
2012 Imperial College
Computing Student
Workshop

ICCSW’12, September 27–28, 2012, London, United Kingdom

Edited by

Andrew V. Jones

OASIcs – Vo l . 28 – ICCSW’12 www.dagstuh l .de/oas i c s

Editor
Andrew V. Jones
Verification of Autonomous Systems Group
Department of Computing
Imperial College London
180 Queen’s Gate, London, SW7 2AZ
United Kingdom
andrewj@doc.ic.ac.uk

ACM Classification 1998
A.0. Conference Proceedings

ISBN 978-3-939897-48-4

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-48-4.

Publication date
November, 2012

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs (BY-NC-ND)
license: http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.
No derivation: It is not allowed to alter or transform this work.
Noncommercial: The work may not be used for commercial purposes.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ICCSW.2012.i

ISBN 978-3-939897-48-4 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-939897-48-4
http://www.dagstuhl.de/dagpub/978-3-939897-48-4
http://dnb.d-nb.de
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode
http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.i
http://www.dagstuhl.de/dagpub/978-3-939897-48-4
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

www.dagstuhl.de/oasics

http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

Contents

Preface
Andrew V. Jones . i

Regular Papers

Knowledge Transformation using a Hypergraph Data Model
Lama Al Khuzayem and Peter McBrien . 1

A heuristic for sparse signal reconstruction
Theofanis Apostolopoulos . 8

Predicate Invention in Inductive Logic Programming
Duangtida Athakravi, Krysia Broda, and Alessandra Russo . 15

Targeting a Practical Approach for Robot Vision with Ensembles of Visual Features
Emanuela Boroş . 22

Incremental HMM with an improved Baum-Welch Algorithm
Tiberiu S. Chis and Peter G. Harrison . 29

Device specialization in heterogeneous multi-GPU environments
Gabriele Cocco and Antonio Cisternino . 35

Abstracting Continuous Nonpolynomial Dynamical Systems
William Denman . 42

Improving the Quality of Distributed Composite Service Applications
Dionysios Efstathiou, Peter McBurney, Noël Plouzeau, and Steffen Zschaler 49

Fine-Grained Opinion Mining as a Relation Classification Problem
Alexandru Lucian Gînscă . 56

Mechanisms for Opponent Modelling
Christos Hadjinikolis, Sanjay Modgil, Elizabeth Black, and Peter McBurney 62

4D Cardiac Volume Reconstruction from Free-Breathing 2D Real-Time Image
Acquisitions using Iterative Motion Correction

Martin Jantsch, Daniel Rueckert, and Jo Hajnal . 69

Collecting battery data with Open Battery
Gareth L. Jones and Peter G. Harrison . 75

Informing Coalition Structure Generation in Multi-Agent Systems Through Emotion
Modelling

Martyn Lloyd-Kelly and Luke Riley . 81

Bounded Model Checking for Linear Time Temporal-Epistemic Logic
Artur Męski, Wojciech Penczek, and Maciej Szreter . 88

A compositional model to characterize software and hardware from their resource usage
Davide Morelli and Antonio Cisternino . 95

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

vi Contents

Integration of Temporal Abstraction and Dynamic Bayesian Networks in Clinical
Systems. A preliminary approach

Kalia Orphanou, Elpida Keravnou , and Joseph Moutiris . 102

Get started imminently: Using tutorials to accelerate learning in automated
static analysis

Jan-Peter Ostberg and Stefan Wagner . 109

A Quantitative Study of Social Organisation in Open Source Software Communities
Marcelo Serrano Zanetti, Emre Sarigöl, Ingo Scholtes, Claudio Juan Tessone, and
Frank Schweitzer . 116

Apply the We!Design Methodology in E-learning 2.0 System Design: A Pilot Study
Lei Shi, Dana Al Qudah, and Alexandra I. Cristea . 123

An Implementation Model of a Declarative Framework for Automated Negotiation
Laura Surcel . 129

Blurring the Computation-Communication Divide: Extraneous Memory Accesses and
their Effects on MPI Intranode Communications

Wilson M. Tan and Stephen A. Jarvis . 135

Search-Based Ambiguity Detection in Context-Free Grammars
Naveneetha Vasudevan and Laurence Tratt . 142

Introduction to Team Disruption Mechanisms
Andrada Voinitchi, Elizabeth Black, and Michael Luck . 149

Self-Learning Genetic Algorithm For Constrains Satisfaction Problems
Hu Xu and Karen Petrie . 156

Preface

This volume contains the proceedings of the second Imperial College Computing Student
Workshop (ICCSW’12). The workshop took place on 27th–28th September 2012 in London,
UK and was hosted by Imperial College London.

ICCSW is an event organised with the “by students, for students” ethos in mind. All of
the organisation of the workshop was done by the steering committee of Ph.D. students at
Imperial College London, with all papers and reviews also being written by students. This
year, ICCSW also introduced an “ambassador” programme for students who wished to act as
external publicity chairs. The ambassadors proved to be invaluable as they helped increase
the national and international visibility of the event.

These proceedings contain 24 original contributions in various fields from across computer
science, including both theoretical and applied papers. The workshop received 47 submissions,
and after rigorous peer review, the final selection was cut down to 24 papers (and even those
24 were difficult to schedule!). From ICCSW’11, this is a 105% increase in the number of
submissions and a 41% increase in the number of accepted papers. Along with having more
submissions, there was also a significant improvement in the quality of the papers – this
made the committee’s job in selecting the final programme very tough!

Both days of the workshop featured a keynote talk on a facet of computer science – our
renewed thanks go out to our keynote speakers. The talks were titled:

Cloud Centric Networking, by Greg Page (Cisco Systems, Inc.); and

The Art of Programming Language Design: Confessions of a Connoisseur, by Gilad
Bracha (Google Inc.)

ICCSW’12 once again proved to be an international event, attracting both submissions
and attendees from the UK and the rest of Europe. The workshop was pleased to host in
excess of 100 participants from the following countries: Cyprus, France, Germany, Italy,
Poland, Romania, Switzerland and the United Kingdom. Furthermore, the workshop also
received submissions from: Greece, Ireland, the Netherlands, Saudi Arabia, Slovakia and
Taiwan!

We wish to thank all authors, accepted or not, who acted as reviewers, plus the handful
of external reviewers. Furthermore, our thanks also go out to our sponsors: Imperial College
London, who provided us with more than just financial support; Google and Cisco for their
gold-level sponsorship; and, finally, HP for providing travel bursaries to numerous authors.
Without the continual confidence and financial support of these organisations, ICCSW’12
would not have been possible. For this support we are truly grateful!

October, 2012
London

Andrew V. Jones

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Conference Organisation

Programme Committee

Feryal Mehraban Pour Behbahani Imperial College London
Marcel Chris Guenther Imperial College London
Petr Hosek Imperial College London
Andrew Vaughan Jones Imperial College London
Roman Kolcun Imperial College London
Nicholas Ng Imperial College London
Maria Nika Imperial College London
Iryna Tsimashenka Imperial College London
Calin-Rares Turliuc Imperial College London

Ambassadors

Shaswar Baban King’s College London
Helen Bolke-Hermanns RWTH Aachen
Alessandra Debenedictis George Mason University
Hans Decker TU Dortmund
Marco Diciolla University of Oxford
Matthew Forshaw Newcastle Universtiy
Alex Ginsca Iasi University
Evgenios Hadjisoterio University of Cyprus
Jesus Omana Iglesias Trinity College Dublin
Konstantinos Kloudas University of Rennes
Michał Knapik Polish Academy of Sciences
Alexandru Matei University College London
Artur Męski University of Łódź
Qais Noorshams Karlsruhe Institute of Technology
Oliver Perks University of Warwick
Hubert Plociniczak University of Lausanne
Alireza Pourranjbar University of Edinburgh
Sören Preibusch University of Cambridge
Philipp Reinecke Freie Universität Berlin
Luke Riley University of Liverpool
Ivan Shcherbakov Technische Universität Kaiserslautern
Son Tran City University London
Max Tschaikowski Ludwig Maximilian University of Munich

External Reviewers

Kamarul Abdul-Basit Newcastle University
Lama Al Khuzayem Imperial College London

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

x Conference Organisation

Abeer Al-Humaimeedy King’s College London
Theofanis Apostolopoulos King’s College London
Duangtida Athakravi Imperial College London
Michaela Bacikova Technical University of Košice
Emanuela Boros Alexandru Ioan Cuza University
Kleopatra Chatziprimou King’s College London
Tib Chis Imperial College London
Gabriele Cocco University of Pisa
William Denman University of Cambridge
Antoine Desmet Imperial College London
Dionysios Efstathiou King’s College London
Xiuyi Fan Imperial College London
Valentina Fedorova Royal Holloway, University of London
Daniele Filaretti Imperial College London
Alexandru Lucian Ginsca Alexandru Ioan Cuza University
Christos Hadjinikolis King’s College London
Peter Ivancak Technical University of Košice
Martin Jantsch Imperial College London
Gareth Jones Imperial College London
Dominik Lakatos Technical University of Košice
Martyn Lloyd-Kelly University of Liverpool
Daniel Lorencik Technical University of Košice
Michal Malohlava Charles University, Prague
Artur Meski Polish Academy of Sciences
Rabih Mohsen Imperial College London
Davide Morelli University of Pisa
Antonis Mouhtaropoulos University of Warwick
Milan Nosal Technical University of Košice
Kalia Orphanou University of Cyprus
Jan-Peter Ostberg University of Stuttgart
Mert Ozkaya City University London
Martin Pala Technical University of Košice
Oliver Perks University of Warwick
Alan Perotti University of Turin
Hubert Plociniczak École Polytechnique Fédérale de Lausanne
Luke Riley University of Liverpool
Marcelo Serrano Zanetti ETH Zurich
Lei Shi University of Warwick
Laura Surcel University of Craiova
Wilson Tan University of Warwick
Daniel Telgen University of Applied Sciences Utrecht
Martin Varga Technical University of Košice
Naveneetha Vasudevan King’s College London
Maria Vircikova Technical University of Košice
Andrada Voinitchi King’s College London
Wenlong Wang Imperial College London
Hu Xu University of Dundee
Jian Zhang University of Dundee

Supporters and Sponsors

Supporting Scientific Institutions

Imperial College London
http://www.imperial.ac.uk/

Sponsors

Google Inc.
http://www.google.com/

Cisco Systems, Inc.
http://www.cisco.com/

Hewlett-Packard Company
http://www.hp.com/

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Knowledge Transformation using a Hypergraph
Data Model
Lama Al Khuzayem1 and Peter McBrien1

1 Imperial College London
South Kensington Campus
London SW7 2AZ
l.al-khuzayem11@imperial.ac.uk
p.mcbrien@imperial.ac.uk

Abstract
In the Semantic Web, knowledge integration is frequently performed between heterogeneous know-
ledge bases. Such knowledge integration often requires the schema expressed in one knowledge
modelling language be translated into an equivalent schema in another knowledge modelling
language. This paper defines how schemas expressed in OWL-DL (the Web Ontology Language
using Description Logic) can be translated into equivalent schemas in the Hypergraph Data Model
(HDM). The HDM is used in the AutoMed data integration (DI) system. It allows constraints
found in data modelling languages to be represented by a small set of primitive constraint op-
erators. By mapping into the AutoMed HDM language, we are then able to further map the
OWL-DL schemas into any of the existing modelling languages supported by AutoMed. We show
how previously defined transformation rules between relational and HDM schemas, and our newly
defined rules between OWL-DL and HDM schemas, can be composed to give a bidirectional map-
ping between OWL-DL and relational schemas through the use of the both-as-view approach in
AutoMed.

1998 ACM Subject Classification H.2.5 Heterogeneous Databases

Keywords and phrases Knowledge Transformation, Hypergraph Data Model, BAV Mappings

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.1

1 Introduction

One of the crucial impediments that hinder the realisation of the Semantic Web vision is the
integration of ontologies [1, 2]. Since ontologies are a form of knowledge representation, we
use the terms ontology integration (OI) and knowledge integration (KI) interchangeably.

The increasing number of ontologies that were made publicly available on the Web,
has evolved the Web into a global ontology [3]. The main purpose of this global ontology
is to provide a unified query interface for the local ontologies. A crucial problem in this
context is how to specify the mappings between the global ontology and the local ontologies
[1]. The main mapping approaches cited in the literature are Global-As-View (GAV) [4],
Local-As-View (LAV) [4], Global-Local-As-View (GLAV) [5], and Both-As-View (BAV) [6].

The problem of OI has been extensively investigated in the literature (e.g. [1, 2, 7, 8,
9, 10, 11]). By closely examining these OI proposals, we have identified two things. Firstly,
while BAV is the most expressive mapping approach, none have used it. In contrast to GAV,
LAV, and GLAV, BAV is not only capable of providing a complete mapping between schemas
in both directions, but also the mappings between schemas are described as a pathway
of primitive transformation steps applied in sequence in the form of add, delete, rename,

© Lama Al Khuzayem and Peter McBrien;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 1–7

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Knowledge Transformation using a Hypergraph Data Model

extend, and contract. Hence a further advantage of the approach, is that composition of
data mappings may be performed such that mapping two schemas to one common schema
will produce a bidirectional mapping between the original two data sources [12]. Secondly,
current approaches integrate ontologies represented, for example, in the Resource Description
Framework Schema (RDFS) [13] or the Web Ontology Language (OWL) [14] by choosing one
of them as the Common Knowledge Model (CKM) and converting all the other modelling
languages into that CKM. Using a high-level CKM such as RDFS or OWL greatly complicates
the mapping process. This is because there is rarely a simple correspondence between their
modelling constructs [15].

In this paper, we show how to integrate knowledge bases, represented in OWL-DL, using
a low-level Hypergraph Data Model (HDM) as the CKM. Our approach has the advantage
of clearly separating the modelling of data structure from the modelling of constraints on
the data. Moreover, the HDM supports a very small set of low-level elemental modelling
primitives (nodes, edges, and constraints) which makes it better suited for use as a CKM
than higher-level modelling languages [15]. The HDM is the common data model of the
AutoMed DI system [12]. The AutoMed system [12] is distinguished from other DI systems
for handling a wide range of data modelling languages through representing their constraints
as BAV transformations [16]. Furthermore, by mapping into AutoMed’s HDM language, we
are then able to map the OWL-DL schemas into any of the existing modelling languages
supported by AutoMed.

The remainder of this paper is structured as follows. Section 2 gives a brief description
about the HDM. In Section 3, we show some of the representations of OWL-DL axioms
in HDM and in Section 4, we show how previously defined transformation rules between
relational and HDM schemas [16], and our newly defined rules between OWL-DL and HDM
schemas, can be composed to give a mapping between relational and OWL-DL schemas.
Finally, we state our conclusions in Section 5.

2 HDM Overview

In this Section, we provide a brief overview over the HDM and we refer the reader to [16]
for full details. An HDM schema is a structure in which data may be held and is defined as
follows:

I Definition 1. HDM Schema Given a set of Names that we may use for modelling the
real world, an HDM schema, S, is a triple Nodes, Edges, Cons where:

Nodes ⊆ {〈〈nn〉〉 | nn ∈ Names} Nodes is a set of nodes in the graph, each denoted by
its name enclosed in double chevron marks.
Schemes = Nodes ∪ Edges

Edges ⊆ {〈〈ne, s1, . . . , sn〉〉 | ne ∈ Names ∪ {_} ∧ s1 ∈ Schemes ∧ . . . ∧ sn ∈ Schemes}
Edges is a set of edges in the graph where each edge is denoted by its name, together
with the list of nodes/edges that the edge connects, enclosed in double chevron marks.
Cons ⊆ {c(s1, . . . , sn) | c ∈ Funcs ∧ s1 ∈ Schemes ∧ . . . ∧ sn ∈ Schemes} Cons is a set
of boolean-valued functions (constraints) whose variables are members of Schemes and
where the set of functions Funcs forms the HDM constraint language. In this paper we
only use the following:
1. inclusion(s1, s2) ≡ s1 ⊆ s2
2. mandatory(s1, . . . , sm, s) ≡ < s1, . . . , sm > B s

3. unique(s1, . . . , sm, s) ≡ < s1, . . . , sm > C s

4. reflexive(s1, s) ≡ s1
id→ s

L. Al Khuzayem and P. McBrien 3

I Example 1. We list in here the contents of an example HDM schema that we shall later, in
Figure 2, show to be equivalent to a relational schema. Note how the names of edges are
sometimes given as the character ‘_’ representing an unnamed edge.
Nodes = {〈〈ug〉〉, 〈〈ug:ppt〉〉, 〈〈student〉〉, 〈〈student:name〉〉, 〈〈student:sid〉〉,

〈〈result:grade〉〉, 〈〈course〉〉, 〈〈course:code〉〉, 〈〈course:dept〉〉}
Edges = {〈〈_,ug,ug:ppt〉〉, 〈〈_,student,student:sid〉〉, 〈〈_,student,student:name〉〉,

〈〈result,student,course〉〉, 〈〈_,〈〈result,student,course〉〉,result:grade〉〉,
〈〈_,course,course:dept〉〉, 〈〈_,course,course:code〉〉}

Cons = {〈〈ug〉〉C 〈〈_,ug,ug:ppt〉〉, 〈〈ug〉〉B 〈〈_,ug,ug:ppt〉〉,
〈〈ug:ppt〉〉B 〈〈_,ug,ug:ppt〉〉, 〈〈ug〉〉 ⊆ 〈〈student〉〉,
〈〈student〉〉C 〈〈_,student,student:sid〉〉, 〈〈student〉〉B 〈〈_,student,student:sid〉〉,
〈〈student:sid〉〉B 〈〈_,student,student:sid〉〉, 〈〈student〉〉C 〈〈_,student,student:name〉〉,
〈〈student〉〉B 〈〈_,student,student:name〉〉, 〈〈student〉〉 id→ 〈〈_,student,student:name〉〉,
〈〈student:name〉〉B 〈〈_,student,student:name〉〉,
〈〈result:grade〉〉B 〈〈_,〈〈result,student,course〉〉,result:grade〉〉,
〈〈result,student,course〉〉C 〈〈_,〈〈result,student,course〉〉,result:grade〉〉,
〈〈course〉〉C 〈〈_,course,course:dept〉〉, 〈〈course〉〉B 〈〈_,course,course:dept〉〉,
〈〈course:dept〉〉B 〈〈_,course,course:dept〉〉, 〈〈course〉〉C 〈〈_,course,course:code〉〉,
〈〈course〉〉B 〈〈_,course,course:code〉〉, 〈〈course〉〉 id→ 〈〈_,course,course:code〉〉,
〈〈course:code〉〉B 〈〈_,course,course:code〉〉}

3 Representing OWL-DL in HDM

We now discuss how OWL-DL axioms and facts may be represented in the HDM, and hence
translated into other modelling languages. For conciseness, we only discuss those OWL-DL
constructs listed in Table 1, which are sufficient to describe how the OWL-DL ontology
depicted in Figure 1 can be translated into the HDM shown in Figure 1(b).

Table 1 HDM Representations of Some OWL-DL Axioms.

OWL-DL Name DL Syntax Scheme HDM Representation
owl:Thing > 〈〈owl:Thing〉〉 Node 〈〈owl:Thing〉〉
owl:Nothing ⊥ 〈〈owl:Nothing〉〉 Node 〈〈owl:Nothing〉〉
Class C 〈〈C〉〉 Node 〈〈C〉〉
SubClassOf (C1 C2) C1 v C2 〈〈v, C1, C2〉〉 Constraint 〈〈⊆, 〈〈C1〉〉, 〈〈C2〉〉〉〉
ObjectProperty P 〈〈P, C1, C2〉〉 Edge 〈〈P, 〈〈C1〉〉, 〈〈C2〉〉〉〉
FunctionalProperty T v≤ 1P 〈〈P, C1, C2, func〉〉 Edge 〈〈P, 〈〈C1〉〉, 〈〈C2〉〉〉〉

Constraint 〈〈B, 〈〈C1〉〉, 〈〈C2〉〉〉〉
Constraint 〈〈C, 〈〈C1〉〉, 〈〈C2〉〉〉〉

I Example 2. Consider the OWL-DL schema illustrated in Figure 1(a) which represents
concepts in a university Universe of Discourse and its relationships. Using the representations
of OWL-DL axioms shown in Table 1, we present an equivalent HDM schema for the OWL-DL
schema depicted in Figure 1(b). All classes such as owl:Thing, student, and course were
represented as HDM Nodes. Functional properties such as hasName, hasSid, and hasPpt were
represented as HDM edges with mandatory (B) and unique (C) constraints. The SubClassOf
axioms such as (student v owl:Thing), (course v owl:Thing), and (ug v student) were
represented as an inclusion constraint (⊆). Note that in the HDM diagram, HDM nodes are

ICCSW’12

4 Knowledge Transformation using a Hypergraph Data Model

student ⊑ owl:Thing ⊓ 1 hasName.name ⊓ 1 hasSid.sid

course ⊑ owl:Thing ⊓ 1 hasCode.code ⊓ 1 hasDept.dept

ug ⊑ student ⊓ ∃ hasPpt.ppt

result ⊑ owl:Thing

result ≡ 1.forStudent
result ≡ 1.forCourse
1.hasGrade ⊑ result

grade ⊑ ∃ hasGrade

T ⊑ hasGrade.grade

T ⊑ hasGrade−.result

T ⊑ forStudent.student

T ⊑ forStudent−.result

T ⊑ forCourse.course

T ⊑ forCourse−.result

student ⊓ course ⊑ ⊥

(a) An OWL-DL schema of the student-course knowledge base

ug

ug:

ppt

✄

✁

✄

student:
name

✄

student

✄

✁

student:
sid

✄

✁

✄

⊆

⊆ ⊇

⊆

owl:
Thing

✄

✁

✄

✁

✁

✄

result

result:
grade

course:
code

✄

course

✄

✁

forStudent forCourse

hasDepthasGradehasSidhasPpt

hasName hasCode

course:
dept

✄

✁

✄

(b) HDM representation of the OWL-DL schema

Figure 1 An OWL-DL schema and its equivalent HDM schema.

represented by white circles with thick outlines, and HDM edges are represented by thick
black lines. The HDM constraint language is represented by grey dashed boxes connected by
grey lines to the nodes and edges to which the constraint applies. Edges pass through black
circles in a straight line, hence any edge or constraint applying to an edge meets that edge at
an angle.

4 OWL-DL Knowledge Bases Transformation using the BAV Model

In [16], five general purpose equivalence mappings that allow the transformation between
different modelling languages were proposed namely: Inclusion Merge, Identity Node Merge,
Unique-Mandatory Redirection, Identity Edge Merge, and Node Reidentify. In this paper, we
show how we can use them to transform between a knowledge model, the OWL-DL shown
in Figure 1(a) and a data model, the relational shown in Figure 2(a). Taking the HDM
equivalent schemas of these OWL-DL and relational schemas illustrated in Figure 1(b) and
Figure 2(b) respectively and applying some of these BAV-defined mappings, we were able to
transform the HDM relational schema into an HDM OWL-DL schema through 21 steps as
shown below.

L. Al Khuzayem and P. McBrien 5

ug(name,ppt)
student(name,sid)
course(code,dept)
result(code,name,grade?)

ug.name → student.name
result.name → student.name
result.code → course.code

(a) Relational schema for the student-course database

ug:
name

✄

ug

id
→

✄✁

ug:

ppt

✄

✁

✄

student:
name

✄

student

id
→

✄✁

student:
sid

✄

✁

✄

⊆

id
→

✄✁

✶

result:
name

✄

✁

result

result:
grade

✄

⊇
result:
code

✄

⊆
course:
code

✄

course

id
→

✄✁

course:
dept

✄

✁

✄

(b) HDM representation of the relational database schema

Figure 2 A relational schema and its equivalent HDM schema.

The first 5 steps are identical to those in transforming relational to ER HDM schemas
shown in [16]. Applying these 5 steps results in Figure 3. When transforming from a key
based model (such as relational) and a knowledge model that does not provide means to
define keys (such as OWL-DL), we must overcome some fundamental differences which
require, in our example, extending the object identifiers (OIDs) of 〈〈student〉〉, 〈〈course〉〉, and
〈〈result〉〉 respectively as illustrated in steps 6-8. The transformations associated with step
6 are illustrated in Example 3. Steps 7 and 8 are similar to step 6 thus, we do not explain
them here. Step 9 is again similar to step 7 in relational and ER HDM schemas conversion
given in [16]. Steps 10-13 illustrate adding the 〈〈owl:Thing〉〉 node along with three inclusion
constraints (⊆) to it from the 〈〈student〉〉, 〈〈course〉〉, and 〈〈result〉〉 nodes. Finally, all we need
to do to obtain the OWL-DL HDM schema is to rename the edges as shown in steps 14-21.
The result of these 21 steps is the schema shown in Figure 1(b).

1. inclusion_merge (〈〈student:name〉〉,〈〈_,result:name, result〉〉)
2. inclusion_merge (〈〈course:code〉〉, 〈〈_, result:code, result〉〉)
3. identity_node_merge (〈〈_,ug:name, ug〉〉)
4. unique_mandatory_redirection (〈〈_, student:name, result〉〉, 〈〈_, student:name, student〉〉)
5. unique_mandatory_redirection (〈〈_, course:code, result〉〉, 〈〈_, course:code, course〉〉)
6. extend_OID (〈〈student〉〉 id→〈〈_,student,student:name〉〉)
7. extend_OID (〈〈course〉〉 id→〈〈_,course,course:code〉〉)
8. extend_OID (〈〈result〉〉 id→〈〈_,result,student:name〉〉 on 〈〈_,result,course:code〉〉)

ICCSW’12

6 Knowledge Transformation using a Hypergraph Data Model

9. move_dependants (〈〈student:name〉〉, 〈〈student〉〉, 〈〈_,student:name, student〉〉)
10. addNode (〈〈owl:Thing〉〉)
11. addCons (〈〈student〉〉 ⊆ 〈〈owl:Thing〉〉)
12. addCons (〈〈course〉〉 ⊆ 〈〈owl:Thing〉〉)
13. addCons (〈〈result〉〉 ⊆ 〈〈owl:Thing〉〉)
14. renameEdge(〈〈_,course,course:dept〉〉,〈〈hasDept,course,course:dept〉〉)
15. renameEdge(〈〈_,course,course:code〉〉,〈〈hasCode,course,course:code〉〉)
16. renameEdge(〈〈_,result,result:grade〉〉,〈〈hasGrade,result,result:grade〉〉)
17. renameEdge(〈〈_,result,course〉〉,〈〈forCourse,result,course〉〉)
18. renameEdge(〈〈_,result,student〉〉,〈〈forStudent,result,student〉〉)
19. renameEdge(〈〈_,student,student:sid〉〉,〈〈hasSid,student,student:sid〉〉)
20. renameEdge(〈〈_,student,student:name〉〉,〈〈hasName,student,student:name〉〉)
21. renameEdge(〈〈_,ug,ug:ppt〉〉,〈〈hasPpt,ug,ug:ppt〉〉)

ug

ug:

ppt

✄

✁

✄

student:
name

✄

student

id
→

✄✁

student:
sid

✄

✁

✄

⊆

id
→

✄✁

✶

✁

✄

result

result:
grade

course:
code

✄

course

id
→

✄✁

course:
dept

✄

✁

✄

Figure 3 Intermediate HDM schema in relational to OWL-DL conversion, after steps 1–5.

I Example 3. Transformations associated with step 6:
1. inverse_identity_node_merge(〈〈student〉〉,〈〈student:oid〉〉)
2. deleteCons(〈〈student〉〉 id→〈〈_,student,student:oid〉〉)
3. node_reident(〈〈student〉〉, { 〈x, y〉 | 〈o,x〉 ∈ 〈〈_,student,student:oid〉〉∧〈o,y〉 ∈ 〈〈_,student,student:name〉〉})
4. deleteCons(〈〈student〉〉 id→〈〈_,student,student:name〉〉)
5. deleteCons(〈〈student〉〉 C 〈〈_,student,student:name〉〉)
6. deleteCons(〈〈student〉〉 B 〈〈_,student,student:name〉〉)
7. deleteCons(〈〈student:oid〉〉 C 〈〈_,student,student:name〉〉)
8. deleteCons(〈〈student:oid〉〉 B 〈〈_,student,student:name〉〉)
9. contractEdge(〈〈_,student,student:name〉〉)

10. contractNode(〈〈student:name〉〉)
11. renameNode(〈〈student:oid〉〉, 〈〈student:name〉〉)

Note that the inverse of identity node merge in transformation 1 generates a new
node 〈〈student:oid〉〉, connected to 〈〈student〉〉 by a new edge 〈〈_,student,student:oid〉〉. Trans-
formations 2-4 have the net effect of repopulating the 〈〈student〉〉 node with values of the
〈〈student:name〉〉 attribute, and deleting the keys from name and oid. Transformations 5-11
delete the 〈〈student:name〉〉 node (with its associated constraints and edge) and rename the
node 〈〈student:oid〉〉 with 〈〈student:name〉〉.

L. Al Khuzayem and P. McBrien 7

5 Conclusions

In this paper, we have defined how schemas expressed in OWL-DL can be translated into
equivalent schemas in HDM. We have also given an example, using the AutoMed system,
that shows how to map between HDM OWL-DL schemas and HDM relational schemas
which results in a bidirectional mapping between OWL-DL and relational schemas, and vice
versa. Our future work will expand our approach by defining schemas expressed in other
knowledge modelling languages such as OWL 2 in HDM. This might include extending the
HDM constraint language in order to accomodate the richness of such modelling languages.

References
1 Calvanese, D., Giuseppe, G., and Lenzerini, M., 2001. Ontology of Integration and Integra-

tion of Ontologies. In: DL.
2 Noy, N., 2004. Semantic Integration: A Survey of Ontology-Based Approaches. SIGMOD

Record, 33(4), pp. 65–70.
3 Kalfoglou, Y. and Schorlemmer, M. 2003. Ontology Mapping: The State of the Art. The

Knowledge Engineering Review. 18(1), Publisher: Cambridge University Press, pp. 1-31.
4 Lenzerini, M. 2002. Data Integration: A Theoretical Perspective. In Proc. PODS’02, pp.

233-246. ACM.
5 Madhavan, J. and Halevy, A.Y. 2003. Composing Mappings Among Data Sources. In Proc.

VLDB’03, pp. 572-583.
6 Boyd, M., Kittivoravitkul, S., Lazanitis, C., McBrien, P. and Rizopoulos, N. 2004. AutoMed:

A BAV Data Integration System for Heterogeneous Data Sources. In Proc. CAiSE’04.
LNCS.

7 Noy, N., 2003. What Do We Need for Ontology Integration on the Semantic Web. In:
ISWC’03. Sanibel Island, Florida.

8 Udrea, O., Getoor, L., and Miller, R. 2007. Leveraging Data and Structure in Ontology
Integration. In: SIGMOD ‘07. Beijing, China. pp. 449-460.

9 Lv, Y., and Xie, C. 2010. A Framework for Ontology Integration and Evaluation. IEEE.
pp. 521-524.

10 Jimenez-Ruiz, E., Grau, B., Horrocks, I., and Berlanga, R. 2009. Ontology Integration
Using Mappings: Towards Getting the Right Logical Consequences. In: Proc. of ESWC’09.

11 N.F. Noy and M. Musen. 2000. PROMPT: Algorithm and Tool for Automated Ontology
Merging and Alignment. In Proc. of AAAI’00, Austin, TX, USA.

12 Smith, A., Rizopoulos, N., McBrien, P. 2008. AutoMed Model Management. In:Proc. of
ER’08. LNCS, vol. 5231, pp. 542–543. Springer, Heidelberg (2008).

13 W3C. RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recommendation
10 February 2004. Available at: http://www.w3.org/TR/rdf-schema/

14 W3C. Web Ontology Language Guide. W3C Recommendation 10 February 2004. Available
at: http://www.w3.org/TR/2004/REC-owl-guide-20040210/

15 McBrien, P. and Poulovassilis, A. 1999. A Uniform Approach to Inter-Model Transforma-
tions. In: Proc. CAiSE’99. p.333-348, June 14-18, 1999.

16 Boyd, M. and McBrien, P. 2005. Comparing and Transforming Between Data Models via
Intermediate Hypergraph Data Model. pp. 69-109, Springer-Verlag, ISBN-13 978-3-540-
31001-3, ISSN 0302-9743.

ICCSW’12

A heuristic for sparse signal reconstruction

Theofanis Apostolopoulos1

1 King’s College, London, Department of Informatics
Strand, London, WC2R 2LS, United Kingdom,
theofanis.apostolopoulos@kcl.ac.uk

Abstract
Compressive Sampling (CS) is a new method of signal acquisition and reconstruction from fre-
quency data which do not follow the basic principle of the Nyquist-Shannon sampling theory.
This new method allows reconstruction of the signal from substantially fewer measurements than
those required by conventional sampling methods. We present and discuss a new, swarm based,
technique for representing and reconstructing signals, with real values, in a noiseless environ-
ment. The method consists of finding an approximation of the l0-norm based problem, as a
combinatorial optimization problem for signal reconstruction. We also present and discuss some
experimental results which compare the accuracy and the running time of our heuristic to the
IHT and IRLS methods.

1998 ACM Subject Classification I.5.4 Signal Processing (Applications)

Keywords and phrases Compressive Sampling, sparse signal representation, l0 minimisation,
non-linear programming, signal recovery

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.8

1 Introduction

Over the last few years, a number of different methods for sparse approximation in signal
reconstruction have arised including the Compressive Sampling technique. Compressive
Sampling (CS) states that it is possible to reconstruct signals accurately and almost exactly
from much fewer number of measurements than those required by the Nyquist-Shannon
sampling theory. To achieve this, the method relies on two major principles: sparsity of signal
and incoherence of the measurements being taken [2, 7, 8, 9, 10, 11, 13, 15, 20]. Sparsity
implies that only a small percentage of the signal entries (less than 40%) in a known transform
domain is nonzero or significantly different from zero [8, 11, 20, 21, 15, 20]. Incoherence in
measurements states that all the collected samples of a signal are randomly generated and
independent to each other [7, 8, 11, 15, 20, 21]. For simplicity, we use signals with real values
each of which can be presented as a vector X = [x1, x2, . . . , xn]. In this article we propose a
new swarm based method for sparse signal representation and reconstruction based on the
key mathematical insights underlying this new theory. We compare the proposed method
with two well-known signal reconstruction methods in terms of time and recovery error. The
rest of this article is organised as follows: The next section presents the signal reconstruction
problem and how the algorithm deals with it. Then, the algorithm is stated in Section 3,
while in Section 4, we briefly describe the alternative algorithms used for comparison. Section
5 provides and presents some experimental results of our algorithm and its comparison with
the other two methods.

© Theofanis Apostolopoulos;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 8–14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.8
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

T. Apostolopoulos 9

2 The Signal Reconstruction problem

Obtaining sparse solutions from an under-determined system of linear equations has been of
paramount importance in the area of signal processing and analysis. The CS theory aims
to obtain the sparsest possible representation of the signal X = [x1, x2, . . . , xN], from an
under-determined system of linear measurements Y ∈ <M , so as Y = CX, where X ∈ <N is
the signal vector we want to find and C ∈ <M×N is a Sensing matrix used for under-sampling
X (with M � N). This ill-posed problem can be modelled as an optimisation problem
(signal reconstruction problem) as follows [2, 7, 9, 11, 13, 15, 20, 21]:

min ‖X‖l0 s.t. Y = CX, (1)

where ‖X‖l0 is the l0 norm which is equal to the number of non-zero components in the
vector X. Finding the solution to problem (1) is NP-hard due to its nature of non-convex
combinational optimization [2, 7, 9, 11, 13, 15]. For this reason many researchers suggested
replacing the l0 norm with the convex approximation of l1 norm [7, 9, 11, 13, 15, 19]. However,
it is still possible to reconstruct sparse signals using the constrained l0-minimisation, which
in many situations outperforms even l1-minimisation in the sense that substantially fewer
measurements are needed for recovery [1, 14, 16, 17, 19, 22]. The main idea is to approximate
the l0 norm by a smooth continuous function which is easier to handle and does not suffer
from the discontinuities of the l0 norm. This function can be defined as [1, 14, 16, 17, 22]:

‖X‖l0 ≈ fσ(X) = N −
N∑
i=1

fσ(xi) = N −
N∑
i=1

exp(−|xi|
2

2σ2), (2)

where xi is the i-th element of the signal (vector) X of N terms (length) and fσ(X) is a
continuous function, which belongs to the Gaussian family of functions. The σ is actually a
decreasing sequence of constants [σ1, σ2, . . . , σj] for every iteration of the method so as to
maximise the smoothed l0 norm of the problem. Then, the problem can be defined as:

max fσ(X) = (N −
N∑
i=1

exp(−|xi|
2

2σ2)) s.t. Y = CX (3)

Now we have a smooth objective function, though non-linear, which is much easier for
calculations. The purpose is to maximise the objective function in (3) together with the
minimisation of the real parameter σ. The value of this parameter represents the tradeoff
between accuracy and smoothness of the approximation.The smaller the σ, the better the
approximation, while the larger the σ, the smoother the approximation. Also note that the
minimisation of l0 norm is actually equivalent with the maximisation of the fσ for sufficiently
small σ. For small values of σ, fσ contains a lot of local maxima and thus it is difficult to
maximise it. Therefore, we need to set this parameter initially very large so as to make
the objective function convex and then gradually decrease it according to the value of the
objective function so as to enter the region close to its global maximiser.

3 The Proposed Algorithm

In this section we present the pseudocode of the proposed method (Pseudocode (1)) together
with the parameter settings used. The method is an iterative process which is based on the
swarm optimisation. The computation is conducted by a group of agents, where every agent
carries a solution which is slightly different from the other agents. At each iteration t the

ICCSW’12

10 A heuristic for sparse signal reconstruction

Pseudocode 1
Problem : Determine a vector X s.t. CX = Y .
Inputs : σ, C, Y , Iterations , Agents , Sparsity level S, fσ(X).
Outputs : best value fσ∗(X), best sparse vector X∗.
Proposed swarm based method :
Generate Initial X

(0)
i using (4) for every swarm i

Set σ
(0)
i = 2 ×Xmax for every swarm i

While (t < Iterations) (for all iterations)
For all Agents (for all swarms)

Evaluate fσ(X) for every X
(t)
i

Find current best X
(t)
∗ so as max fσ(X) and minσ

Set X
(t)
∗ = X

(t)
i′ (keep the best i’th solution)

Check X
(t)
∗ entries for non - feasible values (Pseudocode (2))

Consider the constrains CX = Y (project back to feasibility
set): X

(t)
∗ = X

(t)
∗ − CT (CCT)−1(CX(t)

∗ − Y)
Set all but S largest entries of X

(t)
∗ to zero

Generate new solutions for all the other agents based on (5)
End For all Agents (for all swarms)

Set σ(t+1) = σ(t) × 0.5
End While (t < Iterations)

Display the signal reconstruction error using equation (9).

current best solution X(t)
∗ that maximises fσ and minimises σ is chosen. It is then corrected

in terms of feasibility and bounds of its values. All the other agents are destroyed and a new
solution is generated for each of them based on the previously created one. Again all the
solutions are evaluated against the current best solution, which is updated, till the method
completes all the number of iterations given. Also, note that the σ value is initially assigned
to twice the maximum value of the vector X and then it is gradually decreased by half at
each iteration. This particular assignment was chosen based on the nature of the given
test vector (signal). Finally, it is notable that every solution vector generated is projected
back to the feasibility set based on the constraints equation CX = Y and then only the S
largest entries are kept, setting all the others equal to zero. This step of the method is very
important as it achieves the necessary feasibility of the new solution and also follows the
sparsity level of the original vector (signal).

3.1 Initial Solution
The initial solution generated in vector format, for each swarm i, is given as:

X
(0)
i = ((CTC)−1CTY) + k, (4)

where, (CTC)−1CTY is the pseudo-inverse of matrix C, X(0)
i is the initial solution vector for

agent i and k is a vector of small random numbers based on the lowest value of the original
signal X. This k value is slightly different for every agent that carries a solution.

3.2 Solution Generation
The generation of a new solution in vector format for each swarm i is generated as:

X
(t)
i = 2× kt ×X(t−1)

i × σ4L + (1− kt)× 1/M × L, (5)

T. Apostolopoulos 11

Pseudocode 2
Repeat for each dimension d of vector X (for each element xj)

If xj < Xmin, Then xj = Xmin
Else If xj > Xmax, Then xj = Xmax
Else the value of entry xj is kept the same.

End of Repeat for each dimension d of vector X

where, M is the number of samples, k is a vector of small random numbers between 0 and 1,
different for every swarm i, t is the current iteration, while X(t)

i and X(t−1)
i is the current

and the previously generated solution vector of the i-th swarm. L is the norm ‖Y −CX(t)
∗ ‖l2

which stands for the Euclidean distance between the samples vector Y and the product
between the Sampling matrix C and the current best solution at iteration t, X(t)

∗ .

3.3 Solution Correction
Every solution vector X(t)

i created in Equation (5) is tested and corrected so as to be within
the given ranges of the original vector (signal). Xmin and Xmax are the minimum and
maximum value of the given original signal, which remain the same for all iterations. The
whole procedure is presented in Pseudocode (2).

4 Alternative Algorithms

Several methods have been proposed to find the sparsest solution of the under-determined
system of linear equations in (1), including many methods for obtaining signal representations
in over-complete dictionaries. These methods range from general approaches, like the Basis
Pursuit (BP), Orthogonal Matching Pursuit (OMP) and the method of Matching Pursuit
(MP) [6, 18] to more sophisticated ones such as a Steepest Descent/Ascent methods [1, 16]
together with the IHT [3, 4, 5] and IRLS [12] methods, which will be briefly described in
this Section. In our point of view, all these methods have both advantages and shortcomings;
some are very slow in convergence, such as BP and OMP methods, while others have low
estimation quality especially for large systems of equations, such as IRLS. Furthermore, to
the best of our knowledge, we are not aware of any swarm based techniques used in the
Compressive Sampling framework so far.

4.1 Iterative Hard Thresholding (IHT)
Iterative Hard Thresholding Algorithm (IHT) is a simple, yet efficient, iterations based
method for signal reconstruction, which uses a non-linear operator (Pk) to reduce the value
of the l0 norm at every iteration. The new solution is generated as follows [3, 4, 5]:

X(t) = Pk(X(t−1) + CT (Y − CX(t−1))), (6)

where, Y is the samples vector, C the Sensing matrix, and X(t−1), X(t) are the current and
the new generated solution. Pk is a hard thresholding operator that sets all but K largest
elements to zero. The algorithm can be summarised in Pseudocode (3) [3, 4, 5].

4.2 Iteratively Re-weighted Least Squares (IRLS)
This algorithm tries to reconstruct sparse signals, using a re-weighted least squares method
for computing local minima of the non-convex problem. It replaces the l0 norm with a

ICCSW’12

12 A heuristic for sparse signal reconstruction

Pseudocode 3
Input : Matrix C, vector Y , sparsity level k, number of iterations T

Output : Approximation vector X

The IHT Method :
Set X(0) = 0
while (t < T) (number of iterations)

X(t) = Pk(X(t−1) + CT (Y − CX(t−1)))
end while (t < T)

weighted l2 norm, as follows [12]:

min
N∑
i=1

wix
2
i , s.t. CX = Y, (7)

where, the weights wi are calculated based on the previous solution so as the objective
function is a first order approximation of the lp objective function (0 ≤ p ≤ 1). The new
solution at k-th iteration is generated as follows [12]:

x(k) = QnC
T (CQnCT)−1Y, (8)

where, Qn is a diagonal matrix with entries 1/wi = 1/((x(k−1)
i)2 + ε)p/2−1 and ε > 0 is a

small constant used to regularise the optimisation problem. The whole procedure is repeated
a number of iterations based on the nature of the problem.

5 Experimental Results

In this Section we conduct numerical experiments to test the performance and the efficiency
of the proposed heuristic. Table (1) shows the average time and the recovery error of the
methods for the test run. It can be seen that the proposed heuristic performed faster than the
others with better results. Notice that all the algorithms are based on non-linear problems
and that all of them performed well in the under-sampled case of 70 samples. In experiments
conducted, the Revised Simplex method (used for solving the l1 equivalent convex problem)
performed better than all the previous methods (10−16 error) for more than 200 samples
and failed in smaller sample sizes (70, 100, 150 samples), where the three methods discussed
achieved very good results. However, all the three methods failed to recover a signal using less
than 70 samples, which appears to be the limit for efficient recovery. All the computations

Table 1 Average Time and Recovery Error for IHT, IRLS and Proposed method.

Iterations Time Recovery Error Complexity Algorithm
30 0.32335 0.0338 linear IHT
30 0.27018 0.0653 linear IRLS
23 0.24875 0.0281 linear Proposed method

were performed on an Intel Core2 Duo CPU (2 GHz) with 2 GB RAM, using Matlab R2010a
under MS Windows 7 Ultimate. The whole experiment took less than 2 mins. A discrete
time randomly generated signal (in vector format) of 500 entries with 10% sparsity (non-zero
entries) has been used for 100 test runs with 70 samples. This simple signal was constructed
using the Real Gaussian model (i.e. using Standard Normal distribution) to generate real

T. Apostolopoulos 13

values between 0 and 10, which constitutes a realistic model for testing the efficiency of the
methods. The signal reconstruction error is defined as [7, 9, 11, 15, 20]:

Recovery Error = ‖X − X̂‖l2/‖X‖l2 , (9)

where X and X̂ is the original and the recovered signal, while ‖X − X̂‖l2 stands for the
Euclidean distance between these two vectors. Note that the Euclidean distance of the vector
‖X‖l2 is simply the square root of the sum of the squares of its elements. The CPU time was
used as a rough estimation of time in secs, while 12 agents have been used by the proposed
method, during this simulation.

6 Conclusions – Future work

In this article, an efficient heuristic for finding a sparse approximation of a signal, by solving
an under-determined system of linear equations with non-linear objective function, has been
proposed. It is based on maximising a smooth approximation of the l0 norm. Although the
presented heuristic has no guarantee of achieving a global minimum as does its convex l1
analogue, the local minimum found by solving the non-convex problem in (1) typically allows
for accurate and successful signal reconstruction even at much higher under-sampling rates
where linear optimisation fails. Overall, the method has shown to be better in accuracy
for a small number of samples and a bit faster than other alternative algorithms, without
adding complexity, for the same randomly generated signal in a noiseless environment. A
potential improvement of this heuristic is to re-weight the smooth l0 norm using coefficients
at every iteration; a technique that has been applied successfully to similar l0 and l1 norm
based CS problems [10, 12, 17]. The algorithm’s adaption in noisy environments constitutes
another realistic improvement with much higher applicability since it is already known that
the IHT and IRLS have not been extensively tested in noisy environments. Finally, potential
applications of this method include the areas of signal separation, de-noising in images and
signals, image sparse representation and inpainting (i.e. the process of reconstructing lost
parts of images) [15, 20].

Acknowledgements The author would like to particularly thank his primary supervisor,
Dr. Tomasz Radzik, for his insight and constructive comments at an earlier version of this
article, and the anonymous reviewers for their valuable suggestions.

References
1 S. Ashkiani, M. Babaie-Zadeh, and C. Jutten. Error correction via smoothed l0-norm

recovery. IEEE Statistical Signal Processing Workshop (SSP), pages 289–292, June 2011.
2 Richard Baraniuk. Compressive sensing. IEEE Signal Processing Magazine, pages 118–120,

2007.
3 Thomas Blumensath. Iterative hard thresholding: Theory and practice. Technical report,

Institute for Digital Communications, Signal and Image Processing, The University of
Edinburgh, February 2009.

4 Thomas Blumensath and Mike E. Davies. Iterative hard thresholding for compressed sens-
ing. Applied and Computational Harmonic Analysis, 27(3):265–274, 2008.

5 Thomas Blumensath and Mike E. Davies. Iterative hard thresholding for compressed sens-
ing. Applied and Computational Harmonic Analysis, May 2008.

6 T. Tony Cai. Orthogonal matching pursuit for sparse signal recovery. IEEE Transactions
on Information Theory, 57:1–26, 2011.

ICCSW’12

14 A heuristic for sparse signal reconstruction

7 E. J. Candès. Compressive sampling. Proceedings of the International Congress of Math-
ematicians, Madrid, Spain, 2006.

8 E. J. Candès and J. Romberg. Sparsity and incoherence in compressive sampling. Inverse
Problems, 23(3):969–985, June 2007.

9 E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal recon-
struction from highly incomplete frequency information. IEEE Transactions on Information
Theory, 52(2):489–509, February 2006.

10 E. J. Candès, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted l1 minimization.
Journal of Fourier Analysis and Applications, 14(5):877–905, December 2004.

11 E. J. Candès and M. B. Wakin. An introduction to compressive sampling. IEEE Signal
Processing Magazine, 25(2):21–30, March 2008.

12 Rick Chartrand and Wotao Yin. Iteratively reweighted algorithms for compressive sensing.
IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3869 –
3872, March 2008.

13 D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–
1306, April 2006.

14 Dongdong Ge, Xiaoye Jiang, and Yinyu Ye. A note on complexity of lp minimisation,
February 2010.

15 Stephane Mallat. A Wavelet Tour of Signal Processing, Third Edition (The Sparse Way).
Academic Press, 3 edition, 2009.

16 H. Mohimani, M. Babaie-Zadeh, and C. Jutten. A fast approach for overcomplete sparse
decomposition based on smoothed l0 norm. IEEE T. Signal Processing, 57:289–301, Novem-
ber 2009.

17 J.K. Pant, Lu Wu-Sheng, and A. Antoniou. Reconstruction of sparse signals by minimizing
a re-weighted approximate l0-norm in the null space of the measurement matrix. Circuits
and Systems (MWSCAS),53rd IEEE International Midwest Symposium, pages 430–433,
August 2010.

18 Scott Chen Shaobing, David L. Donoho, and Michael A. Saunders. Atomic decomposition
by basis pursuit. SIAM Journal on Scientific Computing, 20:33–61, 1998.

19 Yoav Sharon, John Wright, and Yi Ma. Computation and relaxation of conditions for equi-
valence between l1 and l0 minimization. Technical report, Coordinated Science Laboratory
at University of Illinois, Urbana-Champaign, 2007.

20 Jean-Luc Starck, Fionn Murtagh, and Jalal M. Fadili. Sparse Image and Signal Processing;
Wavelets, Curvelets, Morphological Diversity. Cambridge University Press, United King-
dom, 2010.

21 Michael Wakin. Compressed sensing, September 2009.
22 Qu Xiaobo, Cao Xue, Guo Di, Hu Changwei, and Chen Zhong. Compressed sensing mri

with combined sparsifying transforms and smoothed l0 norm minimisation. Acoustics Speech
and Signal Processing (ICASSP), IEEE International Conference, pages 626–629, March
2010.

Predicate Invention in Inductive Logic
Programming
Duangtida Athakravi, Krysia Broda, and Alessandra Russo

Department of Computing, Imperial College London, U.K.
{da407,kb,a.russo}@doc.ic.ac.uk

Abstract
The ability to recognise new concepts and incorporate them into our knowledge is an essential part
of learning. From new scientific concepts to the words that are used in everyday conversation,
they all must have at some point in the past, been invented and their definition defined. In
this position paper, we discuss how a general framework for predicate invention could be made,
by reasoning about the problem at the meta-level using an appropriate notion of top theory in
inductive logic programming.

1998 ACM Subject Classification I.2.6 Learning, D.1.6 Logic Programming

Keywords and phrases Predicate invention, Inductive logic programming, Machine learning

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.15

1 Predicate Invention

In Inductive Logic Programming (ILP) a hypothesis H (a set of rules) is learned from some
background knowledge B and a set of observed positive and negative examples E = E+∪E−,
using mode declarations as bias for the syntax of the rules. The learned hypothesis should
be the most general one that will make the positive examples derivable once the hypothesis
is added to the background knowledge (B ∪H � E+) and is consistent with the negative
examples (∀e− ∈ E− : B ∪H 2 e−).

Mode declarations contains the schema for the allowed literals in the rule, and can be of the
form modeh(s) or modeb(s) for the head or body of the rule respectively. The schema s is a
grounded literal with placemarkers of the form ‘+type′, ‘−type′, or ‘#type′, with type corres-
ponding to the type of the literal’s argument. The symbols ‘+′, ‘−′, and ‘#′ indicates whether
the argument should be a variable in the head of the rule or one from previous body literals
in the rule (input variable), a new fresh variable (output variable), or a constant respectively.
Thus, the mode declarations modeh(fly(+bird)) and modeb(wings(+bird, #property,−int))
would allow a rule such as fly(X)← wings(X, has_flight_feathers, Y) to be constructed,
where X is a bird and Y is an integer, with has_flight_feathers being a property of the
bird’s wings.

Predicate Invention is when the hypothesis includes a predicate that was neither within
the background knowledge nor the examples. There are two reasons why a new predicate
may be invented:
1. Reformulation: To identify interesting concepts not directly related to the learning goal

that could be used to restructure the program. For example, if the background knowledge
contains the rules:
pigeon(X)← beak(X), feathers(X), wings(X), f ly(X).
penguin(X)← beak(X), feathers(X), wings(X),¬fly(X).
These rules share many conditions which could be factored out by inventing a new
predicate bird/1, with the definition of bird(X) ← beak(X), feathers(X), wings(X).

© Duangtida Athakravi, Krysia Broda, and Alessandra Russo;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 15–21

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.15
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

16 Predicate Invention in Inductive Logic Programming

The new predicate can then be used to replace all occurrences of the shared conditions
within the background knowledge:
pigeon(X)← bird(X), f ly(X).
penguin(X)← bird(X),¬fly(X).
bird(X)← beak(X), feathers(X), wings(X).

2. Bias Shift: To specialise an overgeneral hypothesis and make it consistent with the
examples. This is when the vocabulary available to the learner is not sufficient for
constructing a consistent hypothesis. Therefore a new predicate is needed for specialising
the overgeneral hypothesis such that it would no longer cover negative examples. Consider
the following ILP problem:

B = { bird(alex). E+ = { fly(alex). }
bird(bob). } E− = { fly(bob). }

M = { modeh(fly(+bird)). }
The current vocabulary is not strong enough to construct a consistent hypothesis. The
mode declaration only allows the rule fly(X), which is not sufficient for discriminating the
negative example fly(bob) from the positive one. Furthermore, no other conditions can
be added to solve this problem given the current mode declaration. Thus, a new predicate
p and the fact p(alex) need to be added so that the consistent rule fly(X)← p(X) can
be learned.

There are three main difficulties [13] that need to be considered when inventing new predicates:
1. When to invent new predicate

There needs to be a criteria for deciding when a new predicate is necessary, as we would
not like to add useless predicates to the background knowledge that would only hinder
the learner in future tasks.

2. How to invent new predicate
What structure should the new predicate have and how can its definition be found?
Would a recursive call to the ILP algorithm in use be sufficient, or would a separate
algorithm be required for learning the new predicate’s definition?

3. How to control the search space of the new predicate
The search space for the new predicate could potentially be infinitely large, and the mode
declarations for the original learning problem may no longer applies for learning the new
predicate. There needs to be a way of limiting or directing the search space for the new
predicate.

