to reduce occlu-
sion of lines: more con-
text, no shape or depth
cues.

(b) Halos have been
traditionally used to
provide depth cues. In
this paper they are
used for resolving over-
laps.

(c) Enhancing illumi-
nated lines with our
ambient occlusion tech-
nique: good shape and
depth cues.

(d) Combining illumi-
nated lines, ambient oc-
clusion intensity map-
ping, transparency of
60%, and transparent
halos into one image.

Figure 1 Comparison of the effects of different line drawing techniques.

3.1 Improvement of Visual Quality
Obvious problems in the visualization are overlapping of lines and occlusion of lines in the
back. Common approaches to solve these two problems conflict each other.

Transparency, as discussed in the related work section, is a common method to reduce
occlusion (see Figure 1a). But, at the same time it reduces separation of lines at overlaps.
On the other hand overlaps are resolved by using halos around the lines (see Figure 1b).
This provides a better separation of lines. But again, halos add to the width of the line and
occlude more lines in the back.

More important for the understanding of the visualization is the perception of shape and
depth of the lines.

Illumination reveals the shape and curvature of the lines. This has been done right from
the beginning (see [30]). But, this approach only works well for few lines as there is no solid
visual clue for spatial ordering of lines.

Spatial ordering or depth perception has been generally solved by using halos. We already
discussed one problem of using halos. Another problem is that in order to keep the spatial
cues halos cannot be reasonably combined with transparency.

Our solution to this is that we use halos only for visual separation of lines. In this case
halos are still useful when combined with transparency. Instead, we use ambient occlusion to
improve visual spatial ordering of lines (see Figure 1c). For this, we had to adapt existing
methods for the computation of ambient occlusion to work with lines and allow for partial
occlusion.

The combination of these four methods, i. e. illumination, transparency, halos, and ambient
occlusion, still does not reduce the information overload when used with dense line data (see
Figure 1d). Therefore, we extract curve features to highlight important regions and dim out
unnecessary information.

3.2 Feature Extraction
In order to provide better visualizations which focus on interesting and important regions
we use transfer functions on curve properties such as length, curvature, and torsion. As we
require that we do not need access to the whole simulation data but just the generated lines
we use numerical methods to approximate these properties. We show with our results that
this is sufficient to highlight regions of interest.
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4 Curve Properties

In the following we discuss the computation of curve properties. For the scope of this paper
we concentrate on integral lines computed from flow simulation. But, in general we could
use arbitrary line data that represents a polyline by a sequence of points.

All the computed curve properties are scalar properties that can be easily mapped to
color or transparency by using transfer functions. Beside computing the properties locally
for each point of the polyline we additionally compute some global properties by computing
minima, maxima, and the average.

Throughout the remainder of this section we use the following conventions for variables
of a single curve or polyline:

vi, i = 1, . . . , n are n vertices describing the curve as a polyline
si, i = 1, . . . , n− 1 are the segments of the line enclosed by vi and vi+1.

Local curve characteristics at a given vertex i are given the same index. Contrarily, variables
without an index are always global curve parameters.

The segment length di is computed by the distance of neighboring vertices

di = ‖vi+1 − vi‖. (1)

Assuming a reasonable sampling of the curve we get its length l by summation

l =
∑

i

di. (2)

In addition to this we also compute the minimum segment length dmin, the maximum
segment length dmax, and the average segment length of a curve davg.

4.1 Derivative-based Curve Features
4.1.1 Curvature
For the input we only required that is has to fulfill C0 continuity. Hence, we approximate
derivatives through finite differences. The first derivative is the tangent ti computed by a
central difference scheme (cf. [25]). Accordingly, the second derivative ci is computed by a
first order scheme using the tangents ti. This yields the curvature κi:

κi = ‖ti × ci‖
‖ti‖3

. (3)

4.1.2 Torsion
For approximation of the torsion τi we need the third derivative wi along the curve. This
derivative again is obtained by a first order finite difference of the second derivatives ci.
Finally, the formula for the torsion τi reads:

τi = ‖(ti × ci) · wi‖
‖ti × ci‖2

. (4)

4.2 Depth
The depth of a point is computed as the distance to the camera plane. In contrast to the
previous parameters this one is dynamic and has to be updated each time the camera moves.
The depth parameter can be used in visualization to clip unnecessary lines that occlude flow
features on the inside of the flow volume.
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4.3 Ambient Occlusion
Ambient occlusion is also computed for each vertex of the polyline. Details concerning the
methodology and implementation of this technique can be found in Section 6. Ambient
occlusion is mostly used to enhance the illumination model to include soft shadows where the
intensity of ambient lighting is reduced. Furthermore, with the right choice of parameters
ambient occlusion can also encode the density of a flow field. In visualization this can be
used for peeling.

5 Curve-based Flow Features

The previous section described how to compute curve properties. In this section we elaborate
on the use of these properties to find and extract flow features.

Most visualizations of integral lines have access to the underlying flow field and can exactly
determine properties like curvature and torsion. This is especially helpful for extraction of
e. g. vortex core lines. Instead, our requirements stated that we do not rely on the underlying
flow structures, but we only rely on the line data as input. Hence, we have to find an
adequate mapping of flow field features to curve features. Appropriate filtering of the curve
data will then provide us with a feature-based visualization.

5.1 Vortex Core Lines
There have been attempts to formalize the description of vortex core lines [16, 19]. Still,
there is no agreement in the community on this. Instead, we use the intuition of Jiang et al.
[4]: A vortex is characterized by a central core and swirling streamlines surrounding it.

We do not have the information about neighboring lines. But, what we can conclude
from this is that the vortex core line has to have a high torsion because of continuity in the
flow field and the swirling streamlines surrounding it. Still, it is not possible to extract every
vortex core line since for a straight line the torsion computed according to equation 4 is
always zero.

Nevertheless, we were able to reliably identify lines in the neighborhood of a vortex core.
Our assumption for this is that these lines have high torsion and low curvature at the same
time. This assumption works in a lot of cases, but does not guarantee to find all vortices.

5.2 Turbulence
As for vortex core lines it is hard to describe turbulences by a formal definition based on
curve properties. Instead, we will again use intuition.

In a turbulent region of a flow streamlines have high rotational components. This is
mapped to a high curvature in these regions. In addition, turbulences are small scale feature
and particles have a low velocity magnitude. Hence, our adaptive streamline integration used
for generation of the test data results in shorter streamlines than in other areas. Combining
these two properties, high curvature and short total length, helps finding turbulences in the
flow.

6 Ambient Occlusion

The main idea behind using ambient occlusion for line visualization is to add further spatial
information through additional shading. Especially for dense line data sets these additional
spatial cues will significantly enhance depth perception of the scene.
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Figure 2 Tracing rays on
the hemisphere of a surface for
visibility calculations.

(a) (b)

Figure 3 Voxelization for ambient occlusion. (a) Two
subdivision steps in 2D for one half-circle resulting in eight
bins. Blue: before subdivision, green: first subdivision, red:
second subdivision. (b) Putting voxels into bins. Voxels
exactly on the boundary are sorted into both adjoint bins.

6.1 Challenges
Compared to existing applications of ambient occlusion the computation of ambient occlusion
for lines introduces new challenges: one-dimensional geometry, no geometry normals, SSAO
is not suitable, high geometric complexity, and unclear contribution to occlusion. In the
following we discuss these challenges and why they pose a problem in further detail.

The common approach to compute ambient occlusion for a specific point in the scene is
to use ray casting. On any hardware we can only trace a finite number of rays. Since lines
have a one-dimensional geometry for most lines the computer cannot detect a collision of the
ray and a line. We will see that this problem is solved by seamlessly partitioning a sphere
around a point into so-called ray bins. Because of this seamless partition each line that has
an influence on the ambient occlusion will be put into a least one ray bin.

As we describe in the background section the original idea behind ambient occlusion
assumes a surface normal for the computation. Only objects on a hemisphere in the direction
of the normal can have an influence on occlusion. However, one-dimensional objects do
not have a surface normal. From this we derive that the ambient occlusion of the line is
dependent on the viewing direction and this has to be solved.

Screen Space Ambient Occlusion (SSAO) is commonly used to accelerate the computation
of ambient occlusion. As the name already tells this approach works in screen space. For
many usage scenarios SSAO is a good approximation for ambient occlusion. But, our dense
line data results in high depth-frequencies in the projected 2D image. This is why SSAO as
an approximation will yield a completely different result than a more accurate calculation of
ambient occlusion.

High geometric complexity is another problem. Since this paper is specifically about the
visualization of dense line data there are a lot of objects to be visualized. Hence, tracing rays
in such a scene has high computational costs. We use a common approach of voxelization
of the scene to speed up computation. However, this raises the question how much a line
contributes to occlusion and how to handle transparency.

The contribution of a line to occlusion is unclear due to its one-dimensionality. Intuitively
a thin line inside a voxel should not set the voxel’s occlusion value to one. Our approach
attacks this problem and suggests a solution that we show works well with our visualization.

6.2 General Background
The general idea of ambient occlusion is to map the visibility of an object to soft shadows.
Together with common shading and lighting formulas such as the Phong illumination model
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this provides a more realistic and intuitive visualization.
For the computation of ambient occlusion for a certain point on a surface we trace rays

in every direction of the hemisphere pointing away from the surface (see Figure 2). Then the
occlusion is obtained by integrating the visibility for each ray. The general equation for this
reads:

AO = 1
π

∫
Ω
Vω(n · ω)dω (5)

where Ω is the hemisphere, ω is the direction of the ray, and Vω(·) the binary visibility
function for this ray.

Actual implementations usually perform an approximation of the integral described in
equation (5). A very common approach is using Monte Carlo Integration as a numerical
method (e. g. see [18]). Another simplification is sampling the geometry on a voxel grid.
This still yields good results for small voxels, but usually is faster.

6.3 Ambient Occlusion for Lines
The previous paragraph described how ambient occlusion is implemented for general geometry.
As we mentioned before this can only be a basis for occlusion computations with lines. For
our adaption of ambient occlusion we use a voxel based method. Instead of tracing rays, we
sample hemispheres in voxel space. In the following we explain the details of our approach.

First, we give an overview over all steps needed for the computation of ambient occlusion
implemented by our method:
1. Rasterize lines into voxels and count the number of lines per voxel
2. Create a subdivision of a hemisphere into ray bins for each axis
3. Create a voxel stencil for each hemisphere
4. Sort voxels of each ray bin according to the distance to the center of the hemisphere
5. Compute occlusion for each voxel
6. Store the occlusion values for each vertex of a curve

6.3.1 Rasterization
As we mentioned before we use a voxel based approach for the computation of ambient
occlusion. In general we use a 128× 128× 128 voxel grid on a unit cube – a justification for
this can be found in the evaluation section. The line data is then scaled to fit the volume.
As most simulations are run on boxes that are not cubes in most case we have a lot of empty
space.

In this first step we take the segments of our lines and rasterize them using the 3D
Bresenham line algorithm. For each traversed voxel a counter is incremented. After that
the line count per voxel is scaled down to the range [0, 1]. This results in a discretized
three-dimensional line density map. It is important that the values are normalized because
in a later step we use them for our own adaption of occlusion blending.

6.3.2 Subdivision
As we already discussed it is problematic to find collisions of rays and lines. To compute the
occlusion of a voxel, we have to traverse a spherical neighborhood. We therefore partition a
sphere around the voxel into so-called ray bins. As we will see later it does not make sense to
compute the overall occlusion of a point. We rather compute the occlusion for hemispheres
pointing in six different directions – one along each axis and its opposite direction. Later, for
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visualization three of these occlusion values are blend together depending on the viewing
direction.

In order to generate the ray bins we use a subdivision scheme to approximate the spherical
hull by a set of tetrahedra. We start off with a pyramid divided into four tetrahedra as a
rough approximation of a hemisphere. The general concept is shown in Figure 3(a) for half a
circle in 2D. Each tetrahedron (or triangle in 2D) is recursively split into four new tetrahedra
(two triangles). For most visualizations two of these subdivision steps already proved to be
sufficient.

6.3.3 Stencil
Each of the previously generated tetrahedra corresponds to a ray bin. In this next step we
create a stencil that can be applied to any voxel to find voxels belonging to its ray bins.
So, we take the relative offset of voxels to the current voxel and put them into the ray bins
according to their relative position (see Figure 3(b)).

It is only feasible to use such a stencil if its size is significantly smaller than that of
the entire voxel grid. The physical explanation for this is that the influence of occlusion is
attenuated over distance. In our implementation we use the formula

w(d, r) =
{(

1− d
r

)4 ( 4d
r + 1

)
0 ≤ d ≤ r

0 d > r
(6)

which has been successfully used in ambient occlusion [18]. The attenuation function w(d, r)
reaches zero at a previously defined maximum distance r. An evaluation of different radii r
can be found in Section 8.1. Generally, voxels outside of this radius have a weight of zero
and hence do not have to be included into the stencil.

6.3.4 Sorting
In this step all voxels of a ray bin are sorted into a single list with increasing distance from
the center of the hemisphere. This sorting is needed for efficient blending of occlusion values.
This step still operates on the stencil, thus the sorting has to be done only once.

6.3.5 Occlusion Computation
The previous steps, i. e. sphere subdivision, stencil generation, and voxel sorting for a
hemisphere, is a one-time process and independent from concrete properties of a data set.
Thus, this information can be stored to disc and loaded on demand for ambient occlusion
computation. Nevertheless, setup time in the tables 3 and 2 show that this is not necessary.

Now, the setup for the actual occlusion computation is finished. In the actual occlusion
computation pre-computed stencil information is applied to a given data set. At first, the
occlusion calculation is done for each ray bin separately. Voxels are successively taken from
the sorted list of the stencil. Their occlusion values are blended together from front to back
just like alpha blending is used to emulate transparency. Additionally, the occlusion values
are weighted according to equation 6.

For the final occlusion value of a voxel in one of the six directions we use the average of
the occlusion values of all the ray bins of the corresponding hemisphere. To speed up the
computation ray bins are first combined into octants of the sphere. Then, four octants are
combined into the actual hemisphere to contain the occlusion value.
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Finally, for faster access we store the six occlusion values for each vertex of a curve. For
this, we just have to find the corresponding voxel for a vertex and transfer its occlusion
values.

Our actual implementation of this method computes the occlusion for a voxel at most
once and only if there is a least one vertex inside the voxel. Furthermore, each voxel has
a list of all vertices that are located inside the voxel. Then, we get an additional speed up
because we can just transfer the occlusion values from the voxel to all corresponding vertices.

7 Visualization

The main purpose of this paper is to find a method which provides a feasible visualization
option for dealing with dense line data. The obvious solution to use transparency which
allows us to show previously hidden lines. With the help of transfer functions based on
curve features we can even extract flow features. However, as we discussed in the motivation,
Section 3, transparency introduces new problems. Hence, we combine existing methods like
illuminated lines and halos and add ambient occlusion for lines to address these problems.

In the following we discuss the basics that are needed for expedient rendering of integral
lines. Since the common method to emulate transparency on the GPU is alpha blending we
need depth sorting of the line segment. This computation is quite slow for the high number
of lines we are using. And a pre-computation for every possible viewing direction is not
feasible.

Instead, line segments are pre-sorted along the coordinate axes. During visualization the
sorting that corresponds most to the current viewing direction is used. According to [30] this
induces an error for at most 1% of the rendered pixels. Looking at our pictures rendering
artifacts are very rare.

Many existing methods use a tube-like geometry for rending streamlines (for example
see [10]). In our implementation we use OpenGL’s line primitive to draw the line segments.
The line width is usually given in screen space and does not scale with depth by itself. Thus,
for some renderings we use the depth information to adjust the line width per segment. This
approach allows for a more natural depth perception while reducing the amount of vertex
information compared to rendering a more complex geometry like tubes.

Halos are most commonly used to help the viewer with depth perception. However, we
figured out that combining halos with transparency destroys this perception. Nevertheless,
halos are useful to visually separate lines from each other. Our implementation draws the
original lines first and in a second run draws halos as a thicker line using the background’s
color. Using the depth buffer of the graphics card the halo line is only drawn along the sides
of the actual line segment. The halo width is set as ratio to the original line’s thickness. This
combines well with the depth dependent scaling of the line width if needed.

7.1 Lighting
Since the first rendering of 3D streamlines [30] the Phong illumination model has been used
to support perception of the line’s shape. In order for the Phong illumination to work we
need a surface normal that is not available for a one-dimensional geometry like a line. Hence,
the normal is calculated such that it is in one plane with the tangent ti at the position of
the vertex vi and the light vector Li. The corresponding formula reads:

ni = (Li × ti)× ti
‖(Li × ti)× ti‖

. (7)
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(a) (b) (c)

(d) (e) (f)

Figure 4 Flow around a cylinder. Left: no halos. Middle: transparent halos. Right: opaque
halos. Top row: no ambient occlusion. Bottom row: ambient occlusion mapped to intensity.

(a) (b)

Figure 5 Flow around an ellipsoid. (a) Focusing
on a region of interest by cutting off lines in front.
(b) Selecting lines with higher curvature through
transparency. Coloring shows the magnitude of
curvature per segment.

Figure 6 Extraction of vortex cores for
the delta wing data set [26]. Transparency
selects regions with high torsion and low cur-
vature. Red streamlines on the center of the
vortex have a high torsion, green streamlines
have a low torsion and are only provided for
context.

With this information we compute the illumination of each line segment.
Ambient occlusion is mostly implemented to assist with illumination. It feels natural to

the human eye that objects that are partially occluded have soft shadows which means that
they are darker. So, the occlusion value is used to reduce the intensity of a line segment, i. e.
the influence of ambient lighting is reduced for hidden lines. The result feels more natural
and enhances depth perception.

7.2 Transfer Functions and Color Maps
Transfer functions, both on transparency and color, are heavily used in our visualizations.
Simply applying the same transparency to all lines reveals more lines, but does not reduce
visual clutter. Hence, we are using transfer functions on line properties like e. g. curvature
and torsion to focus on important flow features. There is no automated process for this. But
instead, there are some general rules as described in Section 5 which combined with basic
expert knowledge yield good results.

For illustrative purposes or deeper insight into the data transfer functions can also be
applied for colors. Coloring is often used for visualization of streamlines. It shows how flow
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Figure 7 Extraction of turbulences in the jet stream data set. Streamlines are selected by high
curvature and short total length. The right image shows the inverse selection.

properties change inside the simulation domain. With the dense line data that we have it is
only useful in combination with transparency highlighting important regions.

8 Results

In a first part, we shortly discuss results using ambient occlusion for line rendering. Then, we
focus in depth on the use of transfer functions on transparency to highlight important flow
features. In a separate subsection we evaluate different parameter settings for the calculation
of ambient occlusion.

Figure 4 shows differences for halos and ambient occlusion used for highlighting spatial
relationships and separation of lines. Within the dense data set it is not possible for the
viewer to clearly separate lines by just using illuminated lines (see Figure 4a). Ambient
occlusion clearly improves depth perception in all cases. But without halos it only weakly
separates lines in the foreground from those in the background (see Figure 4d). Opaque halos
clearly give a nice illustrative visualization (Figure 4f) that can be further improved with
ambient occlusion (Figure 4c). Still the insight gained from this visualization is questionable.
In general we conclude that we can use intensity mapping based on ambient occlusion for
improved depth perception, and transparent halos for separation of lines.

In the following, we show examples of how transfer functions on curve properties can
be used to extract or highlight important flow features. We start with a generally known
example.

Figure 5a shows the flow around an ellipsoid by cutting off lines in front of the region
of interest. The problem here is that in order to get close to the interesting flow features
we also cut off streamlines with important flow features. This focusing technique can be
improved by using different curve properties. In Figure 5b we use transparency transfer
functions on curvature that only select streamline segments that have a high curvature. This
removes all straight lines that occluded the view before.
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Another well known example for streamline visualization is the delta wing data set. Here,
we extract streamlines near the vortex cores according to our description in Section 5.1. In
Figure 6 we see that the extraction works well showing streamlines near the center of vortices
in red. Streamlines with lower torsion are colored in green. Rendering them with higher
transparency gives some context for the overall data set.

In a last example, we show the extraction of turbulent regions in a jet stream data set.
As for the vortex core lines we apply the description from Section 5.2. This means that we
can find turbulent streamlines by looking for high curvature and a short total length of the
streamline.

8.1 Evaluation of Ambient Occlusion Computations
In this section we evaluate the choice of different parameters for ambient occlusion. There
are three parameters that can be adjusted: the number of voxels, the maximum distance of
the sphere around a voxel, and the number of subdivision steps used as approximation of
the sphere. The last parameter directly influences the number of ray bins – two subdivision
steps already yield 64 ray bins per hemisphere.

Although the computation of the ambient occlusion is done as a pre-processing step prior
to the visualization the right choice of parameters is a trade-off between computation time –
which is O(n3) – and visual quality. The latter one in many cases is specific to ones visual
preferences.

