
Workshop on
Trustworthy Software

May 18–19, 2006, Saarbrücken, Germany

Edited by

Serge Autexier
Stephan Merz
Leon van der Torre
Reinhard Wilhelm
Pierre Wolper

OASIcs – Vo l . 3 – Trus twor thy SW 2006 www.dagstuh l .de/oas i c s

Editors
Serge Autexier (DFKI Saarbrücken), autexier@dfki.de
Stephan Merz (INRIA Nancy & LORIA), Stephan.Merz@loria.fr
Leon van der Torre (University of Luxembourg), leon.vandertorre@uni.lu
Reinhard Wilhelm (Saarland University), wilhelm@cs.uni-saarland.de
Pierre Wolper (Université de Liege), pw@montefiore.ulg.ac.be

ACM Classification 1998
D.2.4 Software/Program Verification

ISBN 978-3-939897-02-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Center for Informatics GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany.

Publication date
August, 2006.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works license:
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the author’s moral rights:

Attribution: The work must be attributed to its authors.
Noncommercial: The work may not be used for commercial purposes.
No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.TrustworthySW.2006.i

ISBN 978-3-939897-02-6 ISSN 2190-6807 http://www.dagstuhl.de/oasics

iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

ISSN 2190-6807

www.dagstuhl.de/oasics

TrustworthySW 2006

Preface

The Interreg III C/E-Bird project ”Recherches sans frontières/Forschen ohne
Grenzen” aims at developing and strengthening the links between researchers in
the SaarLorLuxWallonie region. Supporting actions initiated by the project were
the documentation of shared and complementary research competences in that
region as well as a series of thematic workshops held in 2006. The workshops
were especially devoted to provide a forum for young scientists to present their
research to a transnational audience from the SaarLorLuxWallonie region and
to identify possible synergies and possibilities for cooperations.

The workshop on “Trustworthy Software” was the first workshop in that se-
ries and was held in Saarbrücken on 18-19th May 2006. It was organized by the
Saarland University. As workshop theme the workshop chairs selected “Trust-
worthy Software” because a considerable concentration of research competence
was found to exist in the SaarLorLuxWallonie region. The workshop aimed at
presenting and fostering this research competence in the area of developing safe,
secure and reliable software, computers and networks.

34 high-quality proposals were submitted for talks. In order to match the two-
day format, the workshop chairs selected 21 for presentation at the workshop
preferring contributions from young researchers.

The workshop consisted of the selected talks distributed into six sessions
(one about Specification, three about Verification, one about Security and one
about Privacy, Secrecy & Trust) and an invited talk by Christoph Weidenbach
about “From (Security) Protocol to Enterprise Network Infrastructure (Security)
Analysis”. The detailed program is provided on the next page. These workshop
proceedings incorporate a full paper or a short abstract for each talk.

We would like to thank several people who helped us in the organization of
this workshop. First of all, many thanks to Wolfgang Lorenz and Signe Schelske,
the coordinators for the project “Recherches sans frontières/Forschen ohne Gren-
zen”, for their organizational and financial support. Many thanks also to Uta
Merkle and their team for setting up the workshop environment and ensuring it
to run smoothly. Last but not least, many thanks to all authors who submitted
talks and to all active participants at the workshop.

Serge Autexier
Stephan Merz
Leon van der Torre
Reinhard Wilhelm
Pierre Wolper

INTERREG IIIC/e-Bird
Workshop ”Trustworthy Software” 2006
http://drops.dagstuhl.de/opus/volltexte/2006/693

Program

Session 1: Specification

Ina Schaefer Semantic-Based Modeling of Embedded Adaptive Sys-
tem

Arnaud Lanoix An Operator-based Approach to Incremental Develop-
ment of Conform UML 2.0 Protocol State Machines

Axel Legay On the Implementation of a Game-based Model for
Specifying Open Systems

Julien Schmaltz Formalizing On Chip Communications in a Functional
Style

Session 2: Verification I

Joerg Bauer Analysis of Dynamic Communicating Systems by Hier-
archical Abstraction

Sebastien Varrette Applicative Solutions for Safe Computations in Dis-
tributed Environments

Klaus Dräger Generation of linear synchronization invariants

Session 3: Verification II

Antoine Reilles Formal Validation of Pattern Matching Code
Jan Schwinghammer Separation Logic for General Storage
Jan Reineke Shape Analysis of Sets
Björn Wachter Explaining Data Type Reduction in the Shape Analysis

Framework

Session 4: Invited Talk

Christoph Weidenbach From (Security) Protocol to Enterprise Network Infras-
tructure (Security) Analysis

Session 5: Verification III

Jan Dörrenbächer Formal Model and Verification of a Microkernel
Thomas Hillenbrand Processor Datapath Verification with SPASS
Jean-François Couchot Superposition Based Verification of Invariants. Applica-

tion to Parameterized Systems.
Artem Starostin Formally Verified Data Structures Library for C. The

String Data Structure.

Session 6: Security

Stephan Neuhaus Isolating Intrusions by Automatic Experiments
Michael Hilker Security Analysis in Internet Traffic through Artificial

Immune Systems
Stefan Mandel Heuristics-based Source Code Analysis for Security Vul-

nerabilities

Session 7: Privacy, Secrecy & Trust

J. Paul Gibson Trust and security in e-voting systems: the verification
problem

Eugen Zalinescu When reachability-based secrecy implies equivalence-
based secrecy in security protocols

Mathieu Turuani The CL-Atse Protocol Analyser

Abstracts Collection

Workshop Trustworthy Software 2006

INTERREG IIIC/e-Bird

Serge Autexier, Stephan Merz, Leon van der Torre,
Reinhard Wilhelm and Pierre Wolper

Abstract. On 18-19 May 2006, the Saarland University organized a
two-day workshop about "Trustworthy Software" in order to present
and foster the research competence in the SaarLorLuxWallonie region
in the area of developing safe, secure and reliable software, computers
and networks. As part of the Interreg III C E-Bird project "Recherches
sans frontières/Forschen ohne Grenzen" it provided an excellent forum
especially for young scientists to present and discuss recent results, new
ideas and future research directions to a transnational audience from
the SaarLorLuxWallonie region. The workshop consisted of 21 regular
presentations and one invited talk. Abstracts of all presentations are col-
lected in this paper, including links to extended abstracts or full papers.
The �rst section directs to the preface of the proceedings.

Keywords. Software evolution, Modularity, Automated debugging, De-
pendability assurance, Failure analysis, Static program analysis, In�nite
and Finite-state veri�cation, Runtime veri�cation, Theorem proving, Ac-
cess control, Security analysis, Security protocols, E-Voting

Preface � Workshop Trusworthy Software 2006

Serge Autexier (DFKI - Saarbrücken, D)

As part of the Interreg III C/E-Bird project "Recherches sans frontières/Forschen
ohne Grenzen" the Saarland University organized a two-day workshop about
"Trustworthy Software" in order to present and foster the research competence
in the SaarLorLuxWallonie region in the area of developing safe, secure and re-
liable software, computers and networks. The workshop especially provided a
forum for young scientists to present their research to a transnational audience
from the SaarLorLuxWallonie region and consisted of 21 regular presentations
and one invited presentation.

Keywords: Trustworthy software, preface

Joint work of: Autexier, Serge; Merz, Stephan; van der Torre, Leon; Wilhelm,
Reinhard; Wolper, Pierre

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2006/693

INTERREG IIIC/e-Bird
Workshop "Trustworthy Software" 2006
http://drops.dagstuhl.de/opus/volltexte/2006/758

http://drops.dagstuhl.de/opus/volltexte/2006/693

2 S. Autexier, S. Merz, L. van der Torre, R. Wilhelm and P. Wolper

Superposition Based Veri�cation of Invariants. Application
to Parameterized Systems.

Jean-François Couchot (Univeristé de Franche-Comté, F)

The harvey theorem prover implements a decision procedure for ground �rst or-
der equational formulae in the array theory. This work provides valuable insights
into the applicability of such a prover for the veri�cation of safety properties ex-
pressed by an invariant on parameterized systems.

The soundness of such parameterized programs has to be checked uniformly,
i.e. once for all its sizes. Such programs can be veri�ed by a deductive �x point
calculus whose proof obligations are discharged into a prover that allows quan-
ti�ed formulae.

Initiated by Graf and Saïdi who discharged their evolution conditions into the
PVS prover, many studies have concerned the systems based on linear arithmetic
constraints after a convenient counting abstraction.

We suggest a more basic but unifying approach in which the parameter ranges
over a �nite set. We show that such a framework is adequate for industrial test
cases and uniform distributed systems. The speci�cations are written with the set
theoretical B machine notation and we exploit an existing weakest precondition
calculus for this method. Then, we introduce an invariant strengthening calculus,
obtained as the re�nement of a trivial calculus. We provide di�erent methods for
translating the evolution condition of this calculus into some equational logics.
Their main objective is to make harvey discharge them as fast as possible.

On an industrial scale example, we show that this approach is more e�-
cient than the Atelier B deductive system. Theoretically, we prove the evolution
condition decidability, where the framework is some uniform distributed among
broadcast and rendez-vous synchronization.

Keywords: Superposition, Veri�cation, Parameterized Systems

SANA - Security Analysis in Internet Tra�c through
Arti�cial Immune Systems

Michael Hilker (University of Luxembourg, L)

The Attacks done by Viruses, Worms, Hackers, etc. are a Network Security-
Problem in many Organisations. Current Intrusion Detection Systems have sig-
ni�cant Disadvantages, e.g. the need of plenty of Computational Power or the
Local Installation. Therefore, we introduce a novel Framework for Network Se-
curity which is called SANA. SANA contains an arti�cial Immune System with
arti�cial Cells which perform certain Tasks in order to to support existing sys-
tems to better secure the Network against Intrusions. The Advantages of SANA
are that it is e�cient, adaptive, autonomous, and massively-distributed. In this
Article, we describe the Architecture of the arti�cial Immune System and the
Functionality of the Components. We explain brie�y the Implementation and
discuss Results.

Workshop Trustworthy Software 2006 3

Keywords: Arti�cial Immune Systems, Network Security, Intrusion Detection,
Arti�cial Cell Communication, Biological-Inspired Computing, Complex Adap-
tive Systems

Joint work of: Hilker, Michael; Schommer, Christoph

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/694

An Operator-based Approach to Incremental Development
of Conform Protocol State Machines

Arnaud Lanoix (LORIA, F)

An incremental development framework which supports a conform construction
of Protocol State Machines (PSMs) is presented. We capture design concepts
and strategies of PSM construction by sequentially applying some development
operators: each operator makes evolve the current PSM to another one. To ensure
a conform construction, we introduce three conformance relations, inspired by
the speci�cation re�nement and speci�cation matchings supported by formal
methods. Conformance relations preserve some global behavioral properties. Our
purpose is illustrated by some development steps of the card service interface
of an electronic purse: for each step, we introduce the idea of the development,
we propose an operator and we give the new speci�cation state obtained by
the application of this operator and the property of this state relatively to the
previous one in terms of conformance relation.

Keywords: Protocol state machine, incremental development, development op-
erator, exact conformance, plugin conformance, partial conformance

Joint work of: Lanoix, Arnaud; Okalas Ossami, Dieu-donné; Souquières, Jea-
nine

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/695

An Introduction to the Tool Ticc

Axel Legay (University of Liège, B)

This paper is a tutorial introduction to the sociable interface model of [?] and
its underlying tool Tcc [?]. The paper starts with a survey of the theory of
interfaces and then introduces the sociable interface model that is a game-based
model with rich communication primitives to facilitate the modeling of software
and distributed systems. The model and its main features are then intensivelly
discussed and illustrated using the tool Tcc.

Keywords: Open system, game, interface automata

Joint work of: Legay, Axel; de Alfaro, Luca; Faella, Marco

http://drops.dagstuhl.de/opus/volltexte/2006/694
http://drops.dagstuhl.de/opus/volltexte/2006/695

4 S. Autexier, S. Merz, L. van der Torre, R. Wilhelm and P. Wolper

Isolating Intrusions by Automatic Experiments

Stephan Neuhaus (Universität des Saarlandes, D)

When dealing with malware infections, one of the �rst tasks is to �nd the
processes that were involved in the attack. We introduce Malfor, a system that
isolates those processes automatically. In contrast to other methods that help
analyze attacks, Malfor works by experiments: �rst, we record the interaction
of the system under attack; after the intrusion has been detected, we replay the
recorded events in slightly di�erent con�gurations to see which processes were
relevant for the intrusion. This approach has three advantages over deductive
approaches: �rst, the processes that are thus found have been experimentally
shown to be relevant for the attack; second, the amount of evidence that must
then be analyzed to �nd the attack vector is greatly reduced; and third, Malfor
itself cannot make wrong deductions. In a �rst experiment, Malfor was able to
extract the three processes responsible for an attack from 32 candidates in about
six minutes.

Keywords: Intrusion Analysis, Malware, Experimentation

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2006/696

Formal Validation of Pattern Matching code

Antoine Reilles (CNRS & LORIA, F)

When addressing the formal validation of generated software, two main alterna-
tives consist either to prove the correctness of compilers or to directly validate
the generated code. Here, we focus on directly proving the correctness of com-
piled code issued from powerful pattern matching constructions typical of ML
like languages or rewrite based languages such as ELAN, MAUDE or Tom.

In this context, our �rst contribution is to de�ne a general framework for an-
choring algebraic pattern-matching capabilities in existing languages like C, Java
or ML. Then, using a just enough powerful intermediate language, we formalize
the behavior of compiled code and de�ne the correctness of compiled code with
respect to pattern-matching behavior. This allows us to prove the equivalence
of compiled code correctness with a generic �rst-order proposition whose proof
could be achieved via a proof assistant or an automated theorem prover. We
then extend these results to the multi-match situation characteristic of the ML
like languages.

The whole approach has been implemented on top of the Tom compiler and
used to validate the syntactic matching code of the Tom compiler itself.

Keywords: Correctness proofs, compilers, pattern matching, validation

Joint work of: Kirchner, Claude; Moreau, Pierre-Etienne; Reilles, Antoine

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/697

http://drops.dagstuhl.de/opus/volltexte/2006/696
http://drops.dagstuhl.de/opus/volltexte/2006/697

Workshop Trustworthy Software 2006 5

Shape Analysis of Sets

Jan Reineke (Universität des Saarlandes, D)

Shape Analysis is concerned with determining "shape invariants", i.e. structural
properties of the heap, for programs that manipulate pointers and heap-allocated
storage. Recently, very precise shape analysis algorithms have been developed
that are able to prove the partial correctness of heap-manipulating programs.
We explore the use of shape analysis to analyze abstract data types (ADTs).
The ADT Set shall serve as an example, as it is widely used and can be found
in most of the major data type libraries, like STL, the Java API, or LEDA. We
formalize our notion of the ADT Set by algebraic speci�cation. Two prototypical
C set implementations are presented, one based on lists, the other on trees. We
instantiate a parametric shape analysis framework to generate analyses that are
able to prove the compliance of the two implementations to their speci�cation.

Keywords: Shape analysis, adt, algebraic speci�cation, invariants, veri�cation,
set implementations, imperative programs

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/698

Using Abstraction in Modular Veri�cation of Synchronous
Adaptive Systems

Ina Schaefer (TU Kaiserslautern, D)

Self-adaptive embedded systems autonomously adapt to changing environment
conditions to improve their functionality and to increase their dependability by
downgrading functionality in case of fail- ures. However, adaptation behaviour of
embedded systems signi�cantly complicates system design and poses new chal-
lenges for guaranteeing system correctness, in particular vital in the automotive
domain. Formal veri�cation as applied in safety-critical applications must there-
fore be able to address not only temporal and functional properties, but also
dynamic adaptation according to external and internal stimuli.

In this paper, we introduce a formal semantic-based framework to model,
specify and verify the functional and the adaptation behaviour of syn- chronous
adaptive systems. The modelling separates functional and adap- tive behaviour
to reduce the design complexity and to enable modular reasoning about both
aspects independently as well as in combination.

By an example, we show how to use this framework in order to verify proper-
ties of synchronous adaptive systems. Modular reasoning in com- bination with
abstraction mechanisms makes automatic model checking e�ciently applicable.

Keywords: Dependable Embedded Systems, Self-Adaptation, Abstraction, Mod-
ular Veri�cation

Joint work of: Schaefer, Ina; Poetzsch-He�ter, Arnd

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/699

http://drops.dagstuhl.de/opus/volltexte/2006/698
http://drops.dagstuhl.de/opus/volltexte/2006/699

6 S. Autexier, S. Merz, L. van der Torre, R. Wilhelm and P. Wolper

Formalizing On Chip Communications in a Functional
Style

Julien Schmaltz (Universität des Saarlandes, D)

This paper presents a formal model for representing any on-chip communication
architecture.

This model is described mathematically by a function, named GeNoC . The
correctness of GeNoC is expressed as a theorem, which states that messages
emitted on the architecture reach their expected destination without modi�ca-
tion of their content. The model identi�es the key constituents common to all
communication architectures and their essential properties, from which the proof
of the GeNoC theorem is deduced. Each constituent is represented by a func-
tion which has no explicit de�nition but is constrained to satisfy the essential
properties. Thus, the validation of a particular architecture is reduced to the
proof that its concrete de�nition satis�es the essential properties. In practice,
the model has been de�ned in the logic of the ACL2 theorem proving system.

We de�ne a methodology that yields a systematic approach to the validation
of communication architectures at a high level of abstraction. To validate our ap-
proach, we exhibit several architectures that constitute concrete instances of the
generic model GeNoC . Some of these applications come from industrial designs,
such as the AMBA AHB bus or the Octagon network from ST Microelectronics.

Keywords: SoC's, NoC's, communication architectures, formal methods, auto-
mated theorem proving

Joint work of: Schmaltz, Julien; Borrione, Dominique

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/700

Separation Logic for General Storage

Jan Schwinghammer (Universität des Saarlandes, D)

Separation Logic is a substructural logic that facilitates local reasoning for im-
perative programs, in the sense that only the reachable part of the store must be
taken into account for the veri�cation of a command. In past work, Separation
Logic has been developed for heaps containing records of basic data types.

Languages like C and ML, however, are less constrained and permit also the
use of code pointers and higher-order references, respectively. The correspond-
ing heap model is commonly referred to as "general storage" (or "higher-order
store") since heaps may contain commands.

In this talk I will report on recent joint work with Bernhard Reus, where we
make Separation Logic and the bene�ts of local reasoning available to languages
with general storage.

Keywords: Program veri�cation, Separation Logic, higher-order store

http://drops.dagstuhl.de/opus/volltexte/2006/700

Workshop Trustworthy Software 2006 7

Explaining Data Type Reduction in the Shape Analysis
Framework

Björn Wachter (Universität des Saarlandes, D)

Automatic formal veri�cation of systems composed of a large or even unbounded
number of components is di�cult as the state space of these systems is pro-
hibitively large. Abstraction techniques automatically construct �nite approxi-
mations of in�nite-state systems from which safe information about the original
system can be inferred. We study two abstraction techniques shape analysis,
a technique from program analysis, and data type reduction, originating from
model checking. Until recently we did not properly understand how shape analy-
sis and data type reduction relate. In this talk, we shed light on this relation in
a comprehensive way. This is a step towards a more uni�ed view of abstraction
employed in the static analysis and model checking community.

Keywords: Canonical abstraction, data type reduction, model checking, para-
meterized system, in�nite-state

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2006/701

Full Paper:
http://rw4.cs.uni-sb.de/∼bwachter/thesis.pdf

Relating two standard notions of secrecy

Eugen Zalinescu (UHP & LORIA & INRIA Project CASSIS, F)

Two styles of de�nitions are usually considered to express that a security proto-
col preserves the con�dentiality of a data s. Reachability-based secrecy means
that s should never be disclosed while equivalence-based secrecy states that two
executions of a protocol with distinct instances for s should be indistinguishable
to an attacker. Although the second formulation ensures a higher level of secu-
rity and is closer to cryptographic notions of secrecy, decidability results and
automatic tools have mainly focused on the �rst de�nition so far.

This paper initiates a systematic investigation of situations where syntactic
secrecy entails strong secrecy.

We show that in the passive case, reachability-based secrecy actually implies
equivalence-based secrecy for signatures, symmetric and asymmetric encryption
provided that the primitives are probabilistic. For active adversaries in the case
of symmetric encryption, we provide su�cient (and rather tight) conditions on
the protocol for this implication to hold.

Keywords: Veri�cation, security protocols, secrecy, applied-pi calculus

Joint work of: Zalinescu, Eugen; Cortier, Véronique; Rusinowitch, Michaël

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/691

Full Paper:
http://www.inria.fr/rrrt/rr-5908.html

http://drops.dagstuhl.de/opus/volltexte/2006/701
http://rw4.cs.uni-sb.de/~bwachter/thesis.pdf
http://drops.dagstuhl.de/opus/volltexte/2006/691
http://www.inria.fr/rrrt/rr-5908.html

An Introduction to the Tool Ticc?

Luca de Alfaro1, Marco Faella2, and Axel Legay3

1 Department of Computer Engineering, Universitity of California, Santa Cruz, USA
2 Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Italy

3 Department of Computer Science, University of Liège, Belgium

Abstract. This paper is a tutorial introduction to the sociable interface model of
[12] and its underlying tool TICC [1]. The paper starts with a survey of the theory
of interfaces and then introduces the sociable interface model that is a game-based
model with rich communication primitives to facilitate the modeling of software
and distributed systems. The model and its main features are then intensivelly
discussed and illustrated using the tool TICC.

1 Introduction

The prevalent trend in software and system engineering is towards component-based
design: systems are designed by combining small components into bigger ones. Com-
ponents offer thus the unit in which complex design problems can be decomposed,
allowing the reduction of a single complex design problem into smaller design prob-
lems, more manageable in complexity, that can be solved in parallel by design teams.
Components also provide a unit of reuse, defining the boundaries in which functionality
can be packaged, documented and reused.

Components are designed to work as parts of larger systems: they make assumptions
on their environment, and they expect that these assumptions will be met in the actual
environment. In other words, a component is typically an open system which has some
free inputs provided by others components and which in turn provides inputs to other
components. It is thus obvious that the effective reuse of software requires adequate
documentation of the component’s behavior and the conditions under which it can be
used along with methods for checking that components are assembled in an appropriate
way. Such a documentation is commonly referred to as the interface of the component.

There have been many works on the design and implementation of good interfaces
for components. Most of those works focus on capturing the data dimension of inter-
faces (“What are the value constraints on data communicated between components?”)
[21]. We describe here interface theories [13–15] a formal notion of component inter-
faces that use games to represent the interaction between the behavior originating within
a component, and the behavior originating from the component’s environment. Such an
interface model is able to capture dynamic aspects of component interaction which
makes it similar to a type system: indeed, it could be termed a “behavioral” type system
for component interaction. In previous works, interface theories have been introduced

? This research was supported in part by the NSF grants CCR-0234690 and CCR-0132780, by
the ARP awards SC2005553 and SC20051123, and by a F.R.I.A Grant.

INTERREG IIIC/e-Bird
Workshop "Trustworthy Software" 2006
http://drops.dagstuhl.de/opus/volltexte/2006/766

for various aspects of component interaction: [13, 8, 7, 15, 12] consider the protocol di-
mension of interfaces (“What are the temporal ordering constraints on communica-
tion events between components?”), [16] considers the timing dimension of interfaces
(“what are the real-time constraints on communication events between components?”),
and [5] deals with constraints on the resource usage of the component.

In this paper, we focus on the sociable interfaces model introduced in [12], and on
the corresponding tool called TICC [1]. We present the underlying ideas of the model,
and show how it can be used to capture the protocol dimension between components.
All the concepts are intensively illustrated with TICC for which this paper constitutes
an introduction.

Two tools for interface theories predate TICC. The asynchronous, action-based in-
terface theories of [13] are implemented as part of the Ptolemy toolset [19]. The tool
CHIC [6] implements synchronous, variable-based interface theories modeled after
[14]. Our goal in developing TICC is to provide an asynchronous model where compo-
nents have rich communication primitives that facilitate the concise, natural modeling
of software and distributed systems. In TICC, components are modeled both via vari-
ables (to describe state) and actions (to describe synchronization); its communication
primitives enable the modeling of complex communication schemes. The implementa-
tion of TICC relies on symbolic methods, yielding efficient algorithms for component
and system analysis.

2 Interface Theories

Before going to the details of the sociable interfaces model, we first summarize and
illustrate the basic features of Interface theories. The reader is referred to [17, 10, 18,
12] for more details.

Interface Specification and Well-formedness

An interface specifies how a component interacts with its environment. It describes the
input assumptions that the component makes on the environment and the output guar-
antees it provides. Interfaces capture the I/O behavior of a component by an automaton
whose syntax is similar to the I/O automata of [21]. In the context of software design,
inputs are used to model procedures or methods that can be called, and the receiving
end of communication channels, as well as the return locations from such a calls. Out-
puts are used to model procedure or method calls, message transmissions, the act of
returning after a call or method terminates, and exceptions that arise during method ex-
ecution. Unlike traditional models of open systems, among which I/O automata, that at
every state must be receptive to every possible input event, in interfaces it is possible
that inputs are illegal (cannot be accepted) at some states. Thus, an interface describes
the behavior of a component only with respect to some environments. In this way, envi-
ronment restrictions can be used to encode restrictions on the order of method calls, and
on the types of return values and exceptions. This is how interfaces capture the proto-
col dimension of components. Another advantage of making explicit assumptions about
the environment is that it gives rise to an optimistic compatibility test when interface

2

are composed: two interfaces are compatible if there exists at least one environment
in which they can work together. Finally, from a practical point of view, the ability to
forbid inputs removes the need to specify “what happens” when taking an undesirable
input. Such a specification has been pointed to as one of the main drawbacks of input-
enabled approaches. Since we can make input assumptions, we have to ensure that the
interface is well-formed, i.e. that there exists at least one environment that satisfies its
input assumptions.

Interfaces as Games

An interface is naturally modeled as a game between the players Input and Output.
Input represents the environment: the moves of Input represent the inputs accepted from
the environment. Output represents the component: the moves of Output represent the
possible outputs generated by the component. Then, an interface is well-formed if the
Input player has a winning strategy in the game, which means that the environment can
meet all input assumptions. Games provides a model for multiple independent sources
of nondeterminism and keep the distinction between inputs and outputs. Hence, even if
the syntax of interfaces is close to the one of I/O automata, they differ in the way that
the operations on the models are defined. In this paper, we will mainly mainly focus on
the operation of composition between two or more interfaces.

Interface Composition and Compatibility

The game-like nature of interfaces becomes apparent when we consider the operation
of composition. In their original formulation, interfaces interact through the synchro-
nization of common input and output events. The interpretation of inputs and outputs as
assumptions and guarantees, respectively, implies that, when composing two interfaces
P and Q, we have to ensure that P’s output guarantees satisfy Q’s input assumptions
and vice versa. Concretely, consider the two interfaces P and Q, in one state of the
composition. If P wants to emit an output that cannot be accepted by Q in that state
(i.e. an output guarantee that violates an input assumption), then a local incompatibility
occurs. While many approaches would be pessimistic and consider the two interfaces
to be incompatible, the interface approach is optimistic, by expecting the environment
to steer away from locally incompatible states. Thus, two interfaces are compatible if
there exists an environment to use the components together, and ensure that the assump-
tions of both are met. Component composition thus consists in synthesizing the most
liberal input strategy in the composite system that avoids all locally incompatible states.
This can be done by classical game-theoretic algorithms. The optimistic approach sup-
ports incremental design: the compatibility of two components can be checked without
specifying interfaces for all components of the system, i.e. without closing the system.
Incremental designs also ensure that compatible components can be put together in any
order.

An Example

We illustrate the previous concepts with the help of a simple example: a fire detection
system. The system is composed of a control unit and several smoke detectors. The

3

fire?

call fd!

2

1

0

3

fire?
disable?

disable?

disable?

fire?
disable?

(a) C: Control Unit

fire?

smoke1?

fire!

fire?

fire?

smoke1?

smoke1?

1

0

2

disable?

disable?

disable?

(b) D1: Smoke Detector

fire!

smoke2?

fire?

smoke2?

smoke2?

fire?

fire?

0

1

2

(c) D2: Faulty
Smoke Detec-
tor

Fig. 1. Sociable interface automata for a fire detection system.

interfaces for this example are reported in Figure 1: D1 is one of the smoke detectors
(there could be more), and C is the control unit.

When a detector senses smoke (input event smoke?), it reports it by emitting the
output event fire!. When the control unit receives the input event fire? from any of the
detectors, it issues a call for the fire department (output event call fd!). Additionally,
an input event disable? disables both the control unit and the detectors, so that the
smoke sensors can be tested without triggering an alarm. We also suppose the existence
of faulty smoke detectors, i.e., smoke detectors that ignore the disable message. The
interface for a faulty smoke detector is presented in Figure 1(c).

A particularity in the design is that some (but not all) states are input-enabled. As an
example, state 1 of C is still receptive to the input event fire? after receiving the smoke
alarm. This is because detectors are independent and there is thus no reason for one
detector to be forbidden to send output even fire! if this has already been done by some
other detector. Another example is state 2 of D1 which is receptive to the input events
fire? and smoke1?. Note that the possibility of having the same name for input and output
events is proper of sociable interfaces model and not allowed in other interface models
presented in [13, 8, 7, 15], or even transition based models (such as I/O automata). This
illustrates the multiple ways of communicating that are allowed by the model (see [12]
for a discussion). Note that C, D1, and D2 are well-formed4.

It is easy to see that all the states in the composition between the control unit C and
the fire detector D1 will be compatible if the two interfaces communicate via the event
fire. As an example, if C is in state 1 and D1 in state 2, then the output event fire! emitted
by D1 can be caught by the input event fire? of C. The output event call fd! emitted by

4 In general, checking well-formedness requires solving a safety game [12]

4

C does not need to be caught by D1 since the two interfaces do not synchronize on this
action.

However, the composition between C and D2 goes less smoothly. When the compo-
sition receives the input event disable?, the control unit shuts down (s = 3) and makes
the assumption that the environment cannot emit any output, while the faulty detector
remains in operation. When the faulty detector senses smoke (input event smoke2?), it
emits the output event fire!: if the control unit has been disabled, this causes a local
incompatibility in state (3,1). Hence, a winning strategy for player Input to stay away
from locally incompatible states can be realized by the following input restrictions:

– A restriction preventing the input event disable? if the faulty detector is in state
s = 1, that is, it has detected smoke and is about to issue the output event fire!.

– A restriction preventing the input event smoke2? when ControlUnit is at s = 3
(disabled).

Since the actions disable and smoke2 should be acceptable at any time, the new input
restrictions for these actions are a strong indication that the composition between C and
D2 does not work properly in all environments. However, if we consider an environment
that never issues disable, then the two interfaces can work together in a proper way.

3 The Sociable Interfaces Model

This section sketches the main elements of a sociable interface and the game it induces.
The reader is referred to [12] for more details. A sociable interface M is composed of
the following elements.

– A set of global actions ActG and a set of local actions ActL.
– A set of variables V all which is partitioned into a set of local variables V L and a

set of global variables V G, with V G ∩V L = /0. Local variables are used to describe
the internal states of the interface, while global variables are used to describe the
global state of the system. Among the set of global variables, we distinguish be-
tween history and history-free variables. This distinction, which will be discussed
in Section 5, allows us to limit the number of actions an interface should include.
The set of history variables is denoted by V H .

– A set of input and output transitions. Each global action a ∈ ActG is associated to
an input and an output transition that are respectively denoted by ρ I(a) and ρO(a).
An output transition specifies how variables are updated when the interface emits
the action. An input transition is the conjunction of two parts: (1) an input global
transition ρ IG(a) that specifies constraints on how other interfaces can update the
global variables when emitting a, and (2) an input local transition ρ IL(a) that can
update the local variables of the interface when other interfaces emit a. The reason
to split the input transitions in two parts will be discussed in Sections 4 and 5.

– A set of local transitions. Each local action a ∈ ActL is associated with a transition
ρ I(a), which can modify the value of local variables. Local transitions cannot be
synchronized with transitions of other interfaces. Notice that local transitions were
not present in the original model of [12].

5

– An input and an output invariant, respectively denoted by ψ I and ψO. Invariants
are sets of states that are used to constrain the input and output transitions of the
interface. Precisely, input transitions must maintain the input invariant true, and
output transitions must maintain the output invariant true.

– An initial condition I that describes the initial constraints on the set of local vari-
ables of the interface.

For an interface M, we say that a state of M is a value assignment to the variables
in V all .
Note that in TICC, the term “sociable interface” is replaced by “module”, but a module
is no more than the description of a sociable interface in the input language of the tool.

Example 1. The Control Unit C of the fire detection system described in the previous
section is a sociable interface with 3 actions: fire, disable, call fd. Its internal state can
be encoded with a local variable s, so that a state of C assigns a value between 0 and 3 to
s. The action fire has input transitions from states s = 0,s = 1,s = 2, but not from s = 3.
The action has no output transition meaning that the interface cannot emit the action fire.
The action call fd has an output transition from s = 1 to s = 2, but no input transition.
Hence, the interface makes the assumption that the environment can never issue call fd.
Notice that we can follow the same reasoning for the (faulty) smoke detectors.

The Game Underlying the Model

As mentioned in the introduction, a sociable interface induces a turn-based game be-
tween the Input and the Output players. The definitions of the moves, outcomes, and
strategies of this game have been described in [12]. In this paper, the reader only needs
to know how moves are defined.

The moves of the Input and Output players are those induced by the input and
the output transitions (the game model supposes that both the input and the output
transitions are conjoined with their corresponding invariants). In addition, each player
owns a stuttering move to ensure that the runs of the game are infinite.

The definition of the stuttering move is straightforward for the Output player: this
is the identity transition. For the Input player the definition is slightly different: the
stuttering move is an additional transition that can modify the value of global history
free variables. The stuttering move of the Input player is often referenced to as the
environment transition; it is automatically added by TICC when specifying a sociable
interface.

Well-Formedness

Given a sociable interface M, it is possible to compute the set of states SI (resp. SO)
from which the Input (resp. Output) player has a strategy to always stay in the set of
states that satisfy the input (resp. output) invariant, whatever the Output (resp. Input)
player does. A sociable-interface is well-formed if each reachable state s of M belongs
to SI∩SO, and moreover ψ I = SI and ψO = SO; see [12] for a detailed explanation.

6

The tool TICC automatically ensures that modules are well-formed before allowing
the user to manipulate them. To this end, TICC may add extra conditions to the initial
condition and the input/output invariants that are defined by the user. Hence, the user
does not need to take care of the notion of well-formedness, and we will not elaborate
on it in the rest of the paper.

The Tool TICC

TICC is a tool that allows users to specify sociable interfaces, called “modules”, us-
ing a textual language based on guarded commands, perform operations on the mod-
ules, and verify properties of modules. TICC is implemented as a set of functions
that extend the capabilities of the OCaml [20] command-line. The tool is released
under the GPL. The code of TICC is freely available and can be downloaded from
http://dvlab.cse.ucsc.edu/dvlab/Ticc. This web site is a Wiki that also contains the docu-
mentation for the tool, as well as several examples including those that will be presented
in this paper. Internally, TICC relies on a representation of modules which is based the
MDD/BDD Glue and Cudd packages [22]. The source files of the tool are organized as
follows:

1. The root contains files with the basic information about the tool. There is a README
file that describes the files of the root.

2. The directory examples contains a series of examples and a tutorial. Again, there
is a README file that can be consulted for more information.

3. The directory src contains the code itself; it is composed of three sub directories:
glu-2.0, mlglu, and ticc. Directories glu-2.0, and mlglu contain the code
needed to adapt the MDD/BDD Glu package to work with tcc. A directory doc

contains automatically-generated documentation for the tool. In particular, the file
doc/api/Ticc.html (automatically generated from src/ticc/ticc.mli) doc-
uments all the commands available to the user.

4 Starting with TICC

This section is an introduction to the use of TICC. It presents very simple examples, to
illustrate the process of entering a program, and running the tool.

To use TICC, first ensure that the executable file “ticc” is in your path. Then, invoke
it in interactive mode simply by typing:

ticc

The result of this operation is an Ocaml prompt5 from where one must type:

open Ticc;;

5 Remember that TICC is implemented as a set of functions that extend the capabilities of Ocaml.

7

At this point the functions in the module of TICC become available at the top level.
These functions are documented in the file ticc/doc/api/Ticc.html. Most of them will be
described in the rest of this paper.

The next operation is to provide TICC with a TICC program. TICC programs are
entered in files with the extension .si that stands for Sociable Interface. The syntax of
TICC programs will be presented in the following sections. Program files are parsed
with the command

parse "MyTiccProgram.si";;

The parse function reads in a .si file describing modules and global variables, and
places these definition into a global namespace. If the .si file does not follow the syntax
of the input language, the function reports an appropriate error message. Parsing multi-
ple files is allowed and viewed as an incremental process: new declarations are added to
the existing ones. This implies that one cannot declare two modules with the same name
in different files, and that one only needs to declare global variables once. After parsing
at least one TICC program, one can perform operations on and between modules of the
program.

Notice that one can also write script files for TICC. A script file is a file that groups
a set of commands that can be executed in one step. Figure 2(b) provides an example of
the content of a script file whose name is example.in. At this point, the reader should
be able to interpret lines 1 and 2. Lines 3 and 4 will be explained later. One can invoke
TICC to execute the script file with the following command from the shell prompt:

ticc example.in

We dedicate the rest of this section to TICC programs that illustrate some of the
main features of the input language of the tool. Operations on and between modules
will be described in the next sections.

4.1 Getting to Know TICC Programs

As a first example, we consider the translation of the fire detection system to a TICC

program. The file for the corresponding TICC program is given in Figure 2(a) and is
named detector.si.

The program consists in the declaration of three modules: Module ControlUnit,
FireDetector1, and Faulty FireDetector2 respectively correspond to interfaces
C, D1, and D2 of Figure 1. Let us consider module ControlUnit. This module shows
some of the very basic elements of a TICC module. It contains:

– Local variable declarations. The module declares a variable s whose value is an
integer between 0 and 3. TICC supports Boolean and integer range variables.

– Input and output transitions. The transitions are specified using guarded commands
guard ⇒ command, where guard and command are Boolean expressions over the
local and global variables; as usual, primed variables refer to the values after a
transition is taken. For instance, the output transition call fd can be taken only
when s has value 1; the transition leads to a state where s = 2. The declaration of

8

1 module ControlUnit:

2 var s: [0..3] // 0=waiting, 1=alarm raised, 2=fd called, 3=disabled

3
4 input fire: { local: s = 0 | s = 1 ==> s’ := 1

5 else s = 2 ==> }

6 input disable: { local: true ==> s’ := 3 }

7 output call_fd: { s = 1 ==> s’ = 2 }

8 endmodule

9
10 module FireDetector1:

11 var s: [0..2] // 0=idle, 1=smoke detected, 2=inactive

12
13 input smoke1: { local: s = 0 | s = 1 ==> s’ := 1

14 else s = 2 ==> } // do nothing if inactive

15 output fire: { s = 1 ==> s’ = 2 }

16 input fire: { } // accepts (and ignores) fire inputs

17 input disable: { local: true ==> s’ := 2 }

18 endmodule

19
20 module Faulty_FireDetector2:

21 var s: [0..2] // 0=idle, 1=smoke detected, 2=inactive

22
23 input smoke2: { local: s = 0 | s = 1 ==> s’ := 1

24 else s = 2 ==> } // do nothing if inactive

25 output fire: { s = 1 ==> s’ = 2 }

26 input fire: { } // accepts (and ignores) fire inputs

27 // does not listen to disable action

28 endmodule

(a) TICC modeling of a fire detector system: detector.si.

1 open Ticc;;

2 parse "detector.si";;

3 let controlunit = mk_sym "ControlUnit";;

4 let faulty = mk_sym "Faulty_FireDetector2";;

(b) A script file that parses detector.si.

Fig. 2.

9

1 (* open the functionnalities of the tool *)

2 open Ticc;;

3
4 (* parse the file in where modules are described *)

5 parse "detector.si";;

6
7 (* create the symbolic representations for the three modules declared

in fire-detector.si *)

8 let fire1 = mk_sym "FireDetector1";;

9 let faulty = mk_sym "Faulty_FireDetector2";;

10 let controlunit = mk_sym "ControlUnit";;

11
12 (* print the input and output invariants of symbolic module fire1 *)

13 print_symmod_iinv fire1;;

14 print_symmod_oinv fire1;;

15
16 (* print the transition rule corresponding to action "fire" in module

fire1 *)

17 print_symmod_rules fire1 "fire" ;;

18
19 (* print the entire symbolic module fire1 *)

20 print_symmod fire1;;

Fig. 3. The TICC script detector.in for the fire detector system.

the local part of an input starts with the keyword local (and so the global starts
with global). This declaration has a particular structure, to ensure that the local
part of the rule is deterministic (see next section for clarification).

The code of detector.si presents other features that will be extensively discussed
in other examples.

An example of a script file for the fire detection system is given in Figure 3. The
name of this file is detector.in. Let us briefly describe what happens when executing
ticc detector.in from the shell.

Code between lines 1 and 5 has already been described earlier: we open the tool
and parse a TICC program specified in a file called fire-detector.si. At this point, TICC

contains an enumerative representation of the modules and the global variables that
have been declared.

The command mk sym used in lines 8, 9, and 10 converts the enumerative repre-
sentation of modules into a symbolic representation based on MDDs [23]. An MDD is
similar to a BDD [4], extended to work on integer ranged variables instead of Boolean
ones. Given a constraint on a set of integer ranged variables, an MDD is a representation
of all the values of the variables that satisfy the constraints.

The initial condition and the input/output invariants of a module are sets of con-
straints on its variables; they can thus be represented with MDDs. Since transition
relations express constraints between the values of the variables before and after the

10

transitions have been applied, they can also be represented with MDDs. The symbolic
representation is in general more compact and efficient than an enumerative one; TICC

operations can be easily implemented symbolically, as explained in [12].
The rest of the file detector.si illustrates some of the printout functions available

in TICC. As an example, in lines 13 and 14 the user asks TICC to print out the input and
output invariants of the symbolic module fire1. In this example, both invariants have
value true. In line 17 the user asks TICC to print the transition rule corresponding to
action fire of module FireDetector1. The printout produced by this command is:

PRINTING the rule(s) for the action fire of

SYMBOLIC MODULE: FireDetector1.

[input part]:

modified vars:

{ }

[input global part]:

(1)

[input local part]:

(1)

[output part]:

Owned by module FireDetector1

modified vars:

{ FireDetector1.s }

(

(FireDetector1.s = 1)(

(FireDetector1.s’ = 2)))

When performing a printout, TICC describes the input and output transitions corre-
sponding to the action, as well as the variables that are involved. Notice that a condition
which is true is denoted by TICC as “(1)”. For more printout functions, consult the
documentation file ticc/doc/api/Ticc.html.

4.2 A More Elaborate Example

We now present a more elaborate example of TICC module, that makes use of most
features of the input language. An Anti-blocking System (ABS) is an automotive com-
ponent that tries to prevent wheel slippage by modulating the braking force. In Fig-
ure 4, we present a model of an abstract ABS, comprising two modules. Module
ABS controller is intended to be periodically invoked by the environment using
the action tick. When it receives that action, the module moves to the internal state
state=1 and sets the global variable abs on to true. Then, it checks the current ac-
celeration of the vehicle against the current pressure of the user on the brake pedal.
If the module establishes that the situation requires ABS intervention, it emits action
do it, otherwise it goes back to internal state state=0 via the action reset.

Module ABS actuator, instead, accepts an input signal do it. At that time, it
moves to a different internal state characterized by state=true. When state=true,
the module controls the brakes according to a simplified anti-blocking algorithm.

In the following, let M be the sociable interface corresponding to module
ABS actuator.

11

1 var b_pedal, b_force: [0..5]

2 var accel: [0..10]

3 var abs_on: bool

4
5
6 module ABS_controller:

7 var state: [0..2]

8
9 stateless accel, b_pedal

10
11 initial: state = 0

12
13 input update_b_force: { global: abs_on ==> b_force’ = b_force }

14 input tick: { global: abs_on ==> b_force’ = b_force

15 local: state = 0 ==> state’ := 1

16 else true ==> }

17 output do_it: {

18 state = 1 & (b_pedal > 0 & accel > 4) ==> state’ = 2 & abs_on’

19 }

20 output reset: {

21 state = 1 & (b_pedal = 0 | accel <= 4) ==> state’ = 0 & ~abs_on’

22 }

23 input done: { local: state = 2 ==> state’ := 0 }

24
25 endmodule

26
27
28 module ABS_actuator:

29 var turn, state: bool

30
31 stateless b_pedal, b_force

32
33 initial: turn = false & state = false

34
35 oinv: true

36 iinv: true

37
38 input do_it: { local: ~state ==> state’ := true }

39 output done: {

40 state & turn ==> b_force’ = b_pedal & ~turn’ & ~state’;

41 state & ~turn ==> b_force’ = 0 & turn’ & ~state’

42 }

43 endmodule

Fig. 4. TICC modeling of an Anti-blocking System.

12

Global variables. Global variables are declared outside modules. As we will see, mul-
tiple modules can read and modify the value of global variables.

In our case, the system comprises four global variables: abs on indicates whether
the ABS is currently controlling the brakes, b pedal is the amount of pressure that
the driver is currently applying on the brake pedal, b force is the amount of pressure
that the brake pads are currently applying to the brake rotors, and accel is the current
acceleration of the vehicle. Since TICC does not support negative ranges, we assume
that values of accel smaller than 4 represent negative accelerations.

In TICC, the set of global variables used by a module is automatically built by
collecting all global variables that are mentioned in any transition rule. Thus, as far as
module ABS actuator is concerned, we obtain V G

M = {b pedal,b force}.

History-free variables. By default, a module remembers the value of its global vari-
ables, and expects to know all actions that can modify them. More precisely, by default,
global variables in a module are history variables. The module assumes that, unless
some input or output action modifies their value, these global history variables retain
their value through time. To enable reasoning about their value, if a global variable is
a history variable in a module M, all the actions that can modify this variable must be
known to M (declared as input).

This requirement can potentially require a module to possess very many input ac-
tions. There are two solutions to this problem. One, wildcard actions, will be described
later. The other solution consists in declaring some variables to be history-free. In this
case, the module does not track their value, and does not need to know (declare) all
actions that modify their value.

In the case of module ABS actuator, both b pedal and b force are declared to
be history-free. b pedal is naturally history-free, since we can make no assumptions
on how the driver is going to use the brake pedal. b force is also left history-free, as
we assume that the actuator does not care if other modules change its value. Since no
other global variable is mentioned by the module, we obtain V H

M = /0.

Local variables. Local variables are declared inside a module, using the same syntax
of global ones. A local variable is only visible in the module it is declared in.

Module ABS actuator declares two local variables of type bool, so that V L
M =

{state,turn}. state is true when the module is ready to emit its output action. turn
is used to implement the following simplified anti-blocking algorithm: when turn is
true, the actuator lets the driver decide the amount of braking, when turn is false, the
actuator sets the braking force to zero.

Actions. In TICC, actions are not specifically declared. One can directly declare a tran-
sition rule and label it with a new or pre-existing action name. The tool collects all the
actions used by a module in a set of module actions.
For module ABS actuator, we have ActG

M = {do it,done} and ActL
M = /0.

Initial condition. A module can declare its initial condition using the keyword
initial. The initial condition is expressed by a Boolean expression over the set of
local variables.

In our case, module ABS actuator starts with turn and state equals to false.

13

var x, y: [0..10]

module Test:

oinv: x + y <= 15

output a: { true ==> x’ = x + 1 }

endmodule

Fig. 5. A module with a non-trivial output invariant.

Invariants. An invariant is a condition over the state space of a module, that is con-
stantly satisfied. Following the input/output duality which is proper of interfaces, mod-
ules can have two invariants: an input invariant and an output invariant. The output
invariant defines a set of states that will not be left by any local or output transition.
In practice, each local or output transition rule is implicitly conjoined with the output
invariant of the module. Dually, a module assumes that its environment does not violate
its input invariant. In practice, all input transition rules are implicitly conjoined with
the input invariant of the module. Note that, since modules are well-formed, the Input
(resp. Output) player can ensure that the input (resp. output) invariant is never left. This
indicates that no output transition leads from a state satisfying both invariants to a state
satisfying the output, but not the input, invariant. Symmetrically, no input transition can
lead from a state satisfying both invariants to a state satisfying the input, but not the
output, invariant.

The invariants of ABS actuator are both equals to true. In fact, specifying a
true invariant is equivalent to specifying no invariant at all, as done by module
ABS controller. Invariants are useful to express certain relationships between vari-
ables. As instance, consider the example in Figure 5, comprising a module Test, to-
gether with two global variables.

The output invariant expresses the property that this module will always enforce that
the sum of x and y is at most 15. This implies that module Test will not emit action
a when the current sum of x and y is at least 15. As we will see later, the main use of
invariants is in composition: input invariants will be used to express the constraints on
the environment that guarantee the compatibility of the modules being composed.

Transition rules. TICC supports three types of transition: input, output and local transi-
tions. Output transitions are the ones that users are most likely to be familiar with. They
describe a possible behavior of the module, consisting in emitting an action, while pos-
sibly changing the value of global and local variables. Local transitions can be thought
of as a special type of output transition, where the module is only allowed to update its
local variables. Moreover, local transitions are invisible to other modules, so that the
name of the action labeling a local transition is irrelevant. They can be declared using
the syntax:

local a: { guard ==> command }

Module ABS actuator can only emit one output action, called done. As previ-
ously said, the corresponding transition rule is expressed by a sequence of guarded

14

commands. In this case, the first guarded command (line 17) states that if both state

and turn are true, action done can be performed. As a consequence, the next value of
b force will be equal to the current value of b pedal, and both state and turn will
have value false. The second guarded command (line 18) states that the transition can
also be taken if state is true and turn is false. In this case, the next value of the global
variable b forcewill be zero, while the local variables turn and statewill have value
true and false, respectively. In this case, the two guards are mutually exclusive. In gen-
eral, more than one guard can be true at a given time: at run-time, any of those guards
can be selected nondeterministically.

Notice that action done occurs only as output in ABS actuator. This implies that
the module does not accept it as input.

One feature of TICC guarded commands that might surprise at first is that the dis-
tinction between guard and command is purely conventional. A guard and its corre-
sponding command are internally conjoined, so that

guard ==> command

is always equivalent to:

true ==> guard & command

This holds for output rules, local rules, and the global section of input rules. The local
section of input rules follows a different syntax, as explained later in this section.

For instance, consider again module Test in Figure 5. The transition rule corre-
sponding to action “a” seems to state that module Test can always emit “a”, whose
effect will be to increase the value of x. However, according to the principle we just
stated, the action cannot in fact be emitted when x=10.

Input transition rules are split in two sections. The global section describes assump-
tions about how other modules can change the value of global variables when emitting
certain outputs. The local section describes how this module reacts when receiving a
certain action. The reaction of the module to an input has two important restrictions: (i)
it can only update local variables, and (ii) it must do so in a deterministic fashion. These
restrictions are due to the theoretical assumption that each step is driven by the module
carrying out the output action. In turn, this ensures that the semantics of the model is a
turn-based game rather than a concurrent one. As a consequence, we have the following
special syntax for the local part of input rules:

guard1 ==> var11’ := expr11, var12’ := expr12, ...

else guard2 ==> var22’ := expr21, var22’ := expr22, ...

...

To ensure determinism, commands can only include assignments to local variables.
Moreover, the else keyword is inserted to remind the user that in this context guarded
commands will be evaluated in the order in which they are written, (i.e., guard2 is
evaluated only if guard1 is false, and so on).

The only input action that module ABS actuator can accept is called do it. The
corresponding transition rule has no global section, meaning that the module makes no
assumptions on the current and next value of global variables when do it is received.
The local section states that, when state is false and abs on is true, the next value

15

of state will be true. We may wonder what happens when the conditions set by
the guard fail (i.e., state is true or abs on is false). The answer is that the condition
expressed by the guard becomes an input assumption and as such it migrates to the
global part of the rule, as witnessed by a printout of the module. In other words, the
input rule corresponding to action do it is equivalent to the following:

input do_it: {

global: ~state ==> true

local: true ==> state’ := true

}

4.3 Arithmetic in TICC

TICC allows the declaration of Boolean and integer range variables. Both of those dec-
laration have previously been illustrated. However, due to the bounded size of the vari-
ables, dealing with integer range variables implies some implementation choices that
are worth summarizing.

From the previous section, we learned that integer range variables allow to build
numerical expressions, while Boolean variables allow to build Boolean expressions.
The two types of expressions are combined in guarded commands with the classical
Boolean and numerical comparison operators. The question arises of how to interpret
the arithmetical operators + and − on a finite range type. A common choice is to im-
plement modulo arithmetic: for instance,if x and y have range [0.. m − 1], then the
expression x+y is evaluated to x+y mod m. This is the choice followed, for instance,
in Mocha [3, 11]. There are two drawbacks in following this choice. The first is that
comparisons behave in a counterintuitive way, making the system prone to modeling
errors. For instance, the two comparisons x + 1 ≥ y and x ≥ y− 1 are not equivalent:
the first returns an unexpected result with x = 3, the second when y = 0. The second
drawback is that it is difficult to come up with consistent and intuitive typing rules for
expressions including variables with different ranges; for instance, it is not clear how
to evaluate x + y + z = w if all of x, y, z, and w have different ranges. Indeed, the tool
Mocha avoided this problem by forcing expressions to consist of one range type only,
which is a rather restrictive requirement.

In TICC, we follow a different choice, based on the following two principles:

1. Numerical expressions are always evaluated in a range that is large enough so that
no roll-over, or overflow, occurs.

2. Negative numbers are not considered.

Let us illustrate the consequences of these principles. Consider the expression:

x’ = y + z - 3

and assume that the ranges are as follows:

var x: [0..4]

var y: [0..5]

var z: [0..5]

16

The design decisions imply that:

1. The sum of y and z is evaluated in a temporary range type that is at least [0..10], so
that no overflow can occur.

2. If the result of the expression is negative, it is considered different from the result
of any other expression, and in particular x′, so that the overall expression will be
false.

The expression is thus evaluated as follows:

– If x is 4, y is 4, and z is 3, then the expression x′ = y+z−3 will be true, as expected.
In fact, 4+3 will give 7, and 7−3 = 4: no overflow occurs.

– If x is 1, y is 4, and z is 5, the expression is false, as 4+5−3= 6, which is different
from 1. Note in particular that roll-over does not occur: even though 6 mod 5 = 1,
the expression on the right hand side is considered to have value 6, not 1, in spite
of the left hand side having range [0..4].

– If y is 1, and z is 1, the expression will be false, since the right hand side gives rise
to a negative number.

The evaluation of an expression proceeds by evaluating sub-expressions and by com-
bining the obtained results. In general, one could suppose that if a sub-expression is
evaluated to false, then the entire expression is evaluated to false. As an example, con-
sider the following expression:

x’ = y - z + 3

If x′ is 2, y is 2, and z is 3, then the expression would yield value false because y−
z represents a negative number. However, we have that 2 = 2− 3 + 3, meaning that
the evaluation of the whole expression is true! To mitigate (but not eliminate) this,
after parsing, TICC tries to reorder the expressions, so that whenever possible, negative
results are avoided. For instance, the above expression would be internally transformed
into the following expression:

x’ = y + 3 - z

so that a negative result would occur only if the total result is negative. TICC can do
basic expression simplification, and it reorders the terms of a sum so that positive terms
occur before negative terms. A good way for the user to know if reordering occurred is
to print the syntactic representation of a module after parsing it.

5 Composing Sociable Interfaces in TICC

In TICC, the main operation on modules is composition. Composition synchronizes
two modules on their shared actions, and returns a new module, representing the joint
behavior of the two original modules, along with the environment assumptions required
to guarantee the correct functioning of the original modules. While composing modules,
TICC checks their composability and compatibility:

17

open Ticc;;

parse "fire-detector-disable.si" ;;

let controlunit = mk_sym "ControlUnit";;

let fire1 = mk_sym "FireDetector1";;

let wfire2 = mk_sym "Faulty_FireDetector2";;

let c = compose fire1 controlunit;;

let d = compose wfire2 controlunit;;

print_symmod c;;

print_symmod d;;

print_input_restriction c "disable";;

print_input_restriction d "disable";;

print_input_restriction c "smoke1";;

print_input_restriction d "smoke2";;

Fig. 6. A script file illustrating the composition of the modules for the fire detector example of
Figure 2(a).

– Composability is a condition involving the sets of variables and actions of a mod-
ule, and that can be checked statically, and extremely efficiently. Essentially, two
modules are composable if it makes sense to consider the effect of their communi-
cation.

– Compatibility is a condition about the behavior of the modules. Two modules are
compatible if there is some environment in which they can work jointly together,
with all their input assumptions being satisfied. Checking compatibility requires
solving a game between the Input and Output player; the solution of the game
yields the input assumptions for the composition of the two modules.

The TICC command compose checks composability and compatibility of two modules,
and if both tests are positive, computes a symbolic module corresponding to their com-
position. If incompatibilities arise, TICC can provide diagnostic information to detect
the reason.

Example 2. The script file given in Figure 6 illustrates the composition operation for
the fire detector example mentioned in Section 2 and Figure 2(a).

In the sociable interface model, and thus in TICC, the composition is done in four
steps. First, one checks that the modules can be composed (see Section 5.1). If the
modules are composable, then the next step is to build the product between them (see
Section 5.2). At this point, the product can contains bad states, i.e. states that exhibit
a local incompatibility (see Section 5.3). The last step of the composition consists in

18

synthesizing a strategy for the Input player to stay away from the set of bad states
whatever the Output player does (see Section 5.4).

This section describes how those four steps are conducted in TICC. More informa-
tion about the theory behind the operations can be found in [12].

We remark that the composition of two modules in TICC only works on their sym-
bolic representation. In what follows, we consider two symbolic modules M1 and M2

where Mi = (ActGi ,ActL
i ,V

G
i ,V L

i ,V H
i ,ρ I

i ,ρO
i ,ρL

i ,ψ I
i ,ψO

i), and we implicitly refer to their
corresponding sociable interfaces.

5.1 The Composability Condition

To facilitate composition, TICC ensures that modules have distinct local actions and
local variables by automatically renaming local variables and local actions: a local vari-
able x of module M is renamed to M.x upon parsing the module M.

We say that the two modules M1 and M2 are composable if they satisfy the following
non-interference condition: if an action a ∈ ActG

1 (respectively ActG
2) of module M1

(resp. M2) can modify a history variable of module M2 (resp. M1), then a ∈ ActG
2 (resp.

ActG1).
Since output transitions are the only ones that can modify the value of a global vari-

able6, the condition boils down to checking that if module M1 has an output transition
for action a that modifies7 a history global variable of module M2, then module M2 must
have an input transition for action a.

The non-interference condition is the main motivation for distinguishing between
history and history-free variables. The non-interference condition states that a mod-
ule should know all actions of other modules that modify its history variables. If we
dropped the distinction, requiring that a module knows all actions of other modules that
can change any of its variables (history or history-free), we could greatly increase the
number of actions that must be known to the module. Wildcard actions, as described
later, is another method.

Example 3. Consider the composition of the modules in the Anti-blocking System
(ABS) described in Section 4.2. The global variable b force is a history variable
for module ABS controller. Since module ABS actuator has an output transition
for action done that modifies this variable, module ABS controller must accept
done as input. In this case, the input transition of action done states that module
ABS controller agrees on all modifications that could be done to the variable.

Another consequence of the non-interference condition is the following. Denote
ABS the module obtained by composing the two ABS modules. If another module wants
to modify variable b force and be composed with ABS, it is forced to do so using one
of the remaining inputs of ABS, namely tick and update b force. Both those input
transitions impose the condition that if abs on is true, the value of b force is not
modified. Thus, the non-interference condition allows modules to effectively control a
global variable, when needed.

6 Input transitions only make assumptions on those values.
7 Where “modifies” means that the the variable appears primed in the command of the output

transition.

19

5.2 The Product

The product describes how elements of M1 and M2 are combined to give rise to a new
module M12 representing their joint behavior.

First, the set of local, global, and history variables are obtained by taking the unions
of those of the two modules: V all

12 =V all
1 ∪V all

2 , V L
12 =V L

1 ∪V L
2 , and V H

12 =V H
1 ∪V H

2 . The
same stands for the set of actions: ActG

12 = ActG1 ∪ActG
2 and ActL12 = ActL1 ∪ActL

2 . The
input and output invariants of M12 are obtained by conjoining those of M1 and M2, and
so for the initial condition.

The most crucial part in the definition of the product concerns the transitions associ-
ated to the actions of M12. Those transitions are a suitable combination of the transitions
of M1 and M2.

Similarly to other interface models, for each shared action, the output transition of
M1 synchronizes with the input transition of M2, and symmetrically, the output transi-
tion of M2 is synchronized with the input transition of M1. This models communication,
and gives rise to output transitions in the product. The input transitions of M1 and M2

corresponding to the same shared action are also synchronized, and lead to an input
transition in the product. Output transitions, on the other hand, are not synchronized be-
tween them: if both M1 and M2 can emit a shared action a, they do so asynchronously, so
that their output transitions interleave. As usual, the modules interleave asynchronously
on transitions labeled by non-shared actions. We now describe in more details the inter-
leaving on shared actions.

If M1 has an input transition ρ I
1(a), and M2 has an input transition ρ I

2(a), then M12

has an input transition ρ I
12(a). The local and global part of ρ I

12(a) are obtained by con-
joining those of ρ I

1 and ρ I
2, i.e., ρ IL

12(a) = ρ IL
1 (a)∧ρ IL

2 (a) and ρ IG
12 (a) = ρ IG

1 (a)∧ρ IG
2 (a).

This models the fact that M1 and M2 can react jointly to inputs from the environment.
The situation is more complicated for output transitions. Suppose that M1 has an

output transition ρO
1 (a), and M2 has an input transition ρ I

2(a). The result of the two
transitions is an output transition ρO

12(a) in M12, obtained by conjoining ρ IL
2 (a) with

ρO
1 (a).

The reader could wonder why the new output transition is not obtained by conjoin-
ing also ρ IG

2 (a) with ρO
1 (a). The reason is the definition of input and output transitions:

output transitions can modify global variables, while input transitions can only make
assumptions on them. The assumptions expressed by the global section of input rules
will be taken into account in the next phase of composition.

5.3 Locally Incompatible States

The product defined in the previous section can contain locally incompatible states.
In a locally incompatible state, one of the modules being composed wants to issue
an output transition labeled by a shared action, while the other module does not have
a corresponding global input transition from that state which agrees with the output
transition on the updates of global variables. In practice, TICC computes the set of good
states Good, which is simply the complement of the set of locally incompatible states.

Example 4. Consider the fire detector example of Section 2, illustrated in Figure 2(a).
In the composition of ControlUnit and Faulty FireDetector2, the state where

20

ControlUnit.s = 3 and Faulty FireDetector2.s = 1 is locally incompatible:
module Faulty FireDetector2 can issue the output action fire, which module
ControlUnit, being disabled, cannot accept.

5.4 Synthesizing a Strategy

After computing the product of the two modules and the set of good states, the next
operations is to compute the set of states Win from which the Input player of M12

has a strategy to always stay in Good. This is done by playing a safety game whose
objective is Good. The result of the game is used to restrict the input invariant of the
product (use the command print input restriction to see how the new invariant
restrict the Input transitions of the composition). Hence the composition of the two
modules can only works in environments that satisfy the restricted input invariant. This
can be considered an optimistic approach, since two modules are not considered to be
incompatible if they cannot work in one particular environment.

The set Win is also conjoined with the initial condition of the product, giving rise
to the initial condition of the composition. If the resulting initial condition is empty, the
two modules are definitely incompatible.

Example 5. Consider again the fire detector example of Section 2, illustrated in Fig-
ure 2(a). The modules ControlUnit and Faulty FireDetector2 are compatible: in
fact, there is an environment that avoids all locally incompatible states. For instance, to
avoid the state where ControlUnit.s = 3 and Faulty FireDetector2.s = 1, the
environment can simply avoid issuing the action smoke2 if disable has already been
issued, or can avoid to issue action disable if smoke2 has already been issued.

Of course, such a compatibility masks the fact that it does not make sense to restrict
the environment’s ability to issue actions smoke2 — a fire can start at any time! The
user can discover the problem by asking TICC to print the restriction of action smoke2,
via the command

print_input_restriction d "smoke2";;

which generates the following output:

Restriction of input action smoke2:

(

(Faulty_FireDetector2.s = 0)(

(ControlUnit.s = 3)))

This indicates that, after the composition, action smoke2 can no longer be accepted if
no smoke has been detected yet (Faulty FireDetector2.s = 0) and the controller
has been disabled (ControlUnit.s = 3).

Similarly, the user can print the restriction of action disable in the composition of
ControlUnit and Faulty FireDetector2 to discover how the ability of accepting
disable has been restricted by the composition.

21

6 Composition: A Concrete Example

In this section we present a concrete example of the use of TICC on a large program.
We consider a model of the interaction among contractors fixing a house. The example
illustrates how TICC can verify the compatibility of the interaction protocol among
communicating entities.

The example models a house with four rooms: a K(itchen), a L(iving), a B(athroom),
and a (Bed) R(oom). Each room can suffer from electrical and plumbing problems
that can be fixed by a plumb(er) and an electr(ician). Depending of the problem that
occurred, contractors are also needed to repair the damages caused on the wall and on
the floor. After the repairs, the room has to be cleaned. As rooms are small, only one
contractor at a time can work in a room.

We wish to know if the contractors can work together and fix the problems. This
question can be answered in TICC by modeling each contractor as a module, and by
considering additional modules that simulate faults, and that call the contractors to fix
things. The contractors can work together if the composition of all the modules is com-
patible.

The TICC program corresponding to the example is as follows. Each room may have
ongoing repair work; this is tracked by the following global variables:

var K_busy, L_busy, B_busy, R_busy: bool

In each room, four items might need repair: plumb(ing), electr(ical), floor, and wall.
Moreover, the room may need to be clean(ed). For the kitchen, the need for repair and
the need to clean are tracked by the following global variables (where a truevariable
means that the corresponding item is broken):

var K_plumb, K_electr, K_floor, K_wall, K_clean: bool

Similar variables track the state of L(iving room), B(athroom), and (bed)R(oom). The
activity state of the five contractors is tracked by the following global variables:

var plumb_active, electr_active, floor_active,

wall_active, clean_active: bool

At the start, one supposes that there is no ongoing work in the room, meaning that the
contractors are not working.

stateset initcond: ~K_busy & ~L_busy & ~B_busy & ~R_busy & ~plumb_active

& ~electr_active & ~floor_active & ~wall_active & ~clean_active

After these declarations, we declare the modules. The module Breaksmodels plumbing
and electrical failures. The code for this module is given in Figure 7. The body of
the module contains a series of declarations of output transitions. As an example, the
following transition models the fact that, when the plumbing in the kitchen is not broken
(~ means “not”, and K plumb tracks whether the kitchen plumbing works), then it can
break, generating the output transition break K plumb, and signaling that the kitchen
plumbing, floor, and walls need repair. Moreover, the room needs to be cleaned.

22

1 module Breaks:

2 stateless

3 K_plumb, K_electr, K_floor, K_wall, K_clean,

4 L_plumb, L_electr, L_floor, L_wall, L_clean,

5 B_plumb, B_electr, B_floor, B_wall, B_clean,

6 R_plumb, R_electr, R_floor, R_wall, R_clean

7
8 output break_K_plumb : { ~K_plumb ==> K_plumb’ & K_floor’ & K_wall’

& K_clean’ }

9 output break_L_plumb : { ~L_plumb ==> L_plumb’ & L_floor’ & L_wall’

& L_clean’ }

10 output break_B_plumb : { ~B_plumb ==> B_plumb’ & B_floor’ & B_wall’

& B_clean’ }

11 output break_R_plumb : { ~R_plumb ==> R_plumb’ & R_floor’ & R_wall’

& R_clean’ }

12
13 output break_K_electr : { ~K_electr ==> K_electr’ & K_wall’ &

K_clean’ }

14 output break_L_electr : { ~L_electr ==> L_electr’ & L_wall’ &

L_clean’ }

15 output break_B_electr : { ~B_electr ==> B_electr’ & B_wall’ &

B_clean’ }

16 output break_R_electr : { ~R_electr ==> R_electr’ & R_wall’ &

R_clean’ }

17 endmodule

Fig. 7. Module Breaks for the house example.

output break_K_plumb : { ~K_plumb ==> K_plumb’ & K_floor’ &

K_wall’ & K_clean’}

All global variables are history free for this module.
The module Calls calls the repairmen and the cleaner when needed (the code of

this module is given in Figure 8); as an example, the plumber is called using the follow-
ing statement:

output call_plumb : { ~plumb_active &

(K_plumb | L_plumb | B_plumb | R_plumb) ==> plumb_active’ }

Note that all the variables are history free for this module. This choice is quite
obvious since, as an example, there is no reason for Calls to track the value of
plumb active after it has called the plumber. If global variables where not history
free, then one would be forced to add many new input rules to the module.

After the declaration of the modules Breaks and Calls, come the declarations of
the modules for the five contractors.

The plumber, whose part of the code is given in Figure 9, and the other contractors
keep track of whether they are working via a Boolean variable working. Also, they
keep track of the room on which they are working via the local Boolean variables Kw,
Lw, Bw, Rw. W hen called, the plumber is initially not working on any room.

23

1 module Calls:

2 stateless

3 K_plumb, K_electr, K_floor, K_wall, K_clean,

4 L_plumb, L_electr, L_floor, L_wall, L_clean,

5 B_plumb, B_electr, B_floor, B_wall, B_clean,

6 R_plumb, R_electr, R_floor, R_wall, R_clean,

7 plumb_active, electr_active, floor_active, wall_active,

clean_active

8
9 output call_plumb : { ~plumb_active & (K_plumb | L_plumb | B_plumb |

R_plumb) ==> plumb_active’ }

10 output call_electr : { ~electr_active & (K_electr | L_electr |

B_electr | R_electr) ==> electr_active’ }

11 output call_floor : { ~floor_active & (K_floor | L_floor | B_floor |

R_floor) ==> floor_active’ }

12 output call_wall : { ~wall_active & (K_wall | L_wall | B_wall |

R_wall) ==> wall_active’ }

13 output call_clean : { ~clean_active & (K_clean | L_clean | B_clean |

R_clean) ==> clean_active’ }

14
15 endmodule

Fig. 8. Module Calls for the house example. The module calls the repairmen and the cleaner.

input call_plumb : { local: ~plumb_active ==> working’ := false }

When an active plumber, not working on any room, sees that the K(itchen) is unoccu-
pied (~K_busy) and needs repair (K plumb), the plumber starts to work in the K(itchen):

output K_start_plumb :

{ plumb_active & ~working & K_plumb & ~K_busy

==>

working’ & Kw’ & K_busy’ }

and similarly for the other rooms.
While working in the kitchen, the plumber does not expect anybody else to work

in it. Thus, we have to define input transitions corresponding to the actions of the other
contractors. As an example, the following rule forbids the electrician to start working
in the kitchen if the plumber is still working there.

input K_start_electr : { local: ~Kw ==> }

One of the main drawbacks of this formalization is that we have to define many input
transitions that differ only by their name but not by their contents. To simplify the
declaration of such inputs, TICC allows the use of wildcard action names. Figure 9
shows how wildcard inputs can simplify the description of the module Plumber. Using
the special character “*”, input transition rules can be defined to match a set of actions
instead of one action only. For instance, the pattern K * on line 24 of Figure 9 matches
any action whose name starts with K .

24

1 module Plumber:

2 var working: bool

3 var Kw, Lw, Bw, Rw: bool

4 initial: ~working & ~Kw & ~Lw & ~Bw & ~Rw

5 stateless

6 K_plumb, K_electr, K_floor, K_wall, K_clean,

7 L_plumb, L_electr, L_floor, L_wall, L_clean,

8 B_plumb, B_electr, B_floor, B_wall, B_clean,

9 R_plumb, R_electr, R_floor, R_wall, R_clean

10
11 input call_plumb : {local: ~plumb_active ==> working’ := false }

12 output done_plumb : { plumb_active & ~working & ~K_plumb & ~L_plumb

& ~B_plumb & ~R_plumb ==> ~plumb_active’ }

13
14
15 output K_start_plumb : { plumb_active & ~working & K_plumb & ~K_busy

==> working’ & Kw’ & K_busy’ }

16 output L_start_plumb : { plumb_active & ~working & L_plumb & ~L_busy

==> working’ & Lw’ & L_busy’ }

17 output B_start_plumb : { plumb_active & ~working & B_plumb & ~B_busy

==> working’ & Bw’ & B_busy’ }

18 output R_start_plumb : { plumb_active & ~working & R_plumb & ~R_busy

==> working’ & Rw’ & R_busy’ }

19 output K_done_plumb : { plumb_active & Kw ==> ~K_plumb’ & ~Kw’ & ~

K_busy’ & ~working’ }

20 output L_done_plumb : { plumb_active & Lw ==> ~L_plumb’ & ~Lw’ & ~

L_busy’ & ~working’ }

21 output B_done_plumb : { plumb_active & Bw ==> ~B_plumb’ & ~Bw’ & ~

B_busy’ & ~working’ }

22 output R_done_plumb : { plumb_active & Rw ==> ~R_plumb’ & ~Rw’ & ~

R_busy’ & ~working’ }

23
24 input K_* : { local: ~Kw ==> }

25 input L_* : { local: ~Lw ==> }

26 input B_* : { local: ~Bw ==> }

27 input R_* : { local: ~Rw ==> }

28 endmodule

Fig. 9. Module describing the plumber.

25

1 open Ticc;;

2
3 parse "house.si";;

4
5 let breaks = mk_sym "Breaks";;

6 let calls = mk_sym "Calls";;

7 let plumber = mk_sym "Plumber";;

8 let electrician = mk_sym "Electrician";;

9 let rudelectr = mk_sym "RudeElectrician";;

10 let floors = mk_sym "Floors";;

11 let walls = mk_sym "Walls";;

12 let clean = mk_sym "Clean";;

13
14 let c0 = compose breaks calls;;

15 let c1 = compose c0 plumber;;

16 let c2 = compose c1 electrician;;

17
18 let d2 = compose c1 rudelectr;;

Fig. 10. TICC script for the house example: house.in.