In this position paper, we discuss how a general framework for predicate invention,
which is able to accommodate both cases of of theory reformulation and bias shift, could
be developed. This takes advantage of recently proposed meta-level abductive approach
to inductive logic programming, whereby inductive tasks are transformed into equivalent
abductive task, reducing the computation to the search of equivalent abductive explanations.
After a brief summary of the current state of art of the field, we show how a predicate
invention task can be formulated as a meta-level search problem, that can compute new
predicates for compacting the given background knowledge as well as specialising hypothesis.

2 Related Work

Past systems have concentrated on one of either reformulation or bias shift when inventing
new predicates. DIALOGS [5], SIRIES [14] and CHAMP [12] all invents new predicate for
bias shift, while INDEX [4] invents new predicates for reformulating the theory. Although in
Cigol [11] the main goal is to find new rules for reformulation, its new predicates are only

D. Athakravi, K. Broda, and A. Russo 17

invented when negative examples are confirmed by the oracle, the same situation as bias shift.
There are also methods such as Statistical Predicate Invention (SPI) [9] and matrix sorting
[8] that do not follow the framework of ILP, but are also able to introduce new predicates
into existing theories. These methods find new predicates by identifying trends within the
theory then grouping objects together, and the new predicates are introduced to restructure
the theory according to those trends and groupings.

While each system’s exact method is different from one another, they use the same
strategy for inventing a new predicate. They start by identifying the appropriate structure of
the new predicate then use it as an input to a learning algorithm, often the main inductive
learning algorithm, to learn the definition of the new predicate. For instance, CHAMP invents
its predicate by finding the smallest set of arguments that would completely discriminate the
positive and negative examples, while Cigol finds the predicate’s arguments by identifying
non-unifiable arguments when generalising its examples. Having identified the structure,
both systems then use it in a recursive call to their main learning algorithm.

The way each system controls the search space for the new predicate is more varied.
Both DIALOGS and SIRIES prioritise some hypothesis structures over others, giving lower
priorities to those that are more complicated or with new predicates. CHAMP and Cigol
prefer a hypothesis that will achieve the most compression of their theory. While INDEX,
SPI and matrix sorting uses some scoring mechanism for the most appropriate representation
of their data.

3 Predicate invention at meta-level

Our framework is general enough for both bias shift and reformulation. Abstracting the
problem to the meta-level would be suitable for inventing new predicates, as past methods
have shown that meta-knowledge is often needed for deciding the new predicate’s structure
regardless of its purpose. ILP systems already have some means for reasoning about the
language of its hypotheses by using the top theory, a theory on the encoding of the hypothesis
as allowed by the mode declaration. Furthermore, the top theory should be flexible enough
for importing any heuristics for inventing predicates.

Firstly, we briefly describe an existing ILP system called ASPAL that performs standard
ILP tasks using meta-level abduction. We use this system to automate our framework as
ASP uses sophisticated mechanisms for optimising search.

3.1 ASPAL

ASPAL (ASP Abductive Learning) is the Answer Set Programming (ASP), declarative
programming based on stable model semantics [7], implementation of TAL. TAL (Top-
directed Abductive Learning) [1, 2] is a top-down nonmonotonic ILP algorithm implemented
in Prolog, using abductive learning to find the correct hypothesis. It solves an inductive
problem by converting it into an abductive one. The hypothesis of the problem is found
using a top theory, the theory concerning the construction of the hypothesis according to the
mode declarations of the inductive problem. By reasoning with the top theory, TAL and
ASPAL abstract the problem to the meta-level of the hypothesis’ encoding.

M = { modeh(fly(+bird)).
modeb(pigeon(+bird)).}

For example, using the mode declarations above, the corresponding top theory in ASPAL
is as follows:

ICCSW’12

18 Predicate Invention in Inductive Logic Programming

TASP AL = { fly(X)← bird(X), $rule(r((fly, c, v))).
f ly(X)← bird(X), pigeon(X),

$rule(r((fly, c, v), (pigeon, c, v(1)))). }
The top theory matches the head of its clauses to examples of the ILP problem, testing
conditions for those clauses and abducing the rule encoding $rule/1 should no negative
example satisfies the clause. Each tuple in $rule/1 corresponds to a mode declaration (using
fly or pigeon for identification). The constants c and v are used to represents empty lists
[] of constants and variables, while v(1) represents the list [1] with a single index linking
to the first variable in the rule. The constant list is used when the literal has constants in
its arguments, while the variable list links variables in the rule together using their indexes.
Using the top theory above with the background and examples:

B = { bird(alex). E+ = { fly(alex). }
bird(bob). E− = { fly(bob). }
pigeon(alex). }

The examples are used to construct an integrity constraint in the ASP program, such
that all answer sets in the solution must include all positive examples and none of the
negative ones. The first clause in TASP AL prevents the rule fly(X) from being added
to the hypothesis as the negative example fly(bob) would also satisfy the clause. Thus
$rule(r((fly, c, v))), the encoding for fly(X), would not be included in the answer set.
However, as the condition pigeon(bob) is not satisfiable by the rule fly(X)← pigeon(X), its
representation $rule(r((fly, c, v), (pigeon, c, v(1)))) can be abduced.

ASPAL was used rather than TAL as the ASP solver is extremely efficient when solving
a grounded program, ASPAL’s current implementation avoids costly computation of the
ASP grounder by using a preprocessor for constructing an ASP program with all possible
grounded hypotheses. These advantages allow for many number of mode declarations to be
used without high increase in computational time.

3.2 Predicate invention using meta-level abduction
In [10], a simple method for introducing new predicates through the mode declarations was
shown by using placeholders. Placeholders are mode declarations of new predicates that were
neither within the problem’s example, its background knowledge, nor its mode declarations.
For example, suppose we have the following problem:

B = { alpha(a). E+ = { q(a, d), q(a, c). }
alpha(b). E− = { q(c, d). }
alpha(c). M = { modeh(q(+alpha, +alpha)). }
alpha(d). }

To solve this using placeholders, we can add new mode declarations modeh(new(#alpha,

#alpha)) and modeb(new(+alpha, +alpha) to the problem, such that rules and facts such
as p(X, Y) ← new(X, X) and new(a, a) can be learned. Running the problem in ASPAL
takes only 0.01 seconds to solve. Should we want to add other seventeen alternative mode
declarations for modeb(new(+alpha, +alpha) (with negation and different combinations of
constants, input and output variables), and limiting to maximum of one body literal per rule
and two rules per hypothesis, ASPAL will solve the problem in 0.078 seconds and output 20
hypotheses. Many of the hypotheses subsumes each other, for instance:

H1 = {p(X, Y)← new(X, Z). H2 = {p(X, Y)← new(X, X). H3 = {p(X, Y)← new(a, a).
new(a, a).} new(a, a).} new(a, a).}

From the hypotheses above, simply selecting the shortest one is not sufficient as they
all have the same length. Instead, we could lower the number of hypotheses by discarding

D. Athakravi, K. Broda, and A. Russo 19

hypotheses that are subsumed by others. In the case above, H2 and H3 can be discarded as
they are both subsumed by H1, making H1 the most general hypotheses out of the three
hypotheses.

For reformulating a theory, [3] has shown how an ILP system can be used to revise
theories by transforming the revisable section of the background knowledge and learning
revision operators. Each revisable rule ri ← ci,1, . . . , ci,n can be transformed to:

ri ← try(i, 1, ci,1), . . . , try(i, n, ci,n), ext(i, ri).
try(i, 1, ci,1)← ci,1, use(i, 1).
try(i, 1, ci,2)← not use(i, 2).
. . .
use(i, j)← not del(i, j).

Each try/3 clause is used to test if a condition j in a rule i is not used in the rule. Due to
the definition of use/2, the condition ci,j is removed from the theory when the corresponding
del(i, j) is learned. The literal ext/2 is used for learning additional conditions to be added
to the body in the rule. For instance, ext(i, ri)← p(a) indicates that the rule ri should be
extended with the literal p(a).

We have applied this method to reformulate the clauses:
grandfather(X, Y)← male(X), parent(Z, Y), parent(X, Z).
grandmother(X, Y)← female(X), parent(Z, Y), parent(X, Z).

As well as the mode declarations needed for revising the clauses, additional mode declarations
were included such that the rule new(X, Y) ← parent(Z, Y), parent(X, Z) can be learnt.
This is so the learner can find a solution that would reformulate the rules to:

grandfather(X, Y)← male(X), new(X, Y).
grandmother(X, Y)← female(X), new(X, Y).
new(X, Y)← parent(Z, Y), parent(X, Z).

While we were able to acquire the above solution, the learner outputs many more solutions,
with most not decreasing the size of the theory. This is because the search is only guided by
the examples given, not by how much each hypothesis could compact the theory. Thus, to
the learner, the following solution would be as good as the previous one:

grandfather(X, Y)← male(X), parent(Z, Y), new(X, Z).
grandmother(X, Y)← female(X), parent(Z, Y), new(X, Z).
new(X, Y)← parent(X, Y).
While comparing the literal count could help us identify the best revision, another simple

solution is by using the optimisation feature of iClingo [6], the ASP solver used by ASPAL.
As del/2 instances indicated removal of clauses, by asking the solver the find the maximum
number of del/2 instances possible, we can then use it to find only solutions that will most
reduce the size of the background knowledge. Similarly, finding the minimum number of new
clauses added to the background knowledge can also help to find the solutions that will least
increase the size of the background knowledge.

In conclusion, as well as the general ILP task, our framework is also capable performing
the following tasks with predicate invention:
1. A bias shift task 〈E, B, M〉, where E is a set of examples, B is the background knowledge,

and M is the set of mode declarations. A set of rules, a hypothesis HB , is a solution to
the task 〈E, B, M〉 if HB is compatible with M extended by a new predicate p, HB ∪B

is consistent with E, and HB the predicate p such that p /∈ B, p /∈ E, and p /∈M .
2. A reformulation task 〈BN , BR, M〉, where BN is the non-revisable background knowledge,

BR is the revisable background knowledge, and M is the set of mode declarations. A
solution to the task 〈BN , BR, M〉 is tuple HR = 〈HN , HO〉, where HN (possibly empty)

ICCSW’12

20 Predicate Invention in Inductive Logic Programming

is a set of new rules, and HO is a sequence of revision operations, these include adding
conditions to existing rules and deleting conditions or rules in BR. HR is a valid solution
to 〈BN , BR, M〉 if HN is compatible with M extended by a new predicate p, and for
o1, . . . , on ∈ HO: BR⊗{o1, . . . , on}∪BN∪HN to have the same answer sets with BN∪BR

for their shared predicates, and HR may contain the predicate p such that p /∈ BN ∪BR,
and p /∈M .

3. By combining the previous two tasks, predicates can also be invented for correcting
erroneous knowledge. Expanding the theory revision task to give a task 〈E, BN , BR, M〉,
where E is a set of examples, BN is the non-revisable background knowledge, BR is the
revisable background knowledge, M is the set of mode declarations, and BN ∪ BR is
inconsistent with E. A solution to the task 〈E, BN , BR, M〉 is a tuple HT = 〈HN , HO〉,
where HN is a set of new rules and HO is a sequence of revision operations. HT is a valid
solution to 〈E, BN , BR, M〉 if HN is compatible with M extended by a new predicate
p, and for o1, . . . , on ∈ HO: BR ⊗ {o1, . . . , on} ∪BN ∪HN is consistent with E, and HT

contains a new predicate p such that p /∈ BN ∪BR, p /∈ E, and p /∈M .

4 Future Work

The objective of our research is a general ILP framework with capacity for an efficient way of
inventing new predicates, able to invent new predicates for both reformulation and bias shift.

The simple approach of generating all placeholders seems to be able to handle all issues
we outlined in Section 1: (i) placeholders can be added to the ASP program when the original
learning problem fails to produce a hypothesis, (ii) use all possible placeholders, starting from
one argument and increasing the number of its arguments until solutions are found, and rely
on the learning algorithm of ASPAL to compute the hypotheses, (iii) search can be controlled
by limiting the number of rules within the hypothesis and increasing it until the minimum
number of rules is found. However, we still need to test it on larger problems to ensure that
high number of mode declarations does not lead to a great increase in computational time or
the number of solutions. If so, then we will need to find a way to limit the number of mode
declarations that are considered for each time new predicates are needed.

For theory reformulation, we still need to determine when should the theory be refor-
mulated, and how to control the search. A way to control the search is by associating each
revision operator with a measure of its effect on the program size, so that the learner can
use it to discard hypothesis that do not reduce the theory’s size.

ASPAL already has some preliminary work done on hypothesis refinement, which could
be used after the learner has gone through the search space from the given mode declarations.
We plan to complete this hypothesis refinement framework of ASPAL, as this will help with
determining when to invent new predicates for bias shift. It will allow us to invent new
predicates only when demanded, similar to systems such as CHAMP and SIRIES.

Acknowledgements We would like to thank Domenico Corapi for his help and discussion
on TAL and ASPAL.

References
1 Domenico Corapi. Nonmonotonic Inductive Logic Programming as Abductive Search. PhD

thesis, Imperial College London, 2011.
2 Domenico Corapi, Alessandra Russo, and Emil Lupu. Inductive logic programming as ab-

ductive search. In Manuel Hermenegildo and Torsten Schaub, editors, Technical Commu-

D. Athakravi, K. Broda, and A. Russo 21

nications of the 26th International Conference on Logic Programming, volume 2010, pages
54–63, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

3 Domenico Corapi, Alessandra Russo, Marina De Vos, Julian A. Padget, and Ken Satoh.
Normative design using inductive learning. TPLP, 11(4-5):783–799, 2011.

4 Peter A Flach. Predicate Invention in Inductive Data Engineering. In P Brazdil, editor, Ma-
chine Learning ECML93 European Conference on Machine Learning Proceedings, volume
667 of Lecture Notes in Artificial Intelligence, pages 83–94. Springer-Verlag, 1993.

5 Pierre Flener. Inductive logic program synthesis with DIALOGS. In Stephen Muggleton,
editor, Inductive Logic Programming, volume 1314 of Lecture Notes in Computer Science,
pages 175–198. Springer Berlin / Heidelberg, 1997.

6 M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. Engin-
eering an incremental ASP solver. In M. Garcia de la Banda and E. Pontelli, editors, Pro-
ceedings of the Twenty-fourth International Conference on Logic Programming (ICLP’08),
volume 5366 of Lecture Notes in Computer Science, pages 190–205. Springer-Verlag, 2008.

7 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
pages 1070–1080. MIT Press, 1988.

8 Charles Kemp, Joshua B Tenenbaum, Sourabh Niyogi, and Thomas L Griffiths. A probab-
ilistic model of theory formation. Cognition, 114(2):165–196, 2010.

9 Stanley Kok and Pedro Domingos. Statistical predicate invention. In Proceedings of the
24th International Conference on Machine Learning (2007), volume pages, pages 433–440.
ACM Press, 2007.

10 Gregor Leban, Jure Zabkar, and Ivan Bratko. An Experiment in Robot Discovery with ILP.
In ILP 08 Proceedings of the 18th international conference on Inductive Logic Programming,
pages 77–90, 2008.

11 Stephen Muggleton and Wray L Buntine. Machine Invention of First Order Predicates by
Inverting Resolution. In Machine Learning, pages 339–352, 1988.

12 B K M N M Shimura. Discrimination-Based Constructive Induction of Logic Programs. In
AAAI92 proceedings Tenth National Conference on Artificial Intelligence July 1216 1992,
page 44. Aaai Pr, 1992.

13 Irene Stahl. Predicate Invention in Inductive Logic Programming. In Luc De Raedt, editor,
Advances in Inductive Logic Programming, pages 34–47. IOS Press, 1996.

14 Ruediger Wirth and Paul O’Rorke. Constraints on predicate invention. In Stephen H
Muggleton, editor, Proceedings of the Eighth International Workshop on Machine Learning,
pages 457–461. Morgan Kaufmann, 1991.

ICCSW’12

Targeting a Practical Approach for Robot Vision
with Ensembles of Visual Features
Emanuela Boroş

Alexandru Ioan Cuza University
Faculty of Computer Science, Iaşi, Romania
emanuela.boros@info.uaic.ro

Abstract
We approach the task of topological localization in mobile robotics without using a temporal
continuity of the sequences of images. The provided information about the environment is con-
tained in images taken with a perspective colour camera mounted on a robot platform. The
main contributions of this work are quantifiable examinations of a wide variety of different global
and local invariant features, and different distance measures. We focus on finding the optimal
set of features and a deepened analysis was carried out. The characteristics of different features
were analysed using widely known dissimilarity measures and graphical views of the overall per-
formances. The quality of the acquired configurations is also tested in the localization stage
by means of location recognition in the Robot Vision task, by participating at the ImageCLEF
International Evaluation Campaign. The long term goal of this project is to develop integrated,
stand alone capabilities for real-time topological localization in varying illumination conditions
and over longer routes.

1998 ACM Subject Classification I.2.10 Vision and Scene Understanding, I.4.3 Enhancement,
I.4.6 Segmentation, I.4.10 Image Representation

Keywords and phrases Visual Place Classification, Robot Topological Localization, Visual Fea-
ture Detectors, Visual Feature Descriptors

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.22

1 Introduction and Related Work

Topological localization is a fundamental problem in mobile robotics. Most mobile robots
must be able to locate itself in their environment in order to accomplish their tasks. Robot
visual localization and place recognition are not easy tasks, and this is mainly due to the
perceptive ambiguity of acquired data and the sensibility to noise and illumination variations
of real world environments. In order to help reduce this gap, this work addresses the
problem of topological localization of a robot that uses a single perspective camera in an
office environment. The robot should be able to answer the question where are you? when
presented with a test sequence representing a room category seen during training [25, 28, 17].

Many approaches during last years have been developed using different methods for
robotic topological localization such as topological map building which makes good use
of temporal continuity [30], simultaneous localization and mapping [8], using Monte-Carlo
localization [32], appearance-based place recognition for topological localization, panoramic
vision creation [31].

The problem of topological mobile localization has mainly three dimensions: a type
of environment (indoor, outdoor, outdoor natural), a perception (sensing modality) and a
localization model (probabilistic, basic). Numerous papers deal with indoor environments [30,
31, 10, 15] and a few deal with outdoor environments, natural or urban [29, 13]. Experimental

© Emanuela Boroş;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 22–28

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.22
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

E. Boroş 23

results for wide baseline image matching suggest the need for local invariant descriptors
of images. Earlier research into invariant features focused on invariance to rotation and
translation. There has also been research into the development of fully invariant features
[5, 18, 19]. In his milestone paper [16], D. Lowe has proposed a scale-invariant feature
transform (SIFT) for recognition based on local extrema of difference-of-Gaussian filters
in scale-space that is invariant to image scaling and rotation, illumination and viewpoint
changes. Lately, a new method has been proposed, Affine-SIFT (ASIFT) that simulates all
image views obtainable by varying the two camera axis orientation parameters, namely the
latitude and the longitude angles, left over by the SIFT method [21]. However, full affine
invariance has not been achieved due partly to the impractically large computational cost.
SIFT is a 128 dimensional feature vector that captures the spatial structure and the local
orientation distribution of a region surrounding a keypoint. The SIFT method has been
popularly applied for scene recognition [33, 1] and detection [11, 23] and robot localization
[2, 24, 22].

We analyze the problem of topological localization without taking in consideration the use
of the temporal continuity of the sequences of images which could be considered an advantage
by adding an additional understanding of the space. Our approach represents an extension
of our previous work [3, 4] where each RGB image is processed to extract sets of SIFT
keypoints from where the descriptors are defined. In this paper the comparison is carried out
for different configurations of features and matching distances of a topological localization
system. We perform an exhaustive evaluation and introduce new analysis statistics between
the quantization solutions.

2 Experimental Setup

2.1 Feature Matching

In this section we introduce different dissimilarity measures to compare features. That is,
a measure of dissimilarity between two features and thus between the underlying images
is calculated. Many of the features for images are in fact histograms (color histograms,
invariant feature histograms, texture histograms, local feature histograms, and other feature
histograms). As comparison of distributions is a well known problem, a lot of comparison
measures have been proposed and compared before [26]. In the following, dissimilarity
measures to compare two histograms H and K are proposed. Each of these histograms has
n bins and Hi is the value of the i-th bin of histogram H.

Minkowski-form Distance (L1 distance is often used for computing dissimilarity
between color images, also experimented in color histograms comparison [14]):

DLr(H,K) = (
∑
i=1
|Hi −Ki|)

1
r (1)

Jensen Shannon Divergence (also referred to as Jeffrey Divergence [9], is an
empirical extension of the Kullback-Leibler Divergence. It is symmetric and numerically
more stable):

DJSD(H,K) =
∑
i=1

Hi log 2Hi

Hi +Ki
+Ki log 2Ki

Ki +Hi
(2)

ICCSW’12

24 Targeting a Practical Approach for Robot Vision with Ensembles of Visual Features

χ2 Distance (measures how unlikely it is that one distribution was drawn from the
population represented by the other, [20]):

Dχ2(H,K) =
∑
i=1

(Hi −Ki)2

Hi
(3)

Bhattacharyya Distance [7] (measures the similarity of two discrete or continuous
probability distributions). For discrete probability distributions H and K over the same
domain, it is defined as:

DB(H,K) = − ln
∑
i=1

√
(HiKi) (4)

2.2 Datasets (Benchmark)
The chosen dataset contains images from nine sections of an office obtained from CLEF
(Conference on Multilingual and Multimodal Information Access Evaluation).
Detailed information about the dataset are in the overview and ImageCLEF publications
[25, 28, 17]. This dataset contains images that are widely used in topological localization
image classification papers and it has already been split into three training sets of images, as
shown in Table 1 one different from another. The provided images are in the RGB color space.
The sequences are acquired within the same building and floor but there can be variations in
the lighting conditions (sunny, cloudy, night) or the acquisition procedure (clockwise and
counter clockwise).

Areas Training1 Training2 Training3
Corridor 438 498 444
ElevatorArea 140 152 84
LoungeArea 421 452 376
PrinterRoom 119 80 65
ProfessorOffice 408 336 247
StudentOffice 664 599 388
TechnicalRoom 153 96 118
Toilet 198 240 131
VisioConference 126 79 60

Table 1 Training Sequences of An Office Environment.

2.3 Comparison of Different Distance Functions for Global Features
Global features capture the diagnostic structure of the image, an overall view of the image
that is transformed in histograms of frequencies. Existing color-based general-purpose image
retrieval systems as [27, 6] roughly fall into three categories depending on the signature
extraction approach used: histogram, color layout, and region-based search. In this paper,
histogram-based search methods are investigated in two different color spaces, RGB (Red,
Green, and Blue) and HSV (Hue, Saturation, and Value). RGB and HSV color histograms
are subject to tests with Jeffrey Divergence, χ2, Bhattacharyya, Minkowski and respectively

E. Boroş 25

the widely used Euclidean distance measure. These were chosen considering the literature
that underlies them as achieving the best results in image matching [7, 26].

The retrieved classes for images (Corridor, LoungeArea etc.) depend on a threshold, those
below this value being rejected. This becomes an optimization problem of finding the best
value that will cut the unwanted results, considering that it is better to have no results than
inconsistent results. To accomplish this, we used the genetic algorithm explained in detail in
[12]. For these experiments, we used a population of 200 individuals, the mutation probability
of 0.15, and the crossover, of 0.7. The optimization process is stopped after 1000 generations.
We used a selection scheme rank selection with elitism. For RGB histograms, as can be seen

Figure 1 Precision and recall depending on measure distance (RGB & HSV Histograms).

in Figure 1, Bhattacharyya and Jeffrey Divergence obtained the highest recall and also, high
precision, the highest F-measure being obtained by Jeffrey Divergence (0.806) extremely
close to Bhattacharyya (0.802). The lowest performance is with Euclidean distance, having
not only a low recall which means that this solution will bring more irrelevant results than
using the other distances, but also a lower precision. In the case of using HSV histograms,
the Bhattacharyya distance leaded to good results with a F-measure of 0.81 close to χ2

distance with 0.807 and Minkowski with a F-measure of 0.805 . Folowing these chosen
metrics, we adopted the vizualization with confusion matrices. Entries on the diagonal of the
matrix, in blue, count the correct calls. Entries off the diagonal, in fading blue, count the
misclassifications. Corresponding to the confusion matrix represented in Figure 2, the results
show that HSV histogram with Bhattacharyya distance yielded very similar results with
RGB choices of distances but clearly outperforms RGB histogram comparison with Jeffrey
Divergence distance, similarity probabilty peaking at 100% in some of the office sections
(PrinterRoom, StudentOffice).

2.4 Comparison of Different Distance Functions for Local Features
The two types of features used in the experiments are SIFT (Scale Invariant Feature
Transform) and ASIFT (Affine Scale Invariant Feature Transform). The advantages of using
these features are that they describe localized image regions (patches), the descriptors are
computed around interest points, there is no need for segmentation and they are robust to
occlusion and clutter. The disadvantage is that images are represented by different size sets
of feature vectors and they do not lend themselves easily to standard classification techniques.

These results were obtained performing experiments on local feature histograms obtained
using the bag-of-visual-words model. The descriptors are quantized and normalized. Different

ICCSW’12

26 Targeting a Practical Approach for Robot Vision with Ensembles of Visual Features

Figure 2 Confusion Matrix (RGB/HSV Histograms) using Jeffrey Divergence/Bhattacharyya
Distances.

dissimilarity measures for the different types of features are compared experimentally and
the performance for the different types of features is quantitatively measured.

For matthcing features, we chose literature-based distances known as having the best
results: Euclidean, Minkowski, χ2 and Jeffrey Divergence distances. For each of the local
features descriptors we created Precision/Recall graphs from which we determine the superior
runs. Figure 3 shows the Precision/Recall graphs for SIFT, respectively ASIFT and also
shows that there is still vast room for improvement but the most promising results were
obtained in the case of the usage of SIFT descriptors with Minkowski and Euclidean distance.
The results show that Euclidean and Minkowski distance yielded very similar results, in the
case of SIFT features matching.

Figure 3 PR curves using different distance measures (SIFT & ASIFT).

3 Conclusions and Future Work

In this work, we approached the task of topological localization without using a temporal
continuity of the sequences of images using a broad variety of features for image recognition.
The provided information about the environment is contained in images taken with a
perspective color camera mounted on a robot platform and it represents a know office
environment dataset offered by ImageCLEF.

A large scale of global and local invariant features of images was presented, investigated,
and experimentally evaluated. To analyze the features various dissimilarity measures were
implemented and tested, as different features require different comparison methods.

E. Boroş 27

The experiments show that the configurations from different feature descriptors and
distance measures depends on the proper combinations. One important aspect is to use
a selection of features accounting for the different properties of the images as there is no
feature capable of covering all aspects of an image. The experiments showed the following
features are suitable:

RGB & HSV color histograms
SIFT (Scale Invariant Feature Transform) as visual words with an Euclidean 100-means

The experiments showed also that the following image matching settings are suitable:
RGB color histograms with Jeffrey Divergence distance & HSV color histograms with
Bhattacharyya distance
SIFT (Scale Invariant Feature Transform) matched with Minkowski distance

From the fact that most of the works cited are from the last couple of years, topological
localization is a new and active area of research. which is increasingly producing interest
and enforces further development. A first starting point for this field is given in this thesis,
along with notable experimental results, but there is still room for improvement and further
research.

References

1 M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke. Metric localization with scale-
invariant visual features using a single perspective camera. European Robotics Symposium
2006, ser. STAR Springer tracts in advanced robotics, 22, 2006.

2 M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke. Metric localization with scale-
invariant visual features using a single perspective camera. European Robotics Symposium
2006, 22 of STAR Springer tracts in advanced robotics:143–157, 2006.

3 E. Boroş, G. Roşca, and A. Iftene. Uaic: Participation in imageclef 2009 robotvision task.
Proceedings of the CLEF 2009 Workshop, Sep 2009.

4 E. Boroş, G. Roşca, and A. Iftene. Using sift method for global topological localization for
indoor environments. Multilingual Information Access Evaluation II. Multimedia Experi-
ments [Lecture Notes in Computer Science Volume 6242 Part II], 6242:277–282, 2009.

5 M. Brown and D.G Lowe. Invariant features from interest point groups. The 13th British
Machine Vision Conference, Cardiff University, UK, pages 253–262, 2002.

6 R. Chakravarti. A study of color histogram based image retrieval. Information Technology:
New Generations, 2009. ITNG ’09, 2009.

7 E. Choi and C. Lee. Feature extraction based on the bhattacharyya distance. Pattern
Recognition, 36:1703—1709, 2003.

8 H. Choset and K. Nagatani. Topological simultaneous localization and mapping (slam):
toward exact localization without explicit localization. IEEE Trans. Robot. Automat.,
17(2):125–137, 2001.

9 T. Deselaers, D. Keysers, and H. Ney. Features for image retrieval: An experimental
comparison. Information Retrieval, 2008.

10 G. Dudek and D. Jugessur. Robust place recognition using local appearance based methods.
IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 1030–1035, 2000.

11 G. Fritz, C. Seifert, M. Kumar, and L. Paletta. Building detection from mobile imagery
using informative sift descriptors. Lecture Notes in Computer Science, pages 629–638, 2005.

12 A. L. Gînscă and A. Iftene. Using a genetic algorithm for optimizing the similarity aggrega-
tion step in the process of ontology alignment. Proceedings, of 9th International Conference
RoEduNet IEEE, pages 118–122, Jun 2010.

ICCSW’12

28 Targeting a Practical Approach for Robot Vision with Ensembles of Visual Features

13 J.-J. Gonzalez-Barbosa and S. Lacroix. Rover localization in natural environments by
indexing panoramic images. Proceedings of the 2002 IEEE International Conference on
Robotics and Automation (ICRA), pages 1365–1370, 2002.

14 A. B. Kurhe, S. S. Satonka, and P. B. Khanale. Color matching of images by using
minkowski- form distance. Global Journal of Computer Science and Technology, Global
Journals Inc. (USA), 11, 2011.

15 L. Ledwich and S. Williams. Reduced sift features for image retrieval and indoor localisation.
Australasian Conf. on Robotics and Automation, 2004.

16 D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal
of Computer Vision, 2(60):91–110, 2004.

17 W. Lucetti and E. Luchetti. Combination of classifiers for indoor room recognition, cgs par-
ticipation at imageclef2010 robot vision task. Conference on Multilingual and Multimodal
Information Access Evaluation (CLEF 2010), 2010.

18 K. Mikolajczyk and C. Schmid. An afine invariant interest point detector. Proceedings of
the 7th European Conference on Computer Vision, pages 128–142, 2002.

19 K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. IJCV,
60(1), 2004.

20 K. Mikolajczyk, C. Schmid, H. Harzallah, and J. van de Weijer. Learning object represent-
ations for visual object class recognition. Visual Recognition Challange, 2007.

21 J. Morel and G. Yu. Asift: A new framework for fully affine invariant image comparison.
SIAM Journal on Imaging Sciences, 2(2):438–469, 2009.

22 A. Murarka, J. Modayil, and B. Kuipers. Building local safety maps for a wheelchair robot
using vision and lasers. Proceedings of the The 3rd Canadian Conference on Computer and
Robot Vision, 2006.

23 A. Negre, H. Tran, N. Gourier, D. Hall, A. Lux, and JL Crowley. Comparative study of
people detection in surveillance scenes. structural, syntactic and statistical pattern recog-
nition. Proceedings Lecture Notes in Computer Science, 4109:100–108, 2006.

24 D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. CVPR, 2:2161–
2168, 2006.

25 A. Pronobis, O. M. Mozos, B. Caputo, and P. Jensfelt. Multi-modal semantic place classi-
fication. Int. J. Robot. Res., 29(2-3):298–320, February 2010.

26 J. Puzicha, Y. Rubner, C. Tomasi, and J. Buhmann. Empirical evaluation of dissimilarity
measures for color and texture. Proc. International Conference on Computer Vision, Vol.
2, pages 1165–1173, 1999.

27 J. Sangoh. Histogram-based color image retrieval. Psych221/EE362 Project Report, 2001.
28 O. Saurer, F. Fraundorfer, and M. Pollefeys. Visual localization using global visual features

and vanishing points. Conference on Multilingual and Multimodal Information Access Eval-
uation (CLEF 2010), 2010.

29 Y. Takeuchi and M. Hebert. Finding images of landmarks in video sequences. Proceedings
of the IEEE International Conference on Computer Vision and Pattern Recognition, 1998.

30 S. Thrun. Learning metric-topological maps for indoor mobile robot navigation. Artificial
Intelligence, 99:21–71, February 1998.

31 I. Ulrich and I. Nourbakhsh. Appearance-based obstacle detection with monocular color
vision. Proceedings of AAAI Conference, pages 866–871, 2000.

32 J. Wolf, W. Burgard, and H. Burkhardt. Robust vision-based localization for mobile robots
using an image retrieval system based on invariant features. Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), 2002.

33 J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels for
classification of texture and object categories: A comprehensive study. IJCV, 73(2):213–
238, Jun 2007.

Incremental HMM with an improved Baum-Welch
Algorithm
Tiberiu S. Chis1 and Peter G. Harrison2

1,2 Department of Computing, Imperial College London
South Kensington Campus, London, UK
tiberiu.chis07@imperial.ac.uk , pgh@doc.ic.ac.uk

Abstract
There is an increasing demand for systems which handle higher density, additional loads as
seen in storage workload modelling, where workloads can be characterized on-line. This paper
aims to find a workload model which processes incoming data and then updates its parameters
"on-the-fly." Essentially, this will be an incremental hidden Markov model (IncHMM) with an
improved Baum-Welch algorithm. Thus, the benefit will be obtaining a parsimonious model which
updates its encoded information whenever more real time workload data becomes available. To
achieve this model, two new approximations of the Baum-Welch algorithm are defined, followed
by training our model using discrete time series. This time series is transformed from a large
network trace made up of I/O commands, into a partitioned binned trace, and then filtered
through a K-means clustering algorithm to obtain an observation trace. The IncHMM, together
with the observation trace, produces the required parameters to form a discrete Markov arrival
process (MAP). Finally, we generate our own data trace (using the IncHMM parameters and
a random distribution) and statistically compare it to the raw I/O trace, thus validating our
model.

1998 ACM Subject Classification G.3 Probability and Statistics

Keywords and phrases hidden Markov model, Baum-Welch algorithm, Backward algorithm,
discrete Markov arrival process, incremental workload model

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.29

1 Introduction

A hidden Markov model (HMM) is a bivariate Markov chain which encodes information
about the evolution of a time series. First developed by Baum and Petrie in 1966 [1], HMMs
can faithfully represent workloads for discrete time processes and therefore be used as port-
able benchmarks to explain and predict the complex behaviour of these processes. When
constructing a HMM, the three main problems that need to be addressed are: First, given
the model parameters, compute the probability that the HMM generates a particular se-
quence of observations, solved by the Forward-Backward algorithm; Second, given a sequence
of observations, find the most likely set of model parameters, solved by statistical inference
through the Baum-Welch algorithm, which uses the Forward-Backward algorithm; Third,
find the path of hidden states that is most likely to generate a sequence of observations,
solved using a posteriori statistical inference in the Viterbi algorithm. In this paper, we pro-
pose an incremental variation of the Baum-Welch algorithm by creating two approximations
of the Forward-Backward algorithm. This way, we will be able to process incoming I/O trace
data incrementally and update our HMM parameters "on-the-fly" as new trace data becomes
available. The HMM which uses this incremental Baum-Welch algorithm (IncHMM) pro-
duces the required parameters to form a discrete Markov arrival process (MAP), which we

© Tiberiu S. Chis and Peter G. Harrison;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 29–34

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.29
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

30 Incremental HMM with an improved Baum-Welch Algorithm

refer to as our Workload Model. For our results, we validate two Workload Models using
averages from the raw and IncHMM-generated traces. Finally, we compare our results with
current work in the field, identifying any improvements for the future.

2 Forward-Backward Algorithm

The Forward-Backward algorithm, which is used in our incremental Baum-Welch algorithm,
solves the following problem: Given the observations O = (O1, O2, . . . , OT) and the model
λ = (A,B, π)1, calculate P (O | λ) (i.e. the probability of the observation sequence given
the model), and thus determine the likelihood of O. Based on the solution in [5], we ex-
plain the "Forward" part of the algorithm, which is the α-pass, followed by the "Backward"
part or the β-pass. We define the forward variable αt(i) as the probability of the observa-
tion sequence up to time t and of state qi at time t, given our model λ. In other words,
αt(i) = P (O1, O2, . . . , Ot, st = qi | λ), where i = 1, 2, . . . , N , N is the number of states,
t = 1, 2, . . . , T , T is the number of observations, and st is the state at time t. The solution
of αt(i) is inductive:

1. Initally, for i = 1, 2, . . . , N : α1(i) = πibi(O1)
2. Then, for i = 1, 2, . . . , N and t = 2, 3, . . . , T : αt(i) = [

∑N
j=1 αt−1(j)aji]bi(Ot)

where αt−1(j)aji is the probability of the joint event that O1, O2, . . . Ot−1 are observed
(given by αt−1(j)) and there is a transition from state qj at time t−1 to state qi at time
t (given by aji), and also bi(Ot) is the probability that Ot is observed from state qi.

3. It follows that: P (O | λ) =
∑N
i=1 αT (i)

where we used the fact that αT (i) = P (O1, O2, . . . , OT , sT = qi | λ).

Similarly, we can define the backward variable, βt(i) as the probability of the observation
sequence from time t + 1 to the end, given state qi at time t and the model λ. Then,
βt(i) = P (Ot+1, Ot+2, . . . OT | st = qi, λ) and the recursive solution is:

1. Initially, for i = 1, 2, . . . , N : βT (i) = 1
2. Then, for i = 1, 2, . . . , N and t = T − 1, T − 2, . . . , 1: βt(i) =

∑N
j=1 aijbj(Ot+1)βt+1(j)

where we note that the observation Ot+1 can be generated from any state qj .

With the α and β values now computed, we attempt to create an incremental version of
the Baum-Welch algorithm, which will use both of these values.

3 Incremental Baum-Welch Algorithm

Given the model λ = (A,B, π), the Baum-Welch algorithm (BWA) trains a HMM on a fixed
set of observations O = (O1, O2, . . . , OT). By adjusting its parameters A,B, π, the BWA
aims to maximise P (O | λ). As explained in Section 2.3.2 of [6], the parameters of the BWA
are updated iteratively by the following formulas:

1. Initially, for i = 1, 2, . . . , N : π′i = γ1(i)

2. For A: a′ij =
∑T −1

t=1
ξt(i,j)∑N

j=1

∑T −1
t=1

ξt(i,j)

1 A is the state transition matrix, B is the observation matrix, and π is the initial state distribution.

T. S. Chis and P. G. Harrison 31

3. For B: bj(k)′ =
∑T

t=1,Ot=k
γt(j)∑T

t=1
γt(j)

where ξt(i, j) = αt(i)aijbj(Ot+1)βt+1(j)
P (O|λ) and γt(i) =

∑N
j=1 ξt(i, j)

We can now re-estimate our model using λ′ = (A′, B′, π′) where A′ = {a′ij}, B′ = {bj(k)′}
and π′ = {π′i}. However, this re-estimation only works on a fixed set of observations, and a
useful upgrade for the BWA would be to handle infrequent, higher density, additional loads
mainly for on-line characterization of workloads [2]. To have an incremental HMM auto-
matically updating its parameters as more real time workload data becomes available would
achieve this, as well as consistently analyse processes over time in a computationally efficient
manner. This new model will be a hybrid between a standard HMM and an incremental
HMM which updates the current parameters A,B, π based on the new set of observations.
Therefore, after the standard HMM has finished training on its observation set, we aim to
calculate the α, β, ξ and γ variables on the new incoming set of observations. For example,
if we have trained a HMM on T observations and wish to add new observations to update
our model incrementally, we notice that αT+1(i) = [

∑N
j=1 αT (j)aji]bi(OT). Since we pos-

sess the values of αT (j), aji and bi(OT), the new α values can be computed quite easily
using the forward recurrence formula. However, to find βT+1(i) is not so easy as it relies on
the backward formula with a one step lookahead βT+1(i) =

∑N
j=1 aijbj(OT+2)βT+2(j) and

unfortunately we do not have βT+2(j). Therefore an approximation for the β variables is
needed, preferrably a forward recurrence formula similar to the α formula. The new ξ and
γ variables (and therefore the new entries a′ij and bj(k)′) can be calculated easily once we
have the complete α and β sets. Building on previous work seen in Section 4.8.3 of [6], we
attempt to find several new approximations for the β values.

3.1 First β Approximation
The first approximation for the β variables will assume that, at time t and for state i, we
have that βt(i) = δ(t, i) is a decay function which tends to 0 as t → 0. Therefore, for
a sufficiently large observation set and at a sufficiently small t, we obtain the approximate
result δ(t, i)−δ(t, j) ≈ 0, where i and j are different states. This then gives the near equality
δ(t, i) ≈ δ(t, j) and hence by our earlier assumption we have the important approximation:

βt(i) ≈ βt(j) (1)

Let us now transform our β recurrence formula βt(i) =
∑N
j=1 aijbj(Ot+1)βt+1(j) into

matrix form, using the notation bj = bj(Ot+1) for ease of use. Since we are using two states
in our Workload Model, we set N = 2. It then follows that(

βt(1)
βt(2)

)
=
(
a11b1 a12b2
a21b1 a22b2

)(
βt+1(1)
βt+1(2)

)
then pre-multiply by

(
αt(1) αt(2)

)
:

(
αt(1) αt(2)

)(βt(1)
βt(2)

)
=
(
αt(1) αt(2)

)(a11b1 a12b2
a21b1 a22b2

)(
βt+1(1)
βt+1(2)

)
and multplying out we get

∑2
i=1 αt(i)βt(i) =

(
αt(1)a11b1 + αt(2)a21b1 αt(1)a12b2 + αt(2)a22b2

)(βt+1(1)
βt+1(2)

)

ICCSW’12

32 Incremental HMM with an improved Baum-Welch Algorithm

where by defintion of αt+1(i) it follows that

∑2
i=1 αt(i)βt(i) =

(
αt+1(1) αt+1(2)

)(βt+1(1)
βt+1(2)

)
We notice that

∑2
i=1 αt(i)βt(i) = P (O | λ) =

∑2
i=1 αT (i) where T is the total number

of observations. Quite fittingly, the term P (O | λ) is already calculated for us from the
α-pass. Finally, assuming that t + 1 is sufficiently small and using (1) we can deduce that
βt+1(1) ≈ βt+1(2), giving us

P (O | λ) ≈
(
αt+1(1) αt+1(2)

)(βt+1(1)
βt+1(1)

)
we then factor out βt+1(1)

P (O | λ) ≈ βt+1(1)
(
αt+1(1) αt+1(2)

)(1
1

)
and multiply out the RHS

P (O | λ) ≈ βt+1(1)[αt+1(1) + αt+1(2)]

which gives our final approximation result:

βt+1(1) ≈ βt+1(2) ≈ P (O | λ)∑2
i=1 αt+1(i)

(2)

The β approximation seen in (2) produced very good results in our simulation. To
achieve this simulation, we obtained a network trace (aka raw trace) from NetApp servers
made up of timestamped I/O commands (single Common Internet File System reads and
writes). We then partitioned this raw trace into one second intervals (aka binned trace)
counting the number of reads and writes present in each interval or "bin". This binned
trace was then filtered through a K-means clustering algorithm (assigning 7 clusters, i.e.
K=7) and we obtained a discrete time series (aka observation trace) where each point is an
integer between 1 and 7. This observation trace was given as a training set of 7000 points
(i.e. 7000 seconds) to a HMM. Afterwards, 3000 new observations were added to this set,
evaluating the 3000 points using our new β approximation. Thus, we were able to create the
IncHMM, which stored information on 10000 consecutive observation points. Statistics on
a raw trace of 10000 observations were compared with those of an IncHMM-generated trace
(using our model parameters A,B, π and a random distribution to generate this trace) also
of size 10000. The results are summarised below in Figure 1:

Reads/bin Writes/bin
Raw Mean: 111.350 Raw Mean: 0.382
IncHMM Mean: 111.278 IncHMM Mean: 0.366
Raw Std Dev: 254.942 Raw Std Dev: 0.550
IncHMM Std Dev: 255.039 IncHMM Std Dev: 0.461

Figure 1 Statistics for raw and IncHMM traces using the first β approximation.

Figure 1 is divided into Reads/bin and Writes/bin to simplify analysis, where the bin is
simply a one second interval. For example, a "Raw Mean of 111.350 Reads/bin" means that
the raw I/O trace produced on average 111.350 read commands per second. Similarly, we

T. S. Chis and P. G. Harrison 33

analyse the average number of writes per second as our I/O trace contains both reads and
writes. Therefore, we can see from Figure 1 that the statistics for raw reads and IncHMM
reads match extremely well, almost identical over the 10000 points. For the writes, there is
a higher difference in the standard deviations than in the means. This is possibly due to a
significant drop in the number of write procedures presented by the I/O trace, which the
IncHMM did not reproduce entirely when generating its trace.

3.2 Second β Approximation
As before, we begin with the following vectors and the 2× 2 transformation matrix (D):(

βt(1)
βt(2)

)
=
(
a11b1 a12b2
a21b1 a22b2

)(
βt+1(1)
βt+1(2)

)
where we use bi = bi(Ot+1), for ease of notation.

We then pre-multiply by the inverse of the transformation matrix (D−1):(
a11b1 a12b2
a21b1 a22b2

)−1(
βt(1)
βt(2)

)
= I2

(
βt+1(1)
βt+1(2)

)
where D−1D = I2 and I2 is the 2× 2 identity matrix.

By using Gauss-Jordan elimination to work out D−1, the final equation is(
βt+1(1)
βt+1(2)

)
= 1

b1b2(a11a22−a21a12)

(
a22b2 −a12b2
−a21b1 a11b1

)(
βt(1)
βt(2)

)
where b1 6= 0, b2 6= 0 and a11a22 6= a21a12.

In the case that bi = 0 for a state i, D has a column of all zero values, which means
that D−1 cannot exist, and therefore a simple approximation for βt+1(i) is needed here.
Considering all three cases, we present the full set of equations in (3). Underneath this,
Figure 2 summarises the results of the simulation with the β approximation from (3):

(
βt+1(1)
βt+1(2)

)
=

(
1.0
βt(2)
a22b2

)
, if b1 = 0

(
βt(1)
a11b1

1.0

)
, if b2 = 0

D−1

(
βt(1)
βt(2)

)
, if b1 6= 0, b2 6= 0, a11a22 6= a21a12

(3)

Reads/bin Writes/bin
Raw Mean: 111.350 Raw Mean: 0.382
IncHMM Mean: 110.231 IncHMM Mean: 0.357
Raw Std Dev: 254.942 Raw Std Dev: 0.550
IncHMM Std Dev: 254.155 IncHMM Std Dev: 0.463

Figure 2 Statistics for raw and IncHMM traces using the second β approximation.

ICCSW’12

34 Incremental HMM with an improved Baum-Welch Algorithm

The results obtained were satisfying, including the reads which performed very well. In
comparison, the writes slightly underperformed, possibly due to the read-dominated trace
or perhaps a slight misjudgement by our clustering algorithm.

4 Conclusion and Future Work

The β approximations used in this paper have been successful after statistical comparisons
between raw and IncHMM-generated traces. Thus, we have created two Workload Models
(each with their own β approximation) which characterize data traces incrementally. Ana-
lysing current work in this field, for example Stenger et al. in 2001 [4] (where all new β

variables were given a value of 1), it is clear that either Workload Model provides a better
β approximation. When comparing our models with the incremental HMM from [3], all
three models produced accurate results, except the latter had a backward formula that was
not recursive in terms of the β values. A general improvement to our models would be
to increase the accuracy for the standard deviation of the IncHMM writes. This may be
achieved by using significantly more observations from our I/O trace to obtain a greater
variation in write entries. Perhaps adjusting the K parameter for our K-means clustering
algorithm might also improve our results. Finally, we could test the IncHMM with another
discrete time data trace, for example using a binned trace of hospital arrival times which
stores the number of patients arriving every hour. Then, by choosing the most accurate
β approximation of the two, we would obtain an incremental Workload Model capable of
analysing a variety of discrete time series.

References
1 Baum, L. E., Petrie, T, Stastical Inference for Probabilistic Functions of Finite Markov

Chains. In The Annals of Mathematical Statistics, 37, pp. 1554-63, 1966
2 Harrison, P. G., Harrison, S. K., Patel N. M., Zertal, S. Storage Workload Modelling by

Hidden Markov Models: Application to Flash Memory, In: Performance Evaluation, 69,
pp. 17-40, 2012

3 Florez-Larrahondo, G., Bridges, S., Hansen, E. A., Incremental Estimation of Discrete
Hidden Markov Models on a New Backward Procedure, Department of Computer Science
and Engineering, Mississippi State University, Mississippi, USA, 2005

4 Stenger, B., Ramesh, V., Paragois, N., Coetzee, F., Buhmann, J. M., Topology free Hidden
Markov Models: Application to background modeling, pp. 297-301, Proceedings of the
International Conference on Computer Vision, 2001

5 Rabiner, L. R., Juang, B. H., An Introduction to Hidden Markov Models. In IEEE ASSP
Magazine, 3, pp. 4-16, January, 1986

6 Chis, Tib, Hidden Markov Models: Applications to Flash Memory Data and Hospital Arrival
Times, Department of Computing, Imperial College London, London, UK, 2011

Device specialization in heterogeneous multi-GPU
environments
Gabriele Cocco1 and Antonio Cisternino1

1 Computer Science Dept., University of Pisa
Largo Bruno Pontecorvo, Pisa, Italy
cocco@di.unipi.it, cisterni@di.unipi.it

Abstract
In the last few years there have been many activities towards coupling CPUs and GPUs in
order to get the most from CPU-GPU heterogeneous systems. One of the main problems that
prevent these systems to be exploited in a device-aware manner is the CPU-GPU communication
bottleneck, which often doesn’t allow to produce code more efficient than the GPU-only and
the CPU-only counterparts. As a consequence, most of the heterogeneous scheduling systems
treat CPUs and GPUs as homogeneous nodes, electing map-like data partitioning to employ
both these processing resources. We propose to study how the radical change in the connection
between GPU, CPU and memory characterizing the APUs (Accelerated Processing Units) affect
the architecture of a compiler and if it is possible to use all these computing resources in a
device-aware manner. We investigate on a methodology to analyze the devices that populate
heterogeneous multi-GPU systems and to classify general purpose algorithms in order to perform
near-optimal control flow and data partitioning.

1998 ACM Subject Classification C.1.3 Other Architecture Styles, D.1.3 Concurrent Program-
ming, D.2.8 Metrics

Keywords and phrases HPC, APU, GPU, GPGPU, Heterogeneous computing, Parallel comput-
ing, Task scheduling

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.35

1 Introduction

In the last few years various researches demonstrated that GPU computing power isn’t suitable
to accelerate many algorithms[4], mostly due to the execution model and to the limited
performances of the interconnection between the GPUs and the rest of the system. From the
execution model point of view, SIMD doesn’t fit very well with some computations, such as
algorithms containing many branches and fine-grained data-parallel computations. Among
the algorithms falling into these categories we can find Huffman Coding[6, 7] and KD trees
construction[8]. To get the highest performances, the characteristics of the CPUs, such as wide
caches and Multiple Thread Multiple Data (MTMD) execution model, should be employed
to accelerate portions of such kind of algorithms. Unfortunately, partitioning algorithms to
run heterogeneously on CPU-GPU systems is hold by the CPU-GPU interconnection and
communication performance[2]. Whereas an algorithm may benefit to be carefully staged
across the two computing resources, the time spent in transferring data often outweighs the
time saved in executing code on the most specific resource. Given this, recent researches
have mostly focused on exploiting the CPU and the GPU in an homogeneous way, ignoring
the specific characteristics of each computing resource and partitioning data in a task-farm
manner instead of scheduling differents parts of the control flow. S. Venkatasubramanian

© Gabriele Cocco and Antonio Cisternino;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 35–41

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.35
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

36 Device specialization in heterogeneous multi-GPU environments

and R. W. Vuduc [9] propose a solution to employ heterogeneous CPU-GPU platforms to
accelerate Jacobi’s iterative method for 2D Poisson equations. Since the target of this work
is quite specific, hand-crafted implementations for CPU and GPU are proposed instead of a
methodology to partition more general stencil algorithms and to automatically produce target
code. C. Luk and S.H.H. Kim [11] present an entire programming system for CPU-GPU
platforms where mapping between tasks and processing resources can be either performed
by the programmer or automatically by the scheduler. While manual mapping may allow
to partition control flow in addition to data, it substatially charges the programmer of
determining a good partitioning strategy and hand-coding the implementations for both
CPU and GPU. In [10], a machine learning approach is employed to statically decide a
near-optimal scheduling strategy. Like in the other works, partitioning is based only on data
and predictors are used to determine the amount of data to schedule to each processing
element instead of which part of the algorithm to execute on it. In [14] a performance-history
based scheduler is proposed to schedule tasks on the computing resource that demonstrated
to be the most efficient in executing those tasks during previous executions. Since tasks
are not analyzed nor classified on the bases of their features but are instead considered as
blackboxes of which only the completion time is known, the scheduler requires to be retrained
every time it is ported to a different CPU-GPU platform. E. Hermann et al. present a
task scheduling approach for interactive physics simulations that allows to split tasks across
multiple CPUs and GPUs[12] on the basis of task size and estimated completion time.

With the introduction of APUs, such as the Intel Ivy Bridge® and the AMD Fusion®

family, the CPU-GPU communication performance has decisively increased[1], thanks to
a novel architectural interconnection that overcomes the limits of the PCI-express bus
and to the chance for the CPU and the GPU to effectively share data without the need
for copies. APUs may therefore raise the chance for algorithms to be partitioned across
heterogeneous processing resources in a device-specific manner. At the same time, given the
different balances between computing and communication performance of integrated versus
discrete GPUs, APU’s and discrete GPUs in a hybrid multi-GPU system can be indepedently
specialized to accelerate different kind of computations.

Our work consists in leveraging on the APU’s capabilities to investigate on the chances
to specialize both the on-chip resources and discrete GPUs in order to schedule portions of
data and control flow on the bases of the specific characteristics of each device. Since APUs
represent a relatively recent architecture, there are currently few resources on them, such
as costs models, performance analysis or researches towards scheduling strategies to exploit
this kind of tightly coupled platforms. S. Keely[8] discusses about adaptive mapping kd-tree
construction on APUs to get the most from both the CPU and the integrated GPU, showing
that on-chip communication performance allows to reduce the penalities of synchronization
and host-device data transfer costs. K. Spafford et al.[5] propose an extensive comparison
of various algorithms running on discrete versus APU’s GPUs, illustrating the benefits of
tighter coupling when data exchange becomes a dominant portion of the runtime. M. Daga
at al. show a similar comparison[1], but int this case the intergrated GPU and a discrete
one are tested using two different platforms. Since the two GPUs do not share the CPU
executing the host code, comparing their performances is difficult and not fully reliable.