In a first experiment we adjusted the number of voxels used for rasterization. At the
same time we linearly scaled the maximum radius of the sphere, given as number of voxels,
such that the same lines have an impact on occlusion. This is the only way to make a visual
comparison of the results. Our benchmark machine is a notebook with an Intel Pentium
T2330 Dual Core CPU running at 1.6GHz. Our algorithm is completely parallelized for
the actual calculation of the ambient occlusion and entirely uses up the two cores. Table 1
shows the runtimes for different parameters averaged over five runs and Figure 8 shows the
corresponding visualization for comparison.

For a second test we varied just the maximum distance. Low values are especially
interesting when using ambient occlusion as some measurement for density. Then, the
influence on lines to occlusion is restricted to the immediate neighborhood. In visualization
the interpretation as density can be used for some sort of peeling. From the results in Table 3
we can derive that the maximum distance already has a high impact on runtimes.

Finally, we tested the influence of subdivision steps of the hemisphere. From the runtime
results in Table 2 we see that number of subdivisions has only a minor impact on the overall
runtime. The reason for this is that we have the same amount of voxels that have an influence
on occlusion regardless of the subdivision. There is only a slight overhead for descending to
the next subdivision and additional recursive function calls.

(a) 8 × 2 × 2 (b) 16 × 4 × 2 (c) 32 × 8 × 2 (d) 64 × 16 × 2 (e) 128 × 32 × 2

Figure 8 Grayscale maps of occlusion values. The number of voxels used for AO computation
increases from left to right (compare Table 1). Low resolutions show voxelization artifacts, but 128
voxels already provides smooth results.
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(a) 128 × 20 × 0 (b) 128 × 20 × 1 (c) 128 × 20 × 2 (d) 128 × 20 × 3

Figure 9 Grayscale maps of occlusion values for increasing subdivision steps. There are only
minor differences for one and two subdivision steps, but no visible changes for two and three
subdivision steps.

The images in Figure 9 show that no or only one subdivision step do not give satisfactory
visual results. For a lot of data sets two subdivisions are sufficient and only for very dense
data sets there is a visible difference compared to three subdivision steps. From these three
tests we derived that the parameter setting of 128 × 20 × 2 is a good trade-off between
computation times and visual quality for most cases. Our images including a mapping
of ambient occlusion to intensity enhancing the lighting model were generated with these
settings.

9 Conclusions and Future Work

In the future there is clearly a need for good visualizations of flow simulations. Integral lines
build a good basis for this. In contrast to previous methods we do not rely on the underlying
flow field. Instead, we solely use integral lines that can be generated as output by most
simulation software. Another difference is that we require a dense sampling of integral lines:
without the flow field it is impossible to add information in the visualization step if you have
too few lines. On the other hand, if there are too many lines, we provide a solution based on
transfer functions to reduce visual clutter and highlight important flow features. To sum
it up, this paper has two major contributions. Our results show that our approaches yield
insightful pictures.

First, our approach improves rendering of lines, especially for dense line data. For
the rendering part we have two major contributions. For one, transparency can be used
while maintaining separation of lines and their spatial relationships. Transparency is really
helpful for focusing on important flow features. Then, we contribute to ambient occlusion
computation by extending existing methods to include AO for lines. With the combination
of this and existing techniques – sometimes combining only some of them – we can provide
better visualizations than before.

Second, we provide a new method to find important flow features. For this, we do not

Table 1 Runtimes for different voxel
grid resolution. The increasing maximum
distance has a high impact on increasing
computation times.

nvoxels × maxdist × nsubdiv runtime
8 × 2 × 2 0.14 s
16 × 4 × 2 0.16 s
32 × 8 × 2 0.88 s
64 × 16 × 2 27.93 s
128 × 32 × 2 1313.24 s

Table 2 Runtimes for different numbers of subdivi-
sions of the hemisphere.

nvoxels × maxdist × nsubdiv runtime setup time
128 × 20 × 0 374.27 s 0.88 s
128 × 20 × 1 420.63 s 0.89 s
128 × 20 × 2 490.62 s 0.90 s
128 × 20 × 3 530.42 s 0.88 s
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Table 3 Runtimes for increasing maximum distance. Additionally, we include the setup time for
the stencil and rasterization, i. e. steps 1-4 of our method. The setup is only single threaded and the
setup times are already included in the overall runtimes.

nvoxels × maxdist × nsubdiv runtime setup time
128 × 1 × 2 1.47 s 0.66 s
128 × 2 × 2 2.55 s 0.66 s
128 × 4 × 2 8.76 s 0.66 s
128 × 8 × 2 46.22 s 0.68 s
128 × 16 × 2 282.06 s 0.78 s
128 × 32 × 2 1314.10 s 1.72 s

rely on the underlying flow field information. This makes it easier to integrate with existing
simulation software. Instead, we use only integral lines for visualization. In order to have all
the information that is needed we require a dense sampling of integral lines. For the flow
expert we provide the steps that are necessary to find vortices and turbulent regions.

Still, there is a lot of improvement for future research. For one, ambient occlusion can
be used with a small surrounding sphere to compute the local density. These regions might
incorporate interesting flow features as well. For example, regions with a high density can
point to sources, sinks, or separation lines.

Furthermore, in this paper we just used properties on single curves. Combining curve
properties with neighboring integral lines can give even more insight into the data. Especially,
the definition of vortices is easier if the neighborhood is included. Then, it might also
be possible to detect vortex cores that are straight lines and hence do not have a torsion
according to our calculation from Section 4.
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Abstract
Current tracking methods rely on color-, intensity-, and edge-based features to compute a de-
scription of an image region. These approaches are not well-suited for low-quality images such as
mm-wave data from full-body scanners. In order to perform tracking in such challenging grayscale
images, we propose several enhancements and extensions to the Visual Tracking Decomposition
(VTD) by Kwon and Lee [6]. A novel region descriptor, which uses texture-based features, is pre-
sented and integrated into VTD. We improve VTD by adding a sophisticated weighting scheme
for observations, better motion models, and a more realistic way for sampling and interaction.
Our method not only outperforms VTD on mm-wave data but also has comparable results on
normal-quality images. We are confident that our region descriptor can easily be extended to
other kinds of features and applications such that tracking can be performed in a large variety
of image data, especially low-resolution, low-illumination and noisy images.

1998 ACM Subject Classification I.4.8 Scene Analysis – Time varying imagery, Tracking

Keywords and phrases Visual Tracking Decomposition, low-quality images, texture features,
mm-wave imagery

Digital Object Identifier 10.4230/OASIcs.VLUDS.2011.89

1 Motivation

To improve airport security, the detection of threats (especially non-metallic ones) attached
to a person’s body is very important. Full-body scanners that use mm-wave radiation are
currently in development with the goal of automated threat detection. Smith Heimann
GmbH provided us with several image sequences obtained from such scanners that show a
person (carrying one or more threats) with raised arms performing a full rotation around
the vertical axis. Our goal for the master’s thesis by Salz [13] was to achieve an automated
tracking of a threat through the sequence using a manually selected initial bounding box of
the threat.

The grayscale images are very challenging with respect to the tracking method since
they have a low resolution (with even smaller object sizes) and low contrast while several
artefacts further reduce quality: Even between a very small number of frames we observe
severe appearance and illumination changes, whole body parts are shadowed for some time,
metal objects produce bright responses, and flares decrease the already small SNR.

Since these image sequences are confidential property of Smith Heimann GmbH, we are
not able to provide any graphical descriptions. The sample images of Figure 11 should give a
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rough overview of the image quality, although no threats are shown and real-world scanner
data are usually much noisier with less contrast and illumination.

Figure 1 Sample mm-wave images of a female and a male person1.

2 Overview

2.1 Contributions

We conducted a thorough analysis of several detection and tracking algorithms with respect
to their applicability to mm-wave sequences (as is described in detail in [13]). Since we
discovered several shortcomings of Visual Tracking Decomposition (VTD), we propose some
enhancements (with respect to general tracking) and extensions (to apply it to other kinds
of image data), such as a more sophisticated observation and motion model, better sampling
and tracker interaction and integration of our own region descriptor.

This region descriptor is based on texture features as known from ultrasound texture
discrimination and is computed using a patch decomposition of an image region, taking
a carefully designed weighting scheme into account. We adapted the Förstner distance to
compare sample and model covariance matrices computed from these patches in a robust
way.

2.2 Results

As presented in Section 5, we achieved quite promising results on mm-wave sequences,
especially compared to other approaches like VTD. When applied to the same data Kwon and
Lee used for VTD, our method is comparable to it in terms of location error and sometimes
even has better results.

In other low-resolution, low-light grayscale image data we expect our method to be
superior to VTD as well, since the texture-based region descriptor is generally well suited for
objects that are not easily represented by color and edge features.
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2.3 Paper Organization
This paper is organized as follows: Section 3 introduces all related publications that were
the basis for the proposed algorithm. Section 4 describes our algorithm in detail, presents all
the sub-parts and gives an overview of the whole algorithm. In Section 5, some results are
presented, including a report on mm-wave tracking and a comparison to Visual Tracking
Decomposition on normal data. Finally, Section 6 concludes the paper, outlining our
contributions and future work.

3 Related Work

3.1 Introduction
There are two dominant approaches for matching an image region to a template. In detection
methods, the target object’s position, scale, rotation, and other parameters can be almost
arbitrary, i.e. the relation between the template and the target image is not known. This
is especially helpful when dealing with images of the same scene, taken in different camera
configurations, at a different time or in different circumstances (e.g. lighting). One of the
major drawbacks is the global and usually exhaustive search in the target image. This is
very expensive and often constrains the choice of a region descriptor, but more importantly,
it might cause confusion of similar looking objects.

In video sequences on the other hand, tracking is performed in adjacent frames where
only small changes both in appearance and in location are expected. This leads to the use of
a motion model to predict the movement from frame to frame and an observation model to
predict and cope with appearance changes.

Please refer to [13] for a much more extensive description and analysis of the presented
methods.

3.2 Region Covariance
Region Covariance is a detection method proposed by Tuzel, Porikli and Meer [14] that
uses the covariance matrix of pixel-based statistics as a region descriptor. It incorporates
different features like position, color, and partial derivatives, but can easily be extended to
other kinds of features. To make an exhaustive search in scale-space feasible, the covariance
matrix of a region is computed using Integral Images, proposed by Viola and Jones [15].
This intermediate representation can be pre-computed for the whole image such that a
covariance matrix for a region can be computed in constant time. To compare covariance
matrices of a template and target region, the Förstner distance (Förstner and Moonen [4])
is used. This distance is based on generalized eigenvalues and assumes that all eigenvalues
are positive, which is usually not valid in noisy, real-world data. Therefore, we propose an
adapted Förstner distance computation that only considers a few dominant eigenvalues, as
presented in Section 4.4.

3.3 Incremental Learning
In contrast to Region Covariance, Incremental Learning is a multi-template tracking method
proposed by Ross et. al. [12] that maintains an appearance model based on previous
observations. Their algorithm starts with a single template and incrementally updates
the appearance model while down-weighting older observations with a forget factor. An
intensity vector for all pixels in the image region is used as a region descriptor (I), while the
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appearance model consists of the eigenbasis U from A = UΣV T with A = [I1, ..., In]. Their
update procedure incorporates new observations without re-computing the whole eigenbasis.
A Gaussian motion model and a particle filter with the state consisting of translation,
rotation, scale, aspect ratio and skew are used for tracking. See for example the tutorial by
Arulampalam, Maskell and Gordon [1] for an overview of particle filters.

The method has some disadvantages, such as the high-dimensional feature vector that
only includes raw intensity and requires a scaling of each target region to a common size.
Furthermore, the Mahalanobis distance is used as the dominant distance measure for the
observation model, utilizing a distance from the mean observation vector. This mean might
not be very expressive, since the implicit assumption of a normal distribution of observation
templates is not always valid in low-quality, noisy image data. The eigenbasis computation
using Principal Component Analysis (PCA) allows for fast frame rates, since only a partial
update of the covariance matrix is necessary for new observations. On the other hand, since
we use a sparse variant of PCA (SPCA, see below), this is not feasible and a full covariance
matrix computation is needed for each model update.

The incremental update procedure, the forget factor, and the subsequent implicit limitation
of observation model size are valuable contributions to multi-template tracking and are also
utilized in our method (see Section 4.3).

3.4 Visual Tracking Decomposition
Visual Tracking Decomposition (VTD) is a multi-template, particle-filter based tracking
method proposed by Kwon and Lee [6]. They partition the observation model into different
sub-models which are then utilized by basic trackers with different motion models. As
state, the position and a single scale parameter are used, while the HSV representation (for
grayscale images: intensity) and Sobel-based edge strength serve as features. To compute
similarity of an observation to a sub-model, the Diffusion Distance by Ling and Okada [7]
is used. Motion models consist of Gaussians with different variances (representing small
and abrupt displacements between frames) and the partitioning of the observation model is
computed by Sparse Principal Component Analysis (SPCA, d’Aspremont et. al. [3]) of the
(non-centered) covariance matrix. SPCA produces sub-models that capture the most severe
appearance changes, have a compact representation, and are almost complementary.

The eight basic trackers (with four observation and two motion models) generate Markov
chains of samples using the Metropolis Hastings algorithm [5]. Interactive Markov Chain
Monte Carlo (IMCMC) by Campillo et. al. [2] is used to fuse those basic trackers. One
tracker proposes a state and the others decide whether to leap to this state or maintain their
own Markov chain.

The authors report that their method can cope with severe appearance changes (because of
the multi-template model), occlusion and illumination changes (robust features), and abrupt
motion (different motion models). However, variance parameters for the motion models and
the scaling parameter are adapted to the specific image sequence and the implementation
deviates from the description in the paper. First, the motion model is centered at the original
object position, not the current one, which is helpful for most of the sample sequences where
the camera follows the object of interest. Second, basic trackers propose new states in each
iteration, although in the paper this sampling is only done with a certain probability or
an interaction step is performed. Furthermore, VTD has several other drawbacks that are
addressed in our method. The features are not applicable to low-quality images. The old
position of a basic tracker is ignored when sampling new states and Metropolis-Hastings
sampling yields an acceptance rate close to 100% (while theoretically it should be around
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23%, see Roberts et. al. [11]). The entries of sparse principal components are not utilized to
weight their influence, although their variance contribution differs significantly.

3.5 Texture Features
In most tracking applications, a combination of color or intensity and edge information is
used to compute feature vectors of an image region. For low-quality, noisy and colorless
images, these region descriptors perform very poorly. In the field of ultrasound texture
classification, another set of features has been proposed that relies on intensity and several
intensity transformations (gradient magnitude, difference to mean, horizontal and vertical
residuals), as described by Muzzolini et. al. [10] and Liu and Jernigan [9].

The following set of features both from the spatial as well as from the frequency domain
has been chosen for our method: The Kolmogorov-Smirnov distance between the cumulative
distributions (approximated by histograms) of each target patch and a representative sample
(which is known to belong to the texture class of interest) and the standard deviation of each
patch are spatial features. Frequency features include the energy at the major peak of the
normalized power spectrum (given by the Fourier transform), the Laplacian of major and
secondary peak, relative orientation of major and secondary peaks, isotropy of the power
spectrum, and relative energy and entropy of inner regions of the power spectrum.

3.6 Sparse Principal Component Analysis
One disadvantage of Principal Component Analysis (PCA) is the non-sparsity of entries.
Just thresholding (such that small entries are ignored) is not sufficient for dimensionality
reduction. Therefore, a variant of PCA is used, which captures most of the variance in
the data, but with a desired sparsity of principal components. It is called Sparse Principal
Component Analysis (SPCA). Please refer to [13] for a detailed description.

In our method, the sparse principal components (SPCs) are computed using an iterative
elimination strategy (Wang and Wu [16]) with project deflation to eliminate the influence of
a pseudo-eigenvector. A single parameter controls the percentage of variance that this SPC
should preserve.

4 Texture-based Tracking using Visual Tracking Decomposition

4.1 Model Representation
The tracking result for a single frame consists of a state and the corresponding observation
or feature vector. In the original VTD approach, only a single scale parameter was used, but
in many applications an object might change its scale in both dimensions, so we propose to
incorporate a total of four state variables: x,y position of the region center and x,y scaling
parameters for the scale change with respect to the first template. VTD also has a fixed
observation model size of ten templates, while older templates are discarded and all current
templates are treated equally, relying on SPCA to sort out features and time steps that
do not capture important appearance changes. Instead, we make use of the forget factor,
introduced in [12], to down-weight older samples and thus implicitly restrict the template
size.

Since the observation model is supposed to capture appearance changes, a representative
sample has to be chosen during model update (using the terminology introduced in [10]).
In our approach, a manually selected template is initially available, which serves as the
representative until the first model update. This representative is supposed to replace the
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model mean, since it is a true part of the model (describing the object best in a certain point
in time) and thus is more useful for computing the variance in the template dataset. The
representative is described in Section 4.3.

The motion model is very similar to the one in VTD, although some of its shortcomings
have been addressed. As proposal density functions for the Metropolis-Hastings algorithm,
Gaussian functions with different parameters have been commonly used and are easily
sampled. In an initialization phase, basic trackers are spread out from the current location.
If they encounter a better state than the old one, they move to this state and continue
sampling from there. In contrast to VTD, our motion models try to predict the movement
in the current frame based on previously detected movements. The first motion model is
centered at the current location of the basic tracker and has a location variance that depends
on the absolute difference of the current and previous position (the larger this difference,
the larger the variance). The second motion model assumes that an object continues its
movement from the previous frame, so the mean of the Gaussian is shifted in that direction,
using the same variances as the first motion model.

The eight basic trackers are constructed from combinations of those two motion models
and the four basic observation models.

4.2 Feature Computation
Let R be an image region of size W ×H. In VTD, the different features were computed as a
matrix of all features and pixels. For our texture-based approach the whole region is not
discriminative enough since the texture features are supposed to be constructed from small
patches. Therefore, we partition the region into five smaller, overlapping patches. These
patches are evenly sized, and four of them fill the whole region while overlapping each other
slightly, thereby ensuring that structures near patch borders are not omitted. The fifth patch
is placed in the center of the region, overlaps with all other patches, and usually does not
contain any irritating non-object pixels from the borders of the region.

Since the center patch is most likely to contain only parts of the object of interest, it is
assigned a dominant weight of 0.5, while the remaining four patches get a weight of 0.125
each. For the patch decomposition we chose an overlap parameter ω ∈ [0, 1], which we set
to ω = 0.1. The patch width (for all patches) is Wω = [0.5 · (1 + ω) ·W ], with [·] being the
round operator, and the patch height is computed accordingly.

For each of these five patches, the d = 21 features (see Section 3.5) are computed, resulting
in a 21× 5 feature matrix F (R) for the region R. Note that this matrix is independent from
the region size, so no scaling is necessary compared to the Incremental Learning approach in
[12].

4.3 Model Update using SPCA
Observation model size
The observation model is initialized with the manually selected reference template, so for the
first few frames our method is equal to a single template region matching. After m frames,
we therefore gathered m+ 1 templates from which the new observation model is computed.
With a forget factor f ∈ [0, 1] and a total number of templates t, the new effective database
size after the update becomes t← f(t−m) +m. In VTD, m is set to two and f = 1, while
the database size is restricted to ten templates. In Incremental Learning, m = 5 and f = 0.95
with an effective database size of 100 templates. For our approach we set m = 3 and f = 0.8
because of the severe appearance changes in mm-wave sequences, resulting in a maximum
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database size of m
1−f = 15. Therefore, if the database size is larger than the effective size,

the oldest templates are discarded (because they do not contribute to the model anymore)
and the weights of remaining templates are re-normalized.

Representative sample
At the beginning of each model update, a new representative template is computed as follows:
1. Find median mp

k for each feature 1 ≤ k ≤ d and patch 1 ≤ p ≤ 5, resulting in a d × 5
matrix of median values.

2. Compute the d× d covariance matrix for this median and for each template from their
patches.

3. Compute Förstner distance between covariance matrices of median and each template.
4. The template with smallest distance to the median is chosen as new representative FRep.
This representative template is a true part of the model which describes the object best at a
certain time step, and it also has a minimal distance to the median, so any template with a
large variance with respect to this representative describes a certain appearance change of
the object.

Template covariance matrix
Each template has a feature matrix Fl, l = 1, ..., t and a weight wl (the maximum a-posteriori
value from the tracking process), which gets down-weighted by powers of the forget factor.
For l = t− 1, ..., t−m for example, fl = f0 = 1, while the exponent is increased by one for
every m weights.

The template covariance matrix CM is constructed from the d×5t data matrix DM [k, 5·l+
p] =

√
wl · fl (Fl[k, p]− FRep[k, p]) with 1 ≤ k ≤ d features, 1 ≤ l ≤ t time steps, 1 ≤ p ≤ 5

patches, and Fl the l-th template’s feature matrix. DM is normalized by 1√∑
l fl · wl

,

resulting in the template covariance matrix

CM = 1

1−
∑

l
(wlfl)2

(5·
∑

l
wlfl)2

DM ·DT
M . (1)

SPCA
The purpose of SPCA is to reduce the number of features and time steps that contribute
to a submodel to only those that explain severe appearance changes (with respect to the
representative), and to split the observation model into different submodels for each basic
tracker. To compute sparse principal components from the template covariance matrix, we
use the Iterative Elimination algorithm by Wang and Wu [16] since it is easy to compute and
is controlled by a single parameter that controls the amount of variance a sparse principal
component (SPC) should contain.