In module Plumber, variable plumb active is a history variable, as the module
plans to control its value. Variables K busy, L busy, B busy, and R busy are also his-
tory variables. This choice, combined with the declaration of the input transitions, en-
sures that the value of those variables can be changed by other modules only if the
plumber is not working in the corresponding room.

We considered two different electrician modules. A “correct” implementation,
Electrician, checks that the kitchen is free before starting to work in it:

output K_start_electr :

{ electr_active & ~working & K_electr & ~K_busy

==>

working’ & Kw’ & K_busy’ }

Note that above, the variable Kw is local to the electrician, and indicates whether the
electrician is working on the kitchen; the equally-named variable Kw in (*) is instead
local to the plumber. An “incorrect” implementation of the electrician, WElectrician,
in the rush of getting things done, forgets to check whether somebody else is already at
work in the kitchen:

output K_start_electr :

{ electr_active & ~working & K_electr ==> working’ & Kw’ & K_busy’ }

TICC is able to detect that the composition of Breaks, Calls, Plumber, and
Electrician is compatible (see lines from 14 to 16 of Figure 10), whereas it detects
that the composition of Breaks, Calls, Plumber, and WElectrician is not. Thus,
the protocol violation can be discovered before the complete system, consisting also of
modules to repair floors and walls, is constructed. In fact, a simple check would have

26

revealed the problem already in the composition of Plumber and WElectrician (as
computed in line 18 of Figure 10). When composing Plumber and WElectrician,
TICC automatically synthesizes the assumption that (i) they are not both called to work,
or (ii) no room needs to be repaired by both of them.

We also note that the protocol violation is revealed thanks to the input assumption
of the correct module Plumber. In the game-based approach that underlies TICC, the
input assumptions of correct modules constrain the protocol of modules that will be
later composed into the system, preventing the composition of “rogue” modules. The
verification of the correctness of interaction is simply a by-product of composition. This
situation should be contrasted to the usual, non-game-based approach to modeling and
verification. In the usual approach, detecting incompatibilities requires writing separate
specifications of correctness, and can usually be performed only once all components
are composed.

7 Additional Tool Features

While composition is certainly the most important operation that TICC can perform on
modules, it is not the only one. This section is a brief introduction to the other features
of the tool.

7.1 Symbolic Operations, Model Checking, and Simulation

A set of states, in TICC, can be defined via a formula specifying constraints on the values
of the variables. TICC can parse such formulas, and construct a symbolic representa-
tion (an MDD) that enables it to manipulate the set. TICC can combine such sets with
the usual Boolean operators, via the functions set or, set and, set implies, and
set not; sets can also be compared using set is subset and set equal. A set of
states can be printed using the command print stateset (printing is not optimized,
and can lead to exponentially large printouts). TICC also contains an implementation
of the classical CTL operators [9], allowing the user to verify properties of models via
model checking. As usual, the CTL operators are documented in doc/api/Ticc.html.

Example 6. Consider the fire detection system given in Figure 2(a), and the script file
in Figure 11. Line 11 builds the symbolic representation of a set φ consisting of the
states where ControlUnit.s = 2, i.e., the firemen have been called. Line 13 prints
the set of states that satisfy the CTL formula ∃3φ , and line 15 prints the set of states
that satisfy the CTL formula ∀3φ .

TICC can also perform random simulation on symbolic modules, generating an
HTML file with the result of the simulation. This is particularly useful in the early
stages of model construction, to confirm that the model behaves as intended.

7.2 Closure

TICC allows the user to close a module with respect to the occurrence of input tran-
sitions. After several modules have been composed, the closure operation can be used

27

1 open Ticc;;

2 parse "fire-detector-disable.si";;

3
4 let fire1 = mk_sym "FireDetector1";;

5 let controlunit = mk_sym "ControlUnit";;

6 let comp = compose fire1 controlunit;;

7
8 let clone_fire1 = sym_clone fire1;;

9 simulate comp "Fire1.s = 0 & ControlUnit.s = 0", 5, "detector.html";;

10
11 let called_firemen = parse_stateset ("ControlUnit.s = 2");;

12 print_string "Can call the firemen:";;

13 print_stateset (ctl_e_f comp called_firemen);;

14 print_string "Always calls the firemen:";;

15 print_stateset (ctl_a_f comp called_firemen);;

Fig. 11. A script file illustrating individual operations.

to say that the environment is no longer able to provide a certain input. The follow-
ing example illustrates the use of the closure operation in the context of CTL model
checking.

Example 7. We consider a simple dining philosophers model, where n philosophers are
sitting at a round table. Set between each pair of neighboring philosophers are n forks,
so that all philosophers have a fork on their left, and one on their right. Each philosopher
can either think or try to eat. To be able to eat, philosophers, being rather clumsy, have
to use both forks on their sides.

Each philosopher Phil can be in one of 7 internal states that are enumerated with a
local variable s. In s=0, Phil is thinking; a transition to s=1 indicates the philosopher’s
desire for food. In state s=4 the philosopher eats. To go from s=1 to s=4, Phil has
to grab the two forks. This can be done in any order (requiring the addition of two
intermediate states s=2 and s=3, depending on which fork has been chosen first). After
having eaten, Phil releases the forks in nondeterministic order, and starts thinking
again.

The TICC program of Figure 12 and its corresponding script file given in Figure 13
show an example of dining philosophers with n = 2 philosophers and thus 2 forks. The
program can easily be extended to a greater number of philosophers. In the program,
the philosophers are represented by modules Phil1 and Phil2, while the forks with
Boolean global variables F1, and F2, whose value is true if the fork is available, and
false otherwise. The actions of grabbing and releasing forks are modeled by the ac-
tions GrabFx and givebackFx, where x ∈ {1,2} identifies the fork. Since a fork is
shared between two philosophers, each philosopher must both output these actions, and
be able to accept them as input from other philosophers. This is the purpose of the
wildcard input input *.

The problem is that, once Phil1 and Phil2 are composed, their composition can
still accept the actions GrabFx and givebackFx from the environment. It is as if

28

1 var F1, F2: bool

2 stateset initcond: F1 & F2

3
4 module Phil1:

5 var s: [0..6]

6 initial: s = 0

7
8 input *: {}

9 local no_moves: { true ==> }

10 local wants_to_eat: { s = 0 ==> s’ = 1 }

11 output grabF1: { s = 1 & F1 ==> s’ = 2 & ~F1’;

12 s = 3 & F1 ==> s’ = 4 & ~F1’ }

13 output grabF2: { s = 1 & F2 ==> s’ = 3 & ~F2’;

14 s = 2 & F2 ==> s’ = 4 & ~F2’ }

15 output givebackF1: { s = 4 ==> s’ = 5 & F1’;

16 s = 6 ==> s’ = 0 & F1’ }

17 output givebackF2: { s = 4 ==> s’ = 6 & F2’;

18 s = 5 ==> s’ = 0 & F2’ }

19 endmodule

20
21 module Phil2:

22 var s: [0..6]

23 initial: s = 0

24
25 input *: {}

26 local no_moves: { true ==> }

27 local wants_to_eat: { s = 0 ==> s’ = 1 }

28 output grabF2: { s = 1 & F2 ==> s’ = 2 & ~F2’;

29 s = 3 & F2 ==> s’ = 4 & ~F2’ }

30 output grabF1: { s = 1 & F1 ==> s’ = 3 & ~F1’;

31 s = 2 & F1 ==> s’ = 4 & ~F1’ }

32 output givebackF2: { s = 4 ==> s’ = 5 & F2’;

33 s = 6 ==> s’ = 0 & F2’ }

34 output givebackF1: { s = 4 ==> s’ = 6 & F1’;

35 s = 5 ==> s’ = 0 & F1’ }

36 endmodule

Fig. 12. A TICC dining philosophers model: dining.si.

29

1 open Ticc;;

2
3 parse "phil.si";;

4
5 let phil1 = mk_sym "Phil1";;

6 let phil2 = mk_sym "Phil2";;

7 let comp_phils = compose phil1 phil2;;

8
9 let initial = parse_stateset "Phil1.s = 0 & Phil2.s = 0 & F1 & F2 ";;

10 let bad_fork = parse_stateset "Phil1.s = 0 & Phil2.s = 0 & ~F2";;

11
12 let can_reach_bad_fork_exists = ctl_e_f comp_phils bad_fork;;

13 let result = set_and can_reach_bad_fork_exists initial;;

14 print_stateset result;;

15
16 let comp_phils_close = close comp_phils "*";;

17
18 let can_reach_bad_fork_exists = ctl_e_f comp_phils_close bad_fork;;

19 let result = set_and can_reach_bad_fork_exists initial;;

20 print_stateset result;;

Fig. 13. A TICC script for the dining philosophers.

passers-by were allowed to pick up and put down forks! Indeed, in the composition
of Phil1 and Phil2, we can start from the state where Phil1 and Phil2 are both
thinking and F2 is available and reach a state where the philosophers are still thinking
but F2 is not available, as it has been “picked up” by the environment. This is shown by
the fact that the stateset printed at line 14 is not empty.

This clearly does not make sense: once Phil1 and Phil2 are composed, we should
be able to say that the forks are no longer in the environment’s reach. To this end, we
close the composition of Phil1 and Phil2 with respect to all input actions.8 Once this
is done, the state where both philosophers are thinking but F2 is not available is no
longer reachable, and indeed the printout from line 20 is the empty set (represented as
(0)).

8 Conclusions

Interface theories are the subject of many recent works. The sociable interface model
presented in this paper is only one of them. Interface models that appeared before socia-
ble interfaces include interface automata [13, 15] and interface modules [14, 8]. Those
models were based on a communication with either actions, or variables, but not both.

Sociable interfaces do not break new ground in the conceptual theory of interface
models. However, by allowing both actions and variables in the communication process,
they take advantage of the existing models and provide rich communication primitives.

8 In general, we can close a module with respect to any set of actions.

30

The tool TICC is certainly not the first tool that implements an interface model,
and even not the most complete. As an example, the tool CHIC that implements a syn-
chronous, variable-based interface theory is able to handle pushdown games while TICC

cannot.
However, one major difference between TICC and its predecessors is its ability to

use rich communication primitives to model components in a very compact and natural
way. Another strong point of the tool is its symbolic implementation which makes it
very efficient and easily extensible.

TICC is a tool in constant evolution, and so is the sociable interface model. As an
example, we are currently developing a real-time extension of the tool, based on the
Timed Interfaces of [16]. This is a large and complex endeavor, as the game-theoretic
machinery of TICC will have to be replaced with one suited to real-time games. Another
direction we are considering is the implementation of the alternating-time temporal
logic of [2]. This logic is more suitable to model check open systems than CTL.

References

1. B. Adler, L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, V. Raman, and P. Roy. Ticc, a tool
for interface compatibility and composition. In Proceedings 18th International Conference
on Computer Aided Verification (CAV), volume 4144 of Lecture Notes in Computer Science.
Springer, 2006. to appear.

2. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In Proc. 38th
IEEE Symp. Found. of Comp. Sci., pages 100–109. IEEE Computer Society Press, 1997.

3. R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and S. Tasiran. Mocha:
modularity in model checking. In CAV 98: Proc. of 10th Conf. on Computer Aided Verifica-
tion, volume 1427 of Lect. Notes in Comp. Sci., pages 521–525. Springer-Verlag, 1998.

4. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, C-35(8):677–691, 1986.

5. A. Chackrabarti, L. de Alfaro, T.A. Henzinger, and M. Stoelinga. Resource interfaces. In
EMSOFT 03: 3rd Intl. Workshop on Embedded Software, volume 2855 of Lect. Notes in
Comp. Sci., pages 117–133. Springer-Verlag, 2003.

6. A. Chackrabarti, L. de Alfaro, M. Jurdziński, K. Chatterjee, T.A. Henzinger,
and F.Y.C. Mang. CHIC: Checker for interface compatibility, 2003. www-
cad.eecs.berkeley.edu/ tah/chic/.

7. A. Chakrabarti, L. de Alfaro, T.A. Henzinger, Marcin Jurdziński, and F.Y.C. Mang. Interface
compatibility checking for software modules. In CAV 02: Proc. of 14th Conf. on Computer
Aided Verification, volume 2404 of Lect. Notes in Comp. Sci., pages 428–441. Springer-
Verlag, 2002.

8. A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. Synchronous and bidirec-
tional component interfaces. In CAV 02: Proc. of 14th Conf. on Computer Aided Verification,
volume 2404 of Lect. Notes in Comp. Sci., pages 414–427. Springer-Verlag, 2002.

9. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 1999.
10. L. de Alfaro. Game models for open systems. In Proceedings of the International Symposium

on Verification (Theory in Practice), volume 2772 of Lect. Notes in Comp. Sci. Springer-
Verlag, 2003.

11. L. de Alfaro, R. Alur, R. Grosu, T. Henzinger, M. Kang, R. Majumdar, F. Mang, C. Meyer-
Kirsch, and B.Y. Wang. Mocha: A model checking tool that exploits design structure. In
ICSE 01: Proceedings of the 23rd International Conference on Software Engineering, 2001.

31

12. L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, P. Roy, and M. Sorea. Sociable interfaces.
In Proceedings of 5th International Workshop on Frontiers of Combining Systems, volume
3717 of Lecture Notes in Computer Science, pages 81–105. Springer, 2005.

13. L. de Alfaro and T.A. Henzinger. Interface automata. In Proceedings of the 8th European
Software Engineering Conference and the 9th ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE), pages 109–120. ACM Press, 2001.

14. L. de Alfaro and T.A. Henzinger. Interface theories for component-based design. In EM-
SOFT 01: 1st Intl. Workshop on Embedded Software, volume 2211 of Lect. Notes in Comp.
Sci., pages 148–165. Springer-Verlag, 2001.

15. L. de Alfaro and T.A. Henzinger. Interface-based design. In Engineering Theories of Soft-
ware Intensive Systems, proceedings of the Marktoberdorf Summer School. Kluwer, 2004.

16. L. de Alfaro, T.A. Henzinger, and M. Stoelinga. Timed interfaces. In Proceedings of the Sec-
ond International Workshop on Embedded Software (EMSOFT 2002), Lect. Notes in Comp.
Sci., pages 108–122. Springer-Verlag, 2002.

17. L. de Alfaro and M. Stoelinga. Interfaces: A game-theoretic framework to reason about open
systems. In FOCLASA 03: Proceedings of the 2nd International Workshop on Foundations
of Coordination Languages and Software Architectures, 2003.

18. M. Faella and A. Legay. Some models and tools for open systems. Technical report, Univer-
sity of Santa Cruz, 2005. Proceedings of FIT05.

19. E. A. Lee and Y. Xiong. A behavioral type system and its application in Ptolemy II. Formal
Aspect of Computing Journal, 2003.

20. Xavier Leroy. Objective caml. http://caml.inria.fr/ocaml/index.en.html.
21. N.A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.
22. Fabio Somenzi. Cudd: Cu decision diagram package. http://vlsi.colorado.edu/ fabio/CUD-

D/cuddIntro.html.
23. A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Algorithms for discrete function manipu-

lation. In Proceedings International Conference CAD (ICCAD-91), 1990.

32

An Operator-based Approach to Incremental
Development of Conform Protocol State

Machines

Arnaud Lanoix, Dieu-Donné Okalas Ossami and Jeanine Souquières

LORIA – CNRS – Université Nancy 2
Campus scientifique

F-54506 Vandoeuvre-Lès-Nancy
{lanoix,okalas,souquier}@loria.fr

Abstract. An incremental development framework which supports a
conform construction of Protocol State Machines (PSMs) is presented.
We capture design concepts and strategies of PSM construction by se-
quentially applying some development operators: each operator makes
evolve the current PSM to another one. To ensure a conform construc-
tion, we introduce three conformance relations, inspired by the specifica-
tion refinement and specification matchings supported by formal meth-
ods. Conformance relations preserve some global behavioral properties.
Our purpose is illustrated by some development steps of the card service
interface of an electronic purse: for each step, we introduce the idea of the
development, we propose an operator and we give the new specification
state obtained by the application of this operator and the property of
this state relatively to the previous one in terms of conformance relation.

Keywords. protocol state machine, incremental development, develop-
ment operator, exact conformance, plugin conformance, partial confor-
mance

1 Introduction

Software design is an incremental process where modifications of the system’s
functionalities can occur at every stage of the development. In order to increase
the software quality, it is important to understand the impact of these modifi-
cations in terms of lost, added or changed global behaviors.

UML 2.0 [1] introduces protocol state machines (PSMs) to describe valid
sequences of operation calls of an object. PSMs are a specialization of generic
UML state machines without actions nor activities. Generic state machines are
based on the widely recognized statechart notations introduced by Harel [2].

In protocol state machines, transitions are specified in terms of pre/post con-
ditions and state invariants can be given. PSMs are used for developing behav-
ioral abstractions of complex, reactive software. Typically, these state machines
provide precise descriptions of component behavior and can be used – combined

INTERREG IIIC/e-Bird
Workshop "Trustworthy Software" 2006
http://drops.dagstuhl.de/opus/volltexte/2006/695

2 A. Lanoix, D.-D. Okalas Ossami, J. Souquières

with a refinement process – for generating implementations. This framework
provides a convenient way to model the ordering of operations on a classifier.
Notice that the literature about PSMs is quite poor [3,4].

The notion of conformance of PSMs is an important issue for the develop-
ment. It is considered in UML 2.0, but limited to explicitly declaring, via the
protocol conformance model element, that a specific state machine ”conforms”
to a general PSM. The definition given in [1] remains very general and does not
ease its use in practice.

The conformance between development steps has been studied in formal spec-
ification approaches. For example, the B method proposes a refinement mecha-
nism [5,6,7]: a system development begins by the definition of an abstract view
which can be refined step by step until an implementation is reached. In the
framework of algebraic specifications, this notion of conformance has been stud-
ied and has given several specification matchings [8]. Meyer and Santen propose
a verification of the behavioral conformance between UML and B [9].

This notion is also very important in the field of test. In this domain, con-
formance is usually defined as testing to see if an implementation faithfully
meets the requirements of a standard or a specification. Conformance testing
means the use of conformance relations, like the conf or ioco relations [10],
based on Labeled Transition Systems (LTS) or process algebras. Other no-
tions of conformance in the context of LTS are the equivalence relations [11],
(bi)simulations [12,13] and refinement [14,15].

Some notions of conformance have been taken into account for the state-
charts [2] or UML 1.x state diagrams. The equivalence of state machines has been
studied in [16], the conformance testing in [17] and some refinements in [18,19,20].
The majority of these works are based on a semantics of state machines given
in terms of LTS using extended hierarchical automata [21,22,23].

The idea of following an incremental construction is not new and has been
addressed in several works. Some propositions for the incremental design of a
part of the statechart specifications are discussed in [24,4]. An operator-based
framework to the incremental development of multi-view UML and B specifica-
tions is defined in [25].

This work deals with the incremental development process of PSMs, and, in
particular, with the expression of the property between two development steps
by means of the conformance relations. Based on formal specification matchings
and refinement, we propose three conformance relations, called ExactConformance,
PluginConformance and PartialConformance expressing three levels of the preserva-
tion of the behavior. In order to help a conform step-by-step construction process,
we propose development operators. In [26], we have introduce some operators to
deal with subPSMs. This paper extends the approach proposed in [26] by pro-
viding other development operators to refine a PSM thanks to the modifications
performed on its associated interface.

The paper is structured as follows. Section 2 introduces our running case
study and presents UML 2.0 protocol state machines. After a presentation of the
UML 2.0 PSM redefinition, Section 3 gives three conformance relations, namely

Incremental Development of Conform Protocol State Machines 3

exact, plugin and partial conformances. Section 4 presents some development
steps of the case study; for each step we introduce the idea of the development,
we propose an operator, we give the new specification state and the property
of this state relatively to the previous one in terms of conformance. Section 5
concludes and gives some perspectives.

2 Protocol state machines

This section introduces the UML protocol state machines and the example used
throughout this paper.

2.1 Case study: CEPS card

We consider as running example, a part of the Common Electronic Purse Spec-
ifications (CEPS) [27]. The system is based on an infrastructure of terminals
on which a customer can pay for goods, using a payment card which stores a
certain - reloadable - amount of money. In the sequel, we will focus on the card
application.

Card

Terminal

Load
Terminal

Purchase
Terminal

Load
Service Purchase

Service

reads *

*

Fig. 1. CEPS architecture

Figure 1 shows the architecture of the system: Card represents a payment card
while LoadTerminal and PurchaseTerminal represent respectively terminals used to
reload the card and terminals used for purchases. Card provides the PurchaseService

and LoadService interfaces to communicate with the respective terminals.

2.2 UML 2.0 protocol state machines

PSMs are introduced in UML 2.0 [1] as state machine variants defined in the
context of a classifier (interface or class) to model the order of operations calls.
PSMs differ from generic state machines by the following restrictions:

– States cannot show entry actions, exit actions, internal actions, or do activ-
ities.

4 A. Lanoix, D.-D. Okalas Ossami, J. Souquières

– State invariants can be specified.
– Pseudostates cannot be deep or shadow history kinds.
– Transitions cannot show effect actions or send events as generic state ma-

chines can.
– Transitions have pre and post-conditions; they can be associated to operation

calls.

A PSM may contain one or more regions which involve vertices and transi-
tions. A protocol transition connects a source vertex to a target vertex. A vertex
is either a pseudostate or a state with incoming and outgoing transitions. States
may contain zero or more regions.

– Pseudostates can be initial, entry point, exit point or choice kinds; a choice
pseudostate realizes a conditional branch.

– A state without region is a simple state; a final state is a specialization of a
state representing the completion of a region.

– A state containing one or more regions is a composite state that provides a
hierarchical group of (sub)states; a state containing more than one region is
an orthogonal state that models a concurrent execution.

– A submachine state is semantically equivalent to a composite state. It refers
to a submachine (subPSM) where its regions are the regions of the composite
state.

2.3 Example: PurchasePSM

In the sequel, we focus on the PurchaseService interface and its associated PSM
PurchasePSM given Figure 2. The interface PurchaseService provides an attribute,
balance, which represents the amount of money available on the card. The PSM
PurchasePSM describes the following behavior: its initial state is Ready. First, the
purchase terminal, used to read the card, is authentified and the TerminalAccepted

state is reached. Next, the PSM reaches the PurchaseRealized state if there is
enough money on the card, which is ensured by the precondition [balance > 0].

<<interface>>
PurchaseService

balance : Double

identifyTerminal()
realizePurchase()

PurchasePSM

Ready Terminal
Accepted

Purchase
Realized

identifyTerminal /

[balance > 0]
realizePurchase /

[balance >= 0]

Fig. 2. PurchasePSM

Incremental Development of Conform Protocol State Machines 5

3 Conformance relations

The protocol conformance relation [1] is used to explicitly declare that a specific
state machine conforms to a general PSM. The given semantics is the preserva-
tion of pre/post conditions and state invariants of the general PSM in the more
specific one. For our point of view, the definition of the protocol conformance
relation remains too very general to be used in practice and does not allow the
designer how to decide on conformance between two PSMs.

State machine redefinition is also considered in UML 2.0. A specialized state
machine is an extension of a general state machine where regions, vertices and
transitions have been added or redefined. So, it has additional elements.

A simple state can be redefined to a composite state by adding one or more
regions. A composite state can be redefined by either extending its regions or
by adding regions as well as by adding entry and exit points. A region can
be extended by adding vertices and transitions and by redefining states and
transitions. A submachine state may be redefined by another submachine state
that provides the same entry/exit points and adds new entry/exit points.

Let PSM1 and PSM2 be a PSM and another PSM obtained by a trans-
formation of PSM1 by performing a development step. In order to study the
construction-based conformance between PSM1 and PSM2, we introduce three
relations. These relations describe different levels of behavioral preservations
corresponding to properties of the new PSM relatively to the previous one.

1. PluginConformance: PSM2vPSM1.
We have a PluginConformance relation between PSM2 and PSM when PSM2

provides all the functionalities of PSM1 and when the new functionalities
provided by PSM2 don’t conflict with the ones of PSM1. We are able to
”plugin” PSM2 for PSM1.

2. PartialConformance: PSM2wPSM1.
The PartialConformance relation is the reciprocal relation of the PluginCon-

formance relation: PSM2wPSM1 iff PSM1vPSM2. In other words, this relation
occurs between PSM2 and PSM1 when PSM2 provides less functionalities than
PSM1, but all the functionalities provided by PSM2 are provided by PSM1.

3. ExactConformance: PSM2≡PSM1.
We have an ExactConformance relation between PSM2 and PSM1 if the two
PSMs are equivalent and completely interchangeable. All Observable func-
tionalities provided by PSM1 and by PSM2 must be the same. The ExactCon-

formance relation is symmetric.
The ExactConformance relation is a specialization of both PluginConformance

and PartialConformance relations; we can easily demonstrate that if PSM2

≡PSM1 then PSM2vPSM1 and PSM2wPSM1.

Notice that the ExactConformance relation is a strong requirements often in-
compatible with a construction process. Sometimes a weaker match as Plugin-

Conformance or PartialConformance can be enough.

6 A. Lanoix, D.-D. Okalas Ossami, J. Souquières

There is no formal definitions of the previous relations in this paper. Inter-
ested reader might find some proposals in [16,17,19,20]. We focus on their uses
to guid an incremental developement.

4 Conform development

Let us see some development steps of the case study, starting from PurchasePSM

and its associated interface PurchaseService, presented Figure 2. Our objective is
to elaborate from this state a more complete PSM that presents the function-
alities provided by the card following the interface modifications. For each step,
we give the general idea of the evolution involved which respects to the new
associated interface, the development operator which is applied on the current
state and the conformance property that is preserved, which is the properties of
the new state relatively to the previous one.

4.1 Introducing sequences of operations

Figure 2 gives an abstraction of the authentication process. The operation identi-

fyTerminal() can be decomposed by the sequence of operations readCertificate(term id),
followed by acceptTerminal().

S1 S2
[pre] ope /

[post]

(a) before

S1 S2[pre] ope1 / S' [cond] ope2 /
[post]

(b) after

Fig. 3. refine by sequences()

This sequence is formally described by an UML annotation. The syntax used
is the following:
ope() := ope1() ; [cond] ope2()

that expresses the substitution of ope() by ope1() followed by ope2() under the
condition [cond] (see Figure 3).

We define a construction operator refine by sequences() which substitutes the
considered transition by the sequence of new transitions as shown Figure 3. If
[cond] is defined, then PartialConformance is preserved by this operator; otherwise,
ExactConformance is preserved.

The PSM PurchasePSM 2, given Figure 4, corresponds to the application of the
operator refine by sequences() on the transition identifyTerminal which substitutes
identifyTerminal by readCertificate(term id) and acceptTerminal. Figure 4 shows also
the modifications of the interface associated to PurchasePSM. A new attribute
card id is added to authenticate a terminal by exchange of certificates1.
1 Notice that PurchaseService 2 interface shows only the updated informations of Pur-

chaseService.

Incremental Development of Conform Protocol State Machines 7

<<interface>>
PurchaseService_2

card_id : Certificate

readCertificate(term_id : Certificate)
acceptTerminal()

PurchasePSM_2

Purchase
Realized

identifyTerminal() :=
 readCertificate(term_id) ;
 [card_id = term_id]
 acceptTerminal()

Terminal
Accepted

[card_id = term_id]
acceptTerminal /

[balance > 0]
realizePurchase /

[balance >= 0]

readCertificate
(term_id) /

Ready Certificate
Read

Fig. 4. PurchasePSM 2

4.2 Introducing complementary behaviors

When looking at the transition acceptTerminal between the states CertificateRead

and TerminalAccepted on Figure 4, we remark that all the possible cases are not
considered. The case where a valid terminal certificate is read, expressed by the
precondition [card id = term id], is the only one to be taken into account. What
happens when term id is not a valid certificate? This new requirements involves
the introduction of a new transition and a new state.

S0

S1 S2

[pre1]
ope1 /

[pre2]
ope2 /

(a) before

S0

S1 S2

[pre1]

[pre2] ope2 /

S3

else
ope1 / ope3 /

(b) after

Fig. 5. complement transition()

The operator complement transition() proposes to introduce from a selected ver-
tex and its outgoing transitions, a (default) complementary transition by using
a choice pseudostate as shown Figure 5. Since the operator complement transition()

adds new functionalities, PluginConformance is preserved.
Applying the complementary transition() operator on the state CertificateRead

leads to a new PSM PurchasePSM 3 shown Figure 6. A choice pseudostate and a
new state TerminalRefused are introduced.

Figure 7, a new exit point is introduced jointly with a transition from the
TerminalRefused state to the new exit point using basic construction operators
add vertex() and add transition() defined in [26]. Then, PluginConformance is pre-
served.

4.3 Reusing refine by sequences()

Let us consider now the transition realizePurchase between TerminalAccepted and
PurchaseRealized states. We want to decompose this transition into two succes-

8 A. Lanoix, D.-D. Okalas Ossami, J. Souquières

PurchasePSM_3

[card_id = term_id]
acceptTerminal /

Terminal
Refused

refuseTerminal /

else

[balance > 0]
realizePurchase /

[balance >= 0]

<<interface>>
PurchaseService_3

refuseTerminal()

readCertificate
(term_id) /

Ready Certificate
Read

Terminal
Accepted

Purchase
Realized

Fig. 6. PurchasePSM 3

PurchasePSM_3.1

[card_id = term_id]
acceptTerminal /

Terminal
Refused

refuseTerminal /

else

[balance > 0]
realizePurchase /

[balance >= 0]

readCertificate
(term_id) /

Ready Certificate
Read

Terminal
Accepted

Purchase
Realized

Fig. 7. PurchasePSM 3.1

PurchasePSM_4

readCertificate
(term_id) /

Ready

Terminal
Accepted

[card_id = term_id]
acceptTerminal /

Certificate
Read

Terminal
Refused

refuseTerminal /

else

<<interface>>
PurchaseService_4

initializePurchase(amount : Double)
achievePurchase()

realizePurchase() :=
 initializePurchase(amount) ;
 [balance > 0]
 achievePurchase()

[balance > 0]
achievePurchase /

[balance >= 0]Purchase
Achieved

[balance > 0]
initializePurchase /

Purchase
Initialized

Fig. 8. PurchasePSM 4

Incremental Development of Conform Protocol State Machines 9

sive transitions initializePurchase(amount) and achievePurchase to describe more pre-
cisely the purchase functionality.

The previous operator refine by sequences() is applied again to obtain a new
PSM PurchasePSM 4 given Figure 8.

4.4 Introducing conditional behaviors

In the current development state, the achievePurchase transition is still abstract.
It corresponds to two (conditional) behaviors: if there is enough money on the
card to pay the purchase, then the purchase is realized and the balance is debited.
Otherwise, the purchase must be canceled.

S1 S2
[pre] ope /

[post]

(a) before

S1 S2

[cond] ope1 /
 [post1]

 else
ope2 / [post2]

[pre]

(b) after

Fig. 9. refine by conditions()

A construction operator refine by conditions() is defined to substitute the con-
sidered transition by a conditional behavior expressed by an UML annotation
which respects the following syntax:
ope() := if [cond] then ope1() [post1] else ope2() [post2]

Figure 9 illustrates this operator. It preserves the ExactConformance when the
following obligation proofs are satisfied:

– (pre@pre and cond@pre and post1) implies post

– (pre@pre and not cond@pre and post2) implies post

PurchasePSM_5

readCertificate
(term_id) /

Ready

[card_id = term_id]
acceptTerminal /

Certificate
Read

Terminal
Refused

refuseTerminal /

else

<<interface>>
PurchaseService_5

debitBalance()
cancelPurchase()

achievePurchase() :=
 if [balance >= amount]
 then
 debitBalance()
 [balance = balance@pre - amount]
 else
 cancelPurchase()
 [balance = balance@pre]

[balance > 0]
initializePurchase /

Purchase
Achieved

Purchase
Initialized

[balance > 0]

else

Terminal
Accepted

[balance >= amount]
debitBalance /

[balance =
balance@pre
 - amount]cancelPurchase /

[balance =
balance@pre]

Fig. 10. PurchasePSM 5

10 A. Lanoix, D.-D. Okalas Ossami, J. Souquières

The application of refine by conditions() on achievePurchase gives the new PSM
PurchasePSM 5 by substituting the achievePurchase transition by debitBalance and
cancelPurchase (see figure 10).

Since (balance@pre > 0 and balance@pre >= amount and balance = balance@pre

- amount) implies (balance >= 0), and, (balance@pre > 0 and balance@pre < amount

and balance = balance@pre) implies (balance > 0) are satisfied, we conclude that
ExactConformance is preserved.

4.5 Splitting states

We can observe in PurchasePSM 5 that the two transitions debitBalance and can-

celPurchase reach the same state PurchaseAchieved. Nevertheless, they describe
different behaviors. We want to split PurchaseAchieved into two different states
BalanceDebited and PurchaseCanceled to illustrate the difference.

S0

[pre1]
ope1 /
[post1]

[pre2]
ope2 /
[post2]

(a) before

S0'

[pre1]
ope1 /
[post1] S0"

[pre2]
ope2 /
[post2]

(b) after

Fig. 11. split state()

The construction operator split state() depicted Figure 11 considers a vertex
and its incoming transitions. For each incoming transition, the vertex is dupli-
cated. All the outgoing transitions are also duplicated. Since this construction
operator only duplicates behaviors, it preserves ExactConformance.

The application of this operator to the state PurchaseAchieved gives two new
states BalanceDebited and PurchaseCanceled as shown Figure 12.

PurchasePSM_5.1

readCertificate
(term_id) /

Ready

[card_id = term_id]
acceptTerminal /

Certificate
Read

Terminal
Refused

refuseTerminal /

else

[balance > 0]
initializePurchase /

Purchase
Initialized

[balance > 0]

else

[balance >= amount]
debitBalance /

[balance =
balance@pre
 - amount]

cancelPurchase /
[balance =

balance@pre]

Balance
Debited

Purchase
Cancelled

Terminal
Accepted

Fig. 12. PurchasePSM 5.1

Incremental Development of Conform Protocol State Machines 11

When applying once again the split state() operator to the exit pseudostate,
we obtain the PSM PurchasePSM 5.2 given Figure 13.

PurchasePSM_5.2

readCertificate
(term_id) /

Ready

[card_id = term_id]
acceptTerminal /

Certificate
Read

Terminal
Refused

refuseTerminal /

else

[balance > 0]
initializePurchase /

Purchase
Initialized

[balance > 0]

else

[balance >= amount]
debitBalance /

[balance =
balance@pre
 - amount]

cancelPurchase /
[balance =

balance@pre]

Balance
Debited

Purchase
Cancelled

Terminal
Accepted

Fig. 13. PurchasePSM 5.2

An overview of a part of the followed development process is given Figure 14.
Each development state is composed of a PSM and its associated interface and
transitions between development states express the application of a development
operators and the properties between two states: Refinement for interfaces and
Conformance for PSMs.

5 Conclusion and future work

Specifying complex systems is a difficult task which cannot be done in one step.
In a typical design process, the designer starts with a first draft model and
transforms it by a step-by-step process into a more and more complex model.

The design approach we propose in this paper uses a set of construction op-
erators to make evolve protocol state machines preserving behavioral properties.
Three Conformance relations ExactConformance, PluginConformance and PartialCon-

formance have been defined. The use of these operators has been illustrated on
the development of a part of the CEPS case study.

Further work will focus on a generalization of our step-by-step construction
of PSM by studying other construction operators, like operators for removing
elements. We are currently exploring other particularities of PSMs like state
invariants and transition post-conditions.

We also consider the formalization of the definition of the Conformance rela-
tions ExactConformance, PluginConformance and PartialConformance inspired by re-
sults in formal methods like refinement [7] and specification matchings [8]. The
verification of the conform development can be done by translating the obtained
PSM into a tool-supported language such that B [28,29] or TLA [30,31].

Another perspective concerns the implementation of a tool to assist in the
development of PSMs based on our construction operators.

12 A. Lanoix, D.-D. Okalas Ossami, J. Souquières

identifyTerminal() :=
 readCertificate(term_id) ;
 [card_id = term_id]
 acceptTerminal()

<<refines>>

<<interface>>
PurchaseService

PurchasePSM

<<interface>>
PurchaseService_2

<<interface>>
PurchaseService_3

<<refines>>

<<PartialConformance>>

<<PluginConformance>>

PurchasePSM_2

PurchasePSM_3

refine_by_sequences()

complement_transition()

Fig. 14. Incremental development of PurchasePSM

Incremental Development of Conform Protocol State Machines 13

References

1. Object Management Group: UML superstructure specification, v2.0 (2005)

2. Harel, D.: Modeling Reactive Systems With Statecharts. Mac Graw Hill (1998)

3. Mencl, V.: Specifying component behavior with port state machines. ENTCS
101C (2004) 129–153

4. Gout, O., Lambolais, T.: UML Protocol State Machines Incremental Construction:
a Conformance-based Refinement Approach. Research Report RR05/027, LGI2P
(2005)

5. Morris, J.M.: A theoretical basis for stepwise refinement and programming calcu-
lus. Science of Computer Programming 9 (1987) 287–306

6. Back, R.J.: A calculus of refinements for program derivations. Acta Informatica
(1988) 593–624

7. Abrial, J.R.: The B Book. Cambridge University Press (1996)

8. Zaremski, A.M., Wing, J.M.: Specification matching of software components. ACM
Transaction on Software Engeniering Methodolology 6 (1997) 333–369

9. Meyer, E., Santen, T.: Behavioral Conformance Verification in an Integrated Ap-
proach Using UML and B. In: (IFM00), Integrated Formal Methods. Volume 1945
of LNCS., Springer Verlag (2000) 358

10. Tretmans, J.: Conformance Testing with Labelled Transition Systems: Implemen-
tation Relations and Test Generation. Computer Networks and ISDN Systems 29
(1996) 49–79

11. De Nicola, R.: Extensional equivalences for transition systems. Acta Informatica
24 (1987) 211–237

12. Milner, R.: Communication and concurrency. Prentice-Hall, Inc. (1989)

13. Fernandez, J.C.: An implementation of an efficient algorithm for bisimulation
equivalence. Science of Computer Programming 13 (1990) 219–236

14. Bellegarde, F., Julliand, J., Kouchnarenko, O.: Ready-simulation is not ready
to express a modular refinement relation. In: Fundamental Aspects of Software
Engineering (FASE’00). Volume 1783 of LNCS., Springer Verlag (2000) 266–283

15. Kouchnarenko, O., Lanoix, A.: Refinement and verification of synchronized
component-based systems. In Araki, K., Gnesi, S., D., M., eds.: Formal Meth-
ods (FM’03). Volume 2805 of LNCS., Springer Verlag (2003) 341–358

16. Maggiolo-Schettini, A., Peron, A., Tini, S.: Equivalences of statecharts. In: Proc. of
the 7th Int. Conf. On Concurrency Theory (CONCUR’96), Springer-Verlag (1996)
687–702

17. Latella, D., Massink, M.: On testing and conformance relations of UML statechart
diagrams behaviours. In ACM, ed.: Int. Symposium on Software Testing and
Analysis. (2002)

18. Al’Achhab, M.: Specification and verification of hierarchical systems by refinement.
In: Modelling and Verifying Parallel Processes (MOVEP’04). (2004)

19. Meng, S., Naixiao, Z., Barbosa, L.S.: On semantics and refinement of UML state-
charts: A coalgebraic view. In: Proc. of the 2nd In. Conf. on Software Engineering
and Formal Methods (SEFM’04). (2004)

20. Knapp, A., Merz, S., Wirsing, M., Zappe, J.: Specification and refinement of mobile
systems in MTLA and mobile UML. Theoretical Computer Science (2005)

21. Mikk, E., Lakhnech, Y., Siegel, M.: Hierarchical automata as model for statecharts.
In: Third Asian Computing Science Conference on Advances in Computing Science
(ASIAN’97), London, UK, Springer Verlag (1997) 181–196

14 A. Lanoix, D.-D. Okalas Ossami, J. Souquières

22. Latella, D., Majzik, I., Massink, M.: Towards a formal operational semantics of
UML statechart diagrams. In: 3rd Int. Conf. on Formal Methods for Open Object-
Based Distributed Systems (FMOODS’99), Kluwer (1999) 331–347

23. Von der Beeck, M.: Formalization of UML-Statecharts. In: UML’01: Proceedings
of the 4th International Conference on The Unified Modeling Language, Modeling
Languages, Concepts, and Tools, Springer-Verlag (2001) 406–421

24. Scholz, P.: Incremental design of statechart specifications. Science of Computer
Programming 40 (2001) 119–145

25. Okalas Ossami, D.D., Souquières, J., Jacquot, J.P.: Consistency in UML and B
multi-view specifications. In: Proc. of the Int. Conf. on Integrated Formal Methods,
IFM’05. Number 3771 in LNCS, Springer-Verlag (2005) 386–405

26. Lanoix, A., Souquières, J.: A step-by-step process to build conform UML
protocol state machines. Research Report ccsd-00019314, LORIA (2006)
http://hal.ccsd.cnrs.fr/ccsd-00019314.

27. CEPSCO: Common electronic purse specifications, functional requirements, v6.3
(1999)

28. Ledang, H., Souquières, J.: Contributions for modelling UML state-charts in B. In:
Third International Conference on Integrated Formal Methods - IFM’2002, Turku,
Finland (2002)

29. Sekerinski, E., Zurob, R.: Translating statecharts to b. In: IFM ’02: Proceedings of
the Third International Conference on Integrated Formal Methods, London, UK,
Springer-Verlag (2002) 128–144

30. Deiss, T.: An Approach to the Combination of Formal Description Techniques:
Statecharts and TLA. In: 1st International Conference on Integrated Formal Meth-
ods, IFM’99, Springer (1999) 231–250

31. Freinkel, C.: An Approach to Combining UML and TLA+ in Software Specifica-
tion. Technical reports, University of Nevada, Reno (2003)

Extended Abstract:
Explaining Data Type Reduction in the Shape

Analysis Framework

Björn Wachter

Saarland University,
Im Stadtwald,

Saarbrücken, Germany
bwachter@cs.uni-sb.de

Abstract. Automatic formal verification of systems composed of a large
or even unbounded number of components is difficult as the state space
of these systems is prohibitively large. Abstraction techniques automati-
cally construct finite approximations of infinite-state systems from which
safe information about the original system can be inferred. We study two
abstraction techniques shape analysis, a technique from program anal-
ysis, and data type reduction, originating from model checking. Until
recently we did not properly understand how shape analysis and data
type reduction relate. We shed light on this relation in a comprehensive
way. This is a step towards a more unified view of abstraction employed
in the static analysis and model checking community.

1 Introduction

We consider analysis techniques for parameterized systems such as protocols
where the number of participating processes is a parameter These models are
composed of processes that run in a parallel, interleaved fashion. The state of
the model consists of the local states of all constituent processes. Typically one
wants to verify first-order temporal properties, i.e. safety properties such as
mutual exclusion and liveness properties such as lack of starvation.

Finitary abstraction techniques generate a finite state model that approxi-
mates the original infinite state model preserving certain properties. A finitary
abstraction technique has typically two constituents (1) a state abstraction func-
tion that maps states of the original model to states of the abstract model and
(2) a method to compute transitions between abstract states, i.e. the behavior
of the abstract model. The finite state model is subject to reachability analysis
or to a finite-state model checker. Several finitary abstractions have been pro-
posed, such as counter abstraction[PXZ], canonical abstraction [SRW02,Yah01]
and data type reduction [McM00,DW03].

In previous work [Wac05], we have studied a model checking framework for
parameterized systems based on canonical abstraction that lends ideas from
data type reduction. Notably, data type reduction can be expressed in the same
framework which is the topic of this work.

INTERREG IIIC/e-Bird
Workshop "Trustworthy Software" 2006
http://drops.dagstuhl.de/opus/volltexte/2006/701

1.1 State Abstractions

Predicate abstraction. Predicate abstraction approximates the state of a pro-
gram by a tuple of Boolean values that record if certain properties hold or not.
For example, instead of storing an integer variable x one only keeps track of
whether or not x > 0 holds. Predicate abstraction has been successfully applied
to sequential programs.

Running Example. To demonstrate the abstractions, we consider as an example
a parameterized system in which each process p has a program counter PC(p)
giving the process’ current control location; a control location is a member of
the set {a, b, c, d}. The example state consists of 9 processes.

Fig. 1. Counter abstraction.

Counter Abstraction. Counter abstraction
[PXZ] assumes that processes are finite state,
i.e. there exists a finite set Σ of local states.
For each local state σ ∈ Σ, a counter variable
Cσ is used that records the number of pro-
cesses currently in state σ. To obtain a finite
abstract domain the counters are typically cut
off at two. An abstract state is a mapping
C : Σ → {0, 1,≥ 2}. As the size of the ab-
stract state space is exponential in the size of
Σ, counter abstraction falls short of infinite or
very large local state spaces.

Figure 1 shows, left to the arrow, a concrete state with 9 processes that is
abstracted to the abstract state right of the arrow. The circles denote concrete
processes and the letters in the circles the value of the program counter. Note
that in this example the set of local states is Σ = {a, b, c, d}. The abstract state
has four counters one for each element of Σ. We think of the non-zero counters
as abstract processes, as they stand for concrete processes. We symbolize each
abstract process by a circle with a thin border if the counter is one, and by a
circle with a thick border if the counter has at least value 2.

Canonical abstraction. As opposed to counter abstraction, canonical abstrac-
tion is applicable to systems where the local state space is infinite. Intuitively,
canonical abstraction first abstracts local state per process, then processes with
the same abstract local state are collapsed to one abstract process similar to
counter abstraction. Local state is abstracted to a vector in which each position
encodes the truth of a predicate ranging over processes. Predicates have defining
formulas that may refer to local and global state, informally stated predicates
can refer to the environment of a process.

Canonical abstraction admit predicates ranging over pairs of processes. For
the sake of brevity, we omit these aspects of canonical abstraction for now.

Fig. 2. Canonical abstraction

Returning to the running example, we de-
fine two predicate: one predicate ata(p) is
true of a process if it is in control location a,
ata(p) ≡ PC(p) = a, the other predicate atb

holds for a process that is is control location
b, atb ≡ PC(p) = b. Figure 2 depicts the con-
crete state and its canonical abstraction. Ab-
stract processes are two-component boolean
vectors where the first components stands for
the truth of predicate ata and the second com-
ponent for atb. The process in location a is mapped to the abstract process (1, 0),
the one of the processes in location b is (0, 1) all other processes have (0, 0).

1.2 The Migration Problem

Fig. 3. Process migrating be-
tween abstract processes

The previously described abstractions are suf-
ficient to verify and infer invariants, yet, let
alone, too coarse to verify first-order proper-
ties. For example, they would not allow us to
check if every process will eventually reach
location b. Consider the process in Figure 2
that is at control location a. Let us assume
it moves on to location b. In an abstract suc-
cessor state, our process would become part of
the abstract process consisting of all processes
being at location b. The example shows that
in two states that each have an instance of an
abstract process like (0, 1) these two instances
may correspond to different collections of con-
crete processes. This is depicted in Figure 3. The problem is caused by canonical
abstraction and counter abstraction collapsing processes to abstract processes.
By a state change, a process migrates between instances of abstract processes.
Abstraction takes away process identities and thus the means to track evolution
of processes across transitions.

1.3 Abstraction for First-Order Properties

One solution to the migration problem is to reduce the first-order model checking
problem to an equivalent problem in which explicit tracking of process evolution
is not necessary anymore. The semantics of universal quantification is usually
given inductively in terms of the semantics of the subformula without the outer-
most quantifier. One combines the results of evaluating that subformula under
all the different possible values the quantification variable can take on. In the
domain of parameterized systems, that leaves us with an infinite number of cases
to check. By applying abstraction, the infinite number of cases can be reduced
to a finite, tractable number of cases.

Each subproblem only requires one to show the property for a distinguished
process rater than for all processes. The abstraction can be adapted such that it
is centered around the distinguished process, in that it retains more information
pertaining to the distinguished process and abstracts the other processes more
coarsely, and further precisely models the relation of the other processes to the
distinguished process.

Note that properties which involve multiple quantifiers, like mutual exclusion,
can be shown in the same way. Then there is a number of distinguished processes
rather than just a single distinguished process.

Variations of this idea of decomposition are present in data type reduction,
and in the shape analysis for JDBC in Ramalingam et al. [YR04].

Data type reduction Data type reduction relies on a separation of processes into
two classes : a fixed number of distinguished processes and all other processes, let
us call the other processes environment processes. Data type reduction retains
the distinguished processes and abstracts all environment processes into one
summary abstract process. The summary abstract process mimics the behavior
of all the processes it represents, it is non-deterministic and memoryless, i.e. the
analysis does not compute information concerning environment processes.

Figure 4 shows the data type reduction of the state from the running example.
The reference process is colored black. It retains its local state a. All other
processes, the environment processes, are abstracted to one abstract summary
process. The local state of the summary process is abstracted away as indicated
by the question tag.

1.4 Results

Fig. 4. Data type reduction

[SRW02] characterizes canonical abstraction
in the framework of three-valued logic analy-
sis underlying shape analysis. Abstract states
are compared by a partial order, named em-
bedding. A state being embedded in another
state implies that information derived from
the state that is larger in the order also holds
for the smaller state. A state is always em-
bedded in its canonical abstraction. Canoni-
cal abstraction is an abstraction which retains
the optimal amount of information in the ab-
stract. Formally, it is a tight embedding. Data
type reduction is coarser. A state can be embedded into its data type reduction,
however, all information about the environment process is lost, and therefore it
is not a tight embedding.

A more detailed treatment of the topic can be found in [Wac05] which is also
available in the proceedings and on my website

http://rw4.cs.uni-sb.de/∼bwachter/thesis.pdf

2 Related Work

Originally, canonical abstraction was designed as an abstraction technique to in-
fer invariants of heap-manipulating programs by a technique called Three-valued
Logical Analysis [SRW02] , vulgo shape analysis. The innovation of canonical
abstraction for shape analysis was the generic summarization of objects, where
objects were originally thought of as heap cells, and means to compute precise
points-to information between abstract heap cells. This precision allows it to
automatically prove partial correctness of heap-manipulating programs.

In [MYRS05], a comparison of canonical abstraction and predicate abstrac-
tion in the domain of list-manipulating programs is given. They pointed out
that in principle every finitary abstraction can be expressed with predicate ab-
straction. However, the number of predicates needed for the encoding can be
prohibitively high so that specialized abstractions can be better.

Yahav discovered [Yah01] that the algorithms from shape analysis can be
generalized to parameterized protocols and Java programs. First, an abstract
finite-state transition system is produced that simulates the (infinite) transition
system induced by the original system. Then LTL properties are checked on the
obtained transition system.

The obtained transition systems could be used to infer invariants, such as
mutual exclusion, however they did not allow checking first-order temporal prop-
erties, as it suffers from the Migration Problem described in Section 1.2. In a
subsequent paper, Yahav gave a more powerful method that is able to check
properties formulated in a richer logic, termed ETL [YRSW03]. The idea was to
explicitly store the evolution of processes in state transitions.

For the sake of higher efficiency and precision, later work aimed at adapting
the abstraction to the particular first-order property to be checked. Ramalingam
et al. describe a framework for typestate checking for Java programs [YR04], i.e.
a method for checking invariants. In the context of concurrent systems, [Wac05]
gave a more general model checking framework for first-order temporal properties
of concurrent systems based on canonical abstraction and decomposition.

Acknowledgments

This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for
more information.

References

[CTV06] Edmund Clarke, Muralidhar Talupur, and Helmut Veith. Environment Ab-
straction for Parameterized Verification. In VMCAI, pages 126–141, 2006.

[DW03] Werner Damm and Bernd Westphal. Live and Let Die: LSC-based verifi-
cation of UML-models. In Formal Methods for Components and Objects,
FMCO 2002, volume 2852 of Lecture Notes in Computer Science, pages
99–135. Springer, 2003.

[McM00] Kenneth L. McMillan. A methodology for hardware verification using com-
positional model checking. Sci. Comput. Program., 37(1-3):279–309, 2000.

[MYRS05] Roman Manevich, Eran Yahav, G. Ramalingam, and Mooly Sagiv. Predi-
cate abstraction and canonical abstraction for singly-linked lists. In Radhia
Cousot, editor, Proceedings of the 6th International Conference on Verifi-
cation, Model Checking and Abstract Interpretation, VMCAI 2005, Lecture
Notes in Computer Science. Springer, jan 2005.

[PXZ] Amir Pnueli, Jessie Xu, and Lenore Zuck. Liveness with (0, 1, ?)-counter
abstraction.

[SRW02] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3-valued logic. ACM Transactions on Programming Languages
and Systems, 2002.

[Wac05] Björn Wachter. Checking universally quantified temporal properties with
three-valued analysis. Master’s thesis, Universität des Saarlandes, March
2005.

[Yah01] E. Yahav. Verifying safety properties of concurrent Java programs using
3-valued logic. ACM SIGPLAN Notices, 36(3):27–40, March 2001.

[YR04] E. Yahav and G. Ramalingam. Verifying safety properties using separation
and heterogeneous abstractions. In Proceedings of the ACM SIGPLAN 2004
conference on Programming language design and implementation, pages 25–
34. ACM Press, 2004.

[YRSW03] E. Yahav, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Verify-
ing Temporal Heap Properties Specified via Evolution Logic. In European
Symposium on Programming, volume 2618 of Lecture Notes in Computer
Science, pages 204 – 222. Springer-Verlag, 2003.

Formal Validation of Pattern Matching Code

Claude Kirchner, Pierre-Etienne Moreau, Antoine Reilles
INRIA & LORIA, INRIA & LORIA CNRS & LORIA

Nancy, France
First.Last@loria.fr

July 27, 2006

Abstract

When addressing the formal validation of generated software, two main alternatives consist either to
prove the correctness of compilers or to directly validate the generated code. Here, we focus on directly
proving the correctness of compiled code issued from powerful pattern matching constructions typical of
ML like languages or rewrite based languages such as ELAN, Maude or Tom. In this context, our first
contribution is to define a general framework for anchoring algebraic pattern-matching capabilities in
existing languages like C, Java or ML. Then, using a just enough powerful intermediate language, we
formalize the behavior of compiled code and define the correctness of compiled code with respect to
pattern-matching behavior. This allows us to prove the equivalence of compiled code correctness with
a generic first-order proposition whose proof could be achieved via a proof assistant or an automated
theorem prover. We then extend these results to the multi-match situation characteristic of the ML like
languages. The whole approach has been implemented on top of the Tom compiler and used to validate
the syntactic matching code of the Tom compiler itself.

1 Introduction

Even if we know, since the beginning of the computer science era, that proving program correctness is
profoundly difficult, the quest of software security and dependability due to the general digitalization of
most human activities and process control makes this goal both inescapable and extremely important to
reach.

When we deal with the previous problem, we should address the whole software conception process that
we can reduce, quite schematically, to the following steps: (i) get an informal specification of the software
functionalities, (ii) get a formal description of the algorithms assumed to fulfill the informal specification, (iii)
get a high-level program implementation of these algorithms, (iv) get a low level program implementation
of these programs, (v) get a model of the running hardware.

In this work, we restrict our interest to step (iv) and to high-level languages pattern-matching features.
Therefore we address the specific problem of proving the correctness of compiled code issued from pattern-
matching constructions appearing in high-level programming languages.

Verifiable —compiler versus compiled— code The question of compiler correctness, that is to pre-
serve the properties of the input like its semantics and meta-properties of the underlying algorithm as its
termination or the respect of heap invariants, is as old as the first compiler implementations. This is a very
challenging goal since it consists in proving that any valid input will be correctly compiled. Furthermore, this
proof has to be done every time the implementation of the compiler is modified and moreover, the compiler
has itself to be compiled.

Much efforts have been done on proving correctness of parts and sometimes even complete compilers
either manually [?, ?, ?, ?] or with the help of a proof assistant. But, it is still today mostly out of reach

1
INTERREG IIIC/e-Bird
Workshop "Trustworthy Software" 2006
http://drops.dagstuhl.de/opus/volltexte/2006/697

to prove that a program has been correctly compiled. In practice, programmers (and therefore applications)
totally rely on the compilers: until one runs the program, we have no idea if the compiler has compiled the
program correctly. Even extensively testing the program of course offers no guarantees. So, currently the
programmer very often must blindly trust the compiler. But, most of largely used C and Fortran compilers
very infrequently generate incorrect code: they are some of the most reliable software tools available. This
is due to the large number of developers working to make these compilers correct, as well as the very large
number of users who use these compiler, and thus contribute to their debugging. But, when designing a
compiler for a new high-level language, the situation is less comfortable: on one side the number of users and
written applications is small, on the other side, the introduction of new high level constructs put a lot on
the compiler, and so make it even more complex to write. Since the consequences of an incorrect compiler
are disastrous (all compiled programs are potentially faulty), this situation contributes to make users less
confident in new languages and compiler implementations.

In this paper, we are concerned by a quite different approach consisting in proving automatically the
correctness of the compiled code. This “skeptical” approach of the code issued from a compiler allows to deal
with two kind of mis-behavior: one is due to the classical presence of an unintentional bug of the compiler.
The second one concern intended hidden-behavior that could be introduced with malicious intention.

Therefore, assuming a high-level program given as input, we are considering the compiler as a black
box escaping our control and we are searching to prove that the generated code is, on its own, correct.
This is typical of the seminal work of [?] and more recently of the so called translation validation [?, ?].
A comparable approach presented in [?] is called credible compilation and able to handle pointers in the
source program. Note that this is different from the so called proof-carrying code method [?, ?] which is not
intended to prove the compiled program to be correct with respect to the source code, but rather on proving
certain properties on the output program, such as type safety, memory safety, or the respect of a certain
safety invariant.

Matching power Rewriting and pattern-matching are of general use in mathematics and informatics to
describe computation as well as deduction.They are central in systems making the notion of rule an explicit
and first class object, like expert and business systems (JRule), programming languages based on equational
logic (OBJ) or the rewriting calculus (ELAN) or logic (Maude), functional, possibly logic, programming (ML,
Haskell, Curry, Teyjus) and model checkers (Murphi). They are also recognized as crucial components of
proof assistants (Coq, Isabelle) and theorem provers for expressing computation as well as strategies.

Since pattern-matching is directly related to the structure of objects and therefore is a very natural
programming language feature, it is a first class citizen of functional languages like ML or Haskell and has
been considered recently as a useful add-on facility in object programming languages [?]. This is formally
backed up by works like [?] and particularly well-suited when describing various transformations of structured
entities like, for example, trees/terms, hierarchized objects, and XML documents.

In this context, we are developing the Tom system [?] which provides a generic way to integrate matching
power in existing programming languages like Java, C or ML. For example, when using Java as the host
language, the sum of two integers can be described in Tom as follows:

Term plus(Term t1, Term t2) {

%match(Nat t1, Nat t2) {

x,zero -> { return x; }

x,suc(y) -> { return suc(plus(x,y)); }

}

}

2

In this example, given two terms t1 and t2 that represent Peano integers, the evaluation of plus computes
their sum. This is implemented by pattern-matching: t1 is matched by the variable x, t2 is possibly matched
by one of the two patterns zero or suc(y). When zero matches t2, the result of the addition is x (where x
has been instantiated into t1 via matching). When suc(y) matches t2, this means that t2 is rooted by a suc
symbol: the subterm y is added to x and the successor of this number is returned. This definition of plus is
given in a functional style, but now the plus function can be used elsewhere in a Java program to perform
addition.

The general architecture of Tom, depicted as follows,

Host
Language

+
Patterns

Parser Backend
Host

LanguageCompiler

Tom Compiler

p� t PIL

enlightens that a generic matching problem p � t is compiled into an intermediate language code (PIL)
which we would like to compute a substitution σ iff σ(p) = t. As explained in [?], implementing a language
(possibly domain-specific) as an extension of an existing host language has several advantages. First, we
benefit of the existing functionalities and we do not have to re-implement common language constructs.
Second, the extensions themselves only need to be transformed to the point where they are expressible in the
host language. Third, existing infrastructure can be reused. All these factors result into lower implementation
costs and decrease the risk of building an incorrect compiler.

So, in this work we focus on proving the correctness of compiled code issued from pattern-matching
constructions, and to the best of our knowledge, this is the first attempt to do so. Other works about
pattern-matching compilation address in particular data abstraction e.g. [?], or optimizations for run-time
efficiency or code size e.g. [?, ?].

Roadmap of the paper When considering the notion of pattern-matching, we consider a term data-
structure against which some patterns are matched. Since the host language is not fixed and could be
typically either C, Java or ML, the data-model is unknown. We therefore introduce in Section 2, the notion
of formal anchor which formally describes the relationship between the host language data-model and the
algebraic notion of term and pattern.

In our language, the host language is also generic, so we have to consider an abstraction which describes
the minimal set of functionality the host language should have to express the compilation of pattern-matching.
This abstraction is called the intermediate language (PIL) and we define its syntax and its big-step semantics
in Section 3.

Then Section 4 uses the proposed framework to define the correctness of a single pattern compilation and
to show how this correctness can be reduced to the validation of a first-order proposition.

This result is then extended in Section 5 to support Caml or Tom multi-match constructs, and before
concluding, Section 7 provides details about the implementation of these concepts in the current version of
Tom.

2 Formal anchor

When considering the problem of proving that the behavior of a program is compatible with its semantics,
we have to consider two kinds of entities. On the one side, we consider algebraic constructions, such as
ground terms (t ∈ T (F)), patterns (p ∈ T (F ,X)), and matching problems (p � t, with p ∈ T (F ,X) and
t ∈ T (F)). On the other side, we consider programs, expressed in the PIL intermediate language, which are
supposed to solve matching problems. We also consider data which are supposed to represent a term or a
pattern. In this section, we define the notions of representation and formal anchor which define the link
between algebraic entities and considered data.

3

2.1 Preliminary concepts

We assume the reader to be familiar with the basic definitions of first order term given, in particular, in [?].
We briefly recall or introduce notation for a few concepts that will be used along this paper.

A signature F is a set of function symbols, each one associated to a natural number by the arity function
(ar : F → N). Fn is the subset of function symbols having n for arity, Fn = {f ∈ F | ar(f) = n}.
T (F ,X) is the set of terms built from a given finite set F of function symbols and a denumerable set

X of variables. A term t is said to be linear if no variable occurs more than once in t. Positions in a term
are represented as sequences of integers and denoted by Greek letters ε, ν. The empty sequence ε denotes
the position associated to the root, and it is called the root (or top) position. The subterm of t at position
ν is denoted t|ν . Symb(t) is a partial function from T (F ,X) to F , which associates to each term t its root
symbol f ∈ F .

The set of variables occurring in a term t is denoted by Var(t). If Var(t) is empty, t is called a ground
term and T (F) is the set of ground terms.

Two ground terms t and u of T (F) are equal, and we note t = u, when, for some function symbol f ,
Symb(t) = Symb(u) = f , f ∈ Fn, t = f(t1, . . . , tn), u = f(u1, . . . , un), and ∀i ∈ [1..n], ti = ui.

A substitution σ is an assignment from X to T (F), written, when its domain is finite, σ = {x1 7→
t1, . . . , xk 7→ tk}. It uniquely extends to an endomorphism σ′ of T (F ,X): σ′(x) = σ(x) for each variable
x ∈ X , σ′(f(t1, . . . , tn)) = f(σ′(t1), . . . , σ′(tn)) for each function symbol f ∈ Fn.

Given a pattern p ∈ T (F ,X) and a ground term t ∈ T (F), p matches t, written p � t, if and only if
there exists a substitution σ such that σ(p) = t. Its negation is written p 6� t.

2.2 Object representation

Definition 1 Given a tuple composed of a signature F , a set of variables X , booleans B and integers N,
given sets ΩF , ΩX , ΩT , ΩB, and ΩN, we consider a family of representation functions pq that map:

• function symbols f ∈ F to elements of ΩF , denoted pfq,

• variables v ∈ X to elements of ΩX , denoted pvq,

• ground terms t ∈ T (F) to elements of ΩT , denoted ptq,

• booleans b ∈ B = {>,⊥} to elements of ΩB, denoted pbq,

• natural numbers n ∈ N to elements of ΩN, denoted pnq.

In other words, the representation function pq maps algebraic entities (from F , X , T (F), B, and N) to
objects manipulable by the intermediate language PIL (elements of ΩF , ΩX , ΩT , ΩB, and ΩN). We note
pT (F)q the set containing the representations of terms: pT (F)q = {ptq|t ∈ T (F)}, and we therefore have
pT (F)q ⊆ ΩT .

Example 1 Let us consider F = {e, s} (with ar(e) = 0 and ar(s) = 1), and the function pq such that
peq = 0 ∈ ΩF , psq = 1 ∈ ΩF . pq maps the symbols e and s respectively to “machine integers” 0 and 1 (i.e.
the notion of integer in the intermediate language), where we assume an infinite memory. Similarly, pq can
be extended to map the constant e ∈ T (F) to 0 (peq = 0 ∈ ΩT), and any term of the form s(x) to the result
of the addition of 1 and the representation of x (ps(x)q = 1 + pxq ∈ ΩT).

This representation is a way to map Peano integers to “machine integers”. Another well-known represen-
tation is the encoding of algebraic terms into e.g. n-ary trees.

4

2.3 Object mapping

In Definition 1, the notion of representation mapping has been introduced to establish a correspondence
between algebraic objects and their representation in the intermediate language. However, we did not put
any constraint on the representation of objects. In particular, the function pq does not necessarily preserve
structural properties of algebraic objects (all terms could for example be represented by a unique constant).

Definition 2 Given a tuple 〈F ,X , T (F), B, N〉, a representation function pq, and the mappings eq : ΩT ×
ΩT → ΩB, is fsym : ΩT × ΩF → ΩB, and subtermf : ΩT × ΩN → ΩT (f ∈ F). A formal anchor is a
mapping d e : T (F)→ pT (F)q such that the structural properties of T (F) are preserved, in pT (F)q, by the
semantics of eq, is fsym, and subtermf .
∀t, t1, t2 ∈ T (F),∀f ∈ F ,∀i ∈ [1..ar(f)] we have:

eq(dt1e, dt2e) ≡ dt1 = t2e
is fsym(dte, dfe) ≡ dSymb(t) = fe
subtermf (dte, die) ≡ dt|ie if Symb(t) = f

In the following, we always consider that the representation function is also a formal anchor. Therefore,
from now on, the notation pq denotes representations that are also formal anchors.

Example 2 In C or Java like, the notion of term can be implemented by a record (sym:integer, sub:array

of term), where the first slot (sym) denotes the top symbol, and the second slot (sub) corresponds to the
subterms. It is easy to check that the following definitions of eq, is fsym, and subtermf (where = denotes
an atomic equality) provide a formal anchor for T (F):

eq(t1, t2)
4
= t1.sym = t2.sym ∧ ∀i ∈ [1..ar(t1.sym)],

eq(t1.sub[i], t2.sub[i])

is fsym(t, f) 4
= t.sym = f

subtermf(t, i)
4
= t.sub[i] if t.sym = f and i ∈ [1..ar(f)]

Defining a correct formal anchor is a key point to allow for the formal verification of the pattern matching
code. But since this can be quite technical, we use in practice an external tool which generates for us the
mapping for a given signature, as described in Section 7.

3 Intermediate language

We now describe the syntax of PIL, introduce the notion of environment, and give a formal big-step semantics
(7→bs) to PIL. Informally, this intermediate language is a subset of C ∩ Java ∩ML that is expressive enough
to describe pattern matching procedures. This language is very close to the host language fragment it will
be translated into at the end of the compilation process, and involves only a renaming of the syntactic
constructions, so that proving this part of the compilation process should not present difficulties.

3.1 Syntax

Given F , X , T (F), B, N, eq, is fsym, subterm, and a formal anchor pq as defined above, the syntax of the
intermediate language PIL is defined in Figure 1.

The set of terms 〈term〉 is built over the representation of T (F), and the construct subtermf which
retrieves the ith child of a given term. The set of expressions 〈bexpr〉 contains the representation of booleans,
as well as two predicates: eq which compares two terms, and is fsym which checks that a given term is
rooted by a particular symbol given in argument. The set of instructions 〈instr〉 contains only 4 instructions:

5

PIL ::= 〈instr〉
symbol ::= pfq (f ∈ F)
variable ::= pxq (x ∈ X)
〈term〉 ::= ptq (t ∈ T (F))

| variable
| subtermf (〈term〉, pnq) (f ∈ F , n ∈ N)

〈bexpr〉 ::= pbq (b ∈ B)
| eq(〈term〉, 〈term〉)
| is fsym(〈term〉, symbol)

〈instr〉 ::= let(variable, 〈term〉, 〈instr〉)
| if(〈bexpr〉, 〈instr〉, 〈instr〉)
| accept
| refuse

Figure 1: Syntax of the intermediate language PIL

let and if correspond respectively to the assignment and the if-then-else test. We consider here that
it is forbidden to assign a same variable twice. We use an if then else construct instead of the switch
construct usually used to compile pattern matching because we want the generated matching algorithm to
be independent of the mapping and the way terms are effectively represented. The is fsym expression allows
to “query” a term without the need to have function symbols as objects directly manipulated by the host
language, providing more abstraction. accept and refuse are two special instructions aimed to approximate
the body part of a function defined by pattern matching. In this work, since we focus on pattern matching,
we only need two instructions to put the execution in a given state (accept or refuse), which denotes
whether the pattern matches the subject or not.

Such a program may contain some free variables (variables which are not bound in the program by a let
construct). They represent the input of the program, in our case the terms the pattern matching algorithm
will try to match against. We call such variable input variable.
Assumption A. In the following, we consider that a program is evaluated in an environment where all its
free variables are instantiated by a value, i.e. a term representation.

Example 3 Given a signature F = {a, f} and a set of variables X = {s, x}, a possible compilation of
f(x)� s is:

if(is fsym(psq, pfq),
let(pxq, subtermf (psq, p1q), accept),
refuse

)

This program is evaluated in an environment which assigns a term representation to the free variable psq.
This program checks that the root symbol of s corresponds to the representation of f . When it is the case,
the first subterm of s is assigned to a variable x, and the program goes into the accept state. Otherwise, it
goes into the refuse state.

On this example, it is easy to convince ourselves that the program goes into the accept state if and only
if the pattern effectively matches the subject. Our goal here consists to get a formal proof of this property.

Notation. For sake of correctness, mathematical objects (B, N, and X) have to be distinguished from their
representation. However, since most of programming languages support the notion of boolean, integer and
variable, when there is no ambiguity, we note p>q = true, p⊥q = false, p0q = 0, p1q = 1, . . . , pnq = n for
n ∈ N, and pxq = x for x ∈ X .

Among the set of programs of PIL, we consider the subset of programs whose evaluation (under assumption
A) always terminates in accept or refuse, whatever the input is. Those programs are called well-formed
programs.

6

Γ,∆ ` pbq : wf (b ∈ B)
Γ,∆ ` t1 : wf Γ,∆ ` t2 : wf

Γ,∆ ` eq(t1, t2) : wf

Γ,∆ ` ptq : wf (t ∈ T (F))
Γ,∆ ` t : wf

Γ,∆ ` subtermf (t, i) : wf
if (t, f) ∈ ∆ and i ∈ [1..ar(f)]

Γ,∆ ` accept : wf

Γ,∆ ` t : wf Γ :: v,∆ ` i : wf

Γ,∆ ` let(v, t, i) : wf

Γ,∆ ` refuse : wf

Γ,∆ ` is fsym(t, pfq) : wf Γ,∆ :: (t, pfq) ` i1 : wf Γ,∆ ` i2 : wf

Γ,∆ ` if(is fsym(t, pfq), i1, i2) : wf

Γ,∆ ` pxq : wf
if x ∈ Γ

Γ,∆ ` e : wf Γ,∆ ` i1 : wf Γ,∆ ` i2 : wf

Γ,∆ ` if(e, i1, i2) : wf
if e 6= is fsym(t, pfq)

Figure 2: Type system for checking validity

Definition 3 A program π ∈ PIL is said to be well-formed when it satisfies the following properties.

• Each expression subtermf (t, n) is such that t belongs to 〈term〉, is fsym(t, pfq)) ≡ true and
n ∈ [1..ar(f)].
(In practice, we verify that each expression of the form subtermf (t, n) belongs to the then part of an
instruction if(is fsym(t, pfq), . . .).)

• Each variable appearing in a sub-expression is previously initialized by a let construct, or in the
evaluation environment.

We introduce here a simple type system for verifying that a given program is well-formed, in a partic-
ular context (modeling the evaluation environment). This context is formed by the variables which have
been introduced in the evaluation environment, noted Γ, and a list of couples (〈term〉, symbol), noted ∆,
representing the fact that in the evaluation environments, the root symbol of a given term is known.

Property 1 A PIL-program π is said well-formed in an evaluation environment if and only if we can build
a derivation of Γ,∆ ` π : wf in the type system presented in Figure 2. Γ contains the variables initialized
by the environment, and ∆ stores which terms have a particular root symbol.

Proof 1 Let π a PIL-program, Γ, ∆ contexts such that there is a derivation Γ,∆ ` π : wf in the type system
of Figure 2.

So for each variable v in π, it exists contexts Γ′,∆′ such that Γ′,∆′ ` v : wf , and thus v ∈ Γ′. Since v
can only be introduced in the context Γ′ either by early initialisation, or by applying the typing rule for let,
the variable v has been initialized. Also, for each subtermf (t, i) construct in π, it exists contexts Γ′,∆′ such
that Γ′,∆′ ` subtermf (t, i) : wf , and (t, pfq) ∈ ∆′. Since (t, pfq) can only be introduced in the context ∆′

by applying the typing rule for if(is fsym(t, pfq), i1, i2) or by a previous test, the representation t has been
checked to have root symbol f .

Let π a well-formed PIL-program in an evaluation environment. If we initialize the contexts Γ and ∆ with
the variables already instantiated in the environment, and with which terms have a particular root symbol, we
can build a derivation of Γ,∆ ` π : wf , since the typing rules for variables and subterm contructs will apply,
each variable being either instantiated in the initial environment, or introduced by a let construct before its
use, and root symbol of terms and arities being checked before the use of a subterm construct, either with a
test in the program or in the evaluation environment.