2 Methodology

The main aspects that characterize APUs is an high CPU-GPU communication performance
and a computing power usually much lower than the computing power of mainstream discrete

G. Cocco and A. Cisternino 37

GPUs. Given this, computations for which the time spent in CPU-GPU communication
outclasses computing time should benefit of integrated GPU execution. The first step
of our work consists in verifying this idea using a set of algorithms with different data-
transfer/operations ratio (section 3.1).

The second step of the research consists in defining a reliable metric for classification
of algorithms in terms of the device (integrated or discrete GPU) that is more suitable for
their execution. We plan to train this metric on a particular system using a set of samples
(i.e. popular and widely used parallel programming patterns) and taking into account the
characteristics of the various devices in order to obtain a convenience threshold. Algorithms
for which the value of the metric is below the threshold should be scheduled on the APU’s
GPU while algorithms for which the metric is above the threshold should be run on the
discrete GPU. Following the results of the first step, the classification metric should be
mainly based on the amount of data transferred and on the amount of operations executed on
data. The term "operations" may refer to device ISA or intermediate language (PTX, AMD
IL) instructions, to higher-level assembly instructions (MSIL, LLVM), to source-language-
based operations (C/C++ assignments, arithmetic operations, etc.) or to language-unaware
algorithmic complexity. Even if moving from device ISA to virtual machine assembly affects
the amount of instructions executed, the number of operations considered in the metric
should not necessarly match instructions executed by a device but instead characterize the
complexity of the algorithm in a device-unaware manner. Moreover, as shown in section 3, the
relative integrated versus discrete GPU performance seems to be correlated to the complexity
of the (sequential) algorithm, which suggests the reliability of expressing operations in terms
of sequential algorithms. The first definition of this metric, based on language-unaware
algorithmic complexity, is discussed in section (3.2). For future work we plan to move to
LLVM and to analyze LLVM code to determine the value of the metric for generic algorithms.
LLVM provides various tools and services, such as loop informations, dead-code elimination
and more, that can be exploited to simplify code analysis.

In addition to the operations executed and to the amount of data transferred other
aspects may affect the GPUs relative performance, such as synchronization, branching,
number of working threads and memory conflicts. While most of these aspects might be
taken into account, we decide to start with a very simple metric and to refine it introducing
additional parameters as soon as we encounter examples for which the metric fails in modeling
the integrated versus discrete GPU performance. In addition, some of these features, like
synchronizations and memory conflicts, are not exposed at LLVM level. Whenever the metric
requires to take them into account, an OpenCL implementation of the algorithm should be
available or it should be generated starting from LLVM implementation. AMD is currently
developing an LLVM backend to produce AMD IL binaries, while an LLVM to Nvidia PTX
is already available [19].

Founding our work on a device-unaware analysis of operations allows to overcome the
dependency of device ISA/IL from the specific GPU model and vendor and of the source
code from a specific programming language. Moreover, working on LLVM allows to extend
the analysis to include the CPU as a scheduling target.

Since the final target of our research is to partition and to schedule generic algorithms in a
control-flow-aware manner, the most important step consists in developing a partitioning and
scheduling system based on code similarity pattern discovery engine to recognize well-known
parallel patterns inside generic algorithms. The engine is paired with a database of popular
computations, such as map, reduce, scan, convolution, matrix reduction and multiplication.
The classification metric defined in the previous steps is used to train the scheduler on a

ICCSW’12

38 Device specialization in heterogeneous multi-GPU environments

Table 1 Specifications of the testing platform.

Device Clock rate SIMDs Cores Processing power
AMD A8-3850 (CPU) 2.9 GHz - 4 CPUs -
AMD 6550D (Integrated) 600 MHz 5 400 radeon 480 GFLOPS
AMD HD 5870 (Discrete) 850 MHz 20 1600 radeon 2720 GFLOPS

particular system to determine the integrated versus discrete GPU convenience threshold.
For each computation in the database we store a marker representing the device on which it
is more suitable to execute. Finally, the database and the markers are employed to partition
a generic algorithm in terms of the patterns it contains, scheduling each pattern recognized
on the device stored in the relative marker. For this part of the work we can benefit of many
researches on code similarity and pattern discovery [16, 17, 18].

3 Preliminary results

In order to investigate on the chance for the CPU, the integrated and the discrete GPU to be
specialized to accelerate different sets of computations, we start analyzing the performances
of integrated and discrete GPUs in running a set of algorithms with specific computing
requirements. The algorithms that compose the test suite are vector/matrix addition (saxpy),
reduction, convolution and matrix multiplication. The choice of the set of algorithms has been
driven by the aim to take into account both memory-bound and compute-bound algorithms.

Each algorithm is executed on the testing platform (table 1) under different conditions.
In particular, we run each algorithm using all the possible data-transfer strategies, like
mapping, placement (ALLOC_HOST_PTR, USE_PERSISTENT_MEM_AMD, etc.) and
pre-pinning and employing different data types (float, float2, float4, etc.). For each algorithm
and for each device we select the conditions that lead to the lowest completion time.

3.1 Experimental results

Figures 1, 2 and 3 compare the completion times of the integrated GPU and of the discrete
GPU resulting from the execution of the benchmarks. Since we show the ratio between the
completion times of the two devices, values higher than one mean that the integrated GPU
is faster than the discrete GPU, while a ratio lower than one signifies that the discrete GPU
is faster than the integrated one.

The integrated GPU is more efficient in executing both saxpy and reduction for every
input size. Matrix multiplication falls into the opposite situation, since the discrete GPU
outperforms the integrated one regardless the matrix size. Finally, convolution exhibits a
mixed behaviour, where the discrete GPU is faster for small input matrixes and gradually
becomes slower than the integrated GPU as bigger the matrix size. Since the convolution
algorithm depends on both the input matrix size and the filter size, we also run the algorithm
fixing the input matrix size and gradually increasing the filter. The results of this test, shown
in figure 4, confirm the partial convenience of the integrated GPU and allow to conclude that
the discrete GPU outperforms the integrated one for small input matrixes and for big filters.

G. Cocco and A. Cisternino 39

Figure 1 Saxpy completion time ratio: dis-
crete GPU / integrated GPU.

Figure 2 Matrix multiplication completion
time ratio: discrete / integrated GPU.

Figure 3 Convolution completion time ratio:
discrete / integrated GPU.

Figure 4 Convolution completion time ratio
varying filter size: discrete / integrated GPU.

3.2 Computation Density
For each algorithm, we calculate the ratio between the number of operations performed on
data and the amount of data transferred between the CPU and the GPU. We call this metric
Computation Density(CD). The aim of this metric is to classify the efficiency of integrated
versus discrete GPUs in executing a particular algorithm. As shown in table 2, saxpy and
reduction have a constant CD while matrix multiplication is characterized by a CD that is
linear on the data size. In matrix convolution, the CD depends both on the input matrix size
and on the filter size. When the matrix size is much bigger than the filter area (N � M2),
the CD can be approximated to the following, which is constant on the input matrix size.

CDsmallfilter = 2M2 (1)

When the matrix size and the filter area are similar (N u M2), the ratio can be instead
approximated using the below formula, which is linear on the input size.

CDbigfilter = 2N3

2N2 = N (2)

The values of CD calculated for the algorithms taken into account suggest that the
efficiency of integrated GPUs versus discrete GPUs is highly correlated to the balance

ICCSW’12

40 Device specialization in heterogeneous multi-GPU environments

between the amount of operations performed on data and the amount of data transferred to
and from the GPU. In particular, when the CD is constant and below a certain threshold, the
integrated GPU is the faster device. Whereas the CD is more than constant on the input size
(e.g. linear, for matrix multiplication), the discrete GPU is instead capable of outclassing the
integrated GPU. The most interesting test revealing this correlation is the matrix convolution,
where CD can be considered constant on the input size except for matrixes and filters of
similar sizes. Since the filter size is always smaller than the input matrix size, there are two
chances for input matrix and filter to have similar sizes, that is decreasing the input matrix
size and increasing the filter size. These two situations are the one discovered executing the
algorithm on the testing platform (fig. 3 and 4).

Table 2 Computation Density of the tested algorithms

Saxpy N2

3N2 = 1
3 (N2 matrix size)

Reduction N
N+1 ≈ 1 (N vector size)

Matrix multiplication 2N3

3N2 = 2
3 N (N2 matrix size)

Matrix convolution 2M2N2

2N2+M2 (N2 matrix size, M2 filter size)

4 Conclusion

In this paper we shown that APU’s GPUs and discrete GPUs can effectively accelerate
different kind of computations, giving us the chance to specialize algorithms in order to
obatain the best performances from an hybrid multi-GPU system. We also tried to correlate
the test results with the characteristics of each specific algorithm, leading to a metric called
Computation Density. Actually, many aspects can influence the completion time, such as
thread synchronization, memory access patterns (influencing bank conflicts and coalescing)
and loop unrolling. We are working to refine the metric to take into account all these aspects
while trying to keep it as simple as possible. The following step is to take into account
the CPU, which is particularly challenging due to it’s different execution model and to
the CPU-GPU memory sharing. In particular, memory sharing poses contention problems,
since empoying the CPU to perform part of a computation may limit the memory access
bandwidth and therefore the performances of the integrated GPU. Finally, we plan to use the
Computation Density1 to train a classifier on a large set of widely used computational patterns.
The target is to employ machine-learning and parallel patterns discovery to partition and
classify general purpose algorithms on the basis of the set of parallel computational patterns
recognized during code analysis.

References
1 M. Daga, A. M. Aji, and W.-c. Feng. On the efficacy of a fused cpu+gpu processor (or apu)

for parallel computing. In Proceedings of the 2011 Symposium on Application Accelerators
in High-Performance Computing, SAAHPC ’11, pages 141–149, Washington, DC, USA,
2011. IEEE Computer Society.

2 A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juckeland, R. Dietrich,
D. Poole, and C. Lamb. Parallel performance measurement of heterogeneous parallel sys-

1 Refined and eventually intergated with other metrics

G. Cocco and A. Cisternino 41

tems with gpus. In Proceedings of the 2011 International Conference on Parallel Processing,
ICPP ’11, pages 176–185, Washington, DC, USA, 2011. IEEE Computer Society.

3 S. Ryoo, C. I. Rodrigues, S. S. Stone, J. A. Stratton, S.-Z. Ueng, S. S. Baghsorkhi, and
W.-m. W. Hwu. Program optimization carving for gpu computing. J. Parallel Distrib.
Comput., 68:1389–1401, October 2008.

4 R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney, and A. Shringarpure. On the
limits of gpu acceleration. In Proceedings of the 2nd USENIX conference on Hot topics in
parallelism, HotPar’10, pages 13–13, Berkeley, CA, USA, 2010. USENIX Association.

5 The Tradeoffs of Fused Memory Hierarchies in Heterogeneous Computing Architectures. K.
Spafford, J. S. Meredith, S. Lee, D. Li, P. C. Roth and J. S. Vetter. Future Technologies
Group, Computer Science and Mathematics Division, Oak Ridge National Laboratory, 1
Bethel Valley Road-MS6173, Oak Ridge, TN 37831.

6 G. de Bailliencourt. M-JPEG Decoding Using OpenCL on Fusion AMD Fusion Developer
Summit, 2011.

7 Accelerating Lossless Data Compression with GPUs. R.L. Cloud, M.L. Curry, H.L. Ward,
A. Skjellum and P. Bangalore. July, 2011.

8 S. Keely. Heterogeneous Kd-tree Construction on an APU AMD Fusion Developer Summit,
2012.

9 S. Venkatasubramanian, R. W. Vuduc. Tuned and Wildly Asynchronous Stencil Kernels
for Hybrid CPU/GPU Systems. Georgia Institute of Technology, College of Computing,
School of Computer Science, 266 Ferst Drive, Altanta, Georgia, USA.

10 D. Grewe and M.F.P. O’Boyle A Static Task Partitioning Approach for Heterogeneous
Systems Using OpenCL. School of Informatics, The University of Edinburgh, UK, 2011.

11 C. Luk 1, and S.H.H. Kim 2. Exploiting Parallelism on Heterogeneous Multiprocessors
with Adaptive Mapping. 1 SSG Software Pathfinding and Innovation, Intel Corporation,
Hudson, MA. School of Computer Science. 2 Georgia Institute of Technology, Atlanta, GA.

12 Multi-GPU and Multi-CPU Parallelization for Interactive Physics Simulations. E.
Hermann1, B. Ran1, F. Faure2„ T. Gautier1 and J. Allard1. 1INRIA. 2Grenoble University.

13 M. D. Linderman, J. D. Collins, H. Wang and T. H. Meng. Merge: A Programming Model
for Heterogeneous Multi-core Systems Abstract. 2011.

14 V.J. Jimenez1, L. Vilanova2, I. Gelado2, M. Gil2, G. Fursin3 and N. Navarro2. Predictive
Runtime Code Scheduling for Heterogeneous Architectures. 1Barcelona Supercomputing
Center (BSC). 2Departament d’Arquitectura de Computadors (UPC). 3ALCHEMY Group,
INRIA Futurs and LRI, Paris-Sud University.

15 Advanced Micro Device. AMD Accelerated Parallel Processing with OpenCL. Revision 2.2.
June, 2012.

16 M. Miron Bernal, H. Coyote Estrada, J. Figueroa Nazuno. Code Similarity on High Level
Programs. Proceedings of the 18th Autumn Meeting on Communications, Computers, Elec-
tronics and Industrial Exposition. (IEEE - ROCC07). Acapulco, Guerrero, Mexico. 2007.

17 N. Wu, S. M. M. Tahaghoghi. Evolving similarity functions for code plagiarism detec-
tion. Honours Thesis. School of Computer Science and Information Technology. RMIT
University. Melbourne, Australia. October, 2007.

18 J. Dong1, Y. Sun2, Y. Zhao1. Design Pattern Detection by Template Matching. 1Computer
Science Department, University of Texas, TX 75083, USA. 2American Airlines, 4333 Amon
Carter Blvd, Fort Worth, TX 76155, USA.

19 J. Holewinski. PTX Back-End: GPU Programming with LLVM. The Ohio State University.
LLVM Developer’s Meeting. November 18, 2011.

ICCSW’12

Abstracting Continuous Nonpolynomial Dynamical
Systems
William Denman

Computer Laboratory, University of Cambridge, UK
william.denman@cl.cam.ac.uk

Abstract
The reachability problem, whether some unsafe state can be reached, is known to be undecidable
for nonlinear dynamical systems. However, finite-state abstractions have successfully been used
for safety verification. This paper presents a method for automatically abstracting nonpolynomial
systems that do not have analytical or closed form solutions.

The abstraction is constructed by splitting up the state-space using nonpolynomial Lyapunov
functions. These functions place guarantees on the behaviour of the system without requiring
the explicit calculation of trajectories. MetiTarski, an automated theorem prover for special
functions (sin, cos, sqrt, exp) is used to identify possible transitions between the abstract states.
The resulting finite-state system is perfectly suited for verification by a model checker.

1998 ACM Subject Classification I.6.4 Model Validation and Analysis

Keywords and phrases Formal Verification, Automated Theorem Proving, Abstraction, Non-
polynomial System, MetiTarski

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.42

1 Introduction

Abstracting continuous systems into a finite state representation has been a successful
method for the formal verification of real world problems. Current abstraction methods can
only handle linear or polynomial nonlinear systems. Nonpolynomial terms must be either
linearised or over-approximated [4]. These approximations can introduce abstract states
that are seen as false-positives by the model checker. In this paper, the automated theorem
prover MetiTarski is used to create an abstraction of a nonpolynomial continuous system by
working with the nonpolynomial terms directly. This goal is to enhance the quality of the
resulting finite state abstraction.

MetiTarski [2] is an automated theorem prover for arithmetical conjectures involving
transcendental functions (sin, cos, exp etc.). It has been successful in proving arithmetical
theorems that are used to verify analogue circuits [3] and linear hybrid systems [1].

Most systems of interest can only be specified using nonlinear differential equations. This
is because, not surprisingly, nonlinear systems present a richer set of dynamics. It is for these
reasons that both qualitative analysis and repeated numerical simulation is used [10]. The
finite level of precision of numerical methods is often a source of significant error.

Safety, the fact that some bad behaviour will never happen, is the most important
property that should be verified for a system. The reachability computation remains the most
common way to check safety of a system. Unfortunately, the reachability decision problem of
continuous systems is undecidable [6]. Abstraction methods are commonly employed to solve
this problem.

By abstracting properly and preserving the relevant underlying behaviour of the system,
tools that are already developed can be used. Sloth and Wisniewski [12] developed a method

© William Denman;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 42–48

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.42
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

W. Denman 43

for creating a sound and complete abstraction of continuous systems using Lyapunov functions.
By using the Lyapunov function as a predicate for partitioning, they were able to convert
the infinite state space of a continuous system into timed automata. They are however only
able to abstract a restricted class of linear systems.

Another abstraction method borrows ideas from the domain of qualitative reasoning.
Qualitative reasoning is motivated by the idea that numerical simulation is limited when not
all the parameters of the system are known. Instead of trying to compute a solution, it is
sufficient to look at how the vector field itself changes over time. Tiwari [14] uses predicates
that evaluate over the three symbols {+,−, 0} to split up the infinite state space. This
construction of the abstraction uses the decidability of the first order theory of real closed
fields [13] to compute the transitions between abstract states. Once the abstraction is created
then a model checker is used to evaluate Computation Tree Logic (CTL) properties on the
abstract system. The method proposed by Tiwari is limited to nonlinear polynomial vector
fields.

2 Dynamical Systems

A dynamical system can be thought of as an abstract entity that changes its behaviour and
state with respect to time. The state is the current value of the variables of the system. The
behaviour is a function that returns the next state of the system, given the current state.
These two quantities are required to completely model the system.

I Definition 1 (Dynamical System). An n-dimensional dynamical system DS is represented
by the state vector x(t) ∈ Rn and a function f : Rn → Rn

For continuous systems time will progress as a smooth function. Instead of giving an
explicit value of the next state, function f will define how the system evolves continuously.
The simplest way to model this smooth change of variables is using differential equations.

I Definition 2 (Continuous Dynamical System). A continuous dynamical system is compactly
modelled using a set of differential equations of the form

x′(t) = f(x(t)) (1)

It is common convention to drop the explicit reference to the time variable.

x′ = f(x) (2)

The benefit of using differential equations is that continuous systems can be completely
represented by how their variables change. Even for the simplest of systems, it can be quite
difficult and in most cases impossible to analytically solve Equation (1). If the functions f(x)
are polynomial, that is f(x) = anx

n + an−1x
n−1 + ...+ a1x+ a0 where n is a non-negative

integer and a0, a,.., an are constants then the resulting system is polynomial. Otherwise the
system is nonpolynomial.

I Example 1 (The Pendulum). Take for instance the friction-free pendulum of Figure 1a.
A rod of length L is attached to a ball of mass m. As the ball swings, the angle θ between
the rod and the vertical changes. The angular velocity (rotational speed in the tangential
direction) ω(t) is equivalent to the change of the angle θ or dθ

dt . Acceleration, velocity and
position of the ball are related by a = v′ = x′′. The arc-distance travelled by the ball is
x = θL. The effective force returning the ball to the center is mg sin θ. The differential

ICCSW’12

44 Abstracting Continuous Nonpolynomial Dynamical Systems

(a) Regular pendulum (b) Whirling pendulum

Figure 1 Two nonpolynomial systems.

equations of the system can be derived from Newton’s 2nd Law F = ma. Taking F
m = a,

a = x′′ = (θL)′′ = ω′L gives the system in state space form

θ′ = ω (3a)

ω′ = − g
L

sin θ (3b)

This model is exactly described by two simple differential equations. The problem is that
there is no known method that can obtain a solution with respect to time for either of the
state variables (θ(t) or ω(t)). This is due to the nonpolynomial sin θ term in Equation (3b).
Under certain conditions, nonpolynomial systems like Example 1 can be approximated by a
linear system that is guaranteed to have a closed form solution.

I Definition 3 (Linear System). When f(x) (Equation (2)) is defined by an affine line ax+ b,
the continuous system is said to be linear. If the state vector x is n-dimensional then,
f(x) = Ax+ b where A is an n by n matrix b is an n vector.

Since the linear system is defined using a square matrix, it is easy to extract the eigenvalues
[11]. These eigenvalues can be used to construct the solution to the system of equations and
to understand the qualitative behaviour of the system’s trajectories. The interesting result is
that if a nonpolynomial system is replaced by a linear approximation, the eigenvalues of the
approximation can be used to understand the behaviour of the original system. The linear
approximation is only valid in a close neighbourhood of a particular point. In dynamical
system analysis, this is usually chosen to be an equilibrium point.

I Definition 4 (Equilibrium Point). An equilibrium or fixed point is a location in the state-
space x̃ where f(x̃) = x̃. When the system is at the equilibrium point, it will stay there for
all time if not disturbed. If a slight disturbance causes the system to leave the equilibrium
point and never return then the equilibrium point is unstable, otherwise the system is stable.

Since nonpolynomial systems cannot be solved analytically, verification relies on the
analysis of the qualitative behaviour of the system near its equilibrium points. This qualitative
analysis looks to see how sets of trajectories move in the state-space. For linear systems,
if the eigenvalues of the system all have a negative real part, then the stability of the
equilibrium point is guaranteed. If the real parts of the eigenvalues are all 0 then nothing
can be concluded and the linearisation method fails. An alternative method that operates
on the original nonlinear vector field directly can be used instead.

W. Denman 45

I Definition 5 (Lyapunov Function). A function V (x) is a Lyapunov function, if for an
equilibrium point (fixpoint) located at the origin (0,0) the following conditions hold

V (x) > 0 for x 6= 0 (4a)
V (0) = 0 (4b)

∂V (x)
∂t

≤ 0 for all x (4c)

If a Lyapunov function exists, then the equilibrium point is guaranteed to be stable [10].
The Lyapunov property is a sufficient condition for stability.

Return to Example 1 but assume now that the system is real by including friction
effects. V (x) can be chosen as the total energy (kinetic plus potential) of the system. It is
clear that when the pendulum is displaced, energy is put into the system causing V (x) to
increase and V (x) > 0 . The energy of the system will only be zero when the pendulum
has stopped swinging and is hanging straight down at position 0, therefore V (0) = 0. The
system continuously loses energy due to friction and V (x) is always decreasing, implying
that V ′(x) < 0. Since the three constraints have been met, V (x) is an Lyapunov function
and by definition the equilibrium point at rest is stable.

The Lyapunov method does not require that V (x) be the energy of the system, any
function can be used. The caveat is that finding a Lyapunov function in general can be quite
difficult. There are several advanced methods based on sum-of-squares (SOS) techniques that
make the search for the Lyapunov function tractable. These methods have been implemented
in a MATLAB package called SOSTOOLS [9]. The next section describes an abstraction
algorithm that uses Lyapunov functions.

3 Abstracting the Dynamical System

The end-goal of verification is to prove that a system has been built correctly. For continuous
systems we specifically want to prove that all trajectories starting in a safe state will never
reach a bad or unsafe state. This reachability analysis is known to be decidable for discrete
systems such as finite automata, but it is undecidable for nonpolynomial systems. Abstraction
methods are a shortcut used to obtain a decidability result from the undecidable brick wall.

The abstraction method of Tiwari [14] discretizes the state-space using predicates evalu-
ated over three symbols {+,−, 0}. Each abstract state is defined by a conjunction of these
predicates. For the example in Figure 2a, predicates P1 and P2 represented by thick lines
have been used to discretize a two dimensional state space. Taking P1 : f(x, y) = x and P2 :
f(x, y) = y, state S1 is P1 > 0 ∧ P2 > 0, S7 is P1 = 0 ∧ P2 > 0 and so on.

The difficulty in creating finite state abstractions is choosing the predicates used to
discretize the state space. Tiwari has developed several heuristics for defining good predicates.
Lyapunov functions are a good choice because they represent a positively invariant set. By
definition, the solutions of the system will only pass through the level sets of Lyapunov
functions in one direction. Including Lyapunov functions greatly simplifies the construction
of abstract transition relations by limiting the reachable state space.

A decision procedure is used to determine all possible transitions between the abstract
states. For instance, in the example shown in Figure 2a the following cases must be checked
to determine the transitions between S2, S4 and S5. For brevity, P1 is assumed to be positive.
Transitions between abstract states are decided by checking the sign of the derivative of the
predicate with respect to the vector field of the system. To take this derivative, the chain
rule for partial derivatives is used dPn

dt = ∂Pn
∂x

dx
dt + ∂Pn

∂y
dy
dt .

ICCSW’12

46 Abstracting Continuous Nonpolynomial Dynamical Systems

(a) Discretizing the state space with predicates (b) Transitioning between abstract states

Figure 2 Tiwari’s Abstraction Method.

1. If the current state is S4 : (P2 < 0) then:
If P2′ > 0, the next state is either S4 or S5
If P2′ = 0, the next state is S4
If P2′ < 0, the next state is S4
If unknown, the next state is S4 or S5

2. If the current state is S5 : (P2 = 0) then:
If P2′ > 0, the next state is S2
If P2′ = 0, the next state is S5
If P2′ < 0, the next state is S4
If unknown, the next state is S2 or S5 or S4

3. If the current state is S2 : (P2 > 0) then:
If P2′ > 0, the next state is S2
If P2′ = 0, the next state is S2
If P2′ < 0, the next state is S5 or S2
If unknown, the next state is S2 or S5

One issue is that the decision procedure used by Tiwari is only applicable to polynomials.
This restriction limits the type of systems that can be analysed. The next example shows
how Tiwari’s method is extended to work with nonpolynomial systems. MetiTarski is used
to reason about the inequalities that are generated during the abstract transition analysis
described above.

I Example 2 (Whirling Pendulum). Consider Figure 1b, where a pendulum of length lp
is attached to a movable rigid arm of length la. Taking the following assumptions: the
pendulum is light enough to be swung up with a small φ′, ignore friction and consider that
each pendulum arm is thin enough to make the moment of inertia negligible [5]. With x1 = φ

and x2 = φ′ the system of equations are

x′1 = x2 (5a)

x′2 = ω2 sin x1 cosx1 −
g

lp
sin x1 (5b)

The predicates used to split up the state space are obtained by repeatedly taking the

W. Denman 47

- 2 - 1 0 1 2

- 2

- 1

0

1

2

(a) Vector field
- 2 - 1 0 1 2

- 2

- 1

0

1

2

(b) Discretized state-space

Figure 3 The whirling pendulum system.

derivative of the vector field.

P1 = x′′2 = −x2 sin2(x1) + x2 cos2(x1)− 10x2 cos(x1) (6a)

P2 = P1′ = 1
4 sin(x1)(8x2

4(8 cos(x1)− 5)− 8x2
2(561 cos(x1)− 210 cos(2x1)

+ 11 cos(3x1)− 65)− 1104 cos(x1)− 8040 cos(2x1) + 2304 cos(3x1)
− 175 cos(4x1) + 4 cos(5x1) + 4095) (6b)

and a Lyapunov function of the system is found using SOSTOOLS

V 1 = 0.3345x2
2 + 1.4615 sin2 x1 + 1.7959 cos2 x2 − 6.689x2 + 4.8931 (7)

The behaviour of the system is shown in the vector field plot of Figure 3a with x1 on the
horizontal axis and x2 on the vertical axis. Using the predicates obtained from the equations
of the system (Equations 6a and 6b) along with several level sets of the Lyapunov function
(Equation 7 : V 1 = 0.25, V 1 = 0.5, V 1 = 0.85 and V 1 = 2), the state-space is discretized as
shown in Figure 3b. MetiTarski is used to determine the transitions between the abstract
states using the method described in Section 3. The methods of Sloth, Wisniewski and
Tiwari cannot deal with this system because of the nonpolynomial components.

4 Conclusion

An abstract system has been constructed by choosing the appropriate predicates and dis-
cretizing the continuous state space of a nonpolynomial dynamical system. The abstract
transitions have been automatically obtained using MetiTarski. The resulting finite state
transition system can be sent to a model checker for verification purposes.

One important open question is concerned with choosing good predicates. Tiwari’s method
uses predicates that are constructed by taking repeated derivatives of the vector fields. The
motivation being that for polynomial systems this process terminates. For nonpolynomial
systems this is not necessarily the case. It will be necessary to quantify the quality of the

ICCSW’12

48 Abstracting Continuous Nonpolynomial Dynamical Systems

abstractions. One potential option to increase the quality of the generated abstractions is to
use the Counter Example Guided Abstraction Refinement (CEGAR) framework.

Barrier Certificates can be used for safety analysis [7] and are another source of good
predicates. Instead of being concerned with the stability of an equilibrium point, they are
used to prove that certain states of a system cannot be reached. This is done using Lyapunov
theory (see Definition 5). The important point is that SOSTOOLS can be used to search
for Barrier Certificates. Linear hybrid systems have been successfully verified using these
techniques [8]. Future work includes using MetiTarski for determining abstract transitions of
systems discretized by Barrier Certificates.

References
1 B. Akbarpour and L. C. Paulson. Applications of MetiTarski in the verification of control

and hybrid systems. In Hybrid Systems: Computation and Control, volume 5469 of Lecture
Notes in Computer Science, pages 1–15, 2009.

2 Behzad Akbarpour and Lawrence C. Paulson. MetiTarski: An automatic theorem prover
for real-valued special functions. Journal of Automated Reasoning, 44:175–205, 2010.

3 W. Denman, B. Akbarpour, S. Tahar, M. H. Zaki, and L. C. Paulson. Formal verification of
analog designs using MetiTarski. In Formal Methods in Computer-Aided Design. FMCAD
2009, pages 93 –100, November 2009.

4 Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier
Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. SpaceEx: Scalable
verification of hybrid systems. In Proc. 23rd International Conference on Computer Aided
Verification (CAV), LNCS. Springer, 2011.

5 K Furuta, M Yamakita, and S Kobayashi. Swing-up control of inverted pendulum using
pseudo-state feedback. Part I: Journal of Systems and Control Engineering, 206:263–269,
1992.

6 Emmanuel Hainry. Reachability in linear dynamical systems. In Proceedings of the 4th
conference on Computability in Europe: Logic and Theory of Algorithms, CiE ’08, pages
241–250, Berlin, Heidelberg, 2008. Springer-Verlag.

7 Stephen Prajna. Barrier certificates for nonlinear model validation. Automatica, 42(1):117–
126, 2006.

8 Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using barrier
certificates. In In Hybrid Systems: Computation and Control, pages 477–492. Springer,
2004.

9 Stephen Prajna, Antonis Papachristodoulou, Peter Seiler, and Pablo A. Parrilo.
SOSTOOLS: Sum of squares optimization toolbox for MATLAB, 2004.

10 Shankar Sastry. Nonlinear Systems. Springer, 1999.
11 Edward R. Scheinerman. Invitation to Dynamical systems. Dover Publications, 1996.
12 C. Sloth and R. Wisniewski. Abstraction of continuous dynamical systems utilizing lya-

punov functions. In Decision and Control (CDC), 2010 49th IEEE Conference on, pages
3760–3765, December 2010.

13 Alfred Tarski. A decision method for elementary algebra and geometry. Technical report,
RAND Corp., 1948.

14 Ashish Tiwari and Gaurav Khanna. Series of abstractions for hybrid automata. In Hybrid
Systems: Computation and Control HSCC, volume 2289 of LNCS, pages 465–478. Springer,
March 2002.

Improving the Quality of
Distributed Composite Service Applications
Dionysios Efstathiou1, Peter McBurney1, Noël Plouzeau2, and
Steffen Zschaler1

1 Department of Informatics, King’s College London
{dionysios.efstathiou, peter.mcburney, steffen.zschaler}@kcl.ac.uk

2 IRISA, University of Rennes 1
noel.plouzeau@irisa.fr

Abstract
Dynamic service composition promotes the on-the-fly creation of value-added applications by
combining services. Large scale, dynamic distributed applications, like those in the pervasive
computing domain, pose many obstacles to service composition such as mobility, and resource
availability. In such environments, a huge number of possible composition configurations may
provide the same functionality, but only some of those may exhibit the desirable non-functional
qualities (e.g. low battery consumption and response time) or satisfy users’ preferences and
constraints. The goal of a service composition optimiser is to scan the possible composition
plans to detect these that are optimal in some sense (e.g. maximise availability or minimise data
latency) with acceptable performance (e.g. relatively fast for the application domain). However,
the majority of the proposed optimisation approaches for finding optimal composition plans,
examine only the Quality of Service of each participated service in isolation without studying
how the services are composed together within the composition. We argue that the consideration
of multiple factors when searching for the optimal composition plans, such as which services are
selected to participate in the composition, how these services are coordinated, communicate and
interact within a composition, may improve the end-to-end quality of composite applications.

1998 ACM Subject Classification C.0 [General]: System architectures

Keywords and phrases Service Composition, Optimisation, Dynamism, Evolution

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.49

1 Introduction

Service-orientation promotes the creation of new value-added applications by composing pre-
existing services regardless their location and platform technology [16]. Service composition
[8, 9] is not only limited to functional composition, but also takes into account non-functional
issues. Indeed, an application that does not obey the user’s Quality of Service (QoS)
constraints might be as useless as a service not providing the desired functionality.

Service composition in distributed environments faces four challenges: (a) a large space
of possible deployment architectures are possible, (b) satisfaction of multiple users’ (possibly
conflicting) QoS preferences and constraints, (c) continuous system evolution and high
dynamism since the components and their relationships are not known at design-time and
may change at run-time, and (d) absence of an entity with global knowledge. These challenges
demand a dynamic self-adaptive distributed solution [11, 17] for finding the composition
architectures of high-quality that achieve the users’ functional and non-functional goals.

© Dionysios Efstathiou, Peter McBurney, Noël Plouzeau, and Steffen Zschaler;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 49–55

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.49
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

50 Improving the Quality of Distributed Composite Service Applications

We argue that to achieve high-quality compositions, the composer should take into account
not only the quality of each service in isolation, but also how services are coordinated, how
they communicate and how they interact within the composition. Despite the vast research
on the field of service composition, little is known about how these factors combined affect
the aggregation of optimal compositions. The contention of this research is that the combined
consideration of these factors may improve the overall quality of the composed applications.

The remainder of this paper is organised as follows. In Section 2 we present a motivating
scenario for our research. Section 3 discusses some representative alternative approaches for
optimising the process of service composition. Section 4 outlines our preliminary work for
enabling the efficient on-the-fly creation of high-quality composite services. Finally, Section
5 concludes by outlining the plans of future work towards achieving our research goals.

2 Motivating Scenario

Our case study is a time-critical continuously evolving application: a fire-fighter tactical
information and decision support system. The system’s goal is to achieve improved knowledge
of the emergency situation for better decision making via efficient sharing of real-time
information between people in various hierarchical levels. For example, a commanding
officer in an fire-fighting situation wants real-time information about on-field conditions, the
availability of resources, and others, to make better decisions for risk identification, resource
allocation, and others.

Figure 1 High-level architecture of the fire-fighting application scenario.

Figure 1 presents the groups emerging during an emergency operation which are (in order
of hierarchy): team, engine group, group, and column. Each group has a leader, and each
leader is equipped with a tablet. Each fire-fighter carries a number of special sensors (e.g.
temperature, air quality, GPS module), and a number of sensors are deployed in the field to
provide real-time data. The Field Commanding Officer (FCO), who is the highest ranked

D. Efstathiou, P. McBurney, N. Plouzeau, and S. Zschaler 51

person in the field (in our example the Column Leader), combines real-time information
about the condition of the fire, local geography, fire evolution prediction services, available
resources (e.g. personnel, water pumps), and others, to achieve better decision making.
This application is composed of spatially distributed service components hosted on back-end
servers and on-field mobile devices that cooperate to achieve a global goal.

Frequent changes of the composition architecture are necessary to deal with system
dynamism (e.g. disconnections, battery depletion). Also, the system must continuously
adapt to hierarchical and team changes, for example, due to initial danger underestimation
there is a need for reinforcements which must be followed by corresponding adaptations (e.g.
hierarchical changes, arrival of new services, etc.). Furthermore, the system must take into
account that users of different hierarchical levels have different non-functional requirements.
For example, the FCO demands to get information from the field in a fast way, while the
Group Leader may require to have reliable messaging with all the members of his group.

For a given composite application, there may be many architectures that provide the
same functionality, but with different levels of QoS. However, the parameters that influence
the quality are not known before system execution. As a result, continuous reconfiguration
is necessary to maintain the the high quality of the application during run-time.

3 Related Work

The related work of our research span several areas of the literature: (a) service composition
models; (b) QoS-aware service composition; (c) self-adaptation; and (d) optimisation. We
summarise the key lessons learned from our literature review that we will use to design our
solution approach to the studied problem.

Service Composition Models. In inherently distributed environments, decentralised
coordination of services may alleviate the problems (performance bottleneck, single-point-of-
failure) [3] of traditional service orchestration [9], by enabling the distributed formation of
compositions based on dynamic conditions (e.g. battery level, current bandwidth, etc.).

As services can be combined in unpredicted ways, there are many possible configurations
to decentralise the coordination of a composite service which raises the question of what is
the best way to achieve a decentralised coordination which satisfies a set of non-functional
goals. Many researchers studied the problem of how to distribute service orchestration
[2, 3, 4, 7, 15]. The inherent distributed and dynamic nature of service-oriented systems
indicates the need for an adaptive and automated technique which can dynamically switch
between possible orchestration approaches based on run-time conditions.

QoS-Aware Service Composition. In the current literature, optimal service composi-
tion is synonymous with the process of optimal QoS-aware service selection [5, 10, 12, 18]. In
this problem, the goal is to find the combination of services that offers the required functional-
ity, respects user’s QoS requirements, and optimises the overall QoS of the composition. The
main limitation of this family of approaches is that they only take into account the QoS of
each service in isolation without studying how services are composed together. For instance,
consider two services of very good quality (e.g. high availability, low response time). However,
when it comes to composing them, the overall QoS of the composite application may be very
low due to various reasons (e.g. slow/faulty communication link between interacting services
or with the orchestrator that coordinates them).

Self-Adaptation. To realise a self-adaptive composition system, the following questions,
as presented by Salehie and Tahvildari [14], need to be answered: (a) where the adaptation
should occur; (b) when the adaptation action(s) should be applied; (c) what elements should

ICCSW’12

52 Improving the Quality of Distributed Composite Service Applications

be affected; (d) why should adaptation be performed (adaptation goals); (e) who should be
involved in the adaptation process; and (f) how the adaptation actions should be realised.
The work of Cardellini et al. [6] is a first step in the right direction for answering the
above questions in the context of dynamic service composition. We motivate the need for
an autonomic controller with the goal to adjust the system’s configuration on-the-fly based
on the current conditions, because the configuration of the composition system is highly
sensitive to the dynamic nature of the service-based environment.

Optimisation. Dynamic service composition can be seen as a dynamic multi-objective
optimisation problem, where, given a set of services and a set of composition plans, the goal of
the optimiser is to find the trade-off configurations that optimise the overall composition based
on dynamic functional requirements and multiple, conflicting non-functional objectives. The
optimisation algorithms used to solve this problem can be divided into two main categories:
exact [12, 19] and approximative [5, 13], based on their precision (how close to optimal)
and computational (how fast) complexity. Exact algorithms are able to produce solutions
with guaranteed optimality but at exponential cost. On the other hand, approximative
algorithms are able to produce sub-optimal solutions of “good” quality at polynomial time
complexity. Some of the techniques applied to solve the studied problem are the following:
linear and integer programming methods [12, 19], local search techniques [13], evolutionary
metaheuristics [5], and others.

Composition Optimisation Frameworks Ardagna and Mirandola in [1] proposed a
broker-based framework for run-time QoS-aware composition optimisation. However, their
approach focuses only on the optimisation problem of QoS-aware service selection, ignoring the
important issues of run-time adaptation, dynamic conditions, and distributed orchestration.
Cardellini et al. [6] proposed a framework for run-time QoS-driven adaptation of SOA
systems. However, their solution ignores the dynamic networking conditions for achieving
the optimal composition. At the same time, they ignore the interaction and communication
patterns for optimising the exchange of data between the various participating services.
Finally, they only consider centralised orchestration, neglecting the fact that coordination of
decentralised services may increase the overall composition performance.

4 Towards our Research Goal

Our goal is to supply a decision maker1 with a set of trade-off composition configurations,
and based on some problem-specific knowledge (e.g. QoS preferences, application context,
etc.), to choose the optimal one.

As depicted in Figure 2, the composition system receives as input a set of abstract
composition plans which describe abstractly the required functional tasks, a set of dynamic
user functional and non-functional requirements, and a set of already deployed concrete
services. Users insert requests into the composition engine, the front-end of the system.
The composition engine identifies which concrete services implement the abstract tasks
required by the service composition. Then, the optimisation engine tries to produce optimal
composition configurations to realise user’s goals. These configurations are provided to the
decision maker agent who is responsible for optimising users’ profit based on their dynamic
preferences and constraints.

After a composite application is deployed, the monitoring component supervises the
performance of the participating services and checks periodically whether it is necessary to

1 An automatic agent whose goal is to maximise the user’s profit.

D. Efstathiou, P. McBurney, N. Plouzeau, and S. Zschaler 53

Figure 2 High-level Architecture and Focus of Our Research.

trigger a reconfiguration action by checking the quality of the composition. If an adaptation
is triggered, the composition configuration will be dynamically updated according to the
reconfiguration policy. The adaptation manager is responsible for implementing/applying
the selected strategy. A simple adaptive behaviour of the composition system is to replace
dynamically the bad performing services with better ones.

4.1 Scope of Research
The scope of our work is limited to finding, and maintaining a high-quality composition
architecture based on users’ dynamic preferences and real-time conditions. This means that
other optimisation actions that may achieve the same goal, such as reconfiguring the amount
of resources reserved for each service, replicating services, and others, are not considered
in this study. Also, we do not focus on how to discover services in a distributed service
environment. In our use-case scenario, this assumption can be justified by the fact that the
descriptions (not the actual implementation) of the various services is known in advance.

4.2 Degrees of Freedom
The first step for optimising the composition process is to identify the most interesting degrees
of freedom that enable us to change the provided quality of the composite applications without
modifying their functionality. According to our literature review, we identified the following
freedom variables: (a) how to decentralise the coordination of the service composition, (b)
how to choose the communication patterns between interacting parties in a composition, and
(c) how to select the concrete services for participating in the composition (see QoS-Aware
Service Composition in Section 3).

As mentioned previously, there are many ways to decentralise the coordination of services
in a distributed environment (e.g. how many distributed orchestrators to choose, where
to place them, and others). Indeed, the way of realising the coordination of distributed
services affects the overall quality of the composite application. Secondly, the various
possible communication and interaction patterns between the participated services create
opportunities for further improving the quality of the composition. For example, a Team

ICCSW’12

54 Improving the Quality of Distributed Composite Service Applications

Leader A wants to send some data to his Group Leader. However, due to physical obstacles
(e.g. in a building emergency scenario), the communication link between them is slow and
faulty. Another Team Leader B passes nearby A that has a better connection with the Group
Leader. Thus, it is better to forward A’s data through B.

While there is a lot of work for service composition optimisation, to the best of our
knowledge, there is no approach that takes into account simultaneously the above degrees of
freedom for providing high-quality service compositions configurations at run-time.

4.3 Choosing an Optimisation Technique
The process of choosing the ideal technique is itself a multi-objective problem. Guided by our
use-case scenario, we focus on approximate algorithms, and especially on the promising field
of optimisation metaheuristics, such as Evolutionary Algorithms [20], that can provide “good
enough” solutions in polynomial time, rather than solving the problem to true optimality.

5 Conclusion and Future Plans

Configuring composite applications of high quality that respect users’ conflicting QoS
objectives in the context of a continuously evolving distributed service-oriented environment, is
a highly challenging research problem that requires deep investigation. Existing optimisation
approaches focus only on the QoS of the participated services in isolation and ignore
the existence of multiple factors that may affect the end-to-end quality of the composite
application. In this paper, we proposed the consideration of multiple degrees of freedom
when optimising the overall quality of a composite application. These degrees of freedom
include the following: how services are selected to form a composition, how these distributed
services are coordinated, how they communicate and interact with each other.

Further work needs to be done to establish whether the consideration of multiple factors
leads to composite applications of improved quality. The next step towards achieving our
goals is to design the meta-model that captures the main concepts of our service composition
domain and abstracts from low-level details. The designed meta-model will enable the
generation of model instances that represent possible composition plans. After generating the
set of the possible plans (design space), our goal is to apply and compare various optimisation
techniques (exact and approximate) to choose the more suitable approach. Finally, we aim
at investigating the trade-off of executing the actual optimisation in a fully centralised way,
hierarchical way, or totally distributed way among the network nodes.

References
1 Danilo Ardagna and Raffaela Mirandola. Per-Flow Optimal Service Selection for Web

Services Based Processes. Journal of Systems and Software, 83(8):1512–1523, 2010.
2 Adam Barker, Jon B. Weissman, and Jano I. van Hemert. Eliminating The Middleman:

Peer-to-Peer Dataflow. In Proceedings of the 17th International Symposium on High Per-
formance Distributed Computing, pages 55–64, 2008.

3 Boualem Benatallah, Marlon Dumas, and Quan Z. Sheng. Facilitating the Rapid Devel-
opment and Scalable Orchestration of Composite Web Services. Distributed and Parallel
Databases, 17(1):5–37, 2005.

4 Walter Binder, Ion Constantinescu, and Boi Faltings. Decentralized Orchestration of Com-
posite Web Services. In International Conference on Web Services, pages 869–876, 2006.

D. Efstathiou, P. McBurney, N. Plouzeau, and S. Zschaler 55

5 Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani. An
Approach for QoS-Aware Service Composition Based on Genetic Algorithms. In Proceedings
of the Genetic and Evolutionary Computation Conference, pages 1069–1075. ACM, 2005.

6 Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Stefano Iannucci, Francesco Lo
Presti, and Raffaela Mirandola. MOSES: A Framework for QoS Driven Runtime Adaptation
of Service-Oriented Systems. IEEE Transactions on Software Engineering, 99, 2011.

7 Girish Chafle, Sunil Chandra, Vijay Mann, and Mangala Gowri Nanda. Orchestrating
Composite Web Services Under Data Flow Constraints. In IEEE International Conference
on Web Services, pages 211–218, 2005.

8 Anis Charfi and Mira Mezini. Hybrid Web Service Composition: Business Processes Meet
Business Rules. In Proceedings of the 2nd international conference on Service oriented
computing, ICSOC ’04, pages 30–38. ACM, 2004.

9 Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2005.

10 Michael C. Jaeger, Gero Mühl, and Sebastian Golze. QoS-Aware Composition of Web
Services: An Evaluation of Selection Algorithms. In OTM Conferences (1), pages 646–661,
2005.

11 Massimiliano Di Penta, Raffaele Esposito, Maria Luisa Villani, Roberto Codato, Massimili-
ano Colombo, and Elisabetta Di Nitto. WS Binder: a Framework to Enable Dynamic
Binding of Composite Web Services. In International Workshop on Service-oriented Soft-
ware Engineering, pages 74–80, 2006.

12 F. Rosenberg, P. Celikovic, A. Michlmayr, P. Leitner, and S. Dustdar. An End-to-End Ap-
proach for QoS-Aware Service Composition. In IEEE International Enterprise Distributed
Object Computing Conference, pages 151–160, 2009.

13 Florian Rosenberg, Max Benjamin Müller, Philipp Leitner, Anton Michlmayr, Athman
Bouguettaya, and Schahram Dustdar. Metaheuristic Optimization of Large-Scale QoS-
aware Service Compositions. In IEEE International Conference on Services Computing,
pages 97–104, 2010.

14 Mazeiar Salehie and Ladan Tahvildari. Self-Adaptive Software: Landscape and Research
Challenges. TAAS, 4(2), 2009.

15 Quan Z. Sheng, Boualem Benatallah, Marlon Dumas, and Eileen Oi-Yan Mak. SELF-
SERV: A Platform for Rapid Composition of Web Services in a Peer-to-Peer Environment.
In VLDB, pages 1051–1054, 2002.

16 Latha Srinivasan and Jem Treadwell. An Overview of Service-Oriented Architecture, Web
Services and Grid Computing. HP Software Global Business Unit, 2005.

17 Danny Weyns, Sam Malek, and Jesper Andersson. On Decentralized Self-Adaptation: Les-
sons from the Trenches and Challenges for the Future. In Proceedings of the ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems, pages 84–93, 2010.

18 Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient Algorithms for Web Services Selection
with End-to-End QoS Constraints. ACM Transactions on the Web, 1, 2007.

19 Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and Quan Z.
Sheng. Quality Driven Web Services Composition. In Proceedings of the 12th International
Conference on World Wide Web, pages 411–421, 2003.

20 Eckart Zitzler, Marco Laumanns, and Stefan Bleuler. A Tutorial on Evolutionary Mul-
tiobjective Optimization. In Metaheuristics for Multiobjective Optimisation, pages 3–38,
2003.

ICCSW’12

Fine-Grained Opinion Mining as a Relation
Classification Problem
Alexandru Lucian Gînscă

Alexandru Ioan Cuza University
Faculty of Computer Science, Iaşi
lucian.ginsca@info.uaic.ro

Abstract
The main focus of this paper is to investigate methods for opinion extraction at a more detailed
level of granularity, retrieving not only the opinionated portion of text, but also the target of that
expressed opinion. We describe a novel approach to fine-grained opinion mining that, after an
initial lexicon based processing step, treats the problem of finding the opinion expressed towards
an entity as a relation classification task. We detail a classification workflow that combines
the initial lexicon based module with a broader classification part that involves two different
models, one for relation classification and the other for sentiment polarity shift identification.
We provided detailed descriptions of a series of classification experiments in which we use an
original proximity based bag-of-words model. We also introduce a new use of syntactic features
used together with a tree kernel for both the relation and sentiment polarity shift classification
tasks.

1998 ACM Subject Classification I.2.7 Natural Language Processing

Keywords and phrases Opinion Mining, Opinion Target Identification, Syntactic Features

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.56

1 Introduction

Opinion mining is one of the applications of natural language processing with the biggest
growth in recent years concerning the number of publications and dedicated conferences as
well as industry applications. Most of them refer to opinion mining as a text classification
task in which a text fragment is labeled as either positive or negative. In this paper, we
focus on a more detailed approach of identifying the opinion expressed towards a certain
target in a text fragment.

One of the basic and most used approaches for opinion mining is lexicon-based opinion
generation and it has been used for opinion retrieval as a standalone method but there
are also many research works that combined both lexicon based and text classification
techniques in opinion mining systems [1]. The authors of [11] mention probabilistic models
as methods that have also been used to retrieve and classify opinions from documents [3].
The probabilistic approach relies on probabilistic assumptions based on frequency of query
terms [4]. Another method described in [11] is the language model approach that has also
been used for opinion retrieval [12]. Most language models imply word level processing,
sentence level processing and paragraph level processing, but the core of language models is
the bag-of-words representation. The state of the art statistical methods are based on the
observation that similar opinion words frequently appear together in a corpus, as detailed
in [14]. If two words frequently appear together within the same context, they are likely to
share the same polarity.

© Alexandru Lucian Gînscă;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 56–61

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.56
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

A. L. Gînscă 57

2 Proposed approach

We present in this section a novel fine-grained opinion classification workflow that combines
an initial lexicon based step with a broader classification part that involves two different
models and we briefly describe a new proximity based bag-of-words model and the use of
tree kernels for relation classification and polarity shift identification.

2.1 A novel mixed lexicon/machine learning classification workflow

Figure 1 Classification workflow.

In Figure 1, we present an overview of our proposed classification workflow. The annotated
text contains tags for entities and for sentiment bearing expressions. The actual entities
and sentiments will be later replaced by an abstract token for the classification model as
detailed in the following sections. The pre-processing module deals with the word level and
sentence level text processing methods, such as lemmatization, part of speech tagging or
generating a parse tree and depends on the features that will be later used in the workflow
by the classifiers. The feature extraction module builds feature vectors both for the relation
identification classifier as well as for the polarity shift identification one.

One of the key aspects of our approach is that we treat the fine-grained opinion identific-
ation problem as a relation identification one that is independent of the entity identification
and sentiment extraction modules. This also represents one of the main advantages of the
workflow that we propose, the fact that it can be easily adapted for different sentiment iden-
tification contexts, not only allowing different types of entities, but also different semantics
of the expressed sentiments.

2.2 Relation identification with a novel proximity based bag-of-words
model

The bag-of-words model is a common practice in text classification in which a document is
represented by a vector of words. The vector is built from a dictionary that gathers all of
the words from all the documents in the corpus. Three basic variations of the bag-of-words
model can be identified: occurrence, where the values of the vector are 1 if the word appears
in the document and 0, otherwise; appearances, where the values of the vector represent the
number of times a word appear in that document and tf-idf, where the term frequency-inverse
document frequency of the words of that document in respect with the whole corpus is used.

The main motivation for a different type of a bag-of-words model is the intrinsic nature
of the classical model that does not take into consideration the position of the words in the
sentence. Models that try to solve this problem by using n-grams (usually up to 5-grams)
instead of unigrams have the problem of an exponential increase in feature space. This is

ICCSW’12

58 Fine-Grained Opinion Mining as a Relation Classification Problem

why we propose a different type of a bag-of-words model designed specifically for the binary
relation identification problem that uses the proximity measured in number of tokens between
words.

The model is built as follows: For each word in the dictionary that is found in the
sentence, we first compute the number of tokens (words, punctuation) between the word and
the SENTIMENT token and then the number of tokens between the word and the TARGET
token. If the word appears in the sentence after the SENTIMENT token, the value that is
put in the feature vector is the number of tokens between the word and the SENTIMENT
token multiplied by -1. The same applies for the case in which the word is situated after the
TARGET tag.

2.3 Relation identification with a tree kernel based model
The tree kernel is a function K(T1, T2) that returns a normalized similarity score in the
range (0,1) for two trees T1 and T2 [2]. Details regarding the formal definition and in depth
descriptions of tree kernels can be found in [16].

For the task of relation identification in the context of fine-grained opinion mining, we
used Alessandro Moschitti’s implementation of tree kernels that is described in [10] and [9]
and is based on the SVM-Light library [5]. The SVM-Light implementation takes as input a
parse tree with the binary label, but it also allows a combination of parse trees and numerical
feature vectors for which the RBF or polynomial kernels can be used. It also allows the user
to explicitly specify the way in which the results from each kernel are combined (addition or
multiplication) and what weight is given to each kernel.

2.4 Opinion polarity shift identification with a tree kernel based model
Besides correctly identifying which sentiment bearing expression influences which target in a
sentence, we are also interested to find out when a polarity shift for a sentiment expression
that influences an entity takes place. A polarity shift is usually associated with negation
and it represents the case in which the context changes a positive sentiment expression into
a negative one and vice-versa. For the problem of polarity shift identification, we used a
similar approach as for the relation identification one. For this task, we consider a positive
instance, the case in which a polarity shift does not occur and a negative one, the case in
which a polarity shift takes place.