For the r = 4 observation models, we need the first four SPCs of CM , where the first SPC
captures 40% percent of the whole variance and the remaining SPCs 24%, 9.6% and 3.84%,
respectively, so 77.54% of the total variance is captured by the basic observation models.
The corresponding eigenvalues serve as weights for each SPC (normalized such that they
sum up to one) and the first SPC u1 is obtained from the full covariance matrix CM . For
the other SPCs uc, a projection deflation CM ←

(
I − uc−1u

T
c−1
)
CM

(
I − uc−1u

T
c−1
)
is used

to remove the influence of other pseudo-eigenvectors uc−1.
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Feature reduction
For each basic observation model 1 ≤ c ≤ r, we obtained a sparse principal component uc. If
its k-th entry is considerably larger than zero (where 1 ≤ k ≤ d), feature k is added to the
sub-model c with weight uc[k]. Sometimes only one feature is dominant with a weight close
to one. Unfortunately, in that case the time step selection described in the next section does
not work, so we add the next feature k + 1 mod d with weight 0.1.

After the feature selection, each submodel c contains dc features, while some features
may contribute to more than one model since the SPCs are not completely orthogonal (in
contrast to true principal components).

Time step selection
To further reduce the complexity of the basic observation models, we use only those time
steps that exhibit a large variance with respect to the representative. This differs from the
VTD approach where feature reduction and time step selection are performed in a single
application of SPCA. In contrast, due to the complex but more realistic weighting scheme in
our method, we apply an additional SPCA to select relevant time steps.

For each remaining feature of a basic observation model we compute the t× t covariance
matrix from the five patches of templates. From SPCA we obtain the first SPC that captures
75% of variance in all time steps and store it in a t× dc weight matrix Tc.

For each time step we decide to keep or discard it:
1. t× 5 data matrix Dt for each feature 1 ≤ k ≤ dc, weighted as above, each row 1 ≤ l ≤ t

is multiplied by wl · fl (wl is the weight of the time step, fl influence of the forget factor)
⇒ t× t covariance matrix Ct ⇒ SPC uk ⇒ k-th column of Tc.

2. For each row of Tc take the average (weighted with feature weights from feature reduction),
if larger than 0.15, add time step to basic observation model c with weight wl multiplied
by weighted average.

3. Also add the representative time step to each model such that each basic model contains
a representative observation and appearance changes.

Model update
For each basic observation model c we now have dc features and tc time steps, so all weights
are normalized to sum up to one and the normalized eigenvalue from the c-th SPCA is the
weight of that model. This leads to a covariance matrix Cc for that basic model, which is
positive semi-definite, so in practice not all singular values are non-zero. For the sample
weight computation below, we eventually need the inverse of the covariance matrix, so using
a Singular Value Decomposition Cc = UΣV T we construct a pseudo-inverse C+

c = V Σ′TUT ,
where Σ′ contains the reciprocal of each diagonal element that is larger than some ε > 0.
This pseudo-inverse is stored in the observation model since it is computed only during the
model update but is used heavily during the sample weight computation.

4.4 Sample Weight Computation

Förstner distance
To determine the confidence that a region contains the object of interest (i.e. belongs to the
observation model) we need a weight w ∈ [0, 1] that is proportional to some distance that
measures similarity between a sample and the model. For VTD the Diffusion Distance [7] was
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chosen that compares histograms of the feature vectors. Our region representation instead
consists of five feature vectors, one for each patch, that are stored in a feature matrix. Since
these features have very different ranges (their theoretical bounds are known, for example
intensity is in [0, 255], but practical upper bounds are difficult to define), a normalization
is applied based on empirical bounds. Note that sometimes a patch has a very low mean
intensity (i.e. is almost black) such that the feature computation would not be robust. In
such a case we discard the sample immediately by setting the weight to zero.

Each basic observation model c has tc templates, each with the same dc features, including
the representative. The covariance matrix of feature matrix F for a sample region is computed
using the patch-specific weights wp (0.5 for the central patch and 0.125 for the others) and the

mean (for feature k: µk = 1
5

5∑
p=1

wp ·F [k, p]) from the data matrix D[k, p] = √wp(F [k, p]−µk),

resulting in CS = 1
1−

∑5
p=1 w

2
p

D ·DT (of size dc × dc).

For each template 1 ≤ l ≤ tc the covariance matrix Cl has been precomputed at the

model update, so the Förstner distance is FD(CS , Cl) =

√√√√dimCS∑
i=1

log2 λi, where dimCS
is the

number of eigenvalues of CS that are larger than ε = 10−6 and λi is the i-th eigenvalue of
matrix C = CS · C+

l . By restricting the distance computation to only the dimCS
largest

eigenvalues we improve robustness since a lot of the smaller eigenvalues are very close to
zero and therefore distort the distance function.

Let wl be the weight from the SPCA, then the overall distance of a sample region to the

model is the weighted average d =
tc∑

t=1
wl · FD(CS , Cl).

Weight map
To transform the distance into a meaningful and expressive weight w ∈ [0, 1], a weight map
needs to be designed. In VTD, a simple exponential function was used to map the Diffusion
Distance to a weight. In our low-quality images and with our specific features and distance,
we observed that weights decrease too fast to very small values when using an exponential
function. We also noted that there is a sharp boundary between samples that should be
accepted or rejected. We therefore decided to use a sigmoid function since it should only
take positive values, its maximum value should be at zero (because a distance of zero is a
perfect match), for values larger than zero we expect a decrease in weights with a sharp
transition from large to small weights.

This results in the following weight map with empirically tuned parameters:

w(d) = 1
1 + e4(d−2) (2)

4.5 Tracker Interaction
The r · s = 8 basic trackers independently produce samples from the same distribution. The
interaction scheme used here is similar to VTD, but with a lower acceptance rate of samples,
a more realistic spread of initial samples, a better state evaluation of other trackers, and a
better weighting of a tracker’s contribution.

In each iteration the interaction step is performed with probability α, which is initially set
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to one and linearly decreases to 0.5. The sum of weights of all basic trackers is sw =
rs∑

i=1

1
s
λiwi,

where λi is the normalized eigenvalue (i.e. the significance of contribution) and wi is the
weight a tracker has at the current state.

For each basic tracker 1 ≤ o ≤ rs we have po = 1
sλowo

1
sw

, which, in the original VTD
approach, is the probability that a proposed state is accepted by tracker c. It is not clear,
however, whether this will indeed improve the state of this tracker. Therefore, we decided
to compute the weight of tracker c at the state proposed by tracker o with probability po

and accept it only if the weight is larger than the current one, thereby guaranteeing that c
actually improves its state.

We also replace the Metropolis-Hastings sampling algorithm with its multiple-try variant
[8] to increase confidence in a proposed sample by drawing more intermediate samples. This
requires less iterations (indeed we reduce VTD’s 100 iterations to only 20, because the
maximum a-posteriori is usually found very fast) and also produces better samples.

First, ten samples yi are drawn from the motion model (which serves as proposal density
function) associated with basic tracker c and compute the weight wyi . The samples are
sorted by their weight, starting with the largest one, and one sample y = yi is selected with
probability wyi

. Then we center the motion model at y, draw nine additional samples xj

and set x10 to the current state of c. We compute weights wxj and the acceptance ratio

γ =
∑10

i=1 wyi∑10
j=1 wxj

. The state y is accepted with probability γ and y is added to the list of

accepted samples. The accepted sample with largest weight is then selected as the maximum
a-posteriori (MAP) estimate. This weight is added to the list of weights of all templates,
which are then re-normalized.

Note that the acceptance rate for a Gaussian proposal density function should theoretically
be around 23% (compare Roberts, Gelman and Gilks [11]). For VTD we observed acceptance
rates of more than 95%, while our method mostly achieves acceptance rates between 17%
and 40%.

4.6 Algorithm Summary
For every frame of the sequence:
1. Compute global intensity transforms.
2. After every 3 frames update observation model using SPCA.
3. Perform initial sampling using extended motion model.
4. Repeat for each iteration:

Tracker interaction with probability α ∈ [0.5, 1].
Reduce α linearly.
State sampling using Multiple Try Metropolis-Hastings algorithm.

5. Select maximum a-posteriori estimate from accepted states.

5 Results

Application to mm-wave data
As mentioned before, we cannot provide any graphical examples for mm-wave data, but we
achieved promising results in our experiments, especially in comparison to the original VTD
method which only used intensity and edge strength as features. To our knowledge, no other
method is capable of dealing with this kind of challenging data.



P. Salz, G. Reis, and D. Stricker 99

Figure 2 shows a comparison of absolute pixel errors of the bounding box center with
respect to a manually selected ground truth.

Note that in mm-wave sequences threats are only visible for a few frames and severe
appearance and illumination changes occur even between a small number of frames. Addi-
tionally, threats might be subject to imaging artefacts and their appearances often do not
deviate much from surrounding regions.

For more evaluations of tracking in mm-wave sequences, please refer to [13].

60 65 70 75 80 85 90 95
0

5

10

15

20

25

30

35

40

72 74 76 78 80 82 84 86 88
0

5

10

15

20

25

30

35

Figure 2 Results for two mm-wave sequences. The blue graph shows the errors of the presented
method, while the red graph represents the VTD results. Pixel errors are on the vertical axis, frame
numbers on the horizontal axis.

Comparison to VTD on standard data

We also compared our method to VTD using higher-quality images that Kwon and Lee
used themselves. It turned out that our method mostly had similar results, sometimes even
outperforming VTD, although with a lower framerate. This is depicted in Figure 3.

(a) A sample image
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(b) As above, blue represents the presented method
and red the VTD.

Figure 3 A sample sequence of real-world data. Note that in this case, our method actually
outperforms the VTD.
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6 Conclusion

6.1 Summary and Contributions
We presented an extension to the framework Visual Tracking Decomposition [6] that improves
some of its shortcomings and enables tracking in low-quality images, especially mm-wave
data from full-body scanners. We proposed a new region descriptor that is based on features
introduced in ultrasound texture discrimination [10] and applied it successfully to mm-wave
data and color images. Our method uses the Förstner distance [4] for region comparison,
improves the multi-template observation model of VTD using a forget factor [12] and a more
sophisticated weighting scheme, incorporates a better motion model and sampling method
[8] for particle filtering, and replaces the model mean with the template closest to the model
median.

In comparison with VTD our method is superior on mm-wave data (low-quality and noisy
grayscale images), while it has similar results for data with color and strong edges.

6.2 Future Work
The feature set we have chosen consists of 21 features both from the spatial and the frequency
domain. A comparative study is necessary to evaluate the usefulness of each feature in order
to reduce the number of features to a minimum while keeping tracking quality. Furthermore,
feature computation is quite expensive since most computations need to be done locally
and more than 16000 Fourier transforms are necessary for each frame. An optimized and
parallelized way of feature computation will improve frame rates significantly, although
real-time results are not expected to be feasible. Finally, we would like to extend our method
to track several objects simultaneously and also incorporate color features to improve tracking
results in colored image data.

Since the presented tracking algorithm works well on mm-wave images, a very challenging
kind of data that to our knowledge nobody ever dealt with, we definitely expect it to be
well-suited for similar applications. Therefore, we plan to test and tune our method to a
variety of different imaging techniques, such as infrared imaging and especially ultrasound
data. We adapted the texture features from the ultrasound imaging domain, so our region
descriptor should be capable of tracking objects or anatomical structures.
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Abstract
Large displays have become more and more common in the last few years. While interaction
with these displays can be conducted using standard methods such as computer mouse and
keyboard, this approach causes issues in multi-user environments, where the various conditions
for providing multiple keyboards and mice, together with the facilities to employ them, cannot
be met. To solve this problem, interaction using mobile phones was proposed by several authors.
Previous solutions were specialized interaction metaphors only for certain applications. To gain
more insight into general interaction patterns realizable with smart phones, we created a set
of general test cases using a well-known taxonomy for interactions. These test cases were then
evaluated in a user study, comparing smart phone usage against the traditional keyboard/mouse-
combination. Results (time and user satisfaction) show strengths and weaknesses when using the
new interaction with the smart phone. With further evaluations we draw conclusions on how to
improve large display interaction using smart phones in general.

1998 ACM Subject Classification I.3.6 Interaction Techniques, H.5.2 Interaction styles, H.5.2
Input devices and strategies

Keywords and phrases User Study, Large Display Interaction

Digital Object Identifier 10.4230/OASIcs.VLUDS.2011.103

1 Introduction

The idea to use mobile devices, especially mobile (smart) phones, to control Large Displays
is not new. As both Large Displays and mobile phones (and especially smart phones) have
become more common in the last few years, this idea is feasible. Large Displays is an umbrella
term for various setups. These include tiled display walls, projection screens (with one or
multiple projectors), large Liquid Crystal Displays (LCD), Powerwalls, and more. All Large
Displays share advantages and issues, as noted for example in [5]. The main benefit is the
increased screen real estate, allowing to display more information at once and enabling users
to employ their spatial memory for efficient navigation. The authors further identified the
following drawbacks:
1. Keeping track of the mouse position
2. It becomes more time consuming to access distant items on the screen
3. Windows may appear in unexpected places, where the user is not focusing at the moment
4. The number of simultaneous tasks a user carries out is probable to increase. This in turn

calls for better task management.
5. Problems with the configuration of the different screens, especially with their position

relative to each other, may occur.
6. Failure to leverage the periphery of the combined display.
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These problems can be tackled in various ways (as presented in the next section).
Especially the first four problems may be solvable by moving away from ’Windows, Icons,
Menus, Pointer’ (WIMP) environments and introducing new interaction metaphors. Smart
Phones are complex devices with the capabilities of serving not only as an input, but also as
an output device. Exploiting these characteristics can help to solve these problems.

1.1 Related Work
1.1.1 Large Displays
Of course, the first three problems only arise in ’Windows, Icons, Menus, Pointer’ (WIMP)
environments. As these systems are the most common ones used today, they still deserve
attention. Robertson et al. [11] came to a similar list of issues, adding the bezel-occlusion
problem to the list. To solve the first problem they proposed the mouse-trail and the display
of a short animation when the user presses a key. Both functions are implemented in current
version of MS Windows. For the distant access problem the paper proposes a number of
solutions, like scrolling a single whole screen or selecting a target window using a 2D-ray
from the current mouse position. So far the solutions have not been integrated into any
modern operating system. Another solution is to use a trackpad with both relative and
absolute positioning of the cursor [10]. A solution for problem 3 is not directly proposed.
Instead the authors of Robertson et al. [11] propose to work around this problem by using
the techniques for problem 2 and the following methods suggested to solve the multi-tasking
problem. To do that the authors want to allow grouping of windows and applications both on
the desktop and the (Windows) task bar. Wallace et al. [15] show a method to automatically
configure tiled display systems, addressing the fifth issue in the list above. By displaying
special patterns and evaluating the result through a camera, the authors calculate display
distortion an the relative positions of the displays. This information is then used to correct
the actual image displayed on the individual displays. This leaves the last problem, which
cannot be solved by system designers. Instead this is more a missed opportunity to utilize
the capabilities of Large displays. Application designers have to keep this in mind when
creating programs for large display environments. One possibility of using this periphery is
the focus+context screen [2]. The bezels on tiled displays can be seen as a help for the user
to organize his large desktop or as proposed in the Tiled++ approach [7] their effect can be
compensated by projecting the missing content onto the bezels.

1.1.2 Mobile Phones
Large displays are often used in collaborative scenarios, where naturally multiple users will
want to interact with the application(s). While this can be facilitated by the traditional
approach of keyboard and mouse, this does not scale well to the number of users involved.
Also mouse and keyboard need to be mounted on some surface to be used without difficulties
which imposes additional constraints on the environment of the large display and also
the users (who is not able to move around freely). Mobile phones as ubiquitous input
devices [1] have the ability to control a large display and may be able to replace mouse and
keyboard altogether. Since modern (smart) phones feature multi-touch displays, cameras,
Global Positioning System (GPS), accelerometers, compass, connectivity via 3G, WiFi and
bluetooth and other capabilities, smart phones are subject of much work done already. This
includes research for very special applications, like the 3D Human Brain Atlas [14]. Other
work is focusing on data exchange [6][12] or the control of a traditional pointer using the
phone [9]. On a more abstract level the design space of mobile phones were researched by
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Ballagas et al. [1]. They used the taxonomy introduced by Foley et. al [8] which can still be
used today.

1.2 Taxonomy of Foley et al.
This taxonomy uses six categories of input subtasks which are composited to generate actual
input tasks. It should be noted, that the different categories are named not using the
continuous verb form, but instead the infinitive form (e.g., Position instead of Positioning).
1. Position All subtasks asking the user to set the position of an object (including the

position of the user) or to move an object around to a new position
2. Orient A task similar to position, the user is supposed to set the orientation or rotation

of an object
3. Select Lets the user pick an object (e.g., an option from a list, select an object in 3D-space,

etc)
4. Ink (also called Path in [1]) This is in effect a combination of multiple Position and/or

Orient tasks and is used to define the path of an object and its orientation on this path.
As Ink has some slightly different requirements it is a task for itself

5. Quantify setting a numerical value or some option derived of a numerical value (e.g.,
setting a volume out of the options "quiet", "normal", "loud" with each option corresponds
to a db-value)

6. Text entering plain text, text markups are covered by other tasks

Text is already evaluated in detail in the work of Butt and Cockburn [4] and also in the
work of Silfverberg et al. [13]. The subtasks Ink and Quantify can be expressed using the
remaining three subtasks (when accepting some limitations), Position, Orient and Select are
the most interesting subtasks.

These subtasks are used to further distinguish the tasks given in the test scenarios
presented in the next section.

2 Evaluation Basis

This paper focuses on the work published in [3]. For that paper a user study was conducted
with four different case studies on a 3x3 tiled high-resolution display. 17 test candidates of
various ages and different levels of user experience were asked to complete all test scenarios
using a smart phone (HTC Touch Diamond 2) and also using the traditional keyboard or
mouse or a combination of both.

2.1 Description of Test Cases
A short summary of the test scenarios follows. For a more detailed description, see [3].

2.1.1 Stacking Cubes
In this three-dimensional test scenario users were asked to stack three cubes one on another
in a simple physics driven environment. This involves 3 degrees-of-freedom (DOF) movement
in space, without regard to rotation. This could be accomplished by either using a keyboard
(using two keys per DOF), a mouse (normal position tracking + mouse wheel) or a smart
phone (using the touch screen to perform movement in two dimensions and tilting the
phone itself to perform movement in another two dimensions, resulting in 2 ways to control
x-direction) as input device. It should be noted that the phone is the only device providing
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Figure 1 Stacking Cubes, the user has to stack up three cubes in a physics-enabled environment.

Figure 2 Maze, colored cubes can be found at one spot in the maze.

continuous movement in all dimensions. This scenario uses the subtasks of Position and
Select. Figure 1 shows how the scene looks like in the study.

2.1.2 Maze
The second scenario features the first-person view of a simple maze (as can be seen in
Figure 2). The test candidates have to navigate through the maze (with the help of a map)
to a certain spot where they can pick up a colored cube by just touching it. Afterwards, the
goal is to backtrack the way and to drop the cube into a bin outside the maze. The most
commonly used input method for this case is probably the combination of keyboard and
mouse, known to a wide audience of first-person computer games. Furthermore, control is
possible using only keyboard (arrow-keys) or only the mouse (mouse position orients the
view and holding the mouse button accelerates). Using the smart phone as it was a joystick
(tilting the phone in the desired direction) was the last input method implemented. This
scenario consists of the subtasks of Position and Orient.
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Figure 3 City Map Annotation, the small flags from
the upper left corner can be dragged-and-dropped onto
the map.

Figure 4 The city map on the
phone.

2.1.3 City Map Annotation
On a local city map (Figure 3), the candidates are able to place flag markers. These markers
contain some more information: A descriptive text and a picture. The flags can be placed by
selecting the flag in the upper left corner in the map view and dragging it to the desired
position. Then a small popup-window will appear (the size can be seen in Figure 3 in the
lower middle screen), where the user can enter the description and select a picture to be
displayed. The smart phone displays a smaller version of the same map, that can be panned
and zoomed individually without affecting the main view on the large display (Figure 4).
Unfortunately, the smart phone did not support multi-touch interaction, so zooming had to
be done by using a menu. With the same menu a selection mode can be activated. Then the
next tap on the map will place a flag marker and open a new view on the phone where the
user can enter description text and select or even take a photo. As none of these actions
will directly affect the main view (besides adding the marker on the map at some point),
multiple users can perform this task at once without interfering with each other). In this
scenario Position, Select and Text was used.