In practice, when verifying that a given program is well-formed, we initialize the environments with the
set of input variables of the program as Γ (corresponding to the subject against which the program matches),
and an empty list of couples ∆.

7

Notice that the well-formedness of a PIL-program is linearly decidable, since this property can be decided
by the type system in Figure 2.

The program given in Example 3 is well-formed in the environment Γ = {s}, ∆ = ∅, since subtermf (psq, p1q)
is protected by the construct if(is fsym(psq, pfq), . . .) with 1 ∈ [1..ar(f)], pxq is introduced by a let, and
psq is in Γ.
On the contrary, the program: if(is fsym(psq, pfq), if(eq(pxq, subtermg(psq, p1q)), accept, refuse), refuse)
is not well-formed in the same environment for two reasons: pxq is not introduced by a let, and subtermg

is not guarded by an if(is fsym(psq, pgq), . . .).

3.2 Environments

Given a matching problem, its satisfiability is of course of interest. But in most applications it is not enough
and we need to compute a witness: i.e. a substitution which assigns values to the variables of the pattern.
In this section, we introduce the notion of environment, which models the memory of a program during its
evaluation. To represent a substitution, we model an environment by a stack of assignments of concrete
terms to variable names. In addition, we also define a function Φ which goes back from environments to
algebraic substitutions.

Definition 4 An atomic environment ε is an assignment from pXq to pT (F)q, written [x ← ptq]. The
composition of environments is left-associative, and written [x1 ← pt1q][x2 ← pt2q] · · · [xk ← ptkq]. Its
application is such that:

ε[x← ptq](y) =
{

ptq if y ≡ x
ε(y) otherwise

We extend the notion of environment to a morphism ε′ from PIL to PIL, and we note Env the set of all
environments.

Definition 5 Given F and X , we define the mapping Φ from environments to substitutions, by Φ(ε) = σ
where:

σ = {xi 7→ ti | ε(pxiq) = ptiq with xi ∈ X and ti ∈ T (F)}

Hence, to prove the correctness of the compiled code πp, we want to ensure that, for a given model of
evaluation “eval” and for each term t, the following diagram commutes:

p� t

match

��

compile// πp(ptq)

eval

��

σ oo
abstract

ε

We are now going to make the evaluation mechanism explicit.

3.3 Big-step semantics

We use a big step semantics à la Kahn [?] to express the behavior of the PIL evaluation mechanism. The re-
duction relation of this big-step semantics is expressed on couples made of an environment and an instruction,
denoted 〈ε, i〉. The reduction relation for the big-step semantics is:

〈ε, i〉 7→bs 〈ε′, i′〉, with i, i′ ∈ 〈instr〉, and ε, ε′ ∈ Env

and the rules for the big-step semantics are presented in Figure 3. The presented semantics is quite standard,
however, the reader should note that conditions are evaluated modulo a formal anchor pq and the equivalences
given in Section 2.3. In the line of Example 3, if we evaluate the program in the environment where
s is bound to pf(a)q, the condition [s← pf(a)q](is fsym(s, pfq)) ≡ true is equivalent to the condition
pSymb(f(a)) = fq ≡ true, which in this case is true since the top symbol of f(a) is f .

8

〈ε, accept〉 7→bs 〈ε, accept〉 (accept)

〈ε, refuse〉 7→bs 〈ε, refuse〉 (refuse)
〈ε, i1〉 7→bs 〈ε′, i〉

〈ε, if(e, i1, i2)〉 7→bs 〈ε′, i〉
if ε(e) ≡ true

(iftrue)
〈ε, i2〉 7→bs 〈ε′, i〉

〈ε, if(e, i1, i2)〉 7→bs 〈ε′, i〉
if ε(e) ≡ false

(iffalse)
〈ε[x← ptq], i1〉 7→bs 〈ε′, i〉
〈ε, let(x, u, i1)〉 7→bs 〈ε′, i〉

if ε(u) ≡ ptq
(let)

Figure 3: Big-step semantics for PIL

4 Certified compilation

Given a PIL program π and a pattern p, we first define what means for π to be a correct compilation of p.
Intuitively, this asserts that the execution of πp will go into the accept state only if the pattern p matches t.
Conversely, when p does not match t, the program shall go into the refuse state.

Then, we state the correctness theorem and properties that show how the presented approach can be used
to formally certify that a matching problem is correctly compiled. This result will be extended in Section 5
to match constructs as seen in Caml or Tom, where a subject is matched against multiple patterns.

4.1 Pattern-matching compilation correctness

The big-step semantics introduced previously allows us to define now the notion of correct compilation πp

of a pattern p ∈ T (F ,X).

Definition 6 Given a formal anchor pq, a well-formed program πp is a sound compilation of p when both:

∀ε, ε′ ∈ Env,∀t ∈ T (F),

〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉 ⇒ Φ(ε′)(p) = t

(soundOK)

〈ε, πp(ptq)〉 7→bs 〈ε′, refuse〉 ⇒ p 6� t

(soundKO)

Definition 7 Given a formal anchor pq, a well-formed program πp is a complete compilation of p when
both:

∀ε ∈ Env,∀t ∈ T (F),

p� t⇒ ∃ε′ ∈ Env, 〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉
∧Φ(ε′)(p) = t (completeOK)

p 6� t⇒ ∃ε′ ∈ Env, 〈ε, πp(ptq)〉 7→bs 〈ε′, refuse〉
(completeKO)

Definition 8 A compilation of a pattern p into a program πp is said correct, when it is sound and complete.

Informally, Definition 8 says that a program πp is a correct compilation of p when its execution of πp

leads to accept for all subjects which are matched by p, and reciprocally. The execution should also lead
to refuse if and only if p does not match the subject. In addition, Definition 6 and 7 ensure that the
environment ε′ computed by the execution of πp corresponds to a substitution σ such that σ(p) = t.

In order to certify that a given program πp corresponds to a correct compilation of a pattern p, Theorem 1
shows that it is sufficient to compute all derivations of πp to know whether the compilation is correct or not.

9

Theorem 1 Given a formal anchor pq, a pattern p ∈ T (F ,X), and a well-formed program πp ∈ PIL, we
have:

πp is a correct compilation of p
⇐⇒

∀ε, ε′ ∈ Env,∀t ∈ T (F),
〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉 ⇔ Φ(ε′)(p) = t

Proof 2 By application of Properties 2 and 3 below.

Property 2 For all environments ε ∈ Env, the derivation of a well-formed instruction i ∈ 〈instr〉 in the
environment Γ,∆ leads trivially to accept or to refuse, and the reduction is unique.

Proof 3 We proceed by induction over the structure of the instruction i.
We take as induction hypothesis that for all environments ε ∈ Env, the derivation of a well-formed

instruction i ∈ 〈instr〉 in the environment Γ,∆ leads to accept or to refuse, and the reduction is unique.

• when i = accept (resp. i = refuse), only one inference rule can be applied: the axiom (accept) (resp.
(refuse)). So the derivation leads uniquely either to accept or refuse.

• when i = let(x, u, i1), only one inference rule can be applied: the (let) rule:

〈ε[x← ptq], i1〉 7→bs 〈ε′, i2〉
〈ε, let(x, u, i1)〉 7→bs 〈ε′, i2〉

if ε(u) ≡ ptq
(let)

To complete the proof, we have to show that ∃t ∈ T (F) such that ε(u) ≡ ptq. We know that i is a
well-formed instruction in the context Γ,∆, so each variable occurring in u is previously initialized:
ε(u) is ground. Since u ∈ 〈term〉, u is either a representation, a variable or a subtermf . If u is
already a term representation, there is no problem. If u is a variable, u has been instantiated by
term representation in the evaluation environment, since it is well-formed. The well-formed-ness of i
ensures that each subtermf construct is encapsulated by an if(is fsym(p. . .q, pfq), . . .) and that each
variable is initialized. Also, all subtermf expressions are ≡-equivalent (see Definition 2) to a term
representation: ∃t ∈ T (F) such that ε(u) ≡ ptq.

By induction hypothesis, we know that the derivation of i1 leads either to accept or refuse in a unique
way, so the derivation of i is also unique and leads either to accept or refuse.

• when i = if(e, i1, i2), using similar arguments, we show that each 〈term〉 occurring in e is ≡-equivalent
to a term representation. Since the expression e is either a boolean representation, an is fsym, or an
eq (where subterms are term representations), e is by definition ≡-equivalent to the representation of
a boolean. Thus, we have either e ≡ true or e ≡ false.

When e ≡ true (resp. e ≡ false), the only applicable rule is (iftrue) (resp. (iffalse)), and we have:

〈ε, i1〉 7→bs 〈ε′, i3〉
〈ε, if(e, i1, i2)〉 7→bs 〈ε′, i3〉

if ε(e) ≡ true
(iftrue)

by induction hypothesis the reduction of i1 (resp. i2) in the environment ε leads either to accept or
refuse in an unique way, so the reduction of i does the same.

Thus, given ε ∈ Env, the reduction of a well-formed instruction i in an environment Γ,∆ leads either to
accept or to refuse, and the reduction is unique.

Property 3 Given a formal anchor pq and a well-formed program πp ∈ PIL, we have:

∀ε ∈ Env,∀t ∈ T (F), (soundOK)⇒ (completeKO)and (completeOK)⇒ (soundKO)

10

Proof 4 Let us suppose (soundOK) and p 6� t. Since the derivation of 〈ε, πp(ptq)〉 is unique (Property 2),
we cannot have 〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉 without contradicting p 6� t. Property 2 says also that a
derivation either leads to accept or refuse. Thus, we necessarily have 〈ε, πp(ptq)〉 7→bs 〈ε′, refuse〉, and
thus (soundOK)⇒ (completeKO).

Let us now suppose (completeOK) and that ∃ε′ ∈ Env, 〈ε, πp(ptq)〉 7→bs 〈ε′, refuse〉. We have to show
that p 6� t. If p � t, then by (completeOK) we have ∃ε′ ∈ Env, 〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉. This is in
contradiction with the uniqueness of the derivation of 〈ε, πp〉, so we have p 6� t. Hence (completeOK) ⇒
(soundKO).

4.2 Interpreting the big-step semantics

Theorem 1 is the key result to prove that a program πp is correct. However, the equivalence between
〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉 and Φ(ε′)(p) = t is difficult to prove since the big-step semantics has to be
modeled and used in the proof. To solve this problem, we use a very simple form of abstract interpretation
(because the symbolic simulation can be done without approximation) to statically derive a set of constraints
characterizing the program behavior in the spirit of [?, ?]. Therefore, given a program πp, we compute a set
of constraints Cπp such that, to prove a program correct, we show that for all t, “t satisfies Cπp” if and only
if “there exists ε such that Φ(ε)(p) = t”.

In practice, this result is useful because the big-step semantics 7→bs does not appear anymore explicitly.
This makes the proof smaller, and easier to handle by an automatic theorem prover.

Definition 9 A big-step derivation leading to accept is called successful. Let s be an input variable and
πp be a PIL well-formed program. To each successful big-step derivation D we associate the conjunction CD
of all constraints raised by the derivation. Cπp(s) is defined as the disjunction of all constraints CD for all
successful big-step derivations.

In practice, we can use a dedicated tool to extract the constraints from a program. Starting from an
environment ε containing only the input variable, it is sufficient to compute all big-step derivations leading to
accept: 〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉. The constraints corresponds to the conditions raised by the application
of a big-step rule, given Figure 3. Let us note that the number of generated constraints is linear in the size
of the program. In practice, for a single pattern, the program is usually linear in the size of the pattern.

Given a term t, we note Cπp(t) the fact that t satisfies the constraint Cπp. An example of such a constraint
is given in Figure 5.

Property 4 Given a formal anchor pq, and a well-formed program πp ∈ PIL, we have:

∀ε ∈ Env,∀t ∈ T (F),
∃ε′ ∈ Env, 〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉 ⇔ Cπp(t)

Proof 5 It is clear that if the derivation 〈ε, πp(ptq)〉 7→bs 〈ε′, accept〉 is possible, then t satisfies the con-
straint Cπp. On the other hand, if t satisfies the constraint Cπp, then a derivation leading to accept can be
built.

Theorem 2 Given a formal anchor pq, a pattern p ∈ T (F ,X), and a well-formed program πp ∈ PIL, we
have:

πp is a correct compilation of p
⇐⇒

∀t ∈ T (F), Cπp(t)⇔ ∃ε′ ∈ Env,Φ(ε′)(p) = t

This theorem can be used to prove correct the compilation of a pattern. As illustrated by Figure 4,
given a pattern p, a condition over a term t written Cp, σ can be extracted. In general this condition
is of the form ∃σ, σ(p) = t, but, by using a matching algorithm, the substitution σ can be instantiated
by {x1 7→ t1, . . . , xk 7→ tk}, where t1, . . . , tk correspond to subterms of a subject t. When satisfied, this
condition ensures that p matches t.

11

p� t

match

��

compile // πp(ptq)

7→bs

��

Cp,σ 00 Cπpmm

σ oo
Φ

ε

Cp, σ ⇔ Cπp

prove

��
Π : πp is correct

Figure 4: General schema of certification

Similarly, given a program πp, the constraint Cπp can be computed. By application of Theorem 4 we
know that if we can prove the equivalence between these two conditions, then the program πp is a correct
compilation of p. This proof can be done by an automatic prover to provide a formal proof Π.

4.3 Working example

As an example, let us consider the pattern g(x, b), with x ∈ X . Let us now suppose that our compiler
produces the following program, where s is an input variable:

πg(x,b)(s) ,
if(is fsym(s, pgq),

let(x1, subtermg(s, 1),
let(x2, subtermg(s, 2),

let(x, x1,
if(is fsym(x2, pbq), accept, refuse)))),

refuse)

Given a term t and an environment ε0 = [s ← ptq], let us suppose that 〈ε0, πg(x,b)(s)〉 7→bs 〈ε′, accept〉.
Figure 5 shows the unique derivation that can be computed by applying the inference rules defined in
Section 3.3.

To make this derivation possible, the following set of constraints has to be satisfied:

Cπp(s) =


ε0(is fsym(s, pgq)) ≡ true (1)
ε0(subtermg(s, 1)) ≡ pt|1q (2)
ε1(subtermg(s, 2)) ≡ pt|2q (3)
ε2(x1) ≡ pt|1q (4)
ε3(is fsym(x2, pbq)) ≡ true (5)

(1) and (5) can be simplified using the equations of the formal anchor, (2), (3), and (4) are tautologies. Thus,
to prove the correctness of πp, we have to prove the equivalence:

∀t ∈ T (F),
σ(g(x, b)) = t ∧ σ = {x 7→ t|1}

⇐⇒
Symb(t) = g ∧ Symb(t|2) = b

12

Let3 , let(x, x1, if(is fsym(x2, pbq), accept, refuse)) ε0 = [s← ptq]
Let2 , let(x2, subtermg(s, 2), Let3) ε1 = ε0[x1 ← pt|1q]
Let1 , let(x1, subtermg(s, 1), Let2) ε2 = ε1[x2 ← pt|2q]

ε3 = ε2[x← pt|1q]

〈ε3, accept〉 7→bs 〈ε3, accept〉
〈ε3, if(is fsym(x2, pbq), accept, refuse)〉 7→bs 〈ε3, accept〉

5 = ε3(is fsym(x2, pbq)) ≡ true

〈ε2, let(x, x1, if(is fsym(x2, pbq), accept, refuse))〉 7→bs 〈ε3, accept〉
4 = ε2(x1) ≡ pt|1q

〈ε1, let(x2, subtermg(s, 2), Let3)〉 7→bs 〈ε3, accept〉
3 = ε1(subtermg(s, 2)) ≡ pt|2q

〈ε0, let(x1, subtermg(s, 1), Let2)〉 7→bs 〈ε3, accept〉
2 = ε0(subtermg(s, 1)) ≡ pt|1q

〈ε0, if(is fsym(s, pgq), Let1, refuse)〉 7→bs 〈ε3, accept〉
1 = ε0(is fsym(s, pgq)) ≡ true

Figure 5: Example of derivation leading to accept. We have Cπp(s) = { 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 }

This is proved by first applying the substitution in the first part of the proof obligation, and then using the
definitions of terms, symbols and subterms.

For this example, with g a function symbol of arity 2 and b a constant symbol, the mapping definition
leads to the following axioms:

∀t ∈ T (F), Symb(t) = g ⇔ ∃x, y ∈ T (F), t = g(x, y)
∀t ∈ T (F), Symb(t) = b⇔ (t = b)
∀x, y ∈ T (F), g(x, y)|1 = x

∀x, y ∈ T (F), g(x, y)|2 = y

The first two axioms define the meaning of the Symb function. The two remaining axioms define the subterm
function over terms rooted by the symbol g. As we use a first order prover, we need such a definition for
each symbol function and for each subterm.

To prove the left to right implication, we simply apply the substitution to the left part, and then apply
the first axiom, to obtain Symb(t) = g, and the fourth axiom to obtain Symb(t|2) = b.

To prove the remaining implication (⇐), we apply the first axiom to the first constraint, obtaining
∃x, y such that t = g(x, y). We then apply the third and fourth axiom, to instantiate x and y by t|1 and t|2.
The second constraint with the second axiom gives t|2 = b. We can then obtain g(t|1, b), and extract the
substitution.

The form of such propositions is rather simple but a huge number of them could be generated, so this
kind of proof should better be done by an automated theorem prover. In our implementation, we are using
Zenon [?], a first order tableau based automatic theorem prover. One of the nice capability of Zenon is
to generate a formal proof in Coq when a theorem can be proved. In our case, a witness of correctness is
generated and associated to the generated code.

Another proof approach will be to use theorem proving modulo [?] using in particular the axioms issued
from the mapping definition.

5 Extension to match
constructs

Our method can be extended to support match constructs à la ML, Caml or Tom. We consider not only
single patterns, but also constructs of the form match s with (p1 → a1), . . . , (pn → an). The semantics
of this construct is the following: if p1 matches the subject s, the program goes into the accept state,

13

and to keep track of the pattern number, the accept state is labeled by p1, noted acceptp1
. Otherwise,

the subproblem match s with (p2 → a2), . . . , (pn → an) is considered. When no pattern pi matches s, the
program goes into the refuse state.

This new match construct can be easily compiled using the intermediate language PIL. However, to
avoid code duplication and to ease expression in PIL, it is useful to consider the sequence construct:
〈instr〉 ; 〈instr〉.

This sequence construct has the following big-step semantics:

〈ε, i1〉 7→bs 〈ε′, acceptp〉
〈ε, i1 ; i2〉 7→bs 〈ε′, acceptp〉 (seqa)

〈ε, i1〉 7→bs 〈ε′, refuse〉 〈ε′, i2〉 7→bs 〈ε′′, i〉
〈ε, i1 ; i2〉 7→bs 〈ε′′, i〉 (seqb)

It is easy to show that adding the sequence rules does not break the property of uniqueness for the derivation
of a well-formed instruction. The notion of correct compilation of a match construct is an extension of the
definition of the correct compilation of a pattern. The difference comes from the presence of multiple
patterns. Hence, when a pattern is selected to fire a rule (acceptp in our terminology), we should ensure
that all previous patterns do not match the subject. In the following, we do not make any assumptions on
the form of the code to validate. This ensures that we can consider any optimizations of the matching code,
like factorization of common tests.

Let Pm be the set of patterns for the match construct, and < a total ordering relation for patterns in
Pm. In the case of ML for example, we define < by the textual ordering: pi < pj if pi occurs before pj in
the match construct.

Definition 10 Given a formal anchor pq, a well-formed program πm is a sound compilation of m when
both:

∀ε ∈ Env,∀t ∈ T (F) :

∀p ∈ Pm,∃ε′ ∈ Env, 〈ε, πm(ptq)〉 7→bs 〈ε′, acceptp〉
⇒ Φ(ε′)(p) = t ∧ (∀p′ ∈ Pm s.t. p′ < p,Φ(ε′)(p′) 6= t)

(MsoundOK)

∃ε′ ∈ Env, 〈ε, πm(ptq)〉 7→bs 〈ε′, refuse〉 ⇒ ∀p ∈ Pm, p 6� t

(MsoundKO)

Definition 11 Given a formal anchor pq, a well-formed program πm is a complete compilation of m when
both:

∀ε ∈ Env,∀t ∈ T (F) :

∀p ∈ Pm, p� t ∧ (∀p′ ∈ Pm s.t. p′ < p, p′ 6� t)⇒
∃ε′ ∈ Env, 〈ε, πm(ptq)〉 7→bs 〈ε′, acceptp〉 ∧ Φ(ε′)(p) = t

∧(∀p′ ∈ Pm s.t. p′ < p,Φ(ε′)(p′) 6= t)
(McompleteOK)

∀p ∈ Pm, p 6� t⇒ ∃ε′ ∈ Env, 〈ε, πm(ptq)〉 7→bs 〈ε′, refuse〉
(McompleteKO)

A compilation of a pattern p into a program πp is said correct, when it is sound and complete.

Property 5 The derivation of a well-formed instruction i ∈ 〈instr〉 in an environment Γ,∆, in the extended
language, leads either to acceptp or refuse, and the reduction is unique.

Proof 6 We proceed by induction over the structure of instructions. The proof is similar to the proof of
Property 2.

14

We extend the type system presented Figure 2 with the rule:

Γ,∆ ` i1 : wf Γ,∆ ` i2 : wf

Γ,∆ ` i1 ; i2 : wf

Let i = i1 ; i2 be a sequence. By induction, the reduction of i1 is unique and leads either to acceptp

or refuse. In the first case, (seqa) is applicable. The reduction of i1 ; i2 is equal to the reduction of i1, so
it is unique. In the second case, (seqb) is applicable. Since the reduction of i2 is unique, the reduction of
i = i1 ; i2 is unique.

Theorem 3 Given a formal anchor pq, m a match construct, and πm ∈ PIL a well-formed program, we
have:

πm is a correct compilation of m
⇐⇒

∀ε ∈ Env,∀t ∈ T (F),∀p ∈ Pm :

∃ε′ ∈ Env, 〈ε, πm(ptq)〉 7→bs 〈ε′, acceptp〉
⇔ Φ(ε′)(p) = t ∧ (∀p′ ∈ Pm s.t. p′ < p,Φ(ε′)(p′) 6= t)

Proof 7 We want to show, as in Property 3, that (MsoundOK)⇒ (McompleteKO) and (McompleteOK)⇒
(MsoundKO).

In the first case, assume (MsoundOK) and ∀p ∈ Pm, p 6� t. Since the reduction of 〈ε, πm(ptq)〉 is
unique, we cannot have a reduction of 〈ε, πm(ptq)〉 7→bs 〈ε′, acceptp〉. This reduction exists, hence we have
〈ε, πm(ptq)〉 7→bs 〈ε′, refuse〉. The second case can be proved in a similar way.

In order to prove that the compilation πm of a match constructs m is correct, we have to consider
each statement acceptp in the program separately. For each pattern p in the match construct, we build
all derivations in 7→bs leading to acceptp, and deduce from it a constraint, formed by a disjunction of
conjunctions of single constraints. We can then for each constraint prove the corresponding proof obligation,
as expressed in Theorem 3.

6 Generating the constraints

We now describe an algorithm to generate the constraints associated to a PIL program, and discuss the
complexity of this algorithm.

6.1 Algorithm to collect constraints

The extraction starts with an environment ε instantiating all free variables in the program to verify, as
showed in Section 4.2.

C(let(x, u, i), goal) = C(i, goal) ∧ x = u
C(if(e, i1, i2), goal) = (C(i1, goal) ∧ e ≡ true)

∨C(i2, goal) ∧ e ≡ false)
C(i1 ; i2, goal) = C(i1, goal) ∨ (C(i1, refuse) ∧ C(i2, goal))
C(i, goal) = > if i = goal,

⊥ otherwise

The algorithm computes a disjunction of conjunction of constraints. The disjuction represents the differ-
ent path the control flow can take in the program, while the conjunctions represents the set of constraints
raised in one of those path.

It is interesting to note that in the case of simple patterns, when we do not consider the ; instruction,
and when there is only one occurence of accept in the program, then only one of such path is possible for

15

the control flow to reach accept, and so all disjuctions can be simplified by a simple boolean analysis of the
generated constraint.

This function is too abstract to be used in this form, since we need for building the proof obligations of the
correctness theorem the substitution built by the program when reaching accept. To ease the implementation
we allow us to pass to the constraint extraction function the substitution built by the evaluation, and apply
it to the constraints where possible.

C(ε, let(x, u, i), goal) = C(ε[x← u], i, goal)
C(ε, if(e, i1, i2), goal) = (C(ε, i1, goal) ∧ ε(e) ≡ true)

∨(C(ε, i2, goal) ∧ ε(e) ≡ false)
C(ε, i1 ; i2, goal) = C(ε, i1, goal) ∨ (C(ε, i1, refuse) ∧ C(ε, i2, goal))
C(ε, i, goal) = > if i = goal,⊥ otherwise

In the resulting set of constraints C, we propagate variable instantiations, and apply the formal anchor
equations to simplify the constraints.

In practice, this simplification is done during the extraction of the constraints, to allow detecting un-
satisfiable sets of constraints (denoting an impossible path in the program flow) as early as possible, and
discarding them.

6.2 Simple example

As an example, let us consider the pattern g(x, b), with x ∈ X . Let us now suppose that our compiler
produces the following program, where s is an input variable:

πg(x,b)(s) ,
if(is fsym(s, pgq),

let(x1, subtermg(s, 1),
let(x2, subtermg(s, 2),

let(x, x1,
if(is fsym(x2, pbq), accept, refuse)))),

refuse)

We have to start the constraint extraction with ε = [s← t], and want to derive accept.

C(if(is fsym(s, pgq)let(x1, subtermg(s, 1),
let(x2, subtermg(s, 2), let(x, x1, if(is fsym(x2, pbq),

accept, refuse)))), refuse), accept)
=

(C(let(x1, subtermg(s, 1), let(x2, subtermg(s, 2),
let(x, x1, if(is fsym(x2, pbq), accept, refuse)))), accept)

∧is fsym(s, pgq) ≡ true)
∨

(C(refuse, accept) ∧ is fsym(s, pgq) ≡ false)
=

C(let(x2, subtermg(s, 2),
let(x, x1, if(is fsym(x2, pbq), accept, refuse))), accept)
∧(is fsym(s, pgq) ≡ true ∧ x1 = subtermg(s, 1))

∨
(⊥ ∧ is fsym(s, pgq) ≡ false)

16

=
C(let(x, x1, if(is fsym(x2, pbq), accept, refuse)), accept)

∧is fsym(s, pgq) ≡ true ∧ x1 = subtermg(s, 1) ∧ x2 = subtermg(s, 2))
∨

(⊥ ∧ is fsym(s, pgq) ≡ false)
=

C(if(is fsym(x2, pbq), accept, refuse), accept)
∧is fsym(s, pgq) ≡ true ∧ x1 = subtermg(s, 1)

∧x2 = subtermg(s, 2) ∧ x = x1)
∨

(⊥ ∧ is fsym(s, pgq) ≡ false)
=

(C(accept, accept)
∧is fsym(s, pgq) ≡ true ∧ x1 = subtermg(s, 1)

∧x2 = subtermg(s, 2) ∧ x = x1 ∧ is fsym(x2, pbq) ≡ true)
∨

(C(refuse, accept)
∧is fsym(s, pgq) ≡ true ∧ x1 = subtermg(s, 1)

∧x2 = subtermg(s, 2) ∧ x = x1 ∧ is fsym(x2, pbq) ≡ false)
∨

(⊥ ∧ is fsym(s, pgq) ≡ false)
=

(> ∧ is fsym(s, pgq) ≡ true ∧ x1 = subtermg(s, 1) ∧ x2 = subtermg(s, 2)
∧x = x1 ∧ is fsym(x2, pbq) ≡ true)

∨
(⊥ ∧ is fsym(s, pgq) ≡ true ∧ x1 = subtermg(s, 1)

∧x2 = subtermg(s, 2) ∧ x = x1 ∧ is fsym(x2, pbq) ≡ false)
∨

(⊥ ∧ is fsym(s, pgq) ≡ false)

6.3 Simplifying constraints

Using the algorithm to collect constraints produces a huge formula, containing many > and ⊥, so we can
first simplify this formula as a boolean formula.

We apply the following rewrite system, with a letftmost-innermost strategy:

⊥ ∧ x → ⊥
x ∧ ⊥ → ⊥
> ∨ x → >
x ∨ > → >
⊥ ∨ x → x
x ∨ ⊥ → x
¬> → ⊥
¬⊥ → >

17

This rewrite system simplify the boolean constraints, to obtain the simplified contraints.
The extracted constraints for πg(x,b) are:

is fsym(s, pgq) ≡ true
∧ x1 = subtermg(s, 1)
∧ x2 = subtermg(s, 2)

∧ x = x1

∧ is fsym(x2, pbq) ≡ true

Those constraints can be simplified using the definitions of the mapping,

eq(pt1q, pt2q) ≡ pt1 = t2q

is fsym(ptq, pfq) ≡ pSymb(t) = fq

subtermf (ptq, piq) ≡ pt|iq if Symb(t) = f

The mapping equalities can be oriented, to be used as a rewrite system. Informally, the goal is to transform
a constraint giving information about the objects manipulated by the program into a constraint giving
information about the algebraic terms used at source level.

eq(pt1q, pt2q) → pt1 = t2q

is fsym(ptq, pfq) → pSymb(t) = fq

subtermf (ptq, piq) → pt|iq if Symb(t) = f

Applying this rewrite system to the constraints generated for πg(x,b) produces the constraint:

Symb(s) = g
∧ x1 = s|1
∧ x2 = s|2
∧ x = x1

∧ Symb(x2) = b

6.4 Size of the generated formula

Let us consider the size of the input as the number of nodes of the input abstract syntax tree.
All rules except the extraction rule for the sequence ; are linear, each node in the input abstract syntax

tree is visited once.
The rule for sequence visits the left subtree of ; twice, thus leading to an exponential in the number

of ; nodes in the input. However, the sequence ; is associative, so we can consider that the left subtree
of a sequance is not itself a sequence, and the generated code usually do not contain many nested levels of
sequences, so this exponential do not appear in practical use.

6.5 Decidability

The theorems we want to prove have their only quantifiers at the root, introducing the input variables.
They correspond to the second part or the correctness theorem [] and if they hold, prove that the

compilation of the corresponding patterns was successful. Cπp is the constraint formula produced by the
application of the constraint extraction algorithm on the PIL program πp, corresponding to the compilation
of the matching problem p. Cπp(t) represents the fact that the term t satisfy this constraint formula.

Theorem 4 Given a formal anchor pq, a pattern p ∈ T (F ,X), and a well-formed program πp ∈ PIL, we
have:

πp is a correct compilation of p
⇐⇒

∀t ∈ T (F), Cπp(t)⇔ ∃ε′ ∈ Env,Φ(ε′)(p) = t

18

The part we want to prove automatically is:

∀t ∈ T (F), Cπp(t)⇔ ∃ε′ ∈ Env,Φ(ε′)(p) = t

Since the output substitution can be computed from the extracted constraints (and directly, using the
second extraction algorithm), we can also remove from the property we have to prove the existential quantifier,
and use this computed substitution in place of ε′.

The property to prove becomes:

∀t ∈ T (F), Cπp(t)⇔ Φ(ε)(p) = t

Proving that: ∀t ∈ T (F),Φ(ε)(p) = t⇒ Cπp(t) can be done by orienting the axioms defining the subterm
and symbol property.

7 Early Experimental Results

The presented work has been implemented and applied to the intermediate language of Tom [?]. Tom is a
language extension which adds pattern matching primitives to C, Java, and Caml. One particularity is to
provide support for matching modulo sophisticated theories, like associative operators with neutral element.
However, in this work, we only considered the case of the empty theory (i.e. syntactic matching), with
possibly non-linear patterns.

Tom is based on the notion of formal anchor presented in Section 2.3. Thus, it is data structure indepen-
dent, and customizable for any term implementation. Considering a simple term implementation in C, for
example, we can define the following anchor:

struct term { int symbol;

int arity;

struct term **subterm; };

%typeterm Term {

implement { struct term* }

get_subterm(t,n) { t->subterm[n] }

equal(t1,t2) { term_equal(t1,t2) }

}

%op Term a { is_fsym(t) { t->symbol == A } }

%op Term b { is_fsym(t) { t->symbol == B } }

%op Term f(Term) { is_fsym(t) { t->symbol == F } }

Given a %match construct, as illustrated by Figure 6, the compiler translates patterns into PIL instruc-
tions, which use the previously defined formal anchor. In practice, this mapping is supposed correct, in the
sense that structural properties of terms should be preserved. To simplify this task, when no particular
data-structure is required, a generator of term based implementations, coupled with a generator of formal
anchors, can be used [?].

To prove the generated PIL code correct, we recently added to Tom a component (constraints extractor)
which generates, for each pattern p, the constraints Cπp and Cp, σ = (∃σ, σ(p) = t), where t is the input
term. In a second step, these two constraints are sent to a prover to show their equivalence. To experiment
our approach, we used Zenon, because, in addition to be fully automatic, it can generate a Coq formal
proof when it succeeds. This is essential in our “skeptical” approach since it allows the user of the generated
program to verify the proof by himself.

The verification tool is integrated into the Tom architecture, but note that no support from the internal
compiler is needed: Cp, σ are extracted from the AST produced by the parser, and Cπp are extracted from the
PIL program produced by the compiler, or any other component such as an optimizer for example. Seeing the
compiler as a black-box allows us to perform any kind of optimization unless PIL code is generated. At the
moment we handle only the intermediate code of the compiler, ignoring the parser and the code generator.

19

Input Parser Backend Output

Compiler

constraints extraction

Optimizer

Proof ΠZenon

Tom Compiler

Patterns PIL

PIL

Cp,σ ⇔ Cπp

Figure 6: Global architecture of Tom

In our case, the backend performs a so straightforward one-to-one translation, from PIL instructions to host
language instructions, that we trust in its correctness.

The interest of this approach is to allow to verify code corresponding to an optimized many-to-one
algorithm, where common tests are factored.

To illustrate the applicability of the present approach, we tested our validator on several small examples,
all of which worked with success, in an efficient way. For a more realistic test, to show how the approach scales
to biggest problems, we generated proof obligations corresponding to the compilation of Tom itself (written
in Tom). 184 patterns were extracted by the parser, after discarding associative patterns. From this set of
patterns, 1018 applications of inference rules were needed to compute all derivations which lead to accept.
This step generated 834 constraints (Cπp). Most of them were tautologies of the form ε(subtermg(s, 1)) ≡ s|1.
After a first step of simplification, 273 remaining constraints were simplified using 2533 ≡-equivalence relation
steps. On a PowerMac G5 (2GHz), the compilation of Tom, with the generation of theorems to prove, only
increased the compilation time by 20% (going from 70 seconds to 84 seconds). This clearly shows that the
approach can scale to large applications. In the current implementation, the translation to Zenon formalism
is done fully automatically starting from the Tom program.

8 Conclusion and future works

When using a compiler, we always think it is correct. When writing a compiler, we know it is incorrect.
This drives us to present a framework addressing the specific problem of generated pattern matching code
validation. The main benefit of such an approach over a traditional compiler is that the compiler output is
formally checked after each compilation, thus simplifying testing and development and providing a way to
prove the formal validity of the generated code. We have seen that the proposed approach is powerful and
flexible enough to validate the compilation of match constructs à la Caml or Tom.

We are now attacking the challenging problem of extending this method to support matching with
associative (list) operators, like those of the Tom language, and with associative-commutative operators,
like in many rewriting based languages like ELAN. Matching modulo theories is much more elaborated than
syntactic matching, and so is writing such a pattern matching compiler. Validation of the produced code
can then help developing and debugging new optimizations for these matching theories. Furthermore, when
matching modulo theories, a new completeness problem has to be solved: the generated matching code
has not only to find a substitution if the matching problem has one, but may have to produce all possible
solutions for the matching problem.

The approach proposed here generates proof obligations of a very strict form. These proof obligations
are in general easy to prove, but we should investigate our current conjecture that this class of problems is
indeed decidable.

Although we were only interested in this work in the correctness of the generated code against the source

20

problem, some additional properties of the source system could be proved by this method. For example the
completeness of definition of a function defined by pattern matching could be proved by showing that there
is no possible reduction to refuse.

Finally, our ultimate goal is to formally prove the correct compilation of the normalization process
induced by a rewrite system. Proving the correct compilation of rewrite system execution will allow us to
safely deduce on the program produced by the compilation of a rewriting specification the properties proved
for this specification, like termination or confluence. This paper is a first but crucial step in this direction.
Acknowledgments: We would like to thank Luigi Liquori for his inside full reading on a preliminary version
of this paper, Pierre Weis and Germain Faure for useful comments on this work. Special thanks are due
to Damien Doligez for fruitful discussions and his help in connecting our tool to Zenon. We also thank the
anonymous referees for valuable comments and suggestions that led to a substantial improvement of the
paper.

References

[1] Franz Baader and Tobias Nipkow. Term Rewriting and all That . Cambridge University Press, 1998.

[2] Don Batory, Bernie Lofaso, and Yannis Smaragdakis. JTS: tools for implementing domain-specific
languages. In Proceedings Fifth International Conference on Software Reuse, pages 143–153, Victoria,
BC, Canada, 1998. IEEE.

[3] Robert S. Boyer and Yuan Yu. Automated correctness proofs of machine code programs for a commercial
microprocessor. In D. Kapur, editor, Proceedings of the Eleventh International Conference on Automated
Deduction, pages 416–430. Springer-Verlag, 1992.

[4] Horatiu Cirstea, Claude Kirchner, and Luigi Liquori. Matching Power. In Aart Middeldorp, editor,
Proceedings of RTA’2001, volume 2051 of LNCS, Utrecht (The Netherlands), May 2001. Springer-Verlag.

[5] Damien Doligez. Zenon: an automatic theorem prover for first-order logic. Available as part of the
Focal system at http://focal.inria.fr/download.

[6] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving modulo. Journal of Automated
Reasoning, 31(1):33–72, Nov 2003.

[7] Fabrice Le Fessant and Luc Maranget. Optimizing pattern matching. In Proceedings of the sixth ACM
SIGPLAN International Conference on Functional Programming, pages 26–37. ACM Press, 2001.

[8] Sumit Gulwani and George C. Necula. Global value numbering using random interpretation. In POPL
’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 342–352. ACM Press, 2004.

[9] Gilles Kahn. Natural semantics. In 4th Annual Symposium on Theoretical Aspects of Computer Sciences
on STACS 87, pages 22–39, London, UK, 1987. Springer-Verlag.

[10] Hélène Kirchner and Pierre-Etienne Moreau. Promoting rewriting to a programming language: A com-
piler for non-deterministic rewrite programs in associative-commutative theories. Journal of Functional
Programming, 11(2):207–251, 2001.

[11] Andreas Krall and Jan Vitek. On extending java. In Proceedings of the Joint Modular Languages
Conference on Modular Programming Languages, pages 321–335. Springer-Verlag, 1997.

[12] David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian Frederiksen. Proving correctness of
compiler optimizations by temporal logic. In Proc. 29th ACM Symposium on Principles of Programming
Languages, pages 283–294. ACM Press, 2002.

21

[13] John McCarthy and James Painter. Correctness of a compiler for arithmetic expressions. In J. T.
Schwartz, editor, Proceedings Symposium in Applied Mathematics, Vol. 19, pages 33–41. AMS, 1967.

[14] Pierre-Etienne Moreau, Christophe Ringeissen, and Marian Vittek. A Pattern Matching Compiler for
Multiple Target Languages. In G. Hedin, editor, 12th Conference on Compiler Construction, volume
2622 of LNCS, pages 61–76. Springer-Verlag, May 2003.

[15] F. Lockwood Morris. Advice on structuring compilers and proving them correct. In Proceedings of
the 1st annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pages
144–152. ACM Press, 1973.

[16] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 106–119. ACM Press, 1997.

[17] George C. Necula and Peter Lee. The design and implementation of a certifying compiler. SIGPLAN
Not., 39(4):612–625, 2004.

[18] Dino P. Oliva, John D. Ramsdell, and Mitchell Wand. The VLISP verified PreScheme compiler. Lisp
Symb. Comput., 8(1-2):111–182, 1995.

[19] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In Proceedings of the 4th
International Conference on Tools and Algorithms for Construction and Analysis of Systems, pages
151–166. Springer-Verlag, 1998.

[20] Martin C. Rinard and Darko Marinov. Credible compilation with pointers. In Proceedings of the FLoC
Workshop on Run-Time Result Verification, Trento, Italy, July 1999.

[21] Xavier Rival. Symbolic transfer function-based approaches to certified compilation. In Proceedings of
the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 1–13.
ACM Press, 2004.

[22] Mark. G. J. van den Brand, Pierre-Etienne Moreau, and Jurgen Vinju. Generator of efficient strongly
typed abstract syntax trees in Java. IEE Proceedings - Software Engineering, 152(2):70–79, April 2005.

[23] Philip Wadler. Views: a way for pattern matching to cohabit with data abstraction. In Proceedings of the
14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pages 307–313.
ACM Press, 1987.

[24] Dinghao Wu, Andrew W. Appel, and Aaron Stump. Foundational proof checkers with small wit-
nesses. In Proceedings of the 5th ACM SIGPLAN international Conference on Principles and Practice
of Declarative Programming, pages 264–274. ACM Press, 2003.

22

���������
	���
������������������������������������� !���
��"
���#���$�����% !���
���
	'&(*)+	�,

-/.1032346587:9<;1=+>?0A@CB 1 >?5ED�FHGI=J2A512LKM.14
N�G/OPOC23G/5E4 2

1 Q/RSR�TVUAR6WYX(Z�WM[]_^PTV`a[cbedgf?hi^<jYR�TabVk�^<Wgb�lnmpoqlSk�jMr/bV^PT�Q/sP[t^PWMs<^
uwvyx/z {}| WImLl6TVk
R6bV[]~:fI�wlS`�b u R6sC�����?�n���n�?f xSx �6�I��Q/RSR6TV�/TV�Ms�~_^<WEf ��^CTVk
RnWgd

���I�g�6�6�/�?�_�*���_�M�?�6���!�e�g�
2 � |a�J�'� Rn�:l6T�R6bVlnTad�� ��h¡Q¢��TVlSrIj

� x fYR�_^<W?rI^ u ^<U][c£(��[tRnU]U]^Pb�f:¤n¥S�S¤?����TV^<WMln�MU]^Hoq^�X/^P£1f u T�R6WMs<^
¦/§P¨ ���M�6©6�/�ª�¬« §6­_­ � § �?�_�?� ¨M®n¯ �e° ­

±�²w³<´<µ�¶Y·n´S¸ �¹�I[]`�jYRnj:^CT¹jITV^P`a^<WgbV`¹RºmLlnTVk
R6U:k�l?XI^<UImLlnT�TV^PjITV^<`a^<WgbV[]WM»�¼n½I¾%lSWI�
s��M[]j¿s<lSk�k�rMWI[ts<R6bV[]lSWÀR6TVs��M[cbV^<sCbVrITV^ z �¹�I[t`}k�l?XI^<U¹[]`�X/^<`asPTV[]�:^�X¿k
R6bV�I^<k
R6bV[c�
s�R6U]U]d¿�gd¿R+mLrIWMsPbV[]lnW*fªWMRnk�^�X GeNoC

z �¹�M^¢s<lnTaTV^PsPbVWM^<`a`}lnm GeNoC []`Á^P£?�
j/TV^<`a`a^�XÂRn`�R�bV�I^<lnTV^PkJfMÃÄ�M[]s��Â`�b�R6bV^<`%bV�YR6b�k�^<`a`VR6»S^<`i^Pk�[]babV^<X(lSW+bV�M^HR�TVsC�I[]�
bV^<sCbVrITV^(TV^�R6sC�ÀbV�M^<[cT�^C£Ij:^PsPbV^�XÀXI^<`�bV[]WYR�bV[]lSWÅÃÄ[cbV�MlnrIb
k�l?X/[]ÆMs�R6bV[]lnWÇl6mibV�M^<[cT
s<lnWgbV^<Wgb z �¹�M^}k�l?X/^<Uª[tXI^<WgbV[cÆY^P`�bV�M^�~_^Pd+s<lnWM`�bV[cbVrM^PW?bV`�s<lSk�k�lnWÂbVl�¼SÈLÈMs<lSkÁ�
k�rMWM[]s�R�bV[]lSW$R6TVs��M[cbV^<sPbVr/TV^<`¡RnWMXJbV�M^<[cTº^<`a`a^PW?bV[tR6U j/TVlSj:^PTabV[]^<`<f1mATVlSkÉÃÄ�I[ts��ÂbV�M^
j/TVlglnmElnm1bV�M^ GeNoC bV�M^PlnTV^<kÊ[]`qX/^�XIrIs<^�X z_Ë Rns���s<lSWI`�bV[cbVrM^<Wgb![t`pTV^<j/TV^<`a^<WgbV^�X
�gdHR�m3rMWMsCbV[tlnW�ÃÄ�I[ts��Á�MRn`ªWMlÁÌaÍCÎ:È Ï�ÐPÏLÑIX/^PÆYWI[]bV[]lnW��IrIbp[]`ps<lSWI`�baT�Rn[]WM^�X¡bVli`VR6bV[]`�mAd
bV�I^�^<`a`a^<WgbV[tRnU1j/TVlSj:^PTabV[]^<` z �¹�?rM`<fgbV�I^�\nRnU][tXMR6bV[]lnW¢l6mªRºÎ/¼nÒCÑÓÏÓÐPÔIÈ]¼6Ò¹R�TVsC�I[]bV^PsPbVrITV^
[]`ÄTV^�XIrIs<^�X¢bVl}bV�I^ºjITVlgl6mªbV�YR6b%[cbV`%s<lSWIsPTV^PbV^¡XI^CÆYWM[cbV[]lSW(`VR6bV[]`�ÆY^<`%bV�M^i^P`a`a^<WgbV[AR6U
j/TVlSj:^PTabV[]^<` zp| WÕjIT�R6sPbV[]s<^SfªbV�M^
k�l?X/^<Uq�MRn`H�:^<^<W¿XI^CÆYWM^<XÕ[tWÕbV�I^
Utln»S[]s(l6mÄbV�M^
� o �w{ bV�M^<l6TV^<kÖj/TVl6\?[]WM»�`�d/`�bV^<k z:× ^}XI^PÆMWM^}R¢k�^PbV�Il?XIlSU]ln»nd+bV�YR�bºd/[t^PUAX/`ºR
`�d/`�bV^<k
R�bV[ts%R6jMjITVlSRns��ÁbVlºbV�M^�\nRnU][tXMR6bV[]lnW�l6mEs<lSk�k�rMWM[]s�R�bV[]lSW�R�TVsC�I[]bV^PsPbVrITV^<`!R6b
R$�M[]»S�ÇUt^P_^<UÄlnmiRn�M`�baT�R6sPbV[]lSW z �Øl�\SR6U][AXIR6bV^JlnrIT
R6jMj/TVl_Rns��*fpÃq^J^P£/�M[]�M[cb�`a^P\?�
^PT�R6U:R6TVs��M[cbV^<sCbVrITV^<`pbV�YR�b!sPlSWM`�bV[cbVr/bV^%sPlSWMsCTV^PbV^Ä[tWI`�b�RnWIs<^<`ql6m:bV�M^Ä»S^PWM^PTV[]sÄk�l?XI^<U
GeNoC

z Q/lnk�^ql6mMbV�M^P`a^�RnjIjMU][]s�R6bV[]lSWI`ªs<lSk�^!m3TVlSkÙ[tWMXIrI`�baTV[AR6U/XI^<`a[]»SWI`<f6`arMs��}R6`
bV�I^ ���JÚ¹�Û��ÜiÚ �MrI`ql6T¹bV�M^�Ý�sPb�R6»SlSW�WM^CbÞÃ¹l6TV~}m3TVlnkßQ/� � []sPTVlg^<U]^<sPbaTVlnWM[]s<` z

à áMâ%ã:ä1åºæ�çHèØã1éVå%â

ê .1OCOP465M@¹9<;12Aë�@C4S9<;151G/03G/ìIí(îeïIð?51=Âñ >/0A03Ggò¡óp@P;14�2A5M@C4nì/O<>g@P2AGI5�G?ô*óC46õI46O<>?0/;Y.15*D:OC4SD
=J230A032AGI5
@CO<>?5EóC23ó�@CGIOPó�GI5Õ>JóC2A5Eì/034ÁD12A4IöEòº;12L9<;�OP4nKM.123OP4nóº>(;Y.1ì/4�ë1OPG/ìIOC4SóCó�235ÕD14nóC2AìI5�=J46@C;1G:D:GI0AG/÷
ì/234nónø/ùa5ED:4n4nDªöY9<;123ëÂú1.EóC23514nóPóÄ2Ló%;E2AìI;10AíJ9�GI=Jë*46@C2A@C23õ/4�>/5EDJ@P2A=J4¡@PG�=+>?OPû/46@Ä;E>/ó�ó�;EOC.15EûØø
ü @C;EOC4n4�=JG/5M@C;ÇD:460L>_í�235ED:.*9�4nóH@C;E4�03GIóPó¡G?ôÄGI514�ô�GI.1O�@P;¿G?ô�@P;14�46ý:ë*4S9�@C4SD¿235E9�GI=J4Âþ ï ÿÞø� G ô¬>/9�4¿@C;12Ló$235E96OC4S>/óC2A51ìÛ@C23=(4Çë1OP4nóPó�.1OP4/ö��������	��
���
���������� ��îe7YG ê ñÂ>?OP4ÀD:4Só�23ì/5E4nD
@C;1OPG/.1ìI;Ç>�������� ��
� �
 ú*>/óC4nDÅ>?ë1ë1OPGI>I9<;"!w>�5E46òÉ7:G ê 2LóÁú1.1230A@�>/9696G/O<D:2351ìÂ@PGÕ>�ìI46514nOC2L9
>?O<9<;12t@P4n9�@C.1OP4/ö:.EóC2351ì+ë1OP4�÷aD:4nóC2AìI514nD�ëE>/OP>/=(46@C4nOC23B64SDÂ=JG:D:.1034nó¡>/5ED�ë1OCG:964nóPó�GIOi96G/OP4nónø:ùa5
@C;E>?@�96G/5M@C46ýY@nöS@C;14i235M@C46O<9�GI51514S9�@�óV@POC.E9�@C.1OP4�ú*4S9�G/=J4Sóq9<;*>?030A4n51ì/2351ìHúØG?@P;�ô�GIO�D:4nóC2AìI5¢>/5ED
õ/46OP2$#*96>?@C23G/5Àþ %?ï ÿÞø&¡5M@C230¡OP4n9�4n5M@C03í/ö�=JGIó�@ÂG?ô}@C;148õI46OP2'#Ø96>g@P2AGI5y4�(ØGIO�@+òi>/ó+óCë*4n5M@$G/5y@C;14Àë1OCG:964nóPó�2351ì
460346=J465M@Pónö_>?5EDÁ@P;14�0A2A@C4nOP>?@C.1OP4%óCë*4S9�2$#*96>/0A03í�D:46õIG?@C4SDÁ@CGH@C;14�46=¢ú*4SD1D:4nD¢9�GI=(=¢.1512L96>?@C23G/5

INTERREG IIIC/e-Bird
Workshop "Trustworthy Software" 2006
http://drops.dagstuhl.de/opus/volltexte/2006/700

% -*øE7:9<;1=+>?0A@CB�>/5EDÕF�øEN�GIOCOP2AGI514

>?O<9<;12t@P4n9�@C.1OP4¿2Ló�OP460L>g@P2AõI4603í ó�ëE>/OPóC4/ø�N�.Eó�>/OP9<;E2t@P4n9�@P.1OP4nónö�>/5ED'@C;E4623O�ëEOCG/@CG:9�GI03ónö%;E>_õI4
ú*4n465Â@P;14�ó�.Eú�)V4n9�@�G/ôp@C;14}4n>/OC032346O�ò�GIOCû:óÄGI5Â@P;E>g@�@CGIë1239/ø�*ºGgí:9<;1G/.ED1;M.EOCí+���,���$-1.Eó�4�@C;E4
7�.+/ =JG:D:460q9<;14n9<ûI46Oi@PGÂD:46ú1.Eì$>?58>/9n>/D:4n=J239Á23=Jë10A4n=J465M@P>?@C23G/5ÕG?ô¹@C;E4 ü .¿N ü ü10 N
ë1OCG/@CG:9�GI0iþ 243 ÿÞø"�i;E4623O}=JG:D:4n0�23ó}òºOP2t@C@C465 >g@Á@P;14JOC4nì/2LóV@P46O�@CO<>?5Eó�ô�46OÁ0346õ/4n0�>?5EDÇòº2t@P;1G/.1@
>?5YíÂëE>/OP>/=(46@C4nOnø�*ºGgí:9<;1GI.ED:;Y.1OPí+���,�5�$-ØD:4�@P4n9�@H>¢0323õ/4Á0AG:9<û$óP9�4n5E>?OP23G�@P;E>g@ºòi>/óº96>/.EóC4nD
úMí�@P;14�23=Jë10A4n=J465M@P>?@C23G/5¿G/ô�@C;14n2AO}>?OPú12t@P46O�OP>?@C;14nO¡@C;*>?5¿úYí�@C;14¢ë1OPG?@CG:96G/0 2A@PóC460AôVø6.8G/OP4
OC4S9�465M@P0AíIö ü =7)�>/D þ % ÿH.EóC4nD'>Å=JG:D:460H9<;E4n9<û/4nOnö¹23=Jë10A4n=J465M@C4SD'2A5Ù@C;E4 07879 @C;E46G/OP46=
ë1OCGgõI46OSöª@CGÇõ/4nOC2Aô�íÅ@C;14 ü .¿N ü ü;: N�>/5ED ü10 NÉë1OPG?@CG:96G/0Ló6öq>?5ED @P;14623O+9�GI=(ëØGIóC2A@C23G/5
2A5¿>ÂóC2351ì/034
ó�í:ó�@C4n=�ø�&HóC2A5EìÂ=JGYD1460!9<;E4n9<ûY2A5EìEöEóP>gô�46@Ví$ë1OPG/ëØ46OC@C234nó¡>/OC4�õI46OP2'#*4nD�G/584S>/9<;
ë1OCG/@CG:9�GI0ª2A5*D:2AõY2LD:.E>/0A03í/ø��i;14 07879 @PGMGI0p2Ló¡.EóC4nD�@CG+õI46OP2tô�í$@C;14n2AO�9�G/=JëØGIóC2t@P2AGI5pø1ùa5Õ@P;123ó
ò�GIOCû�>/03óCGEöS@P;14¡=JG:D:46012LóÄ>?@%>�03Ggò 0346õI4601G/ôw>/úEó�@CO<>/9�@P2AGI5pög>?5ED(òº2A@C;1GI.:@%>?5Yí¢ëE>?O<>?=J4�@P46OSø

<¡4�@Vò�G/OPû:óJG/5 > 9<;123ë î=<HG ê ñ+>/OC4¿> =JG/OP48OP4n9�4n5M@$D:4nóC2AìI5'ëE>?O<>/D:23ì/=Õö%>/5EDÙ0A2A@�@P0A4
ò�GIOCû�;E>/ó ú*4n465�D:GI514�>/ú*GI.:@p@P;14623O ô�GIOC=+>/0/õ/4nOC2$#*9n>g@C23G/5ÁGI.:@PóC23D14%óV@POP>/2AìI;M@�ô�G/OPòi>?O<DH=JG:D:460
9<;14n9<ûY2351ì�G/5>#1ý:4nD+ó�@COP.E9�@C.1OP4nónø ü 51G/@P>/ú10A4º46ý19�46ë1@C23G/5+2Ló¹@C;14Hò�GIOCû¢G?ô"?}46ú1OP46=J2L9<;E>?4n0@������$-!þ 2BA ÿ�öEòº;1G+OP4n96465M@C03í$óCë*4S9�2$#E4nD�@P;14�C�@C;E46OP4n>?0ªëEOCG/@CG:9�GI0�þ 2D2 ÿ G?ô : ;123032AëEóH2A5Õ@P;14 : /Á7
0AGIì/2L9?ø5�i;14i=+>?235¢ëEOCGIë*4nO�@Ví�@P;146í�õ/46OP2$#E4nD¢23óq@P;14¡>?ú*ó�4n5E9�4�G?ôªD:4n>ID:03GY9<ûÁô�GIOÄ>?5J>?OPú12A@CO<>?OPí
5M.E=�úØ46OºG?ô¹=+>/ó�@C4nOPói>?5*D�óC0L>_õ/4nónø

ü @�@C;12LóÄëØG/235M@nö/2A@Ä2LóÄò�G/OC@C;(51G?@P2A51ìÁ@P;E>g@%@C;14H>/ú*GgõI4i=(4n5M@C23G/514SD�ô�GIOC=+>/01õ/4nOC2$#*96>?@C23G/5
4�(wG/OC@PónöØD:4nõ/G/@C4nD8@CG�96G/=J=�.E51239n>g@P2AGI5¿>?O<9<;12t@P4n9�@C.1OP4nó�>?5ED8ëEOCG/@CG:9�GI03ónöEò�46OP4�ëØ46OCô�G/OP=J4nD
>g@J@C;14ÕOP46ìI23ó�@C4nO�@POP>/5EóVô�4nOJ0A4nõ/460�îE*F� 9 ñ�öÄGI5Ù>Çõ/4nOCíÛóCëØ4n9�2$#*9ÕD:4Só�23ì/5pøG�i;12LóJ0346õ/4n0iò�>Ió
9�G/5*ó�2LD:46OP4nD8>/ë1ë1OPG/ë1OP2L>g@C4�òº;E4658@P;14¢óP>?=J4¢óCG/.EOP964�ò�>Ió¡ì/4n5146O<>g@P2A5Eì+@C;14(ó�íY5M@C;E4nóC2ABS>?ú1034
D:4nóC2AìI5(ô�G/O�@P;14iô�.1030*óCíYó�@C4n=Õø5H 2t@P;+@C;E4¡>/D:õI465M@ÄG?ôwG/.:@<ó�GI.1O<9�4iù :;I ó%>?5*D¢ëE03>?@�ô�G/OP=�ú*>/óC4nD
D:4nóC2AìI5pöw@C;E4$9�.1OPOP465M@�@POC4n5EDÅ2A5Å@P;14�7YG ê D:4Só�23ì/5 9�GI=(=¢.1512A@VíÀ2Ló}@CG8O<>?2Ló�4(@P;14+0A4nõ/4n0�G?ô
>?úEó�@CO<>/9�@C23G/5+þ %?ï ÿ1>?5*D
OP4603í}GI5�õI46OP2'#E4SDÁëE>?O<>?=J46@C46OP23B64nD
0A23ú1O<>?OPí�=JG:D:.1034nónø��i;123ó!OP4nKM.123OC46÷
=(4n5M@
òº2A030%óCGMGI5Ç46ýY@C465*D¿@PG¿9�G/=J=¢.1512L96>g@P2AGI5Ç5E4�@Vò�G/OPû8û/46OP514n03ónöwí/4�@�>�ô�GIOC=+>?0¹@P;146GIOCí
ô�G/O+@P;123ó$96>g@P46ìIG/OPí G?ô}ô�.15E9�@P2AGI5E>?0H=(G:D:.E0A4Só+23óÂ51G/5'4�ý:2LóV@P2A5Eì @CG:D1>_í/ø�ùa5 4�(Ø4S9�@SöÄ=JGIó�@
@C4�ýY@Pú*GYG/ûÇîJ�4-LKD-qþ M ÿ�ñONP������ ��=Q��¡>/OP9<;12A@C4S9�@P.1OC4Só�2A58>?5�235:ô�G/OP=+>?0ª=+>?515E46OSø

8 5 @P;14¿ëE>?@C;Ù@CG @P;14¿D:4�#*512t@P2AGI5 G?ô�>Çô�G/OP=J>/0º@C;E46G/OPíÛG/ôÁ96G/=J=�.15E239n>g@C23G/5*ó6ö¹@Vò�G
2A=JëØG/OC@P>?5M@
ó�@C.ED:234nóÁ;*>_õ/4+>?03OC4S>/D:í�@POC4S>g@C4SDÀë*>?OC@ÁG/ô�2A@nø".¿GMGIOC4Õþ 2�R ÿ%D14�#E514SD >$ô�GIOC=+>/0
=(G:D:4n0ºG?ôÁ>/óCíM5*9<;1OCGI5YíÇúYíÛ>Çô�.15E9�@C23G/5Ù2A5y@C;148N�Ggí/4nO�÷	.8GYG/OP4+03G/ì/2L9Çþ ð ÿÞöÄ>/5ED óC;1Ggò�4nD
;1Ggò @CGJ.EóC4�@C;12Lóiì/4n5146O<>?0Ø=JGYD1460w@CG(õ/4nOC2Aô�íÂ>(ú123ë1;E>/óC4}=J>/OCûJë1OPG?@PG:9�G/0Þø�.8G/OP4}OC4S9�465M@P0AíIö0 46OPB6úØ46OPìÛ>?5*DÊN�OCGgí þ 2�% ÿ�ë1OP4nóC465M@P4nD > ô�GIOC=+>?0�=JGYD1460HG/ô�óV@<>/9<ûI4nD'9�GI=(=¢.1512L96>?@C23G/5
ë1OCG/@CG:9�GI03ónöq2A5 @C;14Õó�4n5EóC4�G/ô¡@C;14 8 7Yù
OP4�ô�4nOC4n5E9�4�=JGYD1460Þøqùa5Ù>ÀOP460L>g@P2AGI5E>?0%ô�OP>/=J46ò�G/OPû
ó�.1ëEë*GIO�@P2A51ìÅ>À96G/=Jë*GI51465M@C÷ÞGIOC23465M@C4SD õY2A4nò�ö!@P;146íÛD14�#E514SDÛGIë*4nOP>?@CG/O<ó
>/5ED 96G/5ED:2A@C23G/5*ó
@CG�5E>_õY2AìM>g@C4¢ú*46@Vò�4n465Çë1OCG/@CG:9�GI0¹03>_íI46O<ó6ø 0 46OPB6úØ46OPì�>/5EDÀN�OPGgí I óHô�OP>/=J46ò�G/OPû�96G/5EóC23D146O<ó
>?030 8 7YùÄ0L>_í/46O<ónøS�i;Y.Eónö:2t@¡2Ló�=JG/OP4}ìI46514nOP>/0E@P;E>?5T.8GYG/OP4 I ó�ò�GIOCûwöMòº;12L9<;�2Ló�@P>/OCìI4�@C4SD$>?@
@C;14�03Ggò�4SóV@i0L>_í/46OSøYùa589�G/5M@POP>IóV@SöU.¿GMGIOC4}ë1OPGgõY23D:4Só�=(4S9<;E>?5E2ABn4nD�ó�.1ëEë*GIO�@SøEN�G?@C;Õó�@C.ED:234nó
ô�GY96.Eó�G/5ÂëEOCG/@CG:9�GI03ó�>?5ED�D:G�51G/@�96G/5EóC23D146O�@C;14}.15ED:4nOC03íY2A5Eì�235I@P46O<9�GI51514n9�@C23G/5$ó�@COP.E9�@C.1OP4
4�ý:ë10323962t@P0AíIø

�i;14J0AGI51ì�@C46OP= GIú�)V4n9�@C23õ/4(G?ôiG/.1OÁOP4nóC4n>?O<9<;¿2LóÁ@CG8óC.1ë1ëØG/OC@Á@C;14+õg>?032LD1>g@P2AGI5ÀG?ôº>?ú1÷
óV@POP>I9�@�ó�ëØ4n962'#*9n>g@P2AGI5Eó�ô�G/OÁG/5Å9<;12Aë 9�GI=J=�.1512L96>?@C23G/5À>/OP9<;E2t@P4n9�@P.1OP4nónöØ>/5ED¿@P;14Jõ/4nOC2$#*96>?÷
@C23G/58G?ô¹@P;14623O�96G/OPOC4S9�@¡23=(ëE0A4n=(4n5M@P>g@P2AGI58úYí�>+ìI2AõI465pöEë*GMóCóC2AúE0Aí�ëE>?O<>?=J46@C46OP23B64nDpö1ù : øV�!G
@C;12Lóº>?23=ÕöMò�4}ë1OCGgõY2LD:4�>¢ì/4n5146O<>?0*ô�G/OP=+>?0Øô�O<>?=J46ò�G/OPû�@P;E>g@i465*9�G/=JëE>IóCóC4nó%@C;E4}4SóCóC465M@P23>/0
9�G/5*óV@P2t@P.1465M@Pó�G?ô�9�G/=J=¢.1512L96>g@P2AGI5¿=JG:D:.1034nó�÷7�=-W�4-ªëEOCG/@CG:9�GI03ó>����N�@PG/ëØG/03G/ì/234nónöEOPG/.1@C2351ì
>?03ì/G/OP2A@C;1=+ó¡>/5ED¿óP9<;14nD:.E0A2351ìÂëØG/0323962A4Só¡÷º>?5*D8>?ë1ë103234nóH@CG$>$òº23D:4¢õg>?OP2A46@Ví�G/ô%9�G/=J=¢.1512A÷

XqG/OP=+>?032ABn2A5Eì 8 5 ê ;123ë ê G/=J=�.15E239n>g@C23G/5*ó Y
96>g@P2AGI5$>?O<9<;12A@C4S9�@C.EOC4Só6øMù�@�2Ló�4nóPó�4n5M@C2L>?0*@C;E>?@�GI.1O%@P;146GIOCíJúØ4}D12AOP4n9�@C03í+4�ý:ë1OP4nóPó�23ú1034H235Â@C;E4
0AGIì/2L9ÂG?ôH>/5 235M@C46O<>/9�@C23õ/4+@P;146GIOC4n= ë1OCGgõI46OSöp462A@C;E46O>#EO<óV@(G/O(;12AìI;146O(G/O<D:4nOnö @CGÀëEOCGgõY2LD:4
=(4S9<;E>?5E2ABn4nD�OC4S>/óCG/512351ìJó�.1ëEë*GIO�@Sø

�i;123ó¡ëE>?ëØ46O�ë1OC4Só�4n5M@Póºòº;E>?@H9�GI5EóV@P2t@P.:@C4Só6öE@CGÂGI.1O¡ûY51Ggòº034nD:ìI4/ö1>Z#*OPó�@¡ë1OPG/ëØGIóP>?0ªô�GIO
>+ô�G/OP=+>?0!@C;14nG/OPí�ô�G/OÁ9�G/=J=¢.1512L96>g@P2AGI5À>?O<9<;12A@C4S9�@C.EOC4Só6ø ê G/=J=�.15E239n>g@C23G/5*óHGI58@C;14J9<;123ë
ó�;E>/OC4�=+>?5Yí�9�G/5*9�46ë1@Póqòº2t@P;¢96G/=Jë1.:@P46O¹514�@Vò�G/OPû:ó6önú1.:@�ò�G/OPû�GI5¢>HD12'(w46OP465M@q@C23=(4ºóP96>/0A4Iø
7Yí:óV@P46=+óÁG/5 >Õ9<;123ëÇG/ôÓ@C465 ;E>_õI4¢õI46OPí8;E>?O<DÀ@C23=(4Iöp;14S>g@�>?5*DÀëØGgò�4nO�9�G/5*óV@POP>/2A5M@Pónø 8 5
9<;12Aë+96G/=J=�.15E239n>g@C23G/5*ó!=¢.Eó�@Äú*4ºë1OP4nD1239�@P>?úE0A4D!g0AGMó�2351ì�>?5ED¢OP4nóC465ED:2351ì�>}=J4nóPóC>/ì/4/ö_GIO�OC46÷
G/O<D:46OP2A5EìH=J4nóPóC>/ì/4�ë12A4S9�4Só¹23óq.15E>I969646ë:@<>?ú1034�òº2A@C;E2A5+>Á7YG ê ö_òº;1230A4i2A@�23ó�96.1OCOP465M@¹ë1O<>/9�@P23964
G/5J@C;E4Hùa5M@C4nOC5146@nø 8 5Â9<;123ë$9�GI=(=¢.1512L96>?@C23G/5EóÄ>/OC4H=(GIOC4�9�G/5*óV@POP>/2A514SDªö/>/5EDJ@C;E4623O%@PG/ëØG/0A÷
G/ì/íÇ23ó¢óV@<>g@P239n>?030AíÅD:4�#E5E4nDªö!òº;1239<;ÛóC23=(ëE0A2$#E4nó
@C;14$ë1OCG/@CG:9�GI03ónø[�i;12Ló
ë*>?ëØ46O
GI510Aí D:4S>?0Ló
òº2t@P;+@C;14Só�4�OC4SóV@POC2L9�@P4nD+96G/=J=�.15E239n>g@C23G/5*ó%óCíYó�@C4n=+ó�!Iú1.EóC4nó%>/5ED\<HG ê I ó6øDHÇ4�ô�G/OP=+>?032ABn4¡>
ì/465E46OP239º96G/=J=�.15E239n>g@C23G/5+>/OP9<;12A@C4S9�@P.1OC4i235+ô�.15E9�@C23G/5E>/01ô�GIOC=Õø ü ìI0AGIúE>?01ô�.15E9�@P2AGI5pöI9n>?030A4SD
GeNoC

öpô�GIOC=+>?0323B64nó
@C;14$2A5M@C4nOP>I9�@P2AGI5Eó�úØ4�@Vò�46465 @P;14Â@P;1OP464ÂûI46í 9�G/5*óV@P2t@P.1465M@PóB! 235M@C4nO�÷
ô¬>/9�4Só6ö:OPG/.1@C2351ì+>?5ED�óC9<;E4nD:.1032351ìEø

�i;123ó¡ì/465E46OP239Á=JG:D:460!=+>?û/4Sóº51GÂ>IóCóC.1=Jë:@C23G/58GI5�@C;14
ëEOCG/@CG:9�GI0eö:@P;14�@PG/ëØG/03G/ì/íIö:@C;E4
OCGI.:@C2351ì >/0AìIG/OP2t@P;1=Õö%G/O�@C;E4ÇóP9<;14nD:.E0A2351ì ëØG/032L9�í/ø]�!Gy>?ú*óV@POP>I9�@Âô�OPG/=�>?5YíÙëE>?OC@C2L9�.E03>/O
>?O<9<;12t@P4n9�@C.1OP4/ö_ò�4�;E>_õI4�2LD:4n5I@P2'#*4nD¢4nóPó�4n5I@P23>/0Yë1OCGIë*4nO�@P2A4Sóiî¬9�GI5EóC23D:4nOC4SD
ë1OPGYG?ôØG/ú1032AìM>g@P2AGI5Eó
G/O¡óC2A=Jë103í�96G/5Eó�@CO<>?235M@Pó<ñ%ô�G/Oº4n>I9<;89�G/5*óV@P2t@P.1465M@nøV�i;1GIóC4�2A=Jë103íÂ@P;14
GgõI46O<>?030w96G/OPOC4S9�@P514nóPó
G?ô

GeNoC
ø 0 465*9�4/ö¹@P;14Õõg>?0323D1>?@C23G/5yG?ô�>/5Mí ë*>?OC@C2L9�.10L>?O+>?O<9<;12A@C4S9�@C.EOC4�23óJOP4nD:.*9�4nDÛ@CG

@C;14Jë1OPGYG?ôÄ@P;E>g@�4n>I9<;ÀGI514¢G/ô�2A@Pó�96G/5Eó�@C2A@C.14n5M@PóÁóC>?@C2Ló^#*4nó�@C;14JìI46514nOC2L9¢96G/5Eó�@CO<>?235M@PónøØN�í
46=�úØ4nDED:2A5Eì$G/.EO¡@C;E46G/OPí�2A5Õ@P;14¢03G/ìI239ÁG/ô%>?5¿>/.:@CGI=J>?@C4SDÕë1OCGYG/ô�>IóCóC2LóV@<>?5M@nö*ò�4
ëEOCGgõY2LD:4
>$@PGYG/0¹@CG¿óCëØ4n9�2Aô�íÇ>/5EDÀ@CGÕõg>?0323D1>?@C4+5146@Vò�GIOCû8GI5Å>Õ9<;123ë D:4nóP9�OP23ë:@C23G/5 >g@
>�;123ì/; 0A4nõ/4n0
G?ô%>?ú*óV@POP>I9�@C23G/5 ø_X1GIO�>?5YíÕ9�GI5E9�OP4�@P4
>?O<9<;12t@P4n9�@C.1OP4/öE@C;14¢ë1OCGYG/ô�>IóCóC2LóV@<>?5M@H>?.:@PG/=+>g@P239n>?030Aí
ì/465E46O<>g@C4Só�@C;14Jë1OPGYG?ô�GIú1032AìM>g@C23G/5*ó¡@P;E>g@
=¢.EóV@�úØ4+óC>?@C2Ló^#E4SD¿@PGÕë1OCGgõI4
@P;14Â9�GI=(ëE0A2L>?5E964
G?ôq@C;12Lóº>?O<9<;12A@C4n9�@C.1OP4Áòº2t@P;ÕG/.1Oi@P;146GIOCíIø

�i;123ó�ëE>/ë*4nO}2LóÁóV@POC.*9�@C.EOC4SD¿>/óHô�G/030AGgò¡ónø6�i;14¢5E4�ýY@ÁóC4n9�@C23G/5Çë1OC4Só�4n5M@Pó}>Â=JG?@P2Aõg>g@P2A5Eì
4�ý1>?=Jë1034�514�@Vò�G/OPûwöE>?5*D�D14�#E514Só¡GI.1O¡51G/@P>g@P2AGI5Eónø*7Y4n9�@C23G/5 Y ìI2AõI4nóº>?58GgõI46OPõY2A4nòÊG?ô�G/.EO
@C;14nG/OPí/øI7Y4S9�@P2AGI5 ` 9�GI5EóV@P2t@P.:@C4Só�@P;14�96G/OP4ºG?ôw@C;14HëE>?ëØ46O�>?5EDJGI.1OÄG/OP23ì/235E>?0E96G/5M@COP23ú1.:@C23G/5[!
2t@ië1OP4n9�2LóC4603í(D:4�#E514SóÄ@P;14¡ô�.15*9�@C23G/5*ó�>/5ED+ë1OPGYG?ôªG/úE0A23ìI>?@C23G/5EóÄô�G/O�@C;14�=J>/2A5�9�G/5*óV@P2t@P.1465M@Pó
G?ôp>Á514�@Vò�G/OPû�GI5+9<;12Aë øM7Y4S9�@C23G/5 ð 46ý:ë*GMó�4Só�G/.1O�=J4�@C;EGYD1G/03G/ì/í
ô�G/O�>/ë1ë103íY2A51ì�GI.1OÄ=JG:D:460
@CG >¿ë1O<>/9�@C2L96>?0�514�@Vò�G/OPû G/5 9<;E2AëÛ235y>ÅóCíYó�@C4n=+>g@C2L9Âòi>_í/öq>?5ED ì/23õ/4Só�>?5yGgõ/4nOCõY2346òÉG?ô
G/.1O�4�ý:ëØ46OP2A=J465M@<ó�GI5$>¢õ_>/OC234�@VíJG/ô!9�GI=(=¢.1512L96>?@C23G/5$>/OP9<;12A@C4S9�@P.1OC4Só6øU�i;14}2A5*óV@<>?5E9623>?@C23G/5
G?ô¹@C;14

GeNoC
=JG:D:4n0p@CGJ@P;14ba 8 9�@<>?ì/GI5Dc
D14nóC2AìI5�úYíÕ7��d.82L9�OPGM4n0A4S9�@POCGI51239nói23ó¡.Eó�4SD8>/ó

>?58230A03.Eó�@CO<>g@C23G/5 øVXq2A5*>?030AíIö*óC4n9�@P2AGI5 ï 9�GI5E9�03.ED:4Sói@C;E4�ëE>/ë*4nO�>?5*DÕì/23õ/4nóºô�.:@C.1OP4
OP4nóC4n>/OP9<;
D:2AOP4n9�@C23G/5Eónø

e fhg�èji]kÄäEå%çHâ�æmlPå%ä ãjn;oqprn;opå%ä�s

8 .1O�@C;14nG/OPí(OP4603234nó�G/5�ó�GI=(4}úE>I9<ûMìIOCGI.15EDJë1OP235E9�23ë1034nói>?5EDÂô�.15ED1>/=J465M@P>/0p9�G/=J=JG/5$ô�4n>?÷
@C.1OP4nóºG/ôq>/0A0 96G/=J=�.E51239n>g@P2AGI5�>/OP9<;12A@C4S9�@P.1OC4Só6ø��!G+=+>?û/4ÁGI.1Oi@C;14nG/OPíÂ4n>Ió�2303íÂ4�ý:ë1OP4nóPó�23ú1034
2A5J235I@P46O<>/9�@C23õ/4ië1OPGMG/ôw>IóCóC2LóV@<>?5M@Pónö_ò�4¡D:4�#E514º2A@%.EóC2A5Eì�0A2LóV@<óÄ>?5*D�@P;14623O%>IóCóCG:9�2L>g@C4SD
GIë*4nOP>?÷
@CG/O<ónöM>IóÄ235I@POCG:D:.*9�4nD$>g@�@C;14�465ED$G?ôª@C;E23óióC4n9�@P2AGI5pø 9 4�@�.Eót#EO<óV@ióV@<>?OC@�òº2A@C;$>/5Â4�ý1>?=Jë1034/ø

` -*øE7:9<;1=+>?0A@CB�>/5EDÕF�øEN�GIOCOP2AGI514

uwvEx y�z|{+}w~m�1�"�j�����=���"�4�@���\�5�4�j�V}�z
�i;123ó}5146@Vò�GIOCûÕGI5Ç>$9<;E2AëÅ;E>/ó�úØ46465 D:4Só�23ì/514SD8úYíÀ7��d.82L9�OPGY46034n9�@POCGI512L96ó¢þ 2B` ÿÞø ü úE>Ió�2L98 9�@P>/ì/GI5(.E512t@i9�GI5Eó�2Ló�@PóÄG/ôª4623ì/;M@�51G:D:4Só%>/5ED(@Vò�4n0AõI4¡ú12LD:23OC4S9�@C23G/5*>?0E032351û:óHî=Xq23ì/.1OP4 2 ñ�øMù�@
;E>/ó%@Vò�G�=J>/2A5$ë1OCGIë*4nO�@P2A4Só�!/@C;14Á9�GI=J=�.1512L96>?@C23G/5+úØ4�@Vò�464n5$>?5YíJëE>?23O%G/ôp51G:D:4nó�OP4nKM.123OC4Só
>g@º=JGIó�@º@Vò�GJ;1GIëEó6ö1>/5ED�2t@¡;E>Ióº>Jó�23=Jë10A4IöEóC;1G/OC@C4SóV@C÷ÞëE>?@C;�OCGI.:@C2351ìJ>?03ì/GIOC2A@C;1= þ 2B` ÿÞø

7

5

6

0

4

3

2

1

�d� �[vDxVv Ni>/óC239 8 9�@P>?ìIG/5�&¡512A@

ü 5��;�����BKD
5�Z�_�P���P���ª23óºDE>g@P>
@C;E>?@º=�.Eó�@�úØ4�96>/OCOP2A4SDJô�OPG/=Ö@C;E4ÁóCG/.EOP964H51G:D:4�@CG(@C;E4
D:4nó�@C235E>g@P2AGI5851G:D:4�>Ió¡>+OP4nóC.10t@�G?ôÄ>Â9�GI=J=�.1512L96>?@C23G/5ÕOP4nKM.14nó�@¡úYí$@P;14¢óCG/.EOP964}5EGYD14/ø ü
óC9<;14SD:.10346O¡>/0A03G:96>g@P4nó�@C;E4�465M@C23OC4�ë*>g@C;�úØ4�@Vò�46465�@P;14
ó�GI.1O<9�4�>?5ED�D:4SóV@P2A5E>?@C23G/5Õ51G:D:4SóiG?ô
>À9�GI=J=�.1512L96>?@C2351ìÀ5EGYD14$ëE>/2AOSøF<HG/5:÷�Ggõ/4nOC0L>?ëEë12A5Eì¿9�G/=J=¢.1512L96>g@P2AGI5 ëE>g@P;EóJ96>/5ÛG:969�.EO
9�G/5*9�.1OPOC4n5M@C03í/öYë*4nOC=J2A@�@P2A51ìÂóCëE>?@C2L>?0ªOP46.EóC4/ø�i;14ÁOCGI.:@C2351ì(G?ôq>(ëE>I9<û/46@�2Ló¡>/9n9�GI=(ëE0A2Ló�;E4nD$>Ió�ô�G/030AGgò¡ónøU�%>/9<;�51G:D:4�9�GI=JëE>?OP4nó�@C;E4
@P>?ì î

PackAd
ñ�@CG82A@Pó
Ggòº5Å>ID1D:OP4nóPó(î

NodeAd
ñ�@CG¿D14�@C4nOC=J23514J@C;E4+514�ýY@�>/9�@C23G/5pø"�i;E4

51G:D:4
9�GI=(ëE.:@C4Só�@C;14�OP460L>g@P2AõI4}>ID1D:OP4nóPóiG?ôq>(ëE>I9<û/46@º>Ió�!
RelAd = (PackAd − NodeAd) mod 8

î^2_ñ
ü @i4S>/9<;�51G:D:4/ö1@C;14�OPG/.:@P4ÁG?ô!ë*>/9<û/46@Pói2Lóº>¢ô�.15E9�@P2AGI5ÕG?ô

RelAd
>/ó�ô�G/0303Ggò¡ó�!