3 Experiments and results

3.1 Evaluation corpus
Although the MPQA [15] corpus has been used in fine-grained opinion mining experiments,
such as those presented in [8] and [13], most of them are directed to opinion holder and
opinion expression identification and the targets identified in the MPQA corpus are less
structured and can vary from named entities to abstract concepts described in a larger text
span. For these reasons, we chose the JDPA [6] corpus as an evaluation benchmark for our
classification experiments. The creators of the corpus provide details about it in [6].

From the JDPA corpus, we extracted the sentiment expression and their targets. To
respect our proposed workflow described in the previous section, we replaced the actual
sentiment expressions and targets with abstract tokens, "SENTIMENT" and "TARGET",
respectively. Due to the high number of annotated sentiments and entities, we used for our
test the "camera" set of files from the JDPA corpus. For the polarity shift identification task,

A. L. Gînscă 59

the extraction of the positive and negative instances is done by using the negation indicators
from the JDPA corpus and replacing any sentiment expression with the SENTIMENT token.
We replaced the negation identifier with the NEGATION token, whereas for the relation
identification task we replaced the target expression with the TARGET token.

3.2 Relation classification results
In Table 1, we provide an overview of the best result for each method that we described
in the previous section. For the tree kernel experiments, T represents the parse tree, V1
represents a one dimensional feature vector consisting of the number of tokens between the
SENTIMENT and the TARGET tokens and V2 a two dimensional vector that also contains
the number of punctuation marks between the SENTIMENT and the TARGET tokens. As
it can be observed, the SVM with the tree kernel together with the two distance features
provide the best results for the accuracy, precision and recall.

Table 1 Overview of the best result for each method.

Base Model Variation Accuracy Precision Recall

Classic Bag-of-Words
Naïve Bayes 79.82 80.2 79.8
SVM + RBF 76.2 79.8 76.2
SVM + Poly. 78.4 79.6 78.4

Proximity Bag-of-Words
Naïve Bayes 82.5 84.2 82.6
SVM + RBF 83.09 83.5 83.1
SVM + Poly. 78.27 81.6 78.3

SVM + Tree Kernel
T 83.896 83.684 85.488

T + V1 86.182 86.034 87.534
T + V2 86.442 86.332 87.708

In our experiments, we used the occurrence bag-of-words model because we dealt with
small sentences and the other two types brought little new information for the classifier. For
the feature dictionary generation, we used the lemma of the words that appeared in all of
the sentences.

Figure 2 Comparison with Kessler’s top 3 results.

We compare our best results to those reported by the authors of the JDPA corpus in
their 2009 paper [7]. We retained the results from the best 3 methods that they have used:
Heuristic, Bloom and Rank SVM.

ICCSW’12

60 Fine-Grained Opinion Mining as a Relation Classification Problem

The results presented in Figure 2 show that our two novel approaches to sentiment target
identification, the proximity bag-of-words model and a tree kernel together with a feature
vector composed of 2 elements outperform the top 3 approaches presented in [7].

3.3 Opinion polarity shift identification results

Given the fact that the tree kernel experiments provided the best results, we used for the
polarity shift identification problem the same classification configurations as in section 4.3,
for the relation identification task. In Table 2, we show the accuracy, precision and recall
results for the tree kernel polarity shift identification experiments.

Table 2 10 Fold cross validation results for tree kernel polarity shift identification.

Window Size Features Accuracy Precision Recall

2
T 84.39 85.94 84.5

T + V1 87.28 88.45 86.68
T + V2 87.64 87.25 86.2

1
T 85.67 85.40 85.62

T + V1 89.8 90.25 88.72
T + V2 89.4 89.92 88.25

0
T 85.05 87.32 86.48

T + V1 86.48 87.48 86.95
T + V2 86.5 87.05 87.25

Because the negation identifier is regularly closer to the sentiment expression than the
target is to the sentiment expression and the words before the negation and those after the
sentiment expression have less influence on these, we chose to test a window size of maximum
2. The windows size represents the number of tokens before the first appearance and the
number of tokens after the last appearance of the SENTIMENT or the TARGET tokens
that are taken into consideration for classification from the whole sentence.

4 Conclusion and future work

We described in this paper a novel approach to fine-grained opinion mining that, after an
initial step that involves the use of lexical resources, treats the problem of finding the opinion
expressed towards an entity as a relation classification task. We detailed our classification
workflow, a novel proximity bag-of-words model and we presented how tree kernels can be
successfully used for relation classification, as well as for polarity shift identification. We
included an overview of the best result obtained when using each method and we showed
that both of our two novel approaches to the detection of sentiments expressed towards a
certain target outperformed the methods proposed by the authors of the evaluation corpus.

Due to the fact that the best results were obtained when we used a tree kernel together
with feature vectors, we plan to investigate the impact of using other features than those
presented in this paper. So far, we focused our research on sentiment target identification
but the same methods we used for this task can be used for another aspect of fine-grained
opinion mining, opinion holder identification. This is a direction worth pursuing.

A. L. Gînscă 61

References
1 J. Bollen, A. Pepe, and H. Mao. Modeling public mood and emotion:twitter sentiment and

socioeconomic phenomena. Proceeding of the WWW Conference, 2010.
2 A. Culotta and J. Sorensen. Dependency tree kernels for relation extraction. Proceedings

of the 42nd Annual Meeting on Association for Computational Linguistics, 2004.
3 S. Gerani, M. Carman, and F. Crestani. Proximity-based opinion retrieval. Proceeding of

the Special Interest Group on Information Retrieval Conference (SIGIR), 2010.
4 X. Huang and W. Croft. A unified relevance model for opinion retrieval. Proceedings of

the ACM Conference on Information and Knowledge Management, 2009.
5 T. Joachims. Making large-scale svm learning practical. Advances in Kernel Methods -

Support Vector Learning, 1999.
6 J. Kessler, M. Jason, L. Clark, and N. Nicolov. The 2010 icwsm jdpa sentment corpus for

the automotive domain. Proceedings of the 4th International AAAI Conference on Weblogs
and Social Media Data Workshop Challenge (ICWSM-DWC 2010), 2010.

7 J. Kessler and N. Nicolov. Targeting sentiment expressions through supervised ranking of
linguistic configurations. Proceedings of the 3rd Int’l AAAI Conference on Weblogs and
Social Media, 2009.

8 S.-M. Kim and E. Hovy. Automatic detection of opinion bearing words and sentences.
Companion Volume to the Proceedings of IJCNLP-05, the Second International Joint Con-
ference on Natural Language Processing, pages 61–66, 2005.

9 A. Moschitti. A study on convolution kernels for shallow semantic parsing. Proceedings of
the 42-th Conference on Association for Computational Linguistic (ACL-2004), 2004.

10 A. Moschitti. Making tree kernels practical for natural language learning. EACL 2006,
11st Conference of the European Chapter of the Association for Computational Linguistics,
Proceedings of the Conference, 2006.

11 S. O. Orimaye. Sentence-level contextual opinion retrieval. Proceedings of the 20th inter-
national conference companion on World Wide Web, 2011.

12 B. Pang and L. Lee. Opinion mining and sentiment analysis. Found. Trends Inf. Retr.,
2(1-2):1–135, 2008.

13 V. Stoyanov and C. Cardie. Topic identification for fine-grained opinion analysis. Proceed-
ings of the 22nd International Conference on Computational Linguistics (COLING), pages
817–824, 2008.

14 M. Tsytsarau and T. Palpanas. Survey on mining subjective data on theweb. Data Mining
and Knowledge Discovery Special Issue, 2011.

15 J. Wiebe and C. Cardie. Annotating expressions of opinions and emotions in language.
Language Resources and Evaluation, 39(2-3):165–210, 2005.

16 D. Zelenko, C. Aone, and A. Richardella. Kernel methods for relation extraction. Journal
of Machine Learning Research, pages 1083–1106, 2003.

ICCSW’12

Mechanisms for Opponent Modelling
Christos Hadjinikolis1, Sanjay Modgil1, Elizabeth Black1, and
Peter McBurney1

1 Department of Informatics, King’s College London, UK
name.surname@kcl.ac.uk

Abstract
In various competitive game contexts, gathering information about one’s opponent and relying
on it for planning a strategy has been the dominant approach for numerous researchers who
deal with what in game theoretic terms is known as the best response problem. This approach
is known as opponent modelling. The general idea is given a model of one’s adversary to rely
on it for simulating the possible ways based on which a game may evolve, so as to then choose
out of a number of response options the most suitable in relation to one’s goals. Similarly, many
approaches concerned with strategising in the context of dialogue games rely on such models for
implementing and employing strategies. In most cases though, the methodologies and the formal
procedures based on which an opponent model may be built and updated receive little attention,
as they are usually left implicit. In this paper we assume a general framework for argumentation-
based persuasion dialogue, and we rely on a logical conception of arguments—based on the recent
ASPIC+ model for argumentation—to formally define a number of mechanisms based on which
an opponent model may be built, updated, and augmented.

1998 ACM Subject Classification I.2. Computing Methodologies Artificial Intelligence

Keywords and phrases dialogue, strategies, argumentation, opponent model

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.62

1 Introduction & Related work

Numerous researchers who deal with the best response problem rely on opponent modelling
for implementing, employing and analysing strategies [1, 4, 3, 8, 10, 11, 12]. Essentially,
an opponent model (OM) consists of four basic components: an opponent’s knowledge;
abilities; objectives, and; strategy. However, in most cases the methodologies and the formal
procedures based on which such a model may be built and updated are often either left
implicit, or are just concerned with particular components of the model.

Specifically, in the context of argumentation-based dialogue games, Riveret et al. [10, 11]
model the possible knowledge of their opponents in the form of arguments, assuming that
arguers are perfectly informed about all the arguments previously advanced by all other
players. Their investigation concerns games of perfect information, and assumes that the
participants’ goals always comply with the dialogical objectives of the game, an assumption
which, as McBurney et al. argue in [7], does not always hold. Oren et al. [8] present a
generally complete approach through modelling both an agent’s knowledge in the form of
arguments as well as their goals, while in a similar sense to [4] they also allow for nested OMs.
Additionally, they argue that given the knowledge about an opponent’s goals it is also possible
to indirectly model its strategy. However, nowhere in the aforementioned work is the problem
of acquiring and maintaining an OM discussed. An interesting exception proposed by Black
et al. [1] concerns a mechanism that enables agents to model preference information about
others—what is important to another agent—and then rely on this information for making

© Christos Hadjinikolis, Sanjay Modgil, Elizabeth Black, and Peter McBurney;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 62–68

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.62
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

C. Hadjinikolis, S. Modgil, E. Black, and P. McBurney 63

proposals that are more likely to be agreeable. In their case the mechanism responsible for
modelling an agent’s preferences is explicitly provided.

In this work, we attempt to formally address the problem of opponent modelling through
providing two mechanisms concerned with how an OM may be built, updated and possibly
augmented. The rest of the paper is structured as follows. In Section 2 we briefly present the
basic components of an ASPIC+-based framework for persuasion dialogue. In Section 3 we
present two mechanisms responsible for building, updating and augmenting an OM. Finally,
in Section 4 we summarise and discuss future directions for our work.

2 An ASPIC+ framework for persuasion dialogues

In [9] Prakken describes an argumentation framework (AF) by assuming an unspecified
logical language (L) and by defining arguments as inference trees formed by applying strict
(Rs) or defeasible (Rd) inference rules of the form ϕ1, . . . , ϕn → ϕ respectively ϕ1, . . . ,
ϕn ⇒ ϕ. To define attacks between arguments, minimal assumptions on L are made; namely
that certain well formed formulæ (wff) are a contrary or contradictory of certain other wff.
Apart from this the framework is still abstract: it applies to any set of Rs and Rd and
to any L with a defined contrary relation. Arguments are then constructed with respect
to a knowledge base that is assumed to contain three kinds of premises that are wff in L.
These premises are expressed through a set of three disjoint subsets K = Kn ∪ Kp ∪ Ka:
Kn is the (necessary) axioms (which cannot be attacked); Kp is the ordinary premises (on
which attacks succeed contingent upon satisfying certain preference criteria1), and; Ka is
the assumptions (on which attacks are always successful, cf. assumptions in [2]). Thus an
ASPIC+ argument in a set A of arguments that may be constructed from the aforementioned
logical components, may either be a single premise, or a chain of premises and rules that
lead to a certain conclusion. Lastly, three kinds of attack are defined for arguments. B ∈ A
can attack A ∈ A by attacking a premise or conclusion of A, or a defeasible inference step
in A. Some kinds of attack succeed as defeats independently of preference criteria, whereas
others succeed only if the attacked argument is not stronger than the attacking argument.

We assume a general framework for persuasion dialogue where the participants, a pro-
ponent (P) and an opponent (O), debate the truth of a claim ϕ through exchanging dialogue
moves (DMs) consisting of arguments, based on the attack relationship between them and on
a set of protocol rules that regulate the dialogue process; i.e. a participant can introduce an
argument into the game if it attacks another argument that was previously introduced into
the game by its interlocutor. We assume that the participants share the same L and the same
contrary relation definition; i.e. there is agreement as to whether a given argument attacks
another. In this respect, we define a dialogue D as a sequence of dialogue moves < DM0,
. . ., DMn >, where the content of DM0 is an argument for ϕ, while we assume that the
dialogue process is regulated by a multi-reply protocol. The latter means that backtracking
is allowed, which implies that a participant can return to a previous point in the game and
attack against a previous move of its interlocutor in a different way. Thus a dialogue may
also be expressed in the form of a dialogue tree (T), as the one illustrated in Figure 1(a),
where each node is a DM and each arc indicates a move’s target (a backtracking example is
P ’s argument G introduced by DM6 in Figure 1(a)). Full details of the ASPIC+ framework
as well as of the proposed dialogue framework can be found in [9] and [5] respectively.

1 An important feature of the ASPIC + framework is the employment of preference-orderings over defeasible
rules and non-axiom premises which we do not take into account for the purpose of this paper.

ICCSW’12

64 Mechanisms for Opponent Modelling

We assume that the accumulated logical information introduced by a participant in D is
stored in a commitment store which we define as follows:

I Definition 1. Given a set of agents Ags = {Ag1, . . . , Agν} participating in D = < DM0,
. . ., DMn >, then for any agent Agi we define its commitment store as a tuple CSit =<
Kit,Rit >, where Kit, and Rit, are respectively the premises and the rules moved into the
game by Agi up to turn t, for t = 0 . . . n, such that CSi0 = ∅, and CSit+1 is obtained by
augmenting CSit with the logical information provided by the dialogue move DMt+1.

Finally, we assume that each agent Agi ∈ Ags can engage in dialogues in which its
strategic selection of moves may be based on what Agi believes its interlocutor (in the set
Agj 6=i) knows. Accordingly, and in a similar sense to the approach employed in [8], each Agi
maintains a model of its possible opponent agents. In contrast with [8], the proposed model
consists of the goals and knowledge other agents may use to construct arguments, rather
than just the abstract arguments and their relations.

I Definition 2. Let Ags = {Ag1, . . . , Agν} be a set of agents. For i = 1 . . . ν, the knowledge
base KB of Agi is a tuple KBi =< S(i,1), . . . , S(i,ν) > such that for j = 1 . . . ν, each sub-base
S(i,j) = 〈K(i,j),R(i,j),G(i,j)〉 is an OM expressing what Agi believes is Agj ’s premises (K(i,j)),
rules (R(i,j)), and goals (G(i,j)), and where S(i,i) represents Agi’s own beliefs and goals.

3 Modelling mechanisms

We begin by associating a confidence value c to the logical components of the information sets
found in a sub-base S(i,j). Essentially, for an agent Agi this value expresses the probability
of a certain logical component in S(i,j) being part of Agj ’s actual knowledge. For the
computation of this value we differentiate between whether a particular information is:
gathered directly by Agi, on the basis of its opponent’s updated commitment store, or; a
result of an augmentation attempt of Agi’s current model of Agj . The latter concerns an
incrementation of a current OM with the addition of arguments that are likely to also be
known to Agi’s opponent.

Intuitively, in real life we tend to assume that certain information, if known, is then
likely to be related with other information, i.e. that there is some relevance between distinct
pieces of information, which in our case may be translated as relevance between arguments.
For example, assume that two agents, Agi (a proponent) and Agj (an opponent), engage
in a dialogue as the one described in Figure 1(a), where Agi and Agj introduce arguments
{A,C,E,G} respectively {B,D,F,H}. Assume then, that Agi engages in another dialogue
with the same root move A, but with a different agent Agm who also happens to counter
A with argument B. It is then reasonable to assume that Agm is likely to also know of
arguments D, H or even F . In this respect, the basic idea is, given an OM—which in essence
describes a set of arguments known to one’s opponent—and a mapping of a broader set
of arguments with respect to a relevance factor, to then augment the OM by including
arguments—and thus the logical elements that compose them—that have a high probability
to also be known to that opponent, based on their relevance relationship with arguments
already in the OM.

For assigning a confidence value c to the elements of an S(i,j), we will assume that every
agent retains its own rules and premises without revision but relies on argumentation theory
and semantics for resolving conflicts. In this respect, an agent’s beliefs are formed based
on deciding on the acceptability level of its arguments according to a number of different
acceptability semantics. Thus in the face of new information nothing is replaced or discarded,

C. Hadjinikolis, S. Modgil, E. Black, and P. McBurney 65

but instead certain arguments may simply cease to be or may become acceptable under
different semantics. We will therefore assume that the confidence value of information acquired
directly from the commitment store of one’s interlocutor is equal to 1, which represents the
highest level of confidence. However, this assumption must exclude information concerned
with goals (G) as those cannot be retained in the face of conflicts, i.e. it is not reasonable for
an agent to be in pursue of conflicting goals at the same time. We leave the provision of a
function for updating an opponent’s goals to future work.

I Definition 3. Assume an S(i,j) ∈ KBi, then for Y ∈ {K(i,j),R(i,j),G(i,j)}, X is a tuple
< x, c > where x ∈ Y , and where c represents the confidence level of x such that:

c[0,1] =
{

1 if x is directly collected by Agi (a)
Pr(x) if x is part of an augmentation of S(i,j) (b)

where Pr(x) is the likelihood of x being also known to Agj , given its current OM (S(i,j)).

I Definition 4. Let Agi and Agj be two agents in Ags such that 1 ≤ i, j ≤ ν and i 6= j, and
h(i,j) =< D1, . . . ,Dµ−1 > be Agi’s history of dialogues with Agj . Then, given the current
version of sub-base Sµ−1

(i,j) = 〈Kµ−1
(i,j),R

µ−1
(i,j),G

µ−1
(i,j)〉 and the commitment store CSj =< Kj,Rj >

of the latest dialogue Dµ, Agi can update its sub-base Sµ(i,j) = 〈Kµ(i,j),R
µ
(i,j),G

µ
(i,j)〉 such

that: (a) Kµ(i,j) = Kµ−1
(i,j) ∪ Kj, and; (b) R

µ
(i,j) = Rµ−1

(i,j) ∪Rj.

For augmenting a current OM, we rely on a relevance graph.

I Definition 5. For an agent Agi, let Hi = {h(i,1), . . . , h(i,ν)} be the set of all its histories,
then an abstract relevance graph (ARG) is a weighted directed graph G = {V,R}, where
V is a set that consists of all arguments AH encountered by Agi in Hi, and where R is a set
of weighted arcs, each of them indicating a relevance relationship between two arguments in
G, based on a weight function w, such that w : R→ [0, 1].

3.1 Building a relevance graph
We assume an ARG to be incrementally built as an agent Agi engages in numerous dialogues,
being empty at the beginning, and constantly updated with newly encountered opponent
arguments (OAs). Notice that OAs appear only in the odd levels of a tree (Figure 1(a)). For
assigning arcs between these arguments one may rely on how and when an argument appears
in a dialogue tree. Specifically, we rely on the following condition:
I Condition 1. Given a dialogue tree T , then for any argument A that appears in level i,
and any argument B that appears in level j, for i and j being odd numbers and j ≥ i, if
j−i

2 ≤ n, and there exists a path between A and B in T , there is an arc from A to B in G.
Figures 1(b) and 1(c) illustrate two distinct ARGs induced from the dialogue tree

of Figure 1(a), for n = 1 and n = 2 respectively. Intuitively, this modelling approach
simply reflects the implied relationship that consecutive OAs have in a single branch of
a tree. Through modifying the n value one can strengthen or weaken the connectivity,
and so the relationship, between arguments in the induced ARG. However, one may
choose to deviate from this particular modelling approach, adopting a different one so as
to reflect a different kind of implied relationship between arguments. Lastly, for a pair of
arguments {A,B} connected with an arc r, let w(rAB) be the weight value of an arc r which
extends from argument A to argument B, we assume w(rAB) to be equal to the number
of agents NAB that have moved A followed by B in a dialogue game, thus satisfying the
relevance condition for n = 1, against the total number of agents |Ags| minus agent Agi, i.e.

ICCSW’12

66 Mechanisms for Opponent Modelling

(a) (b) (c)

Figure 1 (a) A dialogue tree T where the grey and the white nodes concern P ’s respectively O’s
moves, (b) A 1-hop ARG modelling approach (c) A 2-hop ARG modelling approach.

w(rAB) = NAB/(|Ags| − 1). Dividing NAB with (|Ags| − 1) is necessary for normalising the
arcs’ weight values into probabilities.

3.2 Relevance augmentation
Given an ARG an agent Agi can then attempt to augment its OM of Agj (i.e. its S(i,j))
by adding to it the logical information comprised in the arguments (nodes) that are of
1-hop distance in G from those that can be constructed from S(i,j). In a trivial case, let
Ags = {Ag1, Ag2, Ag3, Ag4}, and G be an ARG induced by Ag1 based on dialogues D1 and
D2 for n = 1, as it appears in Figure 2(c). Let S(1,4) be Ag1’s OM of Ag4 such that Ag1
believes that Ag4 can construct two arguments A = {B,H}. Thus Ag1’s OM of Ag4 can be
expressed as a sub-graph GA = {A,∅} of G (the yellow nodes in Figure 2(c)). Hence, Ag1
computes the likelihood of each of the possible augmentations A′ ∈ P of A as those appear
in set P = {A′∅,A′D,A′F ,A′DF } (Figure 2(c)), and selects the one with the highest likelihood
for augmenting S(1,4). Given that the instantiation of an augmented OM relies on the arcs’
weights of G, we have to provide an arc-centric formula for computing this probability, as
there are multiple ways based on which a particular augmentation may be induced. In other
words and in graph theoretic terms, a possible augmentation of an OM is interpreted as a
possible graph expansion. Thus a certain A′ may be induced as a result of numerous possible
expansions of GA, each containing different arcs while having the same set of arguments.

For example, assume we want to calculate the likelihood of augmentation A′F = {B,H,F}.
Let S(A′F) = {G1, G2, G3} be the possible expansions of GA which induce A′F by including
in GA: either only rBF creating G1; either only rHF creating G2, or; only rBF and rHF
creating G3. Hence, the likelihood of A′F is: Pr(A′F) = Pr(G1) + Pr(G2) + Pr(G3)
⇔ Pr(A′F) = w(rBF) · (1−w(rBD)) · (1−w(rHF)) +w(rHF) · (1−w(rBF)) · (1−w(rBD)) +
w(rBF) ·w(rHF) · (1−w(rBD)) ⇔ Pr(A′F) = 0.35937. Finally, the confidence value c of the
newly included information in S(1,4) is assigned a value equal to the likelihood of the chosen
augmentation as defined by Definition 3(b), i.e. Pr(x) = Pr(A′).

For providing the general formula for computing the likelihood of a possible augmentation
we rely on basic graph theory notation with respect to a node A in a graph G, such as degree
d(A), adjacent vertices N(A) where |N(A)| = d(A), adjacent arcs R(A), and arc weights
w(r). We additionally define NS for a set of arguments S such that NS =

⋃
A∈S N(A)|{X ∈

N(A) : X /∈ S}, and RS =
⋃
A∈S R(A)|{rAB ∈ R(A) : B /∈ S}. Additionally, let A be the

C. Hadjinikolis, S. Modgil, E. Black, and P. McBurney 67

(a) (b) (c)

Figure 2 (a) A dialogue D1 between Ag1 & Ag2 (b) A dialogue D2 between Ag1 & Ag3 (c) An ARG
induced by Ag1 from D1 & D2, and the image of Ag1’s OM of Ag4 on it (the yellow nodes B & H).

set of all arguments that may be induced from a single sub-base S(i,j), then given that an
ARG is essentially built from a number of OMs, then it must hold that A ⊆ AH. Provided
A, we assume A′ to be an augmentation of A based on G, such that A′ = A∪ S for S ⊆ NA.
In this sense, we assume GA = {A,∅} to be a sub-graph of G representing an image of an
agent’s Agi current OM of another agent Agj in G, while we also assume GA′ = {A′, Ri} to
be a possible expansion of GA, where Ri ⊆ RA. Given these, let P = {A′0,A′1, . . . ,A′µ−1} be
the set of all possible distinct augmentations of A, then the number of all possible distinct
expansions of GA with respect to neighbouring nodes that are of 1-hope distance from it, is:

µ = |P | =
|NA|∑
i=0

(
|NA|
i

)
(1)

Furthermore, let S(A′) = {G1
A′ , . . . , GnA′} be a set of graphs containing all expanded graphs

that have the same set of arguments A′ such that GA′ = {A′, Rj} for Rj ⊆ RA, then the
general formula for computing the likelihood of a possible augmentation is:

Pr(A′) =
n∑

Gi=1
A′ ∈S(A′)

∏
r∈Rj

w(r) ·
∏

r∈RA/Rj

(1− w(r))

 (2)

Finally, since the likelihood of each possible augmentation should define a distribution of
likelihoods then it must hold that:

µ−1∑
A′

i=0

Pr(A′i) = 1 (3)

4 Conclusions & Future direction

In this work we have addressed the problem of building, updating and augmenting an OM in
argumentation-based dialogues. We relied on a logical conception of arguments based on
the recent ASPIC+ model for argumentation, and provided two modelling mechanisms: an
update mechanism, and; an augmentation mechanism.

We have particularly focused on the latter, which relies on the relevance between inform-
ation and attempts an augmentation of a current OM through the addition of information.

ICCSW’12

68 Mechanisms for Opponent Modelling

The latter is based on computing the likelihoods of a set of possible augmentations and
choosing the one with the highest value. A drawback of the proposed approach is that,
given a G, all possible augmentations of a set A is equal to |P | = 2|N(A)| (each adjacent
argument is either in or out of the augmentation), where NA is the adjacent arguments of
A (its neighbours), which implies that the complexity of computing the likelihoods of all
possible augmentations of A increases exponentially as the number of the 1-hop neighbours
of A increases. This makes the approach practically intractable.

However, drawing inspiration from the work of Li et al. [6] we intend to rely on an
approximate approach for computing these likelihoods based on a Monte-Carlo simulation.
Therefore our immediate future direction is to formally describe the exact simulation process
for the proposed augmentation method. Additionally, we also intend to evaluate our approach
through experimenting with software agents that engage in dialogue disputes. Particularly,
we will compare the success rate of agents that rely on OMs and a relevance augmentation
mechanism to agents who rely on simple opponent modelling and to agents who do not rely
on opponent modelling at all.

References
1 E. Black and K. Atkinson. Choosing persuasive arguments for action. In 10th International

Conference on Autonomous Agents and Multi-Agent Systems, 2011.
2 Andrei Bondarenko, Phan Minh Dung, Robert Kowalski, and Francesca Toni. An abstract,

argumentation-theoretic approach to default reasoning. Artificial Intelligence, 93(1–2):63–
101, 1997.

3 D. Carmel and S. Markovitch. Model-based learning of interaction strategies in multi-agent
systems. Journal of Experimental and Theoretical Artificial Intelligence, 10(3):309–332,
1998.

4 David Carmel and Shaul Markovitch. Incorporating opponent models into adversary search.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages 120–
125, Portland, Oregon, 1996.

5 C. Hadjinikolis, S.Modgil, E. Black, P. McBurney, and M. Luck. Investigating Strategic
Considerations in Persuasion Dialogue Games. In STAIRS 2012 - Proceedings of the Sixth
Starting AI Researchers’ Symposium, volume 241 of Frontiers in Artificial Intelligence and
Applications, pages 137–148. IOS Press, 2012.

6 Hengfei Li, Nir Oren, and Timothy J. Norman. Probabilistic argumentation frameworks.
In TAFA, pages 1–16, 2011.

7 P. McBurney and S. Parsons. Games That Agents Play: A Formal Framework for Dialogues
between Autonomous Agents. Journal of Logic, Language and Information, 11(3):315–334,
2002.

8 N. Oren and T. Norman. Arguing Using Opponent Models. In Argumentation in Multi-
Agent Systems, volume 6057 of Lecture Notes in Computer Science, pages 160–174. 2010.

9 H. Prakken. An abstract framework for argumentation with structured arguments. Argu-
ment and Computation, 1(2):93–124, 2010.

10 R. Riveret, H. Prakken, A. Rotolo, and G. Sartor. Heuristics in argumentation: A game-
theoretical investigation. In Proceedings of COMMA, pages 324–335, 2008.

11 R. Riveret, A. Rotolo, G. Sartor, H. Prakken, and B. Roth. Success chances in argu-
ment games: a probabilistic approach to legal disputes. In Proceedings of the 20th annual
conference on Legal Knowledge and Information Systems: JURIX, pages 99–108, 2007.

12 William E. Walsh, Rajarshi Das, Gerald Tesauro, and Jeffrey O. Kephart. Analyzing
complex strategic interactions in multi-agent systems. In AAAI-02 Workshop on Game-
Theoretic and Decision-Theoretic Agents, Edmonton, 2002.

4D Cardiac Volume Reconstruction from
Free-Breathing 2D Real-Time Image Acquisitions
using Iterative Motion Correction
Martin Jantsch1, Daniel Rueckert1, and Jo Hajnal2

1 Visual Information Processing Group, Department of Computing, Imperial
College London
Queen’s Gate 180 London, UK
www3.imperial.ac.uk/computing/

2 Imaging Sciences Division, King’s College London
St Thomas’ Hospital London, UK
www.kcl.ac.uk/medicine/research/divisions/imaging

Abstract
For diagnosis, treatment and study of various cardiac diseases directly affecting the functionality
and morphology of the heart, physicians rely more and more on MR imaging techniques. MRI
has good tissue contrast and can achieve high spatial and temporal resolutions. However it
requires a relatively long time to obtain enough data to reconstruct useful images. Additionally,
when imaging the heart, the occurring motions - breathing and heart beat - have to be taken
into account. While the cardiac motion still has to be correctly seen to asses functionality, the
respiratory motion has to be removed to avoid serious motion artefacts.

We present initial results for a reconstruction pipeline that takes multiple stacks of 2D slices,
calculates the occurring deformations for both cardiac and respiratory motions and reconstructs
a coherent 4D volume of the beating heart. The 2D slices are acquired during free-breathing over
the whole respiratory cycle, using a fast real-time technique. For motion estimation two different
transformation models were used. A cyclic 4D B-spline free-form deformation model for the
cardiac motion and a 1D B-spline affine model for the respiratory motion. Both transformations
and the common reference frame needed for the registration are optimized in an interleaved,
iterative scheme.

1998 ACM Subject Classification I.4.5 Transform methods

Keywords and phrases MRI, Cardiac, Registration

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.69

1 Introduction

Physicians are relying more and more on non-invasive imaging techniques to assess the
functionality and morphology of the heart. In present practice echocardiography is still
the standard, due to higher availability, lower costs and shorter acquisition and analysis
times. But with increasing technical advances, both in acquisition hardware and image
reconstruction and processing algorithms, MR imaging is becoming the favoured modality.
MRI takes advantage of the magnetic properties of tissue, explicitly the signal response
of hydrogen, which can be found in abundance in the whole human body, as it is mainly
made out of water. During examination, the patient is placed inside a strong magnetic
field, which aligns the otherwise unoriented nuclear spins of the nuclei. Gradient coils then
spatially encode the signal produced by a radiofrequency exitation pulse, allowing the system

© Martin Jantsch, Daniel Rueckert and Jo Hajnal;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 69–74

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.69
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

70 4D Cardiac Volume Reconstruction from Free-Breathing 2D Image Acquisitions

to gradually fill the so called K-space [6], which is a representation of the image in the
Fourier domain. This raw signal can be Fourier transformed into an image, showing for
example one slice of the human body or even a whole volume, depending on the setting.
But the system has to wait for the tissue to reach a steady state again before continuing
with the acquisition of the next spatial position. This can make MR imaging rather slow
and prone to inconsistencies in the data, due to motion between acquisition steps, either in
between different parts of K-space (results in blurring artifacts) or between slices (results in
an inconsistent image volume). Especially imaging the beating heart, also moving due to
respiration, poses a challenging problem, both from the acquisitional and reconstructional
point of view.

Common methods as described in the literature to deal with this problem can be divided
into two categories. The straight forward method requires the subject to hold its breath
for about 20s. This produces very good results, but is not always feasible, as patients with
heart problems are often not able to hold their breath long enough. Other ways to deal with
respiratory motion rely on so called gating techniques [2]. They use some kind of surrogate
signal (e.g. chest bellows or 1D pencil beam monitoring the diaphragm motion) to divide the
respiratory cycle into small segments and only use data acquired at specific times (usually
end-expiration). The problem with this approach is that it assumes that the breathing
pattern is always the same, which of course is not the case (chest vs. abdominal breathing),
resulting in minor motion artifacts. And the data from all other time points is either thrown
away or not acquired at all, resulting in a much prolonged scanning time. In both cases the
cardiac motion is usually dealt with by using the ECG signal to divide the cardiac cycle into
small, near motion-free intervals and gradually filling the K-space of those time frames over
a couple of heart beats [1].

We propose to use fast real-time imaging techniques to acquire individually motion-free
slices [7], covering the heart volume in dense spatial and temporal positions. Those slices will
be corrected for respiratory motion, with respect to a chosen reference breathing position
and combined afterwards to form a complete 4D cardiac volume. To be able to register all
images, we also have to estimate the cardiac motion towards a reference time point in the
cardiac cycle. We model the cardiac motion by cyclic 4D B-Splines and choose an affine
model for the respiratory motion.

2 Methods

The acquisition train is as follows: The scanner acquires 2D slices of the heart at a fixed
spatial position using real-time techniques. To avoid gaps in the volume, due to translational
motion, the respective slice is scanned over multiple heart beats (approximately one breathing
cycle). After scanning one spatial position, we move to the next adjacent one. This scheme
is necessary, as real-time techniques take some time to build up (to reach steady state).
Thus the first couple of images are of inferior image quality and essentially useless for
reconstruction. For further accelerate the individual slice acquisitions, we apply multiple
receiver coils (SENSE) [8] and half-Fourier reconstruction.

We want to find a 3-dimensional reference volume I0,0 and a time-dependent transform-
ation Tki,l that warps the 2-dimensional observed real-time images Iki,l to locally fit this
reference image. In the setting of free-breathing, cardiac cine MRI, we differentiate between
two occurring motions, which we assume to be independent.

The first is the approximately periodic, non-rigid deformation of the heart TΦc due to its
self-induced contraction and following relaxation. We use a multi-level 4D cubic B-Spline

M. Jantsch, D. Rueckert, and J. Hajnal 71

model [5] defined on a mesh of control points, where Φc is the vector of deformations in
(x, y, z)-direction for all control points:

FFD(x, y, z, t) =
3∑

o=0

3∑
l=0

3∑
m=0

3∑
n=0

Bo(τ)Bl(u)Bm(v)Bn(w)Φc
i+l,j+m,k+n,h+o (1)

Note that actually Φc also contains a fourth component for the time, which is also modeled by
B-splines. But since we assume the time points of the slices, denoted by the index ki ∈ [0, 1]
with the corresponding cardiac cycle given by i ∈ {0, ..., Nk} to be known (as taken from
the ECG), an optimization for these parameters is not necessary. Since we continuously
acquire one slice for every time point during one cardiac cycle and then jump to the next
slice position, we have to assume that the cardiac movement of the heart is identical over
all heart beats, aside from differences in their duration. To enforce periodicity we simply
change the neighborhood definition for the B-Splines, effectively forcing the last to be equal
to the first temporal control point.

The second transformation is the temporally smooth and approximately affine motion
T l

Φr induced by breathing. Φr is the vector of the 12 degrees of freedom, namely translation,
rotation, scale and screw for all coordinates (x, y, z) respectively, and the index l denotes
the real time points in the acquisition starting with l = 0 for the first slice. With the
use of a navigator l can also be mapped into a smaller 1D or 2D space according to the
momentary breathing state. Although the respiratory motion includes some small, local,
free-form deformation, an affine model defined in a bounding box around the heart is a close
enough approximation to start with [4]. We will try to incorporate a non-rigid motion model
for the breathing motion at a later stage, using the periodicity of the cardiac motion to
separate both simultaneously occurring motions.

To solve for the different degrees of freedom given by I0,0 , TΦc and TΦr
l
we use an iterative

scheme that minimizes the following cost function:

(I0,0, {Φc}, {Φr}) = argmin
I0,0,{Φc},{Φr}

C({Iki,l}, I0,0, {Φc}, {Φr}) (2)

where

C(Iki,l, I0,0, {Φc}, {Φr}) =
Cdata({Iki,l}, I0,0, {Φc}, {Φr}) + λ0Cimg(I0,0) + λ1Ccard({Φc}) + λ2Cresp({Φr})

(3)

The first term is a similarity criterion between the transformed reference volume and the
observed, 2D slices. We chose the sum of squared differences (SSD) measure, since we are
dealing with monomodal data and we can assume that the image intensities stay constant
during motion:

Cdata({Iki,l}, I0,0, {Φc}, {Φr}) = 1
|L||Ω|

∑
{l}

∑
x∈Ωl

(Iki,l(TΦc(TΦr (x, l), ki))− I0,0(x))2
(4)

where Ωl is the 2D domain of the current slice in the 3-dimensional volume Ω and |L| and
|Ω| are the amounts of temporal and spatial voxel coordinates respectively.

The second term in (3) is an optional regularization term for the reference image, that can
be used in a super-resolution framework. For example an image gradient magnitude operator
in an l2-norm would be appropriate if the number of acquired slices is small, thus resulting
in an underdetermined super-resolution volume reconstruction problem. It penalizes the
high-frequency components in the estimated image.

ICCSW’12

72 4D Cardiac Volume Reconstruction from Free-Breathing 2D Image Acquisitions

The last two cost terms regularize the two occurring motions. The periodic B-spline
description of the cardiac motion directly enforces spatial and temporal smoothness. Whether
it is necessary to apply some regularization, for example enforcing diffeomorphic transforma-
tions or an incompressability constraint of the myocardium has yet too be determined.
For the respiratory motion we introduce a temporal smoothness penalty that ensures a slow
and smooth evolution of the motion parameters, starting from an identity transformation for
l = 0:

Cresp({Φr}) =
∑
{i}

dΦr
li,li+1

||Φc
l − Φr

l+1||22 (5)

where dΦr
li,li+1

= 1
li+1−li

is a temporal normalization and i the set of indices of all ls. This is
necessary as the temporal offsets between the acquisition of two slices are not always uniform,
because in real-time imaging changing the slice position costs some time for the excitation to
reach steady-state again. So if the temporal distance is big, the confidence in the solution is
small and dΦr

li,li+1
reduces the weight of the corresponding term.

In the above cost terms λ0, λ1 and λ2 are regularization parameters, weighting the relative
contributions of the corresponding terms. The parameters are chosen experimentally.

The iterative scheme to solve the least square problem (2) starts with an initial estimate
of I0,0 and Φr and alternates between optimizing the 3 different sets of parameters:

Step 1: ({Φ̂c
(n+1)}, {Φ̂r

(n+1)}) = argmin
{Φc},{Φr}

C({Iki,r}, I(n)
0,0 , {Φc}, {Φr})

Step 2: Calculate new I
(n+1)
0,0 using Scattered Data Interpolation

Step 3: Check for stop criterion and if not full-filled increment n and go to Step 1

where the stop criterion is ||C(n+1) − C(n)|| < ε with an empirically chosen ε (usually
ε = 0.0001).

To be able to capture larger deformations, the data is first divided into spatially and with
regard to the cardiac phase temporally continuous blocks/volumes. In subsequent iterations,
these blocks are partitioned into ever smaller blocks. This makes the algorithm much more
robust and we are also able to blur the images in the through-plane direction, which is
necessary to calculate large deformations in that direction. Additionally the image resolution
starts with a larger one and is gradually decreased to its original setting, while the images
are at the same time blurred with a Gaussian in all possible directions.

3 Results

So far we evaluated the performance of the algorithm without respiratory motion. Two data
sets were used. Both are cardiac and respiratory gated. The first one is a 3D cine of the
heart with resolution 1.25x1.25x2mm (fig. 1) and the second was acquired with real-time
techniques depicting the volume by 14 adjacent slices with a resolution of 1.25x1.25x8mm
(fig. 2). Fig. 2 shows the heart in end-systole from different orthogonal views. Due to the
large slice thickness in Fig. 1 we have chosen here only one view (short-axis) at different
positions in the volume also in end-systole. The end-systole time point was chosen because
it has the largest deformations with regard to the reference time point. Although both
volumes have a lot of tissue moving in and out of the field of view, the proposed registration
method manages to capture the deformations of important structures like the myocardium
which will be important for estimating the respiratory motion. This can be seen when
comparing the yellow isolines (taken from the ground truth image) with the edges of e.g. the

M. Jantsch, D. Rueckert, and J. Hajnal 73

Figure 1 Registration result as tested on a 3D cine of the heart with resolution 1.25x1.25x2mm.
From left to right: short-axis and 2 orthogonal long-axis views, all at end-systole. The yellow lines
show the isolines of the ground truth.

Figure 2 Registration result as tested on a stack of real-time images of the heart with resolution
1.25x1.25x8mm. Images were taken at different spatial positions of the volume, all at end-systole.
The yellow lines show the isolines of the ground truth.

blood pool (lighter regions). When acquiring slices in the proposed way the sampling in the
through-plane direction will be much denser, which will make it easier to accurately capture
also the through-plane deformations.

4 Conclusion

The results show that the proposed method is able to accurately estimate the cardiac motion
induced deformations. And it is robust towards through-plane motion and tissue moving in
and out of the field of view, which is important for 2D to 3D registration. Jiang et al. [3]
showed, for a similar problem the successful registration of 2D slices towards a successively
updated reference frame using a linear transformation model. Based on those results, we are
confident that we will be able to use the proposed iterative motion estimation scheme to
estimate and correct for the respiratory motion.

Future work includes the successful computation of the affine transformation, tested with
an example respiratory motion model applied on a common cardiac cine sequence and with
real free-breathing data. And we want to incorporate super-resolution techniques into the
framework to improve spatial and temporal resolution.

ICCSW’12

74 4D Cardiac Volume Reconstruction from Free-Breathing 2D Image Acquisitions

References
1 J. P. Earls, V. B. Ho, T. K. Foo, E. Castillo, and S. D. Flamm. Cardiac MRI: recent

progress and continued challenges. Journal of Magnetic Resonance Imaging, 2002.
2 R. L. Ehman, M. T. McNamara, M. Pallack, H. Hricak, and C. B. Higgins. Magnetic

resonance imaging with respiratory gating: Techniques and advantages. American Roentgen
Ray Society, 1984.

3 S. Jiang, H. Xue, A. Glover, M. Rutherford, D. Ruecker, and J. Hajnal. MRI of moving
subjects using multislice snapshot images with volume reconstruction (SVR): Application
to fetal, neonatal, and adult brain studies. IEEE Transactions on Medical Imaging, 26(7),
2007.

4 K. McLeish, D. L. G. Hill, D. Atkinson, J. M. Blackall, and R. Razavi. A study of the
motion and deformation of the heart due to respiration. IEEE Transactions on Medical
Imaging, 2002.

5 D. Rueckert, L.I. Sonoda, C. Hayes, D.L.G. Hill, M.O. Leach, and D.J. Hawkes. Non-
rigid registration using free-form deformations: application to breast MR images. IEEE
Transactions on Medical Imaging, 1999.

6 A. Shankaranarayanan, O.P. Simonetti, G. Laub, J.S. Lewin, and J.L. Duerk. Segmented
k-space and real-time cardiac cine MR imaging with radial trajectories. Radiology, 2001.

7 M. Uecker, S. Zhang, D. Voit, A. Karaus, K.-D. Merboldt, and J. Frahm. Real-time MRI
at a resolution of 20 ms. NMR Biomed., 2010.

8 Y. Wang. Description of parallel imaging in MR using multiple coils. Magnetic Resonance
in Medicine, 2000.

Collecting battery data with Open Battery
Gareth L. Jones and Peter G. Harrison

Imperial College London, 180 Queen’s Gate, London, SW7 2RH
{gljones,pgh}@doc.ic.ac.uk

Abstract
In this paper we present Open Battery, a tool for collecting data on mobile phone battery usage,
describe the data we have collected so far and make some observations. We then introduce the
fluid queue model which we hope may prove a useful tool in future work to describe mobile phone
battery traces.

1998 ACM Subject Classification D.4.8 Queueing theory

Keywords and phrases battery model, battery data

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.75

1 Introduction and motivation

A recent Forrester study suggests that by 2016 a billion smartphones will be in use around
the world [2]. Understanding battery behaviour and how devices are used (sometimes called
human battery interaction [7]) is important to deliver improved performance in these devices.

Previous studies (e.g. Ferreira et al. [3]) have collected data under privacy agreements
which do not allow the data to be shared outside the named researchers on the original
proposal. This makes further work with the data hard. Data collected in our study is
published under the PDDL on our website http://www.openbattery.com/, is in the public
domain, and can be downloaded and redistributed freely.

In this paper we will make some observations about the data we have collected so far and
then introduce the fluid queue modelling paradigm.

The authors of this paper previously published a result on how battery life of a device
subject to random charging and discharging periods was affected by a power saving mode,
implemented when power reserves fell below some threshold value [5]. In future work we
intend to investigate fitting this model to our data.

2 Data collection

We have written an application for Android which logs battery usage data. The application
listens for ACTION_BATTERY_CHANGED broadcasts and logs the battery state with timestamp
each time the battery state changes. Data is saved locally and sent to our web server when
the device is charging. A sample of the data collected is shown in Figure 1.

So far in this preliminary work, we have collected data for around 20 handsets for 3
months.

3 Observations on collected data

1. There is great variability in the number of data points logged. We observed a Samsung
GT-I9000 handset logging more than 1,000 data points a day (reporting regular small
changes in voltage), while a HTC Wildfire S A510e logged nearer 100 data points a day.

© Gareth L. Jones and Peter G. Harrison;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 75–80

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.75
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

76 Collecting battery data with Open Battery

01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07 Jul 08 Jul

20

40

60

80

100

Date

C
ha

rg
e
le
ve
l

01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07 Jul 08 Jul

3,800

4,000

4,200

Date

Vo
lta

ge
(m

V
)

01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07 Jul 08 Jul

25

30

35

Date

Te
m
pe

ra
tu
re

(◦
C
)

01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07 Jul 08 Jul
powered by battery

PLUGGED_AC

PLUGGED_USB

Date

Pl
ug

ge
d
st
at
e

01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07 Jul 08 Jul
CHARGING

DISCHARGING

NOT_CHARGING

FULL

Date

C
ha

rg
in
g
st
at
e

Figure 1 Sample data trace from July 1-7 2012 for device id 3fd6231afc7fec60, a Galaxy Nexus.
Throughout this trace the reported health was GOOD.

G. L. Jones and P. G. Harrison 77

12:00 14:00 16:00 19:00 21:00 00:00 02:00 04:00 07:00 09:00 12:00

20

40

60

80

100

Time

C
ha

rg
e
le
ve
l

Figure 2 Linear charging/discharging period for Galaxy Nexus (device id 3fd6231afc7fec60,
8–9 July 2012).

12:00 14:00 16:00 19:00 21:00 00:00 02:00 04:00 07:00 09:00 12:00

20

40

60

80

100

Time

C
ha

rg
e
le
ve
l

Figure 3 Non-linear charging for Nexus S (device id 3fe0f99cef3a49a8, 11-12 July 2012) with
two piecewise linear functions fitted.

11:00 14:00 16:00 19:00 21:00 23:00 02:00 04:00 07:00 09:00 11:00

40

60

80

100

Time

C
ha

rg
e
le
ve
l

Figure 4 Erroneously reported discharging for asus Transformer Prime TF201 (device id
3fcb2812d3d9e9b8, 9-10 July 2012). From 19:00 to 23:20 the battery level was reported in the
operating system as at a constant value.

ICCSW’12

78 Collecting battery data with Open Battery

HEALTH ∈ {UNKNOWN, GOOD, OVERHEAT, DEAD, OVER_VOLTAGE, UNSPECIFIED_FAILURE, COLD}.
PLUGGED ∈ {powered by battery, PLUGGED_AC, PLUGGED_USB}
STATUS ∈ {UNKNOWN, CHARGING, DISCHARGING, NOT_CHARGING, FULL}

Figure 5 BatteryManager health, plugged and status values.

Table 1 Average values computed for Galaxy Nexus.

State Average change Average filling/emptying time
AC charging +30 pp/hour 3 hours 15 minutes to fully charge
USB charging +20 pp/hour 5 hours to fully charge
discharging −3 pp/hour 33 hours until fully drained

2. Generally reported charging rates are reasonably linear throughout the charging period
such as for the Galaxy Nexus shown in Figure 2. However, data recorded for five Nexus
S handsets shows linear charging up to 85%, with a non-linear portion up to 100%.
As shown in Figure 3 we could reasonably approximate this with a second linear rate.
Unsurprisingly we have less data for the lower end of battery charging (an earlier version
of the logging application required manual restart), but are now aware that charging
rates need to be level dependent.

3. There are also logging problems with data we need to consider. An ASUS Transformer
Prime TF201 (device id 3fcb2812d3d9e9b8) has misreported the battery level as remain-
ing constant for a few hours before dropping 50 percentage points or more in a matter of
seconds as shown in Figure 4. This is not a bug with our tool, but with the levels that
the battery hardware is reporting to the operating system.

4. Different handsets report their charging state differently. The values documented in the
BatteryManager class are shown in Figure 5, but not all handsets report in the same
way. For example, the HTC Wildfire (device id 3fe37029cced541a) never reports itself
DISCHARGING, only CHARGING, NOT_CHARGING or FULL.

4 Fluid queues

Fluid queues are a particular type of stochastic process which we hope will prove to be a
good model for the charging and discharging behaviour seen in our data.

A fluid queue is a bivariate stochastic process (Jt, Xt) where Jt describes the background
state and Xt the charge level. Jt is a Markov chain on the state space

{AC charging, USB charging, discharging}.

With each of these states we associate a rate of change which determines the rate at
which Xt changes. In Table 1 we show parameters estimated from a 4 month trace from
a Galaxy Nexus (device id 3fd6231afc7fec60). Average charging rates for this device are
broadly similar over all time periods, but average discharging rates varied significantly from
1 to 11 percentage points per hour (pp/hour).

A single exponential distribution holding time in each state is unlikely to describe the
traces well, but extra states can be added within the fluid queue model to give a phase-type
distribution fit to our data.

The process Xt is continuous and piecewise linear with the rate determined by the process
Jt. The process is bounded above and below by the capacity of the battery (0 ≤ Xt ≤ B for
all t).

G. L. Jones and P. G. Harrison 79

Time

C
ha

rg
e
le
ve
l

B

0

Figure 6 Sample trace from a fluid queue. The grey highlights represent time in charging periods
and the white background periods when the device was discharging.

A sample trace from a fluid queue model with just two states {charging, discharging}
is shown in Figure 6.

The busy period of the fluid queue is the time period between instants when the buffer is
empty. The busy period is a stochastic quantity because it is determined by the sequence of
charging and discharging period durations.

The fluid queue model has seen significant attention in the literature and the stationary
distribution and busy period are known for infinite buffer models [4]. We will require an
extension of the model introduced here where charging/discharging rates are dependent on
the charge level and the buffer is of finite capacity.

Authors of this paper published the busy period for a model with level-dependent rates
in a recent paper [5]. The Laplace–Stieltjes transform of the busy period distribution was
computed, from which moments can be computed analyically by differentiation and numerical
inversion can quickly compute particular values (e.g. 95th percentile). Extending this result
to a finite buffer with numerous emptying states remains as future work.

5 Motivation and future goals

Smart phone user feedback on battery life is currently very crude. Android handsets typically
warn the user of low battery at 15% and 5%, irrespective of how long the battery life is likely
to last (on some handsets this might be 8 or more hours).

Some apps already exist to give users a clearer idea of how long their battery will last
(like Battery Monitor Widget [1]), though they do not offer the user time-based alerts. A
significanlty more elaborate system ‘CABMAN’ has been suggested [8] where the device
would make decisions about power usage based on user position and proximity to the next
charging session.

Our theoretical model may be can be improved by considering the ‘phantom recharging’
effects descibed by the KiBaM model [5, 6]. We see voltage recoveries during discharge
periods in our collected data and intend to investigate the effect.

In the longer term we seek to investigate how the same device performs over time and
between different users and quantitatively qualify the degradation in battery performance
over time. This information will be of interest to both users and manufacturers of Android
devices.

References
1 Battery monitor widget by 3c http://www.3c71.com/android/?q=node/1.
2 Forrester research mobile adoption forecast, 2012 to 2017 (US). 2012.

ICCSW’12

80 Collecting battery data with Open Battery

3 Denzil Ferreira, Anind K. Dey, and Vassilis Kostakos. Understanding human-smartphone
concerns: a study of battery life. In Pervasive’11 Proceedings of the 9th international
conference on Pervasive computing, pages 19–33, 2011.

4 Tony Field and Peter G. Harrison. Busy periods in fluid queues with multiple emptying
input states. Journal of Applied Probability, 47:474–497, 2010.

5 Gareth L. Jones, Peter G. Harrison, Uli Harder, and A. J. Field. Fluid Queue Models of
Battery Life. In IEEE 19th International Symposium on Modelling, Analysis Simulation
of Computer and Telecommunication Systems, July 2011.

6 J. F. Manwell and J. G. McGowan. Lead acid battery storage model for hybrid energy
systems. Solar Energy, 50(5):399–405, 1993.

7 Ahmad Rahmati, Angela Qian, and Lin Zhong. Understanding human-battery interaction
on mobile phones. In Proceedings of the 9th international conference on Human computer
interaction with mobile devices and services, pages 265–272.

8 Nishkam Ravi, James Scott, Lu Han, and Liviu Iftode. Context-aware battery management
for mobile phones. In Sixth Annual IEEE International Conference on Pervasive Computing
and Communications, 2008. PerCom 2008, pages 224–233, 2008.

Informing Coalition Structure Generation in
Multi-Agent Systems Through Emotion Modelling
Martyn Lloyd-Kelly and Luke Riley

Department of Computer Science
University of Liverpool, UK
mlk5060@liverpool.ac.uk and L.J.Riley@liverpool.ac.uk

Abstract
We propose a hybrid coalition formation method for multi-agent systems that combines a rational
mechanism and an emotionally-inspired mechanism to reduce the associated computational cost.
To initialise coalition formation, the rational mechanism is used and in subsequent iterations,
the emotional mechanism (that forms coalitions resulting from emotional reactions to aspects
of interactions between agents) is used. The emotions of anger and gratitude are modelled and
used as a basis to model trust which is in turn used to restrict the coalition state-space. We offer
some discussion as to how this hybrid method offers an improvement over using a method that
only considers payoff maximisation and we propose some direction for future work.