2.1.4 Jigsaw-Puzzle
One of three simple 5x5 tile jigsaw-puzzle had to be solved in this test case. The puzzle was
shown on the tiled wall (Figure 5) and simultaneously a live copy of it on the smart phone
(Figure 6). On the phone the tiles can be dragged around with a simple touch and drag. If
necessary the user also can zoom in or out of the puzzle. Additionally, each test candidate
had to solve another puzzle (for a total of three) with the keyboard and the mouse. Postion
and Select were the subtasks needed for the jigsaw-puzzle.

2.2 Evaluation Setup
The evaluation was done with the already mentioned 17 participants of various ages and
levels of computer experience. They were asked to carry out the tasks described above in
random order using all available input methods, again in random order. In each case the
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Figure 5 Jigsaw-Puzzle, the tiles have to be brought in
the correct positions.

Figure 6 Jigsaw-Puzzle on Phone.

candidate had a short opportunity to get used to the input method, to a point where he
or she was able to perform the task. Unfortunately not enough time was available for the
candidates get a higher level of proficiency. This probably had a negative effect on the score
of the smart phone especially, as no user has used a phone for large display interaction before,
but each one had at least a bit of training using a computer mouse and a keyboard. For a
quantitative analysis the time to complete each task with each input method was measured.
To get comparable times of all candidates, the times were normalized by dividing each time
by the accumulated time of all input methods of the observed task. This yields times on a
scale from 0 to 1. Another quantitative measure was a grade given by every participant for
each input method per test case. Possible grades range from 1 (best) to 6 (worst). To get
some qualitative results, each candidate was also asked for his/her comments on the smart
phone control and also for improvement proposals. The rest of the paper will now describe
the results formally and draw conclusions.

3 Formal Evaluation

The measured times (total and normalized) are on a ratio scale, grades are ordinal. A set of
popular descriptive statistics about the normalized times can be found in Table 1. Using a
one-way analysis of variance (ANOVA) for each test scenario, the mean times can be shown
to be statistically significant different on a confidence level of 5%. The basic requirements of
the ANOVA, the mean times being normal distributed and all mean times having the same
variance, are assumed to be met. For timed tasks normal distribution can safely be assumed
and to be sure about the variances a Levene-Test has been performed for each test scenario.
Unfortunately the Levene-Test did not confirm (on a 1% level) that the variances in scene 2
are equal, but as the ANOVA is known to be a very robust test, it was done anyway, but this
fact has to be kept in mind. The ANOVA itself showed that the mean-time differences in
the input methods are statistically significant on a 5% level (with F-values of 7.109, 21.733,
43.898 and 67.096 for scenes one to four, respectively). For scene 2, the F-value can show
significant differences in means for confidence intervals below even 0.1%. This fact and a
Welch-Test (also testing for differences in mean values, but also valid for non-equal variances)
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Table 1 Descriptive Statistics of Normalized Times. 1st Q and 3rd Q stand for 1st and 3rd
quartile, CV is the coefficient of variation and IQR is the interquartile range.

also showing differences in the mean normalized times leads us to the conclusion, that the
ANOVA yield correct results even for scene 2. To get deeper insight into which mean times
actually differ, a Tukey-HSD test was conducted. This test shows the pair-wise (in-)difference
between the normalized mean times. The results are shown in tables 2-4.

The most important fact from this results is that the mean times of the smart phone
users always differ significantly from all others. Knowing this, we can safely interpret the
normalized times to get an overview of the test results. Since the grades are on an ordinal
scale, no ANOVA was conducted for them.

A (Pearson) correlation test shows significant (again on a 5% level) correlation in the
different times taken to solve each scenario using the smart phone. An exception for this is
scene 3, the Map Annotation. A possible explanation for this may be the fact, that in this
test case the smart phone’s built-in menu had to be used a lot. This was difficult for most
users, as nobody had any experience with a Windows 6 smart phone. The correlation for the
other test cases show, that there is some kind of taste or distaste for the phone control. This
fact is hardly surprising, but still notable. It also hints, that the usage of the native menu
of the phone is a very unintuitive way of providing interaction possibilities. This was also
mentioned by a few of the test candidates.

Table 2 Descriptive Statistics of Grades. CV is the coefficient of variation.
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Table 3 Tukey-HSD Results for scenario 1.

KB CM SP
KB X
CM X
SP X X

Table 4 Tukey-HSD Results for scenario 2.

KB KM CM SP
KB X
KM X
CM X
SP X X X

The ARC-Pad cursor control method [10] was also implemented. This control turns the
phone into a trackpad, where a tap causes the mouse cursor to jump to the position on
the screen relative to the position the tap happened on the phone, e.g., A one finger tap in
the center of the screen lets the mouse cursor jump to the center of the screen. A swipe
on the touchscreen moves the mouse cursor normally. The goal of this control is to have
fast cursor positioning together with the accuracy of a touchpad control. While the idea
sounded very feasible, early tests showed very bad results. Therefore, a formal evaluation of
this interaction pattern was not conducted. The main cause of the ARC-Pads issues was the
inaccuracy when selecting a cursor position by tap. The resulting corrections of the position
took too much time to be comfortable for the users.

The test candidates were also asked for an informal description of their experience using
the new input mechanisms. Many of them stated that they had little to no experience with
the control of the 3D scenarios. They also pointed out, that the control was a big lagging
(Probably caused by the slow CPU on the smart phone). Virtually all users liked the 2D
scenarios, where direct interaction was enabled. This was a very intuitive way of solving the
tasks at hand. The issues identified here were almost all about the absence of multi-touch and
the need to use the clunky system menu to activate selection mode in the Map Annotation
Scenario.

4 Conclusion

The smart phone did not get the best grades or the best times. What still makes it a
viable input option is the fact that it solves the problem of scaling the interaction against
the number of users. Using the improvement suggestions made by the test candidates will
further improve the interaction metaphors used in this first study. Together with newer
and more capable hardware the smart phone seems to get on par with the other input
methods. Unfortunately, there is no formal study at this time to show this, as this is still
work in progress. Informal evaluation including the comments made by the test candidates
shows, that all candidates liked the interaction metaphors and were also able to understand
them. The main complaint was about insufficient hardware capabilities, especially sketchy

Table 5 Tukey-HSD Results for scenario 4.

KB CM SP
KB X X
CM X X
SP X X

KB = Keyboard, CM = Computer Mouse, KM
= Keyboard + Mouse SP = Smart Phone; A
checkmark denotes a significant difference in mean
times.
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accelerometers and missing multi-touch capabilities. This is something to include in further
approaches. Informal studies made using the most recent Apple iPhone show much better
results. Unfortunately at the time of writing no formal evaluation is was available to be
included here. The better accelerometers, combined with filtering of the acceleration sample
data provided by the sensors yield very stable results and greatly improve user experience. If
this translates into faster solutions of the given tasks is to show in a formal study similar to
the one presented here. For the 3D scenarios, Stacking Cubes and Maze users were mainly
burdened with the special hand posture needed to activate the accelerometer on the HTC
Touch Diamond 2. Using the touch screen to do the activation causes better results. In Map
Annotation and Jigsaw-Puzzle using the touch screen of the smart phone for direct touch
interaction was preferred by most users. What made the tasks in both cases a bit more
problematic, was the inclusion of the system menu, as already stated in the last section. For
those 2D tasks the multi-touch capabilities of modern smart phones will greatly improve
performance of these tasks. Usage of multiple finger to move multiple jigsaw-puzzle tiles and
using pinching gestures for map navigation allows for a more intuitive interface and greater
user satisfaction.

When grouping the scenarios using the Foley-Taxonomy, Select was a task that can be
done with the smart phone most easily. The smart phone provides direct touch interaction
for selection tasks, while the mouse only provides indirect methods. Using the keyboard
either means finding the correct key for the regarded object or instead cycling through all
available objects until the object to be selected appears. Orient was not performed so well
with the smart phone. The main cause may be the use of the accelerometers for this. Maybe
better accelerometers, more experience with this kind of interaction or a new metaphor will
solve this, but further research is needed. For Position the results seem to be mixed at
first. But when looking at the different techniques used, one can see, that position with the
accelerometer did not perform well, for the reasons already stated. Position with the touch
screen worked very well and got a high level of user satisfaction.

Future improvements are, as already described, to use better hardware. But besides
that, small improvements on the software side can also be done. As a general note, it is
very advisable to use a communication protocol with a low memory footprint with smart
phones. This can help to reduce lag in the connection between Large Display and phone.
While this increases development time, lag decreases the user experience by a large amount.
When using the accelerometers, it is also recommended to allow user configurable settings
for home positions, dead zones and sensitivity. As seen in the Map Annotation test scenario,
menus should be avoided if possible, as tends to break the intuitively of the interface. If
really needed menus should only contain the most necessary items and be large enough to be
selected with ease.

From the view of an interaction designer, the results show that touch screen input (and
output) can be very well used for large display interaction. Even older phones have a
touch screen good enough for this task. Employing multi-touch gestures enhances the user
experience, but is not needed for basic functionalities. Of course it is necessary to keep an
eye on the smaller screen real estate on the phone, but especially for 2D tasks this is the
preferred way to go. Using the accelerometer for 3D interaction is a good approach per se,
but in reality requires some practice on the user’s side. This is therefore only feasible if the
same interaction pattern can be reused many times.
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Abstract
Humans have dreamed for centuries to control their surroundings solely by the power of their
minds. These aspirations have been captured by multiple science fiction creations, such as the
Neuromancer novel by William Gibson or the Brainstorm cinematic movie, to name just a few.
Nowadays, these dreams are slowly becoming reality due to a variety of brain-computer interfaces
(BCI) that detect neural activation patterns and support the control of devices by brain signals.

An important field in which BCIs are being successfully integrated is the interaction with
vehicular systems. In this paper, we evaluate the performance of BCIs, more specifically a com-
mercial electroencephalographic (EEG) headset in combination with vehicle dashboard systems,
and highlight the advantages and limitations of this approach. Further, we investigate the cog-
nitive load that drivers experience when interacting with secondary in-vehicle devices via touch
controls or a BCI headset. As in-vehicle systems are increasingly versatile and complex, it be-
comes vital to capture the level of distraction and errors that controlling these secondary systems
might introduce to the primary driving process. Our results suggest that the control with the
EEG headset introduces less distraction to the driver, probably as it allows the eyes of the driver
to remain focused on the road. Still, the control of the vehicle dashboard by EEG is efficient
only for a limited number of functions, after which increasing the number of in-vehicle controls
amplifies the detection of false commands.

1998 ACM Subject Classification H.5.2 User Interfaces (D.2.2, H.1.2, I.3.6): Evaluation/ method-
ology, Input devices and strategies (e.g., mouse, touchscreen)

Keywords and phrases Brain-computer interface, EEG neuroheadset, EEG control, driver cog-
nitive workload, in-vehicle systems.

Digital Object Identifier 10.4230/OASIcs.VLUDS.2011.113

1 Introduction

The desire of humans to gain the ability to control everyday actions just by using the power
of their mind is old. These ideas became very popular in science fiction literature as well as in
movies, like the popular Star Wars series. But in fact, research tries to exploit brain-computer
interfaces (BCI) to provide support for motionless interaction. For example, Touch Bionics is
offering brain controlled prosthetic arms tailored for amputees, aiming to increase the quality
of life for handicapped people. In our related work section we will reveal a more detailed
view on research related to the field of BCI.
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Figure 1 Image of a participant while interacting with the driving simulator and the EEG-
controlled dashboard.

The focus of our current work however is to use a commercial electroencephalographic
(EEG) headset in order to support car drivers in controlling secondary dashboard functions
of a vehicle. In our case the Emotiv EPOC headset is used. First and foremost we want to
emphasize that the user only controls secondary function of the car by the EEG headset.
The testing and evaluation of our approach was done in a safe environment (laboratory
experiment and evaluation) since we used a driving simulator and implemented secondary
function of the dashboard. Our goal is to find out if the test candidates drive more securely
when being able to focus on driving the vehicle itself and not having to manually operate
secondary (non-driving essential) functions.

In the following sections we will highlight related work, as well as give a brief description
of our setup, the evaluation and our test results.

2 Related Work

One of the most common and well-known fields of application for BCI is to control devices
by brain waves. As such, research has intensively focused on measuring and increasing
the performance of BCI-based consciously operated systems. In this setting, many medical
solutions have been explored that would enable patients with physical disabilities to live a
normal life. For example, controlling a wheelchair with the help of EEG devices has been a
topic in several research papers. Leeb et al. [8] demonstrated that a tetraplegic patient was
able to control the movement of a wheelchair in a virtual environment. In the work of Iturrate
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et al. [5] a BCI and an autonomous navigation system is used to control a wheelchair. The
RIKEN and Toyota Motor Corporation also did research in the field of utilizing brain waves
to control a wheelchair in real-time [18]. Stamps and Hamam [12] describe how low-cost BCI
devices can be utilized to control prosthetic devices.

Furthermore, the utilization of a commercial headset to control a robotic arm is proposed
in the work of Ranky and Adamovich [11]. According to them, after a training period
users are able to get used to the control functions and improve the overall performance.
Vourvopoulos and Liarokapis compare two commercial EEG headsets in order to control a
Lego NXT robot [13].

Controlling vehicles by using BCI also has been subject of research. Zhao et al. [15] did
use motor imagery (MI) to control EEG as well as a car in a Virtual Reality (VR) environment.
Zhang et al. used a BCI to control an unmanned vehicle [14]. With BrainDriver, a project
developed by FU Berlin, Germany, a commercial EEG headset is used along with Laser
Range Finder (LRF) and Global Position System (GPS) data to control a car [16]. A quite
interesting approach is featured in “Prototype This: Mind Controlled Car” by Discovery
Channel [17]. Here, a BCI is used to measure the driver’s rage in order to prevent road rage
by slowing down the car.

Brain-computer interfaces also have been used to gain knowledge about car drivers to
understand what emotional states a driver is experiencing when driving a vehicle. Gugler et
al. [20] did monitor attention processes during a monotonous car driving simulation with
EEG. The work of Putze et al. [10] and van den Haak et al. [4] utilize BCI to gain knowledge
about cognitive workload of drivers during multitasking or under stress.

Osswald and Tscheligi [9] explore the driver distraction when performing secondary tasks
during driving. Kyung et al. [7] introduce a wearable in-vehicle device, providing the driver
with relevant information and also obtaining the physiological data of the driver.

Relevant to our work is the research of Anderson et al. [1] comparing visualization
techniques in terms of cognitive workload by the usage of EEG devices. Cernea et al. [2, 3]
also detected facial expressions as well as emotional states during various tasks by using a
commercial EEG headset.

3 In-Vehicle Secondary Control Tasks with BCI

Using the previously presented projects as a starting point, our research aims at highlighting
the performance of an EEG-based portable BCI headset when used to control in-vehicle
secondary, non-vital systems. Additionally, by inspecting the traffic errors of the drivers
in multiple circumstances, we hope to capture the influence of such a BCI system on the
drivers’ cognitive workload, thus further exploring the potential of these devices as in-vehicle
interaction systems.

3.1 Design

Driving the vehicle is only one of the many tasks drivers need to focus on. As such, a BCI-
powered interaction method could relieve the cognitive workload of the driver and reduce
the level of distractions introduced by manually controlling multiple in-vehicle systems. But
does EEG-based control have the capacity to reliably execute these commands? To inspect
this, we conducted a preliminary study that investigates the performance and accuracy of
EEG-based control of in-vehicle devices as well as highlights the error rates for the common
tasks drivers have to execute in real-life driving scenarios.
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During the experiment, the participants were involved in executing a set of activities that
are always or at least sometimes present in everyday driving. The activities were grouped in
the following three categories:

driving task (highest priority) – firstly, every driver has to be in control of the vehicle
and obey the traffic rules

search task (high priority) – drivers are sometimes involved in search-and-find tasks in
the environment surrounding the vehicle (e.g., finding a parking lot, finding a store, etc.)

control task (low priority) – drivers have to interact with the dashboard of the vehicle (in
our case via BCI) to activate various devices and vehicle subsystems (e.g., lights, radio,
GPS, etc.)

Following this structure, participants were asked to control a vehicle in a simulated
environment and obey the traffic rules. Additionally, each driver took part in a set of five
search tests, each with duration of five minutes, aimed at simulating a common search
scenario that drivers are faced with on a daily basis. Specifically, the tests had the following
corresponding search assignments that the drivers had to execute: “Drive around the city,
obey the traffic rules, and count the number of X’s you see”, where X would represent the
type of objects that needed counting: Pre-Test – the number of red cars; Test 1 – the number
of phone booths; Test 2 – the number of vans; Test 3 – the number of grocery stores; and
Test 4 – the number of traffic lights. Instead of simply asking the drivers to search for a
place, they were instructed to count them in order to allow all drivers to search for the full
five minutes, and also in order to eliminate any competitive aspect from the sessions—e.g., if
a driver is trying to find a landmark as fast as possible, he might disregard traffic rules or be
unable to concentrate on controlling the BCI.

While the five tests were almost identical in terms of driving and search task, they were
mainly introduced to capture the differences and particularities of controlling the in-vehicle
systems. An initial pre-test was designed to offer a baseline measurement for the driving
performance in the virtual environment and the distraction introduced by controlling the
dashboard through normal touch-based interaction. For this, the users drove without the
EEG headset and completed a search-and-find assignment during which the number of traffic
violations was stored. Additionally, as the sessions were recorded, the answers reported by
the users at the end of each search test were compared to the actual number of sought objects
that appeared on the screen.

In the following tests (Test 1 to Test 4), the users drove the vehicle while wearing the
EPOC headset and trying to control the dashboard with their minds. Each test increased
the difficulty of the control task by adding commands or increasing their complexity (Figure
4). In order to better quantify the performance of the drivers, the dashboard controls were
grouped into Boolean (turn lights on/off, turn heater on/off) and discrete operations (open
the left window a bit, turn the volume up to the middle, etc.). In the initial BCI test (Test
1), the users only have to control two Boolean values (e.g. turn lights on/off, turn heater
on/off). Test 2 already involved four Boolean controls, while the last two tests involved two
Boolean and two discrete commands, respectively, four discrete commands.

For the control task, a supervisor periodically instructed the subjects involved in a test
to execute a command on the dashboard (e.g. "turn on the radio"). While drivers are used
to execute a command with touch (Test 0), in the case of EEG control the participants had
a 10 seconds window to activate the functions via BCI (Test 1 to 4).
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Figure 2 Traffic errors – Average number of traffic violations recorded by the driving simulator
for every test.

3.2 Execution

The study was executed on a small sample of 12 participants in order to gather insights about
the possibilities of EEG control and inspect the reduction of cognitive load on the drivers.
The subjects had to complete an initial questionnaire that reflected an even distribution in
terms of gender and age. Furthermore, all participants had a valid driver’s license at the
time of the experiment and were driving a vehicle on a regular basis.

After the initial questionnaire, the participants took part in an initial training session
composed of two parts: getting familiar with the simulator and executing controls with
the EPOC neuroheadset. For the simulator training, each user had 30 minutes to drive
around and get used to the provided controls and interface. To support a realistic scenario,
the controls that needed to be managed included steering, blinkers, direction of movement
(forward or reverse), pedals, looking left and right, etc. Note that the virtual environment for
the training was different from those used in the experiment, to ensure that no participant
would have prior knowledge that would be relevant for the search tasks.

Furthermore, users had up to one hour to learn and train the basics of control with
the Emotiv EPOC EEG device. The subjects trained to map various mental activation
patterns, such as activating a command when concentrating at a concept or imagining a body
movement. This was achieved by employing the EPOC’s framework that detects and learns
particular mental activations and classifies new activation patterns in existing categories.
After training with the BCI, the participants were free to select a set of mental mappings
they felt were most efficient and intuitive. These mental patterns were then used to train
the EEG system for usage in the experiment.

In terms of the environment, a driving simulator was employed that is commonly used by
people preparing for their driving test. The simulator supported traffic rules and was able to
detect if a driver violates them. Other features of the simulator included: realistic controls,
urban environments with visual and auditory cues, other virtual traffic participants, etc.

Additionally, we implemented a software dashboard to control a set of in-vehicle systems
and subsystems. Some of the systems were controlled with Boolean commands (e.g. lights,
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Figure 3 Search task errors – Average percentage of search objects not noticed by the participants
during every test.

air-conditioning, seat heaters), while others required a more refined scale of control (radio
with volume control, electric windows, etc.). The virtual dashboard could be controlled either
through touch by pressing a set of keys or through the EPOC BCI. The dashboard was also
conceived to give visual and auditory feedback to the driver about the execution of a certain
command.

4 Results and Discussion

Figure 2 highlights the average distribution of traffic violations for each of the five search tasks.
One can notice a slight decrease of the errors that the drivers made in traffic in the cases
where the EPOC headset was employed for 2-4 simple interaction commands, compared to
the touch-based manipulation of the controls. This reduction is relevant, especially when we
note that the error rates between the initial training and the baseline search task (Pre-Test)
are similar. Also, once discrete commands were considered, the traffic violations increased
even passing the baseline level established in the Pre-Test, suggesting that the users had
difficulties to execute the different BCI commands. This in turn can be a sign for an increased
cognitive load that the execution of multiple complex BCI operations introduces.