� RelAd � AEö:ë1OCG:964nóPóº>g@º51G:D:4� RelAd � 2ÁG/O�%1ö:OCGI.:@C4�960AG:9<ûYòº23óC4
� RelAd � ï(G/O1R:ö:OCGI.:@C4�96G/.15M@C4nOP960AG:9<ûYòº2Ló�4
� OCGI.:@C4�>I9�OPGIóPó�G/@C;14nOCòº2LóC4

�G�U��
����$�Z�P- ê G/5EóC2LD:46Oq>ºëE>/9<ûI4�@��;�P���Ä>?@!51G:D:4]%ºó�4n5M@p@CG�51G:D:4�ð1øBXq2AO<ó�@nö
5−2 mod 8 =

3
ö@�d�D���+23óÁOPG/.:@P4nDÅ>/96OCGMóCóH@CG8ï1ø"�i;E465pö

5 − 6 mod 8 = 7
öF�d�D���(2LóÁOPG/.:@P4nDÅ9�G/.E5I@P46OC÷

9�03GY9<ûYòº2Ló�4�@CG$ð1øjXq2A5E>/0A03í/ö
5 − 5 mod 8 = 0

öV�d�P���Á;*>/óiOP4n>/9<;E4nDÂ2A@Pód#E5E>?0pD14nó�@C235E>g@P2AGI5pø

uwvWu y���z �= ¢¡"� z@��£�}[¤@�U�
�i;14Jë1OC4nõY2AGI.EóÁ4�ý1>?=Jë1034(23ó�ìI46514nOP>/0A23B64SD8@PG�@P;14+9�GI=(=¢.1512L96>?@C23G/5Å=(G:D:4n0�G?ôdXq2AìI.1OC4 % ø
ü 5 >/OCú12A@CO<>?OPí¿ú1.1@�#E512A@C4$5M.E=�úØ46O�G/ôO��
4NP���Á2Ló�96G/515E4n9�@P4nDÅ@PGÀó�GI=J4$9�GI=(=¢.1512L96>?@C23G/5

XqG/OP=+>?032ABn2A5Eì 8 5 ê ;123ë ê G/=J=�.15E239n>g@C23G/5*ó ð

>?O<9<;12t@P4n9�@C.1OP4/öSú1.EóqG/Oq5146@Vò�GIOCûwø�� GIë*GI0AGIì/234nónö6OPG/.:@P2A51ì}>?03ì/GIOC2A@C;1=+óq>?5ED¢óC9<;E4nD:.1032351ìHëØG/032t÷
9�234nó�>/OC4+2A@Pó�4nóPó�4n5M@C2L>?0%96G/5Eó�@C2A@C.14n5M@Pónø@�!G¿D:23ó�@C2351ìI.123óC; úØ4�@Vò�46465 235M@C4nO�ô¬>I9�4�÷a>?ëEë10A2L96>?@C23G/5
>?5ED(235I@P46OCô¬>/964�÷�2A5M@C4nO�ô¬>I9�4º9�GI=J=�.1512L96>?@C23G/5Eónö?>?5J235M@C46OCô¬>/964¡>?5EDJ>/5J>/ë1ë103239n>g@P2AGI5J96G/=J=�.1÷
51239n>g@P4}.*ó�2351ì+
¥��������KS����¦:@Vò�GJ2A5M@P46OCô¬>/9�4Sói9�G/=J=¢.1512L96>g@P2AGI5�.*ó�2351ìO�� J��
¥���<ø

Interface

Application

Interface

Application

Interface

Application

Interface

Application

messages

messages

messages

messages

frames

frames
frames

frames

Architecture

Communication

�d� �[v�uwv ê G/=J=�.E51239n>g@P2AGI5�.8G:D:4n0

ü ë1ë1032L96>g@P2AGI5Eó¢OC4në1OC4Só�4n5M@
@C;14�9�GI=(ëE.:@P>?@C23G/5E>/0�>/5ED ô�.15E9�@C23G/5E>/0�>Ió�ëØ4n9�@Pó¢G?ô¡51G:D:4Só6ø�i;146íÅ>?OP4(4n2t@P;146O¢>/9�@P2AõI4JG/O
ëE>IóCóC23õ/4/ø"��íYë12L96>?0303í/öp>/9�@C23õ/4+>?ëEë10A2L96>?@C23G/5Eó�>/OC4Jë1OPG:9�4SóCóCG/O<ó
>?5ED'ëE>IóCóC23õ/48>?ë1ëE0A2L96>?@C23G/5EóÂ>/OC48=J4n=(GIOC234nónø§HÅ4Ç96G/5EóC23D146O+@P;E>g@$4S>/9<;'51G:D:4À96G/5M@P>/2A5*ó
G/514ÁëE>IóCóC2AõI4�>?5ED�G/514�>I9�@C23õ/4�>/ë1ë103239n>g@C23G/5 öw�=-W�B-*4n>I9<;�5EGYD14�23ó¡9n>?ëE>/ú1034�G/ô¹óC465ED12A51ì+>/5ED
OC4S9�4623õY2A5Eì$ô�O<>?=J4nónø ü ó}ò�4(òi>?5M@�>$ìI46514nOP>/0!=JG:D:4n0eöp>/ë1ë103239n>g@C23G/5*ó}>/OC4¢51G?@
96G/5EóC23D146OP4nD�J�����'�=���W�¢�¨��!:ëE>IóCóC2AõI4H>?ëEë10A2L96>?@C23G/5Eó�>?OP4¡51G/@i>I9�@C.*>?030Aí(=JGYD146034nDªöY>?5ED�>/9�@C23õ/4H>/ë1ë103239n>g@C23G/5*ó
>?OP4+OC4SD:.E9�4SDÇ@CG8@P;14Â0323ó�@�G?ôi@P;14623O�ëØ465ED12A51ìÇ9�G/=J=¢.1512L96>g@P2AGI5 OC4SKI.E4nó�@Pónø"HÇ4Âô�GY96.Eó
GI5
9�G/=J=¢.1512L96>g@P2AGI5Eó�ú*46@Vò�4n465ÀD:2Ló�@P>?5M@Á51G:D:4nónø�HÇ4Jó�.Eë1ë*GMó�4�@C;E>?@}235À4nõ/4nOCíÕ9�GI=(=¢.1512L96>?÷
@C23G/5pö:@P;14
D:4SóV@P2A5E>?@C23G/5�51G:D:4�2LóºD:23ó�@C235E9�@ºô�OCGI=�@C;14
óCG/.EOP964}5EGYD14/ø

uwvª© « �E¬ � ¬ ��{+}V�B��� � }�z ¬ �jzF¤­�Z�®�S¯����4}_¯ ¬
9 2LóV@<ó
>?OP4+4nóPó�4n5M@C2L>?0¹@CGÕ@P;14Â23=Jë10A4n=J465M@P>?@C23G/5 G?ôºG/.EOÁô�G/OP=J>/0A2LóC=�ø[HÇ4ÂúEOC234�°EíÇë1OP4nóC465M@
@C;14Á51G/@P>g@P2AGI5Eói>?5EDÂ@C;14Áô�.E5E9�@P2AGI5Eó�.Eó�4SDÂ@PGJ=J>/5123ë1.10L>g@C4�@C;E46=Õøj<¡G/@P>g@P2AGI5Eói>?úØG/.:@º0323ó�@Pó
>?OP4ÁóC.1=J=+>?OP2ABn4nD$2A5+�q>?ú1034 2 ø9 4�@C@C4nOPó

l
G/O

L
>/OC4+.*ó�4SDÅ@CGÇD14651G/@C4$>Õ0323ó�@¢GIO�>80323ó�@�G/ô¡0A2LóV@<ó6ø 9 2LóV@¢460346=J465M@Pó¢>?OP4

G?ôÓ@C4n58OC4në1OP4nóC465M@C4SD�úYí�0A46@�@P46O
e
ø��i;14
46=Jë:@Ví�0323ó�@H2LóHD:4n51G?@P4nDÕúYí

ε
ø ü 0A2LóV@

l
23ó�>>#E512A@C4

ó�4SKI.E465E964}G/ô
k
õg>?03.14nói235ED:46ý:4nD�ô�OCGI=±A¢@CG

k − 1
ö
l = (l[i])i∈[0;k−1]

ø
Len(l)

OP4�@P.1OC5*ów@C;14�0A4n51ì?@P;�G?ô:0323ó�@
l
î¬2t@<ó 5Y.1=¢ú*4nO G?ô:4n0A4n=(4n5M@Pó<ñ�ön>/5ED

Last(l)
OC46@C.1OP5Eó

2t@<ó¡0L>/ó�@H460346=J465M@Sø : OP4nD:2L96>?@C4
NoDuplicatesp(l)

OP4n96G/ì/5E2ABn4nóº>J0323ó�@�2358òº;12L9<;84n>/9<;�@Vò�G
460346=J465M@PóÁ>/OC4(D:23ó�@C235E9�@nø"�i;14¢@VíYë*4JG?ô�>$0323ó�@

l1
2LóÁD:4�#*514nDÀúMíÕ@P;14J=J46=�úØ46O<óC;12AëÇG?ô%2A@Pó

460346=J465M@Pó�@PGÂ>(ì/23õ/465ÕóC4�@
E
öE>/5ED�23óºD:4n51G?@P4nD�òº2A@C;�@C;14

⊆l

G/ëØ46O<>g@PG/OSø
ü D1D:2351ì�>/5À460346=J4n5I@

e
2A5Àô�OCGI5M@�G?ô�>Â0323ó�@

l
9�OP4n>?@C4SóH>�5146òß0323ó�@

l
′ öØ5EG?@C4SD l ′ = e.l

ø�Ä0A4n=J465M@
e
@P>/û/4nó¡2A5ED14�ý²A+235

l
′ øV�Ä0346=J4n5I@<ó¡G/ô

l
′ òº2A@C;Ç>?58235ED:4�ý

i
ì/OP4n>g@P46Oº@P;E>g@7AÂ>?OP4

460346=J465M@Pó�G/ô
l
òº2t@P;�235ED:46ý

i − 1
ø:ù�ô!@C;14Á0323ó�@º23ói>¢0A2LóV@ºG/ô 0A2Ló�@Pónö

e
23ói>¢0A2LóV@Søj�i;14�>?ë1ëØ465*D

G?ôÄ@Vò�GÂ0323ó�@Pónö
l1
>?5*D

l2
öØG?ô%@C;14JóC>/=J4
@VíYë*4(2Ló�D:4n51G?@P4nD

l1 t l2
öwOP4nóC.10t@P2A5EìÂ2A5Å>Â0323ó�@ÁG?ô

ï -*øE7:9<;1=+>?0A@CB�>/5EDÕF�øEN�GIOCOP2AGI514

³ Rnk�^ � r/TVj:lS`a^
e.l RSXIX¢^<U]^<k�^PW?b e bVlÁU][]`�b l

l1 ⊆l E l1
[]`%R}U][]`�b�l6m E ´ bÞd/j:^�µ

l1 t l2
RnjIj:^<WYX�lnm l1

RnWYX l2

e ∈l l1 e [t`%R6WJ^<U]^<k�^<WgbÄlnmwUt[]`�b l1

l1 v l2 l1
[]`Ä[]WMs<U]rYX/^�X¢[]W l2

l1 u l2
^<U]^<k�^<WgbV`�s<lnk�k�lSW
bVl l1

R6WYX l2

List(l1, l2) ¶ r/£/b�R6j:lS`a[cbV[]lSWJl6mpU][t`�bV` l1
R6WYX l2

Len(l) bV�M^�W/rIk}�:^PT¹lnmª^<U]^<k�^PW?bV`�sPlSWgb�Rn[]WM^<X([]W l

Last(l) bV�I^iUtRn`�b�^<U]^<k�^<Wgb�lnm l

NoDuplicatesp(l) TV^<s<ln»SWM[¨·<^P`�R}U][]`�b l ÃÄ[cbV�JWMl�X/rMjIUt[]s�R�bV^
ε bV�M^i^Pk�jIbÞd
U][]`�b
l[i] RnW(^<U]^<k�^<Wgb�lnmpU][]`�b l f 0 ≤ i ≤ Len(l) − 1¸ �j¹F�E��xVv <HG?@P>?@C23G/5Eóº>/5ED$ô�.15E9�@P2AGI5Eóº.EóC4nD$@CG+=+>/512AëE.103>?@C4Á0323ó�@Pó

@C;12Lói@VíYë*4Iø:ù�ô!@P;14�0323ó�@Pói;E>_õI4�5EG?@º@C;E4ÁóP>?=J4}@VíYë*4Iö:@C;E4623O�)V.:ýY@P>?ëØGIóC2A@C23G/5�23óiGIú:@P>/2A514SD$úYí
ô�.15E9�@P2AGI5

List(l1, l2)
ø ü 5
460346=J4n5I@

e
23óq>?5
4n0A4n=J465M@!G/ôE>¡0323ó�@

l
2tôE>/5ED
GI5103í�2Aô

e
23óq>¡õg>/0A.14

G?ô
l
ø
e ∈l l1

OC4S>/D1óB!
e
2Ló >?5�4n0A4n=J465M@ G?ô1032LóV@

l1
ø ü 0A2LóV@

l1
2Ló®�W�6���¨º_ND��N�235�>i0A2Ló�@

l2
öSD:465EG?@C4SD

l1 v l2
ö/2Aô >?5*DJG/5103í¢2Aôp46õI46OPí
460346=J4n5I@�G?ô

l1
2Ló%>/5+460346=J465M@�G/ô

l2
øD�i;E4¡46=Jë:@VíJ0323ó�@nö

ε
öI23ó

2A5E960A.*D:4nD+235Â>?030E032LóV@<ó6øD��ý1>?=Jë1034nóB!?@C;E4¡0A2Ló�@
(1 1 1)

23ó%2A5E960A.*D:4nDJ235J@C;14�0A2Ló�@
(1)
¦?@P;14H0323ó�@

(3 2)
23óÄ2A5E960A.*D:4nD(235¢@P;14º0323ó�@

(1 2 3)
øP�i;14i0A2Ló�@

l
235Jòº;12L9<;¢@P;14]#EO<óV@�G:9696.1OPOC4n5E9�4iG?ôw>?5

460346=J465M@
e
;*>/ó�ú*4n465�OC4n=(GgõI4nDJ2Ló%5EG?@C4SD

l \ e
ø��i;14}0A2Ló�@

l
′ 96G/5M@P>/2A5E2A51ì(>?030E@P;14}460346=J465M@Pó

@C;E>?@�>/OC4(460346=J4n5I@<óÁG?ô�0A2LóV@<ó
l1
>/5ED

l2
2LóÁ51G/@C4nD

l ′ = l1 u l2
ø"�i;E23óÁ0323ó�@�ë1OP4nóC46OPõ/4nóH@C;E4

460346=J465M@JG/O<D:46OP2A5EìÀG?ô
l1
ø§X1GIOJ2A5Eó�@P>/5E9�4Iö

(1 2 5 3) u (1 2 1 3 4) = (1 2 3)
øG�i;14

D:4�#E5E2t@P2AGI5�G/ô!GIë*4nOP>?@CG/O
u
23óH>/ó�ô�G/0303Ggò¡ó�!

l1 u l2 ,







ε
�=

l1 = ε ∨ l2 = ε

l
′
1 u l2

�=
l1 = e.l

′
1 ∧ e /∈l l2

e.(l′1 u (l2 \ e))
�E

l1 = e.l
′
1 ∧ e ∈l l2

îE%Iñ

ù�ôÄ@C;14J4n0A4n=(4n5M@Pó
e
G?ô�>$0A2Ló�@

L
>?OP4¢0323ó�@PónöØ@C;14(0323ó�@�G?ôÄ@P;14¢4n0A4n=J465M@Pó}G?ô

L
òº2A@C;Ç@C;14

óC>/=(4Á235ED:46ý
i
235Õ4n>/9<;

e
2Lói51G?@P4nD

Lbi

ø
ùa5ÀG/.EO�=JG:D:460ÞöØ@C;14(=J4n>/512A5Eì$G?ô%@C;14J460346=J4n5I@<óHG/ô

e
2Ló�G/ôÓ@C4n5Àì/23õ/4n5¿úYí8>?5À2LD:4n5I@P2t÷#E46OSø§X1GIOÂOC4S>/D1>/ú1230A2A@Ví/ö¹ò�4¿ó�;E>/0A0º.*ó�4Õ@P;14823D1465M@C2$#E46O+O<>g@P;146OJ@P;E>?5'2A@Pó+235ED:46ýªø®X1GIO+2A5:÷

óV@<>?5E964/ö¡>/óPóC.1=J4À@P;E>g@
e
2Ló8>Ù0A2Ló�@À9�G/=JëØGIóC4nD G?ô(>ÙûI46í/ö¡>Ù5E>/=J4 >/5ED >ÙóC.1OP5E>?=J4D!

e = (key name surname)
ø 9 4�@

L
ú*48>Ç0A2LóV@+G/ôH460346=J465M@<ó

e
G/ô¡@C;E23óJûY235EDªøG�i;14Õ0A2Ló�@

G?ôÁ@C;14Çû/4níYó$23ó$51G?@P4nD
Lbkey

ö�@C;14Ç0A2Ló�@$G?ô�@P;14À5E>/=J4nó
Lbname

>?5*DÙ@C;14Ç0A2LóV@�G?ô�@C;E4
ó�.1OP5E>/=(4Só

Lbsurname

ø/�46OPí+G?ôÓ@C4n5pö1>¢0A2LóV@º2Ló�ú1.1230t@¡úYíJ@C;E4Á>/ë1ë103239n>g@P2AGI5$G?ôq>�ô�.E5E9�@P2AGI5
f
@PGJ46õ/4nOCíJ4n0A4n=(4n5M@

G?ôº>Õ0A2LóV@
l
ø[�i;12Ló�G/ëØ46O<>g@P2AGI5Å96G/OPOC4Só�ëØG/5*D1ó�@CG¿>Õ;123ì/;14nO�÷�G/O<D:4nOHô�.15*9�@C23G/5

ϕ
@C;*>g@�@P>/û/4Só

>/ói>?OPì/.1=J4n5I@<ó�>¢ô�.15*9�@C23G/5
f
>/5ED�>¢0323ó�@

l
øjX1.15*9�@C23G/5

ϕ
OP4�@P.1OC5*ó%@P;14Á0A2Ló�@iG/ô @P;14ÁOC4Só�.10A@Pó

G?ôq@C;14
>/ë1ë103239n>g@C23G/5�G?ô
f
@PG+46õ/4nOCí+4n0A4n=J465M@¡G?ô

l » ø ü óºô�.15E9�@P2AGI5 f
9�GI.10LD$úØ4
9�GI=(ëE0A46ýwö

2t@(23ó�51G?@¢>/0Aòi>_í:ó�ë1O<>/9�@C2L96>?0Ä@CG¿;E>_õI4+2t@(4�ý:ë10323962t@P0AíÇô�G/OP=�.E03>?@C4nDpø 8 ôÓ@C4n5pö 2A@(óC.�¼Â9�4Só�@PG
4�ý:ë1OP4nóPóÁ@C;14�=JGYD12'#*9n>g@P2AGI5 D:G/5E4ÂG/5 4S>/9<; 460346=J4n5I@SøF�!GÀ>/0A0346õY2L>g@C4Â@C;14�51G?@<>g@C23G/5 öp@C;E4
½ | W�mLrMWIsPbV[]lSWMRnUEjITVlS»6T�Rnk�k�[]WM»/fIbV�I[]`�s<lnTaTV^<`aj:lnWYX/`%bVlHbV�M^ºk
Rnj�lSj:^CT�R6bV[]lSW

XqG/OP=+>?032ABn2A5Eì 8 5 ê ;123ë ê G/=J=�.15E239n>g@C23G/5*ó R
>?ë1ë1032L96>g@P2AGI5�G/ô ô�.15*9�@C23G/5

ϕ
23óº5EG?@C4SD�.Eó�2351ìJG/ëØ46O<>g@PG/O

Λ
D:4�#*514nDÕ>/ó�ô�GI0A03Ggò¡óB!

Λ
e∈ll

f(e) ≡ ϕ(l, f) ,

{

ε
�E

l = ε

f(e).ϕ(l′, f)
}V�B�F�S¯4¾ �E¬ �

l = e.l
′

î=YMñ
X1G/O�2A5*óV@<>?5E964/öØ0A46@

l
ú*4J>Â0323ó�@�G/ôÄ2A5M@P46ì/4nO}96G/.1ëE0A4Só

e = (x1 x2)
ø��i;E4¢0323ó�@

l
′ G/ôÄ@C;E4

ó�.1=+ó
x1 + x2

GgõI46O�@C;14�4n0A4n=J465M@Pó
e
G?ô

l
2Lóº4n>Ió�2303í$D:4�#*514nD�òº2t@P;8G/ëØ46O<>g@PG/O

Λ
!

l
′ =Λ

e∈l
(e[0] + e[1])

¿ À�åºæ�o[Á�ÂhÃtopä�Ã¡é^owÄ
©"vEx Åb¯ � zF� � �F�E� ¬ }

GeNoCX1.15E9�@C23G/5
GeNoC

OC4në1OC4Só�4n5M@Pó @C;14�@CO<>?5*ó�=J2LóCóC2AGI5�G/ô*=J4nóPóC>/ì/4Só GI5(>}ì/4n5146OP2L9�96G/=J=�.15E2t÷
96>g@P2AGI5+>?O<9<;12t@P4n9�@C.1OP4/ö?òº2A@C;Â>/5+>?OPú12t@POP>/OCí
@CG/ëØG/03G/ìIí/ö?OPG/.1@C2351ì�>?03ì/G/OP2A@C;1=É>?5ED+óCòº2t@<9<;12351ì
@C4n9<;E5123KM.14Iø:ù�@Pói=+>?235Õ>?OPì/.1=J465M@i23ó�@P;14�0323ó�@ºG?ô!=J4SóCóP>?ìI4nó�46=J2t@C@C4SD�>?@¡ó�GI.1OP964�5EGYD14nónø:ù�@
OC46@C.1OP5Eó�@P;14H032LóV@iG?ôw@C;E4�OP4nóC.10A@PóÄOP4n964623õ/4SD+>g@�D14nó�@C235E>g@P2AGI5+51G:D:4nónøIù�@<ó�D14�#E512A@C23G/5$=J>/2A5E0Aí
OC4n0A234nóiGI5$@P;14Áô�G/030AGgòº2351ì(ô�.15E9�@C23G/5EóB!
2/ø;Æ��V���� Ç���P�����(>?OP4�OC4në1OC4Só�4n5M@C4nDyúYí @Vò�GÀô�.15*9�@C23G/5*ó�!

send
465E9n>?ëEóC.10L>g@C4Só+>À=J4SóCóP>?ìI4

2A5M@PG�>Âô�OP>/=(4(>?5EDÀ2A55)V4n9�@<ó�@C;14¢ô�OP>/=J4�G/5À@C;14(5146@Vò�GIOCû6¦
recv

D14n9�G:D:4Só¡@P;14¢ô�OP>/=(4
@CGÛOP4n96Ggõ/4nOJ@C;14¿4n=J2t@C@C4nDÊ=(4SóCóP>?ìI4/ø®�i;E4¿=+>?235Ê9�G/5*óV@POP>/2A5M@$>/óPóCGY9623>?@C4SD @PG @C;E4nóC4
ô�.15E9�@C23G/5EóJ46ýYëEOC4SóCóC4nó�@C;E>?@J>ÇOP4n9�4n2AõI46OJó�;EG/.10LDÛúØ48>?ú1034$@PG 4�ýY@CO<>/9�@�@C;E4�4n5E9�G:D:4SD
2A51ô�G/OP=J>?@C23G/5pöt�=-W�B-!@P;14�96G/=JëØGIóC2t@P2AGI5ÅG/ôiô�.15E9�@P2AGI5Eó

recv
>/5ED

send
î
recv ◦ send

ñ
23ó}@P;14+2LD:465M@C2A@Ví8ô�.15*9�@C23G/5 ø[<¡G/@C4(@C;E>?@�@C;12LóÁë1OPG/ëØ46OC@Ví823ó�>/03óCG�ë1OC4Só�4n5M@Á235h.8GYG/OP4 I ó
=JGYD1460pG/ôq>/óCíY5E9<;1OPG/5Yí/ö:>Ióiò�4n0A0p>Iói2A5 0 4nOCBnú*4nOCìJ>?5*D�N�OPGgí I ó%ô�OP>/=J46ò�G/OPûØø%:ø;È�
5º��E�W�UKÉ�5��N���
��j
5�$
JKP�¡>?OP4iOC4në1OP4nóC465M@C4SD�úYí
ô�.E5E9�@P2AGI5

Routing
øP�i;14ºOPG/.1@C2351ì
>?03ì/G/÷

OC2A@C;E= 96G/5EóC2LóV@<óºG?ô¹@C;E4�ó�.*969�4SóCóC23õ/4
>?ëEë10A2L96>?@C23G/5ÕG?ôÄ.E512t@<>?OPí$=JGgõ/4Só6øVX1G/OH4n>/9<;8ë*>?23O
=+>/D:4ÕG?ô�> ó�GI.1O<9�4

s
>?5*Dy> D:4SóV@P2A5E>?@C23G/5

d
ö
Routing

9�G/=Jë1.1@C4nó²�5�W�¹@C;148ëØGIóPóC2t÷
ú1034�OCGI.:@C4Sóº>?030AGgò�4nD�úYí+@C;14�.E512t@<>?OPí$=JGgõ/4Só6ø��i;14�=+>/2A589�GI5Eó�@CO<>?235I@¡>IóCóCG:9�2L>g@C4SD+@PG
Routing

23óH@C;E>?@}4S>/9<;¿OPG/.1@C4
ô�OPG/=
s
@PG

d
4�(w4n9�@C23õ/4603í¿ó�@P>?OC@Pó�235

s
>?5ED¿.Eó�4SóHGI5103í

4�ý:2LóV@P2A51ìJ51G:D:4Sói@CGJ4n5ED�2A5
d
øY1ø�Ê6�j�b��ËG�W�	�����W�SKZ�	�������_�=Ì�º_��23ó�OC4në1OP4nóC465M@C4SD¢úYí(ô�.15E9�@C23G/5

Scheduling
øU�i;14ÁóC9<;E4nD:.10A÷

2A5Eì�ë*GI0A2L9�í
ë*>?OC@C2L9�23ëE>g@P4nó¹235¢@P;14º=+>?5E>/ì/4n=(4n5M@¹G/ôØ96G/5�°E2L9�@<ó6öI>?5ED(9�GI=(ëE.:@C4SóÄ>Áó�46@ÄG?ô
ë*GMóCóC23ú10A4�ó�23=�.10L>g@P4651GI.Eóp96G/=J=�.15E239n>g@C23G/5*ó6ø4X1G/OP=+>?030AíIö�@C;E4nóC4%9�GI=(=¢.:@P>?@C23G/5Eó óC>?@C2LóVô�í
>?5��W�_Í��� ��=�5�_�Þø/7:9<;14nD1.10A2351ì�>}9�G/=J=¢.1512L96>g@P2AGI5pöU�=-W�B-I>/DED:2A5Eì}2A@¹@CG�@C;14¡96.1OPOC4n5I@¹ó�46@�G?ô
>?.:@P;1G/OP23B64nD$9�G/=J=¢.1512L96>g@P2AGI5EónöI=¢.EóV@ië1OP4nóC46OPõ/4º@P;14}2A5Yõg>?OP23>/5M@nöY>g@�>/0A0Ø@P2A=J4nói>/5EDÂ235
>?5Yí+>/D:=J2LóCóC23ú10A4}óV@<>g@P4HG?ôª@P;14}514�@Vò�G/OPûwøD�i;14�2A5Yõg>?OP23>/5M@%23ó�óCë*4S9�2$#*9¡@PG
@P;14}óP9<;14SD:.10A÷
2A5Eì�ëØG/032396í/ø_ùa5�GI.1O!ô�G/OP=J>/0A23Bn>?@C23G/5pön@C;E4�46ýY2Ló�@C465*9�4%G/ô1@C;E23ó¹235Yõ_>/OC2L>?5M@ 2Ló¹>/óPó�.E=(4SD�ú1.:@
51G?@�46ýYëE0A2L9�2A@C03í�OC4në1OP4nóC465M@C4SDªø4XEOCGI= >H032LóV@�G?ô*OC4SKI.E4nó�@C4nD¢9�GI=(=¢.1512L96>?@C23G/5EónöSô�.15E9�@P2AGI5
Scheduling

4�ýY@CO<>/9�@Pó¡>ÂóC.1ú:÷�0323ó�@�G/ô�96G/=J=�.E51239n>g@P2AGI5Eóº@P;E>g@�óP>g@P23ó�ô�í�@C;14¢2A5Yõg>?OP23>/5M@nø�i;14�OP4nó�@iOP46ëEOC4Só�4n5I@<ó�@C;14
D:4n03>_íI4nD�9�G/=J=¢.1512L96>g@P2AGI5Eó
HÇ4ÁóV@POC4SóCóÄ@C;14�ô¬>/9�@�@P;E>g@º>?030*@C;14Só�4�ô�.15E9�@C23G/5Eói>?OP4¡ìI46514nOC2L95!I@C;14n2AOi4SóCóC465M@C2L>?0*ë1OPG/ëØ46OC÷

@C234nónöE96>/0A034nD��� �
B
Î��
PQ��¨�'KS���¢�=
��j�ºGIO¡ó�23=Jë10Aí���
��_���¢ J�5�W�_�E�<ö1>/OC4}ô�GIOC=+>?0323B64nDpö:ú1.:@H51G/@º@C;14n2AO
4�ý:ë10323962t@HD:4�#E512A@C23G/5pø

M -*øE7:9<;1=+>?0A@CB�>/5EDÕF�øEN�GIOCOP2AGI514

©"vWu ��z }��=¤ � zF� �@Ï zF�5� � }�z
GeNoC

X1.15E9�@C23G/5
GeNoC

2Lóqë1239�@C.1OP4nD¢G/5>Xq2Aì*ø Y øgù�@q@P>?ûI4nó¹>/óq>?OPì/.E=(4n5M@Pó @C;14i0323ó�@qG/ô*OP4nKM.14SóV@P4nD
9�G/=J=¢.1512L96>g@P2AGI5Eóº>?5*D$@P;14
9<;E>/OP>I9�@C4nOC2Ló�@C2L96ó�G?ôq@C;14�5E4�@Vò�G/OPûØø:ù�@¡ëEOCG:D:.E964nó�@Vò�G+0A2Ló�@Pó¡>Ió
OC4Só�.10A@PóB!Ø@C;14+=J4SóCóP>?ìI4nó�OC4S9�4623õ/4SD8úYí8@C;E4JD14nó�@C235E>g@P2AGI5ÇG/ô�óC.E96964nóPóVô�.10�96G/=J=�.15E239n>g@C23G/5*ó
>?5EDJ@P;14Á>?úØG/OC@C4nD+96G/=J=�.E51239n>g@P2AGI5Eó6øMùa5+@P;14�OP46=+>/2A5ED146O%G/ôª@C;12Lóió�4S9�@P2AGI5pö/ò�4�D:46@P>/2A0Ø@C;E4
úE>/óC239Á96G/=Jë*GI51465M@<óiG?ôq@C;14Á=JG:D:460Þø

Routing

Scheduling

Application
Node A

Messages
Application

Node BFramesFramesMessages

Node A

Node B InterfaceNode A Interface

Node B

send

recv recv

send

�d� �@v4©[v
GeNoC

! ü ?}4n5146OP239b<H4�@Vò�G/OPû

�i;14
=+>?235¿2351ë1.:@}G?ô
GeNoC

2LóH>+032LóV@
T
G?ô;�¢ J���_���P���E�=
5�j�ºG?ô¹@C;E4
ô�G/OP=Ð��ÑÓÒ¢�=N¥Ô

msgt ÕGÖ øV� O<>?5EóP>/9�@C23G/5 t
OP46ë1OP4nóC465M@<ó%@P;14�235I@P465M@C23G/5�G?ô�>?ëEë10A2L96>?@C23G/5

A
@PGÂó�4n5ED�>¢=J4SóV÷

óC>/ì/4
msgt

@CG
>/ë1ë103239n>g@C23G/5
B
ø
A
2Lóq@C;E4�
� ��'KP�W��>?5ED

B
@P;14�NP�����E�W�6���¢�=
��EøMN�G?@C;

A
>?5ED

B>?OP4�=J46=¢ú*4nOPóqG/ô1@C;14ºóC4�@�G?ô*51G:D:4nónö
NodeSet

ø���>/9<;
@POP>/5EóP>/9�@P2AGI5�2Lóq.1512LKI.E4603í
23D1465M@C2$#E4nD
úMí
>H5E>g@P.1O<>?0

id
ø�/Ä>?0323DÁ@POP>/5EóP>/9�@P2AGI5Eóq>?OP4ÄOC4S9�GIì/5123B64SDÁúMí�ëEOC4SD:239n>g@P4

Tlstp(T ,NodeSet)
ø�i;14H.151ô�G/0LD:2A5Eì�G?ôwô�.15*9�@C23G/5

GeNoC
2Ló�D:4në12L9�@C4SD+235�Xq2AìI.1OP4 ` ø�XEG/O%4nõ/4nOCí¢=(4SóCóP>?ìI4

2A5�@P;14%23512A@C2L>?0M0A2Ló�@!G?ô:@POP>/5EóP>/9�@P2AGI5Eónö�ô�.15E9�@C23G/5
ComputeMissives

>?ëEë10A234nópô�.15E9�@C23G/5
send@CG
9�GI=Jë1.:@C4i@P;14H96G/OPOC4Só�ëØG/5ED12A51ì�ô�O<>?=J4/ø��%>I9<;(ô�OP>/=(4i@PG/ìI4�@C;E46O�òº2A@C;J2t@<ó;�=N?ö�
� ��'KP�W��>/5EDNP�����¢�W���5�E�=
5�H9�GI5Eó�@C2A@C.:@P4nó >b
>�ª�����WÍ��6ø ü =J2LóCóC23õ/4�2Lóªõg>?0323D}2AôM@P;14Ä2LD1óp>/OC4�5E>?@C.1O<>?0Ló�î�òº2A@C;�5EG

D:.1ë103239n>g@P4Sñ�¦1@C;14ÁG/OP23ì/235�>?5*DÂ@P;14�D:4nó�@C235E>g@P2AGI5�>/OC4}=J46=¢ú*4nOPóiG/ô
NodeSet

ø ü õg>?0323D�0A2Ló�@nö
M

G?ô¡=J2LóCóC2AõI4nó¢23ó(OP4n96G/ì/5E2ABn4nD úYí ë1OP4nD:2L96>?@C4
Mlstp(M,NodeSet)

øG�i;14n5pö¹ô�.15E9�@C23G/5
Routing

9�G/=Jë1.1@C4nó$>Ç032LóV@ÂG/ô�OPG/.:@P4nó(ô�G/O+4nõ/4nOCí =J2LóCóC2AõI4/ø�ù�ô}@C;148OPG/.1@C2351ì >?03ì/G/OP2A@C;1=
23ó+D:46@C4nOC=J235123ó�@C2L9?öÄ@C;12LóJ0A2Ló�@Â;E>/ó(G/5E0AíÛGI514Õ460346=J465M@Sø 8 5E9�4ÕOPG/.:@P4nó+>?OP4Õ9�G/=Jë1.1@C4nDpöÄ>�E J�5Í����ªD:465EG?@C4Só}@C;14+032LóV@
9�GI=Jë*GMó�4SDÀG/ôi>�ô�O<>?=J4/öª2A@PóZ�=N+>/5EDÇ2t@<óÁ0A2LóV@
G/ô�OPG/.:@P4nónø ü 0A2Ló�@
V
G/ô¡@CO<>_õ/4n03ó�2Ló(õg>?0323D 2Aô¡@P;14�2LD1ó(>?OP4$5E>?@C.1O<>?0Ló$î¬òº2t@P; 51GÅD:.1ë1032L96>g@P4Sñ�ø�7:.E9<; >¿032LóV@J23ó

OC4S9�G/ìI5123B64nDyúYí ë1OP4nD1239n>g@C4
Vlstp(V)

ø®XE.15E9�@C23G/5
Scheduling

ó�4nëE>?O<>g@P4nó
V
235M@CGÛ> 0323ó�@

Scheduled
G?ô1óP9<;14nD:.E0A4SD}@CO<>_õ/460Lóp>/5ED�>º0323ó�@

Delayed
G/ôED:460L>_í/4SD�@CO<>_õ/460Lónø��i;14ÄOP4nóC.10A@PópG/ô

@C;14ºóP9<;14nD:.E0A4SDÁ@CO<>_õ/4n03óq>?OP4�96G/=Jë1.:@P4nD
úYí
9n>?030A2351ì
recv

ø?F�460L>_í/4SDÁ@CO<>_õ/4n03ó!>?OP4�96G/5Yõ/4nO�@P4nD
úE>/9<û+@PGJ=(2LóPó�23õ/4Sóº>?5ED�9�GI5EóV@P2t@P.:@C4Á@P;14
>?OPì/.E=(4n5M@�G/ô¹>(OP4n9�.EOPóC2AõI4}9n>?030w@CG

GeNoC
ø

XqG/OP=+>?032ABn2A5Eì 8 5 ê ;123ë ê G/=J=�.15E239n>g@C23G/5*ó 3
� G+=+>?ûI4�óC.1OC4Á@P;E>g@�@C;12Lóºô�.E5E9�@P2AGI58@C4nOC=J235E>g@P4nónöEò�4�>/óPó�G:9623>?@C4�>Ø×§�V�W���¡5Y.1=�úØ46O�G?ô

>g@�@P46=Jë:@<ó�@CG84nõ/4nOCí¿5EGYD14/ø ü @�4nõ/4nOCí¿OP4n96.1O<ó�23õ/4+96>/0A0�G/ô
GeNoC

öp46õI46OPí¿51G:D:4Âòº2A@C; >
ë*4n5ED:2351ìÕ@CO<>?5EóP>/9�@C23G/5Å9�G/5*ó�.1=J4SóÁG/514Â>?@�@C4n=Jë:@nø[�i;E4�������
B���=���¢�=
����¨�ª���

att
ó�@CGIOC4Só}@C;14

>g@�@P46=Jë:@<ó
>?5ED
att [i]

D14651G/@C4nó�@C;14+5Y.1=¢ú*4nO�G?ôiOC4n=J>/2A5E2A51ìÕ>g@C@C4n=(ë1@PóÁô�GIO�@C;14+5EGYD14
i
øX1.15E9�@C23G/5

SumOfAtt(att)
96G/=Jë1.:@P4nóq@P;14¡ó�.E= G?ôØ@C;14ºOP46=+>/2A512351ìÁ>g@C@C46=Jë:@<ó¹ô�G/OÄ>/0A01@C;14

51G:D:4nó�>?5EDÂ23ó�.EóC4nDÂ>IóÄ@P;14�D:4S9�OP4n>Ió�2351ì
=J4n>Ió�.EOC4¡G/ôpëE>?O<>?=J46@C46O
att
øSXE.15E9�@P2AGI5

GeNoC;E>?0A@Pói2Aô¹>/0A0!>g@�@P46=Jë:@<óº;E>_õ/4}úØ46465896G/5EóC.1=J4nDªø
�i;14¥#EO<óV@(G/.:@Pë1.:@(0A2LóV@

R
9�GI5I@<>?235EóÁ@P;14$OP4nóC.10A@Pó
G/ôº@C;14�9�GI=(ëE0A46@C4nD @CO<>?5EóP>/9�@C23G/5Eónø�Äõ/4nOCíyOC4Só�.10A@

r
23ó$G?ôÁ@C;E48ô�G/OP=ÙÒ��=N Õ msgr Ö >?5EDÙOP46ë1OP4nóC465M@Pó(@P;14ÀOP4n9646ë:@P2AGI5'G?ô�>=(4SóCóP>?ìI4

msgr

úYí�2t@<ó[#*5E>?0:D:4SóV@P2A5E>?@C23G/5
B
ø�� O<>?5EóP>/9�@C23G/5Eó =+>_í}5EG?@¹OC.15�@CG}9�G/=Jë1034�@P2AGI5

îJ�4-LKD-�D1.14Â@PGÀ5146@Vò�GIOCûÅ9�G/5M@P465M@C23G/5*ñ�øF�i;E4�óC4n9�GI5ED G/.1@Cë1.:@(0A2Ló�@¢G?ô
GeNoC

2Ló¢5E>?=J4nDÔbQ�
5 �����NÁ>/5ED�96G/5M@P>/2A5*ó�@C;14�96>/5E9�4n0A034nD�@POP>/5EóC>I9�@P2AGI5Eó6ø

true

false

ComputeMissives

Routing

T : t = (id A msg B)

M : m = (id A frm B)

V : v = (id f Routes)

Scheduling

ScheduledDelayedSumOfAtt(att)
?
= 0

ToMissives

R : rst = (id B msg)
A : abt = (id A frm B)

ToMissives ComputeResults

�d� �@vBÚ@v &¡5:ô�GI03D:2351ì+G/ô ô�.15E9�@C23G/5
GeNoC

�i;14�96G/OPOC4S9�@P514nóPóªG?ô
GeNoC

2Ló!46ý:ë1OC4SóCóC4nD
úMíÁ@Vò�GHëEOCGIë*4nO�@P2A4Só6ø�Xq2AO<óV@Sö6@P;14i=J4nóPóC>/ì/4nó
@C;E>?@�>?OP4ºOC4S9�4n2AõI4nD(>?OP4º23D:4n5M@C2L96>?0E@CGÁ@P;14¡=J4nóPóC>/ì/4Só¹@C;E>?@%ò�46OP4ióC465M@SøM7Y4S9�G/5*Dªö/4S>/9<;(=(4SóV÷
óC>/ì/4(23óÁOP4n964623õ/4nDÀúYí¿2t@<ó�4�ý:ëØ4n9�@C4nDÅD:4SóV@P2A5E>?@C23G/5pø"XEG/OP=+>?030AíIöw@C;12LóÁ23ó
4�ý:ë1OP4nóPó�4SD¿úYí8@C;E4
ô�G/OP=�.10L>}ú*4n0AGgò�ö?òº;E239<;+óC;1Ggò¡ó!@C;E>?@%4n>I9<;¢OP4nóC.10A@

rst
23óÄG/ú:@<>?23514nD¢ô�OPG/=�>Á.15E23KM.14i@POP>/5EóV÷

>/9�@P2AGI5
t
@P;E>g@Ä;E>Ióq@C;14�óC>/=(4i2LD:465M@P2'#E4nOnö?@C;14HóP>?=J4i=J4nóPóC>/ì/4º>?5*D
@P;14HóP>?=J4ºD:4nó�@C235E>g@P2AGI5

>/ó
rst
ø

∀rst ∈l R, ∃!t ∈l T ,







IdR(rst) = IdT (t)
∧ MsgR(rst) = MsgT (t)
∧ DestR(rst) = DestT (t)

îÇ`Yñ

2BA -*øE7:9<;1=+>/0t@PB
>?5ED�F�ø*N�GIOCOP23G/514

Û Ü|opãUg�éJÁÎÝ å§l$ã�n�oßÞHçHâHèØã1é�å%â;gGÁ>À�åºæ;o[Á
Ú[vEx {+}"¤F� ¬ �_z@¤|Å1��¯��j�à�S�B�S¯ ¬
<¡G:D:4nóq>?OP4%D:4�#E514SD�G/5�>/5
>?OPú12A@CO<>?OPí�D:GI=J>/2A5 ö

GenNodeSet
önòº2A@C;�9<;*>?O<>/9�@P46OP23ó�@C2L9qô�.15E9�÷

@C23G/5
ValidNodep

!
∀x,ValidNodep(x) ⇔ x ∈ GenNodeSet

îÞð/ñ

�i;14Âó�46@�G?ôº51G:D:4Só�G?ô¡>ÕëE>/O�@P2396.10L>?O�5146@Vò�GIOCûÇ23ó�5EG?@C4SD
NodeSet

ø ùa5 >?030Ä@P;123ó¢ó�4S9�÷
@C23G/5pö*ò�4
óC;E>?030p.EóC4
>ÂóC.1úEóP9�OP2Aë1@C4nDÕ96.1OC03í

D
@PG+OC4në1OP4nóC465M@¡>ÂD:G/=+>/2A5ÕG?ô¹460346=J4n5I@<ó6ø�X1GIO

2A5Eó�@P>/5E9�4Iö
Dmsg

2Ló�@C;14
D1G/=+>?235�G/ôq=J4SóCóP>?ìI4nónö
Dfrm

23ói@P;14
D:GI=J>/2A5�G?ô!ô�OP>/=J4nónö:4�@P9/ø

Ú[vWu á�z6�4�D¯ �j�D� ¬
X1.15E9�@C23G/5

send
ú1.E2A0LD1óÄ>]�� J�5
Z��ô�OCGI=�>>
Z�������BKD�Ä>?5ED¢ô�.15E9�@C23G/5

recv
ú1.E2A0LD1óÄ>>
Z��������KS�

ô�OCGI= >b�� J��
¥��ø��i;14623Oiô�.15E9�@C23G/5E>/0A2A@VíÂ2Ló�!
send : Dmsg → Dfrm

î¬ïMñ

recv : Dfrm → Dmsg

î¢R/ñ
�i;14$9�GI5Eó�@CO<>?235I@¢G/5 @P;14nóC4+ô�.15E9�@C23G/5Eó¢2Ló
@P;E>g@¢@C;14n2AOJ9�GI=(ëØGIóC2A@C23G/5 2Ló
@P;14$2LD:465M@P2t@Ví

ô�.15E9�@P2AGI5pø_�i;14Áô�GI0A03Ggòº2351ì¢ëEOCGYG?ôqG/ú10323ìI>g@P2AGI5�;*>/ó�@CGJúØ4�OC4n0A2346õI4nDw!
Åb¯�}[} �¥¹F� � ����� � }VzâxäãO�j� � ¤ � � ¡ } ¸ �@��á�z6�B�S¯ �j�P� �[Ï z@�P� � }�z ¬ v

∀msg ∈ Dmsg , recv ◦ send(msg) = msg

Ú[vª© å�} Ï � � zF�
Åb¯ � z@� � ���=� ¬ �_z@¤m�P}V¯�¯��S�P�BzF� ¬B¬ �5¯ � �B�S¯ � � 9 4�@

d
úØ4¿@P;14ÇD:4SóV@P2A5E>?@C23G/5 G/ô�>Åô�OP>/=(4

óV@<>?5ED:2351ìÂ>?@¡51G:D:4
s
øEùa5�@C;14¢96>/óC4ÁG?ô�D:4�@P46OP=J2A512Ló�@C2L9
>?03ì/GIOC2A@C;1=+ónöY@C;14�OPG/.1@C2351ì+0AGIì/2L9}G?ô

>J514�@Vò�G/OPû$óC46034n9�@<ó¡>J.1512LKM.14�51G:D:4�>Iói@C;E4�514�ýY@�ó�@C4në�235Õ@C;E4
OCGI.:@C4Áô�OPG/=
s
@PG

d
øV�i;E23ó

0AGIì/2L9¢2LóÁOP46ë1OP4nóC465M@C4SDÀúYí8ô�.E5E9�@P2AGI5
L(s, d)

ø[�i;E4+0A2LóV@
G/ô�@P;14+õY23óC2A@C4nDÅ51G:D:4Só}ô�G/O�4nõ/46OPí
@CO<>_õ/460wô�OPG/=

s
@PG

d
2LóºG/ú:@<>?23514nD�úYíÂ@P;14�óC.E96964nóPó�23õ/4�>/ë1ë103239n>g@C23G/5*óiG?ô¹ô�.15E9�@C23G/5

L
.15M@P2A0

@C;14
D:4SóV@P2A5*>g@C23G/5�2LóºOC4S>/9<;14SDªöY2eø 4/øEòº;12A034
L(s, d) 6= d

ø_�i;E4�OCGI.:@C4}ô�OPG/=
s
@PG

d
2Ló�!

s,L(s, d),L(L(s, d), d),L(L(L(s, d), d), d), . . . , d

ü OPG/.:@P4�2Ló¹9�GI=(ëE.:@C4SD�úYíÁô�.15E9�@C23G/5
ρdet

@P;E>g@�OP4n96.1OPóC23õ/4603íÁ>?ë1ë103234nó!ô�.15E9�@C23G/5
L
ô�OPG/=

@C;14
óCG/.1O<9�4}51G:D:4Á@PG¢@P;14
D:4SóV@P2A5E>?@C23G/5Õ51G:D:4IøjX1.15E9�@C23G/5
ρdet

2Ló¡D:4�#*514nDÕ>/ó�ô�GI0A03Ggò¡ó�!

ρdet(s, d) ,

{

d
�E

s = d

s.ρdet(L(s, d), d)
}_�4�@�S¯�¾ �=¬ � î=MMñ

ùa5�@C;14i>/DE>?ë:@P2AõI4%96>Ió�4Iö�@C;E4�OPG/.:@P2A5Eì¡0AGIì/2L9ÄGP(Ø4nOPó!>g@!4S>/9<;
235M@C4nOC=J4nD123>?@C4%5EGYD14�óC46õ/4nOP>/0æ 5146ýM@ æ 51G:D:4Só6øª7Y46õI46O<>?0pOPG/.1@C4nó�>?OP4
ëØGIóPó�23ú1034
ú*46@Vò�4n465À>$ó�GI.1OP964
s
>?5ED¿>$D:4nó�@C235E>g@P2AGI5

XqG/OP=+>?032ABn2A51ì 8 5 ê ;123ë ê GI=(=¢.1512L96>?@C23G/5Eó 2D2

d
øqùa5 @C;*>g@(9n>/óC4/ö @C;14�OCGI.:@C2351ìÀ>/0AìIG/OP2t@P;1= 2Ló¢OC4në1OC4Só�4n5M@C4nDÅúYíÅô�.15E9�@P2AGI5

ρndet

öqòº;12L9<;
9�G/=Jë1.1@C4nóØ�5�W�:ë*GMóCóC23ú10A4ÁOPG/.:@P4nóiúØ4�@Vò�464n5�5EGYD14nó

s
>/5ED

d
ø� GÕ9�GgõI46O¡@P;14Jì/4n5146O<>?0¹96>Ió�4Iö*@P;14JOCGI.:@C2351ì�>?03ì/G/OP2A@C;1= 2Ló}OC4në1OC4Só�4n5M@C4nD¿úMí¿ô�.15E9�@P2AGI5

ρ
ö�òº;12L9<;Û@<>?ûI4nóJ>/ó(>?OPì/.1=J4n5I@<óJ>ÇóCG/.1O<9�4�51G:D:4

s
>?5EDy>ÇD:4SóV@P2A5*>g@C23G/5Ù51G:D:4

d
ø§�i;E23ó

ô�.15E9�@P2AGI5ÂOP4�@C.EOC5Eó%@C;E4H0323ó�@�G/ôª@C;14�ë*GMóCóC2AúE0A4�OCGI.:@C4SóÄúØ4�@Vò�46465
s
>/5ED

d
øMù�@Pó%ô�.15E9�@C23G/5E>/0A2A@Ví

23ói@P;14}ô�G/030AGgòº2351ì*ö:òº;146OP4
C
D:4651G/@C4Sóº>J0A2LóV@ºG/ôq0323ó�@PóiG/ôq5EGYD14nóB!

ρ : GenNodeSet × GenNodeSet → C
îE3Iñ

È�
�º��¢�W�SKàÊV�� �
É�W�6���¢�=
��ß7Y2A5*9�4¢ô�.15E9�@P2AGI5
ρ
23ó}OP4n96.1OPóC23õ/4/ö*2t@Á=�.*óV@�úØ4Jó�;1Ggòº5¿@CGÂ@P46OP=J2t÷

5E>g@P4/ö1úØG?@P;�@PG+465EóC.1OP4Á@C;14�0323õ/465E4nóPóiG?ôq@C;14
5E4�@Vò�G/OPûØö:>/5ED�@CG+úØ4�>/9n9�46ë1@C4nD�úYí�>Jë1OPGYG?ô
>/óPó�2LóV@<>?5M@nø9 4�@

S
úØ4¿>ÅóC4�@$>/5ED

≺S

ú*4¿>Å@PG?@P>/0ºG/O<D:46OP2351ìÇOP460L>g@P2AGI5 GI5
S
øGHÇ48OP4n9n>?030i@C;E>?@

(S ,≺s)
2Ló�>(ò�46030t÷Þô�G/.E5ED:4nD�óV@POC.*9�@C.EOC4Á2Aôq>?5YíÂóC.1úEóC4�@ºG?ô

S
;*>/ói>�=J235123=J>/0p460346=J4n5I@iô�GIO

≺S

ø[��íYë12L96>?0303í/öª@P;14+ë1OPGMG/ô�G/ô�@P46OP=J2A5E>?@C23G/5 G?ô¡>�ô�.15*9�@C23G/5 2Ló�D:GI514+úYíÇóC;1Ggòº2351ì�@C;E>?@
ó�GI=(4�
Z������º� ��
GI5Û2t@<ó�ë*>?O<>?=J4�@P46O<ó
2Ló¢D:4S9�OP4n>Ió�2351ì8G/5y>¿ò�46030t÷Þô�G/.15*D:4nDÛó�@COP.E9�@C.1OP4Âô�GIO
46õ/4nOCí+OP4n96.1O<ó�23õ/4Á96>/0A0ªG/ô!@P;E>g@ºô�.15*9�@C23G/5 ø9 4�@+.EóJOP4�@P.1OP5 @PGÇ@P;14¿D:46@C46OP=J2A5E23ó�@C2L9Õ96>/óC48>?5ED ô�.15E9�@C23G/5

ρdet

ø 9 4�@
(S ,≺S)

úØ4
>Àò�46030t÷Þô�G/.E5ED:4nDyóV@POC.*9�@C.EOC4 î�=JGIó�@JG?ôÓ@C4n5

S
23ó(@P;14Õó�46@JG/ôH5E>?@C.1O<>?0LóPñ�ö�>?5ED

mes
úØ4�>

=(4S>/óC.1OP4}GI5
S
ø

mes : GenNodeSet × GenNodeSet → S� G(ë1OPGgõ/4¡@P;E>g@
ρdet

@C4nOC=J235E>g@P4nónöYG/514}51464SD1ó�@CGJë1OPGgõ/4H@C;E>?@i@C;14 æ ìIGgõ/4nOC512351ì æ 9�G/51÷
D:2t@P2AGI58ô�G/O¡@C;14¢OC4S9�.1O<ó�23õ/4
9n>?030eö*5E>?=J4n0Aí

s 6= d
öØ2A=Jë1032A4Sóº@P;E>g@

mes
23ó�D:4n96OC4S>/óC2A51ì*ø_�i;14

ô�G/030AGgòº2351ì(ë1OCGYG/ô!G/úE0A23ìI>?@C23G/5�;E>/ó�@PG(úØ4
óP>g@C2LóÎ#E4nDw!
Åb¯�}[} �¥¹F� � ����� � }Vz|u ¸ �S¯�� � z@��� � }�zä~É}�z@¤ � � � }�z }V¯

ρdet
v

∀s, d ∈ GenNodeSet , ∃mes : GenNodeSet × GenNodeSet → S,

s 6= d ⇒ mes(L(s, d), d) ≺S mes(s, d)

È�
�º��¢�W�SK\ç§
� � J�����E�6�����É�i;14º96G/OPOC4S9�@C5E4nóPó G/ôØ>}OCGI.:@C4i2Ló�D:4�#*514nD(>/9n9�G/O<D:2351ì�@CG�>}=(2LóPó�23õ/4Iø
ü OPG/.1@C4

r
23óº96G/OPOC4S9�@�òº2t@P;�OP4nóCë*4S9�@�@CG+>¢=(2LóPó�23õ/4

m
2tô

r
óV@<>?OC@Pó�òº2A@C;�@C;14ÁG/OP23ì/235ÂG?ô

m
ö

465ED1óÄòº2t@P;J@C;14HD14nó�@C235E>g@P2AGI5(G/ô
m
>?5ED(46õI46OPí
51G:D:4ºG/ô

r
ú*4n0AGI51ìIó¹@PGÁ@C;14�ó�46@ÄG?ôw51G:D:4nó�G/ô

@C;14¡5E4�@Vò�G/OPûØøP�Äõ/4nOCí(9�G/OPOP4n9�@ÄOPG/.1@C4º;E>IóÄ>g@%034n>IóV@%@Vò�G�51G:D:4Só6øS�i;14ºô�GI0A03Ggòº2A5Eì�ë1OC4SD:2L96>g@P4
D:4�#E5E4nói@P;14nóC4�9�G/5*D:2t@P2AGI5EóB!
è �Sé�z � � � }�zßxVv7ãO�j� � ¤@å�} Ï �B�S�,v

ValidRoutep(r, m,NodeSet) ,







r[0] = OrgM(m)
∧ Last(r) = DestM(m)
∧ r ⊆l NodeSet ∧ Len(r) ≥ 2

H ;14�@P;146O�OPG/.:@P2A5Eì}2Ló�D:46@C46OP=J2A5E23ó�@C2L9�G/OÄ>/DE>?ë:@P2AõI4/öS@C;12Ló�ë1OP4nD1239n>g@C4�=�.*óV@ÄúØ4ºóC>?@C2Ló^#E4SD
úMí¿>/0A0¹OPG/.:@P4nó�ë1OPGYD1.E9�4SD8úYíÕô�.15E9�@P2AGI5

ρ
øw�i;14¢ô�G/030AGgòº2351ì$ëEOCGYG?ôÄGIú10A23ìI>?@C23G/5¿;*>/ó�@CG�ú*4

OC4n0A2346õI4nDw!

24% -*øE7:9<;1=+>/0t@PB
>?5ED�F�ø*N�GIOCOP23G/514

Åb¯�}[} �¥¹F� � ����� � }Vzä©q~É}_¯�¯��U�5�BzF� ¬B¬ } ¯�} Ï �B� ¬ �F¯�}"¤ Ï �P�U¤�¹ ¡
ρ
v

∀M,Mlstp(M,NodeSet)
⇒ ∀m ∈l M, ∀r ∈l ρ(OrgM(m),DestM(m)),ValidRoutep(r, m,NodeSet)

è �Sé�z � � � }�zê�_z@¤ëãO�j� � ¤@��� � }�zê} Z�[Ï z@�P� � }�z
Routing

XE.15E9�@C23G/5
Routing

@<>?ûI4nó
>/óÂ>/OCìI.1=J465M@Pó+> =J2LóCóC2AõI4Õ0A2LóV@�>?5EDy@C;E4Àó�46@

NodeSet
G/ô}5EGYD14nóÂG/ô�@P;14¿5146@Vò�GIOCûwø�ù�@

OC46@C.1OP5Eó}>+@CO<>_õ/4n0!032LóV@Á2A5Çòº;12L9<;À>$032LóV@ÁG?ôÄOPG/.:@P4nó�23óÁ>IóCóCG:9�2L>g@C4SD�@CG�4n>I9<;¿=J23óPó�23õ/4Iø��i;E4
ô�.15E9�@P2AGI5E>?032A@Ví$G?ô

Routing
23óº@C;14Áô�GI0A03Ggòº2A5Eì_!

Routing : DM ×P(GenNodeSet) → DV
îÎ2BAMñ

X1.15E9�@C23G/5
Routing

ú1.E2A0LD1ó%>�@POP>_õI460:0323ó�@Äô�OPG/=ß@P;14¡2LD:465M@C2$#E4nOnög@P;14ºô�O<>?=J4/ö?@C;14ºGIOC23ì/235
>?5ED$@C;14
D14nó�@C235E>g@P2AGI5�G/ô!=J2LóCóC2AõI4nónø
è �Sé�z � � � }�zìuwv �[Ï zF�5� � }Vzäå�} Ï � � z@�
Routing(M,NodeSet) ,

Λ
m∈lM

List(IdM(m),FrmM(m), ρ(OrgM(m),DestM(m)))

ê G/5E9646OP512A5Eì�D1>?@P>�@VíYë*4Só6öªGI514J;E>/ó}@PG�ëEOCGgõI4
@C;*>g@�ô�.15E9�@C23G/5
Routing

ë1OPGYD1.E9�4Só}>
õ_>/0A2LD�@CO<>_õ/4n0Ø032LóV@¡2Aô!@P;14�23512t@P23>/0ª=J23óPó�23õ/4Á0323ó�@¡2Lóiõ_>/0A2LDªø
Åb¯�}[} �¥¹F� � ����� � }Vz�Ú ¸ ¡ �t�²}

Routing
v

∀M,Mlstp(M,NodeSet) ⇒ Vlstp(Routing(M,NodeSet))

�i;14HD:4�#E512A@C23G/5ÂG/ôØô�.E5E9�@P2AGI5
Routing

ëEOC4Só�4nOCõI4nóq@C;E4Hë1OPG/ëØ46OC@C234nó�ëEOCGgõI4nDJ>?úØG/.:@�@C;14
ë1OC4nõY2AGI.EóÄô�.E5E9�@P2AGI5

ρ
ø�X1.15E9�@C23G/5

Routing
@P46OP=J2A5E>?@C4Só�>/5ED+@P;14ÁOCGI.:@C4Só%G/ô!46õI46OPí�@POP>_õI460

óC>?@C2LóVô�íÂëEOC4SD:239n>g@P4
ValidRoutep

ø:ùa5Õ>(=(2LóPó�23õ/4}0A2Ló�@nö:2LD:465M@C2$#E4nOPóº>/OC4}.1512LKM.14/øjXEG/Oi46õI46OPí
@CO<>_õ/460

v
ë1OPG:D:.E964nDJúYí(ô�.15E9�@P2AGI5

Routing
öI@C;14nOC4�23ó�>�.1512LKM.14H=J2LóCóC23õ/4

m
ó�.*9<;J@C;E>?@�2A@Pó

23D:4n5M@C2$#E46Oº4SKI.*>?0Ló�@C;14�2LD:465M@P2'#E4nO¡G?ô
v
>?5*DÂ@P;14Áô�OP>/=J4}G/ô

v
4SKM.E>?0Ló�@C;14Áô�O<>?=J4ÁG?ô

m
ø

¸ �@�U}V¯��S�íxVvb£ �=¬4¬4�Çî �jï ¸ ¯�� î �U�]£����4�4�tv
∀M,Mlstp(M,NodeSet) ⇒

∀v ∈l Routing(M,NodeSet), ∃!m ∈l M,

{

IdV(v) = IdM(m)
∧ FrmV(v) = FrmM(m)

�, J
4
^��-�N�í�D:4�#E5E2t@P2AGI5�G/ô
Routing

ø
� O<>_õ/4n03ówD:4n03>_íI4nD�úMíH@C;14�óC9<;14SD:.1032A5Eìiô�.15E9�@P2AGI5Á÷Eú1.:@!ë1OCG:D:.*9�4nD}úYí¡ô�.E5E9�@P2AGI5

Routing÷�>?OP4�9�G/5YõI46OC@C4nD$úE>/9<û$@CG+=J2LóCóC2AõI4nóiúYí+ô�.15*9�@C23G/5
ToMissives

ø_�i;14�0L>g@C@C4nO¡ú1.12303DEóº=J23ó�÷
ó�23õ/4SóH235À@P;14¢ô�G/030AGgòº2351ì$=+>/515146OSøwù�@�@<>?ûI4nó�@C;14(2LD:465M@C2$#E4nOÁ>/5ED8@P;14(ô�OP>/=J4¢G/ô�>+@POP>_õI460Þø�i;14�GIOC23ì/235¿>?5ED8@C;14JD:4nó�@C235E>?@C23G/58G?ô%>$=J23óPó�23õ/4(>?OP4�@C;E4Ø#EO<óV@Á>?5ED8@C;14¢03>IóV@}51G:D:4�G/ô%>
OCGI.:@C4IøjX1.15E9�@C23G/5

ToMissives
2Ló�@C;14�OP46õI46O<ó�4}G?ô!ô�.15E9�@C23G/5

Routing
ø

¸ �@�U}V¯��S�ðuwvbå�} Ï � � zF� ¸ }�£ �=¬4¬4�Çî � ¬ v
∀M,Mlstp ⇒ ToMissives ◦ Routing(M,NodeSet) = M

XqG/OP=+>?032ABn2A51ì 8 5 ê ;123ë ê GI=(=¢.1512L96>?@C23G/5Eó 24Y
�, J
4
^��-1X1O<>?=J4nó
>/OC4$51G?@�=JG:D:2$#E4nD úYíÇô�.15E9�@C23G/5

Routing
øq7Y235E9�4$@C;14$03>?@�@C4nO¢óP>g@P23óÎ#E4nó

ë1OC4SD:2L96>g@P4
ValidRoutep

ô�G/O¡>/0A0 OCGI.:@C4Só�G/ô¹>/0A0w@POP>_õI460Ló�@C;E>?@¡2t@¡ë1OPG:D:.E964nónöY@C;14b#EO<ó�@º>/5ED
@C;14Õ0L>/ó�@(51G:D:4�G?ôÁ>?5Yí OCGI.:@C4Õ>?OP4$4SKM.E>?0�@CGÇ@C;E4�GIOC23ì/235 >/5ED @P;148D:4nó�@C235E>g@P2AGI5 G/ôH@C;E4
2A512A@C2L>?0 =(2LóPó�23õ/4Iø

Ú[v�Ú ñ[�4�F�U¤ Ï � � z@�
X1.15E9�@C23G/5

Scheduling
@P>/û/4nó$>/óÂ>/OCìI.1=J465M@Pó(@P;148@CO<>_õ/4n0¡0323ó�@$ë1OPG:D:.E9�4SDÙúMíyô�.15E9�@C23G/5

Routing
>?5ED�@C;14º032LóV@

att
G/ôE@P;14ºOC4n=+>?23512A5Eì�5Y.1=¢ú*4nO�G?ôØ>?@�@P46=Jë:@Pónøgù�@Ä.1ëwD1>g@P4nó

att
>?5ED

OC46@C.1OP5Eó!@Vò�G}@POP>_õI460M0A2LóV@<ó�!_@P;14º0323ó�@
Scheduled

>/5ED
@P;14º0323ó�@
Delayed

ø5�i;14�ô�.15E9�@C23G/5E>/0A2A@Ví
G?ô

Scheduling
23óB!