1998 ACM Subject Classification I.2.11 Distributed Artificial Intelligence

Keywords and phrases Multi-Agent Systems, Coalition Formation, Emotion

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.81

1 Introduction

Multi-agent systems (MAS) are systems of autonomous agents capable of interacting with
one another in some way [19]. In self-interested MAS, agents will attempt to achieve indi-
vidual goals whilst maximising individual payoffs. However, under certain circumstances,
agents may have to temporarily form mutually beneficial partnerships with other agents to
achieve goals [3]. These partnerships are known as coalitions and a set of such coalitions
are known as a coalition structure. Forming coalition structures in MAS has been shown to
be an important topic that can be applied in many different areas. For example, [12] notes
that it has proved useful in: e-commerce, e-business and distributed sensor networks.

In human societies, coalition formation takes into account rational aspects such as expec-
ted monetary payoffs as well as various emotional dispositions towards individuals. Emotions
stemming from one individual’s appraisal of another individual’s actions, such as gratitude
and anger, appear to be integral in the establishment and maintenance of trust [4] and such
emotional appraisals, in conjunction with various cognition-based aspects, form the basis
that enables one individual to trust another [6]. Trust formation of this kind has been
tested using a theoretical framework by [9] who concludes that there is a high importance
placed upon understanding the affective qualities of relationships. Therefore, whilst we can
posit that coalitions in human societies are informed in part by maximisation of current
finances, this does not fully encompass the whole spectrum of reasoning undertaken when
forming coalitions as some consideration is also given to emotional aspects.

With regards to MAS, finding the best coalition structure i.e. the one that maximises
social welfare, is a computationally complex activity as an exponential amount of coalitions
(2n − 1) have to be checked [3, 12]. In this paper we discuss an attempt to model the
emotions of anger and gratitude so that they may be used as a basis to form coalitions.

© Martyn Lloyd-Kelly and Luke Riley;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 81–87

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.81
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

82 Coalition Structure Generation in MAS Through Using Emotion Modelling

We propose that these relationships will reduce the computation costs placed on agents if
coalition formation is highly complex, information about the environment is incomplete or
uncertain, the robustness of other agent’s proposed coalition is questionable, or there is
a time-bound on coalition formation. We believe that modelling anger and gratitude to
inform trust is applicable for use in such a task as trust is utilised when current conditions
are highly complicated and uncertain [17] and it has also been proposed that the primary
function of trust is to reduce complexity [8].

Therefore, we are not aiming to improve the quality of coalitions, instead we aim to
reduce the associated computation cost by considering the roles that anger and gratitude
can play in developing a mechanism of trust for use in coalition structure generation. In this
paper we do not detail experimental results of testing this mechanism rather, we endeavour
to: make the distinction between emotional and rational coalition formation processes clear,
make the novel coalition formation process explicit and propose avenues for future work.

Section 2 of this paper introduces the background on coalition games, some initial discus-
sion on the distinction between rationality and emotion and how emotions are modelled/used
in artificial intelligence. Section 3 outlines the rational and emotional coalition formation
methods used, how they are hybridised and a brief example illustrating how we propose the
process works. Finally, section 4 concludes with an overview of the contributions made and
some proposals for future work.

2 Background

Coalition formation takes place in an n-person cooperative game originally defined in [18]
and is denoted: G = 〈N, v〉 where N represents the set of agents (N = {1, ..., n}) and v is
the characteristic function which assigns every coalition a real number that represents its
payoff (v(2N)→ R). The outcome of an n-person cooperative game is a coalition structure
{C1, ..., Ck} (where the individual coalitions are distinct and exhaustive) and a payoff vector
that divides the gains of the coalition structure between all the agents. The payoff vector is
fully denoted as: x = (x1, ...xn) ∈ Rn where xi denotes the individual payoff for agent i and
xi ≥ 0 for all i ∈ N (see [3]). A payoff vector satisfies the agents of the system if it is said
to be stable i.e. a payoff vector where no subset of agents in the system have an incentive
to deviate from the current coalition structure.

Solutions of coalition games focus on what is mathematically optimal to do but as pre-
viously noted in section 1, the most mathematically rational solution is not the only consid-
eration made in human societies. Such a solution may not be found especially if coalition
formation is time constrained and/or attempted in an environment that is quite complex
[16]. This paper seeks to outline a coalition formation method which simplifies the equilib-
rium computations required in such coalition games. As most scenarios where humans form
coalitions e.g. the workplace, friendships, marriages etc. are not one-shot games (like the
standard coalition game formalism) but iterative interactions, we will take inspiration from
how emotions are formed and used in such iterative interactions so as to affect coalition
formation. The coalition formation method that we are proposing here is an example of
the “good enough, soon enough” design paradigm as we put no guarantees on if optimal
solutions are found; this is left for future work.

Before continuing, we distinguish between the notions of emotional and rational coalition
formation methods as understanding this difference is integral to understanding the approach
outlined. As in [7], we use Axelrod’s tournament [1] as a basis for the distinction. In
Axelrod’s tournament, some submitted strategies considered what action to perform in the

M. Lloyd-Kelly and L. Riley 83

current round based upon an assessment of past/present/future payoffs. It is this payoff-
based reasoning that we term as rational reasoning whereas emotional reasoning simply
takes into consideration the emotional disposition of the agent towards another i.e. there is
no explicit reasoning regarding past/present/future payoffs when identifying agents to form
coalitions with. Emotional dispositions are concise histories that can take into account a
multitude of interaction features but can be represented easily. These dispositions can be
consulted quickly to not only determine whether or not to form a coalition with an agent
but to also rank potential coalitions. Such an approach is inspired by the way emotions are
used by Nawwab et. al to alter the preference ordering of actions when different emotions
are activated [10]. We should make clear here that in no way at all do we intend for emotion
to be interpreted as irrational, as is the usual dictum.

We model the emotions of anger and gratitude using the Ortony, Clore and Collins model
(OCC) [11] as a basis. We take the view that anger and gratitude play a functional role,
following [5] and use them to inform agents about whether to trust another. The exact
implementation of this emotional approach is detailed in section 3.

3 The Coalition Formation Method

In this section we first outline the rational and emotional coalition formation processes in
sections 3.1 and 3.2 before providing an outline of how we combine these two processes
in section 3.3. Furthermore, in section 3.3 we present mathematical evidence asserting
that such a hybrid technique is capable of buying advantages in computation time over the
standard rational approach. Finally, we talk through a brief example illustrating how we
propose the technique will work in section 3.4.

3.1 The Rational Coalition Formation Process

The rational coalition formation process finds an optimal coalition structure and a stable
payoff vector for the system, i.e. it exclusively considers payoffs. The issue with this process
is that it is computationally expensive: the asymptotically fastest algorithm to solve the
coalition structure generation problem runs in O(3n) time [15]. For our research we will
use the rational model detailed in [14], which is a distributed dialogue game that finds
both an optimal coalition structure and a stable payoff vector. Theoretically however, any
rational coalition structure generation model could be combined with the emotional approach
outlined in sections 3.2 and 3.3.

In the model of [14], communication only occurs between agents when they offer a pro-
posal to form a coalition. Proposals can be simply viewed as a three part tuple: 〈i, C, x(C)〉,
where agent i proposes that coalition C forms with the coalition payoff vector denoted x(C).
If an agent in C cannot object to this coalition and payoff vector with a counter proposal
then this coalition and payoff vector is said to be stable. Once a stable coalition for every
agent in the system exists then a stable coalition structure also exists which entails the
completion of the rational coalition formation process.

3.2 The Emotional Coalition Formation Process

The emotional coalition formation process enables an agent to restrict the state-space of
coalitions it has to search based upon its emotional disposition towards others. This emo-
tional disposition is informed by the performance of those agents in past coalitions. To

ICCSW’12

84 Coalition Structure Generation in MAS Through Using Emotion Modelling

achieve this, each agent i is endowed with the following that are inspired by Reilly’s model
of emotion in [13]:

Anger/gratitude variable: In accordance with the OCC we model opposite pairs of emo-
tions so there is one variable that represents anger/gratitude. This variable is denoted
by AngGrtj where AngGrt is the current value of the variable and j indicates the agent
that the variable applies to. An agent can have AngGrt · (N − 1) variables where N

is the total number of agents in the system (N − 1 is used as anger/gratitude may not
be felt towards the agent experiencing them). If the AngGrt for i is negative towards
another agent j then it can be inferred that i is angry with j and does not trust it. If
the AngGrt for i is positive towards another agent j then it can be inferred that i feels
gratitude towards j and trusts it. If the AngGrt of i towards another agent j is 0 then
i is neither grateful or angry with j. Therefore, an agent may only be grateful, angry
or neutral towards another, it may never activate any combination of these emotions in
tandem with respect to the same agent.
Anger/gratitude activation threshold: two constant values (Ang, Grt) that applies to an
agent’s AngGrt variable. If i’s AngGrtj ≤ Ang, the effect of anger is manifested in i
towards j. If i’s AngGrtj ≥ Grt, the effect of gratitude is manifested in i towards j. The
values of these variables could be varied in order to make agents more/less trusting.
Anger/gratitude effect: Prescribes what happens when an agent’s AngGrt value towards
another agent is ≤ Ang or ≥ Grt. Anger and gratitude have opposing effects: if i’s
AngGrtj ≤ Ang then i will not include j in its coalition state-space search. Conversely,
if AngGrtj ≥ Grt then i will include j in its coalition state-space search. The behaviour
of agents during the course of their interactions are not modified due to the activation
of emotions, only the coalition state-space is affected.

For the purposes of this paper, the value of AngGrt is altered according to whether or
not the coalition succeeds or fails however, the inputs to this emotional disposition alteration
are context-dependent and can vary. If an agent i joins a coalition C with another agent j
then the following two situations may occur in context of this paper:

1. The coalition C succeeds – all agents i ∈ C increase all AngGrtj variables (where j ∈
C\{i}) by some amount.

2. The coalition C fails – all agents i ∈ C decrease all AngGrtj variables (where j ∈ C\{i})
by some amount.

The value of AngGrt implies a notion of anger/gratitude intensity as it is possible that
i’s AngGrtj and AngGrtk variables may infer anger towards both agents but i is less angry
with j than it is with k as AngGrtj may be equal to -30 whilst AngGrtk may equal -40.
Variations in intensity create preference orderings as agent i will propose a coalition with
the agent who has the highest AngGrt value first. If the proposal is refused, the agent will
then propose a coalition with the agent who has the next highest AngGrt value and so on.

3.3 Hybridisation of Rational and Emotional Processes
Initially, all AngGrt variables for each agent are set to 0 i.e. all agents are emotionally
neutral towards all others. So to make a decision about who to form a coalition with, agents
consult the rational coalition formation process detailed in section 3.1 only. However, in
subsequent rounds, if any of agent i’s AngGrt values equal Ang or Grt then the emotion-
based coalition formation approach is used in order to determine who i will work with, with

M. Lloyd-Kelly and L. Riley 85

no input from the rational coalition formation approach unless all AngGrt variables for i’s
coalition choices are equal.

Agent i informs other agents of its anger/gratitude by communicating the tuple 〈i,
{+,−, =}, j〉 where + represents gratitude, − represents anger and = represents emotion
neutrality. As stated, it is initially assumed that ∀ i, j ∈ N the tuple 〈i, =, j〉 holds.

Now for all agents k ∈ N , agent k will know that a proposal for a coalition has to include
i and not j if 〈i,−, j〉 holds, which restricts the state space to search. Alternatively, both
〈i, +, j〉 and 〈j, +, i〉 have to hold to restrict the state space as both i and j have to want
to be in a coalition together before it is fair to force them into one. If it is the case that i’s
AngGrt is negative/positive towards all agents then agent i will try to form a coalition with
the agent(s) it is least angry with/most grateful to, respectively (explained in section 3.2).

The advantage of these restrictions are clear: consider a coalition search space of 2n − 1
coalitions (for n agents) and one anger constriction of 〈i,−, j〉 then there will be (2n −
1) − (2n−2) coalitions to check as 2n−2 is the amount of potential coalitions that any two
agents share. Likewise, given the same coalition search space and one reciprocal gratitude
relationship between agent i and j, then the amount of coalitions to search is reduced to
(2n− 1)− (2n−1) as 2n−1 is the amount of potential coalitions for n agents that hold one of
i and j but not the other. Table 1 shows a 4-person coalition game where there are 24 − 1
possible coalitions that need to be checked. With the addition of one anger tuple 〈1,−, 2〉
the underlined coalitions do not need to be searched. The underlined coalitions are equal to
24−2 so the full amount of possible coalitions to search is: (24− 1)− (24−2) = 11, which is a
reduction from the full 15 used in the rational model. The benefit of this approach increases
as more anger and gratitude relationships hold, especially if n becomes unmanageable for
standard rational coalition structure generation techniques.

Table 1 State space reduction using emotional coalition formation process.

|C| = 1 |C| = 2 |C| = 3 |C| = 4
{1} {3, 4} {2, 3, 4} {1, 2, 3, 4}
{2} {2, 4} {1, 3, 4}
{3} {2, 3} {1, 2, 4}
{4} {1, 4} {1, 2, 3}

{1, 3}
{1, 2}

3.4 Example Process
When the AngGrt variables for multiple agents in a MAS begin to equal or surpass their
Ang/Grt values emotions, a natural representation of these relationships, inspired by [2], is
a directed graph with two arrow types:

Pointed arrow heads from agent i to agent j for the tuple 〈i, +, j〉
Flat arrow heads from agent i to agent j for the tuple 〈i,−, j〉

Figure 1 gives an example of such a directed graph for a MAS coalition game. The emo-
tional dispositions asserted in this game are: 〈1, +, 2〉, 〈2, +, 1〉, 〈2, +, 5〉, 〈3, +, 2〉, 〈4,−, 2〉,
〈5,−, 3〉 and 〈5, +, 4〉. If no arrow exists between two agents then these agents are emotion-
ally indifferent to each other.

ICCSW’12

86 Coalition Structure Generation in MAS Through Using Emotion Modelling

Figure 1 Directed graph denoting emotional dispositions in a 5 agent coalition game.

In this 5 agent game, the agents know that a 2-person coalition is at least needed to
complete a task but a task gets easier with more agents. Let us assume that agent 1 makes
the first proposal for a coalition (the mechanism which determines proposal orders is outside
the scope of this paper). Agent 1 has to include agent 2 in its proposal as the agents have
reciprocal positive emotions (so the current best coalition for agent 1 is C1 = {1, 2}).

Agent 1 then has a choice as to the next agent to invite into the existing coalition
and so considers both C2 = {1, 2, 3} and C3 = {1, 2, 5}. Agent 4 is not considered as
agent 2 is currently angry with agent 4 and therefore does not trust it, so agent 2 would
reject the coalition of {1, 2, 4}. Agent 1 therefore has a choice between 2 agents: 3 and
5. As agent 1 is emotionally indifferent to both, the rational method is used to decide
between the different coalitions. The best possible payoff for each coalition of agent 1’s are:
x1(C3) > x1(C2) > x1(C3), so agent 1 deems C3 to be the best coalition. Adding agent 5
to the proposal means that agent 3 should not be considered as agent 5 feels anger towards
agent 3 and does not trust it. As no more agents can be added to the coalition, C3 is then
proposed, accepted and formed. Notice here that coalition C3 was chosen by agent 1 out
of a possible 25−1 coalitions yet agent 1 only considered and compared 3 different possible
coalition proposals (C1, C2 and C3).

The acceptance of C3 leaves the remaining two agents (3 and 4 who are indifferent to
each other) to form a coalition if they want to complete a task. So, C4 = {3, 4} is also
proposed, accepted and then formed, resulting in a coalition structure of: {{C3}, {C4}}.

4 Conclusion and Future Work

We have discussed the details of a hybrid coalition formation method that uses a previously
established rational coalition formation process augmented with an emotionally-inspired
coalition formation process. We have outlined our proposal for how this method will work
in context of MAS and have outlined the benefits to computation costs that the method
imparts. The modelling of anger and gratitude has also been made explicit and how these
emotions are used to create a notion of trust between agents in MAS. Finally, we have
outlined and discussed an example MAS in which this hybrid method facilitates a reduction
in computational time with regards to forming coalitions.

A number of directions for future work have been outlined in the paper. The obvious
continuation of this work would be to implement agents in a MAS who could use this hybrid
coalition formation method. Ideally, this would be performed in context of a simulation
test-bed so as to investigate whether the method outlined buys us reduced computation
time as anticipated. Further questions may also be asked i.e. how scalable is the method
and does this approach inadvertently produce coalitions of better quality?

Furthermore, it would be interesting to identify other variables that may affect the emo-
tional disposition of an agent rather than just goal success/failure. Such variables could

M. Lloyd-Kelly and L. Riley 87

include time taken to complete the goal specified, effort expended by other agents, con-
sequences of the actions of another agent in context of goal achievement, shares of payoffs
distributed etc. Such considerations could give rise to coalitions that are of better quality
as more factors are taken into consideration.

Finally we may also consider the effects of varying anger/gratitude activation thresholds
in order to create agents that are more/less trusting. This notion of emotional characters
may be used to extend simulations so that we may identify those characters that are the
most/least successful with respect to the quality of the coalitions formed.

References
1 Robert Axelrod. The Evolution Of Cooperation. Basic Books, Inc., 1984.
2 Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Coalitions of arguments: A tool

for handling bipolar argumentation frameworks. Intelligent Systems, 25(1):83–109, 2010.
3 Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge. Computational Aspects of

Cooperative Game Theory. Morgan & Claypool Publishers, 2011.
4 Jennifer R. Dunn and Maurice E. Schweitzer. Feeling and believing: The influence of

emotion on trust. Journal of Personality and Social Psychology, 88:736–748, 2005.
5 Nico H. Frijda. The Emotions. Cambridge University Press, 1987.
6 David J. Lewis and Andrew Weigert. Trust as a social reality. Social Forces, 63:967–985,

1985.
7 Martyn Lloyd-Kelly, Katie Atkinson, and Trevor Bench-Capon. Emotion as an enabler

of co-operation. In 4th International Conference on Agents and Artificial Intelligence,
ICAART, 2012.

8 Niklas Luhmann. Trust and Power. Chichester: Wiley, 1979.
9 Daniel J. McAllister. Affect and cognition-based trust as foundations for interpersonal

cooperation in organizations. The Academy of Management Journal, 38:24–59, 1995.
10 Fahd Saud Nawwab, Trevor Bench-Capon, and Paul E. Dunne. Emotions in rational

decision making. In Lecture Notes in Computer Science, volume 6057, pages 273–291.
Springer, 2010.

11 Andrew Ortony, Gerald L. Clore, and Allan Collins. The Cognitive Structure of Emotions.
Cambridge University Press, 1988.

12 Talal Rahwan. Algorithms for Coalition Formation in Multi-Agent Systems. PhD thesis,
University of Southampton, 2007.

13 W. Scott Neal Reilly. Believable Social and Emotional Agents. PhD thesis, Carnegie Mellon
University, 1996.

14 Luke Riley, Katie Atkinson, and Terry Payne. A dialogue game for coalition structure
generation with self-interested agents. In The Fourth International Conference on Compu-
tational Models of Argument, COMMA, 2012.

15 Tuomas Sandholm, Kate Larson, Martin Andersson, Onn Shehory, and Fernando Tohmé.
Coalition structure generation with worst case guarantees. Artificial Intelligence, 111:209–
238, 1999.

16 Leen-Kiat Soh and Costas Tsatsoulis. Satisficing coalition formation among agents. In
Proceedings of AAMAS, 2002.

17 James D. Thompson. Organizations in action: Social science bases in administrative theory.
New York: McGraw-Hill, 1967.

18 John von Neumann and Oskar Morgenstern. The Theory of Games and Economic Behavior.
Princeton University Press, 1944.

19 Michael Wooldridge. An Introduction to Multi-Agent Systems Second Edition. John Wiley
& Sons, 2009.

ICCSW’12

Bounded Model Checking for Linear Time
Temporal-Epistemic Logic∗

Artur Męski1,2, Wojciech Penczek1,3, and Maciej Szreter1

1 Institute of Computer Science, Polish Academy of Sciences, Poland
{meski,penczek,mszreter}@ipipan.waw.pl

2 University of Łódź, Faculty of Mathematics and Computer Science, Poland
3 University of Natural Sciences and Humanities, Siedlce, Poland

Abstract
We present a novel approach to the verification of multi-agent systems using bounded model
checking for specifications in LTLK, a linear time temporal-epistemic logic. The method is based
on binary decision diagrams rather than the standard conversion to Boolean satisfiability. We
apply the approach to two classes of interpreted systems: the standard, synchronous semantics
and the interleaved semantics. We provide a symbolic algorithm for the verification of LTLK
over models of multi-agent systems and evaluate its implementation against MCK, a competing
model checker for knowledge. Our evaluation indicates that the interleaved semantics can often
be preferable in the verification of LTLK.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases model checking, multi-agent systems, temporal-epistemic logic, verifica-
tion, interpreted systems

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.88

1 Introduction

It is often crucial to ensure that multi-agent systems (MAS) conform to their specifications
and exhibit some desired behaviour. This can be checked in a fully automatic manner using
model checking [4], which is one of the rapidly developing verification techniques. Model
checking has been studied by various researchers in the context of MAS and different modal
logics for specifying MAS properties [2, 6, 7, 10, 13, 14, 20, 21].

In the verification of multi-agent systems, the construction of the full, reachable state-space
is often required. This exploration can lead to the state-space explosion, where the size of the
model grows exponentially with the number of agents. Therefore, several approaches alleviating
this problem have been proposed. One of them is bounded model checking (BMC) [1], in
which only a portion of the original model, truncated up to some specific depth, is considered.
This approach can be combined either with a translation of the verification problem to the
propositional satisfiability problem (SAT) [10, 18] or with techniques based on binary decision
diagrams (BDDs) [9].

In this paper we present a novel approach to verification of MAS by BDD-based bounded
model checking for linear time temporal logic extended with the epistemic component (LTLK,
also called CKLn [7]). The systems are modelled by two variants of Interpreted Systems:
standard (IS) [5] and interleaved ones (IIS) [12]. IIS restrict IS by enforcing asynchronous

∗ Partly supported by National Science Centre under the grant No. 2011/01/B/ST6/05317 and
2011/01/B/ST6/01477. A longer version of this paper appeared in the proceedings of LAM’12 [16].

© Artur Męski, Wojciech Penczek, and Maciej Szreter;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 88–94

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.88
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

A. Męski, W. Penczek, and M. Szreter 89

semantics. This modifies the popular modelling approach for MAS by bringing the semantics
known from verification of concurrent systems like networks of automata or variants of Petri
nets. Our paper shows that the modelling approach has a very strong impact on the efficiency
of verification. The experimental results exhibit that the IIS-based approach can greatly
improve the practical applicability of the bounded model checking method for LTLK.

There has been already some intensive research on BMC for MAS, but mostly for the
properties expressible in CTLK, based either on SAT [8, 18] or on BDDs [9]. A SAT-based
verification method for the LTLK properties of MAS, modelled by IIS, was put forward
in [19]. Our technical report [15] presents a BDD-based approach to verification of LTLK for
IIS, while the SAT- and BDD-based approaches for IIS are compared in [17].

The rest of the paper is organised as follows. Sec. 2 provides the basic definitions and
notations for LTLK and IS. Our method is described in Sec. 3. The last section contains the
discussion of an experimental evaluation of the approach and the final remarks.

2 Preliminaries

2.1 Interpreted Systems
The semantics of interpreted systems [5] provides a setting to reason about MAS by means
of specifications based on knowledge and linear or branching time. We begin by assuming
a MAS to be composed of n agents1 A. We associate a set of possible local states Li and
actions Acti to each agent i ∈ A. We assume that the special action εi, called “null”, or
“silent” action of agent i belongs to Acti; as it will be clear below the local state of agent i
remains the same if the null action is performed. Also note we do not assume that the sets
of actions of the agents are disjoint. We call Act =

∏
i∈AActi the set of all possible joint

actions, i.e. tuples of local actions executed by agents. We consider a local protocol modelling
the program the agent is executing. Formally, for any agent i, the actions of the agents are
selected according to a local protocol Pi : Li → 2Acti . For each agent i, we define a relation
ti ⊆ Li × Act × Li, where (l, (a1, . . . , an), l) ∈ ti for each l ∈ Li if ai = εi. A global state
g = (g1, . . . , gn) is a tuple of local states for all the agents corresponding to an instantaneous
snapshot of the system at a given time. Given a global state g = (g1, . . . , gn) we denote by
li(g) the local component gi of agent i ∈ A in g.

For each agent i ∈ A, ∼i ⊆ G×G is an epistemic indistinguishability relation over global
states defined by g ∼i h if li(g) = li(h). Further, let Γ ⊆ A. The union of Γ’s accessibility
relations is defined as ∼EΓ =

⋃
i∈Γ ∼i. By ∼CΓ we denote the transitive closure of ∼EΓ , whereas

∼DΓ =
⋂
i∈Γ ∼i.

A global evolution T ⊆ G × Act × G is defined as follows: (g, a, h) ∈ T iff there exists
an action a = (a1, . . . , an) ∈ Act such that for all i ∈ A we have ai ∈ Pi(li(g)) and
(li(g), a, li(h)) ∈ ti. For g, h ∈ G and a ∈ Act s.t. (g, a, h) ∈ T we write g a−→ h. We assume
that the global evolution relation T is total, i.e., for each g ∈ G there exists a ∈ Act and
h ∈ G such that g a−→ h.

An infinite sequence of global states and actions ρ = g0a0g1a1g2 . . . is called a path
originating from g0 if there is a sequence of transitions from g0 onwards, i.e., gi

ai−→ gi+1 for
every i ≥ 0. Any finite prefix of a path is called a run. By length(ρ) we mean the number of
the states of ρ if ρ is a run, and ω if ρ is a path. In order to limit the indices range of ρ which

1 Note in the present study we do not consider the environment component. This may be added with no
technical difficulty at the price of heavier notation.

ICCSW’12

90 Bounded Model Checking for Linear Time Temporal-Epistemic Logic

can be a path or run, we define the relation �ρ. Let �ρ
def= < if ρ is a path, and �ρ

def= ≤ if ρ is
a run. A state g is said to be reachable from g0 if there is a path or a run ρ = g0a0g1a1g2 . . .

such that g = gi for some i ≥ 0. The set of all the paths and runs originating from g is
denoted by Π(g). The set of all the paths originating from g is denoted by Πω(g).

I Definition 1. Given a set of propositions PV such that {true, false} ⊆ PV , an interpreted
system (IS), also called a model, is a tuple M = (G, ι, T , {∼i}i∈A,V), where G is a set of
global states, ι ∈ G is an initial (global) state such that each state in G is reachable from ι,
T is the global evolution relation defined as above, and V : G→ 2PV is a valuation function.

We define Π =
⋃
g∈G Π(g) to be the set of all the interleaved paths and runs originating from

all states in G. By Πω we denote the set of all the paths of Π.

2.2 Interleaved Interpreted Systems

We define a restriction of interpreted systems, called interleaved interpreted systems in which
global evolution function is restricted, so that every agent either executes a shared action or
the null action. We assume that εi ∈ Pi(l), for any l ∈ Li, i.e., we insist on the null action to
be enabled at every local state. For each action a ∈

⋃
i∈AActi by Agent(a) ⊆ A we mean

all the agents i such that a ∈ Acti, i.e., the set of the agents potentially able to perform a.
Then, the global evolution relation T is defined as before, but it is restricted by the following
condition: if (g, a, h) ∈ T then there exists a joint action a = (a1, . . . , an) ∈ Act, and an
action α ∈

⋃
i∈AActi \ {ε1, . . . , εn} such that: ai = α for all i ∈ Agent(α), and ai = εi for all

i ∈ A \Agent(α).

2.3 Syntax and Semantics of LTLK

I Definition 2 (Syntax). Let PV be a set of atomic propositions to be interpreted over the
global states of a system, p ∈ PV, q ∈ A, and Γ ⊆ A. Then, the syntax of LTLK is defined
by the following BNF grammar: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ |
Kqϕ | Kqϕ | EΓϕ | EΓϕ | DΓϕ | DΓϕ | CΓϕ | CΓϕ.

The temporal operators U and R are named as usual, respectively, until and release; X is the
next step operator. The epistemic operators Kq, DΓ,EΓ, and CΓ [5] represent, respectively,
knowledge of agent q, distributed knowledge in the group Γ, “everyone in Γ knows”, and
common knowledge among agents in Γ, whereas Kq, DΓ,EΓ, and CΓ are the corresponding
dual.

The logic LTL is the sublogic of LTLK which consists only of the formulae built without
the epistemic operators, whereas ELTL is a fragment of LTL where negation can be applied
to propositions only. ELTLK is the existential fragment of LTLK, defined by the following
grammar: ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | Kqϕ | EΓϕ | DΓϕ | CΓϕ.

I Definition 3 (Semantics). Given a model M = (G, ι, T , {∼q}q∈A,V), where V(s) is the set
of propositions that hold at s, let Π be a set of all the paths and runs of M , and ρ(i) denote
the i-th state of a path or run ρ ∈ Π, and ρ[i] denote the path or run ρ with a designated
formula evaluation position i, where i�ρ length(ρ). Note that ρ[0] = ρ. The formal semantics
of LTLK is defined recursively as follows:

M,ρ[i] |= p iff p ∈ V(ρ(i)),
M,ρ[i] |= ¬ϕ iff M,ρ[i] 6|= ϕ,

A. Męski, W. Penczek, and M. Szreter 91

M,ρ[i] |= ϕ1 ∧ ϕ2 iff M,ρ[i] |= ϕ1 and M,ρ[i] |= ϕ2,
M,ρ[i] |= ϕ1 ∨ ϕ2 iff M,ρ[i] |= ϕ1 or M,ρ[i] |= ϕ2,
M,ρ[i] |= Xϕ iff length(ρ) > i and M,ρ[i+ 1] |= ϕ,
M,ρ[i] |= ϕ1Uϕ2 iff (∃k ≥ i)[M,ρ[k] |= ϕ2 and (∀i ≤ j < k) M,ρ[j] |= ϕ1],
M,ρ[i] |= ϕ1Rϕ2 iff [ρ ∈ Πω(ι) and (∀k ≥ i) M,ρ[k] |= ϕ2]

or (∃k ≥ i)[M,ρ[k] |= ϕ1 and (∀i ≤ j ≤ k) M,ρ[j] |= ϕ2],
M,ρ[i] |= Kqϕ iff (∀ρ′ ∈ Πω(ι))(∀k ≥ 0)[ρ′(k) ∼q ρ(i) implies M,ρ′[k] |= ϕ],
M,ρ[i] |= Kqϕ iff (∃ρ′ ∈ Π(ι))(∃k ≥ 0)[ρ′(k) ∼q ρ(i) and M,ρ′[k] |= ϕ],
M,ρ[i] |= YΓϕ iff (∀ρ′∈Πω(ι))(∀k ≥ 0)[ρ′(k) ∼Y

Γ ρ(i) implies M,ρ′[k] |= ϕ],
M,ρ[i] |= YΓϕ iff (∃ρ′∈Π(ι))(∃k ≥ 0)[ρ′(k) ∼Y

Γ ρ(i) and M,ρ′[k] |= ϕ],
where Y ∈ {D,E,C}.

Moreover, an ELTLK formula ϕ holds in the model M , denoted M |=∃ ϕ, iff M,ρ |= ϕ for
some path or run ρ ∈ Π(ι). The intuition behind this definition is that ELTLK is obtained by
restricting the syntax of the epistemic operators while the temporal ones remain the same.

3 BDD-based Bounded Model Checking for ELTLK

To perform BMC of ELTLK using BDDs [4] we combine the standard approach for ELTL [3]
with the method for the epistemic operators [20] in a similar manner to the solution for
CTL∗ of [4] where the methods for CTL and LTL are combined into a method for CTL∗.

Algorithm 1 Labelling algorithm
1: Mc := M , ϕc := ϕ

2: while γ(ϕc) 6= 0 do
3: pick ψ ∈ Y(ϕc) such that γ(ψ) = 1
4: for all g ∈ JMc, sub(ψ)K do
5: VMc(g) := VMc(g) ∪ {psub(ψ)}
6: end for
7: ψ := ψ[sub(ψ)← psub(ψ)]
8: for all g ∈ JMc, ψK do
9: VMc

(g) := VMc
(g) ∪ {pψ}

10: end for
11: ϕc := ϕc[ψ ← pψ]
12: end while
13: return JMc, ϕcK

Labelling algorithm. Given a model M = (G, ι, T , {∼q}q∈A,V), a set GR ⊆ G of its
reachable states, and an ELTLK formula ϕ, we compute the set JM,ϕK = {g ∈ GR |
M, g |=∃ ϕ} by reducing ELTLK to ELTL under the assumption that we have the algorithms
for computing this set for each ϕ being an ELTL formula or in the form Yp, where p ∈ PV,
and Y ∈ {Kq,EΓ,DΓ,CΓ} (we use the algorithms from [3] and [20], respectively). In order
to obtain this set, we construct a new model Mc together with an ELTL formula ϕc, and
compute the set JMc, ϕcK, which is equal to JM,ϕK. Initially ϕc equals ϕ, which is an ELTLK
formula, and we process the formula in stages to reduce it to an ELTL formula by replacing
with atomic propositions all its subformulae containing epistemic operators. If ϕ = Yψ is an
ELTLK formula, by sub(ϕ) we denote the formula ψ nested in the epistemic operator Y. We
begin by choosing some epistemic subformula ψ of ϕc, which consists of exactly one epistemic
operator (line 3), and process it in two stages. First, we modify the valuation function of

ICCSW’12

92 Bounded Model Checking for Linear Time Temporal-Epistemic Logic

Mc (line 5) such that every state initialising some path or run along which sub(ψ) holds is
labelled with the new atomic proposition psub(ψ), and we replace with the variable psub(ψ)
every occurrence of sub(ψ) in ψ (line 7). In the second stage, we deal with the epistemic
operators having in their scopes atomic propositions only. By modifying the valuation function
of Mc (line 9) we label with a new variable pψ every state initialising some path or run
along which the modified simple epistemic formula ψ holds. Similarly to the previous stage,
we replace every occurrence of ψ in ϕc with pψ (line 11). In the subsequent iterations, we
process every remaining epistemic subformulae of ϕc in the same way until there are no more
nested epistemic operators in ϕc (line 2), i.e., we obtain an ELTL formula ϕc, and the model
Mc with the appropriately modified valuation function. Finally, we compute the set of all
reachable states of Mc that initialise at least one path or run along which ϕc holds (line 13).

Algorithm 2 BMC algorithm
1: Reach := {ι},New := {ι}
2: while New 6= ∅ do
3: Next := New;

4: if ι ∈ JM |Reach, ϕK then
5: return true

6: end if
7: New := Next \Reach
8: Reach := Reach ∪New
9: end while

10: return false

BMC algorithm. Given a model M and an ELTLK formula ϕ, the algorithm checks if
there exists a path or run initialised in the initial state ι along which ϕ holds. The algorithm
starts with the set Reach of reachable states that initially contains only the state ι. With
each iteration the verified formula is checked (line 4), and the set Reach is extended with
new states reachable in one step from old states in Reach (line 8). The algorithm operates
on submodels M |Reach generated by the set Reach (i.e., models restricted to contain only
the states of Reach) to check if the initial state ι is in the set of states from which there is
a path or run on which ϕ holds. The loop terminates if there is such a path or run in the
obtained submodel, and the algorithm returns true (line 5). The search continues until no
new states can be reached from the states in Reach. When we obtain the complete set of
the reachable states, and a path or run from the initial state on which ϕ holds could not be
found in any of the obtained submodels, the algorithm terminates returning false.

4 Experimental Evaluation

We have considered three scalable systems to evaluate the efficiency of our BDD-based
BMC for LTLK: Faulty Generic Pipeline Paradigm (FGPP), Faulty Train Controller (FTC),
and Dining Cryptographers (DC). The systems were modelled using two semantics, and
the benchmarks were performed with several formulae. For the detailed descriptions of the
benchmarks see [15]. Our method was implemented as two separate prototype modules of
Verics [11] for IS and IIS semantics (named Verics-IS and Verics-IIS, respectively). We have
also compared our results with those obtained using MCK [6], another model checker for
multi-agent systems, implementing standard IS semantics. Results for some of the performed
benchmarks are included in the figures below.

A. Męski, W. Penczek, and M. Szreter 93

 10

 100

 1000

 10000

 1 10 100

M
em

or
y

in
 M

B

Number of Nodes

Memory usage for FGPP, formula 1

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100

T
im

e
in

 s
ec

.

Number of Nodes

Total time for FGPP, formula 1

 10

 100

 1000

 10000

 1 10 100

M
em

or
y

in
 M

B

Number of Nodes

Memory usage for FGPP, formula 4

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100

T
im

e
in

 s
ec

.

Number of Nodes

Total time for FGPP, formula 4

 10

 100

 1000

 10000

 1 10 100 1000

M
em

or
y

in
 M

B

Number of Trains

Memory usage for a FTC, formula 1

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

T
im

e
in

 s
ec

.

Number of Trains

Total time for a FTC, formula 1

 10

 100

 1000

 10 100

M
em

or
y

in
 M

B

Number of Cryptographers

Memory usage for DC, formula 1

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC
 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100

T
im

e
in

 s
ec

.

Number of Cryptographers

Total time for DC, formula 1

Comparing algorithms for IS, in most cases MCK is better than Verics-IS, but remains
close when looking at the orders of magnitude. The reason for better performance of MCK
may come from the fact that it is based on the translation to SAT, and SAT-based BMC
does not need to store the whole examined part of the state space.

For most of the considered benchmarks the Verics-IIS method is superior to the two IS
approaches: MCK and Verics-IS, sometimes even by several orders of magnitude. This can
be observed especially in the case of FTC. However, in the case of FGPP and formula 3 with
no epistemic modalities, MCK proved to be more efficient, but for the formula 4 containing
the K operator, Verics-IIS was superior. This can be justified by the fact that introducing
epistemic modalities partitions the ELTL verification task into several smaller ones.

In the case of IIS, the reordering of the BDD variables does not cause any significant
change of the performance in the case of FGPP and FTC, but for DC it reduces the memory
consumption. Therefore, for IIS the fixed interleaving order we used can often be considered
optimal. The penalty in the verification time to reorder the variables, in favour of reducing
memory consumption, is also not significant and can be worth the tradeoff. However, in the
case of IS the performance did not change, thus we include only the results for the fixed
order of the variables for Verics-IS.

It is important to note that from our comparison of [17] it follows that in the case of IIS,
the general performance of BDD-based approach is superior to the SAT-based one. Therefore,
we can conclude now that BMC for LTLK is less efficient for IS when comparing with IIS.
This could be explained by the different structure of the state space, which for IS is more
dense, i.e., more states are explored at every iteration of the BMC algorithm. The case of
DC shows that this factor can be more important than the lengths of the counterexamples,
which can be shorter for IS, or may even be of constant length when scaling the system.

The experimental results show that the approach based on the interleaved interpreted
systems can greatly improve the practical applicability of the bounded model checking method.
Although, we have tested only properties of LTLK, we suspect this to also be true for similar
specification formalisms, e.g., CTLK.

5 Final Remarks

In this paper, we have presented a BDD-based method for bounded model checking of
LTLK over models of multi-agent systems. We evaluated the methodology in two different
settings: interleaved interpreted systems and synchronous interpreted systems. The results
are preliminary and the comparison is by no means complete. It ignores the fact that for
some formulae the choice of the semantics influences the existence of a witness in the model.

ICCSW’12

94 Bounded Model Checking for Linear Time Temporal-Epistemic Logic

References
1 A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In

Proc. of the 5th Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’99), volume 1579 of LNCS, pages 193–207. Springer-Verlag, 1999.

2 R. Bordini, M. Fisher, C. Pardavila, W. Visser, and M. Wooldridge. Model checking multi-
agent programs with CASP. In Proc. of CAV’03, volume 2725 of LNCS, pages 110–113.
Springer-Verlag, 2003.

3 E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking. In
Proc. of CAV’94, volume 818 of LNCS, pages 415–427. Springer-Verlag, 1994.

4 E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
5 R. Fagin, J. Y. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. MIT Press,

Cambridge, 1995.
6 P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge. In Proc.

of the 16th Int. Conf. on Computer Aided Verification (CAV’04), volume 3114 of LNCS,
pages 479–483. Springer-Verlag, 2004.

7 W. van der Hoek and M. Wooldridge. Model checking knowledge and time. In Proc. of
SPIN’02, volume 2318 of LNCS, pages 95–111. Springer-Verlag, 2002.

8 X. Huang, C. Luo, and R. van der Meyden. Improved bounded model checking for a fair
branching-time temporal epistemic logic. In Proc. of 6th Int. Workshop on Model Checking
and Artificial Intelligence 2010, LNAI. Springer, 2011.

9 A. V. Jones and A. Lomuscio. Distributed bdd-based bmc for the verification of multi-agent
systems. In Proc. of AAMAS’10, pages 675–682, 2010.

10 M. Kacprzak, A. Lomuscio, and W. Penczek. From bounded to unbounded model checking
for temporal epistemic logic. Fundam. Inform., 63(2-3):221–240, 2004.

11 M. Kacprzak, Wojciech Nabiałek, A. Niewiadomski, W. Penczek, A. Półrola, M. Szreter,
B. Woźna, and A. Zbrzezny. Verics 2006 - a model checker for real-time and multi-agent
systems. In Proc. of the Int. Workshop on Concurrency, Specification and Programming
(CS&P’07), pages 345–356. Warsaw University, 2007.

12 A. Lomuscio, W. Penczek, and H. Qu. Partial order reduction for model checking interleaved
multi-agent systems. In Proc. of AAMAS’10, pages 659–666, 2010.

13 R. van der Mayden and K. Su. Symbolic model checking the knowledge of the dining
cryptographers. In Proc. of CSFW-17, pages 280–291. IEEE Computer Society, June 2004.

14 R. van der Meyden and N. V. Shilov. Model checking knowledge and time in systems with
perfect recall. In Proc. of FSTTCS’99, volume 1738 of LNCS, pages 432–445. Springer-
Verlag, 1999.

15 A. Męski, W. Penczek, and M. Szreter. Bounded model checking linear time and knowledge
using decision diagrams. In Proc. of CS&P’11, pages 363–375, 2011.

16 A. Męski, W. Penczek, and M. Szreter. BDD-based bounded model checking for LTLK
over two variants of interpreted systems. In Proc. of LAM’12, pages 35–49, 2012.

17 A. Męski, W. Penczek, M. Szreter, B. Woźna-Szcześniak, and A. Zbrzezny. Bounded model
checking for knowledge and linear time. In Proc. of AAMAS’12. IFAAMAS Press, 2012.

18 W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems via
bounded model checking. Fundam. Inform., 55(2):167–185, 2003.

19 W. Penczek, B. Woźna-Szcześniak, and A. Zbrzezny. Towards SAT-based BMC for LTLK
over interleaved interpreted systems. In Proc. of CS&P’11, pages 565–576, 2011.

20 F. Raimondi and A. Lomuscio. Automatic verification of multi-agent systems by model
checking via OBDDs. Journal of Applied Logic, 5(2):235–251, 2007.

21 K. Su, A. Sattar, and X. Luo. Model checking temporal logics of knowledge via OBDDs.
The Computer Journal, 50(4):403–420, 2007.

A compositional model to characterize software
and hardware from their resource usage
Davide Morelli and Antonio Cisternino

Computer Science Department, University of Pisa
Largo B. Pontecorvo 3, Italy
(morelli|cisterni)@di.unipi.it

Abstract
Since the introduction of laptops and mobile devices, there has been a strong research focus
towards the energy efficiency of hardware. Many papers, both from academia and industrial
research labs, focus on methods and ideas to lower power consumption in order to lengthen the
battery life of portable device components. Much less effort has been spent on defining the
responsibility of software in the overall computational system’s energy consumption.

Some attempts have been made to describe the energy behaviour of software, but none of
them abstract from the physical machine where the measurements were taken. In our opinion
this is a strong drawback because results can not be generalized. We propose a measuring method
and a set of algebraic tools that can be applied to resource usage measurements. These tools
are expressive and show insights on how the hardware consumes energy (or other resources),
but are equally able to describe how efficiently the software exploits hardware characteristics.
The method is based on the idea of decomposing arbitrary programs into linear combinations of
benchmarks of a test-bed without the need to analyse a program’s source code by employing a
black box approach, measuring only its resource usage.

1998 ACM Subject Classification D.2.8 Metrics, D.4.8 Performance, B.8.2 Performance Analysis
and Design Aids

Keywords and phrases Performance, Metrics, Energy consumption

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.95

1 Introduction

Energy consumption is a global concern; as the Environmental Protection Agency of the U.S.
stated in a report [8] dated 2007, the energy consumed by data centres and servers alone can
account for 1.5% of the global energy use, and is doubling every five years.

The adoption rate of portable devices raised the attention towards energy efficiency of
hardware components (in order to lengthen battery life) and network protocols. Much less
effort has been spent on defining the responsibility of software in the overall computational
system’s energy consumption, none of them abstract from the physical machine where the
measures are taken. In our opinion this is a strong drawback because results can not be
generalized.

We propose a measuring method and a set of algebraic tools that can be applied to
resource usage measurements (energy consumption and completion time being just two
instances of resource usage). These tools are expressive and show insights on how the
hardware consumes energy (or other resources). They are also able to describe how efficiently
the software exploits the hardware characteristics.

Typically, measurement techniques proposed in the literature aim to break down the energy
consumption to atomic components, associating an average cost to every instruction [16, 15,

© Davide Morelli and Antonio Cisternino;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 95–101

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.95
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

96 Characterizing HW and SW from their resource usage

9, 2, 17]. We believe that a different approach should be used, as modern computational
systems tend towards complex systems. Hardware started developing parallelism when the
CPU frequency reached its cap, and software systems are becoming increasingly complex.
The result of this process is that the resource usage of a single instruction is hardly predictable
and depends on the execution context. For example, the time required to load a location
depends on both the program’s memory access pattern, the hardware characteristics, and
the memory used by the other processes running on the same computational system, leading
to almost non deterministic results. For this reasons we have chosen to follow a black
box approach, measuring the resource usage of the software running on a computational
system as a whole, following the approach proposed in [11], instead of trying to profile the
software [9], simulating the execution of algorithms on modified virtual machines or power
level performance simulators [2, 17]. This is because these approaches either require source
code access or are only feasible for simple architectures, where a cycle accurate simulator is
possible and for relatively small programs. A black box approach measures the software as
a whole without trying to break down the energy consumption of single instructions. This
approach is the most simple to implement, does not need modifications to the operative
system and works with a simple ammeter with the simplest possible approach: the current is
measured in AC from the wall outlet [14, 17, 4].

Metrics for software similarity are very interesting because they allow us to predict the
behaviour of programs using measurements of similar programs, and allow their characteriza-
tion. Yamamoto proposes a metric of similarity based on source code analysis in [18]. For
the scope of our research, we are interested in methods that do not require access to the
source code because we want to be able to characterize software as a black box.

In a 1992 paper [12] we found an approach that was particularly inspiring for our work:
a model was proposed to characterize both hardware and software. The overall completion
time of a program was modelled as a linear decomposition of abstract operations. Our model
is very similar to their with respect to the linear composition model. Nevertheless, there are
many important differences:

they use abstract operations as computational patterns (e.g. add, store, divide, etc.); we
allow more articulate entities, long combinations of instructions

the program analysis is performed by means of static analysis and instrumentation of the
source code; we don’t require the source code to analyse the program

their model focuses on completion time solely; our model is capable of describing the
usage of every measurable resource, we are most interested in completion time and energy
consumption, but could be applied to any other metric (i.e. memory usage, CPU time,
etc.)

[17] also proposed an energy characterization model for both hardware and software.
In [1], the use of performance counters leverages the characterization of software, a

technique that is becoming a de facto standard [5, 10, 7, 6]. Benchmarks are analyzed, PCA
is used to reduce the solution space and clustering techniques are used to identify families of
programs and to find a representative workload for a certain task.

Two other key concepts are the idea that the environment where the program is run must
be taken into account [3] and the need to find a model capable of offering results resilient
with change of hardware: Sherwood [13] characterized software with a model consistent with
the change of architecture; he proposed a high level approach (not at instruction level), but
he did not focus on energy consumption.

D. Morelli and A. Cisternino 97

2 A compositional model

Programs are composed of instructions that once executed affect the resource consumption
of the system. There are many different kinds of computational resources a program can
consume (CPU time, memory, network, etc.). We define computational pattern a sequence of
instructions that expose a peculiar resource usage, that is subject to change as we change
the computational system where the pattern is executed on, e.g. on a processor family
FPU operation may consume more energy to complete with respect to a different class of
processors.

In our model we assume that actual programs can be seen as composed of computational
patterns, i.e. a matrix multiplication algorithm will read data from memory (showing a
peculiar memory read pattern with cache hit and miss), perform FPU then write the result
back to memory.

A computational pattern will have a different resource usage on each computational
system, e.g. the same memory pattern of data read could rise to a much lower number of
cache miss if a processor is capable of predicting the pattern and prefetching data. The
composition of a program from the point of view of the computational patterns does not
change when the program is run on a different computational system, but the resource usage
behaviour will change because the computational pattern the program is composed of will
have a different resource usage profile.

Therefore, we chose a set of synthetic benchmarks as our test-bed, where every benchmark
is intended to capture a particular computational pattern that we expect to find in different
quantities in every program we intend to analyse, with zero being a legitimate quantity.

3 Linear algebra model

We define the measurement matrix a computational system S as a Rm×n matrix where n is
the number of benchmarks in our test-bed and m is the number of attributes (resource usage)
we measure for each program. Each one of these matrices holds the knowledge we have about
a particular computational system. The ith column of M shows the resource usage of the
ith benchmark of our test-bed. The jth cell of that column holds the measurement of the
resource usage of the jth attribute (e.g. CPU time, cache hit, etc.).

When we want to decompose a program p using the benchmarks of our test-bed as the
building block we measure the resources usage of p running on S and we build a vector µp

with those measures. The jth element of µp holds the measurement of the resource usage of
the jth attribute; µp is like a column of M but is composed of measurements of a program
that is not part of the test-bed. Now consider the following linear system:

M · sp = µp (1)

We call sp the split-up of p, it holds a decomposition of p using the benchmarks of our
test-bed as building blocks.

Standard vector algebra can be used to analyse and interpret measures, splitups and
programs. We can analyse vectors using vector norm:

‖v‖ =

√√√√ n∑
i=1

(vi)2 (2)

ICCSW’12

98 Characterizing HW and SW from their resource usage

and vector similarity:

cos(θ) = v1 · v2

‖v1‖‖v2‖
(3)

3.1 Measurements space
The columns of M can be seen as vectors in an m dimensional vector space that we call
the measurements space. The position of the ith vector shows the resource usage of the ith

benchmark of the test-bed. More generally speaking, the µp vector shows the resource usage
of the program p in a particular system S.

The norm can be used to get an insight on the overall resource usage of a benchmark, i.e.
more resource demanding benchmarks will have a higher norm than less resource demanding
ones.

Vector similarity will tell us how similar two programs are: if the angle between the
vectors is small it means that they may use more or less resources in absolute terms (have
different norms), but their resource usage behaviour is similar.

3.2 Splitup space
Splitups can be seen as vectors in a n dimensional vector space that we call the splitup
space. The position of a vector in this space shows the composition of the program using the
benchmarks as building blocks.

When comparing the splitup vectors of two programs we can say that the one with a
higher norm is the more resources demanding. If the vector similarity is very close to 1 but
the norms are different we are probably looking at the same program running with different
input sizes, e.g. if p1 and p2 are the same sorting algorithm with p1 running on half the
array size of p2 we’ll probably see ‖sp2‖ = 2‖sp1‖ and

sp1 ·sp2
‖sp1‖‖sp2‖

= 1
When a program is run on different input sizes the balance of the computational patterns

used may vary, e.g. the cache hit ratio could grow logarithmically while the FPU usage may
grow linearly. Analysing how the splitup of a program changes with the input size is highly
informative of the program structure. When the splitup does not change with the input size
we call the program uniform; and if it changes, we call it non uniform.

If the test-bed is well formed the splitup of a program has to be the same when we run it
on different computational systems. If it is different it means that this program is capturing
a resource usage behaviour not captured by any benchmark in the test-bed, in other words
this program contains an unknown computational pattern, therefore it should be added to
our test-bed.

3.3 Benckmark space
MS is the M of a system S. Its rows can be seen as vectors in a nth dimensional space
that we call the benchmark space. We can see how resource usage changes when we change
computational system from Sa to Sb analysing the position of the ith row of MSa

(where i is
the index of the resource we are interested in) against the position of the ith row of MSb

in
the benchmark space.

E.g. when the norm of the energy consumption vector of S1 is higher than the norm of
the energy consumption vector of S2 it means that S1 is (generally speaking) less energy
efficient than S2. If the angle between their completion time vectors is small it means that S1
and S2 have a similar architecture and probably one is just more efficient than the other (i.e.

D. Morelli and A. Cisternino 99

a newer machine). If the angle is large it means that the systems have a different architecture
that makes some of the benchmarks in the test-bed more efficient than others; the direction
of the difference between the vectors tells us how S1 is different from S2.

4 Real data

Measuring resource attribute will usually involve error, i.e. the accuracy of the measuring
tool, sampling frequency, etc. Equation 1 could be not solvable and has to be rewritten in
order to minimise a norm of the error vector:

ε = |M · sp − µp| (4)

If we use a Manhattan norm instead of an Euclidean norm, this is a linear programming
problem that can be solved using the simplex algorithm.

We want all the elements of sp to be non negative numbers, because each of them expresses
an estimation of the number of iterations of the respective benchmark, as present in p. The
benchmark space is therefore not a vector space but a convex cone. This limitation does not
change the approach needed to find the splitup, since we just need to add a few conditions
to the simplex.

Being the benchmark space a convex cone, the number of vectors (the benchmark in
the test-bed) that form a basis is not generally known, but the process of selection of the
benchmarks in the test-bed can be incremental and automatic: if the splitup of a program
falls within the convex cone it means that it can be expressed as linear decomposition of
known computational patterns, if it falls outside the cone it means that it should be added
to the test-bed, widening the range of programs that can be expressed algebraically.

We can choose the level of detail we want to get with the decomposition of programs. I.e.,
we might want to have a computational pattern for every major memory read pattern or just
a general one. In the former case we would be able to discriminate how the program uses
memory, but we would need a lot of experimental data to solve the system. In the latter,
we would need few experimental data but might only see a raw estimate of the program’s
behaviour. The number of rows of the measurement matrix needs to be larger than the
number of columns, which means that we need to measure at least as many resources as
the number of the benchmarks in the test-bed. This could be difficult if we want to have a
large test-bed, in which case we could create a new measurement matrix with more rows just
merging measurement matrices of multiple systems.