The results for the primary search task are highlighted in Figure 3. As the number of
search-and-find errors was overall reduced, the results cannot be the based of a thorough
analysis. However, we hypothesize that the higher error levels detected for sessions involving
discrete control could be again related to an increased cognitive workload.

Furthermore, an element that influences the search task results is the accuracy of the
EEG control in each of the sessions (Figure 4). While in the initial tests the control error
rates had satisfactory levels, it seems that the error margins increased with the complexity
of every session, reaching values of over 40% for Test 4. Such a lack of accuracy can distract
and create frustrations for the driver, resulting in higher error rates in the primary tasks.
Moreover, we noticed that these control error rates could in some cases be improved with
additional training. For the sake of completeness, we would like to mention that no control
errors were recorded in the touch-based dashboard interaction (Pre-Test).

Looking at the other side of the coin, Figure 5 highlights the average number of falsely
activated commands by the EEG device when the user received no instruction to execute a
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Figure 4 Control errors – Average percentage of not executed EEG-based dashboard commands
for every test. The bars in each of the four tests represent: Test 1 – two Boolean commands; Test 2
– four Boolean commands; Test 3 – two Boolean and two discrete commands; Test 4 – four discrete
commands.

Figure 5 False positives – Average number of false command detections executed by the EEG
interface for every test.
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function. Considering a number of up to 10 instructions given by the supervisor in every
session, the represented error rates can be considered low. Still, in this case, no particular
pattern was distinguishable and further research of the topic is planned. Note that Figures
4 and 5 do not include the Pre-Test, as these Figures only reflect information about the
EEG-based control, and the BCI headset was not employed in the initial touch-based test.

Besides the previously mentioned experiment, the participants were asked to complete a
short questionnaire about their experience with the EEG headset and their impression about
the use of BCIs in vehicles. Most users considered the neuroheadset as a viable alternative
to touch-based controls, merely suggesting the inconvenient nature of employing non-dry
sensors. Also, based on their experiences in the one-hour pre-experiment training, 83% of
the participants decided to employ mental mappings that involved mostly imagined body
movements (e.g., imagining to move a finger, the eyebrows, the shoulder, etc.) for executing
commands.

When looking at in-vehicle usage, 66% of the participants expressed a positive attitude
towards using a BCI device with such a functionality. This percentage has the potential to
increase, as over 50% of the testers expressed their concern with the current level of accuracy,
suggesting that they expect commands to be executed immediately and without repetition,
even in the case of non-vital systems (e.g., “I don’t want to try this [turning on the radio]
three times”).

5 Future Work

While simulating an environment is a relatively simple and inexpensive solution for many
tests, in a next stage of this research we plan to evaluate the EEG headset control with an
actual in-car dashboard. This would of course imply the measurement of the EEG headset’s
performance in control tasks, as well as the comparison of cognitive workload levels when
simultaneously driving and accessing the dashboard functionality by touch and by BCI. For
the recognition of the cognitive load level we plan to apply the widely accepted NASA Task
Load Index (NASA-TLX) [19].

Focusing on a slightly different direction, we plan to investigate the detection of emotional
states that the driver and other occupants of the vehicle experience. These states could then
be influenced or compensated for by adapting the interior lighting and musical ambience
inside the vehicle, making the EGG headset an integral part of a human-vehicle feedback
system.

6 Conclusion

As in-vehicle systems become increasingly complex and versatile, it is vital to encourage the
development of new interaction metaphors that are suitable for in-vehicle devices and do not
representing a distraction to the driver. In this paper, we have investigated the performance
and accuracy of EEG-based control of a simulated vehicle dashboard as well as captured
traces of effects in-vehicle BCI usage might have on the cognitive workload of the drivers.

Our results suggest that traffic errors—and in a wider sense cognitive load—can be
reduced when some interaction with in-vehicle devices is outsourced to BCI systems. At the
same time, an increased complexity of the commands controlled through the EEG headset
can negatively affect the driver’s cognitive load level, manifested in our experiments through
higher errors for the traffic and search tasks.

Similarly, in terms of accuracy of the EEG-based control, our findings suggest that the
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execution error for the BCI commands is within acceptable limits for up to 2-4 simple
commands. While this allows for the control of straightforward dashboard elements, the
control of complex in-vehicle systems requires further investigation, as accuracy levels decrease
when embedding multiple commands that necessitate discretized operations.
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Abstract
Most laser scanners in engineering are extended versions of tactile measuring machines. These
high precision devices are typically very expensive and hardware modifications are not possible
without impairing the precision of the device.

For these reasons we built our own laser-scanner system. It is based on a multi-camera
reconstruction system developed for fast 3D face reconstructions. Based on this camera system,
we developed a laser-scanner using GPU accelerated stereo-matching techniques and a hand-held
line-laser probe. The resulting reconstruction is solely based on the known camera positions
and parameters. Thus, it is not necessary to track the position and movement of the line-laser
probe. This yields an inexpensive laser-scanner system where every hardware component can be
modified individually for experiments and future extensions of the system.
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Devices, I.4 Image Processing and Computer Vision, I.4.8 Scene Analysis, Stereo
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1 Introduction

There are two main principles used for laser measurements [11]: time-of-flight and triangu-
lation scanners. Time-of-flight (TOF) scanners measure the time a laser pulse needs from
the emitter to the scene and back to the camera. Because they allow a large measuring
distance, they are used for airborne 3D scanning in geo-sciences as in [16] and for range
sensing in robotics as in [10]. Thus, for hand-held scanning at low distances this technique is
not applicable.

Triangulation scanners measure the displacements of a laser line as seen from one or more
cameras placed in a known distance to the laser emitter. They usually provide a much better
precision than TOF scanners, but can only be used at short distances. In engineering, they
are used for reverse engineering and quality measurements [15]. This type of scanners are
used for example for hand-held triangulation scanners for real-time meshing as given in [3].
This algorithm simplifies the use of triangulation scanners mounted on measurement arms,
which are usually very expensive.

Therefore, we describe in this paper how to build a low cost laser scanner based on
the multi-camera 3D-reconstruction system we presented in [4] and a hand-held line-laser
probe. This enables us to experiment and modify every individual step and component of
the method at low costs and without impairing the complete system.
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To this end, we first discuss related work and necessary prerequisites in Sections 2 and 3
before we describe the individual steps of our method: calibration (Section 4), line extraction
(Section 5) and depth estimation (Section 6). We close with some results of our method and
give a brief outlook to our further plans in Sections 7 and 8.

2 Related Work

Since TOF scanners require high-precision time measurements [11] these devices are usually
expensive. Thus, for low cost scanning devices triangulation scanners are the most appropriate
technology. A low cost laser scanner is described in [17]. Here, a web-cam and a line-laser
probe is used. Because neither the laser position nor the intrinsic camera parameters are
known, a known background pattern is used for camera calibration. The 3D coordinates of
the laser line are approximated based on the plane of the line-laser probe’s light fan.

While laser scanning techniques reconstruct only a single laser point or line at a time,
e.g. [15], it might be faster and cheaper to use no lasers at all and reconstruct larger regions
at a time. Structured light methods project a set of light pattern onto the scene. Similar to
triangulation laser scanners they reconstruct the 3D information from the displacement of
these light patterns for known camera positions [13, 7, 19]. Because of the light projection,
these methods require a dark environment minimizing interfering light sources.

It is also possible to generate depth information without a light source. Stereo matching
approaches like [8, 12, 14, 18, 4] use two or more cameras with known positions. They detect
similar image regions in multiple images and use the camera positions to triangulate the
depth information. However, stereo-matching is a low precision reconstruction method. It is
prone to systematical errors from light conditions, reflections, and repetitions in the images.

Our laser scanning system uses traditional triangulation scanner techniques as in [11] as
well as low cost scanner techniques, see e.g. [17]. We have no information about the position
of the line-laser probe. So, the 3D reconstruction is based solely on the displacements of the
laser line in images taken by the cameras in our multi-camera-system. No target markers or
background patterns are required, because the camera positions are known a priori. Thus,
this approach is similar to the stereo-matching method we used in [4].

3 Prerequisites

A triangulation laser scanner usually consists of at least one camera and a line-laser probe.
We use the multi-camera system with four color cameras, see Figure 1 (left), we built in
a previous project [4, 9]. This camera system was designed for stereo-matching and 3D
face reconstruction and recognition. The cameras are mounted in a planar upside down
Y-constellation, see Figure 1 (middle). Thus, each pair of cameras has a different disparity
direction to avoid potential problems with features aligned with a single disparity direction.
The four cameras are synchronized such that the cameras take the images at the same time.

To extend this camera system to a laser scanner, two line-laser probes are used, see
Figure 1 (right). Each of these probes consists of a laser emitter and a cylindrical lens. The
lens spreads the laser beam to a fan such that a laser line is projected. An additional lens
is used to focus the fan to a certain distance. This results in a sharper projection of the
laser line. The two probes differ by the color of the laser and the light intensity: The red
probe emits a 15mW laser line, the green probe emits a 5mW laser line. Using multiple laser
colors allows to adapt to different material properties of scanned objects. The different light
intensities are partially compensated by the sensor of the color cameras, which has twice as
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Figure 1 A system of four Point Grey Flea®2 FireWire 800 cameras (left) arranged in an upside
down Y-constellation (middle). Red and green line-laser probe (right).

much green as red pixels.
Unlike usual triangulation laser scanners, in our system the position of the line-laser

probe is unknown. The operator holds one of the line-laser probes in his hand and points
it towards the scanned object. For each camera, the visible 2D laser line is extracted, see
Section 5. A specialized stereo-matching algorithm is used to reconstruct the 3D coordinates
of all points on this line, see Section 6.

4 Calibration

Since we use a hand-held laser probe, there is no calibration of the laser probes required. So,
for the calibration of the scanning system the following parameters are required:

1.1 Camera parameters:
a. Aperture angle α of the cameras.
b. Image height h and width w in pixels of the cameras given by their resolution.

1.2 Relative positions of the cameras.

The aperture angle is computed from the physical width of the area on a planar wall that
is visible in the camera image at a one meter distance of the camera to the wall.

The cameras are mounted on a Y-shaped frame of angle plates, see Figure 1 (left) and
(middle). Thus, there is one central camera, which will be used as reference for the other
three so-called outer cameras. In an ideal camera system the cameras are perfectly co-planar,
have parallel view directions, and the central camera has the same distance t̂ to all three
outer cameras in physical space. The outer cameras are mounted in (normalized) direction
t̂i ∈ R2, i = 1, 2, 3, from the central camera, where the angles of t̂i to the horizontal image
direction are 90◦, 210◦, 330◦. In image space the cameras have the relative positions ti = t · t̂i,
where t is the distance measured in pixels of the image centers of the cameras. This can be
computed as t = t̂/s, where s = 2 tan(α/2) · z/w is the size of one pixel in physical space, if
the cameras are placed at a known distance z from a planar wall. This yields the theoretical
relative camera positions ti in image space.

Because of imprecisions in the construction of the Y-frame, the ti have to be corrected.
There is a translational error, because in practice the outer cameras do not have the same
distance to the central camera. Due to the construction of the Y-frame, we assume that the
relative rotational errors of the cameras around the view direction and the horizontal image
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direction are negligible and the relative rotational errors around the vertical image direction
are relatively small. Therefore, we assume that the latter can be estimated sufficiently
accurate by an additional translational error.

To estimate the translational errors, the true distances in image space of a calibration
object captured by all four cameras at the same time are computed. We use as calibration
object a simple red laser-point projected onto a planar wall at distance z to the cameras.
This laser-point gives a point pi, i = 1, 2, 3, 4, in each camera’s image. In an ideal camera
system, pi, i = 1, 2, 3, should appear in the image of the i-th outer camera at position p4 + ti,
if p4 is the point in the central camera. Thus, the translational error is

ci = p4 + ti − pi, for i = 1, 2, 3.

To measure pi for each image, the center of the laser-point is detected as the maximum color
value after applying a Gaussian blur filter to the image.

5 Line Extraction

For triangulation scanners based on stereo-matching of camera images, the depth of a 3D
point can only be computed if it is visible by at least two cameras, see Section 6. Then,
stereo-matching is the process of finding corresponding points in the camera images of two
different cameras at different perspectives. To accelerate this process we only use points that
are on laser lines. So, these laser lines have to be extracted from the images.

For precise depth estimations, the extracted lines must be one pixel wide and the points
on the extracted lines need to be at sub-pixel accuracy. Furthermore, the extraction process
must be robust to noise and must execute in real time. To satisfy these requirements, we
adopt techniques from [2] and [5] in Steps 2.2. and 2.3. of our line extraction algorithm
below.

Our line extraction algorithm is applied to every image and consists of five steps described
below. It takes as input an image, which is given by I : {−w/2, . . . , w/2}×{−h/2, . . . , h/2} →
R3, (x, y) 7→ (r, g, b), where (x, y) are pixel coordinates. The three coordinate functions Ir,
Ig, and Ib of I represent the three color channels of the image.

Line Extraction Algorithm

2.1 Binarize the source image’s red channel Ir (analogously for the green channel)

BI(x, y) =
{

1, if Ir(x, y) > tI

0, otherwise.

The threshold tI is set manually. We use tI = 0.165.
This step removes most of the information from the image that is not necessary for the
line extraction. In BI the laser lines are several pixels wide.

2.2 Convolve the binary image BI with the phase coded disc OPCD

Q(x, y) = 1
πr2

r∑
u=−r

r∑
v=−r

BI(x+ u, y + v) ·OPCD(u, v) ∈ C, (1)

where OPCD is defined in (2) and the radius r of the disc is chosen to be larger than the
maximum width of the laser line. Details are discussed in Section 5.1.
This step yields an image with maximal values at the line centers. This line of maxima
is exactly one pixel wide.
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2.3 A sub-pixel accurate non-maximum suppression NMS is applied to |Q(x, y)| along
direction Arg(Q(x, y))/2 to mask the line of maxima from the rest of the image

N(x, y) = NMS
(
|Q(x, y)| , 1

2 Arg(Q(x, y))
)
∈ R,

where Arg(z) is the principal value of the phase of a complex number z. Details are
given in Section 5.2.

2.4 Binarize N(x, y)

BN (x, y) =
{

1, if N(x, y) > tN

0, otherwise.

The threshold tN is set manually. We use tN = 0.15.
This step yields a binary image with sequences of line center points, that are one pixel
wide, and have well defined start and end points.

2.5 Subsume the center points in BN to line segments. Line segments that are shorter than
50 points are ignored. Details are given in Section 5.3.

This line extraction algorithm is implemented in C++ and OpenGL Shading Language
GLSL. The GPU is used for

binarization of the images (Steps 2.1. and 2.4.),
convolution with the phase coded disc (Step 2.2.), and
non-maxima suppression (Step 2.3.).

Only the line tracing in Step 2.5. is computed on the CPU.

5.1 Phase Coded Disc

In Step 2.2. we use a convolution with a phase coded disc as in [2], which is defined as

OPCD(u, v) =
{

exp(2iArg(u+ iv)) , if
√
u2 + v2 ≤ r,

0 , if
√
u2 + v2 > r,

(2)

where exp(2iArg(u+ iv)) is the exponential representation of a complex number whose phase
is twice the phase of u+ iv ∼ (u, v). Note that Arg(u+ iv) is computed by atan2(v, u), the
four-quadrant arctangent function.

Due to the doubling of the phase in (2), the phase angles rotate twice through [0, 2π] as
(u, v) rotates once around the origin on the phase coded disc OPCD, see Figure 2. This has
the effect that points, whose phase differs by 90◦, have opposite phases (180◦ difference) on
OPCD. Thus, they attenuate in the convolution (1). On the other hand, points with the same
or opposite phases have the same phase on OPCD. Thus, they amplify in the convolution (1).

For the convolution of OPCD with the binarized image BI this has the effect, that the
magnitude |Q(x, y)| is relatively large, if at (x, y) the laser line contains the center of OPCD,
see Figure 2 (left). Otherwise, |Q(x, y)| is relatively small, see Figure 2 (right). So, after
convolving BI with OPCD, the maxima of |Q| are located on the center of the laser line.
However, lines with 90◦ corners cannot be detected with this approach.
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Figure 2 Phase coded discs with red laser line and small arrows visualizing the complex phase
angles.

5.2 Non-maxima Suppression
To find sub-pixel accurate maxima in the convolution images, we adapted the approach of [5]
in two ways. First, the magnitude of Q is used instead of the gradient’s magnitude. Second,
the normal L⊥ to the laser line direction L is used instead of the gradient direction. The
direction of the laser line L(x, y) is determined by half the phase angle of Q(x, y)

L(x, y) = 1
2Arg(Q(x, y)).

Thus, L⊥(x, y) is perpendicular to L at (x, y).

Non-maxima Suppression

3.1 Denote by B the intersection of the line through A in direction L⊥ with the line segment
through the pixels Ai and Ai+1 for a i ∈ {1, . . . , 4}, see Figure 3. Analogously, C is
the intersection in the opposite direction of A. Thus, the values of |Q| at B and C are
linearly interpolated between the values at Ai and Ai+1 respectively Ai+4 and Ai+5.

3.2 If there is no maximum at A compared to B and C, A is ignored in the result.
3.3 If there is a maximum at A, the sub-pixel accurate position is computed as the position

along line L⊥ of the maximum of the quadratic interpolant of the values at A, B, and
C, see Figure 4.

Thus, we store per pixel the decimal places of the sub-pixel coordinates of the maximal value
and the maximal value of |Q|.

5.3 Line Tracing
The extracted line center points in BN have to be assigned to line segments. Thus, the
output of Step 2.5. is a list of line segments (sk)k for each image. Each line segment sk is a
list of line center points (pk,l)nk

j=0.

Line Tracing

4.1 Identify start points pi,0 in BN by matching with the 3× 3 pixel patterns in Figure 5
and generate a new segment sk containing the start point sk = (pk,0)l. Start points,
which are already part of a line segment, are ignored.
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Figure 3 Sub-pixel accurate position of the maximum M on line segment CB [5].
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M
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C

Figure 4 The quadratic interpolation of the values at A, B, C. At M is the maximum of the
interpolant.

4.2 For a segment sk = (pk,0, . . . , pk,l) check the 8-neighborhood of point pk,l in BN
for pixels with value 1. If direct and diagonal neighbors are found, the former are
preferred. If a new point pk,l+1 is found, it is appended to the corresponding line
segment sk = (pk,0, . . . , pk,l+1). Visited points are tagged to avoid multiple visits in
Steps 4.1 and 4.2.

4.3 Repeat step 4.2 until a point is identified as end-point matching the 3× 3 pixel patterns
in Figure 5.

4.4 An extracted line segment sk is ignored, if it contains less than 50 points.

6 Depth Estimation

Similar to the stereo-matching method in [4], the spatial depth of the point data is recon-
structed from the disparities between images. This requires a calibrated camera system

Figure 5 Start point patterns of 3 × 3 pixels: The white pixels have value 0 in BN , the other
pixels have value 1. Thus, the reddish pixels belong to a laser line. The pink pixel is the query pixel.
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e1

e2 e3

X
d1

d2 d3

Figure 6 Schematic illustration of the four camera images with projections of epipolar lines ei

of a point X (red point) in the central camera’s image on a laser line (red line), see [4].

whose lenses are corrected. For the lens correction we use the method [6, 4] to correct all
camera images to a central projection in a pre-processing step. Then, the calibration as
described in Section 4 is applied.

For our camera system at every instant of time a quadruple of images is generated
containing one image Ii, i = 1, 2, 3, 4 of each camera. Accordingly, the above line extraction
algorithm yields a quadruple of e.g. BiN where the super-script indicates the i-th outer camera
for i = 1, 2, 3 or the central camera for i = 4. From the line extraction step (Section 5)
we have three representations of the laser line per camera image: the line segments sik, the
binary image BiN (x, y), and the sub-pixel accurate laser line center point in N i(x, y). For
each point p4

k,l of the line segment s4
k of the central camera image, a depth is estimated using

the images of the outer cameras:

5.1 Corresponding points in two camera images from two different cameras are identified
along epipolar lines, see Section 6.1.

5.2 For each pair of corresponding points the depth is estimated by an inverse projection,
see Section 6.2.

6.1 Epipolar Lines
After the calibration we assume that all four cameras of the camera system are co-planar
and have parallel view directions. Therefore, a point X̂ at infinite depth in physical space
will have the same image coordinates Xi, i = 1, 2, 3, 4, in all four camera images Ii. A point
Ŷ not at infinity with image coordinates Y4 = X4 has image coordinates Yi 6= Y4, i = 1, 2, 3,
in the outer cameras. As Ŷ moves closer, Yi, i = 1, 2, 3, moves along the negative camera
direction −di. Thus, Ŷ traces out a ray in physical space pointing away from the central
camera. This line is called the epipolar line of X4. The central projection of an epipolar line
in the outer camera images is a straight line, too. Figure 6 shows the projections ei(X) of an
epipolar line of X for the camera system, schematically.