Scheduling : DV × AttLst → DV ×DV × AttLst
î^2D2Sñ

ü óC9<;14SD:.1034nD$@CO<>_õ/4n0ØGI5103íÂû/4n46ëEóiGI514�G?ô!@C;14�ëØGIóPó�23ú1034�OCGI.:@C4Só�ô�G/Oº@P;14�=J23óPó�23õ/4IøjX1GIO
@C4n9<;E51239n>?01OP4n>Ió�GI5EónöSò�4º>_õ/GI23D�@C;14º235M@COPG:D:.E9�@P2AGI5JG?ôª>Á5146ò'D1>g@<>�@VíMëØ4¡>?5*D(D1G�51G?@Ä=+>?ûI4
>+ó�ëØ4n9623>/0 96>Ió�4�G/ô¹óP9<;14nD1.10A4SD�@CO<>_õ/4n03óB!M@C;14ní�96G/5M@P>/2A58>J0323ó�@HG?ô¹OPG/.:@P4nónö146õI465Õ2tô¹@P;123óH0A2Ló�@
;E>/óiGI510Aí$G/514Á460346=J4n5I@Sø�i;14¡õg>?0323DE>g@C23G/5$G?ô

Scheduling
OC4SKI.E2AOP4nóÄ@C;14}óC>?@C2LóVô¬>I9�@C23G/5+G/ôpó�4nõ/46O<>?0Eë1OCGYG/ôpG/ú1032AìM>g÷

@C23G/5Eónø
ùa5
@C;E4�ô�GI0A03Ggòº2351ìEön@C;14ië1OPG5)V4S9�@P2AGI5�G?ôØ>HõI4n9�@PG/OqG/5¢G/514iG?ô*2t@<ó�D:2A=J4n5Eó�23G/5*ó!2Ló¹D:465EG?@C4SD

π
j
i

ö1òº2t@P;�@C;14Áô�GI0A03Ggòº2A5Eì¢ô�.E5E9�@P2AGI5E>?032t@Ví6!
π

j
i : D1 ×D2 × · · · × Dj → Di

îÎ24%Iñ
X1G/Oº235Eó�@P>/5E9�4Iö

π
2
1 (x1 , x2) = x1

>/5ED
π

2
2 (x1 , x2) = x2

øX!23O<óV@Sö!2AôH@P;14�#*OPó�@¢ëE>/OP>/=J4�@C4nO
V
G?ô

Scheduling
23ó(>Àõg>/0A2LD @POP>_õI460%032LóV@Sö!@P;14�0A2LóV@<ó

Scheduled
>/5ED

Delayed
>?OP4Á>/03óCG(õ_>/0A2LDªø

Åb¯�}[} �¥¹F� � ����� � }Vz|ò ¸ ¡ �t�²}
Scheduled

�jzF¤
Delayed

v
Let Scheduled be π

3
1 ◦ Scheduling(V , att) and

Delayed be π
3
2 ◦ Scheduling(V , att), then :

∀V ,Vlstp(V) ⇒ Vlstp(Scheduled) ∧ Vlstp(Delayed)

ü @�4S>/9<;�óP9<;14SD:.1032A51ì(OPG/.15EDpöY>/0A0Ø@POP>_õI460LóÄG?ô
V
>?OP4�>?5*>?03íMBn4nDªøYù�ô¹ó�4nõ/46O<>?0E@CO<>_õ/4n03ó�>?OP4

>/óPó�G:9�2L>g@P4nDÀ@CG¿>ÕóC2A51ìI0A4+5EGYD14/öª@P;123ó
51G:D:4Â9�GI5Eó�.E=(4Só�G/5E4J>?@�@P46=Jë:@
ô�GIOÁ@C;14$óC4�@
G/ô�2A@Pó
@CO<>_õ/460Lónø ü @H4n>I9<;�9n>?030ª@CG

Scheduling
öE>/58>g@�@P46=Jë:@}23ó¡96G/5EóC.1=J4nDÕ>?@¡4n>/9<;Õ51G:D:4Iø1ù�ôÄ>?030

>g@�@P46=Jë:@<ói;E>_õ/4�51G?@iú*4n465�9�G/5*ó�.1=J4SDªöM@C;14�óC.1=�G?ôp@P;14ÁOC4n=+>?23512A5Eì¢>g@C@C4n=(ë1@Póº>gôÓ@P46O�@C;E4
>?ë1ë1032L96>g@P2AGI58G?ô�ô�.15*9�@C23G/5

Scheduling
2LóHó�@COP2L9�@C03í�0A4SóCóH@C;E>/5Õ@C;14(ó�.E= G/ô�@C;14(>g@C@C46=Jë:@<ó

ú*46ô�G/OP4Â@C;E4�>/ë1ë103239n>g@C23G/5 G/ô
Scheduling

øF�i;E23ó¢23ó(46ýYëEOC4SóCóC4nD úYíÅ@C;14$ô�G/030AGgòº2351ìÇë1OCGYG/ô
G/ú1032AìM>g@P2AGI5"!
Åb¯�}[} �¥¹F� � ����� � }Vzäó �[Ï z@�P� � }Vz

Scheduling
�P}�z ¬4Ï ��� ¬ ���;�E�S� ¬ �d}�z@�O���B�B�U���F�Pvô[���

natt
Q��

π
3
3 ◦ Scheduling(V , att),

�Ç�j����õ
SumOfAtt(att) 6= 0

→ SumOfAtt(natt) < SumOfAtt(att)

2�` -*øE7:9<;1=+>/0t@PB
>?5ED�F�ø*N�GIOCOP23G/514

�i;14�0A2Ló�@HG?ôq@C;14¢D:460L>_í/4SDÂ@POP>_õI460Ló�=¢.Eó�@Hú*4¢>+ó�.1úE0A2LóV@¡G/ô
V
øVXEG/OP=+>?030AíIö:G/514�4n5Eó�.EOC4Só

@C;E>?@ºô�G/Oi46õI46OPí$D:460L>_í/4SD+@POP>_õI460
dtr

öY@P;146OP4Á4�ý:2LóV@<óº>¢.E5123KM.14�23512A@C2L>?0w@POP>_õI460
v
óC.E9<;$@P;E>g@

dtr
>?5ED

v
;*>_õ/4}@C;14
óP>?=J4�2LD:465M@P2'#E4nOnö1@C;14
óP>?=J4Áô�O<>?=J4�>?5ED�@C;E4
óC>/=(4�OPG/.1@C4nónø 0 4n5E9�4

@C;14Áô�GI0A03Ggòº2A5Eì¢ë1OPGYG?ôqG/ú1032AìM>g@P2AGI5"!
Åb¯�}[} �¥¹F� � ����� � }Vz|ö÷~É}_¯�¯��U�5�BzF� ¬B¬ } �B�F�²¤F�U�=� ¡ �U¤ä��¯�� î �U� ¬ vô[���

Delayed
Q��

π
3
2 ◦ Scheduling(V , att) ø �Ç�j����õ

∀V ,Vlstp(V) ⇒ ∀dtr ∈l Delayed , ∃!v ∈l V ,







IdV(dtr) = IdV(v)
∧ FrmV(dtr) = FrmV(v)
∧ RoutesV(dtr) = RoutesV(v)

7Y2A5*9�4�@C;14¡óP9<;14SD:.1032A51ì}ô�.15*9�@C23G/5JGI510Aí�û/464nëEó¹G/5E4�OPG/.1@C4�ô�G/O�4nõ/46OPí
óP9<;14nD:.E0A4SD
@POP>_õI460Þö
@C;14�0A2LóV@

Scheduled
2Ló 5EG?@!46ý1>/9�@P0AíÁ>HóC.1ú1032LóV@qG?ô:@C;E4�23512A@C2L>?0I@CO<>_õ/460/0A2LóV@

V
øB�i;14�23D:4n5M@C2$#E46O<ó

>?5EDÅ@P;14+ô�O<>?=J4nó
>/OC4+5EG?@�=JG:D:2$#E4nDªøFHÅ4$9<;14n9<ûÀ@C;E>?@
@C;E4$OPG/.:@P4/öpGIO
=JG/OP4+ì/465E46O<>?030AíIö
@C;14}OCGI.:@C4Só%G/ô >�óP9<;14nD1.10A4SD+@POP>_õI460EúØ4603G/5Eì
@CG�@C;14}OPG/.:@P4nó�G?ôª@C;E4}96G/OPOC4Só�ëØG/5ED12A51ì�2A512A@C2L>?0
@CO<>_õ/460Þø�X1G/OP=+>?030AíIö!ò�4�465EóC.1OP4$@P;E>g@(ô�G/OJ46õI46OPí óC9<;14SD:.1034nDÛ@CO<>_õ/460

str
ö¹@C;14nOC4�4�ý:2LóV@<ó¢>

.1512LKI.E4$23512t@P23>/0%@POP>_õI460
v
óC.E9<; @C;E>?@

str
>?5*D

v
;E>_õI4J@C;14�óC>/=J4Â23D1465M@C2$#E46OSö!@C;14�óC>/=(4

ô�OP>/=(4(>?5ED8@C;E>?@H@C;E4¢OPG/.:@P4nó�>/óPó�G:9�2L>g@P4nDÕòº2A@C;
str

>/OC4¢>?=JG/51ì$@C;14¢OCGI.:@C4SóH>IóCóCG:9�2L>g@C4SD
òº2t@P;

v
ø

Åb¯�}[} �¥¹F� � ����� � }Vzäùq~É}_¯�¯��U�5�BzF� ¬B¬ } �B�F� ¬ ���@�U¤ Ï �E�S¤��B¯�� î �U� ¬ vô[���
Scheduled

Q��
π

3
1 ◦ Scheduling(V , att) ø �Ç�j����õ

∀V ,Vlstp(V) ⇒ ∀str ∈l Scheduled , ∃!v ∈l V ,







IdV(str) = IdV(v)
∧ FrmV(str) = FrmV(v)
∧ RoutesV(str) v RoutesV(v)

7Y2A5*9�4�OCGI.:@C4Só G/ô1@CO<>_õ/4n03ó 2A5
Scheduled

>?OP4%OPG/.1@C4nó!G?ôE@CO<>_õ/460LópG/ô
V
ö6ô�.15*9�@C23G/5

Schedulingë1OC4Só�4nOCõI4nó%@C;14�96G/OPOC4S9�@C5E4nóPó%G/ô OCGI.:@C4Só6øYù�ô¹OCGI.:@C4Só%G/ô
V
óP>g@P23ó�ô�í+ë1OP4nD:2L96>?@C4

ValidRoutep
ö

ó�G+D:G(@C;E4�OCGI.:@C4SóiG?ô
Scheduled

ø
ü @POP>_õI460p9n>?5151G/@nö1>?@�@P;14
óP>?=J4}@C23=(4Iö1úØ4
óC9<;14SD:.1034nD�>?5EDÕD:4n03>_íI4nDªø

Åb¯�}[} �¥¹F� � ����� � }Vzäúß£ Ï � Ï �j�]�D�"�D� ÏF¬B� }Vzû¹®�S��¾��U�Uz
Delayed

�_z@¤
Scheduled

v
Let Scheduled be π

3
1 ◦ Scheduling(V , att) and

Delayed be π
3
2 ◦ Scheduling(V , att), then :

∀V ,Vlstp(V) ⇒ Delayed bid u Scheduled bid = ε

Ú[vWò è �Dé�z � � � }Vzä�jzF¤äãO�j� � ¤@�j� � }�z|}
GeNoC

�i;14ÇD:4�#E512A@C23G/5ÊG/ô�ô�.15E9�@C23G/5
GeNoC

>?5ED 2A@Pó�9�GIOCOP4n9�@C514SóCóÂë1OCGYG/ô�>?OP4Àó�.E=(=+>/OC23B64SD
2A5­Xq23ìEø ð ø]�i;14ÀOP4n96.1O<ó�23õ/4¿9n>?030�235

GeNoC
GI510Aí'235Yõ/G/03õ/4SóJô�.15E9�@C23G/5Eó

Routing
>?5ED

Scheduling
ø[HÇ4ÂD:4�#E514(ô�.15E9�@C23G/5

GeNoC t

@CG8úØ4J@C;14+óC.1ú:ô�.15E9�@C23G/5 9�GI=Jë1.:@C2351ìÕ@P;123ó
OC4S9�.1O<ó�23G/5 ø1ù�@¡@P>/û/4Só¡>/ó¡>/OCìI.1=J465M@PóH>+0A2Ló�@

M
G?ô�=J23óPó�23õ/4Só6ö1@C;14�óC4�@

NodeSet
G/ô¹5EGYD14nó

G?ô%@P;14+5146@Vò�GIOCûwöØ@C;14+032LóV@
att

G/ô%@P;14Â>g@C@C46=Jë:@
5Y.1=¢ú*4nOPó�>/5EDÅ>$@POP>_õI460¹0323ó�@
V
@C;E>?@�23ó

2A512A@C2L>?0303í
46=Jë:@VíIø?ù�@ÄOC46@C.1OP5Eó!@Vò�G}032LóV@<ó�!?>�@CO<>_õ/4n0Y0A2LóV@¹@P;E>g@%96G/5M@P>/2A5Eó!@P;14iô�OP>/=J4nóqOC4S9�4n2AõI4nD

XqG/OP=+>?032ABn2A51ì 8 5 ê ;123ë ê GI=(=¢.1512L96>?@C23G/5Eó 2_ð

⇒ φ(Scheduled)

⇒ φ(Delayed)
∧ üªý�þBÿ������ ��ý��
	��
����������� �
��� ����������� � !#"�$%��&

true

false

(GeNoC nt
t)

φ(Scheduled) ∧ φ(Delayed)

�����'�)(�*
"�	+� ý�þBÿ������ ��ýüªý�þBÿ������ ��ý+,������

ComputeMissives

T : t = (id A msg B)

M : m = (id A frm B)

Routing

ToMissives

ToMissives

A : abt = (id A frm B)
R : rst = (id B msg)

Scheduling

GeNoC t

V : v = (id frm Routes)

SumOfAtt(att)
?
= 0 ScheduledDelayed

- ��./. � »
��� ��� » ����� � !#"�$%��0 ∧ ��� �
!#"�$1��2

ComputeResults

�d� �@v4ò"v : OCGYG/ôqG/ô
GeNoC

úMí}@P;14�D:4SóV@P2A5*>g@C23G/5�5EGYD14nó!G?ôY@C;14�=J23óPóC2AõI4nóª235
M

>?5*D�>¡0323ó�@ @P;E>g@¹9�G/5M@<>?235Eóª@P;14�>/ú*GIO�@P4nD
=(2LóPó�23õ/4Só6ø:ù�@<ó�ô�.15E9�@P2AGI5E>?032A@Ví$2Ló�@C;14Áô�GI0A03Ggòº2A5Eì_!

GeNoC t : DM ×P(GenNodeSet) × AttLst × DV → DV ×DM
îÎ2BYMñ

ù�ô*>?030M>?@�@P46=Jë:@Póq;E>_õI4ÄúØ46465(9�GI5Eó�.E=(4SDªö
GeNoC t

OP4�@P.1OC5*óp@P;14%@POP>_õI460Ló >I969�.E=�.10L>g@P4nD
2A5

V
>?5*DJ@C;14�0A2Ló�@�G?ôª@P;14}OC4n=J>/2A5E2A51ì�=(2LóPó�23õ/4Só6öV�=-W�B-M@P;14Á>?úØG/OC@C4nDJ=J2LóCóC23õ/4nónø 8 @P;146OPòº2Ló�4Iö

@C;14À@CO<>_õ/460LóJë1OPG:D:.E9�4SD'úYíÛô�.15E9�@C23G/5
Routing

>?OP48ëE>/óPóC4nDy@CG ô�.E5E9�@P2AGI5
Scheduling

ø�i;14}óP9<;14SD:.1034nDJ@POP>_õI460Ló%>?OP4H>ID1D:4nDÂ@CG�@C;14}0A2Ló�@
V
øS�i;E4}D:4n03>_íI4nD(@POP>_õI460Ló%>?OP4�96G/5Yõ/4nO�@P4nD

@CGÀ=J2LóCóC23õ/4nó�>?5EDÛ96G/5Eó�@C2A@C.1@C4�>/5Û>?OPì/.1=J4n5I@¢G?ôº@C;E4$OP4n9�.EOPóC2AõI4Â96>/0A0%@CG
GeNoC t

øF�i;E4
OC4n=J>/2A5E2A51ì+>/OCìI.1=J465M@Pói>?OP4�@C;14�.1ëwD1>?@C4nó¡G?ôq@C;14Á0323ó�@Pó

att
>?5ED

V
ø

è �Sé�z � � � }�z|©"v è �Dé�z � � � }Vz�}
GeNoC t

v
GeNoC t(M,NodeSet , att ,V) ,�=

SumOfAtt(att) = 0
�B�F�Sz

List(V ,M)�S� ¬ �«t�S�
(ScheduledRtg DelayedRtg att1)

¹®�
Scheduling(Routing(M,NodeSet), att)

� z
GeNoCt(ToMissives(DelayedRtg),NodeSet , att1,ScheduledRtg t V Ö�SzF¤ �=

�i;14(96G/OPOC4S9�@P514nóPóHG/ôÄô�.15E9�@C23G/5
GeNoC t

23ó}GIú:@P>/2A514SD¿2Aô�ô�GIOÁ46õ/4nOCíÕ4n0A4n=(4n5M@
ctr

G/ô
@C;14+9�GI=Jë10A46@C4SD8@CO<>_õ/4n03ó

G
öØ@C;14(ô�O<>?=J4J>?5ED¿@C;14J0L>/ó�@}51G:D:4(G?ô�@C;14(OPG/.:@P4 � G?ô ctr

>?OP4
4nKM.E>?0E@CG�@P;14¡ô�O<>?=J4H>/5EDJ@P;14�D:4SóV@P2A5*>g@C23G/5+G/ôª@C;14H=(2LóPó�23õ/4

m
235

M
@C;E>?@�;E>Ió�@C;E4�óP>?=J4

23D:4n5M@C2$#E46O¡>Ió
ctr
ø��i;12Lói23óº46ý:ë1OC4SóCóC4nD$úYí+@C;14�0346=J=+>JúØ4603GgòO!

3 ³ l6bV^¹bV�YR6bpbVli~S^<^<j}lnrIT WMl6b�R6bV[]lSWI`!sPlSWM`a[]`�bV^<Wgb�fSR�baT�R�_^<U/[]`qR6U]Ã¹R<dI` k
RSX/^¹lnmER�Ut[]`�b!lnmYTVlnrIbV^<`<f
^<_^<W¢[cmwbV�M[]`ÄU][t`�b%�MRn`ÄlSWIU]d¢lSWI^º^<U]^<k�^<Wgb z

2nï -*øE7:9<;1=+>/0t@PB
>?5ED�F�ø*N�GIOCOP23G/514

«®�U�à�à��x�vb~É}V¯�¯��U�P�BzF� ¬4¬ }
GeNoC t

v

∀ctr ∈l G, ∃!m ∈l M,







IdV(ctr) = IdM(m)
∧ FrmV(ctr) = FrmM(m)
∧ ∀r ∈l RoutesV(ctr),Last(r) = DestM(m)H ;146OP4P!

G = π
2
1 ◦ GeNoC t(M,NodeSet , att , ε)�, J
4
^��-1�i;123óp@C;14nG/OP46= 23ó ë1OPGgõ/465}úYí�235ED:.*9�@C23G/5�G/5Á@C;E4%óV@POC.*9�@C.EOC4ÄG/ôYô�.15E9�@P2AGI5

GeNoC t

ø
ù�@(ô�GI0A03Ggò¡ó¢ô�OCGI=�ë1OPGMG/ô�GIú10A23ìI>?@C23G/5 3 @P;E>g@J@C;E4ÕóP9<;14SD:.1034nD >/5ED @C;148D:4n03>_íI4nD @POP>_õI460Ló
96>?5 ú*4Åë1OPGgõ/465ÊóC46ë*>?O<>g@C4n0AíIøi719<;14nD:.E0A4SD'@CO<>_õ/4n03ó$;E>_õ/4Å> 9�GIOCOP4nóCëØG/5ED1>/5E9�48òº2A@C; @C;E4
@CO<>_õ/460!0A2Ló�@}2351ë1.:@�235

Scheduling
î¬ë1OCGYG/ôÄG/ú1032AìM>g@P2AGI5 M ñ�øwX1.15*9�@C23G/5

Routing
ë1OCG:D:.*9�4nó

9�G/OPOP4n9�@�OCGI.:@C4Só¢î¬ë1OCGYG/ôÄG/ú1032AìM>g@P2AGI5 Y ñ�öªòº;E239<;À>/OC4(óV@P2A030�9�GIOCOP4n9�@�>gôÓ@P46O
Scheduling

øp7YG*ö
ô�OP>/=(4Só�>?5EDÅD:4SóV@P2A5E>?@C23G/5Eó�>?ôÓ@C4nO

Scheduling
=+>g@P9<;Ç@C;E4+=(2LóPó�23õ/4Só�2351ë1.1@�@CGÕô�.15E9�@C23G/5

Routing
ø4�i;14�D:4n03>_íI4nD�@CO<>_õ/4n03ó >?OP4Äë1OPGgõ/465}.EóC2A5Eì¡@C;E4Ä2A5*D:.E9�@P2AGI5
;YíYë*G/@C;14Só�2Ló >/5ED�ë1OPGYG?ô

G/ú1032AìM>g@P2AGI5 R ø
X1.15E9�@C23G/5

GeNoC
@<>?û/4Só!>Ió¹>?OPì/.1=J465M@<ó!>�0A2Ló�@

T
G?ôE@CO<>?5EóP>/9�@C23G/5Eónö6@P;14ºó�46@

NodeSetG?ô�5EGYD14nó}G?ô�@C;14J5146@Vò�GIOCûwö*@C;14+0323ó�@
att

G?ôi>g@C@C46=Jë:@�5Y.1=¢ú*4nOPónøwù�@ÁOP4�@P.1OP5Eó�@C;14+0323ó�@
R9�G/5M@<>?23512A5Eì�@P;14ÁOC4Só�.10A@Pói>/5EDÂ@P;14Á0A2Ló�@

A
9�GI5M@P>?23512351ì¢@C;14�>?úØG/OC@C4SDÂ=J2LóCóC2AõI4nónøYù�@i;*>/ó�@C;E4

ô�G/030AGgòº2351ì¢ô�.15E9�@P2AGI5E>?032A@Ví�!
GeNoC : DT ×P(GenNodeSet) × AttLst → DR ×DM

îÎ2�`Yñ
X1.15E9�@C23G/5

ComputeMissives
>/ë1ë1032A4Só�ô�.15E9�@P2AGI5

send
@CGÙ@C;E4 =(4SóCóP>?ìI4ÇG/ô¢4S>/9<;

@CO<>?5EóP>/9�@C23G/5'G?ô�@P;14À0323ó�@
T
ø,�i;12Ló$ô�.15E9�@P2AGI5Êë1OPG:D:.E9�4Só$> 032LóV@�G?ô
=J23óPóC2AõI4nóJô�OPG/= @C;E4

2A512A@C2L>?0p@CO<>?5EóP>/9�@C23G/5EónøYù�@Pó�ô�.15E9�@C23G/5E>/0A2A@Ví$2Ló�@C;E4Áô�G/030AGgòº2351ì_!
ComputeMissives : DT → DM

îÎ2SðIñ
ù�@i2Ló¡D:4�#E514SD�>Ió�ô�G/030AGgò¡óB!

è �Sé�z � � � }�zäÚ[vØ~É}V�à� Ï �B�U£ �E¬B¬4�Çî � ¬ v
ComputeMissives(T) ,

Λ
t∈lT

List(IdT (t),OrgT (t), send(MsgT (t)),DestT (t))

X1.15E9�@C23G/5
ComputeResults

>/ë1ë1032A4Só%ô�.E5E9�@P2AGI5
recv

@PG¢4S>/9<;$ô�OP>/=(4}G?ô¹>
@POP>_õI460Ø0A2Ló�@
@CGJë1OPGYD1.E9�4
>(0323ó�@¡G?ôqOC4Só�.10A@Pónø:ù�@Póºô�.15E9�@P2AGI5E>?032A@VíÂ23óº@C;14Áô�GI0A03Ggòº2A5Eì_!

ComputeResults : DV → DR
îÎ2nïMñ

ù�@i2Ló¡D:4�#E514SD�>Ió�ô�G/030AGgò¡óB!
è �Sé�z � � � }�zìòwvØ~É}V�à� Ï �B�Uå�� ¬4Ï �=� ¬ v
ComputeResults(V) ,

Λ
tr∈lV

List(IdV(tr),Last(RoutesV(tr)), recv(FrmV(tr)))

XqG/OP=+>?032ABn2A51ì 8 5 ê ;123ë ê GI=(=¢.1512L96>?@C23G/5Eó 2�R
X1.15E9�@C23G/5

GeNoC
2Ló�D:4�#E5E4nD .EóC2351ì @C;E4nóC4¿ô�.15E9�@C23G/5Eó�>?5*D

GeNoC t

ø,XE.15E9�@P2AGI5
ComputeMissives

ìI2AõI4nóº@P;14O#EO<ó�@}>?OPì/.E=(4n5M@¡G?ô
GeNoC t

ô�OPG/= @C;14�@CO<>?5EóP>/9�@C23G/5Õ0A2Ló�@
T
øF�i;E4Â03>IóV@(>?OPì/.1=J465M@
G/ô

GeNoC t

23ó
@C;14$46=Jë:@Ví 0A2Ló�@nø@�i;E4$>?úØG/OC@C4SD =(2LóPó�23õ/4Só
>?OP4
ë1OCG:D:.*9�4nD�úYíÂô�.15*9�@C23G/5

GeNoC t

ø_�i;14�D:4�#*512t@P2AGI5ÕG?ô
GeNoC

2Lói@C;E4Áô�G/030AGgòº2351ì_!
è �Sé�z � � � }�z|ó"v è �Dé�z � � � }Vz�}

GeNoC
v

GeNoC (T ,NodeSet , att) ,«t�S�
(Responses Aborted)

¹®�
GeNoC t(ComputeMissives(T),NodeSet , att , ε)

� z
List(ComputeResults(Responses),Aborted)�i;14�9�G/OPOP4n9�@P514nóPó�G?ô

GeNoC
2LóºD:4�#E514nD�úYí$46ý:ë1OC4SóCóC23G/5 ` D:4�#E5E4nD�2A58óC4n9�@C23G/5 Y ø

¸ �@�U}V¯��S� ©"vØ~É}_¯�¯��U�5�BzF� ¬B¬ }
GeNoC

vô[���
R
Q��

π
2
1 ◦ GeNoC (T ,NodeSet , att)

�W�

∀rst ∈l R, ∃!t ∈l T ,







IdR(rst) = IdT (t)
∧ MsgR(rst) = MsgT (t)
∧ DestR(rst) = DestT (t)

�, J
4
^��-1�i;14
0L>/ó�@¡@C4nOC= G?ô¹@C;E4�9�GI5�)V.15E9�@H23ó�D:23OC4S9�@C03í�G/ú:@<>?23514nD�ô�OPG/= 9 46=J=+> 2 ø�X1OPG/=
@C;12Lóp0346=J=+>1ö�2A@!>/03óCG�ô�G/030AGgò¡óØ@P;E>g@p@P;14�ô�O<>?=J4nówëEOCG:D:.E964nD}úYí¡ô�.15*9�@C23G/5

ComputeMissives>?OP4
23D1465M@C2L96>/0 @PGÂ@C;E4�ô�O<>?=J4nó�9�GI5MõI46OC@C4SDÕ2A5¿=J4SóCóP>?ìI4nóºúYí�ô�.15E9�@C23G/5
ComputeResults

øX1OPG/= ëEOCGYG?ô¹G/úE0A23ìI>?@C23G/5 2 G/5�@C;14�2A5M@C4nO�ô¬>I9�4Só6ö:2A@�9�GI=J4nói@P;E>g@¡=J4nóPóP>?ì/4SóiG?ô¹OC4Só�.E0t@<ó¡>?OP4
4nKM.E>?0w@PG+=J4nóPóC>/ì/4nó�235�@P;14�23512t@P23>/0ª@CO<>?5*óC>I9�@C23G/5�0A2Ló�@nø

4 À opã�nHåºæ¡å®Á�å§kGs±g�âHæ65�gGÝDo87�ã:ç�æHéÎo[Ý
HÇ4Â;*>_õ/4J46=¢ú*4SD1D:4nD GI.1OÁ@C;E46G/OPíÀ235Å@C;14$0AGIì/2L9JG?ô�@C;14 ü ê 9 %$@C;14nG/OP46= ëEOCGgõY2351ì8ó�í:ó�÷
@C46=�þ 2Sð ÿ�ø¹FH4Só�ë12A@C4Â@C;14$ô¬>/9�@¢@C;E>?@ ü ê 9 %823ó�#EO<óV@�GIOPD146OSö >?5ED D1GM4Só
51G/@¢óC.1ë1ëØG/OC@�@C;E4
4�ý:ë10323962t@}.Eó�4�G?ôÄKM.E>?5M@C2$#E4nOPónö:@C;E4¢9<;1GI23964�G?ô¹@C;12Ló}ó�í:ó�@C46= G5(w46OP4nD8>Â5M.E=�úØ46OHG/ôÄ>/D:õg>?51÷
@P>?ìI4nóB!
� �i;14J2A5Eë1.:@
0L>?51ìI.E>?ìI4�úØ462351ì¿>�óC.1úEóC4�@�G/ô ê G/=J=JG/5 9 2LóCëpöw@C;14(ô�.15*9�@C23G/5*ó
>?OP4¢46ýY÷
4n96.:@P>/ú10A4Iø�ù�@Â23óJOP4n>/0A2Ló�@C2L9Â@PGÅ46ý:4n9�.1@C48>À=JG:D:4n0¡G/5 @C4nó�@ÂúØ465E9<;14Só6öÄ>/5EDyõM2LóC.E>?032ABn4
@C;14�ú*4n;E>_õY2AGIO¡G?ô�>+ëE>/O�@P2396.103>/Oº514�@Vò�G/OPû$óCë*4S9�2$#*96>?@C23G/5pö*>/ó¡>Z#*OPó�@HD:46úE.1ì/ìI2A51ìÂó�@C4në
ú*46ô�G/OP4Âë1OPG:9�464SD:2351ì8òº2t@P;Û;Y.1=+>?5 @P2A=J4$96G/5EóC.1=J2A5Eì¿ë1OPGMG/ô¬ó6ø@�i;123ó
ô�4n>?@C.1OP4Â2Ló
23=¢÷
ë*GIO�@<>?5M@Â>?0Ló�GÇô�G/OÂKM.12L9<û óCG?ôÓ@Vòi>?OP4$ë1OPG?@PG?@VíYë12351ìEö�>Ió+>Çú*>/óC23óJG/ô}D:2LóC96.EóPó�23G/5Ùòº2t@P;
514�@Vò�G/OPûÂD:4Só�23ì/514nOPónø

� ü 0L>?OPì/4$5M.E=�úØ46O(G?ôH46ýY2Ló�@C2351ìÀë1OP46õY23G/.Eó�ò�GIOCû:ó¢>?OP4Âë1.1ú1032L9�03íÛ>_õ_>/2A0L>?úE0A4Iö!>?5*DÛD:4�÷
õ/4n0AGIë12A5EìÛ> 5146ò @C;14nG/OPí úØ46514�#1@PóÂô�OCGI= =+>?5Yíy03>_íI46O<óJG?ô�4�ý:ëØ46OC@$D:46õI4603G/ë1=J465M@<ó
@C;E>?@�46ýM@P465ED+@C;14HóCí:óV@P46=ë#EO<óV@�ë1OC235E962Aë1034nónø 9 2AúEOP>/OC234nó�G/ôwô�.15E9�@P2AGI5Eó�D:4�#E5E2t@P2AGI5Eó%>/5ED
ë1OPGgõ/465Õ@P;146GIOC4n=+óH96>/58ú*4(9�GI=(ëE2A034nD¿>/5ED¿ó�@CGIOC4SD�ô�G/OH0L>g@P46O}.EóC4/öØOC4SóV@PG/OP2A51ìÂ>/58465:÷
õY2AOPG/51=J4n5I@º2Lóº>+ó�2351ìI0A4�ó�@P>g@P46=J465M@Sø

� /�46OPí ë*Ggò�46OCô�.10iD:4�#*512t@P2AGI5y=J4S9<;E>?512LóC=Jónö¹ó�.E9<;Ù>/ó¢@C;E4h������������º��$���¢�=
��h�6 ��W����� ���$�6ö
>?030AGgò @PG 4�ýY@P465ED'@P;14À03G/ìI239À>?5ED OP4n>Ió�GI5'G/5Ê.15*D:4�#E5E4nD'ô�.15*9�@C23G/5*óÂ@P;E>g@ÕóC>?@C2LóVô�í
G/514�GIO¡=JG/OP4Á@C;14nG/OP46=+ónö1ë1OPGgõM2LD:4SD�GI514�òº2A@C514SóCó¡9n>?58úØ4
4�ý:;123ú12A@C4SDªø_HÅ4
=+>/D:4
>/5

2BM -*øE7:9<;1=+>/0t@PB
>?5ED�F�ø*N�GIOCOP23G/514

4�ýY@C4n5EóC2AõI4�.Eó�4�G?ô¹@C;12Ló¡ëEOC235E9�23ë1034�@CG$ë1OCGgõI4}@C;14�96G/OPOC4S9�@P514nóPóiG?ô
GeNoC

>/óPóC.1=J2A51ì
@C;14�óC>?@C2LóVô¬>I9�@P2AGI5�G?ô:@C;E4�96G/5Eó�@CO<>?235M@PóªGI5�@C;14%ô�.15E9�@C23G/5Eó @C;E>?@ ô�GIOC=+>?0323B64�@P;14%5146@Vò�GIOCû
9�GI5EóV@P2t@P.1465M@<ó6ø

� �i;14�96G/=�úE2A514SD�.Eó�4�G/ô!@VíYë12351ì+ë1OP4nD1239n>g@C4Só6öE0A2LóV@�#E0t@P46OP2A5EìEö123=Jë10A2L96>?@C23G/58>?5*D�OP4n96.1OC÷
ó�23õ/4¿ô�.15E9�@P2AGI5 D:4�#E512A@C23G/5Eó$Ggõ/46O+032LóV@Õ>?OPì/.1=J465M@<ó+ë1OPGgõM2LD:4Só+> =J4n>?5*ó+@CG 4�ý:ë1OP4nóPó
.15123õ/4nOPóP>?030AíJKM.E>?5M@P2'#E4SD+ë1OPG/ëØ46OC@C234nó%Ggõ/46O�D:G/=+>?235EónöM>/5ED(@C;E4}ó�@P>?@C46=J4n5I@Gca@P;146OP4H46ýY÷
23ó�@PóH>¢.E5123KM.14�4n0A4n=J465M@¡ó�.E9<;�@C;*>g@^a�ø
ü ë1ë103íY2A5Eì}>}ó�í:ó�@C4n=J>?@C2L9?ö_>?5ED�OC4n.EóP>?ú1034/öS=JGYD14�G/ôE4�ý:ë1OP4nóPó�23G/5�î¬óC464}þ %Ið ÿYô�G/O�D:4�@<>?2303ó<ñ�ö

@C;14�9�GI=Jë10A46@C4
GeNoC

ô�GIOC=+>/0A23Bn>?@C23G/5$96G/.10LDÂúØ4Áë*4nO�ô�GIOC=J4nD$2A5$@C;14 ü ê 9 %
03G/ìI239/öMòº2A@C;
@C;14Â>/ú*GgõI4¢0323ó�@C4SDÀúØ465E4�#1@<ó6ö >/5EDÅò�4(@P;M.*óÁú*4n514�#1@P4nDÇô�OPG/= @P;14+;123ì/; D:46ìIOC4n4(G/ô�>/.:@CG/÷
=J>?@C4SD�=J4S9<;E>?5123B64SD$OP4n>Ió�GI512351ì�235 ü ê 9 %:ø

�i;14$ë1OPGYG?ô¡G/ôº@C;14�=+>?235 @C;14nG/OP46=�>?úØG/.1@
GeNoC

>/5ED 2A@Pó(=JG:D:.1034nó¢2A5Yõ/GI0AõI4�RU2
ô�.15E9�@P2AGI5Eónö@2D2B3(@C;E46G/OP46=+óº235à24M/ï5`J032A5E4nó¡G/ô%9�G:D:4Iø 8 5103í�GI514�ô�GI.1O�@P;8G?ô�@P;14nóC4
2LóHD:4SD:2t÷
96>g@P4nD$@CG(@C;E4�465E9n>?ëEóC.10L>g@C23G/5�G?ô!@C;14
D12'(w46OP465M@º=JGYD1.10A4Só6øV.8GIó�@ºG?ô @P;14
D:4�#E512A@C23G/5Eóº>/5ED
@C;14nG/OP46=+ó¹9�G/5*9�46OP5¢DE>g@P>H@VíYë*4Só¹>?5ED�@C;14ië1OPGYG?ôEG/ô1@C;E4�GgõI46O<>?030M96G/OPOC4S9�@P514nóPó6ø��i;12Lóq=J>/û/4Só
GeNoC

cVOP460L>g@P2AõI4603í¢óC2A=Jë1034�aº@PG�.EóC4/öIú*4S96>?.*ó�4�.Eó�4nOPóÄòº2A030*GI5103í(úØ4�96G/5E9646OP514nD(òº2A@C;$@C;14
=(G:D:.E0A4Só6öE>Ióiò�4�óC;E>?030ª51Ggò D:23óP9�.*óCónø

òwvEx � î �S¯ î"� �S¾ } �B�F�²y\�F�F� � �D��� � }Vz ¬
ùa5�Xq2Aì ï öIò�4HóC.1=J=+>?OP2ABn4H9�GI5E9�OP4�@P4º2A5Eó�@P>/5E9�4Só%G/ô

GeNoC
ø ü 5YíJ96G/=¢ú12A5*>g@C23G/5JG/ôª@C;14Só�4

D:2'(w46OP465M@�96G/5E96OC46@C4i235EóV@<>?5E964nó�2Ló%D14�#E514SDJ>?5EDJõg>?032LD1>g@P4nD(úYí�ì/4n5146OP2L9�ô�.15E9�@P2AGI5
GeNoC

ö
@C;E>?@¡=(4S>?5Eóiòº2A@C;EG/.:@H>/5Mí�>/D1D:2A@C23G/5*>?0ª4�(wG/OC@nø

Routing

Scheduling

FramesFrames

Node A Interface Node B Interface

9�: � 9 Φ 9<;

9�= �������Çý����

> ���<?@�A��BC,�� ���	þBÿ�$ � ý�DE�F�A$ � ��� ���
9 � � ���	ÿ�� �
,�?G� ��� ��� ý�D9 � � �HBA���
,�?G� ��� ��� ý�D

: ÿ��JIJ��"�� �H� � �H� ��ý
9 I ;C: IKI
� : IJ��"�� �����

9 !#��� � D)��ý
L ��������./� ý�� �M��� �JNG��ÿ���� ý�D

9@O
P ����ÿ���� ý�D
IVþ � ����� Q��RNG��ÿ��H� ý�D9 L ��ÿ�"�$ � P � � � ýBý���$

send

recv

send

recv

!R,�ü - � 	A��� »
!R,�ü - � 	A���J�

�d� �[v4ó"v ê G/5*9�OP4�@C4Áùa5Eó�@P>/5E9�4SóiG?ô
GeNoC

XqG/OP=+>?032ABn2A51ì 8 5 ê ;123ë ê GI=(=¢.1512L96>?@C23G/5Eó 243
HÇ4�;E>_õ/4¡óC;1Ggòº5J@C;*>g@%@P;14�962AO<9�.E2t@}þ %PY ÿw>/5ED(@C;E4HëE>I9<û/4�@�þ %5` ÿwóCòº2A@P9<;12351ì�@P4n9<;1512LKM.14nó

>?OP4�9�GI5E9�OP4�@P4$235Eó�@P>?5*9�4nó¢G?ô
Scheduling

ø�Ni>/óC4nDÛG/5Ûë1OP46õY23G/.Eó¢ò�G/OPûyþ %D% ÿ�öqò�4�ë1OCGgõI4nD
@C;E>?@ÁúE.Eó�>?OPú12A@CO<>g@C23G/5À2A5Ç@C;14 ü .¿N üÉü10 Nß2Ló�>?0LóCG�>�õ_>/0A2LDÇ2A5Eó�@P>/5E9�4(G?ô�@C;14JìI46514nOC2L9
óC9<;14SD:.1032A5Eì¿ë*GI0A2L9�íIøFXEOCGI=Ð.¿GMGIOC4 I ó�ò�GIOCûÇG/5Û>Ió�íY5E9<;1OPG/5Yíyþ 2�R ÿÞöqò�4Âë1OPGgõ/4nDÇ@P;E>g@(;123ó
=(G:D:4n0 G/ô!@P;14�ú123ë1;E>Ió�4�ëEOCG/@CG:9�GI0p9�G/5*óV@P2t@P.:@C4SóH>Jõg>?0323DÕ235Eó�@P>/5E9�4�G/ôq@P;14
235M@C46OCô¬>/964nónøjHÅ4
;E>_õ/4�=(G:D:4n0A4SD >/5���@P;146OP514�@Â96G/5M@COPG/0346O S >/5EDÛò�4�>/OC4�2A5YõI4nó�@C23ìI>g@P2A5Eì¿2t@<ó+9�GI=(ëE0A2L>?5E964
òº2t@P;

GeNoC
ø

ùa5Â@C;E4}5E4�ýY@ióC.1úEóC4n9�@C23G/5EónöYò�4}230A03.Eó�@CO<>g@C4�G/.1Oº>/ë1ë1OPGI>/9<;+GI5Â@P;14 8 9�@P>/ì/GI5+514�@Vò�G/OPûwøHÇ4�#EOPó�@¢D:46@P>/2A0�@C;14�=J4�@C;EGYD1G/03G/ì/íÅ>/óPó�G:9623>?@C4nDÅòº2A@C; @P;14$OPG/.1@C2351ì¿>?03ì/GIOC2A@C;1=ÕøF�i;1465pö
ò�4Â>/ë1ë103íÇ2A@
@CGÕ@P;14ÂOPG/.:@P2A5Eì¿>?03ì/G/OP2A@C;1= G?ô�@C;14 8 9�@P>/ì/G/5 ø ü =JGYD1460�>/5ED >Õë1OPGYG?ôiG?ô
@C;12LóÄ5146@Vò�GIOCû�;*>_õ/4º>?03OC4S>/D:í�ú*4n465+ë1OP4nóC465M@C4SD$þ %5Y ÿÞöIú1.:@Äòº2A@C;Â>�D:2$(Ø4nOC4n5M@Ä=(46@C;1G:D:GI0AGIì/íIøHÇ4+;E>_õI4+>?0Ló�G8óC;1Ggòº5À@P;E>g@UTWV OPG/.:@P2A51ìÕ235 >²%?FÖ=J4nóC; 23ó
>/03óCG8>Õõg>?0323DÇ2A5*óV@<>?5E964+G?ô
G/.1OÁì/4n5146OP2L9�=JG:D:460ºþ %�` ÿÞø"Xq235E>?030AíIöªò�4J>?OP4J9�.1OPOC4n5M@C03í�ò�G/OPûY2A5Eì$G/5Ç@C;E4(ëEOCGYG?ô%@C;E>?@�>/5
>/D1>/ë:@C23õ/4�OPG/.:@P2A5EìÂ>?03ì/G/OP2A@C;1= ÷Ä@C;14¢D:G/.1úE0A4XVÉ9<;E>?515E460!>/0AìIG/OP2t@P;1= 235¿>�%?F�=J4nóC;Õ÷%23ó
>
õg>?0323DÂ2A5Eó�@P>/5E9�4�G?ôpô�.E5E9�@P2AGI5

Routing
ø�.8GIOC4�D:4�@<>?2303ó�>?úØG/.:@º>?030*@C;14Só�4}óV@P.ED:234nói96>/5Âú*4

ô�G/.15ED�235¿7:9<;1=+>?0A@CB I ó�@P;14nóC23óÁþ %�2 ÿÞø
òwvWu ~É}VzF�5¯��S�B� � z ¬ �4�jz@�D� ¬ } d �Ï z@�P� � }�z

Routing

�i;14À@PG/ëØG/03G/ìIíyG/ô¢>Û5146@Vò�GIOCû'D:46@C46OP=J2A5E4nó$@C;14Å51G:D:4Å5M.E=�úØ46OP2A51ìÙ>?5EDÊ@C;14Å.1512A@P>/OCí
=(GgõI4nó�>?030AGgò�4nDÕúØ4�@Vò�464n58@Vò�G�>/D�)�>I9�4n5I@�51G:D:4nónøw�i;14�OPG/.:@P2A5EìÂô�.15E9�@C23G/5¿2LóÁD:4�#*514nD8úYí
@C;14Jó�.*969�4SóCóC23õ/4�>/ë1ë103239n>g@C23G/5*ó¡G?ô�@P;14nóC4�=JGgõI4nónø*N�4�ô�GIOC4(D:4�#E5E2A51ì�>ÂëE>/O�@P2396.10L>?OHOPG/.1@C2351ì
ô�.15E9�@P2AGI5pö1GI514Á;E>/ó�@PGÂD:4�#E5E4Á@C;14
óC4�@ºG?ô¹51G:D:4Só6ø
Y�
4NP�XZ>�=×®�_�W�¢�=
���-}N�4�ô�GIOC4
>/0A0ÞöEGI514
;E>Ióº@PG$D:4�#*514�@C;E4�51G:D:4�D14�#E512A@C23G/5ÇD:G/=+>?235pöE@C;E>?@
23óÄ>}ëE>/O�@P2396.10L>?O¹2A5*óV@<>?5E964�G/ôØëEOC4SD:239n>g@P4

ValidNodep
ö?51G?@P4nD

ValidNodep]

ø5�i;14ºìI46514nOC2L9
D:4�#E5E2t@P2AGI5ÀD:G/=+>/2A5

GenNodeSet
ú*4S9�G/=J4SóH>+ëE>/O�@P2396.10L>?OHD:GI=+>?235

GenNodeSet]

ö*@C;E4
5E>g@P.1OP>/03ó¡ô�G/O�2A5Eó�@P>/5E9�4Iø 8 514�;E>/ó¡@CG$ìI2AõI4�>Â96G/5E96OC46@C4
D:4�#E512A@C23G/5¿G/ô§�%KM.E>g@P2AGI5 ð ö*@C;E>?@
23óB!

∀x,ValidNodep](x) ⇔ x ∈ GenNodeSet]

îÎ2�R/ñ
È�
�º��¢�W�SKKZÉ�E×§�V�W�E�=
5��X!23O<óV@Söpò�4J2LD:465M@P2tô�íÀ@C;14+=JGgõ/4SóÁ>?030AGgò�4nDÀú*46@Vò�4n465Å@Vò�G8>ID�)�>/96465M@
51G:D:4nónø ü ó}ò�4(9�GI5Eó�2LD:4nO�OP46ìI.103>/OH5146@Vò�GIOCû î¬G/OÁ>ÂOP46ì/.E03>/OC23Bn>?@C23G/58G?ô�>?5¿23OCOP46ìI.10L>?OH5E4�@�÷
ò�GIOCû1ñ�ö!@C;E4nóC4�=JGgõ/4Só¢>/OC4�>?030i23D:4n5M@C2L96>?0i>g@J4n>I9<; ëØG/235M@(G/ô¡@C;14�5146@Vò�GIOCûwøqùVD:465M@C2Aô�íY2A5Eì
@C;14Só�4�.15E2t@<>?OPíÂ=JGgõ/4nóiD:4�#E514Só¡>J9�G/5*9�OP4�@C4Á235Eó�@P>?5*9�4/ö

L]

ö:G/ô!@P;14�OCGI.:@C2351ìJ03G/ì/2L9
L
ø_�i;E4

OCGI.:@C2351ì¡ô�.E5E9�@P2AGI5¢OP4nóC.10A@PóqG?ô1@P;14ió�.E9n9�4SóCóC2AõI4�>/ë1ë103239n>g@C23G/5�G?ô1@P;14nóC4�.E512t@<>?OPí�=JGgõ/4nónön@C;E>?@
23óB!

ρ](s, d) ,

{

d
�=

s = d

s.ρ](L](s, d), d)
}V�B�F�S¯4¾ �E¬ � îÎ2BMMñ

�i;14¡D:2LóV@<>?5E964ºú*46@Vò�4n465(@C;14�9�.1OPOC4n5M@Äë*GMó�2A@C23G/5JG?ôª>Á=J4nóPóC>/ì/4º>?5*D¢2A@Pó�D:4nó�@C235E>?@C23G/5J23ó
D:4nD:.*9�4nD+ô�OCGI=�@P;14¡@PG/ëØG/03G/ì/íIøP�i;14}D:23ó�@P>/5E9�4Hú*46@Vò�4n465ÂóCG/=J4¡51G:D:4

s
>/5ED+ó�GI=J4¡51G:D:4

d23óq51G/@C4nD
dist(s, d)

ø5.¿GIó�@qG/ôÓ@C465 ön@P;12LóqD123ó�@P>/5E9�4�23ó!@P;14�=J4S>/óC.1OC4�.EóC4nD�@PG�ëEOCGgõI4�@C;E>?@¹@C;14
OCGI.:@C2351ì¢ô�.15E9�@P2AGI5$@P46OP=J2A5E>?@C4Só6ø:ù�@¡óC.�¼Â9�4nó�@PG¢ëEOCGgõI4H@P;E>g@º4n>I9<;$.15E2t@<>?OPí+=(GgõI4�OP4nD1.E9�4Só
[�¹�M[]`qÃqlnTV~Á�MRn`q�:^P^<W�XIlSWI^%XIrITV[]WI»�Rº\?[]`a[cb¹lnmEbV�M^ÄÆMTV`�bqRnr/bV�Ml6T�R6b!bV�M^%Z�WI[t\S^PTV`a[cbÞdÁl6mw�*^P£IRn`
R6b � rI`�bV[]W*f/[]WJs<lglSj:^CT�R6bV[]lSWJÃÄ[cbV� × R6TaTV^<W Ü rMWgb z

%5A -*øE7:9<;1=+>/0t@PB
>?5ED�F�ø*N�GIOCOP23G/514

@C;12LóÄD:2LóV@<>?5E964/ø��i;14¡D:2Ló�@P>?5*9�4i23ó�>�ô�.15*9�@C23G/5¢@C;*>g@ÄOP4�@C.EOC5Eó¹>}5E>?@C.1O<>?0Mô�G/OÄ>/5Yí�51G:D:4ºëE>?23OSø�i;123óºô�.15E9�@P2AGI5Õ;E>/ó�@P;14Áô�G/030AGgòº2351ì¢ô�.15E9�@C23G/5E>/0A2A@Ví6!
dist : GenNodeSet] × GenNodeSet] → N

îÎ2B3Iñ
� GJë1OPGgõ/4�@C;14Á@P46OP=J2A5E>?@C23G/5�G?ôq@C;14�OPG/.1@C2351ì�ô�.E5E9�@P2AGI5pö

ρ]

ö:G/5E4�;E>/ó�@PG(ëEOCGgõI4H@P;E>g@º@P;123ó
ô�.15E9�@P2AGI58óC>?@C2Ló^#E4Sóº>J9�G/5*9�OP4�@C4Á235Eó�@P>?5*9�4ÁG?ôqë1OCGYG/ô!G/úE0A23ìI>?@C23G/5 % !

∀s, d ∈ GenNodeSet], s 6= d ⇒ dist(L](s, d), d) < dist(s, d)
î¢%5AMñ

�i;14�õg>?0323D:2A@VíÂG/ô¹>JOPG/.:@P4Á23ói@P4nó�@C4SD�úYí�ë1OC4SD:2L96>g@P4
ValidRoutep

ø_�i;14
D:4�#E512A@C23G/5ÕG?ô
ValidRoutep

2LóÁõg>?0323DÇô�G/O
>/0A0%514�@Vò�G/OPû:ó6öw2A@
51464SD1óÁ51G?@
úØ4+OP4nD:4�#E514nD'îeó�4n4JF�4�#*512t@P2AGI52 ñ�ø
X!235E>/0A03í/öq@CGÅõg>?0323DE>g@C4$@C;14896G/5E96OC46@C4$OPG/.1@C2351ì¿ô�.15*9�@C23G/5 ö�2t@ÂóC.�¼Â9�4nó�@CGÅë1OPGgõ/4$@C;E>?@

23óÁóP>g@C2LóÎ#E4nóHë1OC4SD:2L96>g@P4
ValidRoutep

ô�GIOH@P;14Jó�46@
NodeSet]

G/ô�9�GI5E9�OP4�@P4�51G:D:4SóHG/ôÄ@C;E4
514�@Vò�G/OPû6!

∀M,Mlstp(M,NodeSet])
⇒ ∀m ∈l M, ∀r ∈l ρ](OrgM(m),DestM(m)),ValidRoutep(r ,m,NodeSet])î¢%�2_ñ
ü ô�.15E9�@P2AGI5 @C;E>?@�=+>g@<9<;14nóÁ@P;14+ì/4n5146OP2L9+D:4�#E5E2t@P2AGI5

Routing]

9�G/=Jë1.1@C4nó�>Õ0A2LóV@¢G?ô
OCGI.:@C4Só�ô�G/Oº4n>I9<;�=J2LóCóC23õ/4}G?ô�>¢032LóV@

M
!

è �Sé�z � � � }�zìöwvØ~É}VzF�5¯��S�B�+á�z ¬ �B�jzF�P��} ��[Ï z@�P� � }�z
Routing

v
Routing](M,NodeSet]) ,

Λ
m∈M

List(IdM(m),FrmM(m), ρ](OrgM(m),DestM(m)))

� G
ëEOCGgõI4i@C;14}9�G/=Jë1032L>?5E964HG?ôw@P;123ó�ô�.15*9�@C23G/5$òº2t@P;
GeNoC

öMò�4}óV@P2A030*5E464nD+@CG�ëEOCGgõI4
@C;E>?@

Routing]

ë1OPG:D:.E9�4Só�>�õ_>/0A2LDÇ@CO<>_õ/4n0q032LóV@
2Aô�@P;14+23512t@P23>/0Ä0323ó�@
M

2Ló�>Õõg>?0323DÇ0A2Ló�@
G?ô
=(2LóPó�23õ/4Só�!

∀M,Mlstp(M,NodeSet]) ⇒ Vlstp(Routing](M,NodeSet]))
î¢%P%Iñ

HÇ4¡>/ë1ë103í
@C;E23ó�=J46@C;1G:D:GI0AGIì/í�@PGÁ@C;14 8 9�@P>?ìIG/5(514�@Vò�G/OPû�ë1OP4nóC465M@C4SD(2A5Â7Y4S9�@C23G/5 %1ø$2 ø

òwvª© �¥�P�B�j��}�z­~�� ¬ ��ñ"� Ï ¤ ¡
�¥�5�4�j��}Vz {+}"¤F� è �Sé�z � � � }Vz 8 .1O 8 9�@<>?ì/GI5 =JGYD1460º9�GI5Eó�2LD:4nOPó(>?5Ù>?OPú12t@POP>/OCíIöpú1.:@#E512A@C4/öE5M.E=�úØ46O¡G/ô!51G:D:4Só6ö15EG?@C4SD

NumNode
ø_�i;E23óº5Y.1=¢ú*4nOº23óH>¢5*>g@C.EOP>/0eö:=¢.10t@P2AëE0A4�G/ô`Eø:7YGEöIò�4}96>?5�D:4�#E5E4¡@C;*>g@�5Y.1=¢ú*4nO�.*ó�2351ì¢>
5E>g@P.1OP>/0

N
ö
NumNode = 4N

ø : OP4nD:2L96>?@C4
ValidNodepOct

@<>?ûI4nóº>/óº>/OCìI.1=J465M@Pói>(51G:D:4
x
>/5ED$5Y.1=¢ú*4nO

N
!

∀N ∈ N, ∀x,ValidNodepOct (x ,N) ⇔ x ∈ N ∧ x < 4N
îE%PYIñ

XqG/OP=+>?032ABn2A51ì 8 5 ê ;123ë ê GI=(=¢.1512L96>?@C23G/5Eó %j2
�¥�5�4�j��}Vzäå�} Ï � � zF� �[Ï z@�P� � }�z 9 46@

s
ú*4}@C;E4Á96.1OPOC4n5I@i51G:D:4�>?5*D

d
@C;E4ÁD14nó�@C235E>g@P2AGI5

51G:D:4/ø_�i;E4�@P;1OP464�.1512A@P>/OCí$=(GgõI4nó�235�@P;14 8 9�@<>?ìIG/5�>/OC4ÁD:4�#E514nDÕ>Ió�!
Clockwise(s ,NumNode) , (s + 1) mod NumNode

CounterClockwise(s ,NumNode) , (s − 1) mod NumNode

Across(s ,NumNode) , (s +
NumNode

2
) mod NumNode�i;14nóC4�=JGgõI4nóq>?OP4�ìIOCGI.1ë*4SD
235M@CG�ô�.15E9�@P2AGI5

LOct

ø5�i;14iOP460L>g@P2AõI4�>/DED:OC4SóCóq2Ló
RelAd =

(d−s) mod 4N
ø?ù�ôw@P;14�96.1OCOP465M@�51G:D:4¡2Ló�@P;14HD:4SóV@P2A5*>g@C23G/5 ög@C;14H=(4SóCóP>?ìI4º23ó%9�G/5*ó�.1=J4SDªø

ù�ôp@C;14}OP460L>g@C23õ/4�>/D1D:OP4nóPóÄ2Ló�ë*GMó�2A@C23õ/4}>?5ED$0A4SóCóÄ@C;E>/5
N
öI@C;14}=J4nóPóC>/ì/4¡=JGgõI4nó%960AG:9<ûYòº2Ló�4Iø

ù�ôq@P;12Ló¡>/D1D1OC4SóCói2LóºúØ4�@Vò�46465
3N

>/5ED
4N

ö:2A@H=JGgõ/4nói96G/.15M@C4nOP960AG:9<ûYòº2Ló�4Iø 8 @P;146OPòº2Ló�4Iö12t@
=(GgõI4nói>/96OCGMóCónø��i;14�D:4�#*512t@P2AGI5ÕG?ô

LOct

23óH>/ó�ô�G/0303Ggò¡ó�!
è �Sé�z � � � }�z|ù"vb��z � �B��¯ ¡ �à} î � ¬>� z��B�F���¥�P�B�j��}�z®v

LOct (s , d ,N) ,















s
�=

RelAd = 0

Clockwise(s , 4N)
�=

0 < RelAd ≤ N

CounterClockwise(s , 4N)
�=

3N ≤ RelAd < 4N

Across(s , 4N)
}V�B�F�D¯�¾ �=¬ �

*ºG/.:@P2A5EìÂô�.15E9�@C23G/5
ρOct

23óÁD:4�#E514nDÀ>/óH@C;14(OC4S9�.1O<óC2AõI4�>?ë1ëE0A2L96>?@C23G/5¿G/ôÄ@C;14(.1512A@P>/OCí
=(GgõI4nóB!
è �Sé�z � � � }�z|ú"vbå�} Ï � � zF� �[Ï z@�P� � }�z|} �B�F���¥�P�B�j��}Vz+\

ρOct
v

ρOct (s , d ,N) ,

{

d
�=

s = d

s .ρOct(LOct (s , d ,N), d ,N)
}V�B�F�S¯4¾ �E¬ �

ü ó}@C;E46OP4J>/OC4¢@Vò�G�òi>_í:óHG/ô%@CO<>_õ/4nOPóC2351ìÂ@P;14 8 9�@P>/ì/GI5pöØ@C;14nOC4(4�ý:2LóV@Á@Vò�GÕD123ó�@P>/5E9�4Só
ú*46@Vò�4n465Â@Vò�G�5EGYD14nónøU�i;E4�=J4n>Ió�.EOC4�.Eó�4SD+@PG�ë1OPGgõ/4H@C;E>?@�ô�.15*9�@C23G/5

ρOct

@C4nOC=J235E>g@P4nó�23ó
@C;14�=J23512A=¢.1= úØ4�@Vò�464n5�@C;14Só�4}@Vò�GJD123ó�@P>/5E9�4Só�!
mesOct(s , d ,NumNode) = Min[(d − s) mod NumNode, (s − d) mod NumNode]� GÅë1OPGgõ/4+@P;E>g@J@C;E4�G:9�@P>?ìIG/5ÛOPG/.1@C2351ì¿ô�.15*9�@C23G/5y@C4nOC=J235E>g@P4/ö�2A@JóC.�¼Â9�4Só¢@CG ë1OPGgõ/4
@C;E>?@º@C;14�.15E2t@<>?OPíÂ=JGgõ/4nó�OP4nD:.*9�4}@C;12Ló¡D:2Ló�@P>?5*9�4P!
¸ �@�U}V¯��S� Ú[vØ�¥�P�B�j��}Vz|å�} Ï � � z@� �@Ï zF�5� � }�z ¸ �S¯�� � zF���B� ¬ v
∀s, d ∈ GenNodeSetOct , s 6= d ⇒

mesOct(LOct (s , d), d ,NumNode) < mesOct (s , d ,NumNode)�, J
4
^��-1�i;14Jë1OCGYG/ô%23ó�D14n9�GI=Jë*GMó�4SDÀ>/9n9�GIOPD:2351ì+@PG�@C;14+D:2$(Ø4nOC4n5M@Á=JGgõI4nónøV�%>I9<;ÇGI514(G?ô
@C;14n= OC4SD:.E964nó}@C;E4JD123ó�@P>/5E9�4Iø6�i;E4(ëEOCGYG?ô�23óÁ>�;Y.1ì/4J96>Ió�4JóCë10A2A@�ú*4S96>/.Eó�4JG/ô%ô�.15E9�@C23G/5Eó
Min

>/5ED
mod

øªùa5 ü ê 9 %1öw@C;14+ë1OPGYG?ô%2Ló�D:4S9�G/=JëØGIóC4nDÇ2A5Å=JG/OP4(@C;E>?@Z2�%5ADA�9n>/óC4nónøØù�@
G/5103í OC4SKI.E2AOP4nó�2BA¿>ID1D:2A@C23G/5E>/0%0346=J=+>/ó(>?úØG/.:@¢ô�.15E9�@P2AGI5 =JG:D:.103GÀ235y>ID1D:2A@C23G/5 @PG¿@C;E4
03>?@C4nó�@�>?OP2A@C;1=J4�@P239J0323ú1OP>/OCí þ 24M ÿ�ø[� ò�G80346=J=+>/ó
>/OC4+>?0LóCG�OP4nKM.123OP4nDÇ@CG¿D:OP23õ/4 ü ê 9 %�@PG
@C;14�OC23ì/;M@¹96>/óC4%óCë1032t@Sø��i;E4�ë1OPGYG?ô12Ló!>/.:@CGI=+>g@C2L96>/0A03í}ë*4nO�ô�GIOC=J4nD
2A5¢0A4SóCó @C;E>?@,24APA¡óC4n96G/5EDEó
G/5Õ> : 4n5I@P2A.E= ù	/ 2Iö ïZ? 0 BIöV%/ð/ïÉ.¿N G?ô¹=J46=JG/OPíÂ>?5ED�OP.151512351ìJ.15ED146O 9 235Y.:ýªø

%P% -*øE7:9<;1=+>/0t@PB
>?5ED�F�ø*N�GIOCOP23G/514

� G$óC;1Ggò @C;*>g@Hô�.E5E9�@P2AGI5
ρOct

9�G/5*óV@P2t@P.:@C4SóH>Âõg>/0A2LDÕ2A5*óV@<>?5E964�G?ô¹@P;14�ìI46514nOC2L9�OPG/.:@C÷
2A51ìÕô�.E5E9�@P2AGI5pöpò�4+51464SDÀ@PGÕë1OCGgõI4(@C;E>?@
2t@
ë1OPG:D:.E964nóÁOPG/.:@P4nóÁòº;12L9<; óC>?@C2LóVô�íÇë1OC4SD:2L96>g@P4
ValidRoutep

!
¸ �@�U}V¯��S�ðòwv7ãO�j� � ¤ � � ¡ } �¥�5�4�j��}Vz|å�} Ï �B� ¬ v
∀M,Mlstp(M,NodeSetOct)
⇒ ∀m ∈l M, ∀r ∈l ρOct (OrgM(m),DestM(m)),ValidRoutep(r ,m,NodeSetOct)

�, J
4
^��-�N�í$2A5ED1.E9�@P2AGI5�GI5�@C;14�OPG/.:@P4�03465Eì?@C; ø
X!235E>/0A03í/öYô�.15*9�@C23G/5

RoutingOct

ô�G/030AGgò¡ó�@P;14�ì/4n5146OP239ÁóC2AìI5E>g@P.1OP4P!
è �Sé�z � � � }�zßx^][vb�\�5�4�j�V}�z|å�} Ï � � zF�_\ �Ï zF�5� � }�z

RoutingOct

RoutingOct(M,NodeSetOct) ,

Λ
m∈M

List(IdM(m),FrmM(m),List(ρOct (OrgM(m),DestM(m))))

HÇ4ÕóV@P2A030i51464SD @PGÇë1OPGgõ/4$@C;E>?@¢@P;12Ló�ô�.E5E9�@P2AGI5yë1OPG:D:.E964nó(>Àõg>?032LD @CO<>_õ/4n0�032LóV@Sø��i;E4
ë1OCGYG/ô!G?ôq@C;E4�ô�GI0A03Ggòº2351ì(@C;14nG/OP46= 2Ló�@COP2AõY2L>?0¢!
¸ �@�U}V¯��S� ó"v ¸ ¡ �t�²} �¥�5�4�j��}Vz|å�} Ï �B� ¬ v

∀M,Mlstp(M,NodeSetOct) ⇒ Vlstp(RoutingOct(M,NodeSetOct))

�!>/ú10A4 ð1ø Y óC;1Ggò¡ó�D:46@P>/2A0Ló%>/ú*GI.:@�@C;14 ü ê 9 %}=JG:D:46032A5Eì�>?5ED(ë1OPGYG?ôVø ü ê 9 %}23ó%OC.E5(GI5
> : 465M@P2A.1= ù	/ >?@72Iø ïZ? 0 BÁòº2A@C;+%/ð/ï�.¿N'.15*D:46O 9 2A5Y.:ýªø��i;14 8 9�@<>?ì/GI5Âó�ëØ4n962'#Ø96>g@P2AGI5
>?5ED¢ë1OPGMG/ô*>?OP4�OC4n03>?@C23õ/4603í
óC=J>/0A0Þö?>?5(23=(ëØG/OC@P>/5M@qëØG/235M@�ô�G/Oq@C;14º23512A@C2L>?0:;123ì/;(0346õ/4n01D:4nóC23ì/5
óV@P46ëpø1ùa5�@P;14Áë1OCGYG/ôVö1>J;M.Eì/4�>?=JG/.E5I@ºG/ô @C23=J4�23óHD:46õIG?@C4SDÂ@PG+>?OP2t@P;1=J4�@C2L9ÁOP4n>/óCG/5E2A51ì*ø

³ �/T z lnm ³ �/T z l6m �ªTVlglnm �¹[]k�^ Q?['·P^
mLrMWIsPbV[]lSWI` bV�I^<lnTV^Pk�` ´ `a^<s<lnWYX/`ÎµÝ�sPb�R6»SlnW ³ l?X/^�Q/^Cb � � < � `6�}U][tWI^<`

� ^<k�k
Rn`¹lnW mod � ��� < ¤ ���n�ÁU][]WM^<`
v lSr/bV[tWI» �'a �I� ∼ ` { � aS�S�}U][]WM^<`
�Øl6b�RnU { � x � < `6�S� ��¤ { �}U][]WM^<`¸ ��¹��=��u"v XE.15E9�@C23G/5EónöØ@C;14nG/OP46=+ó�>/5ED¿ëEOCGYG?ô�@P2A=J4¢ô�G/O}@C;E4(D:4�#E512A@C23G/5Å>?5EDÀõ_>/0A2LD1>?@C23G/5

G?ôq@C;14 8 9�@P>?ìIG/5

b 5Çå�âHèwÁ�ç1ÝYéVå%â g�âHæ Þ¡ç¡ã1ç¡äjodc åÄä_i
HÇ4�;E>_õ/4%ë1OC4Só�4n5M@C4nD�>HìI46514nOC2L9�=JG:D:460Mô�G/O¹9�GI=J=�.1512L96>?@C23G/5�>/OP9<;E2t@P4n9�@P.1OP4nónø6ù�@¹23ó ô�G/OP=+>?0A÷
2ABn4nDÕúYíÂô�.15*9�@C23G/5

GeNoC
ö1òº;12L9<;823ó�D:4�#*514nDÕúYíÂ@P;1OP464
ûI46í�96G/=JëØG/514n5I@<ó�!E2A5M@C4nO�ô¬>I9�4Só6ö

>�OCGI.:@C2351ì
>/0AìIG/OP2t@P;1=�>?5*D+>�óC9<;14SD:.1032A5Eì
ë*GI0A2L9�íIøD�i;14Hì/465E46OP239�=JG:D:460ØD:GY4nóÄ5EG?@�>IóCóC.1=J4

XqG/OP=+>?032ABn2A51ì 8 5 ê ;123ë ê GI=(=¢.1512L96>?@C23G/5Eó %PY
>?5Yí ëE>?OC@C2L9�.10L>?O(D:4�#*512t@P2AGI5 G/ôº@C;14Só�4Õ9�GI=(ëØG/5E465M@Pónø!ù�@JG/5E0Aí OP46032A4Só
G/5Ù>ÀóC4�@(G?ôHë1OPGYG?ô
G/ú1032AìM>g@P2AGI5Eó�î¬G/Oº9�GI5Eó�@CO<>?235I@<óPñ%>/óPó�G:9623>?@C4nD$òº2t@P;�4S>/9<;�9�G/=JëØG/514n5M@nø��i;14Á9�G/OPOP4n9�@P514nóPó�G?ô
GeNoC

235E9�03.ED:4Sói@C;E4�ë1OCGYG/ôp@C;E>?@¡=J4nóPóC>/ì/4nói>/OC4}462A@C;14nOº0AGMóV@ºGIO�OP4n>I9<;Â@P;14623O¡4�ý:ëØ4n9�@C4nD
D:4nó�@C235E>g@P2AGI5�òº2A@C;1GI.:@�=JGYD12'#*9n>g@P2AGI5�G?ôE@C;14n2AO�9�GI5M@C465M@Sø��i;E23óqë1OPGYG?ôE2Ló¹D:4nD:.*9�4nD�ô�OPG/= @C;E4
ë1OCGYG/ôØGIú10A23ìI>?@C23G/5EóqGI510AíIø 0 4n5E9�4Iö?@P;14¡ó�ëØ4n962'#Ø96>g@P2AGI5+>?5ED¢@C;E4¡õg>?0323D1>?@C23G/5(G?ôp>}ëE>?OC@C2L9�.E03>/O
9�G/=J=¢.1512L96>g@P2AGI5�>/OP9<;E2t@P4n9�@P.1OP4Á>/=JG/.15M@Pó�@PG+ì/23õ/4�>?5à�������¨�=���W�!D:4�#E512A@C23G/5Õ@PG(4S>/9<;89�GI=(÷
ë*GI51465M@�>/5ED(@CG¢ë1OPGgõ/4i@C;*>g@Ä@P;14nóC4�D:4�#E512A@C23G/5Eó�óP>g@C2Ló�ô�í�@P;14�96G/OPOC4Só�ëØG/5ED12A51ì�96G/5Eó�@CO<>?235M@Pónø.8G/OP46GgõI46OSö:4n>/9<;Ç9�G/=JëØG/514n5M@�2Ló�óC460AôÓ÷�96G/5M@P>/2A5E4nD8>?5*D¿96>/58ú*4Jó�ëØ4n962'#*4nD¿>/5ED8õg>?0323DE>g@C4SD
2A5Õ2Ló�GI03>?@C23G/5pø� G}õg>?0323D1>?@C4�G/.1O�>/ë1ë1OPGI>/9<; önò�4i;E>_õ/4�>?ë1ë103234nD¢2t@¹@CG�>�õg>?OP2A46@Ví�G?ôØ>/OP9<;E2t@P4n9�@P.1OP4nó @C;E>?@
9�G/5*óV@P2t@P.:@C4�>/ói=+>/5MíÂ96G/5E96OC46@C4}2A5*óV@<>?5E964nó�G?ôqG/.1Oi@P;146GIOCí6!:ó�GI=J4}96G/=J4}ô�OCGI=�2A5ED1.EóV@POC2L>?0
ó�í:ó�@C46=+ónöI0323û/4¡@P;14 ü .¿N ü úE.Eó%GIO%@P;14 8 9�@P>/ì/G/5+5E4�@Vò�G/OPûØöIG?@P;146O<ó%>/OC4�=(GIOC4�>/96>ID:46=J2L9
4�ý1>?=Jë1034nónö/032AûI4eTeV G/O�D:G/.1úE0A4fV 9<;E>?5E51460*OCGI.:@C2351ì
235$>�%/F =J4nóC;pöIëE>/9<ûI4�@�>/5ED+9�23OP96.12A@
ó�òº2A@P9<;12351ì(@C4S9<;1512LKM.14nóiGIOi@C;14�ú123ë1;E>Ió�4Á=+>?OPûÂë1OPG?@PG:9�G/0ªN�2A÷

φ
÷	. ø�i;14¢96.1OCOP465M@

GeNoC
D:4�#E512A@C23G/5¿2Ló}õ/46OPíÕ>?úEó�@CO<>/9�@}>?5*D8õ/4nOCí8óC2A=Jë1032'#*4nDªøp7Y.E9n9�4SóV÷

ó�23õ/4Iögë1OCGgõI465(9�G/OPOP4n9�@¹OP4�#E514SD(=(G:D:4n03ó�>/OC4i514n4nD:4SD(ú*46ô�G/OP4�OP4n>I9<;12351ìH@P;14º0346õ/4n01G?ôwD:4�@<>?2303ó
G?ô >?5+23=Jë10346=J465M@P>?@C23G/5$óCëØ4n9�2$#*9n>g@C23G/5 ø 8 .1O�ò�GIOCû¢23ó�9�.1OPOP465M@C03í�úØ462351ì�46ýY@C465*D:4nD+235+@Vò�G
D:2'(w46OP465M@�D:23OC4S9�@C23G/5*ó6ø ü @��iù^. ü ögG/.EO!OP4nóC4n>/OP9<;�235Yõ/G/03õ/4Sóª@P;14�>/ë1ë103239n>g@P2AGI5
G?ô