5 Experimental data

As an example we present data of a preliminary test: we measured the completion time and
the energy consumption of a small set of programs running on a desktop computer equipped
with a CoreDuo processor with 2MB L2 cache and 1 GB RAM (from now on referred to
as S). We prepared two synthetic benchmarks: cpu is a simple add assembler instruction
executed 106 times; mem is a program that sums a fixed number of random locations from a
large array. We used cpu and mem as our test-bed and measured mergesort (from now on
referred to as p) sorting arrays of different sizes (1M, 2M, 4M, 8M, 16M, 32M).

cpu mem p(1M) p(2M) p(4M) p(8M) p(16M) p(32M)
time 2.14 s 7.26 s 0.22 s 0.33 s 0.67 s 1.39 s 2.85 s 5.79 s
energy 81.46 J 304.00 J 8.60 J 13.20 J 27.49 58.29 J 121.79 J 254.82 J

ICCSW’12

100 Characterizing HW and SW from their resource usage

MS is composed of the first two columns of the above table and the measurement vectors
for mergesort at various input sizes are:

µp(1M) =
(

0.22 s
8.60 J

)
µp(2M) =

(
0.33 s

13.20 J

)
µp(4M) =

(
0.67 s

27.49 J

)
µp(8M) =

(
1.39 s

58.29 J

)
µp(16M) =

(
2.85 s

121.79 J

)
µp(32M) =

(
5.79 s

254.82 J

)
The resulting splitup vectors (calculated minimizing formula 4 using the simplex algorithm)

are:

sp(1M) =
(

0.075118
0.008161

)
sp(2M) =

(
0.075862
0.023093

)
sp(4M) =

(
0.069347
0.071845

)
sp(10M) =

(
0

0.248125

)
sp(20M) =

(
0

0.528191

)
sp(30M) =

(
0

0.780954

)
The splitup vectors show how quickly mergesort gets dominated by memory usage as the

input size grows. This is expected because as the array grows it will not fit into cache and a
lot of cache miss will occur, therefore most of the time and energy will be spent accessing
memory.

6 Conclusion

We have presented a method to decompose arbitrary programs into linear combinations of
benchmarks of a test-bed by employing a black box approach, measuring only its resource
usage, without the need to analyse a program’s source code. Valid metrics of resource usage
are both performance counters and energy consumption (or completion time). Performance
counters can therefore be used to build a model capable of predicting the energy consumption
(or completion time) of the same program on a different computational system. The same
method also gives us useful information about what the differences between computational
systems are, thereby showing which computational patterns consume more resources. We
intend to apply this method to heterogeneous computing (CPU/GPU), virtual machines and
cloud systems to provide realtime analysis and forecasting of energy consumption (as well as
completion time) of software, without prior knowledge of its source code.

References
1 Jan Lodewijk Bonebakker. Finding representative workloads for computer system design.

Technical report, Mountain View, CA, USA, 2007.
2 David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for

architectural-level power analysis and optimizations. In Proceedings of the 27th annual
international symposium on Computer architecture, ISCA ’00, pages 83–94, New York, NY,
USA, 2000. ACM.

3 Fay Chang, Keith Farkas, and Parthasarathy Ranganathan. Energy-driven statistical
sampling: Detecting software hotspots. In Babak Falsafi and T. Vijaykumar, editors,
Power-Aware Computer Systems, volume 2325 of Lecture Notes in Computer Science, pages
105–108. Springer Berlin / Heidelberg, 2003.

4 A. Cisternino, P. Ferragina, D. Morelli, and M. Coppola. Information processing at work:
On energy-aware algorithm design. In Green Computing Conference, 2010 International,
pages 407 –415, aug. 2010.

D. Morelli and A. Cisternino 101

5 Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulos, and Dimitrios S. Niko-
lopoulos. Online power-performance adaptation of multithreaded programs using hardware
event-based prediction. In Proceedings of the 20th annual international conference on Su-
percomputing, ICS ’06, pages 157–166, New York, NY, USA, 2006. ACM.

6 Evelyn Duesterwald, Calin Cascaval, and Sandhya Dwarkadas. Characterizing and predict-
ing program behavior and its variability. In Proceedings of the 12th International Conference
on Parallel Architectures and Compilation Techniques, PACT ’03, pages 220–, Washington,
DC, USA, 2003. IEEE Computer Society.

7 Lieven Eeckhout, Hans Vandierendonck, and Koen De Bosschere. Workload design: Select-
ing representative program-input pairs. Parallel Architectures and Compilation Techniques,
International Conference on, 0:83, 2002.

8 R. Brown et al. Report to congress on server and data center energy efficiency: Public law
109-431, 2008.

9 Jason Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the energy usage
of mobile applications. In Proceedings of the Second IEEE Workshop on Mobile Computer
Systems and Applications, WMCSA ’99, pages 2–, Washington, DC, USA, 1999. IEEE
Computer Society.

10 Aashish Shreedhar Phansalkar. Measuring program similarity for efficient benchmark-
ing and performance analysis of computer systems. PhD thesis, Austin, TX, USA, 2007.
AAI3285977.

11 Suzanne Marion Rivoire. Models and metrics for energy-efficient computer systems. PhD
thesis, Stanford, CA, USA, 2008. AAI3313649.

12 Rafael H. Saavedra and Alan J. Smith. Analysis of benchmark characteristics and bench-
mark performance prediction. ACM Trans. Comput. Syst., 14:344–384, November 1996.

13 Tomothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically char-
acterizing large scale program behavior. SIGOPS Oper. Syst. Rev., 36:45–57, October
2002.

14 Amit Sinha and Anantha P. Chandrakasan. Jouletrack - a web based tool for software
energy profiling. In In Design Automation Conference, pages 220–225, 2001.

15 Stefan Steinke, Markus Knauer, Lars Wehmeyer, and Peter Marwedel. An accurate and
fine grain instruction-level energy model supporting software optimizations. In in Proc. Int.
Wkshp Power and Timing Modeling, Optimization and Simulation (PATMOS, 2001.

16 Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of embedded software: a
first step towards software power minimization. In Proceedings of the 1994 IEEE/ACM
international conference on Computer-aided design, ICCAD ’94, pages 384–390, Los Alam-
itos, CA, USA, 1994. IEEE Computer Society Press.

17 N. Vijaykrishnan, M. J. Irwin, H. S. Kim, and W. Ye. Energy-driven integrated hardware-
software optimizations using simplepower. pages 95–106, 2000.

18 Tetsuo Yamamoto, Makoto Matsushita, Toshihiro Kamiya, and Katsuro Inoue. Measur-
ing similarity of large software systems based on source code correspondence. In Frank
Bomarius and Seija Komi-Sirviö, editors, Product Focused Software Process Improvement,
volume 3547 of Lecture Notes in Computer Science, pages 179–208. Springer Berlin / Heidel-
berg, 2005.

ICCSW’12

Integration of Temporal Abstraction and Dynamic
Bayesian Networks in Clinical Systems. A
preliminary approach
Kalia Orphanou1, Elpida Keravnou2, and Joseph Moutiris3

1 Department of Computer Science, University of Cyprus, Nicosia, Cyprus
korfan01@cs.ucy.ac.cy

2 Cyprus University of Technology, Limassol, Cyprus rector@cut.ac.cy
3 Department of Cardiology, Nicosia, General Hospital, Cyprus

moutiris@ucy.ac.cy

Abstract
Abstraction of temporal data (TA) aims to abstract time-points into higher-level interval con-
cepts and to detect significant trends in both low-level data and abstract concepts. TA methods
are used for summarizing and interpreting clinical data. Dynamic Bayesian Networks (DBNs)
are temporal probabilistic graphical models which can be used to represent knowledge about un-
certain temporal relationships between events and state changes during time. In clinical systems,
they were introduced to encode and use the domain knowledge acquired from human experts to
perform decision support.

A hypothesis that this study plans to investigate is whether temporal abstraction methods
can be effectively integrated with DBNs in the context of medical decision-support systems. A
preliminary approach is presented where a DBN model is constructed for prognosis of the risk
for coronary artery disease (CAD) based on its risk factors and using as test bed a dataset that
was collected after monitoring patients who had positive history of cardiovascular disease. The
technical objectives of this study are to examine how DBNs will represent the abstracted data
in order to construct the prognostic model and whether the retrieved rules from the model can
be used for generating more complex abstractions.

1998 ACM Subject Classification I.2.1 Applications and Expert Systems

Keywords and phrases temporal abstraction, medical prognostic models, dynamic Bayesian net-
work, coronary artery disease

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.102

1 Introduction

Advances in the field of Artificial Intelligence led to the development of intelligent clinical
data analysis systems, that are designed to provide computer-based support in medical tasks
by automating, for example, diagnostic reasoning. In general, the purpose of medical data
analysis systems is to aid care providers reach the best possible decisions for any patient, to
help them understand what the possible consequences of their decisions/actions are and if
necessary to take corrective actions in a short time interval.

Temporal abstraction (TA) [16] abstracts time-point based data into higher-level, interval
based concepts under a given context. Abstraction of time-oriented clinical data aims to close
the gap between general medical knowledge and specific patient data. Medical knowledge is
expressed in a general form (association rules, patient management protocols) while patient
data are specific (history of patients, results of laboratory and physical examinations). The

© Kalia Orphanou, Elpida Keravnou, and Joseph Moutiris;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 102–108

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.102
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

K. Orphanou, E. Keravnou, and J. Moutiris 103

derived abstracted concepts are useful for different tasks such as decision making, therapy
planning and summarization of a patient’s record.

According to Bellazzi [1], time-stamped entities are called events and their abstract
representation, given by TAs as sequences of intervals, are called episodes. The TA task can
be divided into two subtasks, basic and complex abstractions. Basic temporal abstractions
are state and trend abstractions which abstract events (time-stamped data) within episodes.
Complex temporal abstractions abstract episodes (intervals) into other episodes. The aim of
state abstraction is to derive maximal intervals over which there is no change in the state of
some parameter. The aim of trend abstraction is to derive the significant changes and the
rates of change in the progression of some parameters e.g stable, increasing, decreasing.

A Bayesian Network (BN) is an acyclic graph that represents a joint probability distribu-
tion over a set of random variables. It consists of two components, a directed acyclic graph
and a probability distribution. Nodes on the graph represent the variables and edges represent
the direct dependencies between the variables. BNs can make predictions or give explanations
by computing the conditional probability table of each variable. BNs have been introduced
as a knowledge representation method to encode and use the domain knowledge acquired
from human experts in automated reasoning systems to perform diagnostic, predictive and
explanatory tasks. They can represent knowledge even in cases of missing data or uncertain
information.

Dynamic Bayesian Networks (DBNs) [3] are a temporal extension of standard BNs that
are able to model stochastic processes. They utilize a representation of a dynamic process
via a set of stochastic variables in a sequence of time-slices. More precisely, a DBN is a
network with the repeated structure of a BN for each time slice over a certain interval.
Consequently, a DBN is a tuple (B1, B2), where B1 is a Bayesian Network that represents
the prior distribution for the variables in the first time slice and B2 represents the transition
model for the variables in two consecutive time slices. Relations between variables are divided
into two types: transitional relations represent dependencies between variables between
different time slices and local relations represent dependencies among variables in the same
time slice. DBNs are usually assumed that they use the Markovian property: conditional
probability distribution of each variable at time t, for all t >1, depends only on the parents
from the same time slice or from the previous time slice but not from earlier time slices.

This paper is organized as follows. Section 2 describes the preliminary approach of
integrating these two areas under the domain of CAD. Section 3 describes related work.
Section 4 discusses the potential advantages of this integration and future improvements of
this approach and and the paper ends with closing remarks.

2 Preliminary Approach

2.1 Data Description
Coronary artery disease (CAD) is one of the major causes of disability in adults as well as one
of the main causes of death in the developed countries. The dataset was collected after 4 years
of monitoring patients (2009–2012) under the supervision of the participating cardiologist (Dr.
J. Moutiris) at the Cardiology Clinics of Nicosia General Hospital, Cyprus. The target group
consists of 176 patients of 32–89 years old. The dataset includes physical and biochemical
examination results. Some patients took physical and biochemical examinations every 5–6
months, some others took examinations once a year and some took three examinations over
the four years period.

The principal goal of the dataset collection was to identify the risk factors of coronary

ICCSW’12

104 Integration of Temporal Abstraction and DBN in Clinical Systems

artery disease and their impact on patients’ health. Risk factors are defined as: smoking,
diabetes and arterial hypertension considering systolic and diastolic blood pressure, high
levels of cholesterol, high levels of triglycerides, low HDL, high LDL and overweight. The
inclusion criteria to the study included the presence of at least one event, such as acute
coronary syndrome (ACS), acute myocardial infarction (AMI), percutaneaous coronary
intervention (PCI) and coronary artery bypass graft surgery (CABG).

2.2 Methodology

The basic steps of the proposed methodology are:
1. Data cleaning which includes identifying fields, selecting variables for abstraction and

coding data as shown in Table 1.
2. State and trend abstraction techniques will be used to abstract concepts based on an

interval duration given by a domain (12-months). State abstractions will be generated
based on domain expert knowledge whereas trend abstractions will be generated by
extending the algorithm described in [14].

3. The derived state abstractions will be the new concepts which represent the presence or
absence of risk factors during the 12-month period for each patient.

4. A DBN model will be constructed using three time slices and each time slice will represent
the time period of 12 months (e.g. 01/01/2009–01/01/2010). Nodes represent the abstract
concepts which are binary variables and edges represent the dependencies between the
concepts through the same time-slice or through two consecutive time slices. The structure
of the DBN (prior and transition model) representing the state abstraction concepts is
based on domain expert knowledge and medical literature as shown in Fig. 1.

5. Expectation Maximization learning algorithm [10] will be used for learning parameters
of the model using the abstracted data set. Bayesian Net Toolbox for Matlab [11] will
be used for the construction of the DBN. The constructed model will be able to make
predictions for the risk of coronary artery disease for a specific patient.

6. The junction tree inference algorithm [11] will be used to compute the prediction risk
(probability). If the probability will be over 0.5 then the risk of the presence of cardiovas-
cular disease is severe otherwise it is normal.

Table 1 Variables for abstraction and coding data.

Variables Code
Hypertension HT

High Total Cholesterol HTC
Low HDL LHDL
High LDL HLDL

High Triglycerides HTR
High Glucose + Diabetes DM

Smoking SK
Overweight BMI

Myocardial Infarction MI
Acute Coronary Syndrome ACS

Coronary Artery ByPass Graft CABG
Percutaneous coronary intervention PCI

Diet, Exercise DIET, EX
Risk of CAD hidden variable – CAD

K. Orphanou, E. Keravnou, and J. Moutiris 105

Figure 1 Coronary Artery Disease Model Structure Over Two Time Slices (t=0 and t=1): Nodes
represent some of the variables as displayed in Table 1 and edges represent their dependencies (local
and transitional relations). A transitional relation exists only with respect to the hidden node CAD.

2.3 Temporal Abstractions

State abstractions correspond to expressions like high blood pressure associated to a time
interval in which such behavior occurs. The labels given to the associated intervals are:
‘normal levels’ (value = 1) or ‘abnormal levels’ (value=2) which are given by the domain
expert as shown in Table 2. If a patient took more than one examination over the same year
and the value of the state abstraction remains the same, the time points are joined into a
maximal interval [Iss, Ies]. Alternatively, if a patient took more than one examination in the
same year, but the state value of a variable is not the same for all examinations, then the
following rules given by domain expert are applied:

If a patient took two examinations during the desired time period and Vs = 2 (abnormal)
at t1 but Vs = 1 (normal) at t2 then a risk factor is absent at [t1-t2] e.g patient with high
cholesterol during his/her first examination and cholesterol value decreases to normal
levels from the first examination to the next one, then the risk of hypercholesterolaemia
is absent during that period. Similarly, if the cholesterol value increases from normal (at
t1) to abnormal levels (at t2) then the risk of hypercholesterolaemia is present.
If a patient took three examinations during the desired time period and the value of state
abstraction is the same during t1 and t2 then the presence of a risk factor depends on
the value of the abstraction at t1 and t2. For example, if Vs = 2 (abnormal) at t1 and t2
but Vs = 1 (normal) at t3 then a risk factor is present during the period [t1 – t3].
If a patient took three examinations during the desired time period and the value of state
abstraction is the same during t2 and t3 then the presence of a risk factor depends on
the value of abstraction at t2 and t3. For example, if Vs = 1 (normal) at t1 but Vs = 2
(abnormal) at t2 and t3 the risk factor is present during the period [t1 – t3].
If a patient took three examinations during the desired time period but the values of
state abstractions are different at all three time steps then the presence of risk factors
depends only on the value of abstraction at t3. For example if Vs = 2 (abnormal) at t1,
Vs =1 (normal) at t2 and Vs = 2 (abnormal) at t3 then a risk factor is present during
the period [t1 – t3].

ICCSW’12

106 Integration of Temporal Abstraction and DBN in Clinical Systems

As concerned the risk factor of hypertension which depends both on systolic and diastolic
blood pressure, the above rules have to concern either systolic or diastolic blood pressure
values.

Trend abstractions will be generated after applying a median filter to the dataset for
removing noise. Then, the values of variables occurring at consecutive time points will be
compared. Let us assume that t1 is the time of the first consultation and t2 is the time of
the second consultation during the year. If the value of a variable at t1 (V1) is equal to the
value of the variable at t2 (V2) then the value of the variable V (Vt) during the interval [t1
t2] is ‘steady’. If the value of a variable at t1 (V1) is less than the value of the variable at t2
(V2) then the value of the variable V (Vt) during the interval [t1 t2] is ‘increasing’, otherwise,
the value of the variable V (Vt) during the interval [t1 t2] is ‘decreasing’. A maximal interval
where this behavior (state, increasing or decreasing) persists is derived.

Table 2 Categories of state abstractions as given by domain expert where each variable can take
two possible state values depending on its raw value.

State Value Normal for all patients Normal for patients
with Diabetes Abnormal before

the day of the event
Cholesterol (mg) < 190 <170

HDL (mg) > 40 >40
LDL (mg) <100 <100

Glucose (mg) <110 <110
BMI <25 <25

SBP (mmHg) <130 <120 Hypertension = YES
DBP (mmHg) <90 < 85 Hypertension = YES

Triglycerides (mg) <150 <150
Smoking NO EX (ex smoker)
Diet YES

Exercise YES

3 Related Work

Techniques/methods from these two areas are largely used independently of each other in
many clinical domains and thus no specific integrations have been reported yet. Consequently,
the goal of the proposed methodology is to combine temporal abstraction with Dynamic
Bayesian networks and to apply this integration under the CAD clinical domain by developing
a prediction model.

Several systems had been designed to abstract meaningful clinical concepts from raw
clinical data such as TOPAZ, IDEFIX and VM, each one using its own abstraction meth-
odologies [8, 5, 6]. The best known framework for temporal abstraction in clinical data,
called Knowledge Based Temporal Abstraction (KBTA) was proposed by Shahar in [15] and
implemented in many clinical domains. KBTA decomposes the temporal abstraction task
into five computational subtasks, solved by corresponding temporal mechanisms. However,
none of these approaches are able to deal with missing data and of the uncertainty that
typically underlie clinical raw data. The KBTA method complete missing values only for
bridging gaps between two intervals, in which the proposition (e.g.,anemia level) had the
same value (e.g., moderate anemia). The IDEFIX system can deal with uncertainty and also
with missing data using the time-of-validity slot which specifies for how long the value of
the attribute is considered valid. Moreover, when domain medical knowledge is not enough
and prior probabilities about some disease are missing, the derived conclusions of IDEFIX

K. Orphanou, E. Keravnou, and J. Moutiris 107

may not be valid. Ramati and Shahar [12] proposed a new methodology called Probabilistic
Temporal Abstraction (PTA) to perform a temporal abstraction task to clinical raw data
using a probabilistic approach. This approach is able to eliminate uncertainty and to deal
with missing values.

Considerable work on dynamic models in medicine has been carried out by Leong and
collaborators who have successfully used a combination of graphic models with Markov
chains to solve problems in different medical domains such as head injury management [7],
colorectal cancer management, neurosurgical intensive care unit monitoring and palate
management [18]. Other applications of Dynamic Bayesian Networks in medicine include
forecasting sleep apnea [4], management of patients with carcinoid tumor [17] and diagnosis
and decision making after monitoring patients suffering from renal failure and treated by
hemodialysis [13].

A classification/diagnosis model under the clinical domain of CAD had also been developed
using decision trees in a previous work by Karaolis [9] using a similar dataset. Preprocessing
of current dataset is based on this work. Related is also the work in reasoning over multiple
levels of temporal granularity through Bayesian networks [2]. In this work, two approaches
were proposed to incorporate temporal abstractions and explicitly represent complex temporal
relationships using fluents and hierarchical Bayesian networks.

4 Conclusion and Future Work

The perceived advantages of combining TA with DBN are that this integration can handle
incomplete evidence and uncertainty estimating disease outcomes which are usual problems
in clinical systems and also represent current limitations in datasets. DBN can provide
a concrete understanding of how causal dependencies and temporal precedence between
abstract concepts influence a particular disease outcome. Moreover, this integration facilitates
the main advantage of BNs which is their capability to integrate expert’s knowledge with
empirical data to model a disease.

Another advantage of integrating a DBN with TA is the ability to represent high-level
abstracted concepts rather than low-level data, thus making the models simpler and at the
same time more conceptual. Moreover, the interpretation of the prediction results will be
context-based, allowing for more accurate decision making. In addition, uncertainty and
errors in clinical datasets are very common and TA and DBN techniques can deal with such
error-prone measurements.

In this paper, a preliminary approach of integrating temporal abstraction with DBN in
CAD clinical domain is presented. The proposed approach has some limitations which will
be overcoming at a later stage of this study. Although the dataset includes information
about history of hypertension, diabetes, MI and ACS which may have occurred before 2009,
the constructed model can only represent risk factors and events that hold during the period
2009–2012. The model should be extended in order to represent history of events as well.
Another possible improvement is the developed model to be able to facilitate continuous
improvement and innovation in medical tasks through incremental learning. This means
that as new cases will be dynamically added to the network, the model must self-adapt its
structure and adjust its parameters on-line. Furthermore, later stages of this study will work
on how trend abstractions can be represented in a DBN and the possibility to develop an
hierarchical model with abstracted data of different granularities.

ICCSW’12

108 Integration of Temporal Abstraction and DBN in Clinical Systems

References
1 Larizza C. Bellazzi R. and Riva A. Temporal abstractions for interpreting diabetic patients

monitoring data. Intelligent Data Analysis, 2(1-4):97–122, 1998.
2 Brendan Burns and Clayton T. Morrison. Temporal abstraction in bayesian networks. In

AAAI Spring Symposium, 2003.
3 T. Charitos. Reasoning with dynamic networks in practice. PhD thesis, Utrecht University,

Netherlands, 2007.
4 Paul Dagum and Adam Galper. Forecasting sleep apnea with dynamic network models.

In Proceedings of the Proceedings of the Ninth Conference Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-93), pages 64–71, San Francisco, CA, 1993. Morgan
Kaufmann.

5 Isabelle de Zegher-Geets. Idefix: Intelligent summarization of a time-oriented medical
database. Technical Report KSL-88-34, Knowledge Systems, AI Laboratory, 1987.

6 L.M.I. Fugan. VM2 representing time-dependent relations in a medical setting. PhD thesis,
Stanford University, 1980.

7 D. Harmanec, TY Leong, S. Sundaresh, KL Poh, TT Yeo, I. Ng, and TW Lew. Decision
analytic approach to severe head injury management. In Proceedings of the AMIA Sym-
posium, page 271. American Medical Informatics Association, 1999.

8 L. B. Sheiner M. G. Kahn, L. M. Fagan. Combining physiologic models and symbolic meth-
ods to interpret time-varying patient data. Methods of Information in Medicine, 30(3):167–
168, August 1991.

9 D. Hadjipanayi M.A. Karaolis, J.A. Moutiris and C.S. Pattichis. Assessment of the risk
factors of coronary heart events based on data mining with decision trees. Information
Technology in Biomedicine, IEEE Transactions on, 14(3):559–566, 2010.

10 T.K. Moon. The expectation-maximization algorithm. Signal Processing Magazine, IEEE,
13(6):47–60, 1996.

11 K. Murphy et al. The bayes net toolbox for matlab. Computing science and statistics,
33(2):1024–1034, 2001.

12 Michael Ramati and Yuval Shahar. Probabilistic abstraction of multiple longitudinal elec-
tronic medical records. In Proceedings of the 10th conference on Artificial Intelligence in
Medicine, AIME’05, pages 43–47, Berlin, Heidelberg, 2005. Springer-Verlag.

13 C. Rose, C. Smaili, and F. Charpillet. A dynamic bayesian network for handling uncertainty
in a decision support system adapted to the monitoring of patients treated by hemodialysis.
In Tools with Artificial Intelligence, 2005. ICTAI 05. 17th IEEE International Conference
on, pages 5–pp. IEEE, 2005.

14 A. Salatian and J. Hunter. Deriving trends in historical and real-time continuously sampled
medical data. Journal of intelligent information systems, 13(1):47–71, 1999.

15 Y. Shahar and M.A. Musen. Knowledge-based temporal abstraction in clinical domains.
Artificial intelligence in medicine, 8(3):267–298, 1996.

16 M. Stacey and C. McGregor. Temporal abstraction in intelligent clinical data analysis: A
survey. Artificial Intelligence in Medicine, 39(1):1–24, 2007.

17 M.A.J. Van Gerven, B.G. Taal, and P.J.F. Lucas. Dynamic bayesian networks as prognostic
models for clinical patient management. Journal of biomedical informatics, 41(4):515–529,
2008.

18 Yanping Xiang and Kim-Leng Poh. Time-critical dynamic decision making. In UAI, pages
688–695, 1999.

Get started imminently: Using tutorials to
accelerate learning in automated static analysis
Jan-Peter Ostberg and Stefan Wagner

University of Stuttgart, Institute of Software Engineering
Universitätstr. 38, 70569 Stuttgart, Germany
{jan-peter.ostberg},{stefan.wagner}@informatik.uni-stuttgart.de

Abstract
Static analysis can be a valuable quality assurance technique as it can find problems by analysing
the source code of a system without executing it. Getting used to a static analysis tool, however,
can easily take several hours or even days. In particular, understanding the warnings issued by
the tool and rooting out the false positives is time consuming. This lowers the benefits of static
analysis and demotivates developers in using it.

Games solve this problem by offering a tutorial. Those tutorials are integrated in the setting
of the game and teach the basic mechanics of the game. Often it is possible to repeat or pick
topics of interest. We transfer this pattern to static analysis lowering the initial barrier of using
it as well as getting an understanding of software quality spread out to more people.

In this paper we propose a research strategy starting with a piloting period in which we will
gather information about the questions static analysis users have as well as hone our answers to
these questions. These results will be integrated into the prototype. We will evaluate our work
then by comparing the fix times of user using the original tool versus our tool.

1998 ACM Subject Classification D.2.5 Testing and Debugging, D.2.9 Management, H.5.2 User
Interfaces

Keywords and phrases static analysis, motivation, usability, empirical research, gamification

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.109

1 Introduction

No one wants to read an encyclopaedia to play a game. –Nolan Bushnell
Many companies are aware of the potential benefits of static analysis, such as increased

maintainability of source code[1, 8], but they are afraid to invest the time which a developer
needs to get used to a static analysis tool. To a certain degree this fear is justified, because
it could take hours to days to understand the basics and many years to fully grasp the
warnings and mechanics of the static analysis as well as the implications to software quality.
Additionally, it is hard to justify these spendings, if the results are not delivered in a short time
and if there is little to no knowledge about software quality and especially maintainability.

Gamers today are in some way similar to these companies. They also do not want to
invest much time and effort before they can start experiencing their virtual worlds and have
fun. Knowing this, the game developers often have a tutorial stage included into their games,
which walks the players through the basic concepts of the game. This tutorial is linked
to the game’s story and thereby also functions as an introduction to the context, the so
called setting. Also, to not annoy the experienced or returning gamer, these tutorials are not
mandatory to play, but can be re-entered any time later, if the player feels the need to.

So why not bring this idea to static analysis? Besides the reduction of the time to get
used to a static analysis tool, the introduction to the context of software quality could lead

© Jan-Peter Ostberg and Stefan Wagner;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 109–115

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.109
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

110 Get started imminently

more people to a deeper understanding of what software quality is and how it is influenced.
This also may enable the users of the tutorial to argument more efficiently with their newly
acquired knowledge in favour of the benefits of static analysis. In addition, expert knowledge
can be used to customise the tools, which leads to a significantly reduced rate of false-positives
as shown by Wagner et al. [13]. In the following, we will lay out a research strategy to cover
the current state of the problem, create a suitable prototype and evaluate the benefit of the
idea.

2 Related Work

The work by Zheng et al. [14] describes the areas which can be improved by static analysis.
In conclusion, the authors state that the use of static analysis could eliminate the less
sophisticated faults, freeing up time and capacities to work on the faults which need more
thorough analysis by human beings. We can conclude that there is a significant benefit in
knowing how to use static analysis and an in-depth knowledge can reduce the amount of
time for the analysis, freeing up even more time.

Ayewah and Pugh [2] look into how the static analysis tool FindBugs is used in companies.
In detail, they are interested in how they conquer the initial hump due to the high number of
warnings at a first time use, as well as the processes used to keep warnings from reappearing.
The results show that developers are interested in almost every warning. Also the authors
are able to identify some of the processes used by companies to make their work with static
analysis more effective.

A view from the creator’s side is shown by Bessey et al. [3]. They describe what problems
they faced, when they introduced their scientific tool to the ”real world”. This is a nice
example of what is possible today and what it needs to get a tool into everyday practice,
for example a well designed installation process or less sophisticated, but understandable
analysis.

Pagulayan et al. [10] talk about stumble stones in game development. They point out
that if a system is complex, it will profit from a tutorial. They also point out, however, that
a tutorial has to follow certain rules, like finding the right pace or not bore the player with
tedious instructions.

James Paul Gee [4] has detailed comments about what a good tutorial should provide.
He shows this on examples of prominent games. He also points out the possible negative
results a bad designed tutorial can have. Both of these sources show that a good tutorial will
help get the player more deeply involved, but we have to value some rules, when we create
our tutorial, to not generate a negative effect with it. These rules are, for example, a well set
pace of difficulty increase as well as not to force the user to strictly go through the whole
tutorial.

Randel et al. [11] conducted a literature study on the question of the effectiveness of games
for educational purposes. The authors concluded, that depending on a number of variables,
e.g. cognitive learning style, games can help learning, because they demand interaction of
the player. This interaction increases the chances of the material to be integrated into the
cognitive memory and so be remembered more easily. This implicates for our idea that with
the tutorial idea, which is close to games, we might have a higher chance of having the users
remembering the tool usage.

J.-P. Ostberg and S. Wagner 111

3 Research Goal

Static analysis tools should be used more commonly in software development, because this
would increase the overall quality of the software created. With our research, we aim to find
the reasons why they are not widely used and develop strategies to address these problems.
In this paper, we focus on a way to shorten the time needed for understanding how to use
automatic static analysis and the time needed to understand its analysis results. We think
understanding static analysis is a problem, because we observed that in many companies,
which use static analysis tools, there is only one person, who takes care of the tool, making
the configurations and maintaining the process. Most of the other employees have little to
no knowledge of the tool besides starting it. This shows that companies do not want each
of their employees to invest the same amount of time into getting familiar with the tool,
because they are aware that it is time intensive.

To address this problem, we build on ideas from games which is also known as gamification
([12], [6]). Built-in tutorials, which explain the basic mechanics step by step, seem to us as
promising. In the following we well lay down in detail a research strategy to research this
hypothesis.

4 Example Static Analysis Tool: FindBugs

There is a huge amount of tools for automatic static analysis available. The abilities of these
tools vary from simple style checking to highly sophisticated analyses. Also the form of
licensing ranges from free open source to very expensive pay-per-use models. From this motley
crew of tools we decided to take FindBugs1. FindBugs is a open source tool, distributed
under the terms of the Lesser GNU Public License and was developed at the university
of Maryland. It uses rather simple rules2 to find problematic part in Java byte code [1].
This and the fact that it is free of charge makes it one of the most popular analysis tools.
By deciding to modify this tool we will have no licensing problems and can benefit from a
large community, which we later can offer our modification and so hopefully get feedback for
further improvement.

5 Research Strategy

In the following we take a look at the steps we aim to take for our research, which will be
described in more detail in the following subsections. The first step will be piloting our idea
to gain a feeling for the problems of the users. Step number two will be the creation of a
prototype utilizing the information of the pilot. With the prototype done, we can start, as
step three, to evaluate the impact of our ideas. To reduce the amount of data to a manageable
size, we will first focus on the static analysis tool FindBugs. We decided on this tool, because
due to its open source nature it is easily accessible and extendible. We will also provide a
code base for the experiments on which the analyses are conducted on.

5.1 Step 1: Piloting the Idea with a Tutor
Before we create a first prototype of the built-in tutorial, we will assess the possible benefit
of the tutorial with a tutor in person. The "Wizard of Oz" [5, 7] research method is the

1 http://findbugs.sourceforge.net/
2 http://findbugs.sourceforge.net/bugDescriptions.html

ICCSW’12

http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/bugDescriptions.html

112 Get started imminently

Figure 1 Schematic of the research strategy.

method of choice here. The "Wizard of Oz" is a research method where the participant of the
experiment is not aware that he or she is interacting with a human being which is simulating
the intelligent tool. We will be able to easily adapt to questions and problems the user has
and so have a close feedback loop to refine our question/answer catalogue. We can achieve
this in our experiment by using a screen sharing tool like Skype or Teamviewer and a chat.
The screen sharing will be hidden to the participant and the chats optic will be modified so
that the participants cannot recognise it as such. By conducting this pilot, we will be able to
gather information on what the users are interested in to learn from a tutorial. We will be
able to adapt our ideas in the piloting phase until they fit the users demand more closely
and so deliver a more satisfying experience. The participants of the pilot will be recruited
from the students of our university with various study courses to represent the various stages
of IT knowledge in the real world. We plan to perform the experiment only with three to
10 students because this setting is time-intensive and, as the sole purpose of the pilot is to
assess the feasibility and acceptance of the idea, we expect to gather enough information for
the next step with these numbers, as Nielsen et al. [9] shows that 5 testers will find about
85% of the problems. Additionally, we have access to information gathered by a recent study
conducted by us, were we observed first time users of FindBugs with an eye tracker and
think aloud. These results will also have an influence to our prototype.

5.2 Step 2: The Prototype
With the gathered data from the pilot phase, we will be able to create a first built-in tutorial
prototype. For the reward system, we would like to provide, we take some inspiration from
ribbon hero3 created by the Microsoft Office labs. The first challenge to overcome here is
finding a story to tell which is related to the topic, not too plain and not too complicated or
weird. The setting of a detective story seems to be a nice fit, as we can handle categories
of findings as ”cases”. The second challenge will be the design of an engaging experience
points system which is fair and comprehensible to the users. The built-in tutorial will offer
tasks which wili correspond to the fix of warnings issued by the analysis tool. The tasks
issued by the tutorial will increase in difficulty but should never ask too much of the user.
Also the user should be able to skip most of the tutorial but has to demonstrate his or her
understanding of the task by completing it.

The task should be taken from the source code he or she wants to analyse, but we will
have ”back-up” code for the tasks that are not contained in the provided code but still are
necessary to be learned for the optimal usage of the tool. This ”back-up” code could also be
used as an additional example for tasks that are hard to understand with the code provided

3 http://www.ribbonhero.com/

http://www.ribbonhero.com/

J.-P. Ostberg and S. Wagner 113

or if the user requests another example. To get the user more engaged, we will reward the
solution of tasks with some kind of point system to make the increase in knowledge visible
for the user.

To make the benefit of the ”back-up” code more clear, let us consider the following
example. We have analysed the source code of JabRef4, an open source reference manager.
One warning issued by Findbugs is:
”. . . /SampleCode (JabRef)/. . . /jabref/imports/PdfXmpImporter.java:48
VERY confusing to have methods net.sf.jabref.imports.PdfXmpImporter.getCLIid() and
net.sf.jabref.imports.ImportFormat.getCLIId()”.
This warning is rather cryptic and hard to understand. Even if you take a look at the code,
it might take a long time before you realise what is the problem addressed here. The user
might want to have a more easy example of source code which would provoke the same type
of warning. An early mock-up of the tutorial information is presented in figure 2. With this

Figure 2 Mockup of prototype tutorial window.

example it is clearer that the warning issued should remind the creator of the code that
it is not a good idea to have two methods with the same name in the same project doing
different things. As we still follow the tutorial idea, we would also offer some information text,
which will provide a link to even more detailed information comparable to an encyclopaedia,
for those user, who really want to master the tool and want to dive deep into the ideas of
software quality. This should make the proposed changes of the tool and the tutorial more
convincing to the users as well as help them to understand how to create software of higher
quality and avoid future mistakes.

5.3 Step 3: Evaluation of the Prototype
After the prototype is finished, we are planning an evaluation phase. To evaluate the benefit
of our approach we will compare the time needed to fix a given set of warnings in a code base
of participants using our enhanced tool versus participants using the original tool. We will

4 http://jabref.sourceforge.net/

ICCSW’12

http://jabref.sourceforge.net/

114 Get started imminently

take the time from start to finish of the whole operation as well as of the fix time only. To do
that, we will measure how long the participants work with the tutorial and how much time
the other participants invest into getting to know the tool. We expect that especially the
more complex problems will be solved faster by user with our tutorial approach. Additionally
we ask the participants afterwards to use the tool, they did not use yet. Here the time is, of
course, not measured, because the participants already learned from the other tool. We will
issue questionnaires then to cover the subjective helpfulness of the tutorial for getting started
with FindBugs and static analysis, as well as the level of engagement created through the
gamification of the tool versus the unmodified tool. For example, planed question are:

Do you think the enhanced tool is faster understandable then the original one?
Do you feel more motivated to fix issues by the game mechanics?
Have you used the possibility to gain more information considering software quality?
Did the tool raise your interest in software quality?
Would you prefer to use the enhanced or the original tool?
. . .

To make the answers more comparable, we will offer four possible answers for the question
that do not need a more complex answer.

”Yes, I fully agree."
”Yes, I agree mostly.”
”No, I do not agree to that.”
”No, I completely disagree with that.”

Moreover, we will have a section where the participant can give free feedback on the
prototype. We will carefully keep track of this feedback and use it from time to time to make
useful improvements to the software. For a long term evaluation, we consider to include the
prototype as a lecture accompanying instrument in teaching. Here we plan to use our tool
for a whole semester and ask the students at the end of the semester to state their experience
with the tool. The details of this are subjects of future work.

6 Summary and Future Work

We presented our overall research goal, which is making automatic static analysis a more
common tool in software development. In this paper we propose a tutorial attempt to shorten
the time needed to get started with static analysis. As a side effect the proposed idea will
teach the willing user to learn the ideas behind the issued warnings. These ideas reach into
software quality and software engineering topics. We laid out a research strategy to create a
problem oriented catalogue of questions and answers for our tutorial by a pilot study and to
evaluate the benefits of our approach.

There are other aspects of the automated static analysis, that might make it unattractive
and is not covered here. For example the problems could originate from a poor operability.
We are planning to examine this aspect with an eye tracking study which we will conduct
shortly. Finally, there is still the problem with the false positives. Future work will also aim
to find techniques to reduce or make them easier to spot and track.

References
1 N. Ayewah, D. Hovemeyer, J.D. Morgenthaler, J. Penix, and W. Pugh. Using static analysis

to find bugs. IEEE Software, 25(5):22–29, 2008.

J.-P. Ostberg and S. Wagner 115

2 Nathaniel Ayewah and William Pugh. A report on a survey and study of static analysis
users. In Proceedings of the 2008 workshop on Defects in large software systems, DEFECTS
’08, pages 1–5. ACM, 2008.

3 Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-
Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines of code later:
using static analysis to find bugs in the real world. Communications of the ACM, 53:66–75,
2010.

4 James Paul Gee. What video games have to teach us about learning and literacy. Comput.
Entertain., 1(1):20–20, October 2003.

5 J. F. Kelley. An iterative design methodology for user-friendly natural language office
information applications. ACM Trans. Inf. Syst., 2(1):26–41, January 1984.

6 Jane McGonigal. Reality Is Broken: Why Games Make Us Better and How They Can
Change the World. The Penguin Group, 2011.

7 Lennart Molin. Wizard-of-oz prototyping for co-operative interaction design of graphical
user interfaces. In Proceedings of the third Nordic conference on Human-computer interac-
tion, NordiCHI ’04, pages 425–428, New York, NY, USA, 2004. ACM.

8 Nachiappan Nagappan and Thomas Ball. Static analysis tools as early indicators of pre-
release defect density. In Proceedings of the 27th international conference on Software
engineering, ICSE ’05, pages 580–586. ACM, 2005.

9 Jakob Nielsen and Thomas K. Landauer. A mathematical model of the finding of usability
problems. In Proceedings of the INTERACT ’93 and CHI ’93 conference on Human factors
in computing systems, CHI ’93, pages 206–213, New York, NY, USA, 1993. ACM.

10 Randy J. Pagulayan, Kevin Keeker, Dennis Wixon, Ramon L. Romero, and Thomas Fuller.
The human-computer interaction handbook. chapter User-centered design in games, pages
883–906. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 2003.

11 Randel. The Effectiveness of Games for Educational Purposes: A Review of Recent Re-
search. Simulation Gaming, 23:261–276, 1992.

12 Byron Reeves and J Leighton Read. Total Engagement: Using Games and Virtual Worlds
to Change the Way People Work and Businesses Compete. Harvard Business School Press,
2009.

13 S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and M. Schwalb. An evaluation of
two bug pattern tools for Java. In Proc. 1st International Conference on Software Testing,
Verification, and Validation (ICST’08), pages 248–257. IEEE Computer Society, 2008.

14 J. Zheng, L. Williams, N. Nagappan, W. Snipes, J.P. Hudepohl, and M.A. Vouk. On the
value of static analysis for fault detection in software. IEEE Transactions on Software
Engineering, 32(4):240–253, 2006.

ICCSW’12

A Quantitative Study of Social Organisation in
Open Source Software Communities∗

Marcelo Serrano Zanetti, Emre Sarigöl, Ingo Scholtes, Claudio
Juan Tessone, and Frank Schweitzer

Chair of Systems Design, ETH Zurich, Switzerland
{mzanetti,semre,ischoltes,tessonecfschweitzer}@ethz.ch

Abstract
The success of open source projects crucially depends on the voluntary contributions of a sufficien-
tly large community of users. Apart from the mere size of the community, interesting questions
arise when looking at the evolution of structural features of collaborations between community
members. In this article, we discuss several network analytic proxies that can be used to quantify
different aspects of the social organisation in social collaboration networks. We particularly fo-
cus on measures that can be related to the cohesiveness of the communities, the distribution of
responsibilities and the resilience against turnover of community members. We present a com-
parative analysis on a large-scale dataset that covers the full history of collaborations between
users of 14 major open source software communities. Our analysis covers both aggregate and
time-evolving measures and highlights differences in the social organisation across communities.
We argue that our results are a promising step towards the definition of suitable, potentially
multi-dimensional, resilience and risk indicators for open source software communities.

1998 ACM Subject Classification D.2.8 Metrics, K.4.3 Organisational Impacts

Keywords and phrases open source software, mining software repositories, social networks

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.116

1 Introduction

What are the most important social factors that lead to successful and sustainable open
source software projects? According to Linus’ Law - which states that “given enough
eyeballs, all bugs are shallow” [7] - the quality and success of open source software (OSS)
critically depends on the existence of a sufficiently large community of developers who review,
modify and improve the publicly available source code. Apart from development efforts,
another important success factor is the existence of a stable community of users who report
software defects, request and inspire new features, reproduce bugs or comment on issues
reported by other users. By employing the collective knowledge and diverse experiences of
many contributors, most OSS communities manage to provide technical assistance to less
experienced users, often on a time scale that is competitive to commercial software support.

Depending on the distribution of competencies and responsibilities of contributors, largely
different patterns of collaborations may arise. While it is generally difficult to assess these
social factors of OSS projects, the availability of large scale data on community dynamics
increasingly allows to study the social dimension of OSS projects from a quantitative
perspective [8, 16]. Previous studies have mainly focused on rather simple proxies of social

∗ This work was supported by the SNF through grant CR12I1_125298. C.J Tessone acknowledges
financial support from the SBF through grant C09.0055.

© Marcelo Serrano Zanetti, Emre Sarigöl, Ingo Scholtes, Claudio Juan Tessone, and Frank Schweitzer;
licensed under Creative Commons License CC-BY

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 116–122

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.116
http://creativecommons.org/licenses/by-cc-by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

M. Serrano Zanetti, E. Sarigöl, I. Scholtes, C. J. Tessone, and F. Schweitzer 117

dynamics like the evolution of the number of contributors and contributions or the time
span of a user’s activity and were mostly based on a rather limited set of snapshots of
a single project. Using a large scale dataset of time-stamped social interactions that has
been collected from the Bugzilla bug-tracker installations of 14 major OSS projects, in
this paper we study the fine-grained evolution of structural features of networks of user
collaborations. We thus take a network perspective on OSS communities and highlight
differences in the social organisation of software projects that can be related to their activity,
their cohesion as well as their resilience against fluctuations in the community members.
By applying standard measures from social network analysis we particularly quantify how
tightly community members collaborate, how equal responsibilities are distributed and how
resilient collaboration topologies are against the loss of (central) community members. While
similar tools have been applied to OSS projects before [3, 6], to the best of our knowledge,
the present paper is the first to study these network analytic measures on a dataset that
covers the full, fine-grained history of 14 well-established and successful OSS communities.

2 Social Organisation in OSS Communities: A Network Perspective

In order to make substantiated statements about the structure and dynamics of the social
organisation of OSS communities, we recently completed collecting data on the history of
user collaborations recorded by the Bugzilla installation of 14 well-established OSS projects.
Bugzilla[9] is an open source bug tracking system which is utilised by users and developers
alike to report bugs, keep track of open issues and feature requests and comment on issues
reported by others. Since the Bugzilla installations of OSS projects are used to foster
collaboration between community members, it constitutes a valuable source of data that
allows us to track social interactions between developers and users.

2.1 Building Social Networks from Bug-Reports
Data in the Bugzilla database are arranged around the notion of bug reports. Each bug
report has a set of fields describing aspects like the user who initially filed the bug report,
its current status (e.g. pending, reproduced, solved, etc), to whom the responsibility to
provide a fix has been assigned, attachments which may be used to reproduce or resolve the
issue, comments and hints by other community members, or a list of community members
which shall be informed about future updates. Apart from an initial bug report, Bugzilla
additionally stores the full history of all updates to any of the fields of a bug report. Each of
these change records includes a time stamp, the ID of the user performing the change as well
as the new values of the changed fields. While our dataset comprises change records for all
possible fields, in this article we focus on those that indicate changes in the users that are
assigned responsibility to fix an issue (henceforth called the ASSIGNEE field) and changes
to the list of users to whom future updates of the bug shall be sent via E-Mail (henceforth
called the CC field). We consider any updates in the CC and ASSIGNEE field of a bug
report as a time-stamped edge from the user who performed the update to the user(s) who
were added to the CC field or the ASSIGNEE list of responsible developers respectively.

Based on the data extraction procedure described above, we obtain a large time-aggregated
network of nodes representing community members and time-stamped edges representing a
particular interaction between two users. For most of the projects considered, the Bugzilla
history from which we extract the network is longer than ten years. The fact that - in social
networks aggregated over such long periods of time - most of the users represented by nodes
have never been active within the same time period limits the expressiveness of the network

ICCSW’12

118 A Quantitative Study of Social Organisation in Open Source Software Communities

structure in terms of a project’s “social organisation”. In order to overcome this issue, we
perform a dynamic network analysis by defining a sequence of monthly collaboration networks
based on the time stamps of edges. In particular, we define a 30 day sliding time window
and filter out those edges whose time stamps are outside the window and those nodes who
did not have any interactions in the corresponding time period. By progressively advancing
the start date of the sliding 30 day time window by one day increments we obtain a sequence
of collaboration networks that allows us to study the structure of the community’s social
organisation as well as its evolution over time. Naturally, most of the monthly networks
obtained in the way described above will not be fully connected. Since the network analytic
measures we intend to apply assume connected topologies, we perform a component analysis
on all snapshots and restrict our quantitative analysis to the largest connected component
(LCC). In order to test the significance of our findings we further compute the fraction of
those nodes who are part of the largest connected component. Table 1 shows the 14 OSS
projects that are included in our dataset along with the time period and the total number
of bug reports and updates that we included in our analysis. The column LCC/TOTAL
furthermore indicates the fraction of users in the LCC, averaged over all monthly snapshots
of the corresponding project. Here one observes that our data shows a rather large degree of
variation with respect to this fraction, which may be seen as an argument that this measure
is an interesting indicator for the cohesiveness of OSS communities by itself. Nevertheless,
we argue that for all projects the fraction of users in the LCC is sufficiently large to make
substantiated statements about the project’s social organisation.

Table 1 Aggregated measures for the studied projects. From column LCC/Total to the last on
the right, the numbers indicate the mean value ± standard deviation.

Project Bugs Updates Period LCC/Total Nodes in LCC Edges Mean Assortativity Closeness Clustering
Name Degree Central. Coefficient

xamarin 4552 20721 2011-2012 0.93±0.05 46.76±8.12 98.15±22.70 2.07±0.29 -0.14±0.11 0.40±0.07 0.22±0.05
thunderbird 35388 313957 2000-2012 0.53±0.26 64.82±53.49 86.44±80.05 1.05±0.42 -0.23±0.17 0.40±0.27 0.04±0.05
libreoffice 8916 78341 2010-2012 0.78±0.11 73.83±32.06 114.41±49.10 1.56±0.26 -0.20±0.10 0.40±0.09 0.13±0.06

mageia 6600 46921 2006-2012 0.93±0.07 77.54±21.80 156.00±59.24 1.95±0.30 -0.37±0.12 0.54±0.09 0.14±0.04
mandriva 60546 368463 2002-2012 0.70±0.18 88.15±60.70 142.16±118.44 1.41±0.38 -0.29±0.15 0.40±0.14 0.07±0.05
firefox 112953 1067914 1999-2012 0.58±0.23 171.77±117.79 240.79±180.44 1.16±0.44 -0.15±0.11 0.32±0.23 0.04±0.04

seamonkey 90040 993392 1998-2012 0.67±0.15 210.39±251.43 364.42±482.54 1.48±0.48 -0.19±0.13 0.34±0.11 0.08±0.06
netbeans 210921 1875878 2000-2012 0.96±0.05 269.71±292.07 1069.72±1509.12 3.39±1.13 -0.12±0.08 0.37±0.05 0.23±0.08

openoffice 118135 915749 2000-2012 0.88±0.19 319.01±169.88 931.35±591.80 2.52±0.84 -0.12±0.10 0.34±0.15 0.12±0.06
gentoo 140216 661783 2002-2012 0.80±0.07 338.97±110.86 617.73±211.92 1.82±0.27 -0.29±0.10 0.49±0.13 0.04±0.03

kde 179470 648331 2002-2012 0.75±0.12 361.16±246.16 424.61±301.20 1.15±0.07 -0.16±0.07 0.32±0.07 0.01±0.01
eclipse 356415 2594385 2001-2012 0.78±0.08 472.58±180.71 964.47±411.94 2.06±0.38 0.05±0.08 0.25±0.05 0.13±0.03
gnome 550722 2751441 2000-2012 0.67±0.12 523.76±585.26 610.16±616.81 1.25±0.22 -0.17±0.09 0.25±0.08 0.03±0.04
redhat 414163 3777634 2006-2012 0.45±0.26 658.06±865.97 983.58±1297.18 1.19±0.35 -0.12±0.20 0.30±0.23 0.00±0.01

2.2 Network Measures
While the literature is rich in terms of measures able to quantify structural features of
networks [11, 5], due to space limitations here we focus on three measures which are able
to capture basic network qualities that relate to the cohesiveness of a community, the
distribution of responsibilities among its members and its resilience against fluctuations in
the user base. The first network measure is based on the closeness centrality of a node, which
is defined as the inverse of the sum of the shortest path length to all other nodes in the
network.

Cc(ni) =
N∑

j=1,j 6=i

N − 1
d(ni, nj) ∈ [0, 1] (1)

M. Serrano Zanetti, E. Sarigöl, I. Scholtes, C. J. Tessone, and F. Schweitzer 119

where Cc(ni) corresponds to the closeness centrality score of node ni, d(ni, nj) is the length
of the shortest path between nodes ni and nj , while N corresponds to the total number of
nodes in a given network. Finally, the factor N − 1 is a normalisation constant [2]. Based
on this, the closeness centralisation of a network (Ccglobal) can be calculated by taking the
sum of the differences between the node with the highest value of closeness centrality (n∗)
and the closeness centrality scores of all other nodes. This quantity is then normalised to
the range of 0 to 1 using the theoretical value that results from a (maximally centralised)
star network. Equation (2) presents the formal definition, while more details can be found in
[2, 11]. In the context of OSS collaboration networks, closeness centralisation captures to
what degree responsibilities, collaboration and communication are distributed equally across
community members.

Ccglobal =
N∑

i=1

Cc(n∗)− Cc(ni)
(N−2)(N−1)

2N−3

∈ [0, 1] (2)

The second measure, the clustering coefficient of a network (C), measures how closely
community members interact with each other in the sense that an interaction between a user
X and Y , as well as an interaction between user Y and Z will also entail a direct interaction
between the users Y and Z. The formal definition is presented in equations (3) and (4).

C(ni) =
2LDni

Dni
(Dni

− 1) ∈ [0, 1] (3)

C = 1
N

N∑
i=1

C(ni) ∈ [0, 1] (4)

where Dni
is the number of nodes directly connected to the node ni, while LDni

is the number
of edges between them. Therefore, the clustering coefficient C(ni) of node ni expresses the
fraction of edges that were realised from the possible Dni

(Dni
−1)

2 edges which are expected in
a fully connected network with Dni

nodes. We obtain the clustering coefficient of a network
by averaging the clustering coefficient scores of all existing nodes (see equation (4)). This
procedure can be seen as measuring how cohesive the community is in terms of nodes being
embedded in collaborating clusters [11].

Finally, the assortativity (r) measures an individual’s preference to connect to other
individuals that have a similar or different degree of connectivity (the degree being a node’s
number of connections to different nodes). Networks in which nodes are preferentially
connected to nodes with similar degree are called assortative. In this case a positive degree
assortativity (0� r ≤ 1) indicates a positive correlation between the degrees of neighbouring
nodes. Networks in which nodes are preferentially connected to nodes with different degree
are called disassortative and in this case degree assortativity is negative (0 � r ≥ −1).
In networks with zero degree assortativity, there is no correlation between the degrees of
connected nodes, i.e. nodes do not exhibit a preference for one or the other. Formally,

r =
∑

ij ij(ei,j − q(i)q(j))
σ(q)2 ∈ [−1, 1] (5)

where eij is the fraction of all links in the network that join together nodes with degrees i
and j, q(i) =

∑
j ei,j , q(j) =

∑
i ei,j and σ(q) is the standard deviation of the distribution of

q. The term q(i)q(j) is the equivalent to the expected value of ei,j inferred from a random
network. Therefore, if r = 0 the pattern of interconnection between nodes is also random [4].