For every point p4
k,l the epipolar line is computed and projected to the outer camera

images. The resulting epipolar line projections ei(p4
k,l), i = 1, 2, 3, are rendered to image Ii

using the Bresenham algorithm [1]. If during this rendering a pixel is set that is also set in
BiN (x, y) an intersection of the epipolar line ei with a line segment in Ii is detected. The
pixel distance between p4

k,l and the sub-pixel accurate laser line position from N i(x, y) at
the intersection is the so-called disparity di(p4

k,l). So, there are up to three disparities di,
i = 1, 2, 3, for each p4

k,l.
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To improve the quality of the reconstruction, we use subsequently the average d(p4
k,l) of

the two disparities that are closest to each other. If there are less than two disparities or the
two closest disparities differ too much, the computations for p4

k,l are aborted.

6.2 Inverse Projection
With the average disparity d, the depth cz in physical space of p4

k,l is estimated by

cz = wt̂

2 tan
(
α
2
)
d
,

where α is the aperture angle of the camera, w the image width in pixels, and t̂ the camera
distance in physical space. The depth cz together with the pixel coordinates p4

k,l allow an
inverse projection of p4

k,l to 3d coordinates [cx, cy, cz]T in physical space as[
cx
cy

]
= 2

cz · p4
k,l

w
tan

(α
2

)
= p4

k,l

t̂

d
.

7 Results

To demonstrate the effectiveness of our laser scanner system, we scanned a test scene of three
wooden bricks shown in Figure 7(a). The exposure of the cameras was reduced to achieve a
better contrast between the laser line and the surroundings, see Figure 7(b). During a period
of five minutes, we captured ca. 210, 000 points at a rate of two image-quadruples per second.

(a) (b)

Figure 7 Test scene consisting of four wooden bricks (a) and the four images of the test scene
scanned with a red laser line captured by the camera system (b).

Figure 8 shows a front and a top view of the computed point cloud. The overall quality
of the data allows to recognize the shapes of the different wooden bricks, especially the one
in the foreground. The reconstruction has a higher quality and is more robust than the pure
stereo-matching method in [4]. However, an elaborate comparison with other triangulation
methods is doomed by the high costs for other hand-held triangulation devices.
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Figure 8 Point cloud from two different perspectives (left: front view, right: top view) of the
test scene in Figure 7 scanned with a red laser line.

The scan lines in the point clouds show some small periodic noise in view direction of the
cameras. We think this might be caused by three effects:

Aliasing at the line extraction Step 2.2.: The binarization BI(x, y) in Step 2.1. creates
an aliased image of the laser line. In particular, if the aliasing occurs on both sides of the
line simultaneously, this may cause small steps in the detected line centers.
Intersection of ei with the line segments in Ii in Section 6.1: The laser line position from
N i(x, y) is at sub-pixel accuracy while the projected epipolar line ei is not. Although
this approximation does not affect the disparity di very much, a more precise intersection
of the line segment with ei could improve the results.
Calibration in Section 4: The laser point is not detected at sub-pixel accuracy.

Another effect that we observe in the scan data is that some of the scanned laser lines
appear more than once in the data at slightly different depths. This is caused by blurry
camera images, e.g. by motion blur. Additional filtering after the detection of the line centers
(Section 5, Step 2.2.) could be used to avoid these artefacts.

8 Conclusion and Outlook

We demonstrated in this paper how to build a laser scanner device at low costs using an
existing camera system. The presented reconstruction algorithm runs on the GPU and is
fast enough to compute 3D point data during the scan. Despite the remaining problems
(see Section 7) the reconstruction yields better quality and is more robust than the pure
stereo-matching method in [4].

Our laser scanner is limited to scanning from a single camera position. This only allows
to capture one side of an object. For complete scans of objects it is necessary to either move
the camera system or rotate the object e.g. on a turn table. Combining such scans from
different directions usually requires an iterative closest point algorithm.

It is possible to improve the quality of the scanned results in a post-processing step. All
points on a laser line lie in the plane of the laser line fan. Thus, fitting this plane to each
scan line and projecting the points onto this plane along the view direction of the cameras
will probably solve most problems described in Section 7 and will be implemented soon.
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Abstract
Dimension reduction is commonly defined as the process of mapping high-dimensional data to a
lower-dimensional embedding. Applications of dimension reduction include, but are not limited
to, filtering, compression, regression, classification, feature analysis, and visualization. We review
methods that compute a point-based visual representation of high-dimensional data sets to aid
in exploratory data analysis. The aim is not to be exhaustive but to provide an overview of
basic approaches, as well as to review select state-of-the-art methods. Our survey paper is
an introduction to dimension reduction from a visualization point of view. Subsequently, a
comparison of state-of-the-art methods outlines relations and shared research foci.
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Keywords and phrases high-dimensional, multivariate data, dimension reduction, manifold learn-
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1 Introduction

Contemporary simulation and experimental data acquisition technologies enable scientists
and engineers to generate massive amounts of data. Thereby, more and more application
domains are producing progressively larger and inherently more complex (multivariate)
data sets. These data sets are collections of samples that consist of multiple measured (or
simulated) observations of a variable set. Expressed in a space that requires many degrees
of freedom, multivariate data present severe problems for data analysis and especially for
visualization. Visualization is the integral part of exploratory data analysis, the first stage
of data analysis where the goal is to make sense of the data before proceeding with more
goal-directed modeling and analyses. Since human perception (and output devices) is limited
to three-dimensional space, the challenge of visualizing multivariate data is converting the
data to a space of lower dimensionality that is depictable and comprehensible to the user
while preserving as much information as possible. This process is called dimension reduction
and visualization of multivariate data is one of its traditional applications.

This survey reviews methods of dimension reduction that focus on visualizing multivariate
data. That is, they are suitable for a depictable target space. Our aim is not to be exhaustive
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but to provide an overview of basic approaches, as well as to review select state-of-the-
art methods. Thereby, we describe the mathematical concepts and ideas underlying the
algorithms. Implementation details, although important, are not discussed. The reader should
be aware that there are numerous dimension reduction methods that focus on the various
aspects of data analysis. For example, methods for feature reconstruction or classification
are closely related to those considered here, but are not discussed because their focus is not
visualization. The reader will find that, due to its long history, there are numerous surveys
on dimension reduction. For example, authors focus on a specific subset of techniques [23] or
investigations [25], provide a broad overview [4], or historical background [16]. This survey
provides an introduction to the concepts of visualizing high-dimensional data using dimension
reduction and reviews select state-of-the-art methods that share this focus.

The remainder of the paper is structured as follows. Section 2 represents the core of
the survey - a detailed introduction to the concepts of dimension reduction. After a formal
problem statement is given, we divide the basic approaches in two classes: projection (Section
2.1) and manifold learning (Section 2.2). We also provide a taxonomy for these methods
that can act as a classifier for which data the methods are most suited. Section 3 reviews
two recently developed but fundamentally different approaches to non-linear multivariate
data visualization and offers a qualitative comparison between them. The object of this
investigation is to infer common trends between different concepts of dimension reduction.
Finally, concluding remarks are provided in Section 4.

2 Dimension reduction

Methods for dimension reduction compute a mapping from high- to low-dimensional space.
The formal problem setting can be described as follows. Let X ∈ �(n×m), a set of n
points in m-dimensional data space, and two metric distance (or dissimilarity) functions,
δm : �m × �m → � and δt : �t × �t → �, over data space �m and target space �t
respectively, with m, t ∈ �∗, t � m, be given. A mapping function φ that maps the
m-dimensional data points (xi ∈ X) to t-dimensional target points (yi ∈ Y ), i.e.,

φ : �m → �t (1)
xi 7→ yi, for 1 ≤ i ≤ n,

is defined s.t. φ “faithfully” approximates pairwise distance relationships of X by those of
Y ∈ �(n×t), thereby mapping close (similar) points in data space to equally close points in
target space, i.e., δm(xi, xj) ≈ δt(yi, yj), for 1 ≤ i, j ≤ n. In particular, an adequate mapping
is designed to ensure that remote data points are mapped to remote target points.

Since the target space usually has lower degrees of freedom than those required to model
distance relationships in multi-dimensional space, the mapping φ adheres to an inherent
error that is to be minimized by its definition. Thereby, φ is commonly defined to minimize
the least squares error εφ:

εφ =
∑

1≤i,j≤n
Wi,j (δm(xi, xj)− δt(yi, yj))2, for W ∈ �(n×n), (2)

where W is a weight matrix that can be used to define the importance of certain data
relationships or dimensions. For example, this may be used to disregard outliers by defining
Wi,j = 1/δm(xi, xj) (for δm(xi, xj) 6= 0).

Formally, the above definitions require both data and target distance functions to be
metric. That is, both functions must adhere to the properties of positive definiteness,
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Figure 1 Concepts of dimension reduction.

symmetry, and the triangular inequality. Based on human perception, the most intuitive
distance metric is the Euclidean distance, L2(p, p′) =

∑
1≤i≤q

√
(pi − p′i)2 for p, p′ ∈ �q.

Due to its intuitiveness, the Euclidean distance is often chosen as the metric for the target
space, δt = L2. However, the distance (or dissimilarity) measure of the application domain,
δm, is in most cases not Euclidean and may in some cases not even be metric. For example,
psychometric dissimilarities can be non-metric. In practice, this formal prerequisite can be
relaxed since even an optimal mapping is, at any rate, an approximation of multivariate
relationships.

In the following, we review and discuss several algorithms that realize a suitable mapping
φ as defined above. We divide them into two basic approaches of the following underlying
principal geometric ideas. If the data lie within a linear subspace of lower dimensionality,
then they can be re-expressed by a linear basis transformation without loss of information.
These bases can be ordered according to their contribution to the mapping error εφ and the
t bases are used that minimize this error. However, if the data are non-linear and lie on an
unknown manifold of lower dimensionality, then distance relationships along this manifold
can be learned in an unsupervised manner and used for data mapping.

A careful taxonomy of the methods considered here is formulated in the following and
illustrated in Figure 1. Methods that are solely based on linear inner product transforma-
tions are defined as projection techniques, while those that are able to ascertain distance
relationships in a non-linear data structure are defined as manifold learning techniques.
These techniques can be further grouped in two basic approaches. Focusing on metric data
spaces, the first approach is graph-based. These methods model the data as a graph and
utilize optimizations of graph theory to learn manifold distances in data space. The second
approach is stress-based and focuses on the embedding directly, i.e., learning the mapping
that minimizes the mapping error in target space. These methods are based on iterative
optimizations of the mapping error (stress) and can learn the embedding of non-metric
distances.

2.1 Projection-based Methods

Projective techniques display multi-dimensional data by projecting points onto a lower-
dimensional space such that distance relationships between points in the projection space
reflect specific relationships between the data points in multi-dimensional space. Since
these relationships may be too complex to be completely conveyed in lower-dimensional
space, projections (and all mappings considered here) are in general ambiguous. We define
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a projection by the use of a projection in the geometric sense - projecting the data based
on a (linear) inner product transformation. The geometric idea behind this approach is to
express the data by a set of “condensed” variables that approximately model the (unknown)
underlying factors and reduce redundancies. The two main approaches are to project based
on variance or inner product relations and both are, in an Euclidean setting, interchangeable.

2.1.1 Principal Components Analysis (PCA)
As one of the first dimension reduction techniques discussed in the literature, Principal
Components Analysis (PCA) [20] conveys distance relationships of the data by orthogonally
projecting the data on a linear subspace of target dimensionality. In this specific subspace,
the orthogonally projected data have maximal variance. Thereby, PCA defines a “faithful”
approximation as one that captures the data’s variance in an optimal way. It has been shown
[13] that by the maximization of variance, PCA also minimizes the least squares error (2)
for Euclidean distances in data and target space, δm = δt = L2, under the constraint of
orthogonally projecting the data:

εPCA =
∑

1≤i,j≤n
(L2(xi, xj)− L2(yi, yj))2. (3)

Remarkably, PCA achieves this through a computationally efficient linear transformation.
The resulting projection is a genuine view that does not distort the data. The only major
drawback of PCA is that, due to its linear nature, it does not capture non-linear data well.

For the following considerations, we assume without loss of generality that X ∈ �(n×m)

is centered, i.e., the mean of all given data points has been subtracted from all data points.
The PCA projection is defined as

PCA : �m → �t (4)
xi 7→ xi Γ̂, for 1 ≤ i ≤ n,

with Γ̂ = (γ(1), ..., γ(t)) ∈ �(m×t) being the matrix storing columnwise the eigenvectors of
the corresponding t largest eigenvalues of the data’s covariance matrix S = n−1XTX. The
largest eigenvalue of S, λ1, holds the variance of the data orthogonally projected in the
direction of γ1. Γ̂, storing the t mutually orthogonal vectors in which directions the data have
the largest variance, define a partial orthonormal basis in data space �m. The orthogonal
projection onto the corresponding rank-t subspace in �m is defined by X̂ = X Γ̂Γ̂T . Thereby,
X̂ ∈ �(n×m) is the best rank-t-approximation of X (under L2). Using the basis Γ̂, data points
xi are projected onto this subspace such that x̂i =

∑
1≤k≤t γ

(k)PCA(xi)k, for 1 ≤ i ≤ n.
Besides its broad applicability to visualization, PCA may be used for many more tasks.

For example, a prominent gap in the eigenvalue spectra gives an upper bound for the intrinsic
dimensionality of the data. Therefore, it is often used for filtering Gaussian noise or for
reducing data size and computation time. PCA is a well-established technique with an
extensive history. As such, many variants exist and more information can be found, for
example, in [11] or [17].

2.1.2 Metric Multidimensional Scaling (MDS)
Metric Multidimensional Scaling (MDS) [28], also known as classical MDS, is a well-established
approach that uses projection to map high-dimensional points to a linear subspace of lower
dimensionality. The technique is often motivated by its goal to preserve pairwise distances
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in this mapping. As such, metric MDS defines a faithful approximation as one that captures
pairwise distance relationships in an optimal way; more precisely, inner product relations.

Metric MDS finds an optimal (least squares) linear fit to the given pairwise distances,
assuming the distance used is metric. If Euclidean distances are given, δ = L2, metric MDS
is equivalent to PCA up to scaling and rotation. However, metric MDS finds the best linear
fit to any metric dissimilarities. This makes the technique more flexible to use compared
to PCA. Its performance is also independent of data dimensionality, however, the method
scales poorly with the number of data points.

By the method’s design, the mapping error preserves inner product relations:

εmMDS =
∑

1≤i,j≤n
(xixTj − yiyTj )2. (5)

Let a matrix of pairwise metric distances (or dissimilarities), (∆)i,j = δi,j , be given. From
these metric distances, the data’s Gram matrix of inner products is given by G = HAHT ,
where A = −1/2δ2

i,j and H is a centering matrix. The complete eigendecomposition of G
requires O(n3) time which is, in most cases, too expensive for practical problems. However,
variants of the method achieve an approximation in O(nlogn) time based on a divide and
conquer approach of the eigendecomposition [30]. In addition, increasingly faster solvers are
being developed [14].

Metric MDS is defined as

mMDS : �m → �t (6)
xi 7→ Γ̂i Λ̂, for 1 ≤ i ≤ n

with Γ̂ = (γ(1), ..., γ(t)) ∈ �(n×t) being the matrix storing columnwise the eigenvectors
of the corresponding t largest eigenvalues of the Gram matrix of inner products, G =
XXT , Gi,j = xix

T
j . Λ̂ is the diagonal matrix storing the roots of the t largest eigenvalues of

G, Λ̂ = diag(
√
λ1, ...,

√
λt).

Although metric MDS works in the inner product space, the geometric intuition behind
the method is very similar to that of PCA. As such, points are projected into the linear
subspace of largest variance. However, this subspace is defined by metric MDS based on the
eigenvalue decomposition of an n× n matrix of inner products. The duality between PCA
and MDS becomes clear when considering that G has the same rank and eigenvalues (up to
a constant factor) as the covariance matrix S = n−1XTX = Cov(X) and G = n−1Cov(XT ).
Therefore, the Gram matrix is a covariance matrix in �n that reflects the same principal
relationships of the data as the covariance matrix in �m, although, expressed in a basis
system that reflects linear combinations of data points (instead of dimensions). For more
information on metric MDS, the reader is referred to [9] or [5].

Although being both powerful and flexible, Metric MDS leaves two questions unanswered:
(1) What if the data are samples from a non-linear manifold and its proximity relationships
are unknown? (2) What if these dissimilarities are not metric? In the following, we discuss
the essential concepts that solve these two major issues. In particular, metric MDS has
brought forth the variants Kernel PCA, Isomap, and non-metric MDS.

2.1.3 Kernel PCA
Kernel PCA [24] is considered a variant of PCA and metric MDS (due to their duality) that
is capable of depicting non-linear data. Although distance relationships along a non-linear
pattern are unknown, Kernel PCA is based on two assumptions that make the application

VLUDS’11



140 A Survey of Dimension Reduction Methods for High-dimensional Data Visualization

of (linear) PCA to non-linear data possible. The first assumption is that in the space of
the data’s underlying features, the data are linear. The second assumption is that there is
a function that approximates the inner product of data points in this feature space. This
function is called a kernel and the utilization of a non-linear kernel in a linear setting to
capture non-linear data structure is known as the “kernel trick”. Formally, this setting is
described as follows. Let a kernel k be given that approximates inner product relations of
non-linear data in their feature space, such that

k : �m ×�m → � (7)
(xi, xj) 7→ Φ(xi)Φ(xj)T , for 1 ≤ i ≤ n,

where Φ is the mapping to feature space. Kernel PCA is defined as

K− PCA : �m → �t (8)
xi 7→ Γ̂i Λ̂, for 1 ≤ i ≤ n

with Γ̂ = (γ(1), ..., γ(t)) ∈ �(n×t) being the matrix storing columnwise the eigenvectors of the
corresponding t largest eigenvalues of the Gram matrix of inner products in feature space,
G

(k)
i,j = k(xi, xj). Λ̂ is the diagonal matrix storing the roots of the t largest eigenvalues of

G(k), Λ̂ = diag(
√
λ1, ...,

√
λt).

Thereby, Kernel PCA computes the eigenvectors of the covariance matrix of the data
in feature space. Although this space, as well as the data coordinates therein, is unknown,
the kernel maps to the data’s Gram matrix of inner products in feature space. Based on
the assumption of the correctness of a kernel k, the eigendecomposition of G(k) captures the
non-linear relationships in the data by maximizing variance in feature space. As such, Kernel
PCA can be viewed as a generalization of the method metric (classical) MDS by substituting
the utilization of Euclidean dot products to generalized dot products.

It is not surprising that the bottleneck of Kernel PCA is finding the “right” kernel. Since
distance relationships along the possibly non-linear sub-structures of the data are, in general,
a-priori unknown, the definition of a suitable kernel requires explicit knowledge about the
data. If this knowledge is not given, methods are better suited that determine distance
relationships along non-linear data structures in an unsupervised data-driven manner. This
is the concept of manifold learning.

2.2 Manifold Learning
Projection-based methods work well for data that fit approximately to a linear subspace.
When this is not the case, the hope for dimension reduction is that the data follow at
least a non-linear pattern, i.e., they lie on a manifold. The methods considered in this
section are able to learn (and depict) proximity relationships of data points on (non-linear)
manifolds in an unsupervised manner. While mappings from projection-based methods can
be described by linear transformations that capture known proximity relationships, this is
not the case for manifold learning techniques. In particular, these techniques abstract from
Euclidean distance relationships and capture distances along a manifold. Figure 2 illustrates
the difference between projection and manifold learning based mappings.

There are two distinct approaches to learn unknown proximity relationships. These
approaches are based on the data being of metric or non-metric dissimilarity. To model
metric distances on a manifold, graph-based techniques are often used that retrieve local
distance relationships in a data-driven way and project the data based on these metric
distances. However, there are various applications that require the display of non-metric
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Figure 2 In this example, data sampled from a non-linear three-dimensional manifold (A) are
mapped by a projection-based method (B) and by a manifold learning technique (C). In (B), the
projection of the data is a linear transformation that optimally captures Euclidean distances. In
(C), distance relationships along the manifold are captured by a non-linear mapping of the data.
This figure derives from [21].

dissimilarity relationships. This problem cannot be solved by graph-based methods but only
through a direct minimization of the mapping error in the embedding. This leads to the
optimization of a non-convex stress function. Consequently, stress-based methods are prone
to local minima and often slow convergence.

Graph-based methods can be divided into two classes: global and local modeling. Global
approaches first learn proximity relationships on a locally low-dimensional sub-manifold and,
second, depict these relationships using, for example, projection-based methods like metric
MDS. Local graph-based modeling follows a divide and conquer approach. The idea is to
divide the data into small groups and to solve this embedding locally. Local systems are then
“pieced together” based on overlapping or fixation points. Although the projection step finds
the global optimum for the embedding, the initial retrieval of distance relationships is based
on optimization problems such as shortest path problems, least squares fits, or semidefinite
programming. In this regard, graph-based methods are also prone to local minima or higher
computational cost.