GeNoC
@CG

ò�GIOC=J;1GI0A4iOPG/.:@P2A51ì*ö/>?5*D�@P;14¡4n03>/ú*GIOP>?@C23G/5�G/ôp>ÁOC4�#E5146=J4n5I@Ä=J46@C;1G:D(@CG
D146OP2AõI4i@C;14¡96G/OC÷
OC4S9�@C5E4nóPó¡G?ô%>$ëE>?OC@C2L9�.E03>/O¡;E>?O<D:òi>?OP4�2A=Jë10346=J4n5I@<>g@P2AGI5pø*ùa5r?}46OP=J>/5Yí/ö1@P;14>/�46OP23óCG?ôÓ@�þ 2 ÿ
ë1OCGP)V4n9�@�>?23=Jó�>g@¢D:4nõ/4n0AGIë12A5Eì8=(46@C;1G:D1ó¢>?5EDÇ@PGMGI03ó
ô�G/O�@P;14ÂëØ46OPõg>/óC2AõI4+õ/46OP2$#*96>?@C23G/5ÅG?ô
9�G/=Jë1.1@C46O�óCí:óV@P46=+ó6øw�i;14nG/OP2A4SóH;*>_õ/4¢>/0AOP4n>ID:íÕú*4n465 D:46õI4603G/ëØ4nDÇ>?úØG/.:@Áë1OPGY964nóPó�GIOPó�þ ` ÿÞö
G/ëØ46O<>g@C2351ì ó�í:ó�@C4n=Jó�þ 3 ÿ�öÄ9�GI=(ëE2A0346O<ó�þ 2Sï ÿÞö�=J4n=(GIOC234nó�þ R ÿ�öÄ>?5EDyù)g 8 D146õY23964nó�þ 2BY ÿ�øGHÅ4
>?23= >g@ÂõI46OP2tô�íY2351ìÅ> 96G/=Jë1034�@C48D:2Ló�@COP2Aú1.1@C4nD'óCí:óV@P46= òº;14nOC4Õ4S>/9<;Ù51G:D:4Õòº2A030H9�GI5M@P>?235
4n>/9<; G/514�G?ô¡@P;14�>/ú*GgõI4$9�GI=Jë*GI51465M@Pó(>?5*DÛòº;14nOC4�51G:D:4nó(>?OP4�96G/51514S9�@P4nD @P;1OPG/.1ìI;Û>
@C23=(4
@COP2AìIì/46OP4nD$ú1.EóH2A58>¥Xq0A46ýj*¡>_í\°*>_õIG/OSø ü ë*4n5E9�230 >/5ED�ëE>?ëØ46O¡ëEOCGYG?ô¹G?ô�óC.E9<;8>+ó�í:ó�÷
@C46= >?03OC4S>/D:í+46ý:23ó�@PóÁþ Y ÿ�øjX1OPG/= @C;12Lóië1OPGMG/ôVö:ò�4�;*>_õ/4Áó�ûI4�@P9<;E4nD�>/D1D:2A@C23G/5*>?0p9�GI5Eó�@CO<>?235I@<ó
G/5 @C;E4�235M@C46OCô¬>/964nóÁ@PGÀ4n5Eó�.EOC4ÂëEOCGIë*4nO¢9�GI=J=�.1512L96>?@C23G/5 235 >¿OP4n>/0�@C23=J4�96G/5M@C46ýM@�þ %PA ÿÞø&¡0A@C23=J>?@C4n0AíIö

GeNoC
òº2A030púØ4�.EóC4nDÕ>/ói@P;14�235I@P46ìIOP>?@C23G/5�G?ôq@C;14
D:2$(w46OP465M@º@C;14nG/OP2A4Sói2A58>

ó�2351ì/034}ô�OP>/=J46ò�G/OPûØø

h èjiºâHå[ÄûÁÎo æ;k+iëo!â%ã
�i;14(>/.:@C;EG/O<óHò�G/.10LD8032AûI4
@PG$@P;E>?51û¿-Õ7M@POCG/@C;14nO7.8GYGIOC4Iö�.¿>?@�@Xj�>?.:ô�=+>/515À>?5*D²H >?OC÷
OC4n5 0 .E5I@�ô�G/O�õg>?03.E>?úE0A4}OC4n=+>?OPûYó�>?5EDÂ;14603ë:ô�.10p>ID:õY23964nó�OC4nìI>?O<D:2351ì ü ê 9 %:øSHÇ4Á>?OP4�>/03óCG
@C;E>/51ûMô�.10ª@CGkj�>?@C46030".8GIOC235:÷ ü 030AGIOCíJô�GIO¡ó�.1ìIì/4SóV@P2A51ì(23=(ëEOCGgõI46=J465M@Pó�@PGJ>(ë1OP46õY23G/.Eó�õI46OC÷
ó�23G/5�G?ôq@C;12LóiëE>/ë*4nOnø

l o[l�o äjo âHè6o@Ý
� z �gbabVj�m n�n�Ã�Ã�Ã z _^PTV[]`al6m3b z XI^ z{?zºÜHz:� k ¶ RSX z�� l?XI^<U oq�I^<s�~/[]WI»ÁbV�M^ �i�JÚ¹� �ªTVlnbVlgs<lnUª[]W Ü Ý � z �Ø^PsC�IWM[]s�RnU*TV^<j:lnTab�f:Z�WM[c�\S^PTV`a[cbÞd�lnm o¹R6k}�/TV[AX/»S^SfYoqlSk�jIrIbV^PT � Rn�:l6T�R6bVlnTadgfYQ/^PjIbV^<k��:^PT { �n�n� z
¤ z Q z�Ú ^Cdg^PT�f�� z<Ú�o �IkJf ��z ��^PTV~S^Sf ��z�Ü []UtU]^<�/T�RnWMXEf�� z�| WºXI^CT v []^�XI^<WEf�Q z�p WYR6jMjEfPh z<� ^<[]WI^<WI�
�MRns��*f?R6WYX ×'z qIz �ªR6rMU z �Øl�Ã�R6T�X/`qbV�M^ÄmLl6TVk
RnUY\S^PTV[cÆYs�R�bV[tlnW¢l6mØU]l�Ã¹^CT�`�d/`�bV^<k UtR<dg^PTV`![]W¢R6rI�
bVlnk�lnbV[]_^H`�d/`�bV^<k�` zi| Wsr
tS½�uwv�xEx_xyv�½IÑeÌCÒC½Y¼nÑÓÏ�zn½Y¼SÈ�{Ez6½'|�ÌCÒaÌC½:Ð�ÌXzn½}{Ez�~�ÎYÔ?ÑeÌCÒW��Ì)�VÏ%�n½��

%�` -*øE7:9<;1=+>/0t@PB
>?5ED�F�ø*N�GIOCOP23G/514

�^�R� v�ÏL½�{Ez�~�ÎYÔ?ÑeÌCÒ��J¼n½^uK�¹Ò�z�Ð�Ì)���)znÒ�����v�{/{
��r��
���A�'�fr��H���ÄÐPÑ�z
��ÌCÒ�r�������� � ¼6½}��z��PÌ)�
{
���f� � ���R�qÒ�z�Ð�ÌVÌ�unÏL½����Vf:jMRn»n^<`%¤/��`��?¤ { � z1|ÞË!Ë Ë f { �S�_� z

� z Q z?Ú ^Pd_^PT�fIo z�q RnsPlS�M[Óf?h z�p TVlnWM[]WM»/fgh z?� ^<[]WM^<W?�MRns��*f/RnWMX ×'z qIz �ªRnrIU z*| WI`�b�RnWgbV[tR6bV[]WM»¡Z�WI�
[]WgbV^PTVj/TV^PbV^�X u rMWIsPbV[]lSWMRnUpZ�WI[]bV`iRnWYX � ^<k�l6Tad�Q?d/`�bV^<k�m u rIWMsPbV[]lnWYRnUp� ^PTV[cÆYs�R�bV[]lSW$lnmqbV�I^
� �i� � z*| W�h z ��^P[t`�b�RnWYX Ë�z �*TVlnWMs<[Ófg^�X/[cbVlnTV`<f#{EznÒ�ÒVÌaÐPÑ#�¡¼nÒ�u��!¼nÒVÌ��HÌ)��Ï1�n½+¼n½^u � ÌCÒ�Ï �!Ð�¼��
ÑÓÏMzn½¡ �ÌCÑ<¢£z'u��¤�¥{
�+��¦§ �xX¨ ��t���f/_lSU]rMk�^ { ¥ x �Hlnm �
© { � f/jYRn»n^<`%�?��� x �?f �Rª ��« rI[tUtR?f | b�RnUcdgf
Ý�sCbVlS�:^PT { �S�S¤ z Q/j/TV[]WM»S^CTa�e� ^PTVUtRn» z

� zºv¡z Q zªÚ l�dg^CTÁR6WYX q Q?baTVl6bV�M^PT � lglnTV^ z �¬{Ez�~�ÎYÔ?Ñ¬¼nÑÓÏ�zn½ � z¥�nÏ�ÐX�¡¼n½^u
�¥z'z�­ z�� s�RSX/^<k�[]s
�ªTV^<`a`<f*�'aS¥n¥ zx/zi×ÙzMÚ �IbabVWM^CT zª| ` u l6TVk
RnU1� ^PTV[cÆYs�R�bV[tlnW Ú lnrMWMX�bVl v ^<k
Rn[]W¢R q rIWM[]lnT��ªR�TabVWM^PTÄl6m Q/[]k}rIUtR6�
bV[]lnW�® | W$h z1Ú lnTaTV[]lnWM^�R6WYX ×'z �ªRnrIUÓf*^<XI[cbVlnTV`<f/{EznÒ�ÒVÌaÐPÑ/�¡¼6Ò�u��!¼nÒaÌ¯�HÌ)��Ï1�n½8¼n½^u � ÌCÒ�Ï �E�
ÐV¼nÑÓÏMzn½� �ÌCÑ<¢£z'u��X�¥{
���+¦§ �x¤¨ ���A��fI_lSU]rIk�^i¤
` { �Álnm �J© { � f { �S�S� z!| W?\?[cbV^�X(Q?j:^�Rn~S^PT z

` zº|�z hºR6Ut[]WI»S^PT�f ��z1Ü []U]U]^<�IT�R6WYX1f1RnWMX ×Ùz q/z �ªR6rMU z Ý�W+bV�M^H� ^PTV[cÆYs�R�bV[tlnWÂlnm � ^<k�lnTad � R6WI�
R6»S^<k�^PW?b � ^<s��YRnWI[]`ak�` z¿| WÀh z Ú lnTaTV[]lnWM^+R6WYX ×'z qIz �ªRnrIU�f ^�X/[cbVlnTV`<fe{
�+��¦§ �x°r��
���nf
�_³ o�Q z Q?jITV[]WM»n^PT�f { �S�S� z

¥ zi×Ùz q/z hºR6UtUcdJRnWYX Ú%z �Øl�ÃÄU]^<` z �¹Ò�ÏL½YÐPÏ Î:ÈtÌ)�H¼n½^uX�qÒa¼_ÐPÑÓÏ�Ð�Ì)�±z�|Cv�½MÑeÌCÒaÐ¥zn½I½1ÌaÐPÑÓÏ�zn½ © ÌCÑM�_znÒ�­�� z
� l6TV»_R6WI� p Rnr/mLk
RnWIWJ�prM�IUt[]`a�I^PT�f { �S�6� z

a zH��z �iR�TV»_RnWIlIf ��z*Ü []UtU]^<�/T�RnWMXEfEh z*� ^<[]WI^<W?�YRns��*fER6WYX ×'z qIz �ªRnrMU z Ý�W$bV�I^
oqlnTaTV^<sCbVWM^<`a`
l6mpÝ�j:^PT�R�bV[]WM»}Q?d/`�bV^<k p ^CTVWM^<U]` zª| W q/zIÜ rIT�X�RnWMX¢� zM� ^<U]�YR6kJf?^�XI[cbVl6TV`<f_²G�E�¯� � �+r��
���nf
�_³ o�Q z Q?jITV[]WM»n^PT�f { �S�S� z

�<� z¡Ú%z ��^P�ITV^<k�[]s��YRn^PU�f uqz �!RSRnWMX/T�R6»S^PT�f ��z¯³ �MRnWI»If pÁz ��lglS`a`a^<WI`<f Ë�zHv [¶ jI~_^<k
R?f¡RnWMX�¡z}v
ă X/rMU]^<`as<r z hi^<RSXIU]lgs�~ �ªTV^<_^PW?bV[]lnW []W bV�M^y´¢bV�I^PTV^�R6U(jITVl6bVlgs<lSU z | W h zÁÚ lnTa�

TV[]lnWM^ÁR6WYX ×'z qIz �ªRnrIUÓf*^<XI[cbVlnTV`<f/{EznÒ�ÒVÌaÐPÑ/�¡¼6Ò�u��!¼nÒaÌ¯�HÌ)��Ï1�n½¿¼n½�u � ÌCÒ�Ï �qÐV¼nÑÓÏMzn½µ �ÌCÑ<¢£z'u��
�¥{
���+¦§ �x¤¨ ���)��fI_lnUtrIk�^i¤�` { �}l6m �J© { � fIjYR6»S^<`%¤n�_�'�g¤n�_¥?f { �n�_� z

�n� zfpÁz ��lglS`a`a^<WI`<f qIz hi[]^<U][]`a`a^<W*f R6WYX �¡zªv ă XIrMU]^<`asPr z ´¢bV�M^CTV^�RnU ³ ^PbÞÃqlnTV~�lSWÇoq�M[]jGmpoqlSWI�
sP^<jIbV`<f � TVs��M[cbV^<sPbVr/TV^<`<f:R6WYX | k�jMU]^<k�^<Wgb�R�bV[tlnWM` z v�xEx_x¶�HÌ)�VÏ%�n½�¼n½�uK²1Ì)�VÑ§z�|X{Ez�~�ÎYÔ?ÑeÌCÒ��Vf
{n{ ´ �Bµ)m �/�<���g� { �Sf*Q?^<jIbV^<k��:^PTa�ÞÝ�sPbVlS�:^CT { �n�_� z� {?z h znÜ ^PT^·<�:^PTV»�RnWMX ��znÚ TVl�d zM� l?XI^<U][]WM» � R�d_^PTV^�X¡hi[]`�baTV[t�IrIbV^�X}oqlSk�k�rMWM[]s�R�bV[]lSW}Q?d/`�bV^<k�` z
· znÒ)~Á¼SÈ^�C��ÎIÌaÐPÑM�±z�|¤{Ez�~�ÎYÔ?ÑÓÏL½��nf*�'` ´ ��µ)mt���Y�<¥/f { �n�_� z�<¤ zH��zpÜ []UtU]^<�/T�RnWMXEf � z | WÀXI^CT v []^�X/^<W*f R6WYX ×'z qIz �ªRnrIU z hi^�RnU][]WM»$ÃÄ[cbV� | nSÝ hi^P\/[]s<^P`Á[]W
bV�I^%oqlSWgbV^P£?b!lnm*�w^PTV\nRn`a[]_^�Q?d/`�bV^<k � ^PTV[cÆYs�R�bV[tlnW z1| W�r�tS½�ufv�x_xExsv�½MÑeÌCÒ�½:¼nÑÓÏ�z6½:¼SÈJ{Ezn½�|�ÌCÒ)�
ÌC½YÐ�Ì¯zn½¸{Ez�~�ÎYÔ?ÑeÌCÒf��Ì)�VÏ%�n½�� �^�R� vºÏL½s{Ez�~�ÎYÔ?ÑeÌCÒ)�}¼n½�u¤�¹Ò�z�Ð�Ì)���)znÒ��w�Mv�{/{
�dr������A�'��r��H�
��ÐPÑ�z
��ÌCÒWr��
����� � ¼n½¹��z��<Ì)��{
���W� � ���J�¹Ò�z�Ð�Ì�Ì�unÏ3½����Vf:jYR6»S^<`�¤S��a��g¤/� x?z1|�Ë Ë!Ë f { �S�S� z

�P� zfpÁz^p R6TV[]kJf �HzU³ »Sr/dg^<WEf:RnWMX$Q z hi^Cd zi� W | WgbV^PTVs<lSWIWM^<sCb � TVsC�I[]bV^PsPbVrITV^¡mLl6T ³ ^PbeÃ¹l6TV~/[]WI»
Qgd/`�bV^<k�`ÄÝ�W+oq�I[]j z v�xEx_x} +Ï�ÐPÒ�znfMjYR6»S^<`%¤ x �g�_�?fEQ?^<jIbV^<k��:^PTa�ÞÝ�sPbVlS�:^CT { �n� {gz

��� zH� R�bab p Rnr/mLk
R6WMW*fw�ªRnWMRn»S[]l6bV[t` � R6WMlSU][]lS`<fqRnWMX q Q?baTVl6bV�M^PT � lglnTV^ z �W{ � r}{Ez�~�ÎYÔ?ÑeÌCÒ
��Ï�ugÌ�u±¦ºÌa¼��)zn½MÏL½����
��½��¹ÎSÎYÒ�z�¼_Ð�¢ z�p U]rMUcÃq^PT � s<RSXI^Pk�[tsi�pTV^<`a`<f { �n�S� z

� x/z h zp� ^<[]WI^<W?�YRns��*f ×'z qIz �ªRnrIU�f R6WYX Ë�z �w^PbaTVl�\SR z �Øl�Ã¹R6T�XI`�bV�M^ u lnTVk
R6U¹�!^CTV[]ÆMs�R6bV[]lnWÀl6m
R¢o¹�¢oqlSk�jM[]U]^PT'mØoql?XI^Á��^<WM^CT�R6bV[]lSW�RnWYX | k�jMU]^<k�^<Wgb�R6bV[]lnW$oqlnTaTV^<sPbVWI^<`a` zH| WstSÒ�uwv�½MÑeÌCÒ)�
½Y¼nÑÓÏ�zn½Y¼SÈR{Ezn½'|�ÌCÒaÌC½:Ð�Ì¯zn½ � z�|CÑM�!¼nÒaÌfx¹½��nÏL½1ÌVÌCÒ�ÏL½���¼n½�u · znÒ�~�¼nÈ� �ÌCÑ<¢�z'u��X� � x · ºr��
���A�'�
��� » � ÌeÎYÑeÌ)~¤��ÌCÒWr��
�����#¼±z
�<ÈtÌC½�½���¾%ÌCÒ�~�¼n½I¾nf { �n�_� z

�'` zeq Q?baTVl6bV�M^PT � lglnTV^ zw�Ûu lnTVk
R6U � l?XI^PUYlnm � `�d/WMs��ITVlnWMlnrM`qoqlSk�k}rIWM[]s�R�bV[tlnWM`!RnWMX | bV`qZ�`a^
[]W � ^<sC�MRnWI[ts<RnU]Ucd}��^PTV[cm3d/[]WM»iR Ú []jM�MRn`a^ � R6TV~H�ªTVlnbVlgs<lnU z@· znÒ�~�¼nÈ����¬ÎIÌaÐPÑM��z�|C{Ez�~�ÎYÔ?ÑÓÏL½��nf
x ´ ��µ)m x �'��a?�Sfw��a�aS¤ z�<¥ zi×ÙzM�¡zMÜ rMWgb v¡z�p TVrM»�R6WYX q QgbaTVlnbV�I^PT � lglnTV^ zq� []WI^�R6T�RnWMX ³ lSWMU][]WM^<R6T � TV[cbV�M^Pk�^PbV[]si[]W
� o �Ø{?zp| W�h z ��^<[]`�b�RnWYX ËÄz �*TVlnWMs<[ÓfI^�XI[cbVlnTV`<fE{EznÒ�ÒVÌaÐPÑ_�º¼nÒ�u��q¼6ÒVÌf�HÌ)��Ï1�n½�¼6½�u � ÌCÒ�Ï �!Ð�¼��
ÑÓÏMzn½¡ �ÌCÑ<¢£z'u��¤�¥{
�+��¦§ �xX¨ ��t���f/_lSU]rMk�^ { ¥ x �Hlnm �
© { � f/jYRn»n^<`%�?��� x �?f �Rª ��« rI[tUtR?f | b�RnUcdgf
Ý�sCbVlS�:^PT { �S�S¤ z Q/j/TV[]WM»S^CTa�e� ^PTVUtRn» z

��a z¡�¡zYv l�dIs��MlnrYX/�/r/TadgfI� zE� [cbaT�R/fERnWMXÂQ z v¡z�p R6TaTV[z Z�`a[]WM» u l6TVk
RnUª�¹^<s��MWI[« rI^<`�bVl�h�^<�MrI»
bV�I^ �i�JÚ¹� Q?d/`�bV^<kÁ�¬lnWI�Þoq�M[]j Ú rM`¹�ªTVlnbVlgsPlSU zØ| W¡��Ì)�VÏ%�n½¡�%Ô?Ñ�z�~Á¼nÑÓÏ�zn½J¼n½�u�²:Ì)��ÑJxqÔ?Ò�zCÎIÌ
���§��²GxX¨ ��t���fMjMRn»n^<`�¥ { ¥'�?¥S¤n¤/f { �S�n¤ z

XqG/OP=+>?032ABn2A51ì 8 5 ê ;123ë ê GI=(=¢.1512L96>?@C23G/5Eó %Ið
{ � zeq/z Q?sC�Ik
RnUcb^· zÛ� u lnTVk
RnU � l?XI^PU�l6m � l�Ã¹^PT(QgdI`�bV^Pk � R<dg^PT zÛ| W · znÒ)~Á¼SÈ¿ �ÌCÑ<¢£z'u��JÏ3½

{Ez�~�ÎYÔ?ÑeÌCÒ)�M�%Ï�u_Ì¥uW�HÌ)�VÏ%�n½À� · s{
���¹¨ ��Á)��f?QIR6W q lS`a^nfIo � f_ZiQ � f ³ l6\S^<k}�:^PTÄ� { �V� xH{ �n� x?z
|ÞË!Ë Ë n � o ��z ´ �Øl�RnjIj:^�R6TJµ z{ � zeq/z Q?sC�Ik
RnUcb^· z �E½1Ì�|�znÒ�~�¼SÈ Ï<�P¼6ÑÓÏ�zn½§|�z6½:ÐPÑÓÏ�zn½I½1ÌPÈLÈtÌ§ugÌ)�ÄÐ¥z�~±~}Ô?½MÏÓÐ�¼6ÑÓÏ�zn½F����Ô?Ò�È]¼¹ÎYÔIÐ�Ì z � �Ih
bV�I^<`a[]`<f q lS`a^<jI� u lnrITV[]^PT¡Z�WI[]_^PTV`a[cbÞdgf*��TV^<WIlS�IUt^nf u T�R6WMs<^nf q R6W?rYR6Tad { �S� x/z
| W u TV^<WIsC� zE�
jMR6TabV[tRnU1baT�RnWI`aUtR6bV[]lSW+[]`%R�\SR6[tUtR6�MU]^¡rMj:lSW�TV^ « rM^<`�b�bVl�bV�M^�ÆITV`�b�R6rIbV�IlnT z

{n{?zeq/z Q/s��Mk
R6U]b^·�R6WYXÕh zpÚ lnTaTV[]lSWI^ z � ^PTV[cÆYs<R6bV[]lSW¿lnm�RÂ� R6T�Rnk�^CbV^PTV[¨·<^�X Ú rM` � TVs��M[cbV^<sPbVr/TV^
Z�`a[]WM» � o �w{?z¡| WÀ�¹Ò�z�ÐCÌVÌ�unÏL½����Xz�|HÑ<¢MÌ · znÔ?ÒCÑ<¢kv�½IÑeÌCÒC½Y¼nÑÓÏ�zn½Y¼SÈWÂÃznÒ�­���¢£zCÎ¸zn½ÕÑ<¢IÌ±�W{ � r
²G¢IÌ¥z6ÒVÌ)~Ä�¹Ò�z�ÅnÌCÒ�¼n½�u�ÏLÑM�+�qÎ_Î:È ÏÓÐ�¼6ÑÓÏ�zn½F�Vf � j/TV[tU { �n�S¤ z

{ ¤ zeq/z Q?sC�Ik
RnUcb^·�RnWYX�h z/Ú l6TaTV[tlnWM^ z � u rMWIsPbV[]lSWMRnU � jIjITVl_R6sC�
bVl�bV�I^ u l6TVk
RnUEQ/j:^Ps<[cÆYs�R�bV[tlnW
l6m ³ ^PbeÃ¹l6TV~/`¡lnWÀoq�M[]j z¢| W �¡z qIzwÜ rÕRnWMX �Hz pÁzª� R6TabV[]W*fØ^�XI[cbVlnTV`<f · znÒ�~�¼SÈ# �ÌCÑ<¢£z'u���Ï3½
{Ez�~�ÎYÔ?ÑeÌCÒ)�M�%Ï�u_Ì¥u���Ì)�VÏ%�n½Ã� · Æ{
�+�k¨ �AÇ���f6_lSU]rIk�^!¤n¤/� { lnm �J© { � f6jYR6»S^<`ª� { � xSx f � rM`�bV[]W*f
�E£Ef/ZiQ � f ³ l6\S^<k}�:^PT { �S�6� z Q/jITV[]WI»S^PTa�¬� ^PTVUtRn» z

{ � zeq/z Q/s��Mk
R6U]b^·pR6WYXih z�Ú lnTaTV[]lSWI^ zg� ��^PWM^PTV[]s ³ ^PbÞÃqlnTV~�lSWHoq�M[]j � l?XI^PU zS| W¡� z6� ^PUt�MRnkyRnWMX
q/zYÜ r/T�XEfI^�XI[cbVl6TV`<f¿²G¢MÌ�znÒaÌ)~È�qÒ�z�Å�ÏL½���ÏL½���Ï%��¢MÌCÒU�¹Ò�u_ÌCÒ � z¥�nÏ�ÐA�X��²G�_�¯� � ��¨ ���A��f:_lSU]rIk�^
¤ x �n¤Álnm �
© { � fMjMRn»S^P`�¤?�����g¤ { �?fEÝ�£?mLl6T�XEfIZ p f � rI»SrI`�b { �S�S� z Q?jITV[]WM»n^PTa�¬�!^CTVUAR6» z

{ � zeq/z Q?sC�Ik
RnUcb^·ºRnWMX¢h zMÚ l6TaTV[tlnWM^ z �Øl�Ã¹R6T�XI`�R u l6TVk
RnU*�¹�M^<l6Tad�lnm!Ý�W+oq�I[]jÂoqlSk�k�rMWM[]s�R��
bV[]lnWM`º[]W$bV�I^ � o �w{�� lS»n[]s zÁ| WÆ�qÒ�z�Ð�ÌVÌ�unÏL½����wz |}Ñ<¢MÌ � ÏtÍnÑ<¢¹v�½MÑeÌCÒ�½:¼nÑÓÏMzn½:¼SÈeÂ±znÒ�­���¢�zCÎ}z6½
Ñ<¢IÌ¿�W{ � r¡²G¢MÌ�znÒaÌ)~É�qÒ�z�ÅnÌCÒ�¼n½^u¡Ï3ÑM�_�¹ÎSÎ:È Ï�ÐV¼nÑÓÏ�zn½£�VfgQ/RnW q lS`a^Sfgo¹RnU][cmLlnTVWI[tR/fgZiQ � f � rM»SrI`�b
{ �S� x/z:� o ��z

{6x/z � z Q/jI[cT�Rn~?[]` z�Ú ^Pd_lSWYX���^PTV[cÆMs�R6bV[]lSW�m u l6TVk
RnU � ^CbV�Ml?XI`Ä[]W+hi^<`a[]»nW z!| W �¡zMÜ rJRnWMX �Hz pÁz
� R�TabV[]W*fn^�XI[cbVlnTV`<f · znÒ�~�¼SÈ� �ÌCÑ<¢£z'u���Ï3½K{Ez�~�ÎYÔ?ÑeÌCÒ)�M�%Ï�u_Ì¥uf��Ì)�VÏ%�n½¹� · s{
�+�k¨ �AÇ���fn_lSU]rIk�^
¤n¤/� { l6m �
© { � f � rI`�bV[tWEf��Ø^C£MR6`<fÄZºQ � f ³ l�_^<k}�:^CT { �S�6� z Q/j/TV[]WM»S^CTa�e� ^PTVUtRn» z | W?\/[cbV^�X
Q?j:^�Rn~S^PT z

Isolating Intrusions by Automatic Experiments

Stephan Neuhaus
Lehrstuhl f̈ur Softwaretechnik

Universiẗat des Saarlandes
Stephan.Neuhaus@acm.org

April 13, 2006

1 Introduction

The analysis of security incidents remains one of the most
taxing things a computer scientist can do. Why is there
no automated support for this task? We think this is so
because existing tools use an inadequate methodology.

Intrusion analysis aims at reconstructing the break-in
based on the current state of the system. To this end,
we analyze traces and then deduce what must have hap-
pened inside the system so that these traces appear the
way they do. For example, an analysis of the Linux Slap-
per worm could look like this: “Attackers with the IP ad-
dress 10.120.130.140 sent a specially crafted HTTP re-
quest to our web server, which contained a malformed
client key. This caused a buffer overflow and called a
shell. This shell then saved a uuencode-encoded copy
of the work source code, decoded and compiled it, and
started the resulting program under the name.bugtraq. As
soon as the program ran, it tried to contact other hosts i
the network.” (Example taken from [5].)

An investigator analyzing this intrusion will probably
first see the rogue.bugtraqprocess and will then try to
isolate those processes that were responsible for the at-
tack. This holds for processes that are still running (such
as the web server) and processes that have already termi-
nated (such as theuudecodeprocess).

The usual method is to begin with the violation of the
security policy (the.bugtraqprocess) and then work back-
wards using tools like The Coroner’s Toolkit [2] to the
root cause (the malformed HTTPS request). This deducti-
ve approach has a number of serious drawbacks:

Completeness.The traces may not be sufficient in order

to deduce the cause-effect chain reliably.

Minimality. Important traces are often buried in a large
number of irrelevant traces and need to be laborious-
ly extraced.

Correctness. Our proofs could base on wrong assumpti-
ons which may invalidate our deductions.

We have developed a tool called Malfor (short for
MALware FORensics) which avoids these drawbacks by
usingexperimentalmethods. Instead of interpreting tra-
ces and deducing a cause-effect chain backwards, Malfor
works experimentally: in a first phase, Malforcaptures
events (processes in pur case) as the system is running. As
soon as a break-in is detected, Malfor uses these events to
partially replay the system. By cleverly choosing which
events to repeat, we isolate those events that are reevant
for the break-in: if we repeat the system without process
X and if the break-in still occurs, processX cannot have
been relevant for the attack.

2 Capture and Replay

Malfor’s subsystem for capture and replay works by Sy-
stem Call Interposition. In this method, system calls like
fork, execve, read, getpidand so on are diverted to Mal-
for’s own routines. These execute the original routines and
upload the system calls’ parameters and results to a data-
base. In security research, this method has been used in
Systrace [6] in order to create on-the-fly security policies
for system calls.

1

INTERREG IIIC/e-Bird
Workshop "Trustworthy Software" 2006
http://drops.dagstuhl.de/opus/volltexte/2006/696

Malfor must take care of many details when replaying
system calls, because otherwise replay will not work. For
example, processes may have a different process ID du-
ring replay than it had during capturing. Still, the process
must see its original PID so that library calls that use the
PID (such asgethostbyname) still work as expected when
replayed.

Our method works by replaying captured processes in
ever different configurations. For this it is necessary that
Malfor be able to suppress a process’s execution. But on
one hand, you can’t force a parent processnot to call fork.
On the other hand, process creation must not simply fail
because this would be too strong a difference with respect
to the original run. Our solution is to create the child pro-
cess, but to terminate it again at the next syscall.

These measures are typical when one wants to repeat
only parts of a system.

3 Minimization

In order to find the responsible processes among all cap-
tured processes, we use Delta Debugging [3]. Delta De-
bugging is a technique that uses repeated experiments to
minimizeanyset of failure-inducing circumstances.

Delta debugging works like binary search: first, we try
with one half of all circumstances removed. If that repro-
duces the failure, we continue with this reduced set of cir-
cumstances. If not, however, we try by removing the other
half. If that doesn’t work either, we try the complements
ofour subsets. If that doesn’t work either, we split the ori-
ginal set into more than two parts and try again.

Zeller and others have shown that the final result con-
tains only circumstances that are relevant for the failure.
If there are initiallyn circumstances, delta debugging will
need at mostO(n2) tests to minimize them.

4 First Experiences

In order to test our prototype, we have witten a network
server that contains a security hole: once it receives a spe-
cially prepared request, it creates a file/tmp/pwnedwith
administrator privileges. In a simulated attack, we have
hidden one malicious request among twenty-nine others.

This run caused about 1,500 system calls, which we-
re executed and captured by the original system in about
6 seconds. This is a performance overhead of about 8%
with respect to the throughput without capturing. Captu-
ring takes place in a virtual machine in order to simplify
replay. Takting that into account as well, the overhead ri-
ses to 13% with respect to a dedicated machine. These
penalties compare favourably with other research [1] and
make Malfor suitable for production environments.

Malfor used about three minutes and 14 tests to isolate
all relevant processes (three of 32) [5]. Replay was slower
than capturing by a factor of about two. These numbers
emphasize Malfor’s suitability for production use.

5 Further Work

We first want to extend Malfor to a realistic example. We
have already prepared an attack on Apache which adds
another root account to the password file without opening
the password file for reading. This attack is constructed
especially to fool tools like BackTracker which analy-
ze attacks by constructing relationships between system
calls [1, 4]. This attack never opens the password file; yet
it is modified afterwards.

The next task is to extend Malfor to distributed systems.
Malfor is already designed to be used in such environ-
ments, but replaying needs to observe certain constraints
so that the consistency of the entire system is preserved.

6 Conclusion

We have introduced Malfor, a system that uses experimen-
tal methods to analyse intrusions automatically. It can be
used on production systems and is especially suitable for
the analysis of targeted attacks.

Literatur

[1] George W. Dunlap, Samuel T. King, Sukru Cinar,
Murtaza A. Basrai, and Peter M. Chen. ReVirt: Enab-
ling intrusion analysis through virtual-machine log-
ging and replay. InProceedings of the 5th Symposi-
um on Operating Systems Design and Implementati-

2

on, pages 211–224, New York, NY, USA, December
2002. ACM Press.

[2] Dan Farmer. Frequently asked questions about the co-
roner’s toolkit. http://www.fish.com/tct/
FAQ.html , January 2005.

[3] Ralf Hildebrandt and Andreas Zeller. Simplifying and
isolating failure-inducing input.IEEE Transactions
on Software Engineering, 26(2):183–200, February
2002.

[4] Samuel T. King and Peter M. Chen. Backtracking
intrusions. InProceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, pages
223–236, New York, NY, USA, 2003. ACM Press.

[5] Stephan Neuhaus and Andreas Zeller. Isolating in-
trusions by automatic experiments. InProceedings
of the 13th Annual Network and Distributed System
Security Symposium, pages 71–80, Reston, VA, USA,
February 2006. Internet Society, Internet Society.

[6] Niels Provos. Improving host security with system
call policies. InProceedings of the 12th Usenix Secu-
rity Symposium, pages 257–272, Berkeley, CA, USA,
August 2003. Usenix Association, Usenix Associati-
on.

3

Relating two standard notions of secrecy ?

Eugen Zălinescu, Véronique Cortier, and Michaël Rusinowitch

Loria UMR 7503 & INRIA Lorraine projet Cassis & CNRS, France

Abstract. Two styles of definitions are usually considered to express
that a security protocol preserves the confidentiality of a data s. Reach-
ability-based secrecy means that s should never be disclosed while equi-
valence-based secrecy states that two executions of a protocol with dis-
tinct instances for s should be indistinguishable to an attacker. Although
the second formulation ensures a higher level of security and is closer to
cryptographic notions of secrecy, decidability results and automatic tools
have mainly focused on the first definition so far.
This paper initiates a systematic investigation of situations where syn-
tactic secrecy entails strong secrecy. We show that in the passive case,
reachability-based secrecy actually implies equivalence-based secrecy for
signatures, symmetric and asymmetric encryption provided that the prim-
itives are probabilistic. For active adversaries in the case of symmetric
encryption, we provide sufficient (and rather tight) conditions on the
protocol for this implication to hold.

1 Introduction

Cryptographic protocols are small programs designed to ensure secure commu-
nications. Since they are widely distributed in critical systems, their security
is primordial. In particular, verification using formal methods attracted a lot of
attention during this last decade. A first difficulty is to formally express the secu-
rity properties that are expected. Even a basic property such as confidentiality
admits two different acceptable definitions namely reachability-based (syntac-
tic) secrecy and equivalence-based (strong) secrecy. Reachability-based secrecy
is quite appealing: it says that the secret is never accessible to the adversary.
For example, consider the following protocol where the agent A simply sends a
secret s to an agent B, encrypted with B’s public key.

A→ B : {s}pub(B)

An intruder cannot deduce s, thus s is syntactically secret. Although this no-
tion of secrecy may be sufficient in many scenarios, in others, stronger security
requirements are desirable. For instance consider a setting where s is a vote and
B behaves differently depending on its value. If the actions of B are observ-
able, s remains syntactically secret but an attacker can learn the values of the

? This work appeared as the INRIA research report RR-5908 (available at
http://www.inria.fr/rrrt/rr-5908.html).

INTERREG IIIC/e-Bird
Workshop "Trustworthy Software" 2006
http://drops.dagstuhl.de/opus/volltexte/2006/691

vote by watching B’s actions. The design of equivalence-based secrecy is tar-
geted at such scenarios and intuitively says that an adversary cannot observe
the difference when the value of the secret changes. This definition is essential to
express properties like confidentiality of a vote, of a password, or the anonymity
of participants to a protocol.

Although the second formulation ensures a higher level of security and is
closer to cryptographic notions of secrecy, so far decidability results and auto-
matic tools have mainly focused on the first definition. The syntactic secrecy
preservation problem is undecidable in general [12], it is co-NP-complete for a
bounded number of sessions [16], and several decidable classes have been iden-
tified in the case of an unbounded number of sessions [12, 9, 7, 17, 15]. These
results often come with automated tools, we mention for example ProVerif [5],
CAPSL [11], and Avispa [4]. To the best of our knowledge, the only tool capa-
ble of verifying this property is the resolution-based algorithm of ProVerif [6]
that has been extended to strong secrecy and only one decidability result is
available [13]. In this article, Hüttel proves decidable for a fragment of the spi-
calculus without recursion for framed bisimilarity, a related equivalence relation
introduced by Abadi and Gordon [2].

In light of the above discussion, it may seem that the two notions of secrecy
are separated by a sizable gap from both a conceptual but also from a practical
point of view. These two notions have counterparts in the cryptographic setting
(where messages are bitstrings and the adversary is any polynomial probabilistic
Turing machine). Intuitively, the syntactic secrecy notion can be translated into
a similar reachability-based secrecy notion and equivalence-based notion is close
to indistinguishability. A quite surprising result [10] states that cryptographic
syntactic secrecy actually implies indistinguishability in the cryptographic set-
ting. This result relies in particular on the fact that the encryption schemes
are probabilistic thus two encryptions of the same plaintext lead to different
ciphertexts.

Motivated by the result of [10] and the large number of available systems for
syntactic secrecy verification, we initiate in this paper a systematic investigation
of situations where syntactic secrecy entails strong secrecy. Surprisingly, this
happens in many interesting cases.

We offer results in both passive and active cases in the setting of the applied
pi calculus [1]. We first treat in Section 2 the case of passive adversaries. We
prove that syntactic secrecy is equivalent to strong secrecy. This holds for sig-
natures, symmetric and asymmetric encryption. It can be easily seen that the
two notions of secrecy are not equivalent in the case of deterministic encryption.
Indeed, the secret s cannot be deduced from the encrypted message {s}pub(B)

but if the encryption is deterministic, an intruder may try different values for
s and check whether the ciphertext he obtained using B’s public key is equal
to the one he receives. Thus for our result to hold, we require that encryption
is probabilistic. This is not a restriction since this is de facto the standard in
almost all cryptographic applications. Next, we consider the more challenging
case of active adversaries. We give sufficient conditions on the protocols for syn-

2

tactic secrecy to imply strong secrecy (Section 3). Intuitively, we require that
the conditional tests are not performed directly on the secret since we have seen
above that such tests provide information on the value of this secret. We again
exhibit several counter-examples to motivate the introduction of our conditions.
An important aspect of our result is that we do not make any assumption on
the number of sessions: we put no restriction on the use of replication.

The interest of our contribution is twofold. First, conceptually, it helps to
understand when the two definitions of secrecy are actually equivalent. Second,
we can transfer many existing results (and the armada of automatic tools) de-
veloped for syntactic secrecy. For instance, since the syntactic secrecy problem
is decidable for tagged protocols for an unbounded number of sessions [15]. By
translating the tagging assumption to the applied-pi calculus, we can derive a
first decidability result for strong secrecy for an unbounded number of sessions.
Other decidable fragments might be derived from [12] for bounded messages
(and nonces) and [3] for a bounded number of sessions.

2 Passive case

2.1 Syntax

Cryptographic primitives are represented by functional symbols. More specifi-
cally, we consider the signature Σ = {enc, dec, enca, deca, 〈〉, π1, π2, sign, check,
pub, priv}. T (Σ,X ,N) denotes the set of terms built over Σ extended by a set
of constants, the infinite set of names N and the infinite set of variables X . A
term is closed or ground if it does not contain any variable. The set of names
occurring in a term m is denoted by fn(m), the set of variables is denoted by
V(m). The positions in a term t are defined recursively as usual (i.e. as sequences
of positive integers), ε being the empty sequence. Pos(t) will denote the set of
positions of t and Posv(t) the set of positions of variables in t. We denote by t|p
the subterm of t at position p, by u[v]p the term obtained by replacing in u the
subterm at position p by v. For a term u, we denote by hu the function symbol,
name or variable at position ε in u. We denote by ≤st (resp.<st) the subterm
(resp. strict) order. We may simply say that a term v is in a term u if v is a sub-
term of u. If p = i1. · · · .in, where n ≥ 1, is a position then pr(p) = i1. · · · .in−1

is the parent position w.r.t. p. Denote by N∗
+ the set of sequences of positive

integers.
We equip the signature with an equational theory E:

π1(〈z1, z2〉) = z1
π2(〈z1, z2〉) = z2
dec(enc(z1, z2, z3), z2) = z1
deca(enca(z1,pub(z2), z3),priv(z2)) = z1
check(z1, sign(z1,priv(z2)),pub(z2)) = ok
retrieve(sign(z1, z2)) = z1

The function symbols π1, π2,dec,deca, check and retrieve are called destructors.
LetRE be the corresponding rewrite system (obtained by orienting the equations

3

from left to right). RE is convergent. The normal form of a term t w.r.t. RE is
denoted by t↓. Notice that E is also stable by substitution of names. As usual,
we write u → v if there exists θ, a position p in u and l → r ∈ RE such that
u|p = lθ and v = u[rθ]p.

The symbol 〈 , 〉 represents the pairing function and π1 and π2 are the as-
sociated projection functions. The term enc(m, k, r) represents the message m
encrypted with the key k. The third argument r reflects that the encryption
is probabilistic: two encryptions of the same messages under the same keys are
different. The symbol dec stands for decryption. The symbols enca and deca are
very similar but in an asymmetric setting, where pub(a) and priv(a) represent
respectively the public and private keys of an agent a. The term sign(m, k) repre-
sents the signature of message m with key k. check enables to verify the signature
and retrieve enables to retrieve the signed message from the signature.1

After the execution of a protocol, an attacker knows the messages sent on
the network and also in which order they were sent. Such message sequences
are organized as frames ϕ = νñ.σ, where σ = {m1/y1 , . . . ,

mk/yk
} is a ground

substitution and ñ is a finite set of names. We denote by dom(ϕ) = dom(σ) =
{y1, . . . , yk}. The variables yi enable us to refer to each message. The names
in ñ are said to be restricted. Intuitively, these names are a priori unknown
to the intruder. A term M is said public w.r.t. a frame νñ.σ (or simply ñ) if
fn(M) ∩ ñ = ∅. The set of restricted names ñ might be omitted when it is clear
from the context. We usually write νn instead of ν{n}, and the same for bigger
sets.

2.2 Deducibility

Given a frame ϕ that represents the history of messages sent during the execution
of a protocol, we define the deduction relation, denoted by ϕ ` M . Deducible
messages are messages that can be obtained from ϕ by applying functional sym-
bols and the equational theory E.

νñ.σ ` xσ x ∈ dom(σ)
νñ.σ ` s s ∈ N\ñ

νñ.σ ` t1 · · · νñ.σ ` tr
νñ.σ ` f(t1, . . . , tr)

νñ.σ ` t t =E t′

νñ.σ ` t′

Example 1. The terms k and 〈k, k′〉 are deducible from the frame νk, k′, r.{enc(k,k′,r)/x,
k′/y}.

A message is usually said secret if it is not deducible. By opposition to our
next notion of secrecy, we say that a term M is syntactically secret in ϕ if ϕ 6`M .

1 Signature schemes may disclose partial information on the signed message. To enforce
the intruder capabilities, we assume that messages can always be retrieved out of
the signature.

4

2.3 Static equivalence

Deducibility does not always suffice to express the abilities of an intruder.

Example 2. The set of deducible messages is the same for the frames ϕ1 =
νk,n0,n1,r0.
{enc(n0,k,r0)/x,

〈n0,n1〉/y,
k/z} and ϕ2 = νk,n0,n1,r1.{enc(n1,k,r1)/x,

〈n0,n1〉/y,
k/z}, while

an attacker is able to detect that the last message corresponds to distinct nonces.
In particular, the attacker is able to distinguish the two “worlds” represented by
ϕ1 and ϕ2.

We say that a frame ϕ = νñ.σ passes the test (M,N) where M,N are
two terms, denoted by (M = N)ϕ, if there exists a renaming of the restricted
names in ϕ such that (fn(M) ∪ fn(N)) ∩ ñ = ∅ and Mσ =E Nσ. Two frames
ϕ = νñ.σ and ϕ′ = νm̃.σ′ are statically equivalent, written ϕ ≈ ϕ′, if they
pass the same tests, that is dom(ϕ) = dom(ϕ′) and for all terms M,N such
that (V(M) ∪ V(N)) ⊆ dom(ϕ) and (fn(M) ∪ fn(N)) ∩ (ñ ∪ m̃) = ∅, we have
(M = N)ϕ iff (M = N)ϕ′.

Example 3. The frames ϕ1 and ϕ2 defined in Example 2 are not statically equiv-
alent since (dec(x, z) = π1(y))ϕ1 but (dec(x, z) 6= π1(y))ϕ2.

Let s be a free name of a frame ϕ = νñ.σ. We say that s is strongly secret
in ϕ if for every closed public terms M,M ′ w.r.t. ϕ, we have ϕ(M/s) ≈ ϕ(M ′

/s)
that is, the intruder cannot distinguish the frame instantiated by two terms of
its choice. For simplicity we may omit s and write ϕ(M) instead of ϕ(M/s).

2.4 Syntactic secrecy implies strong secrecy

Syntactic secrecy is usually weaker than strong secrecy! We first exhibit some
examples of frames that preserves syntactic secrecy but not strong secrecy. They
all rely on different properties.

Probabilistic encryption. The frame ψ1 = νs, k, r.{enc(s,k,r)/x,
enc(n,k,r)/y}

does not preserve the strong secrecy of s. Indeed, ψ1(n) 6≈ ψ1(n′) since (x =
y)ψ1(n) but (x 6= y)ψ1(n′). This would not happen if each encryption used a
distinct randomness, that is, if the encryption was probabilistic.

Key position. The frame ψ2 = νs, n.{enc(〈n,n′〉,s,r)/x} does not preserve the
strong secrecy of s. Indeed, ψ2(k) 6≈ ψ2(k′) since (π2(dec(x, k)) = n′)ψ2(k) but
(π2(dec(x, k)) 6= n)ψ2(k′). If s occurs in key position in some ciphertext, the
intruder may try to decrypt the ciphertext since s is replaced by public terms
and check for some redundancy. It may occur that the encrypted message does
not contain any verifiable part. In that case, the frame may preserve strong
secrecy. It is for example the case of the frame νn{enc(n,s,r)/x}. Such cases are
however quite rare in practice.

No destructors. The frame ψ3 = νs.{π1(s)/x} does not preserve the strong
secrecy of s simply because (x = k) is true for ψ3(〈k, k′〉) while not for ψ3(k).

5

Retrieve rule. The retrieve(sign(z1, z2)) = z1 may seem arbitrary since not
all signature schemes enable to get the signed message out of a signature. It is ac-
tually crucial for our result. For example, the frame ψ4 = νs.{sign(s,priv(a))/x,

pub(a)/y}
does not preserve the strong secrecy of s because (check(n, x, y) = ok) is true
for ψ4(n) but not for ψ4(n′).

In these four cases, the frames preserve the syntactic secrecy of s, that is
ψi 6` s, for 1 ≤ i ≤ 4.

This leads us to the following definition.

Definition 1. A frame ϕ = νñ.σ is well-formed w.r.t some name s if

1. Encryption is probabilistic, i.e. for any subterm enc(m, t, r) of φ, for any
term t′ ∈ φ and position p such that t′|p = r we have p = q.3 for some q and
t′|q = enc(m, t, r). The same condition holds for asymmetric encryption. In
addition, if s occurs in m at a position p′ such that no encryption appears
along the path from the root to p′ then r must be restricted, that is r ∈ ñ.

2. s is not part of a key, i.e. for all enc(m, t, r), enca(m′, t′, r′), sign(u, v),
pub(w), priv(w′) subterms of ϕ, s /∈ fn(t, t′, v, w,w′, n, n′).

3. ϕ does not contain destructor symbols.

Condition 1 requires that each innermost encryption above s contains a restricted
randomness. This is not a restriction since s is meant to be a secret value and such
encryptions have to be produced by honest agents and thus contain a restricted
randomness.

For well-formed frames, syntactic secrecy is actually equivalent to strong
secrecy.

Theorem 1. Let ϕ = νñ.σ be a well-formed frame w.r.t s ∈ ñ.

ϕ 0 s iff νñ\{s}.σ(M/s) ≈ νñ\{s}.σ(M ′
/s)

for all M,M ′ closed public terms w.r.t. ϕ.

Proof. We present the skeleton of the proof; all details can be found in Appendix
A. Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ. If ϕ ` s, this trivially
implies that s is not strongly secret. Indeed, there exists a public term M w.r.t.
ϕ such that Mσ =E s (this can be easily shown by induction on the deduction
system). Let n1, n2 be fresh names such that n1, n2 /∈ ñ and n1, n2 /∈ fn(ϕ). Since
Mσ(n1/s) =E n1 the frames νñ\{s}.σ(n1/s) and νñ\{s}.σ(n2/s) are distinguish-
able with the test (M = n1).

We assume now that ϕ 0 s. We first show that any syntactic equality satisfied
by the frame ϕ(M/s) is already satisfied by ϕ.

Lemma 1. Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ, u, v terms such
that V(u),V(v) ⊆ dom(ϕ) and M a closed term, u, v and M public w.r.t. ñ. If
ϕ 0 s, uσ(M/s) = vσ(M/s) implies uσ = vσ. Let t be a subterm of a term in σ
that does not contain s. If ϕ 0 s, t = vσ(M/s) implies t = vσ.

The key lemma is that any reduction that applies to a deducible term t where
s is replaced by some M , directly applies to t.

6

Lemma 2. Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ such that ϕ 0 s.
Let u be a term with V(u) ⊆ dom(ϕ) and M be a closed term in normal form,
u and M public w.r.t. ñ. If uσ(M/s) → v, for some term v , then there exists a
well-formed frame ϕ′ = νñ.σ′ w.r.t. s

– extending ϕ, that is xσ′ = xσ for all x ∈ dom(σ),
– preserving deducible terms: ϕ ` w iff ϕ′ ` w,
– and such that v = v′σ′(M/s) for some v′ public w.r.t. ñ.

This lemma allows us to conclude the proof of Theorem 1. Fix arbitrarily two
public closed terms M,M ′. We can assume w.l.o.g. that M and M ′ are in
normal form. Let u 6= v be two public terms such that V(u),V(v) ⊆ dom(ϕ)
and uσ(M/s) =E vσ(M/s). Then there are u1, . . . , uk and v1, . . . , vl such that
uσ(M/s)→u1→ . . .→uk, vσ(M/s)→v1→ . . .→vl, uk = uσ(M/s)↓, vl = vσ(M/s)↓
and uk = vl.

Applying repeatedly Lemma 2 we obtain that there exist public terms u′1, . . . , u
′
k

and v′1, . . . , v
′
l and well-formed frames ϕui = νñ.σui , for i ∈ {1, . . . , k} and

ϕvj = νñ.σvj , for j ∈ {1, . . . , l} (as in the lemma) such that ui = u′iσ
ui and

vj = v′jσ
vj .

We consider ϕ′ =νñ.σ′ where σ′ =σuk ∪ σvl . Since only subterms of ϕ have
been added to ϕ′, it is easy to verify that ϕ′ is still a well-formed frame and for
every term w, ϕ ` w iff ϕ′ ` w. In particular ϕ′ 0 s.

By construction we have that u′kσ
uk(M/s)=v′lσ

vl(M/s). Then, by Lemma 1,
we deduce that u′kσ

uk(s)=v′lσ
vl(s) that it uσ =E vσ. By stability of substitu-

tion of names, we have uσ(M ′
/s)=E vσ(M ′

/s). We deduce that νñ\{s}.σ(M/s) ≈
νñ\{s}.σ(M ′

/s).

3 Active case

To simplify the analyze of the active case, we restrict our attention to pairing and
symmetric encryption: the alphabetΣ is now reduced toΣ = {enc,dec, 〈〉, π1, π2}
and E is limited to the first three equations.

3.1 Modeling protocols within the applied pi calculus

The applied pi calculus [1] is a process algebra well-suited for modeling crypto-
graphic protocols, generalizing the spi-calculus [2]. We shortly describe its syntax
and semantics. This part is mostly borrowed from [1].

Processes, also called plain processes, are defined by the grammar:

P,Q,R := processes
0 null process P |Q parallel composition
!P replication νn.P name restriction
if M = N then P else Q conditional c(z).P message input
c〈M〉.P message output

7

where n is a name,M ,N are terms, and c is a name or a variable. The null process
0 does nothing. Parallel composition executes the two processes concurrently.
Replication !P creates unboundedly new instances of P . Name restriction νn.P
builds a new, private name n, binds it in P and then executes P . The conditional
if M = N then P else Q behaves like P or Q depending on the result of the
test M = N . If Q is the null process then we use the notation [M = N].P
instead. Finally, the process c(z).P inputs a message and executes P binding
the variable z to the received message, while the process c〈M〉.P outputs the
message M and then behaves like P . We may omit P if it is 0. In what follows,
we restrict our attention to the case where c is name since it is usually sufficient
to model cryptographic protocols.

Extended processes are defined by the grammar:

A,B := extended processes
P plain process A|B parallel composition
νn.A name restriction νx.A variable restriction
{M/x} active substitution

Active substitutions generalize let, in the sense that νx.({M/x}|P) corresponds to
let x = M in P , while unrestricted, {M/x} behaves like a permanent knowledge,
permitting to refer globally to M by means of x. We identify variable substitu-
tions {M1/x1 , . . . ,

Mk/xk
}, k ≥ 0 with extended processes {M1/x1}| . . . |{Mk/xk

}. In
particular the empty substitution is identified with the null process.

We denote by fv(A), bv(A), fn(A), and bn(A) the sets of free and bound
variables and free and bound names of A, respectively, defined inductively as
usual for the pi calculus’ constructs and using fv({M/x}) = fv(M) ∪ {x} and
fn({M/x}) = fn(M) for active substitutions. An extended process is closed if it
has no free variables except those in the domain of active substitutions.

Extended processes built up from the null process (using the given construc-
tions, that is, parallel composition, restriction and active substitutions) are called
frames2. To every extended process A we associate the frame ϕ(A) obtained by
replacing all embedded plain processes with 0.

An evaluation context is an extended process with a hole not under a repli-
cation, a conditional, an input or an output.

Structural equivalence (≡) is the smallest equivalence relation on extended
processes that is closed by α-conversion of names and variables, by application
of evaluation contexts and such that the standard structural rules for the null
process, parallel composition and restriction (such as associativity and commu-
tativity of |, commutativity and binding-operator-like behavior of ν) together
with the following ones hold.

νx.{M/x} ≡ 0 ALIAS

{M/x} |A ≡ {M/x} |A{M/x} SUBST

{M/x} ≡ {N/x} if M =E N REWRITE

2 We see later in this section why we use the same name as for the notion defined in
section 2.

8

If ñ represents the (possibly empty) set {n1, . . . , nl}, we abbreviate by νñ
the sequence νn1.νn2 . . . νnl. Every closed extended process A can be brought to
the form νñ.{M1/x1}| . . . |{Mk/xk

}|P by using structural equivalence, where P is
a plain closed process, k ≥ 0 and {ñ} ⊆ ∪i fn(Mi). Hence the two definitions of
frames are equivalent up to structural equivalence on closed extended processes.
To see this we apply rule SUBST until all terms are ground (this is assured
by the fact that the considered extended processes are closed and the active
substitutions are cycle-free). Also, another consequence is that if A ≡ B then
ϕ(A) ≡ ϕ(B).

Two semantics can be considered for this calculus, defined by structural
equivalence and by internal reduction and labeled reduction, respectively. These
semantics lead to observational equivalence (which is standard and not recalled
here) and labeled bisimilarity relations. The two bisimilarity relations coincide [1]
and we use here the latter since it permits to take implicitly into account the
observer, hence it has the advantage of relying on static equivalence rather than
quantification over contexts.

Internal reduction is the largest relation on extended processes closed by
structural equivalence and application of evaluation contexts such that:

c〈x〉.P | c(x).Q→ P | Q COMM

if M = M then P else Q→ P THEN

if M = N then P else Q→ Q ELSE

for any ground terms M and N such that M 6=E N

On the other hand, labeled reduction is defined by the following rules:

c(x).P
c(M)−→ P{M/x} IN c〈u〉.P c〈u〉−→ P OUT-ATOM

A
c〈u〉−→ A′

νu.A
νu.c〈u〉−→ A′

u 6= c
OPEN-ATOM

A
α−→ A′

νu.A
α−→ νu.A′

u does not
occur in α SCOPE

A
α−→ A′

A|B α−→ A′|B
(*)

PAR

A ≡ B B
α−→ B′ B′ ≡ A′

A
α−→ A′ STRUCT

where u is a metavariable that ranges over names and variables, and the condition
(*) of the rule PAR is bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅.

Definition 2. Labeled bisimilarity (≈l) is the largest symmetric relation R on
closed extended processes such that ARB implies:

1. ϕ(A) ≈ ϕ(B);
2. if A→ A′ then B →∗ B′ and A′RB′, for some B′;
3. if A α→ A′ and fv(α) ⊆ dom(ϕ(A)) and bn(α) ∩ fn(B) = ∅ then B →∗ α→→∗

B′ and A′RB′, for some B′.

We denote A ⇒ B if A → B or A α→ B. Also we use the notation νsϕ for
ν(ñ ∪ {s}).σ, where ϕ = νñ.σ.

9

Definition 3. A frame ϕ is valid w.r.t. a process P if there is A such that
P ⇒∗ A and ϕ ≡ ϕ(A).

Definition 4. Let P be a closed plain process without variables as channels and
s a free name of P , but not a channel name. We say that s is syntactically
secret in P if, for every valid frame ϕ w.r.t. P , s is not deducible from νsϕ. We
say that s is strongly secret if for any closed terms M,M ′ such that bn(P) ∩
(fn(M) ∪ fn(M ′)) = ∅, P (M/s) ≈l P (M ′

/s).

Let Mo(P) be the set of outputs of P , that is the set of terms m such that
c〈m〉 is a message output construct for some channel name c in P , and let Mt(P)
be the set of operands of tests of P , where a test is a couple M = N occurring
in a conditional and its operands are M and N . Let M(P) = Mo(P) ∪Mt(P)
be the set of messages of P . Examples are provided at the end of this section.

The following lemma intuitively states that any message contained in active
frame is an output instantiated by messages deduced from previous messages.

Lemma 3. Let P be a closed plain process, and A be a closed extended process
such that P ⇒∗ A. There are k ≥ 0, an extended process B = νñ.σk|PB, where
PB is some plain process, and θ a substitution public w.r.t. ñ such that: A ≡ B,
{ñ} ⊆ bn(P), for every side of a test or an output M of PB there is a message
M0 in P (a side of a test or an output respectively), such that M = M0θσk, and,
σi = σi−1 ∪ {miθiσi−1/yi}, for all 1 ≤ i ≤ k, where mi is an output in P , θi is a
substitution public w.r.t. ñ and σ0 is the empty substitution.

The proof is done by induction on the number of reductions in P ⇒∗ A.
Intuitively, B is obtained by applying the SUBST rule (from left to right) as most
as possible until there are no variables left in the plain process. Note that B is
unique up to the structural rules different from ALIAS, SUBST and REWRITE.
We say that ϕ(B) is the standard frame w.r.t. A.

As a running example we consider the Yahalom protocol:

A⇒ B : A,Na

B ⇒ S : B, {A,Na, Nb}Kbs

S ⇒ A : {B,Kab, Na, Nb}Kas , {A,Kab}Kbs

A⇒ B : {A,Kab}Kbs

In this protocol, two participants A and B wish to establish a shared key
Kab. The key is created by a trusted server S which shares the secret keys Kas

and Kbs with A and B respectively. The protocol is modeled by the following
process:

PY (kab)=νkas, kbs.(!PA)|(!PB)|(!νk.PS(k))|PS(kab)

where

PA = νna.c〈a, na〉.c(za).[b = ub].[na = una].c〈π2(za)〉
PB = c(zb).νnb, rb.c〈b, enc(〈π1(zb), 〈π2(zb), nb〉〉, kbs, rb)〉.c(z′b).[a = π1(dec(z′b, kbs))]
PS(x) = c(zs).νrs, r′s.c〈enc(〈π1(zs), 〈x, vn〉〉, kas, rs), enc(〈va, x〉, kbs, r

′
s)〉

10

and ub = π1(dec(π1(za), kas)) una = π1(π2(π2(dec(π1(za), kas))))
va = π1(dec(π2(zs), kbs)) vn = π2(dec(π2(zs), kbs))

For this protocol the set of outputs and operands of tests are respectively:

Mo(PY) = {〈a, na〉, za, π2(za), 〈b, enc(〈π1(zb), 〈π2(zb), nb〉〉, kbs, rb)〉, z′b,
enc(〈π1(zs), 〈x, vn〉〉, kas, rs), enc(〈va, x〉, kbs, r

′
s)}

and Mt(PY) = {b, ub, na, una , a, π1(dec(z′b, kbs))}.

3.2 Our hypotheses

In what follows, we assume s to be the secret. We restrict ourself to processes
with ground terms in key position. Indeed, if keys contained variables, they could
also contain the secret and lead to the same kind of attacks as in the passive
case. For example, let P1 = νk, r, r′.(c〈enc(s, k, r)〉 | c(z).c〈enc(a,dec(z, k), r′)〉).
The name s in P1 is syntactically secret but not strongly secret. Indeed,

P1 ≡ νk, r, r′.(νz.({enc(s,k,r)/z} | c〈z〉 | c(z).c〈enc(a,dec(z, k), r′)〉))
→ νk, r, r′.({enc(s,k,r)/z} | c〈enc(a, s, r′)〉) (COMM rule)

≡ νk, r, r′.(νz′.({enc(s,k,r)/z,
enc(a,s,r′)/z′} | c〈z′〉))

νz′.c〈z′〉−→ νk, r, r′.{enc(s,k,r)/z,
enc(a,s,r′)/z′},

and the resulting frame does not preserve the strong secrecy of s (see the frame
ψ2 of section 2.4).

Also, as in the passive case, destructors above the secret must be forbidden.

Indeed, in P2 = c〈π1(s)〉 ≡ νz.({π1(s)/z}|c〈z〉)
νz.c〈z〉−→ {π1(s)/z}, s is syntactically

secret but not strongly secret (see the frame ψ3 of Section 2.4).
Without loss of generality with respect to cryptographic protocols, we assume

that terms occurring in processes are in normal form and that no destructor
appears above constructors. Indeed, terms like π1(enc(m, k, r)) are usually not
used to specify protocols. We also assume that tests do not contain constructors.
Indeed a test [〈M1,M2〉 = N] can be rewritten as [M1 = N1].[M2 = N2] if N =
〈N1, N2〉, and [M1 = π1(N)].[M2 = π2(N)] if N does not contain constructors,
and will never hold otherwise. Similar rewriting applies for encryption, except
for the test [enc(M1,M2,M3) = N] if N does not contain constructors. It can
be rewritten in [dec(N,M2) = M1] but this is not equivalent. However since
the randomness of encryption is not known to the agent, explicit tests on the
randomness should not occur in general.

This leads us to consider the following class of processes. But first, we say
that an occurrence qenc of an encryption in a term t is an agent encryptions
w.r.t. a set of names ñ if t|qenc = enc(u, v, r) for some u, v, r and r ∈ ñ.

Definition 5. A process P is well-formed w.r.t. a name s if it is closed and if:

1. any occurrence of enc(m, k, r) in some term t ∈ M is an agent encryption
w.r.t. bn(P), and for any term t′ ∈ M and position p such that t′|p = r
there is a position q such that q.3 = p and t′|q = enc(m, k, r);

11

2. for every term enc(m, k, r) or dec(m, k) occurring in P , k is ground;
3. any left or right side of a test M ∈ Mt is a name, a constant or has the

form π1(dec(. . . πn(dec(πn+1(z), kn)) . . . , k1)), with n ≥ 0, where the πi are
words on {π1, π2} and z is a variable.

4. there are no destructors above constructors, nor above s.

Conditional tests should not test on s. For example, consider the following
process:

P3 = νk, r.(c〈enc(s, k, r)〉 | c(z).[dec(z, k) = a].c〈ok〉)

where a is a non restricted name. s in P3 is syntactically secret but not strongly
secret. Indeed, P3 → νk, r.({enc(s,k,r)/z} | [s = a].c〈ok〉). The process P3(a/s)
reduces further while P3(b/s) does not.

That is why we have to prevent hidden tests on s. Such tests may occur
nested in equality tests. For example, let

P4 = νk, r, r1, r2.(c〈enc(s, k, r)〉 | c〈enc(enc(a, k′, r2), k, r1)〉
| c(z).[dec(dec(z, k), k′) = a].c〈ok〉)

→ P ′
4 = νk, r, r1, r2.({enc(s,k,r)/z} | c〈enc(enc(a, k′, r2), k, r1)〉 | [dec(s, k′) = a].c〈ok〉)

Then P4(enc(a,k′,r′)/s) is not equivalent to P4(n/s), since the process P ′
4(

enc(a,k′,r′)/s)
emits the message ok while P ′

4(
n/s) does not. This relies on the fact that the de-

cryption dec(z, k) allows access to s in the test.
For the rest of the section we assume z is a new fixed variable.
To prevent hidden tests on the secret, we compute an over-approximation

of the ciphertexts that may contain the secret, by marking with a symbol x all
positions under which the secret may appear in clear.

We first introduce a function fep that extracts the least encryption over s and
“clean” the pairing function above s. Formally, we define the partial function

fep : T × N∗
+ ↪→ T × N∗

+

fep(u, p) = (v, q) where v and q are defined as follows: q ≤ p is the position (if
it exists) of the lowest encryption on the path p in u. If q does not exist or if
p is not a maximal position in u, then fep(u, p) =⊥. Otherwise, v is obtained
from u|q by replacing all arguments of pairs that are not on the path p with new
variables. More precisely, q is a sequence of the form i · i1 · · · ik. We introduce
two functions pair1 and pair2 defined as follows: pair1(M,N) = 〈M,N〉 and
pair2(M,N) = 〈N,M〉. Let v′ = u|q. v′ must be of the form enc(M1,M2,M3)
with Mi = pairi1(. . . (pairik

(a,Nik
), . . .), Ni1) for some constant or variable a and

some terms Nij (remember that q leads to the lowest encryption on the path
p). Then v is defined by v = enc(M ′

1,M
′
2,M

′
3) with M ′

j = Mj for j 6= i and
M ′

i = pairi1(. . . (pairik
(a, xk), . . .), x1), where the xj are fresh variables.

For example,

fep(enc(enc(〈〈a, b〉, c〉, k2, r2), k1, r1), 1.1.2) = (enc(〈z1.1, c〉, k2, r2), 1).

The function fe is the composition of the first projection with fep.

12

With the function fep, we can extract from the outputs of a protocol P the
set of ciphertexts where s appears in clear below the encryption.

E0(P) = {fe(m[x]p, p) | m ∈Mo(P) ∧ m|p = s}.

For example, E0(PY) = {enc(〈z1, 〈x, z1.2〉〉, kas), enc(〈z1, x〉, kbs)}, where PY is
the process corresponding to the Yahalom protocol defined in previous section.

However s may appear in other ciphertexts later on during the execution
of the protocol after decryptions and encryptions. Thus we also extract from
outputs the destructor parts (which may open encryptions). Namely, we define
the partial function

fdp : T × N∗
+ ↪→ T × N∗

+

fdp(u, p) = (v, q) where v and q are defined as follows: q ≤ p is the occurrence
of the highest destructor above p (if it exists). Let r ≤ p be the occurrence of
the lowest decryption above p (if it exists). Then v = (u[z]r.1)|q. If q or r do not
exist then fdp(u, p) =⊥.

For example, fdp(enc(π1(dec(π2(y), k1)), k2, r2), 1.1.1.1) = (π1(dec(z, k1)), 1)
The function fd is the composition of the first projection with fdp. By ap-

plying the function fd to messages of a well-formed process P we always obtain
terms d of the form d = d1(. . . dn) where di = πi(dec(z, ki)) with 1 ≤ i ≤
n, ki are ground terms and πi is a (possibly empty) sequence of projections
πj1(πj2(. . . (πjl

) . . .)).
With the function fd, we can extract from the outputs of a protocol P the

meaningful destructor part.

Do(P) = {fd(m, p) | m ∈Mo(P) ∧ p ∈ Posv(m)}

For example, Do(PY) = {π2(dec(z, kbs)), π1(dec(z, kbs))}.
We are now ready to mark (with x) all the positions where the secret might

be transmitted (thus tested). We also define inductively the sets Ei(P) as follows.
For each element e of Ei we can show that there is an unique term in normal
form denoted by e such that V(e) = {z} and e(e)↓ = x. For example, let e1 =
enc(〈z1, 〈x, z2〉〉, kas), then e1 = π1(π2(dec(z, kas))). We define

Ei(P) = {u | ∃e ∈ Ei(P), u ≤st e and ∃q ∈ Pos(u), hu|q = dec}
Ei+1(P) = {m′[x]q | ∃m ∈Mo(P), p ∈ Posv(m) s.t. fep(m, p) = (m′, p′),

fdp(m′, p′′) = (d, q), p = p′.p′′, and d1 ∈ E i(P)}

For example,

E0(PY) = {π1(π2(dec(z, kas))), π2(dec(z, kas)),dec(z, kas), π2(dec(z, kbs)),dec(z, kbs)}
E1(PY) = {enc(〈z1, 〈z1.2, x〉〉, kas)}
E1(PY) = {π2(π2(dec(z, kas))), π2(dec(z, kas)),dec(z, kas)}

and Ei(PY) = ∅ for i ≥ 2.
Fact The set E(P) = ∪i≥0Ei(P) is finite up-to renaming of the variables.

13

Proof. For every i ≥ 1, every term m ∈ Ei(P), Pos(m) is included in the (finite)
set of positions occurring in terms of M0.

We can now define an over-approximation of the set of tests that may be
applied over the secret.

Ms
t (P) = {M ∈Mt(P) | p ∈ Posv(M)

and d = fdp(M,p) 6=⊥ and ∃e ∈ E ,∃i, s.t.

di = πi(dec(z), k), e = enc(u, k) and x ∈ di(e)↓}

For example, Ms
t (PY) = {π1(π2(π2(dec(π1(za), kas))))}.

Definition 6. We say that a well-formed process P w.r.t. s does not test over
s if the following conditions are satisfied:

1. for all e ∈ E(P), for all d = d1(. . . dn) ∈ Do(P), if di = πi(dec(z), k) and
e = enc(u, k) and x ∈ di(e)↓ then i = 1 and e 6<st d1

2. if M = N or N = M is a test and M ∈Ms
t (P) then N is a restricted name.

Note that E(P) can be computed in polynomial time from P and that whether
P does not test over s is decidable. We show in the next section that the first
condition is sufficient to ensure that frames obtained from P are well-formed.
It ensures in particular that there are no destructors right above s. If some di

cancels some encryption in some e and x ∈ di(e)↓ then all its destructors should
reduce in the normal form computation (otherwise some destructors (namely
projections from di) remain above x). Also we have i = 1 since otherwise a di

may have consumed the lowest encryption above x, thus the other decryption
may block, and again there would be destructors left above x.

The second condition requires that whenever a side of a test M = N is
potentially dangerous (that is M or N ∈Ms

t (P)) then the other side should be
a restricted name.

3.3 Main result

We are now ready to prove that syntactic secrecy is actually equivalent to strong
secrecy for protocols that are well-formed and does not test over the secret.

Theorem 2. Let P be well-formed process w.r.t. a free name s, which is not a
channel name, such that P does not test over s. We have νsϕ 0 s for any valid
frame ϕ w.r.t. P if and only if P (M/s) ≈l P (M ′

/s), for all ground terms M,M ′

public w.r.t. bn(P).

Proof. Again, we only provide a sketch of the proof. Showing that strong secrecy
implies syntactic secrecy is simple so we concentrate here on the converse impli-
cation. Let P be well-formed process w.r.t. a nonce s with no test over s and
assume that P is syntactically secret w.r.t. s.