ICCSW’12

120 A Quantitative Study of Social Organisation in Open Source Software Communities

3 Comparative Analysis of OSS Communities

As described above, the preliminary results presented here have been obtained for the LCC of
the network of monthly collaborations in terms of CC and ASSIGNEE interactions. While
Table 1 shows the aggregate measures averaged over all time windows for every project in
our database, due to space constraints we limit the presentation of the dynamics of the
social organisation to the projects Gentoo and KDE (both Gnu/Linux related projects)
as well as Eclipse and NetBeans (both Java IDEs). These have been chosen because a)
their communities are of comparable size and age, b) the respective pairs of projects address
similar problem domains and c) they represent contrasting examples with respect to the
measures studied in this paper.

Figure 1 shows the evolution of the number of nodes in the LCC, its assortativity,
clustering coefficient and closeness centralisation for these four projects. For all projects, the
fraction of nodes in the LCC is rather stable with values between 0.7 and 1 consistent with
the aggregate values given in Table 1. The same is true for the evolution of the mean degree.
We thus omit these plots. The four projects show significant differences in the evolution of
the clustering coefficient that cannot be explained by mere size effects. In the particular time
frame between 2006 and 2008, the clustering coefficient of the Eclipse community (≈ 0.15)
was roughly ten times higher than that of the Gentoo community (≈ 0.01), although the
LCCs of both communities were of comparable size (≈ 500 nodes). In addition, the clustering
coefficient of the Gentoo community shows an interesting dynamics, dropping to a very
small value between 2006 and 2008 and increasing thereafter.

2004 2008 2012

0
50

0
10

00
15

00

Date

N
od

es

(a) Nodes in LCC

2004 2008 2012-1
.0

-0
.5

0.
0

0.
5

1.
0

Date

A
ss

or
ta

tiv
ity

(b) Assortativity

2004 2008 2012

0.
0

0.
2

0.
4

Date

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

(c) Clustering coeff.

2004 2008 2012

0.
0

0.
2

0.
4

0.
6

0.
8

Date

C
lo

se
ne

ss
 C

en
tra

lis
at

io
n

(d) Closeness central.

2004 2008 2012

0
50

0
10

00
15

00

Date

N
od

es

(e) Nodes in LCC

2004 2008 2012-1
.0

-0
.5

0.
0

0.
5

1.
0

Date

A
ss

or
ta

tiv
ity

(f) Assortativity

2004 2008 2012

0.
0

0.
2

0.
4

Date

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

(g) Clustering coeff.

2004 2008 2012

0.
0

0.
2

0.
4

0.
6

0.
8

Date

C
lo

se
ne

ss
 C

en
tra

lis
at

io
n

(h) Closeness central.

Figure 1 Evolution of structural measures of the LCC in the monthly Bugzilla collaboration
networks. (a-d): Gnu/Linux related projects Gentoo (black) and KDE (green), (e-h): IDEs
Eclipse (black) and NetBeans (green).

A different perspective of the structural change the Gentoo community was undergoing
is given in Figure 1(d) which displays a visible plateau in the closeness centralisation of the
network within the same period. In fact, as can be seen in the network depicted in Figure
2(a), in the period between 2006 and 2008 most of the collaborations were mediated by a

M. Serrano Zanetti, E. Sarigöl, I. Scholtes, C. J. Tessone, and F. Schweitzer 121

(a) Gentoo (Jan/2006)
nodes = 535, edges = 785

(b) KDE (Feb/2011)
nodes = 543, edges = 630

(c) Eclipse (Jan/2010)
nodes = 502, edges = 868

(d) Netbeans (Sep/2008)
nodes = 566, edges = 2753

Figure 2 Four monthly collaboration networks with comparable size showing largely different
social organisation (the network visualisation was generated by Gephi [1]).

single central community member, while the social organisation of the Eclipse community
depicted in 2(c) was structured in a much more homogeneous way. The evolution of degree
assortativity is captured in Figures 1(b) and 1(f). Both the level of degree assortativity
as well as its dynamics differ across the projects. The collaboration network of Eclipse
exhibits a tendency towards assortative structures (meaning that high degree nodes are
preferentially connected to high degree nodes). The opposite is true for the KDE and the
Gentoo communities which show a tendency towards disassortativity. We thus argue that
assortativity is suitable to further differentiate the social organisation of OSS communities.

4 Conclusions and Future Work

We have studied measures that capture different structural dimensions in the social orga-
nisation of OSS projects. Our analysis is based on a comprehensive dataset collected from
the bug tracking communities of 14 major OSS projects. We view the social organisation
from the perspective of time-evolving networks and highlight how projects, although similar
in terms of size, problem domain and age, a) largely differ in terms of clustering coefficient,
assortativity and closeness centralisation and b) that some projects show interesting dynamics
with respect to these measures that cannot be explained by mere size effects. We argue
that the phase of high closeness centralisation and low clustering coefficient observed in the
Gentoo community between 2006 and 2008 may be interpreted as a lack of social cohesion
which can possibly pose a risk for the project.

While our results are necessarily preliminary, we currently extend our work by adding
spectral measures like algebraic connectivity and inequality measures like the Gini index

ICCSW’12

122 A Quantitative Study of Social Organisation in Open Source Software Communities

that can highlight further differences in the social organisation [13]. A detailed case study is
under preparation [14] and further includes community performance indicators (e.g. response
times, bug fixing times and fraction of open issues) that can be mined from our dataset. The
eventual goal of our project is the provision of multi-dimensional indicators for the social and
technical organisation of OSS projects that are correlated with performance and that can be
considered in the management and evaluation of OSS projects [12, 15, 10]. Such indicators
can be useful when taking informed decisions about which OSS project to invest in or rely on.
Furthermore, due to the distributed nature of collaborations, individuals often lack a global
perspective on evolving communication and coordination structures, even though these can
influence long-term success. An inclusion of suitable indicators in community platforms like
e.g. Bugzilla can assist in determining risks and allow project managers to timely react by
shifting responsibilities, fostering information flow or changing organisational procedures.

References
1 M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source software for exploring

and manipulating networks. In Proceedings of the ICWSM ’09. AAAI, 2009.
2 Linton C. Freeman. Centrality in social networks conceptual clarification. Social networks,

1(3):215–239, 1979.
3 James Howison, Keisuke Inoue, and Kevin Crowston. Social dynamics of free and open

source team communications. Open Source Systems, pages 319–330, 2006.
4 Mark E. J. Newman. Mixing patterns in networks. Phy. Review E, 67:026126, 2003.
5 Mark E. J. Newman. Networks: an introduction. Oxford Univ Press, 2010.
6 Roozbeh Nia, Christian Bird, Premkumar Devanbu, and Vladimir Filkov. Validity of net-

work analyses in open source projects. In proceedings of the 7th IEEE Working Conference
on Mining Software Repositories (MSR), pages 201–209. IEEE, 2010.

7 Eric S. Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy, 12(3):23–
49, 1999.

8 Gregorio Robles and Jesus Gonzalez-Barahona. Contributor turnover in libre software
projects. In Ernesto Damiani and et al, editors, Open Source Systems, volume 203, pages
273–286. Springer Boston, 2006.

9 Nicolas. Serrano and Ismael Ciordia. Bugzilla, itracker, and other bug trackers. Software,
IEEE, 22(2):11–13, 2005.

10 Claudio Juan Tessone, Markus Michael Geipel, and Frank Schweitzer. Sustainable growth
in complex networks. Europhysics Letters, 96:58005, 2011.

11 Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and Applica-
tions. Cambridge University Press, 1994.

12 Marcelo Serrano Zanetti. The co-evolution of socio-technical structures in sustainable soft-
ware development: Lessons from the open source software communities. In proceedings of
the 34th ICSE, doctoral symposium, pages 1587–1590, 2012.

13 Marcelo Serrano Zanetti, Ingo Scholtes, Claudio Juan Tessone, and Frank Schweitzer. The
evolution of social organisation and risk in open source software projects. In preparation.

14 Marcelo Serrano Zanetti, Ingo Scholtes, Claudio Juan Tessone, and Frank Schweitzer. A
quantitative study of social organisation in the gentoo community. In preparation.

15 Marcelo Serrano Zanetti and Frank Schweitzer. A network perspective on software modu-
larity. In GI-Edition - Lecture Notes in Informatics (LNI), Proceedings P-200, ARCS 2012
Workshops, pages 175–186, 2012.

16 Minghui Zhou and Audris Mockus. What make long term contributors: Willingness and
opportunity in oss community. In proceedings of the 34th ICSE, pages 518–528, 2012.

Apply the We!Design Methodology in
E-learning 2.0 System Design: A Pilot Study
Lei Shi, Dana Al Qudah, and Alexandra I. Cristea

Department of Computer Science, University of Warwick
Coventry, CV4 7AL, UK
{lei.shi, dqudah, acristea}@dcs.warwick.ac.uk

Abstract
During the emergence of Web 2.0, the methodologies and technologies of E-learning have de-
veloped to a new era, E-learning 2.0, emphasises on social learning and the use of social interaction
tools. The students are the main end-user of the E-learning 2.0 systems, so it is essential to take
students’ opinions into consideration during the design process of such systems. The We!Design
participatory design methodology is proposed for incorporating undergraduate students in the
development of educational systems. This pilot study aims to investigate how the We!Design
methodology would work and what the results might propose, and gather initial preferences and
improve the quality and efficiency of the larger scale studies in the future.

1998 ACM Subject Classification D.2 Software Engineering

Keywords and phrases Participatory design, Requirement analysis, E-learning 2.0, Web 2.0

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.123

1 Introduction

The We!Design is a student-centred educational system design methodology, which supports
typical content-independent educational processes and can be easily applied in real educational
contexts [1]. Undergraduate students are the main end-users of the e-learning systems, and
they have substantial abilities to propose the problems and even the solution to the problems
according to their e-learning experience. Besides, undergraduate students, especially those
who are studying computer science, are willing to participate in the process of educational
system design [2]. The design process involves both the system designers and the students,
and provides a tool to exchange knowledge between them [3], hence helps system designers
gather the potential end-users’ real needs.

As one of the participatory design methodologies [4][5], the We!Design engages under-
graduate students, the potential end-users of the results of the design activities, as important
participants in the design process. With the coordination of coordinator(s), the students
participate in the design tasks and make design decisions by cooperating and discussing.
Comparing to other participatory design methodologies, the We!Design methodology 1)
requires a short period of time of cooperation between designers and students, which makes
it easier to involve and motivate students; 2) towards the design of learning systems rather
than learning content, which supports content-independent educational process, such as
note-taking and various forms of assessment; 3) exploits the design competencies of highly
computer-literate students rather than the participation of the students with average techno-
logical knowledge, which is conductive for the students to contribute to the user interface
prototype design in an efficient manner [6]. For these reasons, we choose the We!Design as
the participatory design methodology in our research.

© Lei Shi, Dana Al Qudah, and Alexandra I. Cristea;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 123–128

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.123
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

124 Apply the We!Design Methodology in E-learning 2.0 System Design: A Pilot Study

Figure 1 The We!Design Methodology [1].

This pilot study conducts the We!Design methodology in a small scale experiment. The
main goals of this study presented in this paper are: 1) exploring how the We!Design
methodology would work and what the results could be proposed; 2) gathering initial
preferences and improving the quality and efficiency of the larger scale experiments in the
future. The remainder of the paper is organized as follows. Section 2 describes the process
of the experiment applied the We!Design methodology and the experiment results. Section
3 discusses the problems occurred in the experiment and the possible solutions. Section 4
draws the conclusions.

2 Experiment

As shown in Figure 1, the We!Design methodology contains 2 phases. In the first phase,
several parallel design sessions take place with small groups of students. Each design session
is conducted with the coordination of coordinator(s), in order to guide the students and
facilitate their collaboration during the whole session. This session includes 3 stages, needs
collecting, tasks sequencing and prototype. By going through the session, a requirements
list and a low-tech prototype are expected to be proposed. In the second phase, the system
designers analyse the results proposed in the first phase and synthesize them in a single
system with an ordered requirements list [6].

In this study, the experiment was conducted with the participation of 2 coordinators
and 6 fourth year undergraduate students. One coordinator was a computer science Ph.D.
from the University of Nottingham; the other coordinator was a computer science Ph.D.
student from the University of Warwick. The students were from the Computer Department
of ‘Politehnica’ University of Bucharest, Romania, studying a course on ‘Semantic Web’.

A short seminar was conducted at the beginning of the experiment, in order to introduce
the experiment process, explain the experiment goals, and recall the required background
knowledge such as how to design a system and what an e-learning system is. With some case
studies of e-learning systems, the students became more confident to discuss and present
their ideas, so the coordinators could focus on time controlling and summarizing.

L. Shi, D. Al Qudah, and A. I. Cristea 125

2.1 Phase 1: Design Sessions with Students
Two parallel design sessions were conducted in the first phase. Each design session involved
2 coordinators and 3 students, and lasted for about 2.5 hours. One coordinator was a
human computer interaction (HCI) expert preserving the usability of the system; the other
coordinator was an e-learning system expert preventing the students from going too far away
from the system design goals. Besides, both coordinators were also in charge of guiding and
facilitating the students to go through the session, and providing support without interfering
in the process of decision making. In front of the students, there was a table with pens and
big white paper for the students to record their ideas and draw the user interface of the
prototype. The experiment process was recorded by a video camera, so the coordinators
could focus on guiding the experiment and noting the problems occurred [1].

In the first stage, the students were asked to extract a set of needs for the new e-learning
system based on their experience of using such systems. Initially, the students proposed
the important features that they expected to be provided by an e-learning system and the
problems they found during using e-learning systems. Next, they summarized all the ideas
into a needs list, and continually elaborated, categorized and evaluated these needs. Finally,
97 raw needs were proposed and ordered into a requirement list according to their importance.

The second stage aimed to satisfy the needs proposed in the first stage, by describing the
interactions between end-users and the system. Personas and scenarios [7] were adopted to
describe the process. A persona is a ‘hypothetical archetype’ of an actual user. S/he is not a
real person, but is used to represent a real persona in the design process [8]. A scenario is a
description of a persona who is using a system to fulfil several tasks in a specific context to
achieve goals [9]. 4 personas were created to represent the types of users in the use scenarios.
One of the examples designed by the students is:

Bob is a freshman, taking the module of ‘Java programming language’. He hasn’t learnt any
other programming languages before, so there are several concepts that he doesn’t understand,
such as the reason of Object Serialization and the difference between Interfaces and Abstract
Classes. He is keen to get the answers by discussing with his friends rather than reading a
chapter. He finds Alex has lots of programming experience, so he decides to ask Alex. Bob
sends a message to Alex to describe his problems. Alex describes his understanding about
Object Serialization. And then Bob asks him to send some coding examples.

At the end of the second stage, one student in the group presented the task sequences,
while the HCI expert coordinator wrote down the task sequences during the discussion.

In the third stage, the task sequences were refined and converted into more concrete
system requirements. The students were asked to identify the key features of the task
sequences, in order to sketch out the layout and the user interface for the low-tech prototype
on the big white paper (shown in Figure 2). At last, a stereotypical role-play testing was
conducted, to evaluate the usability and note the problems and potential solutions.

Figure 2 User interface of the prototype for the e-learning system.

ICCSW’12

126 Apply the We!Design Methodology in E-learning 2.0 System Design: A Pilot Study

2.2 Phase 2: Application Synthesis
In the second phase, the requirements proposed during the design sessions were synthesized
into the final system [6]. Firstly, the system designer gathered the requirements from the
two sessions, grouped the similar requirements, and removed the duplicates. Subsequently
the importance of these requirements was estimated according to the number of times the
requirement appeared in the design sessions and importance suggested by the students.
Finally, the designer synthesised a list containing 28 requirements, ordered by the importance,
and divided them into 4 categories, which represent the main areas for which features could
be built within a system, as shown in Table 1.

Table 1 The Final Requirement List.

Category Requirement N1) I2)

Learning

Use multiple types of files, e.g. PDFs, photos, videos, slides, etc. 5 1
Tag and flag up topics in the learning path 1 2
Take tests after learning a topic 4 3
Get assessment and feedback from teachers 5 4
Access to open learning resource, e.g. Wikipedia 6 5
Search learning resource within and outside of the system 6 6
View learning progress in percentage 5 7
Contribute to learning materials by creating and uploading files 3 8
Choose to view the whole or partial learning path 1 9

Social Networking

Create groups that are registered for the same topic 3 1
Share and/or recommend learning materials 2 2
Ask and answer questions of other students 5 3
Discuss the current learning topic with other students 6 4
Use feedback & questions forum at the end of each lesson 5 5
Use communication tools to chat and leave messages 4 6
Write comments/notions wherever and whenever they want 5 7
Create groups that share common learning interests 4 8
View history discussion when selecting a particular topic 1 9

Adaptation

Recommend topics according to student’s knowledge level 4 1
Recommend other topics according to the current learning topic 5 2
Recommend topics by referring to other students’ rating 2 3
Adapt learning path according to learning progress 2 4
Adapt learning tools according to student’s user-level 1 5

Usability

Use graphical user interfaces 4 1
Get instructions and tips 3 2
View system status 2 3
Select full screen option 1 4
Set themes, layout, etc. 2 5

1) N: The number of times the requirement appeared in the students’ suggestions, in one form or another;
2) I: The average importance of the requirement proposed by the students from the two design sessions.

3 Discussions

The cold-start problem appeared as expected. At the beginning of the experiment, the
coordinators explained the process and goals of the experiment, and introduced some
required background knowledge followed by several case studies, but it was still not easy to

L. Shi, D. Al Qudah, and A. I. Cristea 127

get the students started, because they were afraid of proposing something that might not
make sense. Therefore, the coordinators should have the ability to recognize the students’
problems and find out good solutions and encourage them to participate in the discussion and
presentation. One feasible method is to ask some open-ended questions and give some typical
answers, so the students can realize what kinds of questions and answers are appropriate.

In the needs collecting stage, the students tended to explore the solutions to satisfy the
needs as well, but the objective of this stage is to focus on needs collection rather than to
find the solutions. Hence the coordinators should remind them in appropriate way and stop
them in time. Personas and scenarios were adopted in the stage of tasks sequencing. It is
necessary to keep in mind that people are diverse; they have different experiences, different
expectations and different preferences, so it is difficult to design for all of them. The solution
Cooper proposed is to identify the primary persona as the individual “whose needs must be
met, but whose needs cannot be met through an interface designed for any other personas”
[9][10]. Scenarios are short, fictional stories that describe a set of tasks and interactions of
the personas. The more-detailed scenarios can provide more information for tasks sequencing,
but due to the short period of time, the coordinators should guild the students to design an
appropriate level of detail. In the prototyping stage, some design flaws were founded, and
the students might be reluctant to fix them or need extra time. The coordinators should
encourage them to fix the flaws as well as control the time, because even incomplete work
can still help to inspire the system designers.

In the application synthesis phase, an ordered requirement list was proposed in a generic
detail level, which means it is necessary to generate the requirements specification (interme-
diate detail level) and then the application specification (high detail level) in the next step
[11]. Besides, the system requirements were arranged by the system designers, according
to students’ content-based descriptions, so it is possible for the designers to misunderstand
students’ intention. Therefore, it is necessary to ask the students to check the consistency
between the reorganized requirements and their original ideas.

4 Conclusions

In this paper, we have applied the We!Design participatory design methodology in a small
scale experiment for a pilot study. Two coordinators and six computer science undergraduate
students were involved in the experiment. Two parallel design sessions were conducted in
the first phase. The students went through the stages of needs collecting, task sequencing
and prototype designing, and proposed a requirement list and a low-tech prototype. In the
second phase, the system designer synthesised the requirements proposed in the first phase
into the system requirement list, categorized them according to the features that could be
built within a system, and sorted them according to the importance.

We discussed the problems occurred during the experiment process and investigated the
possible solutions. The key to better conduct the experiment is to encourage the students to
participate in discussion and presentation. Due to the lack of time, the coordinators should
keep the balance between the detail level of discussion and time controlling, and it is better
that they provide some tools and tips during the experiment, e.g., personas and scenarios.
We also discussed the importance of mutual understanding between the system designers
and the students. A feasible way is to ask the students to check the consistency.

This pilot study helped us to explore the requirement analysis experiment applied the
We!Design participatory design methodology. A much larger study will be conducted in the
future to analyse the system requirement for a real e-learning system design.

ICCSW’12

128 Apply the We!Design Methodology in E-learning 2.0 System Design: A Pilot Study

References
1 Triantafyllakos, G., Palaigeorgiou, G., Demetriadis, S. and Tsoukalas, I.A. The We! Design

Methodology: Designing Educational Applications with Students, In Proceedings of the 6th
International Conference on Advanced Learning Technologies, pages 997-1001, 2006.

2 Siozos P., Palaigeorgiou G., Triantafyllakos G. and Despotakis T. Computer based testing
using ‘digital ink’: participatory design of a Tablet PC based assessment application for
secondary education. Computers & Education, 52(4):811–819, 2008.

3 Roda, C. Participatory system design as a tool for learning, In Proceedings of IADIS
International Conference of Cognition and Exploratory Learning in Digital Age, pages 366-
372, 2004.

4 Muller, MJ. and Druin, A. Participatory design: the third space in HCI. In Handbook of
HCI. Edited by Muller MJ., pages 1-31, 2003.

5 Kyng, M. Bridging the gap between politics and techniques: On the next practices of
Participatory Design. Scandinavian Journal of Information Systems, 22(1): 49-68, 2010.

6 Triantafyllakos, G. N., Palaigeorgiou, G. E., and Tsoukalas, I. A. We!Design: A student-
centered participatory methodology for the design of educational applications. British
Journal of Educational Technology, 39(1):125-139, 2008.

7 Cooper, A. and Reinman, R. About Face 2.0: The Essentials of Interaction Design. John
Wiley & Sons, Inc., 2003.

8 Calabria T. An introduction to personas and how to create them. Captured in:
http://www.steptwo.com.au/papers/kmc_personas/index.html, viewed 8/07/2012.

9 Cooper, A. The Inmates Are Running the Asylum. Indianapolis, Indiana: SAMS, A Divi-
sion of MacMillan Computer Publishing, 1999.

10 Cooper, A., Reimann, R., and Cronin, D. About Face 3, The Essentials of Interaction
Design. Published by Wiley Publishing, Inc., 2007.

11 Sommerville, I. and Sawyer, P. Requirements Engineering: A Good Practice Guide. John
Wiley & Sons, Inc., 1997.

An Implementation Model of a Declarative
Framework for Automated Negotiation
Laura Surcel

University of Craiova
Blvd. Decebal, nr. 107, RO-200440, Craiova, Romania
laura_surcel@yahoo.com

Abstract
The subject of automated negotiations has received a lot of attention in the Multi-Agent Sys-
tems (MAS) research community. Most work in this field on the auction design space, on its
parametrization and on mechanisms for specific types of auctions. One of the problems that have
been recently addressed consists in developing a generic negotiation protocol (GNP) capable of
governing the interaction between agents that participate in any type of auction. Though much
has been said on this matter, the current results stop at the XML representation of specific ne-
gotiation mechanisms. In this paper we propose a declarative approach for specifying a generic
auction protocol by using Belief-Desire-Intention (BDI) agents and the Jason programming lan-
guage to represent the entities that communicate in an auction. In order to validate the claim
on the generality of the proposed approach we have used the GNP to model two negotiation
mechanisms: one for the English auction and one for the Dutch auction.

1998 ACM Subject Classification I.2.11 Distributed Artificial Intelligence

Keywords and phrases Auctions, automated negotiations, multi-agent systems, Jason, generic
negotiation protocol

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.129

1 Introduction

Generally speaking, a negotiation is a bargaining (give or take) process between two or more
parties (each with its own aims, needs and viewpoints) seeking to discover a common ground
and reach an agreement to settle a matter of mutual concern or resolve a conflict1. Negotiation
is employed in many areas, such as: law, business, air and marine traffic management, trade,
parenting, hiring a.o.

A notable subfield of negotiations is represented by auctions which are also the focus of
the present paper. An auction is a process of exchanging possessions through buying and
selling by offering them up for bid. A person or an organization may use auctions to sell
goods or services by making them available to the public, setting an initial price and then
receiving offers. In the general case the winner of the auction is the buyer that makes the
greatest bid.

The importance of this subject is supported by the popularity and the use of hundreds of
web sites that have transformed auctions into an open process, in which thousands of items
may be offered for bidding by anyone from anywhere at any time2. All these sites offer the

1 http://www.businessdictionary.com
2 The five most reliable, renowned and diversified online auction sites with respect to user options, according

to a 2012 survey conducted by TopTenReviews (http://online-auction-sites.toptenreviews.com/),
are: eBay, WebStore, eBid, OnlineAuction and OZtion

© Laura Surcel;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 129–134

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.129
http://www.businessdictionary.com
http://online-auction-sites.toptenreviews.com/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

130 An Implementation Model for Automated Negotiation

possibilities of selling and buying which must be performed by human operators. This last
observation leads to some interesting questions that form the starting point of the current
research: is there a way to automate the negotiation process? Can negotiations be carried
out between computers with minimum human input? And can such a process be universally
applied to any kind of auction?

Researchers [1, 2] that tried to answer these questions reached the following results: any
negotiation can be considered as an interaction between a mechanism and a strategy. The
mechanism (or protocol) is a set of rules that must be followed by participants in order to
communicate and it is public, while the strategy describes the behavior of a negotiation
participant and it is used for reaching his or her private goals [1]. Although many models of
automated negotiations such as: bargaining, auctions[4, 5], multi-commodity negotiations
a.o. have been brought forward, this paper discusses the model proposed in [1] and describes
a possible extension of the GNP from an English auction to a Dutch auction using the Jason
agent programming language [6].

Our choice is justified by the fact that [1] identifies a minimal generic protocol and a
declarative approach of representing rules and constraints specific to negotiation types, it
highlights a set of basic concepts that could be part of a core negotiation ontology and it
presents the initial prototype for the English auction which served as a starting point for
the present implementation. With respect to the chosen programming language, there were
three reasons that made its employment appropriate: (1) Jason supports the declarative
programming paradigm, closer to logic programming; (2) it is implemented in Java which
makes it multi-platform; (3) a Jason multi-agent system can be easily distributed over a
network (for example, by using JADE).

The paper is structured as follows. In Section 2 we outline the context that led to this
approach of a GNP. Section 3 demonstrates the specific approach by providing code samples
and by offering details on how the initial prototype from [1] was extended. Finally, Section 4
summarises the results and presents the conclusions.

2 Background and Related Work

Most of the papers that deal with the subject of automated negotiations are focused on
describing specific protocols for different kinds of interactions. However, in what follows, we
will only produce a brief description of those that tackle the problem of a generic protocol
and that have influenced the present work.

Article [3] presents an electronic market architecture whose main asset is a declarative
auction language (DAL) expressed by means of an XML representation. Rolli et al. claim that
such a language makes possible the design of auction mechanisms, code generation, deployment
of market instances and modelling of participants’ behaviour. Albeit its expressiveness, the
computational complexity of the model is a real drawback especially when there are introduced
more mechanisms. On the other hand, using an interpreter for declarative programming
languages like Jason is more efficient. Additionally, its similarity to logic programming
simplifies the process of specifying new negotiation mechanisms.

Article [2] opens the way for a universal protocol by proposing a generic software framework
for automated negotiation. Bartolini et al. argue that the presented interaction protocol is
simple enough and it can be used in all circumstances. Moreover, a taxonomy for negotiation
rules is presented, which identifies and outlines the different roles of agents within an auction.
Although very helpful for this research, the illustrated approach is relatively limited because
it only addresses the problem from the perspective of the negotiation host, i.e. the agent

L. Surcel 131

that controls the negotiation process. Nevertheless, the paper remains important because
the proposed taxonomy has been incorporated into the declarative framework in order to
delimitate between the different stages of an auction.

Article [1] represents the foundation for the present implementation model since it
addresses the problem from the perspective of both the auction host and the participant.
The authors bring to the forefront of the architectural model three types of agents:

Auction Service (AS) It manages the auction related activities like: auction creation,
auction termination and it keeps track of all the current auctions by containing an auction
directory;
Auction Host (AH) (see Sec. 3.1);
Auction Participant (AP) (see Sec. 3.2).

Another interesting observation of the authors is that, from a conceptual point of view,
the above agents can be described by means of the following equations:

AH = GNProlehost + DNMhost
AP = GNProleparticipant + DNMparticipant + CNS

where:

GNP is the Generic Negotiation Protocol that governs the interaction between agents;
DNM is the Declarative Negotiation Mechanism (see Sec. 3.3);
CNS represents the Custom Negotiation Strategy and it is specific to a given AP as it
can be noticed from the second equation. Nevertheless, the CNS must be consistent with
the DNM. Its purpose is to help the agent take the appropriate steps (that remain within
the limits of the DNM) in order to achieve its own aims3.

Since the proposed prototype was rather simple and illustrated only the workflow of an
English auction, the general character was not fully achieved. As a result, we have set the
goal for this paper the extension of its applicability. In what follows, we will discuss the
changes on the original model and the improvements that we propose.

3 Implementation Details

From the three agent types specified in the previous section, only the AH and the AP will
be presented at large, since they illustrate better the improvements brought to the model
proposed in [1]. Nevertheless, one important observation must be made on the AS: it creates
a new auction instance (AIN) based on a short description (which consists of the auction
type and the product name) offered by the auction initiator participant (AIP). This can be
considered the first situation of auction parametrization because the AIN is informed of the
specific type of auction that it will manage.

3.1 Auction Host
The auction host is a unique agent per auction instance and it represents the authority that
governs the auction. According to [2], AH plays the following roles: gatekeeper (decides
which agents can be submitted to negotiation), proposal validator (verifies if a proposal

3 For more details on the architecture please consult [1]

ICCSW’12

132 An Implementation Model for Automated Negotiation

satisfies the negotiation template), protocol enforcer (determines the circumstances in which
a participant may post a proposal), information updater (changes the parameters of the
negotiation as it unfolds), negotiation terminator (specifies when no more proposals may be
posted) and agreement maker (chooses from a set of valid proposals the one (those) that
should be turned into an agreement(s)).

Due to the fact that Jason agents pursue their goals by applying plans which are compliant
with their beliefs and rules (for more details see reference [6]), the definition of an AH’s
behavior comes easily.

+register[source(A)]
: can_register(A)
<- +registered(A);

?buy_it_out(Sum);
?increment(Increment);
?items(Left_items);
?last_offer(Offer);
?state(State);
.send(A, tell, registered(info(Sum,Increment),
status(Offer, Left_items, State))).

+fold[source(A)]
: registered(A)
<- -registered(A);

.send(A, tell, not_registered).

Listing 1 The Auction Host – gatekeeper role implementation.

In order to illustrate its role as a gatekeeper the register and fold plans were considered
(see listing 1). That is, every time the AH receives a request of registration or withdrawal from
an AP, it applies one of the implemented plans based on some conditions (can_register(A),
registered(A)). The conditions may vary from one auction to the other so they are specified
by the DNM. The other roles of the AH have been outlined through a set of plans and goals
illustrated in listing 2.

+bid(Offer,Items)[source(A)]
: check_protocol(A)
& check_proposal(Offer,Items)
& not(terminate(Offer,Items))
<- -+state(processing);

!update_status(A,Offer,Items);
!inform_participants(A,Offer);
-+state(bidding).

+!close
: check_winner
<- ?initiator(I);

-+state(closed);
?bidders(A);
.send(I, tell, winner(A));
.send(A, tell, winner).

Listing 2 The Auction Host – proposal validator, protocol enforcer, information updater and
negotiation terminator roles’ implementation.

The modifications made with respect to the initial model are the following: the “buy-
out” and the fold options were introduced and new goals were created (update_status and
inform_participants) in order to outline the different roles of the AH and also the phases of
an auction.

3.2 Auction Participant
The AP only registers for an auction, receives a minimal description of it (which was not
present in [1]) and, based on that description, it chooses the strategy that bests suits its
goals. In this case, there have been implemented three kinds of strategies: firstly, if there is
a “buy-out” sum and it is public (the Sum parameter must be a non-zero number), then
it offers the sum immediately (aggressive bidder); secondly, if there is no “buy-out” sum
and it is an ascending auction (Increment is positive), then strategy one is applied, i.e. it
continuously bids and increases the last offer by Increment units until the auction closes or
it is declared winner; thirdly, if there is no “buy-out” sum and it is a descending auction

L. Surcel 133

(Increment is negative), then strategy two is applied, i.e. as long as the last accepted bid
is greater than its available amount of money it remains idle and when the offer is lowered
enough it starts bidding by decreasing its last offer until the auction closes or it is declared
winner. Listing 3 displays the selection of the second strategy (which follows the rules of an
English auction), the others being similar. We also present the implementation of the third
strategy that conforms to the rules of a Dutch auction.

Note that selecting a suitable bidding technique only depends on whether there is a "buy
out" sum and whether the increment is positive or negative which naturally leads to a poor
strategy. Additionally, the type of AP displayed here is that of an aggressive bidder.

+registered(info(Sum,Increment),
status(Offer, Left_items, _))

: Sum==0 & Increment>0
<- -+current_quote(Offer);

+increment(Increment);
-+items(Left_items);
+strategy(1);
!bid_strategy1.

+!bid_strategy2
: not(accepted) & amount(Amount) &

items(No) & No>0 & current_quote(Quote) & Quote<=Amount
<- ?auction_host(AuctionHost);

-+current_offer(Quote);
.send(AuctionHost, tell, bid(Quote, 1)).

Listing 3 The Auction Participant - strategy determination and implementation.

3.3 Declarative Negotiation Mechanisms for English and Dutch
Auction

The DNM depends on the type of negotiation and it is used for customizing the GNP. It
is a layer of the architecture which differentiates between auction types. In the present
implementation model it consists of a set of rules (and goals) that the AH applies (and pursues)
during the course of an auction and it follows the taxonomy proposed in [2]. This classification
identifies conditions for: admission of participants (can_register(A)), proposal validity
(check_proposal(Offer,Items)), protocol inforcement (check_protocol(A)), updating status
and informing participants (update_status(A,Offer,Items), inform_participants(A,Offer)),
lifecycle of negotiation (terminate(Offer, Items)), agreement formation (this part of the
auction has not been implemented yet but it is considered for future work). The rules and
goals that differ the most between the two auction types are illustrated by listing 4:

// Dutch auction
check_proposal(Offer,Items)

[state(bidding)] :-
asked_price(AskedPrice) &
items(Left_items) &
Left_items>=Items &
Offer <= AskedPrice.

+!update_status(A,Offer,Items)
<- .time(H,M,Sec2);

?items(I);
?increment(Increment);
?asked_price(AskedPrice);
?bidders(B);
-+last_offer(Offer);
-+items(I-Items);
-+bidders([A|B]);
-+asked_price(AskedPrice+Increment);
-+last_update(Sec2).

// English auction
check_proposal(Offer,Items)
[state(bidding)] :-

increment(Increment) &
last_offer(Quote) &
items(Left_items) &
Left_items>=Items &
Offer >= Quote + Increment.

+!update_status(A,Offer,Items)
<- -+last_offer(Offer);

-+bidders([A]).

Listing 4 Dutch versus English auctions DNM.

ICCSW’12

134 An Implementation Model for Automated Negotiation

4 Conclusions

In this paper we have presented a new version of the prototype of a GNP proposed in [1].
The improvements relate mainly to AH and AP implementation. On the one hand, the AH
displays a better separation of roles which also leads to a better organization of an auction’s
workflow. On the other hand, the AP may choose from different strategies the one that
complies with the current rules based on a description of the auction and not its name. Thus,
there is no need to create one agent for each kind of auction.

We believe that this approach to a declarative specification of a GNP may bring satisfactory
results in the pursuit of creating a generic framework for automated negotiations. However,
the current results suggest that the more comprehensive the protocol becomes, the harder
it is to determine a variety of negotiation strategies. A compromise may consist in simple
strategies that fail to use all the choices that a type of auction offers. We think that this is
an interesting direction that should be pursued in future research.

References
1 Alex Muscar, Costin Badica. Exploring the design space of a declarative framework for

automated negotiation: initial considerations (in press). AIAI’2012 Proceedings, 2012
2 Claudio Bartolini, Chris Preist, Nicholas R. Jennings. A generic framework for automated

negotiation. In: R. Choren, A.F. Garcia, C.J.P. de Lucena, A.B. Romanovsky (eds.) SEL-
MAS, Lecture notes in computer science, vol. 3390, pp. 213-235, Springer, 2004

3 Daniel Rolli, Stefan Luckner, Henner Gimpel, Christof Weinhardt. A descriptive auction
language. In: Electronic Markets, vol. 16, issue 1, pp. 51-62, Routledge, 2006

4 Peter R. Wurman, Michael P. Wellman, William E.Walsh. A parametrization of the auction
design space. Games and Economic Behavior 35(1-2), 304-338, 2001

5 Adriana Dobriceanu, Laurentiu Biscu, Amelia Badica, Costin Badica. The design and im-
plementation of an agent-based auction service. IJAOSE 3(2/3), 116-134, 2009

6 Rafael H. Bordini, Jomi F. Hubner, Michael Wooldridge. Programming multi-agent systems
in AgentSpeak using Jason. Wiley, 2007

Blurring the Computation-Communication Divide:
Extraneous Memory Accesses and their Effects on
MPI Intranode Communications
Wilson M. Tan and Stephen A. Jarvis

Performance Computing and Visualisation Group
Department of Computer Science
University of Warwick, United Kingdom
Email: wilson.tan@warwick.ac.uk

Abstract
Modern MPI simulator frameworks assume the existence of a Computation-Communication Di-
vide: thus, they model and simulate the computation and communication sections of an MPI
Program separately. The assumption is actually sound for MPI processes that are situated in
different nodes and communicate through a network medium such as Ethernet or Infiniband.
For processes that are within a node however, the validity of the assumption is limited since the
processes communicate using shared memory, which also figures in computation by storing the
application and its associated data structures.

In this work, the limits of the said assumption’s validity were tested, and it is shown that
Extraneous Memory Accesses (EMAs) by a compute section could significantly slow down the
communication operations following it. Two general observations were made in the course of
this work: first, more EMAs cause greater slowdown; and second, EMAs coming from the com-
pute section of the processes containing the MPI_Recv are more detrimental to communication
performance than those coming from processes containing MPI_Send.

1998 ACM Subject Classification Modeling techniques

Keywords and phrases High performance computing, Message passing, Multicore processing,
Computer simulation, Computer networks, Parallel programming, Parallel processing

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.135

1 Introduction

Many current MPI simulator frameworks such as BSIM[10], WARPP[5] and SST-Macro[7]
work on the assumption of a Computation-Communication Divide. This assumption states
that a message passing program could be divided into two components, the computation
section and the communication section, each of which could be simulated independently of
each other. This assumption is currently being applied both to processes that are within a
single node, and those that are located in different nodes.

The Computation-Communication Divide is actually a reasonable assumption for pro-
cesses that are between nodes: computation would be the program segments that a processor
would handle, while communication would be taken care of by the NIC, routers, and inter-
connects. The two segments perform independently of each other.

For processes that are in the same node however, the divide is not as clear-cut. The
issue lies with the fact that in contrast to internode communication that relies on a dedic-
ated interconnect such as Ethernet or Infiniband, intranode communication relies on shared
memory. Aside from facilitating intranode communication, the memory subsystem is also

© Wilson M. Tan and Stephen A. Jarvis;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 135–141

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.135
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

136 Blurring the Computation-Communication Divide

involved in the process of computation: it stores data and instructions for the application
being executed.

Given the importance of intranode MPI in future systems, it is of interest to many to
know up to what extent currently held assumption about intranode communication holds.
This is the focus of this work: in particular, it investigates how Extraneous Memory Ac-
cesses(EMAs) affect the communication between MPI processes executing in a single node
setup. By "Extraneous Memory Accesses", the authors mean memory accesses that do not
figure in the communication process itself, and thus involve data structures that are not
being sent between processes. Two possible locations from which EMAs could come from
are tested: the sending process and the receiving process.

The rest of the paper is organized as follows: the methodology and system used are
described in Section 2, the results are presented and discussed in Section 3, and paper is
concluded in Section 5.

2 Methodology

A custom microbenchmark called PaMPIck was developed for this work. PaMPIck is primar-
ily based on a simple loop enclosing a send-receive operation pair between Process 0 and
Process 1. The loop iterates 100 times. The data being transferred in each send-receive is
composed of the first 100 elements of a 1 million element integer array. Each process has 2
1-million member integer arrays: a send array and a receive array. Given that each integer
is 4 bytes, 400 bytes were transferred in every iteration, from the sending process’ send array
to the receiving process’ receive array. Other sizes for the data being transferred(aside from
100 elements) were tested, but were not included in this paper for conciseness. The data
being transferred between the sending process and the receiving process is never changed
between send-receive iterations. The values for the 100 elements are assigned before the
very first send-receive, but never changed after that. In a way, this is to actually encourage
maximum cache reuse in the send-receive pair.

for(iterator = 0; iterator < 100; iterator = iterator + 1)
{

MPI_Barrier
PAPI_start(EventSet)

if (my_rank==0) MPI_Send
else MPI_Recv

PAPI_read(EventSet, values)

//---accumulation of PAPI event
counts from the iteration---//

PAPI_stop(EventSet, values)
%%%%%%%---variable section, depending on setup---%%%%%%%
%%%%%%%---either---%%%%%%%

if(my_rank == 0)
{

for(iterator2 = 0; iterator2 < limit;
iterator2 = iterator2 + 1)
{

receivearray[iterator2] = iterator;
}

}
%%%%%%%---or---%%%%%%%

if(my_rank == 1)
{

for(iterator2 = 0; iterator2 < limit;
iterator2 = iterator2 + 1)
{

sendarray[iterator2] = iterator;
}

}
}

W.M. Tan and S.A. Jarvis 137

Depending on the setup being tested, EMAs were done between send-receive operations.
Two kinds of EMAs were tested: those at the sending side(Process 0), and those at the
receiving side(Process 1).

Inducing EMAs consists of changing the values of some members of the array not being
used by the process for the send-receive operation: this is the receive array for Process 0(the
sending side), and the send array for Process 1(the receiving side). These represent accesses
done by processes participating in the send-receive on memory elements that do not figure
directly with the data being sent or received: in real situations, these could correspond to
intermediate or scratch variables.

Each send receive operation was measured using PAPI[9], and the following events and
parameters were recorded: virtual cycle time, number of instructions, number of cycles, L1
data cache misses, L2 data cache misses and LLC(last level cache) misses. To make sure
that the values being read by PAPI are accurate, each send-receive is preceded by a barrier:
this is necessary so that the times and cycles being spent for doing EMAs would not reflect
on the values measured by PAPI. The number of cache misses incurred during program
execution is very sensitive to many factors such as other programs concurrently running in
the system. Therefore, utmost care was taken to ensure that all experiments were carried
out in identical conditions as much as possible.

The processor used in this study is an Intel Core i5-2430M, running at 2.40GHz. The i5
is a dual core processor, with three levels of cache memory. Each core has two 32 KB first
level caches, one for instruction and one for data. The L2 cache is shared between data and
instructions, and is sized at 256 KB. It is core specific. The 3MB 3rd level cache is shared
among all cores in the processor.

The operating system of the platform is Linux kernel version 3.0.0-15. Programs were
compiled using gcc 4.6.1, with the -O0 optimization flag. The MPI implementation utilized
was OpenMPI[4] 1.4.3, and programs were ran with the "–bind-to-core" flag.

3 Results and Discussion

3.1 Latency: Send-side EMAs and Receive-side EMAs
For the EMAs coming from the Send-side and the Receive-side, several values were tested.
The values ranged from no extraneous array entries(0 bytes) modified between iterations
to the entire extraneous array being modified(4 Mbytes) between iterations. Values were
separated by increments of 100 elements or 400 bytes, resulting in a total of 10,000 runs for
each side.

The resulting average virtual/system times(or latencies) taken by the MPI_Recv for
setup with the Send-side EMAs are shown in Figure 1a, while those with the Receive-side
EMAs are shown in Figure 1b. Only the MPI_Recv data is shown primarily for the purpose
of brevity. It is nevertheless definitive of the send-receive pair, since a send-receive pair
could only be considered finished upon the successful completion of the receive half. Also,
according to measurements, an MPI_Recv operation significantly takes up more time than
its MPI_Send counterpart.

An immediate observation that could be made about the two graphs already presented
is the scattering of the values: the relationship between the number of bytes modified and
the operation time is definitely not linear for either setup. Nevertheless, despite the lack
of a perfectly linear relationship, it is clear that the time values do tend to increase as
the number of bytes modified between iteration increases. Of particular interest to us is the
development of the latency lower bound line, or the line defining lower boundary of the region

ICCSW’12

138 Blurring the Computation-Communication Divide

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

2

4

6

8

10

12

14

16

Bytes

T
im

e
(m

ic
ro

se
co

n
d
s)

(a)

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

20

40

60

80

100

120

Bytes

T
im

e
(m

ic
ro

se
co

n
d
s)

(b)

Figure 1 Average latencies for MPI_Recv, send-side EMA setup and receive-side EMA setup.

formed by the aggregation of data points. For instance in Figure 1b, while the average time
values fluctuate, the graph shows that beyond 238,400 bytes modified between iterations,
the latency would no longer go lower than a microsecond; beyond 2,337,000 bytes, it would
no longer go below 2 microseconds.

The First General Observation of the paper could now be stated: while the latency
of a receive operation could fluctuate up and down, there is always a lower bound value below
which it will never go lower than, and that value increases as the number of bytes modified
by the preceding compute section increases.

It is interesting to note that most MPI microbenchmarks also utilize repeated send-
receive pairs when measuring latency or bandwidth, not unlike what was utilized in this
study. The send-receive pairs in many of these benchmarks are usually separated by very
little if any computation, and thus correspond nicely with the leftmost part(bytes = 0) of
Figure 1a and Figure 1b.

3.2 Cache Misses: Send-side EMAs and Receive-side EMAs

As for the underlying reason behind the general increase in latency as the the number of
modified bytes increases, results indicate that the latency trend follows the trend of the
average LLC or Level 3 cache miss very closely. This makes is to be expected, since the
latency for cache misses in the last-level cache is several times larger than those in higher level
caches[6]. Like the latency, the number of cache misses also tend to fluctuate and form dense
scatter graphs. For ease of presentation, scatter graphs for the average cache misses were no
longer plotted. Instead, the lower bound of the region formed by the conglomeration of data
points was derived and plotted. This was done for all three cache levels. The extraction
process consisted of taking the minimum of 100-data point exclusive windows, with the first
window covering data points 1 to 100, the second window covering 101 to 200, etc. The
lower bound lines for the 3 cache levels of the receive side are plotted in Figure 2a.

It could be observed that on the side of the receive side, the number of L1 cache misses
always dominate and plateau early, followed by the 2nd level cache(Figure 2a). The number
of 3rd level cache misses start rising very slowly and plateaus much later than the other
two caches. Take note that the 3rd level cache is shared between all cores, so ascribing
the number the misses at that level to a specific core or process with absolute certainty is
difficult.

W.M. Tan and S.A. Jarvis 139

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

10

20

30

40

50

60

70

80

90

L1 L2 L3

Bytes

M
is

se
s

(a)

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

10

20

30

40

50

60

70

80

90

L1 L2 L3

Bytes

M
is

se
s

(b)

Figure 2 Average cache misses for MPI_Recv, receive-side EMA setup and send-side EMA
setup.

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Source Side EMAs Destination Side EMAs

Bytes

T
im

e
(m

ic
ro

se
co

n
d

s)

(a)

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

20

40

60

80

100

120

Source Side EMAs Destination Side EMAs

Bytes

T
im

e
(m

ic
ro

se
co

n
d

s)

(b)

Figure 3 Lower bound and Upper bound values for the average latencies of MPI_Recv.

3.3 Comparison: Send-side EMAs vs Receive-side EMAs
To be able to compare the effects of Send-side EMAs and Receive-side EMAs, the upper
bound and lower bound lines of Figure 1a and Figure 1b were plotted in Figure 3a and
Figure 3b. The technique was the same as the one used in Section 3.2, with the exception that
the window maximum was taken for the upperbound instead of minimum. The minima(one
from each side) are then plotted in Figure 3a, and the maxima in Figure 3b.

Figure 3a, shows that for an equivalent number of EMAs, those from the Receive side
actually result in better(lower) bound values than those from the Send side. However, from
Figure 3b, it is apparent that in many instances, the Receive side has higher upper bound
values than the Send side.

Distribution-wise, the latency values produced by the Send-side EMAs(Figure 1a) are
significantly more clustered than the values from the Receive-side EMAs(Figure 1b): the
variance of the average latencies from the Receive-side EMAs is 2.95, for that from the
Send-side is just 0.6. Nevertheless, the average of the average latencies is higher in the setup
with Send-side EMAs: 3.43 microseconds, against 2.92 microseconds.

All these signify that while the lower bounds are better for setups with Receive-side
EMAs, in practice, most of the latencies experienced by the send-receive pairs are far higher
than the lower bound. In comparison, the lower bounds for setups with Send-side EMAs
are worse, but most of the latencies experienced by the send-receive pairs are closer to lower
bounds.

These results lead to this paper’s Second General Observation: in general, Receive-
side EMAs are more detrimental to send-receive performance than Send-side EMAs; at the
very least, they make the latency much less predictable than Send-side EMAs.

ICCSW’12

140 Blurring the Computation-Communication Divide

4 Related Works and Future Plans

Several proposals have been put forward before with the aim of improving intranode com-
munications. Some, such as [2] focused on user-level mechanisms, while some such as [8]
focused on techniques that leverage kernel-level privileges. [3] proposed a hybrid of the
two, using different mechanisms depending on message size. This paper is different from all
of these works in a sense that it does not propose any modification to existing intranode
communications mechanisms; instead, it studied the behavior of one specific intranode com-
munication subsystem(that of OpenMPI), and how it compares with an assumption about
it frequently made by simulator framework systems.

The closest previous work to this paper is probably [1], where separate intranode com-
munication mechanisms were compared in terms of latency, bandwidth, and effect on cache.
Part of the said work studied the effect of the data transfer mechanisms on the L2 cache.
In a sense, this work is the opposite of that work, since while the said work focused on the
effect of transfer mechanisms on the rest of the application, this paper focused on how the
non-data transfer portions(or compute sections) of the application affect the communication
section performance. This aspect is emphasized by the fact that in PaMPIck, sends and re-
ceives were just repeated in every iteration of the test program: the data being transferred
was never changed.

As for future work, the authors intend on carrying out the study on processors that
feature more than 2 cores. There is one potential source of EMA that was not tested in
this work: processes that do not figure in the send-receive pair, but are concurrently active
with the pair carrying out the send-receive. The third source of EMA was not tested in the
study covered by this paper because the Core i5-2430M is a dual-core processor, and testing
the third EMA source would have needed 3 processes. The Core i5-2430M could actually
support up to four MPI processes, but we would end up oversubscribing one of the cores, so
the results many not be conclusive.

In the long run, the authors hope that this work would lead to the development of a better
intranode communication model that takes into account the effects of EMAs, wherever they
may come from. Such a model is key to projecting optimal setups for future MPI-based HPC
systems, which would probably feature more intranode communications than internode ones.

5 Conclusion

The assumption of a Computation-Communication Divide is very convenient when reasoning
about message passing programs. Unfortunately, it is not always reasonable for cases wherein
the processes are located in the same node and communicate through shared memory. Ex-
periment results showed that memory-related activities of the compute section could sig-
nificantly slow down intranode communications. Two general observations were made in
the course of this work: first, the more EMAs made by the preceding compute section, the
greater the slowdown for the intranode communication would be; and second, EMAs made
at the side of the receiving node cause greater slowdown than those from the side of the
sending node. Simply put, when the interconnect has a "memory"(because it is memory),
the boundary blurs. At the level of the node, if the communication section performance is
to be successfully predicted, the behavior of the preceding compute section must be taken
into account.

While the failure of the Computation-Communication Divide assumption could not be
tagged as the source of all simulation inaccuracies, the authors nevertheless recommend
modellers to consider it as a "suspect" when reality-simulation discrepancies arise.

W.M. Tan and S.A. Jarvis 141

References
1 D. Buntinas, G. Mercier, and W. Gropp. Data transfers between processes in an smp

system: Performance study and application to mpi. In Parallel Processing, 2006. ICPP
2006. International Conference on, pages 487 –496, aug. 2006.

2 Lei Chai, A. Hartono, and D.K. Panda. Designing high performance and scalable mpi
intra-node communication support for clusters. Cluster Computing, IEEE International
Conference on, 0:1–10, 2006.

3 Lei Chai, Ping Lai, Hyun-Wook Jin, and D.K. Panda. Designing an efficient kernel-level
and user-level hybrid approach for mpi intra-node communication on multi-core systems.
In Parallel Processing, 2008. ICPP ’08. 37th International Conference on, pages 222 –229,
sept. 2008.

4 E. Gabriel, G. Fagg, G. Bosilca, T. Angskun, J. Dongarra, Jeffrey M. Squyres, Vishal Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, Ralph H. Castain, D. J. Daniel, R. L. Graham,
and Timothy S. Woodall. Open MPI: Goals, concept, and design of a next generation mpi
implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, page
97–104, Budapest, Hungary, 09/2004 2004.

5 S. D. Hammond, G. R. Mudalige, J. A. Smith, S. A. Jarvis, J. A. Herdman, and
A. Vadgama. Warpp: a toolkit for simulating high-performance parallel scientific codes.
In Proceedings of the 2nd International Conference on Simulation Tools and Techniques,
Simutools ’09, pages 19:1–19:10, ICST, Brussels, Belgium, Belgium, 2009. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering).

6 John Hennessy and David Patterson. Computer Architecture - A Quantitative Approach.
Morgan Kaufmann, 2003.

7 Curtis L. Janssen, Helgi Adalsteinsson, Scott Cranford, Joseph P. Kenny, Ali Pinar,
David A. Evensky, and Jackson Mayo. A simulator for large-scale parallel architectures.
International Journal of Parallel and Distributed Systems, 1(2):57–73, 2010.

8 Hyun-Wook Jin, S. Sur, L. Chai, and D.K. Panda. Lightweight kernel-level primitives
for high-performance mpi intra-node communication over multi-core systems. In Cluster
Computing, 2007 IEEE International Conference on, pages 446 –451, sept. 2007.

9 Philip J. Mucci, Shirley Browne, Christine Deane, and George Ho. Papi: A portable
interface to hardware performance counters. In In Proceedings of the Department of Defense
HPCMP Users Group Conference, pages 7–10, 1999.

10 Ryutaro Susukita, Hisashige Ando, Mutsumi Aoyagi, Hiroaki Honda, Yuichi Inadomi,
Koji Inoue, Shigeru Ishizuki, Yasunori Kimura, Hidemi Komatsu, Motoyoshi Kurokawa,
Kazuaki J. Murakami, Hidetomo Shibamura, Shuji Yamamura, and Yunqing Yu. Perform-
ance prediction of large-scale parallell system and application using macro-level simulation.
In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages 20:1–
20:9, Piscataway, NJ, USA, 2008. IEEE Press.