2.2.1 Non-metric MDS
The ability of metric MDS to map data relationships from a dissimilarity matrix is based
on the key assumption that dissimilarities are approximate squared metric distances. As
for all spectral methods, this allows for the computation of a global optimal projection.
However, this also limits its application and prohibits non-metric scenarios, for example,
stemming from psychometric research where metric postulates do not hold. Instead of this
eigendecomposition approach, the idea of non-metric Multidimensional Scaling is to directly
minimize the mapping error (2) with respect to a given non-metric dissimilarity matrix and
possibly some weighting thereof. Unfortunately, due to the non-metric nature, the resulting
stress function is non-convex and optimization thereof is prone to local minima.

For a perfect projection, it holds that εMDS(∆, Y,W ) = 0, where ∆ is the input,
Y the output, and W an optional (arbitrary) weighting. One way to approximate the
solution is through a steepest descent approach, for example, with the Euler method [1].
Thereby, a step-wise iteration towards zero, where the (k + 1)th iteration has the form
Y (k+1) = Y (k) + α(k)∇εMDS(∆, Y (k),W ), converges to a local minimum. The step size
α(k) can be constant or can be computed by means of line search. A disadvantage of this
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method is its slow convergence near a minimum. An approach to avoid this is to use higher-
level, gradient-descent-type methods, for example, Newton’s methods [12]. These methods
converge more quickly at a higher computational cost.

The exact embedding of non-metric dissimilarities in a metric target space is impossible.
However, in non-metric MDS, the rank-order of dissimilarities is assumed to contain the most
significant information, and the main goal of the approach is to depict the rank-order in its
output configuration. A well-known approach to non-metric MDS is the Shepard-Kruskal
algorithm [15]. At its core is a twofold optimization process that optimizes the goodness of
fit with regard to the non-metric input. First, an optimal monotonic transformation of the
non-metric dissimilarities to metric distances is found that preserves the rank-order of non-
metric inputs. After the optimization of the rank-order distances, the output configuration
is further improved iteratively, balancing both stress and monotonicity.

MDS is in all respects a hard non-convex optimization problem. Using a good initialization
is therefore important. Numerous variants of MDS exist and many other methods are closely
related, like Sammon’s mapping [22]. Especially multi-level approaches have substantially
increased performance [10]. For an overview, reference [2] is helpful.

2.2.2 Isomap
Instead of learning the embedding directly in target space, Isomap [27] attempts to explicitly
model non-linear proximity relationships in terms of geodesic distances. As such, it can
be viewed as a variant of metric MDS to model non-linear data using its (metric) geodesic
distances. In order to retrieve these distances, a global graph-based optimization approach is
utilized.

Geodesic distances are learned by linearly approximating the non-linear manifold. Thereby,
a network of undirected neighborhood graphs is constructed in which each data point is
a node and has edges to its neighbors that are weighted by the points’ dissimilarity. The
weights represent the local approximation of geodesic distances on the manifold. From these
graphs, a square geodesic distance matrix is computed which is used for the metric MDS
projection. The essential steps can be summarized as follows:
1. For each data point xi compute an undirected k-neighborhood graph based on the k

points of smallest dissimilarity to xi and assign this dissimilarity as the edge’s weight.1

2. The (n × n) matrix of geodesic distances ∆̃ is found by computing the shortest paths
through the network of neighborhood graphs.2

3. Project the data using ∆̃ and metric MDS, as described in Section 2.1.2.

One problem of Isomap is that after double-centering of the geodesic distances, the Gram
matrix of inner products is not guaranteed to be positive semidefinite. One variant that
solves this issue is Maximum Variance Unfolding (MVU) [29]. The underlying idea behind
MVU is to unfold the manifold under the constraint that local distances between neighboring
points are preserved. This is optimized with respect to maximum variance.

Note that the lower-dimensional embedding of geodesic distances by Isomap involves
the eigendecomposition of a dense (n × n) matrix. Like with metric MDS, this leads to
significant computational effort. Further variants exist that tackle this problem, for example,
by integrating a local approach [25].

1 Often a threshold is used to model disconnected sub-manifolds.
2 This can be computed, for example, using Dijkstra’s algorithm[7].
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2.2.3 Locally Linear Embedding (LLE)

In contrast to modeling a manifold by global geodesic distance relationships, LLE [21]
models the manifold by extracting its local intrinsic geometry. Thereby, LLE follows a local
graph-based approach. The basic idea of LLE is based on the linear approximation of all data
points (in complex non-linear structures) by a convex linear combination of its neighborhood.
Formally, this assumption can be described by the following equation which has to hold for
all data points xi ∈ X and their surrounding neighbors Ni,

xi =
∑
xj∈Ni

Wi,jxj (9)

with 0 ≤ Wi,j ≤ 1,
∑
xj∈Ni

Wi,j = 1, and Wi,i = 0, for 1 ≤ i, j ≤ n. The local intrinsic
geometry has the appealing property that it stays unchanged under transformations like
translation, rotation or scaling. Hence, the local linear relationships of points in data space
directly define the intrinsic geometry for the output points to target space. The weights
Wi,j are approximated by solving a least squares problem based on a k-neighborhood graph.
In contrast to Isomap, LLE models nearest neighbors by directed graphs which leads to a
more suitable approximation. With these local relationships, LLE constructs a set of global
equations for the projection to target space. The method is summarized as follows:
1. For each data point xi, compute the k neighbors Ni that are nearest to xi with respect

to the distance function δm.
2. Compute the weights Wi,j that minimize the equation

∑n
i=1 |xi −

∑n
j=1 Wi,jxj |2 and

satisfy the constraints, Wi,j = 0 if xj is not a neighbor of xi, Wi,i = 0 and
∑n
j=1 Wi,j = 1

for all 1 ≤ i ≤ n.
3. Compute the output points yi that minimize the equation

∑n
i=1 |yi −

∑n
j=1 Wi,jyj |2.

As with Isomap, the data projection step is done by solving an n× n eigenproblem that
is based on the global weight matrix W . Due to the locality of LLE, this weight matrix is
sparse which leads to a significant advantage in terms of computation speed. The projection
is defined by the bottom t+ 1 3 eigenvectors of the matrix (I −W )T (I −W ) that can be
computed without a full matrix diagonalization [6].

3 Current State of Research

Having introduced the main concepts of dimension reduction that can be utilized for visual-
ization, this section reviews more recent work. We compare the two dominant and distinct
approaches to non-linear dimensionality reduction, namely graph- and stress-based methods.
We review one representative paper of each approach, each one being both state-of-the-art and
comparable in terms of similar goals and assumptions. Because both methods stem from a
different background, it is likely that they have been developed independently from each other.
Our goal is to infer common trends, relations, and solutions of these independent research
streams that both solve the problem of finding optimal lower-dimensional embeddings for
non-linear multivariate data.

3 The bottom eigenvector is a unit vector and is discarded to enforce the constraint that the embeddings
have zero mean. Here, bottom refers to the ordering imposed by largest to lowest corresponding
eigenvalues.
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3.1 Piecewise Laplacian-based Projection (PLP)
Similar to LLE, PLP [19] makes the assumption that every data point xi can be approximated
by a convex combination of its neighbors xj ∈ Ni based on weights Wi,j . While LLE finds
those weights through optimization, PLP uses pre-defined weights according to:

Wi,j = 1
δm(xi, xj)

/ ∑
xk∈Ni

1
δm(xi, xk) (10)

with δm being the metric distance function of the data space. Due to those pre-defined
weights, the projection has no unique solution. Therefore, a set of global control points is
added on a divide-and-conquer basis to solve this problem. PLP divides the data in smaller
subsets, each contributing a number of control points that are globally projected to preserve
global relationships among subsets. This procedure allows for corrections based on user
input, which makes this method interactive. PLP is defined by the following steps:
1. Separate X into s =

√
n different samples Sj for 1 ≤ j ≤ s. 4

2. For each sample Sj define the neighborhoods Ni ⊆ Sj for each xi ∈ Sj and a set of
control points Cj ⊆ Sj .

3. Globally project all control points C = C1 ∪ . . . ∪ Cs from �m to �t.
4. For each sample Sj , construct and solve a separate local linear system but based only on

the local variables Cj and the neighborhoods Ni ⊆ Sj .
5. Present the resulting projected data points Y to the user who can redefine the neighbor-

hoods. Based on the new neighborhoods, repeat the method from step three.
Paulovich et. al. [19] set the number of neighbors k to ten and the number of control points
in each sample Si to

√
|Si| 5, which ensures that the number of control points of a sample

corresponds to its sample size. The set of global control points C can be embedded by any
appropriate mapping, for example, Paulovich et. al. use the stress-based Force Scheme [26].

After the local linear systems have been solved for each sample, the user can interact
with the projected data set through its representation as a k-nearest neighbor graph and
adjust neighborhoods or samples by simply moving data points within the embedding. Due
to the used multi-level approach, only the linear systems of samples have to be recomputed
in which the neighborhoods have been changed. Consequently, PLP can learn the embedding
of large high-dimensional data sets in a semi-supervised manner.

If data do not come in a tagged format, partitioning them into samples is done by
clustering methods. On the one hand, the multi-level approach leads to significantly smaller
total computational cost since the linear systems, which are solved at step four, are now
smaller. On the other hand, important global features may be missed due to this approach.
Since the control points (randomly chosen) set the frame for global relation of local patches,
there is no guaranty that global features can be preserved in all cases. However, the novel
option of user interaction likely compensates for this scenario.

3.2 Multigrid Multidimensional Scaling (MG-MDS)
As a variant of multidimensional scaling, MG-MDS [3] is based on the direct optimization
of the weighted mapping error as a stress function εφ given by (2), although, the method

4 Note that
√

n is an upper bound for the number of groups in a data set of size n [18]. More sophisticated
estimation schemes may also be used.

5 Note that the total number of control points amounts to n3/4
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requires distances to be metric. In contrast to PLP, weights in MG-MDS can be arbitrary and
do not represent a convex combination. The basic idea is to re-state the problem of finding
φ = arg minφ ε(φ(X); ∆,W ) with respect to the gradient-descent-type method as a problem
of finding φ with ∇ε( φ(X); ∆,W ) = 0 and to embed this problem into a multigrid approach,
through which substantial performance improvements can be achieved. A simplified view
of MG-MDS is that the re-stated problem is first solved for a core, a small subset of all
data points. But instead of a one-step projection of the remaining data points, each of the
remaining data points is projected separately, in a step-by-step projection. Hence, to project
one of the remaining data points, not only the projected core but all the so far projected
points are used. Obviously, this increases the computational cost, but approximation errors,
which occur during a big, one-step projection, can be counteracted.

MG-MDS constructs a hierarchy of grids from the data set X such that for X =
{xi1 , . . . , xin}, the hierarchy is defined by choosing xin randomly chosen from X and picking
xik from k = n− 1 to k = 1 so that the following equation holds:

xik = arg max
x∈X

min
l=k+1,...,n

δ(x, xil) for 1 ≤ k ≤ n− 1.

In other words, xik is a data point with maximal distance to all data points with higher
hierarchy level. Each grid level k holds the set of all data points of the hierarchy level
equal or higher than k, i.e., Xk = {xik , . . . , xin}. To transfer between grid levels, multi-grid
approaches offer restriction P k+1

k and interpolation matrices P k−1
k , such thatNk−1 = P k+1

k Nk
and Nk−1 = P k−1

k Nk. Additionally, a corresponding stress function εk, based on Xk,∆k,
and Wk, determines the error.

Choosing a maximal grid level R, MG-MDS is summarized by the following steps:
1. If r = R, solve minXR

sR(XR, TR) by using Euler’s or Newton’s methods which are based
on the gradient of sR.

2. Otherwise, go from grid r to r + 1, using P r+1
r and ∇sr, changing also W and ∆.

3. Apply recursively the MG-MDS method to Xr+1 and use P rr+1 to get from grid r + 1
back to grid r.

4. During each movement from one grid to the next, a relaxation using an SMACOF-type
method [2] is needed to smooth the errors which occur during the movement.

Note that the existence of P r+1
r and P r−1

r for all R ≤ r ≤ n is a weaker form of the
convex neighborhood assumption of LLE or PLP. P r+1

r and P r−1
r can be found if the data

points in grid level r belong to the convex combination of the points in r + 1, and r − 1
respectively.

3.3 Comparison
Both approaches of stress optimization and spectral decomposition solve the problem of
visualizing non-linear multivariate data. However, they achieve this in completely different
ways. A comparison between them is difficult because stress optimization solves the much
harder problem of embedding non-metric distance relationships, while spectral methods are
restricted to metric ones. Nevertheless, such a comparison has the potential of inferring
valuable insights on what generic ideas and solutions help with the problem at hand. For this,
MG-MDS was chosen as a representative over numerous other state-of-the-art methods that
follow the stress optimization approach, because its unique advantages are also restricted to the
input being metric dissimilarities. Here, the relations between both methods are qualitatively
discussed and their suitability for different scenarios is assessed. This comparison is based on
the crucial factors that may delimit their application: online behavior, parametrization, and
computational cost.
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Assumptions

PLP (like LLE) makes the assumption that each data point can be represented by a convex
combination of its nearest neighbors. Thereby, the data are approximated by a set of linear
patches. MG-MDS, on the other hand, is based on the minimization of the stress function
through gradient methods and uses only a weak form of this assumption.6 Hence, for data
sets where the convex combination property does not hold, no suitable neighborhood can
be found, or when the computation of the neighborhoods is too costly, MG-MDS is better
suited to solve the problem.

Relations

PLP and MG-MDS are similar in the sense that they do not use the whole data set at once.
Instead, they use a small subset for the costly core projection7 and then project the rest of
the data with a faster method which uses the core projection. This is a definite trend and
saves a significant amount of time. However, this approach requires the data set to be of
sufficient size in order for a good initial core projection to be possible. Hence, for smaller
data sets, methods like LLE are preferable.

Online behavior

Considering online scenarios where an existing solution is to be adjusted with regard to new
data, PLP is better suited for such purpose than MG-MDS. 8 With PLP, new data points
do not chance the global projection but only the local linear system within the sample which
can be computed with comparably low computational cost. In this regard, MG-MDS has
to be redone for grid levels in which the new data points occur. Although, most likely, the
maximal grid level r = R stays unchanged, the overall computational cost is higher. Both
methods, however, are based on the dimension of the data points. For online scenarios where,
instead of new points, new dimensions are added to the already existing data, methods solely
based on local intrinsic geometry (like LLE) are advantageous. In any case, local methods
are preferable for online scenarios.

Parameterization

When little is known of a data set, an extensive list of parameters often represents a burden
for the analyst. However, in a visual analytics environment, the ability to tweak the mapping
based on knowledge and interaction is a definite advantage. Additionally, expert knowledge
is utilized that simplifies the problem of embedding. PLP requires knowledge of the "right"
clustering technique, the number of clusters in the data set, the number of control points, as
well as knowledge for defining the "right" neighborhood. This requires the user to have a good
initial assessment on the data’s structure and their global features. Therefore, when no expert
is available, MG-MDS is the safer choice because it requires less user parameters (maximal
grid level and core gradient method). On the other hand, PLP’s ability to iteratively refine
the mapping based on user interaction makes the method more suitable for visual exploration
and allows one to infer this knowledge over time.

6 In MG-MDS, the convex combination is only a sufficient condition but does not have to hold for all
data points and also does not include neighborhood relations.

7 Either the projection of the control points or the calculation at the maximal grid level r = R.
8 It is assumed that the new data points are not taken as control points.
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Computational cost

Another limiting factor for the suitability of dimension reduction methods with regard to
many applications are their computational costs. The cost for computing a neighborhood
graph depends on the form the data are given in. In case of a distance matrix, the cost
to construct a k-neighborhood graph amounts to O(k · n) for each of the n data points.
If the data are given as an m-dimensional point set, the computational cost to define the
neighborhood for each data point is O(m · n2). Although, in some cases, space partitioning
data structures like K-D trees [8] can reduce this cost to O(n · logn), their suitability for
higher-dimensional spaces is an open research question. We therefore denote the cost to
compute the distance matrix by O(Distance), while the cost to compute a k-neighborhood
graph is denoted by O(Neighbors). With these considerations in mind, the computational
costs of these two methods are:

PLP O(Distances) +O(n3/2) +O(n9/4) +O(s·Samplen/s) with s =
√
n being the number

of samples and O(Samplen/s) the computational cost for each sample with size n/s. For
this, a uniform size over all samples is assumed. O(Samplek) is defined as O(Samplek) =
O(k3/2) +O(k3/2)+ the computational costs to solve a linear system of size k× (k+

√
k),

with
√
k being the number of control points in the sample. The two other terms are the

cost to find the samples using a clustering method and the global projection of all n3/4

control points using any O(n3) projection method.
MG-MDS O((n−R)n2) +O(2Rn2) +O(Distances), with R being the maximal grid level.

The first term is for the core projection of grid level r = R using Euler’s Method. The
second term is for movement between these r many grid levels. By using more complex
methods than Euler’s method, the computational cost increases while the value of the
stress function decreases. Based on the same considerations as those made by PLP, it
seems that R = n−

√
n is a fair initial guess for the maximal grid level.

Note that these terms are all upper bounds. The actual computational cost can be far
smaller. For example, in PLP, much effort is saved since the computation of the samples and
control points uses the clustering results for the computation of the neighborhoods. Also,
data may already come in a gridded or tagged form that these algorithms can use and take
advantage of.

4 Conclusion

Research on dimension reduction continues at a rapid pace. This survey provides an
introduction to the main concepts of dimension reduction for visualization: from linear data
projection to graph- and stress-based manifold learning. Although being non-exhaustive, the
comparison of state-of-the-art methods that follow the graph- or stress-based approach shows
that no single method can be preferred over another. On the contrary, the effectiveness
of state-of-the-art methods mainly depends on the data and application. However, the
comparison also shows that there are similar research directions. At present, especially
multi-level approaches show great potential and form one of the dominant research directions
in both graph- and stress-based manifold learning.

Motivation for ongoing work includes manifolds of complex non-linear geometry, more
flexible and interactive embeddings, better encoding of information, and scalability to data
sets of peta-scale sizes. We believe that only through the incorporation of multiple concepts
from different research fields, can methods for dimension reduction keep pace with future
problems. Due to the increasing complexity of high-dimensional data sets, a two-dimensional
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target space is not sufficient for the embedding. There is a major gap to close to the
concepts of information visualization that may be used to gain additional degrees of freedom
in an embedding. Furthermore, these concepts can help with better interpretability and
interactivity in adjusting both view and model of the lower-dimensional mapping. Data
analysis also requires the incorporation of level-of-detail approaches for data abstraction
and new concepts for visual verification that evaluate the error and ambiguity of a mapping.
As we have discussed, the focus of state-of-the-art methods has already changed towards
semi-supervised learning that incorporates user knowledge into mapping and visualization,
thereby allowing an effective visual exploration. It is likely that these knowledge-based
algorithms will continue to evolve and gain in importance.
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Abstract
Generally, a graph is an abstract data type used to represent relations among a given set of data
entities. Graphs are used in numerous applications within the field of information visualization,
such as VLSI (circuit schematics), state-transition diagrams, and social networks. The size and
complexity of graphs easily reach dimensions at which the task of exploring and navigating gets
crucial. Moreover, additional requirements have to be met in order to provide proper visual-
izations. In this context, many techniques already have been introduced. This survey aims to
provide an introduction on graph visualization techniques helping the reader to gain a first insight
into the most fundamental techniques. Furthermore, a brief introduction about navigation and
interaction tools is provided.

1998 ACM Subject Classification A.1 Introduction and Survey, B.7.2 Design Aids

Keywords and phrases Graph Visualization, Layout Algorithms, Graph Drawing, Interaction
Techniques

Digital Object Identifier 10.4230/OASIcs.VLUDS.2011.151

1 Introduction

One goal of information visualization is to provide techniques for converting (abstract)
information e.g., in form of textual description into visual representations facilitating the
perception and handling of hidden structures from underlying data sets [18]. In cases in
which corresponding data elements have inherent relationships among each other, graph
visualization methods are commonly applied to support the better understanding.
I Definition 1. Formally, a graph G = (V, E) is a mathematical structure consisting of two
sets, V the set of vertices (or nodes) of the graph, and E the set of edges. Each edge has
a set of one or two vertices associated to it, which are called endpoints [53].

Many application areas use graphs to represent existing structures: For example, in social
networks people of a group my represent the vertices of a graph where the different relations
among them are represented by a set of edges. In other areas, like biology and chemistry
graphs are widely used to represent molecular and genetic maps, as well as protein production
paths. In the field of software engineering, graphs are used e.g., to represent the structure
of complex software systems, or to represent the internal behavior/states of compilers. In
the object-oriented field, graphs are used to depict the relations among different classes, e.g.,
UML diagrams. In general, any hierarchical structure may be represented as a tree, which
is a subtype of a graph. An example for this sort of structure is the file structure of an
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operation system. The organization structure of an institute may also be represented as a
tree. For more information we refer to [53, 22].