14

Let M,M ′ be to public terms w.r.t. bn(P). To prove that P (M/s) and P (M ′
/s)

are labeled bisimilar, we need to show that each move of P (M/s) can be matched
by P (M ′

/s) such that the corresponding frames are bisimilar (and conversely).
By hypothesis, P is syntactically secret w.r.t. s thus for any valid frame ϕ
w.r.t. P , we have νsϕ 0 s. In order to apply our previous result in the passive
setting (Theorem 1), we need to show that all the valid frames are well-formed.
However, frames may now contain destructors in particular if the adversary sends
messages that contain destructors. Thus we first need to extend our definition
of well-formedness for frames.

Definition 7. We say that a frame ϕ = νñ.σ is extended well-formed w.r.t. s
if for every occurrence qs of s in t↓, where t = xσ for some x ∈ dom(σ), there
exists an agent encryption w.r.t. ñ above s. Let qenc < qs the occurrence of the
lowest encryption. It must verify that {ht|q | qenc < q < qs} ⊆ {〈, 〉}.
This definition ensures in particular that there is no destructor directly above s.

Theorem 1 can easily be generalized to extended well-formed frames.

Proposition 1. Let ϕ = ν(ñ] {s}).σ be an extended well-formed frame w.r.t
s. ϕ 0 s iff νñ.σ(M/s) ≈ νñ.σ(M ′

/s) for all M,M ′ closed public terms w.r.t. ϕ.

The proof is obtained by adapting the proof of Theorem 1.
The first step of the proof of Theorem 2 is to show that any frame produced

by the protocol is a extended well-formed frame. We actually prove directly a
stronger result, crucial in the proof: the secret s always occurs under an honest
encryption and this subterm is an instance of a term in E .

Lemma 4. Let P be a well-formed process with no test over s and ϕ = νñ.σ be
a valid frame w.r.t. P such that νsϕ 0 s. Consider the corresponding standard
frame νñ.σ = νñ.{tj | 1 ≤ j ≤ k}. For every occurrence qs of s in tj↓, we have
fe(tj↓, qs) = e[w/x] for some e ∈ E and some term w. In addition νñ.σj↓ is an
extended well-formed frame w.r.t. s.

The lemma is proved by induction on j and relies deeply on the construction of
the El.

The second step of the proof consists in showing that any successful test in
the process P (M/s) is also successful in P thus in P (M ′

/s).

Lemma 5. Let P be a well-formed process with no test over s, ϕ = νñ.σ a valid
frame for P such that νsϕ 0 s and θ a public substitution. If T1 = T2 is a test
in P , then T1θσ(M/s) =E T2θσ(M/s) implies T1θσ =E T2θσ.

This lemma is proved by case analysis, depending on whether T1, T2 ∈ Ms
t and

whether s occurs or not in fn (T1θσ) and fn (T2θσ).
To prove that P (M/s) and P (M ′

/s) are labeled bisimilar, we introduce the
following relation R between extended processes defined as follows: ARB if
there is an extended process A0 and terms M,M ′ such that P ⇒∗ A0, A =
A0(M/s) and B = A0(M ′

/s).
Then we show that R satisfies the three points of the definition of labeled

bisimilarity using in particular Lemma 5. Hence we have also R ⊆ ≈l. Since we
have clearly that P (M/s)RP (M ′

/s), it follows that P (M/s) ≈l P (M ′
/s).

15

3.4 Examples

We have seen in Section 3.2 that PY is a well-formed process w.r.t. kab and does
not test over kab. Applying Theorem 2, if PY preserves the syntactic secrecy of
kab, we can deduce that the Yahalom protocol preserves the strong secrecy of
kab that is

PY (M/kab
) ≈l PY (M ′

/kab
)

for any public terms M,M ′ w.r.t. bn(PY). We did not formally prove that the
Yahalom protocol preserves the syntactic secrecy of kab but this was done with
several tools in slightly different settings (e.g.[8, 14]).

We have also verified that the Needham-Schroeder symmetric key protocol
and the Wide-Mouthed-Frog protocol are both well-formed process w.r.t. kab and
do not test over kab, where kab is the exchanged key. Again, the syntactic secrecy
of kab has been proved by several tools (e.g. [8]) in slightly different settings for
both protocols. Using Theorem 2, we can deduce that they both preserve the
strong secrecy of kab.

4 Conclusion

We have shown how syntactic secrecy actually implies strong secrecy in both
passive and active setting under some conditions, motivated by counterexamples.

We plan to further investigate the active case by considering in particular
other primitives like asymmetric encryption and signatures and trying to relax
our conditions for specific classes of protocols such as ping-pong protocols. We
hope to derive in that way new decidability results for strong secrecy, based on
the known ones for syntactic secrecy.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In 28th ACM Symposium on Principles of Programming Languages (POPL’01),
pages 104–115. ACM Press, January 2001.

2. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. In 4th ACM Conference on Computer and Communications Security
(CCS’97), pages 36–47. ACM Press, 1997.

3. R. Amadio and D. Lugiez. On the reachability problem in cryptographic protocols.
In 12th International Conference on Concurrency Theory (CONCUR’00), volume
1877 of LNCS, pages 380–394, 2000.

4. The AVISPA Project. http://www.avispa-project.org/.
5. B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In

Computer Security Foundations Workshop (CSFW’01), pages 82–96. IEEE Comp.
Soc. Press, 2001.

6. B. Blanchet. Automatic Proof of Strong Secrecy for Security Protocols. In IEEE
Symposium on Security and Privacy (SP’04), pages 86–100, 2004.

7. B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging
enforces termination. In Foundations of Software Science and Computation Struc-
tures (FoSSaCS’03), volume 2620 of LNCS, April 2003.

16

8. L. Bozga, Y. Lakhnech, and M. Périn. HERMES: An automatic tool for verifica-
tion of secrecy in security protocols. In 15th Int. Conference on Computer Aided
Verification (CAV’03), volume 2725 of LNCS, pages 219–222. Springer, 2003.

9. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-
order logic and application to cryptographic protocols. In International Conference
on Rewriting Techniques and Applications (RTA’2003), LNCS 2706, pages 148–164.
Springer-Verlag, 2003.

10. V. Cortier and B. Warinschi. Computationally Sound, Automated Proofs for Se-
curity Protocols. In European Symposium on Programming (ESOP’05), volume
3444 of LNCS, pages 157–171. Springer, April 2005.

11. G. Denker, J. Millen, and H. Rueß. The CAPSL Integrated Protocol Environment.
Technical Report SRI-CSL-2000-02, SRI International, Menlo Park, CA, 2000.

12. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded
security protocols. In Workshop on Formal Methods and Security Protocols, 1999.

13. H. Hüttel. Deciding framed bisimilarity. In INFINITY’02, August 2002.
14. L. C. Paulson. Relations between secrets: Two formal analyses of the Yahalom

protocol. Journal of Computer Security, 9(3):197–216, 2001.
15. R. Ramanujam and S.P.Suresh. Tagging makes secrecy decidable for unbounded

nonces as well. In 23rd Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’03), Mumbai, 2003.

16. M. Rusinowitch and M. Turuani. Protocol Insecurity with Finite Number of Ses-
sions and Composed Keys is NP-complete. Theoretical Computer Science, 299:451–
475, 2003.

17. K. N. Verma, H. Seidl, and Th. Schwentick. On the complexity of equational horn
clauses. In 22th International Conference on Automated Deduction (CADE 2005),
LNCS, pages 337–352. Springer-Verlag, 2005.

17

A Passive case

We prove here Lemmas 1 and 2 of Section 2.
We define Posnv(u) = {p ∈ Pos(u) | u|p /∈ V(u)} to be the set of non-variable

positions of u. We also define the partial function sf : N∗
+×N∗

+ ↪→ N∗
+, sf(p, q) = r

if p = q.r and sf(p, q) =⊥ otherwise.
We first start by an initial lemma that states that in a well-formed frame

w.r.t. s, either every occurrence of s is under some encryption or s is deducible.

Lemma 6. Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ and let p be an
occurrence of s in yσ(s) for some y ∈ dom(σ). If ϕ 0 s then there exists a
position q < p such that yσ(s)|q is an encryption, that is hyσ(s)|q ∈ {enc, enca};
In addition, s occur in the plaintext subterm of the encrypted term, that is q ·1 ≤
p.

Proof. Assume by contradiction that there is an occurrence of s such that there
is no encryption above s. Then, from Properties 2 and 3 of well-formed frames,
we have that there are only pairs and signatures as function symbols above s.
Hence s is deducible. Thus there exists a position q < p such that yσ(s)|q is an
encryption. By property 2 of well-formed frames, s must occur in the plain-text
part of the encryption that is q · 1 ≤ p.

We are now ready to prove Lemma 1.

Lemma 1. Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ, u, v terms such
that V(u),V(v) ⊆ dom(ϕ) and M a closed term, u, v and M public w.r.t. ñ. If
ϕ 0 s, uσ(M/s) = vσ(M/s) implies uσ = vσ. Let t be a subterm of a term in σ
that does not contain s. If ϕ 0 s, t = vσ(M/s) implies t = vσ.

Proof. Suppose that uσ(M/s) = vσ(M/s) and uσ(s) 6= vσ(s). Then there is an
occurrence p of s, say in uσ, such that vσ|p 6= s. Consider the variable y ∈
V(u) ⊆ dom(σ) and its occurrence py in u such that p = py · p′ for some p′.

By Lemma 6, there is an encryption position q in yσ(s) such that q · 1 ≤ p′.
We assume q to be the innermost encryption above s, that is q is maximal. Hence
by Property 1 of well-formed frames, the term at position q · 3 is a restricted
name. It results that py · q · 3 /∈ Posnv(v), since v is public. Thus there is a
variable y′ ∈ V(v) ⊆ dom(σ) at position py′ in v such that py′ ≤ py · q · 3. Let
m = yσ(s) and m′ = y′σ(s). Let q′ such that py ·q = py′ ·q′. Since m|q·3 = m′|q′·3,
we have, by the properties of probabilistic encryptions, that m|q = m′|q′ . Since
py · q = py′ · q′ this means in particular that uσ|p = vσ|p = s, which contradicts
the fact that vσ(s)|p 6= s .

Let t be a subterm of a term in σ that does not contain s. The proof that
t = vσ(M/s) implies t = vσ is done similarly.

We now prove key Lemma 2 of Section 2.

Lemma 2. Let ϕ = νñ.σ be a well-formed frame w.r.t. s ∈ ñ such that ϕ 0 s.
Let u be a term with V(u) ⊆ dom(ϕ) and M be a closed term in normal form,
u and M public w.r.t. ñ. If uσ(M/s) → v, for some term v , then there exists a
well-formed frame ϕ′ = νñ.σ′ w.r.t. s

18

– extending ϕ, that is xσ′ = xσ for all x ∈ dom(σ),
– preserving deducible terms: ϕ ` w iff ϕ′ ` w,
– and such that v = v′σ′(M/s) for some v′ public w.r.t. ñ.

Proof. Let u, v,M be public terms, M being closed and in normal form such
that uσ(M/s) → v, as in the statement of the lemma. Let l → r ∈ RE be the
rule that was applied in the above reduction and let p be the position at which
it was applied, i.e. uσ(M/s)|p = lθ.

This position p must be in uσ since M is in normal form. In addition, since
the head function symbol of l is a destructor, by Condition 3 of well-formed
frames, p must be in u.

So let t = u|p. We have tσ(M/s) = lθ.
Assume that there is a substitution θ0 such that tσ = lθ0. This will be proved

in Claim 1 below.
For our equational theory E, r is either a constant or a variable. If r is

a constant then we take v′ = u[r]p and σ′ = σ. It is easy to verify that the
conditions of Lemma 2 are satisfied in this case.

Suppose now that r is a variable z0. Then, consider the3 unique position q
of z0 in l. This position q is also in lθ0, that is, in tσ. So we can have that q is a
position in t, but not in tσ, or, that q is a position in tσ, but not in t (or t|p is
a variable). Hence we can have:

1. If q is a position in t, but not in tσ (that is, there is no y ∈ dom(ϕ) above
z0) then we consider v′ = u[t|q]p and σ′ = σ. In this case also, it is easy to
verify that the conditions of the Lemma 2 are satisfied.

2. If q is a position in tσ, but not in t (that is, there is some y ∈ dom(ϕ) above
z0). Then we consider v′ = u[y′]p and σ′ = σ∪{rθ0/y′}, where y′ /∈ dom(σ).
We have that tσ =E rθ0, so ϕ ` rθ0. We also have that v′ is public w.r.t. ϕ′.
We have v′σ′ = (u[y]p)σ′ = uσ′[yσ′]p = uσ[rθ0]p. Hence uσ → v′σ′.
From tσ = lθ0 and tσ(M/s) = lθ, we deduce that θ0[M/s] = θ, hence
rθ0[M/s] = rθ. Thus v′σ′(M/s) = uσ(M/s)[rθ]p = v.
Since there is some y ∈ dom(ϕ) above z0, we have that then rθ0 is a subterm
of ϕ. Since ϕ is well-formed, we deduce that rθ0 satisfies the conditions of
Definition 1. So ϕ′ is also well-formed.

Claim 1: Let us now prove that there exists θ0 such that tσ = lθ0. Otherwise
we should have one of the following cases:

1. there is a position in l which is not a position in tσ;
2. there is a variable z in l having at least two occurrences, say at positions
p1, p2, for which tσ|p1 6= tσ|p2 .

Let us examine in detail the two cases:

1. Consider a minimal position (w.r.t. the prefix order) in l which is not a
position in tσ. Then at the predecessor position an s occurs (since minimal

3 For our equational theory there is exactly one occurrence of z0 in l.

19

positions in l must be positions in tσ(M/s), but not in tσ). This position is
not ε (i.e. it does not correspond to the head of l) since otherwise M would
not be in normal form. Now, for all other cases, by examining all rules in
RE , we observe that at least one of Conditions 2 or 3 of Definition 1 (of
well-formed frames) is not satisfied, which contradicts the hypothesis that ϕ
is a well-formed frame.

2. Let t1 = tσ|p1 and t2 = tσ|p2 . We have t1 6= t2, but t1(M/s) = t2(M/s).
We can have the following cases, according to whether the positions p1 and
p2 are positions of t or not:
(a) If p1 and p2 are positions of t. Then we can define w1 = t|p1 and w2 = t|p2 .

We have w1σ 6= w2σ, but w1σ(M/s) = w2σ(M/s). Since w1 and w2 are
public, the disequality is contradicted by Lemma 1.

(b) If p1 is not a position of t. Let py be the position in t such that py < p1

and t|py = y for some y ∈ dom(σ).
– A special case is when the rule check(z1, sign(z1,priv(z2)),pub(z2)) =

ok is applied with z = z1.
Since the positions of z1 in l are 1 and 2 · 1, and py < p1 we have
that p1 = 2 · 1, p2 = 1 and py = 2 (py = ε implies that σ con-
tains a destructor symbol). Hence tσ|p1 = yσ|1. Using the equality
retrieve(sign(z1, z2)) = z1 we notice that yσ|1 is actually equal to
retrieve(yσ). Considering w1 = t|1 and w2 = retrieve(y), we have
w1σ(M/s) = w2σ(M/s). Since w1 and w2 are public, this implies by
Lemma 1 that w1σ = w2σ thus t1 = t2, a contradiction.

– Otherwise, by examining all the other cases and using the fact that
ϕ is well-formed, we verify that t′ = tσ|p1 is a subterm of σ that
does not contains s. Now either p2 is also not a position of t, then
symmetrically t|p2 does not contain s hence t1 = t1(M/s) = t2(M/s) =
t2, a contradiction. Or p2 is a position of t, then t|p2 is a public term,
and the disequality is contradicted by (the second part of) Lemma 1.

B Active Case

B.1 Proof of Lemma 3

Lemma 3. Let P be a closed plain process, and A be a closed extended process
such that P ⇒∗ A. There are k ≥ 0, an extended process B = νñ.σk|PB, where
PB is some plain process, and θ a substitution public w.r.t. ñ such that: A ≡ B,
{ñ} ⊆ bn(P), for every side of a test or an output M of PB there is a message
M0 in P (a side of a test or an output respectively, such that M = M0θσk, and,
σi = σi−1 ∪ {miθiσi−1/yi}, for all i ∈ {1, . . . , k}, where mi is an output in P , θi

is a substitution public w.r.t. ñ and σ0 is the empty substitution.

Proof. We provide an inductive and constructive proof. We reason by induction
on the number of reductions in P ⇒∗ A.

The base case is evident.

20

Assume that P ⇒l Al and that there are k, Bl and θ as in the statement
of the lemma. Suppose that Al ⇒ Al+1 and regard what kind of reduction rule
was used in this last step:

– If it is an internal reduction then, since static equivalence is closed by struc-
tural equivalence and by internal reduction (see Lemma 1 in [1]), it is suffi-
cient to consider as searched values the same as for Al.

– If it is a labeled reduction then we prove the following property: α 6= c〈x〉
(for any a and x) and there is an extended process Bl+1 = ϕ(Bl+1)|Pl+1

such that Bl+1 ≡ Al+1 and
• if α = νx.c〈x〉 then Pl+1 = Pl and ϕ(Bl+1) = νñ.σk+1, where σk+1 =
σk ∪ {Ml/x} and Ml is an output in Pl.

• if α = c(M) then ϕ(Bl+1) = ϕ(Bl) and for every message (a side of a
test or an output) Ml+1 in Pl+1 there is a message (a side of a test or
an output, respectively) Ml in Pl, such that Ml+1 = Mlθ

′σk, for some
substitution θ′ public w.r.t. νñ.

• if α = c〈n〉 or α = νn.c〈n〉 then Pl+1 = Pl, and ϕ(Bl+1) = ϕ(Bl) or
ϕ(Bl+1) = ν{ñ}\{n}.σk, respectively.

It is easy to see that this property is sufficient to prove the inductive step.
The property can be verified, by showing, using induction on the shape of
the derivation tree, that for any extended processes A′, A′′, B′ such that
A′ α→ A′′, A′ ≡ B′, B′ = νñ.σ|Q there is B′′ such that A′′ ≡ B′′ and
B′ = νñ′.σ′|Q′ where
• if α = c(M) then ñ′ = ñ, σ′ = σ and N ′′ = N ′{M/x} for each term N ′′

of B′′ where N ′ is the corresponding term in B′ and c(x) is an input in
B′;

• if α = νx.c〈x〉 then Q′ = Q, ñ′ = ñ, and σ′ = σ ∪ {M/x} where c〈M〉 is
an input in B′;

• if α = c〈x〉, α = c〈n〉 or α = νn.c〈n〉 then ñ′ = ñ for the first two cases,
and {ñ′} = {ñ}\{n} for the third one, σ′ = σ and Q′ = Q.

B.2 Passive case revisited

We have to generalize our result to extended well-formed frames.

Proposition 1. Let ϕ = ν(ñ] {s}).σ be an extended well-formed frame w.r.t
s. ϕ 0 s iff νñ.σ(M/s) ≈ νñ.σ(M ′

/s) for all M,M ′ closed public terms w.r.t. ϕ.

As for the proof of Theorem 1, we first proof some lemmas similar to Lemmas 1
and 2.

Lemma 7. Let ϕ = νñ.σ be an extended well-formed frame w.r.t. s ∈ ñ. If ϕ 0
s then for all public terms u, v,M w.r.t. ñ, M being ground, uσ(M/s) = vσ(M/s)
implies uσ = vσ.

Proof. Suppose that uσ(M/s) = vσ(M/s) and uσ 6= vσ. Then there is an occur-
rence p of s, suppose in uσ, such that vσ|p 6= s. Consider the variable y ∈ V(u) ⊆
dom(σ) and its occurrence py in u such that py ≤ p. Let p′ = sf(p, py).

21

Since ϕ is an extended well-formed frame, we have that there is an agent
encryption at occurrence q in yσ such that q ≤ p′. Hence the term at position q.3
is a restricted name. It results that q.3 /∈ Posv(v), since v is public. That is there
is variable y′ ∈ V(v) ⊆ dom(σ) with the occurrence py′ such that py′ ≤ py.q.3.
Let m = yσ and m′ = y′σ. Let q′ = sf(py.q, py′). Since m|q.3 = m′|q′.3, we have,
by unicity of the randomness in agent encryptions, that m|q = m′|q′ . This means
in particular that m|p′ = m′|p′′ , where p′′ = q′. sf(p′, q). But since m|p′ = s and
p = py′ .q

′. sf(p′, q), this contradicts the fact that vσ|p 6= s.

The following lemma is proved similarly.

Lemma 8. Let ϕ = νñ.σ be an extended well-formed frame w.r.t. s ∈ ñ such
that ϕ 0 s, u be a subterm of a term of σ such that σ ∪ {u/y} is still a well-
formed frame, and v be a public term w.r.t. ñ. Then, for all public ground term
M , u(M/s) = vσ(M/s) implies u = v.

The following lemma is similar to Lemma 2.

Lemma 9. Let ϕ = νñ.σ be an extended well-formed frame w.r.t. s ∈ ñ such
that ϕ 0 s and u,M public terms w.r.t. ñ, M being ground and in normal form.
If uσ(M/s) → v, then there exists an extended well-formed frame ϕ′ = νñ.σ′ such
that

– dom(σ) ⊆ dom(σ′), yσ′ = yσ,∀y ∈ dom(σ),
– for all term w, ϕ ` w iff ϕ′ ` w,
– and there exists a public term v′ w.r.t. ñ such that v = v′σ′.

Proof. Let u, v,M be terms such that uσ(M/s) → v, as in the statement of the
lemma. Let l → r ∈ RE be the rule that was applied in the above reduction
and p be the position at which it was applied, i.e. uσ(M/s)|p = lθ. Since M is in
normal form, p must be a position of uσ.

Assume that there is a substitution θ0 such that uσ|p = lθ0. This will be
proved later. Since ϕ = νñ.σ be an extended well-formed frame, we know there
is an agent encryption above s at position qenc < p such that there is only pairing
along the path between qenc and p. We deduce that p ∈ Posnv(u). So let t = u|p.
We have tσ(M/s) = lθ.

For our equational theory, r is a variable z0.
Consider the4 position q of z0 in l. The position q is also in lθ0, that is, in

tσ.

1. If q is a position in t but not in tσ (that is, there is no yi above z0) then
take v′ = u[t|q]p and σ′ = σ. It is easy to verify that the conditions of the
Lemma 9 are satisfied.

2. If q is a position in tσ, but not in t (that is, there is a yi above z0). Then
take v′ = u[y]p and σ′ = σ ∪ {rθ0/y}, where y /∈ dom(σ). We have that
tσ =E rθ0, so ϕ ` rθ0. We also have that v′ is public w.r.t. ϕ′.
We have v′σ′ = (u[y]p)σ′ = uσ′[yσ′]|p = uσ[rθ0]p. And hence uσ → v′σ′.

4 For our equational theory there is exactly one occurrence of z0 in l.

22

¿From tσ = lθ0 and tσ(M/s) = lθ, we deduce that θ0(M/s) = θ hence
rθ0(M/s) = rθ. Thus v′σ′(M/s) = uσ(M/s)[rθ]p = v.
Since there is a yi above z0, we have that then rθ0 is a subterm of ϕ. Since
ϕ is an extended well-formed frame and ϕ 0 s, we deduce that rθ0 verifies
the condition of well-formedness. Thus ϕ′ is an extended well-formed frame.

Let us now prove that there exists indeed a θ0 such that tσ = lθ0. Assume
by contradiction that it is not the case. At least one of the following cases must
occur:

1. there is a position in l which is not a position in tσ;
2. there is a variable z in l having at least two occurrences, say at positions
p1, p2 in l, for which tσ|p1 6= tσ|p2 .

Let us examine in detail the two cases:

1. This is in fact an impossible case. Indeed, ϕ is an extended well-formed frame
and ϕ 0 s, it must be the case that l = dec(enc(z0, z2, z3), z2) but since there
is at least one encryption above s, all positions of l are in tσ.

2. Again, it must be the case that l = dec(enc(z0, z2, z3), z2).
(a) Either both p1 and p2 are both positions in t. Then we can consider

w1 = t|p1 and w2 = t|p2 . We have w1σ 6= w2σ, but w1σ(M/s) = w2σ(M/s).
Since w1 and w2 are public, the inequality is contradicted by Lemma 7.

(b) Or p1, p2 /∈ Pos(t). Let py be the position in t such that py < p1 and
t|py = y for some y ∈ dom(σ(s)). applied We must have that p1 = 1.2,
p2 = 2 and py = 1. Hence tσ|p1 = yσ|2, that is, it is a subterm t|2 of
a term of σ, and tσ|p2 = t|2)σ. t|2 being a public term, we can apply
Lemma 8 and derive a contradiction.

The proof of Proposition 1 ends like the proof of Theorem 1.

B.3 Proof of the main result

Let u, v be two terms. Define Pos(u, v) = {p ∈ Pos(u) | u|p = v}.
We denote by u→q v the reduction u→ v such that u|q = lθ and v = u[rθ]q,

where q is a position in u, a rule l → r ∈ RE , and θ is a substitution. Consider
a position p in u. The function nfp1 computes the corresponding position in v
of the function symbol (or variable or name) at position p in u. Accordingly, the
function nfp computes the corresponding position in u↓. The function nfp−1 will
do the opposite: to a position in u↓ it associates the corresponding position in
u. We say that a function symbol at position p is consumed w.r.t. the reduction
u →q v if nfp1(u, p, q) is undefined. Similarly, we say that the same occurrence
is consumed w.r.t. the normal form u↓ if nfp(u, p) is undefined. We will say only
that an occurrence is consumed when it is clear from the context which definition
is used. Formally, we define the function nfp1 : T × N∗

+ × N∗
+ ↪→ N∗

+

nfp1(u, p, q) =
{
p′, if u→q v
⊥, otherwise,

23

where

p′ =

p, if p 6≥ q,
⊥, if p ≥ q ∧ p 6≥ q.qr,
q. sf(p, q.qr), if p ≥ q.qr,

where l→ r is the rule that was applied and qr is the position of r in l. Observe
that for the equational theory E there’s at most one rule that can be applied
and there’s exactly one occurrence of r in l. The function nfp: T × N∗

+ ↪→
N∗

+ is defined by nfp(u, p) = pk where u →q1 · · · →qk uk, uk = u↓, pi =
nfp1(u, pi−1, qi), for 1 ≤ i ≤ k and p0 = p. The definition is correct since RE is
convergent. We define nfp−1 : T × N∗

+ ↪→ N∗
+, nfp−1(u, p) = p′ iff nfp(u, p′) = p.

Lemma 4. Let P be a well-formed process with no test over s and ϕ = νñ.σ be
a valid frame w.r.t. P such that νsϕ 0 s. Consider the corresponding standard
frame νñ.σ = νñ.{tj | 1 ≤ j ≤ k}. For every occurrence qs of s in tj↓, we have
fe(tj↓, qs) = e[w/x] for some e ∈ E and some term w. In addition νñ.σj↓ is an
extended well-formed frame w.r.t. s.

Proof. We reason by induction on j.
Base case: j = 1. We have that t1 = m1θ1. The position qs in fact a position

inm1 s can’t appear in θ since s is restricted and θ is a public substitution. There
must an encryption above s in m1, since otherwise s would be deducible. Then
the result follows immed iately from the properties of well-formed processes and
the definition of E0 (take w = s).

Inductive step. Let ps = nfp−1(tj , qs). If ps is in mj then, as in the previous
paragraph, fe(tj↓,qs)[x/s] ∈ E0.

Let ps = nfp−1(tj , qs). If ps is in mj then, as in the previous paragraph,
fe(tj↓, qs)[x/s] ∈ E0.

If ps is in σj−1, then let z be the variable in mj at position say pz, where pz <
ps and let yj1 be the variable of zθj on the path to ps at position say py1 . We have
that j1 ≤ j− 1. Let p1

s = sf(ps, py1) and q1s = nfp(tj1 , p
1
s). By recursion hypothe-

sis, σj−1 is a well-formed frame and fe(tj1↓, q1s) = e[w/x] with e ∈ El, for some term
w and some l ≥ 0. It follows that q1enc = max{ q ∈ Pos(tj1↓) | q < qs ∧ h(tj1↓)|q = enc }
exists. Let p1

enc = nfp−1(tj1 , q
1
enc).

If py1 .p
1
enc is not consumed in tj↓ then it follows that nfp(tj , py1 .p

1
enc) is the

lowest encryption in tj↓ (since it corresponds to q1enc). It follows that fe(tj↓,qs) =
fe(tj1↓, q1s).

If py1 .p
1
enc is consumed in tj↓, consider the occurrence of dec in tj , say pdec,

that consumes it. Since p1
enc is not consumed in tj1↓ it follows that pdec is in

zθj or in mj , and all encryptions above p1
enc in tj1 are consumed in tj . If pdec is

in zθj then all encryptions above p1
enc in tj1 are consumed by decryptions that

are in zθj . This means that in (zθjσj−1)↓ there’s no encryption above s, and
in particular no agent encryption, which contradicts that σj−1 is a encryption
above extended well-formed frame. Hence pdec is in mj .

Let u, v, k, k′, n be terms such that dec(u, k) = tj |pdec and enc(v, k′, n) =
tj |py1 .p1

enc
. We have that k =E k′ since pdec consumes py1 .p

1
enc. Since pdec is from

24

the output mj and p1
enc is also from an output being an agent encryption we

have that k and k′ are in normal form, hence k = k′. We then have dec(u, k) →∗

dec(enc(v, k, n), k) →∗ v↓.
Let (d, p) = fd(m, pz) and consider di such that the decryption pdec is in di.

Since s is in tj↓ it follows that x is in di(e)↓. From the first condition of processes
that do not test over s we have that i = 1 and e 6<st d1. Since pdec consumes
py1 .p

1
enc, above pdec in d1 there are only projections, below enc in e there are

only pairs and e 6<st d1 it follows that d1 ≤st e. Hence d1 ∈ E l.
Suppose that there is no encryption above pdec in mj . Then since d1 is con-

sumed and above d1 in mj there are only pairs, it follows that s is deducible
from σj (tj that is). Thus there is at least one encryption above pdec in mj . Let
penc be the lowest decryption above pdec in mj . And let (m′, p′enc) = fep(mj , pz).
Then m′[x]p ∈ El+1.

Since penc is not consumed in tj↓ and in m′ all function symbols above p are
not destructors we have that fe(tj , ps) →∗ (m′[x]p)[x → d1(fe(enc(v, k, n), p′s))]
where p′s = sf(p1

s, p
1
enc). Hence fe(tj↓, qs) = (m′[x]p)[w

′
/x], where w′ = d1(fe(enc(v, k, n), p′s)↓.

That is we have the first part of the lemma.
In order to prove that σ↓ is a well-formed frame we show that m′[x]p and

w′ contain only pairs as function symbols, except for the head of m′[x]p which
is an encryption. We have that all function symbols, except the head in m′[x]p,
are pairs (it follows from the definition of m′). The term w′ is a subterm of
fe(enc(v↓,k, n), q′s) which contains only pairs as function symbols (except for the
head), since σj1 is well-formed frame.

Lemma 10. Let P be a well-formed process with no test over s, let ϕ = νñ.σ
a valid frame w.r.t. P such that ϕ 0 s, and T ∈ Mt(P) a side of a test. Let θ
a public substitution. If T /∈ Ms

t and s ∈ fn((Tθσ)↓) then (Tθσ)↓ = uσ′ where
σ′ is an extended well-formed frame as in Lemma 9 and u is some term (not
necessarily public).

Proof. Suppose that T /∈ Ms
t and s ∈ fn(Tθσ(s)↓). Hence T is not ground and

denote by z the variable of T and by pz its position. Consider an occurrence qs
of s in Tθσ(s)↓. Denote tz = zθσ(s)↓. We then have that s ∈ fn(tz).

Let ps = nfp−1(Tθσ(s), qs). Let yj be the variable of zθ on the path to
ps at position say py, with 1 ≤ j ≤ k (see Lemma 3). Applying Lemma 4 to
tj we obtain that fe(tj↓, qs) = e[w/x] with e ∈ El, for some term w and some
l ≥ 0. Consider the lowest encryption qenc in tj↓ above q′s, where q′s is the
corresponding positions of q′s in tj↓. If this encryption is consumed then it must
be consumed be a dec from T since otherwise s would be deducible. It follows
that there is 1 ≤ i ≤ k such that di = πi(dec(z, k)), where fd(T, pz) = d1(. . . dk)
and e = enc(u, k, r). Moreover x ∈ di(e)↓. Thus T ∈ Ms

t , but this contradicts
the supposition. Hence qenc is not consumed in Tθσ(s)↓. Then it is sufficient to
consider the position nfp−1(tj , qenc) (it is in some σj1) in tj in order to find the
required u and σ′.

25

Lemma 5. Let P be a well-formed process with no test over s, ϕ = νñ.σ a valid
frame for P such that νsϕ 0 s and θ a public substitution. If T1 = T2 is a test
in P , then T1θσ(M/s) =E T2θσ(M/s) implies T1θσ =E T2θσ.

Proof. We say a test T is in case A, B or C if

– there is no s in Tθσ(s)↓,
– there is s in Tθσ(s)↓, T /∈Ms

t , or
– there is s in Tθσ(s)↓, T ∈Ms

t , respectively.

Suppose that T1θσ(M/s)↓ = T2θσ(M/s)↓ and T1θσ(s)↓ 6= T2θσ(s)↓. We con-
sider all possible cases T1 and T2 could be in:

– AA. The supposition is clearly false.
– BA, BB. By Lemma 10 we have that (T1θσ(s))↓ = uσ′(s). Suppose there is

an occurrence of s in (T1θσ(s))↓ such that the term at the corresponding
position in (T2θσ(s))↓ is not s. There is an agent encryption enc(v, w, n)
above s in (T1θσ(s))↓. The name n in (T2θσ(s))↓ may come from σ(s),
from θ or from T2. But it cannot come from T2 (see the definition of well-
formed processes), it cannot come from θ since n is restricted and θ is public,
and it cannot come from σ since σ is well-formed (and hence encryption is
probabilistic).

– CA, CB, CC. Since T1 ∈Ms
t , condition 2 of processes that do not test over

s says that T2 is a restricted name. Thus T2 cannot be in cases B or C:
since s doesn’t appear in tests, T2 should be non ground. If T2 is in case A
then there is a contradiction since T2 should be a subterm of M but this is
impossible since M is public, while T2 is restricted.

Theorem 2. Let P be well-formed process w.r.t. a free name s, which is not a
channel name, such that P does not test over s. We have νsϕ 0 s for any valid
frame ϕ w.r.t. P if and only if P (M/s) ≈l P (M ′

/s), for all ground terms M,M ′

public w.r.t. bn(P).

Proof. Consider the relation R between extended processes defined as follows:
ARB if there is an extended process A0(s) such that P (s) ⇒∗ A0(s) and ground
terms M,M ′ public w.r.t. ν(ñ∪ {s}) such that A = A0(M/s) and B = A0(M ′

/s).
We show that R satisfies the three points of the definition of labeled bisimi-

larity. Suppose ARB, that is A0(M/s)RA0(M ′
/s) for some A0,M,M ′ as above.

In what follows we write X(t) for X(t/s), where X ranges over processes and
frames and t is M or M ′. We prove that the following questions have affirmative
answer:

1. ϕ(A0(M)) ≈ ϕ(A0(M ′))? We know that ϕ(A0(s)) is a valid frame (from
the definition of R), hence ϕ(A0(s)) 0 s (from the hypothesis). Let ϕ′(s) ≡
ϕ(A0(s)) having only ground and normalized terms. Then, by Lemma 4, we
have that ϕ′(s) is an extended well-formed frame. We can then use Propo-
sition 1 to obtain that ϕ(A0(M)) ≈ ϕ(A0(M ′)), since we have ϕ(A0(M)) =
ϕ(A0(s))(M) (and the same for M ′).

26

2. if A0(M) → A′ then A′ ≡ A′
0(M), A0(M ′) → A′

0(M
′) and A′

0(M)RA′
0(M

′),
for some A′

0? We distinguish two cases, according to whether the used rule
was the COMM rule or one of the THEN and ELSE rules:
– if the COMM rule was used then A0(M) ≡ C(M)[c〈z〉.Q(M)|c(z).R(M)],

where C is an evaluation context and A′ = C(M)[Q(M)|R(M)]. Then
A0(s) ≡ C(s)[c〈z〉.
Q(s)|c(z).R(s)]. Take A′

0(s) = C(s)[Q(s)|R(s)]. We have that P (s) ⇒∗

A′
0(s) and so, by definition of R, we have that A′

0(M)RA′
0(M

′).
– otherwise, A0(M) ≡ C(M)[if T ′(M) = T ′′(M) then Q(M) else R(M)].

Then A0(s) ≡ C(s)[if T ′(s) = T ′′(s) then Q(s) else R(s)]. From Lemma
3 we know that T ′(s) = T ′

0θσ(s) and T ′′(s) = T ′′
0 θσ(s), where T ′

0 =
T ′′

0 is a test in P and νñ.σ ≡ ϕ(A0(s)) is the standard frame w.r.t.
A0(s). Take A′

0(s) = C(s)[Q(s)] if T ′
0θσ(s) =E T ′′

0 θσ(s) and A′
0(s) =

C(s)[R(s)] otherwise. From Lemma 5 we have that T ′
0θσ(s) =E T ′′

0 θσ(s)
iff T ′

0θσ(M) =E T ′′
0 θσ(M). Hence A0(M) → A′

0(M), A0(M ′) → A′
0(M

′)
and A0(s) → A′

0(s). And we also have A′
0(M)RA′

0(M
′) from the defi-

nition of R.
3. if A0(M) α→ A′ and fv(α) ⊆ dom(ϕ(A0(M))) and bn(α) ∩ fn(A0(M ′)) = ∅

then A′ ≡ A′
0(M), A0(M ′) α→ A′

0(M
′) and A′

0(M)RA′
0(M

′), for some A′
0?

According to the form of α, we consider the following cases:
– α = c(T). Suppose A0(M) ≡ C(M)[c(z).Q(M)]. Then take A′

0(s) =
C(s)[Q(s)
{T/z}].

– α = c〈u〉. Suppose A0(M) ≡ C(M)[c〈u〉.Q(M)]. Then take A′
0(s) =

C(s)[Q(s)].

– α = νu.c〈u〉. Suppose A0(M) ≡ C(M)[νu.A1(M)], where A1(M)
c〈u〉−→

A′
1(M). Then take A′

0(s) = C(s)[A1(s)].

The above discussion proves thatR ⊆≈l. Since we have clearly that P (M/s)RP (M ′
/s),

it follows that P (M/s) ≈l P (M ′
/s).

C Examples

For sake of simplicity, we may omit the symbol 〈, 〉 for pairing. In that case, we
assume a right priority that is a, b, c = 〈〈a, b〉, c〉.

C.1 Needham-Schroeder symmetric key protocol

The protocol is described below:

A⇒ S : A,B,Na

S ⇒ A : {Na, B,Kab, {Kab, A}Kbs
}Kas

A⇒ B : {Kab, A}Kbs

Our target secret is Kab.

27

The corresponding process is:

PNS(kab) = νkas.νkbs.(!A)|(!c(zb))|(!νk.S(k))|S(kab)

where

A = νna.c〈a, b, na〉.c(za).[π1(dec(za, kas)) = na].
[π1(π2(dec(za, kas))) = b].c〈π2(π2(π2(dec(za, kas))))〉

S(x) = c(zs).νr, r′.c〈enc(〈π2(π2(zs)), π1(π2(zs)), kab,
enc(〈x, π1(zs)〉, kbs, r

′)〉, kas, r)〉

Note that other processes should be added to considered corrupted agents or
roles A,B and S talking to other agents but this would not really change the
following sets of messages.

The output messages are:

Mo =


a, b, na

π2(π2(π2(dec(za, kas))))
enc(〈π2(π2(zs)), π1(π2(zs)),
kab, enc(〈kab, π1(zs)〉, kbs, r

′)〉, kas, r)


The tests are: {

π1(dec(za, kas)) = na

π1(π2(dec(za, kas))) = b

}
We define max Ei = {e | e ∈ Ei} in order to increase readability, and since it

is easy to deduce Ei from max Ei.

Do = {π2(π2(π2(dec(z, kas))))}

E0 = {enc(〈z1, 〈z2, 〈x, z3〉〉〉, kas, r), enc(〈x, z4〉, kbs, r
′)}

max E0 = {π1(π2(π2(dec(z, kas)))), π1(dec(z, kbs))}

Do ∩ E0 = ∅

Mkab
t = ∅

We deduce that PNS is a well-formed process w.r.t. kab. Applying Theorem 2
and since the Needham-Schroeder symmetric key protocol preserves the syntactic
secrecy of kab, we deduce that the protocol preserves the strong secrecy of kab

that is

PNS(M/kab
) ≈l PNS(M ′

/kab
)

for any public terms M,M ′ w.r.t. bn(PNS).

28

C.2 Wide Mouthed Frog Protocol (modified)

The protocol is described below:

A⇒ B : Na

B ⇒ S : {Na, A,Kab}Kbs

S ⇒ A : {Na, B,Kab}Kas

Again, the target secret is Kab.
The corresponding process is:

PNS(kab) = νkas.νkbs.(!A)|(!S)|(!νk.B(k))|B(kab)

where

A = νna.c〈na〉.c(za).[π1(dec(za, kas)) = na]
B(x) = c(zb).νr.c〈enc(〈zb, a, x〉, kbs, r)〉

S = c(zs).[π1(π2(dec(zs, kbs))) = a].
νr′.c〈enc(〈π1(dec(zs, kbs)), b, π2(π2(dec(zs, kbs)))〉, kas, r

′)〉

Note that other processes should be added to considered corrupted agents or
roles A,B and S talking to other agents but this would not really change the
following sets of messages.

The output messages are:

Mo =


na

enc(〈zb, a, kab〉, kbs, r)
enc(〈π1(dec(zs, kbs)), b,
π2(π2(dec(zs, kbs)))〉, kas, r

′)


The tests are: {

π1(dec(za, kas)) = na

π1(π2(dec(zs, kbs))) = a

}
Do = {π1(dec(z, kbs)), π2(π2(dec(z, kbs)))}

E0 = {enc(〈z1, 〈z2, x〉, kbs, r)〉}

max E0 = {π2(π2(dec(z, kbs)))}

E1 = {enc(〈z1, 〈z2, x〉, kas, r)〉}

max E1 = {π2(π2(dec(z, kas)))}

Do ∩ E1 = ∅

Mkab
t = ∅

We obtain similarly the same conclusion as for the previous protocol.

29

SANA -

Security Analysis in Internet Traffic through

Artificial Immune Systems

Michael Hilker1 and Christoph Schommer2

1 University of Luxembourg, Campus Kirchberg
1359, Luxembourg, 6, Rue Coudenhove-Kalergi, Luxembourg

michael.hilker@uni.lu
2 University of Luxembourg, Campus Kirchberg

1359, Luxembourg, 6, Rue Coudenhove-Kalergi, Luxembourg
christoph.schommer@uni.lu

Abstract. The Attacks done by Viruses, Worms, Hackers, etc. are a
Network Security-Problem in many Organisations. Current Intrusion De-
tection Systems have significant Disadvantages, e.g. the need of plenty of
Computational Power or the Local Installation. Therefore, we introduce
a novel Framework for Network Security which is called SANA. SANA
contains an artificial Immune System with artificial Cells which perform
certain Tasks in order to to support existing systems to better secure
the Network against Intrusions. The Advantages of SANA are that it is
efficient, adaptive, autonomous, and massively-distributed. In this Arti-
cle, we describe the Architecture of the artificial Immune System and the
Functionality of the Components. We explain briefly the Implementation
and discuss Results.

Keywords. Artificial Immune Systems, Network Security, Intrusion De-
tection, Artificial Cell Communication, Biological-Inspired Computing,
Complex Adaptive Systems

1 Introduction

Companies, Universities, and other Organisations use connected Computers,
Servers, etc. for Working, Storing of important Data, and Communication. These
Networks are an Aim for Attackers in order to breakdown the Network Service
or to gain internal and secret Information.

These Attacks are Intrusions which are e.g. Worms, Viruses, Hacker-Attacks.
Network Administrators try to secure the Network against these Intrusions using
Intrusion Detection Systems (IDS). The Network Intrusion Detection Systems
(NIDS) are a local System which is installed in one important Node and which
checks all Packets routed over this Node, e.g. SNORT [1] or [2,3,4,5,6]. Host-
based Intrusion Detection Systems (HIDS) are installed on each Node and check
each Packet which is routed over this Node [7,8,9]. Furthermore, there are ap-
proaches of distributed Intrusion Detection Systems (D-IDS) which install IDS
on all machines and connect these; one example is SNORTNET [10].

INTERREG IIIC/e-Bird
Workshop "Trustworthy Software" 2006
http://drops.dagstuhl.de/opus/volltexte/2006/694

2 M. Hilker, C. Schommer

Unfortunately, these IDS have several Disadvantages as for example the
plenty of Computational Power, the need of Administration during Execution,
and local Installation. Additionally, the Intrusions are getting both more and
more complex and intelligent, so that the IDS have lots of Problems to identify
the Intrusions, e.g. Camouflage of Attacks. Thus, novel Approaches for Network
Security are needed which should provide the following features:

– Distributed: all Nodes should be secured and there should not be any central
Center

– Autonomous: the System and all Components should work autonomously;
hereby, the number of false-positives should be low

– Adaptive: the System should have the ability to identify or react to modified
or even novel Attacks

– Cooperative: The Computational Power should be shared over the whole
Network

In SANA, we introduce an artificial Immune System which provides the fea-
tures explained above. In the next Section, we discuss existing artificial Immune
Systems for the Application of Network Security.

2 Current Situation

For the explanation of the different existing artificial Immune Systems for Net-
work Security, we will introduce briefly the Paradigm of artificial Immune Sys-
tems [11]:

An artificial Immune System tries to simulate the human Immune System
which secures the Human Body against Pathogens [12]. An artificial Immune Sys-
tem is a massively distributed System and Complex Adaptive System with lots
of components. In the human Immune System, these Components are e.g. Cells,
Lymph-Nodes, Bone Marrow. All of these Components work autonomously, ef-
ficiently and are highly specialised. These Components cooperate using the Cell
Communication with e.g. Cytokines and Hormones. Additionally, there are lots
of cellular and immunological Processes which mesh in the Protection of the
Human Body. The artificial Immune Systems try to model these. Unfortunately,
the human Immune System and the Modelling of it is so complex and partly not
understood. Therefore, artificial Immune Systems can only model a part of the
human Immune System.

There are several artificial Immune Systems for Network Security. We discuss
some interesting Approaches of artificial Immune Systems for Network Security:

Spafford and Zamboni introduce in [13] a System for Intrusion Detection
using autonomous Agents. These Agents cooperate with Transceivers and do
not move through the Network. Hofmeyr and Forrester [14,15,16] introduce an
artificial Immune System for Network Security (named ARTIS/LISYS). The
AIS models the Lifecycle of T- and B-Cells with positive and negative Selec-
tion. The non-mobile Detectors check a Triple of Source-IP, Destination-IP and
Destination-Port and evaluate if a Packet is malicious or not. Additionally, in

SANA - Security Analysis in Internet Traffic 3

this Broadcast-Network, all Detectors see all Packets and react to it. In [17] an
artificial Immune System as a Multi-Agent System is introduced for Intrusion
Detection. The system uses mobile Agents which cooperate with a centralised
Database containing the Attack-Information.

In the next Section we introduce the Architecture of the artificial Immune
System SANA. In contrast to the existing artificial Immune Systems, SANA
uses autonomous, fully-mobile, and lightweighted artificial Cells; additionally,
SANA does not have any centralised System. Furthermore, SANA is not a closed
Framework; it is possible to use existing Network Security Approaches in SANA.
Thereafter, we take a closer look on the different Components of the artificial
Immune System.

3 SANA - Architecture

The artificial Immune System of SANA secures the whole Network against In-
trusions and provides the Features explained above. In SANA, we simulate a
packet-oriented Network using a Network Simulator (see Section 3.1). SANA is
a collection of non-standard Approaches for Network Security and we test if they
increase the Performance of existing Network Security Systems. An Adversarial
injects Packets with and without Attacks in order to stress the Network and the
artificial Immune System as well as to simulate Attacks (Section 3.2).

The artificial Immune System uses several Components for the Security of
the Network. All of these Components work autonomously and there is no Center
which is required by any Component. The main Components are artificial Cells,
Packet-Filters, IDS, etc. Packet-Filters are a local System that check the Header
of each Packet. IDS are local, non-mobile Systems which check Packets and ob-
serve the Network Traffic in order to secure the Node where the IDS is installed.
Artificial Cells (Section 3.3) are autonomous, fully-mobile, and lightweighted
Entities which flow through the Network and perform certain Tasks for Network
Security, e.g. Packet-Checking, Identification, of Infected Nodes or Monitoring of
the Network. Furthermore, artificial Cell Communication (Section 3.4) is used to
initialise Cooperation and Collaboration between the artificial Cells and a Self-
Management (Section 3.5) is utilised for a Regulation of the artificial Immune
System. In the next Sections, we take a closer look on the different Components
of SANA.

3.1 Network Simulator, Security Framework and Workflow

The Network Simulator simulates a Packet-Oriented Network and is based on
the Adversarial Queueing Theory [18,19,20]. The Simulator uses a FIFO (First
In First Out) approach for Queueing and for Routing the Shortest Path Routing
with the Dijkstra-Algorithm. It has a Quality of Service (QoS) Management
which prefers artificial Cells and other important Messages that are sent between
certified Components of the AIS.

4 M. Hilker, C. Schommer

The Security Framework is the AIS which must be installed on each Node
of the Network. Furthermore, this Framework guarantees e.g. the execution of
the artificial Cells, the Presentation of Packets to all Security Components, the
Sending of Messages. The Design of the Security Framework is focussed on Ex-
pandability in order to enhance it and to use existing Approaches in Network
Security. One example of a Network Security Approach is Malfor [21], a system
for Identification of the Processes which are involved in the Installation of an
Intrusion.

The Workflow is that each Packet is checked in each Node by every Security
Component - e.g. artificial Cells, Packet-Filters, and IDS - each Security Compo-
nent can perform other Tasks - e.g. moving to other Nodes or sending Messages
- and the Adversarial injects Packets into the Network.

3.2 Adversarial and Attacks

An Adversarial has the Function to Stress the Network and the AIS using Packets
with and without Attacks; it has to keep in mind that the bandwidth of the
connection is limited and that the queues have limited size. The Adversarial
injects Packets without Attacks in order to simulate a real Network. The Packets
with Attacks try to infect Nodes with Attacks; the infected Nodes then perform
certain Tasks depending on the Attack, e.g. sending Packets with Attack to other
Nodes. The Attack is an abstract Definition for all Intrusions in SANA. So, nearly
all Intrusions can be modelled, e.g. Worms, Viruses, and Hacker-Attacks.

3.3 Artificial Cells

Artificial Cells are the main Component in the artificial Immune System of
SANA. An artificial Cell is a highly specialised, autonomous and efficient En-
tity which flows through the Network and performs certain Tasks for Network
Security. In the Cooperation and with the enormous Number of artificial Cells,
the whole System adapts quickly to Attacks and even to modified and novel At-
tacks; the idea of Complex Adaptive Systems (CAS) or Massively-Distributed
Systems.

Each artificial Cell has the Job to perform some certain Task:

– ANIMA for Intrusion Detection which is a type of artificial Cells for checking
Packets whether they contain an Attack or not. Furthermore, it compresses
the Information how to identify and how to proceed if an Attack is found
in order to save Storage-Space and Computational Power. More Information
about ANIMA-ID can be found in [22].

– AGNOSCO which is a type of artificial Cells for the Identification of Infected
Nodes using artificial Ant Colonies. It is a distributed System which identifies
the infected Nodes quickly and properly. More Information can be found in
[23].

– Monitoring artificial Cell which flows through the Network and collects In-
formation about the Status and send this back to some certain Component,
e.g. the Administrator.

SANA - Security Analysis in Internet Traffic 5

– Using the Expandability of SANA, it is easily possible to introduce novel ar-
tificial Cells. Thus, it is e.g. possible to introduce artificial Cells for Anomaly
Detection or Checking of the Status of a Network Node.

– Additionally, it is possible to use existing Approaches for Network Security.
With the Expandability of SANA, these Approaches can be used in an artifi-
cial Cell; examples are Systems for Intrusion- [22,24] or Anomaly-Detection
Systems [25,26,27].

3.4 Artificial Cell Communication

The idea in Complex Adaptive System (CAS) is that the Components (here: arti-
ficial Cells) perform basic Tasks, are highly specialised and use basic Systems for
Cooperation. Only by Cooperation and the high amount of these Components,
the System is adaptive and reaches the goal (here: Network Security).

The whole Architecture in SANA is composed without any central System.
Thus, the artificial Cell Communication cannot use a Central Management Sys-
tem like it is used in several Multi Agent Systems or Ad-Hoc Networks. We
model partly the Cell Communication of the Human Body in order to build up
Communication and, thereafter, Cooperation between artificial Cells.

We introduce the Term Receptor which is a Public-Key-Pair. Each Compo-
nent has Receptors and each Message is packed into a Substance which is an
encrypted Message with Receptors. Only if a Receiver has the right Set of Re-
ceptors, it will receive the Message - the Idea of a Public-Key Infrastructure and
widely used in Multi Agent System for the Disarming of Bad-Agents/-artificial
Cells; however, in our Implementation, there is not any centralised Key-Server.

Additionally, we introduce artificial Lymph Nodes and Central Nativity and
Training Stations (CNTS). Artificial Lymph Nodes supply the artificial Cells
with e.g. Knowledge, initiate other artificial Cells if an event occurs and artificial
Lymph Nodes care about the Routing of Substances. CNTS train and release
new artificial Cell in order to have an evolutionary Set of artificial Cells which
are up-to-date. Both, artificial Lymph Nodes and Central Nativity and Training
Stations, are redundant installed in the System.

3.5 Self-Management of the artificial Immune System

The Self-Management of the System is currently only rudimentary. The artificial
Cells are autonomous and thus they flow through the Network and perform cer-
tain Tasks. However, one Problem of Massively-Distributed Systems or Complex
Adaptive Systems is that they just do their Tasks but there is not any guarantee
that the Systems will do the Tasks successfully. On the basis of the artificial Cell
Communication and novel Structures, we want to introduce a distributed Self-
Management of the artificial Immune System in order to give a certain amount
of Guarantee. However, this is one of the Next Steps explained in the Section 6.

6 M. Hilker, C. Schommer

4 SANA - Implementation

The Project SANA is implemented in Java. The Network Simulator, Adversarial,
and the artificial Immune System are implemented and running. Different Types
of artificial Cells are implemented. The Performance of these artificial Cells is
tested and they perform the Tasks properly. Attack-Scenarios are additionally
implemented for Testing Purposes and one example is a realistic Worm-Attack
which will be discussed in the Section 5.1.

The whole Implementation has the aim to give a Prototype for Testing and
Evaluation of the Approaches. Furthermore, the Implementation focuses more
on Expandability than on Performance; it is also possible to model nearly all
Intrusions and nearly all immunological Processes. It is also possible to add
common used Network Security Solutions like SNORT [1] or Malfor [21]. With
this, we can compare the Performance of SANA with common used IDS and we
can model cooperation between SANA and IDS.

5 SANA - Results

The Results we gained are promising. SANA identifies most Attacks - about
60%-85% - depending on the Attack-Behaviour, the Network Topology and the
Behaviour of the artificial Immune System with the artificial Cells. The infected
Nodes are identified quickly by AGNOSCO and the System adapts to Attacks
using local Immunization.

If there are IDS or especially NIDS in the Network which protect important
Nodes like the Internet Gateway or the E-Mail-Server, there is cooperation be-
tween SANA and the IDS with a good performance - about 80%-95% of the
Attack are prevented. Thus, SANA does not replace existing IDS, it enhances
them.

In the next Section, we discuss the Results of a Simulation of a realistic
Worm-Attack.

5.1 Simulation of a Worm-Attack

In this Section, we discuss a Modelling of a realistic Worm-Attack onto the Net-
work. The Worm enters a Network and uses a Security-Hole in a Node in order
to install itself. After this, the Worm tries to propagate it to other Nodes; there-
fore, it sends lots of Packets containing a copy of it to other Nodes. SANA tries
to identify and remove these Packets, identifies the infected Nodes and disinfects
the identified infected Nodes. Therefore, SANA uses the different types of arti-
ficial Cells explained in the Section 3.3 and the artificial Cell Communication
explained in the Section 3.4.

The Performance of SANA in this Simulation is promising. It secures other
Nodes from being infected by this Worm using ANIMA for Intrusion Detection
[22]; only some Neighbour-Nodes are infected (about 2-5 Nodes for each Infec-
tion). It also identifies the infected Nodes using AGNOSCO [23] quickly (about

SANA - Security Analysis in Internet Traffic 7

50-150 Time-Steps for each infected Node) and using the artificial Cell Commu-
nication (Section 3.4), AGNOSCO informs the artificial Lymph-Nodes (Section
3.4) which start an artificial Cell for Disinfection which disinfect the Node fast.
To sum up, SANA protects the Network against a Worm-Attack properly.

5.2 Theoretical Analysis of distributed IDS

In the theoretical Part of the SANA-Project, we compare the Performance and
the Need of Resource of distributed and centralised Network Security Systems.
Examples for centralised are e.g. IDS and for distributed AIS. However, the
Analysis shows quickly that the Performance of the both Approaches is highly
dependent on the Network Topology and the Behaviour of the Intrusions. The
Analysis fortunately shows that the Performance of IDS is increased if AIS are
added and the additionally needed Resources are limited.

6 SANA - Next Steps

Next Steps in the SANA-Project are to simulate realistic Attacks on Networks,
e.g. different Worm, Virus and Malwar-Attacks; also Attacks which consists of
several different Attacks. Additionally, another part is to increase the Perfor-
mance of the artificial Cell Communication (Section 3.4) and analyse the Per-
formance of it theoretically. Furthmore, we will introduce a Self-Management
(Section 3.5) which guarantees a certain amount of Security and we will perform
further theoretical Comparison (Section 5.2) between distributed and centralised
Network Security Systems.

7 Conclusion

Network Security is still a challenging field. Unfortunately, the Attacks are get-
ting both more complex and intelligent. Therefore, existing Network Security
Systems have problems to cope with these Problems. We introduce with SANA
an artificial Immune System with several non-standard Approaches for Network
Security. With the gained Results, we are sure that SANA will enhance current
Network Security Systems.

One last word about SANA: SANA is Latin and stands for healthy. Further-
more, the Work is done interdisciplinary in cooperation between Researchers
from Biology and Computer Science.

Acknowledgments

The PhD-Project SANA is part of the project INTRA (= INternet TRAffic man-
agement and analysis) that are financially supported by the University of Lux-
embourg. We would like to thank the Ministre Luxembourgeois de l’education
et de la recherche for additional financial support.

8 M. Hilker, C. Schommer

References

1. Roesch, M.: Snort - lightweight intrusion detection for networks. LISA 13 (1999)
229–238

2. Debar, H., Dacier, M., Wespi, A.: Towards a taxonomy of intrusion-detection
systems. Computer Networks 31 (1998) 805–822

3. Snapp, S.R., Brentano, J., Dias, G.V., Goan, T.L., Heberlein, L.T., lin Ho, C.,
Levitt, K.N., Mukherjee, B., Smaha, S.E., Grance, T., Teal, D.M., Mansur, D.:
DIDS (distributed intrusion detection system) - motivation, architecture, and an
early prototype. National Computer Security Conference 14 (1991) 167–176

4. Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagland, J.,
Levitt, K., Wee, C., Yip, R., Zerkle, D.: Grids - a graph based intrusion detection
system for large networks. National Information Systems Security Conference 19

(1996)
5. Janakiraman, R., Waldvogel, M., Zhang, Q.: Indra: A peer-to-peer approach to

network intrusion detection and prevention. Proceedings of IEEE WETICE 2003
(2003)

6. Antonatos, S., Anagnostakis, K., Polychronakis, M., Markatos, E.: Performance
analysis of content matching intrusion detection systems. SAINT 4 (2004)

7. Wagner, D., Dean, D.: Intrusion detection via static analysis. In IEEE Symposium
on Security and Privacy (2001)

8. Lindqvist, U., Porras, P.A.: expert-bsm: A host-based intrusion detection solution
for sun solaris. In Proceedings of the 17th Annual Computer Security Applications
Conference (2001) 240–251

9. Chari, S.N., Cheng, P.C.: Bluebox: A policy-driven, host-based intrusion detection
system. ACM Transactions on Information and System Security 6 (2003) 173–200

10. Fyodor, Y.: Snortnet’ - a distributed intrusion detection system. [Online]. Avail-
able: http://snortnet.scorpions.net/snortnet.pdf (2000)

11. DeCastro, L.N.: Artificial Immune Systems: A New Computational Intelligence
Approach. First edn. Springer (2002)

12. Janeway, C.A., Travers, P., Walport, M., Shlomchik, M.: Immunobiology: the
Immune System in Health and Disease. Sixth edn. Garland Publishing (2004)

13. Spafford, E.H., Zamboni, D.: Intrusion detection using autonomous agents. Com-
puter Networks 34 (2000) 547–570

14. Hofmeyr, S.A., Forrest, S.: Immunity by design: An artificial immune system.
Proceedings of the Genetic and Evolutionary Computation Conference 2 (1999)
1289–1296

15. Hofmeyr, S.A., Forrest, S.: Architecture for an artificial immune system. Evolu-
tionary Computation 8 (2000) 443–473

16. Hofmeyr, S.A., Forrest, S.: Immunology as information processing. (2000)
17. Machado, R.B., Boukerche, A., Sobral, J.B.M., Juca, K.R.L., Notare, M.S.M.A.:

A hybrid artificial immune and mobile agent intrusion detection based model for
computer network operations. IPDPS ’05: Proceedings of the 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop 6
19 (2005)

18. Andrews, Baruch Awerbuch, Antonio Fernndez, Tom Leighton, Zhiyoung Liu and
Jon Kleinberg, M.: Universal-Stability Results and Performance Bounds for Greedy
Contention-Resolution Protocols. Journal of the ACM 48 (2000) 39–69

19. Hilker, M.: Queueing Strategies in Internet Routing. Diploma Thesis at the Johann
Wolfgang Goethe-University Frankfurt/M., Germany (2005)

SANA - Security Analysis in Internet Traffic 9

20. Hilker, M., Schommer, C.: A new queueing strategy for the adversarial queueing
theory. IPSI-2005 Slovenia (2005)

21. Neuhaus, S., Zeller, A.: Isolating intrusions by automatic experiments. 13th Annual
Network and Distributed System Security Symposium (2006)

22. Hilker, M., Schommer, C.: Description of bad-signatures for network intrusion
detection. AISW-NetSec 2006 during ACSW 2006, CRPIT 54 (2006)

23. Hilker, M., Schommer, C.: Agnosco - identification of infected nodes with artificial
ant colonies. RASC 2006 (2006)

24. Finizio, I., Mazzariello, C., Sansone, C.: A temporal-behavior knowledge space for
detecting intrusions in computer networks. RASC 2006 (2006)

25. Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H., Zhou, S.:
Specification-based anomaly detection: a new approach for detecting network in-
trusions. Volume 9. (2002) 265–274

26. Lazarevic, A., Ertoz, L., Ozgur, A., Srivastava, J., Kumar, V.: A comparative
study of anomaly detection schemes in network intrusion detection. Proceedings
of Third SIAM Conference on Data Mining 3 (2003)

27. Leung, K., Leckie, C.: Unsupervised anomaly detection in network intrusion de-
tection using clusters. Australasian Computer Science Conference 28 (2005)

Shape Analysis of Sets

Jan Reineke

Saarland University
Im Stadtwald - Gebäude E1 3
66041 Saarbrücken, Germany

reineke@cs.uni-sb.de

Abstract. Shape Analysis is concerned with determining �shape invariants�, i.e. structural
properties of the heap, for programs that manipulate pointers and heap-allocated storage.
Recently, very precise shape analysis algorithms have been developed that are able to prove
the partial correctness of heap-manipulating programs. We explore the use of shape analysis
to analyze abstract data types (ADTs). The ADT Set shall serve as an example, as it is
widely used and can be found in most of the major data type libraries, like STL, the Java
API, or LEDA. We formalize our notion of the ADT Set by algebraic speci�cation. Two
prototypical C set implementations are presented, one based on lists, the other on trees.
We instantiate a parametric shape analysis framework to generate analyses that are able to
prove the compliance of the two implementations to their speci�cation.

1 Introduction
This paper deals with the Shape Analysis of the Abstract Data Type (ADT) Set. Its main goal
is to use Shape Analysis to prove that Set implementations written in C comply to an algebraic
speci�cation of the ADT Set. The paper summarizes major results from the author's Master's
thesis [Rei05].

Shape Analysis [CWZ90,GH96,SRW99,SRW02] is concerned with determining �shape invariants�,
i.e. structural properties of the heap, for programs that manipulate pointers and heap-allocated
storage. Formerly, it was primarily used to aid compilers. Knowledge about the structure of the
heap allows to carry out several optimizations, for instance, compile-time garbage collection, bet-
ter instruction scheduling and automatic parallelization.

Recently, more precise shape analysis algorithms have been developed that are able to prove the
partial correctness of heap-manipulating programs. In [LARSW00] bubble-sort and insertion-sort
procedures are analyzed. The analyses were able to infer that the procedures indeed returned
sorted lists. They also successfully analyzed destructive list reversal and the merging of two sorted
lists. The analyses of [LARSW00] and our analyses are based on the Shape Analysis Framework
presented in [SRW02]. Logical structures are used to represent the program state in this framework.
The concrete semantics is speci�ed in �rst-order logic. By interpreting the concrete semantics in
a 3-valued domain sound and precise abstractions can be extracted automatically.

Set implementations are widely used and can be found in most of the major data type libraries,
like STL [MS96], the Java API [Mic04], or LEDA [MN99]. The ADT Set shall serve as an example
of abstract data types. The main goal of this paper is to show the partial correctness of set
implementations using Shape Analysis. For this purpose we formally de�ne the ADT Set using
algebraic speci�cation [EM85,EM90,LEW97]. It shall serve as a reference for the implementations
described later. Algebraic Speci�cation allows us to express the intended behaviour independently
of possible concrete implementations. The following two axioms are taken from our de�nition:

a ∈ s.insert(b) ↔ a =el b ∨ a ∈ s, (3)
a ∈ s.remove(b) ↔ a 6=el b ∧ a ∈ s (4)

INTERREG IIIC/e-Bird
Workshop "Trustworthy Software" 2006
http://drops.dagstuhl.de/opus/volltexte/2006/698

2 Jan Reineke

They capture the e�ect of the ·.insert(·)- and ·.remove(·)-functions on the ∈-predicate. Notice
that they do not make any statement about the concrete data structures or algorithms employed.

We present two prototypical C implementations, one based on singly-linked lists, the other on
binary trees. Using Shape Analysis, we demonstrate that these implementations comply to our
speci�cation of the data type. This involves creating precise analyses using the framework of
[SRW02] and linking the results to the speci�cation of the ADT.

2 Sets as Data Abstractions

The formal de�nition of the ADT Set will serve as a reference for the implementations introduced
later. The de�nition should be independent of possible implementations. Notice that a concrete
implementation would also constitute a formal speci�cation. It would however contain many de-
sign decisions that are not speci�c to the data type itself.

A method widely used for the speci�cation of data types is known as Algebraic Speci�cation
of Data Types [EM85,EM90,LEW97]. Here, a speci�cation consists of a signature and axioms.
The signature introduces operations on the data type, while the axioms capture the meaning of
the given operations. Data Types de�ned in this way are often called Abstract Data Types. This
is for three reasons:

� The speci�cation is concerned with the data type itself as an abstract mathematical object
and not with its implementation by a concrete program in a particular programming language.

� Speci�cations may be incomplete by only partially specifying the meaning of operations.
� They maybe de�ned in terms of other data types that serve as parameters. This is also called

generic speci�cation.

While we easily grasp an intuitive meaning of these speci�cations, it is of course pro�table to give
a formalization of the concept. We will not go into detail about this since we do not rely on the
precise de�nitions in the following chapters. The semantics of such a speci�cation is a set of many-
sorted algebras. An algebra belongs to this set if it is a model of the axioms of the speci�cation.
The axioms are implicitly universally quanti�ed. Usually, there are many non-isomorphic models
of a given speci�cation re�ecting the incompleteness of the de�nition. The interested reader may
consult [EM85] and [LEW97] for an in-depth treatment of the topic.

The full speci�cation of the ADT Set is displayed in Table 1. Our speci�cation is parameterized
by an element type. This could also be instantiated with a set itself, building sets of sets of some
primitive type, and so on. We are assuming an existing speci�cation of the natural numbers nat.

The empty set is provided as a constant. Other sets can be constructed by inserting and removing
elements using .insert(·) and .remove(·). The .selectAndRemove function returns an element
and removes it from the set. It can be used to iterate over a set. The .sizeOf function returns
the cardinality of the set as a natural number. The ∈ predicate allows to test set membership. ⊆
and = correspond to subset and equality of sets.

Most of the axioms are straightforward. We distinguish equality on sets =, equality on elements
=el, and equality on natural numbers =nat. Axiom (1) assures that every possible set can be
constructed by applications of ∅ and .insert. In axiom (5) we only have an implication because
the .selectAndRemove function chooses an element nondeterministically. Axioms (6) and (7)
correspond to the extensionality axiom of set theory. Axioms (8)-(13) deal with the cardinality of
sets. The axioms are complete in the sense that the meaning of arbitrary formulae over the given
alphabet (the functions and predicates of the ADT speci�cation) can be derived.

Shape Analysis of Sets 3

set =
begin generic speci�cation
parameter element
using nat
sorts set
constants ∅ : set
functions ·.insert(·) : set × element → set

·.remove(·) : set × element → set
·.selectAndRemove : set ⇀ element × set

·.sizeOf : set → nat
predicates · ∈ · : element × set

· ⊆ · : set × set
· = · : set × set

variables s, s′ : set
a, b : element

axioms set generated by ∅, .insert; (1)
¬(a ∈ ∅), (2)
a ∈ s.insert(b) ↔ a =el b ∨ a ∈ s, (3)
a ∈ s.remove(b) ↔ a 6=el b ∧ a ∈ s, (4)
(a, s′) = s.selectAndRemove→ a ∈ s ∧ a /∈ s′ ∧ s′.insert(a) = s, (5)
s ⊆ s′ ↔ a ∈ s → a ∈ s′, (6)
s = s′ ↔ s ⊆ s′ ∧ s′ ⊆ s, (7)
∅.sizeOf =nat 0, (8)
s.insert(b).sizeOf =nat s.sizeOf↔ b ∈ s, (9)
s.insert(b).sizeOf =nat s.sizeOf + 1 ↔ ¬(b ∈ s), (10)
s.remove(b).sizeOf =nat s.sizeOf↔ ¬(b ∈ s), (11)
s.remove(b).sizeOf =nat s.sizeOf− 1 ↔ b ∈ s, (12)
(a, s′) = s.selectAndRemove→ s′.sizeOf =nat s.sizeOf− 1. (13)

end generic speci�cation

Table 1. ADT Set

4 Jan Reineke

3 Shape Analysis of Implementations
In this section we analyze two prototypical C implementations of the ADT Set. One implemen-
tation is based on singly-linked lists, the other on binary trees. After brie�y introducing parts of
the two implementations, we proceed to describe our analyses. The main goal of the analyses is
to prove that the implementations comply with the ADT speci�cation given in Chapter 2. The
implementations each contain the two methods, insertElement, removeElement and the func-
tion isElement. They implement the ·.insert(·), ·.remove(·) functions and the · ∈ · predicate,
respectively. We chose to show the following two axioms, since they capture the most important
aspects of the ADT Set:

a ∈ s.insert(b) ↔ a =el b ∨ a ∈ s, (3)
a ∈ s.remove(b) ↔ a 6=el b ∧ a ∈ s (4)

Our analyses are conducted using TVLA [LAS00] and are based on previous analyses on lists and
trees contained in the TVLA 2 distribution.

3.1 List-based Implementation

typedef struct List
{

void* data;
struct List* next;

} List;

typedef struct Set
{

List* list;
int (*compare)(void*, void*);
int size;

} Set;

int isElement(Set* set, void* element)
{
List* list = set->list;

while (list != 0)
{

if (compare(list->data, element) == 0)
return 1;

list = list->next;
}

return 0;
}

(a) (b)

Fig. 1. C structure declarations for Lists and Sets and C source of membership test

Our �rst set implementation uses singly-linked lists to store the elements. It also maintains the
size of the current set. The structure declarations are visible in Figure 1. When allocating such
a set, a compare-function has to be given, that establishes an equivalence relation on the data
elements.

Figure 1 also shows the code for testing set membership. The method simply iterates over the list,
comparing each item with the element that is tested for set membership.

Figure 2 shows the implementations of the insertion and removal methods. The insertion method
iterates over the list until it either �nds the element or reaches the �nal element of the list,
indicated by a null-pointer in the next-�eld. If the element was not found it is appended at the
end. Removal works similarly. When the element is found, it is decoupled from the list and the
memory is freed.

Data Structure Invariants Our analyses rely on a number of data structure invariants at
entrance to the methods. Showing their maintenance is part of the proof. By data structure
invariants we mean invariants that are related directly to the concrete data structure employed to
implement the ADT Set. In this case properties of singly-linked lists:

Shape Analysis of Sets 5

� The list is acyclic
� The list does not contain any duplicate elements

We use instrumentation predicates to capture these properties formally using �rst-order logic.

3.2 Tree-based Implementation
As in the list-based case, a compare-function is needed. This time it has to implement a re�exive
total order. This is necessary, to build an ordered tree. Figure 3 shows the structure declarations.
Every node in the tree stores one of the set elements and maintains pointers to two children nodes
left and right.