ICCSW’12

Search-Based Ambiguity Detection in
Context-Free Grammars
Naveneetha Vasudevan1 and Laurence Tratt2

1 Informatics, King’s College London
Strand, London, WC2R 2LS, United Kingdom. naveneetha@yahoo.com

2 Informatics, King’s College London
Strand, London, WC2R 2LS, United Kingdom. laurie@tratt.net

Abstract
Context Free Grammars (CFGs) can be ambiguous, allowing inputs to be parsed in more than one
way, something that is undesirable for uses such as programming languages. However, statically
detecting ambiguity is undecidable. Though approximation techniques have had some success in
uncovering ambiguity, they can struggle when the ambiguous subset of the grammar is large. In
this paper, we describe a simple search-based technique which appears to have a better success
rate in such cases.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases Ambiguity, Parsing

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.142

1 Introduction

Context Free Grammars (CFGs) are widely used for describing formal languages, including
programming languages. The full class of CFGs includes ambiguous grammars—those which
can parse inputs in more than one way. Since this causes conceptual and performance
problems, most parsing algorithms can parse only a narrow subset of CFGs, avoiding
ambiguity issues altogether. However, this is not without cost: the subsets are restrictive
and rule out useful actions such as composing grammars. The starting point for this paper is
that parsing using the full class of CFGs is a useful activity.

Ambiguity is a huge problem for machine processed languages, such as programming
languages. If an input can be parsed in two ways, which should be taken? Unfortunately, we
know that it is impossible to statically detect whether an arbitrary CFG is ambiguous or
not [6].

Over the years, therefore, there has been a steady stream of work trying to uncover
ambiguity in arbitrary CFGs. Exhaustive methods such as AMBER [9] systematically
generate strings to uncover ambiguity, but even medium sized grammars quickly lead to
unmanageable huge state spaces. Approximation techniques, on the other hand, sacrifice
accuracy for termination. For instance, ACLA [5] is an approximation method where the
original language of the grammar is extended into an approximated language that can be
expressed with a regular grammar. Since all the strings from the original language are
also included in the approximated one, there are no false negatives reported. However, the
approximated language may contain strings that may not be part of the original one, and
therefore the method can report false positives. Noncanonical Unambiguity (NU) Test is
another approximation technique, where the original grammar is converted to a bracketed
grammar by adding two terminals – a derivation (di) and a reduction (ri), where i is the

© Naveneetha Vasudevan and Laurence Tratt;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 142–148

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.142
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

N. Vasudevan and L. Tratt 143

Sentence Generator
Grammar

artifacts

Sentence Earley

parser

Parsed

output Yes

No

No

StopAmbiguous?

 Time

exceeded?

Yes

<Backend 1>
<Backend 2>

<Backend n>

uses

Stop

Figure 1 SinBAD architecture.

number of the production – at the front, and at the end of every grammar rule respectively.
The introduction of these two terminals makes the bracketed grammar unambiguous. The
challenge then, is to find two bracketed strings from the approximated grammar that map
to a string in the original grammar. However, this method does not scale well for large
grammars [3].

Hybrid approaches – where an approximation method is combined with an exhaustive
method – increase the chances of detecting ambiguity. Basten’s hybrid approach [4] – based on
grammar filtering – applies an approximation method (NU Test) to filter out the unambiguous
portions of the grammar, and then runs AMBER on the resulting smaller grammar to detect
ambiguities. In principle, Basten’s approach can be extended to other tools: ACLA, an
approximation method, can be combined with CFG Analyzer [1], an exhaustive method, to
search for ambiguous strings of bounded length. However, such hybrid approaches still rely
on an exhaustive search although on a relatively smaller state space.

This paper is the first to explore a random search-based approach to grammar ambiguity
detection. Given a grammar, our approach generates random strings, which are then parsed
to detect ambiguity. In section 2.1 we describe our prototype tool: Search-Based Ambiguity
Detection (SinBAD). In section 3 we set out the objective of our experiment, and then
explain the choice of various data sets used for our experiment. In section 4 we compare and
analyse our results. In section 5 we highlight the threat to validity of our random grammar
generator, and finally in section 6 we conclude our experiment and provide future directions
of our work.

2 Search-based ambiguity detection

Search-based techniques seek to find ‘adequately’ optimal solutions for problems that have
no algorithmic solution and whose search space is too big to exhaustively scan. Such
techniques have been applied to a wide range of problems including software itself (see
e.g. [7]). Search-based techniques are either purely random or metaheuristic (such as hill
climbing and genetic algorithms). Whereas in a random search the search space of candidate
solutions is scanned randomly, in a metaheuristic search, a fitness function – to distinguish
between a good and a poor solution – is used to guide the search. Since, this is the first
paper to explore search-based techniques to ambiguity detection in CFGs, we have chosen
the simplest search-based technique – a pure random search – for our experiment.

2.1 SinBAD framework
In this paper, we apply search-based techniques to ambiguity detection. We do so using a
new tool, SinBAD, which allows us to experiment with different search-based approaches.
Figure 1 shows SinBAD’s architecture. Given a grammar and a lexer, the Sentence Generator

ICCSW’12

144 Search-Based Ambiguity Detection in Context-Free Grammars

component generates random sentences using a backend instance. A backend, in essence, is an
algorithm that governs how sentences are generated. For instance, a backend can use a unique
scoring mechanism to favour an alternative when expanding a nonterminal, or one that can
generate sentences of bounded length. The generated sentence is then fed to an Earley-based
parser to check for ambiguity. The search stops when an ambiguity is found or when a time
limit is exceeded. SinBAD can be downloaded from https://github.com/nvasudevan/sinbad.

2.2 Definition and Notations
A CFG is a four-tuple 〈N,T,P,S〉 where N is the set of nonterminals, T is the set of terminals,
P is the set of production rules over N × N ∪ T and S is the start symbol of the grammar.
V is defined as N ∪ T. A production rule A: α is denoted as P [A] where A ∈ N, and α is
V*. We define a sentence of a grammar as a string over T*. For a rule P [A], P [A]alt denotes
an alternative, and ΣP [A]alt denotes all its alternatives. The number of alternatives for a
rule and the number of tokens in a rule are denoted as N(P [A]) and N(P [A]alt) respectively.
Notation R(L,n) indicates n items chosen randomly from a list L, and R[m..n] indicates a
number chosen randomly between m and n.

2.3 Search-based backends
Given a grammar, Algorithm 1 describes how a sentence is generated. The function START
is initialised with a grammar (G), the start time (ts), the time duration (T) of search, and
the threshold depth (D). To generate a sentence, we start deriving the start symbol S of
the grammar by invoking the function GENERATE-SENTENCE recursively. To derive a
nonterminal we randomly select one of its alternatives (line 11). We keep a note of when we
have entered a rule and when we have exited. When the depth of the recursion exceeds a
certain threshold depth, we start favouring alternatives (lines 8,9).

Algorithm 2 shows how an alternative is favoured for the Dynamic1 backend. When
invoked for a rule, the function FAVOUR-ALTERNATIVE uses a scoring mechanism to
favour an alternative. The score for an alternative is calculated as follows: terminal symbols
are given a score of zero; for nonterminal symbols, the score is based on the ratio of their
number of derivations that haven’t been fully derived yet to the total number of derivations
(line 8). One of the alternatives with a minimum score is then favoured.

3 Experiment

The objective of our experiment is to understand how well our search-based approach uncovers
ambiguity. Since ambiguity is inherently undecidable, it is impossible to evaluate such a tool
in an absolute sense. Instead, we evaluate our approach against two other tools – ACLA
and AmbiDexter [2] – and on two sets of grammars: 1000 grammars that we have randomly
generated1; grammars for Pascal, SQL, Java and C that have been manually altered to be
ambiguous2.

The three tools differ in their approach: ACLA uses an approximation technique; Am-
biDexter uses a hybrid approach; and SinBAD uses a search-based approach. We evaluate
these three tools for both sets of grammars for varying time limits – 10, 30, 60, and 90
seconds – to understand how long each tool takes to uncover reasonable quality results. For

1 Available at https://github.com/nvasudevan/sinbad/tree/master/experiment.
2 Taken directly from [4].

https://github.com/nvasudevan/sinbad
https://github.com/nvasudevan/sinbad/tree/master/experiment

N. Vasudevan and L. Tratt 145

Algorithm 1 Algorithm for generating a sentence
1: function start(G, ts, T,D)
2: return generate-sentence(P [S], G, ts, T , d = 0, D)
3: end function

4: function generate-sentence(P [A], G, ts, T, d,D)
5: exit if time_elapsed(ts, T)
6: Sen← empty string
7: P [A].entered← P [A].entered+ 1 . We enter rule
8: if d ≥ D then
9: P [A]alt ← favour-alternative(P [A], G)

10: else
11: P [A]alt ← R(ΣP[A]alt, 1)
12: end if
13: for each V ∈ P [A]alt do
14: if V ∈ N then
15: Sen← Sen+ generate-sentence(P [V], G, t, T , d+ 1, D)
16: else
17: Sen← Sen+ V

18: end if
19: end for
20: P [A].exited← P [A].exited+ 1 . We exit rule
21: d← d− 1
22: return Sen

23: end function

Algorithm 2 Algorithm for favouring an alternative for Dynamic1 backend
1: function favour-alternative(P [A], G)
2: scores← []
3: for each P [A]alt ∈ ΣP[A]alt do
4: scorealt ← 0
5: for each V ∈ P [A]alt do
6: if V ∈ N then
7: if P [V].entered > 0 then
8: scorealt ← scorealt + (1− (P [V].exited/P [V].entered))
9: end if
10: end if
11: end for
12: scores← scorealt
13: end for
14: altsmin ← { alt | ∀alt ∈ ΣP[A] ∧ scorealt = min(scores) }
15: return R(altsmin, 1)
16: end function

the (generally much larger) programming language grammars, we also evaluate the tools for
extended periods (180 and 300 seconds) as the number of production rules is much higher
than for our random grammars.

We evaluate AmbiDexter for two versions of a grammar—unfiltered and filtered (with

ICCSW’12

146 Search-Based Ambiguity Detection in Context-Free Grammars

SLR1). AmbiDexter provides an option for generating filtered versions of a grammar.
For random grammars, we generate the filtered version, and for the altered programming
language grammars, we take it directly from [4]. We evaluate SinBAD with the Dynamic1
and Dynamic2 backends for two threshold depths (D), 10 and 30. We have chosen these
two values for depth to uncover reasonably long ambiguous fragments. Our experiment was
performed on an Intel Core2 Quad Q9450 2.66GHz machine with 4 GB of memory. The
maximum JVM heap size for ACLA and AmbiDexter was 2048Mb.

3.1 Random grammar generation algorithm
Algorithm 3 outlines the algorithm for our random grammar generator. We initialise
nonterminal and terminal sets with equal numbers of symbols. To generate an alternative, a
token is picked randomly from set V. Each rule can have 1 or more alternatives, and each
alternative can have 0 or more symbols. The maximum number of alternatives for a rule
and the maximum number of tokens in an alternative is controlled by the MAXalts and
MAXtokens parameters respectively. The MAXε controls the maximum number of empty
alternatives.

Algorithm 3 An algorithm for generating a random grammar
1: function generate-grammar(MAXalts,MAXtokens,MAXε)
2: P ← {}
3: N ← Set of nonterminals
4: T ← Set of terminals
5: V ← N ∪ T
6: Nε ← R(N,MAXε)
7: for each A ∈ (N ∪ S) do
8: Nalts ← R[1..MAXalts]
9: while N(P[A]) < Nalts do
10: P [A]alt ← []
11: Ntokens ← R[1..MAXtokens]
12: while N(P[A]alt) < Ntokens do
13: P [A]alt ← P [A]alt + R(V, 1)
14: end while
15: end while
16: P [A]← P [A] + [] if A ∈ Nε . Append an empty list
17: end for
18: return 〈N,T,P,S〉
19: end function

All the grammars the algorithm generates are syntactically valid, though there is no
guarantee that they resemble ‘real-world’ grammars. For example: a grammar with a start
rule S: x can’t be derived further; a rule A: A with no other alternatives never terminates.

4 Comparison and Analysis

Table 1 displays the results of our experiment. We now present a brief analysis of some of
the most interesting parts.

Given a grammar, ACLA will report it to be ambiguous, unambiguous, or possibly
ambiguous (that is, it is unsure if the grammar is ambiguous). For both sets of grammars,

N. Vasudevan and L. Tratt 147

Table 1 Number of ambiguities detected for random and programming language grammars.

ACLA AmbiDexter SinBAD
Time - - Dynamic1 Dynamic2

(seconds) Unfiltered SLR1 D=10 D=30 D=10 D=30

Random CFGs

10 81 355 356 357 15 499 26
30 201 373 371 499 57 634 55
60 316 376 371 545 54 631 80
90 360 378 376 554 72 629 82

Altered
real-world
CFGs

10 14bc 16ab 16ab 20 18b 16ac 17ab

30 14bc 16ab 16ab 20 18b 16ac 18ab

60 14bc 16ab 16ab 20 18b 16ac 18ab

90 14bc 16ab 16ab 20 19a 16ac 19a

180 15bc 18ab 19b 20 20 16ac 19a

300 15bc 18ab 19b 20 20 16ac 20
a) Ambiguity not found for at least one of: Java.1, Java.3, and Java.4
b) Ambiguity not found for at least one of: C.1, C.2, C.4, C.5
c) Ambiguity not found for at least one of: Pascal.3, Pascal.5

ACLA performs better when we increase the time limit. For random grammars, ACLA
did not report any grammar to be unambiguous. For the altered programming language
grammars, Pascal.3 and Pascal.5 were reported to be possibly ambiguous. Analysis for the
(large) C grammars – C.1, C.2 and C.4 – did not complete within a time limit of 300 seconds.

AmbiDexter fared better than ACLA for both sets of grammars. For random grammars,
increasing the time limit does not lead to a significant increase in the number of ambiguities
found. This is because AmbiDexter searches for ambiguity based on increasing sentence
length. Therefore, for grammars with a short ambiguous fragment, AmbiDexter is quick
to find it. However, when the ambiguous fragment is long, AmbiDexter struggles. For the
altered programming language grammars, the results were slightly better for the filtered
version set. This is because in filtered grammars, production rules that do not contribute to
ambiguity are filtered out, thus resulting in a smaller state space. Further, we noted that for
larger grammars (such as C), increasing the time limit lead to better results.

SinBAD, for random grammars, performs better for a lower value of threshold depth
(D=10) than for a higher value (D=30). This is because, for case D=10, sentence generation
is quick whereas for case D=30, sentence generation takes much longer. Generating sentences
quicker allows the search to try a greater number of sentences possible, thereby increasing
the chances of detecting ambiguity. Further, Dynamic2 – which has a better mechanism to
converge sentence generation than Dynamic1 – performs better. For the altered programming
language grammars, Dynamic1 performs better than Dynamic2. Dynamic1 uses a scoring
mechanism that ensures every alternative gets an opportunity to be selected for sentence
generation. Dynamic2, however, uses a scoring mechanism that focuses on converging the
sentence generation. As a result, Dynamic1 covers a much wider area of the search space
than Dynamic2. As table 1 shows, SinBAD performs much better on random grammars than
the other tools, and performs at least as well on altered programming language grammars.

We also noted that whilst the number of ambiguities found for ACLA, AmbiDexter,
and SinBAD’s Dynamic1 stayed the same or increased, Dynamic2 got slightly worse with
increased time limits and D=30. This is because both ACLA and AmbiDexter search through
the state space systematically, and therefore the search space for higher time limits is inclusive
of the search space for lower time limits. SinBAD, however, randomly selects points in the
search space, and can give substantially different results from run to run.

ICCSW’12

148 Search-Based Ambiguity Detection in Context-Free Grammars

5 Threats to validity

The most obvious threat to validity is our random grammar generator. We have no easy way
of being confident that the CFGs it produces span the entire possible set of CFGs. Although
we wrote the generator without any particular ambiguity tool in mind, it may produce a
subset of CFGs which unintentionally favour SinBAD’s algorithms. In the future, we hope
that a CFG equivalent of the work on random generation of automata [8] may be developed.
By using Basten’s set of manually altered real programming language grammars, we have
some confidence that SinBAD’s algorithms work well beyond our random grammars.

6 Conclusions

In this paper, we introduced the concept of a search-based approach to CFG ambiguity
detection. Our experiments show that simple techniques give promising results, detecting
a larger number of ambiguities in random grammars than previous tools, and executing
in reasonable time. Our next step is to add more tools to the study and perform a larger
experiment with more real-world-esque grammars to see if these initial results apply to the
sort of CFGs that tend be to be used in practice.

References
1 Roland Axelsson, Keijo Heljanko, and Martin Lange. Analyzing context-free grammars

using an incremental sat solver. In Proceedings of the 35th international colloquium on
Automata, Languages and Programming, Part II, ICALP ’08, pages 410–422. Springer-
Verlag, 2008.

2 Bas Basten and Tijs van der Storm. Ambidexter: Practical ambiguity detection. In
Tenth IEEE International Working Conference on Source Code Analysis and Manipulation,
SCAM 2010, Timisoara, Romania, 12-13 September 2010, pages 101–102. IEEE Computer
Society, 2010.

3 H.J.S. Basten. Msc. thesis. Master’s thesis, 2007.
4 H.J.S. Basten and J. J. Vinju. Faster ambiguity detection by grammar filtering. In Proc.

of the Tenth Workshop on Language Descriptions, Tools and Applications, pages 5:1–5:9.
ACM, 2010.

5 Claus Brabrand, Robert Giegerich, and Anders Møller. Analyzing ambiguity of context-free
grammars. Science of Computer Programming, 75(3):176–191, March 2010.

6 David G. Cantor. On the ambiguity problem of backus systems. page 477–479, 1962.
7 Mark Harman. The current state and future of search based software engineering. In FOSE,

pages 342–357, 2007.
8 Pierre-Cyrille Héam, Cyril Nicaud, and Sylvain Schmitz. Random generation of determ-

inistic tree (walking) automata. In Proceedings of the 14th International Conference on
Implementation and Application of Automata (CIAA’09), volume 5642 of Lecture Notes in
Computer Science, pages 115–124. Springer-Verlag, July 2009.

9 Friedrich Wilhelm Schröer. Amber, an ambiguity checker for context-free grammars. Tech-
nical report, 2001. http://accent.compilertools.net/Amber.html.

Introduction to Team Disruption Mechanisms
Andrada Voinitchi, Elizabeth Black, and Michael Luck

Department of Informatics, King’s College London, UK
{andrada.voinitchi,elizabeth.black,michael.luck}@kcl.ac.uk

Abstract
This paper discusses how teams can be disrupted. More specifically, it discusses the steps that
need to be taken in order to fully understand team disruption and design efficient mechanisms
to disrupt teams. In order to answer the high-level question of how to disrupt teams, a few other
questions need to be tackled first: what is a disrupted team? What are the crucial elements that
make a collection of agents function as a team? Can norms, incentives or other mechanisms be
used to disrupt these elements? How would we evaluate their efficiency? We first present the ideas
of team and team disruption and motivate the need for these concepts to be properly defined.
Secondly, we introduce an idea of team-disruption mechanism that we will further investigate.
Lastly, we provide a long-term perspective and identify contributions that our research will make
in the multi-agents field.

1998 ACM Subject Classification I.2. Computing Methodologies Artificial Intelligence

Keywords and phrases Team disruption, multi-agent systems, organisations, teams, goals

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.149

1 Introduction

In order to better expose and motivate the question of how teams can be disrupted we
consider a real-life scenario: a team of five terrorists are planning to place a bomb in a tube
station. The bomb is heavy and needs to be smuggled in, part by part, in order for the
station staff not to get suspicious. This can be done over time while keeping the parts hidden
in the tube station or it can be done on the same day. Furthermore, the terrorists need to
coordinate in order to assemble the bomb on the premises and leave the station before the
bomb is detonated. What the terrorists do not know is that another team of undercover
agents from the secret services have found out about their plan. We can say that the two
teams compete, in the sense that only one of the teams can be successful in achieving its
goal at a certain point in time:

the terrorists want to blow up the station and bring about a state of the world where the
specific station is destroyed;
the secret services want to preserve the station and keep a state of the world where the
specific station is intact.

There are two questions (of particular interest to us) arising from this example: how can
a member of the secret services team infiltrate the terrorist team and disrupt their activity
and, based on information provided by the secret services, how can the government introduce
regulations in order to make it more difficult for terrorists to put bombs in tube stations?

This can also be applied in computational systems where teams of computational agents
compete. It provides an insight into how team activity can be disrupted by a computational
agent belonging to a competing team or by a legislator (the legislator is an agent that has the
capability to introduce norms, which are rules that govern the behaviour of a computational

© Andrada Voinitchi, Elizabeth Black, and Michael Luck;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 149–155

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.149
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

150 Introduction to Team Disruption Mechanisms

system). These two perspectives constitute a starting point for the process of designing and
analysing team disruption mechanisms.

Team disruption is useful in various ways: when two teams compete, one of the teams
may be at an advantage if they have mechanisms that can disrupt the other team’s activity.
Furthermore, team disruption is also useful when thinking about teams of humans: looking
at our earlier example we can tell that a team disruption mechanism would be a good tool
for the secret services to prevent a terrorist attack. Lastly, when it comes to team design, we
need to ensure that we design our teams to be as efficient as possible. Knowing what can
disrupt a team’s activity we also know what to account for in the design, in order to make
our teams more robust.

The contributions of this paper are two-fold: first, we provide a definition of team
disruption; second, we suggest possible team disruption mechanisms that are to be investigated
in future research.

The team disruption question discussed here is split into a set of preliminary questions
that are discussed in detail throughout the paper. Section 2 focuses on a discussion of work
that is relevant to this research such as a definition of teamwork and existing teamwork
theories. Section 3 provides a breakdown of the team disruption question as well as a few
ideas towards a methodology to be used in order to achieve team disruption. Section 4
comments on future work and its implications.

2 Related Work

While there has been much research conducted on teams and teamwork, as we discuss below,
there is nothing specifically addressing the issue of team disruption.

Teamwork is a cooperative effort by the members of a team to achieve a common goal
[9, 10]. It involves cooperative behaviour, coordination and at least one common goal among
agents in the team. A team is formed by agents that agree to work together towards achieving
a goal. However, between joining a team and achieving a goal there is a gap that needs to be
resolved: how can agents work together in order to achieve the goal? Teamwork theories such
as the Joint Intentions Theory [7], Joint Responsibility Theory [5, 6] and the Shared Plans
Theory [3, 2] provide some answers to this question, describing mechanisms for achieving
teamwork among agents. They are very relevant to our work because we need to consider
how teamwork happens in order to be able to think about disrupting it.

3 Team disruption

This section is concerned with issues of what makes a team function and how it can be
disrupted. In order to provide a better understanding of the technical concepts involved,
preliminary definitions are provided.

3.1 Preliminary definitions
Agent: an agent is an autonomous entity that is characterised by its goal-directed behaviour,
reactiveness to changes in its environment and its social ability (it is able to communicate with
other agents). Two or more agents that interact within an environment form a multi-agent
system (MAS). Furthermore, within a MAS, agents can work together towards achieving a
common goal. This is referred to as a team: a team is a set of agents that share a common
goal and cooperate in order to achieve it. This definition is further discussed in Section 3.2.
In a MAS, agents may behave according to certain rules. These rules are called norms. In

A. Voinitchi, E. Black, and M. Luck 151

real life, norms are rules that govern a society and are used in order to regulate the behaviour
of its individuals [8]. Norms in a MAS are the equivalent of written laws in a human society:
agents need to comply with them in order to be rewarded or in order to prevent being
punished. There are three kinds of norms: obligations, permissions and prohibitions [8] and
only specific agents are allowed to introduce norms in a team. A MAS that supports the use
of norms is also called a normative MAS.

3.2 What makes a team function?

A team is a set of agents that share a common goal. In a multi-agent setting, teamwork
involves cooperative behaviour, coordination and communication [4]. Furthermore, teams
are dynamic as agents can join or leave at any point in time.

Returning to the example mentioned in the introduction, the team of terrorists is a team
because all of its members have one goal in common: destroy the tube station by detonating
a bomb. Furthermore each of the terrorists has a role in the team: one terrorist is in charge
of managing the others, some terrorists are in charge of carrying the bomb parts and so on.

It can be inferred from the previous definition of teamwork that, in order to function, a
team has to support the following aspects: cooperation (the agents in a team need to act
towards achieving the team goal instead of prioritizing their individual goals), coordination
(to avoid redundancy: for example, to ensure that no two members attempt the same task
simultaneously), communication (agents need to be able to communicate, as they need to
coordinate and avoid duplicating work) and a common goal (if there is no common goal
among all of the agents in a team then there is no reason for teamwork).

The aspects mentioned above are a few examples of what makes a team function. This
remains a crucial question that has to be further researched in order to be able to identify
what aspects can be sabotaged in order to disrupt a team.

3.3 What is a disrupted team?

The notion of a disrupted team is crucial for achieving an understanding of how teams can
be disrupted. Team disruption, as we envision it, is based on the idea of rendering the team
goal unachievable or causing a major delay in the achievement of the team goal (under the
assumption that the team goal is initially achievable in a timely fashion). For example, in
the context of our scenario, if one of the terrorists is observed carrying something suspicious
by an undercover agent from the secret services team, then the terrorist has to hide, delaying
the bombing, hence the team experiences disruption in the form of a delayed achievement
of the team goal. If caught, the carrier terrorist is no longer able to deliver its part of the
bomb, hence the goal is compromised and no longer achievable.

An understanding of what team disruption involves also relies on the way one thinks
about reducing team efficiency. Is it enough to think of a disrupted team based on a delay in
achieving the team goal or rendering the goal unachievable? How does this relate to lessening
the number of members in the team? Does it imply disabling key members? It can also
be assumed that finding ways of hindering any of the four aspects of a functioning team
(cooperation, coordination, communication and common goal) can disrupt its activity.

A relevant aspect of team disruption is the agent that disrupts the team: a team can
be disrupted by a malicious agent (possibly coming from another team) that has infiltrated
within the team or through new regulations imposed by a legislator in the community that
the team operates in.

ICCSW’12

152 Introduction to Team Disruption Mechanisms

When considering team disruption, we can consider not just whether it succeeds or fails
but also the degree of success or failure, providing an idea of the extent to which a team can
be disrupted. The concept of magnitude of disruption must be introduced when thinking
about a disrupted team. This idea is at a very early stage and will be used in the future in
order to evaluate team disruption mechanisms, thus it will not be discussed further here.

3.4 How to disrupt a team?
There are a few mechanisms that have the potential to disrupt teams (e.g. introducing norms,
providing agents with incentives [1] to leave their team, reducing resources available to a
team and so on). Here we will only address introducing norms in more detail, because of
space restrictions.

Figure 1 Disruption scenarios using norms: two perspectives for disrupting teams are illustrated
both at agent level and at task level. In Figure 1.A. the nodes represent agents that are part of a
terrorist team, while the links represent communication between agents. Agents T1-4 are members
of the terrorist team while agent S is a member of the secret services that has infiltrated in the
team. Figure 1.B. shows how the terrorist team goal is represented at task level. The nodes in the
graph represent states of the world that the team operates in and the edges represent tasks that are
accomplished in order to transition from a state to the other.

When investigating team disruption, we can look at two levels of the team: the task level
and the agent level (Figure 1). The agent level models the agent connections using a graph.
The connections represent the ability of agents to communicate. The task level provides
more detail on the sequence of steps towards achieving the team goal (task).

For example in Figure 1.A, agent S is an undercover agent infiltrating the terrorist team.
In order to infiltrate the terrorist team, agent S declares to agent T3 (we assume agent
T3 is in charge of managing the team) that it shares the goal of bombing a tube station.
Once it joins the team, agent S gains the authority of setting norms for the team. It can
then introduce a norm prohibiting agents that carry bomb parts (namely T1 and T2) from

A. Voinitchi, E. Black, and M. Luck 153

carrying cellphones, hence breaking their communication. This will make it more difficult for
them to meet up and assemble the bomb. With no communication, agents T1 and T2 may
not be able to find a common meeting point, leading to the goal being compromised. In the
case where they meet accidentally, this may still delay the achievement of the goal as they
may not meet in the place where they are supposed to assemble the bomb. This example
illustrates team disruption at the agent level. From here we can infer that a team may be
disrupted at the agent level by the introduction of norms that affect communication between
agents that fulfill certain roles.

In Figure 1B, the same team of terrorists wishes to bomb a tube station. The topology
of the team is as illustrated in Figure 1A. However, in this scenario, we do not focus on
hindering communication for disrupting the team. This scenario relies on the fact that the
team has a plan on how the bombing will be carried out. As shown in Figure 1B, the plan
is composed of prioritized states that need to be reached in a specific order such that a
connection between the start and the goal states is provided, as represented in a goal graph.
In some cases, there may be more than one way of reaching the goal. The transition between
states is realized through agent actions (tasks). Here, the states are represented as follows
(we assume that the bomb is composed of three parts).

1.1: First bomb part is in the station.
1.2: Third bomb part is in the station.
1.3: Second bomb part is in the station.
2: Second bomb part is in the station.
3: All bomb parts are in the station.
4: Bomb is assembled (and in the station).

Tasks represent sets of actions performed by agents, as specified.
Task 1: agent T1 carries first bomb part in the station.
Task 2: agent T1 carries third bomb part in the station.
Task 3: agent T1 carries second bomb part in the station.
Task 4: agent T2 carries second bomb part in the station.
Task 5: agent T2 and T3 carry the first and second bomb parts in the station.
Task 6: agent T2 and T3 carry the first and third bomb parts in the station.
Task 7: agent T3 carries the third bomb part into the station.
Task 8: agent T2 assembles the bomb.
Task 9: agent T4 detonates the bomb.

As shown in the example in Figure 1B, more members of the team can either carry the
bomb parts simultaneously, meet in the station and assemble the bomb (nodes 1.2 and 1.3 of
the goal graph), or one member can carry all of the bomb parts, part by part, store them
in the station and assemble it when all of the parts have arrived (node 1.1. of the goal
graph). This example is different from the previous one (Figure 1A) in that it does not imply
direct sabotage by an agent infiltrating. Rather, agents from a competing team can use their
observations to convince legislators to introduce norms: if it is known that bomb parts can
be stored unattended in tube stations, the legislators (i.e. government) can introduce a law
(norm) stating that no bags can be left unattended in the tube station. Unattended bags
are seized and destroyed. Because State 2 from the goal graph is no longer achievable, the
team may be delayed in achieving the goal (bombing) because their options were reduced.
Furthermore, if legislators introduce a norm restricting bag size for travelers, larger parts
of the bomb may not be introduced into the station at any time, thus the bombing is fully
compromised.

ICCSW’12

154 Introduction to Team Disruption Mechanisms

When considering disruption at task level, a few issues need to be considered for an
efficient approach, as follows.

First, in order to render the goal unachievable, all paths to the goal need to be compromised
(in the goal graph).
Second, some tasks may be crucial to accomplishing the team goal: if these tasks are
not accomplished, the goal is rendered unachievable (such as Task 8 in the example in
Figure 1B). These are considered critical tasks and the agents that can perform them are
deemed critical agents.

4 Conclusion and future work

Based on the results that will be obtained from the planned simulation of all of the mechanisms
presented, a further step is to be taken, comparing the outcomes of the scenarios based on
criteria such as the time it takes a team to achieve a goal and if the team can achieve its
pre-disruption goals. A further investigation will establish whether each of these mechanisms
can work individually or whether applied together they will have a greater impact.

If it is demonstrated that any of the methods described here can be used in order to disrupt
team activity further questions need to be answered. For example, if introducing norms
can be responsible for team disruption, a number of issues need to be further investigated:
how would such norms be generated? Who would introduce and enforce such norms? What
proportion of the agents in a team would need to comply with such norms in order for the
team to be disrupted? If all of the members of a team need to comply with the norms, who
would supervise the norm enforcers in order to assure compliance? As a further step, it is
vital to compare all the successful approaches and provide a detailed analysis on which of
these approaches work better and under which circumstances.

References
1 Y. Chen, J. Kung, D.C. Parkes, A.D. Procaccia, and H. Zhang. Incentive design for adapt-

ive agents. In The 10th International Conference on Autonomous Agents and Multiagent
Systems - Volume 2, AAMAS ’11, pages 627–634, Richland, SC, 2011. International Found-
ation for Autonomous Agents and Multiagent Systems.

2 B.J. Grosz, L. Hunsberger, and S. Kraus. Planning and acting together. AI Magazine,
(20):23–34, 1999.

3 B.J. Grosz and S. Kraus. Collaborative plans for complex group action. Artificial Intelli-
gence, 86(2):269–357, October 1996.

4 B. Horling and V. Lesser. A survey of multi-agent organizational paradigms. Knowledge
Engineering Review, 19(4):281–316, December 2004.

5 N.R. Jennings. On being responsible. SIGOIS, 13(3):8–, December 1992.
6 N.R. Jennings. Commitments and conventions: The foundation of coordination in multi-

agent systems. Knowledge Engineering Review, 3(8):223–250, 1993.
7 H.J. Levesque, P.R. Cohen, and J.H.T. Nunes. On acting together. In The 8th National

conference on Artificial intelligence - Volume 1, AAAI’90, pages 94–99. AAAI Press, 1990.
8 S. Modgil, N. Faci, F. Meneguzzi, N. Oren, S. Miles, and M. Luck. A framework for monitor-

ing agent-based normative systems. In The 8th International Conference on Autonomous
Agents and Multiagent Systems - Volume 1, AAMAS ’09, pages 153–160, Richland, SC,
2009. International Foundation for Autonomous Agents and Multiagent Systems.

9 D.V. Pynadath and M. Tambe. Multiagent teamwork: analyzing the optimality and com-
plexity of key theories and models. In The 1st international joint conference on Autonomous

A. Voinitchi, E. Black, and M. Luck 155

agents and multiagent systems: part 2, AAMAS ’02, pages 873–880, New York, NY, USA,
2002. ACM.

10 M. Tambe. Towards flexible teamwork. Journal of Artificial Intellience Research, 7(1):83–
124, September 1997.

ICCSW’12

Self-Learning Genetic Algorithm For Constrains
Satisfaction Problems∗

Hu Xu1 and Karen Petrie2

1 Computing School,
QMB 1.10, University of Dundee
huxu@computing.dundee.ac.uk

2 Computing School,
QMB 2.10, University of Dundee
karenpetrie@computing.dundee.ac.uk

Abstract
The efficient choice of a preprocessing level can reduce the search time of a constraint solver to
find a solution to a constraint problem. Currently the parameters in constraint solver are often
picked by hand by experts in the field. Genetic algorithms are a robust machine learning techno-
logy for problem optimization such as function optimization. Self-learning Genetic Algorithm are
a strategy which suggests or predicts the suitable preprocessing method for large scale problems
by learning from the same class of small scale problems. In this paper Self-learning Genetic Al-
gorithms are used to create an automatic preprocessing selection mechanism for solving various
constraint problems. The experiments in the paper are a proof of concept for the idea of combin-
ing genetic algorithm self-learning ability with constraint programming to aid in the parameter
selection issue.

1998 ACM Subject Classification I.2.6 Learning

Keywords and phrases Self-learning Genetic Algorithm, Constraint Programming, Parameter
Tuning

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.156

1 Introduction

The selection of a suitable preprocessing levels for a given constraint problem is an important
part of constraint programming(CP). Efficiently tuning a constraint solver will shorten the
search time and reduce the running cost. The key to increasing the search speed for a
constraint solver is partially due to tuning the solvers parameters [9]. Currently the job of
tuning the parameters is done by hand. The skilled researchers picks up the most suitable
preprocessing method using previous experience from similar classes of problems. In most
cases the best preprocessing method in similar classes of problems provide a useful clue to
aid the researchers selection. However this learning curve could be a barrier to novice user in
learning how to efficiently use a CP solver.

Genetic algorithms are a classic global optimization method posed by John Holland [7],
which mimic the competition of organisms in nature and the mechanisms of evolution. Genetic
algorithms are usually implemented in a computer simulation in which a population of abstract
representations of candidate solutions to an optimization problem evolves toward better
solutions. In the field of configuration tuning, Carlos [10] has posed a gender-based genetic

∗ This work was funded by Computing School of Dundee University and Henry Lester Turst

© Hu Xu and Karen Petrie;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 156–162

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.156
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

H. Xu and K. Petire 157

P1 Pi
0

N

Parameter Setting

R
u

n
n

in
g

 T
im

e

Small Instance

Media Instance

Large Instance

Figure 1 The Distribution of the Effect of Preprocessing for Various of Constrained Satisfaction
Problems.

algorithm for the automatic configuration of algorithms. In this paper genetic algorithms are
chosen to select preprocessing method for constraint satisfaction problems. There are two
main reasons to choose genetic algorithms to optimize preprocessing selection. One is that
genetic algorithm have a powerful ability to tackle optimization problems which lack auxiliary
information [1]. Another is that genetic algorithm do parallel search rather than linear
search [4]. Each chromosome races against another in each generation. Therefore the idea of
combining genetic algorithm and constraint programming seems worth exploring. Automatic
tuning will lead to improvements over manual tuning by researchers themselves. ParamILS
and CALIBRA [8] have shown the efficiency and possibility of automatic configuration
for constraints solver. However, the general framework of combing genetic algorithm and
constraint programming and the exploration of parameter sensitivity of genetic algorithm to
any problems, has not been achieved. Regrading this situation we proposed a genetic based
automatic method [12] for tuning minion [3] (method refered to as GACM) which is one
of the most efficient constraint solver in the world. In the constrained problem and their
preprocessing obey the normal (or Gaussian) distribution [5]. In most time the distribution
of the best preprocessing methods wouldn’t changed or slightly changed in the same classes
of the constraint satisfaction problems. Fig 1 shows that the best prepossessing could also
gradually move with the increase of the scale of the constraint satisfaction problem. Therefore
the best prepossessing method of a specific problem could learn from others in the same
class of problems. Meanwhile the search ability of genetic algorithm can improve by narrow
the starting population domain [4].Therefore this paper will propose a new self-learning
mechanism which is based on a new starting population and our pervious work.

2 Self-Learning Genetic Algorithm

Before self-learning genetic algorithms, Standard genetic algorithms will be introduced. In
Standard Genetic Algorithms, the starting population is randomly generated because the
search domain is unknown and the random chromosomes keeps the variety of the population
to prevent early convergency in evaluation. However if the search domain is limited to a
specific area it will improve the search speed for evaluation. We can use this by creating a
good starting popluation. The self-learning genetic algorithm is based on this idea. When
we solve small scale constraint satisfaction problem it is easy to find the best or good

ICCSW’12

158 Self-Learning Genetic Algorithm For Constrains Satisfaction Problems

Algorithm 1 Self-Learning Genetic Algorithm
if T (CS) < Time limit then . T (CS) is the running time of Solving some constrained
satisfaction problems with small instance

PL ← Best preprocessing for small instance . PL is the starting population for large
instance
else

PL ← Good preprocessing for small instance by standard genetic algorithm
end if
repeat

SGA(PL) . Using standard genetic algorithm to search better preprocessing with the
starting population PL

λ← Best preprocessing for large instance by Standard Genetic algorithm . λ is the
current best preprocessing method found for optimization problem
until λ = the best preprocessing or the searching time is out of time limit
return λ

preprocessing method within a acceptable running time. Those preprocessing methods
will provide a cue for searching for a good preprocessing methods in large scale problems.
Before the experiments the working principle of standard genetic algorithm for selecting
preprocessing level will be introduced.

The first step of a genetic algorithm (GA) is called the encoding which is to construct
the suitable chromosome for the optimization problem. Encoding in genetic algorithm
is to transfer solutions of optimization problem to the chromosomes. Each chromosome
presents one possible solution. The optimal or best solution will be gained by competing
chromosomes. In our self-learning genetic algorithm, each preprocessing method was encoded
as a chromosome.

Fitness describes the ability of an individual to reproduce in biology. The Fitness function
is the function which evaluates the difference between the desired result and the actual result.
In problem optimization, GA uses a fitness function to evaluate each individual and provide
the information to the evolution.

The Selection in genetic algorithm is a strategy which allows the perfect parents (with
high fitness) to have more of a chance to be selected to generate the next generation. In our
genetic configurator, the selection is the roulette wheel selection. Roulette wheel selection is a
way of choosing individuals from the population of chromosomes in a way that is proportional
to their fitness. Roulette does not guarantee that the fittest member goes through to the
next generation, merely that it has a very good chance of doing so.

Crossover can improve the whole population fitness quickly by mating parents to produce
an offspring. It is a very important operator in genetic algorithms. Single point crossover
is the basic and most common crossover in genetic algorithms because it can be easily
understood and realized. Mutations which change one or more genes in an individual is
another operator used in GA. Mutation can help genetic algorithms escape the local maximum
state by creating a new gene string. As with crossover, mutation also has a mutation rate to
control the amount of mutation in the recombination of each generation. The mutation rate
is the probability of a mutation happen. According to the mutation rate, any bit in each
chromosome has the chance to do a mutation.

Generally machine learning makes predictions by training, validation and testing itself
existing data [11]. Self-learning genetic algorithm (refered to as SLGA) is the algorithm

H. Xu and K. Petire 159

1 2 3 4 5 6 7 8 9 10 11
−1

0

1

2

3

4

5

6

Generations

R
u

n
n

in
g

 T
im

e

GACM

LFG

BEST

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Generations

R
u

n
n

in
g

 T
im

e

LFG

Best

LFB

Figure 2 The Efficiency of Self-Learning Genetic Algorithm in Solving Lanford Number Problems.
The X axis is the generation number of genetic algorithm to find the best preprocessing for Lanford
Number problem. The Y axis is the running time for finding a solution of Lanford Number problem
with relative preprocessing setting.The left graph shows the efficiency comparison between standard
genetic algorithm and self-tranning genetic algorithm which learn the experience from the pervious
evolutionary result for small instance. The right graph in Figure 2 shows the efficiency of two
different strategies of self-learning genetic algorithm in solving the Landford number problem.

which help to make the preprocessing prediction by using the previous experience on the same
classes of constraint satisfaction problem. Self-Learning genetic algorithm improve the search
speed by defining the specific starting population instead of the normal random starting
population. The starting population of a Self-Learning genetic algorithm is gained from
the data training of the same class of small instance problems.There are two strategies to
realize the Self-Learning mechanism. Learning From Best (refered to as LFB) strategy is to
define the starting population with the best preprocessing which was gained by solving small
instance with whole preprocessing possibility. Learning From Genetic algorithm (refered to
as LFG) strategy is to define the staring population with the suggested preprocessing which
was got by solving small instance with our pervious genetic method.

The pseudocode of self-learning genetic algorithm introduces SLGA’s woking principle
and the way of applying those two strategies for different problems. It shows that the
self-learning genetic algorithm firstly evaluated the running time of Solving some constrained
satisfaction problems with small instance. If it is possible to find the best processing for
small instance problem, the starting population for large instance problems will be initialized
with the best processing for small instance problems or else the optimal processing gained
by GACM for small instance problems. According to the suggested starting population
from pervious experience, the standard genetic algorithm will be applied to find the best or
optimal processing for large instance problem. The standard genetic algorithm will explore
better processing generation by generation. The evolutionary search loop will stop when he
best preprocessing is found or the searching time is out of time expected.

3 Experiment Design

To prove the efficiency of the self-learning genetic algorithms, two different starting populations
were chosen which were mentioned in the methodology part. One starting population is the
top few of the best preprocessing of all the possible preprocessing combinations, another
one is the top preprocessing gained from standard genetic algorithm. The efficiency of those
two strategies (LFB and LFG) will compared with each other and with standard genetic

ICCSW’12

160 Self-Learning Genetic Algorithm For Constrains Satisfaction Problems

algorithm as well (GACM). In this paper the optimization problems chosen are the BIBD,
the N-queen problem, Golomb and the Landford’s number problem1. These four classical
constraint problems were chosen as optimization problem for testing the self-learning genetic
algorithm. The computational complexity of N-Queen problem depend on one variable. The
complexity of Open Stack Problem is up to the instance provided and the complexity of
Langfords Number Problem depends on multi-variables. From the definition description
of problems, it shows that those four constraint problem are very different to each other .
We hope that the self-learning genetic algorithm could be applicable to different constraint
satisfaction problem. Following the David’s MicroGA Settings [2], the crossover rate is 0.5
and the mutation rate is 0.04 in all experiments. Each trial was run 10 times and we observe
the average of the minimums.

4 Experimental Results

Figure 2 shows the efficiency of self-learning genetic algorithm to solve the Landford problem.
There are three curves in the left graph: Best, LFG and GACM. The best curves is the
minimum running time for solving Landford number problem with best preprocessing. The
GACM curve is the efficiency of using genetic algorithm to find better preprocessing for
optimisation problems. The LFG curve shows the self-learning genetic algorithm that learn
experience from pervious genetic algorithm evolution for the same class of problems. Its shows
a standard genetic algorithm can gradually approach the best preprocessing methods after a
few generations. But It clearly shows that the LFG can more easily and quickly approach
the best result by inheriting the useful information from others similar small instances.

There are three curves in the right graph: Best, LFG and LFB. The best curves is the
minimum running time same as in the left figure. The LFB curve shows the self-learning
genetic algorithm that learn experience from the best processing for the same class problems.
The LFG and the LFB curves both shows the efficiency of the self-learning genetic algorithm
to search for the best preprocessing method. The LFB selects the best preprocessing setting
of all possibility of small scale problem as the starting population. The LFG chooses good
preprocessing methods as a starting population which is gained from solving small scale
problems with a standard genetic algorithm. They both approach the best preprocessing
setting step by step as we expected. Although the approach speed of LFG is faster than
LFB, LFB still has better solutions due to the advantage in the starting population which
we can find from the definition of LFB and LFG.

To convince the correction and efficiency of Self-tanning genetic algorithm for other
problems, it was applied to solve the other three problems: BIBD[6], N-Queen problem and
Golomb problem. In reality it is not always possible to gain all possibility of preprocessing
combination from optimized problem which uses small instance due to the complexity of
preprocessing. Therefore only the lFG strategy of self-learning genetic algorithm was applied
to solve three optimization problems.

Table 1 describes the efficiency of the self-Learning genetic algorithm in solving different
problems by comparing standard genetic algorithm. Each value in the table represents the
running time of finding solution with the best found preprocessing. In all the optmization
problems the LFG could find better solution than the standard genetic algorithm. Especially
in Golomb problem the LFG could find the better solution but GA can’t. It is obvious that
the LFG has stronger ability than GA on searching for the best preprocessing method. The

1 All from http://www.csplib.org

http://www.csplib.org

H. Xu and K. Petire 161

Table 1 The Efficiency of Self-Learning Genetic Algorithm in Solving Different Problems by
comparing Standard Genetic Algorithm.

BIBD Langford N-Queen Golomb
GA 5.3 s 0.266 s 0.33 s N/A

LFG 4.5 s 2.1 s 0.04 s 8.7 s
Best 3.2 s 0.01 s 0.04 s 6.6 s

curves in fig. 2 and table 1 shows that the self-learning genetic algorithm can quickly approach
the best preprocessing within a few generations no matter which starting population strategy
is chosen. The LFB is quicker than the learning LFG, but the approaching speed is slower.
It means that the LFB strategy could be considered for self-learning genetic algorithm when
the running time for small instance is small. When the searching time of optimized problem
is unknown the LFG strategy is a better idea.

5 Future work

The results show the self-learning genetic algorithm are efficient methods on the preprocessing
selection of solving constraint satisfaction problems . However there are a few challenges we
need to face in the future. In this paper four classic problems were picked up to verify the
efficiency of self-learning genetic algorithm on medium size scale problem. More and larger
scale problems such as car sequence problem will be chosen to explore the efficiency and the
limitation of self-learning genetic algorithm. Currently the best model to solve a constraint
satisfaction problem is selected by hand by a researcher in the field. The next step is to apply
self learning genetic algorithms to find the best model for a constraint satisfaction problem.

References
1 C. Ansótegui, M. Sellmann, and K. Tierney. A gender-based genetic algorithm for the auto-

matic configuration of algorithms. In Principles and Practice of Constraint Programming-
CP 2009: 15th International Conference, CP 2009 Lisbon, Portugal, September20-24, 2009
Proceedings, page 142. Springer, 2009.

2 David L. Carroll. Chemical laser modeling with genetic algorithms. AIAA Journal, 34:338–
346, 1996.

3 Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable con-
straint solver. In Proceedings of the 17th Eureopean Conference on Artificial Intelligence
(ECAI’06), pages 98–102, 2006.

4 David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

5 Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-tailed phenomena
in satisfiability and constraint satisfaction problems. Journal of Automated Reasoning,
24:67–100, 2000. 10.1023/A:1006314320276.

6 Brahim Hnich, Zeynep Kiziltan, and Toby Walsh. Modelling a balanced academic cur-
riculum problem. In Proceedings of CP-AI-OR-2002, pages 121–131, 2002.

7 John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. 1992.

8 Frank Hutter, Holger H. Hoos, and Thomas Stützle. Automatic algorithm configuration
based on local search. In Proceedings of the 22nd national conference on Artificial intelli-
gence - Volume 2, AAAI’07, pages 1152–1157. AAAI Press, 2007.

ICCSW’12

162 Self-Learning Genetic Algorithm For Constrains Satisfaction Problems

9 Lars Kotthoff, Ian Miguel, and Peter Nightingale. Ensemble classification for constraint
solver configuration. In CP’10, pages 321–329, 2010.

10 Tony Lambert, Carlos Castro, Eric Monfroy, María Riff, and Frédéric Saubion. Hybrid-
ization of Genetic Algorithms and Constraint Propagation for the BACP, volume 3668 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2005.

11 Simon Rogers and Mark Girolami. A First Course in Machine Learning. Chapman &
Hall/CRC, 1st edition, 2011.

12 Hu Xu, Karen Petire, and Keith Edwards. Genetic based automatic configuration for
minion. Doctoral Program at 2011 International Conference on Principles and Practice of
Constraint Programming, pages 91–96, 2011.

	p000-frontmatter
	Preface
	Conference Organisation
	Supporters and Sponsors

	p000xii-empty-page
	p001-al-khuzayem
	Introduction
	HDM Overview
	Representing OWL-DL in HDM
	OWL-DL Knowledge Bases Transformation using the BAV Model
	Conclusions

	p008-apostolopoulos
	Introduction
	The Signal Reconstruction problem
	The Proposed Algorithm
	Initial Solution
	Solution Generation
	Solution Correction

	Alternative Algorithms
	Iterative Hard Thresholding (IHT)
	Iteratively Re-weighted Least Squares (IRLS)

	Experimental Results
	Conclusions – Future work

	p015-athakravi
	Predicate Invention
	Related Work
	Predicate invention at meta-level
	ASPAL
	Predicate invention using meta-level abduction

	Future Work

	p022-boros
	Introduction and Related Work
	Experimental Setup
	Feature Matching
	Datasets (Benchmark)
	Comparison of Different Distance Functions for Global Features
	Comparison of Different Distance Functions for Local Features

	Conclusions and Future Work

	p029-chis
	Introduction
	Forward-Backward Algorithm
	Incremental Baum-Welch Algorithm
	First Approximation
	Second Approximation

	Conclusion and Future Work

	p035-cocco
	Introduction
	Methodology
	Preliminary results
	Experimental results
	Computation Density

	Conclusion

	p042-denman
	Introduction
	Dynamical Systems
	Abstracting the Dynamical System
	Conclusion

	p049-efstathiou
	Introduction
	Motivating Scenario
	Related Work
	Towards our Research Goal
	Scope of Research
	Degrees of Freedom
	Choosing an Optimisation Technique

	Conclusion and Future Plans

	p056-ginsca
	Introduction
	Proposed approach
	A novel mixed lexicon/machine learning classification workflow
	Relation identification with a novel proximity based bag-of-words model
	Relation identification with a tree kernel based model
	Opinion polarity shift identification with a tree kernel based model

	Experiments and results
	Evaluation corpus
	Relation classification results
	Opinion polarity shift identification results

	Conclusion and future work

	p062-hadjinikolis
	Introduction & Related work
	An ASPIC+ framework for persuasion dialogues
	Modelling mechanisms
	Building a relevance graph
	Relevance augmentation

	Conclusions & Future direction

	p069-jantsch
	Introduction
	Methods
	Results
	Conclusion

	p075-jones
	Introduction and motivation
	Data collection
	Observations on collected data
	Fluid queues
	Motivation and future goals

	p081-lloyd-kelly
	Introduction
	Background
	The Coalition Formation Method
	The Rational Coalition Formation Process
	The Emotional Coalition Formation Process
	Hybridisation of Rational and Emotional Processes
	Example Process

	Conclusion and Future Work

	p088-meski
	Introduction
	Preliminaries
	Interpreted Systems
	Interleaved Interpreted Systems
	Syntax and Semantics of LTLK

	BDD-based Bounded Model Checking for ELTLK
	Experimental Evaluation
	Final Remarks

	p095-morelli
	Introduction
	A compositional model
	Linear algebra model
	Measurements space
	Splitup space
	Benckmark space

	Real data
	Experimental data
	Conclusion

	p102-orphanou
	Introduction
	Preliminary Approach
	Data Description
	Methodology
	Temporal Abstractions

	Related Work
	Conclusion and Future Work

	p109-ostberg
	Introduction
	Related Work
	Research Goal
	Example Static Analysis Tool: FindBugs
	Research Strategy
	Step 1: Piloting the Idea with a Tutor
	Step 2: The Prototype
	Step 3: Evaluation of the Prototype

	Summary and Future Work

	p116-serrano-zanetti
	Introduction
	Social Organisation in OSS Communities: A Network Perspective
	Building Social Networks from Bug-Reports
	Network Measures

	Comparative Analysis of OSS Communities
	Conclusions and Future Work

	p123-shi
	Introduction
	Experiment
	Phase 1: Design Sessions with Students
	Phase 2: Application Synthesis

	Discussions
	Conclusions

	p129-surcel
	Introduction
	Background and Related Work
	Implementation Details
	Auction Host
	Auction Participant
	Declarative Negotiation Mechanisms for English and Dutch Auction

	Conclusions

	p135-tan
	Introduction
	Methodology
	Results and Discussion
	Latency: Send-side EMAs and Receive-side EMAs
	Cache Misses: Send-side EMAs and Receive-side EMAs
	Comparison: Send-side EMAs vs Receive-side EMAs

	Related Works and Future Plans
	Conclusion

	p142-vasudevan
	Introduction
	Search-based ambiguity detection
	SinBAD framework
	Definition and Notations
	Search-based backends

	Experiment
	Random grammar generation algorithm

	Comparison and Analysis
	Threats to validity
	Conclusions

	p149-voinitchi
	Introduction
	Related Work
	Team disruption
	Preliminary definitions
	What makes a team function?
	What is a disrupted team?
	How to disrupt a team?

	Conclusion and future work

	p156-xu
	Introduction
	Self-Learning Genetic Algorithm
	Experiment Design
	Experimental Results
	Future work