Although graph visualization techniques are widely used in many application domains,
they have some limitations one has to deal with. For example, the size of the represented
graph may become an issue, e.g., providing layouts for very large graphs is possible, but often
comes along with the loss of readability, at least for untrained users. This is associated with
the limited human cognitive power and the screen space constraints given by the visualization
devices. Providing a suitable technique helping the user interacting and navigating through
the data is another important issue. The goal of graph visualization techniques is to increase
the comprehension level of the data by providing intuitive, intelligible layouts as well as
suitable interaction mechanisms.

This survey is organized as follows: In Section 2 we present a general overview concerning
layout algorithms and a set of criteria to generate clean layouts. In order to increase the
comprehension level of the visualized information, many interaction techniques have been
proposed in the literature. In this context we present a brief introduction in Section 3. We
conclude the survey by Section 4.

2 Graph Layout Algorithms

As mentioned in Section 1, a graph consists of a set of nodes connected by a set of edges. The
trivial way to display this sort of data is to use node-link diagrams. They depict the relations
among the data elements in form of lines [53, 22]. In [25], another visualization approach is
proposed to display graph structures by exploiting space-filling techniques or space-nested
layouts which implicitly represent the relations. This section provides an overview describing
both approaches and the used algorithms.

2.1 Node-Link Layouts
The basic requirement of the node-link layout concerns the computation of the coordinates
of the nodes and the representation of the lines. To increase the readability a clean layout
should comply with the following criteria [29]:

Nodes and edges should be evenly distributed.
Edge-crossings should be minimized.
Depict symmetric sub-graphs in the same way.
Minimize the edge bending ratio.
Minimize the edge lengths, which helps readers detecting the relations among different
nodes faster.
In cases where the data is inherently structured distribute the nodes into different layers.
This increases the understandability of the underlying graph. For example, in data-flow
diagrams it is recommended to separate the graph elements into different layers in a way
that the final representation reflects the original semantics.

Many other criteria have been proposed in the literature, for more details please refer to
[53, 29]. It is worth mentioning that it is hard to combine most of the criteria. Some of them
conflict with others. In contrast, others are hard to realize in an efficient way. Many solutions
have been proposed [29, 53] to overcome these issues. Most algorithms in practice represent
a trade-off. Specifying the required criteria is an application dependent process. Prioritizing
a set of criteria is an important pre-condition for finding suitable layout algorithms. The
work of [41] concentrates on the topic of how to prioritize such criteria.
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2.1.1 The Spring Layout Algorithm
The spring layout algorithm is widely known as force-directed layout, which was originally
proposed by Eades in 1984 [12]. Due to its simplicity and its ability to produce a symmetric
layout, the force-directed layout is considered to be one of the popular node-link layouts. The
spring layout algorithm represents the graph as a physical system, in which the graph nodes
are considered to be a charged particles connected to each other using a set of springs. The
first model was proposed by [12]. Each node is associated with two types of forces: attraction
forces and repulsive forces. Given the node coordinates and the spring attributes the method
aims at reducing the total energy of the the spring system by repositioning the nodes. The
attraction force fa is applied to the neighbor nodes which are connected by a spring, while
the repulsive force fr is applied to all graph nodes. These forces are defined as follows:

fa(d) = kalog(d), fr(d) = kr

d2 (1)

where ka and kr are constants and d is the current distance between two nodes. Figure 5b
shows a small example that emerged from applying this algorithm. Although, the force-
directed approach produces clean, symmetric layouts with respect to graphs having moderate
sizes, it is considered to be one of the expensive algorithms. Its time complexity exceeds
O(n3) (see [53, 29, 22]), where n is the total number of nodes. Moreover, force-directed
layouts lack in terms of predictability ([53, 29, 22, 58]), meaning that running the algorithm
twice, produces different results. This leads to problems in maintaining the users mental map
during the interaction with unstable layouts [58]. Despite the mentioned disadvantages, the
force-directed layout algorithm has been widely used in many visualization frameworks [56].
Furthermore, the algorithm itself has been revisited and optimized many times to overcome
its characteristic drawbacks (see [27, 14, 16, 13, 24, 53, 29, 24, 7]).

2.1.2 Topological Feature-Based Layout
The feature-based graph drawing concept has been proposed by Archambault et al. [2]. The
concept is called TopoLayout, which is a multi-level, feature-based approach. The pipeline of
this approach consists of four main steps, the first one is called the decomposition phase in
which the graph is decomposed into many sub-graphs based on the topological features of each
internal sub-graph. For example, if the nodes in one sub-graph are topologically connected
among each other in form of a tree, then the set of nodes are grouped together representing
a meta-node. Currently, TopoLayout detects seven topological features, including trees,
complete graphs, bi-connected components, clusters, and the undefined structure that is
called unknown feature. For more details we refer to [2]. The second step called the feature
layout phase in which the meta-nodes or the grouped sub-graphs are laid out using one
of the layout algorithms (tuned with its topological feature). The third phase called the
crossing reduction phase aims to eliminate the crossing ratio in the produced layout.
Finally, the overlap elimination phase aims to change the node sizes in the final layout to
ensure that no nodes overlap each other. The final result for TopoLayout is a tree representing
the graph hierarchy, in which each node represents a sub-graph in the original graph and
each meta-edge represents the relation between tow sub-graphs in the original graph. This
layout technique helps in drawing relatively large graphs. Also, it provides the user with
details about the internal structure of the graph, which can be useful in extracting more
information about the graph itself (see Figure 1). GrouseFlocks [3] was introduced to provide
an interactive way to explore large input graphs through cuts of a superimposed hierarchy.
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Figure 1 Layout generated by using the TopoLayout algorithm of [20].

The goal was to provide the user with the ability to see several different possible hierarchies
of the same graph.

Before we introduce the tree layout concepts, it is worth to mention that both force-
directed algorithms and the TopoLayout algorithm work perfectly with undirected graphs.
Unfortunately, not many algorithms were designed for visualizing directed graphs. The
Sugiyama algorithm was one of the first algorithm for drawing directed graphs [50]. The
basic approach is to first layer the graph nodes, which means assigning a layer for each
node and placing the nodes into the corresponding layer. Also, the algorithm includes two
steps for reducing the edge-crossings and the node-overlappings. In general, directed graph
layout algorithms are difficult to implement, this is due to the complexity of directed graphs.
Therefore, many of the Sugiyama algorithm steps are considered to be NP-hard (see [17]),
and some of them are NP-complete (see [11]).

2.1.3 Planar Graphs
Planar graphs are graphs that can be drawn without edge crossings in linear time. They
emerge in various fields: CAD systems, circuit schematics, VLSI schematics, entity relation-
ships diagrams and information system design [53, 29, 22]. To generate a planar layout for a
general graph, some pre-requisites have to be fulfilled [22]:

Testing whether it is possible to draw the given graph without edges crossings or not.
Finding a planar layout algorithm satisfying the required application constrains.

Drawing a planar graph is supported by two well known algorithms, the first one called
Fraysseix [9], Pach [28] and Pollack (FPP) [46] generates a drawing of a graph G on a grid
of size (2n − 4) ∗ (n − 2) in n log(n) time. Later, the FPP algorithm was improved to run in
linear time [28]. The second algorithm has been proposed by Schnyder [46]. It attempts to
find a straight line embedding on a grid of n2 nodes and runs in linear time. An example of
a planar graph is shown in Figure 4b.

2.2 Tree Layout
Many layout algorithms have been already proposed. In general, this may be attributed
to the tree structure’s simplicity and popularity. As a good starting point for tree layout
algorithms we refer [53, 29].

2.2.1 Node-Link Tree layout Algorithms
One of the basic approaches to draw a tree is to use node-link diagrams in which the
parent-child relations are depicted as edges (see Section 2.1). The classical tree layout
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algorithm proposed by [42] is one of the early methods (see Figure 2a), it produces clean
trees-representations in 2D and its implementation is straight forward. However, the technique
is not declared space efficient because of its preference for one of two dominating growth
directions, i.e., horizontal growth or vertical growth. To cope with this problem some compact
tree layout algorithms have been implemented to produce a classical tree appearance in more
compact fashion [10, 53, 29, 58, 22, 7].

Another example of a node-link tree layout is the radial layout algorithm which was
proposed by Eades [10]. A radial layout including its variations, places the root in the middle
of co-centric circles and distributes the children of a sub-tree into circular shape according to
their depth in the tree recursively. The radial layout uses space in more efficient way than
the classical method. But it lacks the understandability of classical tree layouts, e.g. it is
difficult to find the root of the tree (see Figure 2b) [53, 10, 39, 59]. As a sibling of the radial
layout, the balloon layout has been introduced in [6]. Here, sibling sub-trees are drawn in
a circle centered at their parents. This layout is effective in showing the tree structure. The
balloon layout can be obtained by projecting a cone tree onto a plane [43, 53, 29, 58, 22]
(see Figure 2c). H-Tree produces a classical layout for binary trees and works perfectly
for balanced trees. But, again, it is hard to identify the root position [47] (see Figure 2d).
All tree layout algorithms produce predictable results in at least linear time (the usual the
complexity reaches from O(n log(n)) to O(n)) [53, 29]. As a result of the comparison of
different tree layout algorithms, we observed that the classical tree layout perfectly depicts
the hierarchy structure of the tree, with sacrificing the screen space. While the radial layout,
the h-tree layout, and the balloon tree layout use the screen space more efficiently but with
difficulties in finding the root [53, 29, 58, 39].

(a) Classical tree layout, produced with [19]. (b) Radial tree layout Example.

(c) Balloon tree layout: produced by [22]. (d) H-Tree layout: produced by [22].

Figure 2 Tree Layout Examples.
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2.2.2 Space-Filling Techniques

Space-filling techniques can be subdivided in two types: the Space-Division layout and
the Space-Nested layout. In the Space-Division layout, the parent-child relation is
depicted implicitly by attaching the children to their parent. Sunburst algorithm uses
radial or circular space-filling techniques. The general belief of the developer community is
that radial layout methodology better convey a hierarchy’s structure without sacrificing the
efficient screen space usage [49, 26]. One of the problems of this layout is that it is difficult to
distinguish between the child-parent relationships and the sibling relationships, because both
of them are expressed using adjacency. Moreover, due to the different number of children for
each parent, the nodes sizes are difficult to control, the final layout might occupy a large
space for node, which has many children. While other nodes are represented using a tiny
thin rectangle that is not enough to show the node’s label or the node’s color (see Figure 3a).
Whereas, in Space-Nested layouts the child-parent relationship is drawn using nested
boxes. The idea is to place the children within their parent node. A good common example
is the Treemap, (see Figure 3b) [25, 48]. Nodes are represented as rectangles, each rectangle
is subdivided into number of sub-rectangles equal to its children number. The subdivision
process is performed recursively. This technique is popular because it uses the screen-space
efficiently, and it shows the size of the leaves in a tree. However, this technique lacks the
ability of showing the hierarchical structure of the tree. Also, due to the subdivision process
it is highly possible to produce long and thin rectangles, which leads to problems in with the
interaction (especially in selecting or highlighting the rectangles) [25, 48, 58, 22, 55].

(a) SunBurst layout. (b) TreeMap layout.

Figure 3 Examples of space-filling techniques [19].

2.3 Matrix Visualization

The matrix visualization is another technique that represents graph nodes relations
implicitly (see Figure 5a). Here, each row and each column represent a node. The edge
between two nodes is represented by the cell at which the corresponding row and column
intersect. Edge attributes can be shown using different visual parameters such as color, size
and shape. The scalability is limited, but the layout can produce clean representations of
graphs having moderate size. However, the way the data is represented makes it difficult to
detect the graph paths. For more details please refer to [1, 21].
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(a) Hyperbolic tree layout, produced with [52]. (b) Planar Graph Example.

(c) TreeCube layout, produced by [51]. (d) Cone trees, produced by [43].

Figure 4 Graph layout Examples.

2.4 3D Layout

In addition to 2D representations, many layout algorithms have been extended to 3D. The
reason behind it is that we are familiarized with 3D in the real world. So it is often more
natural for us to explore data in 3D space. One example for a 3D layout is Treecube (see
Figure 4c), a technique that has been proposed by [51] as an extension for the traditional
treemap layout; it uses nested cubes to represent the parent-child relationships. The
hyperbolic layout algorithm appeared for the first time in [32, 33], then it has successively
been used by many others (e.g., [38, 37, 36]). The idea was to distribute the data entities over
the hyperbolic space. Figure 4a shows an hyperbolic tree layout for a walrus-directory graph,
which has been generated using the Walrus package [52]. This method can be displayed in
2D and 3D, providing a distorted view of the tree, which makes the interaction with large
trees easier [22]. It is worth to mention that most of the force-directed techniques could be
generalized easily to three dimensions (see [8]).

Conetree [43] is a technique that was originally developed to layout trees in 3D space.
It places father nodes at the top of a cone with its children arranged evenly in the cone
base. The layout has many layers; each one represents a tree level, in which all cones have
the same height. The cone-base diameter for each layer is reduced in bottom-up fashion.
This helps the lowest layer to fit into the width of the box containing the full cone tree, see
Figure 4d . Based on [34], 3D visualization techniques face multiple challenges: First, objects
in 3D may occlude each other which causes an issue while exploring the data set. Second,
providing a suitable layout algorithm that assures less object-overlapping and reduces the
edge-crossing is also considered as a big challenge. Third, the development of interaction
techniques that are making the data exploration task easier and more intuitive is another
big challenge. Finally, choosing an appropriate metaphor that increases the information
understanding process is often hard to find. Many real-world metaphors were used to present
data in 3D; examples can be found in [31].
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(a) Matrix visualization layout [21]. (b) Example of a force-directed layout.

(c) Clustering example by [54]. (d) Edge bundling example by[23].

Figure 5 Graph layout Techniques examples.

2.5 Nodes and Edges Clustering

Clustering techniques were introduced in graph visualization as a method to reduce visual
cluttering in the final layout. This is achieved by producing an abstract view for the input
graph. Reducing the number of visual elements does not only increases the clarity but also
increases the rendering performance [30]. Clustering algorithms can be classified in two
main types based on the criteria in the clustering process. The first type is called natural
clustering, here the structural information among the graph nodes is used to find a pattern
of nodes having the same common criterion [44]. The second type is called the content-based
clustering, here the semantic meaning of the relations among the graph nodes is taken into
account [57]. This type of clustering is rarely used, since it heavily depends on the application
domain (reusing the same content-based clustering technique in another application usually
is not possible). Therefore most graph visualization applications are using structure-based
clustering algorithms. Many structural characteristics have been used as clustering criteria,
such as the distances between graph nodes and node degrees. Natural clustering is widely
applied to preserve the structure of the original graph [44]. This kind of clustering enables
improved interaction facilities, because it eases applying of filtering techniques for the layout
result and leads to an increased searching speed for specific data patterns. This could be
accomplished by partitioning the nodes into a set of groups, then filter them based on a
specified criteria, and finally narrow the search domain to the remaining clusters. Figure 5c
shows an example of clustering techniques applied in the graph visualization field.

In [4], a clustering techniques for a special type of graph called small-world networks is
presented. [53, 29] give a good overview on clustering and its applications, as well as a set of
heuristics for each clustering method.

Another method for reducing the cluttering ratio is the edge clustering approach. Its
goal is to free more space by grouping sets of edges that share the same end points, which
reduces the visual cluttering in the final picture. Edge-bundling techniques are also proposed
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to increase the readability of the graph. This is achieved by reducing the visual cluttering
from the adjacency edges (see Figure 5d). For more details we refer the reader to [23].

Another example is the flow-map method: all edges that have the same source are grouped
into one thick edge, generating a pattern of the edge-flow [40]. This technique intuitively
shows the flow of the data from a single source to different destinations. However, it is only
applicable for specific graph visualization applications, e.g., the migration path from a single
source. Furthermore, in case of multiple sources, this approach causes a visual cluttering
among the different flow maps, which leads to difficulties in reading the underlying graph.

3 Interaction Techniques

The goal of the visualization techniques mentioned above is to increase the comprehension
level of the given data. Often, this goal cannot be achieved by only producing a static image
representing the data. The ability of interacting with data has to be provided. Therefore,
interaction and navigation techniques to facilitate the data exploration mission have been
researched (e.g., [22, 48, 58]). In this section, we list a selection of interaction concepts that
have been applied together with the visual layout algorithms. In [60] a summary of popular
interaction techniques is presented:

Selecting: giving the user the ability to highlight and process specific objects.
Abstracting/Elaborating: changing the level of detail of the representation scheme. This
allows users to get different insights into the data.
Reconfiguring: giving the user the ability to change the layouts for the same representation
scheme, such as sorting the graph nodes based on a specific criteria.
Encoding: switching between different layout methods, such as converting the node-link
diagram into a sunburst layout.
Exploring: this is related to giving the user the ability to change the view point of the
graph layout. Zooming and panning are examples of this category.
Filtering: removing unnecessary detail and displaying the remaining items in a more
visible fashion. The main concept is to filter the data nodes based on their attributes in
order to make the querying process easy and fast. For more examples see [5].
Connecting: giving users the ability to highlight the paths between relevant objects and
the focus object.

3.1 Zooming and Panning
Zooming and Panning are basic tools for exploring large amounts of information. Panning
means moving the camera across the scene, while zooming allows users to switch between the
abstract and the detailed views. Geometric zooming adjusts the screen transformation and
thereby allows increasing or decreasing the magnification of the displayed graph. Semantic
zooming means that not only the size of objects but also the displayed information may
change when approaching a particular area of the graph.

Both, zooming and panning, are complement to each other. An example are geographical
maps, like the ones used by Google Earth: suppose the user zoomed into an area next to
Frankfurt in Germany. If he or she wants to change the view to another area, lets say Amman
in Jordan, he or she usually has to zoom out first to get a better overview, then pan to the
Amman region, and finally again zoom into Amman. Doing this procedure without panning
in the middle will need a long time to find the destination [22, 58]. In [15], an elegant model
was introduced to explain how zooming and panning work together. The proposed concept
is called space-scale diagrams. It defines an abstract space by first creating multiple copies
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of the original 2D image. In a second step, they are stacked up to construct an inverted
pyramid, on which each copy is placed in a certain magnification level. The space-scale
diagram can be used with both zooming types, not only for the geometric zooming but also
for the semantic zooming [15, 22].

3.2 Focus+Context Techniques

Focus+context techniques are addressing the problem of losing context when zooming into
given data. Suppose you have zoomed into a picture, the result would be that you can only
see the zoomed-in area without having an idea about the surrounding areas in the picture.
Here, focus+context comes into play: it gives users the ability to see the primary object
in a detailed view (focus) together with an overview of all the surrounding information
(context). In general, losing context is considered to be an issue in information visualization
applications. In order to alleviate this problem, focus+context techniques appeared to give
the user the ability to focus on some details without losing the global context [45]. This
concept does not replace the zooming and panning methods, but rather complements them.
The majority of visualization application systems implement both techniques together as an
interaction tool.

Many approaches provide focus+context views. Overview+detail is one of the earliest
focus+context approaches, in which separate display regions for different resolutions are
used. It enables users to switch between different displays frequently [35]. Fish-eye is one of
the most popular focus+context techniques [45]: the area of interest becomes larger while
at the same time the other regions of the layout are successively shown with less detail.
In the fish-eye approach, computing the hyperbolic coordinates is faster than the layout
algorithm, which is considered as an issue for the interaction with the visualization [22, 58].
The distortion appears as a negative consequence of this technique, which leads to destroying
many aesthetics criteria controlling the layout algorithm, e.g., unwanted edge crossings might
appear [22, 58].

4 Conclusion

The purpose of this survey was to give a brief and general overview on fundamental graph
visualization techniques, a sub-field of information visualization. Graph visualization focuses
on representing abstract data elements and the relationships between them visually, thus
reflecting the structure of the data. The goal is to increase the cognitive level of the local
and global structure.

Node-link diagrams were the first introduced approaches to depict graphs. In this regards,
a graph is drawn using a set of points representing the graph vertices which are connected
by lines or curves representing the graph edges. These approaches perform well for graphs
of moderate size. However, data sets reflecting real world data often become very large.
Consequently, this sort of algorithms appear to be insufficient and do not scale well. To adapt
to larger graph sizes, new layout schemes have been developed. Space-filling techniques such
as Treemaps are one approach attempting to display relatively large graphs, specifically trees,
by representing the relations between the nodes implicitly. Therefore, it is difficult to answer
the question: which approach performs better; This highly depends on the application and
the particular user requirements. On one hand, node-link approaches lack the scalability but
are able to display the relations between graph elements. On the other hand, space-filling
techniques are space-efficient but lack in terms of understandability.
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Along with the visual aspects, suitable and intuitive interaction techniques are key elements
to gain better insights into the visualized data. Many interaction methods were introduced in
the literature. In this context, zooming and panning are fundamental interaction techniques,
but using them separated can cause the loss of context. Therefore, focus+context techniques
were proposed to alleviate these drawbacks. Overview+detail, for example, constitutes an
approach using separate display regions to resolve those issues. Fish-eye methods can provide
different level of details at the same time by integrating them in a single display region. This
allows the users to zoom without losing their focus.
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