Figure 3 also contains the source of the set membership test. The method simply traverses the tree
until it either �nds the element or reaches a leaf node. The source of the insertion and removal
methods on trees can be found in the appendix, since it is too large to be dealt with here. We
restrict ourselves to mentioning the main ideas of the two algorithms. New elements are always
inserted as new leaf nodes, by traversing the tree to the correct position. While insertion of ele-
ments if fairly easy and quite similar to its list pendant, removal of elements is a non-trivial task.
Figure 4 illustrates this. Removing elements that are stored in leaf nodes is simple (left). They can
simply be decoupled from their respective parent nodes. If the node has one child, we can connect
this child at the place of the node to its former parent node (middle). The most complicated case
arises when the particular node has two child nodes (right). In this case, we have to �nd another
node in the tree to replace the element node. This node has to be smaller than all nodes on the
right and greater than all nodes on the left. There are two ways to �nd such an element. Either one
can take the right-most element of the left subtree or the left-most element of the right subtree.
We chose to always take the right-most element of the left subtree. In addition, there are some
special cases of the latter case. For instance, if the root of the left subtree is already the right-most
element of the left subtree.

void insertElement(Set* set, void* element)
{
List* list = set->list;
List* prev = 0;

while (list != 0)
{

if (compare(list->data, element) == 0)
return;

prev = list;
list = list->next;

}

List* newList = (List*)malloc(sizeof(List));
newList->data = element;
newList->next = 0;
set->size++;

if (prev == 0) //list is empty
{

set->list = newList;
}
else //append item to list
{

prev->next = newList;
}

}

void* removeElement(Set* set, void* element)
{
List* temp;
List* list = set->list;

if (list == 0)
return;

if (compare(list->data, element) == 0)
{

set->size--;
set->list = list->next;
free(list);

}
else

while (list->next != 0)
{
if (compare(list->next->data, element) == 0)
{

void* deletedElement = list->next->data;
set->size--;
temp = list->next->next;
free(list->next);
list->next = temp;
return deletedElement;

}
list = list->next;

}
}

(a) (b)

Fig. 2. C source of Insertion and Removal methods

6 Jan Reineke

typedef struct Tree
{
void* data;
struct Tree* left;
struct Tree* right;

} Tree;

typedef struct Set
{
Tree* tree;
int (*compare)(void*, void*);
int size;

} Set;

int isElement(Set* set, void* element)
{
Tree* tree = set->tree;

while (tree != 0)
{

if (compare(tree->data, element) == 0)
return 1;

else if (compare(tree->data, element) < 0)
tree = tree->left;

else
tree = tree->right;

}

return 0;
}

(a) (b)

Fig. 3. C structure declarations for Trees and Sets and C source of isElement test

E E E

N

N

Fig. 4. Removal from Ordered Tree

Data Structure Invariants In order to prove our ADT Set axioms we need to maintain two
data structure invariants:

� The structure representing the set is a tree
Out of many equivalent de�nitions for �binary treeness�, we chose the following: Whenever an
element is reachable from the left child of a node in the structure, then it is not reachable from
the right child, and vice versa.

� The tree is ordered
Every element reachable from the left child is smaller and every element reachable from the
right child is greater. This implies that the tree does not contain duplicate elements. It also
implies the �rst data structure invariant. It is still useful to consider the �rst invariant, because
it may help in proving this one.

Again, we used instrumentation predicates to formalize the two invariants using �rst-order logic.
Proving the latter proved to be quite di�cult. It is a global property, i.e. it does relate elements
in the tree that are not directly connected. We will go into more detail about this in the analysis
section.

Shape Analysis of Sets 7

3.3 Shape Analysis

To prove the ADT Set axioms we perform three analyses for each implementation. The analyses
of the insertion methods prove the following:

isElement(a, s.insertElement(b)) ↔ a =el b ∨ isElement(a, s)

Notice the di�erence compared with the corresponding axiom (3). The instrumentation predicate
isElement replaces the · ∈ · predicate. That is we prove the property of the insertion method in
terms of an instrumentation predicate. The same holds for the removal methods and axiom (4).
There, we prove:

isElement(a, s.removeElement(b)) ↔ a 6=el b ∧ isElement(a, s)

To conclude the proofs we show that the isElement functions in both implementations are equiv-
alent to the instrumentation predicate isElement:

isElement(a, s) ↔ s.isElement(a)

Combining this equivalence with the two preceding proofs yields:

s.insertElement(b).isElement(a) ↔ a =el b ∨ s.isElement(a)
s.removeElement(b).isElement(a) ↔ a 6=el b ∧ s.isElement(a)

These two equivalences correspond directly to axioms (3) and (4).

Shape Analysis of List-based Implementation Our analysis is based on existing analyses
on lists and trees. We borrowed the concrete semantics of most of the statements from these. The
following table shows how we represent the state by logical predicates.

Predicate Intended Meaning
x(v) for each x ∈ Var Pointer variable x points to heap cell v.
n(v1, v2) The next selector of v1 points to v2.
deq(v1, v2) The data-�elds of v1 and v2 are equal.
isSet(v) v represents a set.
or[n, x](v) for each x ∈ Var v was reachable from x via next-�elds.

As depicted, pointer variables are represented by unary predicates. The next-�eld is modeled by a
binary predicate. Since we can only model the structure of the heap by these predicates, primitive
values have to be dealt with di�erently. Abstracting from the concrete values of the data-�elds, we
capture the equivalence relation between data-�elds by the binary predicate deq. This corresponds
to the compare-function needed in the implementation. To di�erentiate between set locations and
other locations in the heap, the isSet predicate is used. To be able to relate elements contained
in the list before the execution of one of our procedures with their output structures, we mark
elements reachable from x via next-�elds using the or[n, x] predicate.

While the above core predicates su�ce to de�ne the concrete semantics of all the statements, we
need additional instrumentation predicates to gain precision.

8 Jan Reineke

Predicate De�ning Formula Intended Meaning
is[n](v) ∃v1, v2.(v1 6= v2 ∧ n(v1, v) ∧ n(v2, v)) v is shared.
c[n](v) ∃v1.(n(v1, v) ∧ n∗(v1, v2)) v resides on a cycle.
t[n](v1, v2) n∗(v1, v2) Transitive re�exive closure of

next.
r[n, x](v) for each x ∈
Var

∃v1.(x(v1) ∧ t[n][v1, v)) v is reachable from x via next-
�elds.

noeq[deq, n](v) ∀v1.(((t[n](v1, v) ∨ t[n](v, v1)) ∧ v1 6= v) →
(¬deq(v1, v) ∧ ¬deq(v, v1)))

The data-�eld of v is di�erent
from the data-�elds of locations
that can reach v and that are
reachable from v.

validSet(v) isSet(v) ∧ noeq[deq, n](v) v represents a valid set (no du-
plicate entries).

isElement(v1, v2) isSet(v2) ∧ ∃v.(t[n](v2, v) ∧ deq(v1, v) ∧ v 6= v2) v1 is an element of set v2.

The �rst four of these instrumentation predicates capture general properties of the shape of the
heap. They have been used in previous analyses of list-manipulating programs. c[n] covers the
acyclicity data structure invariant mentioned in the implementation section.

The noeq[deq, n] predicate is tailored speci�cally to the current task. It expresses that no two
elements in the list have equal data-�elds. The de�nition comprises both directions, i.e. both el-
ements reachable from v and elements from which v is reachable. This actually makes it easier
to reestablish the property when manipulating the list. It is a formalization of the second data
structure invariant for lists. validSet does not help to increase precision. It only increases the
readability of the output structures.

To capture our notion of set membership we de�ne the isElement-predicate. v1 is an element of
set v2 if its data-�eld is equal to one of the nodes reachable from v2. Our analysis shows that the
e�ect of the insertion and removal methods on set membership, expressed by isElement conforms
to the ADT Set axioms.

Our input structures cover all possible lists representing sets pointed to by set. element points
to the element that shall be inserted into the set. Figure 5 displays these structures. In (a) set is
empty. In (b) set is non-empty and set membership of element is unknown, isElement's value is
inde�nite for the nodes pointed to by element and set.

Insertion Running the analysis for insertion yields three output structures that are shown in
Figure 6. All of the resulting structures ful�ll the data structure invariants, i.e. noeq[deq, n] is
true for the set and c[n] is false everywhere. Also, isElement is true for the nodes pointed to by
element and set. In addition, the or[n, set]-predicate indicates that elements which were formerly
reachable from set are still reachable after the execution of setInsert.

Looking at the structures one can identify the di�erent cases that the insertion method has to
deal with. Structure (a) corresponds to the empty set as input structure. In structure (b) a new
element had to be appended to the list, because the data-�eld of element is not equal to any of
the original elements of the list (the deq predicate is false). In structure (c) element was already
contained in the list, indicated by the isElement-predicate.

Removal When translating the C code into a Control Flow Graph in TVLA, we omitted the
deallocation of the element in the list. This is only for illustration purposes.

Shape Analysis of Sets 9

element

noeq[deq,n]
r[n,element]

set

isSet
noeq[deq,n]

r[n,set]
validSet

deq t[n]deq t[n]

element

noeq[deq,n]
r[n,element] set

isSet
noeq[deq,n]

r[n,set]
validSet

noeq[deq,n]
r[n,set]

deq n t[n]

isElement

deq

n t[n]

deq t[n]

isElement

deq t[n]

(a) (b)

Fig. 5. Input Structures for List-based Insertion and Removal

element

noeq[deq,n]
r[n,element]

newList

noeq[deq,n]
r[n,newList]

r[n,set]

set

isSet
noeq[deq,n]

or[n,set]
r[n,set]
validSet

deq t[n]

isElement

deq

n t[n]

deq t[n]

isElement

deq t[n]

element

noeq[deq,n]
r[n,element]

newList

noeq[deq,n]
r[n,newList]

r[n,set]

set

isSet
noeq[deq,n]

or[n,set]
r[n,set]
validSet

deq t[n]

isElement

deq

noeq[deq,n]
or[n,set]
r[n,set]

n t[n]

deq n t[n]

isElement

t[n]

n t[n]

deq t[n]

isElement

deq t[n]

element

noeq[deq,n]
r[n,element] set

isSet
noeq[deq,n]

or[n,set]
r[n,set]
validSet

noeq[deq,n]
or[n,set]
r[n,set]

deq n t[n]

isElement

deq

n t[n]

deq t[n]

isElement

deq t[n]

(a) (b) (c)

Fig. 6. Output Structures for List-based Insertion

Running setRemove results in four output structures displayed in Figure 7. Again, the mainte-
nance of the data structure invariants is proven: noeq[deq, n] is true and c[n] is false everywhere.
The element has indeed been removed from the list. This can be observed by the isElement-
predicate. Other elements of the set are still contained, as indicated by the or[n, set]-predicate.

Structures (a) and (c) correspond to the case where element was not contained in the set before.
The two other structures (a) and (d) re�ect the case where element was indeed part of the set.
The abstraction also distinguishes between empty (c and d) and non-empty sets (a and b).

Membership Test We omit to display the output structures of this analysis, since the routine is
not manipulating the heap at all. The analysis checked that our isElement function returns true
if and only if the isElement-predicate holds. This is done by separating the structures into those
that reach a point where true is returned and those structures that reach a point where false is
returned. By this, we establish a connection between the di�erent analyses. The two other analyses

10 Jan Reineke

element

noeq[deq,n]
r[n,element]

set

isSet
noeq[deq,n]

or[n,set]
r[n,set]
validSet

deq t[n]

noeq[deq,n]
or[n,set]
r[n,set]

n t[n] isElement

deq n t[n]

deq t[n]

element

noeq[deq,n]
r[n,element]

set

isSet
noeq[deq,n]

or[n,set]
r[n,set]
validSet

noeq[deq,n]
or[n,set]

deq t[n]

deq

deq t[n]

noeq[deq,n]
or[n,set]
r[n,set]

n t[n] isElement

deq n t[n]

deq t[n]

(a) (b)

element

noeq[deq,n]
r[n,element]

set

isSet
noeq[deq,n]

or[n,set]
r[n,set]
validSet

deq t[n]deq t[n]

element

noeq[deq,n]
r[n,element]

set

isSet
noeq[deq,n]

or[n,set]
r[n,set]
validSet

noeq[deq,n]
or[n,set]

deq t[n]

deq

deq t[n]deq t[n]

(c) (d)

Fig. 7. Output Structures for List-based Removal

on list insertion and removal only proved correctness in terms of the isElement-predicate. The
current analysis shows that this was just.

Shape Analysis of Tree-based Implementation The domain is represented in a similar way
as in the list-based case. Instead of having a next-predicate, left- and right-predicates are used to
model the left- and right-�elds in the tree. The left-predicate is also used to model the tree-�eld
in the set structure to minimize the number of predicates. The tree-�eld only occurs at most once
in all of the structures.

Predicate Intended Meaning
x(v) for each x ∈ Var Pointer variable x points to heap cell v.
sel(v1, v2) for each sel ∈ {left, right} The left (right) selector of v1 points to v2.
dle(v1, v2) v1->data ≤ v2->data.
or[x](v) for each x ∈ Var v was reachable from x via left- and right-�elds.
isSet(v) v represents a set.

As noted in the implementation section, an ordering relation is needed here. It is modeled by the
dle-predicate, which is assumed to be re�exive and transitive during the analysis. or[x] and isSet
have the same meaning as before.

While the core predicates used to model the domain were very similar to the list-based case, the
choice of instrumentation predicates was quite di�erent. We separate them into two parts. One is
solely concerned with the structure of the trees. The other also deals with ordering.

Shape Analysis of Sets 11

Predicate De�ning Formula Intended Meaning
down(v1, v2) left(v1, v2) ∨ right(v1, v2) The union of the two selector

predicates left and right.
downStar(v1, v2) down∗(v1, v2) Records reachability between

tree nodes.
downStar[sel](v1, v2)
for each sel ∈
{left, right}

∃v.(sel(v1, v) ∧ down∗(v, v2)) Remembers the �rst selector
needed to reach v2 from v1.

r[x](v) for each x ∈ Var ∃v1.(x(v1) ∧ downStar(v1, v)) v is transitively reachable
from x.

treeNess ∀v1, v2, v.((downStar[left](v, v1) ∧
downStar[right](v, v2)) ⇒
(¬downStar(v1, v2) ∧
¬downStar(v2, v1)))

The heap consists of trees.

The two downStar[sel]-predicates record reachability between tree-nodes, where the �rst selector
on the path is sel. In ordered trees this determines the relation between the elements in the tree.
To be able to check whether the ordering is maintained, it is important to keep this relation precise
for elements that are manipulated. treeNess records the �rst data structure invariant mentioned
in the implementation section. We decided to make treeNess a global nullary predicate to reduce
the size of the domain. There is a drawback to this approach however. It is nearly impossible
to reestablish the property once it is violated, because we lose information about parts of the
heap that still satisfy the property. A unary treeNess predicate would be able to capture local
violations and make it easier to reestablish the property after it was temporarily destroyed. The
methods that we checked maintain treeNess in the entire heap permanently allowing to use the
nullary predicate.
Predicate De�ning Formula Intended Meaning
dle[x, left](v) for each
x ∈ Var

∃v1.(x(v1) ∧ dle(v, v1) ∧ ¬dle(v1, v)) The data-�eld of v is less than
the data-�eld of v1, where v1

is pointed to by x.
dle[x, right](v) for each
x ∈ Var

∃v1.(x(v1) ∧ ¬dle(v, v1) ∧ dle(v1, v)) The data-�eld of v is greater
than the data-�eld of v1,
where v1 is pointed to by x.

inOrder[dle] ∀v2, v4.(downStar[left](v2, v4) ⇒
(dle(v4, v2) ∧ ¬dle(v2, v4))) ∧
∀v2, v4.(downStar[right](v2, v4) ⇒
(¬dle(v4, v2) ∧ dle(v2, v4)))

All the trees in the heap are in
order.

isElement(v1, v2) isSet(v2) ∧
∃vequal.(downStar(v2, vequal) ∧
dle(vequal, v1)∧dle(v1, vequal)∧vequal 6=
v2

v1 is an element of set v2.

The dle[x, sel] captures the relation between the node pointed to by x and other heap nodes. These
predicates are used to partition the heap into elements less than the node pointed to by x and
those that are greater. Being unary predicates they can be used as abstraction predicates. This
could be called a �pseudo-binary abstraction�, since parts of the binary predicate dle are taken to
form several unary predicates.

inOrder[dle] formalizes the second data structure invariant for ordered trees. It requires elements
in the left subtree of a node to be smaller and elements in the right subtree to be greater than the
node itself. Smaller and greater are expressed in terms of dle.

The set membership property isElement is formalized similarly to the list-based case. v1 is an
element of set v2 if its data-�eld is equal to one of the nodes reachable from v2, where equal can

12 Jan Reineke

be formulated in terms of dle.

element

r[element] set

dle[element,right]
isSet

or[set]
r[set]

dle

dle

dle

element

r[element] set

dle[element,right]
isSet

or[set]
r[set]

dle

or[set]
r[set]

dle[element,left]=1/2
dle[element,right]=1/2

downStar[left] dle isElement

dle downStar[left] downStar[right]

dle

dle isElement

dle

(a) (b)

Fig. 8. Input Structures for Tree-based Insertion and Removal

Figure 8 displays the input structures for our analysis of the insertion and removal methods. In the
following we omitted several predicates to make the visualizations more readable. The predicates
that we left our were left, right, down, downStar. Again, we want to cover all possible sets by
these abstract structures. In structure (a) set is empty and thus element is not an element of
set. Structure (b) represents non-empty sets. element might be part of the set, indicated by the
dotted isElement-predicate and the dotted dle-predicate between element and the contents of
set. We also had to assign a value to the dle-predicate for set which does not have a data-�eld.
Its data-�eld is assumed to be greater than all other data-�elds. Elements that were originally
reachable from set are marked with or[set] as in the list-based case.

Insertion Running the analysis for set insertion yields 21 structures at exit. Most of them concern
special cases where the element had to be inserted in the left- or right-most position of the tree
or where the left or the right subtree of the root was empty. All resulting structures ful�lled the
data structure invariants and element had been inserted into set. We picked two structures that
represent the most general cases. They can be seen in Figure 9.

Due to the number of binary predicates involved in the analysis the output structures are hard to
read. Also, the visualization engine does not know our intuition behind the di�erent predicates,
which could help to generate more readable output. In structure (a) the algorithm found a node
in the tree that is equal to element. The three summary nodes make up the rest of the tree.
The summary node to the right represents the subtree of the node that was found. The other
two summary nodes partition the parents and neighbors into those that have a smaller data-�eld
and those that have a greater data-�eld. For this particular case the partitioning of the set is
not important. For structure (b) however it is the key to proving that the ordering is preserved.
Here, no node in the tree was found that was equal to element. Therefore a new heap node was
allocated and inserted into the tree, preserving the ordering. This is were the partition into smaller
and larger elements becomes important. Nodes that are greater than the new node can only reach
it via a path that starts by going left: downStar[left] is inde�nite and downStar[right] is false.

Shape Analysis of Sets 13

element

r[element]

set

dle[element,right]
isSet

or[set]
r[set]

or[set]
r[set]

dle

dle[element,right]
or[set]
r[set]

dle

isElement dle

or[set]
r[set]

dle[element,left]=1/2
dle[element,right]=1/2

downStar[right] dle downStar[left]

dle

dle[element,left]
or[set]
r[set]

downStar[right]dle

downStar[right]dle downStar[left]

downStar[right] dle

isElement dle

downStar[right]dle

dle

downStar[left]

downStar[left]

downStar[right]dle downStar[left]

isElementdle

downStar[left]

downStar[left]

downStar[left]

downStar[left]

dle

downStar[left]

dle

isElementdle

downStar[left] downStar[right]dle

dle

dle

isElement dle

dle

(a)
element

r[element]

set

dle[element,right]
isSet

or[set]
r[set]

tree

r[set]
r[tree]

dle

dle[element,right]
or[set]
r[set]

dle

dle isElement

dle

dle[element,left]
or[set]
r[set]

dledownStar[right]

dle downStar[left] downStar[right]

dle downStar[right]

dle isElement

dle

downStar[left]

downStar[left]

dle downStar[left] downStar[right]

dle isElement

downStar[left]

downStar[left]

downStar[left]

dle

dle

dle isElement

dle

(b)

Fig. 9. Sample Output Structures for Tree-based Insertion

14 Jan Reineke

Nodes with a smaller data-�eld can in turn only reach it via a path that starts with a right-edge
(downStar[right] = 1/2 and downStar[left] = 0).

Removal As noticed in the implementation section, tree-based removal was the most complicated
routine that we analyzed. Its size and complexity led to very time-consuming analyses that did
not allow a trial and error approach when choosing the abstraction predicates. We used the same
predicates as in the analysis of the insertion algorithm. They were developed for this method
though and proved to work for the simpler insertion routine, too.

Proving that element is not a member of set after the analysis was simple, once the data structure
invariants could be established. The ordering property ensures that every element only occurs
once in the tree. Showing that the ordering data structure invariant was maintained was more
di�cult. The key predicates involved in proving this were dle[x, sel] and downStar[sel]. The use
of these predicates in the insertion routine already hints at why they are useful for removal. Figure
4 illustrates the di�erent possibilities when removing an element from the tree. As the algorithm
keeps track of the relevant nodes (those represented by circles in the �gure) in the graph through
pointer variables, dle[x, sel] delivers the necessary partition to keep relevant ordering information.
In addition downStar[sel] captures the important �rst selectors on paths between these parts of
the tree.

To cope with the long analysis times we decomposed the problem into smaller ones �rst:

� Finding the element to delete.
� The element has one or no children.
� The element has two children, the most di�cult case.

In the end we put everything together.

Again, we decided to present only two representative output structures out of overall eight. They
are shown in Figure 10. Both structures satisfy the two data structure invariants modeled by
inOrder[dle] and treeNess. In structure (a) element was contained in set and therefore removed
from it. For demonstration purposes we did not free the element taken from the tree. One can see
that the tree has been partitioned into nodes with a greater data-�eld and nodes with a smaller
data-�eld than element. The same holds for structure (b). In this case element was not contained
in set at the invocation of the routine. No node was removed from the tree.

Membership Test Again, we omit to display the output structures. It is quite obvious that the
analysis succeeds, because the tree traversal analyzed is part of the insertion and removal methods
as well, which were analyzed before.

Empirical Results Table 2 presents some data about the four analyses. The analysis of the
insertion, removal and membership test methods of our list-based implementation resulted in a
similar number of structures and relatively short analysis times. In the tree-based case, however,
the di�erence was considerable. This can probably be explained with the higher number of unary
predicates in the removal analysis, which led to more structures per location. The worst-case com-
plexity of the analysis is doubly-exponential in the number of abstraction predicates. Additionally,
the control �ow graph (see Figure 11) for removal contains more than three times as many loca-
tions as the CFG for insertion.

Discussion We managed to show interesting properties of list- and tree-based set implementa-
tions. Our analyses assumes data structure invariants speci�c to the respective implementation to
hold at the entrance. The maintenance of these invariants throughout the execution of the routines

Shape Analysis of Sets 15

element

r[element]

set

dle[element,right]
isSet

or[set]
r[set]

or[set] dle

dle[element,right]
or[set]
r[set]

dle

dle

dle

dle downStar[left] downStar[right]

dle[element,left]
or[set]
r[set]

downStar[left]

dle isElement dle

dle downStar[right]

dle downStar[left] downStar[right]

dle isElement

dle

downStar[left]

downStar[left]

dle

dle

dle

dle

(a)
element

r[element]

set

dle[element,right]
isSet

or[set]
r[set]

dle[element,right]
or[set]
r[set]

dle downStar[left] downStar[right]

dle[element,left]
or[set]
r[set]

downStar[left]

dle isElement

dle downStar[right]

dle downStar[left] downStar[right]

dle isElement

dle

downStar[left]

downStar[left]

dle

dle

dle

dle

(b)

Fig. 10. Sample Output Structures for Tree-based Removal

16 Jan Reineke

Analysis #locations
in CFG

#unary
predi-
cates

#binary
predi-
cates

#structures average
#structs
per
location

maximal
#structs
per
location

time

Membership,
List-based

9 20 5 28 3 6 2.570s

Insertion,
List-based

19 29 5 81 4 11 2.720s

Removal,
List-based

22 29 5 124 5 11 4.050s

Membership,
Tree-based

10 18 11 84 8 19 32.84s

Insertion,
Tree-based

25 24 11 536 21 91 69.23s

Removal,
Tree-based

76 42 11 27697 364 3132 21767s

Table 2. Empirical Results

is established. Using these invariants our analysis was able to prove that the e�ect of the insertion
and removal methods complies with axioms of the ADT Set. The nature of the shape analysis
framework limited our proofs to partial correctness.

se
tR

em
ov

e

L
0

L
en

tr
y1st

or
eR

ea
ch

(s
et

)

L
bo

dy

L
no

tf
ou

nd

tr
ee

->
da

ta
 !

=
 e

le
m

en
t-

>
da

ta

L
fo

un
d

tr
ee

->
da

ta
 =

=
 e

le
m

en
t-

>
da

ta

L
w

hi
le

2

L
fb

od
ye

nd

te
m

p
=

=
 n

ul
l

L
w

2b
od

y

te
m

p
!=

 n
ul

l

L
fb

t

ex
it

te
m

p
=

(T
)

N
U

L
LL

f1
c

L
f2

tr
ee

->
ri

gh
t =

 (
T

)
N

U
L

L

L
f1

b

tr
ee

->
le

ft
 =

 (
T

)
N

U
L

L

L
w

hi
le

tr
ee

 !
=

 n
ul

l

tr
ee

 =
=

 n
ul

l

L
fA

ft
er

L
fA

ft
er

3

pr
ev

io
us

 !
=

 n
ul

l

L
fA

ft
er

2pr
ev

io
us

 =
=

 n
ul

l

L
fA

ft
er

A
lla

L
fR

1

fo
llo

w
in

g
=

(T
)

N
U

L
L

L
fA

ft
er

A
ll te

m
p

=
(T

)
N

U
L

L

L
f5

tr
ee

L
ef

t !
=

 n
ul

l

L
fL

ef
ttr

ee
L

ef
t =

=
 n

ul
l

L
nf

2

pr
ev

io
us

 =
 (

T
)t

re
e

L
f3

L
fN

ul
l

tr
ee

L
ef

t =
=

 n
ul

l

L
fR

ig
httr
ee

L
ef

t !
=

 n
ul

l

ex
it6

er
ro

r

Is
 e

le
m

en
t a

n
el

em
en

t o
f

se
t s

et
?

Is
 D

at
a

in
 tr

ee
 N

O
T

 in
 a

sc
en

di
ng

 o
rd

er
?

A
ss

er
tP

er
m

ut
at

io
n(

se
t,

el
em

en
t)

tr
ee

R
ig

ht
 !

=
 n

ul
l

tr
ee

R
ig

ht
 =

=
 n

ul
l

ex
it5

fo
llo

w
in

g
=

(T
)

N
U

L
L

L
f1

tr
ee

R
ig

ht
 =

 (
T

)t
re

e-
>

ri
gh

t

ex
it4

te
m

p
=

(T
)

N
U

L
L

ex
it3

su
bt

re
e

=
(T

)
N

U
L

L

ex
it2

pr
ev

io
us

2
=

(T
)

N
U

L
L

ex
it1

pr
ev

io
us

 =
(T

)
N

U
L

L

ex
it0

ex
itr

tr
ee

R
ig

ht
 =

(T
)

N
U

L
L

L
en

tr
y8

su
bt

re
e

=
(T

)
N

U
L

L

L
fA

ft
er

2b

se
t-

>
le

ft
 =

 (
T

)f
ol

lo
w

in
g

L
en

tr
y7

te
m

p
=

(T
)

N
U

L
L

L
en

tr
y6

pr
ev

io
us

2
=

(T
)

N
U

L
L

L
en

tr
y5

pr
ev

io
us

 =
(T

)
N

U
L

L

L
en

tr
y4

tr
ee

 =
 (

T
)s

et
->

le
ft

L
en

tr
y3

fo
llo

w
in

g
=

(T
)

N
U

L
L

L
en

tr
y2

tr
ee

L
ef

t =
(T

)
N

U
L

L

tr
ee

R
ig

ht
 =

(T
)

N
U

L
L

fo
llo

w
in

g
=

 (
T

)t
re

eR
ig

ht
fo

llo
w

in
g

=
(T

)
N

U
L

L

L
fR

2

tr
ee

L
ef

t =
=

 n
ul

l

L
fR

in

tr
ee

L
ef

t !
=

 n
ul

l

tr
ee

R
ig

ht
 !

=
 n

ul
l

tr
ee

R
ig

ht
 =

=
 n

ul
l

tr
ee

L
ef

t =
 (

T
)t

re
e-

>
le

ft

L
fR

in
3

te
m

p
=

 (
T

)s
ub

tr
ee

->
ri

gh
t

L
fb

15
a pr

ev
io

us
->

ri
gh

t =
 (

T
)s

ub
tr

ee

L
fR

in
2

pr
ev

io
us

2
=

(T
)

N
U

L
L

L
fb

9

L
fb

12

pr
ev

io
us

 !
=

 n
ul

l

L
fb

10pr
ev

io
us

 =
=

 n
ul

l

L
nf

4tr
ee

 =
 (

T
)t

re
e-

>
ri

gh
t

L
fb

8

su
bt

re
e-

>
ri

gh
t =

 (
T

)t
re

eR
ig

ht

L
nf

3

tr
ee

 =
 (

T
)t

re
e-

>
le

ft

L
fb

7

su
bt

re
e-

>
le

ft
 =

 (
T

)t
re

eL
ef

t

tr
ee

->
da

ta
 <

 e
le

m
en

t-
>

da
ta

tr
ee

->
da

ta
 >

 e
le

m
en

t-
>

da
ta

L
fb

6

tr
ee

L
ef

t =
=

 s
ub

tr
ee

tr
ee

L
ef

t !
=

 s
ub

tr
ee

L
fb

5

su
bt

re
e-

>
ri

gh
t =

 (
T

)
N

U
L

L

L
fb

15

pr
ev

io
us

->
ri

gh
t =

 (
T

)
N

U
L

L

L
w

23

te
m

p
=

 (
T

)s
ub

tr
ee

->
ri

gh
t

L
fb

14

L
fb

14
apr

ev
io

us
->

le
ft

 =
 (

T
)

N
U

L
L

L
w

22

su
bt

re
e

=
 (

T
)t

em
p

L
fb

3

L
fb

3a
ate

m
p

=
 (

T
)s

ub
tr

ee
->

le
ft

L
fb

13

te
m

p
!=

 tr
ee

te
m

p
=

=
 tr

ee

L
fb

2

pr
ev

io
us

2
=

=
 n

ul
lpr

ev
io

us
2

!=
 n

ul
l

te
m

p
=

 (
T

)p
re

vi
ou

s-
>

le
ft

L
fb

11

se
t-

>
le

ft
 =

 (
T

)s
ub

tr
ee

se
t-

>
le

ft
 =

 (
T

)
N

U
L

L

fo
llo

w
in

g
=

 (
T

)t
re

eL
ef

t

te
m

p
=

(T
)

N
U

L
L

tr
ee

L
ef

t =
(T

)
N

U
L

L

su
bt

re
e

=
 (

T
)t

re
eL

ef
t

L
fb

3c te
m

p
=

(T
)

N
U

L
L

L
fb

3b

pr
ev

io
us

2-
>

ri
gh

t =
 (

T
)t

em
p

pr
ev

io
us

->
le

ft
 =

 (
T

)s
ub

tr
ee

L
fA

ft
er

8

pr
ev

io
us

->
ri

gh
t =

 (
T

)f
ol

lo
w

in
g

L
fb

3a

pr
ev

io
us

2-
>

ri
gh

t =
 (

T
)

N
U

L
L

L
fA

ft
er

7

pr
ev

io
us

->
ri

gh
t =

 (
T

)
N

U
L

L

tr
ee

 =
(T

)
N

U
L

L

L
fA

ft
er

6 pr
ev

io
us

->
le

ft
 =

 (
T

)f
ol

lo
w

in
g

L
fA

ft
er

5

pr
ev

io
us

->
le

ft
 =

 (
T

)
N

U
L

L

L
fA

ft
er

4

te
m

p
!=

 tr
ee

te
m

p
=

=
 tr

ee

te
m

p
=

 (
T

)p
re

vi
ou

s-
>

le
ft

se
t-

>
le

ft
 =

 (
T

)
N

U
L

L

su
bt

re
e-

>
le

ft
 =

 (
T

)
N

U
L

L

pr
ev

io
us

2
=

 (
T

)s
ub

tr
ee

Fig. 11. CFG for Tree Removal

We used the isElement-predicate to relate di�erent analyses. While the insertion and removal
methods were proved correct in terms of isElement, the analysis of the set membership routine
showed the equivalence of this routine with isElement. This approach loosely corresponds to the
abstraction mechanism used in [LKR04]. They use sets to abstract from more complex data struc-
tures, which limits them to statically allocated data structures. Our use of isElement on the other
hand allows to handle dynamically allocated sets.

Choosing the right instrumentation predicates required a thorough understanding of the data
structures involved. For trees this meant identifying that reachability alone is not very interesting,
but that the �rst edge on a path from one node to another is important. However, the predicates
are not tailored to speci�c algorithms, but to the underlying data structures. They might prove
useful for other algorithms on trees and lists as well.

Abstraction Expressions The need to partition the trees into smaller and larger elements led
to the introduction of the dle[x, sel]-predicate family. The e�ect of these unary predicates on the
abstraction could also be achieved by using the binary dle-predicate in the abstraction process.

Shape Analysis of Sets 17

x

x

x a)

b)

Fig. 12. Abstraction Expressions

Here, individuals should only be joined if they have the same canonical name and if they agree
on binary abstraction predicates to other canonical names. This is illustrated in Figure 12. The
tree on the left is supposed to be in order. The ordering predicate is not visualized to make it
more readable. Canonical Abstraction would collapse all the nodes not pointed to by x (a). The
relation between the resulting summary node and the node pointed to by x would be inde�nite.
Additionally abstracting from dle would instead create two summary nodes and keep ordering
information de�nite. Of course, the proposed abstraction can also be achieved using a number of
unary abstraction predicates. The number of predicates needed for this is linear in the number of
abstraction predicates though, to cover all canonical names.

We propose to specify the abstraction through Abstraction Expressions:

De�nition 1 (Syntax of Abstraction Expressions). The set of Abstraction Expressions over
a set of unary predicates U and a set of binary predicates B is de�ned inductively as follows:

� {u1, . . . , un} is an abstraction expression if {u1, . . . , un} ⊆ U ,
� AE1 ∧AE2 is an abstraction expression if AE1 and AE2 are abstraction expressions,
� AE.{b1, . . . , bn} is an abstraction expression if AE is an abstraction expression and {b1, . . . , bn} ⊆

B.

We de�ne the semantics of Abstraction Expressions by giving an associated equivalence relation.
The equivalence relation determines which nodes are to be merged.

De�nition 2 (Semantics of Abstraction Expressions). The associated equivalence relation
∼AE to an Abstraction Expression AE is de�ned inductively as follows:

� x ∼{u1,...,un} y :⇔ ∧
u∈{u1,...,un}

u(x) = u(y),

� x ∼AE1∧AE2 y :⇔ x ∼AE1 y ∧ x ∼AE2 y,
� x ∼AE.{b1,...,bn} y :⇔ x ∼AE y ∧ ∧

b∈{b1,...,bn}
∀z.(

⊔
{w|w∼AEz}

b(x,w) =
⊔

{w|w∼AEz}
b(y, w)).

The Abstraction Expression {u1, . . . , un} is equivalent to Canonical Abstraction over {u1, . . . , un}.
The abstraction depicted in case (b) of Figure 12 can be speci�ed using the Abstraction Expression
{x} . {dle}. It will be interesting to see whether there are more applications, where abstraction
can be speci�ed more easily using such expressions than by plain Canonical Abstraction.

18 Jan Reineke

Dead Predicates To speed up the analyses we included additional actions in the control �ow
graphs of the tree-based programs. These actions nulli�ed certain variables and allowed the engine
to collapse structures that were otherwise isomorphic. This was only done for unary predicates
representing dead variables, i.e. predicates that further steps of the analysis did not rely on. These
predicates could be called dead predicates. A similar e�ect could have been achieved by marking
these predicates as non-abstraction predicates locally. This approach was previously described
in Roman Manevich's Master Thesis [Man03]. These dead predicates could be determined by a
preceding static analysis. At the time the analyses were conducted it had not been integrated into
TVLA yet. We believe that it may dramatically increase the performance of analyses in larger
programs that contain many loosely coupled sections. Unfortunately, we cannot give experimental
results about the magnitude of the e�ect. Our analysis for the tree-based removal method did not
terminate within days without this optimization. Of course, the optimization could also decrease
precision, because more structures are collapsed, possibly losing relevant information. However, in
such a case it seems that the wrong abstraction is used, but the analysis succeeds by coincidence.

4 Conclusion

We created a precise shape analysis for programs that are manipulating ordered trees. It is particu-
larly tailored to invariants of the tree data structure. Choosing the right instrumentation predicates
required a thorough understanding of the data structures involved. This meant identifying that
reachability alone is not very interesting, but that the �rst edge on a path from one node to an-
other is important. We implemented the analysis in TVLA [LA00,LAS00] and successfully applied
it to methods of the tree-based set implementation. The analysis proved that the implementation
complies to the axioms (3) and (4) of the ADT Set speci�cation.

a ∈ s.insert(b) ↔ a =el b ∨ a ∈ s, (3)
a ∈ s.remove(b) ↔ a 6=el b ∧ a ∈ s (4)

We used the isElement-predicate to relate di�erent analyses. Our analyses of the insertion and
removal methods established the two axioms in terms of isElement. Another analysis then estab-
lished the equivalence between isElement and the set membership method ·.insert(·). Adapting
existing analyses for singly-linked lists allowed us to show the same property for our list-based set
implementation.

Inspired by a family of instrumentation predicates used in our tree analysis, we propose a new
way of specifying abstractions by so-called �Abstraction Expressions�. These expressions allow to
not only use unary but also binary predicates in the abstraction speci�cation. �Abstraction Ex-
pressions� have the same expressive power as Canonical Abstraction. However, we need a smaller
number of predicates to express certain abstractions.

5 Future Work

We successfully analyzed a tree-based set implementation. Since the analysis is tailored to the
underlying data structure and not to the speci�c algorithms employed, it might be possible to
analyze other algorithms working on trees using the same abstraction.

The tree structure lends itself naturally to recursion. We could possibly combine recent work on
interprocedural shape analysis [RS01] with our abstractions to be able to analyze recursive im-
plementations. Modern data structure libraries usually contain more e�cient set implementations
using balanced trees, like AVL or red-black trees. They maintain even more complicated data
structure invariants than the unbalanced tree implementation we analyzed. Algorithms on these
structures can usually be implemented more easily using recursion, too. Extending our analysis to

Shape Analysis of Sets 19

cope with the invariants of balanced trees might make such algorithms amenable as well.

Abstraction Expressions seem useful where we want to distinguish individuals if they di�er by
binary predicates originating from individuals that we distinguish. In our tree-based analysis, we
could separate smaller and larger tree elements. In the shape analysis for RESET, we could use
the set membership relation to separate individuals in terms of the sets they belong to. An imple-
mentation of the concept would allow deeper insight into the usefulness of the approach.

References
[CWZ90] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and structures.

In PLDI '90: Proceedings of the ACM SIGPLAN 1990 conference on Programming language
design and implementation, pages 296�310, New York, NY, USA, 1990. ACM Press.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Speci�cation I. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1985.

[EM90] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Speci�cation 2: Module Speci�-
cations and Constraints. Springer-Verlag New York, Inc., New York, NY, USA, 1990.

[GH96] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a dag, or a cyclic graph? a shape analysis for
heap-directed pointers in c. In POPL '96: Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 1�15, New York, NY, USA, 1996.
ACM Press.

[LA00] Tal Lev-Ami. TVLA: A framework for kleene based static analysis. Master's thesis, Tel-Aviv
University, Tel-Aviv, Israel, 2000.

[LARSW00] Tal Lev-Ami, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Putting static analysis to
work for veri�cation: A case study. In ISSTA '00: Proceedings of the 2000 ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 26�38, New York, NY,
USA, 2000. ACM Press.

[LAS00] Tal Lev-Ami and Mooly Sagiv. TVLA: A system for implementing static analyses. In SAS '00:
Proceedings of the 7th International Symposium on Static Analysis, pages 280�301, London,
UK, 2000. Springer-Verlag.

[LEW97] Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Speci�cation of abstract data types.
John Wiley & Sons, Inc., New York, NY, USA, 1997.

[LKR04] Patrick Lam, Viktor Kuncak, and Martin Rinard. Generalized typestate checking using set
interfaces and pluggable analyses, 2004.

[Man03] Roman Manevich. Data structures and algorithms for e�cient shape analysis. Master's thesis,
Tel-Aviv University, School of Computer Science, Tel-Aviv, Israel, January 2003. Available at
www.cs.tau.ac.il/rumster/msc_thesis.pdf.

[Mic04] Sun Microsystems. Java 2 platform standard edition 5.0 api speci�cation, 2004. Available at
http://java.sun.com/j2se/1.5.0/docs/api/.

[MN99] Kurt Mehlhorn and Stefan Näher. LEDA - A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge, 1999.

[MS96] David R. Musser and Atul Saini. STL tutorial and reference guide, volume - of Addison-Wesley
professional computing ser. Addison-Wesley, 1996.

[Rei05] Jan Reineke. Shape analysis of sets. Master's thesis, Universität des Saarlandes, Germany,
June 2005. Available at http://rw4.cs.uni-sb.de/ reineke/publications/MasterReineke.pdf.

[RS01] Noam Rinetzky and Mooly Sagiv. Interprocedural shape analysis for recursive programs.
Lecture Notes in Computer Science, 2027:133�149, 2001.

[SRW99] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via 3�valued
logic. In Symposium on Principles of Programming Languages, pages 105�118, 1999.

[SRW02] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via 3�valued
logic. ACM Trans. Program. Lang. Syst., 24(3):217�298, 2002.

Using Abstraction in Modular Verification of
Synchronous Adaptive Systems

Ina Schaefer and Arnd Poetzsch-Heffter

{inschaef|poetzsch}@informatik.uni-kl.de
Software Technology Group

Technische Universtiät Kaiserslautern
Germany

Abstract. Self-adaptive embedded systems autonomously adapt to
changing environment conditions to improve their functionality and to
increase their dependability by downgrading functionality in case of fail-
ures. However, adaptation behaviour of embedded systems significantly
complicates system design and poses new challenges for guaranteeing
system correctness, in particular vital in the automotive domain. Formal
verification as applied in safety-critical applications must therefore be
able to address not only temporal and functional properties, but also
dynamic adaptation according to external and internal stimuli.
In this paper, we introduce a formal semantic-based framework to model,
specify and verify the functional and the adaptation behaviour of syn-
chronous adaptive systems. The modelling separates functional and adap-
tive behaviour to reduce the design complexity and to enable modular
reasoning about both aspects independently as well as in combination.
By an example, we show how to use this framework in order to verify
properties of synchronous adaptive systems. Modular reasoning in com-
bination with abstraction mechanisms makes automatic model checking
efficiently applicable.

1 Introduction

In the automotive sector, self-adaptive embedded systems are used for instance
as antilock braking (ABS), vehicle stability control (VSC), and adaptive cruise
control (ACC) systems. They autonomously adapt to changing environment con-
ditions in order to meet high quality requirements, e.g. to offer the best possible
service in any kind of driving condition. Furthermore, adaptation increases de-
pendability and fault-tolerance of systems by autonomously up- and downgrad-
ing the functionality according to the available resources. This can for instance
be changing qualities of environment sensors. However, adaptation in embedded
systems significantly complicates system design and poses new challenges for
guaranteeing system correctness, in particular vital in the automotive domain.
Therefore, formal verification as applied in safety-critical applications must be
able to address not only temporal and functional properties, but also dynamic
adaptation according to external and internal stimuli.

INTERREG IIIC/e-Bird
Workshop "Trustworthy Software" 2006
http://drops.dagstuhl.de/opus/volltexte/2006/699

In this paper, we introduce a formal semantic-based framework to model,
specify and verify functional and adaptation behaviour of self-adaptive embed-
ded systems. The modelling framework is based on state-transition systems and
describes adaptation of module behaviour in terms of an adaptation aspect on
top of a set of predetermined module configurations. Restricting adaptation to
predetermined reconfiguration makes systems predictable and improves analy-
ses results. Our models are synchronous systems as those can capture simulta-
neously invoked actions by true concurrency. Most approaches formalizing self-
adaptation [1] so far focus on structural and architectural adaptation such as
adding and removing components instead of behavioural adaptation of single
system modules. Furthermore, they intertwine functionality and adaptation. In
contrast, the proposed modelling framework decouples functional and adaptive
behaviour and provides a clear formal account of both aspects in separation.
This reduces the design complexity and enables explicit and uniform reasoning
about purely functional, purely adaptive as well as combined properties. We de-
velop a high level modelling framework in which the special features of dynamic
reconfiguration, i.e. the behavioural adaptation and the separation of adaptation
and functionality, can be observed and reasoned about directly. If these special
properties of the considered class of systems would be encoded into another
formalism, this high level specific properties are typically lost and cannot be
exploited for tailored analyses.

On top of the formal model, we define a specification logic that allows to ex-
press functional, adaptive and temporal properties of the system. Since we can
describe the behaviour of our systems by a set of execution traces we will adopt a
variant of first-order LTL [3] for our purposes. The proposed framework enables
modular reasoning through modular specification of systems. A global system
property can be decomposed into local properties of single modules entailing
the global property. Furthermore, the model allows to incorporate abstraction
mechanisms, for instance to reduce unbounded data domains to finite discrete
domains. Modularity combined with appropriate abstraction mechanisms facili-
tates the efficient integration of existing automatic verification techniques such
as model checking into the verification process of synchronous adaptive systems.
Thus, the verification effort can be reduced by discharging sub-proof goals au-
tomatically.

In this paper, we present the application of our modelling, specification and
verification framework at an example system confronted with changing qualities
of sensor values. This scenario is quite common in the context of embedded
automotive systems. Due to restricted hardware resources, the system has to
deal with changing sensor qualities by adapting its functionality to the available
resources instead of halting the system. Redundant hardware is not applicable
due to the inherent limitations in embedded systems. We show how to model
such a sensor quality adaptation as synchronous adaptive system. Afterwards,
we verify the safety property that despite problems with the sensors the quality
of the system output is below a threshold only for a restricted period of time.
This exemplary verification shows the use of modular reasoning and abstraction

2

techniques and gives an intuition which mechanisms are necessary for efficient
automatic verification of synchronous adaptive systems.

The paper is structured as follows: Section 2 gives a short overview of re-
lated work on formal analysis of self-adaptive systems. In Section 3, we will
introduce our formal semantic-based model of synchronous adaptive systems il-
lustrated with the running example. In Section 4, we introduce an LTL based
logic for specifying properties over these models. In Section 5, we show how to
use abstraction techniques and modular verification in order to proof the safety
property over the running example, before we conclude the paper in Section 6
with an outlook to future work.

2 Related Work

From a general point of view dynamic adaptation is a very diverse area of re-
search including real time systems [5], agent systems [8] and component middle-
ware [4], just to name a few representatives. There are a number of approaches
for modelling self-managed dynamic software architectures in a more or less for-
mal manner, e.g. using graphs, logic or process algebra; for a survey, consult [1].
However, most of these approaches consider mere modelling of systems instead
of their verification. Additionally, the focus lies mainly on architectural adapta-
tion instead of behavioural adaptation as considered here. Moreover, adaptive
and functional behaviour are often intertwined which does not allow separated
reasoning about both aspects.

In [10], models of adaptive synchronous systems separate adaptation from
functionality by endowing data flow with qualities. The configuration behaviour
of one module only depends on the quality transmitted with the input and out-
put variables. Considering the qualities, an abstract model of the adaptation
behaviour is extracted from the system which is analysed via model checking.
However, functional behaviour is completely discarded whereas our approach al-
lows to reason about adaptive, functional and combined behaviour as in systems
where adaptation depends on functional data. In [12], the authors use a model
driven approach to modularly define adaptive systems coming close to the mod-
ularity considered here. Starting from a global model and global requirements of
the overall system, single domains of adaptation are identified which are designed
to satisfy local requirements entailing the global ones. However, the notion of
adaptivity is more coarse-grained than in synchronous adaptive systems due to
three fixed types of adaptation.

With respect to verification of adaptive systems, in [11] a linear temporal logic
is extended with an ’adapt’ operator for specifying requirements on the system
before, during and after the adaptation. In [6], the authors use an approach
based on a transitional-invariant lattice. Using theorem proving techniques they
show that before, during and after the adaptation the program is always in a
correct state in terms of satisfying the transitional-invariants. However, both
approaches use a more coarse-grained notion of adaptation than predetermined
behavioural reconfiguration as considered here.

3

3 Formal Models of Synchronous Adaptive Systems

Synchronous adaptive systems are composed from a set of modules where each
module has a set of predetermined behavioural configurations it can adapt to.
The selected configuration depends on the status of the module’s environment.
It is determined by an adaptation aspect defined on top of the functional be-
haviour. The modules are connected via links between input and output vari-
ables. Data and adaptation flow are decoupled and do not follow the same links.
Adaptations in one module may trigger adaptations in other modules by internal
adaptation signals via the adaptation links. That may lead to a chain reaction of
adaptations through the system. The systems are assumed to be open systems
with non-deterministic input provided by an environment. Furthermore, they are
modelled synchronously as their simultaneously invoked actions are executed in
true concurrency.

3.1 Running Example

Before we start with the formal definitions, we will illustrate the general be-
haviour of synchronous adaptive systems at an example system dynamically
reconfiguring dependant on the quality provided by its input sensors. Figure 1
shows an overview of the system structure.

The system consists of two modules. They receive input from three sensors
and control one actuator. The sensors may produce results with varying quality
due to changing environment conditions. Hence, the sensor input is associated
with a confidence level. This confidence level is an integer value which reflects
the sensor’s input quality. The higher the confidence level is the higher is the
reliability of the value. In our example, a confidence level below 50 models low
confidence, between 50 and 100 medium confidence and above 100 high confi-
dence. The confidence level can be determined by enhancing the mere sensor
with a functional module. This module for instance records the sensor values
over some period of time and monitors its changes. If the sensor value changes
by a great amount over a short period of time confidence in this sensor is re-
duced. Another possibility to calculate the confidence level may be to monitor
other system parameters. By performing a plausibility check the sensor module
can infer the confidence of the input.

The first two sensor inputs are fed into the first system module which selects
one of the sensor inputs according to their confidences. In the considered sce-
nario, sensor 1 produces very good results reflecting the value to be measured
very closely. But sensor 1 is also very likely to produce very bad results because
of environment changes. This is reflected in the attached confidence level. If the
confidence falls below 50, the value is no longer guaranteed to be good enough.
Then, the second sensor becomes important. It measures the same input source
as the first sensor in general providing lower confidence. Hence, the first sensor
is mostly preferred over the second. However, the second sensor is more robust
which is reflected by the assumption that the confidence never falls below 50.
Thus, if the first sensor produces data with low confidence over some period of

4

Fig. 1. Graphical Representation of the Running Example System

time the system adapts to use the second sensor in order to ensure sufficient
confidence of the output. In detail, the adaptation works as follows: If the confi-
dence level of the first sensor is smaller than 50 for more than 2 subsequent cycles
the module switches to the value of the second sensor. Sensor 2 is then used as
long as the confidence of the first sensor is smaller than 100. If the confidence
of sensor 1 is above 100 for 3 subsequent cycles it is assumed that sensor 1 has
recovered. Then, the system will return to using sensor 1 in order to use better
quality inputs in general.

According to the selected sensor a different functionality is used to produce
the module output. This can for instance be necessary in order to transform
the input from a different unit of measurement. The output together with the
confidence level of the selected sensor is passed on to the second module which
receives another data value and a respective confidence from a third sensor. This
sensor is assumed to be of the same type as sensor 2 always producing a medium
quality value with confidence above 50. The second module uses its two input
values to trigger the actuator. Therefore, it only needs a single configuration. For
the confidence level it simply computes the minimum confidence of the received.

An interesting property of this system is that the confidence should never
fall below 50 for more than two subsequent cycles. This property depends on the
assumption that the second and third sensor are more robust always providing
confidence above 50. Ensuring this property is important because the actuator
may break down putting the system in a dangerous situation if it gets input
with low confidence for more than 2 subsequent cycles. However, it is desirable
to use the best possible sensor input. So the adaptation is designed to use sensor
1 whenever appropriate.

3.2 Syntax

In this section, we define the syntax of our formal modelling language for syn-
chronous adaptive systems (SAS). It is based on state-transition systems and

5

incorporates ideas from aspect-oriented software engineering in order to decou-
ple functional from adaptive behaviour. We assume that we are given a set of
variable names Var and a set of values Val . It would also be possible to en-
hance this with variable types and associated variable domains. The smallest
construction element is a module. It contains a set of different predetermined
configurations the module can adapt to dependent on the current status of its
environment. The adaptation is realised by an adaptation aspect. Before the
execution of the actual functionality the adaptation aspect evaluates the config-
uration guards and determines the configuration to use.

Definition 1 (Module and Adaptation). An SAS module m is a tuple
m = (in, out, loc, init, confs, adaptation) with

– in ⊆ Var, the set of input variables, out ⊆ Var, the set of output variables,
loc ⊆ Var, the set of local variables and init : loc→ Val their initial values

– confs = {conf j = (guardj , next statej , next outj) | j = 1, ..., n} the confi-
gurations of the module, where
• guardj: a first-order formula over {in, loc, adapt in, adapt loc} deter-

mining when the configuration j is applicable
• next statej: (in ∪ loc→ Val) → (loc→ Val) the next state function for

configuration j
• next outj: (in ∪ loc → Val) → (out → Val) the output function for

configuration j

The adaptation is defined as a tuple adaptation = (adapt in, adapt out,
adapt loc, adapt init, adapt next state, adapt next out, adapt trigger) where

– adapt in ⊆ Var, the set of adaptation in-parameters, adapt out ⊆ Var, the
set of adaptation out-parameters, adapt loc ⊆ Var, the set of adaptation
local state variables and adapt init : adapt loc→ Val their initial values

– adapt next state : (adapt in ∪ adapt loc → Val) → (adapt loc → Val) the
adaptation next state function

– adapt next outi : (adapt in ∪ adapt loc → Val) → (adapt out → Val) the
adaptation output function

– adapt trigger : (in∪ loc∪ adapt in∪ adapt loc→ Val) → {1, ..., n} for n the
number of configurations

Because the first module in our running example has the more interesting
adaptation behaviour we will focus on this module for illustrating the modelling
framework. Module m1 possesses two functional inputs sensor1 and sensor2 and
the functional output data12. Furthermore, it receives the confidence levels from
sensor 1 confidence1 and from sensor 2 confidence2 as adaptation inputs and
produces confidence12 as adaptation output propagating the confidence of the
selected sensor. A functional local state does not exist because the module solely
transforms input to output according to two configurations, namely configuration
conf 1 standing for the use of sensor 1 and conf 2 for the use of sensor 2.

In Figure 2, the adaptation behaviour, as defined by the adapt next state1
function, is depicted as a state transition diagram. The adaptation local state

6

Fig. 2. State Transition Diagram for Adaptation Behaviour of Module 1

consists of two counters c1 and c2. If sensor 1 is used counter c1 counts the
subsequent cycles in which confidence1 falls below 50. This counter is initialised
to 2. Counter c2 counts the cycles in which confidence1 is above 100 if sensor 2
is used. It is initialised to 3. The counter c1 is set to 3 in order to reflect the use
of sensor 2. Thus, the guard for use of sensor 1 in conf 1 is c1 ≤ 2 and the guard
for sensor 2 in conf 2 is c1 = 3. If sensor 1 is used confidence12 := confidence1

and if sensor 2 is used confidence12 := confidence1. In Figure 2, the grey circles
denote states in which sensor 1 is used and the white ones states where sensor 2
is used.

An SAS system is composed from a set of modules that are interconnected
with their input and output variables. The system is an open system with an
environment providing non-deterministic input and output via connections from
environment input and output to module input and output variables. For tech-
nical reasons, we have to assume that the variable names of all modules in a
composed system are pairwise disjoint. This can be easily achieved by indexing
the module variables with the respective module index. By an injective connec-
tion function, we link module output variables to other module’s input variables.
Furthermore, we link environment input variables to module input variables and
module output variables to environment output variables. This means that one
variable is connected to one other variable only. If we want to transfer the same
output to several places we have to simulate this by duplicating the output vari-
able. Note that in this definition adaptation and functional input and output
are decoupled. Adaptation and data flow do not follow the same links such that
a module can forward its data to one module and notify a different module to
adapt.

Definition 2 (System). A synchronous adaptive system (SAS) is a tuple

SAS = (M, inputa, inputd, outputa, outputd, conna, connd)

7

where

– M is a set of modules M = {m1, . . . ,mn} where mi =
(ini, outi, loci, initi, confsi, adaptationi)

– inputa ⊆ Var are adaptation inputs and inputd ⊆ Var functional inputs to
the system

– outputa ⊆ Var are adaptation outputs and outputd ⊆ Var functional outputs
from the system

– conna is an injective function connecting adaptation outputs to adaptation
inputs and also environment adaptation inputs to module adaptation in-
puts and module adaptation outputs to environment adaptation outputs, i.e.
conna : (adapt outj → adapt ink) ∪ (inputa → adapt ink) ∪ (adapt outk →
outputa) for j, k = 1, ..., n

– connd is an injective function connecting outputs of modules to inputs and
also environment inputs to module inputs and module outputs to environment
outputs, i.e. connd : (outj → ink) ∪ (inputa → ink) ∪ (outk → outputa) for
j, k = 1, ..., n

We can model the running example as

SAS = (M, inputa, inputd, outputa, outputd, conna, connd)

where M = {m1,m2}. The adaptation inputs are inputa = {confidence1,
confidence2} and the functional inputs are inputd = {sensor1, sensor2}. The
adaptation outputs are outputa = {confidenceout} and the functional outputs
are outputd = {output}. The connections between the modules are as depicted
in Figure 1.

3.3 Semantics

The semantics of an SAS is defined in a two layered approach. Firstly, we define
the local semantics of single modules similar to standard state-transition systems.
From this, we secondly give the global semantics of the composed system.

A local state of a module is defined by the evaluation of the module’s vari-
ables, i.e. the input, output and local variables and the adaptation counterparts.
A local state is initial, if its functional and adaptation variables are set to their
initial values and input and output are undefined. A local transition between
two local states evolves in two stages: Firstly, the adaptation aspect computes
its new local state and its new adaptation output from the current adaptation
input and the previous adaptation state. The adaptation aspect further selects
the configuration with the smallest index and valid guard with respect to the
current input and the previous functional and adaptation state. Since the con-
figurations are prioritised according to their index we do not require them to
be disjoint. The system designer should ensure that the system has a build-in
default configuration which becomes applicable when no other configuration is.
The selected configuration is used to compute the new local state and the new
output from the current functional input and the previous functional state.

8

Definition 3 (Local States and Transitions). A local state s of an SAS
module m is defined as evaluation of the module’s variables.

s : in ∪ out ∪ loc ∪ adapt in ∪ adapt out ∪ adapt loc→ Val

A local state s is called initial if s|loc = init, s|adapt loc = adapt init and
s|V = undef for all V = in ∪ out ∪ adapt in ∪ adapt out. A local transition
between two local states s and s′ is defined as s→loc s

′ iff

s′|adapt loc = adapt next state(s′|adapt in ∪ s|adapt loc)
s′|adapt out = adapt next out(s′|adapt in ∪ s|adapt loc)

s′|loc = next statei(s′|in ∪ s|loc) and s′|out = next outi(s′|in ∪ s|loc)

and adapt trigger(s′|in∪ adapt in ∪ s|loc∪ adapt loc) = i
iff s′|in ∪ s|loc ∪ s|out ∪ s′|adapt in ∪ s|adapt out ∪ s|adapt loc |= guardi

∀ 0 < j < i, s′|in ∪ s|loc ∪ s|out ∪ s′|adapt in ∪ s|adapt out ∪ s|adapt loc 6|= guardj

A global system state is the union of the local states of the system modules
together with an evaluation of the system’s environment input and output. A
global system state is initial if all local states are initial and the system input
und output are undefined. A transition between two global states is performed
in three stages. Firstly, each module reads its input either from another mod-
ule’s output of the previous cycle or from the environment in the current cycle.
Secondly, each module synchronously performs a local transition. Thirdly, the
modules directly connected to the system output write their results to the output
variables.

Definition 4 (Global States and Transitions). A global state σ of an SAS
consists of the module’s local states {s1, . . . , sn} where si is the local state of
mi ∈M and an evaluation of the functional and adaptive input and output, i.e.
σ = s1 ∪ . . . ∪ sn ∪ ((inputa ∪ inputd ∪ outputa ∪ outputd) → Val). A global
state σ is called initial if all local states si for i = 1, . . . , n are initial and the
system’s input and output are undefined. Two states σi and σi+1 perform a global
transition, i.e. σi →glob σ

i+1 iff

– for all x, y ∈ Var \ (inputd ∪ inputa) with connd(x, y) or conna(x, y):
σi+1(y) := σi(x) and for all x ∈ inputa and y ∈ Var with conna(x, y):
σi+1(y) := σi+1(x) and for all x ∈ inputd and y ∈ Var with connd(x, y):
σi+1(y) := σi+1(x)

– for all si
j ∈ σi and for all si+1

j ∈ σi+1 si
j →loc s

i+1
j

– for all x ∈ Var and y ∈ outputd with connd(x, y): σi+1(y) := σi+1(x) and
for all x ∈ Var and y ∈ outputa with conna(x, y): σi+1(y) := σi+1(x)

A sequence of global states σ0σ1σ2 . . . of an SAS is a system trace if firstly
σ0 is an initial global state and secondly, for all i ≥ 0 : σi →glob σ

i+1. The set
Runs(SAS) = {σ0σ1σ2 . . . |σ0σ1σ2 . . . is a system trace} gives the semantics of
the SAS.

9

4 A Logic for Synchronous Adaptive Systems

In this section, we will introduce a specially tailored logic for reasoning about
synchronous adaptive systems. The properties of the system behaviour can be
classified in three dimensions: functional behaviour, adaptation behaviour and
combined properties. Combined properties equally refer to functional and adap-
tive system aspects, for instance if adaptation depends on functional values. The
environment input is assumed to be non-deterministic such that the behaviour
of a system can be described by a set of possible execution traces as infinite
sequences of states. Hence, we adopt a variant of the linear time logic LTL [3] by
adding special basic predicates for the considered systems to standard first-order
and LTL connectives.

For a module, we need predicates to describe its local state, the input and
output values and the respective adaptation counterparts. Therefore, equality
and the less-than-or-equal relation over terms build from the relevant variables
are employed. Furthermore, the configuration currently used is described by the
predicate use conf t2(t1) which is true if the module denoted by term t2 uses
the configuration denoted by t1 in the current state. On system level, we have
predicates in order to speak about the connections between output and input
variables implemented by the predicates is connd(x1, x2) and is conna(x1, x2)
which are true if there is a functional or an adaptive connection between x1 and
x2.

Definition 5 (Linear LSAS). The grammar of linear LSAS is defined as fol-
lows:

t ∈ Terms ::= x ∈ Var | v ∈ Val | f(t1, . . . , tn)
a ∈ Atoms ::= t1 = t2 | t1 ≤ t2 | is conn [a|d](x1, x2) | use conf t2(t1)

ϕ ∈ StFmlae ::= true | a | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ∃x. ϕ | ∀x. ϕ
ψ ∈ Fmlae ::= ϕ | X ψ | F ψ | G ψ | ψ1 U ψ2

A Formula ϕ ∈ LSAS is interpreted over a path π where π is an infinite
sequence of global states π = σ0, σ1, . . . which forms a system trace as defined in
the previous section. We denote that a system trace of a synchronous adaptive
system SAS π ∈ Runs(SAS) is a model for a formula ϕ by π |=SAS ϕ.

The interpretation of the temporal and first-order formulae complies to stan-
dard first-order LTL semantics [3]. Terms are evaluated by simply extending the
variable assignments of a state σ to σ̂. Equality and less-than-or-equal relation
are interpreted standardly. The predicates is conna(x1, x2) and is connd(x1, x2)
are valid if there is a connection via the respective connection functions. For
reasoning purposes only, we enhance the local state of module i with an ad-
ditional state variable config i which captures the configuration that is used in
this state. Its value is determined during the global transition σ → σ′ by using
the adapt trigger function as defined in Definition 1 which selects the applicable
configuration.

σ′(config i) = adapt trigger i(s
′
i|in∪ adapt in ∪ si|loc∪ adapt loc)

10

Then, we are able to define the predicate use conf over a state σ by
use conf t2(t1) ≡ true iff σ(config σ̂(t2)) = σ̂(t1).

Furthermore, the boolean connectives are interpreted standardly. The next
operator, Xϕ, determines that ϕ is true in the next state, i.e. over the path π1

which is the state sequence σ1, σ2 A formula is globally true, Gϕ, iff for all
i ≥ 0, ϕ holds over πi, the path π starting in the i-th state. The formula Fϕ
is true is there exists i ≥ 0 such that πi |=SAS ϕ. The until operator ϕ1 Uϕ2

denotes that there exists j ≥ 0 such that πj |=SAS ϕ2 and for all 0 ≤ i < j,
πi |=SAS ϕ1. We say that a formula ϕ ∈ LSAS is valid for an SAS if π |=SAS ϕ for
all paths π ∈ Runs(SAS) and that it is satisfiable if there exists π ∈ Runs(SAS)
such that π |=SAS ϕ.

5 Towards Modular Verification using Abstraction

Having defined a specification logic on top of the formal model we are now
able to formally verify properties specified in LSAS . This verification process
should incorporate automatic verification techniques such as model checking
whenever possible. For an intuition how the proposed framework can be applied
we consider the running example of the sensor quality adaptation as described
in Section 3.1. The safety property to be shown is that the quality of the output
at the actuator is never below 50 for more than 2 subsequent cycles. Otherwise,
the actuator may break down causing the system to enter a dangerous situation.
In LSAS , this property can be expressed by the formula ϕ that is required to
hold for all paths π ∈ Runs(SAS).

ϕ = G¬(confidenceout ≤ 50 ∧X confidenceout ≤ 50 ∧XX confidenceout ≤ 50)

For verification we proceed as follows. Firstly, we abstract the unbounded
integer domain of the confidence level to three discrete values low, med (for
medium) and high. This is necessary because automatic model checking tech-
niques to be applied later can in general only deal with finite state systems. The
abstraction has to preserve the properties of the concrete system, i.e. if the ab-
stract property holds over the abstract system, also the concrete property holds
over the concrete system. For our example, we can construct an abstract SAS#

along the lines of [2]. We use the following surjection h for mapping concrete
confidence integer values to abstract values:

h(confidence) =

 low if confidence ≤ 50
med if 50 < confidence ≤ 100
high if confidence > 100

For the paths of the abstract system SAS# we have to ensure two conditions
such that SAS# approximates SAS and preserves its LSAS properties. Firstly,
the set of concrete initial states must be mapped to the set of abstract initials
states. Secondly, the concrete transition relation must be contained in the ab-
stract transition relation. In our example, this means that we must abstract all

11

Fig. 3. State Transition Diagram for the Abstract Adaptation Behaviour of Module 1

conditions in configuration guards, adaptation next state and adaptation output
functions that depend on confidence1, confidence2, confidence12 and confidence3

by the corresponding expressions using the abstract values low, med and high.
For an example consider the abstracted transition diagram for module 1 in Figure
3. Additionally, the functions for calculating the confidence outputs have to be
abstracted. This is easy for module 1 since it just propagates the relevant confi-
dence already abstract in the abstract system. For module 2, the adapt next out
function is defined as confidenceout := min{confidence12, confidence3}. Here, we
have to give an abstract minimum function min# which reflects the intuitive
ordering that low is smaller than med which is smaller than high. The abstract
property reads as follows: ϕ# =

G¬(confidenceout = low ∧ X confidenceout = low ∧ XX confidenceout = low)

Verification of the abstract property ϕ# over the abstract system SAS# imme-
diately implies validity of ϕ over SAS by construction of the abstraction using
the results of [2].

Secondly, we modularly verify the abstract property over the abstract system.
Therefore, we decompose the global property into two local properties over the
two modules. From their validity can infer validity of the overall system property.
The global property ϕ# can be decomposed as follows. For module 2, we use
the definition of the adapt next out function and show ϕ#

2 = (where c is used
as abbreviation for confidence)

G¬(min#{c12, c3} = low∧Xmin#{c12, c3} = low∧XXmin#{c12, c3} = low)

By assumption on sensor 3 that its confidence is always greater than 50 or greater
than low this property boils down to ϕ#

2 =

G¬(confidence12 = low ∧X confidence12 = low ∧XX confidence12 = low)

12

This is actually a property over module 1. So it suffices to prove ϕ#
1 ≡ ϕ#

2

over module 1. We can enter this property together with the abstract module
description into a model checker, for instance [9]. This will explore all paths of
the abstract system and return the result that for all paths π of the abstracted
module 1, π |=m#1 ϕ

#
1 . This can also be seen in the abstract transition graph as

depicted in Figure 3. If the confidence of sensor 1 is low for 2 subsequent cycles
the system adapts to use sensor 2. Sensor 2 by assumption has a confidence of
greater than 50 or in the abstract greater than low. So, the property ϕ#

1 holds
on all execution paths. As a consequence, we can conclude by combining the
results of abstraction and modularity that the example SAS satisfies the initial
property ϕ.

6 Conclusion and Future Work

In this paper, we have introduced a formal semantic-based framework to model,
specify and verify the functional and the adaptation behaviour of synchronous
adaptive systems. The modelling framework separates functional and adaptive
behaviour in order to reduce the design complexity and to allow modular reason-
ing about both aspects independently but also in combination. We have shown
how to apply this framework for the verification of a safety property by the
example of a sensor quality adaptation system.

As we have observed in the running example, modularity combined with
abstraction reduces the complexity of sub-proof goals necessary to infer the de-
sired overall system property. For these sub-goals, model checking algorithms
such as [9] become efficiently applicable. Hence, for future work, we want to
further investigate the use of modular verification in combination with abstrac-
tion mechanisms. In this direction, we want to integrate an automatic theorem
prover dealing with modularity and abstraction with automatic model checking
methods. Furthermore, we plan to equip our modelling framework with means
for expressing hierarchy in order to be able to compose complex systems from a
number of subsystems and to exploit this hierarchy for verification. In addition to
that, we want to implement a translation from UML-like models of synchronous
adaptive systems in the GME [7] framework to SAS models in order to provide
GME models with a firm semantic basis and to make our approach end-user
compatible by a graphical modelling front end.

References

1. J.S. Bradbury, J.R. Cordy, J. Dingel, and M. Wermelinger. A survey of self-
management in dynamic software architecture specifications. In Proc. of the In-
ternational Workshop on Self-Managed Systems (WOSS’04), 2004.

2. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems (TOPLAS), 16(5):1512–
1542, 1994.

13

3. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science: Volume B: Formal Models and Semantics, pages
995–1072. Elsevier, Amsterdam, 1990.

4. W. Gilani, N. Naqvi, and O. Spinczyk. On adaptable middleware product lines. In
Proc. of 3rd Workshop an Adaptive and Reflective Middleware, page 207213, 2004.

5. O. Gonzalez, H. Shrikumar, J. Stankovic, and K. Ramamritham. Adaptive fault-
tolerance and graceful degradation under dynamic hard real-time scheduling. In
Proc. of IEEE Real-Time Systems Symposium (RTSS), pages 79–89, 1997.

6. S.S. Kulkarni and K.N. Biyani. Correctness of component-based adaptation. In
Proc. of Intl. Symposium on on Component Based Software Engineering, pages
48–58, 2004.

7. A. Ledeczi and al. The Generic Modeling Environment. In Proc. of IEEE Inter-
national Workshop on Intelligent Signal Processing (WISP), 2001.

8. O. Marin, M. Bertier, and P. Sens. DARX - a framework for the fault tolerant
support of agent software. In Proc. of IEEE International Symposium on Software
Reliability Engineering (ISSRE), pages 406–418, 2003.

9. K. Schneider and T. Schuele. Averest: Specification, verification, and implementa-
tion of reactive systems. In Proc. of Conference on Application of Concurrency to
System Design (ACSD), 2005.

10. K. Schneider, T. Schuele, and M. Trapp. Verifying the adaptation behavior of em-
bedded systems. In Proc. of Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2006.

11. J. Zhang and B.H.C. Cheng. Specifying adaptation semantics. In Proc. of ICSE
2005 Workshop on Architecting Dependable Systems (WADS 2005), pages 1–7,
2005.

12. J. Zhang and B.H.C. Cheng. Model-based development of dynamically adap-
tive software. In Proc. of the International Conference on Software Engineering
(ICSE’06), 2006.

14

	06000.SWM.Paper.693.pdf
	vol003-oasics-frontmatter
	06000.SWM.Paper.693

	06000-abstracts-collection.758
	Abstracts Collection INTERREG IIIC/e-Bird Workshop Trustworthy Software 2006
	 Serge Autexier, Stephan Merz, Leon van der Torre, Reinhard Wilhelm and Pierre Wolper

	06000.LegayAxel.Paper.766
	06000.LanoixArnaud.Paper.695.
	An Operator-based Approach to Incremental Development of Conform Protocol State Machines
	Arnaud Lanoix, Dieu-Donné Okalas Ossami and Jeanine Souquières

	06000.WachterBjoern.ExtAbstract.701.
	06000.ReillesAntoine.Paper.697.
	Introduction
	Formal anchor
	Preliminary concepts
	Object representation
	Object mapping

	Intermediate language
	Syntax
	Environments
	Big-step semantics

	Certified compilation
	Pattern-matching compilation correctness
	Interpreting the big-step semantics
	Working example

	Extension to match constructs
	Generating the constraints
	Algorithm to collect constraints
	Simple example
	Simplifying constraints
	Size of the generated formula
	Decidability

	Early Experimental Results
	Conclusion and future works

	06000.SchmaltzJulien.Paper.700.
	Formalizing On Chip Communications in a Functional Style
	Julien Schmaltz and Dominique Borrione

	06000.NeuhausStephan.ExtAbstract.696.
	06000.ZalinescuEugen.ExtAbstract.691
	06000.HilkerMichael.Paper.694.
	06000.ReinekeJan.Paper.698.
	06000.SchaeferIna.Paper.699.

